Science.gov

Sample records for degree field galaxy

  1. News and Views: Six-Degree Field Galaxy Survey complete; Same old galaxies; New faces at UK Planetary Forum; Telescope400; At home with Einstein; Bullerwell lecturer

    NASA Astrophysics Data System (ADS)

    2009-06-01

    An international research group has announced that the the Six-Degree Field Galaxy Survey, the most detailed map of the nearby universe, is now complete. The discovery of old, large galaxies among the brightest cluster galaxies undermines the hiererchical picture of galactic evolution. The UK Planetary Forum (UKPF), an organization that represents the UK planetary science community, has a new committee.

  2. Galaxy Evolution Within the Kilo-Degree Survey

    NASA Astrophysics Data System (ADS)

    Tortora, C.; Napolitano, N. R.; La Barbera, F.; Roy, N.; Radovich, M.; Getman, F.; Brescia, M.; Cavuoti, S.; Capaccioli, M.; Longo, G.

    The ESO Public Kilo-Degree Survey (KiDS) is an optical wide-field imaging survey carried out with the VLT Survey Telescope and the OmegaCAM camera. KiDS will scan 1,500 deg2 in four optical filters (u, g, r, i). Designed to be a weak lensing survey, it is ideal for galaxy evolution studies, thanks to the high spatial resolution of VST, the excellent seeing and the photometric depth. The surface photometry has provided with structural parameters (e.g. size and Sérsic index), aperture and total magnitudes have been used to obtain photometric redshifts from Machine Learning methods and stellar masses/luminositites from stellar population synthesis. Our project aimed at investigating the evolution of the colour and structural properties of galaxies with mass and environment up to redshift z ˜ 0.5 and more, to put constraints on galaxy evolution processes, as galaxy mergers.

  3. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    2015-12-01

    Radio synchrotron emission, its polarization and Faraday rotation of the polarization angle are powerful tools to study the strength and structure of magnetic fields in galaxies. Unpolarized synchrotron emission traces isotropic turbulent fields which are strongest in spiral arms and bars (20-30 \\upmu G) and in central starburst regions (50-100 \\upmu G). Such fields are dynamically important; they affect gas flows and drive gas inflows in central regions. Polarized emission traces ordered fields, which can be regular or anisotropic turbulent, where the latter originates from isotropic turbulent fields by the action of compression or shear. The strongest ordered fields (10-15 \\upmu G) are generally found in interarm regions. In galaxies with strong density waves, ordered fields are also observed at the inner edges of spiral arms. Ordered fields with spiral patterns exist in grand-design, barred and flocculent galaxies and in central regions. Ordered fields in interacting galaxies have asymmetric distributions and are a tracer of past interactions between galaxies or with the intergalactic medium.—Faraday rotation measures of the diffuse polarized radio emission from galaxy disks reveal large-scale spiral patterns that can be described by the superposition of azimuthal modes; these are signatures of regular fields generated by mean-field dynamos. "Magnetic arms" between gaseous spiral arms may also be products of dynamo action, but need a stable spiral pattern to develop. Helically twisted field loops winding around spiral arms were found in two galaxies so far. Large-scale field reversals, like the one found in the Milky Way, could not yet be detected in external galaxies. In radio halos around edge-on galaxies, ordered magnetic fields with X-shaped patterns are observed. The origin and evolution of cosmic magnetic fields, in particular their first occurrence in young galaxies and their dynamical importance during galaxy evolution, will be studied with

  4. Observations of faint field galaxies

    NASA Technical Reports Server (NTRS)

    Koo, David C.

    1987-01-01

    Number counts, colors, and angular correlations of field galaxies fainter than 20th mag are summarized. Resulting conclusions regarding the presence and nature of luminosity, spectral, and clustering evolution remain contraversial. Preliminary analysis of two major spectroscopic surveys near completion suggests that by z approximately 0.5, larger numbers of very blue galaxies of moderate luminosities are found than today. The skewer-like surveys also provide new probes of galaxy clustering on scales previously unexplored (larger than 200 Mpc) and over lookback times of several billion years.

  5. Magnetic fields during galaxy mergers

    NASA Astrophysics Data System (ADS)

    Rodenbeck, Kai; Schleicher, Dominik R. G.

    2016-09-01

    Galaxy mergers are expected to play a central role for the evolution of galaxies and may have a strong effect on their magnetic fields. We present the first grid-based 3D magnetohydrodynamical simulations investigating the evolution of magnetic fields during merger events. For this purpose, we employed a simplified model considering the merger event of magnetized gaseous disks in the absence of stellar feedback and without a stellar or dark matter component. We show that our model naturally leads to the production of two peaks in the evolution of the average magnetic field strength within 5 kpc, within 25 kpc, and on scales in between 5 and 25 kpc. The latter is consistent with the peak in the magnetic field strength previously reported in a merger sequence of observed galaxies. We show that the peak on the galactic scale and in the outer regions is most likely due to geometrical effects, as the core of one galaxy enters the outskirts of the other one. In addition, the magnetic field within the central ~5 kpc is physically enhanced, which reflects the enhancement in density that is due to efficient angular momentum transport. We conclude that high-resolution observations of the central regions will be particularly relevant for probing the evolution of magnetic field structures during merger events.

  6. Magnetic fields in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Krause, Marita

    2015-03-01

    The magnetic field structure in edge-on galaxies observed so far shows a plane-parallel magnetic field component in the disk of the galaxy and an X-shaped field in its halo. The plane-parallel field is thought to be the projected axisymmetric (ASS) disk field as observed in face-on galaxies. Some galaxies addionionally exhibit strong vertical magnetic fields in the halo right above and below the central region of the disk. The mean-field dynamo theory in the disk cannot explain these observed fields without the action of a wind, which also probably plays an important role to keep the vertical scale heights constant in galaxies of different Hubble types and star formation activities, as has been observed in the radio continuum: At λ6 cm the vertical scale heights of the thin disk and the thick disk/halo in a sample of five edge-on galaxies are similar with a mean value of 300 +/- 50 pc for the thin disk and 1.8 +/- 0.2 kpc for the thick disk (a table and references are given in Krause 2011) with our sample including the brightest halo observed so far, NGC 253, with strong star formation, as well as one of the weakest halos, NGC 4565, with weak star formation. If synchrotron emission is the dominant loss process of the relativistic electrons the outer shape of the radio emission should be dumbbell-like as has been observed in several edge-on galaxies like e.g. NGC 253 (Heesen et al. 2009) and NGC 4565. As the synchrotron lifetime t syn at a single frequency is proportional to the total magnetic field strength B t -1.5, a cosmic ray bulk speed (velocity of a galactic wind) can be defined as v CR = h CR /t syn = 2 h z /t syn , where h CR and h z are the scale heights of the cosmic rays and the observed radio emission at this freqnency. Similar observed radio scale heights imply a self regulation mechanism between the galactic wind velocity, the total magnetic field strength and the star formation rate SFR in the disk: v CR ~ B t 1.5 ~ SFR ~ 0.5 (Niklas & Beck 1997).

  7. The Luminosity Functions of Low Redshift Field and Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Jorgensen, I.; Hill, G. J.; Bergmann, M. P.; Elston, R.; Vanden Berk, D.; Jurcevic, J. S.

    1999-12-01

    We present a comparison of the luminosity functions for low redshift field and cluster galaxies. The luminosity functions are established for field galaxies in UBVRI, and for galaxies in the Coma cluster in UBRI. The field galaxy sample is drawn from The Texas Deep Sky Survey (TDSS) of a 2.1 by 2.1 sq. deg. area around the North Galactic Pole. More than 40000 objects have been detected in our survey of this area. We have obtained spectra of approximately 700 galaxies, making the redshift information complete to a total R magnitude of 18.5 mag. We have surveyed the central square degree of the Coma cluster in UBRI. Approximately 16000 objects have been detected in our survey. We have obtained spectra for 220 galaxies in the area with no previous measurements. Together with published data these observations make the redshift information complete for galaxies brighter than a total R magnitude of 17.5. A total of 480 members of the cluster have measured redshifts, while 180 background and foreground galaxies in the field have measured redshifts. The accurate determination of the luminosity functions for low redshift galaxies is important for the interpretation of luminosity functions established for higher redshift galaxies, both in clusters and in the field. This research was supported in part by NASA through grant number HF-01073.01.94A to IJ from the Space Telescope Science Institute.

  8. GREEN GALAXIES IN THE COSMOS FIELD

    SciTech Connect

    Pan, Zhizheng; Kong, Xu; Fan, Lulu E-mail: xkong@ustc.edu.cn

    2013-10-10

    We present research on the morphologies, spectra, and environments of ≈2350 'green valley' galaxies at 0.2 < z < 1.0 in the COSMOS field. The bimodality of dust-corrected NUV–r {sup +} color is used to define 'green valley'; it removes dusty star-forming galaxies from galaxies that are truly transitioning between the blue cloud and the red sequence. Morphological parameters of green galaxies are intermediate between those of blue and red galaxy populations, both on the Gini-asymmetry and the Gini-M{sub 20} planes. Approximately 60%-70% of green disk galaxies have intermediate or big bulges, and only 5%-10% are pure disk systems, based on morphological classification using the Zurich Estimator of Structural Types. The obtained average spectra of green galaxies are intermediate between blue and red ones in terms of [O II], Hα, and Hβ emission lines. Stellar population synthesis on the average spectra shows that green galaxies are on average older than blue galaxies but younger than red galaxies. Green galaxies and blue galaxies have similar projected galaxy density (Σ{sub 10}) distributions at z > 0.7. At z < 0.7, the fractions of M{sub *} < 10{sup 10.0} M{sub ☉} green galaxies located in a dense environment are found to be significantly larger than those of blue galaxies. The morphological and spectral properties of green galaxies are consistent with the transitioning population between the blue cloud and the red sequence. The possible mechanisms for quenching star formation activities in green galaxies are discussed. The importance of active galactic nucleus feedback cannot be well constrained in our study. Finally, our findings suggest that environmental conditions, most likely starvation and harassment, significantly affect the transformation of M{sub *} < 10{sup 10.0} M{sub ☉} blue galaxies into red galaxies, especially at z < 0.5.

  9. Galactic magnetic fields and hierarchical galaxy formation

    NASA Astrophysics Data System (ADS)

    Rodrigues, L. F. S.; Shukurov, A.; Fletcher, A.; Baugh, C. M.

    2015-07-01

    A framework is introduced for coupling the evolution of galactic magnetic fields sustained by the mean-field dynamo with the formation and evolution of galaxies in cold dark matter cosmology. Estimates of the steady-state strength of the large-scale and turbulent magnetic fields from mean-field and fluctuation dynamo models are used together with galaxy properties predicted by semi-analytic models of galaxy formation for a population of spiral galaxies. We find that the field strength is mostly controlled by the evolving gas content of the galaxies. Thus, because of the differences in the implementation of the star formation law, feedback from supernovae and ram-pressure stripping, each of the galaxy formation models considered predicts a distribution of field strengths with unique features. The most prominent of them is the difference in typical magnetic field strengths obtained for the satellite and central galaxy populations as well as the typical strength of the large-scale magnetic field in galaxies of different mass.

  10. Searching for galaxy clusters in the Kilo-Degree Survey

    NASA Astrophysics Data System (ADS)

    Radovich, M.; Puddu, E.; Bellagamba, F.; Roncarelli, M.; Moscardini, L.; Bardelli, S.; Grado, A.; Getman, F.; Maturi, M.; Huang, Z.; Napolitano, N.; McFarland, J.; Valentijn, E.; Bilicki, M.

    2017-02-01

    Aims: In this paper, we present the tools used to search for galaxy clusters in the Kilo Degree Survey (KiDS), and our first results. Methods: The cluster detection is based on an implementation of the optimal filtering technique that enables us to identify clusters as over-densities in the distribution of galaxies using their positions on the sky, magnitudes, and photometric redshifts. The contamination and completeness of the cluster catalog are derived using mock catalogs based on the data themselves. The optimal signal to noise threshold for the cluster detection is obtained by randomizing the galaxy positions and selecting the value that produces a contamination of less than 20%. Starting from a subset of clusters detected with high significance at low redshifts, we shift them to higher redshifts to estimate the completeness as a function of redshift: the average completeness is 85%. An estimate of the mass of the clusters is derived using the richness as a proxy. Results: We obtained 1858 candidate clusters with redshift 0 degrees (KiDS ESO-DR2). A comparison with publicly available Sloan Digital Sky Survey (SDSS)-based cluster catalogs shows that we match more than 50% of the clusters (77% in the case of the redMaPPer catalog). We also cross-matched our cluster catalog with the Abell clusters, and clusters found by XMM and in the Planck-SZ survey; however, only a small number of them lie inside the KiDS area currently available. The catalog is available at http://kids.strw.leidenuniv.nl/DR2 and at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A107

  11. Internal Kinematics of Distant Field Galaxies

    NASA Astrophysics Data System (ADS)

    Ing, Kristine Mei Lan

    1998-08-01

    We study faint blue field galaxies in two complementary ways by targeting red-shifted, broadened emission lines: (1) a detailed study of a small but representative sample using resolved images that reveal the internal kinematics of individual galaxies, and analyzing effects like ionized gas distribution and galaxy inclination that tend to bias the results obtained from spatially unresolved galaxy spectra; and (2) a study of a spatially unresolved but statistically complete sample within our color, magnitude, and redshift cuts. In order to facilitate comparison of distant and local galaxies, we have developed a methodology to study distant galaxies in as much detail as is customary for nearby galaxies, using state-of-the-art data. The ultimate goal of such a comparison is to determine the amount of evolution of the mass-to-light ratio of individual galaxies and to thereby constrain models of galaxy formation and evolution. In a followup to our recent multifiber spectroscopic study of the linewidth-vs-luminosity relation in faint blue galaxies at < z>~ 0.25 (Rix et al. 1997, MNRAS, 285, 779), we have carried out a detailed study of the internal kinematics of 10 distant (z = 0.30[-]0.44), faint (B = 20[-]24), blue (B-R <= 1.2) field galaxies using the Rutgers Fabry-Perot (RFP) instrument on the Cerro Tololo Interamerican Observatory's 4-meter telescope. In deriving rotation speeds from fiber spectra, we had to rely on large and somewhat uncertain statistical corrections for the effects of non-uniform gas distribution, disk inclination, shape of the rotation curve, and seeing. Using fitting disk models to the RFP datacube, complemented by surface photometry and isophotal shapes derived from high angular resolution Hubble Space Telescope Wide Field/Planetary Camera-2 images in the F814W ('I') or F555W ('V') Band and deep H-Band (1.6 μm) images obtained with the Near InfraRed Camera on the Keck 10-meter telescope, the RFP study addresses these issues directly and yields

  12. Magnetic field evolution in interacting galaxies

    NASA Astrophysics Data System (ADS)

    Drzazga, R. T.; Chyży, K. T.; Jurusik, W.; Wiórkiewicz, K.

    2011-09-01

    Aims: Violent gravitational interactions can change the morphologies of galaxies and, by means of merging, transform them into elliptical galaxies. We aim to investigate how they affect the evolution of galactic magnetic fields. Methods: We selected 16 systems of interacting galaxies with available VLA archive radio data at 4.86 and 1.4 GHz and compared their radio emission and estimated magnetic field strengths with their star-forming activity, far-infrared emission, and the stage of tidal interaction. Results: The estimated mean of total magnetic field strength for our sample of interacting galaxies is 14 ± 5 μG, which is larger than for the non-interacting objects. The field regularity (of 0.27 ± 0.09) is lower than in typical spirals and indicates enhanced production of random magnetic fields in the interacting objects. We find a general evolution of magnetic fields: for weak interactions the strength of magnetic field is almost constant (10-15 μG) as interaction advances, then it increases up to 2× , peaks at the nuclear coalescence (25 μG), and decreases again, down to 5-6 μG, for the post-merger remnants. The main production of magnetic fields in colliding galaxies thus terminates somewhere close to the nuclear coalescence, after which magnetic field diffuses. The magnetic field strength for whole galaxies is weakly affected by the star formation rate (SFR), while the dependence is higher for galactic centres. We show that the morphological distortions visible in the radio total and polarized emission do not depend statistically on the global or local SFRs, while they do increase (especially in the polarization) with the advance of interaction. The constructed radio-far-infrared relations for interacting and non-interacting galaxies display a similar balance between the generation of cosmic rays, magnetic fields, and the production of the thermal energy and dust radiation. Conclusions: The regular magnetic fields are much more sensitive to

  13. Galaxy Clusters to z <= 1 from the Oxford Dartmouth Thirty Degree Survey

    NASA Astrophysics Data System (ADS)

    Hammell, Molly; Wegner, Gary; Moustakas, Leonidas; Allen, Paul; Dalton, Gavin; Olding, Edward

    2003-05-01

    The properties of galaxy clusters in the local universe have been fairly well determined in the past few decades, and wide field surveys in the near infrared are converging on a statistically significant sample of high redshift clusters. These catalogs may soon allow discrimination between the competing models of galaxy formation and evolution [1]. The Oxford-Dartmouth Thirty Degree Survey (ODT) will span four widely separated 3° × 3° fields, to B < 26 in UBVRi'Z with an extension in the near-infrared to K < 19. With more than half of the survey completed, this deep, wide-area, multi-color dataset has yielded a large sample of K-selected clusters to probe the formation and evolution history of galaxies in dense environments. An exploration of cluster color-magnitude slopes and intercepts [2], luminosity functions [3], and morphological distributions [4, 5] should constrain the relative dominance of star formation rates and merger events on cluster galaxy evolution. Here, we present our cluster-finding method and preliminary results.

  14. The 2-degree Field Lensing Survey: design and clustering measurements

    NASA Astrophysics Data System (ADS)

    Blake, Chris; Amon, Alexandra; Childress, Michael; Erben, Thomas; Glazebrook, Karl; Harnois-Deraps, Joachim; Heymans, Catherine; Hildebrandt, Hendrik; Hinton, Samuel R.; Janssens, Steven; Johnson, Andrew; Joudaki, Shahab; Klaes, Dominik; Kuijken, Konrad; Lidman, Chris; Marin, Felipe A.; Parkinson, David; Poole, Gregory B.; Wolf, Christian

    2016-11-01

    We present the 2-degree Field Lensing Survey (2dFLenS), a new galaxy redshift survey performed at the Anglo-Australian Telescope. 2dFLenS is the first wide-area spectroscopic survey specifically targeting the area mapped by deep-imaging gravitational lensing fields, in this case the Kilo-Degree Survey. 2dFLenS obtained 70 079 redshifts in the range z < 0.9 over an area of 731 deg2, and is designed to extend the data sets available for testing gravitational physics and promote the development of relevant algorithms for joint imaging and spectroscopic analysis. The redshift sample consists first of 40 531 Luminous Red Galaxies (LRGs), which enable analyses of galaxy-galaxy lensing, redshift-space distortion, and the overlapping source redshift distribution by cross-correlation. An additional 28 269 redshifts form a magnitude-limited (r < 19.5) nearly complete subsample, allowing direct source classification and photometric-redshift calibration. In this paper, we describe the motivation, target selection, spectroscopic observations, and clustering analysis of 2dFLenS. We use power spectrum multipole measurements to fit the redshift-space distortion parameter of the LRG sample in two redshift ranges 0.15 < z < 0.43 and 0.43 < z < 0.7 as β = 0.49 ± 0.15 and β = 0.26 ± 0.09, respectively. These values are consistent with those obtained from LRGs in the Baryon Oscillation Spectroscopic Survey. 2dFLenS data products will be released via our website http://2dflens.swin.edu.au.

  15. Exploring Galaxy Environments with Characteristic Field Mapping

    NASA Astrophysics Data System (ADS)

    Snider, Shannon A.

    2006-12-01

    The connection between characteristic properties of galaxies and their local environments is an important tool in understanding the life history of galaxies, their formation, and their effects on the large-scale structure of the universe. However, while there has been significant progress in understanding galaxy properties with relation to local densities and nearby cluster distances, fundamental questions still remain unanswered. Three-dimensional field mapping techniques are explored as a means of investigating the environmental dependence of characteristic properties of galaxies in large data sets. Field maps are applied to the Millenium Run semi-analytic galaxy catalog to create a baseline of methodology against a simulated data set. The field maps are then extended for application to the Data Release 5 of the Sloan Digital Sky Survey. An open architecture is presented as a framework for further studies of the correlational dependence of arbitrary characteristics. In particular, the techniques are being applied in current investigation towards an understanding of the relationships of metallicity, densities, star formation, mass, and luminosities in local environments in the DR5 of the SDSS.

  16. Faint Infrared-Excess Field Galaxies: FROGs

    NASA Astrophysics Data System (ADS)

    Moustakas, L. A.; Davis, M.; Zepf, S. E.; Bunker, A. J.

    Deep near-infrared and optical imaging surveys in the field reveal a curious population of galaxies that are infrared-bright (I-K>4), yet with relatively blue optical colors (V-I<2). Their surface density, several per square arcminute at K>20, is high enough that if placed at z>1 as our models suggest, their space densities are about one-tenth of phi-*. The colors of these ``faint red outlier galaxies'' (fROGs) may derive from exceedingly old underlying stellar populations, a dust-embedded starburst or AGN, or a combination thereof. Determining the nature of these fROGs, and their relation with the I-K>6 ``extremely red objects,'' has implications for our understanding of the processes that give rise to infrared-excess galaxies in general. We report on an ongoing study of several targets with HST & Keck imaging and Keck/LRIS multislit spectroscopy.

  17. Weak lensing galaxy cluster field reconstruction

    NASA Astrophysics Data System (ADS)

    Jullo, E.; Pires, S.; Jauzac, M.; Kneib, J.-P.

    2014-02-01

    In this paper, we compare three methods to reconstruct galaxy cluster density fields with weak lensing data. The first method called FLens integrates an inpainting concept to invert the shear field with possible gaps, and a multi-scale entropy denoising procedure to remove the noise contained in the final reconstruction, that arises mostly from the random intrinsic shape of the galaxies. The second and third methods are based on a model of the density field made of a multi-scale grid of radial basis functions. In one case, the model parameters are computed with a linear inversion involving a singular value decomposition (SVD). In the other case, the model parameters are estimated using a Bayesian Monte Carlo Markov Chain optimization implemented in the lensing software LENSTOOL. Methods are compared on simulated data with varying galaxy density fields. We pay particular attention to the errors estimated with resampling. We find the multi-scale grid model optimized with Monte Carlo Markov Chain to provide the best results, but at high computational cost, especially when considering resampling. The SVD method is much faster but yields noisy maps, although this can be mitigated with resampling. The FLens method is a good compromise with fast computation, high signal-to-noise ratio reconstruction, but lower resolution maps. All three methods are applied to the MACS J0717+3745 galaxy cluster field, and reveal the filamentary structure discovered in Jauzac et al. We conclude that sensitive priors can help to get high signal-to-noise ratio, and unbiased reconstructions.

  18. The pair and major merger history of galaxies up to z=6 over 3 square degrees

    NASA Astrophysics Data System (ADS)

    Conselice, Christopher; Mundy, Carl; Duncan, Kenneth

    2017-01-01

    A major goal in extragalactic astronomy is understanding how stars and gas are put into galaxies. As such we present the pair fraction and derived major merger and stellar mass assembly histories of galaxies up to z = 6. We do this using new techniques from photometric redshift probability distribution functions, and state of the art deep near-infrared data from the UDS, VIDEO and UltraVISTA COSMOS fields for galaxies at z < 3, and CANDELS data for galaxies at 3 < z < 6. We find that major mergers at high redshift are not the dominant mode of placing stars into galaxies, but that star formation is a more important process by factors of 10 or higher. At z < 3 major mergers will at most double the masses of galaxies, depending on the stellar mass or number density selection method. At z < 1 we find that major mergers deposit more stellar mass into galaxies than star formation, the reverse of the process seen at higher redshifts. However, at z > 1 there must be a very important unknown mode of baryonic acquisition within galaxies that is not associated with major mergers. We further discuss how the merger history stays relatively constant at higher redshifts, and show the comparison of our results to theoretical predictions.

  19. IRAS galaxies versus POTENT mass - Density fields, biasing, and Omega

    NASA Technical Reports Server (NTRS)

    Dekel, Avishai; Bertschinger, Edmund; Yahil, Amos; Strauss, Michael A.; Davis, Marc; Huchra, John P.

    1993-01-01

    A comparison of the galaxy density field extracted from a complete redshift survey of IRAS galaxies brighter than 1.936 Jy with the mass-density field reconstructed by the POTENT procedure from the observed peculiar velocities of 493 objects is presented. A strong correlation is found between the galaxy and mass-density fields; both feature the Great Attractor, part of the Perseus-Pisces supercluster, and the large void between them. Monte Carlo noise simulations show that the data are consistent with the hypotheses that the smoothed fluctuations of galaxy and mass densities at each point are proportional to each other with the 'biasing' factor of IRAS galaxies, b(I), and that the peculiar velocity field is related to the mass-density field as expected according to the gravitational instability theory. Under these hypotheses, the two density fields can be related by specifying b(I) and the cosmological density parameter, Omega.

  20. Machine-learning-based photometric redshifts for galaxies of the ESO Kilo-Degree Survey data release 2

    NASA Astrophysics Data System (ADS)

    Cavuoti, S.; Brescia, M.; Tortora, C.; Longo, G.; Napolitano, N. R.; Radovich, M.; Barbera, F. La; Capaccioli, M.; de Jong, J. T. A.; Getman, F.; Grado, A.; Paolillo, M.

    2015-09-01

    We have estimated photometric redshifts (zphot) for more than 1.1 million galaxies of the public European Southern Observatory (ESO) Kilo-Degree Survey (KiDS) data release 2. KiDS is an optical wide-field imaging survey carried out with the Very Large Telescope (VLT) Survey Telescope (VST) and the OmegaCAM camera, which aims to tackle open questions in cosmology and galaxy evolution, such as the origin of dark energy and the channel of galaxy mass growth. We present a catalogue of photometric redshifts obtained using the Multi-Layer Perceptron with Quasi-Newton Algorithm (MLPQNA) model, provided within the framework of the DAta Mining and Exploration Web Application REsource (DAMEWARE). These photometric redshifts are based on a spectroscopic knowledge base that was obtained by merging spectroscopic data sets from the Galaxy and Mass Assembly (GAMA) data release 2 and the Sloan Digital Sky Survey III (SDSS-III) data release 9. The overall 1σ uncertainty on Δz = (zspec - zphot)/(1 + zspec) is ˜0.03, with a very small average bias of ˜0.001, a normalized median absolute deviation of ˜0.02 and a fraction of catastrophic outliers (|Δz| > 0.15) of ˜0.4 per cent.

  1. Cosmic Web of Galaxies in the COMOS Field

    NASA Astrophysics Data System (ADS)

    Darvish, Behnam; Martin, Christopher D.; Mobasher, Bahram; Scoville, Nicholas; Sobral, David; COSMOS science Team

    2017-01-01

    We use a mass complete sample of galaxies with accurate photometric redshifts in the COSMOS field to estimate the density field and to extract the components of the cosmic web. The comic web extraction algorithm relies on the signs and the ratio of eigenvalues of the Hessian matrix and is enable to integrate the density field into clusters, filaments and the field. We show that at z < 0.8, the median star-formation rate in the cosmic web gradually declines from the field to clusters and this decline is especially sharp for satellite galaxies (~1 dex vs. ~0.4 dex for centrals). However, at z > 0.8, the trend flattens out. For star-forming galaxies only, the median star-formation rate declines by ~ 0.3-0.4 dex from the field to clusters for both satellites and centrals, only at z < 0.5. We argue that for satellite galaxies, the main role of the cosmic web environment is to control their star-forming/quiescent fraction, whereas for centrals, it is mainly to control their overall star-formation rate. Given these, we suggest that most satellite galaxies experience a rapid quenching mechanism as they fall from the field into clusters through the channel of filaments, whereas for central galaxies, it is mostly due to a slow quenching process. Our preliminary results highlight the importance of the large-scale cosmic web on the evolution of galaxies.

  2. Magnetic fields in barred galaxies. I. The atlas

    NASA Astrophysics Data System (ADS)

    Beck, R.; Shoutenkov, V.; Ehle, M.; Harnett, J. I.; Haynes, R. F.; Shukurov, A.; Sokoloff, D. D.; Thierbach, M.

    2002-08-01

    The total and polarized radio continuum emission of 20 barred galaxies was observed with the Very Large Array (VLA) at lambda 3, 6, 18 and 22 cm and with the Australia Telescope Compact Array (ATCA) at lambda 6 cm and 13 cm. Maps at 30\\arcsec angular resolution are presented here. Polarized emission (and therefore a large-scale regular magnetic field) was detected in 17 galaxies. Most galaxies of our sample are similar to non-barred galaxies with respect to the radio/far-infrared flux correlation and equipartition strength of the total magnetic field. Galaxies with highly elongated bars are not always radio-bright. We discuss the correlation of radio properties with the aspect ratio of the bar and other measures of the bar strength. We introduce a new measure of the bar strength, Lambda , related to the quadrupole moment of the bar's gravitational potential. The radio surface brightness I of the barred galaxies in our sample is correlated with Lambda , I~Lambda 0.4+/-0.1, and thus is highest in galaxies with a long bar where the velocity field is distorted by the bar over a large fraction of the disc. In these galaxies, the pattern of the regular field is significantly different from that in non-barred galaxies. In particular, field enhancements occur upstream of the dust lanes where the field lines are oriented at large angles to the bar's major axis. Polarized radio emission seems to be a good indicator of large-scale non-axisymmetric motions. Tables 3, 4 and Figs. 8-10, 13, 15, 16, 18 and 22 are only available in electronic form at http://www.edpsciences.org

  3. Field measurement of slow metamorphic reaction rates at temperatures of 500 degrees to 600 degrees C

    PubMed

    Baxter; DePaolo

    2000-05-26

    High-temperature metamorphic reaction rates were measured using strontium isotopic ratios of garnet and whole rock from a field site near Simplon Pass, Switzerland. For metamorphic conditions of cooling from 612 degrees +/- 17 degrees C to 505 degrees +/- 15 degrees C at pressures up to 9.1 kilobars, the inferred bulk fluid-rock exchange rate is 1.3(-0.4)(+1.1) x 10(-7) grams of solid reacted per gram of solid per year, several orders of magnitude lower than laboratory-based estimates. The inferred reaction rate suggests that mineral chemistry may lag the evolving conditions in Earth's crust during mountain building.

  4. Simulations of magnetic fields in isolated disc galaxies

    NASA Astrophysics Data System (ADS)

    Pakmor, Rüdiger; Springel, Volker

    2013-06-01

    Magnetic fields are known to be dynamically important in the interstellar medium of our own Galaxy, and they are ubiquitously observed in diffuse gas in the haloes of galaxies and galaxy clusters. Yet, magnetic fields have typically been neglected in studies of the formation of galaxies, leaving their global influence on galaxy formation largely unclear. Here we extend our magnetohydrodynamics (MHD) implementation in the moving-mesh code AREPO to cosmological problems which include radiative cooling and the formation of stars. In particular, we replace our previously employed divergence cleaning approach with a Powell eight-wave scheme, which turns out to be significantly more stable, even in very dynamic environments. We verify the improved accuracy through simulations of the magneto-rotational instability in accretion discs, which reproduce the correct linear growth rate of the instability. Using this new MHD code, we simulate the formation of isolated disc galaxies similar to the Milky Way using idealized initial conditions with and without magnetic fields. We find that the magnetic field strength is quickly amplified in the initial central starburst and the differential rotation of the forming disc, eventually reaching a saturation value. At this point, the magnetic field pressure in the interstellar medium becomes comparable to the thermal pressure, and a further efficient growth of the magnetic field strength is prevented. The additional pressure component leads to a lower star formation rate at late times compared to simulations without magnetic fields, and induces changes in the spiral arm structures of the gas disc. In addition, we observe highly magnetized fountain-like outflows from the disc. These results are robust with numerical resolution and are largely independent of the initial magnetic seed field strength assumed in the initial conditions, as the amplification process is rapid and self-regulated. Our findings suggest an important influence of

  5. The Magnetic Field of the Milky Way Galaxy

    NASA Astrophysics Data System (ADS)

    Brown, J. C.

    2010-12-01

    Cosmic magnetic fields are an integral component of the interstellar medium (ISM), having influence on scales ranging from star formation to galactic dynamics. While observations of external galaxies offer a ‘birds-eye-view' of magnetic fields within galaxies, it is equally important to explore the magnetic field of our own Milky Way Galaxy, which offers a more detailed, albeit more complicated view. Over the past decade there has been a significant increase in interest in the Galactic magnetic field, fueled largely by innovations developed through the Canadian Galactic Plane Survey. In this paper, I review the current state of understanding of the Galactic magnetic field, and discuss briefly new and future observations that will provide exciting new insights about the field.

  6. Strong magnetic fields in normal galaxies at high redshift.

    PubMed

    Bernet, Martin L; Miniati, Francesco; Lilly, Simon J; Kronberg, Philipp P; Dessauges-Zavadsky, Miroslava

    2008-07-17

    The origin and growth of magnetic fields in galaxies is still something of an enigma. It is generally assumed that seed fields are amplified over time through the dynamo effect, but there are few constraints on the timescale. It was recently demonstrated that field strengths as traced by rotation measures of distant (and hence ancient) quasars are comparable to those seen today, but it was unclear whether the high fields were in the unusual environments of the quasars themselves or distributed along the lines of sight. Here we report high-resolution spectra that demonstrate that the quasars with strong Mg II absorption lines are unambiguously associated with larger rotation measures. Because Mg ii absorption occurs in the haloes of normal galaxies along the sightlines to the quasars, this association requires that organized fields of surprisingly high strengths are associated with normal galaxies when the Universe was only about one-third of its present age.

  7. Statistical analysis of ALFALFA galaxies: Insights in galaxy formation & near-field cosmology

    NASA Astrophysics Data System (ADS)

    Papastergis, Emmanouil

    2013-03-01

    The Arecibo Legacy Fast ALFA (ALFALFA) survey is a blind, extragalactic survey in the 21cm emission line of atomic hydrogen (HI). Presently, sources have been cataloged over ≈4,000 deg2 of sky (~60% of its final area), resulting in the largest HI-selected sample to date. We use the rich ALFALFA dataset to measure the statistical properties of HI-bearing galaxies, such as their mass distribution and clustering characteristics. These statistical distributions are determined by the properties of darkmatter on galactic scales, and by the complex baryonic processes through which galaxies form over cosmic time. As a result, detailed studies of these distributions can lead to important insights in galaxy formation & evolution and near-field cosmology. In particular, we measure the space density of HI-bearing galaxies as a function of the width of their HI profile (i.e. the velocity width function of galaxies), and find substantial disagreement with the distribution expected in a lambda cold dark matter (ΛCDM) universe. In particular, the number of galaxies with maximum rotational velocities upsilonrot ≈ 35 kms--1 (as judged by their HI velocity width) is about an order of magnitude lower than what predicted based on populating ΛCDM halos with modeled galaxies. We identify two possible solutions to the discrepancy: First, an alternative dark matter scenario in which the formation of low-mass halos is heavily suppressed (e.g. a warm dark matter universe with keV-scale dark matter particles). Secondly, we consider the possibility that rotational velocitites of dwarf galaxies derived from HI velocity widths may systematically underestimate the true mass of the host halo, due to the shape of their rotation curves. In this latter scenario, quantitative predictions for the internal kinematics of dwarf galaxies can be made, which can be checked in the future to probe the nature of dark matter. Furthermore, we take advantage of the overlap of ALFALFA with the Sloan Digital

  8. Towards a census of supercompact massive galaxies in the Kilo Degree Survey

    NASA Astrophysics Data System (ADS)

    Tortora, C.; La Barbera, F.; Napolitano, N. R.; Roy, N.; Radovich, M.; Cavuoti, S.; Brescia, M.; Longo, G.; Getman, F.; Capaccioli, M.; Grado, A.; Kuijken, K. H.; de Jong, J. T. A.; McFarland, J. P.; Puddu, E.

    2016-04-01

    The abundance of compact, massive, early-type galaxies (ETGs) provides important constraints to galaxy formation scenarios. Thanks to the area covered, depth, excellent spatial resolution and seeing, the ESO Public optical Kilo Degree Survey (KiDS), carried out with the VLT Survey Telescope, offers a unique opportunity to conduct a complete census of the most compact galaxies in the Universe. This paper presents a first census of such systems from the first 156 deg2 of KiDS. Our analysis relies on g-, r- and i-band effective radii (Re), derived by fitting galaxy images with point spread function (PSF)-convolved Sérsic models, high-quality photometric redshifts, zphot, estimated from machine learning techniques, and stellar masses, M⋆, calculated from KiDS aperture photometry. After massiveness ({M_{⋆}}≳ 8 × 10^{10} M_{⊙}) and compactness ({R_e}≲ 1.5 kpc in g, r and i bands) criteria are applied, a visual inspection of the candidates plus near-infrared photometry from VIKING-DR1 are used to refine our sample. The final catalogue, to be spectroscopically confirmed, consists of 92 systems in the redshift range z ˜ 0.2-0.7. This sample, which we expect to increase by a factor of 10 over the total survey area, represents the first attempt to select massive supercompact ETGs (MSCGs) in KiDS. We investigate the impact of redshift systematics in the selection, finding that this seems to be a major source of contamination in our sample. A preliminary analysis shows that MSCGs exhibit negative internal colour gradients, consistent with a passive evolution of these systems. We find that the number density of MSCGs is only mildly consistent with predictions from simulations at z > 0.2, while no such system is found at z < 0.2.

  9. Far Infrared dropout galaxies in the Herschel GOODS fields

    NASA Astrophysics Data System (ADS)

    Cowie, Lennox

    The most massively star-forming galaxies in the universe are dust enshrouded and radiate primarily in the far-infrared. At high redshifts these galaxies cannot be easily found with ultraviolet or optical searches and constitute a missing portion of the universal star formation history determined with conventional techniques. Current studies suggest that these obscured galaxies contain a substantial fraction (about 20%) of the star formation out to a redshift of at least five. The goals of the present proposal are to refine these measurements, to search for yet higher redshift dusty galaxies, to study the morphologies and other properties of these galaxies, and to determine how the star formation rates in these galaxies correlate with the X-ray luminosities. The deepest Herschel imaging observations are of the two GOODS fields. Here we propose to extend the wavelength range of these observations to 850 micron, which is sensitive to very high redshifts (z out to about 8) where the rest-frame wavelength of the observations lies close to the peak in the thermal dust spectrum. We are making the 850 micron observations with the powerful SCUBA-2 camera on the JCMT telescope. Combined with the Spitzer and Herschel data, we will be able to measure the long wavelength spectral energy distributions of the SCUBA-2 detected galaxies and search for the highest redshift galaxies, which should be faint in the Spitzer and shorter wavelength Herschel data (mid and far-infrared dropout galaxies). We can obtain the morphologies from HST for those galaxies that are visible at optical or nearinfrared wavelengths, and we can measure the star formation rates for those that are detected with Chandra. Submillimeter detected luminous dusty galaxies have the highest star formation rates in the universe, and determining their properties and redshift distribution is key to understanding the formation of the most massive galaxies in the universe. The proposed work will add value to the Spitzer

  10. Violent galaxy evolution in the Frontier Fields clusters

    NASA Astrophysics Data System (ADS)

    Ebeling, Harald; McPartland, Conor; Blumenthal, Kelly; Roediger, Elke

    2015-08-01

    In a recent study we used customized morphological selection criteria to identify potential ram-pressure stripping events in shallow HST images of MACS clusters at z=0.3-0.7 and found tantalising evidence of such violent evolution (a) being at least partly triggered by galaxy mergers and (b) causing extensive star formation and thus brightening of the affected galaxies. Due to the limited depth of the HST data used, our project focused (by design and necessity) on the brightest galaxies. We here present results of a similar survey for “jellyfish” galaxies conducted using the much deeper, multi-passband imaging data of the Frontier Fields clusters that allow us to probe much farther into the luminosity function of ram-pressure stripping in some of the most massive and most dynamically disturbed clusters known.

  11. A study of the luminosity function for field galaxies. [non-rich-cluster galaxies

    NASA Technical Reports Server (NTRS)

    Felten, J. E.

    1977-01-01

    Nine determinations of the luminosity function (LF) for field galaxies are analyzed and compared. Corrections for differences in Hubble constants, magnitude systems, galactic absorption functions, and definitions of the LF are necessary prior to comparison. Errors in previous comparisons are pointed out. After these corrections, eight of the nine determinations are in fairly good agreement. The discrepancy in the ninth appears to be mainly an incompleteness effect. The LF data suggest that there is little if any distinction between field galaxies and those in small groups.

  12. Spectroscopic Properties of Selected Narrow Emission Line Galaxies from the COSMOS Field

    NASA Astrophysics Data System (ADS)

    Colon, Amy M.; Carroll, P.; Roberts, R.; Wong, N.; Liu, C.

    2007-12-01

    We present properties of seven blue narrow emission line galaxies (NELGs) in the redshift range 0.25 < z < 0.73, initially selected as QSO candidates in the COSMOS 2-degree survey field. These galaxies have been selected for the high signal-to-noise of their spectra, as indicated by the presence of the emission line [NeIII] 3869 Angstroms. Emission line diagnostics are used to measure metallicities and star formation rates, and to test the presence of AGN. Hubble ACS images are used to measure their surface brightness distributions and quantitative morphologies. Preliminary results indicate that these objects are forming stars at a rate of 4 to 20 solar masses per year; and their metallicity appears not to vary with the galaxy's concentration index which ranges 0.42 to 0.63.

  13. Dark matter halo properties of GAMA galaxy groups from 100 square degrees of KiDS weak lensing data

    NASA Astrophysics Data System (ADS)

    Viola, M.; Cacciato, M.; Brouwer, M.; Kuijken, K.; Hoekstra, H.; Norberg, P.; Robotham, A. S. G.; van Uitert, E.; Alpaslan, M.; Baldry, I. K.; Choi, A.; de Jong, J. T. A.; Driver, S. P.; Erben, T.; Grado, A.; Graham, Alister W.; Heymans, C.; Hildebrandt, H.; Hopkins, A. M.; Irisarri, N.; Joachimi, B.; Loveday, J.; Miller, L.; Nakajima, R.; Schneider, P.; Sifón, C.; Verdoes Kleijn, G.

    2015-10-01

    The Kilo-Degree Survey is an optical wide-field survey designed to map the matter distribution in the Universe using weak gravitational lensing. In this paper, we use these data to measure the density profiles and masses of a sample of ˜1400 spectroscopically identified galaxy groups and clusters from the Galaxy And Mass Assembly survey. We detect a highly significant signal (signal-to-noise-ratio ˜120), allowing us to study the properties of dark matter haloes over one and a half order of magnitude in mass, from M ˜ 1013-1014.5 h-1 M⊙. We interpret the results for various subsamples of groups using a halo model framework which accounts for the mis-centring of the brightest cluster galaxy (used as the tracer of the group centre) with respect to the centre of the group's dark matter halo. We find that the density profiles of the haloes are well described by an NFW profile with concentrations that agree with predictions from numerical simulations. In addition, we constrain scaling relations between the mass and a number of observable group properties. We find that the mass scales with the total r-band luminosity as a power law with slope 1.16 ± 0.13 (1σ) and with the group velocity dispersion as a power law with slope 1.89 ± 0.27 (1σ). Finally, we demonstrate the potential of weak lensing studies of groups to discriminate between models of baryonic feedback at group scales by comparing our results with the predictions from the Cosmo-OverWhelmingly Large Simulations project, ruling out models without AGN feedback.

  14. SPECTROSCOPIC REDSHIFTS OF GALAXIES WITHIN THE FRONTIER FIELDS

    SciTech Connect

    Ebeling, Harald; Ma, Cheng-Jiun; Barrett, Elizabeth

    2014-04-01

    We present a catalog of 1921 spectroscopic redshifts measured in the fields of the massive galaxy clusters MACSJ0416.1–2403 (z = 0.397), MACSJ0717.5+3745 (z = 0.546), and MACSJ1149.5+2223 (z = 0.544), i.e., three of the four clusters selected by Space Telescope Science Institute as the targets of the Frontier Fields (FFs) initiative for studies of the distant Universe via gravitational lensing. Compiled in the course of the Massive Cluster Survey project (MACS) that detected the FF clusters, this catalog is provided to the community for three purposes: (1) to allow the identification of cluster members for studies of the galaxy population of these extreme systems, (2) to facilitate the removal of unlensed galaxies and thus reduce shear dilution in weak-lensing analyses, and (3) to improve the calibration of photometric redshifts based on both ground- and spacebased observations of the FF clusters.

  15. Supernova Candidate in MACSJ1149 Galaxy Cluster Field With No Detected Host Galaxy

    NASA Astrophysics Data System (ADS)

    Kelly, Patrick L.; Diego, Jose Maria; Nonino, Mario; Zitrin, Adi; Jauzac, Mathilde; Filippenko, Alexei V.

    2017-01-01

    We report discovery of a supernova (SN) candidate in the MACSJ1149 (z=0.54) galaxy-cluster field. In Hubble Space Telescope (HST) data taken on January 23, 2017 UT, we found a bright source (dubbed 'Amos') in WFC3 UVIS F606W ( 23.3 mag AB) and WFC3 IR F110W ( 23.7 mag) exposures.

  16. Astrophysical Magnetic Fields and Topics in Galaxy Formation

    NASA Technical Reports Server (NTRS)

    Field, George B.

    1997-01-01

    The grant was used to support theoretical research on a variety of astro-physical topics falling broadly into those described by the proposal: galaxy formation, astrophysical magnetic fields, magnetized accretion disks in AGN, new physics, and other astrophysical problems. Work accomplished; references are to work authored by project personel.

  17. Field Galaxies and Their AGNs: Nature Versus Nurture

    NASA Astrophysics Data System (ADS)

    Micic, M.

    2013-06-01

    This review attempts to present most recent findings related to the very controversial question of which processes guide the flow of gas to the galactic centers where the accretion and growth of supermassive black holes occurs. Also, we put this question in the context of influence of the environment (galaxy clusters versus field) onto these processes.

  18. Quasar Host Galaxies/Neptune Rotation/Galaxy Building Blocks/Hubble Deep Field/Saturn Storm

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Computerized animations simulate a quasar erupting in the core of a normal spiral galaxy, the collision of two interacting galaxies, and the evolution of the universe. Hubble Space Telescope (HST) images show six quasars' host galaxies (including spirals, ellipticals, and colliding galaxies) and six clumps of galaxies approximately 11 billion light years away. A false color time lapse movie of Neptune displays the planet's 16-hour rotation, and the evolution of a storm on Saturn is seen though a video of the planet's rotation. A zoom sequence starts with a ground-based image of the constellation Ursa major and ends with the Hubble Deep Field through progressively narrower and deeper views.

  19. Deep HST imaging of distant weak radio and field galaxies

    NASA Technical Reports Server (NTRS)

    Windhorst, R. A.; Gordon, J. M.; Pascarelle, S. M.; Schmidtke, P. C.; Keel, W. C.; Burkey, J. M.; Dunlop, J. S.

    1994-01-01

    We present deep Hubble Space Telescope (HST) Wide-Field Camera (WFC) V- and I-band images of three distant weak radio galaxies with z = 0.311-2.390 and seven field galaxies with z = 0.131-0.58. The images were deconvolved with both the Lucy and multiresolution CLEAN methods, which yield a restoring Full Width at Half Maximum (FWHM) of less than or equal to 0.2 sec, (nearly) preserve photons and signal-to-noise ratio at low spatial frequencies, and produce consistent light profiles down to our 2 sigma surface brightness sensitivity limit of V approximately 27.2 and I approximately 25.9 mag/sq arcsec. Multi-component image modeling was used to provide deconvolution-independent estimates of structural parameters for symmetric galaxies. We present 12-band (m(sub 2750) UBVRIgriJHK) photometry for a subset of the galaxies and bootstrap the unknown FOC/48 zero point at 2750 A in three independent ways (yielding m(sub 2750) = 21.34 +/- 0.09 mag for 1.0 e(-)/s). Two radio galaxies with z = 0.311 and 0.528, as well as one field galaxy with z = 0.58, have the colors and spectra of early-type galaxies, and a(exp 1/4)-like light profiles in the HST images. The two at z greater than 0.5 have little or no color gradients in V - I and are likely giant ellipticals, while the z = 0.311 radio galaxy has a dim exponential disk and is likely an S0. Six of the seven field galaxies have light profiles that indicate (small) inner bulges following a(exp 1/4) laws and outer exponential disks, both with little or no color gradients. These are (early-type) spiral galaxies with z = 0.131-0.528. About half have faint companions or bars. One shows lumpy structure, possibly a merger. The compact narrow-line galaxy 53W002 at z = 2.390 has less than or = 30% +/- 10% of its HST V and I flux in the central kiloparsec (due to its weak Active Galactic Nucleus (AGN)). Most of its light (V approximately equal to 23.3) occurs in a symmetric envelope with a regular a(exp 1/4)-like profile of effective

  20. Faint Submillimeter Galaxies Behind the Frontier Field Clusters

    NASA Astrophysics Data System (ADS)

    Hsu, Li-Yen; Cowie, Lennox; Barger, Amy; Wang, Wei-Hao; Chen, Chian-Chou

    2015-08-01

    Faint submillimeter galaxies are the major contributors to the submillimeter extragalactic background light and hence the dominant star-forming population in the dusty universe. Determining how much these galaxies overlap the optically selected samples is critical to fully account for the cosmic star formation history. To explore this faint submillimeter population, we have been observing nine galaxy clusters with the SCUBA-2 camera on the James Clerk Maxwell Telescope, including five of the clusters in the HST Frontier Fields program. We have also been using the Submillimeter Array to determine the positions of our detected sources precisely. Our recent observations have discovered several high-redshift dusty galaxies with far-infrared luminosities similar to that of the Milky Way or luminous infrared galaxies but which are undetected in current deep radio, optical and near-infrared images. These remarkable results suggest that a substantial amount of star formation in even the faint submillimeter population may be hidden from rest-frame optical surveys.

  1. Radio-optical galaxy shape correlations in the COSMOS field

    NASA Astrophysics Data System (ADS)

    Tunbridge, Ben; Harrison, Ian; Brown, Michael L.

    2016-12-01

    We investigate the correlations in galaxy shapes between optical and radio wavelengths using archival observations of the Cosmic Evolution Survey (COSMOS) field. Cross-correlation studies between different wavebands will become increasingly important for precision cosmology as future large surveys may be dominated by systematic rather than statistical errors. In the case of weak lensing, galaxy shapes must be measured to extraordinary accuracy (shear systematics of <0.01 per cent) in order to achieve good constraints on dark energy parameters. By using shape information from overlapping surveys in optical and radio bands, robustness to systematics may be significantly improved without loss of constraining power. Here we use HST-ACS (Hubble Space Telescope-Advanced Camera for Surveys) optical data, Very Large Array (VLA) radio data and extensive simulations to investigate both our ability to make precision measurements of source shapes from realistic radio data and to constrain the intrinsic astrophysical scatter between the shapes of galaxies as measured in the optical and radio wavebands. By producing a new image from the VLA-COSMOS L-band radio visibility data that are well suited to galaxy shape measurements, we are able to extract precise measurements of galaxy position angles. Comparing to corresponding measurements from the HST optical image, we set a lower limit on the intrinsic astrophysical scatter in position angles, between the optical and radio bands, of σα > 0.212π rad (or 38.2°) at a 95 per cent confidence level.

  2. First discoveries of z ˜ 6 quasars with the Kilo-Degree Survey and VISTA Kilo-Degree Infrared Galaxy survey

    NASA Astrophysics Data System (ADS)

    Venemans, B. P.; Verdoes Kleijn, G. A.; Mwebaze, J.; Valentijn, E. A.; Bañados, E.; Decarli, R.; de Jong, J. T. A.; Findlay, J. R.; Kuijken, K. H.; Barbera, F. La; McFarland, J. P.; McMahon, R. G.; Napolitano, N.; Sikkema, G.; Sutherland, W. J.

    2015-11-01

    We present the results of our first year of quasar search in the ongoing ESO public Kilo-Degree Survey (KiDS) and VISTA Kilo-Degree Infrared Galaxy (VIKING) surveys. These surveys are among the deeper wide-field surveys that can be used to uncover large numbers of z ˜ 6 quasars. This allows us to probe a more common population of z ˜ 6 quasars that is fainter than the well-studied quasars from the main Sloan Digital Sky Survey. From this first set of combined survey catalogues covering ˜250 deg2 we selected point sources down to ZAB = 22 that had a very red i - Z (i - Z > 2.2) colour. After follow-up imaging and spectroscopy, we discovered four new quasars in the redshift range 5.8 < z < 6.0. The absolute magnitudes at a rest-frame wavelength of 1450 Å are between -26.6 < M1450 < -24.4, confirming that we can find quasars fainter than M*, which at z = 6 has been estimated to be between M* = -25.1 and M* = -27.6. The discovery of four quasars in 250 deg2 of survey data is consistent with predictions based on the z ˜ 6 quasar luminosity function. We discuss various ways to push the candidate selection to fainter magnitudes and we expect to find about 30 new quasars down to an absolute magnitude of M1450 = -24. Studying this homogeneously selected faint quasar population will be important to gain insight into the onset of the co-evolution of the black holes and their stellar hosts.

  3. A Slow Merger History of Field Galaxies since z ~ 1

    NASA Astrophysics Data System (ADS)

    Bundy, Kevin; Fukugita, Masataka; Ellis, Richard S.; Kodama, Tadayuki; Conselice, Christopher J.

    2004-02-01

    Using deep infrared observations conducted with the CISCO imager on the Subaru Telescope, we investigate the field-corrected pair fraction and the implied merger rate of galaxies in redshift survey fields with Hubble Space Telescope (HST) imaging. In the redshift interval, 0.5galaxies. At z~1, we estimate this to be 2×109+/-0.2 Msolar galaxy-1 Gyr-1. Although uncertainties remain, our results suggest that the growth of galaxies via the accretion of preexisting fragments remains as significant a phenomenon in the redshift range studied as that estimated from ongoing star formation in independent surveys. Based on data acquired at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  4. Photometric Redshifts for High Resolution Radio Galaxies in the SuperCLASS Field

    NASA Astrophysics Data System (ADS)

    Manning, Sinclaire; Casey, Caitlin; Battye, Richard; Hales, Christopher A.; Chapman, Scott; Smail, Ian; SuperCLASS Team

    2017-01-01

    SuperCLASS (the Super-Cluster Assisted Shear Survey) is a deep, wide-area (~2 square degrees) extragalactic field with high resolution (0.1”) radio continuum coverage from e-MERLIN (Multi-Element Radio Linked Interferometer Network.) The combination of sensitivity and spatial resolution make e-MERLIN an ideal tool to trace spatially resolved star-formation in heavily obscured, dusty star-forming galaxies (DSFGs). Plus, thanks to the tight relationship between radio continuum and far-IR observations we have an observationally inexpensive and accurate method of mapping star formation density in distant galaxies. We present a photometric redshift catalog for DSFGs located in the SuperCLASS field. Multiwavelength photometric data was obtained with Subaru SuprimeCam (B,V,r,i,z) and photometric redshifts were generated using the public photometric redshift code, EAZY. With these redshifts we aim to conduct the first large sample morphological analysis of z~1-3 obscured galaxies. We plan to address two important questions: 1) Are the majority of obscured SFR>50 Msolar/yr galaxies driven by major collisions? and 2) do luminous active galactic nuclei (AGN) play a crucial role in the quenching of highly obscured star-formation? These photometric redshifts are crucial in determining the physical origins of our DSFG sample and to also conduct radio weak lensing experiments with the e-MERLIN dataset.

  5. The masses of satellites in GAMA galaxy groups from 100 square degrees of KiDS weak lensing data

    NASA Astrophysics Data System (ADS)

    Sifón, Cristóbal; Cacciato, Marcello; Hoekstra, Henk; Brouwer, Margot; van Uitert, Edo; Viola, Massimo; Baldry, Ivan; Brough, Sarah; Brown, Michael J. I.; Choi, Ami; Driver, Simon P.; Erben, Thomas; Grado, Aniello; Heymans, Catherine; Hildebrandt, Hendrik; Joachimi, Benjamin; de Jong, Jelte T. A.; Kuijken, Konrad; McFarland, John; Miller, Lance; Nakajima, Reiko; Napolitano, Nicola; Norberg, Peder; Robotham, Aaron S. G.; Schneider, Peter; Kleijn, Gijs Verdoes

    2015-12-01

    We use the first 100 deg2 of overlap between the Kilo-Degree Survey and the Galaxy And Mass Assembly survey to determine the average galaxy halo mass of ˜10 000 spectroscopically confirmed satellite galaxies in massive (M > 1013 h-1 M⊙) galaxy groups. Separating the sample as a function of projected distance to the group centre, we jointly model the satellites and their host groups with Navarro-Frenk-White density profiles, fully accounting for the data covariance. The probed satellite galaxies in these groups have total masses log ≈ 11.7-12.2 consistent across group-centric distance within the errorbars. Given their typical stellar masses, log ˜ 10.5, such total masses imply stellar mass fractions of / ≈ 0.04 h-1. The average subhalo hosting these satellite galaxies has a mass Msub ˜ 0.015Mhost independent of host halo mass, in broad agreement with the expectations of structure formation in a Λ cold dark matter universe.

  6. The Discovery of Seven Extremely Low Surface Brightness Galaxies in the Field of the Nearby Spiral Galaxy M101

    NASA Astrophysics Data System (ADS)

    Merritt, Allison; van Dokkum, Pieter; Abraham, Roberto

    2014-06-01

    Dwarf satellite galaxies are a key probe of dark matter and of galaxy formation on small scales and of the dark matter halo masses of their central galaxies. They have very low surface brightness, which makes it difficult to identify and study them outside of the Local Group. We used a low surface brightness-optimized telescope, the Dragonfly Telephoto Array, to search for dwarf galaxies in the field of the massive spiral galaxy M101. We identify seven large, low surface brightness objects in this field, with effective radii of 10-30 arcseconds and central surface brightnesses of μ g ~ 25.5-27.5 mag arcsec-2. Given their large apparent sizes and low surface brightnesses, these objects would likely be missed by standard galaxy searches in deep fields. Assuming the galaxies are dwarf satellites of M101, their absolute magnitudes are in the range -11.6 <~ MV <~ -9.3 and their effective radii are 350 pc-1.3 kpc. Their radial surface brightness profiles are well fit by Sersic profiles with a very low Sersic index (n ~ 0.3-0.7). The properties of the sample are similar to those of well-studied dwarf galaxies in the Local Group, such as Sextans I and Phoenix. Distance measurements are required to determine whether these galaxies are in fact associated with M101 or are in its foreground or background.

  7. Plausible Boosting of Millimeter-Galaxies in the COSMOS Field by Intervening Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Aretxaga, I.; Wilson, G. W.; Aguilar, E.; Alberts, S.; Scott, K. S.; Scoville, N.; Yun, M. S.; Austermann, J.; Downes, T. D.; Ezawa, H.; Hatsukade, B.; Hughes, D. H.; Kawabe, R.; Kohno, K.; Oshima, T.; Perera, T. A.; Tamura, Y.; Zeballos, M.

    2011-10-01

    The 0.72 sq. deg. contiguous 1.1mm survey in the central area of the COSMOS field, carried out to a 1σ≍1.26 mJy beam-1 depth with the AzTEC camera mounted on the 10m Atacama Submillimeter Telescope Experiment (ASTE), shows number counts with a significant excess of sources when compared to the number counts derived from the ˜0.5 sq. deg. area sampled at similar depths in the Scuba HAlf Degree Extragalactic Survey (SHADES, Austermann et al. 2010). They are, however, consistent with those derived from fields that were considered too small to characterize the overall blank-field population. We identify differences to be more significant in the S1.1mm ˜> 5 mJy regime, and demonstrate that these excesses in number counts are related to the areas where galaxies at redshifts ˜< 1.1 are more densely clustered. The positions of optical-IR galaxies in the redshift interval 0.6 ˜< z ˜< 0.75 are the ones that show the strongest correlation with the positions of the 1.1mm bright population (S1.mm ˜>5 mJy), a result which does not depend exclusively on the presence of rich clusters within the survey sampled area. The most likely explanation for the observed excess in number counts at 1.1mm is galaxy-galaxy and galaxy-group lensing at moderate amplification levels, that increases in amplitude as one samples larger and larger flux densities.

  8. Investigating the Density of Isolated Field Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Ulgen, E. Kaan

    2016-02-01

    In this thesis, 215.590 elliptical galaxies with M(r) ≤ -21 in the CFHTLS-W1 field which is covering 72 sq. deg on the sky are examined . Criterion given by Smith et al. (2004) has been used to determine isolated elliptical galaxies. 118 isolated elliptical galaxies have been determined in total. By using g, r and i photometric bands, the true-colour images of candidates are produced and visually inspected. In order to have a clean list of IfEs some candidates are excluded from the final sample after visual inspection. The final sample consists of 60 IfEs which corresponds to the 0.027 per cent of the whole sample. In other words, IfE density in the W1 is 0.8 IfE / sq.deg. Since the formation of the ellipticals in the isolated regions is not known clearly, it is crucial to determine IfEs and compare their photometric and morphological properties to the normal or cluster ellipticals. When the (g-i) distributions of three different elliptical galaxy class are compared, it is found that they have almost the same colours. When the redshift distributions of the galaxies are considered, it can be seen that IfEs formed later than the cluster and normal ellipticals. The average redshift of IfEs is determined as zphot=0.284, while for normal and cluster ellipticals, it is, respectively, 0.410 and 0.732. In addition, when the effective radii of the three elliptical systems are considered, it is found that the IfEs are bigger than the other two elliptical classes.

  9. TADPOLE GALAXIES IN THE HUBBLE ULTRA DEEP FIELD

    SciTech Connect

    Elmegreen, Bruce G.; Elmegreen, Debra Meloy E-mail: elmegreen@vassar.ed

    2010-10-20

    Tadpole galaxies have a head-tail shape with a large clump of star formation at the head and a diffuse tail or streak of stars off to one side. We measured the head and tail masses, ages, surface brightnesses, and sizes for 66 tadpoles in the Hubble Ultra Deep Field (UDF) and looked at the distribution of neighbor densities and tadpole orientations with respect to neighbors. The heads have masses of 10{sup 7}-10{sup 8} M{sub sun} and photometric ages of {approx}0.1 Gyr for z {approx} 2. The tails have slightly larger masses than the heads and comparable or slightly older ages. The most obvious interpretation of tadpoles as young merger remnants is difficult to verify. They have no enhanced proximity to other resolved galaxies as a class, and the heads, typically <0.2 kpc in diameter, usually have no obvious double-core structure. Another possibility is ram pressure interaction between a gas-rich galaxy and a diffuse cosmological flow. Ram pressure can trigger star formation on one side of a galaxy disk, giving the tadpole shape when viewed edge-on. Ram pressure can also strip away gas from a galaxy and put it into a tail, which then forms new stars and gravitationally drags along old stars with it. Such an effect might have already been observed in the Virgo Cluster. Another possibility is that tadpoles are edge-on disks with large, off-center clumps. Analogous lop-sided star formation in UDF clump clusters is shown.

  10. Galaxies

    SciTech Connect

    Not Available

    1981-01-01

    Normal galaxies, radio galaxies, and Seyfert galaxies are considered. The large magellanic cloud and the great galaxy in Andromedia are highlighted. Quasars and BL lacertae objects are also discussed and a review of the spectral observations of all of these galaxies and celestial objects is presented.

  11. AMUSE-Field. II. Nucleation of early-type galaxies in the field versus cluster environment

    SciTech Connect

    Baldassare, Vivienne F.; Gallo, Elena; Miller, Brendan P.; Plotkin, Richard M.; Valluri, Monica; Treu, Tommaso; Woo, Jong-Hak

    2014-08-20

    The optical light profiles of nearby early-type galaxies are known to exhibit a smooth transition from nuclear light deficits to nuclear light excesses with decreasing galaxy mass, with as much as 80% of the galaxies with stellar masses below 10{sup 10} M {sub ☉} hosting a massive nuclear star cluster (NSC). At the same time, while all massive galaxies are thought to harbor nuclear supermassive black holes (SMBHs), observational evidence for SMBHs is slim at the low end of the mass function. Here, we explore the environmental dependence of the nucleation fraction by comparing two homogeneous samples of nearby field versus cluster early-type galaxies with uniform Hubble Space Telescope (HST) coverage. Existing Chandra X-ray Telescope data for both samples yield complementary information on low-level accretion onto nuclear SMBHs. Specifically, we report on dual-band (F475W and F850LP) Advanced Camera for Surveys (ACS) imaging data for 28 out of the 103 field early-type galaxies that compose the AMUSE-Field Chandra survey, and compare our results against the companion HST and Chandra surveys for a sample of 100 Virgo Cluster early-types (ACS Virgo Cluster and AMUSE-Virgo surveys, respectively). We model the two-dimensional light profiles of the field targets to identify and characterize NSCs, and find a field nucleation fraction of 26%{sub −11%}{sup +17%} (at the 1σ level), consistent with the measured Virgo nucleation fraction across a comparable mass distribution (30%{sub −12%}{sup +17%}). Coupled with the Chandra result that SMBH activity is higher for the field, our findings indicate that, since the last epoch of star formation, the funneling of gas to the nuclear regions has been inhibited more effectively for Virgo galaxies, arguably via ram pressure stripping.

  12. Low-degree Structure in Mercury's Planetary Magnetic Field

    NASA Technical Reports Server (NTRS)

    Anderson, Brian J.; Johnson, Catherine L.; Korth, Haje; Winslow, Reka M.; Borovsky, Joseph E.; Purucker, Michael E.; Slavin, James A.; Solomon, Sean C.; Zuber, Maria T.; McNutt, Ralph L. Jr.

    2012-01-01

    The structure of Mercury's internal magnetic field has been determined from analysis of orbital Magnetometer measurements by the MESSENGER spacecraft. We identified the magnetic equator on 531 low-altitude and 120 high-altitude equator crossings from the zero in the radial cylindrical magnetic field component, Beta (sub rho). The low-altitude crossings are offset 479 +/- 6 km northward, indicating an offset of the planetary dipole. The tilt of the magnetic pole relative to the planetary spin axis is less than 0.8 deg.. The high-altitude crossings yield a northward offset of the magnetic equator of 486 +/- 74 km. A field with only nonzero dipole and octupole coefficients also matches the low-altitude observations but cannot yield off-equatorial Beta (sub rho) = 0 at radial distances greater than 3520 km. We compared offset dipole and other descriptions of the field with vector field observations below 600 km for 13 longitudinally distributed, magnetically quiet orbits. An offset dipole with southward directed moment of 190 nT-R-cube (sub M) yields root-mean-square (RMS) residuals below 14 nT, whereas a field with only dipole and octupole terms tuned to match the polar field and the low-altitude magnetic equator crossings yields RMS residuals up to 68 nT. Attributing the residuals from the offset-dipole field to axial degree 3 and 4 contributions we estimate that the Gauss coefficient magnitudes for the additional terms are less than 4% and 7%, respectively, relative to the dipole. The axial alignment and prominent quadrupole are consistent with a non-convecting layer above a deep dynamo in Mercury's fluid outer core.

  13. The Wide-Field Nearby Galaxy-Cluster Survey (WINGS) and Its Extension OMEGAWINGS

    NASA Astrophysics Data System (ADS)

    Poggianti, B. M.; Fasano, G.; Bettoni, D.; Cava, A.; Couch, W.; D'Onofrio, M.; Dressler, A.; Fritz, J.; Kjaergaard, P.; Gullieuszik, M.; Moles, M.; Moretti, A.; Omizzolo, A.; Paccagnella, A.; Varela, J.; Vulcani, B.

    WINGS is a wide-field multi-wavelength survey of 76 X-ray selected clusters at low redshift. The WINGS database has been used for a variety of cluster and cluster galaxy studies, investigating galaxy star formation, morphologies, structure, stellar mass functions and other properties. We present the recent wider-field extension of WINGS, OMEGAWINGS, conducted with OmegaCAM@VST and AAOmega@AAT. We show two of our latest results regarding jellyfish galaxies and galaxy sizes. OMEGAWINGS has allowed the first systematic search of galaxies with signs of ongoing ram pressure stripping (jellyfishes), yielding a catalog of ˜ 240 galaxies in 41 clusters. We discuss the first results obtained from this sample and the prospects for integral field data. Finally, we summarize our results regarding the discovery of compact massive galaxies at low redshift, their properties, dependence on environment and the implications for the evolution of galaxy sizes from high- to low-z.

  14. Study of the luminosity function for field galaxies

    NASA Technical Reports Server (NTRS)

    Felten, J. E.

    1977-01-01

    Nine determinations of the luminosity function (LF) for field galaxies are adjusted, analyzed, and compared. Adjustments are made for differences in definitions as well as in assumptions regarding magnitude systems, the Hubble constant, and galactic absorption. Eight of the nine adjusted determinations are found to be in fairly good agreement, and the discrepancy in the ninth is attributed to incompleteness effects. A large-scale normalization of the LF is performed using the method and some integral counts of Gott and Turner (1976); the large-scale mean LF of (mostly field) galaxies is found to be about 2.3 times less than a previously derived 'local' LF. The large-scale luminosity density in space arising from sources within the B(0) isophotes of galaxies is evaluated, and a value of 86 million (H/50) suns per cu Mpc is obtained for a galactic absorption coefficient of 0.25 magnitude. It is noted that the true large-scale luminosity density is probably within a factor of 1.6 of the reported value.

  15. Cosmological constraints from galaxy clusters in the 2500 square-degree SPT-SZ survey

    DOE PAGES

    Haan, T. de; Benson, B. A.; Bleem, L. E.; ...

    2016-11-18

    Here, we present cosmological parameter constraints obtained from galaxy clusters identified by their Sunyaev–Zel’dovich effect signature in the 2500 square-degree South Pole Telescope Sunyaev Zel’dovich (SPT-SZ) survey. We consider the 377 cluster candidates identified atmore » $$z\\gt 0.25$$ with a detection significance greater than five, corresponding to the 95% purity threshold for the survey. We compute constraints on cosmological models using the measured cluster abundance as a function of mass and redshift. We include additional constraints from multi-wavelength observations, including Chandra X-ray data for 82 clusters and a weak lensing-based prior on the normalization of the mass-observable scaling relations. Assuming a spatially flat ΛCDM cosmology, we combine the cluster data with a prior on H (0) and find $${\\sigma }_{8}=0.784\\pm 0.039$$ and $${{\\rm{\\Omega }}}_{m}=0.289\\pm 0.042$$, with the parameter combination $${\\sigma }_{8}{({{\\rm{\\Omega }}}_{m}/0.27)}^{0.3}=0.797\\pm 0.031$$. These results are in good agreement with constraints from the cosmic microwave background (CMB) from SPT, WMAP, and Planck, as well as with constraints from other cluster data sets. We also consider several extensions to ΛCDM, including models in which the equation of state of dark energy w, the species-summed neutrino mass, and/or the effective number of relativistic species ($${N}_{\\mathrm{eff}}$$) are free parameters. When combined with constraints from the Planck CMB, H (0), baryon acoustic oscillation, and SNe, adding the SPT cluster data improves the w constraint by 14%, to $$w=-1.023\\pm 0.042$$.« less

  16. Cosmological constraints from galaxy clusters in the 2500 square-degree SPT-SZ survey

    SciTech Connect

    Haan, T. de; Benson, B. A.; Bleem, L. E.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Bayliss, M.; Bocquet, S.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H-M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Doucouliagos, A. N.; Foley, R. J.; Forman, W. R.; Garmire, G. P.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Gupta, N.; Halverson, N. W.; Hlavacek-Larrondo, J.; Hoekstra, H.; Holder, G. P.; Holzapfel, W. L.; Hou, Z.; Hrubes, J. D.; Huang, N.; Jones, C.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Linden, A. von der; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L. M.; Mohr, J. J.; Murray, S. S.; Padin, S.; Pryke, C.; Rapetti, D.; Reichardt, C. L.; Rest, A.; Ruel, J.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Schrabback, T.; Shirokoff, E.; Song, J.; Spieler, H. G.; Stalder, B.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; Stubbs, C. W.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zenteno, A.

    2016-11-18

    Here, we present cosmological parameter constraints obtained from galaxy clusters identified by their Sunyaev–Zel’dovich effect signature in the 2500 square-degree South Pole Telescope Sunyaev Zel’dovich (SPT-SZ) survey. We consider the 377 cluster candidates identified at $z\\gt 0.25$ with a detection significance greater than five, corresponding to the 95% purity threshold for the survey. We compute constraints on cosmological models using the measured cluster abundance as a function of mass and redshift. We include additional constraints from multi-wavelength observations, including Chandra X-ray data for 82 clusters and a weak lensing-based prior on the normalization of the mass-observable scaling relations. Assuming a spatially flat ΛCDM cosmology, we combine the cluster data with a prior on H (0) and find ${\\sigma }_{8}=0.784\\pm 0.039$ and ${{\\rm{\\Omega }}}_{m}=0.289\\pm 0.042$, with the parameter combination ${\\sigma }_{8}{({{\\rm{\\Omega }}}_{m}/0.27)}^{0.3}=0.797\\pm 0.031$. These results are in good agreement with constraints from the cosmic microwave background (CMB) from SPT, WMAP, and Planck, as well as with constraints from other cluster data sets. We also consider several extensions to ΛCDM, including models in which the equation of state of dark energy w, the species-summed neutrino mass, and/or the effective number of relativistic species (${N}_{\\mathrm{eff}}$) are free parameters. When combined with constraints from the Planck CMB, H (0), baryon acoustic oscillation, and SNe, adding the SPT cluster data improves the w constraint by 14%, to $w=-1.023\\pm 0.042$.

  17. Cosmological Constraints from Galaxy Clusters in the 2500 Square-degree SPT-SZ Survey

    NASA Astrophysics Data System (ADS)

    de Haan, T.; Benson, B. A.; Bleem, L. E.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Bayliss, M.; Bocquet, S.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H.-M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Doucouliagos, A. N.; Foley, R. J.; Forman, W. R.; Garmire, G. P.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Gupta, N.; Halverson, N. W.; Hlavacek-Larrondo, J.; Hoekstra, H.; Holder, G. P.; Holzapfel, W. L.; Hou, Z.; Hrubes, J. D.; Huang, N.; Jones, C.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; von der Linden, A.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L. M.; Mohr, J. J.; Murray, S. S.; Padin, S.; Pryke, C.; Rapetti, D.; Reichardt, C. L.; Rest, A.; Ruel, J.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Schrabback, T.; Shirokoff, E.; Song, J.; Spieler, H. G.; Stalder, B.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; Stubbs, C. W.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zenteno, A.

    2016-11-01

    We present cosmological parameter constraints obtained from galaxy clusters identified by their Sunyaev-Zel’dovich effect signature in the 2500 square-degree South Pole Telescope Sunyaev Zel’dovich (SPT-SZ) survey. We consider the 377 cluster candidates identified at z\\gt 0.25 with a detection significance greater than five, corresponding to the 95% purity threshold for the survey. We compute constraints on cosmological models using the measured cluster abundance as a function of mass and redshift. We include additional constraints from multi-wavelength observations, including Chandra X-ray data for 82 clusters and a weak lensing-based prior on the normalization of the mass-observable scaling relations. Assuming a spatially flat ΛCDM cosmology, we combine the cluster data with a prior on H 0 and find {σ }8=0.784+/- 0.039 and {{{Ω }}}m=0.289+/- 0.042, with the parameter combination {σ }8{({{{Ω }}}m/0.27)}0.3=0.797+/- 0.031. These results are in good agreement with constraints from the cosmic microwave background (CMB) from SPT, WMAP, and Planck, as well as with constraints from other cluster data sets. We also consider several extensions to ΛCDM, including models in which the equation of state of dark energy w, the species-summed neutrino mass, and/or the effective number of relativistic species ({N}{eff}) are free parameters. When combined with constraints from the Planck CMB, H 0, baryon acoustic oscillation, and SNe, adding the SPT cluster data improves the w constraint by 14%, to w=-1.023+/- 0.042.

  18. Dark matter deprivation in the field elliptical galaxy NGC 7507

    NASA Astrophysics Data System (ADS)

    Lane, Richard R.; Salinas, Ricardo; Richtler, Tom

    2015-02-01

    Context. Previous studies have shown that the kinematics of the field elliptical galaxy NGC 7507 do not necessarily require dark matter. This is troubling because, in the context of ΛCDM cosmologies, all galaxies should have a large dark matter component. Aims: Our aims are to determine the rotation and velocity dispersion profile out to larger radii than do previous studies, and, therefore, more accurately estimate of the dark matter content of the galaxy. Methods: We use penalised pixel-fitting software to extract velocities and velocity dispersions from GMOS slit mask spectra. Using Jeans and MONDian modelling, we then produce models with the goal of fitting the velocity dispersion data. Results: NGC 7507 has a two-component stellar halo, with the outer halo counter rotating with respect to the inner halo, with a kinematic boundary at a radius of ~110'' (~12.4 kpc). The velocity dispersion profile exhibits an increase at ~70'' (~7.9 kpc), reminiscent of several other elliptical galaxies. Our best fit models are those under mild anisotropy, which include ~100 times less dark matter than predicted by ΛCDM, although mildly anisotropic models that are completely dark matter free fit the measured dynamics almost equally well. Our MONDian models, both isotropic and anisotropic, systematically fail to reproduce the measured velocity dispersions at almost all radii. Conclusions: The counter-rotating outer halo implies a merger remnant, as does the increase in velocity dispersion at ~70''. From simulations it seems plausible that the merger that caused the increase in velocity dispersion was a spiral-spiral merger. Our Jeans models are completely consistent with a no dark matter scenario, however, some dark matter can be accommodated, although at much lower concentrations than predicted by ΛCDM simulations. This indicates that NGC 7507 may be a dark matter free elliptical galaxy. Regardless of whether NGC 7507 is completely dark matter free or very dark matter poor

  19. Far-Ultraviolet Number Counts of Field Galaxies

    NASA Technical Reports Server (NTRS)

    Voyer, Elysse N.; Gardner, Jonathan P.; Teplitz, Harry I.; Siana, Brian D.; deMello, Duilia F.

    2010-01-01

    The Number counts of far-ultraviolet (FUV) galaxies as a function of magnitude provide a direct statistical measure of the density and evolution of star-forming galaxies. We report on the results of measurements of the rest-frame FUV number counts computed from data of several fields including the Hubble Ultra Deep Field, the Hubble Deep Field North, and the GOODS-North and -South fields. These data were obtained from the Hubble Space Telescope Solar Blind Channel of the Advance Camera for Surveys. The number counts cover an AB magnitude range from 20-29 magnitudes, covering a total area of 15.9 arcmin'. We show that the number counts are lower than those in previous studies using smaller areas. The differences in the counts are likely the result of cosmic variance; our new data cover more area and more lines of sight than the previous studies. The slope of our number counts connects well with local FUV counts and they show good agreement with recent semi-analytical models based on dark matter "merger trees".

  20. GALAXY MERGERS DRIVE SHOCKS: AN INTEGRAL FIELD STUDY OF GOALS GALAXIES

    SciTech Connect

    Rich, J. A.; Kewley, L. J.; Dopita, M. A.

    2015-12-15

    We present an integral field spectroscopic study of radiative shocks in 27 nearby ultraluminous and luminous infrared galaxies (U/LIRGs) from the Great Observatory All-sky LIRG Survey, a subset of the Revised Bright Galaxy Sample. Our analysis of the resolved spectroscopic data from the Wide Field Spectrograph focuses on determining the detailed properties of the emission-line gas, including a careful treatment of multicomponent emission-line profiles. The resulting information obtained from the spectral fits is used to map the kinematics of the gas, sources of ionizing radiation, and feedback present in each system. The resulting properties are tracked as a function of merger stage. Using emission-line flux ratios and velocity dispersions, we find evidence for widespread, extended shock excitation in many local U/LIRGs. These low-velocity shocks become an increasingly important component of the optical emission lines as a merger progresses. We find that shocks may account for as much as half of the Hα luminosity in the latest-stage mergers in our sample. We discuss some possible implications of our result and consider the presence of active galactic nuclei and their effects on the spectra in our sample.

  1. Spatially Resolved Stellar Kinematics of Field Early-Type Galaxies at z = 1: Evolution of the Rotation Rate

    NASA Astrophysics Data System (ADS)

    van der Wel, Arjen; van der Marel, Roeland P.

    2008-09-01

    We use the spatial information of our previously published VLT/FORS2 absorption-line spectroscopy to measure mean stellar velocity and velocity dispersion profiles of 25 field early-type galaxies at a median redshift z = 0.97 (full range 0.6 < z < 1.2). This provides the first detailed study of early-type galaxy rotation at these redshifts. From surface brightness profiles from HST imaging we calculate two-integral oblate axisymmetric Jeans equation models for the observed kinematics. Fits to the data yield for each galaxy the degree of rotational support and the mass-to-light ratio M/LJeans. S0 and Sa galaxies are generally rotationally supported, whereas elliptical galaxies rotate less rapidly or not at all. Down to MB = - 19.5 (corrected for luminosity evolution), we find no evidence for evolution in the fraction of rotating early-type (E+S0) galaxies between z ~ 1 (63% +/- 11% ) and the present (61% +/- 5% ). We interpret this as evidence for little or no change in the field S0 fraction with redshift. We compare M/LJeans with M/Lvir inferred from the virial theorem and globally averaged quantities and assuming homologous evolution. There is good agreement for nonrotating (mostly E) galaxies. However, for rotationally supported galaxies (mostly S0) M/LJeans is on average ~40% higher than M/Lvir. We discuss possible explanations and the implications for the evolution of M/L between z = 1 and the present and its dependence on mass. Based on observations collected at the European Southern Observatory, Chile (169.A-0458), and on observations with the Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  2. Anisotropic thermal conduction with magnetic fields in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Arth, Alexander; Dolag, Klaus; Beck, Alexander; Petkova, Margarita; Lesch, Harald

    2015-08-01

    Magnetic fields play an important role for the propagation and diffusion of charged particles, which are responsible for thermal conduction. In this poster, we present an implementation of thermal conduction including the anisotropic effects of magnetic fields for smoothed particle hydrodynamics (SPH). The anisotropic thermal conduction is mainly proceeding parallel to magnetic fields and suppressed perpendicular to the fields. We derive the SPH formalism for the anisotropic heat transport and solve the corresponding equation with an implicit conjugate gradient scheme. We discuss several issues of unphysical heat transport in the cases of extreme ansiotropies or unmagnetized regions and present possible numerical workarounds. We implement our algorithm into the cosmological simulation code GADGET and study its behaviour in several test cases. In general, we reproduce the analytical solutions of our idealised test problems, and obtain good results in cosmological simulations of galaxy cluster formations. Within galaxy clusters, the anisotropic conduction produces a net heat transport similar to an isotropic Spitzer conduction model with low efficiency. In contrast to isotropic conduction our new formalism allows small-scale structure in the temperature distribution to remain stable, because of their decoupling caused by magnetic field lines. Compared to observations, strong isotropic conduction leads to an oversmoothed temperature distribution within clusters, while the results obtained with anisotropic thermal conduction reproduce the observed temperature fluctuations well. A proper treatment of heat transport is crucial especially in the outskirts of clusters and also in high density regions. It's connection to the local dynamical state of the cluster also might contribute to the observed bimodal distribution of cool core and non cool core clusters. Our new scheme significantly advances the modelling of thermal conduction in numerical simulations and overall gives

  3. The Buildup of Passive Galaxies in Clusters and the Field Over the Last 7 Billion Years.

    NASA Astrophysics Data System (ADS)

    Rudnick, Gregory; van der Wel, A.; Moustakas, J.; Jablonka, P.

    2011-01-01

    One of galaxy evolution's most long-standing problems is determining how clusters affect the properties of infalling galaxies. One useful metric for this is how quickly the passive galaxy population in clusters assembles over time. Standard practice has been to assume that all red sequence galaxies are passive and to measure the evolution in the red fraction and red sequence luminosity function over time. This approach, however, neglects the possible contribution of dusty galaxies to the red sequence, which can be significant at intermediate environment and low to intermediate stellar masses. We move beyond a simple red sequence cut by using a new multi-color technique to distinguish red passive galaxies from red dusty star-forming galaxies. Isolating passive galaxies is inherently more physical than studying galaxies selected on one color alone. We track the buildup of passive galaxies in the field and in clusters using the COSMOS data for the former and a large imaging and spectroscopy survey of intermediate redshift clusters for the latter. The fraction of passive galaxies in clusters increases with increasing galaxy mass, increasing cluster velocity dispersion, and with time at a fixed mass and velocity dispersion. We relate the passive fraction in clusters to that for field galaxies of similar masses and use this to constrain the processes that shut off star formation in infalling cluster galaxies. The fraction of dust-obscured star forming galaxies changes with stellar mass and environment and this affects the interpretation of the rapid evolution in the faint red sequence galaxy population and its environmental dependence, as seen in other works.

  4. Cosmological constraints from the redshift dependence of the Alcock-Paczynski test: galaxy density gradient field

    SciTech Connect

    Li, Xiao-Dong; Park, Changbom; Forero-Romero, J. E.; Kim, Juhan E-mail: cbp@kias.re.kr E-mail: kjhan@kias.re.kr

    2014-12-01

    We propose a method based on the redshift dependence of the Alcock-Paczynski (AP) test to measure the expansion history of the universe. It uses the isotropy of the galaxy density gradient field to constrain cosmological parameters. If the density parameter Ω {sub m} or the dark energy equation of state w are incorrectly chosen, the gradient field appears to be anisotropic with the degree of anisotropy varying with redshift. We use this effect to constrain the cosmological parameters governing the expansion history of the universe. Although redshift-space distortions (RSD) induced by galaxy peculiar velocities also produce anisotropies in the gradient field, these effects are close to uniform in magnitude over a large range of redshift. This makes the redshift variation of the gradient field anisotropy relatively insensitive to the RSD. By testing the method on mock surveys drawn from the Horizon Run 3 cosmological N-body simulations, we demonstrate that the cosmological parameters can be estimated without bias. Our method is complementary to the baryon acoustic oscillation or topology methods as it depends on D{sub AH} , the product of the angular diameter distance and the Hubble parameter.

  5. Determining degree-day thresholds from field observations

    NASA Astrophysics Data System (ADS)

    Snyder, R. L.; Spano, Donatella; Cesaraccio, Carla; Duce, Pierpaolo

    This paper compares several methods for determining degree-day (°D) threshold temperatures from field observations. Three of the methods use the mean developmental period temperature and simple equations to estimate: (1) the smallest standard deviation in °D, (2) the least standard deviation in days, and (3) a linear regression intercept. Two additional methods use iterations of cumulative °D and threshold temperatures to determine the smallest root mean square error (RMSE). One of the iteration methods uses a linear model and the other uses a single triangle °D calculation method. The method giving the best results was verified by comparing observed and predicted phenological periods using 7 years of kiwifruit data and 10 years of cherry tree data. In general, the iteration method using the single triangle method to calculate °D provided threshold temperatures with the smallest RMSE values. However, the iteration method using a linear °D model also worked well. Simply using a threshold of zero gave predictions that were nearly as good as those obtained using the other two methods. The smallest standard deviation in °D performed the worst. The least standard deviation in days and the regression methods did well sometimes; however, the threshold temperatures were sometimes negative, which does not support the idea that development rates are related to heat units.

  6. Angular clustering of z ˜ 2 star-forming and passive galaxies in 2.5 square degrees of deep CFHT imaging

    NASA Astrophysics Data System (ADS)

    Sato, Taro; Sawicki, Marcin; Arcila-Osejo, Liz

    2014-09-01

    We study the angular clustering of z ˜ 2 galaxies using ˜40 000 star-forming (SF) and ˜5000 passively evolving (PE) galaxies selected from ˜2.5 deg2 of deep (Klim = 23-24 AB) Canada-France-Hawaii Telescope imaging. For both populations, the clustering is stronger for galaxies brighter in rest-frame optical and the trend is particularly strong for PE galaxies, indicating that passive galaxies with larger stellar masses reside in more massive haloes. In contrast, at rest-frame ultraviolet we find that while the clustering of SF galaxies increases with increasing luminosity, it decreases for PE galaxies; a possible explanation lies in quenching of star formation in the most massive haloes. Furthermore, we find two components in the correlation functions for both SF and PE galaxies, attributable to one- and two-halo terms. The presence of one-halo terms for both PE and SF galaxies suggests that environmental effects were producing passive galaxies in virtualized environments already by z ˜ 2. Finally, we find notable clustering differences between the four widely separated fields in our study; the popular COSMOS field is the most discrepant (as is also the case for number counts and luminosity functions), highlighting the need for very large areas and multiple sightlines in galaxy evolution statistical studies.

  7. Evolution in Solitude - Field Galaxies from Half the Age of the Universe to the Present

    NASA Astrophysics Data System (ADS)

    Woodrum, Charity; Jørgensen, Inger; Oberhelman, Lindsey; Contreras, Taylor; Demarco, Ricardo; Fisher, Robert Scott; Bieker, Jacob

    2017-01-01

    We analyze the stellar populations and evolutionary history of bulge-dominated (nser ≥ 1.5) field galaxies at redshifts up to z≈1 as part of the Gemini/HST Galaxy Cluster Project (GCP). High signal-to-noise optical spectroscopy from Gemini Observatory and imaging from Hubble Space Telescope is used to analyze a total of 44 field galaxies, focusing on 30 passive (EW[OII] ≤ 5Å) field galaxies. Our results indicate that the size-mass and size-velocity dispersion relations for the passive field galaxies show no significant evolution between z≈1 and the present. The passive field galaxies contain younger stellar populations than cluster galaxies at similar redshifts, with a formation redshift zform = 1.2-1.4 compared to zform = 1.8 for the cluster galaxies. We establish the Fundamental Plane and study the M/L ratios, both indicating that the formation redshift for the passive field galaxies is mass dependent. The zero point differences of the scaling relations for the M/L ratios agree with the formation redshift of zform = 1.2-1.4 found from the line indices and are consistent with the passive evolution model.

  8. Relativistic Particle Population and Magnetic Fields in Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Kushnir, Doron

    2011-08-01

    We derive constrains on the cosmic ray (CR) population and magnetic fields (MF) in clusters of galaxies, based on: 1. The correlation between the radio and the X-ray luminosities: the former emitted by synchrotron of secondary electrons in a strong MF, >˜3 muG; In the core, the CR energy is ˜10^{-3} of the thermal energy; The source of CR is the accretion shock (AS), which accelerate CR with efficiency >˜1%. 2. The HXR luminosity: emitted by IC of CMB photons by electrons accelerated in AS with efficiency >˜1%. The constrains imply that gamma-ray emission from secondaries will be difficult to detect with existing/planned instruments. However, the extended emission from primary electrons might be detected by future HXR (NuStar, Simbol-X) and gamma-ray observations (Fermi, HESS, VERITAS).

  9. INTEGRAL-FIELD STELLAR AND IONIZED GAS KINEMATICS OF PECULIAR VIRGO CLUSTER SPIRAL GALAXIES

    SciTech Connect

    Cortés, Juan R.; Hardy, Eduardo; Kenney, Jeffrey D. P. E-mail: ehardy@nrao.cl

    2015-01-01

    We present the stellar and ionized gas kinematics of 13 bright peculiar Virgo cluster galaxies observed with the DensePak Integral Field Unit at the WIYN 3.5 m telescope in order to look for kinematic evidence that these galaxies have experienced gravitational interactions or gas stripping. Two-dimensional maps of the stellar velocity V, stellar velocity dispersion σ, and the ionized gas velocity (Hβ and/or [O III]) are presented for the galaxies in the sample. The stellar rotation curves and velocity dispersion profiles are determined for 13 galaxies, and the ionized gas rotation curves are determined for 6 galaxies. Misalignments between the optical and kinematical major axes are found in several galaxies. While in some cases this is due to a bar, in other cases it seems to be associated with gravitational interaction or ongoing ram pressure stripping. Non-circular gas motions are found in nine galaxies, with various causes including bars, nuclear outflows, or gravitational disturbances. Several galaxies have signatures of kinematically distinct stellar components, which are likely signatures of accretion or mergers. For all of our galaxies, we compute the angular momentum parameter λ {sub R}. An evaluation of the galaxies in the λ {sub R} ellipticity plane shows that all but two of the galaxies have significant support from random stellar motions, and have likely experienced gravitational interactions. This includes some galaxies with very small bulges and truncated/compact Hα morphologies, indicating that such galaxies cannot be fully explained by simple ram pressure stripping, but must have had significant gravitational encounters. Most of the sample galaxies show evidence for ICM-ISM stripping as well as gravitational interactions, indicating that the evolution of a significant fraction of cluster galaxies is likely strongly impacted by both effects.

  10. ZFIRE: Similar Stellar Growth in Halpha-emitting Cluster and Field Galaxies at z~2

    NASA Astrophysics Data System (ADS)

    Tran, Kim-Vy; Alcorn, Leo; Kacprzak, Glenn; Nanayakkara, Themiya; Straatman, Caroline; Yuan, Tiantian; Cowley, Michael; Dave, Romeel; Glazebrook, Karl; Kewley, Lisa J.; Labbe, Ivo; martizzi, davide; Papovich, Casey J.; Quadri, Ryan; Spitler, Lee; Tomczak, Adam R.

    2017-01-01

    We compare galaxy scaling relations as a function of environment at z~2 with our ZFIRE survey where we have measured Halpha fluxes for 90 galaxies selected from a mass-limited sample based on ZFOURGE. The cluster galaxies (37) are part of a spectroscopically confirmed system at z=2.095 and the field galaxies (53) have redshifts of 1.9field populations when comparing their star formation rate (SFR), stellar mass, galaxy size, star formation rate surface density, and stellar age distributions. Approximately 20-25% of Halpha-emitting galaxies in both the cluster and field are IR-luminous. In our combined cluster and field sample, IR-luminous galaxies have ~5 times more stellar mass and radii that are ~70% larger than the low-IR galaxies. To track stellar growth, we separate galaxies into those that lie above, on, and below the Halpha star-forming main sequence (SFMS) using delta[SFR]=+/-0.2 dex. Galaxies above the SFMS (starbursts) tend to have higher Halpha SFR surface densities and younger stellar ages compared to galaxies below the SFMS. Our results indicate that starbursts (+SFMS) in the cluster and field at z~2 are growing their stellar cores. Lastly, we compare to the (SFR-stellar mass) relation predicted by the RHAPSODY galaxy cluster simulations and find that the predicted slope is nominally consistent with the observations. However, the predicted cluster SFRs tend to be too low by a factor of ~2 which suggests that simulations may be over-predicting how efficient environment is at quenching star formation.

  11. Investigating the host galaxies of luminous AGN in the local universe with integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    McElroy, Rebecca; Croom, Scott; Husemann, Bernd; Close AGN Reference Survey; SAMI Galaxy Survey

    2017-01-01

    This thesis investigates how galaxies and their super massive black holes coevolve. We use integral field spectroscopy to search for evidence of AGN feedback and triggering. We demonstrate that outflows are ubiquitous among luminous local type 2 AGN using observations from the AAT's SPIRAL instrument. Using multiple component Gaussian emission line decomposition we are able to disentangle the kinematic and ionisation properties of these winds. This allows us to argue that the outflows from these AGN are directly impacting the surrounding ISM within the galaxies. We search for evidence of AGN triggering using data from The Close AGN Reference Survey (CARS). CARS aims to provide a detailed multi-wavelength view of 40 nearby (0.01 < z < 0.06) unobscured AGN to study the link between AGN and their host galaxies. The primary CARS observations come from the MUSE integral field unit on the VLT, and complementary multi-wavelength observations have been approved from SOFIA, Chandra, VLA, HST, and others. We compare the stellar kinematics of active galaxies from CARS to similar inactive galaxies. We then use kinemetry to estimate the degree of dynamical disturbance, to determine whether active nuclei are preferentially hosted in dynamically disturbed or merging systems. Finally, we highlight the discovery of an AGN that has changed spectral type not once, but twice. So called ‘changing look’ AGN are an uncommon phenomenon, but twice changed AGN are much rarer. This AGN first transitioned from a narrow line AGN (type 2) to a broad line AGN (type 1) in the 1980s. It was recently observed as part of CARS. Examination of the MUSE data for this particular source showed that it no longer had the spectral features typical of a type 1 AGN. The continuum emission from the accretion disk was no longer visible and the broad lines were dramatically diminished. In this talk we describe the possible reasons for this change, supported by analysis of multi-epoch optical photometry and

  12. An analytical dynamo solution for large-scale magnetic fields of galaxies

    NASA Astrophysics Data System (ADS)

    Chamandy, Luke

    2016-11-01

    We present an effectively global analytical asymptotic galactic dynamo solution for the regular magnetic field of an axisymmetric thin disc in the saturated state. This solution is constructed by combining two well-known types of local galactic dynamo solution, parametrized by the disc radius. Namely, the critical (zero growth) solution obtained by treating the dynamo equation as a perturbed diffusion equation is normalized using a non-linear solution that makes use of the `no-z' approximation and the dynamical α-quenching non-linearity. This overall solution is found to be reasonably accurate when compared with detailed numerical solutions. It is thus potentially useful as a tool for predicting observational signatures of magnetic fields of galaxies. In particular, such solutions could be painted on to galaxies in cosmological simulations to enable the construction of synthetic polarized synchrotron and Faraday rotation measure data sets. Further, we explore the properties of our numerical solutions, and their dependence on certain parameter values. We illustrate and assess the degree to which numerical solutions based on various levels of approximation, common in the dynamo literature, agree with one another.

  13. The 2-degree Field Lensing Survey: photometric redshifts from a large new training sample to r < 19.5

    NASA Astrophysics Data System (ADS)

    Wolf, C.; Johnson, A. S.; Bilicki, M.; Blake, C.; Amon, A.; Erben, T.; Glazebrook, K.; Heymans, C.; Hildebrandt, H.; Joudaki, S.; Klaes, D.; Kuijken, K.; Lidman, C.; Marin, F.; Parkinson, D.; Poole, G.

    2017-04-01

    We present a new training set for estimating empirical photometric redshifts of galaxies, which was created as part of the 2-degree Field Lensing Survey project. This training set is located in a ∼700 deg2 area of the Kilo-Degree-Survey South field and is randomly selected and nearly complete at r < 19.5. We investigate the photometric redshift performance obtained with ugriz photometry from VST-ATLAS and W1/W2 from WISE, based on several empirical and template methods. The best redshift errors are obtained with kernel-density estimation (KDE), as are the lowest biases, which are consistent with zero within statistical noise. The 68th percentiles of the redshift scatter for magnitude-limited samples at r < (15.5, 17.5, 19.5) are (0.014, 0.017, 0.028). In this magnitude range, there are no known ambiguities in the colour-redshift map, consistent with a small rate of redshift outliers. In the fainter regime, the KDE method produces p(z) estimates per galaxy that represent unbiased and accurate redshift frequency expectations. The p(z) sum over any subsample is consistent with the true redshift frequency plus Poisson noise. Further improvements in redshift precision at r < 20 would mostly be expected from filter sets with narrower passbands to increase the sensitivity of colours to small changes in redshift.

  14. A MULTIWAVELENGTH STUDY OF TADPOLE GALAXIES IN THE HUBBLE ULTRA DEEP FIELD

    SciTech Connect

    Straughn, Amber N.; Eufrasio, Rafael T.; Gardner, Jonathan P.; Voyer, Elysse N.; Mello, Duilia de; Soto, Emmaris; Petty, Sara; Kassin, Susan; Ravindranath, Swara

    2015-12-01

    Multiwavelength data are essential in order to provide a complete picture of galaxy evolution and to inform studies of galaxies’ morphological properties across cosmic time. Here we present the results of a multiwavelength investigation of the morphologies of “tadpole” galaxies at intermediate redshift (0.314 < z < 3.175) in the Hubble Ultra Deep Field. These galaxies were previously selected from deep Hubble Space Telescope (HST) F775W data based on their distinct asymmetric knot-plus-tail morphologies. Here we use deep Wide Field Camera 3 near-infrared imaging in addition to the HST optical data in order to study the rest-frame UV/optical morphologies of these galaxies across the redshift range 0.3 < z < 3.2. This study reveals that the majority of these galaxies do retain their general asymmetric morphology in the rest-frame optical over this redshift range, if not the distinct “tadpole” shape. The average stellar mass of tadpole galaxies is lower than that of field galaxies, with the effect being slightly greater at higher redshift within the errors. Estimated from spectral energy distribution fits, the average age of tadpole galaxies is younger than that of field galaxies in the lower-redshift bin, and the average metallicity is lower (whereas the specific star formation rate for tadpoles is roughly the same as field galaxies across the redshift range probed here). These average effects combined support the conclusion that this subset of galaxies is in an active phase of assembly, either late-stage merging or cold gas accretion causing localized clumpy star formation.

  15. Understanding the Factors Affecting Degree Completion of Doctoral Women in the Science and Engineering Fields

    ERIC Educational Resources Information Center

    Ampaw, Frim D.; Jaeger, Audrey J.

    2011-01-01

    The rate of doctoral degree completion, compared to all other degrees, is the lowest in the academy, with only 57 percent of doctoral students completing their degree within a ten-year period. In the science, engineering, and mathematics (SEM) fields, 62 percent of the male students complete their doctoral degree in ten years, which is better than…

  16. Attenuation of TeV γ-rays by the starlight photon field of the host galaxy

    NASA Astrophysics Data System (ADS)

    Zacharias, Michael; Chen, Xuhui; Wagner, Stefan J.

    2017-03-01

    The absorption of TeV γ-ray photons produced in relativistic jets by surrounding soft photon fields is a long-standing problem of jet physics. In some cases, the most likely emission site close to the central black hole is ruled out because of the high opacity caused by strong optical and infrared photon sources, such as the broad-line region. Mostly neglected for jet modelling is the absorption of γ-rays in the starlight photon field of the host galaxy. Analysing the absorption for arbitrary locations and observation angles of the γ-ray emission site within the host galaxy, we find that the distance to the galaxy centre, the observation angle, and the distribution of starlight in the galaxy are crucial for the amount of absorption. We derive the absorption value for a sample of 20 TeV-detected blazars with a redshift zr < 0.2. The absorption value of the γ-ray emission located in the galaxy centre may be as high as 20 per cent, with an average value of 6 per cent. This is important in order to determine the intrinsic blazar parameters. We see no significant trends in our sample between the degree of absorption and host properties, such as starlight emissivity, galactic size, half-light radius, and redshift. While the uncertainty of the spectral properties of the extragalactic background light exceeds the effect of absorption by stellar light from the host galaxy in distant objects, the latter is a dominant effect in nearby sources. It may also be revealed in a differential comparison of sources with similar redshifts.

  17. High Resolution Narrow-Field Versus Low Resolution Widefield Observations of Galaxies

    NASA Astrophysics Data System (ADS)

    Capaccioli, M.; Davoust, E.; Lelievre, G.; Nieto, J. L.

    There is an increasing evidence that small-scale phenomena occurring in the inner regions of galaxies are related to large-scale phenomena such as, merging or violent interactions between galaxies. The aim of this communication is to illustrate the complementarity between high-resolution, small-field telescopes and Schmidt-type telescopes for the study of this phenomenology.

  18. Galaxy Zoo CANDELS Data Release I: Morphologies of ~50,000 Galaxies With z ≤ 3 in Deep Hubble Legacy Fields

    NASA Astrophysics Data System (ADS)

    Simmons, Brooke; Lintott, Chris; Masters, Karen; Willett, Kyle; Kartaltepe, Jeyhan S.; Closson Ferguson, Henry; Faber, Sandra M.; Galaxy Zoo Team, CANDELS Team

    2016-01-01

    We present quantified visual morphologies of approximately 48,000 galaxies in rest-frame optical to z ~ 3, using galaxies observed in three Hubble Space Telescope legacy fields by the Cosmic And Near-infrared Deep Extragalactic Legacy Survey (CANDELS) and classified by participants in the Galaxy Zoo project. Each galaxy received an average of 43 independent classifications, which we combine into detailed morphological information on galaxy features such as clumpiness, bar instabilities, spiral structure, and merger and tidal signatures. We apply a consensus-based classifier weighting method that preserves classifier independence while effectively down-weighting significantly errant classifications. Comparing the Galaxy Zoo classifications to previous human and machine classifications of the same galaxies shows very good agreement; in some cases the high number of independent classifications provided by Galaxy Zoo provides an advantage in selecting galaxies with a particular morphological profile, while in others the combination of Galaxy Zoo with other classifications is a more promising approach than using any one method alone. We combine the Galaxy Zoo classifications of "smooth" galaxies with parametric morphologies to select a sample of featureless disks at 1 ≤ z ≤ 2, which may represent a dynamically warmer progenitor population to the settled disk galaxies seen at later epochs.

  19. The evolution of dust-obscured star formation activity in galaxy clusters relative to the field over the last 9 billion years

    NASA Astrophysics Data System (ADS)

    Alberts, Stacey; Pope, Alexandra; Brodwin, Mark; Atlee, David W.; Lin, Yen-Ting; Dey, Arjun; Eisenhardt, Peter R. M.; Gettings, Daniel P.; Gonzalez, Anthony H.; Jannuzi, Buell T.; Mancone, Conor L.; Moustakas, John; Snyder, Gregory F.; Stanford, S. Adam; Stern, Daniel; Weiner, Benjamin J.; Zeimann, Gregory R.

    2014-01-01

    We compare the star formation (SF) activity in cluster galaxies to the field from z = 0.3 to 1.5 using Herschel Spectral and Photometric Imaging REceiver 250 μm imaging and utilizing 274 clusters from the IRAC Shallow Cluster Survey (ISCS). These clusters were selected as rest-frame near-infrared overdensities over the 9 square degree Boötes field. This sample allows us to quantify the evolution of SF in clusters over a long redshift baseline without bias against active cluster systems. Using a stacking analysis, we determine the average star formation rates (SFRs) and specific SFRs (SSFR = SFR/M⋆) of stellar mass-limited (M ≥ 1.3 × 1010 M⊙), statistical samples of cluster and field galaxies, probing both the star-forming and quiescent populations. We find a clear indication that the average SF in cluster galaxies is evolving more rapidly than in the field, with field SF levels at z ≳ 1.2 in the cluster cores (r < 0.5 Mpc), in good agreement with previous ISCS studies. By quantifying the SF in cluster and field galaxies as an exponential function of cosmic time, we determine that cluster galaxies are evolving approximately two times faster than the field. Additionally, we see enhanced SF above the field level at z ˜ 1.4 in the cluster outskirts (r > 0.5 Mpc). These general trends in the cluster cores and outskirts are driven by the lower mass galaxies in our sample. Blue cluster galaxies have systematically lower SSFRs than blue field galaxies, but otherwise show no strong differential evolution with respect to the field over our redshift range. This suggests that the cluster environment is both suppressing the SF in blue galaxies on long time-scales and rapidly transitioning some fraction of blue galaxies to the quiescent galaxy population on short time-scales. We argue that our results are consistent with both strangulation and ram pressure stripping acting in these clusters, with merger activity occurring in the cluster outskirts.

  20. The many assembly histories of massive void galaxies as revealed by integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Fraser-McKelvie, Amelia; Pimbblet, Kevin A.; Penny, Samantha J.; Brown, Michael J. I.

    2016-06-01

    We present the first detailed integral field spectroscopy study of nine central void galaxies with M⋆ > 1010 M⊙ using the Wide Field Spectrograph to determine how a range of assembly histories manifest themselves in the current day Universe. While the majority of these galaxies are evolving secularly, we find a range of morphologies, merger histories and stellar population distributions, though similarly low Hα-derived star formation rates (<1 M⊙ yr-1). Two of our nine galaxies host active galactic nuclei, and two have kinematic disruptions to their gas that are not seen in their stellar component. Most massive void galaxies are red and discy, which we attribute to a lack of major mergers. Some have disturbed morphologies and may be in the process of evolving to early-type thanks to ongoing minor mergers at present times, likely fed by tendrils leading off filaments. The diversity in our small galaxy sample, despite being of similar mass and environment means that these galaxies are still assembling at present day, with minor mergers playing an important role in their evolution. We compare our sample to a mass and magnitude-matched sample of field galaxies, using data from the Sydney-AAO Multi-object Integral field spectrograph galaxy survey. We find that despite environmental differences, galaxies of mass M⋆ > 1010 M⊙ have similarly low star formation rates (<3 M⊙ yr-1). The lack of distinction between the star formation rates of the void and field environments points to quenching of massive galaxies being a largely mass-related effect.

  1. The role of magnetic fields in starburst galaxies as revealed by OH megamasers

    SciTech Connect

    McBride, James; Quataert, Eliot; Heiles, Carl; Bauermeister, Amber E-mail: eliot@astro.berkeley.edu

    2014-01-10

    We present estimates of magnetic field strengths in the interstellar media of starburst galaxies derived from measurements of Zeeman splitting associated with OH megamasers. The results for eight galaxies with Zeeman detections suggest that the magnetic energy density in the interstellar medium of starburst galaxies is comparable to their hydrostatic gas pressure, as in the Milky Way. We discuss the significant uncertainties in this conclusion, and possible measurements that could reduce these uncertainties. We also compare the Zeeman splitting derived magnetic field estimates to magnetic field strengths estimated using synchrotron fluxes and assuming that the magnetic field and cosmic rays have comparable energy densities, known as the 'minimum energy' argument. We find that the minimum energy argument systematically underestimates magnetic fields in starburst galaxies, and that the conditions that would be required to produce agreement between the minimum energy estimate and the Zeeman derived estimate of interstellar medium magnetic fields are implausible. The conclusion that magnetic fields in starburst galaxies exceed the minimum energy magnetic fields is consistent with starburst galaxies adhering to the linearity of the far-infrared-radio correlation.

  2. Deep imaging of high redshift QSO fields below the Lyman limit. II - Number counts and colors of field galaxies

    NASA Technical Reports Server (NTRS)

    Steidel, Charles C.; Hamilton, Donald

    1993-01-01

    We present an analysis of the number counts and colors of faint galaxies to about 26.5 mag in the fields of two high Galactic latitude, very-high-redshift QSOs. We concentrate on the general properties of the field galaxies at faint magnitudes. In particular, we readdress the faint galaxy number counts and colors as a function of apparent magnitude and we reexamine the possible contribution of very-high-redshift galaxies to the faint samples. We find that the number counts to R = 26 are well fitted by the relation log N(m) = 0.31R + C. The G-band counts for the same galaxies are consistent with the same slope fainter than G about 23.5, but exhibit a much steeper slope at brighter magnitudes. At R = 25.5, the differential number counts have reached about 1.2 x 10 exp 5/sq deg; the same surface density of galaxies is reached at G = 26.5. We confirm the existence of a gradual 'blueing' trend of the field galaxies toward fainter apparent magnitude; however, the blueing trend appears to extend only as faint as G about 24, fainter than which both the (G-R) and (U sub n-G) colors appear to level off. The mean colors of faint galaxies are considerably redder than flat spectrum. There are essentially no objects to R = 26 which have spectral energy distributions which are bluer than flat spectrum. The potential contribution of very-high-redshift galaxies may have been underestimated in previous analyses; the current data are consistent with the same population of relatively luminous galaxies at z about 3 as exist at z about 0.7.

  3. Reconstructing the galaxy density field with photometric redshifts. I. Methodology and validation on stellar mass functions

    NASA Astrophysics Data System (ADS)

    Malavasi, N.; Pozzetti, L.; Cucciati, O.; Bardelli, S.; Cimatti, A.

    2016-01-01

    Context. Measuring environment for large numbers of galaxies in the distant Universe is an open problem in astrophysics, as environment is important in determining many properties of galaxies during their formation and evolution. In order to measure galaxy environments, we need galaxy positions and redshifts. Photometric redshifts are more easily available for large numbers of galaxies, but at the price of larger uncertainties than spectroscopic redshifts. Aims: We study how photometric redshifts affect the measurement of galaxy environment and how the reconstruction of the density field may limit an analysis of the galaxy stellar mass function (GSMF) in different environments. Methods: Through the use of mock galaxy catalogues, we measured galaxy environment with a fixed aperture method, using each galaxy's true and photometric redshifts. We varied the parameters defining the fixed aperture volume and explored different configurations. We also used photometric redshifts with different uncertainties to simulate the case of various surveys. We then computed GSMF of the mock galaxy catalogues as a function of redshift and environment to see how the environmental estimate based on photometric redshifts affects their analysis. Results: We found that the most extreme environments can be reconstructed in a fairly accurate way only when using high-precision photometric redshifts with σΔz/ (1 + z) ≲ 0.01, with a fraction ≥ 60 ÷ 80% of galaxies placed in the correct density quartile and a contamination of ≤10% by opposite quartile interlopers. A length of the volume in the radial direction comparable to the ±1.5σ error of photometric redshifts and a fixed aperture radius of a size similar to the physical scale of the studied environment grant a better reconstruction than other volume configurations. When using this kind of an estimate of the density field, we found that any difference between the starting GSMF (divided accordingly to the true galaxy environment

  4. The SCUBA-2 Cosmology Legacy Survey: the clustering of submillimetre galaxies in the UKIDSS UDS field

    NASA Astrophysics Data System (ADS)

    Wilkinson, Aaron; Almaini, Omar; Chen, Chian-Chou; Smail, Ian; Arumugam, Vinodiran; Blain, Andrew; Chapin, Edward L.; Chapman, Scott C.; Conselice, Christopher J.; Cowley, William I.; Dunlop, James S.; Farrah, Duncan; Geach, James; Hartley, William G.; Ivison, Rob J.; Maltby, David T.; Michałowski, Michał J.; Mortlock, Alice; Scott, Douglas; Simpson, Chris; Simpson, James M.; van der Werf, Paul; Wild, Vivienne

    2017-01-01

    Submillimetre galaxies (SMGs) are among the most luminous dusty galaxies in the Universe, but their true nature remains unclear; are SMGs the progenitors of the massive elliptical galaxies we see in the local Universe, or are they just a short-lived phase among more typical star-forming galaxies? To explore this problem further, we investigate the clustering of SMGs identified in the SCUBA-2 Cosmology Legacy Survey. We use a catalogue of submillimetre (850 μm) source identifications derived using a combination of radio counterparts and colour/infrared selection to analyse a sample of 610 SMG counterparts in the United Kingdom Infrared Telescope (UKIRT) Infrared Deep Survey (UKIDSS) Ultra Deep Survey (UDS), making this the largest high-redshift sample of these galaxies to date. Using angular cross-correlation techniques, we estimate the halo masses for this large sample of SMGs and compare them with passive and star-forming galaxies selected in the same field. We find that SMGs, on average, occupy high-mass dark matter haloes (Mhalo > 1013 M⊙) at redshifts z > 2.5, consistent with being the progenitors of massive quiescent galaxies in present-day galaxy clusters. We also find evidence of downsizing, in which SMG activity shifts to lower mass haloes at lower redshifts. In terms of their clustering and halo masses, SMGs appear to be consistent with other star-forming galaxies at a given redshift.

  5. THE FIRST Hi-GAL OBSERVATIONS OF THE OUTER GALAXY: A LOOK AT STAR FORMATION IN THE THIRD GALACTIC QUADRANT IN THE LONGITUDE RANGE 216. Degree-Sign 5 {approx}< l {approx}< 225. Degree-Sign 5

    SciTech Connect

    Elia, D.; Molinari, S.; Schisano, E.; Pestalozzi, M.; Benedettini, M.; Di Giorgio, A. M.; Pezzuto, S.; Rygl, K. L. J.; Fukui, Y.; Hayakawa, T.; Yamamoto, H.; Olmi, L.; Veneziani, M.; Schneider, N.; Piazzo, L.; Mizuno, A.; Onishi, T.; Polychroni, D.; Maruccia, Y.

    2013-07-20

    We present the first Herschel PACS and SPIRE photometric observations in a portion of the outer Galaxy (216. Degree-Sign 5 {approx}< l {approx}< 225. Degree-Sign 5 and -2 Degree-Sign {approx}< b {approx}< 0 Degree-Sign ) as a part of the Hi-GAL survey. The maps between 70 and 500 {mu}m, the derived column density and temperature maps, and the compact source catalog are presented. NANTEN CO(1-0) line observations are used to derive cloud kinematics and distances so that we can estimate distance-dependent physical parameters of the compact sources (cores and clumps) having a reliable spectral energy distribution that we separate into 255 proto-stellar and 688 starless sources. Both typologies are found in association with all the distance components observed in the field, up to {approx}5.8 kpc, testifying to the presence of star formation beyond the Perseus arm at these longitudes. Selecting the starless gravitationally bound sources, we identify 590 pre-stellar candidates. Several sources of both proto- and pre-stellar nature are found to exceed the minimum requirement for being compatible with massive star formation based on the mass-radius relation. For the pre-stellar sources belonging to the Local arm (d {approx}< 1.5 kpc) we study the mass function whose high-mass end shows a power law N(log M){proportional_to}M {sup -1.0{+-}0.2}. Finally, we use a luminosity versus mass diagram to infer the evolutionary status of the sources, finding that most of the proto-stellar sources are in the early accretion phase (with some cases compatible with a Class I stage), while for pre-stellar sources, in general, accretion has not yet started.

  6. Using rotation measure to search for magnetic fields around galaxies at z ~ 0.5

    NASA Astrophysics Data System (ADS)

    Williams, Anna; Lundgren, Britt; Mao, Sui Ann; Wilcots, Eric; Zweibel, Ellen

    2017-03-01

    Magnetic fields are an important component in galaxies, and yet, we still do not know how these magnetic fields were originally seeded within galaxies, nor how they have grown to the strengths we observe today. One way we can unravel this complex problem is by measuring the growth of magnetic fields over cosmic time. We present the initial results of a rotation measure study to search for the presence of coherent magnetic fields around young disk-like galaxies at z ~ 0.5. The S-band receiver at the VLA allows us to simultaneously observe Stokes I, Q, U, and V from 2-4 GHz. With these broadband polarization observations we apply multiple methods for determining the rotation measure of each source, improving the fidelity of our results. Beyond magnetogenesis, the results of this study also have implications for the life-cycle of baryons within galaxies and the composition of galactic haloes.

  7. Near-infrared integral field spectroscopy of star-forming galaxies

    NASA Technical Reports Server (NTRS)

    Dale, D. A.; Roussel, H.; Contursi, A.; Helou, G.; Dinerstein, H. L.; Hunter, D. A.; Hollenbach, D. J.; Egami, E.; Matthews, K.; Murphy, T. W. Jr; Lafon, C. E.; Rubin, R. H.

    2004-01-01

    The Palomar Integral Field Spectrograph was used to probe a variety of environments in nine nearby galaxies that span a range of morphological types, luminosities, metallicities, and infrared-to-blue ratios.

  8. Ultraviolet Galaxy Counts From STIS Observations of The Hubble Deep Fields

    NASA Technical Reports Server (NTRS)

    Gardner, J. P.; Brown, T. M.; Ferguson, H. C.; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    We present galaxy counts in the near and far ultraviolet (NUV and FUV) obtained from Space Telescope Imaging Spectrograph (STIS) observations of portions of the Hubble Deep Field North, (HDFN), the Hubble Deep Field South, (HDFS) and a parallel field near the HDFN. All three fields have deep (AB>29) optical imaging, and we determine magnitudes by taking the ultraviolet flux detected within the limiting optical isophote. An analysis of the UV-optical colors of detected objects, combined with a visual inspection of the UV images, indicates that there are no detectable objects in the UV images which are not also detected in the optical. We measure the detection area and completeness as a function of magnitude by taking the size-magnitude distribution of galaxies in the entire HDFN WFPC2 V+I image, applying the measured UV-optical colors from the detected galaxies, and determining the total area over which each galaxy would have been detected in the UV images. The average area for the simulated galaxies in each UV magnitude bin, (including galaxies which would not be detected at all), provides the effective area and completeness for the bin. We test this procedure with Monte Carlo simulations. The galaxy counts reach to AB=29 in both the NUV and FUV; 1 magnitude fainter than the HDF F30OW counts, and 7 magnitudes fainter than balloon-based counts. We compare our measured counts to various models.

  9. An 84-microG magnetic field in a galaxy at redshift z = 0.692.

    PubMed

    Wolfe, Arthur M; Jorgenson, Regina A; Robishaw, Timothy; Heiles, Carl; Prochaska, Jason X

    2008-10-02

    The magnetic field pervading our Galaxy is a crucial constituent of the interstellar medium: it mediates the dynamics of interstellar clouds, the energy density of cosmic rays, and the formation of stars. The field associated with ionized interstellar gas has been determined through observations of pulsars in our Galaxy. Radio-frequency measurements of pulse dispersion and the rotation of the plane of linear polarization, that is, Faraday rotation, yield an average value for the magnetic field of B approximately 3 microG (ref. 2). The possible detection of Faraday rotation of linearly polarized photons emitted by high-redshift quasars suggests similar magnetic fields are present in foreground galaxies with redshifts z > 1. As Faraday rotation alone, however, determines neither the magnitude nor the redshift of the magnetic field, the strength of galactic magnetic fields at redshifts z > 0 remains uncertain. Here we report a measurement of a magnetic field of B approximately 84 microG in a galaxy at z = 0.692, using the same Zeeman-splitting technique that revealed an average value of B = 6 microG in the neutral interstellar gas of our Galaxy. This is unexpected, as the leading theory of magnetic field generation, the mean-field dynamo model, predicts large-scale magnetic fields to be weaker in the past rather than stronger.

  10. X-ray emission from star-forming galaxies - signatures of cosmic rays and magnetic fields

    NASA Astrophysics Data System (ADS)

    Schober, J.; Schleicher, D. R. G.; Klessen, R. S.

    2015-01-01

    The evolution of magnetic fields in galaxies is still an open problem in astrophysics. In nearby galaxies the far-infrared-radio correlation indicates the coupling between magnetic fields and star formation. The correlation arises from the synchrotron emission of cosmic ray electrons travelling through the interstellar magnetic fields. However, with an increase of the interstellar radiation field (ISRF), inverse Compton scattering becomes the dominant energy loss mechanism of cosmic ray electrons with a typical emission frequency in the X-ray regime. The ISRF depends on the one hand on the star formation rate and becomes stronger in starburst galaxies, and on the other hand increases with redshift due to the higher temperature of the cosmic microwave background. With a model for the star formation rate of galaxies, the ISRF, and the cosmic ray spectrum, we can calculate the expected X-ray luminosity resulting from the inverse Compton emission. Except for galaxies with an active galactic nucleus the main additional contribution to the X-ray luminosity comes from X-ray binaries. We estimate this contribution with an analytical model as well as with an observational relation, and compare it to the pure inverse Compton luminosity. Using data from the Chandra Deep Field Survey and far-infrared observations from Atacama Large Millimeter/Submillimeter Array, we then determine upper limits for the cosmic ray energy. Assuming that the magnetic energy in a galaxy is in equipartition with the energy density of the cosmic rays, we obtain upper limits for the magnetic field strength. Our results suggest that the mean magnetic energy of young galaxies is similar to the one in local galaxies. This points towards an early generation of galactic magnetic fields, which is in agreement with current dynamo evolution models.

  11. Young Galaxy Candidates in the Hubble Frontier Fields. IV. MACS J1149.5+2223

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Zitrin, Adi; Infante, Leopoldo; Laporte, Nicolas; Huang, Xingxing; Moustakas, John; Ford, Holland C.; Shu, Xinwen; Wang, Junxian; Diego, Jose M.; Bauer, Franz E.; Troncoso Iribarren, Paulina; Broadhurst, Tom; Molino, Alberto

    2017-02-01

    We search for high-redshift dropout galaxies behind the Hubble Frontier Fields (HFF) galaxy cluster MACS J1149.5+2223, a powerful cosmic lens that has revealed a number of unique objects in its field. Using the deep images from the Hubble and Spitzer space telescopes, we find 11 galaxies at z > 7 in the MACS J1149.5+2223 cluster field, and 11 in its parallel field. The high-redshift nature of the bright z ≃ 9.6 galaxy MACS1149-JD, previously reported by Zheng et al., is further supported by non-detection in the extremely deep optical images from the HFF campaign. With the new photometry, the best photometric redshift solution for MACS1149-JD reduces slightly to z = 9.44 ± 0.12. The young galaxy has an estimated stellar mass of (7+/- 2)× {10}8 {M}ȯ , and was formed at z={13.2}-1.6+1.9 when the universe was ≈300 Myr old. Data available for the first four HFF clusters have already enabled us to find faint galaxies to an intrinsic magnitude of {M}{UV}≃ -15.5, approximately a factor of 10 deeper than the parallel fields.

  12. Field of Bachelor's Degree in the United States: 2009. American Community Survey Reports. ACS-18

    ERIC Educational Resources Information Center

    Siebens, Julie; Ryan, Camille L.

    2012-01-01

    This report provides information on fields of bachelor's degrees in the United States using data from the 2009 American Community Survey (ACS). It includes estimates of fields of bachelor's degree by demographic characteristics including age, sex, race, Hispanic origin, nativity, and educational attainment. This report also looks at geographic and…

  13. Clustering of the AKARI NEP Deep Field mid infrared selected galaxies

    NASA Astrophysics Data System (ADS)

    Solarz, Aleksandra; Pollo, Agnieszka; Takeuchi, Tsutomu T.; Małek, Katarzyna

    2016-06-01

    We present a method of selection of 24 μm galaxies from the AKARI North Ecliptic Pole (NEP) Deep Field and measurements of their two-point correlation function. We aim to associate different 24 μm selected galaxy populations with present day galaxies, and to investigate the impact of their environment on the direction of their subsequent evolution. We discuss the use of Support Vector Machines (SVM) algorithms applied to infrared photometric data to perform star-galaxy separation, in which we achieve an accuracy > 80%. We explore the redshift dependance of the correlation function parameters as well as the linear bias evolution (which relates galaxy distribution to the one of the underlying dark matter). We find that the bias parameter increases slowly with redshift, from b = 0.9 at z < 0.5 to b ˜ 1.9 at z ˜ 1.1. Total infrared luminosities (L_{TIR}) found for different samples, suggest that galaxies with higher L_{TIR} do not necessarily reside in higher mass dark matter halos. We find that luminous infrared galaxies (LIRGs) at z˜1 can be ancestors of present day L_{*} early type galaxies.

  14. Structure and Kinematics of Early-Type Galaxies from Integral Field Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cappellari, Michele

    2016-09-01

    Observations of galaxy isophotes, long-slit kinematics, and high-resolution photometry suggested a possible dichotomy between two distinct classes of elliptical galaxies. But these methods are expensive for large galaxy samples. Instead, integral field spectroscopy can efficiently recognize the shape, dynamics, and stellar population of complete samples of early-type galaxies (ETGs). These studies showed that the two main classes, the fast and slow rotators, can be separated using stellar kinematics. I show that there is a dichotomy in the dynamics of the two classes. The slow rotators are weakly triaxial and dominate above [Formula: see text]. Below Mcrit, the structure of fast rotators parallels that of spiral galaxies. There is a smooth sequence along which the age, the metal content, the enhancement in α-elements, and the weight of the stellar initial mass function all increase with the central mass density slope, or bulge mass fraction, while the molecular gas fraction correspondingly decreases. The properties of ETGs on galaxy scaling relations, in particular the [Formula: see text] diagram, and their dependence on environment, indicate two main independent channels for galaxy evolution. Fast-rotator ETGs start as star-forming disks and evolve through a channel dominated by gas accretion, bulge growth, and quenching, whereas slow rotators assemble near the centers of massive halos via intense star formation at high redshift and remain as such for the rest of their evolution via a channel dominated by gas poor mergers. This is consistent with independent studies of the galaxies redshift evolution.

  15. The effect of supernova rate on the magnetic field evolution in barred galaxies

    NASA Astrophysics Data System (ADS)

    Kulpa-Dybeł, K.; Nowak, N.; Otmianowska-Mazur, K.; Hanasz, M.; Siejkowski, H.; Kulesza-Żydzik, B.

    2015-03-01

    Context. For the first time, our magnetohydrodynamical numerical calculations provide results for a three-dimensional model of barred galaxies involving a cosmic-ray driven dynamo process that depends on star formation rates. Furthermore, we argue that the cosmic-ray driven dynamo can account for a number of magnetic features in barred galaxies, such as magnetic arms observed along the gaseous arms, magnetic arms in the inter-arm regions, polarized emission that is at the strongest in the central part of the galaxy, where the bar is situated, polarized emission that forms ridges coinciding with the dust lanes along the leading edges of the bar, as well as their very strong total radio intensity. Aims: Our numerical model probes what kind of physical processes could be responsible for the magnetic field topology observed in barred galaxies (modes, etc.). We compare our modelled results directly with observations, constructing models of high-frequency (Faraday rotation-free) polarized radio emission maps out of the simulated magnetic field and cosmic ray pattern in our modeled galaxy. We also take the effects of projection into account as well as the limited resolution. Methods: We applied global 3D numerical calculations of a cosmic-ray driven dynamo in barred galaxies with different physical input parameters such as the supernova (SN) rate. Results: Our simulation results lead to the modelled magnetic field structure similar to the one observed on the radio maps of barred galaxies. Moreover, they cast new light on a number of properties in barred and spiral galaxies, such as fast exponential growth of the total magnetic energy to the present values. The quadrupole modes of magnetic field are often identified in barred galaxies, but the dipole modes (e.g., in NGC 4631) are found very seldom. In our simulations the quadrupole configuration dominates and the dipole configuration only appears once in the case of model S100, apparently as a consequence of the choice of

  16. Discovery of three z > 6.5 quasars in the VISTA kilo-degree infrared galaxy (VIKING) survey

    SciTech Connect

    Venemans, B. P.; Findlay, J. R.; Sutherland, W. J.; De Rosa, G.; McMahon, R. G.; González-Solares, E. A.; Lewis, J. R.; Simcoe, R.; Kuijken, K.

    2013-12-10

    Studying quasars at the highest redshifts can constrain models of galaxy and black hole formation, and it also probes the intergalactic medium in the early universe. Optical surveys have to date discovered more than 60 quasars up to z ≅ 6.4, a limit set by the use of the z-band and CCD detectors. Only one z ≳ 6.4 quasar has been discovered, namely the z = 7.08 quasar ULAS J1120+0641, using near-infrared imaging. Here we report the discovery of three new z ≳ 6.4 quasars in 332 deg{sup 2} of the Visible and Infrared Survey Telescope for Astronomy Kilo-degree Infrared Galaxy (VIKING) survey, thus extending the number from 1 to 4. The newly discovered quasars have redshifts of z = 6.60, 6.75, and 6.89. The absolute magnitudes are between –26.0 and –25.5, 0.6-1.1 mag fainter than ULAS J1120+0641. Near-infrared spectroscopy revealed the Mg II emission line in all three objects. The quasars are powered by black holes with masses of ∼(1-2) × 10{sup 9} M {sub ☉}. In our probed redshift range of 6.44 < z < 7.44 we can set a lower limit on the space density of supermassive black holes of ρ(M {sub BH} > 10{sup 9} M {sub ☉}) > 1.1 × 10{sup –9} Mpc{sup –3}. The discovery of three quasars in our survey area is consistent with the z = 6 quasar luminosity function when extrapolated to z ∼ 7. We do not find evidence for a steeper decline in the space density of quasars with increasing redshift from z = 6 to z = 7.

  17. CALIFA: a diameter-selected sample for an integral field spectroscopy galaxy survey

    NASA Astrophysics Data System (ADS)

    Walcher, C. J.; Wisotzki, L.; Bekeraité, S.; Husemann, B.; Iglesias-Páramo, J.; Backsmann, N.; Barrera Ballesteros, J.; Catalán-Torrecilla, C.; Cortijo, C.; del Olmo, A.; Garcia Lorenzo, B.; Falcón-Barroso, J.; Jilkova, L.; Kalinova, V.; Mast, D.; Marino, R. A.; Méndez-Abreu, J.; Pasquali, A.; Sánchez, S. F.; Trager, S.; Zibetti, S.; Aguerri, J. A. L.; Alves, J.; Bland-Hawthorn, J.; Boselli, A.; Castillo Morales, A.; Cid Fernandes, R.; Flores, H.; Galbany, L.; Gallazzi, A.; García-Benito, R.; Gil de Paz, A.; González-Delgado, R. M.; Jahnke, K.; Jungwiert, B.; Kehrig, C.; Lyubenova, M.; Márquez Perez, I.; Masegosa, J.; Monreal Ibero, A.; Pérez, E.; Quirrenbach, A.; Rosales-Ortega, F. F.; Roth, M. M.; Sanchez-Blazquez, P.; Spekkens, K.; Tundo, E.; van de Ven, G.; Verheijen, M. A. W.; Vilchez, J. V.; Ziegler, B.

    2014-09-01

    We describe and discuss the selection procedure and statistical properties of the galaxy sample used by the Calar Alto Legacy Integral Field Area (CALIFA) survey, a public legacy survey of 600 galaxies using integral field spectroscopy. The CALIFA "mother sample" was selected from the Sloan Digital Sky Survey (SDSS) DR7 photometric catalogue to include all galaxies with an r-band isophotal major axis between 45'' and 79.2'' and with a redshift 0.005 < z < 0.03. The mother sample contains 939 objects, 600 of which will be observed in the course of the CALIFA survey. The selection of targets for observations is based solely on visibility and thus keeps the statistical properties of the mother sample. By comparison with a large set of SDSS galaxies, we find that the CALIFA sample is representative of galaxies over a luminosity range of -19 > Mr > -23.1 and over a stellar mass range between 109.7 and 1011.4 M⊙. In particular, within these ranges, the diameter selection does not lead to any significant bias against - or in favour of - intrinsically large or small galaxies. Only below luminosities of Mr = -19 (or stellar masses <109.7 M⊙) is there a prevalence of galaxies with larger isophotal sizes, especially of nearly edge-on late-type galaxies, but such galaxies form <10% of the full sample. We estimate volume-corrected distribution functions in luminosities and sizes and show that these are statistically fully compatible with estimates from the full SDSS when accounting for large-scale structure. For full characterization of the sample, we also present a number of value-added quantities determined for the galaxies in the CALIFA sample. These include consistent multi-band photometry based on growth curve analyses; stellar masses; distances and quantities derived from these; morphological classifications; and an overview of available multi-wavelength photometric measurements. We also explore different ways of characterizing the environments of CALIFA galaxies

  18. The evolution of field early-type galaxies in the FDF and WHDF

    NASA Astrophysics Data System (ADS)

    Fritz, Alexander; Böhm, Asmus; Ziegler, Bodo L.

    2009-03-01

    We explore the properties of 24 field early-type galaxies in the redshift range 0.20 < z < 0.75 down to MB <= -19.30 in a sample extracted from the FORS Deep Field and the William Herschel Deep Field. Target galaxies were selected on the basis of a combination of luminosity, spectrophotometric type, morphology and photometric redshift or broad-band colours. High signal-to-noise ratio intermediate-resolution spectroscopy has been acquired at the Very Large Telescope, complemented by deep high-resolution imaging with the Advanced Camera for Surveys onboard the Hubble Space Telescope (HST) and additional ground-based multiband photometry. All galaxy spectra were observed under subarcsecond conditions and allow us to derive accurate kinematics and stellar population properties of the galaxies. To clarify the low level of star formation detected in some galaxies, we identify the amount of active galactic nuclei (AGN) activity in our sample using archive data of Chandra and XMM-Newton X-ray surveys. None of the galaxies in our sample was identified as secure AGN source based on their X-ray emission. The rest-frame B- and K-band scaling relations of the Faber-Jackson relation and the Fundamental Plane display a moderate evolution for the field early-type galaxies. Lenticular (S0) galaxies feature on average a stronger luminosity evolution and bluer rest-frame colours which can be explained that they comprise more diverse stellar populations compared to elliptical galaxies. The evolution of the FP can be interpreted as an average change in the dynamical (effective) mass-to-light ratio of our galaxies as <Δlog(M/LB)/z> = -0.74 +/- 0.08. The M/L evolution of these field galaxies suggests a continuous mass assembly of field early-type galaxies during the last 5 Gyr, which gets supported by recent studies of field galaxies up to z ~ 1. Independent evidence for recent star formation activity is provided by spectroscopic ([OII] emission, Hδ) and photometric (rest-frame broad

  19. A new method to measure galaxy bias by combining the density and weak lensing fields

    NASA Astrophysics Data System (ADS)

    Pujol, Arnau; Chang, Chihway; Gaztañaga, Enrique; Amara, Adam; Refregier, Alexandre; Bacon, David J.; Carretero, Jorge; Castander, Francisco J.; Crocce, Martin; Fosalba, Pablo; Manera, Marc; Vikram, Vinu

    2016-10-01

    We present a new method to measure redshift-dependent galaxy bias by combining information from the galaxy density field and the weak lensing field. This method is based on the work of Amara et al., who use the galaxy density field to construct a bias-weighted convergence field κg. The main difference between Amara et al.'s work and our new implementation is that here we present another way to measure galaxy bias, using tomography instead of bias parametrizations. The correlation between κg and the true lensing field κ allows us to measure galaxy bias using different zero-lag correlations, such as <κgκ>/<κκ> or <κgκg>/<κgκ>. Our method measures the linear bias factor on linear scales, under the assumption of no stochasticity between galaxies and matter. We use the Marenostrum Institut de Ciències de l'Espai (MICE) simulation to measure the linear galaxy bias for a flux-limited sample (i < 22.5) in tomographic redshift bins using this method. This article is the first that studies the accuracy and systematic uncertainties associated with the implementation of the method and the regime in which it is consistent with the linear galaxy bias defined by projected two-point correlation functions (2PCF). We find that our method is consistent with a linear bias at the per cent level for scales larger than 30 arcmin, while non-linearities appear at smaller scales. This measurement is a good complement to other measurements of bias, since it does not depend strongly on σ8 as do the 2PCF measurements. We will apply this method to the Dark Energy Survey Science Verification data in a follow-up article.

  20. Census of the Local Universe (CLU) Galaxy Survey: Results Within Preliminary Fields

    NASA Astrophysics Data System (ADS)

    Cook, David O.; Kasliwal, Mansi M.; Van Sistine, Angela; Dale, Daniel A.; Sutter, Jessica; Turner, Jordan; Parziale, Ryan; iPTF Team

    2017-01-01

    We present an analysis of galaxy candidates in 15 (out of ~3600) preliminary fields of the Census of the Local Universe (CLU) galaxy survey. The intermediate Palomar Transient Factory (iPTF) is undertaking the CLU project to complete our survey of galaxies out to 200 Mpc (z ˜ 0.05) and deploys 4 wavelength-adjacent, narrowband filters to search for emission line (Hα) sources across 3π (~28,000 deg^2) of the sky. Using the Palomar 200-inch Hale telescope, we have obtained spectroscopic follow-up observations with which we can verify each candidate’s redshift and derive galaxy properties. In addition, we present some interesting galaxies in our candidate list (e.g., green peas) whose extreme properties (e.g., low metallicity and high star formation rate) are similar to those of higher redshift galaxies (z>2). We will expand our analysis to all ~3600 fields and anticipate finding tens-of-thousands of new galaxies in the local Universe over the next year.

  1. The VIMOS Public Extragalactic Redshift Survey. Reconstruction of the redshift-space galaxy density field&

    NASA Astrophysics Data System (ADS)

    Granett, B. R.; Branchini, E.; Guzzo, L.; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bolzonella, M.; Bottini, D.; Cappi, A.; Coupon, J.; Cucciati, O.; Davidzon, I.; De Lucia, G.; de la Torre, S.; Fritz, A.; Franzetti, P.; Fumana, M.; Garilli, B.; Ilbert, O.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; McCracken, H. J.; Polletta, M.; Pollo, A.; Scodeggio, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Moutard, T.; Moscardini, L.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Zamorani, G.

    2015-11-01

    Aims: Using the VIMOS Public Extragalactic Redshift Survey (VIPERS) we aim to jointly estimate the keyparameters that describe the galaxy density field and its spatial correlations in redshift space. Methods: We use the Bayesian formalism to jointly reconstruct the redshift-space galaxy density field, power spectrum, galaxy bias and galaxy luminosity function given the observations and survey selection function. The high-dimensional posterior distribution is explored using the Wiener filter within a Gibbs sampler. We validate the analysis using simulated catalogues and apply it to VIPERS data taking into consideration the inhomogeneous selection function. Results: We present joint constraints on the anisotropic power spectrum, and the bias and number density of red and blue galaxy classes in luminosity and redshift bins as well as the measurement covariances of these quantities. We find that the inferred galaxy bias and number density parameters are strongly correlated although they are only weakly correlated with the galaxy power spectrum. The power spectrum and redshift-space distortion parameters are in agreement with previous VIPERS results with the value of the growth rate fσ8 = 0.38 with 18% uncertainty at redshift 0.7. Appendices are available in electronic form at http://www.aanda.org

  2. High-Resolution Hα Velocity Fields of Nearby Spiral Galaxies with the Southern African Large Telescope

    NASA Astrophysics Data System (ADS)

    Mitchell, Carl; Williams, Ted; Spekkens, Kristine; Lee-Waddell, Karen; Kuzio de Naray, Rachel; Sellwood, Jerry

    2016-01-01

    In an effort to test ΛCDM predictions of galaxy mass distributions, we have obtained spectrophotometric observations of several nearby spiral galaxies with the Southern African Large Telescope (SALT) Fabry-Pérot (FP) interferometer as part of the RSS Imaging spectroscopy Nearby Galaxy Survey. Utilizing the SALT FP's 8 arcmin field of view and 2 arcsec angular resolution, we have derived 2D velocity fields of the Hα emission line to high spatial resolution at large radii. We have modeled these velocity fields with the DiskFit software package and found them to be in good agreement with lower-resolution velocity fields of the HI 21 cm line for the same galaxies. Here we present our Hα kinematic map of the barred spiral galaxy NGC 578. At the distance to this galaxy (22 Mpc), our kinematic data has a spatial resolution of 185 pc and extends to galactocentric radii of 13 kpc. The high spatial resolution of this data allows us to resolve the inner rising part of the rotation curves, which is compromised by beam smearing in lower-resolution observations. We are using these Hα kinematic data, combined with HI 21 cm kinematics and broadband photometric observations, to place constraints on NGC 578's mass distribution.

  3. ZFIRE: Similar Stellar Growth in Hα-emitting Cluster and Field Galaxies at z ~ 2

    NASA Astrophysics Data System (ADS)

    Tran, Kim-Vy H.; Alcorn, Leo Y.; Kacprzak, Glenn G.; Nanayakkara, Themiya; Straatman, Caroline; Yuan, Tiantian; Cowley, Michael; Davé, Romeel; Glazebrook, Karl; Kewley, Lisa J.; Labbé, Ivo; Martizzi, Davidé; Papovich, Casey; Quadri, Ryan; Spitler, Lee R.; Tomczak, Adam

    2017-01-01

    We compare galaxy scaling relations as a function of environment at z∼ 2 with our ZFIRE survey12 where we have measured Hα fluxes for 90 star-forming galaxies selected from a mass-limited ({log}({M}\\star /{M}ȯ )> 9) sample based on ZFOURGE.13 The cluster galaxies (37) are part of a confirmed system at z = 2.095 and the field galaxies (53) are at 1.9< z< 2.4; all are in the COSMOS legacy field. There is no statistical difference between Hα-emitting cluster and field populations when comparing their star formation rate (SFR), stellar mass ({M}\\star ), galaxy size ({r}{eff}), SFR surface density (Σ({{H}}{α }{star})), and stellar age distributions. The only difference is that at fixed stellar mass, the Hα-emitting cluster galaxies are {log}({r}{eff}) ∼ 0.1 larger than in the field. Approximately 19% of the Hα emitters in the cluster and 26% in the field are IR-luminous ({L}{IR} > 2 × 1011 {L}ȯ ). Because the luminous IR galaxies in our combined sample are ∼5 times more massive than the low-IR galaxies, their radii are ∼70% larger. To track stellar growth, we separate galaxies into those that lie above, on, or below the Hα star-forming main sequence (SFMS) using ΔSFR({M}\\star ) = ±0.2 dex. Galaxies above the SFMS (starbursts) tend to have higher Hα SFR surface densities and younger light-weighted stellar ages than galaxies below the SFMS. Our results indicate that starbursts (+SFMS) in the cluster and field at z∼ 2 are growing their stellar cores. Lastly, we compare to the (SFR–{M}\\star ) relation from Rhapsody-G cluster simulations and find that the predicted slope is nominally consistent with the observations. However, the predicted cluster SFRs tend to be too low by a factor of ∼2, which seems to be a common problem for simulations across environment.

  4. A Fresh Look On Cosmic Rays And Magnetic Fields In Disc Galaxies

    NASA Astrophysics Data System (ADS)

    Dettmar, Ralf-Jürgen

    2016-09-01

    Recent numerical models of the multiphase ISM underline the importance of cosmic rays and magnetic fields for the physics of the ISM in star-forming disc galaxies. Here we present new observational evidence from radio-continuum polarization studies of edge-on galaxies. This includes results from the CHANG-ES (Continuum HAlos in Nearby Galaxies - an EVLA Survey; PI J. Irwin) project which has observed 35 edge-on galaxies with the Karl G. Jansky Very Large Array (JVLA) in two frequency bands (L- and C-band) and in three array configurations (D, C, B). This survey benefits significantly from the new multi-channel capability of the upgraded facility. From the total power maps, a "mean" radio-continuum halo has been derived and the polarization information provides information on the magnetic field structure in the halos. The findings will be discussed in the context of CR driven galactic winds.

  5. LUMINOUS RED GALAXY HALO DENSITY FIELD RECONSTRUCTION AND APPLICATION TO LARGE-SCALE STRUCTURE MEASUREMENTS

    SciTech Connect

    Reid, Beth A.; Spergel, David N.; Bode, Paul E-mail: dns@astro.princeton.edu

    2009-09-01

    The nontrivial relationship between observations of galaxy positions in redshift space and the underlying matter field complicates our ability to determine the linear theory power spectrum and extract cosmological information from galaxy surveys. The Sloan Digital Sky Survey (SDSS) luminous red galaxy (LRG) catalog has the potential to place powerful constraints on cosmological parameters. LRGs are bright, highly biased tracers of large-scale structure. However, because they are highly biased, the nonlinear contribution of satellite galaxies to the galaxy power spectrum is large and fingers-of-God (FOGs) are significant. The combination of these effects leads to a {approx}10% correction in the underlying power spectrum at k = 0.1 h Mpc{sup -1} and {approx}40% correction at k = 0.2 h Mpc{sup -1} in the LRG P(k) analysis of Tegmark et al., thereby compromising the cosmological constraints when this potentially large correction is left as a free parameter. We propose an alternative approach to recovering the matter field from galaxy observations. Our approach is to use halos rather than galaxies to trace the underlying mass distribution. We identify FOGs and replace each FOG with a single halo object. This removes the nonlinear contribution of satellite galaxies, the one-halo term. We test our method on a large set of high-fidelity mock SDSS LRG catalogs and find that the power spectrum of the reconstructed halo density field deviates from the underlying matter power spectrum at the {<=}1% level for k {<=} 0.1 h Mpc{sup -1} and {<=}4% at k = 0.2 h Mpc{sup -1}. The reconstructed halo density field also removes the bias in the measurement of the redshift space distortion parameter {beta} induced by the FOG smearing of the linear redshift space distortions.

  6. Unveiling the Most Massive Galaxies in the Universe: IRAC Mapping of the NMBSII/CFHTLS Fields

    NASA Astrophysics Data System (ADS)

    Marchesini, Danilo; Muzzin, Adam; van Dokkum, Pieter; Wake, David; Franx, Marijn; Marsan, Cemile; Rudnick, Gregory; Brammer, Gabriel; Stefanon, Mauro; Lundgren, Britt; Whitaker, Katherine; Tal, Tomer; Labbe, Ivo; Bezanson, Rachel; Weigel, Catherine

    2013-10-01

    Observations of massive galaxies and their redshift evolution place strong constraints on the physical processes of galaxy formation. Although substantial data have been collected on galaxies with masses LogM~11.2 out to z~4-5 from the recent myriad of ground-based wide-field NIR surveys, very little is known about the evolution of the most massive (LogM>11.4) galaxies in the universe. At the tip of the Schechter function, their space density is estimated to be 30x lower than LogM=11 galaxies and hence only a few have been found, even in the widest-field surveys. We recently undertook the NMBS-II survey, a medium-deep wide-field (4.7 deg^2) NIR medium-band survey designed to accurately characterize the stellar mass function, number density, stellar populations, and clustering properties of the most massive galaxies out to z=3. The primary survey fields of the NMBS-II are the CFHTLS-deep fields; however, presently only 60% of these fields have IRAC coverage. We propose to complete the IRAC coverage of the NMBS-II. The IRAC data are essential for accurately measuring photometric redshifts and stellar masses of the high-redshift population. IRAC data are critical for constructing the UVJ diagram, which has become the de-facto method for differentiating red dusty star-forming from red quiescent galaxies. The proposed observations will allow us to construct a sample of ~300 ultra-massive (LogM>11.4) galaxies at 1.5galaxies. Because these massive galaxies are expected to be one of the most clustered populations, and thus greatly affected by cosmic variance, maximal area and number of independent sight-lines are needed for robust clustering measurements. The proposed IRAC survey will more than double the sight-lines allowing us to exploit the full NMBS-II area. We waive our proprietary data-rights period, committing to publicly release the fully reduced IRAC

  7. Structural Properties and Visual Morphologies of 2 Galaxies in the CANDELS Fields and Hydrodynamical Simulations

    NASA Astrophysics Data System (ADS)

    Mozena, Mark; Faber, S. M.; Koo, D. C.; Primack, J. R.; Dekel, A.; Moody, C. E.; Ceverino, D.; CANDELS

    2013-01-01

    The 2 universe is an active epoch of increased star formation and AGN activity. Through major mergers, minor mergers, and cold flow gas accretion, galaxies are quickly increasing their masses and changing their global structural properties and morphologies. Using the deepest optical (ACS) and near infra-red (WFC3) observations from the HST Multi-Cycle Treasury CANDELS (Cosmic Assembly Near Infra-Red Deep Extragalactic Legacy Survey), we compare the structural properties of 2 galaxies in the rest-frame near-UV and optical to those predicted by the latest cosmologically motivated hydrodynamical simulations (Hydro-ART by Ceverino, Dekel and Primack and ERIS by Guedes and Madau). We render these simulated galaxy images to mimic the observed ACS and WFC3 images in CANDELS, and include the effects of dust obscuration. We explore how the sizes, masses, and morphologies of 2 galaxies observed in the hydrodynamical models compare with the global properties of galaxies observed in the CANDELS fields. Comparing the observations of 2 CANDELS galaxies with those from the latest hydrodynamical models provides new and important insights into the nature of galaxy formation and assembly in the exciting 2 universe.

  8. CCD surface photometry of field galaxies. I - Observations

    NASA Technical Reports Server (NTRS)

    Kent, S. M.

    1984-01-01

    Images of 105 galaxies selected from a larger complete sample of intrinsically luminous galaxies have been obtained for the purpose of computing surface brightness profiles. The intensity profiles along the major and minor axes are computed by a method in which elliptical contours whose position angle and ellipticity are allowed to vary with radius are fitted to the true isophotes of a galaxy. The resulting profiles and ellipse parameters are listed for each object. An extensive comparison of the present photometry with that of other workers is made to assess the reliability of the data. For most objects, additional photometric information is given, including an isophotal radius and magnitude within a limiting isophote of 24.0 mag/sq arcsec, an approximate total magnitude, the effective radius containing one-half the total light, and the mean surface brightness inside this radius. A full analysis of the data is deferred to a second paper where the profiles will be decomposed into bulge and disk components.

  9. Physical Degrees of Freedom for Gauge Fields and the Issue of Spin

    SciTech Connect

    Goldman, T.

    2011-12-14

    The conflict between the physical degrees of freedom of gauge bosons and the Lorentz group irreps naturally used to describe their couplings to matter fields are illustrated and discussed, and applied to issues of linear and angular momentum.

  10. Hubble Space Telescope Medium Deep Survey. 2: Deconvolution of Wide Field Camera field galaxy images in the 13 hour + 43 deg field

    NASA Technical Reports Server (NTRS)

    Windhorst, R. A.; Schmidtke, P. C.; Pascarelle, S. M.; Gordon, J. M.; Griffiths, R. E.; Ratnatunga, K. U.; Neuschaefer, L. W.; Ellis, R. S.; Gilmore, G.; Glazebrook, K.

    1994-01-01

    We present isophotal profiles of six faint field galaxies from some of the first deep images taken for the Hubble Space Telescope (HST) Medium Deep Survey (MDS). These have redshifts in the range z = 0.126 to 0.402. The images were taken with the Wide Field Camera (WFC) in `parallel mode' and deconvolved with the Lucy method using as the point-spread function nearby stars in the image stack. The WFC deconvolutions have a dynamic range of 16 to 20 dB (4 to 5 mag) and an effective resolution approximately less than 0.2 sec (FWHM). The multiorbit HST images allow us to trace the morphology, light profiles, and color gradients of faint field galaxies down to V approximately equal to 22 to 23 mag at sub-kpc resolution, since the redshift range covered is z = 0.1 to 0.4. The goals of the MDS are to study the sub-kpc scale morphology, light profiles, and color gradients for a large samole of faint field galaxies down to V approximately equal to 23 mag, and to trace the fraction of early to late-type galaxies as function of cosmic time. In this paper we study the brighter MDS galaxies in the 13 hour + 43 deg MDS field in detail, and investigate to what extent model fits with pure exponential disks or a(exp 1/4) bulges are justified at V approximately less than 22 mag. Four of the six field galaxies have light profiles that indicate (small) inner bulges following r(exp 1/4) laws down to 0.2 sec resolution, plus a dominant surrounding exponential disk with little or no color gradients. Two occur in a group at z = 0.401, two are barred spiral galaxies at z = 0.179 and z = 0.302, and two are rather subluminous (and edge-on) disk galaxies at z = 0.126 and z = 0.179. Our deep MDS images can detect galaxies down to V, I approximately less than 25 to 26 mag, and demonstrate the impressive potential of HST--even with its pre-refurbished optics--to resolve morphological details in galaxies at cosmologically significant distances (v approximately less than 23 mag). Since the median

  11. Simulated stellar kinematics studies of high-redshift galaxies with the HARMONI Integral Field Spectrograph

    NASA Astrophysics Data System (ADS)

    Kendrew, S.; Zieleniewski, S.; Houghton, R. C. W.; Thatte, N.; Devriendt, J.; Tecza, M.; Clarke, F.; O'Brien, K.; Häußler, B.

    2016-05-01

    We present a study into the capabilities of integrated and spatially resolved integral field spectroscopy of galaxies at z = 2-4 with the future HARMONI spectrograph for the European Extremely Large Telescope (E-ELT) using the simulation pipeline, HSIM. We focus particularly on the instrument's capabilities in stellar absorption line integral field spectroscopy, which will allow us to study the stellar kinematics and stellar population characteristics. Such measurements for star-forming and passive galaxies around the peak star formation era will provide a critical insight into the star formation, quenching and mass assembly history of high-z, and thus present-day galaxies. First, we perform a signal-to-noise study for passive galaxies at a range of stellar masses for z = 2-4, assuming different light profiles; for this population, we estimate that integrated stellar absorption line spectroscopy with HARMONI will be limited to galaxies with M* ≳ 1010.7 M⊙. Secondly, we use HSIM to perform a mock observation of a typical star-forming 1010 M⊙ galaxy at z = 3 generated from the high-resolution cosmological simulation NUTFB. We demonstrate that the input stellar kinematics of the simulated galaxy can be accurately recovered from the integrated spectrum in a 15-h observation, using common analysis tools. Whilst spatially resolved spectroscopy is likely to remain out of reach for this particular galaxy, we estimate HARMONI's performance limits in this regime from our findings. This study demonstrates how instrument simulators such as HSIM can be used to quantify instrument performance and study observational biases on kinematics retrieval; and shows the potential of making observational predictions from cosmological simulation output data.

  12. Untangling the magnetic fields in spiral galaxy NGC 6946 with wide-band polarimetry

    NASA Astrophysics Data System (ADS)

    Williams, Anna; Heald, George; Wilcots, Eric M.; Gould Zweibel, Ellen

    2017-01-01

    We present 13 cm polarization observations of nearby spiral galaxy NGC 6946. These data provide a new perspective into the magnetic field structure of this galaxy. Previous observations show strong depolarization between 6 cm and 22 cm, and we show that the morphology of the 13 cm polarization bridges this gap. We combine all available high resolution polarization observations to fit models of the line of sight magnetic field structure across the disk. We find simple screens of Faraday rotation, differential Faraday rotation, and internal Faraday dispersion are insufficient to explain the observed depolarization, and present the results of the best fit models. We discuss how future broadband observations and improved models will help reconstruct the full 3D model of the magnetic field structure in the disks and haloes of galaxies.

  13. The numbers of z ˜ 2 star-forming and passive galaxies in 2.5 square degrees of deep CFHT imaging

    NASA Astrophysics Data System (ADS)

    Arcila-Osejo, Liz; Sawicki, Marcin

    2013-10-01

    We use an adaptation of the BzKs technique to select ˜40 000 z ˜ 2 galaxies (to KAB = 24), including ˜5000 passively evolving (PE) objects (to KAB = 23), from 2.5 deg2 of deep Canada-France-Hawaii Telescope (CFHT) imaging. The passive galaxy luminosity function (LF) exhibits a clear peak at R = 22 and a declining faint-end slope (α = -0.12 ^{+0.16}_{-0.14}), while that of star-forming galaxies is characterized by a steep faint-end slope [α = -1.43± 0.02(systematic)^{+0.05}_{-0.04}(random)]. The details of the LFs are somewhat sensitive (at the <25 per cent level) to cosmic variance even in these large (˜0.5 deg2) fields, with the D2 field (located in the Cosmological Evolution Survey, COSMOS field) most discrepant from the mean. The shape of the z ˜ 2 stellar mass function of passive galaxies is remarkably similar to that at z ˜ 0.9, save for a factor of ˜4 lower number density. This similarity suggests that the same mechanism may be responsible for the formation of passive galaxies seen at both these epochs. This same formation mechanism may also operate down to z ˜ 0 if the local PE galaxy mass function, known to be two-component, contains two distinct galaxy populations. This scenario is qualitatively in agreement with recent phenomenological mass-quenching models and extends them to span more than three quarters of the history of the Universe.

  14. THE JAMES CLERK MAXWELL TELESCOPE NEARBY GALAXIES LEGACY SURVEY. II. WARM MOLECULAR GAS AND STAR FORMATION IN THREE FIELD SPIRAL GALAXIES

    SciTech Connect

    Warren, B. E.; Wilson, C. D.; Sinukoff, E.; Israel, F. P.; Van der Werf, P. P.; Serjeant, S.; Bendo, G. J.; Clements, D. L.; Brinks, E.; Irwin, J. A.; Knapen, J. H.; Leech, J.; Tan, B. K.; Matthews, H. E.; Muehle, S.; Mortimer, A. M. J.; Petitpas, G.; Spekkens, K.; Tilanus, R. P. J.; Usero, A. E-mail: wilson@physics.mcmaster.c E-mail: israel@strw.leidenuniv.n

    2010-05-01

    We present the results of large-area {sup 12}CO J = 3-2 emission mapping of three nearby field galaxies, NGC 628, NGC 3521, and NGC 3627, completed at the James Clerk Maxwell Telescope as part of the Nearby Galaxies Legacy Survey. These galaxies all have moderate to strong {sup 12}CO J = 3-2 detections over large areas of the fields observed by the survey, showing resolved structure and dynamics in their warm/dense molecular gas disks. All three galaxies were part of the Spitzer Infrared Nearby Galaxies Survey sample, and as such have excellent published multiwavelength ancillary data. These data sets allow us to examine the star formation properties, gas content, and dynamics of these galaxies on sub-kiloparsec scales. We find that the global gas depletion time for dense/warm molecular gas in these galaxies is consistent with other results for nearby spiral galaxies, indicating this may be independent of galaxy properties such as structures, gas compositions, and environments. Similar to the results from The H I Nearby Galaxy Survey, we do not see a correlation of the star formation efficiency with the gas surface density consistent with the Schmidt-Kennicutt law. Finally, we find that the star formation efficiency of the dense molecular gas traced by {sup 12}CO J = 3-2 is potentially flat or slightly declining as a function of molecular gas density, the {sup 12}CO J = 3-2/J = 1-0 ratio (in contrast to the correlation found in a previous study into the starburst galaxy M83), and the fraction of total gas in molecular form.

  15. Impact of magnetic fields on ram pressure stripping in disk galaxies

    SciTech Connect

    Ruszkowski, M.; Brüggen, M.; Lee, D.; Shin, M.-S.

    2014-03-20

    Ram pressure stripping can remove significant amounts of gas from galaxies in clusters and massive groups and thus has a large impact on the evolution of cluster galaxies. Recent observations have shown that key properties of ram-pressure-stripped tails of galaxies, such as their width and structure, are in conflict with predictions by simulations. To increase the realism of existing simulations, we simulated for the first time a disk galaxy exposed to a uniformly magnetized wind including radiative cooling and self-gravity of the gas. We find that magnetic fields have a strong effect on the morphology of the gas in the tail of the galaxy. While in the purely hydrodynamical case the tail is very clumpy, the magnetohydrodynamical case shows very filamentary structures in the tail. The filaments can be strongly supported by magnetic pressure and, wherever this is the case, the magnetic fields vectors tend to be aligned with the filaments. The ram pressure stripping process may lead to the formation of magnetized density tails that appear as bifurcated in the plane of the sky and resemble the double tails observed in ESO 137-001 and ESO 137-002. Such tails can be formed under a variety of situations, both for the disks oriented face-on with respect to the intracluster medium (ICM) wind and for the tilted ones. While this bifurcation is the consequence of the generic tendency for the magnetic fields to produce very filamentary tail morphology, the tail properties are further shaped by the combination of the magnetic field orientation and the sliding of the field past the disk surface exposed to the wind. Despite the fact that the effect of the magnetic field on the morphology of the tail is strong, magnetic draping does not strongly change the rate of gas stripping. For a face-on galaxy, the field tends to reduce the amount of gas stripping compared to the pure hydrodynamical case, and is associated with the formation of a stable magnetic draping layer on the side of

  16. A sub-millimetre survey of dust enshrouded galaxies in the Hubble Deep Field region

    NASA Astrophysics Data System (ADS)

    Borys, Colin James Kelvin

    This thesis investigates the emission of sub-millimetre- wave radiation from galaxies in the Hubble Deep Field North region. The data were obtained from dedicated observing runs from our group and others using the SCUBA camera on the James Clerk Maxwell Telescope. The data were combined using techniques specifically developed here for low signal-to-noise source recovery. The sources found represent over 10% of all cosmological sources SCUBA has detected since it was commissioned. The number of sub-mm galaxies we detect account for a significant fraction of the sub-mm back-ground, and we show that mild extrapolations can reproduce it entirely. We comment on their clustering properties, both with themselves and other high-redshift galaxy types. A multi-wavelength analysis of these galaxies shows that SCUBA sources do not all have similar properties, and are made of a collection including: star-forming radio galaxies; optically invisible objects; active galactic nuclei; and extremely red objects. Reasonable attempts to determine the redshift distribution of the sample show that SCUBA galaxies have a median redshift of around 2, and suggest that the global star formation rate may be dominated by such objects at redshifts beyond about 1. The thesis summarises the current state of extra-galactic sub-mm astronomy, and comments on how new surveys and detectors will allow us to place stronger constraints on the evolution properties of the high-redshift Universe.

  17. THE STRUCTURE OF MASSIVE QUIESCENT GALAXIES AT Z {approx} 3 IN THE CANDELS-COSMOS FIELD

    SciTech Connect

    Fan Lulu; Chen Yang; Pan Zhizheng; Lv Xuanyi; Li Jinrong; Lin Lin; Kong Xu; Fang Guanwen

    2013-07-10

    In this Letter, we use a two-color (J - L) versus (V - J) selection criterion to search massive quiescent galaxy (QG) candidates at 2.5 {<=} z {<=} 4.0 in the CANDELS-COSMOS field. We construct an H{sub F160W}-selected catalog and complement it with public auxiliary data. We finally obtain 19 passive VJL-selected (hereafter pVJL) galaxies as the possible massive QG candidates at z {approx} 3 by several constrains. We find the sizes of our pVJL galaxies are on average three to four times smaller than those of local early-type galaxies (ETGs) with analogous stellar mass. The compact size of these z {approx} 3 galaxies can be modeled by assuming their formation at z{sub form} {approx} 4-6 according to the dissipative collapse of baryons. Up to z < 4, the mass-normalized size evolution can be described by r{sub e} {proportional_to}(1 + z){sup -1.0}. Low Sersic index and axis ratio, with median values n {approx}1.5 and b/a {approx} 0.65, respectively, indicate that most of the pVJL galaxies are disk-dominated. Despite large uncertainty, the inner region of the median mass profile of our pVJL galaxies is similar to those of QGs at 0.5 < z < 2.5 and local ETGs. It indicates that local massive ETGs have been formed according to an inside-out scenario: the compact galaxies at high redshift make up the cores of local massive ETGs and then build up the outskirts according to dissipationless minor mergers.

  18. NEAR-INFRARED IMAGING OF SIX METAL-RICH QUASAR ABSORBER GALAXY FIELDS

    SciTech Connect

    Straka, Lorrie A.; Kulkarni, Varsha P.; York, Donald G.

    2011-06-15

    Absorption lines in quasar spectra allow us to locate and study intervening galaxies. In order to obtain a clearer picture of these absorber galaxies, we have used the Near-Infrared Camera Fabry-Perot System at Apache Point Observatory to obtain near-infrared broadband images in one or more filters (J and K{sub s} ) of six quasar fields containing metal-rich low-z damped or sub-damped Ly{alpha} systems. These data allow us to search for the galaxies and constrain their luminosities. Candidate absorber galaxies are detected at 2.''01-7.''38 separation from the quasar in three out of six fields in the J and K{sub s} bands at >3{sigma} level with luminosities ranging from log(L/L{sub sun}) = 10.44-10.36 in the J band (for E-Sc type galaxies) and log(L/L{sub sun}) = 11.59-10.03 in the K{sub s} band for our detections. We place limits on the remaining fields with no detections of log(L/L{sub sun}) <10.83-9.75 for the J band and log(L/L{sub sun}) <10.43-10.05 for the K{sub s} band. We are also able to utilize Sloan Digital Sky Survey spectra for each field to calculate optical fluxes and limits as well as limits on star formation rate via [O II]{lambda}3727 emission in spectra. Our data, combined with other recent imaging results for metal-rich absorbers, suggest a possible positive correlation between absorber metallicity and galaxy luminosity, although the samples are still small.

  19. The Evolution of Early-type Field Galaxies Selected from a NICMOS Map of the Hubble Deep Field North

    SciTech Connect

    Somerville, R; Stanford, S A; Budavari, T; Conselice, C J

    2004-03-03

    The redshift distribution of well-defined samples of distant early-type galaxies offers a means to test the predictions of monolithic and hierarchical galaxy formation scenarios. NICMOS maps of the entire Hubble Deep Field North in the F110W and F160W filters, when combined with the available WFPC2 data, allow us to calculate photometric redshifts and determine the morphological appearance of galaxies at rest-frame optical wavelengths out to z {approx} 2.5. Here we report results for two subsamples of early-type galaxies, defined primarily by their morphologies in the F160W band, which were selected from the NICMOS data down to H{sub 160AB} < 24.0. A primary subsample is defined as the 34 galaxies with early-type galaxy morphologies and early-type galaxy spectral energy distributions. The secondary subsample is defined as those 42 objects which have early-type galaxy morphologies with non-early type galaxy spectral energy distributions. The observed redshift distributions of our two early-type samples do not match that predicted by a monolithic collapse model, which shows an overabundance at z > 1.5. A (V/V{sub max}) test confirms this result. When the effects of passive luminosity evolution are included in the calculation, the mean value of Vmax for the primary sample is 0.22 {+-} 0.05, and 0.31 {+-} 0.04 for all the early-types. A hierarchical formation model better matches the redshift distribution of the HDF-N early-types at z > 1.5, but still does not adequately describe the observed early-types. The hierarchical model predicts significantly bluer colors on average than the observed early-type colors, and underpredicts the observed number of early-types at z {approx} 2. Though the observed redshift distribution of the early-type galaxies in our HDF-NICMOS sample is better matched by a hierarchical galaxy formation model, the reliability of this conclusion is tempered by the restricted sampling area and relatively small number of early-type galaxies selected by

  20. Ultra-diffuse Galaxies in Clusters and the Field: Masses and Stellar Populations

    NASA Astrophysics Data System (ADS)

    Romanowsky, Aaron; Laine, Seppo; Krick, Jessica; van Dokkum, Pieter; Villaume, Alexa; Brodie, Jean

    2016-08-01

    Ultra-diffuse galaxies (UDGs) were recognized only last year as a novel class of galaxies, with luminosities like dwarfs but sizes like giants. Although some UDGs appear to be just unusually extended dwarfs, others show evidence of being very different and unexpected: their dark matter halos are overmassive by factors of ~10, with one UDG even being arguably a 'failed Milky Way.' These exotic galaxies might be a byproduct of environmental processes within galaxy clusters, but UDGs have also now been found in the field. It is crucial for understanding their origins to test if UDGs have the same properties in cluster and field environments. Here we propose studying the stellar populations (ages and metallicities) of seven UDGs using Spitzer/IRAC 3.6- and 4.5-micron imaging combined with optical photometry, along with mass estimation of three of the UDGs using HST/ACS imaging to provide globular cluster number counts and colors (proxies for halo mass). This ultra low surface brightness photometry in the near infrared, on an important new class of galaxies, could become a legacy result from the Spitzer mission.

  1. Optical Survey with KMTNet for Dusty Star-Forming Galaxies in the Akari Deep Field South

    NASA Astrophysics Data System (ADS)

    Jeong, Woong-Seob; Ko, Kyeongyeon; Kim, Minjin; Ko, Jongwan; Kim, Sam; Pyo, Jeonghyun; Kim, Seong Jin; Kim, Taehyun; Seo, Hyun Jong; Park, Won-Kee; Park, Sung-Joon; Kim, Min Gyu; Kim, Dong Jin; Cha, Sang-Mok; Lee, Yongseok; Lee, Chung-Uk; Kim, Seung-Lee; Matsuura, Shuji; Pearson, Chris; Matsuhara, Hideo

    2016-10-01

    We present an optical imaging survey of AKARI Deep Field South (ADF-S) using the Korea Microlensing Telescope Network (KMTNet), to find optical counterparts of dusty star-forming galaxies. The ADF-S is a deep far-infrared imaging survey region with AKARI covering around 12 deg^2, where the deep optical imaging data are not yet available. By utilizing the wide-field capability of the KMTNet telescopes (˜4 deg^2), we obtain optical images in B, R and I bands for three regions. The target depth of images in B, R and I bands is ˜24 mag (AB) at 5σ, which enables us to detect most dusty star-forming galaxies discovered by AKARI in the ADF-S. Those optical datasets will be helpful to constrain optical spectral energy distributions as well as to identify rare types of dusty star-forming galaxies such as dust-obscured galaxy, sub-millimeter galaxy at high redshift.}

  2. A deep redshift survey of field galaxies. Comments on the reality of the Butcher-Oemler effect

    NASA Technical Reports Server (NTRS)

    Koo, David C.; Kron, Richard G.

    1987-01-01

    A spectroscopic survey of over 400 field galaxies has been completed in three fields for which we have deep UBVI photographic photometry. The galaxies typically range from B=20 to 22 and possess redshifts z from 0.1 to 0.5 that are often quite spiky in distribution. Little, if any, luminosity evolution is observed up to redshifts z approx 0.5. By such redshifts, however, an unexpectedly large fraction of luminous galaxies has very blue intrinsic colors that suggest extensive star formation; in contrast, the reddest galaxies still have colors that match those of present-day ellipticals.

  3. Spectral degree of coherence of a random three-dimensional electromagnetic field.

    PubMed

    Korotkova, Olga; Wolf, Emil

    2004-12-01

    The complex spectral degree of coherence of a general random, statistically stationary electromagnetic field is introduced in a manner similar to the way it is defined for a beamlike field, namely, by means of Young's interference experiment. Both its modulus and its phase are measurable. We illustrate the definition by applying it to blackbody radiation emerging from a cavity. The results are of particular interest for near-field optics.

  4. Astrophysical dynamos and the growth of magnetic fields in high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Rieder, Michael; Teyssier, Romain

    2015-08-01

    The origin and evolution of magnetic fields in the Universe is still an open question. Observations of galaxies at high-redshift give evidence for strong galactic magnetic fields even in the early Universe which are consistently measured at later times up to the present age. However, primordial magnetic fields and seed field generation by battery processes cannot explain such high field strengths, suggesting the presence of a rapid growth mechanism in those high-redshift galaxies and subsequent maintenance against decay. Astrophysical dynamo theory provides efficient means of field amplification where even weak initial fields can grow exponentially on sufficiently fast timescales, driving the conversion of kinetic energy into magnetic energy. We investigate the role which feedback mechanisms play in the creation of the turbulence necessary for dynamos to operate. Performing magnetohydrodynamic simulations of cooling halos of dwarf and Milky Way-like high-redshift progenitors, we compare the magnetic field evolution of weak seed fields with various topologies and stellar feedback mechanisms. We find that strong feedback can drive galactic gas turbulence which gives rise to velocity fields with fast exponential magnetic field growth. The simulations display a high gas fraction and a clumpy morphology with kinematics resembling Kolmogorov turbulence and magnetic energy spectra as predicted by Kazantsev dynamo theory. Magnetic fields reach equipartition with $\\mu$G field strength. In a final quiescent phase where feedback is turned off, gas turbulence is reduced and a quadrupole symmetry is observed in the magnetic field. These findings support the theory of rapid magnetic field amplification inside high-redshift galaxies, when the Universe was still young.

  5. The SLUGGS survey: the globular cluster systems of three early-type galaxies using wide-field imaging

    NASA Astrophysics Data System (ADS)

    Kartha, Sreeja S.; Forbes, Duncan A.; Spitler, Lee R.; Romanowsky, Aaron J.; Arnold, Jacob A.; Brodie, Jean P.

    2014-01-01

    We present the results from a wide-field imaging study of globular cluster (GC) systems in three early-type galaxies. Combinations of Subaru/Suprime-Cam, Canada-France-Hawaii Telescope/MegaCam and Hubble Space Telescope/Wide Field Planetary Camera 2/Advanced Camera for Surveys data were used to determine the GC system properties of three highly flattened galaxies NGC 720, NGC 1023 and NGC 2768. This work is the first investigation of the GC system in NGC 720 and NGC 2768 to very large galactocentric radius (˜100 kpc). The three galaxies have clear blue and red GC subpopulations. The radial surface densities of the GC systems are fitted with Sérsic profiles, and detected out to 15, 8 and 10 galaxy effective radii, respectively. The total number of GCs and specific frequency are determined for each GC system. The ellipticity of the red subpopulation is in better agreement with the host galaxy properties than is the blue subpopulation, supporting the traditional view that metal-rich GCs are closely associated with the bulk of their host galaxies' field stars, while metal-poor GCs reflect a distinct stellar halo. With the addition of another 37 literature studied galaxies, we present a new correlation of GC system extent with host galaxy effective radius. We find a dependence of the relative fraction of blue to red GCs on host galaxy environmental density for lenticular galaxies (but not for elliptical or spiral galaxies). We propose that tidal interactions between galaxies in cluster environments might be the reason behind the observed trend for lenticular galaxies.

  6. Hawk Eyes I: Diurnal Raptors Differ in Visual Fields and Degree of Eye Movement

    PubMed Central

    O'Rourke, Colleen T.; Hall, Margaret I.; Pitlik, Todd; Fernández-Juricic, Esteban

    2010-01-01

    Background Different strategies to search and detect prey may place specific demands on sensory modalities. We studied visual field configuration, degree of eye movement, and orbit orientation in three diurnal raptors belonging to the Accipitridae and Falconidae families. Methodology/Principal Findings We used an ophthalmoscopic reflex technique and an integrated 3D digitizer system. We found inter-specific variation in visual field configuration and degree of eye movement, but not in orbit orientation. Red-tailed Hawks have relatively small binocular areas (∼33°) and wide blind areas (∼82°), but intermediate degree of eye movement (∼5°), which underscores the importance of lateral vision rather than binocular vision to scan for distant prey in open areas. Cooper's Hawks' have relatively wide binocular fields (∼36°), small blind areas (∼60°), and high degree of eye movement (∼8°), which may increase visual coverage and enhance prey detection in closed habitats. Additionally, we found that Cooper's Hawks can visually inspect the items held in the tip of the bill, which may facilitate food handling. American Kestrels have intermediate-sized binocular and lateral areas that may be used in prey detection at different distances through stereopsis and motion parallax; whereas the low degree eye movement (∼1°) may help stabilize the image when hovering above prey before an attack. Conclusions We conclude that: (a) there are between-species differences in visual field configuration in these diurnal raptors; (b) these differences are consistent with prey searching strategies and degree of visual obstruction in the environment (e.g., open and closed habitats); (c) variations in the degree of eye movement between species appear associated with foraging strategies; and (d) the size of the binocular and blind areas in hawks can vary substantially due to eye movements. Inter-specific variation in visual fields and eye movements can influence behavioral

  7. X-RAY GROUPS OF GALAXIES IN THE AEGIS DEEP AND WIDE FIELDS

    SciTech Connect

    Erfanianfar, G.; Lerchster, M.; Nandra, K.; Connelly, J. L.; Mirkazemi, M.; Finoguenov, A.; Tanaka, M.; Laird, E.; Bielby, R.; Faber, S. M.; Kocevski, D.; Jeltema, T.; Newman, J. A.; Coil, A. L.; Brimioulle, F.; Davis, M.; McCracken, H. J.; Willmer, C.; Gerke, B.; and others

    2013-03-10

    We present the results of a search for extended X-ray sources and their corresponding galaxy groups from 800 ks Chandra coverage of the All-wavelength Extended Groth Strip International Survey (AEGIS). This yields one of the largest X-ray-selected galaxy group catalogs from a blind survey to date. The red-sequence technique and spectroscopic redshifts allow us to identify 100% of reliable sources, leading to a catalog of 52 galaxy groups. These groups span the redshift range z {approx} 0.066-1.544 and virial mass range M{sub 200} {approx} 1.34 Multiplication-Sign 10{sup 13}-1.33 Multiplication-Sign 10{sup 14} M{sub Sun }. For the 49 extended sources that lie within DEEP2 and DEEP3 Galaxy Redshift Survey coverage, we identify spectroscopic counterparts and determine velocity dispersions. We select member galaxies by applying different cuts along the line of sight or in projected spatial coordinates. A constant cut along the line of sight can cause a large scatter in scaling relations in low-mass or high-mass systems depending on the size of the cut. A velocity-dispersion-based virial radius can cause a larger overestimation of velocity dispersion in comparison to an X-ray-based virial radius for low-mass systems. There is no significant difference between these two radial cuts for more massive systems. Independent of radial cut, an overestimation of velocity dispersion can be created in the case of the existence of significant substructure and compactness in X-ray emission, which mostly occur in low-mass systems. We also present a comparison between X-ray galaxy groups and optical galaxy groups detected using the Voronoi-Delaunay method for DEEP2 data in this field.

  8. Near-Infrared Faint Galaxies in the Subaru Deep Field: Comparing the Theory with Observations for Galaxy Counts, Colors, and Size Distributions to K ~ 24.5

    NASA Astrophysics Data System (ADS)

    Totani, Tomonori; Yoshii, Yuzuru; Maihara, Toshinori; Iwamuro, Fumihide; Motohara, Kentaro

    2001-10-01

    Galaxy counts in the K band, (J-K) colors, and apparent size distributions of faint galaxies in the Subaru Deep Field (SDF) down to K~24.5 were studied in detail. Special attention has been paid to take into account various selection effects, including the cosmological dimming of surface brightness, to avoid any systematic bias that may be the origin of controversy in previously published results. We also tried to be very careful about systematic model uncertainties; we present a comprehensive survey of these systematic uncertainties and dependence on various parameters, and we have shown that the dominant factors to determine galaxy counts in this band are cosmology and number evolution. We found that the pure luminosity evolution (PLE) model is very consistent with all the SDF data down to K~22.5, without any evidence for number or size evolution in a low-density, Λ-dominated flat universe, which is now favored by various cosmological observations. On the other hand, a number evolution of galaxies with η~2, when invoked as the luminosity conserving mergers as φ*~(1+z)η and L*~(1+z)-η for all types of galaxies, is necessary to explain the data in the Einstein-de Sitter universe. If the popular Λ-dominated universe is taken for granted, our result then gives a strong constraint on the number evolution of giant elliptical or early-type galaxies to z~1-2 that must be met by any models in the hierarchically clustering universe, since such galaxies are the dominant population in this magnitude range (K<~22.5). A number evolution with η~1 is already difficult to reconcile with the data in this universe. On the other hand, number evolution of late-type galaxies and/or dwarf galaxies, which has been suggested by previous studies of optical galaxies, is allowed from the data. In the fainter magnitude range of K>~22.5, we found a slight excess of observed counts over the prediction of the PLE model when elliptical galaxies are treated as a single population. We

  9. Where The Active Galaxies Live: A Panchromatic View Of AGN In The Akari-NEP Field

    NASA Astrophysics Data System (ADS)

    Karouzos, Marios; Im, M.; Takagi, T.; Shim, H.; Ko, J.; Matsuhara, H.; Braun, R.; White, G.; Serjeant, S.

    2012-05-01

    We study the host galaxy properties of radio-detected sources in the AKARI-NEP field, using an ensemble of multi-wavelength datasets that range from the far-UV to the radio. Using both photometry and spectroscopy, we identify both radio-loud and radio-quiet AGN and study their host galaxy properties, including the age of their stellar populations, current star-formation rates, as well as their morphology. Using this information we investigate the role of AGN within the currently accepted framework of a merger-driven evolution of galaxies. This research was supported through the Creative Research Initiative program, No. 2010-0000712, of the National Research Foundation of Korea (NRFK) funded by the Korea government(MEST).

  10. Clear and Measurable Signature of Modified Gravity in the Galaxy Velocity Field

    NASA Astrophysics Data System (ADS)

    Hellwing, Wojciech A.; Barreira, Alexandre; Frenk, Carlos S.; Li, Baojiu; Cole, Shaun

    2014-06-01

    The velocity field of dark matter and galaxies reflects the continued action of gravity throughout cosmic history. We show that the low-order moments of the pairwise velocity distribution v12 are a powerful diagnostic of the laws of gravity on cosmological scales. In particular, the projected line-of-sight galaxy pairwise velocity dispersion σ12(r) is very sensitive to the presence of modified gravity. Using a set of high-resolution N-body simulations, we compute the pairwise velocity distribution and its projected line-of-sight dispersion for a class of modified gravity theories: the chameleon f(R) gravity and Galileon gravity (cubic and quartic). The velocities of dark matter halos with a wide range of masses would exhibit deviations from general relativity at the (5-10)σ level. We examine strategies for detecting these deviations in galaxy redshift and peculiar velocity surveys. If detected, this signature would be a "smoking gun" for modified gravity.

  11. Degree of coherence for vectorial electromagnetic fields as the distance between correlation matrices.

    PubMed

    Luis, Alfredo

    2007-04-01

    We assess the degree of coherence of vectorial electromagnetic fields in the space-frequency domain as the distance between the cross-spectral density matrix and the identity matrix representing completely incoherent light. This definition is compared with previous approaches. It is shown that this distance provides an upper bound for the degree of coherence and visibility for any pair of scalar waves obtained by linear combinations of the original fields. This same approach emerges when applying a previous definition of global coherence to a Young interferometer.

  12. Probing Bursty Star Formation in Faint Galaxies with the Hubble Frontier Fields

    NASA Astrophysics Data System (ADS)

    Finkelstein, Steven; Livermore, Rachael; Song, Mimi

    2015-08-01

    The Hubble Frontier Fields have magnified our view into the formation and evolution of galaxies in the first billion years after the Big Bang. One key issue these data can probe is how galaxies grow their stellar masses. Do they grow smoothly with time, dominated by steady gas inflow? Or is their growth more stochastic, dominated by starburst triggering events such as mergers or clumpy gas inflows? A bevy of observational studies have shown that the star formation rates (SFRs) of distant galaxies increase with time, while theoretical studies, which broadly agree on long timescales, show that the SFRs may vary significantly on shorter timescales. We have compiled a sample of galaxies over a wide dynamic range in SFR by combining the HFF imaging with the CANDELS and HUDF datasets. By comparing the scatter in SFRs to SPH and semi-analytic models with known star formation histories, we directly measure the fraction of galaxies at a given epoch undergoing starbursts. This has a variety of implications on the distant universe, including reionization, as a significant burst fraction could both increase the number of ionizing photons being produced, as well as disturb the interstellar medium enough to allow these photons to escape.

  13. GALAXY CLUSTERS IN THE IRAC DARK FIELD. II. MID-INFRARED SOURCES

    SciTech Connect

    Krick, J. E.; Surace, J. A.; Yan, L.; Thompson, D.; Ashby, M. L. N.; Hora, J. L.; Gorjian, V.

    2009-07-20

    We present infrared (IR) luminosities, star formation rates (SFR), colors, morphologies, locations, and active galactic nuclei (AGNs) properties of 24 {mu}m detected sources in photometrically detected high-redshift clusters in order to understand the impact of environment on star formation (SF) and AGN evolution in cluster galaxies. We use three newly identified z = 1 clusters selected from the IRAC dark field; the deepest ever mid-IR survey with accompanying, 14 band multiwavelength data including deep Hubble Space Telescope imaging and deep wide-area Spitzer MIPS 24 {mu}m imaging. We find 90 cluster members with MIPS detections within two virial radii of the cluster centers, of which 17 appear to have spectral energy distributions dominated by AGNs and the rest dominated by SF. We find that 43% of the star-forming sample have IR luminosities L{sub IR} > 10{sup 11} L{sub sun} (luminous IR galaxies). The majority of sources (81%) are spirals or irregulars. A large fraction (at least 25%) show obvious signs of interactions. The MIPS-detected member galaxies have varied spatial distributions as compared to the MIPS-undetected members with one of the three clusters showing SF galaxies being preferentially located on the cluster outskirts, while the other two clusters show no such trend. Both the AGN fraction and the summed SFR of cluster galaxies increase from redshift zero to one, at a rate that is a few times faster in clusters than over the same redshift range in the field. Cluster environment does have an effect on the evolution of both AGN fraction and SFR from redshift one to the present, but does not affect the IR luminosities or morphologies of the MIPS sample. SF happens in the same way regardless of environment making MIPS sources look the same in the cluster and field, however the cluster environment does encourage a more rapid evolution with time as compared to the field.

  14. The Deep2 Galaxy Redshift Survey: Mean Ages and Metallicities ofRed Field Galaxies at Z ~; 0.9 from Stacked Keck/Deimos Spectra

    SciTech Connect

    Schiavon, Ricardo P.; Faber, S.M.; Konidaris, Nicholas; Graves,Genevieve; Willmer, Christopher N.A.; Weiner, Benjamin J.; Coil, AlisonL.; Cooper, Michael C.; Davis, Marc; Harker, Justin; Koo, David C.; Newman, Jeffrey A.; Yan, Renbin

    2006-10-19

    As part of the DEEP2 galaxy redshift survey, we analyze absorption line strengths in stacked Keck/DEIMOS spectra of red field galaxies with weak to no emission lines, at redshifts 0.7 {approx}< z {approx}< 1. Comparison with models of stellar population synthesis shows that red galaxies at z {approx} 0:9 have mean luminosity-weighted ages of the order of only 1 Gyr and at least solar metallicities. These ages cannot be reconciled with a scenario where all stars evolved passively after forming at very high z. Rather, a significant fraction of stars can be no more than 1 Gyr old, which means that some star formation in the stacked populations continued to at least z {approx} 1:2. Furthermore, a comparison of these distant galaxies with a local SDSS sample, using stellar populations synthesis models, shows that the drop in the equivalent width of H{delta} from z {approx} 0:9 to 0.1 is less than predicted by passively evolving models. This admits of two interpretations: either each individual galaxy experiences continuing low-level star formation, or the red-sequence galaxy population from z {approx} 0:9 to 0.1 is continually being added to by new galaxies with younger stars.

  15. Cluster and field elliptical galaxies at z 1.3. The marginal role of the environment and the relevance of the galaxy central regions

    NASA Astrophysics Data System (ADS)

    Saracco, P.; Gargiulo, A.; Ciocca, F.; Marchesini, D.

    2017-01-01

    Aims: The aim of this work is twofold: first, to assess whether the population of elliptical galaxies in cluster at z 1.3 differs from the population in the field and whether their intrinsic structure depends on the environment where they belong; second, to constrain their properties 9 Gyr back in time through the study of their scaling relations. Methods: We compared a sample of 56 cluster elliptical galaxies selected from three clusters at 1.2 galaxies selected at comparable redshift in the GOODS-South field ( 30), in the COSMOS area ( 180), and in the CANDELS fields ( 220). To single out the environmental effects, we selected cluster and field elliptical galaxies according to their morphology. We compared physical and structural parameters of galaxies in the two environments and we derived the relationships between effective radius, surface brightness, stellar mass, and stellar mass density ΣRe within the effective radius and central mass density Σ1 kpc, within 1 kpc radius. Results: We find that the structure and the properties of cluster elliptical galaxies do not differ from those in the field: they are characterized by the same structural parameters at fixed mass and they follow the same scaling relations. On the other hand, the population of field elliptical galaxies at z 1.3 shows a significant lack of massive (ℳ∗> 2 × 1011M⊙) and large (Re> 4-5 kpc) elliptical galaxies with respect to the cluster. Nonetheless, at ℳ∗< 2 × 1011M⊙, the two populations are similar. The size-mass relation of cluster and field ellipticals at z 1.3 clearly defines two different regimes, above and below a transition mass mt ≃ 2-3 × 1010M⊙: at lower masses the relation is nearly flat (Re ∝ Μ*-0.1±0.2), the mean radius is nearly constant at 1 kpc and, consequenly, ΣRe ≃ Σ1 kpc while, at larger masses, the relation is Re ∝ Μ*0.64±0.09. The transition mass marks the mass at which galaxies reach the maximum stellar mass density

  16. The VIPERS Multi-Lambda Survey. II. Diving with massive galaxies in 22 square degrees since z = 1.5

    NASA Astrophysics Data System (ADS)

    Moutard, T.; Arnouts, S.; Ilbert, O.; Coupon, J.; Davidzon, I.; Guzzo, L.; Hudelot, P.; McCracken, H. J.; Van Werbaeke, L.; Morrison, G. E.; Le Fèvre, O.; Comte, V.; Bolzonella, M.; Fritz, A.; Garilli, B.; Scodeggio, M.

    2016-05-01

    We investigate the evolution of the galaxy stellar mass function and stellar mass density from redshift z = 0.2 to z = 1.5 of a Ks < 22-selected sample with highly reliable photometric redshifts and over an unprecedentedly large area. Our study is based on near-infrared observations carried out with the WIRCam instrument at CFHT over the footprint of the VIPERS spectroscopic survey and benefits from the high-quality optical photometry from the CFHTLS and ultraviolet observations with the GALEX satellite. The accuracy of our photometric redshifts is σΔz/ (1 + z) < 0.03 and 0.05 for the bright (iAB< 22.5) and faint (iAB > 22.5) samples, respectively. The galaxy stellar mass function is measured with ~760 000 galaxies down to Ks ~ 22 and over an effective area of ~22.4 deg2, the latter of which drastically reduces the statistical uncertainties (i.e. Poissonian error and cosmic variance). We point out the importance of carefully controlling the photometric calibration, whose effect becomes quickly dominant when statistical uncertainties are reduced, which will be a major issue for future cosmological surveys with EUCLID or LSST, for instance. By exploring the rest-frame (NUV-r) vs. (r-Ks) colour-colour diagram with which we separated star-forming and quiescent galaxies, (1) we find that the density of very massive log (M∗/M⊙) > 11.5 galaxies is largely dominated by quiescent galaxies and increases by a factor 2 from z ~ 1 to z ~ 0.2, which allows for additional mass assembly through dry mergers. (2) We also confirm the scenario in which star formation activity is impeded above a stellar mass log(ℳ*SF/M⊙) = 10.64±0.01. This value is found to be very stable at 0.2 galaxies, and we finally (4) characterise another quenching mechanism that is required to explain the clear excess of low-mass quiescent galaxies that is observed at low redshift.

  17. The morphologies and magnetic field structures of six 3CR double radio galaxies

    NASA Astrophysics Data System (ADS)

    Miller, L.

    1985-08-01

    Observations of the regions of low surface brightness in six 3CR double radio galaxies (3C 98, 184.1, 192, 223, 332 and 430) have been made with the Cambridge 5-km telescope. Maps of total and polarized intensity are presented, and the projected magnetic field structures have been deduced. High fractional polarization is seen in these sources, indicating that the magnetic fields are well-ordered. A qualitative model for the formation of the magnetic field structures is presented, in which pressure gradients in the extended lobes cause bulk flow of plasma and consequent large-scale shearing of the magnetic fields.

  18. Origin of strong magnetic fields in Milky Way-like galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Alexander M.

    2016-08-01

    Magnetic fields are observed on all scales in the Universe (see e.g. Kronberg 1994), but little is known about the origin and evolution of those fields with cosmic time. Seed fields of arbitrary source must be amplified to present-day values and distributed among cosmic structures. Therefore, the emergence of cosmic magnetic fields and corresponding dynamo processes (see e.g. Zel'dovich et al. 1983; Kulsrud et al. 1997) can only be jointly understood with the very basic processes of structure and galaxy formation (see e.g. Mo et al. 2010).

  19. The Faint-End Slopes of Galaxy Luminosity Functions in the COSMOS Field

    NASA Astrophysics Data System (ADS)

    Liu, Charles T.; Capak, Peter; Mobasher, Bahram; Paglione, Timothy A. D.; Rich, R. Michael; Scoville, Nicholas Z.; Tribiano, Shana M.; Tyson, Neil D.

    2008-01-01

    We examine the faint-end slope of the rest-frame V-band luminosity function (LF), with respect to galaxy spectral type, of field galaxies with redshift z < 0.5, using a sample of 80,820 galaxies with photometric redshifts in the 2 deg2 Cosmic Evolution Survey (COSMOS) field. For all galaxy spectral types combined, the LF slope ranges from -1.24 to -1.12, from the lowest redshift bin to the highest. In the lowest redshift bin (0.02 < z < 0.1), where the magnitude limit is MVlesssim - 13, the slope ranges from α ~ - 1.1 for galaxies with early-type spectral energy distributions (SEDs) to α ~ - 1.9 for galaxies with low-extinction starburst SEDs. In each galaxy SED category (early-type, Sbc, Scd+Irr, and starburst), the faint-end slopes grow shallower with increasing redshift; in the highest redshift bin (0.4 < z < 0.5), α ~ - 0.5 and -1.3 for early types and starbursts, respectively. The steepness of α at lower redshifts could be qualitatively explained by LF evolution, or by large numbers of faint dwarf galaxies, perhaps of low surface brightness, that are not detected at higher redshifts. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 5-26555; also based on data collected at Kitt Peak National Observatory, Cerro Tololo Inter-American Observatory, and the National Optical Astronomy Observatory, which are operated by AURA, Inc., under cooperative agreement with the National Science Foundation; at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA; at the European Southern Observatory under Large Program 175.A-0839, Chile; at the Canada-France-Hawaii Telescope with MegaPrime/MegaCam, operated as a joint project by the CFHT

  20. Cosmic Ray Propagation through the Magnetic Fields of the Galaxy with Extended Halo

    NASA Technical Reports Server (NTRS)

    Zhang, Ming

    2005-01-01

    In this project we perform theoretical studies of 3-dimensional cosmic ray propagation in magnetic field configurations of the Galaxy with an extended halo. We employ our newly developed Markov stochastic process methods to solve the diffusive cosmic ray transport equation. We seek to understand observations of cosmic ray spectra, composition under the constraints of the observations of diffuse gamma ray and radio emission from the Galaxy. The model parameters are directly are related to properties of our Galaxy, such as the size of the Galactic halo, particle transport in Galactic magnetic fields, distribution of interstellar gas, primary cosmic ray source distribution and their confinement in the Galaxy. The core of this investigation is the development of software for cosmic ray propagation models with the Markov stochastic process approach. Values of important model parameters for the halo diffusion model are examined in comparison with observations of cosmic ray spectra, composition and the diffuse gamma-ray background. This report summarizes our achievement in the grant period at the Florida Institute of Technology. Work at the co-investigator's institution, the University of New Hampshire, under a companion grant, will be covered in detail by a separate report.

  1. Antlia Dwarf Galaxy: distance, quantitative morphology and recent formation history via statistical field correction

    NASA Astrophysics Data System (ADS)

    Pimbblet, Kevin A.; Couch, Warrick J.

    2012-01-01

    We apply a statistical field correction technique originally designed to determine membership of high redshift galaxy clusters to Hubble Space Telescope (HST) imaging of the Antlia Dwarf Galaxy; a galaxy at the very edge of the Local Group. Using the tip of the red giant branch standard candle method coupled with a simple Sobel edge detection filter we find a new distance to Antlia of 1.31 ± 0.03 Mpc. For the first time for a Local Group member, we compute the concentration, asymmetry and clumpiness quantitative morphology parameters for Antlia from the distribution of resolved stars in the HST/Advanced Camera for Surveys (ACS) field, corrected with a new method for contaminants and complement these parameters with the Gini coefficient (G) and the second-order moment of the brightest 20 per cent of the flux (M20). We show that it is a classic dwarf elliptical (C = 2.0, A = 0.063, S = 0.077, G = 0.39 and M20=-1.17 in the F814W band), but has an appreciable blue stellar population at its core, confirming on-going star formation. The values of asymmetry and clumpiness, as well as Gini and M20 are consistent with an undisturbed galaxy. Although our analysis suggests that Antlia may not be tidally influenced by NGC 3109, it does not necessarily preclude such interaction.

  2. THE EXTENT OF MAGNETIC FIELDS AROUND GALAXIES OUT TO z {approx} 1

    SciTech Connect

    Bernet, M. L.; Miniati, F.; Lilly, S. J. E-mail: fm@phys.ethz.ch

    2013-08-01

    Radio quasar sightlines with strong Mg II absorption lines display statistically enhanced Faraday rotation measures (RMs), indicating the presence of additional magneto-active plasma with respect to sightlines free of such absorption. In this Letter, we use multi-color optical imaging to identify the galaxies likely hosting the magneto-active plasma, and to constrain the location of the latter with respect to the putative parent halo. We find that all of the sightlines with high |RM| pass within 50 kpc of a galaxy and that the |RM| distribution for low impact parameters, D < 50 kpc, is significantly different than for larger impact parameters. In addition, we find a decrease in the ratio of the polarization at 21 cm and 1.5 cm, p{sub 21}/p{sub 1.5}, toward lower D. These two effects are most likely related, strengthen the association of excess |RM| with intervening galaxies, and suggest that intervening galaxies operate as inhomogeneous Faraday screens. These results are difficult to reconcile with only a disk model for the magnetic field, but are consistent with highly magnetized winds associated with Mg II systems. We infer strong magnetic fields of a few tens of {mu}G, consistent with the values required by the lack of evolution of the FIR-radio correlation at high redshifts. Finally, these findings lend support to the idea that the small-scale helicity bottleneck of {alpha}-{Omega} galactic dynamos can be significantly alleviated via galactic winds.

  3. Mapping the Properties of Blue Compact Dwarf Galaxies by Means of Integral Field Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cairós, L. M.; Caon, N.; Weilbacher, P.; Papaderos, P.; García-Lorenzo, B.

    Blue Compact Dwarf (BCD) galaxies are metal-poor and gas-rich systems undergoing intense, spatially extended star-forming activity. These galaxies offer a unique opportunity to investigate dwarf galaxy formation and evolution, and probe violent star formation and its implications on the chemical, dynamical and structural properties of low-mass extragalactic systems near and far. Several fundamental questions in BCD research, such as their star formation histories and the mechanisms that control their cyclic starburst activity, are still far from well understood. In order to improve our understanding on BCD evolution, we are carrying out a comprehensive Integral Field Spectroscopic (IFS) survey of a large sample of BCDs. Integral Field Unit (IFU) spectroscopy provides simultaneously spectral and spatial information, allowing, in just one shot, to study the morphology and evolutionary status of the stellar component, and the physical properties of the warm interstellar medium (e.g., extinction, chemical abundances, kinematics). This ongoing IFS survey will supply much needed local templates that will ease the interpretation of IFS data for intermediate and high-redshift star-forming galaxies.

  4. Do Economists Make Better Lawyers? Undergraduate Degree Field and Lawyer Earnings.

    ERIC Educational Resources Information Center

    Craft, R. Kim; Baker, Joe G.

    2003-01-01

    Examines the effects of preprofessional education on the earnings of lawyers using nationally representative data. Finds that lawyers with undergraduate degrees in economics earn more that other lawyers. States that economics is the only undergraduate field associated with earnings that differ significantly. (JEH)

  5. Discovery of an Ultra-faint Dwarf Galaxy in the Intracluster Field of the Virgo Center: A Fossil of the First Galaxies?

    NASA Astrophysics Data System (ADS)

    Jang, In Sung; Lee, Myung Gyoon

    2014-11-01

    Ultra-faint dwarf galaxies (UFDs) are newcomers among galaxies, and are the faintest galaxies in the observed universe. To date, they have only been found around the Milky Way Galaxy and M31 in the Local Group. We present the discovery of a UFD in the intracluster field in the core of the Virgo cluster (Virgo UFD1), which is far from any massive galaxies. The color-magnitude diagram of the resolved stars in this galaxy shows a narrow red giant branch, similar to those of metal-poor globular clusters in the Milky Way. We estimate its distance by comparing the red giant branch with isochrones, and we obtain a value 16.4 ± 0.4 Mpc. This shows that it is indeed a member of the Virgo cluster. From the color of the red giants we estimate its mean metallicity to be very low, [Fe/H] =-2.4 ± 0.4. Its absolute V-band magnitude and effective radius are derived to be MV = -6.5 ± 0.2 and r eff = 81 ± 7 pc, much fainter and smaller than the classical dwarf spheroidal galaxies. Its central surface brightness is estimated to be as low as μ V, 0 = 26.37 ± 0.05 mag arcsec-2. Its properties are similar to those of the Local Group analogs. No evidence of tidal features are found in this galaxy. Considering its narrow red giant branch with no asymptotic giant branch stars, low metallicity, and location, it may be a fossil remnant of the first galaxies.

  6. DISCOVERY OF AN ULTRA-FAINT DWARF GALAXY IN THE INTRACLUSTER FIELD OF THE VIRGO CENTER: A FOSSIL OF THE FIRST GALAXIES?

    SciTech Connect

    Jang, In Sung; Lee, Myung Gyoon E-mail: mglee@astro.snu.ac.kr

    2014-11-01

    Ultra-faint dwarf galaxies (UFDs) are newcomers among galaxies, and are the faintest galaxies in the observed universe. To date, they have only been found around the Milky Way Galaxy and M31 in the Local Group. We present the discovery of a UFD in the intracluster field in the core of the Virgo cluster (Virgo UFD1), which is far from any massive galaxies. The color-magnitude diagram of the resolved stars in this galaxy shows a narrow red giant branch, similar to those of metal-poor globular clusters in the Milky Way. We estimate its distance by comparing the red giant branch with isochrones, and we obtain a value 16.4 ± 0.4 Mpc. This shows that it is indeed a member of the Virgo cluster. From the color of the red giants we estimate its mean metallicity to be very low, [Fe/H] =–2.4 ± 0.4. Its absolute V-band magnitude and effective radius are derived to be M{sub V} = –6.5 ± 0.2 and r {sub eff} = 81 ± 7 pc, much fainter and smaller than the classical dwarf spheroidal galaxies. Its central surface brightness is estimated to be as low as μ {sub V,} {sub 0} = 26.37 ± 0.05 mag arcsec{sup –2}. Its properties are similar to those of the Local Group analogs. No evidence of tidal features are found in this galaxy. Considering its narrow red giant branch with no asymptotic giant branch stars, low metallicity, and location, it may be a fossil remnant of the first galaxies.

  7. Unveiling the Galaxy Population at 1.3 < z < 4: the HUDF05 NICMOS Parallel Fields

    NASA Technical Reports Server (NTRS)

    Petty, Sara M.; deMello, Duilia F.; Wiklind, Tomy; Gardner, Jonathan P.; Mountain, Matt

    2010-01-01

    Using the Hubble Ultra Deep Field Near Infrared Camera and Multi-Object Spectrometer (HUDF-NICMOS) UDF05 parallel fields, we cross-matched 301 out of 630 galaxies with the ACS filters V606 and z850, NICMOS filters J110 and H160, and Spitzer IRAC filters at 3.6, 4.5, 5.8 , and 8.0 (mu)m. We modeled the spectral energy distributions (SEDs) to estimate: photometric redshifts, dust extinction, stellar mass, bolometric luminosity, starburst age and metallicity. To validate the photometric redshifts, comparisons with 16 spectroscopic redshifts give 75% within Delta < 0.2, which agrees with the sensitivities expected from the Balmer-break in our dataset. Five parallel fields observed by NICMOS have sensitivities in the H160-band of 80% at mAB = 25.4 and 50% at mAB = 26.7. Because the sample is H160-band selected, it is sensitive to stellar mass rather than UV luminosities. We also use Monte Carlo simulations to determine that the parameters from the best-fit SEDs are robust for the redshift ranges z > or approx. 1.3. Based on the robustness of the photometric redshifts, we analyze a subsample of the 301 galaxies at 1.3 < or = z < or = 2 (35 objects) and 3 < or = z < or = 4 (31 objects) and determine that L(BoI) and the star formation rate increase significantly from z approx. 1.5 to 4. The Balmer decrement is indicative of more evolved galaxies, and at high redshifts, they serve as records of some of the first galaxies. Therefore, the galaxies in this sample are great candidates for future surveys with the James Webb Space Telescope and Atacama Large Millimeter Array.

  8. The Dust Content and Radiation Fields of Sample of Galaxies in the ELAIS-N1 Field

    NASA Astrophysics Data System (ADS)

    Shalima, P.; Gogoi, Rupjyoti; Pathak, Amit; Misra, Ranjeev; Gupta, Ranjan; Vaidya, D. B.

    2015-08-01

    The Mid-IR colors ($F_{8}/F_{24}$) of galaxies together with their IR-UV luminosity correlations can be used to get some insight into the relative abundance of the different dust grain populations present in them. The ELAIS-N1 field contains thousands of galaxies which do not have optical spectra but have been observed in the Mid-IR by {\\it Spitzer} and UV by {\\it GALEX} making it ideal for these studies. As part of this work we have selected a sample of galaxies from the ELAIS-N1 field which have photometric observations in the MIR and UV as well as photometric redshifts from the SDSS database. We put the constraint that the redshifts are $\\le$ 0.1, thereby giving us a total of 309 galaxies. We find that the majority of the galaxies in the sample are PAH dominated due to their high MIR flux ratio. We also find a reasonable correlation between the Mid-IR and the UV luminosities out of which the Mid-IR emission from PAHs at 8 $\\mu$m is marginally better correlated than the 24 $\\mu$m VSG emission with the UV luminosities. However, if we divide the sample based on their $F_{8}/F_{24}$ ratios which is also an indicator of metallicity, the MIR-UV correlation seems to increase with the $F_{8}/F_{24}$ ratio. But the MIR-UV correlations are not very different for the PAHs and the VSG population within the individual metallicity groups.

  9. The Atacama Cosmology Telescope: Dynamical Masses for 44 SZ-Selected Galaxy Clusters over 755 Square Degrees

    NASA Technical Reports Server (NTRS)

    Sifon, Cristobal; Battaglia, Nick; Hasselfield, Matthew; Menanteau, Felipe; Barrientos, L. Felipe; Bond, J. Richard; Crichton, Devin; Devlin, Mark J.; Dunner, Rolando; Hilton, Matt; Wollack, Edward J.

    2016-01-01

    We present galaxy velocity dispersions and dynamical mass estimates for 44 galaxy clusters selected via the Sunyaev-Zeldovich (SZ) effect by the Atacama Cosmology Telescope. Dynamical masses for 18 clusters are reported here for the first time. Using N-body simulations, we model the different observing strategies used to measure the velocity dispersions and account for systematic effects resulting from these strategies. We find that the galaxy velocity distributions may be treated as isotropic, and that an aperture correction of up to 7 per cent in the velocity dispersion is required if the spectroscopic galaxy sample is sufficiently concentrated towards the cluster centre. Accounting for the radial profile of the velocity dispersion in simulations enables consistent dynamical mass estimates regardless of the observing strategy. Cluster masses M200 are in the range (1 - 15) times 10 (sup 14) Solar Masses. Comparing with masses estimated from the SZ distortion assuming a gas pressure profile derived from X-ray observations gives a mean SZ-to-dynamical mass ratio of 1:10 plus or minus 0:13, but there is an additional 0.14 systematic uncertainty due to the unknown velocity bias; the statistical uncertainty is dominated by the scatter in the mass-velocity dispersion scaling relation. This ratio is consistent with previous determinations at these mass scales.

  10. A sub-millimetre survey of dust enshrouded galaxies in the Hubble Deep Field North region

    NASA Astrophysics Data System (ADS)

    Borys, C. J.

    2002-12-01

    This thesis investigates the emission of sub-millimetre-wave radiation from galaxies in the Hubble Deep Field North region. The data were obtained from dedicated observing runs from our group and others using the SCUBA camera on the James Clerk Maxwell Telescope. The data were combined using techniques specifically developed here for low signal-to-noise source recovery. The sources found represent over 10% of all cosmological sources SCUBA has detected since it was commissioned. The number of sub-mm galaxies we detect account for a significant fraction of the sub-mm background, and we show that mild extrapolations can reproduce it entirely. We comment on their clustering properties, both with themselves and other high-redshift galaxy types. A multi-wavelength analysis of these galaxies shows that SCUBA sources do not all have similar properties, and are made of a collection including: star-forming radio galaxies; optically invisible objects; active galactic nuclei; and extremely red objects. Reasonable attempts to determine the redshift distribution of the sample show that SCUBA galaxies have a median redshift of around 2, and suggest that the global star formation rate may be dominated by such objects at redshifts beyond about 1. The thesis summarises the current state of extra-galactic sub-mm astronomy, and comments on how new surveys and detectors will allow us to place stronger constraints on the evolution properties of the high-redshift Universe. The research described here was made possible from grants by the Natural Science and Engineering Research Council of Canada, and a generous scholarship from the University of British Columbia.

  11. Star Formation in the Galaxy and the Fluctuating UV Radiation Field

    NASA Technical Reports Server (NTRS)

    Hollenbach, David; Parravano, A.; McKee, C.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    We examine the formation of massive stars in the Galaxy, the resultant fluctuating UV radiation field, and the effect of this Field on the star-forming interstellar medium. Following previous researchers such as Habing (1968), we calculate the average interstellar radiation field at the Solar Circle of the Galaxy. However, our new calculations follow more closely the time dependence of the field at any point. We show that there is a significant difference between the mean field and the median field, and that there are substantial fluctuations of the field (on timescales of order 100 million years) at a given point. Far Ultraviolet Radiation (FUV, photon energies of 6 eV - 13.6 eV) has been recognized as the main source of heating of the neutral interstellar gas. Given the pressure of the interstellar medium (ISM) the FUV field determines whether the thermal balance of the neutral gas results in cold (T approximately 50 - 100 K) clouds (CNM), warm (T about 10,000 K) (WNM), for a combination of the two (the two phase ISM) We present results for the time history of the FUV field for points in the local ISM of the Milky Way Galaxy. The presence of this fluctuating heating rate converts CNM to WNM and vice versa. We show how to calculate the average fractions of the gas in the CNM and WNM when the interstellar gas is subject to this fluctuating FUV field. The knowledge of how these fractions depend on the gas properties (i.e. mean density and composition) and on the FUV-sources (i.e. the star formation rate, or the IMF, or the size distribution of associations) is a basic step in building any detailed model of the large scale behavior of the ISM and the mutual relation between the ISM and the SFR.

  12. Ring currents and poloidal magnetic fields in nuclear regions of galaxies

    NASA Astrophysics Data System (ADS)

    Lesch, H.; Crusius, A.; Schlickeiser, R.; Wielebinski, R.

    1989-06-01

    The origin of observed strong poloidal magnetic fields R(z) in the central regions of galaxies which have gaseous rings is discussed. In the context of galactic disk dynamo models only weak poloidal fields but strong toroidal fields result. The strength of the poloidal fields is tied to the central activity and apply known and tested ideas rigorously. A battery process on galactic scales is discussed which ensures the existence of a large-scale magnetic field in the inner galactic region. The frozen-in field may be amplified by v x B compression and turbulent stretching; the resulting field is poloidal. The central activity provides a flow field which can produce B(z) equal to or greater than B(phi).

  13. Field of Degree and Earnings by Selected Employment Characteristics: 2011. American Community Survey Briefs. ACSBR/11-10

    ERIC Educational Resources Information Center

    Ryan, Camille

    2012-01-01

    This brief provides information about the field or major of bachelor's degrees, earnings, and selected employment characteristics for the population aged 25 and over with a bachelor's degree or higher. Data on field of bachelor's degree was first collected in the American Community Survey (ACS) in 2009. Respondents who reported that their highest…

  14. Remarks on the spherical scalar field halo in galaxies

    SciTech Connect

    Nandi, Kamal K.; Valitov, Ildar; Migranov, Nail G.

    2009-08-15

    Matos, Guzman, and Nunez proposed a model for the galactic halo within the framework of scalar field theory. We argue that an analysis involving the full metric can reveal the true physical nature of the halo only when a certain condition is maintained. We fix that condition and also calculate its impact on observable parameters of the model.

  15. Multi-wavelength SEDs of Herschel-selected Galaxies in the COSMOS Field

    NASA Astrophysics Data System (ADS)

    Lee, Nicholas; Sanders, D. B.; Casey, Caitlin M.; Scoville, N. Z.; Hung, Chao-Ling; Le Floc'h, Emeric; Ilbert, Olivier; Aussel, Hervé; Capak, Peter; Kartaltepe, Jeyhan S.; Roseboom, Isaac; Salvato, Mara; Aravena, M.; Berta, S.; Bock, J.; Oliver, S. J.; Riguccini, L.; Symeonidis, M.

    2013-12-01

    We combine Herschel Photodetector Array Camera and Spectrometer and Spectral and Photometric Imaging Receiver maps of the full 2 deg2 Cosmic Evolution Survey (COSMOS) field with existing multi-wavelength data to obtain template and model-independent optical-to-far-infrared spectral energy distributions (SEDs) for 4218 Herschel-selected sources with log(L IR/L ⊙) = 9.4-13.6 and z = 0.02-3.54. Median SEDs are created by binning the optical to far-infrared (FIR) bands available in COSMOS as a function of infrared luminosity. Herschel probes rest-frame wavelengths where the bulk of the infrared radiation is emitted, allowing us to more accurately determine fundamental dust properties of our sample of infrared luminous galaxies. We find that the SED peak wavelength (λpeak) decreases and the dust mass (M dust) increases with increasing total infrared luminosity (L IR). In the lowest infrared luminosity galaxies (log(L IR/L ⊙) = 10.0-11.5), we see evidence of polycyclic aromatic hydrocarbon (PAH) features (λ ~ 7-9 μm), while in the highest infrared luminosity galaxies (L IR > 1012 L ⊙) we see an increasing contribution of hot dust and/or power-law emission, consistent with the presence of heating from an active galactic nucleus (AGN). We study the relationship between stellar mass and star formation rate of our sample of infrared luminous galaxies and find no evidence that Herschel-selected galaxies follow the SFR/M * "main sequence" as previously determined from studies of optically selected, star-forming galaxies. Finally, we compare the mid-infrared to FIR properties of our infrared luminous galaxies using the previously defined diagnostic, IR8 ≡ L IR/L 8, and find that galaxies with L IR >~ 1011.3 L ⊙ tend to systematically lie above (× 3-5) the IR8 "infrared main sequence," suggesting either suppressed PAH emission or an increasing contribution from AGN heating.

  16. Multi-wavelength seds of Herschel-selected galaxies in the cosmos field

    SciTech Connect

    Lee, Nicholas; Sanders, D. B.; Casey, Caitlin M.; Hung, Chao-Ling; Scoville, N. Z.; Capak, Peter; Bock, J.; Le Floc'h, Emeric; Aussel, Hervé; Ilbert, Olivier; Kartaltepe, Jeyhan S.; Roseboom, Isaac; Oliver, S. J.; Salvato, Mara; Aravena, M.; Berta, S.; Riguccini, L.; Symeonidis, M.

    2013-12-01

    We combine Herschel Photodetector Array Camera and Spectrometer and Spectral and Photometric Imaging Receiver maps of the full 2 deg{sup 2} Cosmic Evolution Survey (COSMOS) field with existing multi-wavelength data to obtain template and model-independent optical-to-far-infrared spectral energy distributions (SEDs) for 4218 Herschel-selected sources with log(L {sub IR}/L {sub ☉}) = 9.4-13.6 and z = 0.02-3.54. Median SEDs are created by binning the optical to far-infrared (FIR) bands available in COSMOS as a function of infrared luminosity. Herschel probes rest-frame wavelengths where the bulk of the infrared radiation is emitted, allowing us to more accurately determine fundamental dust properties of our sample of infrared luminous galaxies. We find that the SED peak wavelength (λ{sub peak}) decreases and the dust mass (M {sub dust}) increases with increasing total infrared luminosity (L {sub IR}). In the lowest infrared luminosity galaxies (log(L {sub IR}/L {sub ☉}) = 10.0-11.5), we see evidence of polycyclic aromatic hydrocarbon (PAH) features (λ ∼ 7-9 μm), while in the highest infrared luminosity galaxies (L {sub IR} > 10{sup 12} L {sub ☉}) we see an increasing contribution of hot dust and/or power-law emission, consistent with the presence of heating from an active galactic nucleus (AGN). We study the relationship between stellar mass and star formation rate of our sample of infrared luminous galaxies and find no evidence that Herschel-selected galaxies follow the SFR/M {sub *} 'main sequence' as previously determined from studies of optically selected, star-forming galaxies. Finally, we compare the mid-infrared to FIR properties of our infrared luminous galaxies using the previously defined diagnostic, IR8 ≡ L {sub IR}/L {sub 8}, and find that galaxies with L {sub IR} ≳ 10{sup 11.3} L {sub ☉} tend to systematically lie above (× 3-5) the IR8 'infrared main sequence', suggesting either suppressed PAH emission or an increasing contribution from

  17. THE UV CONTINUUM OF z > 1 STAR-FORMING GALAXIES IN THE HUBBLE ULTRAVIOLET ULTRADEEP FIELD

    SciTech Connect

    Kurczynski, Peter; Gawiser, Eric; Rafelski, Marc; Teplitz, Harry I.; Acquaviva, Viviana; Brown, Thomas M.; Coe, Dan; Grogin, Norman A.; Koekemoer, Anton M.; De Mello, Duilia F.; Finkelstein, Steven L.; Lee, Kyoung-soo; Scarlata, Claudia; Siana, Brian D.

    2014-09-20

    We estimate the UV continuum slope, β, for 923 galaxies in the range 1 < z < 8 in the Hubble Ultradeep Field (HUDF). These data include 460 galaxies at 1 < z < 2 down to an absolute magnitude M{sub UV}=−14(∼0.006 L{sub z=1}{sup ∗};0.02 L{sub z=0}{sup ∗}), comparable to dwarf galaxies in the local universe. We combine deep HST/UVIS photometry in F225W, F275W, F336W wavebands (UVUDF) with recent data from HST/WFC3/IR (HUDF12). Galaxies in the range 1 < z < 2 are significantly bluer than local dwarf galaxies. We find their mean (median) values <β > = – 1.382(– 1.830) ± 0.002 (random) ± 0.1 (systematic). We find comparable scatter in β (standard deviation = 0.43) to local dwarf galaxies and 30% larger scatter than z > 2 galaxies. We study the trends of β with redshift and absolute magnitude for binned sub-samples and find a modest color-magnitude relation, dβ/dM = –0.11 ± 0.01, and no evolution in dβ/dM with redshift. A modest increase in dust reddening with redshift and luminosity, ΔE(B – V) ∼ 0.1, and a comparable increase in the dispersion of dust reddening at z < 2, appears likely to explain the observed trends. At z > 2, we find trends that are consistent with previous works; combining our data with the literature in the range 1 < z < 8, we find a color evolution with redshift, dβ/dz = –0.09 ± 0.01 for low luminosity (0.05 L{sub z=3}{sup ∗}), and dβ/dz = –0.06 ± 0.01 for medium luminosity (0.25 L{sub z=3}{sup ∗}) galaxies.

  18. Searching for intermediate groups of galaxies with Suzaku in Bootes field

    NASA Astrophysics Data System (ADS)

    Mitsuishi, Ikuyuki; Maejima, Masato; Kobayashi, Hiroaki; Babazaki, Yasunori; Matsumoto, Hironori; Tawara, Yuzuru; Miller, Eric D.

    2015-08-01

    To investigate redshift evolution of groups of galaxies is significant also in terms of galaxy evolution. Recent observational studies show that an AGN fraction and a magnitude gap between the first and the second brightest group galaxies increase in group environments at lower redshifts (Oh et al. 2014 & Gozaliasl et al. 2014). Thus, comprehension for the evolution of the systems will bring us to hints on both morphological evolution of galaxies and galaxy-galaxy interactions. However, observational samples of groups of galaxies at higher redshifts are limited due to its low flux and surface brightness. Thus, we aimed at searching for new samples using both X-ray and optical data. To identify the group systems at higher redshifts, deep optical imaging and spectroscopic data are needed. Bootes field is one of the best regions for this purpose because there are up to 17 bands of data available per source from infrared, optical, UV, and X-ray (e.g., Kenter et al. 2005, Chung et al. 2014). XBootes survey was conducted in 2003 using Chandra (Murray et al. 2005) and X-ray extended sources were detected around intermediate optically-identified groups of galaxies even though Chandra could not reveal their origins due to poor photon statistics. Thus, we conducted X-ray follow-up observations using Suzaku which has low and stable background and thus is optimum for such low surface brightness sources for brightest 6 group candidates with redshifts of 0.15-0.42. Consequently, Suzaku detected excess emissions from all the targets in their images and spectral analysis reveals that 4 sources are originated from group- or poor-cluster-scale halos with temperatures, abundances and luminosities of 1.6-3.0 keV, <0.3 solar and ~1044 erg s-1, respectively while no significant emissions from diffuse sources were found from the other two targets. In this conference, we will report on the details of our analysis and results using multiwavelength data such as radio, optical and X-ray to

  19. Searching for intermediate groups of galaxies with Suzaku in Bootes field

    NASA Astrophysics Data System (ADS)

    Tawara, Yuzuru; Mitsuishi, Ikuyuki

    2016-07-01

    To investigate redshift evolution of groups of galaxies is significant also in terms of galaxy evolution. Recent observational studies show that an AGN fraction and a magnitude gap between the first and the second brightest group galaxies increase in group environments at lower redshifts (Oh et al. 2014 & Gozaliasl et al. 2014). Thus, comprehension for the evolution of the systems will bring us to hints on both morphological evolution of galaxies and galaxy-galaxy interactions. However, observational samples of groups of galaxies at higher redshifts are limited due to its low flux and surface brightness. Thus, we aimed at searching for new samples using both X-ray and optical data. To identify the group systems at higher redshifts, deep optical imaging and spectroscopic data are needed. Bootes field is one of the best regions for this purpose because there are up to 17 bands of data available per source from infrared, optical, UV, and X-ray (e.g., Kenter et al. 2005, Chung et al. 2014). XBootes survey was conducted in 2003 using Chandra (Murray et al. 2005) and X-ray extended sources were detected around intermediate optically-identified groups of galaxies even though Chandra could not reveal their origins due to poor photon statistics. Thus, we conducted X-ray follow-up observations using Suzaku which has low and stable background and thus is optimum for such low surface brightness sources for brightest 6 group candidates with redshifts of 0.15-0.42. Consequently, Suzaku detected excess emissions from all the targets in their images and spectral analysis reveals that 6 sources are originated from group- or poor-cluster-scale halos with temperatures, abundances and luminosities of 1.6-3.0 keV, <0.3 solar and ~1044 erg s-1, respectively. In this conference, we will report on the details of our analysis and results using multiwavelength data such as radio, optical and X-ray to examine the AGN fractions and magnitude gaps in our samples and discuss the redshift

  20. VIRUS-W: an integral field unit spectrograph dedicated to the study of spiral galaxy bulges

    NASA Astrophysics Data System (ADS)

    Fabricius, Maximilian H.; Barnes, Stuart; Bender, Ralf; Drory, Niv; Grupp, Frank; Hill, Gary J.; Hopp, Ulrich; MacQueen, Phillip J.

    2008-07-01

    We present the design, layout and performance estimates for a fiber based Integral Field Unit spectrograph. This instrument is built for flexible use at different telescopes, and in particular for the new 2m telescope on Mount Wendelstein in the Bavarian Alps. Based on the VIRUS spectrograph for the HETDEX experiment, the proposed instrument will have a fiber head consisting of 267 optical fibers. The large angular field of view of 150×75 arcseconds will allow full coverage of the bulge regions of most local late type galaxies in one or two pointings. Realized by the usage of VPH gratings, a R ~ 2500 and a R ~ 6800 mode with 850Å and 515Å wavelength coverage will be dedicated to the study of stellar populations and kinematics of late type galaxy bulges.

  1. A Morphological Study of Compact Narrow Emission Line Galaxies In The COSMOS Field

    NASA Astrophysics Data System (ADS)

    Baldassare, Vivienne; Feldman, D.; Greenbaum, A.; Hasan, I.; Mahalchick, S.; Liu, C.; COSMOS Team

    2010-01-01

    We present a morphological study of 139 spectroscopically selected compact narrow emission line galaxies (CNELGs) from the COSMOS HST Treasury Survey, using a comparison sample of field galaxies of similar magnitude obtained from the COSMOS field. The CNELGs range in magnitude from 18.13 < V < 21.95 and in redshift from 0 < z < 0.9. Preliminary results indicate that, whereas statistically the CNELGs are clearly morphologically distinct from our comparison sample, at HST resolution they are also clearly not all - or even predominantly - "compact." This work was supported by an NSF REU Site grant to The City University of New York and American Museum of Natural History; an NSF STEAM grant to the College of Staten Island; the NASA New York Space Grant program; Barnard College; and the CUNY Macaulay Honors College.

  2. UBVRI photoelectric photometry in the fields of fifteen active galaxies

    NASA Astrophysics Data System (ADS)

    Hamuy, Mario; Maza, Jose

    1989-03-01

    UVBRI photoelectric sequences for fifteen AGNs were obtained with 0.6, 0.9, and 1-m telescopes. The data include 473 observations for 118 stars, giving an average of 4.0 observations per star, and 7.9 stars per sequence. Tables are presented of the fields observed, the magnitudes and colors of the sequence stars, and the mean differences between the results and those of other studies.

  3. The Spatial Energy Spectrum of Magnetic Fields in Our Galaxy

    NASA Astrophysics Data System (ADS)

    Han, J. L.; Ferriere, K.; Manchester, R. N.

    2004-08-01

    Interstellar magnetic fields exist over a broad range of spatial scales, extending from large Galactic scales (~10 kpc) down to very small dissipative scales (<<1 pc). In this paper, we use a set of 490 pulsars distributed over roughly one-third of the Galactic disk out to a radius R~=10 kpc (assuming Rsolar=8.5 kpc) and combine their observed rotation and dispersion measures with their estimated distances to derive the spatial energy spectrum of the Galactic interstellar magnetic field over the scale range 0.5-15 kpc. We obtain a nearly flat spectrum, with a one-dimensional power-law index α=-0.37+/-0.10 for EB(k)=Ckα and an rms field strength of approximately 6 μG over the relevant scales. Our study complements the derivation of the magnetic energy spectrum over the scale range 0.03-100 pc by Minter & Spangler, showing that the magnetic spectrum becomes flatter at larger scales. This observational result is discussed in the framework of current theoretical and numerical models.

  4. Accreting SMBH in the COSMOS field: the connection to their host galaxies .

    NASA Astrophysics Data System (ADS)

    Merloni, A.; Bongiorno, A.

    Using the rich multi-band photometry in the COSMOS field we explore the host galaxy properties of a large, complete, sample of X-ray and spectroscopically selected AGN. Based on a two-components fit to their Spectral Energy Distribution (SED) we derive rest-frame magnitudes, colours, stellar masses and star formation rates up to z˜ 3. The probability for a galaxy to host a black hole growing at any given specific accretion rate (the ratio of X-ray luminosity to the host stellar mass) is independent of the galaxy mass and follows a power-law distribution in L_X/M. By looking at the normalisation of such a probability distribution, we show how the incidence of AGN increases with redshift as rapidly as (1+z)4.2, in close resemblance with the overall evolution of the specific star formation rate. Although AGN activity and star formation appear to have a common triggering mechanism, we do not find any 'smoking gun' signalling powerful AGN influence on the global properties of their host galaxies.

  5. Behaviour of the low degree terms of the Earth gravity field over the last 30 years

    NASA Astrophysics Data System (ADS)

    Biancale, R.; Lemoine, J.-M.; Reinquin, F.; Deleflie, F.; Ramillien, G.; Gégout, P.

    2012-04-01

    The GRACE mission has revealed since 2002 the recent evolution of the Earth's gravity field with a resolution down to 400 km, equivalent to degree and order 50 in spherical harmonics. Precise orbit computation for altimetric satellites can obviously gain by applying these variations, which are classically given, as in recent EIGEN models, as drifts and periodic terms (yearly and semi-yearly). However extrapolating these variations to pre-GRACE periods, mainly the drifts, can be problematic for orbit computation performances on former altimetric satellites. One option is to analyse older satellite data, in particular SLR data on geodetic satellites, in order to assess the very low degree variations of the gravity field and compare it to the GRACE determination. This can be done over the last 30 years, using for instance the Lageos and Lageos-2, Starlette and Stella satellites. The spherical harmonic degrees that can be accessed in this way are degrees 2 to 4. Additional information on degree 2 can be derived from the analysis of the Earth orientation parameters, pole coordinates and length of day (LOD), which have been observed over a long period with great accuracy by astrometric, satellite geodetic and extra-galactic means. Once corrected for atmospheric and oceanic load and velocity variations, the pole coordinates will principally bring information on the C(2,1) and S(2,1) coefficients, while the LOD will principally be connected with the C(2,0). Combining these two approaches allows a better observation of the temporal evolution of the gravity field over a long time span and a more realistic modelling of it for the precise orbit computation of past altimeter missions.

  6. Disc colours in field and cluster spiral galaxies at 0.5 ≲z ≲ 0.8

    NASA Astrophysics Data System (ADS)

    Cantale, Nicolas; Jablonka, Pascale; Courbin, Frédéric; Rudnick, Gregory; Zaritsky, Dennis; Meylan, Georges; Desai, Vandana; De Lucia, Gabriella; Aragón-Salamanca, Alfonso; Poggianti, Bianca M.; Finn, Rose; Simard, Luc

    2016-05-01

    We present a detailed study of the colours of late-type galaxy discs for ten of the EDisCS galaxy clusters with 0.5 ≲ z ≲ 0.8. Our cluster sample contains 172 spiral galaxies, and our control sample is composed of 96 field disc galaxies. We deconvolved their ground-based V and I images obtained with FORS2 at the VLT with initial spatial resolutions between 0.4 and 0.8 arcsec to achieve a final resolution of 0.1 arcsec with 0.05 arcsec pixels, which is close to the resolution of the ACS at the HST. After removing the central region of each galaxy to avoid pollution by the bulges, we measured the V-I colours of the discs. We find that 50% of cluster spiral galaxies have disc V-I colours redder by more than 1σ of the mean colours of their field counterparts. This is well above the 16% expected for a normal distribution centred on the field disc properties. The prominence of galaxies with red discs depends neither on the mass of their parent cluster nor on the distance of the galaxies to the cluster cores. Passive spiral galaxies constitute 20% of our sample. These systems are not abnormally dusty. They are are made of old stars and are located on the cluster red sequences. Another 24% of our sample is composed of galaxies that are still active and star forming, but less so than galaxies with similar morphologies in the field. These galaxies are naturally located in the blue sequence of their parent cluster colour-magnitude diagrams. The reddest of the discs in clusters must have stopped forming stars more than ~5 Gyr ago. Some of them are found among infalling galaxies, suggesting preprocessing. Our results confirm that galaxies are able to continue forming stars for some significant period of time after being accreted into clusters, and suggest that star formation can decline on seemingly long (1 to 5 Gyr) timescales.

  7. Systematic differences between the field and cluster elliptical galaxies

    NASA Technical Reports Server (NTRS)

    De Carvalho, R. R.; Djorgovski, S.

    1992-01-01

    Multivariate statistical techniques and fundamental plane fits are used here to study possible systematic differences between field ellipticals (FEs) and cluster ellipticals (CEs). The FEs show more intrinsic scatter in their properties, especially when stellar population variables are included. Pairwise correlations for the two samples are different; the correlations are systematically better for the cluster sample, meaning that ellipticals in the two samples populate their fundamental planes in different ways. Bivariate correlations are different for the two samples, implying that they have different fundamental planes. This is especially true for the correlations which include the population variables Mg2 and (B-V), which are sensitive both to the enrichment history and the storm formation history.

  8. Young Galaxy Candidates in the Hubble Frontier Fields. III. MACS J0717.5+3745

    NASA Astrophysics Data System (ADS)

    Laporte, N.; Infante, L.; Troncoso Iribarren, P.; Zheng, W.; Molino, A.; Bauer, F. E.; Bina, D.; Broadhurst, Tom; Chilingarian, I.; Huang, X.; Garcia, S.; Kim, S.; Marques-Chaves, R.; Moustakas, J.; Pelló, R.; Pérez-Fournon, I.; Shu, X.; Streblyanska, A.; Zitrin, A.

    2016-04-01

    In this paper we present the results of our search for and study of z≳ 6 galaxy candidates behind the third Frontier Fields (FFs) cluster, MACS J0717.5+3745, and its parallel field, combining data from Hubble and Spitzer. We select 39 candidates using the Lyman break technique, for which the clear non-detection in optical make the extreme mid-z interlopers hypothesis unlikely. We also take benefit from z≳ 6 samples selected using the previous FF data sets of Abell 2744 and MACS 0416 to improve the constraints on the properties of very high redshift objects. We compute the redshift and the physical properties such emission lines properties, star formation rate, reddening, and stellar mass for all FF objects from their spectral energy distribution using templates including nebular emission lines. We study the relationship between several physical properties and confirm the trend already observed in previous surveys for evolution of star formation rate with galaxy mass and between the size and the UV luminosity of our candidates. The analysis of the evolution of the UV luminosity function with redshift seems more compatible with an evolution of density. Moreover, no robust z≥slant 8.5 object is selected behind the cluster field and few z˜ 9 candidates have been selected in the two previous data sets from this legacy survey, suggesting a strong evolution in the number density of galaxies between z˜ 8 and 9. Thanks to the use of the lensing cluster, we study the evolution of the star formation rate density produced by galaxies with L > 0.03 {L}\\star , and confirm the strong decrease observed between z˜ 8 and 9.

  9. Properties of submillimeter galaxies in the CANDELS-S goods-south field

    SciTech Connect

    Wiklind, Tommy; Dahlen, Tomas; Ferguson, Henry C.; Grogin, Norman A.; Koekemoer, Anton M.; Dickinson, Mark E.; Guo, Yicheng; Barro, Guillermo; Fontana, Adriano; Castellano, Marco; Davé, Romeel; Yan, Haojing; Acquaviva, Viviana; Ashby, Matthew L. N.; Caputi, Karina I.; Dekel, Avishai; Donley, Jennifer L.; and others

    2014-04-20

    We derive physical properties of 10 submillimeter galaxies located in the CANDELS coverage of the GOODS-S field. The galaxies were first identified as submillimeter sources with the LABOCA bolometer and subsequently targeted for 870 μm continuum observation with ALMA. The high angular resolution of the ALMA imaging allows secure counterparts to be identified in the CANDELS multiband data set. The CANDELS data provide deep photometric data from UV through near-infrared wavelengths. Using synthetic spectral energy distributions, we derive photometric redshifts, stellar masses, extinction, ages, and the star formation history. The redshift range is z = 1.65-4.76, with two of the galaxies located at z > 4. Two submillimeter galaxy (SMG) counterparts have stellar masses 2-3 orders of magnitude lower than the rest. The remaining SMG counterparts have stellar masses around 1 × 10{sup 11} M {sub ☉}. The stellar population in the SMGs is typically older than the expected duration of the submillimeter phase, suggesting that the star formation history of SMGs is more complex than a single burst. Non-parametric morphology indices suggest that the SMG counterparts are among the most asymmetric systems compared with galaxies of the same stellar mass and redshift. The Hubble Space Telescope images show that three of the SMGs are associated with ongoing mergers. The remaining counterparts are isolated. Estimating the dust and molecular gas mass from the submillimeter fluxes, and comparing with our stellar masses shows that the gas mass fraction of SMGs is ∼28% and that the final stellar mass is likely to be ∼(1-2) × 10{sup 11} M {sub ☉}.

  10. THE ROTATION PROFILE OF SOLAR MAGNETIC FIELDS BETWEEN {+-}60 Degree-Sign LATITUDES

    SciTech Connect

    Shi, X. J.; Xie, J. L.

    2013-08-10

    Through a cross-correlation analysis of the Carrington synoptic maps of solar photospheric magnetic fields from Carrington Rotation Nos. 1625 to 2129 (from 1975 February to 2012 October), the sidereal rotation rates of solar magnetic fields between {+-}60 Degree-Sign latitudes are investigated. It seems that the temporal variation of rotation rates should be related to the solar cycle phase. The rotation profile of magnetic fields is obtained: the sidereal rotation rates decrease from the equator to mid-latitude and reach their minimum values of about 13.16 deg day{sup -1} (13.17 deg day{sup -1}) at 53 Degree-Sign (54 Degree-Sign ) latitude in the northern (southern) hemisphere, then increase toward higher latitudes. This rotation profile is different from the differential rotation law obtained by Snodgrass from a cross-correlation analysis of daily magnetograms, in which the rotation rates show a steep decrease from the equator to the poles. However, it is much closer to the quasi-rigid rotation law derived by Stenflo from an auto-correlation analysis of daily magnetograms. Some possible interpretations are discussed for the resulting rotation profile.

  11. X-Ray Properties of Lyman Break Galaxies in the Hubble Deep Field North Region

    NASA Technical Reports Server (NTRS)

    Nandra, K.; Mushotzky, R. F.; Arnaud, K.; Steidel, C. C.; Adelberger, K. L.; Gardner, J. P.; Teplitz, H. I.; Windhorst, R. A.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We describe the X-ray properties of a large sample of z approximately 3 Lyman Break Galaxies (LBGs) in the region of the Hubble Deep Field North, derived from the 1 Ms public Chandra observation. Of our sample of 148 LBGs, four are detected individually. This immediately gives a measure of the bright AGN (active galactic nuclei) fraction in these galaxies of approximately 3 per cent, which is in agreement with that derived from the UV (ultraviolet) spectra. The X-ray color of the detected sources indicates that they are probably moderately obscured. Stacking of the remainder shows a significant detection (6 sigma) with an average luminosity of 3.5 x 10(exp 41) erg/s per galaxy in the rest frame 2-10 keV band. We have also studied a comparison sample of 95 z approximately 1 "Balmer Break" galaxies. Eight of these are detected directly, with at least two clear AGN based on their high X-ray luminosity and very hard X-ray spectra respectively. The remainder are of relatively low luminosity (< 10(exp 42) erg/s, and the X-rays could arise from either AGN or rapid star-formation. The X-ray colors and evidence from other wavebands favor the latter interpretation. Excluding the clear AGN, we deduce a mean X-ray luminosity of 6.6 x 10(exp 40) erg/s, a factor approximately 5 lower than the LBGs. The average ratio of the UV and X-ray luminosities of these star forming galaxies L(sub UV)/L (sub X), however, is approximately the same at z = 1 as it is at z = 3. This scaling implies that the X-ray emission follows the current star formation rate, as measured by the UV luminosity. We use our results to constrain the star formation rate at z approximately 3 from an X-ray perspective. Assuming the locally established correlation between X-ray and far-IR (infrared) luminosity, the average inferred star formation rate in each Lyman break galaxy is found to be approximately 60 solar mass/yr, in excellent agreement with the extinction-corrected UV estimates. This provides an external

  12. The WSRT wide-field H I survey. I. The background galaxy sample

    NASA Astrophysics Data System (ADS)

    Braun, R.; Thilker, D.; Walterbos, R. A. M.

    2003-08-01

    We have used the Westerbork array to carry out an unbiased wide-field survey for H I emission features, achieving an RMS sensitivity of about 18 mJy/Beam at a velocity resolution of 17 km s-1 over 1800 deg2 and between -1000 < VHel <+6500 km s-1. The primary data consists of auto-correlation spectra with an effective angular resolution of 49' FWHM, although cross-correlation data were also acquired. The survey region is centered approximately on the position of Messier 31 and is Nyquist-sampled over 60x 30o in RA x Dec. More than 100 distinct features are detected at high significance in each of the two velocity regimes (negative and positive LGSR velocities). In this paper we present the results for our H I detections of external galaxies at positive LGSR velocity. We detect 155 external galaxies in excess of 8sigma in integrated H I flux density. Plausible optical associations are found within a 30' search radius for all but one of our H I detections in DSS images, although several are not previously cataloged or do not have published red-shift determinations. Our detection without a DSS association is at low galactic latitude. Twenty-three of our objects are detected in H I for the first time. We classify almost half of our detections as ``confused'', since one or more companions is cataloged within a radius of 30' and a velocity interval of 400 km s-1. We identify a handful of instances of significant positional offsets exceeding 10 kpc of unconfused optical galaxies with the associated H I centroid, possibly indicative of severe tidal distortions or uncataloged gas-rich companions. A possible trend is found for an excess of detected H I flux in unconfused galaxies within our large survey beam relative to that detected previously in smaller telescope beams, both as function of increasing distance and increasing gas mass. This may be an indication for a diffuse gaseous component on 100 kpc scales in the environment of massive galaxies or a population of

  13. Is Sextans dwarf galaxy in a scalar field dark matter halo?

    SciTech Connect

    Lora, V.; Magaña, Juan E-mail: juan.magana@uv.cl

    2014-09-01

    The Bose-Einstein condensate/scalar field dark matter model, considers that the dark matter is composed by spinless-ultra-light particles which can be described by a scalar field. This model is an alternative model to the Λ-cold dark matter paradigm, and therefore should be studied at galactic and cosmological scales. Dwarf spheroidal galaxies have been very useful when studying any dark matter theory, because the dark matter dominates their dynamics. In this paper we study the Sextans dwarf spheroidal galaxy, embedded in a scalar field dark matter halo. We explore how the dissolution time-scale of the stellar substructures in Sextans, constrain the mass, and the self-interacting parameter of the scalar field dark matter boson. We find that for masses in the range (0.12< m{sub φ}<8) ×10{sup -22} eV, scalar field dark halos without self-interaction would have cores large enough to explain the longevity of the stellar substructures in Sextans, and small enough mass to be compatible with dynamical limits. If the self-interacting parameter is distinct to zero, then the mass of the boson could be as high as m{sub φ}≈2×10{sup -21} eV, but it would correspond to an unrealistic low mass for the Sextans dark matter halo . Therefore, the Sextans dwarf galaxy could be embedded in a scalar field/BEC dark matter halo with a preferred self-interacting parameter equal to zero.

  14. Interaction of Radio Jets with Magnetic Fields in Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Soker, Noam

    1997-10-01

    High Faraday rotation measures in the centers of cooling-flow clusters indicate the presence of strong magnetic fields. We examine the effects of these strong fields on the propagation of radio jets emerging from the central cD galaxies of these clusters, and the deformation of the magnetic fields by the fast-propagating jets. We argue that active regions will develop around these radio jets as a result of the violent response of the strong ambient magnetic fields. The magnetic tension can act back on the jets by influencing the development of Rayleigh-Taylor and Kelvin-Helmholtz instability modes, and by exerting a nonaxisymmetric force on the jets. If the jet propagation direction is not along the magnetic field lines, then the jet will be sharply bent by the magnetic tension. Future MHD numerical simulations that will study these effects more quantitatively should be compared directly with specific clusters. If, indeed, some properties of jets expanding from cD galaxies in cooling-flow clusters will turn out to result from interaction with strong magnetic fields in the intracluster medium at the centers of these clusters, then this will strengthen the cooling-flow model, since it will support the presence of inflow.

  15. Using the morphology and magnetic fields of tailed radio galaxies as environmental probes

    NASA Astrophysics Data System (ADS)

    Johnston-Hollitt, M.; Dehghan, S.; Pratley, L.

    2015-03-01

    Bent-tailed (BT) radio sources have long been known to trace over densities in the Universe up to z ~ 1 and there is increasing evidence this association persists out to redshifts of 2. The morphology of the jets in BT galaxies is primarily a function of the environment that they have resided in and so BTs provide invaluable clues as to their local conditions. Thus, not only can samples of BT galaxies be used as signposts of large-scale structure, but are also valuable for obtaining a statistical measurement of properties of the intra-cluster medium including the presence of cluster accretion shocks & winds, and as historical anemometers, preserving the dynamical history of their surroundings in their jets. We discuss the use of BTs to unveil large-scale structure and provide an example in which a BT was used to unlock the dynamical history of its host cluster. In addition to their use as density and dynamical indicators, BTs are useful probes of the magnetic field on their environment on scales which are inaccessible to other methods. Here we discuss a novel way in which a particular sub-class of BTs, the so-called `corkscrew' galaxies might further elucidate the coherence lengths of the magnetic fields in their vicinity. Given that BTs are estimated to make up a large population in next generation surveys we posit that the use of jets in this way could provide a unique source of environmental information for clusters and groups up to z = 2.

  16. The unusual field of the quasar 3C 336 - Identification of three foreground Mg II absorbing galaxies

    NASA Technical Reports Server (NTRS)

    Steidel, Charles C.; Dickinson, Mark

    1992-01-01

    Imaging and spectroscopic observations of the field of the QSO 3C 336 (z = 0.927), whose absorption spectrum exhibits at least three Mg II 2796, 2803-A absorption systems with z sub abs less than z sub em, making it the richest low-redshift absorption spectrum observed in a recently completed absorption line survey. The most intrinsically faint Mg II absorbing galaxy yet discovered is tentatively identified. With z equal to 0.472 and B greater than 24, its properties strongly resemble those of the so-called faint blue galaxies found in deep imaging and spectroscopic surveys for field galaxies. The implications of this very complex field for the general properties of galaxies producing heavy element absorption systems in the spectra of QSOs are discussed.

  17. A Study of E+A Galaxies Through SDSS-MaNGA Integral Field Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wally, Muhammad; Weaver, Olivia A.; Anderson, Miguel Ricardo; Liu, Allen; Falcone, Julia; Wallack, Nicole Lisa; James, Olivia; Liu, Charles

    2017-01-01

    We outline the selection process and analysis of sixteen E+A galaxies observed by the Mapping Nearby Galaxies at the Apache Point Observatory (MaNGA) survey as a part of the fourth generation of the Sloan Digital Sky Survey (SDSS-IV). We present their Integral field spectroscopy and analyze their spatial distribution of stellar ages, metallicities and other stellar population properties. We can potentially study the variation in these properties as a function of redshift. This work was supported by the Alfred P. Sloan Foundation via the SDSS-IV Faculty and Student Team (FAST) initiative, ARC Agreement #SSP483 to the CUNY College of Staten Island. This work was also supported by grants to The American Museum of Natural History, and the CUNY College of Staten Island through The National Science Foundation.

  18. ACS Nearby Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Dalcanton, Julianne

    2006-07-01

    Existing HST observations of nearby galaxies comprise a sparse and highly non-uniform archive, making comprehensive comparative studies among galaxies essentially impossible. We propose to secure HST's lasting impact on the study of nearby galaxies by undertaking a systematic, complete, and carefully crafted imaging survey of ALL galaxies in the Local Universe outside the Local Group. The resulting images will allow unprecedented measurements of: {1} the star formation history {SFH} of a >100 Mpc^3 volume of the Universe with a time resolution of Delta[log{t}]=0.25; {2} correlations between spatially resolved SFHs and environment; {3} the structure and properties of thick disks and stellar halos; and {4} the color distributions, sizes, and specific frequencies of globular and disk clusters as a function of galaxy mass and environment. To reach these goals, we will use a combination of wide-field tiling and pointed deep imaging to obtain uniform data on all 72 galaxies within a volume-limited sample extending to 3.5 Mpc, with an extension to the M81 group. For each galaxy, the wide-field imaging will cover out to 1.5 times the optical radius and will reach photometric depths of at least 2 magnitudes below the tip of the red giant branch throughout the limits of the survey volume. One additional deep pointing per galaxy will reach SNR 10 for red clump stars, sufficient to recover the ancient SFH from the color-magnitude diagram. This proposal will produce photometric information for 100 million stars {comparable to the number in the SDSS survey} and uniform multi-color images of half a square degree of sky. The resulting archive will establish the fundamental optical database for nearby galaxies, in preparation for the shift of high-resolution imaging to the near-infrared.

  19. Searching for Galaxy Overdensities in the Fields of 10 z>6 Quasars

    NASA Astrophysics Data System (ADS)

    Bradli, Jaclyn C.; Walter, Fabian; Venemans, Bram; Decarli, Roberto; Zschaechner, Laura

    2016-01-01

    The highest-redshift quasars (z>6) host supermassive black holes (MBH > 1e9 M⊙) and presumably reside in massive host galaxies located in some of the largest galaxy overdensities at early cosmic epochs. However, optical searches for such overdensities have so far been inconclusive. One caveat is that the sources could be too faint in optical wavelengths, so while overdensities may be present, they must be detected at a longer wavelength regime. The Atacama Large Millimeter Array (ALMA) now provides the sensitivity and resolution required to detect and resolve faint sources at very high redshift (z>5-6). Instead of blind surveys, the data we present are observations of known bright quasars from the ALMA archive. Examining the sidelines of these quasars and comparing them with the number count of sources in blind surveys enables us to learn whether quasars are present in galaxy overdensities or if their environments are indistinguishable from a blank field. We use ALMA cycle 0, 1 and 2 data to map the vicinity of ten quasars at z>6 in the continuum at ~1.2mm, tracing the far infrared dust emission, to perform an independent search for companions around the quasars. We also examine the presence of the [CII] line in these fields. We compare the number density of such sources to 'blank field' studies to see if there is evidence for an overdensity of sources in the immediate vicinity of the quasars. Either outcome ('overdensity' or 'no overdensity') would have important implications for early structure formation. Preliminary results show there is an excess of positive flux in these fields, and there is a total of a few (<10) +5σ detections in the ten fields, but further work to estimate the number of spurious detections is necessary.

  20. The Extent of Magnetic Fields around Galaxies out to z ~ 1

    NASA Astrophysics Data System (ADS)

    Bernet, M. L.; Miniati, F.; Lilly, S. J.

    2013-08-01

    Radio quasar sightlines with strong Mg II absorption lines display statistically enhanced Faraday rotation measures (RMs), indicating the presence of additional magneto-active plasma with respect to sightlines free of such absorption. In this Letter, we use multi-color optical imaging to identify the galaxies likely hosting the magneto-active plasma, and to constrain the location of the latter with respect to the putative parent halo. We find that all of the sightlines with high |RM| pass within 50 kpc of a galaxy and that the |RM| distribution for low impact parameters, D < 50 kpc, is significantly different than for larger impact parameters. In addition, we find a decrease in the ratio of the polarization at 21 cm and 1.5 cm, p 21/p 1.5, toward lower D. These two effects are most likely related, strengthen the association of excess |RM| with intervening galaxies, and suggest that intervening galaxies operate as inhomogeneous Faraday screens. These results are difficult to reconcile with only a disk model for the magnetic field, but are consistent with highly magnetized winds associated with Mg II systems. We infer strong magnetic fields of a few tens of μG, consistent with the values required by the lack of evolution of the FIR-radio correlation at high redshifts. Finally, these findings lend support to the idea that the small-scale helicity bottleneck of α-Ω galactic dynamos can be significantly alleviated via galactic winds. Based on observations made with the ESO Telescopes at the La Silla Observatories under program 082.A-0917 and 085.A-0417.

  1. Star Formation in the Galaxy and the Fluctuating UV Radiation Field

    NASA Technical Reports Server (NTRS)

    Hollenbach, David; Parravano, Antonio; McKee, Christopher H.; Fonda, Mark (Technical Monitor)

    2001-01-01

    We examine the formation of massive stars in the Galaxy, the resultant fluctuating UV radiation field, and the effect of this field on the star-forming interstellar medium (ISM). There are substantial fluctuations of the UV radiation field in space (scales of 100's of parsecs) and time (time-scales of order 100 million years) at the solar circle. The Far Ultraviolet (FUV) (6 eV< hv < 13.6 eV) field and the pressure determines whether the thermal balance of the neutral gas results in cold clouds or warm (T - 10(exp 4) neutral medium. We show how to calculate the average fractions of the gas in the cold and warm phases when the interstellar gas is subject to this fluctuating FUV field. The knowledge of how these fractions depend on the gas properties and on the FUV sources is a basic step in building a model of the large scale behavior of the ISM and the mutual relation between the ISM and the star formation rate. Application is made to observations of spiral galaxies which correlate the star formation rate per unit area with the surface density of the gas. We acknowledge support from the NASA Astrophysical Theory program.

  2. A 360-degree floating 3D display based on light field regeneration.

    PubMed

    Xia, Xinxing; Liu, Xu; Li, Haifeng; Zheng, Zhenrong; Wang, Han; Peng, Yifan; Shen, Weidong

    2013-05-06

    Using light field reconstruction technique, we can display a floating 3D scene in the air, which is 360-degree surrounding viewable with correct occlusion effect. A high-frame-rate color projector and flat light field scanning screen are used in the system to create the light field of real 3D scene in the air above the spinning screen. The principle and display performance of this approach are investigated in this paper. The image synthesis method for all the surrounding viewpoints is analyzed, and the 3D spatial resolution and angular resolution of the common display zone are employed to evaluate display performance. The prototype is achieved and the real 3D color animation image has been presented vividly. The experimental results verified the representability of this method.

  3. Are We Ready for the Bachelor's Degree in Educational Technology? Perceptions from the Field and a Proposal

    ERIC Educational Resources Information Center

    Ritzhaupt, Albert D.; Kang, YoungJu

    2015-01-01

    Some in the field of educational technology have called for offering bachelor's degrees. Unfortunately, the literature base only provides guidance on designing, developing, and delivering master's and doctoral degree programs. This article, in distinction, focuses on the design of a bachelor's degree program by focusing on the perceptions of…

  4. Commentary: collaboration in dual degree programs contributes something new to both fields.

    PubMed

    Boumil, Marcia M

    2014-05-01

    Dual degree programs in public health and law have blossomed in the United States and beyond. They are traditionally promoted on the premise that public health efforts often require legal authority to legitimize and implement their goals and objectives, and that participation of lawyers safeguards respect for individual rights, privacy, and autonomy against governmental intrusion in furtherance of public health objectives. Thus, lawyers who understand public health are far more valuable in promoting population health than traditional constitutional and administrative law practitioners without such understanding. On the public health side, epidemiologists and other practitioners trained in the law ensure that reliable data inform public policy. In the classroom, we have found that dual degree students enrich the educational experience in both fields, broadening understanding and creating conversations that transcend law or public health alone.

  5. SPECTROSCOPIC CONFIRMATION OF FAINT LYMAN BREAK GALAXIES NEAR REDSHIFT FIVE IN THE HUBBLE ULTRA DEEP FIELD

    SciTech Connect

    Rhoads, James E.; Malhotra, Sangeeta; Cohen, Seth; Grogin, Norman; Hathi, Nimish; Ryan, Russell; Straughn, Amber; Windhorst, Rogier A. Pirzkal, Norbert; Xu Chun; Koekemoer, Anton; Panagia, Nino; Dickinson, Mark; Ferreras, Ignacio; Gronwall, Caryl; Kuemmel, Martin; Walsh, Jeremy; Meurer, Gerhardt; Pasquali, Anna; Yan, H.-J.

    2009-05-20

    We present the faintest spectroscopically confirmed sample of z {approx} 5 Lyman break galaxies (LBGs) to date. The sample is based on slitless grism spectra of the Hubble Ultra Deep Field region from the Grism ACS Program for Extragalactic Science (GRAPES) and Probing Evolution and Reionization Spectroscopically (PEARS) projects, using the G800L grism on the Hubble Space Telescope Advanced Camera for Surveys. We report here confirmations of 39 galaxies, preselected as candidate LBGs using photometric selection criteria. We compare a 'traditional' V-dropout selection, based on the work of Giavalisco et al., to a more liberal one (with V - i > 0.9), and find that the traditional criteria are about 64% complete and 81% reliable. We also study the Ly{alpha} emission properties of our sample. We find that Ly{alpha} emission is detected in {approx}1/4 of the sample, and that the liberal V-dropout color selection includes {approx}55% of previously published line-selected Ly{alpha} sources. Finally, we examine our stacked two-dimensional spectra. We demonstrate that strong, spatially extended ({approx}1'') Ly{alpha} emission is not a generic property of these LBGs, but that a modest extension of the Ly{alpha} photosphere (compared to the starlight) may be present in those galaxies with prominent Ly{alpha} emission.

  6. WIDE-FIELD MULTIBAND PHOTOMETRY OF GLOBULAR CLUSTER SYSTEMS IN THE FORNAX GALAXY CLUSTER

    SciTech Connect

    Kim, Hak-Sub; Yoon, Suk-Jin; Chung, Chul; Lee, Sang-Yoon; Lee, Young-Wook; Sohn, Sangmo Tony; Kim, Sang Chul; Kim, Eunhyeuk

    2013-01-20

    We present wide-field multiband photometry of globular cluster (GC) systems in NGC 1399, NGC 1404, and NGC 1387 located in the central region of the Fornax galaxy cluster. Observation was carried out through U, B, V, and I bands, which marks one of the widest and deepest U-band studies on extragalactic GC systems. The present U-band photometry enables us to significantly reduce the contamination by a factor of two for faint sources (V {sub 0} {approx} 23.5). The main results based on some 2000 GC candidates around NGC 1399, NGC 1404, and NGC 1387 are as follows: (1) the GC system in each galaxy exhibits bimodal color distributions in all colors examined, but the shape of color histograms varies systematically depending on colors; (2) NGC 1399 shows that the mean colors of both blue and red GCs become bluer with increasing galactocentric radius; (3) NGC 1399 shows overabundance of GCs in the directions of NGC 1404 and NGC 1387, indicating their ongoing interactions; and (4) NGC 1399 also exhibits a {approx}0.'5 offset between the center of the inner GC distribution and the galaxy's optical center, suggesting that NGC 1399 is not yet dynamically relaxed and may be undergoing merger events.

  7. The galaxy luminosity-size relation and selection biases in the Hubble Ultra Deep Field

    NASA Astrophysics Data System (ADS)

    Cameron, E.; Driver, S. P.

    2007-05-01

    We use the Hubble Ultra Deep Field to study the galaxy luminosity-size (M-Re) distribution. With a careful analysis of selection effects due to both detection completeness and measurement reliability, we identify bias-free regions in the M-Re plane for a series of volume-limited samples. By comparison to a nearby survey also having well-defined selection limits, namely the Millennium Galaxy Catalogue, we present clear evidence for evolution in surface brightness since z ~ 0.7. Specifically, we demonstrate that the mean, rest-frame B-band <μ>e for galaxies in a sample spanning 8 mag in luminosity between MB = -22 and -14 mag increases by ~1.0 mag arcsec-2 from z ~ 0.1 to 0.7. We also highlight the importance of considering surface brightness-dependent measurement biases in addition to incompleteness biases. In particular, the increasing, systematic underestimation of Kron fluxes towards low surface brightnesses may cause diffuse, yet luminous, systems to be mistaken for faint, compact objects.

  8. Weak lensing calibrated M-T scaling relation of galaxy groups in the cosmos field

    SciTech Connect

    Kettula, K.; Finoguenov, A.; Massey, R.; Rhodes, J.; Hoekstra, H.; Taylor, J. E.; Spinelli, P. F.; Tanaka, M.; Ilbert, O.; Capak, P.; McCracken, H. J.; Koekemoer, A.

    2013-11-20

    The scaling between X-ray observables and mass for galaxy clusters and groups is instrumental for cluster-based cosmology and an important probe for the thermodynamics of the intracluster gas. We calibrate a scaling relation between the weak lensing mass and X-ray spectroscopic temperature for 10 galaxy groups in the COSMOS field, combined with 55 higher-mass clusters from the literature. The COSMOS data includes Hubble Space Telescope imaging and redshift measurements of 46 source galaxies per arcminute{sup 2}, enabling us to perform unique weak lensing measurements of low-mass systems. Our sample extends the mass range of the lensing calibrated M-T relation an order of magnitude lower than any previous study, resulting in a power-law slope of 1.48{sub −0.09}{sup +0.13}. The slope is consistent with the self-similar model, predictions from simulations, and observations of clusters. However, X-ray observations relying on mass measurements derived under the assumption of hydrostatic equilibrium have indicated that masses at group scales are lower than expected. Both simulations and observations suggest that hydrostatic mass measurements can be biased low. Our external weak lensing masses provide the first observational support for hydrostatic mass bias at group level, showing an increasing bias with decreasing temperature and reaching a level of 30%-50% at 1 keV.

  9. CMB-galaxy correlation in Unified Dark Matter scalar field cosmologies

    SciTech Connect

    Bertacca, Daniele; Bartolo, Nicola; Matarrese, Sabino; Raccanelli, Alvise; Piattella, Oliver F.; Pietrobon, Davide; Giannantonio, Tommaso E-mail: alvise.raccanelli@port.ac.uk E-mail: davide.pietrobon@jpl.nasa.gov E-mail: sabino.matarrese@pd.infn.it

    2011-03-01

    We present an analysis of the cross-correlation between the CMB and the large-scale structure (LSS) of the Universe in Unified Dark Matter (UDM) scalar field cosmologies. We work out the predicted cross-correlation function in UDM models, which depends on the speed of sound of the unified component, and compare it with observations from six galaxy catalogues (NVSS, HEAO, 2MASS, and SDSS main galaxies, luminous red galaxies, and quasars). We sample the value of the speed of sound and perform a likelihood analysis, finding that the UDM model is as likely as the ΛCDM, and is compatible with observations for a range of values of c{sub ∞} (the value of the sound speed at late times) on which structure formation depends. In particular, we obtain an upper bound of c{sub ∞}{sup 2} ≤ 0.009 at 95% confidence level, meaning that the ΛCDM model, for which c{sub ∞}{sup 2} = 0, is a good fit to the data, while the posterior probability distribution peaks at the value c{sub ∞}{sup 2} = 10{sup −4} . Finally, we study the time dependence of the deviation from ΛCDM via a tomographic analysis using a mock redshift distribution and we find that the largest deviation is for low-redshift sources, suggesting that future low-z surveys will be best suited to constrain UDM models.

  10. Discovery of intermediate redshift galaxy clusters in the ROSAT NEP field. [North Ecliptic Pole

    NASA Technical Reports Server (NTRS)

    Burg, R.; Giacconi, R.; Huchra, J.; Mackenty, J.; Mclean, B.; Geller, M.; Hasinger, G.; Marzke, R.; Schmidt, M.; Truemper, J.

    1992-01-01

    We report preliminary results from a program to identify optical counterparts of ROSAT sources in the North Ecliptic Pole (NEP) region. The most striking X-ray feature reported by Hasinger et al. (1991) is an extended low surface brightness region of X-ray emission. Within the two X-ray contours of highest count rate we find a cluster of galaxies at a redshift of 0.09 and an early-type galaxy at a redshift of 0.03. X-ray emission from these objects may provide an explanation for the observed X-ray morphology. We also find evidence that other X-ray sources in this region are coincident with clusters or groups of galaxies at redshifts between 0.08 and 0.09. The presence of at least five X-ray detected clusters or groups in this narrow redshift band within a 1.5 deg radius field seems to indicate the existence of a moderate redshift supercluster. The existence of these clusters will have major implications for the study of large-scale structure through X-ray surveys such as ROSAT.

  11. A DEEP, WIDE-FIELD H{alpha} SURVEY OF NEARBY CLUSTERS OF GALAXIES: DATA

    SciTech Connect

    Sakai, Shoko; Kennicutt, Robert C. Jr.; Moss, Chris

    2012-04-01

    We present the results of a wide-field H{alpha} imaging survey of eight nearby (z = 0.02-0.03) Abell clusters. We have measured H{alpha} fluxes and equivalent widths for 465 galaxies, of which 360 are new detections. The survey was designed to obtain complete emission-line-selected inventories of star-forming galaxies in the inner regions of these clusters, extending to star formation rates below 0.1 M{sub Sun} yr{sup -1}. This paper describes the observations, data processing, and source identification procedures, and presents an H{alpha} and R-band catalog of detected cluster members and other candidates. Future papers in the series will use these data to study the completeness of spectroscopically based star formation surveys, and to quantify the effects of cluster environment on the present-day populations of star-forming galaxies. The data will also provide a valuable foundation for imaging surveys of redshifted H{alpha} emission in more distant clusters.

  12. GALAXY CLUSTERS DISCOVERED VIA THE SUNYAEV-ZEL'DOVICH EFFECT IN THE 2500-SQUARE-DEGREE SPT-SZ SURVEY

    SciTech Connect

    Bleem, L. E.; Stalder, B.; de Haan, T.; Aird, K. A.; Allen, S. W.; Applegate, D. E.; Ashby, M. L. N.; Bautz, M.; Bayliss, M.; Benson, B. A.; Bocquet, S.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Chiu, I.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; Desai, S.; Dietrich, J. P.; Dobbs, M. A.; Foley, R. J.; Forman, W. R.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Hennig, C.; Hoekstra, H.; Holder, G. P.; Holzapfel, W. L.; Hrubes, J. D.; Jones, C.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Liu, J.; Lueker, M.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Meyer, S. S.; Mocanu, L.; Mohr, J. J.; Murray, S. S.; Padin, S.; Pryke, C.; Reichardt, C. L.; Rest, A.; Ruel, J.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Schrabback, T.; Shirokoff, E.; Song, J.; Spieler, H. G.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K. T.; Stubbs, C. W.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zahn, O.; Zenteno, A.

    2015-01-29

    We present a catalog of galaxy clusters selected via their Sunyaev-Zel'dovich (SZ) effect signature from 2500 deg(2) of South Pole Telescope (SPT) data. This work represents the complete sample of clusters detected at high significance in the 2500 deg(2) SPT-SZ survey, which was completed in 2011. A total of 677 (409) cluster candidates are identified above a signal-to-noise threshold of ξ = 4.5 (5.0). Ground- and space-based optical and near-infrared (NIR) imaging confirms overdensities of similarly colored galaxies in the direction of 516 (or 76%) of the ξ > 4.5 candidates and 387 (or 95%) of the ξ > 5 candidates, the measured purity is consistent with expectations from simulations. Of these confirmed clusters, 415 were first identified in SPT data, including 251 new discoveries reported in this work. We estimate photometric redshifts for all candidates with identified optical and/or NIR counterparts, we additionally report redshifts derived from spectroscopic observations for 141 of these systems. The mass threshold of the catalog is roughly independent of redshift above z ~ 0.25 leading to a sample of massive clusters that extends to high redshift. The median mass of the sample is M (500c)(ρ(crit)) $\\sim 3.5\\times 10^{14}\\,M_\\odot \\,h_{70}^{-1}$, the median redshift is z (med) = 0.55, and the highest-redshift systems are at z > 1.4. The combination of large redshift extent, clean selection, and high typical mass makes this cluster sample of particular interest for cosmological analyses and studies of cluster formation and evolution.

  13. Race and Sex Differences in Degree Attainment and Major Field Distributions from 1975-76 to 1980-81.

    ERIC Educational Resources Information Center

    Trent, William T.

    Baccalaureate degree attainment for Blacks, Hispanics, and Whites for 1975-1976 and 1980-1981 are compared by major field and sex, based on data from the Higher Education General Information Survey (HEGIS). Attention is directed to degree distributions overall, by major field, and for blacks graduating from predominantly black and from…

  14. Changes in the earth's rotation and low-degree gravitational field induced by earthquakes

    NASA Technical Reports Server (NTRS)

    Chao, B. Fong; Gross, Richard S.

    1987-01-01

    Analytical formulas based on the normal-mode theory are used together with a spherically symmetric earth model and the centroid-moment tensor solutions for earthquake sources to compute the earthquake-induced changes in the earth's rotation and low-degree harmonics of the gravitational field for the period 1977-1985. Spectral and statistical analyses are conducted on these changes. It is found that the earthquake-induced changes are two orders of magnitude smaller than those observed; most of these changes show strong evidence of nonrandomness either in their polarity or in their directions.

  15. Secular Motion in a 2nd Degree and Order-Gravity Field with no Rotation

    NASA Astrophysics Data System (ADS)

    Scheeres, D. J.; Hu, W.

    2001-03-01

    The motion of a particle about a non-rotating 2nd degree and order-gravity field is investigated. Averaging conditions are applied to the particle motion and a qualitative analysis which reveals the general character of motion in this system is given. It is shown that the orbit plane will either be stationary or precess about the body's axis of minimum or maximum moment of inertia. It is also shown that the secular equations for this system can be integrated in terms of trigonometric, hyperbolic or elliptic functions. The explicit solutions are derived in all cases of interest.

  16. The DEEP2 galaxy redshift survey: the evolution of the blue fraction in groups and the field

    NASA Astrophysics Data System (ADS)

    Gerke, Brian F.; Newman, Jeffrey A.; Faber, S. M.; Cooper, Michael C.; Croton, Darren J.; Davis, Marc; Willmer, Christopher N. A.; Yan, Renbin; Coil, Alison L.; Guhathakurta, Puragra; Koo, David C.; Weiner, Benjamin J.

    2007-04-01

    We explore the behaviour of the blue galaxy fraction over the redshift range 0.75 <= z <= 1.3 in the DEEP2 Survey, both for field galaxies and for galaxies in groups. The primary aim is to determine the role that groups play in driving the evolution of galaxy colour at high z. In pursuing this aim, it is essential to define a galaxy sample that does not suffer from redshift-dependent selection effects in colour-magnitude space. We develop four such samples for this study: at all redshifts considered, each one is complete in colour-magnitude space, and the selection also accounts for evolution in the galaxy luminosity function. These samples will also be useful for future evolutionary studies in DEEP2. The colour segregation observed between local group and field samples is already in place at z ~ 1: DEEP2 groups have a significantly lower blue fraction than the field. At fixed z, there is also a correlation between blue fraction and galaxy magnitude, such that brighter galaxies are more likely to be red, both in groups and in the field. In addition, there is a negative correlation between blue fraction and group richness. In terms of evolution, the blue fraction in groups and the field remains roughly constant from z = 0.75 to 1, but beyond this redshift the blue fraction in groups rises rapidly with z, and the group and field blue fractions become indistinguishable at z ~ 1.3. Careful tests indicate that this effect does not arise from known systematic or selection effects. To further ensure the robustness of this result, we build on previous mock DEEP2 catalogues to develop mock catalogues that reproduce the colour-overdensity relation observed in DEEP2 and use these to test our methods. The convergence between the group and field blue fractions at z ~ 1.3 implies that DEEP2 galaxy groups only became efficient at quenching star formation at z ~ 2; this result is broadly consistent with other recent observations and with current models of galaxy evolution and

  17. THE DEEP3 GALAXY REDSHIFT SURVEY: KECK/DEIMOS SPECTROSCOPY IN THE GOODS-N FIELD

    SciTech Connect

    Cooper, Michael C.; Aird, James A.; Coil, Alison L. E-mail: acoil@ucsd.edu

    2011-03-15

    We present the results of spectroscopic observations in the GOODS-N field completed using DEIMOS on the Keck II telescope as part of the DEEP3 Galaxy Redshift Survey. Observations of 370 unique targets down to a limiting magnitude of R {sub AB} = 24.4 yielded 156 secure redshifts. In addition to redshift information, we provide sky-subtracted one- and two-dimensional spectra of each target. Observations were conducted following the procedures of the Team Keck Redshift Survey (TKRS), thereby producing spectra that augment the TKRS sample while maintaining the uniformity of its spectral database.

  18. The stellar structure of early-type galaxies: a wide-field Mitchell Spectrograph view

    NASA Astrophysics Data System (ADS)

    Boardman, N. F.; Weijmans, A.; van den Bosch, R. C. E.; Zhu, L.; Yildirim, A.; van de Ven, G.; Cappellari, M.; de Zeeuw, P. T.; Emsellem, E.; Krajnović, D.; Naab, T.

    2017-03-01

    Much progress has been made in recent years towards understanding how early-type galaxies (ETGs) form and evolve. SAURON (Bacon et al. 2001) integral-field spectroscopy from the ATLAS3D survey (Cappellari et al. 2011) has suggested that less massive ETGs are linked directly to spirals, whereas the most massive objects appear to form from a series of merging and accretion events (Cappellari et al. 2013). However, the ATLAS3D data typically only extends to about one half-light radius (or effective radius, Re ), making it unclear if this picture is truly complete.

  19. DWARF IRREGULAR GALAXY LEO A: SUPRIME-CAM WIDE-FIELD STELLAR PHOTOMETRY

    SciTech Connect

    Stonkutė, Rima; Narbutis, Donatas; Vansevičius, Vladas; Arimoto, Nobuo; Hasegawa, Takashi; Tamura, Naoyuki

    2014-10-01

    We have surveyed a complete extent of Leo A—an apparently isolated gas-rich low-mass dwarf irregular galaxy in the Local Group. The B, V, and I passband CCD images (typical seeing ∼0.''8) were obtained with the Subaru Telescope equipped with the Suprime-Cam mosaic camera. The wide-field (20' × 24') photometry catalog of 38,856 objects (V ∼ 16-26 mag) is presented. This survey is also intended to serve as ''a finding chart'' for future imaging and spectroscopic observation programs of Leo A.

  20. Integral field spectroscopy of the circum-nuclear region of the radio Galaxy Pictor A

    NASA Astrophysics Data System (ADS)

    Couto, Guilherme S.; Storchi-Bergmann, Thaisa; Robinson, Andrew; Riffel, Rogemar A.; Kharb, Preeti; Lena, Davide; Schnorr-Müller, Allan

    2016-05-01

    We present optical integral field spectroscopy of the inner 2.5 × 3.4 kpc2 of the broad-line radio galaxy Pictor A, at a spatial resolution of ≈400 pc. Line emission is observed over the whole field of view, being strongest at the nucleus and in an elongated linear feature (ELF) crossing the nucleus from the south-west to the north-east along PA ≈70°. Although the broad double-peaked Hα line and the [O I]6300/Hα and [S II]6717+31/Hα ratios are typical of active galactic nuclei (AGNs), the [N II]6584/Hα ratio (0.15-0.25) is unusually low. We suggest that this is due to the unusually low metallicity of the gas. Centroid velocity maps show mostly blueshifts to the south and redshifts to the north of the nucleus, but the velocity field is not well fitted by a rotation model. Velocity dispersions are low (<100 km s- 1 ) along the ELF, ruling out a jet-cloud interaction as the origin of this structure. The ELF shows both blueshifts and redshifts in channel maps, suggesting that it is close to the plane of the sky. The ELF is evidently photoionized by the AGN, but its kinematics and inferred low metallicity suggest that this structure may have originated in a past merger event with another galaxy. We suggest that the gas acquired in this interaction may be feeding the ELF.

  1. Galaxies in southern bright star fields. I. Near-infrared imaging

    NASA Astrophysics Data System (ADS)

    Baker, Andrew J.; Davies, Richard I.; Lehnert, M. D.; Thatte, N. A.; Vacca, W. D.; Hainaut, O. R.; Jarvis, M. J.; Miley, G. K.; Röttgering, H. J. A.

    2003-08-01

    As a prerequisite for cosmological studies using adaptive optics techniques, we have begun to identify and characterize faint sources in the vicinity of bright stars at high Galactic latitudes. The initial phase of this work has been a program of Ks imaging conducted with SOFI at the ESO NTT. From observations of 42 southern fields evenly divided between the spring and autumn skies, we have identified 391 additional stars and 1589 galaxies lying at separations Delta theta <= 60arcsec from candidate guide stars in the magnitude range 9.0 <= R <= 12.4. When analyzed as a ``discrete deep field'' with 131 arcmin2 area, our dataset gives galaxy number counts that agree with those derived previously over the range 16 <= Ks < 20.5. This consistency indicates that in the aggregate, our fields should be suitable for future statistical studies. We provide our source catalogue as a resource for users of large telescopes in the southern hemisphere. Based on observations obtained at the European Southern Observatory, Chile, for programmes 66.A-0361 and 68.A-0440. The entirety of Table \\ref{t-src} is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/406/593}

  2. Starburst galaxies in the COSMOS field: clumpy star-formation at redshift 0 < z < 0.5

    NASA Astrophysics Data System (ADS)

    Hinojosa-Goñi, R.; Muñoz-Tuñón, C.; Méndez-Abreu, J.

    2016-08-01

    Context. At high redshift, starburst galaxies present irregular morphologies with 10-20% of their star formation occurring in giant clumps. These clumpy galaxies are considered the progenitors of local disk galaxies. To understand the properties of starbursts at intermediate and low redshift, it is fundamental to track their evolution and the possible link with the systems at higher z. Aims: We present an extensive, systematic, and multiband search and analysis of the starburst galaxies at redshift (0 < z < 0.5) in the COSMOS field, as well as detailed characteristics of their star-forming clumps by using Hubble Space Telescope/Advance Camera for Surveys (HST/ACS) images. Methods: The starburst galaxies are identified using a tailor-made intermediate-band color excess selection, tracing the simultaneous presence of Hα and [OIII] emission lines in the galaxies. Our methodology uses previous information from the zCOSMOS spectral database to calibrate the color excess as a function of the equivalent width of both spectral lines. This technique allows us to identify 220 starburst galaxies at redshift 0 < z < 0.5 using the SUBARU intermediate-band filters. Combining the high spatial resolution images from the HST/ACS with ground-based multi-wavelength photometry, we identify and parametrize the star-forming clumps in every galaxy. Their principal properties, sizes, masses, and star formation rates are provided. Results: The mass distribution of the starburst galaxies is remarkably similar to that of the whole galaxy sample with a peak around M/M⊙ ~ 2 × 108 and only a few galaxies with M/M⊙ > 1010. We classify galaxies into three main types, depending on their HST morphology: single knot (Sknot), single star-forming knot plus diffuse light (Sknot+diffuse), and multiple star-forming knots (Mknots/clumpy) galaxy. We found a fraction of Mknots/clumpy galaxy fclumpy = 0.24 considering out total sample of starburst galaxies up to z ~ 0.5. The individual star

  3. EXOPLANETS FROM THE ARCTIC: THE FIRST WIDE-FIELD SURVEY AT 80 Degree-Sign N

    SciTech Connect

    Law, Nicholas M.; Sivanandam, Suresh; Carlberg, Raymond; Salbi, Pegah; Ngan, Wai-Hin Wayne; Kerzendorf, Wolfgang; Ahmadi, Aida; Steinbring, Eric; Murowinski, Richard

    2013-03-15

    Located within 10 Degree-Sign of the North Pole, northern Ellesmere Island offers continuous darkness in the winter months. This capability can greatly enhance the detection efficiency of planetary transit surveys and other time domain astronomy programs. We deployed two wide-field cameras at 80 Degree-Sign N, near Eureka, Nunavut, for a 152 hr observing campaign in 2012 February. The 16 megapixel camera systems were based on commercial f/1.2 lenses with 70 mm and 42 mm apertures, and they continuously imaged 504 and 1295 deg{sup 2}, respectively. In total, the cameras took over 44,000 images and produced better than 1% precision light curves for approximately 10,000 stars. We describe a new high-speed astrometric and photometric data reduction pipeline designed for the systems, test several methods for the precision flat fielding of images from very-wide-angle cameras, and evaluate the cameras' image qualities. We achieved a scintillation-limited photometric precision of 1%-2% in each 10 s exposure. Binning the short exposures into 10 minute chunks provided a photometric stability of 2-3 mmag, sufficient for the detection of transiting exoplanets around the bright stars targeted by our survey. We estimate that the cameras, when operated over the full Arctic winter, will be capable of discovering several transiting exoplanets around bright (m{sub V} < 9.5) stars.

  4. High Degree and Order Gravity Fields of the Moon Derived from GRAIL Data

    NASA Technical Reports Server (NTRS)

    Lemoine, F. G.; Goossens, S. J.; Sabaka, T. J.; Nicholas, J. B.; Mazarico, E.; Rowlands, D. D.; Loomis, B. D.; Chinn, D. S.; Caprette, D. S.; McCarthy, J. J.; Neumann, G. A.; Zuber, M. T.; Smith, D. E.

    2012-01-01

    The Gravity Recovery and Interior Laboratory (GRAIL) spacecraft conducted the mapping of the gravity field of the Moon from March 1, 2012 to May 29, 2012. The twin spacecraft acquired highly precise K Band range-rate (KBRR) intersatellite ranging data and Deep Space Network (DSN) data during this prime mission phase from altitudes of 15 to 75 km above the lunar surface over three lunar months. We have processed these data using the NASA GSFC GEODYN orbit determination and geodetic parameter estimation program, and we have determined gravity fields up to degree and order 420 in spherical harmonics. The new gravity solutions show improved correlations with LOLA-derived topography to high degree and order and resolve many lunar features in the geopotential with a resolution of less than 30 km, including for example the central peak of the crater Tycho. We discuss the methodology used for the processing of the GRAIL data, the quality of the orbit determination on the GRAIL satellites and the derivation of the solutions, and their evaluation with independent data, including Lunar Prospector. We show that with these new GRAIL gravity solutions, we can now fit the low altitude, extended mission Lunar Prospector tracking data better than with any previous gravity model that included the LP data.

  5. Risks perception of electromagnetic fields in Taiwan: the influence of psychopathology and the degree of sensitivity to electromagnetic fields.

    PubMed

    Tseng, Mei-Chih Meg; Lin, Yi-Ping; Hu, Fu-Chang; Cheng, Tsun-Jen

    2013-11-01

    Little is known about the perceived health risks of electromagnetic fields (EMFs) and factors associated with risk perception in non-Western countries. Psychological conditions and risk perception have been postulated as factors that facilitate the attribution of health complaints to environmental factors. This study investigated people's perceived risks of EMFs and other environmental sources, as well as the relationships between risk perception, psychopathology, and the degree of self-reported sensitivity to EMFs. A total of 1,251 adults selected from a nationwide telephone interviewing system database responded to a telephone survey about the relationships between environmental sources and human health. The interview included questions assessing participants' psychiatric conditions and the presence and degree of sensitivity to EMFs. One hundred and seventy participants were self-identified as having sensitivity to EMFs, and 141 met the criteria for psychiatric conditions without EMF sensitivity. More than half of the survey respondents considered power lines and mobile phone base stations to affect people's health to a big extent. Higher sensitivity to EMFs, psychopathology, being female, being married, more years of education, and having a catastrophic illness had positive associations with perceived risks of EMF-related environmental sources as well as for all environmental sources combined. We observed no moderating effect of psychopathology on the association between degree of sensitivity to EMF and risk perception. Thus, psychopathology had influence on general people's risk perception without having influence on the relationship between people's degree of sensitivity to EMF and risk perception. The plausible explanations are discussed in the text.

  6. The merging dwarf galaxy UM 448: chemodynamics of the ionized gas from VLT integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    James, B. L.; Tsamis, Y. G.; Barlow, M. J.; Walsh, J. R.; Westmoquette, M. S.

    2013-01-01

    Using Very Large Telescope/Fibre Large Array Multi Element Spectrograph optical integral field unit observations, we present a detailed study of UM 448, a nearby blue compact galaxy (BCG) previously reported to have an anomalously high N/O abundance ratio. New Technology Telescope/Superb-Seeing Imager images reveal a morphology suggestive of a merger of two systems of contrasting colour, whilst our Hα emission maps resolve UM 448 into three separate regions that do not coincide with the stellar continuum peaks. UM 448 exhibits complex emission line profiles, with most lines consisting of a narrow [full width at half-maximum (FWHM) ≲ 100 km s-1], central component, an underlying broad component (FWHM ˜ 150-300 km s-1) and a third, narrow blueshifted component. Radial velocity maps of all three components show signs of solid body rotation across UM 448, with a projected rotation axis that correlates with the continuum morphology of the galaxy. A spatially resolved, chemodynamical analysis, based on the [O iii] λλ4363, 4959, [N ii] λ6584, [S ii] λλ6716, 6731 and [Ne iii] λ3868 line maps, is presented. Whilst the eastern tail of UM 448 has electron temperatures (Te) that are typical of BCGs, we find a region within the main body of the galaxy where the narrow and broad [O iii] λ4363 line components trace temperatures differing by 5000 K and oxygen abundances differing by 0.4 dex. We measure spatially resolved and integrated ionic and elemental abundances for O, N, S and Ne throughout UM 448, and find that they do not agree, possibly due the flux weighting of Te from the integrated spectrum. This has significant implications for abundances derived from long-slit and integrated spectra of star-forming galaxies in the nearby and distant universe. A region of enhanced N/O ratio is indeed found, extended over a ˜0.6 kpc2 region within the main body of the galaxy. Contrary to previous studies, however, we do not find evidence for a large Wolf-Rayet (WR

  7. ENVIRONMENTAL EFFECTS ON THE STAR FORMATION ACTIVITY IN GALAXIES AT z {approx_equal} 1.2 IN THE COSMOS FIELD

    SciTech Connect

    Ideue, Y.; Nagao, T.; Sasaki, S.; Taniguchi, Y.; Shioya, Y.; Saito, T.; Murayama, T.; Trump, J. R.; Koekemoer, A. M.; Aussel, H.; Ilbert, O.; Sanders, D. B.; McCracken, H.; Mobasher, B.

    2009-08-01

    We investigate the relation between the star formation activity in galaxies and environment at z {approx_equal} 1.2 in the Cosmic Evolution Survey field, using the fraction of [O II] emitters and the local galaxy density. The fraction of [O II] emitters appears to be almost constant over the surface density of galaxies between 0.2 and 10 Mpc{sup -2}. This trend is different from that seen in the local universe where the star formation activity is weaker in higher density regions. To understand this difference between z {approx} 1 and z {approx} 0, we study the fraction of non-isolated galaxies as a function of local galaxy density. We find that the fraction of non-isolated galaxies increases with increasing density. Our results suggest that the star formation in galaxies at z {approx} 1 is triggered by galaxy interaction and/or mergers.

  8. Evolution of the ISM in main-sequence versus starburst galaxies: A motivation for molecular deep fields

    NASA Astrophysics Data System (ADS)

    Aravena, Manuel

    In the last decade, significant progress has been made to understand the evolution with redshift of star formation processes in galaxies. Its is now clear that the majority of galaxies at z<3 form a nearly linear correlation between their stellar mass and star formation rates and appear to create most of their stars in timescales of ~1 Gyr. At the highest luminosities, a significant fraction of galaxies deviate from this main-sequence, showing short duty cycles and thus producing most of their stars in a single burst of star formation within ~100 Myr, being likely driven by major merger activity. Despite the large luminosities of starbursts, main-sequence galaxies appear to dominate the star formation density of the Universe at its peak. While progress has been impressive, a number of questions are still unanswered. In this paper, I briefly review our current observational understanding of this main-sequence vs starburst galaxy paradigm, and address how future observations will help us to have better insights into the fundamental properties of the interstellar medium of these galaxies. Finally, I show recent attempts to conduct molecular deep field observations and the motivation to perform molecular deep field spectroscopy with the Atacama Large Millimeter/submillimeter Array.

  9. The galaxy-halo connection from a joint lensing, clustering and abundance analysis in the CFHTLenS/VIPERS field

    NASA Astrophysics Data System (ADS)

    Coupon, J.; Arnouts, S.; van Waerbeke, L.; Moutard, T.; Ilbert, O.; van Uitert, E.; Erben, T.; Garilli, B.; Guzzo, L.; Heymans, C.; Hildebrandt, H.; Hoekstra, H.; Kilbinger, M.; Kitching, T.; Mellier, Y.; Miller, L.; Scodeggio, M.; Bonnett, C.; Branchini, E.; Davidzon, I.; De Lucia, G.; Fritz, A.; Fu, L.; Hudelot, P.; Hudson, M. J.; Kuijken, K.; Leauthaud, A.; Le Fèvre, O.; McCracken, H. J.; Moscardini, L.; Rowe, B. T. P.; Schrabback, T.; Semboloni, E.; Velander, M.

    2015-05-01

    We present new constraints on the relationship between galaxies and their host dark matter haloes, measured from the location of the peak of the stellar-to-halo mass ratio (SHMR), up to the most massive galaxy clusters at redshift z ˜ 0.8 and over a volume of nearly 0.1 Gpc3. We use a unique combination of deep observations in the CFHTLenS/VIPERS field from the near-UV to the near-IR, supplemented by ˜60 000 secure spectroscopic redshifts, analysing galaxy clustering, galaxy-galaxy lensing and the stellar mass function. We interpret our measurements within the halo occupation distribution (HOD) framework, separating the contributions from central and satellite galaxies. We find that the SHMR for the central galaxies peaks at M_{h, peak} = 1.9^{+0.2}_{-0.1}× 10^{12} M_{⊙} with an amplitude of 0.025, which decreases to ˜0.001 for massive haloes ({{{M}_h}}> 10^{14} M_{⊙}). Compared to central galaxies only, the total SHMR (including satellites) is boosted by a factor of 10 in the high-mass regime (cluster-size haloes), a result consistent with cluster analyses from the literature based on fully independent methods. After properly accounting for differences in modelling, we have compared our results with a large number of results from the literature up to z = 1: we find good general agreement, independently of the method used, within the typical stellar-mass systematic errors at low to intermediate mass (M_{star}<10^{11} M_{⊙}) and the statistical errors above. We have also compared our SHMR results to semi-analytic simulations and found that the SHMR is tilted compared to our measurements in such a way that they over- (under-) predict star formation efficiency in central (satellite) galaxies.

  10. Young Galaxy Candidates in the Hubble Frontier Fields. II. MACS J0416-2403

    NASA Astrophysics Data System (ADS)

    Infante, Leopoldo; Zheng, Wei; Laporte, Nicolas; Troncoso Iribarren, Paulina; Molino, Alberto; Diego, Jose M.; Bauer, Franz E.; Zitrin, Adi; Moustakas, John; Huang, Xingxing; Shu, Xinwen; Bina, David; Brammer, Gabriel B.; Broadhurst, Tom; Ford, Holland C.; García, Stefano; Kim, Sam

    2015-12-01

    We searched for z ≳ 7 Lyman-break galaxies in the optical-to-mid-infrared Hubble Frontier Field and associated parallel field observations of the strong-lensing cluster MACS J0416-2403. We discovered 22 candidates, of which 6 lie at z ≳ 9 and 1 lies at z ≳ 10. Based on the Hubble and Spitzer photometry, all have secure photometric redshifts and a negligible probability of being at lower redshifts according to their peak-probability ratios, {R}. This substantial increase in the number of known high-redshift galaxies allows a solid determination of the luminosity function (LF) at z ≳ 8. The number of high-z candidates in the parallel field is considerably higher than that in the Abell 2744 parallel field. Our candidates have median stellar masses of {log}({M}*)˜ {8.44}-0.31+0.55 M⊙, star formation rates (SFRs) of ˜ {1.8}-0.4+0.5 M⊙ yr-1, and SFR-weighted ages of ≲ {300}-140+70 {Myr}. Finally, we are able to put strong constraints on the z = 7, 8, 9, and 10 LFs. One of the objects in the cluster field is a z ≃ 10 candidate, with a magnification of μ ˜ 20 ± 13. This object is likely the faintest z ˜ 10 object known to date, allowing a first look into the extreme faint end (L ˜ 0.04 L*) of the z ˜ 10 LF (It is named “Tayna” in the Aymara language).

  11. A supernova scenario for magnetic fields and rotation measures in galaxies

    NASA Astrophysics Data System (ADS)

    Beck, Alexander; Dolag, Klaus; Lesch, Harald

    2015-08-01

    process naturally occuring during galaxy formation. SN explosions provide magnetic seed fields, which are amplified and distribution by the very process of galaxy formation.

  12. Molecular gas in the centre of nearby galaxies from VLT/SINFONI integral field spectroscopy - II. Kinematics

    NASA Astrophysics Data System (ADS)

    Mazzalay, X.; Maciejewski, W.; Erwin, P.; Saglia, R. P.; Bender, R.; Fabricius, M. H.; Nowak, N.; Rusli, S. P.; Thomas, J.

    2014-03-01

    We present an analysis of the H2 emission-line gas kinematics in the inner ≲4 arcsec radius of six nearby spiral galaxies, based on adaptive optics-assisted integral-field observations obtained in the K band with SINFONI/VLT. Four of the six galaxies in our sample display ordered H2 velocity fields, consistent with gas moving in the plane of the galaxy and rotating in the same direction as the stars. However, the gas kinematics is typically far from simple circular motion. We can classify the observed velocity fields into four different types of flows, ordered by increasing complexity: (1) circular motion in a disc (NGC 3351); (2) oval motion in the galaxy plane (NGC 3627 and NGC 4536); (3) streaming motion superimposed on circular rotation (NGC 4501); and (4) disordered streaming motions (NGC 4569 and NGC 4579). The H2 velocity dispersion in the galaxies is usually higher than 50 km s-1 in the inner 1-2 arcsec radii. The four galaxies with ordered kinematics have v/σ < 1 at radii less than 40-80 pc. The radius at which v/σ = 1 is independent of the type of nuclear activity. While the low values of v/σ could be taken as an indication of a thick disc in the innermost regions of the galaxies, other lines of evidence (e.g. H2 morphologies and velocity fields) argue for a thin disc interpretation in the case of NGC 3351 and NGC 4536. We discuss the implications of the high values of velocity dispersion for the dynamics of the gaseous disc and suggest caution when interpreting the velocity dispersion of ionized and warm tracers as being entirely dynamical. Understanding the nature and role of the velocity dispersion in the gas dynamics, together with the full 2D information of the gas, is essential for obtaining accurate black hole masses from gas kinematics.

  13. Emission-Line Galaxies from the PEARS Hubble Ultra Deep Field: A 2-D Detection Method and First Results

    NASA Technical Reports Server (NTRS)

    Gardner, J. P.; Straughn, Amber N.; Meurer, Gerhardt R.; Pirzkal, Norbert; Cohen, Seth H.; Malhotra, Sangeeta; Rhoads, james; Windhorst, Rogier A.; Gardner, Jonathan P.; Hathi, Nimish P.; Xu, Chun; Gronwall, Caryl; Koekemoer, Anton M.; Walsh, Jeremy; diSeregoAlighieri, Sperello

    2007-01-01

    The Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) grism PEARS (Probing Evolution And Reionization Spectroscopically) survey provides a large dataset of low-resolution spectra from thousands of galaxies in the GOODS North and South fields. One important subset of objects in these data are emission-line galaxies (ELGs), and we have investigated several different methods aimed at systematically selecting these galaxies. Here we present a new methodology and results of a search for these ELGs in the PEARS observations of the Hubble Ultra Deep Field (HUDF) using a 2D detection method that utilizes the observation that many emission lines originate from clumpy knots within galaxies. This 2D line-finding method proves to be useful in detecting emission lines from compact knots within galaxies that might not otherwise be detected using more traditional 1D line-finding techniques. We find in total 96 emission lines in the HUDF, originating from 81 distinct "knots" within 63 individual galaxies. We find in general that [0 1111 emitters are the most common, comprising 44% of the sample, and on average have high equivalent widths (70% of [0 1111 emitters having rest-frame EW> 100A). There are 12 galaxies with multiple emitting knots; several show evidence of variations in H-alpha flux in the knots, suggesting that the differing star formation properties across a single galaxy can in general be probed at redshifts approximately greater than 0.2 - 0.4. The most prevalent morphologies are large face-on spirals and clumpy interacting systems, many being unique detections owing to the 2D method described here, thus highlighting the strength of this technique.

  14. Cosmology with void-galaxy correlations.

    PubMed

    Hamaus, Nico; Wandelt, Benjamin D; Sutter, P M; Lavaux, Guilhem; Warren, Michael S

    2014-01-31

    Galaxy bias, the unknown relationship between the clustering of galaxies and the underlying dark matter density field is a major hurdle for cosmological inference from large-scale structure. While traditional analyses focus on the absolute clustering amplitude of high-density regions mapped out by galaxy surveys, we propose a relative measurement that compares those to the underdense regions, cosmic voids. On the basis of realistic mock catalogs we demonstrate that cross correlating galaxies and voids opens up the possibility to calibrate galaxy bias and to define a static ruler thanks to the observable geometric nature of voids. We illustrate how the clustering of voids is related to mass compensation and show that volume-exclusion significantly reduces the degree of stochasticity in their spatial distribution. Extracting the spherically averaged distribution of galaxies inside voids from their cross correlations reveals a remarkable concordance with the mass-density profile of voids.

  15. SpIOMM and SITELLE: Wide-field Imaging FTS for the Study of Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Drissen, Laurent; Bernier, Anne-Pier; Robert, Carmelle; Robert

    2011-12-01

    SpIOMM, a wide-field Imaging Fourier Transform Spectrometer attached to the Mont Mégantic 1.6-m telescope, is capable of obtaining the visible spectrum of every source of light in a 12 arcminute field of view, with a spectral resolution ranging from R = 1 (wide-band image) to R = 25 000, resulting in 1.7 million spectra with a spatial resolution of one arcsecond. SITELLE will be a similar instrument attached to the Canada-France-Hawaii telescope, and will be in operation in early 2013. We present a short description of these instruments and illustrate their capabilities to study nearby galaxies with the results of a data cube of M51.

  16. Wide-field LOFAR imaging of the field around the double-double radio galaxy B1834+620. A fresh view on a restarted AGN and doubeltjes

    NASA Astrophysics Data System (ADS)

    Orrù, E.; van Velzen, S.; Pizzo, R. F.; Yatawatta, S.; Paladino, R.; Iacobelli, M.; Murgia, M.; Falcke, H.; Morganti, R.; de Bruyn, A. G.; Ferrari, C.; Anderson, J.; Bonafede, A.; Mulcahy, D.; Asgekar, A.; Avruch, I. M.; Beck, R.; Bell, M. E.; van Bemmel, I.; Bentum, M. J.; Bernardi, G.; Best, P.; Breitling, F.; Broderick, J. W.; Brüggen, M.; Butcher, H. R.; Ciardi, B.; Conway, J. E.; Corstanje, A.; de Geus, E.; Deller, A.; Duscha, S.; Eislöffel, J.; Engels, D.; Frieswijk, W.; Garrett, M. A.; Grießmeier, J.; Gunst, A. W.; Hamaker, J. P.; Heald, G.; Hoeft, M.; van der Horst, A. J.; Intema, H.; Juette, E.; Kohler, J.; Kondratiev, V. I.; Kuniyoshi, M.; Kuper, G.; Loose, M.; Maat, P.; Mann, G.; Markoff, S.; McFadden, R.; McKay-Bukowski, D.; Miley, G.; Moldon, J.; Molenaar, G.; Munk, H.; Nelles, A.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pietka, G.; Polatidis, A. G.; Reich, W.; Röttgering, H.; Rowlinson, A.; Scaife, A.; Schoenmakers, A.; Schwarz, D.; Serylak, M.; Shulevski, A.; Smirnov, O.; Steinmetz, M.; Stewart, A.; Swinbank, J.; Tagger, M.; Tasse, C.; Thoudam, S.; Toribio, M. C.; Vermeulen, R.; Vocks, C.; van Weeren, R. J.; Wijers, R. A. M. J.; Wise, M. W.; Wucknitz, O.

    2015-12-01

    Context. The existence of double-double radio galaxies (DDRGs) is evidence for recurrent jet activity in active galactic nuclei (AGN), as expected from standard accretion models. A detailed study of these rare sources provides new perspectives for investigating the AGN duty cycle, AGN-galaxy feedback, and accretion mechanisms. Large catalogues of radio sources, on the other hand, provide statistical information about the evolution of the radio-loud AGN population out to high redshifts. Aims: Using wide-field imaging with the LOFAR telescope, we study both a well-known DDRG as well as a large number of radio sources in the field of view. Methods: We present a high resolution image of the DDRG B1834+620 obtained at 144 MHz using LOFAR commissioning data. Our image covers about 100 square degrees and contains over 1000 sources. Results: The four components of the DDRG B1834+620 have been resolved for the first time at 144 MHz. Inner lobes were found to point towards the direction of the outer lobes, unlike standard FR II sources. Polarized emission was detected at +60 rad m-2 in the northern outer lobe. The high spatial resolution allows the identification of a large number of small double-lobed radio sources; roughly 10% of all sources in the field are doubles with a separation smaller than 1'. Conclusions: The spectral fit of the four components is consistent with a scenario in which the outer lobes are still active or the jets recently switched off, while emission of the inner lobes is the result of a mix-up of new and old jet activity. From the presence of the newly extended features in the inner lobes of the DDRG, we can infer that the mechanism responsible for their formation is the bow shock that is driven by the newly launched jet. We find that the density of the small doubles exceeds the density of FR II sources with similar properties at 1.4 GHz, but this difference becomes smaller for low flux densities. Finally, we show that the significant challenges of

  17. Are the Faraday Rotating Magnetic Fields Local to Intracluster Radio Galaxies?

    NASA Astrophysics Data System (ADS)

    Ensslin, Torsten A.; Vogt, Corina; Clarke, T. E.; Taylor, Greg B.

    2003-11-01

    We investigate the origin of the high Faraday rotation measures (RMs) found for polarized radio galaxies in clusters. The two most likely origins are magnetic fields local to the source or magnetic fields located in the foreground intracluster medium. The latter is identified as the null hypothesis. Rudnick & Blundell have recently suggested that the presence of magnetic fields local to the source may be revealed in correlations of the position angles (PAs) of the source-intrinsic linear polarization and the RMs. We investigate the claim of Rudnick & Blundell that they have found a relationship between the intrinsic PA0 of the radio source PKS 1246-410 and its RM by testing the clustering strength of the PA0-RM scatter plot. We show that the claimed relationship is an artifact of an improperly performed null experiment. We describe a gradient alignment statistic aimed at finding correlations between PA0 and RM maps. This statistic does not require any null experiment since it gives a unique (zero) result in the case of uncorrelated maps. We apply it to a number of extended radio sources in galaxy clusters (PKS 1246-410, Cygnus A, Hydra A, and 3C 465). In no case is a significant large-scale alignment of PA0 and RM maps detected. We find significant small-scale co-alignment in all cases, but we are able to fully identify this with map-making artifacts through a suitable statistical test. We conclude that there is presently no existing evidence for Faraday rotation local to radio lobes. Given the existing independent pieces of evidence, we favor the null hypothesis that the observed Faraday screens are produced by intracluster magnetic fields.

  18. OPTICAL-FAINT, FAR-INFRARED-BRIGHT HERSCHEL SOURCES IN THE CANDELS FIELDS: ULTRA-LUMINOUS INFRARED GALAXIES AT z > 1 AND THE EFFECT OF SOURCE BLENDING

    SciTech Connect

    Yan, Haojing; Stefanon, Mauro; Ma, Zhiyuan; Willner, S. P.; Ashby, Matthew L. N.; Somerville, Rachel; Davé, Romeel; Pérez-González, Pablo G.; Cava, Antonio; Wiklind, Tommy; Kocevski, Dale; Rafelski, Marc; Kartaltepe, Jeyhan; Cooray, Asantha; Koekemoer, Anton M.; Grogin, Norman A.

    2014-07-01

    The Herschel very wide field surveys have charted hundreds of square degrees in multiple far-IR (FIR) bands. While the Sloan Digital Sky Survey (SDSS) is currently the best resource for optical counterpart identifications over such wide areas, it does not detect a large number of Herschel FIR sources and leaves their nature undetermined. As a test case, we studied seven ''SDSS-invisible'', very bright 250 μm sources (S {sub 250} > 55 mJy) in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey fields where we have a rich multi-wavelength data set. We took a new approach to decompose the FIR sources, using the near-IR or the optical images directly for position priors. This is an improvement over the previous decomposition efforts where the priors are from mid-IR data that still suffer from the problem of source blending. We found that in most cases the single Herschel sources are made of multiple components that are not necessarily at the same redshifts. Our decomposition succeeded in identifying and extracting their major contributors. We show that these are all ultra-luminous infrared galaxies at z ∼ 1-2 whose high L {sub IR} is mainly due to dust-obscured star formation. Most of them would not be selected as submillimeter galaxies. They all have complicated morphologies indicative of mergers or violent instability, and their stellar populations are heterogeneous in terms of stellar masses, ages, and formation histories. Their current ultra-luminous infrared galaxy phases are of various degrees of importance in their stellar mass assembly. Our practice provides a promising starting point for developing an automatic routine to reliably study bright Herschel sources.

  19. WINGS: a WIde-field Nearby Galaxy-cluster Survey. I. Optical imaging

    NASA Astrophysics Data System (ADS)

    Fasano, G.; Marmo, C.; Varela, J.; D'Onofrio, M.; Poggianti, B. M.; Moles, M.; Pignatelli, E.; Bettoni, D.; Kjærgaard, P.; Rizzi, L.; Couch, W. J.; Dressler, A.

    2006-01-01

    This is the first paper of a series that will present data and scientific results from the WINGS project, a wide-field, multiwavelength imaging and spectroscopic survey of galaxies in 77 nearby clusters. The sample was extracted from the ROSAT catalogs of X-Ray emitting clusters, with constraints on the redshift (0.04< z<0.07) and distance from the galactic plane ({\\vert}b{\\vert}≥ 20 deg). The global goal of the WINGS project is the systematic study of the local cosmic variance of the cluster population and of the properties of cluster galaxies as a function of cluster properties and local environment. This data collection will allow the definition of a local, "zero-point" reference against which to gauge the cosmic evolution when compared to more distant clusters. The core of the project consists of wide-field optical imaging of the selected clusters in the B and V bands. We have also completed a multi-fiber, medium-resolution spectroscopic survey for 51 of the clusters in the master sample. The imaging and spectroscopy data were collected using, respectively, the WFC@INT and WYFFOS@WHT in the northern hemisphere, and the WFI@MPG and 2dF@AAT in the southern hemisphere. In addition, a NIR (J, K) survey of ˜50 clusters and an Hα+U survey of some 10 clusters are presently ongoing with the WFCAM@UKIRT and WFC@INT, respectively, while a very-wide-field optical survey has also been programmed with OmegaCam@VST. In this paper we briefly outline the global objectives and the main characteristics of the WINGS project. Moreover, the observing strategy and the data reduction of the optical imaging survey (WINGS-OPT) are presented. We have achieved a photometric accuracy of ˜0.025 mag, reaching completeness to V˜ 23.5. Field size and resolution (FWHM) span the absolute intervals (1.6-2.7) Mpc and (0.7-1.7) kpc, respectively, depending on the redshift and on the seeing. This allows the planned studies to obtain a valuable description of the local properties of clusters

  20. Degrees of Closure and Economic Success in the Norwegian Labour Market: Field of Study and Non-Western Immigrant Performance

    ERIC Educational Resources Information Center

    Drange, Ida

    2016-01-01

    This article compares outcomes in the Norwegian labour market for non-Western immigrants and majority colleagues with professional or master's degrees within three different fields of study: health science, social science and natural science. Professions have a higher degree of occupational closure, which may entail that non-Western immigrants…

  1. Constraining the Post-Shock Magnetic Field Strength of SN1006 from the Rotation Measure of Radio Galaxy ESO 328-13

    NASA Astrophysics Data System (ADS)

    Flewellen, Lilly; Dills, Sidney; Moffett, David A.

    2015-01-01

    In a radio polarization study of the supernova remnant (SNR) of SN1006, we found evidence for variable Faraday rotation toward the FR-I radio galaxy ESO 328-13. The background source lies on the eastern edge of the SNR, and its jets are aligned east to west. The core and western lobe lie within the remnant's interior, and the eastern lobe extends from the interior to the exterior of the SNR's shell. The rotation measure (RM) of the eastern lobe experiences a shift of 20 rad/m2 as it traverses the shell, then exhibits a gradient whose magnitude decreases toward the interior so that the RM is the same for the edges of the radio galaxy's eastern and western lobes. After rotating the field vectors to zero wavelength, we found that the magnetic field orientation of the SNR is radial with respect to the shell, while the magnetic vectors of the radio jets are perpendicular to their axes, a typical trait of FR-I sources. These results suggest the variation in RM is not intrinsic to the radio galaxy; rather, the variation is a direct effect of SN1006's post-shock environment.This discovery presents us with a unique opportunity to constrain the post-shock magnetic field and electron density distribution of SN1006. The SNR behaves as a magnetized plasma screen partially covering the background radio galaxy. The Faraday depth of the screen is a maximum at the edge of the shell and decreases toward the interior. Assuming an electron density of 0.20 cm-3 (estimated from IR and X-ray observations) and a path length of 6 pc through the SNR, we derive a line-of-sight magnetic field of 20 μG at the edge of the shell. For a range of aspect angles with respect to the line of sight, from zero to 80 degrees, the magnitude of the field could range from 20 to > 100 μG. This result compares well with theoretical estimates of 14 to 130 μG, extracted from SN1006's synchrotron emissivity at multiple wavelengths. While the complexity of the post-shock magnetic field and electron density

  2. Galaxy Detection in 2MASS: Global Expectations and Results from Several Fields

    NASA Technical Reports Server (NTRS)

    Chester, T.; Jarrett, T.

    1995-01-01

    An alogorithm has been developed and used to find galaxies in the 2MASS data. It uses the central surface brightness and measured size to discriminate galaxies from the much larger stellar population.

  3. Crowded Field Photometry in the CLASH Clusters: Measuring the Red Sequence of Cluster Galaxies with Robust Photometry

    NASA Astrophysics Data System (ADS)

    Connor, Thomas; Donahue, Megan; Moustakas, John; Kelson, Daniel; Coe, Dan A.; Postman, Marc; CLASH Team

    2016-01-01

    The Cluster Lensing And Supernova survey with Hubble (CLASH) is an HST multi-cycle treasury program investigating 25 massive clusters of galaxies with X-ray gas Tx > 5 keV, spanning ~5 to ~30 x 10^14 solar masses, and a redshift range of 0.15 < z < 0.9. With 500 orbits of HST time and 16-filter, ultraviolet to infrared photometry of each cluster, this survey offers an unprecedented dataset for cluster galaxy photometry across a span of age and mass, but obtaining robust photometry for the cluster members has been hampered by the crowded field. We have developed a new technique to detect and define objects despite the presence of overlapping light profiles and to measure photometry of galaxies overlapping the extended haloes of massive galaxies. Utilizing spectral energy distribution fitting, we infer the properties of the detected galaxies, including their abundances and the time since their first star formation. Here we will discuss our technique and results, including the role metallicity and age play in shaping the red sequence of cluster galaxies.

  4. What do you gain from deconvolution? - Observing faint galaxies with the Hubble Space Telescope Wide Field Camera

    NASA Technical Reports Server (NTRS)

    Schade, David J.; Elson, Rebecca A. W.

    1993-01-01

    We describe experiments with deconvolutions of simulations of deep HST Wide Field Camera images containing faint, compact galaxies to determine under what circumstances there is a quantitative advantage to image deconvolution, and explore whether it is (1) helpful for distinguishing between stars and compact galaxies, or between spiral and elliptical galaxies, and whether it (2) improves the accuracy with which characteristic radii and integrated magnitudes may be determined. The Maximum Entropy and Richardson-Lucy deconvolution algorithms give the same results. For medium and low S/N images, deconvolution does not significantly improve our ability to distinguish between faint stars and compact galaxies, nor between spiral and elliptical galaxies. Measurements from both raw and deconvolved images are biased and must be corrected; it is easier to quantify and remove the biases for cases that have not been deconvolved. We find no benefit from deconvolution for measuring luminosity profiles, but these results are limited to low S/N images of very compact (often undersampled) galaxies.

  5. [Exposure degree of important non-target arthropods to Cry2Aa in Bt rice fields].

    PubMed

    Zhang, Qing-Ling; Li, Yun-He; Hua, Hong-Xia; Yang, Chang-Ju; Wu, Hong-Jin; Peng, Yu-Fa

    2013-06-01

    Based on the principle of "risk = hazard x exposure", the selected representative nontarget organisms in the assessment of the potential effects of insect-resistant genetically modified (GM) crops on non-target arthropods in laboratory are generally the arthropod species highly exposed to the insecticidal proteins expressed by the GM crops in farmland ecosystem. In order to understand the exposure degree of the important arthropod species to Cry proteins in Bt rice fields, and to select the appropriate non-target arthropods in the risk assessment of insect-resistant GM crops, the enzyme-linked immunosorbent assay (ELISA) was conducted to measure the Cry2Aa protein concentration in the arthropods collected from the cry2Aa rice fields at different rice growth stages. The results showed that there was a significant difference in the Cry2Aa content protein concentration in different arthropod species. Some species did not contain Cry2Aa protein, while some species contained larger amounts of Cry2Aa protein. Relative to the arthropods colleted after rice anthesis, the arthropods colleted in rice anthesis contained relative higher concentrations of Cry2Aa protein, especially for the predacious arthropods. No Cry proteins were detected in parasitic arthropods. This study provided references for the laboratory assessment of the effects of GM rice on nontarget arthropods.

  6. RADIO GALAXY 3C 230 OBSERVED WITH GEMINI LASER ADAPTIVE-OPTICS INTEGRAL-FIELD SPECTROSCOPY

    SciTech Connect

    Steinbring, Eric

    2011-11-15

    The Altair laser-guide-star adaptive optics facility combined with the near-infrared integral-field spectrometer on Gemini North have been employed to study the morphology and kinematics of 3C 230 at z = 1.5, the first such observations of a high-redshift radio galaxy. These suggest a bi-polar outflow spanning 0.''9 ({approx}16 kpc projected distance for a standard {Lambda} CDM cosmology) reaching a mean relative velocity of 235 km s{sup -1} in redshifted H{alpha} +[N II] and [S II] emission. Structure is resolved to 0.''1 (0.8 kpc), which is well correlated with optical images from the Hubble Space Telescope and Very Large Array radio maps obtained at similar spatial resolution. Line diagnostics suggest that over the 10{sup 7} yr to 10{sup 8} yr duration of its active galactic nucleus activity, gas has been ejected into bright turbulent lobes at rates comparable to star formation, although constituting perhaps only 1% of the baryonic mass in the galaxy.

  7. Star Formation In the Galaxy and the Fluctuating UV Radiation Field

    NASA Technical Reports Server (NTRS)

    Hollenbach, David; Parravano, Antonio; McKee, Christopher H.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    We examine the formation of massive stars in the Galaxy, the resultant fluctuating UV (ultraviolet) radiation field, and the effect of this field on the star-forming interstellar medium. There are substantial fluctuations of the UV radiation field in space (scales of 100's of parsecs) and time (time-scales of order 100 million years). The FUV (far ultraviolet) (6 eV less than hv less than 13.6 eV) field and the pressure determines whether the thermal balance of the neutral gas results in cold clouds or warm (T approx. 10(exp 4) K) neutral medium. We show how to calculate the average fractions of the gas in the cold and warm phases when the interstellar gas is subject to this fluctuating FUV field. The knowledge of how these fractions depend on the gas properties and on the FUV sources is a basic step in building a model of the large scale behavior of the ISM (interstellar medium) and the mutual relation between the ISM and the star formation rate.

  8. The Size Evolution of Passive Galaxies: Observations From the Wide-Field Camera 3 Early Release Science Program

    NASA Technical Reports Server (NTRS)

    Ryan, R. E., Jr.; Mccarthy, P.J.; Cohen, S. H.; Yan, H.; Hathi, N. P.; Koekemoer, A. M.; Rutkowski, M. J.; Mechtley, M. R.; Windhorst, R. A.; O’Connell, R. W.; Balick, B.; Bond, H. E.; Bushouse, H.; Calzetti, D.; Crockett, R. M.; Disney, M.; Dopita, M. A.; Frogel, J. A.; Hall, D., N., B.; Holtzman, J. A.; Kaviraj, S.; Kimble, R. A.; MacKenty, J.; Trauger, J.; Young, E.

    2012-01-01

    We present the size evolution of passively evolving galaxies at z approximately 2 identified in Wide-Field Camera 3 imaging from the Early Release Science program. Our sample was constructed using an analog to the passive BzK galaxy selection criterion, which isolates galaxies with little or no ongoing star formation at z greater than approximately 1.5. We identify 30 galaxies in approximately 40 arcmin(sup 2) to H less than 25 mag. By fitting the 10-band Hubble Space Telescope photometry from 0.22 micrometers less than approximately lambda (sub obs) 1.6 micrometers with stellar population synthesis models, we simultaneously determine photometric redshift, stellar mass, and a bevy of other population parameters. Based on the six galaxies with published spectroscopic redshifts, we estimate a typical redshift uncertainty of approximately 0.033(1+z).We determine effective radii from Sersic profile fits to the H-band image using an empirical point-spread function. By supplementing our data with published samples, we propose a mass-dependent size evolution model for passively evolving galaxies, where the most massive galaxies (M(sub *) approximately 10(sup 11) solar mass) undergo the strongest evolution from z approximately 2 to the present. Parameterizing the size evolution as (1 + z)(sup - alpha), we find a tentative scaling of alpha approximately equals (-0.6 plus or minus 0.7) + (0.9 plus or minus 0.4) log(M(sub *)/10(sup 9 solar mass), where the relatively large uncertainties reflect the poor sampling in stellar mass due to the low numbers of highredshift systems. We discuss the implications of this result for the redshift evolution of the M(sub *)-R(sub e) relation for red galaxies.

  9. Connecting magnetic fields from sub-galactic scale to clusters of galaxies and beyond with cosmological MHD simulations

    NASA Astrophysics Data System (ADS)

    Dolag, Klaus; Beck, Alexander M.; Arth, Alexander

    Using the MHD version of Gadget3 (Stasyszyn, Dolag & Beck 2013) and a model for the seeding of magnetic fields by supernovae (SN), we performed simulations of the evolution of the magnetic fields in galaxy clusters and study their effects on the heat transport within the intra cluster medium (ICM). This mechanism - where SN explosions during the assembly of galaxies provide magnetic seed fields - has been shown to reproduce the magnetic field in Milky Way-like galactic halos (Beck et al. 2013). The build up of the magnetic field at redshifts before z = 5 and the accordingly predicted rotation measure evolution are also in good agreement with current observations. Such magnetic fields present at high redshift are then transported out of the forming protogalaxies into the large-scale structure and pollute the ICM (in a similar fashion to metals transport). Here, complex velocity patterns, driven by the formation process of cosmic structures are further amplifying and distributing the magnetic fields. In galaxy clusters, the magnetic fields therefore get amplified to the observed μG level and produce the observed amplitude of rotation measures of several hundreds of rad/m2. We also demonstrate that heat conduction in such turbulent fields on average is equivalent to a suppression factor around 1/20th of the classical Spitzer value and in contrast to classical, isotropic heat transport leads to temperature structures within the ICM compatible with observations (Arth et al. 2014).

  10. H-Band dropouts in the deepest CANDELS field. A new population of bright massive galaxies at z >3

    NASA Astrophysics Data System (ADS)

    Alcalde Pampliega, B.; Pérez-González, P. G.; Domínguez Sánchez, H.; Esquej, P.; Eliche-Moral, M. C.; Barro, G.

    2015-05-01

    The recent increase in depth, spatial and wavelength coverage of extragalactic surveys has improved dramatically our understanding of galaxy formation and evolution and is revealing a new population of galaxies at high redshift. That is consistent with a downsizing (Cowie, L. L., Songaila, A., Hu, E. M., & Cohen, J. G. 1996, AJ, 112, 839; Heavens, A., Panter, B., Jiménez, R., & Dunlop, J. 2004, Nature, 428, 625; Juneau, S., et al. 2005, ApJ, 619, L135; Bauer, A. E., Drory, N., Hill, G. J., & Feulner, G. 2005, ApJ, 621, L89; Pérez-González et al. 2008, ApJ, 675, 234) scenario, which implies that the most massive galaxies formed early in the history of the universe and evolved quickly. Red color criteria and the analysis of deep mid-IR, has been proven to very useful to identify high-z extremely red galaxies as shown in (Caputi, K. et al. 2012, ApJ, 750, L20 and Huang, J.-S., Zheng, X. Z., Rigopoulou, D. et al., 2011, ApJ, 742, L13). We present our analysis of the deepest near-infrared (F160W/H-band from CANDELS) and mid-infrared (IRAC from GOODS) data taken by HST and Spitzer (in the GOODS fields) to select sources only detected by IRAC and with no CANDELS counterpart (i.e., H>27, [3.6]≤25). These H-Band dropouts constitute a previously unknown population of dust-enshrouded and/or quiescent massive red galaxies at z>3. Using the wealth of data available in the GOODS field, especially the SHARDS data, we characterize the properties of this population of red galaxies and discuss on its relevance for previous estimations of the stellar mass function at z=3-5, and the evolution of massive galaxies in the early Universe.

  11. GLOBAL SIMULATIONS OF THE MAGNETIC FIELD EVOLUTION IN BARRED GALAXIES UNDER THE INFLUENCE OF THE COSMIC-RAY-DRIVEN DYNAMO

    SciTech Connect

    Kulpa-Dybel, K.; Otmianowska-Mazur, K.; Kulesza-Zydzik, B.; Kowal, G.; Hanasz, M.; Woltanski, D.; Kowalik, K.

    2011-06-01

    We present three-dimensional global numerical simulations of the cosmic-ray (CR) driven dynamo in barred galaxies. We study the evolution of the interstellar medium of the barred galaxy in the presence of non-axisymmetric component of the potential, i.e., the bar. The magnetohydrodynamical dynamo is driven by CRs, which are continuously supplied to the disk by supernova (SN) remnants. No magnetic field is present at the beginning of simulations but one-tenth of SN explosions is a source of a small-scale randomly oriented dipolar magnetic field. In all models we assume that 10% of 10{sup 51} erg SN kinetic energy output is converted into CR energy. To compare our results directly with the observed properties of galaxies, we construct realistic maps of polarized radio emission. The main result is that the CR-driven dynamo can amplify weak magnetic fields up to a few {mu}G within a few Gyr in barred galaxies. The obtained e-folding time is equal to 300 Myr and the magnetic field reaches equipartition at time t {approx} 4.0 Gyr. Initially, the completely random magnetic field evolves into large-scale structures. An even (quadrupole-type) configuration of the magnetic field with respect to the galactic plane can be observed. Additionally, the modeled magnetic field configuration resembles maps of the polarized intensity observed in barred galaxies. Polarization vectors are distributed along the bar and between spiral arms. Moreover, the drift of magnetic arms with respect to the spiral pattern in the gas density distribution is observed during the entire simulation time.

  12. Morphological Peculiarities of Distant and Local Galaxies

    NASA Astrophysics Data System (ADS)

    Wu, K. L.; Faber, S. M.; Lauer, T. R.

    1997-12-01

    Detailed images from the Hubble Space Telescope (HST) have sparked a surge of interest in morphological peculiarities in both distant and local galaxies. Several groups have developed criteria by which to classify peculiarities in galaxy morphology (e.g., Abraham et al. 1996, Naim et al. 1997). In order to study peculiar galaxies at high redshifts, it is crucial to have a solid understanding of both the morphological peculiarities in local galaxies and the appearance of local galaxies if they were observed at higher redshifts. We are developing several algorithms to quantify the types and degree of peculiarity seen in galaxy morphology. These algorithms, or peculiarity indices, are sensitive to several different types of features. The indices are applied initially to two samples: (1) a local galaxy sample, comprised of a subset of the Frei, et al. 1996 ``Catalog of Nearby Galaxies,'' along with several merger candidates from Hibbard & van Gorkom 1996 and from a run on the Lick Observatory Nickel 40-inch telescope by one of the authors (KLW); and (2) a sample of simulated z ~ 0.8 galaxies. The images of the local galaxies are resampled, and noise is added, to reflect the sampling and noise levels found in the Hubble Deep Field (HDF). The galaxy sizes and surface brightnesses are cosmologically shifted to simulate observations of these galaxies through the HST F814W ( ~ I) filter at z ~ 0.8. This study expands upon previous work by providing a realistic view of which local morphological features we can expect to measure robustly when observed at high redshifts with the current observational technology. We also demonstrate the effectiveness of our peculiarity indices in differentiating between ``normal'' (i.e., Hubble Sequence type) galaxies and ``peculiar'' galaxies at these two epochs.

  13. Spectroscopic identification of a redshift 1.55 supernova host galaxy from the Subaru Deep Field Supernova Survey

    NASA Astrophysics Data System (ADS)

    Frederiksen, Teddy F.; Graur, Or; Hjorth, Jens; Maoz, Dan; Poznanski, Dovi

    2014-03-01

    Context. The Subaru Deep Field (SDF) Supernova Survey discovered ten Type Ia supernovae (SNe Ia) in the redshift range 1.5 < z < 2.0, determined solely from photometric redshifts of the host galaxies. However, photometric redshifts might be biased, and the SN sample could be contaminated by active galactic nuclei (AGNs). Aims: We aim to obtain the first robust redshift measurement and classification of a z > 1.5 SDF SN Ia host galaxy candidate. Methods: We use the X-shooter (U-to-K-band) spectrograph on the Very Large Telescope to allow the detection of different emission lines in a wide spectral range. Results: We measure a spectroscopic redshift of 1.54563 ± 0.00027 of hSDF0705.25, consistent with its photometric redshift of 1.552 ± 0.018. From the strong emission-line spectrum we rule out AGN activity, thereby confirming the optical transient as a SN. The host galaxy follows the fundamental metallicity relation showing that the properties of this high-redshift SN Ia host galaxy is similar to other field galaxies. Conclusions: Spectroscopic confirmation of additional SDF SN hosts would be required to confirm the cosmic SN rate evolution measured in the SDF. Based on observations made with ESO telescopes at the La Silla Paranal Observatory under program ID 089.A-0739.

  14. FR II radio galaxies at low frequencies - I. Morphology, magnetic field strength and energetics.

    PubMed

    Harwood, Jeremy J; Croston, Judith H; Intema, Huib T; Stewart, Adam J; Ineson, Judith; Hardcastle, Martin J; Godfrey, Leith; Best, Philip; Brienza, Marisa; Heesen, Volker; Mahony, Elizabeth K; Morganti, Raffaella; Murgia, Matteo; Orrú, Emanuela; Röttgering, Huub; Shulevski, Aleksandar; Wise, Michael W

    2016-06-01

    Due to their steep spectra, low-frequency observations of Fanaroff-Riley type II (FR II) radio galaxies potentially provide key insights in to the morphology, energetics and spectrum of these powerful radio sources. However, limitations imposed by the previous generation of radio interferometers at metre wavelengths have meant that this region of parameter space remains largely unexplored. In this paper, the first in a series examining FR IIs at low frequencies, we use LOFAR (LOw Frequency ARray) observations between 50 and 160 MHz, along with complementary archival radio and X-ray data, to explore the properties of two FR II sources, 3C 452 and 3C 223. We find that the morphology of 3C 452 is that of a standard FR II rather than of a double-double radio galaxy as had previously been suggested, with no remnant emission being observed beyond the active lobes. We find that the low-frequency integrated spectra of both sources are much steeper than expected based on traditional assumptions and, using synchrotron/inverse-Compton model fitting, show that the total energy content of the lobes is greater than previous estimates by a factor of around 5 for 3C 452 and 2 for 3C 223. We go on to discuss possible causes of these steeper-than-expected spectra and provide revised estimates of the internal pressures and magnetic field strengths for the intrinsically steep case. We find that the ratio between the equipartition magnetic field strengths and those derived through synchrotron/inverse-Compton model fitting remains consistent with previous findings and show that the observed departure from equipartition may in some cases provide a solution to the spectral versus dynamical age disparity.

  15. FR II radio galaxies at low frequencies - I. Morphology, magnetic field strength and energetics

    NASA Astrophysics Data System (ADS)

    Harwood, Jeremy J.; Croston, Judith H.; Intema, Huib T.; Stewart, Adam J.; Ineson, Judith; Hardcastle, Martin J.; Godfrey, Leith; Best, Philip; Brienza, Marisa; Heesen, Volker; Mahony, Elizabeth K.; Morganti, Raffaella; Murgia, Matteo; Orrú, Emanuela; Röttgering, Huub; Shulevski, Aleksandar; Wise, Michael W.

    2016-06-01

    Due to their steep spectra, low-frequency observations of Fanaroff-Riley type II (FR II) radio galaxies potentially provide key insights in to the morphology, energetics and spectrum of these powerful radio sources. However, limitations imposed by the previous generation of radio interferometers at metre wavelengths have meant that this region of parameter space remains largely unexplored. In this paper, the first in a series examining FR IIs at low frequencies, we use LOFAR (LOw Frequency ARray) observations between 50 and 160 MHz, along with complementary archival radio and X-ray data, to explore the properties of two FR II sources, 3C 452 and 3C 223. We find that the morphology of 3C 452 is that of a standard FR II rather than of a double-double radio galaxy as had previously been suggested, with no remnant emission being observed beyond the active lobes. We find that the low-frequency integrated spectra of both sources are much steeper than expected based on traditional assumptions and, using synchrotron/inverse-Compton model fitting, show that the total energy content of the lobes is greater than previous estimates by a factor of around 5 for 3C 452 and 2 for 3C 223. We go on to discuss possible causes of these steeper-than-expected spectra and provide revised estimates of the internal pressures and magnetic field strengths for the intrinsically steep case. We find that the ratio between the equipartition magnetic field strengths and those derived through synchrotron/inverse-Compton model fitting remains consistent with previous findings and show that the observed departure from equipartition may in some cases provide a solution to the spectral versus dynamical age disparity.

  16. WINGS: A WIde-field Nearby Galaxy-cluster Survey. II. Deep optical photometry of 77 nearby clusters

    NASA Astrophysics Data System (ADS)

    Varela, J.; D'Onofrio, M.; Marmo, C.; Fasano, G.; Bettoni, D.; Cava, A.; Couch, W. J.; Dressler, A.; Kjærgaard, P.; Moles, M.; Pignatelli, E.; Poggianti, B. M.; Valentinuzzi, T.

    2009-04-01

    Context: This is the second paper of a series devoted to the WIde Field Nearby Galaxy-cluster Survey (WINGS). WINGS is a long term project which is gathering wide-field, multi-band imaging and spectroscopy of galaxies in a complete sample of 77 X-ray selected, nearby clusters (0.04 < z < 0.07) located far from the galactic plane (|b|≥ 20°). The main goal of this project is to establish a local reference for evolutionary studies of galaxies and galaxy clusters. Aims: This paper presents the optical (B,V) photometric catalogs of the WINGS sample and describes the procedures followed to construct them. We have paid special care to correctly treat the large extended galaxies (which includes the brightest cluster galaxies) and the reduction of the influence of the bright halos of very bright stars. Methods: We have constructed photometric catalogs based on wide-field images in B and V bands using SExtractor. Photometry has been performed on images in which large galaxies and halos of bright stars were removed after modeling them with elliptical isophotes. Results: We publish deep optical photometric catalogs (90% complete at V ~ 21.7, which translates to ˜ M^*_V+6 at mean redshift), giving positions, geometrical parameters, and several total and aperture magnitudes for all the objects detected. For each field we have produced three catalogs containing galaxies, stars and objects of “unknown” classification (~6%). From simulations we found that the uncertainty of our photometry is quite dependent of the light profile of the objects with stars having the most robust photometry and de Vaucouleurs profiles showing higher uncertainties and also an additional bias of ~-0.2^m. The star/galaxy classification of the bright objects (V < 20) was checked visually making negligible the fraction of misclassified objects. For fainter objects, we found that simulations do not provide reliable estimates of the possible misclassification and therefore we have compared our data

  17. Galaxy-galaxy(-galaxy) lensing as a sensitive probe of galaxy evolution

    NASA Astrophysics Data System (ADS)

    Saghiha, H.; Hilbert, S.; Schneider, P.; Simon, P.

    2012-11-01

    Context. The gravitational lensing effect provides various ways to study the mass environment of galaxies. Aims: We investigate how galaxy-galaxy(-galaxy) lensing can be used to test models of galaxy formation and evolution. Methods: We consider two semi-analytic galaxy formation models based on the Millennium Run N-body simulation: the Durham model by Bower et al. (2006, MNRAS, 370, 645) and the Garching model by Guo et al. (2011, MNRAS, 413, 101). We generate mock lensing observations for the two models, and then employ Fast Fourier Transform methods to compute second- and third-order aperture statistics in the simulated fields for various galaxy samples. Results: We find that both models predict qualitatively similar aperture signals, but there are large quantitative differences. The Durham model predicts larger amplitudes in general. In both models, red galaxies exhibit stronger aperture signals than blue galaxies. Using these aperture measurements and assuming a linear deterministic bias model, we measure relative bias ratios of red and blue galaxy samples. We find that a linear deterministic bias is insufficient to describe the relative clustering of model galaxies below ten arcmin angular scales. Dividing galaxies into luminosity bins, the aperture signals decrease with decreasing luminosity for brighter galaxies, but increase again for fainter galaxies. This increase is likely an artifact due to too many faint satellite galaxies in massive group and cluster halos predicted by the models. Conclusions: Our study shows that galaxy-galaxy(-galaxy) lensing is a sensitive probe of galaxy evolution.

  18. Spectroscopic Study of Star-forming Galaxies in Filaments and the Field at z~0.5: Evidence for Environmental Dependence of Electron Density

    NASA Astrophysics Data System (ADS)

    Darvish, Behnam; Mobasher, Bahram; Sobral, David; Hemmati, Shoubaneh; Nayyeri, Hooshang; Shivaei, Irene

    2016-01-01

    We study the physical properties of a spectroscopic sample of 28 star-forming galaxies in a large filamentary structure in the COSMOS field at z~0.53, with spectroscopic data taken with the Keck/DEIMOS spectrograph, and compare them with a control sample of 30 field galaxies. We spectroscopically confirm the presence of a large galaxy filament (~ 8 Mpc), along which five confirmed X-ray groups exist. We show that within the uncertainties, the ionization parameter, equivalent width (EW), EW versus specific star-formation rate (sSFR) relation, EW versus stellar mass relation, line-of-sight velocity dispersion, dynamical mass, and stellar-to-dynamical mass ratio are similar for filament and field star-forming galaxies. However, we show that on average, filament star-forming galaxies are more metal-enriched (~ 0.1-0.15 dex), possibly due to the inflow of the already enriched intrafilamentary gas into filament galaxies. Moreover, we show that electron densities are significantly lower (a factor of ~17) in filament star-forming systems compared to those in the field, possibly because of a longer star-formation timescale for filament star-forming galaxies. Our results highlight the potential pre-processing role of galaxy filaments and intermediate-density environments on the evolution of galaxies, which has been highly underestimated.

  19. Spectroscopic Study of Star-forming Galaxies in Filaments and the Field at z ~ 0.5: Evidence for Environmental Dependence of Electron Density

    NASA Astrophysics Data System (ADS)

    Darvish, Behnam; Mobasher, Bahram; Sobral, David; Hemmati, Shoubaneh; Nayyeri, Hooshang; Shivaei, Irene

    2015-12-01

    We study the physical properties of a spectroscopic sample of 28 star-forming galaxies in a large filamentary structure in the COSMOS field at z ˜ 0.53, with spectroscopic data taken with the Keck/DEIMOS spectrograph, and compare them with a control sample of 30 field galaxies. We spectroscopically confirm the presence of a large galaxy filament (˜8 Mpc), along which five confirmed X-ray groups exist. We show that within the uncertainties, the ionization parameter, equivalent width (EW), EW versus specific star-formation rate (sSFR) relation, EW versus stellar mass relation, line-of-sight velocity dispersion, dynamical mass, and stellar-to-dynamical mass ratio are similar for filament and field star-forming galaxies. However, we show that, on average, filament star-forming galaxies are more metal enriched (˜0.1-0.15 dex), possibly owing to the inflow of the already-enriched intrafilamentary gas into filament galaxies. Moreover, we show that electron densities are significantly lower (a factor of ˜17) in filament star-forming systems compared to those in the field, possibly because of a longer star-formation timescale for filament star-forming galaxies. Our results highlight the potential pre-processing role of galaxy filaments and intermediate-density environments on the evolution of galaxies, which has been highly underestimated.

  20. SPECTROSCOPIC STUDY OF STAR-FORMING GALAXIES IN FILAMENTS AND THE FIELD AT z ∼ 0.5: EVIDENCE FOR ENVIRONMENTAL DEPENDENCE OF ELECTRON DENSITY

    SciTech Connect

    Darvish, Behnam; Mobasher, Bahram; Hemmati, Shoubaneh; Shivaei, Irene; Sobral, David; Nayyeri, Hooshang

    2015-12-01

    We study the physical properties of a spectroscopic sample of 28 star-forming galaxies in a large filamentary structure in the COSMOS field at z ∼ 0.53, with spectroscopic data taken with the Keck/DEIMOS spectrograph, and compare them with a control sample of 30 field galaxies. We spectroscopically confirm the presence of a large galaxy filament (∼8 Mpc), along which five confirmed X-ray groups exist. We show that within the uncertainties, the ionization parameter, equivalent width (EW), EW versus specific star-formation rate (sSFR) relation, EW versus stellar mass relation, line-of-sight velocity dispersion, dynamical mass, and stellar-to-dynamical mass ratio are similar for filament and field star-forming galaxies. However, we show that, on average, filament star-forming galaxies are more metal enriched (∼0.1–0.15 dex), possibly owing to the inflow of the already-enriched intrafilamentary gas into filament galaxies. Moreover, we show that electron densities are significantly lower (a factor of ∼17) in filament star-forming systems compared to those in the field, possibly because of a longer star-formation timescale for filament star-forming galaxies. Our results highlight the potential pre-processing role of galaxy filaments and intermediate-density environments on the evolution of galaxies, which has been highly underestimated.

  1. Global gravity field to degree and order 30 from Geos 3 satellite altimetry and other data

    NASA Technical Reports Server (NTRS)

    Gaposchkin, E. M.

    1980-01-01

    A model of the geopotential field in spherical harmonics to degree and order 30 is obtained from Geos 3 satellite to sea surface altimetry data, terrestrial gravity measurements and satellite perturbation analysis. A general perturbation solution is employed for the calculation of the orbits of 10 satellites based on satellite laser ranging data, and 1 deg x 1 deg surface gravity data are used to compute 550 km x 550 km block anomalies by means of autocovariance analysis. Altimeter-determined sea-surface heights, which are taken as the geoid, are averaged for each 1 deg x 1 deg ocean surface area and treated by autocovariance analysis to obtain 550 x 550 km block undulations. Observation and normal equations are formed from the altimeter and surface gravity data, which together cover 1635 out of 1654 possible surface elements, and are combined with the available satellite-derived normal equations to obtain a solution for the spherical harmonics coefficients. In addition, a value of 6,378,138.23 + or - 1.3 m is obtained for the earth's semimajor axis.

  2. The coexistence of odd and even parity magnetic fields in disc galaxies

    NASA Astrophysics Data System (ADS)

    Moss, D.; Sokoloff, D.

    2008-08-01

    Aims: Naive dynamo models predict that large-scale magnetic fields generated in flattened disc-like structures will be steady and symmetric with respect to the equatorial plane, whereas fields generated in quasi-spherical volumes will be oscillatory and anti-symmetric. Spiral galaxies consist of a flattened disc and a quasi-spherical halo. We thus investigate to what extent this naive understanding of symmetry properties is realised in composite disc/halo models for galactic magnetic fields. Methods: We consider generation of galactic magnetic fields in the framework of galactic mean field dynamo theory, based on the effects of differential rotation and helical turbulent motions (the “α-effect”), using conventional profiles for both generators of magnetic field in the disc and halo. The halo and disc regions are mostly separated by a substantial contrast between their turbulent diffusivities, respectively ηd and halo η_h. We solve the corresponding equations of mean field electrodynamics numerically, using contrasts up to η_h/ηd =5, while realizing that it might be realistic to consider significantly larger values. Results: In contrast to our naive expectations coexisting steady symmetric (quadrupole-like) magnetic structures in the disc and oscillating antisymmetric (dipole-like) structures in the halo were not found. Usually one component of the dynamo system enslaves the other: a more dynamo-active disc creates a symmetric field in the halo as well as in the disc or, conversely, a more dynamo-active halo generates antisymmetric magnetic fields that pervade both halo and disc. Our most interesting models are mixed parity solutions at the transition between the two regimes. Conclusions: We consider the results obtained as presenting a challenge for the contemporary theory of galactic magnetic fields. We note that there is some recent observational evidence for a difference in symmetry properties between disc and halo. We see three possible resolutions of

  3. Cosmic Web of Galaxies in the COSMOS Field: Public Catalog and Different Quenching for Centrals and Satellites

    NASA Astrophysics Data System (ADS)

    Darvish, Behnam; Mobasher, Bahram; Martin, D. Christopher; Sobral, David; Scoville, Nick; Stroe, Andra; Hemmati, Shoubaneh; Kartaltepe, Jeyhan

    2017-03-01

    We use a mass complete (log(M/{M}ȯ ) ≥slant 9.6) sample of galaxies with accurate photometric redshifts in the COSMOS field to construct the density field and the cosmic web to z = 1.2. The comic web extraction relies on the density field Hessian matrix and breaks the density field into clusters, filaments, and the field. We provide the density field and cosmic web measures to the community. We show that at z ≲ 0.8, the median star formation rate (SFR) in the cosmic web gradually declines from the field to clusters and this decline is especially sharp for satellites (∼1 dex versus ∼0.5 dex for centrals). However, at z ≳ 0.8, the trend flattens out for the overall galaxy population and satellites. For star-forming (SF) galaxies only, the median SFR is constant at z ≳ 0.5 but declines by ∼0.3–0.4 dex from the field to clusters for satellites and centrals at z ≲ 0.5. We argue that for satellites, the main role of the cosmic web environment is to control their SF fraction, whereas for centrals, it is mainly to control their overall SFR at z ≲ 0.5 and to set their fraction at z ≳ 0.5. We suggest that most satellites experience a rapid quenching mechanism as they fall from the field into clusters through filaments, whereas centrals mostly undergo a slow environmental quenching at z ≲ 0.5 and a fast mechanism at higher redshifts. Our preliminary results highlight the importance of the large-scale cosmic web on galaxy evolution.

  4. VizieR Online Data Catalog: Galaxies in the field of MACS J1206.2-0847 (Ebeling+, 2009)

    NASA Astrophysics Data System (ADS)

    Ebeling, H.; Ma, C. J.; Kneib, J.-P.; Jullo, E.; Courtney, N. J. D.; Barrett, E.; Edge, A. C.; Le Borgne, J.-F.

    2015-07-01

    Spectroscopic observations of presumed cluster galaxies as well as of the giant arc in MACS J1206.2-0847 were performed with the FORS1 spectrograph in multi-object spectroscopy mode at the UT3 Melipal telescope of the VLT on 2002 April 11. Additional multi-object spectroscopy of colour-selected galaxies in the field of MACS J1206.2-0847 was performed on 2003 May 8, using the multi-object (MOS) spectrograph on the Canada-France-Hawaii Telescope (CFHT) on Mauna Kea. (1 data file).

  5. Statistical Correlations Between Near-Infrared Luminosities and Ring Sizes in Field Ringed Galaxies

    NASA Astrophysics Data System (ADS)

    Wu, Wentao

    2008-01-01

    Statistically complete samples of inner-pseudo-, inner-, and outer-ringed galaxies can be extracted from the Catalog of Southern Ringed Galaxies. Redshifts and near-infrared (NIR) photometric data are available for the samples, allowing the derivation of the statistical correlations between the total NIR luminosities (L NIR) and the projected ring major axes in the physical scale (D) for these galaxies. For any of the three types of rings, the correlations are approximately L NIR vprop D 1.2 among the early-type ringed galaxies (the most commonly observed ringed galaxies). The correlations among late-type ringed galaxies appear significantly different. The results contradict the previous suggestion by Kormendy (1979, ApJ, 227, 714), who gave LB vprop D 2 (LB : B-band galaxy luminosity). The relations can be used in future to test theoretical simulations of dynamical structures of ringed galaxies as well as those of ring formation under the framework of cosmological models. Currently the results indicate at most small differences in the relative contributions of disk components to total galaxy masses and in the initial disk velocity dispersions between commonly observed ringed galaxies of similar type. The correlations also suggest a new approach to effectively use ring sizes as tertiary cosmological distance indicators, to help enhance the reliability of the measurement of the Hubble Constant.

  6. The data acquisition system for the Anglo-Australian Observatory 2-degree field project

    NASA Technical Reports Server (NTRS)

    Shortridge, K.; Farrell, T. J.; Bailey, J.

    1992-01-01

    The Anglo-Australian Observatory (AAO) is building a system that will provide a two-degree field of view at prime focus. A robot positioner will be used to locate up to 400 optical fibers at pre-determined positions in this field. While observations are being made using one set of 400 fibers, the robot will be positioning a second set of fibers in a background field that can be moved in to replace the first when the telescope is moved to a new position. The fibers feed two spectrographs each with a 1024 square CCD detector. The software system being produced to control this involves Vaxes for overall control and data recording, UNIX workstations for fiber configuration calculations and on-line data reduction, and VME systems running VxWorks for real-time control of critical parts such as the positioner robot. The system has to be able to interact with the observatory's present data acquisition systems, which use the ADAM system. As yet, the real-time parts of ADAM have not been ported to Unix, and so we are having to produce a smaller-scale system that is similar but inherently distributed (which ADAM is not). We are using this system as a testbed for ideas that we hope may eventually influence an ADAM II system. The system we are producing is based on a message system that is designed to be able to handle inter-process and inter-processor messages of any length, efficiently, and without ever requiring a task to block (i.e., be unresponsive to 'cancel' messages, enquiry messages), other than when deliberately waiting for external input - all of which will be through such messages. The essential requirement is that a message 'send' operation should never be able to block. The messages will be hierarchical, self-defining, machine-independent data structures. This allows us to provide very simple monitoring of messages for diagnostic purposes, and allows general purpose interface programs to be written without needing to share precise byte by byte message format

  7. A Redshift Survey of IRAS Galaxies. II. Methods for Determining Self-consistent Velocity and Density Fields: Erratum

    NASA Astrophysics Data System (ADS)

    Yahil, Amos; Strauss, Michael A.; Davis, Marc; Huchra, John P.

    1991-11-01

    In the paper, "A Redshift Survey of IRAS Galaxies. II. Methods for Determining Self-consistent Velocity and Density Fields" by Amos Yahil, Michael A. Strauss, Marc Davis, and John P. Huchra (ApJ, 372,380 [1991]), Figures 14 and 15 were presented out of order, with their legends reversed. Thus, the figure at the bottom of page 391 is Figure 15, and should have the legend: "Fig. 15.-As in Fig. 13, for the method 3 results." The figure at the top of page 392 is Figure 14, and should have the legend: "Fig. 14.-Plot in Galactic coordinates of the quantity V_diff_ for galaxies within 3000 km s^-1^ of the LG. The symbol size is proportional to V_diff_ - 400 km s^-1^, which measures the deviation of the redshift- distance relation along the line of sight to that galaxy from pure Hubble flow."

  8. High Energy Particle Acceleration and Turbulent Magnetic Field Amplification in Shell Type Supernova Remnants. Degree awarded by Minnesota Univ.

    NASA Technical Reports Server (NTRS)

    Keohane, Jonathan Wilmore

    1998-01-01

    Thesis submitted to the faculty of the Graduate School of the University of Minnesota in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Part I discusses the spatial correlation between the x-ray and radio morphologies of Cas A, and in the process address: the effect of inhomogeneous absorption on the apparent x-ray morphology, the interaction between the SNR and a molecular cloud, and the rapid move toward equipartition between the magnetic and gas energy densities. Discussions of the x-ray./radio correlation continues in Chapter 5, where we present a new, deep, ROSAT HRI image of Cas A. Chapter 7 presents ASCA spectra, with non-thermal spectral fits for 13 of the youngest SNRs in the Galaxy.

  9. The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Molecular Gas Reservoirs in High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Decarli, Roberto; Walter, Fabian; Aravena, Manuel; Carilli, Chris; Bouwens, Rychard; da Cunha, Elisabete; Daddi, Emanuele; Elbaz, David; Riechers, Dominik; Smail, Ian; Swinbank, Mark; Weiss, Axel; Bacon, Roland; Bauer, Franz; Bell, Eric F.; Bertoldi, Frank; Chapman, Scott; Colina, Luis; Cortes, Paulo C.; Cox, Pierre; Gónzalez-López, Jorge; Inami, Hanae; Ivison, Rob; Hodge, Jacqueline; Karim, Alex; Magnelli, Benjamin; Ota, Kazuaki; Popping, Gergö; Rix, Hans-Walter; Sargent, Mark; van der Wel, Arjen; van der Werf, Paul

    2016-12-01

    We study the molecular gas properties of high-z galaxies observed in the ALMA Spectroscopic Survey (ASPECS) that targets an ˜1 arcmin2 region in the Hubble Ultra Deep Field (UDF), a blind survey of CO emission (tracing molecular gas) in the 3 and 1 mm bands. Of a total of 1302 galaxies in the field, 56 have spectroscopic redshifts and correspondingly well-defined physical properties. Among these, 11 have infrared luminosities {L}{IR}\\gt {10}11 {L}⊙ , i.e., a detection in CO emission was expected. Out of these, 7 are detected at various significance in CO, and 4 are undetected in CO emission. In the CO-detected sources, we find CO excitation conditions that are lower than those typically found in starburst/sub-mm galaxy/QSO environments. We use the CO luminosities (including limits for non-detections) to derive molecular gas masses. We discuss our findings in the context of previous molecular gas observations at high redshift (star formation law, gas depletion times, gas fractions): the CO-detected galaxies in the UDF tend to reside on the low-{L}{IR} envelope of the scatter in the {L}{IR}{--}{L}{CO}\\prime relation, but exceptions exist. For the CO-detected sources, we find an average depletion time of ˜1 Gyr, with significant scatter. The average molecular-to-stellar mass ratio ({M}{{H}2}/M *) is consistent with earlier measurements of main-sequence galaxies at these redshifts, and again shows large variations among sources. In some cases, we also measure dust continuum emission. On average, the dust-based estimates of the molecular gas are a factor ˜2-5× smaller than those based on CO. When we account for detections as well as non-detections, we find large diversity in the molecular gas properties of the high-redshift galaxies covered by ASPECS.

  10. X-ray properties of BzK-selected galaxies in the deepest X-ray fields

    NASA Astrophysics Data System (ADS)

    Rangel, C.; Nandra, K.; Laird, E. S.; Orange, P.

    2013-02-01

    We investigate the X-ray properties of BzK-selected galaxies at z ˜ 2 using deep X-ray data in the Chandra Deep Field-South (CDFS) and Chandra Deep Field-North (CDFN). A subset of these BzK galaxies have been proposed as Compton-thick active galactic nucleus (AGN) candidates based on a high ratio of infrared (IR) to ultraviolet (UV) star formation rates (SFRs). With the benefit of deep 24 μm observations, our sample of these IR-excess galaxies is larger than previous studies and combined with the deepest X-ray data yield new insights into the population. We identify 701 and 534 star-forming BzK galaxies (sBzK galaxies) in the range z = 1.2-3.0 in CDFS and CDFN, respectively. Of these we directly detect in X-rays 49 sBzK galaxies in CDFS and 32 sBzK galaxies in CDFN. Stacking the undetected sources also reveals a significant X-ray signal. Investigating the X-ray detection rate and stacked flux versus the IR-excess parameter (i.e. SFRtotal/SFRUV, corr), we find no strong evidence for an increased X-ray detection rate, or a harder X-ray spectrum in IR-excess sBzK galaxies. This is particularly the case when one accounts for the strong correlation between the IR-excess parameter and the bolometric IR luminosity (LIR); when controlling for LIR, the IR-non-excess sBzK galaxies show a detection rate at least as high. While both direct detections and stacking suggest that the AGN fraction in sBzK galaxies is high, there is no clear evidence for widespread Compton-thick activity in either the sBzK population generally or the IR-excess sBzK subsample. The very hard X-ray signal obtained for the latter in earlier work was most likely contaminated by a few hard X-ray sources now directly detected in deeper X-ray data. The X-ray detection fraction of passive BzK galaxies in our sample is anything higher than that of sBZK galaxies, so there is no evidence for coeval black hole growth and star formation from X-ray analysis of the BzK populations. Because increased AGN activity

  11. Giant galaxies and their globular cluster populations: Analysis and results from a wide-field imaging survey and archive

    NASA Astrophysics Data System (ADS)

    Young, Michael D.

    The globular cluster (GC) systems of giant galaxies are valuable and intriguing tools for a number of reasons, both in terms of the properties of the overall system as well as the properties of the individual GCs that make up the system. GCs are old: their ages range from a few Gyrs up to 12 Gyrs, and they apparently form during galaxy mergers and major star formation events. The ensemble properties (including the color, metallicity, and spatial distributions) of the GC system constrain theoretical models of galaxy formation. For several years we have been carrying out a wide-field imaging survey of the GC populations of a sample of giant spiral, S0, and elliptical galaxies with distances of 10 - 30 Mpc. In this dissertation I present results and analysis of the GC systems of eight giant galaxies, representing a significant addition to the survey dataset. I also describe how the survey data and metadata was collected, homogenized, and ingested into a custom database and archive, and how a web portal was created to disseminate the survey products to the wider scientific community. I have developed and tested a probability factor to quantify the likelihood that a given GC candidate is in actuality a GC. I explored enhanced statistical methods to detect subpopulations in GC systems, and found that six of the GC systems in our survey presented with three GC subpopulations. I explored how the spatial and azimuthal distributions of these subpopulations differ in each host galaxy. I have supplemented our survey results with select GC system studies from the literature, and tested how different host galaxy properties correlate with the total number of globular clusters in a given system, finding that the combination of the dynamical mass of the galaxy and the K-band luminosity of the galaxy offered the best correlation with the number of GCs. Lastly, I applied this combination of predictors to a published catalog of GC system studies and found that the predictions were in

  12. PASSIVE AND STAR-FORMING GALAXIES AT 1.4 {<=} z {<=} 2.5 IN THE AEGIS FIELD

    SciTech Connect

    Fang Guanwen; Kong Xu; Chen Yang; Lin Xuanbin E-mail: wen@mail.ustc.edu.cn

    2012-06-01

    Using a simple two-color selection based on g-, z-, and K-band photometry, we choose from 1609 star-forming galaxies (sgzKs) and 422 passively evolving galaxies (pgzKs) at z {approx} 2 from a K-band-selected sample (K{sub AB} < 22.0) in an area of {approx}0.44 deg{sup 2} of the All-wavelength Extended Groth Strip International Survey. The number of counts of pgzKs in our sample turn over at K{sub AB} {approx} 21.0, and both the number of faint and bright objects (including sgzKs and pgzKs) exceed the predictions of a recent semi-analytic model of galaxy formation; a more successful model is need to explain this diversity. We also find that the star formation rate (SFR) and specific SFR (sSFR) of sgzKs increases with redshift at all masses, implying that star-forming galaxies were much more active on average in the past. Moreover, the sSFR of massive galaxies is lower at all redshifts, suggesting that star formation contributes more to the mass growth of low-mass galaxies than to high-mass galaxies. From the Hubble Space Telescope Wide Field Camera 3 near-infrared imaging data we find that morphologies of z {approx} 2 galaxies not only have diffuse structures with lower G and higher M{sub 20} values, but also have single-object morphologies (higher G and lower M{sub 20}), implying that there are morphological variety and different formation process for these galaxies at z {approx} 2. Finally, we also study the fraction of active galactic nuclei (AGNs) in the gzKs, 82 of 828 gzKs with four IRAC bands can be classified as AGNs ({approx}10%). Most of these AGN candidates have L{sub 0.5-10keV} > 10{sup 41} erg s{sup -1}.

  13. KECK DEEP FIELDS. IV. LUMINOSITY-DEPENDENT CLUSTERING AND GALAXY DOWNSIZING IN UV-SELECTED GALAXIES AT z = 4, 3, AND 2

    SciTech Connect

    Savoy, Jonathan; Sawicki, Marcin; Sato, Taro; Thompson, David

    2011-08-20

    We investigate the luminosity-dependent clustering of rest-frame UV-selected galaxies at z {approx} 4, 3, 2.2, and 1.7 in the Keck Deep Fields, which are complete to R = 27 and cover 169 arcmin{sup 2}. We find that at z {approx} 4 and 3, UV-bright galaxies cluster more strongly than UV-faint ones, but at z {approx} 2.2 and 1.7, the UV-bright galaxies are no longer the most strongly clustered. We derive mass estimates for objects in our sample by comparing our measurements to the predicted clustering of dark matter halos in the Millennium Simulation. From these estimates, we infer relationships between halo mass and star formation rate (SFR), and find that the most massive dark matter halos in our sample host galaxies with high SFRs (M{sub 1700} < -20, or >50 M{sub sun} yr{sup -1}) at z {approx} 3 and 4, moderate SFRs (-20 < M{sub 1700} < -19, or {approx}20 M{sub sun} yr{sup -1}) at z {approx} 2.2, and lower SFRs (-19 < M{sub 1700} < -18, or {approx}2 M{sub sun} yr{sup -1}) at z {approx} 1.7. We believe our measurements may provide a new line of evidence for galaxy downsizing by extending that concept from stellar to halo mass. We also find that the objects with blue UV colors in our sample are much more strongly clustered than those with red UV colors, and we propose that this may be due to the presence of the 2175 A dust absorption bump in more massive halos, which contain the older stellar populations and dust needed to produce the feature. The relatively small area covered by the survey means that the absolute values of the correlation lengths and halo masses we derive are heavily dependent on the 'integral constraint' correction, but the uniformly deep coverage across a large-redshift interval allows us to detect several important trends that are independent of this correction.

  14. Calibration of HST wide field camera for quantitative analysis of faint galaxy images

    NASA Technical Reports Server (NTRS)

    Ratnatunga, Kavan U.; Griffiths, Richard E.; Casertano, Stefano; Neuschaefer, Lyman W.; Wyckoff, Eric W.

    1994-01-01

    We present the methods adopted to optimize the calibration of images obtained with the Hubble Space Telescope (HST) Wide Field Camera (WFC) (1991-1993). Our main goal is to improve quantitative measurement of faint images, with special emphasis on the faint (I approximately 20-24 mag) stars and galaxies observed as a part of the Medium-Deep Survey. Several modifications to the standard calibration procedures have been introduced, including improved bias and dark images, and a new supersky flatfield obtained by combining a large number of relatively object-free Medium-Deep Survey exposures of random fields. The supersky flat has a pixel-to-pixel rms error of about 2.0% in F555W and of 2.4% in F785LP; large-scale variations are smaller than 1% rms. Overall, our modifications improve the quality of faint images with respect to the standard calibration by about a factor of five in photometric accuracy and about 0.3 mag in sensitivity, corresponding to about a factor of two in observing time. The relevant calibration images have been made available to the scientific community.

  15. Effects of Data Sampling on the Results of Fourier Analysis of Radial-Velocity Fields in Spiral-Galaxy Disks

    NASA Astrophysics Data System (ADS)

    Burlak, A. N.; Zasov, A. V.; Fridman, A. M.; Khoruzhi, O. V.

    2000-12-01

    Our main goal is to investigate the effects of data incompleteness on the results of Fourier analysis of line-of-sight velocity fields in the disks of spiral galaxies. We have carried out a number of numerical experiments, first with an artificially created simple velocity field and then with the velocity fields of two real galaxies, which qualitatively differ in data filling: NGC 157 and NGC 3631 with good and bad data filling, respectively. The field of purely circular velocities is chosen as the simplest artificial velocity field, because the circular velocities of spiral galaxies are much high than the residual (noncircular) velocities. Superimposing a "mask" simulating blank spots (holes) in the map of observational data on this artificial field has no effect on the results of Fourier analysis of this simplest field. A similar result is obtained for real galaxies with good data filling of the observed velocity fields. Superimposing arbitrarily shaped masks on the observed velocity field of NGC 157 in such a way that the field was filled by a mere 50% (at each radius) could not change appreciably the radial variations of large-scale Fourier harmonics. The situation qualitatively changes in attempting to fill the holes in the observed velocity field of NGC 3631 in some way. When missing velocities are artificially introduced by using the simplest model of purely circular gas rotation, the amplitudes and phases of the principal Fourier harmonics are distorted. In particular, a substantial distortion of the third harmonic also causes an increase in the error when determining the corotation radius from data of the filled field. When the filling of the velocity field is increased by degrading the spatial resolution, the amplitudes of most harmonics decrease throughout the entire disk region; as a result, their radial variations are smoothed out and the behavior of harmonic phases in the range of moderately high initial amplitudes can be distorted. An abnormal

  16. The evolution of brightest cluster and dwarf galaxies using integral field unit spectroscopy

    NASA Astrophysics Data System (ADS)

    Jimmy

    The study of galaxy formation and evolution utilizes empirical scaling relations as a tool to better understand complex physical processes that occur below the resolution of observations. New observations of galaxy populations can provide tests of the range of validity for known scaling relations. We test the following scaling relations using IFU spectroscopy of galaxies at opposite ends of the stellar-mass spectrum. Brightest cluster galaxies undergo, on average, more mergers than a typical early-type galaxy. They also lie at the center of their host cluster's gravitational potential well, meaning there is no preferred alignment for mergers. As such, we would expect to find that BCGs should have preferentially lower angular momentum when compared to a population of early-type galaxies. We have spatially mapped the kinematic properties of 10 nearby brightest cluster galaxies (BCGs) in the mass range 1010.5 solar masses < Mdyn < 1011.9 solar masses. We find that 30% (3/10) of the BCGs are fast rotators as de?ned by the ATLAS 3D criteria. This is significantly lower than the ATLAS3D population as a whole, however our sample is biased towards higher dynamical-mass galaxies. When controlling for dynamical-mass, we find that above Mdyn ˜ 1011.5 solar masses, both samples show the same ratio of slow rotators. This suggests that the relation be-tween galaxy angular momentum and dynamical mass is independent of the number of mergers a galaxy has undergone. Dwarf irregular galaxies are the local universe analogs of the young high-redshift galaxies that eventually merge to form BCGs. The mass-metallicity scaling relation (MZR) says that galaxies with higher stellar-mass have preferentially higher gas metallicity. Mergers have been suggested as a potential cause of the scatter in the mass-metallicity relation as pristine gas is driven into a galaxy, diluting the metal content. Two different three-dimensional extensions of MZR, as a function of either HI-gas mass (FMRHI) or

  17. On the Frontier of the Hunt for Jellyfish Galaxies: Ram-Pressure Stripping in the Hubble Frontier Fields

    NASA Astrophysics Data System (ADS)

    McPartland, Conor; Ebeling, Harald

    2015-08-01

    Using quantitative morphological selection criteria, we search for evidence of galaxies experiencing ram-pressure stripping (RPS) in the Hubble Frontier Fields. The broader areal coverage of these clusters, provided by the complementary parallel fields, allow us to sample regions near to the expected stripping radius of the cluster (˜1 Mpc), where we expect to find the highest density of events. Expanding the number of known events (especially at large cluster-centric radii) will allow us to disentangle the relative contributions of "normal" galaxy infall and cluster mergers in producing the events we observe. We present observational characteristics of the best RPS candidates from the Frontier Fields. Finally, we use these objects, along with RPS events previously identified in the literature, to make quantitative comparisons with predictions of theoretical and numerical models of ram-pressure stripping.

  18. Utility of galaxy catalogs for following up gravitational waves from binary neutron star mergers with wide-field telescopes

    SciTech Connect

    Hanna, Chad; Mandel, Ilya; Vousden, Will E-mail: imandel@star.sr.bham.ac.uk

    2014-03-20

    The first detections of gravitational waves from binary neutron star mergers with advanced LIGO and Virgo observatories are anticipated in the next five years. These detections could pave the way for multi-messenger gravitational-wave (GW) and electromagnetic (EM) astronomy if GW triggers are successfully followed up with targeted EM observations. However, GW sky localization is relatively poor, with expected localization areas of ∼10-100 deg{sup 2}; this presents a challenge for following up GW signals from compact binary mergers. Even for wide-field instruments, tens or hundreds of pointings may be required. Prioritizing pointings based on the relative probability of successful imaging is important since it may not be possible to tile the entire gravitational-wave localization region in a timely fashion. Galaxy catalogs were effective at narrowing down regions of the sky to search in initial attempts at joint GW/EM observations. The relatively limited range of initial GW instruments meant that few galaxies were present per pointing and galaxy catalogs were complete within the search volume. The next generation of GW detectors will have a 10-fold increase in range thereby increasing the expected number of galaxies per unit solid angle by a factor of ∼1000. As an additional complication, catalogs will be highly incomplete. Nevertheless, galaxy catalogs can still play an important role in prioritizing pointings for the next era of GW searches. We show how to quantify the advantages of using galaxy catalogs to prioritize wide-field follow-ups as a function of only two parameters: the three-dimensional volume within the field of view of a telescope after accounting for the GW distance measurement uncertainty, and the fraction of the GW sky localization uncertainty region that can be covered with telescope pointings. We find that the use of galaxy catalogs can improve the probability of successful imaging by ∼10% to ∼300% relative to follow-up strategies that

  19. Utility of Galaxy Catalogs for Following up Gravitational Waves from Binary Neutron Star Mergers with Wide-field Telescopes

    NASA Astrophysics Data System (ADS)

    Hanna, Chad; Mandel, Ilya; Vousden, Will

    2014-03-01

    The first detections of gravitational waves from binary neutron star mergers with advanced LIGO and Virgo observatories are anticipated in the next five years. These detections could pave the way for multi-messenger gravitational-wave (GW) and electromagnetic (EM) astronomy if GW triggers are successfully followed up with targeted EM observations. However, GW sky localization is relatively poor, with expected localization areas of ~10-100 deg2; this presents a challenge for following up GW signals from compact binary mergers. Even for wide-field instruments, tens or hundreds of pointings may be required. Prioritizing pointings based on the relative probability of successful imaging is important since it may not be possible to tile the entire gravitational-wave localization region in a timely fashion. Galaxy catalogs were effective at narrowing down regions of the sky to search in initial attempts at joint GW/EM observations. The relatively limited range of initial GW instruments meant that few galaxies were present per pointing and galaxy catalogs were complete within the search volume. The next generation of GW detectors will have a 10-fold increase in range thereby increasing the expected number of galaxies per unit solid angle by a factor of ~1000. As an additional complication, catalogs will be highly incomplete. Nevertheless, galaxy catalogs can still play an important role in prioritizing pointings for the next era of GW searches. We show how to quantify the advantages of using galaxy catalogs to prioritize wide-field follow-ups as a function of only two parameters: the three-dimensional volume within the field of view of a telescope after accounting for the GW distance measurement uncertainty, and the fraction of the GW sky localization uncertainty region that can be covered with telescope pointings. We find that the use of galaxy catalogs can improve the probability of successful imaging by ~10% to ~300% relative to follow-up strategies that do not utilize

  20. The Arecibo Galaxy Environment Survey: Observations towards the NGC 7817/7798 Galaxy Pair

    NASA Astrophysics Data System (ADS)

    Harrison, Amanda; Robert Minchin

    2016-01-01

    The Arecibo Galaxy Environment Survey (AGES) examines the environment of neutral hydrogen gas in the interstellar medium. AGES uses the 305m Arecibo Radio Telescope and the Arecibo L-Band Feed Array to create a deep field neutral hydrogen survey which we used to detect galaxies in an area five square degrees around the galaxy pair NGC 7817/7798. By finding and investigating hydrogen rich galaxies we hope to gain a better understanding of how the environment affects galaxy evolution. H1 line profiles were made for the detected H1 emission and ten galaxies which had the characteristic double-horned feature were found. NGC 7798 was not detected, but NGC 7817 and the other galaxies were cross-identified in NASA/IPAC Extragalactic Database as well as in Sloan Digital Sky Survey to obtain optical data. Out of the ten, two of the sources were uncatalogued. We analyzed the hydrogen spectra and aperture photometry to learn about the characteristics of these galaxies such as their heliocentric velocity, flux, and mass of the neutral hydrogen. Furthermore, we graphed the Tully-Fisher and the Baryonic Tully-Fisher of the ten sources and found that most followed the relation. One that is the biggest outlier is suspected be a galaxy cluster while other outliers may be caused by ram pressure stripping deforming the galaxy.

  1. Real-time imaging of the reorientation mechanisms of YOYO-labelled DNA molecules during 90 degrees and 120 degrees pulsed field gel electrophoresis.

    PubMed Central

    Gurrieri, S; Smith, S B; Wells, K S; Johnson, I D; Bustamante, C

    1996-01-01

    Pulsed field gel electrophoresis (PFGE) techniques have been developed to overcome the limitations of conventional electrophoresis and to increase the separation to DNA chromosomes of few megabase pairs in size. Despite of the large success of these techniques, the various separation protocols employed for PFGE experiments have been determined empirically. However, a deep understanding of the molecular mechanisms of motion responsible for DNA separation becomes necessary for the rational optimization of these techniques. This paper shows the first clear observations of individual molecules of DNA during the reorientation process in 90 degrees PFGE and 120 degrees PFGE. Real-time visualization of the DNA dynamics during PFGE was possible with the use of an epi-illumination fluorescence microscope specifically equipped to run these experiments and by staining the DNA with YOYO-1 (1,1'-(4,4,7,7-tetramethyl-4,7-diazaundecamethylene)-bis-4-[3-meth yl -2,3-dihydro-(benzo-1,3-oxazole)-2-methyl-idene]-quinolinium tetraiodide). This dye forms a very stable, highly fluorescent complex with double-stranded DNA and dramatically improves the quality of the DNA images. The results of computer simulations used to reproduce the molecular mechanisms of motion as well as the DNA separation features are also discussed. PMID:8972863

  2. ACCOUNTING FOR COSMIC VARIANCE IN STUDIES OF GRAVITATIONALLY LENSED HIGH-REDSHIFT GALAXIES IN THE HUBBLE FRONTIER FIELD CLUSTERS

    SciTech Connect

    Robertson, Brant E.; Stark, Dan P.; Ellis, Richard S.; Dunlop, James S.; McLure, Ross J.; McLeod, Derek

    2014-12-01

    Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ∼35% at redshift z ∼ 7 to ≳ 65% at z ∼ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program.

  3. An ALMA survey of submillimeter galaxies in the extended Chandra deep field south: The redshift distribution and evolution of submillimeter galaxies

    SciTech Connect

    Simpson, J. M.; Swinbank, A. M.; Smail, Ian; Alexander, D. M.; Danielson, A. L. R.; Thomson, A. P.; Brandt, W. N.; Bertoldi, F.; Karim, A.; De Breuck, C.; Chapman, S. C.; Coppin, K. E. K.; Da Cunha, E.; Hodge, J. A.; Schinnerer, E.; Dannerbauer, H.; Greve, T. R.; Ivison, R. J.; Knudsen, K. K.; Poggianti, B. M.; and others

    2014-06-20

    We present the first photometric redshift distribution for a large sample of 870 μm submillimeter galaxies (SMGs) with robust identifications based on observations with ALMA. In our analysis we consider 96 SMGs in the Extended Chandra Deep Field South, 77 of which have 4-19 band photometry. We model the SEDs for these 77 SMGs, deriving a median photometric redshift of z {sub phot} = 2.3 ± 0.1. The remaining 19 SMGs have insufficient photometry to derive photometric redshifts, but a stacking analysis of Herschel observations confirms they are not spurious. Assuming that these SMGs have an absolute H-band magnitude distribution comparable to that of a complete sample of z ∼ 1-2 SMGs, we demonstrate that they lie at slightly higher redshifts, raising the median redshift for SMGs to z {sub phot} = 2.5 ± 0.2. Critically we show that the proportion of galaxies undergoing an SMG-like phase at z ≥ 3 is at most 35% ± 5% of the total population. We derive a median stellar mass of M {sub *} = (8 ± 1) × 10{sup 10} M {sub ☉}, although there are systematic uncertainties of up to 5 × for individual sources. Assuming that the star formation activity in SMGs has a timescale of ∼100 Myr, we show that their descendants at z ∼ 0 would have a space density and M{sub H} distribution that are in good agreement with those of local ellipticals. In addition, the inferred mass-weighted ages of the local ellipticals broadly agree with the look-back times of the SMG events. Taken together, these results are consistent with a simple model that identifies SMGs as events that form most of the stars seen in the majority of luminous elliptical galaxies at the present day.

  4. Precise Strong Lensing Mass Modeling of Four Hubble Frontier Field Clusters and a Sample of Magnified High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Kawamata, Ryota; Oguri, Masamune; Ishigaki, Masafumi; Shimasaku, Kazuhiro; Ouchi, Masami

    2016-03-01

    We conduct precise strong lensing mass modeling of four Hubble Frontier Field (HFF) clusters, Abell 2744, MACS J0416.1-2403, MACS J0717.5+3745, and MACS J1149.6+2223, for which HFF imaging observations are completed. We construct a refined sample of more than 100 multiple images for each cluster by taking advantage of the full-depth HFF images, and conduct mass modeling using the glafic software, which assumes simply parametrized mass distributions. Our mass modeling also exploits a magnification constraint from the lensed SN Ia HFF14Tom for Abell 2744 and positional constraints from the multiple images S1-S4 of the lensed supernova SN Refsdal for MACS J1149.6+2223. We find that our best-fitting mass models reproduce the observed image positions with rms errors of ˜0.″4, which are smaller than rms errors in previous mass modeling that adopted similar numbers of multiple images. Our model predicts a new image of SN Refsdal with a relative time delay and magnification that are fully consistent with a recent detection of reappearance. We then construct catalogs of z ˜ 6-9 dropout galaxies behind the four clusters and estimate magnification factors for these dropout galaxies with our best-fitting mass models. The dropout sample from the four cluster fields contains ˜120 galaxies at z ≳ 6, about 20 of which are predicted to be magnified by a factor of more than 10. Some of the high-redshift galaxies detected in the HFF have lensing-corrected magnitudes of MUV ˜ -15 to -14. Our analysis demonstrates that the HFF data indeed offer an ideal opportunity to study faint high-redshift galaxies. All lensing maps produced from our mass modeling will be made available on the Space Telescope Science Institute website (https://archive.stsci.edu/prepds/frontier/lensmodels/).

  5. Filaments from the galaxy distribution and from the velocity field in the local universe

    NASA Astrophysics Data System (ADS)

    Libeskind, Noam I.; Tempel, Elmo; Hoffman, Yehuda; Tully, R. Brent; Courtois, Hélène

    2015-10-01

    The cosmic web that characterizes the large-scale structure of the Universe can be quantified by a variety of methods. For example, large redshift surveys can be used in combination with point process algorithms to extract long curvilinear filaments in the galaxy distribution. Alternatively, given a full 3D reconstruction of the velocity field, kinematic techniques can be used to decompose the web into voids, sheets, filaments and knots. In this Letter, we look at how two such algorithms - the Bisous model and the velocity shear web - compare with each other in the local Universe (within 100 Mpc), finding good agreement. This is both remarkable and comforting, given that the two methods are radically different in ideology and applied to completely independent and different data sets. Unsurprisingly, the methods are in better agreement when applied to unbiased and complete data sets, like cosmological simulations, than when applied to observational samples. We conclude that more observational data is needed to improve on these methods, but that both methods are most likely properly tracing the underlying distribution of matter in the Universe.

  6. Large-Field CO(J = 1→0) Observations of the Starburst Galaxy M 82

    NASA Astrophysics Data System (ADS)

    Salak, Dragan; Nakai, Naomasa; Miyamoto, Yusuke; Yamauchi, Aya; Tsuru, Takeshi G.

    2013-06-01

    We present large-field (15.7 × 16.9 arcmin2) CO(J = 1→0) observations of the starburst galaxy M 82, at an angular resolution of 22" with the NRO 45-m telescope. The CO emission was detected in the galactic disk, outflow (driven by the galactic wind) up to ˜2 kpc above the galactic plane in the halo, and in tidal streams. The kinematics of the outflow (including CO line splitting) suggests that it has the shape of a cylinder that is diverging outwards. The mass and kinetic energy of the molecular gas outflow are estimated to be (0.26-1.0) × 109 M⊙ and (1-4) × 1056 erg. A clump of CO gas was discovered 3.5 kpc above the galactic plane; it coincides with a dark lane previously found in X-ray observations, and a peak in H I emission. A comparison with H I, hot molecular hydrogen and dust suggests that the molecular gas shows signatures of warm and cool components in the outflow and tidal streams, respectively.

  7. On the Nature of the Eclipsing Bright X-ray Source in the Circinus Galaxy Field

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Wu, K.; Tennant, A. F.; Swartz, D. A.

    2003-01-01

    The X-ray spectrum and light curve of the bright source CG X-1 in the field of the Circinus galaxy are re-examined. Previous analyses have concluded that the source is an accreting black hole of about 50 solar masses although it was noted that the light curve resembles that of an AM Her-type system. Here we show that the light curve and orbital dynamics constrain the mass of the compact object to less than 30 solar masses and the mass of the companion to less than 1 solar mass. Combining the mass constraints with the observed X-ray flux, we show that an accreting object must either radiate anisotropically or strongly violate the Eddington limit. If the emission is beamed, then the companion star, which intercepts this flux during eclipse, will be driven out of thermal equilibrium and evaporate within approx. 103 yr. We find, therefore, that the observations are most consistent with the interpretation of CG X-1 as a bright, long-period, AM Her system in the Milky Way.

  8. Resolving the 180-degree ambiguity in vector magnetic field measurements: The 'minimum' energy solution

    NASA Technical Reports Server (NTRS)

    Metcalf, Thomas R.

    1994-01-01

    I present a robust algorithm that resolves the 180-deg ambiguity in measurements of the solar vector magnetic field. The technique simultaneously minimizes both the divergence of the magnetic field and the electric current density using a simulated annealing algorithm. This results in the field orientation with approximately minimum free energy. The technique is well-founded physically and is simple to implement.

  9. Degree-day requirements for eight economically important grasshoppers (Orthoptera: Acrididae) in Nebraska using field data.

    PubMed

    Brust, Mathew L; Hoback, W Wyatt; Wright, Robert J

    2009-10-01

    The timing of application for the management of rangeland grasshoppers (Orthoptera: Acrididae) is critical, especially as insecticides become more specialized and the use of Insect Growth Regulators becomes more widespread. The general seasonal occurrence of adults of many grasshopper species has been well documented; however, their appearance varies widely between years. We analyzed sweep samples collected over the western two thirds of Nebraska from a 3-yr period and noted the occurrence of adults by region for eight species of rangeland grasshoppers. We analyzed occurrence based on degree-day accumulations for the region and developed estimates of degree-day requirements for these species. Because these grasshopper species are common rangeland pests, degree-day requirements to reach adulthood should improve the effectiveness of grasshopper treatment programs over a large geographic area.

  10. A CENSUS OF STAR-FORMING GALAXIES AT z = 1-3 IN THE SUBARU DEEP FIELD

    SciTech Connect

    Ly, Chun; Malkan, Matthew A.; Hayashi, Masao; Shimasaku, Kazuhiro; Motohara, Kentaro; Kashikawa, Nobunari; Nagao, Tohru; Grady, Celestine

    2011-07-10

    Several UV and near-infrared color selection methods have identified galaxies at z = 1-3. Since each method suffers from selection biases, we have simultaneously applied three leading techniques (Lyman break, BX/BM, and BzK selection) in the Subaru Deep Field. This field has reliable ({Delta}z/(1 + z) = 0.02-0.09) photometric redshifts for {approx}53,000 galaxies from 20 bands (1500 A-2.2 {mu}m). The BzK, LBG, and BX/BM samples suffer contamination from z < 1 interlopers of 6%, 8%, and 20%, respectively. Around the redshifts where it is most sensitive (z {approx} 1.9 for star-forming BzK, z {approx} 1.8 for z {approx} 2 LBGs, z {approx} 1.6 for BM, and z {approx} 2.3 for BX), each technique finds 60%-80% of the census of the three methods. In addition, each of the color techniques shares 75%-96% of its galaxies with another method, which is consistent with previous studies that adopt identical criteria on magnitudes and colors. Combining the three samples gives a comprehensive census that includes {approx}90% of z{sub phot} = 1-3 galaxies, using standard magnitude limits similar to previous studies. In fact, we find that among z = 1-2.5 galaxies in the color selection census, 81%-90% of them can be selected by just combining the BzK selection with one of the UV techniques (z {approx} 2 LBG or BX and BM). The average galaxy stellar mass, reddening, and star formation rates (SFRs) all decrease systematically from the sBzK population to the LBGs, and to the BX/BMs. The combined color selections yield a total cosmic SFR density of 0.18 {+-} 0.03 M{sub sun} yr{sup -1} Mpc{sup -3} for K{sub AB} {approx}< 24. We find that 65% of the star formation is in galaxies with E(B - V) > 0.25 mag, even though they are only one-fourth of the census by number.

  11. Properties of an H I-selected galaxy sample

    NASA Technical Reports Server (NTRS)

    Szomoru, Arpad; Guhathakurta, Puragra; Van Gorkom, Jacqueline H.; Knapen, Johan H.; Weinberg, David H.; Fruchter, Andrew S.

    1994-01-01

    We analyze the properties of a sample of galaxies identified in a 21cm, H I-line survey of selected areas in the Perseus-Pisces supercluster and its foreground void. Twelve fields were observed in the supercluster, five of them (target fields) centered on optically bright galaxies, and the other seven (blank fields) selected to contain no bright galaxies within 45 min. of their centers. We detected nine previously uncatalogued, gas-rich galaxies, six of them in the target fields. We also detected H I from seven previously catalogued galaxies in these fields. Observations in the void covered the same volume as the 12 supercluster fields at the same H I-mass sensitivity, but no objects were detected. Combining out H I data with optical broadband and H alpha imaging, we conclude that the properties of H I-selected galaxies do not differ substantially from those of late-type galaxies found in optical surveys. In particular, the galaxies in our sample do not appear to be unusually faint for their H I mass, or for their circular velocity. We find tentative evidence for a connection between optical surface brightness and degree of isolation, in the sense that low surface brightness galaxies tend to be more isolated. The previously catalogued, optically bright galaxies in our survey volume dominate the total H I mass density and cross section; the uncatalogued galaxies contribute only approximately 19 percent of the mass and approximately 12 percent of the cross section. Thus, existing estimates of the density and cross section of neutral hydrogen, most of which are based on optically selected galaxy samples, are probably accurate. Such estimates can be used to compare the nearby universe to the high-redshift universe probed by quasar absorption lines.

  12. VIMOS Integral Field Spectroscopy of Gaseous Nebulae in Local Group Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Held, E. V.; Gullieuszik, M.; Saviane, I.; Sabbadin, F.; Momany, Y.; Rizzi, L.; Bresolin, F.

    The study of very metal-poor dwarf irregular (dIrr) galaxies is fundamental to test the cosmological scenarios of galaxy formation. Among Local Group galaxies, Leo A and SagDIG are probably the most metal-poor dwarfs, as suggested by estimates of their nebular abundances based on the empirical method [I. Saviane, L. Rizzi, E.V. Held, F. Bresolin, Y. Momany in Astron. Astrophys. 390, 59 (2002); E.D. Skillman, R. Terlevich, J. Melnick in Mon. Not. R. Astron. Soc. 240, 563 (1989); L. van Zee, E.D. Skillman, M.P. Haynes in Astrophys. J. 637, 269 (2006)].

  13. X-ray observations of dust obscured galaxies in the Chandra deep field south

    NASA Astrophysics Data System (ADS)

    Corral, A.; Georgantopoulos, I.; Comastri, A.; Ranalli, P.; Akylas, A.; Salvato, M.; Lanzuisi, G.; Vignali, C.; Koutoulidis, L.

    2016-08-01

    We present the properties of X-ray detected dust obscured galaxies (DOGs) in the Chandra deep field south. In recent years, it has been proposed that a significant percentage of the elusive Compton-thick (CT) active galactic nuclei (AGN) could be hidden among DOGs. This type of galaxy is characterized by a very high infrared (IR) to optical flux ratio (f24 μm/fR > 1000), which in the case of CT AGN could be due to the suppression of AGN emission by absorption and its subsequent re-emission in the IR. The most reliable way of confirming the CT nature of an AGN is by X-ray spectroscopy. In a previous work, we presented the properties of X-ray detected DOGs by making use of the deepest X-ray observations available at that time, the 2Ms observations of the Chandra deep fields, the Chandra deep field north (CDF-N), and the Chandra deep field south (CDF-S). In that work, we only found a moderate percentage (<50%) of CT AGN among the DOGs sample. However, we pointed out that the limited photon statistics for most of the sources in the sample did not allow us to strongly constrain this number. In this paper, we further explore the properties of the sample of DOGs in the CDF-S presented in that work by using not only a deeper 6Ms Chandra survey of the CDF-S, but also by combining these data with the 3Ms XMM-Newton survey of the CDF-S. We also take advantage of the great coverage of the CDF-S region from the UV to the far-IR to fit the spectral energy distributions (SEDs) of our sources. Out of the 14 AGN composing our sample, 9 are highly absorbed (NH > 1023 cm-2), whereas 2 look unabsorbed, and the other 3 are only moderately absorbed. Among the highly absorbed AGN, we find that only three could be considered CT AGN. In only one of these three cases, we detect a strong Fe Kα emission line; the source is already classified as a CT AGN with Chandra data in a previous work. Here we confirm its CT nature by combining Chandra and XMM-Newton data. For the other two CT

  14. Detection of an ˜20 kpc coherent magnetic field in the outskirt of merging spirals: the Antennae galaxies

    NASA Astrophysics Data System (ADS)

    Basu, Aritra; Mao, S. A.; Kepley, Amanda A.; Robishaw, Timothy; Zweibel, Ellen G.; Gallagher, John. S., III

    2017-01-01

    We present a study of the magnetic field properties of NGC 4038/9 (the `Antennae' galaxies), the closest example of a late stage merger of two spiral galaxies. Wideband polarimetric observations were performed using the Karl G. Jansky Very Large Array between 2 and 4 GHz. Rotation measure synthesis and Faraday depolarization analysis was performed to probe the magnetic field strength and structure at spatial resolution of ˜1 kpc. Highly polarized emission from the southern tidal tail is detected with intrinsic fractional polarization close to the theoretical maximum (0.62 ± 0.18), estimated by fitting the Faraday depolarization with a volume that is both synchrotron emitting and Faraday rotating containing random magnetic fields. Magnetic fields are well aligned along the tidal tail and the Faraday depths shows large-scale smooth variations preserving its sign. This suggests the field in the plane of the sky to be regular up to ˜20 kpc, which is the largest detected regular field structure on galactic scales. The equipartition field strength of ˜ 8.5 μG of the regular field in the tidal tail is reached within a few 100 Myr, likely generated by stretching of the galactic disc field by a factor of 4-9 during the tidal interaction. The regular field strength is greater than the turbulent fields in the tidal tail. Our study comprehensively demonstrates, although the magnetic fields within the merging bodies are dominated by strong turbulent magnetic fields of ˜ 20 μG in strength, tidal interactions can produce large-scale regular field structure in the outskirts.

  15. Kinematic Properties of Double-barred Galaxies: Simulations versus Integral-field Observations

    NASA Astrophysics Data System (ADS)

    Du, Min; Debattista, Victor P.; Shen, Juntai; Cappellari, Michele

    2016-09-01

    Using high-resolution N-body simulations, we recently reported that a dynamically cool inner disk embedded in a hotter outer disk can naturally generate a steady double-barred (S2B) structure. Here we study the kinematics of these S2B simulations, and compare them to integral-field observations from ATLAS 3D and SAURON. We show that S2B galaxies exhibit several distinct kinematic features, namely: (1) significantly distorted isovelocity contours at the transition region between the two bars, (2) peaks in σ LOS along the minor axis of inner bars, which we term “σ-humps,” that are often accompanied by ring/spiral-like features of increased σ LOS, (3) {h}3{--}\\bar{v} anti-correlations in the region of the inner bar for certain orientations, and (4) rings of positive h 4 when viewed at low inclinations. The most impressive of these features are the σ-humps these evolve with the inner bar, oscillating in strength just as the inner bar does as it rotates relative to the outer bar. We show that, in cylindrical coordinates, the inner bar has similar streaming motions and velocity dispersion properties as normal large-scale bars, except for σ z , which exhibits peaks on the minor axis, i.e., humps. These σ z humps are responsible for producing the σ-humps. For three well-resolved early-type S2Bs (NGC 2859, NGC 2950, and NGC 3941) and a potential S2B candidate (NGC 3384), the S2B model qualitatively matches the integral-field data well, including the “σ-hollows” previously identified. We also discuss the kinematic effect of a nuclear disk in S2Bs.

  16. Young galaxy candidates in the Hubble Frontier Fields. I. A2744

    SciTech Connect

    Zheng, Wei; Ford, Holland C.; Huang, Xingxing; Shu, Xinwen; Zitrin, Adi; Broadhurst, Tom; Kelson, Daniel D.; Smit, Renske

    2014-11-01

    We report the discovery of 24 Lyman-break candidates at 7 ≲ z ≲ 10.5, in the Hubble Frontier Fields (HFF) imaging data of A2744 (z = 0.308), plus Spitzer/IRAC data and archival ACS data. The sample includes a triple image system with a photometric redshift of z ≅ 7.4. This high redshift is geometrically confirmed by our lens model corresponding to deflection angles that are 12% larger than the lower-redshift systems used to calibrate the lens model at z = 2.019. The majority of our high-redshift candidates are not expected to be multiply lensed given their locations in the image plane and the brightness of foreground galaxies, but are magnified by factors of ∼1.3-15, so that we are seeing further down the luminosity function than comparable deep-field imaging. It is apparent that the redshift distribution of these sources does not smoothly extend over the full redshift range accessible at z < 12, but appears to break above z = 9. Nine candidates are clustered within a small region of 20'' across, representing a potentially unprecedented concentration. Given the poor statistics, however, we must await similar constraints from the additional HFF clusters to properly examine this trend. The physical properties of our candidates are examined using the range of lens models developed for the HFF program by various groups including our own, for a better estimate of underlying systematics. Our spectral-energy-distribution fits for the brightest objects suggest stellar masses of ≅ 10{sup 9} M {sub ☉}, star formation rates of ≅ 4 M {sub ☉} yr{sup –1}, and a typical formation redshift of z ≲ 19.

  17. Early Career Experiences of UW Doctorates as a Function of Degree Field and Gender. EAC Reports.

    ERIC Educational Resources Information Center

    de Wolf, Virginia A.

    Early career experiences of a sample of 233 University of Washington doctorates were studied. Doctorates were initially grouped into seven degree areas (physical science, biological science, social science, humanities, education, engineering, and other). As hypothesized, significant differences were found between the genders in their distribution…

  18. A comparison of the near-infrared spectral features of early-type galaxies in the Coma Cluster, the Virgo cluster and the field

    NASA Technical Reports Server (NTRS)

    Houdashelt, Mark L.; Frogel, Jay A.

    1993-01-01

    Earlier researchers derived the relative distance between the Coma and Virgo clusters from color-magnitude relations of the early-type galaxies in each cluster. They found that the derived distance was color-dependent and concluded that the galaxies of similar luminosity in the two clusters differ in their red stellar populations. More recently, the color-dependence of the Coma-Virgo distance modulus has been called into question. However, because these two clusters differ so dramatically in their morphologies and kinematics, it is plausible that the star formation histories of the member galaxies also differed. If the conclusions of earlier researchers are indeed correct, then some signature of the resulting stellar population differences should appear in the near-infrared and/or infrared light of the respective galaxies. We have collected near-infrared spectra of 17 Virgo and 10 Coma early-type galaxies; this sample spans about four magnitudes in luminosity in each cluster. Seven field E/S0 galaxies have been observed for comparison. Pseudo-equivalent widths have been measured for all of the field galaxies, all but one of the Virgo members, and five of the Coma galaxies. The features examined are sensitive to the temperature, metallicity, and surface gravity of the reddest stars. A preliminary analysis of these spectral features has been performed, and, with a few notable exceptions, the measured pseudo-equivalent widths agree well with previously published values.

  19. What are the mechanical degrees of freedom of the Dirac field?

    SciTech Connect

    Garcia-Chung, Angel A.; Morales-Tecotl, Hugo A.

    2012-08-24

    The study of the behavior of quantum fields at very high energies, possibly at the Planck scale, is an open problem today. Recent attempts by Hossain et al explore a polymer quantized scalar field in which the canonical algebra of the tower of oscillators making up the field is replaced by the polymer one, inspired in loop quantum gravity. A smoking gun of such a quantization appears in the form of deformed dispersion relations at very high energies and hence in the corresponding propagator. In this work we provide some steps towards the generalization of these results to a Dirac field. In particular we use a Fourier decomposition to look for the analogue of the oscillators of the scalar field. It turns out the corresponding energy spectrum can be intepreted as containing for each mode the contribution of four Fermi oscillators.

  20. CLASH-VLT: Dissecting the Frontier Fields Galaxy Cluster MACS J0416.1-2403 with ˜800 Spectra of Member Galaxies

    NASA Astrophysics Data System (ADS)

    Balestra, I.; Mercurio, A.; Sartoris, B.; Girardi, M.; Grillo, C.; Nonino, M.; Rosati, P.; Biviano, A.; Ettori, S.; Forman, W.; Jones, C.; Koekemoer, A.; Medezinski, E.; Merten, J.; Ogrean, G. A.; Tozzi, P.; Umetsu, K.; Vanzella, E.; van Weeren, R. J.; Zitrin, A.; Annunziatella, M.; Caminha, G. B.; Broadhurst, T.; Coe, D.; Donahue, M.; Fritz, A.; Frye, B.; Kelson, D.; Lombardi, M.; Maier, C.; Meneghetti, M.; Monna, A.; Postman, M.; Scodeggio, M.; Seitz, S.; Ziegler, B.

    2016-06-01

    We present VIMOS-Very Large Telescope (VLT) spectroscopy of the Frontier Fields cluster MACS J0416.1-2403 (z = 0.397). Taken as part of the CLASH-VLT survey, the large spectroscopic campaign provided more than 4000 reliable redshifts over ˜600 arcmin2, including ˜800 cluster member galaxies. The unprecedented sample of cluster members at this redshift allows us to perform a highly detailed dynamical and structural analysis of the cluster out to ˜2.2 r 200 (˜4 Mpc). Our analysis of substructures reveals a complex system composed of a main massive cluster (M 200 ˜ 0.9 × 1015 M ⊙ and σ V,r200 ˜ 1000 km s-1) presenting two major features: (i) a bimodal velocity distribution, showing two central peaks separated by ΔV rf ˜ 1100 km s-1 with comparable galaxy content and velocity dispersion, and (ii) a projected elongation of the main substructures along the NE-SW direction, with a prominent sub-clump ˜600 kpc SW of the center and an isolated BCG approximately halfway between the center and the SW clump. We also detect a low-mass structure at z ˜ 0.390, ˜10‧ south of the cluster center, projected at ˜3 Mpc, with a relative line-of-sight velocity of ΔV rf ˜ -1700 km s-1. The cluster mass profile that we obtain through our dynamical analysis deviates significantly from the “universal” NFW, being best fit by a Softened Isothermal Sphere model instead. The mass profile measured from the galaxy dynamics is found to be in relatively good agreement with those obtained from strong and weak lensing, as well as with that from the X-rays, despite the clearly unrelaxed nature of the cluster. Our results reveal an overall complex dynamical state of this massive cluster and support the hypothesis that the two main subclusters are being observed in a pre-collisional phase, in agreement with recent findings from radio and deep X-ray data. In this article, we also release the entire redshift catalog of 4386 sources in the field of this cluster, which includes 60

  1. The Photometric and Kinematic Structure of Face-on Disk Galaxies. III. Kinematic Inclinations from Hα Velocity Fields

    NASA Astrophysics Data System (ADS)

    Andersen, David R.; Bershady, Matthew A.

    2013-05-01

    Using the integral field unit DensePak on the WIYN 3.5 m telescope we have obtained Hα velocity fields of 39 nearly face-on disks at echelle resolutions. High-quality, uniform kinematic data and a new modeling technique enabled us to derive accurate and precise kinematic inclinations with mean i kin = 23° for 90% of these galaxies. Modeling the kinematic data as single, inclined disks in circular rotation improves upon the traditional tilted-ring method. We measure kinematic inclinations with a precision in sin i of 25% at 20° and 6% at 30°. Kinematic inclinations are consistent with photometric and inverse Tully-Fisher inclinations when the sample is culled of galaxies with kinematic asymmetries, for which we give two specific prescriptions. Kinematic inclinations can therefore be used in statistical "face-on" Tully-Fisher studies. A weighted combination of multiple, independent inclination measurements yield the most precise and accurate inclination. Combining inverse Tully-Fisher inclinations with kinematic inclinations yields joint probability inclinations with a precision in sin i of 10% at 15° and 5% at 30°. This level of precision makes accurate mass decompositions of galaxies possible even at low inclination. We find scaling relations between rotation speed and disk-scale length identical to results from more inclined samples. We also observe the trend of more steeply rising rotation curves with increased rotation speed and light concentration. This trend appears to be uncorrelated with disk surface brightness.

  2. The Lyman continuum escape fraction of galaxies at z = 3.3 in the VUDS-LBC/COSMOS field

    NASA Astrophysics Data System (ADS)

    Grazian, A.; Giallongo, E.; Gerbasi, R.; Fiore, F.; Fontana, A.; Le Fèvre, O.; Pentericci, L.; Vanzella, E.; Zamorani, G.; Cassata, P.; Garilli, B.; Le Brun, V.; Maccagni, D.; Tasca, L. A. M.; Thomas, R.; Zucca, E.; Amorín, R.; Bardelli, S.; Cassarà, L. P.; Castellano, M.; Cimatti, A.; Cucciati, O.; Durkalec, A.; Giavalisco, M.; Hathi, N. P.; Ilbert, O.; Lemaux, B. C.; Paltani, S.; Ribeiro, B.; Schaerer, D.; Scodeggio, M.; Sommariva, V.; Talia, M.; Tresse, L.; Vergani, D.; Bonchi, A.; Boutsia, K.; Capak, P.; Charlot, S.; Contini, T.; de la Torre, S.; Dunlop, J.; Fotopoulou, S.; Guaita, L.; Koekemoer, A.; López-Sanjuan, C.; Mellier, Y.; Merlin, E.; Paris, D.; Pforr, J.; Pilo, S.; Santini, P.; Scoville, N.; Taniguchi, Y.; Wang, P. W.

    2016-01-01

    Context. The ionizing Lyman continuum flux escaping from high-redshift galaxies into the intergalactic medium is a fundamental quantity to understand the physical processes involved in the reionization epoch. However, from an observational point of view, direct detections of HI ionizing photons at high redshifts are feasible for galaxies mainly in the interval z ~ 3-4. Aims: We have investigated a sample of star-forming galaxies at z ~ 3.3 to search for possible detections of Lyman continuum ionizing photons escaping from galaxy halos. Methods: We used deep ultraviolet (UV) imaging in the COSMOS field, obtained with the prime focus camera LBC at the LBT telescope, along with a catalogue of spectroscopic redshifts obtained by the VIMOS Ultra Deep Survey (VUDS) to build a sample of 45 galaxies at z ~ 3.3 with L> 0.5 L∗. We obtained deep LBC images of galaxies with spectroscopic redshifts in the interval 3.27 galaxies apparently shows escape fractions >28%, but a detailed analysis of their properties reveals that, with the exception of two marginal detections (S/N ~ 2) in the U-band, all the other eight galaxies are most likely contaminated by the UV flux of low-redshift interlopers located close (in angular position) to the high-z targets. The average escape fraction derived from the stacking of the cleaned sample was constrained to fescrel < 2%. The implied hydrogen photoionization rate is a factor two lower than that needed to keep the intergalactic medium ionized at z ~ 3, as observed in the Lyman-α forest of high

  3. The SLUGGS survey: wide-field stellar kinematics of early-type galaxies

    SciTech Connect

    Arnold, Jacob A.; Romanowsky, Aaron J.; Brodie, Jean P.; Woodley, Kristin A.; Forbes, Duncan A.; Blom, Christina; Kartha, Sreeja S.; Pastorello, Nicola; Pota, Vincenzo; Usher, Christopher; Strader, Jay; Spitler, Lee R.; Foster, Caroline

    2014-08-20

    We present stellar kinematics of 22 nearby early-type galaxies (ETGs), based on two-dimensional (2D) absorption line stellar spectroscopy out to ∼2-4 R {sub e} (effective radii), as part of the ongoing SLUGGS Survey. The galaxies span a factor of 20 in intrinsic luminosity, as well as a full range of environment and ETG morphology. Our data consist of good velocity resolution (σ{sub inst} ∼ 25 km s{sup –1}) integrated stellar-light spectra extracted from the individual slitlets of custom made Keck/DEIMOS slitmasks. We extract stellar kinematics measurements (V, σ, h {sub 3}, and h {sub 4}) for each galaxy. Combining with literature values from smaller radii, we present 2D spatially resolved maps of the large-scale kinematic structure in each galaxy. We find that the kinematic homogeneity found inside 1 R {sub e} often breaks down at larger radii, where a variety of kinematic behaviors are observed. While central slow rotators remain slowly rotating in their halos, central fast rotators show more diversity, ranging from rapidly increasing to rapidly declining specific angular momentum profiles in the outer regions. There are indications that the outer trends depend on morphological type, raising questions about the proposed unification of the elliptical and lenticular (S0) galaxy families in the ATLAS{sup 3D} survey. Several galaxies in our sample show multiple lines of evidence for distinct disk components embedded in more slowly rotating spheroids, and we suggest a joint photometric-kinematic approach for robust bulge-disk decomposition. Our observational results appear generally consistent with a picture of two-phase (in-situ plus accretion) galaxy formation.

  4. The SLUGGS Survey: Wide-field Stellar Kinematics of Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Arnold, Jacob A.; Romanowsky, Aaron J.; Brodie, Jean P.; Forbes, Duncan A.; Strader, Jay; Spitler, Lee R.; Foster, Caroline; Blom, Christina; Kartha, Sreeja S.; Pastorello, Nicola; Pota, Vincenzo; Usher, Christopher; Woodley, Kristin A.

    2014-08-01

    We present stellar kinematics of 22 nearby early-type galaxies (ETGs), based on two-dimensional (2D) absorption line stellar spectroscopy out to ~2-4 R e (effective radii), as part of the ongoing SLUGGS Survey. The galaxies span a factor of 20 in intrinsic luminosity, as well as a full range of environment and ETG morphology. Our data consist of good velocity resolution (σinst ~ 25 km s-1) integrated stellar-light spectra extracted from the individual slitlets of custom made Keck/DEIMOS slitmasks. We extract stellar kinematics measurements (V, σ, h 3, and h 4) for each galaxy. Combining with literature values from smaller radii, we present 2D spatially resolved maps of the large-scale kinematic structure in each galaxy. We find that the kinematic homogeneity found inside 1 R e often breaks down at larger radii, where a variety of kinematic behaviors are observed. While central slow rotators remain slowly rotating in their halos, central fast rotators show more diversity, ranging from rapidly increasing to rapidly declining specific angular momentum profiles in the outer regions. There are indications that the outer trends depend on morphological type, raising questions about the proposed unification of the elliptical and lenticular (S0) galaxy families in the ATLAS3D survey. Several galaxies in our sample show multiple lines of evidence for distinct disk components embedded in more slowly rotating spheroids, and we suggest a joint photometric-kinematic approach for robust bulge-disk decomposition. Our observational results appear generally consistent with a picture of two-phase (in-situ plus accretion) galaxy formation.

  5. Perceived mathematical ability under challenge: a longitudinal perspective on sex segregation among STEM degree fields

    PubMed Central

    Nix, Samantha; Perez-Felkner, Lara; Thomas, Kirby

    2015-01-01

    Students' perceptions of their mathematics ability vary by gender and seem to influence science, technology, engineering, and mathematics (STEM) degree choice. Related, students' perceptions during academic difficulty are increasingly studied in educational psychology, suggesting a link between such perceptions and task persistence. Despite interest in examining the gender disparities in STEM, these concepts have not been considered in tandem. In this manuscript, we investigate how perceived ability under challenge—in particular in mathematics domains—influences entry into the most sex-segregated and mathematics-intensive undergraduate degrees: physics, engineering, mathematics, and computer science (PEMC). Using nationally representative Education Longitudinal Study of 2002 (ELS) data, we estimate the influence of perceived ability under challenging conditions on advanced high school science course taking, selection of an intended STEM major, and specific major type 2 years after high school. Demonstrating the importance of specificity when discussing how gender influences STEM career pathways, the intersecting effects of gender and perceived ability under mathematics challenge were distinct for each scientific major category. Perceived ability under challenge in secondary school varied by gender, and was highly predictive of selecting PEMC and health sciences majors. Notably, women's 12th grade perceptions of their ability under mathematics challenge increased their probability of selecting PEMC majors over and above biology. In addition, gender moderated the effect of growth mindset on students' selection of health science majors. Perceptions of ability under challenge in general and verbal domains also influenced retention in and declaration of certain STEM majors. The implications of these results are discussed, with particular attention to access to advanced scientific coursework in high school and interventions aimed at enhancing young women

  6. Perceived mathematical ability under challenge: a longitudinal perspective on sex segregation among STEM degree fields.

    PubMed

    Nix, Samantha; Perez-Felkner, Lara; Thomas, Kirby

    2015-01-01

    Students' perceptions of their mathematics ability vary by gender and seem to influence science, technology, engineering, and mathematics (STEM) degree choice. Related, students' perceptions during academic difficulty are increasingly studied in educational psychology, suggesting a link between such perceptions and task persistence. Despite interest in examining the gender disparities in STEM, these concepts have not been considered in tandem. In this manuscript, we investigate how perceived ability under challenge-in particular in mathematics domains-influences entry into the most sex-segregated and mathematics-intensive undergraduate degrees: physics, engineering, mathematics, and computer science (PEMC). Using nationally representative Education Longitudinal Study of 2002 (ELS) data, we estimate the influence of perceived ability under challenging conditions on advanced high school science course taking, selection of an intended STEM major, and specific major type 2 years after high school. Demonstrating the importance of specificity when discussing how gender influences STEM career pathways, the intersecting effects of gender and perceived ability under mathematics challenge were distinct for each scientific major category. Perceived ability under challenge in secondary school varied by gender, and was highly predictive of selecting PEMC and health sciences majors. Notably, women's 12th grade perceptions of their ability under mathematics challenge increased their probability of selecting PEMC majors over and above biology. In addition, gender moderated the effect of growth mindset on students' selection of health science majors. Perceptions of ability under challenge in general and verbal domains also influenced retention in and declaration of certain STEM majors. The implications of these results are discussed, with particular attention to access to advanced scientific coursework in high school and interventions aimed at enhancing young women's perceptions of

  7. Two spectroscopically confirmed galaxy structures at z = 0.61 and 0.74 in the CFHTLS Deep 3 field

    NASA Astrophysics Data System (ADS)

    Adami, C.; Cypriano, E. S.; Durret, F.; Le Brun, V.; Lima Neto, G. B.; Martinet, N.; Perez, F.; Rouze, B.; Sodré, L.

    2015-03-01

    Context. Galaxy evolution is known to depend on environment since it differs in clusters and in the field, but studies are sometimes limited to the relatively nearby Universe (z < 0.5). It is still necessary to increase our knowledge of cluster galaxy properties above z = 0.5. Aims: In a previous paper we have detected several cluster candidates at z> 0.5 as part of a systematic search for clusters in the Canada France Hawaii Telescope Legacy Survey by applying the Adami & MAzure Cluster FInder (AMACFI), based on photometric redshifts. We focus here on two of them, located in the Deep 3 (hereafter D3) field: D3-6 and D3-43. Methods: We have obtained spectroscopy with Gemini/GMOS instrument and measured redshifts for 23 and 14 galaxies in the two structures. These redshifts were combined with those available in the literature. A dynamical and a weak lensing analysis were also performed, together with the study of X-ray Chandra archive data. Results: Cluster D3-6 is found to be a single structure of eight spectroscopically confirmed members at an average redshift z = 0.607, with a velocity dispersion of 423 km s-1. It appears to be a relatively low-mass cluster. D3-43-S3 has 46 spectroscopically confirmed members at an average redshift z = 0.739. The cluster can be decomposed into two main substructures, having a velocity dispersion of about 600 and 350 km s-1. An explanation of the fact that D3-43-S3 is detected through weak lensing (only marginally, at the ~3σ level) but not in X-rays could be that the two substructures are just beginning to merge more or less along the line of sight. We also show that D3-6 and D3-43-S3 have similar global galaxy luminosity functions, stellar mass functions, and star formation rate (SFR) distributions. The only differences are that D3-6 exhibits a lack of faint early-type galaxies, a deficit of extremely high stellar mass galaxies compared to D3-43-S3, and an excess of very high SFR galaxies. Conclusions: This study shows the

  8. The effect of inlet stagnation supercooling degree on the aerodynamics of the steam flow field around a rotor tip section

    NASA Astrophysics Data System (ADS)

    Beheshti Amiri, H.; Kermani, M. J.

    2015-01-01

    In this paper, the effects of inlet stagnation supercooling degree on the aerodynamics of the flow field around the rotor tip section of a steam turbine are investigated. To do so, non-equilibrium thermodynamics model for simulating the condensing flow is employed. The results show that formation of liquid droplets and their further growth can remarkably change the design parameters like deviation angle, pressure loss coefficient, mass flow rate and shock wave pattern.

  9. Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Huchtmeier, W. K.; Richter, O. G.; Materne, J.

    1981-09-01

    The large-scale structure of the universe is dominated by clustering. Most galaxies seem to be members of pairs, groups, clusters, and superclusters. To that degree we are able to recognize a hierarchical structure of the universe. Our local group of galaxies (LG) is centred on two large spiral galaxies: the Andromeda nebula and our own galaxy. Three sr:naller galaxies - like M 33 - and at least 23 dwarf galaxies (KraanKorteweg and Tammann, 1979, Astronomische Nachrichten, 300, 181) can be found in the evironment of these two large galaxies. Neighbouring groups have comparable sizes (about 1 Mpc in extent) and comparable numbers of bright members. Small dwarf galaxies cannot at present be observed at great distances.

  10. Normal galaxies in the XMM-Newton fields. X-rays as a star formation indicator

    NASA Astrophysics Data System (ADS)

    Rovilos, E.; Georgantopoulos, I.; Tzanavaris, P.; Pracy, M.; Whiting, M.; Woods, D.; Goudis, C.

    2009-07-01

    Context: We use the first XMM serendipitous source catalogue (1XMM) to compile a sample of normal X-ray galaxies. Aims: We seek to expand the database of X-ray selected normal galaxies at intermediate redshifts and examine the relation between X-ray emission and star formation for late-type systems. Methods: The candidates are selected based on their X-ray (soft spectra), X-ray to optical (log(f_x/f_o) < -2) and optical (extended sources) properties. 44 candidates are found and 35 are spectroscopically observed with the Australian National University's 2.3 m telescope to examine their nature. Results: Of the 35 sources observed, 2 are AGN, 11 emission line galaxies, 12 absorption line galaxies, 6 have featureless spectra while 4 are associated with Galactic stars. We combine our emission line sample with earlier works forming the most comprehensive X-ray selected galaxy sample for the study of the X-ray luminosity to the Hα luminosity - a well-calibrated star-formation indicator - relation. Conclusions: We find that the X-ray luminosity strongly correlates with the Hα luminosity, suggesting that the X-rays efficiently trace the star-formation. Table 2 and Figures 1 and 3 are only available in electronic form at http://www.aanda.org

  11. Discovery of a Damped Lyα Absorber at z = 3.3 along a Galaxy Sight-line in the SSA22 Field

    NASA Astrophysics Data System (ADS)

    Mawatari, K.; Inoue, A. K.; Kousai, K.; Hayashino, T.; Cooke, R.; Prochaska, J. X.; Yamada, T.; Matsuda, Y.

    2016-02-01

    Using galaxies as background light sources to map the Lyα absorption lines is a novel approach to study Damped Lyα Absorbers (DLAs). We report the discovery of an intervening z = 3.335 ± 0.007 DLA along a galaxy sight-line identified among 80 Lyman Break Galaxy (LBG) spectra obtained with our Very Large Telescope/Visible Multi-Object Spectrograph survey in the SSA22 field. The measured DLA neutral hydrogen (H i) column density is log(NH i/cm-2) = 21.68 ± 0.17. The DLA covering fraction over the extended background LBG is >70% (2σ), yielding a conservative constraint on the DLA area of ≳1 kpc2. Our search for a counterpart galaxy hosting this DLA concludes that there is no counterpart galaxy with star formation rate larger than a few M⊙ yr-1, ruling out an unobscured violent star formation in the DLA gas cloud. We also rule out the possibility that the host galaxy of the DLA is a passive galaxy with M* ≳ 5 × 1010M⊙ or a heavily dust-obscured galaxy with E(B - V) ≳ 2. The DLA may coincide with a large-scale overdensity of the spectroscopic LBGs. The occurrence rate of the DLA is compatible with that of DLAs found in QSO sight-lines.

  12. PhD and EdD Degrees for Mid-Career Professionals: Fielding Graduate University

    ERIC Educational Resources Information Center

    Kuipers, Judith L.

    2011-01-01

    Adult professionals are continuing their learning over the lifespan entering graduate school in their thirties, forties, fifties, and, even sixties. Knowledge is the new economic currency today and the increasing rate at which new knowledge is generated in the global world requires continuous learning. The author describes Fielding Graduate…

  13. WINGS: a WIde-field nearby Galaxy-cluster survey. III. Deep near-infrared photometry of 28 nearby clusters

    NASA Astrophysics Data System (ADS)

    Valentinuzzi, T.; Woods, D.; Fasano, G.; Riello, M.; D'Onofrio, M.; Varela, J.; Bettoni, D.; Cava, A.; Couch, W. J.; Dressler, A.; Fritz, J.; Moles, M.; Omizzolo, A.; Poggianti, B. M.; Kjærgaard, P.

    2009-07-01

    Context: This is the third paper in a series devoted to the WIde-field Nearby Galaxy-cluster Survey (WINGS). WINGS is a long-term project aimed at gathering wide-field, multiband imaging and spectroscopy of galaxies in a complete sample of 77 X-ray selected, nearby clusters (0.04galaxies and galaxy clusters. Aims: This paper presents the near-infrared (J,K) photometric catalogs of 28 clusters of the WINGS sample and describes the procedures followed to construct them. Methods: The raw data has been reduced at CASU and special care has been devoted to the final coadding, drizzling technique, astrometric solution, and magnitude calibration for the WFCAM pipeline-processed data. We constructed the photometric catalogs based on the final calibrated, coadded mosaics (≈0.79 deg^2) in J (19 clusters) and K (27 clusters) bands. A customized interactive pipeline was used to clean the catalogs and to make mock images for photometric errors and completeness estimates. Results: We provide deep near-infrared photometric catalogs (90% complete in detection rate at total magnitudes J≈ 20.5, K≈ 19.4, and in classification rate at J≈19.5 and K≈ 18.5), giving positions, geometrical parameters, total and aperture magnitudes for all detected sources. For each field we classify the detected sources as stars, galaxies, and objects of “unknown” nature. Based on observations taken at the United Kingdom Infra-Red Telescope, operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the UK. J and K photometric catalogs are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/501/851

  14. VIMOS integral field spectroscopy of blue compact galaxies. I. Morphological properties, diagnostic emission-line ratios, and kinematics

    NASA Astrophysics Data System (ADS)

    Cairós, L. M.; Caon, N.; Weilbacher, P. M.

    2015-05-01

    Context. Blue compact galaxies (BCG) are gas-rich, low-luminosity, low-metallicity systems that undergo a violent burst of star formation. These galaxies offer us a unique opportunity to investigate collective star formation and its effects on galaxy evolution in a relatively simple environment. Spatially resolved spectrophotometric studies of BCGs are essential for a better understanding of the role of starburst-driven feedback processes on the kinematical and chemical evolution of low-mass galaxies near and far. Aims: We carry out an integral field spectroscopic study of a sample of BCGs, with the aim of probing the morphology, kinematics, dust extinction, and excitation mechanisms of their warm interstellar medium. Methods: Eight BCGs were observed with the VIMOS integral field unit at the Very Large Telescope using blue and orange grisms in high-resolution mode. At a spatial sampling of 0''&dotbelow;67 per spaxel, we covered about 30″ × 30″ on the sky, with a wavelength range of 4150...7400 Å. Emission lines were fitted with a single Gaussian profile to measure their wavelength, flux, and width. From these data we built two-dimensional maps of the continuum and the most prominent emission-lines, as well as diagnostic line ratios, extinction, and kinematic maps. Results: An atlas has been produced with the following: emission-line fluxes and continuum emission; ionization, interstellar extinction, and electron density maps from line ratios; velocity and velocity dispersion fields. From integrated spectroscopy, it includes tables of the extinction corrected line fluxes and equivalent widths, diagnostic-line ratios, physical parameters, and the abundances for the brightest star-forming knots and for the whole galaxy. Based on observations made with ESO Telescopes at the Paranal Observatory under program ID 079.B-0445.The reduced datacubes and their error maps (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp

  15. A redshift survey of IRAS galaxies. III - Reconstruction of the velocity and density fields in N-body model universes

    NASA Technical Reports Server (NTRS)

    Davis, Marc; Strauss, Michael A.; Yahil, Amos

    1991-01-01

    N-body simulations of a 'cold dark matter' universe are presently used to calibrate the accuracy, and assess the limitations, of the procedure previously employed to predict the velocity field within 8000 km/sec of the Local Group through the application of linear gravitational theory to a full-sky, flux-limited sample of IRAS galaxies. The rms difference between the one-dimensional acceleration and velocity of field particles is an increasing function of local density; linear theory can in this way account for all but one-sixth of kinetic energy. A series of artificial IRAS catalogs closely matching the real sample in space density and clustering amplitude is constructed. Velocity correlation functions are used to demonstrate that the predicted velocity fields are in good agreement with the true velocity fields on large scales.

  16. Galactic cosmic ray currents and magnetic field irregularity degree in high-speed solar wind streams

    NASA Technical Reports Server (NTRS)

    Kuzmin, A. I.; Samsonov, I. S.; Samsonova, Z. N.

    1985-01-01

    Currents of galactic cosmic rays (GCR) obtained by global survey method are analyzed. The cases of almost total disappearance of GCR currents are compared with the results of direct measurements of the solar wind parameters. The conclusion is made on a restricted application of the convective-diffusive mechanism of the GCR modulation by the solar wind during the occurrence of stationary and regular magnetic fields in the interplanetary medium.

  17. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 degrees N.

    PubMed

    Kelley, D S; Karson, J A; Blackman, D K; Früh-Green, G L; Butterfield, D A; Lilley, M D; Olson, E J; Schrenk, M O; Roe, K K; Lebon, G T; Rivizzigno, P

    2001-07-12

    Evidence is growing that hydrothermal venting occurs not only along mid-ocean ridges but also on old regions of the oceanic crust away from spreading centres. Here we report the discovery of an extensive hydrothermal field at 30 degrees N near the eastern intersection of the Mid-Atlantic Ridge and the Atlantis fracture zone. The vent field--named 'Lost City'--is distinctly different from all other known sea-floor hydrothermal fields in that it is located on 1.5-Myr-old crust, nearly 15 km from the spreading axis, and may be driven by the heat of exothermic serpentinization reactions between sea water and mantle rocks. It is located on a dome-like massif and is dominated by steep-sided carbonate chimneys, rather than the sulphide structures typical of 'black smoker' hydrothermal fields. We found that vent fluids are relatively cool (40-75 degrees C) and alkaline (pH 9.0-9.8), supporting dense microbial communities that include anaerobic thermophiles. Because the geological characteristics of the Atlantis massif are similar to numerous areas of old crust along the Mid-Atlantic, Indian and Arctic ridges, these results indicate that a much larger portion of the oceanic crust may support hydrothermal activity and microbial life than previously thought.

  18. Understanding the shape of the galaxy two-point correlation function at z ~= 1 in the COSMOS field

    NASA Astrophysics Data System (ADS)

    de la Torre, S.; Guzzo, L.; Kovač, K.; Porciani, C.; Abbas, U.; Meneux, B.; Carollo, C. M.; Contini, T.; Kneib, J. P.; Le Fèvre, O.; Lilly, S. J.; Mainieri, V.; Renzini, A.; Sanders, D.; Scodeggio, M.; Scoville, N.; Zamorani, G.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Caputi, K.; Coppa, G.; Cucciati, O.; de Ravel, L.; Franzetti, P.; Garilli, B.; Iovino, A.; Kampczyk, P.; Knobel, C.; Koekemoer, A. M.; Lamareille, F.; Le Borgne, J.-F.; Le Brun, V.; Maier, C.; Mignoli, M.; Pelló, R.; Peng, Y.; Perez-Montero, E.; Ricciardelli, E.; Silverman, J.; Tanaka, M.; Tasca, L.; Tresse, L.; Vergani, D.; Welikala, N.; Zucca, E.; Bottini, D.; Cappi, A.; Cassata, P.; Cimatti, A.; Fumana, M.; Ilbert, O.; Leauthaud, A.; Maccagni, D.; Marinoni, C.; McCracken, H. J.; Memeo, P.; Nair, P.; Oesch, P.; Pozzetti, L.; Presotto, V.; Scaramella, R.

    2010-12-01

    We investigate how the shape of the galaxy two-point correlation function as measured in the zCOSMOS survey depends on local environment, quantified in terms of the density contrast on scales of 5h-1Mpc. We show that the flat shape previously observed at redshifts between z = 0.6 and 1 can be explained by this volume being simply 10 per cent overabundant in high-density environments, with respect to a universal density probability distribution function. When galaxies corresponding to the top 10 per cent tail of the distribution are excluded, the measured wp(rp) steepens and becomes indistinguishable from Lambda cold dark matter (ΛCDM) predictions on all scales. This is the same effect recognized by Abbas & Sheth in the Sloan Digital Sky Survey (SDSS) data at z ~= 0 and explained as a natural consequence of halo-environment correlations in a hierarchical scenario. Galaxies living in high-density regions trace dark matter haloes with typically higher masses, which are more correlated. If the density probability distribution function of the sample is particularly rich in high-density regions because of the variance introduced by its finite size, this produces a distorted two-point correlation function. We argue that this is the dominant effect responsible for the observed `peculiar' clustering in the COSMOS field.

  19. The SAMI Galaxy Survey: instrument specification and target selection

    NASA Astrophysics Data System (ADS)

    Bryant, J. J.; Owers, M. S.; Robotham, A. S. G.; Croom, S. M.; Driver, S. P.; Drinkwater, M. J.; Lorente, N. P. F.; Cortese, L.; Scott, N.; Colless, M.; Schaefer, A.; Taylor, E. N.; Konstantopoulos, I. S.; Allen, J. T.; Baldry, I.; Barnes, L.; Bauer, A. E.; Bland-Hawthorn, J.; Bloom, J. V.; Brooks, A. M.; Brough, S.; Cecil, G.; Couch, W.; Croton, D.; Davies, R.; Ellis, S.; Fogarty, L. M. R.; Foster, C.; Glazebrook, K.; Goodwin, M.; Green, A.; Gunawardhana, M. L.; Hampton, E.; Ho, I.-T.; Hopkins, A. M.; Kewley, L.; Lawrence, J. S.; Leon-Saval, S. G.; Leslie, S.; McElroy, R.; Lewis, G.; Liske, J.; López-Sánchez, Á. R.; Mahajan, S.; Medling, A. M.; Metcalfe, N.; Meyer, M.; Mould, J.; Obreschkow, D.; O'Toole, S.; Pracy, M.; Richards, S. N.; Shanks, T.; Sharp, R.; Sweet, S. M.; Thomas, A. D.; Tonini, C.; Walcher, C. J.

    2015-03-01

    The SAMI Galaxy Survey will observe 3400 galaxies with the Sydney-AAO Multi-object Integral-field spectrograph (SAMI) on the Anglo-Australian Telescope in a 3-yr survey which began in 2013. We present the throughput of the SAMI system, the science basis and specifications for the target selection, the survey observation plan and the combined properties of the selected galaxies. The survey includes four volume-limited galaxy samples based on cuts in a proxy for stellar mass, along with low-stellar-mass dwarf galaxies all selected from the Galaxy And Mass Assembly (GAMA) survey. The GAMA regions were selected because of the vast array of ancillary data available, including ultraviolet through to radio bands. These fields are on the celestial equator at 9, 12 and 14.5 h, and cover a total of 144 deg2 (in GAMA-I). Higher density environments are also included with the addition of eight clusters. The clusters have spectroscopy from 2-degree Field Galaxy Redshift Survey (2dFGRS) and Sloan Digital Sky Survey (SDSS) and photometry in regions covered by the SDSS and/or VLT Survey Telescope/ATLAS. The aim is to cover a broad range in stellar mass and environment, and therefore the primary survey targets cover redshifts 0.004 < z < 0.095, magnitudes rpet < 19.4, stellar masses 107-1012 M⊙, and environments from isolated field galaxies through groups to clusters of ˜1015 M⊙.

  20. Properties of Galaxy Groups Selected from Chandra X-ray Observations of the Boötes Field

    NASA Astrophysics Data System (ADS)

    Vajgel, B.; Lopes, P. A. A.; Jones, C.; Forman, W. R.; Murray, S. S.

    2014-10-01

    Galaxy groups are not simply scaled down versions of rich clusters (e.g. Mulchaey 2000, Voit 2005). Due to a group's shallow gravitational potential, feedback processes play an important role in the group's evolution. It is important to understand galaxy groups since, in hierarchical clustering, they are the building blocks of large scale structure. Thus, in addition to determining the characteristics of groups, it is important to determine the mass function over the range that includes poor clusters and groups. We present the properties of the galaxy groups selected in the Chandra X-Boötes survey (Kenter et al. 2005). Group redshifts are measured from the AGES (Kochanek et al. 2012) spectroscopic data. We use photometric data from the NOAO Deep Wide Field Survey (NDWFS) (Jannuzi & Dey 1999) to estimate the group richness (N_{gals}) and the optical luminosity (L_{opt}). Our final sample comprises 32 systems at z < 0.80, with 14 below z = 0.35. For these systems we estimate velocity dispersions (σ_{gr}) and perform a virial analysis to obtain the radius (R_{200} and R_{500}) and mass (M_{200} and M_{500}) for groups with at least five galaxy members. We use the Chandra X-ray observations to derive the X-ray luminosity (L_{X}). We examine the performance of the group properties σ_{gr}, L_{opt} and L_{X}, as proxies for the group mass. Understanding how these observables measure the total mass is important to estimate how well the cluster/group mass function is determined. By extending the mass function to the group regime, we predict the number of groups that new X-ray surveys, eROSITA, will detect.

  1. Steadily increasing star formation rates in galaxies observed at 3 ≲ z ≲ 5 in the CANDELS/GOODS-S field

    SciTech Connect

    Lee, Seong-Kook; Ferguson, Henry C.; Dahlen, Tomas; Somerville, Rachel S.; Giavalisco, Mauro; Wiklind, Tommy

    2014-03-10

    We investigate the star formation histories (SFHs) of high redshift (3 ≲ z ≲ 5) star-forming galaxies selected based on their rest-frame ultraviolet (UV) colors in the CANDELS/GOODS-S field. By comparing the results from the spectral-energy-distribution-fitting analysis with two different assumptions about the SFHs—i.e., exponentially declining SFHs as well as increasing ones, we conclude that the SFHs of high-redshift star-forming galaxies increase with time rather than exponentially decline. We also examine the correlations between the star formation rates (SFRs) and the stellar masses. When the galaxies are fit with rising SFRs, we find that the trend seen in the data qualitatively matches the expectations from a semi-analytic model of galaxy formation. The mean specific SFR is shown to increase with redshift, also in agreement with the theoretical prediction. From the derived tight correlation between stellar masses and SFRs, we derive the mean SFH of star-forming galaxies in the redshift range of 3 ≤ z ≤ 5, which shows a steep power-law (with power α = 5.85) increase with time. We also investigate the formation timescales and mean stellar population ages of these star-forming galaxies. Our analysis reveals that UV-selected star-forming galaxies have a broad range of the formation redshift. The derived stellar masses and the stellar population ages show positive correlation in a sense that more massive galaxies are on average older, but with significant scatter. This large scatter implies that the galaxies' mass is not the only factor which affects the growth or star formation of high-redshift galaxies.

  2. EMISSION-LINE GALAXIES FROM THE HUBBLE SPACE TELESCOPE PROBING EVOLUTION AND REIONIZATION SPECTROSCOPICALLY (PEARS) GRISM SURVEY. I. THE SOUTH FIELDS

    SciTech Connect

    Straughn, Amber N.; Gardner, Jonathan P.; Pirzkal, Norbert; Grogin, Norman; Panagia, Nino; Meurer, Gerhardt R.; Cohen, Seth H.; Windhorst, Rogier A.; Malhotra, Sangeeta; Rhoads, James; Jansen, Rolf A.; Hathi, Nimish P.; Di Serego Alighieri, Sperello; Gronwall, Caryl; Walsh, Jeremy; Pasquali, Anna; Xu, Chun

    2009-10-15

    We present results of a search for emission-line galaxies (ELGs) in the southern fields of the Hubble Space Telescope Probing Evolution And Reionization Spectroscopically (PEARS) grism survey. The PEARS South Fields consist of five Advanced Camera for Surveys pointings (including the Hubble Ultra Deep Field) with the G800L grism for a total of 120 orbits, revealing thousands of faint object spectra in the GOODS-South region of the sky. ELGs are one subset of objects that are prevalent among the grism spectra. Using a two-dimensional detection and extraction procedure, we find 320 emission lines originating from 226 galaxy 'knots' within 192 individual galaxies. Line identification results in 118 new grism-spectroscopic redshifts for galaxies in the GOODS-South Field. We measure emission-line fluxes using standard Gaussian fitting techniques. At the resolution of the grism data, the H{beta} and [O III] doublet are blended. However, by fitting two Gaussian components to the H{beta} and [O III] features, we find that many of the PEARS ELGs have high [O III]/H{beta} ratios compared to other galaxy samples of comparable luminosities. The star formation rates of the ELGs are presented, as well as a sample of distinct giant star-forming regions at z {approx} 0.1-0.5 across individual galaxies. We find that the radial distances of these H II regions in general reside near the galaxies' optical continuum half-light radii, similar to those of giant H II regions in local galaxies.

  3. An Ultraviolet Ultra-luminous Lyman Break Galaxy at Z = 2.78 in NDWFS Boötes Field

    NASA Astrophysics Data System (ADS)

    Bian, Fuyan; Fan, Xiaohui; Jiang, Linhua; Dey, Arjun; Green, Richard F.; Maiolino, Roberto; Walter, Fabian; McGreer, Ian; Wang, Ran; Lin, Yen-Ting

    2012-10-01

    We present one of the most ultraviolet (UV) luminous Lyman break galaxies (LBGs; J1432+3358) at z = 2.78, discovered in the NOAO Deep Wide-Field Survey Boötes field. The R-band magnitude of J1432+3358 is 22.29 AB, more than two magnitudes brighter than typical L* LBGs at this redshift. The deep z-band image reveals two components of J1432+3358 separated by 1farcs0 with a flux ratio of 3:1. The high signal-to-noise ratio rest-frame UV spectrum shows Lyα emission line and interstellar medium absorption lines. The absence of N V and C IV emission lines, and the non-detection in X-ray and radio wavelengths and mid-infrared (MIR) colors indicates weak or no active galactic nuclei (<10%) in this galaxy. The galaxy shows a broader line profile, with a FWHM of about 1000 km s-1 and a larger outflow velocity (≈500 km s-1) than those of typical z ~ 3 LBGs. The physical properties are derived by fitting the spectral energy distribution (SED) with stellar synthesis models. The dust extinction, E(B - V) = 0.12, is similar to that in normal LBGs. The star formation rates (SFRs) derived from the SED fitting and the dust-corrected UV flux are consistent with each other, ~300 M ⊙ yr-1, and the stellar mass is (1.3 ± 0.3) × 1011 M ⊙. The SFR and stellar mass in J1432+3358 are about an order of magnitude higher than those in normal LBGs. The SED-fitting results support that J1432+3358 has a continuous star formation history, with a star formation episode of 6.3 × 108 yr. The morphology of J1432+3358 and its physical properties suggest that J1432+3358 is in an early phase of a 3:1 merger process. The unique properties and the low space number density (~10-7 Mpc-3) are consistent with the interpretation that such galaxies are either found in a short unobscured phase of the star formation or that a small fraction of intensive star-forming galaxies are unobscured. Based on (in part) data collected at Subaru Telescope, which is operated by the National Astronomical Observatory

  4. A Zoo of Galaxies

    NASA Astrophysics Data System (ADS)

    Masters, Karen L.

    2015-03-01

    We live in a universe filled with galaxies with an amazing variety of sizes and shapes. One of the biggest challenges for astronomers working in this field is to understand how all these types relate to each other in the background of an expanding universe. Modern astronomical surveys (like the Sloan Digital Sky Survey) have revolutionised this field of astronomy, by providing vast numbers of galaxies to study. The sheer size of the these databases made traditional visual classification of the types galaxies impossible and in 2007 inspired the Galaxy Zoo project (www.galaxyzoo.org); starting the largest ever scientific collaboration by asking members of the public to help classify galaxies by type and shape. Galaxy Zoo has since shown itself, in a series of now more than 30 scientific papers, to be a fantastic database for the study of galaxy evolution. In this Invited Discourse I spoke a little about the historical background of our understanding of what galaxies are, of galaxy classification, about our modern view of galaxies in the era of large surveys. I finish with showcasing some of the contributions galaxy classifications from the Galaxy Zoo project are making to our understanding of galaxy evolution.

  5. A COMPREHENSIVE, WIDE-FIELD STUDY OF PULSATING STARS IN THE CARINA DWARF SPHEROIDAL GALAXY

    SciTech Connect

    Vivas, A. Katherina; Mateo, Mario E-mail: mmateo@umich.edu

    2013-12-01

    We report the detection of 388 pulsating variable stars (and some additional miscellaneous variables) in the Carina dwarf spheroidal galaxy over an area covering the full visible extent of the galaxy and extending a few times beyond its photometric (King) tidal radius along the direction of its major axis. Included in this total are 340 newly discovered dwarf Cepheids (DCs), which are mostly located ∼2.5 mag below the horizontal branch and have very short periods (<0.1 days), typical of their class and consistent with their location on the upper part of the extended main sequence of the younger populations of the galaxy. Several extra-tidal DCs were found in our survey up to a distance of ∼1° from the center of Carina. Our sample also includes RR Lyrae stars and anomalous Cepheids, some of which were found outside the galaxy's tidal radius as well. This supports past works that suggest that Carina is undergoing tidal disruption. We use the period-luminosity relationship for DCs to estimate a distance modulus of μ{sub 0} = 20.17 ± 0.10 mag, in very good agreement with the estimate from RR Lyrae stars. We find some important differences in the properties of the DCs of Carina and those in Fornax and the LMC, the only extragalactic samples of DCs currently known. These differences may reflect a metallicity spread, depth along the line of sight, and/or different evolutionary paths of the DC stars.

  6. z>4 low luminosity dusty galaxy candidates in the Frontier Fields A2744, AS1063 and A370

    NASA Astrophysics Data System (ADS)

    Boone, Frederic; Schaerer, Daniel; Richard, Johan; Clement, Benjamin; Egami, Eiichi; Rawle, Tim; Lutz, Dieter; Weiss, Axel; Staguhn, Johannes Gunter; Dessauges-Zavadsky, Miroslava; Kneib, Jean-Paul; Combes, Francoise; Smail, Ian; HLS Team

    2015-08-01

    To unveil the yet hidden part of dusty star formation in the distant Universe, we have undertaken a 870μm follow-up of ten massive lensing clusters of the Herschel Lensing Survey (HLS, Egami et al 2010, Rawle et al 2010) with the APEX/LABOCA bolometer array in a large program of ˜300 hours. Among these clusters A2744 and AS1063 are part of the Frontier Fields HST program.We also obtained 2mm bolometer observations of A2744 and A370 with the GISMO array at the IRAM 30m.We detected sources that are undetected with Herschel (PACS and SPIRE) implying either a very high redshift (z > 4) or a very low dust temperature (T < 25K). They are expected to have lower intrinsic luminosities than the flux-selected SMGs (H-ATLAS and SPT samples) or than blank field SMGs (e.g., LESS sample). Some of them are extended and could correspond to multiple sources or to multiple images of a lensed source.Thus, we found a very red submm source in AS1063 that may be associated with a multiple-image system confirmed spectroscopically at z=6.107. This may be the first dusty star forming galaxy with LFIR < 10^12 L at z>5 selected from submm observations. Similarly, we identified potential z>4 counterparts to all the other very red LABOCA or GISMO sources. We have an ongoing ALMA Cycle 2 program including AS1063 and A2744.We discuss how the Frontier Field observations can help to study these sources that may bridge the gap between galaxies traditionnally selected in the submm and optically selected galaxies.

  7. UVUDF: Ultraviolet Through Near-infrared Catalog and Photometric Redshifts of Galaxies in the Hubble Ultra Deep Field

    NASA Astrophysics Data System (ADS)

    Rafelski, Marc; Teplitz, Harry I.; Gardner, Jonathan P.; Coe, Dan; Bond, Nicholas A.; Koekemoer, Anton M.; Grogin, Norman; Kurczynski, Peter; McGrath, Elizabeth J.; Bourque, Matthew; Atek, Hakim; Brown, Thomas M.; Colbert, James W.; Codoreanu, Alex; Ferguson, Henry C.; Finkelstein, Steven L.; Gawiser, Eric; Giavalisco, Mauro; Gronwall, Caryl; Hanish, Daniel J.; Lee, Kyoung-Soo; Mehta, Vihang; de Mello, Duilia F.; Ravindranath, Swara; Ryan, Russell E.; Scarlata, Claudia; Siana, Brian; Soto, Emmaris; Voyer, Elysse N.

    2015-07-01

    We present photometry and derived redshifts from up to eleven bandpasses for 9927 galaxies in the Hubble Ultra Deep field (UDF), covering an observed wavelength range from the near-ultraviolet (NUV) to the near-infrared (NIR) with Hubble Space Telescope observations. Our Wide Field Camera 3 (WFC3)/UV F225W, F275W, and F336W image mosaics from the ultra-violet UDF (UVUDF) imaging campaign are newly calibrated to correct for charge transfer inefficiency, and use new dark calibrations to minimize background gradients and pattern noise. Our NIR WFC3/IR image mosaics combine the imaging from the UDF09 and UDF12 campaigns with CANDELS data to provide NIR coverage for the entire UDF field of view. We use aperture-matched point-spread function corrected photometry to measure photometric redshifts in the UDF, sampling both the Lyman break and Balmer break of galaxies at z˜ 0.8-3.4, and one of the breaks over the rest of the redshift range. Our comparison of these results with a compilation of robust spectroscopic redshifts shows an improvement in the galaxy photometric redshifts by a factor of two in scatter and a factor three in outlier fraction (OLF) over previous UDF catalogs. The inclusion of the new NUV data is responsible for a factor of two decrease in the OLF compared to redshifts determined from only the optical and NIR data, and improves the scatter at z\\lt 0.5 and at z\\gt 2. The panchromatic coverage of the UDF from the NUV through the NIR yields robust photometric redshifts of the UDF, with the lowest OLF available.

  8. Characterisation of cationic potato starch by asymmetrical flow field-flow fractionation. Influence of ionic strength and degree of substitution.

    PubMed

    Santacruz, Stalin

    2014-06-15

    The properties of a paper sheet depend on the absorption together with the physico-chemical properties of additives used in the paper processing. The effect of ionic strength and degree of substitution of cationic potato starch on the elution pattern of asymmetrical flow field-flow fractionation was analysed. The effect of starch derivatisation, in either dry or wet phase, was also investigated. Average molar mass showed no difference between the starches obtained from the two derivatisation processes. Apparent densities showed that dry cationic starch had higher density than wet cationic starch for a hydrodynamic radius between 50 and 100 nm. Elution times of native and three cationic starches increased when the ionic strength increased from 50 to 100mM. No differences in the molar mass among cationic starches with different degree of substitution suggested no degradation due to a derivatisation process. Large sample loads can be used at 100mM without overloading.

  9. Temporal variation of the earth's low-degree zonal gravitational field caused by atmospheric mass redistribution - 1980-1988

    NASA Technical Reports Server (NTRS)

    Chao, B. Fong; Au, Andrew Y.

    1991-01-01

    Temporal variations in the low-degree zonal harmonics of the earth's gravitational field have recently been observed by satellite laser ranging. A host of geophysical processes contribute to these variations. The present paper studies quantitatively a prime contributor, atmospheric mass redistribution, using ECMWF global surface pressure data for the period of 1980-1988. The annual and semiannual amplitudes and phases of the zonal J(l) coefficient with degree l = 2-6 with and without the oceanic inverted-barometer (IB) effect are computed to obtain the predicted effects on the orbit nodal residuals of Lageos and Starlette. These predicted values are then compared with observations. It is found that the atmospheric influence, combined with the hydrological influence agree well with the Lageos observation for the annual term. The corresponding match appears poorer for Starlette.

  10. The Power of Wide Field HI Surveys: ALFALFA Imaging of Massive Tidal Features in the Leo Cloud of Galaxies

    NASA Astrophysics Data System (ADS)

    Leisman, Luke; Haynes, Martha P.; Giovanelli, Riccardo; ALFALFA Almost Darks Team

    2016-01-01

    Tidal interactions are well known to play an important role in galactic evolution in group environments, but the extent of these interactions, and their relative impact on the morphology-density relation is still unclear. Neutral hydrogen (HI) mapping can reveal the recent interaction history of group galaxies, but is difficult to execute due to the need for high sensitivity over wide fields. The Arecibo Legacy Fast ALFA survey (ALFALFA; Giovanelli et al. 2005; Haynes et al. 2011) provides high sensitivity, unbiased, wide field maps of HI in the local volume; here we will present a 50 deg2 ALFALFA map of a well studied region of the Leo Cloud of galaxies, which includes the NGC3226/7 group and HCG44. These observations reveal HI tails and plumes with extents exceeding 1.4 deg (~600 kpc), well beyond the primary beams of previous observations. These tails constitute a significant fraction of the total HI mass in NGC3226/7 (Arp 94) and HCG44. We will also present WSRT maps of the extended emission near Arp 94, which show tail morphologies inconsistent with 2 body interactions. These observations demonstrate that large scale group interactions will be an important science outcome for future sensitive, wide field HI surveys.This work is supported by NSF grants AST-0607007 and AST-1107390 and by grants from the Brinson Foundation.

  11. REDSHIFTS, SAMPLE PURITY, AND BCG POSITIONS FOR THE GALAXY CLUSTER CATALOG FROM THE FIRST 720 SQUARE DEGREES OF THE SOUTH POLE TELESCOPE SURVEY

    SciTech Connect

    Song, J.; Zenteno, A.; Desai, S.; Bazin, G.; Stalder, B.; Ashby, M. L. N.; Bayliss, M.; Bleem, L. E.; Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Aird, K. A.; Armstrong, R.; Bertin, E.; Brodwin, M.; Cho, H. M.; Clocchiatti, A.; De Haan, T.; and others

    2012-12-10

    We present the results of the ground- and space-based optical and near-infrared (NIR) follow-up of 224 galaxy cluster candidates detected with the Sunyaev-Zel'dovich (SZ) effect in the 720 deg{sup 2} of the South Pole Telescope (SPT) survey completed in the 2008 and 2009 observing seasons. We use the optical/NIR data to establish whether each candidate is associated with an overdensity of galaxies and to estimate the cluster redshift. Most photometric redshifts are derived through a combination of three different cluster redshift estimators using red-sequence galaxies, resulting in an accuracy of {Delta}z/(1 + z) = 0.017, determined through comparison with a subsample of 57 clusters for which we have spectroscopic redshifts. We successfully measure redshifts for 158 systems and present redshift lower limits for the remaining candidates. The redshift distribution of the confirmed clusters extends to z = 1.35 with a median of z{sub med} = 0.57. Approximately 18% of the sample with measured redshifts lies at z > 0.8. We estimate a lower limit to the purity of this SPT SZ-selected sample by assuming that all unconfirmed clusters are noise fluctuations in the SPT data. We show that the cumulative purity at detection significance {xi} > 5({xi} > 4.5) is {>=}95% ({>=}70%). We present the red brightest cluster galaxy (rBCG) positions for the sample and examine the offsets between the SPT candidate position and the rBCG. The radial distribution of offsets is similar to that seen in X-ray-selected cluster samples, providing no evidence that SZ-selected cluster samples include a different fraction of recent mergers from X-ray-selected cluster samples.

  12. Combining Galaxy-Galaxy Lensing and Galaxy Clustering

    SciTech Connect

    Park, Youngsoo; Krause, Elisabeth; Dodelson, Scott; Jain, Bhuvnesh; Amara, Adam; Becker, Matt; Bridle, Sarah; Clampitt, Joseph; Crocce, Martin; Honscheid, Klaus; Gaztanaga, Enrique; Sanchez, Carles; Wechsler, Risa

    2015-01-01

    Combining galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth rate of large scale structure, a quantity that will shed light on the mechanism driving the acceleration of the Universe. The Dark Energy Survey (DES) is a prime candidate for such an analysis, with its measurements of both the distribution of galaxies on the sky and the tangential shears of background galaxies induced by these foreground lenses. By constructing an end-to-end analysis that combines large-scale galaxy clustering and small-scale galaxy-galaxy lensing, we also forecast the potential of a combined probes analysis on DES datasets. In particular, we develop a practical approach to a DES combined probes analysis by jointly modeling the assumptions and systematics affecting the different components of the data vector, employing a shared halo model, HOD parametrization, photometric redshift errors, and shear measurement errors. Furthermore, we study the effect of external priors on different subsets of these parameters. We conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/ optimistically constraining the growth function to 8%/4.9% with its first-year data covering 1000 square degrees, and to 4%/2.3% with its full five-year data covering 5000 square degrees.

  13. Tracing the mass growth and star formation rate evolution of massive galaxies from Z ∼ 6 to Z ∼ 1 in the Hubble ultra-deep field

    SciTech Connect

    Lundgren, Britt F.; Van Dokkum, Pieter; Oesch, Pascal; Franx, Marijn; Labbe, Ivo; Bouwens, Rychard; Trenti, Michele; Gonzalez, Valentino; Illingworth, Garth; Magee, Daniel

    2014-01-01

    We present an analysis of an H {sub 160}-selected photometric catalog of galaxies in the Hubble Ultra-Deep Field, using imaging from the WFC3/IR camera on the Hubble Space Telescope in combination with archival ultraviolet, optical, and near-infrared imaging. Using these data, we measure the spectral energy distributions of ∼1500 galaxies to a limiting H {sub 160} magnitude of 27.8, from which we fit photometric redshifts and stellar population estimates for all galaxies with well-determined Spitzer IRAC fluxes, allowing for the determination of the cumulative mass function within the range 1 < z < 6. By selecting samples of galaxies at a constant cumulative number density, we are able to explore the coevolution of stellar masses and star formation rates (SFRs) for progenitor galaxies and their descendants from z ∼ 6. We find a steady increase in the SFRs of galaxies at constant number density from z ∼ 6 to z ∼ 3, accompanied by gradually declining specific star formation rates (sSFRs) during this same period. The peak epoch of star formation is also found to shift to later times for galaxies with increasing number densities, in agreement with the expectations from cosmic downsizing. The observed SFRs can fully account for the mass growth to z ∼ 2 among galaxies with cumulative number densities greater than 10{sup –3.5} Mpc{sup –3}. For galaxies with a lower constant number density (higher mean mass), we find the observed stellar masses are ∼three times greater than that which may be accounted for by the observed star formation alone at late times, implying that growth from mergers plays an important role at z < 2. We additionally observe a decreasing sSFR, equivalent to approximately one order of magnitude, from z ∼ 6 to z ∼ 2 among galaxies with number densities less than 10{sup –3.5} Mpc{sup –3}, along with significant evidence that at any redshift the sSFR is higher for galaxies at higher number density. The combination of these findings

  14. Fundamental Physics with the Hubble Frontier Fields: Constraining Dark Matter Models with the Abundance of Extremely Faint and Distant Galaxies

    NASA Astrophysics Data System (ADS)

    Menci, N.; Merle, A.; Totzauer, M.; Schneider, A.; Grazian, A.; Castellano, M.; Sanchez, N. G.

    2017-02-01

    We show that the measured abundance of ultra-faint lensed galaxies at z≈ 6 in the Hubble Frontier Fields (HFF) provides stringent constraints on the parameter space of (i) dark matter models based on keV sterile neutrinos; (ii) “fuzzy” wavelike dark matter models, based on Bose–Einstein condensates of ultra-light particles. For the case of sterile neutrinos, we consider two production mechanisms: resonant production through mixing with active neutrinos and the decay of scalar particles. For the former model, we derive constraints for the combination of sterile neutrino mass {m}ν and mixing parameter {\\sin }2(2θ ) which provide the tightest lower bounds on the mixing angle (and hence on the lepton asymmetry) derived so far by methods independent of baryonic physics. For the latter we compute the allowed combinations of the scalar mass, its coupling to the Higgs field, and the Yukawa coupling of scalar to sterile neutrinos. We compare our results to independent existing astrophysical bounds on sterile neutrinos in the same mass range. For the case of “fuzzy” dark matter, we show that the observed number density ≈ 1/{{Mpc}}3 of high-redshift galaxies in the HFF sets a lower limit {m}\\psi ≥slant 8\\cdot {10}-22 eV (at the 3-σ confidence level) on the particle mass, a result that strongly disfavors wavelike bosonic dark matter as a viable model for structure formation. We discuss the impact on our results of uncertainties due to systematics in the selection of highly magnified, faint galaxies at high redshift.

  15. Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Miller, Christopher J. Miller

    2012-03-01

    There are many examples of clustering in astronomy. Stars in our own galaxy are often seen as being gravitationally bound into tight globular or open clusters. The Solar System's Trojan asteroids cluster at the gravitational Langrangian in front of Jupiter’s orbit. On the largest of scales, we find gravitationally bound clusters of galaxies, the Virgo cluster (in the constellation of Virgo at a distance of ˜50 million light years) being a prime nearby example. The Virgo cluster subtends an angle of nearly 8◦ on the sky and is known to contain over a thousand member galaxies. Galaxy clusters play an important role in our understanding of theUniverse. Clusters exist at peaks in the three-dimensional large-scale matter density field. Their sky (2D) locations are easy to detect in astronomical imaging data and their mean galaxy redshifts (redshift is related to the third spatial dimension: distance) are often better (spectroscopically) and cheaper (photometrically) when compared with the entire galaxy population in large sky surveys. Photometric redshift (z) [Photometric techniques use the broad band filter magnitudes of a galaxy to estimate the redshift. Spectroscopic techniques use the galaxy spectra and emission/absorption line features to measure the redshift] determinations of galaxies within clusters are accurate to better than delta_z = 0.05 [7] and when studied as a cluster population, the central galaxies form a line in color-magnitude space (called the the E/S0 ridgeline and visible in Figure 16.3) that contains galaxies with similar stellar populations [15]. The shape of this E/S0 ridgeline enables astronomers to measure the cluster redshift to within delta_z = 0.01 [23]. The most accurate cluster redshift determinations come from spectroscopy of the member galaxies, where only a fraction of the members need to be spectroscopically observed [25,42] to get an accurate redshift to the whole system. If light traces mass in the Universe, then the locations

  16. The Herschel Lensing Survey (HLS): A Bright Lensed Submillimeter Galaxy in the Field of Abell 773

    NASA Astrophysics Data System (ADS)

    Rawle, Tim; Egami, E.; Rex, M.; Combes, F.; Boone, F.; Smail, I.; Lensing Survey, Herschel

    2012-05-01

    The Herschel Lensing Survey (HLS; PI: Egami) is observing more than 50 massive galaxy clusters with deep PACS and SPIRE (100-500um) imaging, and a further 500 clusters in a SPIRE snapshot program ( 20 deg^2 of far-infrared cluster observations in total). Here, we present a discussion of an exceptionally bright ( 200mJy at 500um) source behind the cluster Abell 773, which is a strongly lensed submillimeter galaxy (SMG) at z=5.2. The source has an intrinsic infrared luminosity L_FIR 1e13 L_sun, with a total magnification factor of 11. We combine Herschel-SMA-IRAM observations of the dust continuum and gas excitation line emission, including multiple CO transitions, [CII] and [NII] (detected for the first time at high-z), to explore the morphology, star formation and ISM in this SMG.

  17. 1:1 Ground-track resonance in a uniformly rotating 4th degree and order gravitational field

    NASA Astrophysics Data System (ADS)

    Feng, Jinglang; Noomen, Ron; Hou, Xiyun; Visser, Pieter; Yuan, Jianping

    2017-01-01

    Using a gravitational field truncated at the 4th degree and order, the 1:1 ground-track resonance is studied. To address the main properties of this resonance, a 1-degree of freedom (1-DOF) system is firstly studied. Equilibrium points (EPs), stability and resonance width are obtained. Different from previous studies, the inclusion of non-spherical terms higher than degree and order 2 introduces new phenomena. For a further study about this resonance, a 2-DOF model which includes a main resonance term (the 1-DOF system) and a perturbing resonance term is studied. With the aid of Poincaré sections, the generation of chaos in the phase space is studied in detail by addressing the overlap process of these two resonances with arbitrary combinations of eccentricity ( e) and inclination ( i). Retrograde orbits, near circular orbits and near polar orbits are found to have better stability against the perturbation of the second resonance. The situations of complete chaos are estimated in the e-i plane. By applying the maximum Lyapunov Characteristic Exponent (LCE), chaos is characterized quantitatively and similar conclusions can be achieved. This study is applied to three asteroids 1996 HW1, Vesta and Betulia, but the conclusions are not restricted to them.

  18. Massive Spheroidal Galaxies: Nature and Evolution During 0.6Fields

    NASA Astrophysics Data System (ADS)

    Rizer, Zachary; McIntosh, Daniel H.; Cook, Joshua; Kartaltepe, Jeyhan S.; Wuyts, Stijn; van der Wel, Arjen; Barro, Guillermo; Koekemoer, Anton M.; Conselice, Christopher; Bell, Eric F.; Kocevski, Dale; Koo, David C.; Giavalisco, Mauro

    2015-01-01

    Spheroidal galaxies are linked to the observed buildup of massive non-star-forming (quiescent) galaxies over cosmic time. Yet, it remains unclear whether the primary growth channel involves the formation of new bulge-dominated galaxies followed by the quenching of star formation (SF), or the cessation of star production preceded by the transformation from disk-dominated to spheroidal galaxies. Using a new comprehensive catalog of visual classifications based on the HST/WFC3 imaging from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS), we study the nature and evolution of high-mass (Mstar>1e10 Msun) 'spheroids' (elliptical and bulge-dominated galaxies) over a wide redshift range (0.6fields. These spheroids are rounder, smaller and more centrally-concentrated than visually disk-dominated galaxies. Using either rest-frame UVJ colors or total SF rates (IR + UV) when available, which we've verified yield similar selections in these fields, we find a clear increase in the fraction of high-mass galaxies that are quiescent spheroids with decreasing redshift, accompanied by a relatively constant low fraction (10-25%) of star-forming spheroids at z>1, and a possible drop to lower fractions at z<1. We find quantitatively similar results using spheroid samples defined solely or jointly by automatic (Sérsic n>2) selection. We find that as the high-mass galaxy population becomes more quenched, it also becomes more dominated by spheroids with very few quiescent disks (<10%) at any redshift. Taken together, these results are consistent with a scenario in which new spheroids were continuously added and subsequently quenched, and inconsistent with an evolutionary process that primarily added newly quenched disks. The actual picture likely includes contributions from multiple channels and requires detailed modeling to better constrain the relative

  19. The MASSIVE survey. I. A volume-limited integral-field spectroscopic study of the most massive early-type galaxies within 108 Mpc

    SciTech Connect

    Ma, Chung-Pei; Greene, Jenny E.; Murphy, Jeremy D.; McConnell, Nicholas; Janish, Ryan; Blakeslee, John P.; Thomas, Jens

    2014-11-10

    Massive early-type galaxies represent the modern day remnants of the earliest major star formation episodes in the history of the universe. These galaxies are central to our understanding of the evolution of cosmic structure, stellar populations, and supermassive black holes, but the details of their complex formation histories remain uncertain. To address this situation, we have initiated the MASSIVE Survey, a volume-limited, multi-wavelength, integral-field spectroscopic (IFS) and photometric survey of the structure and dynamics of the ∼100 most massive early-type galaxies within a distance of 108 Mpc. This survey probes a stellar mass range M* ≳ 10{sup 11.5} M {sub ☉} and diverse galaxy environments that have not been systematically studied to date. Our wide-field IFS data cover about two effective radii of individual galaxies, and for a subset of them, we are acquiring additional IFS observations on sub-arcsecond scales with adaptive optics. We are also acquiring deep K-band imaging to trace the extended halos of the galaxies and measure accurate total magnitudes. Dynamical orbit modeling of the combined data will allow us to simultaneously determine the stellar, black hole, and dark matter halo masses. The primary goals of the project are to constrain the black hole scaling relations at high masses, investigate systematically the stellar initial mass function and dark matter distribution in massive galaxies, and probe the late-time assembly of ellipticals through stellar population and kinematical gradients. In this paper, we describe the MASSIVE sample selection, discuss the distinct demographics and structural and environmental properties of the selected galaxies, and provide an overview of our basic observational program, science goals and early survey results.

  20. A MULTIWAVELENGTH STUDY OF A SAMPLE OF 70 {mu}m SELECTED GALAXIES IN THE COSMOS FIELD. II. THE ROLE OF MERGERS IN GALAXY EVOLUTION

    SciTech Connect

    Kartaltepe, Jeyhan S.; Sanders, D. B.; Le Floc'h, E.; Frayer, D. T.; Aussel, H.; Arnouts, S.; Ilbert, O.; Cassata, P.; Le Fevre, O.; Salvato, M.; Scoville, N. Z.; Capak, P.; Surace, J.; Yan, L.; Caputi, K.; Carollo, C. M.; Lilly, S.; Civano, F.; Hasinger, G.; Koekemoer, A. M.

    2010-09-20

    We analyze the morphological properties of a large sample of 1503 70 {mu}m selected galaxies in the COSMOS field spanning the redshift range 0.01 < z < 3.5 with a median redshift of 0.5 and an infrared luminosity range of 10{sup 8} < L{sub IR}(8 - 1000 {mu}m)< 10{sup 14} L{sub sun} with a median luminosity of 10{sup 11.4} L{sub sun}. In general, these galaxies are massive, with a stellar mass range of 10{sup 10}-10{sup 12} M{sub sun}, and luminous, with -25 < M{sub K} < -20. We find a strong correlation between the fraction of major mergers and L{sub IR}, with the fraction at the highest luminosity (L{sub IR} > 10{sup 12} L{sub sun}) being up to {approx}50%. We also find that the fraction of spirals drops dramatically with L{sub IR}. Minor mergers likely play a role in boosting the infrared luminosity for sources with low luminosities (L{sub IR} < 10{sup 11.5} L{sub sun}). The precise fraction of mergers in any given L{sub IR} bin varies by redshift due to sources at z > 1 being difficult to classify and subject to the effects of bandpass shifting; therefore, these numbers can only be considered lower limits. At z < 1, where the morphological classifications are most robust, major mergers clearly dominate the ULIRG population ({approx}50%-80%) and are important for the LIRG population ({approx}25%-40%). At z > 1, the fraction of major mergers is lower, but is at least 30%-40% for ULIRGs. In a comparison of our visual classifications with several automated classification techniques we find general agreement; however, the fraction of identified mergers is underestimated due to automated classification methods being sensitive to only certain timescales of a major merger. Although the general morphological trends agree with what has been observed for local (U)LIRGs, the fraction of major mergers is slightly lower than seen locally. This is in part due to the difficulty of identifying merger signatures at high redshift. The distribution of the U - V color of the

  1. Candidate Clusters of Galaxies at z > 1.3 Identified in the Spitzer South Pole Telescope Deep Field Survey

    NASA Astrophysics Data System (ADS)

    Rettura, A.; Martinez-Manso, J.; Stern, D.; Mei, S.; Ashby, M. L. N.; Brodwin, M.; Gettings, D.; Gonzalez, A. H.; Stanford, S. A.; Bartlett, J. G.

    2014-12-01

    We present 279 galaxy cluster candidates at z > 1.3 selected from the 94 deg2 Spitzer South Pole Telescope Deep Field (SSDF) survey. We use a simple algorithm to select candidate high-redshift clusters of galaxies based on Spitzer/IRAC mid-infrared data combined with shallow all-sky optical data. We identify distant cluster candidates adopting an overdensity threshold that results in a high purity (80%) cluster sample based on tests in the Spitzer Deep, Wide-Field Survey of the Boötes field. Our simple algorithm detects all three 1.4 < z <= 1.75 X-ray detected clusters in the Boötes field. The uniqueness of the SSDF survey resides not just in its area, one of the largest contiguous extragalactic fields observed with Spitzer, but also in its deep, multi-wavelength coverage by the South Pole Telescope (SPT), Herschel/SPIRE, and XMM-Newton. This rich data set will allow direct or stacked measurements of Sunyaev-Zel'dovich effect decrements or X-ray masses for many of the SSDF clusters presented here, and enable a systematic study of the most distant clusters on an unprecedented scale. We measure the angular correlation function of our sample and find that these candidates show strong clustering. Employing the COSMOS/UltraVista photometric catalog in order to infer the redshift distribution of our cluster selection, we find that these clusters have a comoving number density nc = (0.7+6.3-0.6) × 10-7 h3 {Mpc}-3 and a spatial clustering correlation scale length r 0 = (32 ± 7) h -1 Mpc. Assuming our sample is comprised of dark matter halos above a characteristic minimum mass, M min, we derive that at z = 1.5 these clusters reside in halos larger than Mmin = 1.5+0.9-0.7 × 1014 h-1 M⊙ . We find that the mean mass of our cluster sample is equal to Mmean = 1.9+1.0-0.8 × 1014 h-1 M⊙ ; thus, our sample contains the progenitors of present-day massive galaxy clusters.

  2. Integral field spectroscopy of 2.0< z<2.7 submillimetre galaxies: gas morphologies and kinematics

    NASA Astrophysics Data System (ADS)

    Alaghband-Zadeh, S.; Chapman, S. C.; Swinbank, A. M.; Smail, Ian; Harrison, C. M.; Alexander, D. M.; Casey, C. M.; Davé, R.; Narayanan, D.; Tamura, Y.; Umehata, H.

    2012-08-01

    We present 2D, integral field spectroscopy covering the rest-frame wavelengths of strong optical emission lines in nine submillimetre luminous galaxies (SMGs) at 2.0 < z < 2.7. The Gemini-North/Near-Infrared Integral Field Spectrograph (NIFS) and Very Large Telescope (VLT) Spectrograph for INtegral Field Observations in the Near Infrared (SINFONI) imaging spectroscopy allow the mapping of the gas morphologies and dynamics within the sources, and we measure an average Hα velocity dispersion of <σ> = 220 ± 80 km s-1 and an average half-light radius of = 3.7 ± 0.8 kpc. The dynamical measure, = 0.9 ± 0.1, for the SMGs is higher than in more quiescent star-forming galaxies at the same redshift, highlighting a difference in the dynamics of the two populations. The far-infrared star formation rates (SFRs) of the SMGs, measured using Herschel-SPIRE† far-infrared photometry, are on average 370 ± 90 M⊙ yr-1, which is ˜2 times higher than the extinction-corrected SFRs of the more quiescent star-forming galaxies. Six of the SMGs in our sample show strong evidence for kinematically distinct multiple components with average velocity offsets of 200 ± 100 km s-1 and average projected spatial offsets of 8 ± 2 kpc, which we attribute to systems in the early stages of major mergers. Indeed, all SMGs are classified as mergers from a kinemetry analysis of the velocity and dispersion field asymmetry. We bring together our sample with the seven other SMGs with integral field unit observations to describe the ionized gas morphologies and kinematics in a sample of 16 SMGs. By comparing the velocity and spatial offsets of the SMG Hα components with subhalo offsets in the Millennium Simulation data base, we infer an average halo mass for SMGs in the range of 13 < log (M[h-1 M⊙]) < 14. Finally, we explore the relationship between the velocity dispersion and star formation intensity within the SMGs, finding that the gas motions are consistent with the

  3. CANDIDATE CLUSTERS OF GALAXIES AT z > 1.3 IDENTIFIED IN THE SPITZER SOUTH POLE TELESCOPE DEEP FIELD SURVEY

    SciTech Connect

    Rettura, A.; Stern, D.; Martinez-Manso, J.; Gettings, D.; Gonzalez, A. H.; Mei, S.; Ashby, M. L. N.; Brodwin, M.; Stanford, S. A.; Bartlett, J. G.

    2014-12-20

    We present 279 galaxy cluster candidates at z > 1.3 selected from the 94 deg{sup 2} Spitzer South Pole Telescope Deep Field (SSDF) survey. We use a simple algorithm to select candidate high-redshift clusters of galaxies based on Spitzer/IRAC mid-infrared data combined with shallow all-sky optical data. We identify distant cluster candidates adopting an overdensity threshold that results in a high purity (80%) cluster sample based on tests in the Spitzer Deep, Wide-Field Survey of the Boötes field. Our simple algorithm detects all three 1.4 < z ≤ 1.75 X-ray detected clusters in the Boötes field. The uniqueness of the SSDF survey resides not just in its area, one of the largest contiguous extragalactic fields observed with Spitzer, but also in its deep, multi-wavelength coverage by the South Pole Telescope (SPT), Herschel/SPIRE, and XMM-Newton. This rich data set will allow direct or stacked measurements of Sunyaev-Zel'dovich effect decrements or X-ray masses for many of the SSDF clusters presented here, and enable a systematic study of the most distant clusters on an unprecedented scale. We measure the angular correlation function of our sample and find that these candidates show strong clustering. Employing the COSMOS/UltraVista photometric catalog in order to infer the redshift distribution of our cluster selection, we find that these clusters have a comoving number density n{sub c}=(0.7{sub −0.6}{sup +6.3})×10{sup −7} h{sup 3} Mpc{sup −3} and a spatial clustering correlation scale length r {sub 0} = (32 ± 7) h {sup –1} Mpc. Assuming our sample is comprised of dark matter halos above a characteristic minimum mass, M {sub min}, we derive that at z = 1.5 these clusters reside in halos larger than M{sub min}=1.5{sub −0.7}{sup +0.9}×10{sup 14} h{sup −1} M{sub ⊙}. We find that the mean mass of our cluster sample is equal to M{sub mean}=1.9{sub −0.8}{sup +1.0}×10{sup 14} h{sup −1} M{sub ⊙}; thus, our sample contains the progenitors of

  4. Evidence for HI replenishment in massive galaxies through gas accretion from the cosmic web

    NASA Astrophysics Data System (ADS)

    Kleiner, Dane; Pimbblet, Kevin A.; Heath Jones, D.; Koribalski, Bärbel S.; Serra, Paolo

    2016-12-01

    We examine the HI -to-stellar mass ratio (HI fraction) for galaxies near filament backbones within the nearby Universe (d < 181 Mpc). This work uses the 6 degree Field Galaxy Survey (6dFGS) and the Discrete Persistent Structures Extractor (DisPerSE) to define the filamentary structure of the local cosmic web. HI spectral stacking of HI Parkes All Sky Survey (HIPASS) observations yield the HI fraction for filament galaxies and a field control sample. The HI fraction is measured for different stellar masses and 5th nearest neighbour projected densities (Σ5) to disentangle what influences cold gas in galaxies. For galaxies with stellar masses log(M⋆) ≤ 11 M⊙ in projected densities 0 ≤ Σ5 < 3 galaxies Mpc-2, all HI fractions of galaxies near filaments are statistically indistinguishable from the control sample. Galaxies with stellar masses log(M⋆) ≥ 11 M⊙ have a systematically higher HI fraction near filaments than the control sample. The greatest difference is 0.75 dex, which is 5.5σ difference at mean projected densities of 1.45 galaxies Mpc-2. We suggest that this is evidence for massive galaxies accreting cold gas from the intra-filament medium which can replenish some HI gas. This supports cold mode accretion where filament galaxies with a large gravitational potential can draw gas from the large scale structure.

  5. Effects of 36.6 GHz and static magnetic field on degree of endoreduplication in Drosophila melanogaster polytene chromosomes.

    PubMed

    Dyka, Liliia D; Shakina, Lyubov A; Strashnyuk, Volodymyr Yu; Shckorbatov, Yuriy G

    2016-01-01

    Purpose To study the effect of microwave (MW) irradiation and consistent action of microwaves and static magnetic field (MF) on the giant chromosomes endoreduplication in Drosophila melanogaster Meig. Materials and methods Experiments were carried out on inbred wild type Canton-S strain. Exposure to microwaves (frequency - 36.64 GHz, power density - 1 W/m(2), exposure time - 30 sec) and static magnetic field (intensity - 25 mT, exposure time - 5 min) applied at the egg stage after a 2-h oviposition. Giant chromosomes were investigated in squashed preparations of the salivary glands stained by acetoorcein by the cytomorphometric method. Preparations were obtained from Drosophila larvae at the 0 h prepupae stage. Results Exposure to microwaves increased the degree of polyteny in chromosomes (DPC) by 7.5%, and the statistical power of the impact was: h(2) = 35.3%. A similar effect occurred after the sequential action of microwaves and static magnetic field: The polyteny level of chromosomes increased by 7.4%, statistical power was: h(2) = 30.6%. Conclusions Exposure to microwaves on the stage of embryogenesis has a stimulating effect on endoreduplication in Drosophila development. The effect of microwaves was not modified by the action of the static magnetic field.

  6. Investigation of the dynamics of spiral galaxies on the base of 3D vector velocity field of their gaseous disks reconstructed from observed line-of-sight velocity field.

    NASA Astrophysics Data System (ADS)

    Fridman, A. M.; Khoruzhii, O. V.; Lyakhovich, V. V.; Silchenko, O. K.; Zasov, A. V.; Afanasiev, V. L.; Dodonov, S. N.

    The method is based on Fourier analysis of observed velocity field. The Fourier harmonics are interpreted in the frame of the consensus on the wave nature of spiral arms. We measured the line-of-sight velocity fields in five spiral galaxies. In grand design galaxies NGC 157, NGC 6181 and NGC 3893 we determined with high accuracy all basic parameters: corotation radius, velocity amplitudes in spiral pattern, the rotation velocity curve with account for motions in spiral arms. The analysis of the flocculent galaxy NGC 2841 helped us to understand the nature of the flocculent spirals. The analysis of grand design galaxy NGC 3631 which is seen face on gave the possibility to explain the nature of vertical motion along the disk rotation axis.

  7. 3D galaxy clustering with future wide-field surveys: Advantages of a spherical Fourier-Bessel analysis

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2015-06-01

    Context. Upcoming spectroscopic galaxy surveys are extremely promising to help in addressing the major challenges of cosmology, in particular in understanding the nature of the dark universe. The strength of these surveys, naturally described in spherical geometry, comes from their unprecedented depth and width, but an optimal extraction of their three-dimensional information is of utmost importance to best constrain the properties of the dark universe. Aims: Although there is theoretical motivation and novel tools to explore these surveys using the 3D spherical Fourier-Bessel (SFB) power spectrum of galaxy number counts Cℓ(k,k'), most survey optimisations and forecasts are based on the tomographic spherical harmonics power spectrum C(ij)_ℓ. The goal of this paper is to perform a new investigation of the information that can be extracted from these two analyses in the context of planned stage IV wide-field galaxy surveys. Methods: We compared tomographic and 3D SFB techniques by comparing the forecast cosmological parameter constraints obtained from a Fisher analysis. The comparison was made possible by careful and coherent treatment of non-linear scales in the two analyses, which makes this study the first to compare 3D SFB and tomographic constraints on an equal footing. Nuisance parameters related to a scale- and redshift-dependent galaxy bias were also included in the computation of the 3D SFB and tomographic power spectra for the first time. Results: Tomographic and 3D SFB methods can recover similar constraints in the absence of systematics. This requires choosing an optimal number of redshift bins for the tomographic analysis, which we computed to be N = 26 for zmed ≃ 0.4, N = 30 for zmed ≃ 1.0, and N = 42 for zmed ≃ 1.7. When marginalising over nuisance parameters related to the galaxy bias, the forecast 3D SFB constraints are less affected by this source of systematics than the tomographic constraints. In addition, the rate of increase of the

  8. Tracing the cosmic velocity field at z∼ 0.1 from galaxy luminosities in the SDSS DR7

    SciTech Connect

    Feix, Martin; Nusser, Adi; Branchini, Enzo E-mail: adi@physics.technion.ac.il

    2014-09-01

    Spatial modulations in the distribution of observed luminosities (computed using redshifts) of ∼ 5× 10{sup 5} galaxies from the SDSS Data Release 7, probe the cosmic peculiar velocity field out to z∼ 0.1. Allowing for luminosity evolution, the r-band luminosity function, determined via a spline-based estimator, is well represented by a Schechter form with M{sup *}(z)-5 log{sub 10} h = -20.52 -1.6(z-0.1)± 0.05 and α{sup *} = -1.1± 0.03. Bulk flows and higher velocity moments in two redshift bins, 0.02 < z < 0.07 and 0.07 < z < 0.22, agree with the predictions of the ΛCDM model, as obtained from mock galaxy catalogs designed to match the observations. Assuming a ΛCDM model, we estimate σ{sub 8} ≈ 1.1± 0.4 for the amplitude of the linear matter power spectrum, where the low accuracy is due to the limited number of galaxies. While the low z bin is robust against coherent photometric uncertainties, the bias of results from the second bin is consistent with the ∼1% magnitude tilt reported by the SDSS collaboration. The systematics are expected to have a significantly lower impact in future datasets with larger sky coverage and better photometric calibration.

  9. Illuminating gas inflows/outflows in the MUSE deepest fields: Lyα nebulae around forming galaxies at z ≃ 3.3

    NASA Astrophysics Data System (ADS)

    Vanzella, E.; Balestra, I.; Gronke, M.; Karman, W.; Caminha, G. B.; Dijkstra, M.; Rosati, P.; De Barros, S.; Caputi, K.; Grillo, C.; Tozzi, P.; Meneghetti, M.; Mercurio, A.; Gilli, R.

    2017-03-01

    We report the identification of extended Lyα nebulae at z ≃ 3.3 in the Hubble Ultra Deep Field (HUDF, ≃40 kpc × 80 kpc) and behind the Hubble Frontier Field galaxy cluster MACSJ0416 (≃40 kpc), spatially associated with groups of star-forming galaxies. VLT/MUSE integral field spectroscopy reveals a complex structure with a spatially varying double-peaked Lyα emission. Overall, the spectral profiles of the two Lyα nebulae are remarkably similar, both showing a prominent blue emission, more intense and slightly broader than the red peak. From the first nebula, located in the HUDF, no X-ray emission has been detected, disfavouring the possible presence of active galactic nuclei. Spectroscopic redshifts have been derived for 11 galaxies within 2 arcsec from the nebula and spanning the redshift range 1.037 < z < 5.97. The second nebula, behind MACSJ0416, shows three aligned star-forming galaxies plausibly associated with the emitting gas. In both systems, the associated galaxies reveal possible intense rest-frame-optical nebular emissions lines [O III] λλ4959, 5007+Hβ with equivalent widths as high as 1500 Å rest frame and star formation rates ranging from a few to tens of solar masses per year. A possible scenario is that of a group of young, star-forming galaxies emitting ionizing radiation that induces Lyα fluorescence, therefore revealing the kinematics of the surrounding gas. Also Lyα powered by star formation and/or cooling radiation may resemble the double-peaked spectral properties and the morphology observed here. If the intense blue emission is associated with inflowing gas, then we may be witnessing an early phase of galaxy or a proto-cluster (or group) formation.

  10. Broad-line Reverberation in the Kepler-field Seyfert Galaxy Zw 229-015

    NASA Astrophysics Data System (ADS)

    Barth, Aaron J.; Nguyen, My L.; Malkan, Matthew A.; Filippenko, Alexei V.; Li, Weidong; Gorjian, Varoujan; Joner, Michael D.; Bennert, Vardha Nicola; Botyanszki, Janos; Cenko, S. Bradley; Childress, Michael; Choi, Jieun; Comerford, Julia M.; Cucciara, Antonino; da Silva, Robert; Duchêne, Gaspard; Fumagalli, Michele; Ganeshalingam, Mohan; Gates, Elinor L.; Gerke, Brian F.; Griffith, Christopher V.; Harris, Chelsea; Hintz, Eric G.; Hsiao, Eric; Kandrashoff, Michael T.; Keel, William C.; Kirkman, David; Kleiser, Io K. W.; Laney, C. David; Lee, Jeffrey; Lopez, Liliana; Lowe, Thomas B.; Moody, J. Ward; Morton, Alekzandir; Nierenberg, A. M.; Nugent, Peter; Pancoast, Anna; Rex, Jacob; Rich, R. Michael; Silverman, Jeffrey M.; Smith, Graeme H.; Sonnenfeld, Alessandro; Suzuki, Nao; Tytler, David; Walsh, Jonelle L.; Woo, Jong-Hak; Yang, Yizhe; Zeisse, Carl

    2011-05-01

    The Seyfert 1 galaxy Zw 229-015 is among the brightest active galaxies being monitored by the Kepler mission. In order to determine the black hole mass in Zw 229-015 from Hβ reverberation mapping, we have carried out nightly observations with the Kast Spectrograph at the Lick 3 m telescope during the dark runs from 2010 June through December, obtaining 54 spectroscopic observations in total. We have also obtained nightly V-band imaging with the Katzman Automatic Imaging Telescope at Lick Observatory and with the 0.9 m telescope at the Brigham Young University West Mountain Observatory over the same period. We detect strong variability in the source, which exhibited more than a factor of two change in broad Hβ flux. From cross-correlation measurements, we find that the Hβ light curve has a rest-frame lag of 3.86+0.69 -0.90 days with respect to the V-band continuum variations. We also measure reverberation lags for Hα and Hγ and find an upper limit to the Hδ lag. Combining the Hβ lag measurement with a broad Hβ width of σline = 1590 ± 47 km s-1 measured from the rms variability spectrum, we obtain a virial estimate of M BH = 1.00+0.19 -0.24 × 107 M sun for the black hole in Zw 229-015. As a Kepler target, Zw 229-015 will eventually have one of the highest-quality optical light curves ever measured for any active galaxy, and the black hole mass determined from reverberation mapping will serve as a benchmark for testing relationships between black hole mass and continuum variability characteristics in active galactic nuclei.

  11. BROAD-LINE REVERBERATION IN THE KEPLER-FIELD SEYFERT GALAXY Zw 229-015

    SciTech Connect

    Barth, Aaron J.; Nguyen, My L.; Malkan, Matthew A.; Filippenko, Alexei V.; Li, Weidong; Cenko, S. Bradley; Choi, Jieun; Duchene, Gaspard; Ganeshalingam, Mohan; Gorjian, Varoujan; Joner, Michael D.; Bennert, Vardha Nicola; Botyanszki, Janos; Childress, Michael; Cucciara, Antonino; Comerford, Julia M.; Da Silva, Robert; Gates, Elinor L.; Gerke, Brian F.

    2011-05-10

    The Seyfert 1 galaxy Zw 229-015 is among the brightest active galaxies being monitored by the Kepler mission. In order to determine the black hole mass in Zw 229-015 from H{beta} reverberation mapping, we have carried out nightly observations with the Kast Spectrograph at the Lick 3 m telescope during the dark runs from 2010 June through December, obtaining 54 spectroscopic observations in total. We have also obtained nightly V-band imaging with the Katzman Automatic Imaging Telescope at Lick Observatory and with the 0.9 m telescope at the Brigham Young University West Mountain Observatory over the same period. We detect strong variability in the source, which exhibited more than a factor of two change in broad H{beta} flux. From cross-correlation measurements, we find that the H{beta} light curve has a rest-frame lag of 3.86{sup +0.69}{sub -0.90} days with respect to the V-band continuum variations. We also measure reverberation lags for H{alpha} and H{gamma} and find an upper limit to the H{delta} lag. Combining the H{beta} lag measurement with a broad H{beta} width of {sigma}{sub line} = 1590 {+-} 47 km s{sup -1} measured from the rms variability spectrum, we obtain a virial estimate of M{sub BH} = 1.00{sup +0.19}{sub -0.24} x 10{sup 7} M{sub sun} for the black hole in Zw 229-015. As a Kepler target, Zw 229-015 will eventually have one of the highest-quality optical light curves ever measured for any active galaxy, and the black hole mass determined from reverberation mapping will serve as a benchmark for testing relationships between black hole mass and continuum variability characteristics in active galactic nuclei.

  12. The X-Ray Luminosity Functions of Field Low-Mass X-Ray Binaries in Early-Type Galaxies: Evidence for a Stellar Age Dependence

    NASA Technical Reports Server (NTRS)

    Lehmer, B. D.; Berkeley, M.; Zezas, A.; Alexander, D. M.; Basu-Zych, A.; Bauer, F. E.; Brandt, W. N.; Fragos, T.; Hornschemeier, A. E.; Kalogera, V.; Ptak, A.; Sivakoff, G. R.; Tzanavaris, P.; Yukita, M.

    2014-01-01

    We present direct constraints on how the formation of low-mass X-ray binary (LMXB) populations in galactic fields depends on stellar age. In this pilot study, we utilize Chandra and Hubble Space Telescope (HST) data to detect and characterize the X-ray point source populations of three nearby early-type galaxies: NGC 3115, 3379, and 3384. The luminosity-weighted stellar ages of our sample span approximately equal to 3-10 Gyr. X-ray binary population synthesis models predict that the field LMXBs associated with younger stellar populations should be more numerous and luminous per unit stellar mass than older populations due to the evolution of LMXB donor star masses. Crucially, the combination of deep Chandra and HST observations allows us to test directly this prediction by identifying and removing counterparts to X-ray point sources that are unrelated to the field LMXB populations, including LMXBs that are formed dynamically in globular clusters, Galactic stars, and background AGN/galaxies. We find that the "young" early-type galaxy NGC 3384 (approximately equals 2-5 Gyr) has an excess of luminous field LMXBs (L(sub x) approximately greater than (5-10) × 10(exp 37) erg s(exp -1)) per unit K-band luminosity (L(sub K); a proxy for stellar mass) than the "old" early-type galaxies NGC 3115 and 3379 (approximately equals 8-10 Gyr), which results in a factor of 2-3 excess of L(sub X)/L(sub K) for NGC 3384. This result is consistent with the X-ray binary population synthesis model predictions; however, our small galaxy sample size does not allow us to draw definitive conclusions on the evolution field LMXBs in general. We discuss how future surveys of larger galaxy samples that combine deep Chandra and HST data could provide a powerful new benchmark for calibrating X-ray binary population synthesis models.

  13. Perceptual scaling of visual and inertial cues: effects of field of view, image size, depth cues, and degree of freedom.

    PubMed

    Correia Grácio, B J; Bos, J E; van Paassen, M M; Mulder, M

    2014-02-01

    In the field of motion-based simulation, it was found that a visual amplitude equal to the inertial amplitude does not always provide the best perceived match between visual and inertial motion. This result is thought to be caused by the "quality" of the motion cues delivered by the simulator motion and visual systems. This paper studies how different visual characteristics, like field of view (FoV) and size and depth cues, influence the scaling between visual and inertial motion in a simulation environment. Subjects were exposed to simulator visuals with different fields of view and different visual scenes and were asked to vary the visual amplitude until it matched the perceived inertial amplitude. This was done for motion profiles in surge, sway, and yaw. Results showed that the subjective visual amplitude was significantly affected by the FoV, visual scene, and degree-of-freedom. When the FoV and visual scene were closer to what one expects in the real world, the scaling between the visual and inertial cues was closer to one. For yaw motion, the subjective visual amplitudes were approximately the same as the real inertial amplitudes, whereas for sway and especially surge, the subjective visual amplitudes were higher than the inertial amplitudes. This study demonstrated that visual characteristics affect the scaling between visual and inertial motion which leads to the hypothesis that this scaling may be a good metric to quantify the effect of different visual properties in motion-based simulation.

  14. A bright z = 5.2 lensed submillimeter galaxy in the field of Abell 773. HLSJ091828.6+514223

    NASA Astrophysics Data System (ADS)

    Combes, F.; Rex, M.; Rawle, T. D.; Egami, E.; Boone, F.; Smail, I.; Richard, J.; Ivison, R. J.; Gurwell, M.; Casey, C. M.; Omont, A.; Berciano Alba, A.; Dessauges-Zavadsky, M.; Edge, A. C.; Fazio, G. G.; Kneib, J.-P.; Okabe, N.; Pelló, R.; Pérez-González, P. G.; Schaerer, D.; Smith, G. P.; Swinbank, A. M.; van der Werf, P.

    2012-02-01

    During our Herschel Lensing Survey (HLS) of massive galaxy clusters, we have discovered an exceptionally bright source behind the z = 0.22 cluster Abell 773, which appears to be a strongly lensed submillimeter galaxy (SMG) at z = 5.2429. This source is unusual compared to most other lensed sources discovered by Herschel so far, because of its higher submm flux (~200 mJy at 500 μm) and its high redshift. The dominant lens is a foreground z = 0.63 galaxy, not the cluster itself. The source has a far-infrared (FIR) luminosity of LFIR = 1.1 × 1014/μ L⊙, where μ is the magnification factor, likely ~11. We report here the redshift identification through CO lines with the IRAM-30 m, and the analysis of the gas excitation, based on CO(7-6), CO(6-5), CO(5-4) detected at IRAM and the CO(2-1) at the EVLA. All lines decompose into a wide and strong red component, and a narrower and weaker blue component, 540 km s-1 apart. Assuming the ultraluminous galaxy (ULIRG) CO-to-H2 conversion ratio, the H2 mass is 5.8 × 1011/μ M⊙, of which one third is in a cool component. From the C I(3P2-3P1) line we derive a C I/H2 number abundance of 6 × 10-5 similar to that in other ULIRGs. The H2Op(2,0,2-1,1,1) line is strong only in the red velocity component, with an intensity ratio I(H2O)/I(CO) ~ 0.5, suggesting a strong local FIR radiation field, possibly from an active nucleus (AGN) component. We detect the [NII]205 μm line for the first time at high-z. It shows comparable blue and red components, with a strikingly broad blue one, suggesting strong ionized gas flows.

  15. On the Nature of the Bright Short-Period X-ray Source in the Circinus Galaxy Field

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Tennant, Allyn F.; Wu, Kinwah; Swartz, Douglas A.; Ghosh, Kajal K.

    2003-01-01

    The spectrum and light curve of the bright X-ray source CG X-1 in the field of the Circinus galaxy are re-examined. Previous analyses have concluded that the source is an accreting black hole of mass approx. greater than 50 solar masses although it was noted that the light curve resembles that of an AM Her system. Here we show that the short period and an assumed main sequence companion constrain the mass of the companion to less than 1 solar mass. Further a possible eclipse seen during one of the Chandra observations and a subsequent XMM-Newton observation constrains the mass of the compact object to less than 60 solar masses. If such a system lies in the Circinus galaxy, then the accreting object must either radiate anisotropically or strongly violate the Eddington limit. Even if the emission is beamed, then the companion star which intercepts this flux during eclipse will be driven out of thermal equilibrium and evaporate within approx. 10(exp 3) yr. We find that the observations cannot rule out an AM Her system in the Milky Way and that such a system can account for the variations seen in the light curve.

  16. On the Nature of the Bright Short-Period X-Ray Source in the Circinus Galaxy Field

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; Wu, Kinwah; Tennant, Allyn F.; Swartz, Douglas A.; Ghosh, Kajal K.

    2004-01-01

    The spectrum and light curve of the bright X-ray source CG X-1 in the field of the Circinus galaxy are reexamined. Previous analyses have concluded that the source is an accreting black hole of mass > or approx. 50 solar masses although it has been noted that the light curve resembles that of an AM Herculis system. Here we show that the short period and an assumed main-sequence companion constrain the mass of the companion to less than 1 solar mass. Furthermore, a possible eclipse seen during one of the Chandra observations and a subsequent XMM-Newton observation constrain the mass of the compact object to less than 60 solar masses. If such a system lies in the Circinus galaxy, then the accreting object must either radiate anisotropically or strongly violate the Eddington limit. Even if the emission is beamed, then the companion star that intercepts this flux during eclipse will be driven out of thermal equilibrium and evaporate within approx. 10(exp 3) yr. We find that the observations cannot rule out an AM Herculis system in the Milky Way and that such a system can account for the variations seen in the light curve.

  17. DISCOVERY OF A DAMPED Lyα ABSORBER AT z = 3.3 ALONG A GALAXY SIGHT-LINE IN THE SSA22 FIELD

    SciTech Connect

    Mawatari, K.; Inoue, A. K.; Kousai, K.; Hayashino, T.; Cooke, R.; Prochaska, J. X.; Matsuda, Y.

    2016-02-01

    Using galaxies as background light sources to map the Lyα absorption lines is a novel approach to study Damped Lyα Absorbers (DLAs). We report the discovery of an intervening z = 3.335 ± 0.007 DLA along a galaxy sight-line identified among 80 Lyman Break Galaxy (LBG) spectra obtained with our Very Large Telescope/Visible Multi-Object Spectrograph survey in the SSA22 field. The measured DLA neutral hydrogen (H i) column density is log(N{sub H} {sub i}/cm{sup −2}) = 21.68 ± 0.17. The DLA covering fraction over the extended background LBG is >70% (2σ), yielding a conservative constraint on the DLA area of ≳1 kpc{sup 2}. Our search for a counterpart galaxy hosting this DLA concludes that there is no counterpart galaxy with star formation rate larger than a few M{sub ⊙} yr{sup −1}, ruling out an unobscured violent star formation in the DLA gas cloud. We also rule out the possibility that the host galaxy of the DLA is a passive galaxy with M{sub *} ≳ 5 × 10{sup 10}M{sub ⊙} or a heavily dust-obscured galaxy with E(B − V) ≳ 2. The DLA may coincide with a large-scale overdensity of the spectroscopic LBGs. The occurrence rate of the DLA is compatible with that of DLAs found in QSO sight-lines.

  18. The role of interactions in galaxy evolution: A new perspective from the CALIFA and MaNGA Integral Field Spectroscopic surveys.

    NASA Astrophysics Data System (ADS)

    Barrera-Ballesteros, J. K.; Sanchez, S. F.; Califa Collaboration

    2016-06-01

    Interactions and mergers have been playing a paramount role to understand how galaxies evolve. In recent years integral field spectroscopic (IFS) observations have become routinely allowing researchers to conduct large IFS surveys. In this context, these surveys are providing a new observational scenario to probe the properties of galaxies at different stages of the interaction —from close pairs to post-merger galaxies. Even more, these surveys also include homogeneous observations of non-interacting galaxies which in turns allows to distinguish the processes induce by secular evolution from those driven by interactions. In this talk, We review the studies of interacting studies from the CALIFA survey. They consider from the thorough analysis of a single interactive systems (e.g., the Mice, Wild et al. 2014) to the the statistical study of physical properties of a large sample of interacting/merging galaxies such as their internal structure via their stellar and gas line-of-sight kinematic maps (Barrera-Ballesteros et al. 2015a) or the spatial distribution of the star-forming gas in these galaxies (Barrera-Ballesteros et al. 2015b). Then we present some of the on-going studies within the MaNGA survey. Due to its statistical power (sample size ~10000 objects), this survey will allow us to probe the properties of galaxies in a wide range of the interaction-parameter space. This in turn provides a unique view on the key parameters that affect the internal structure and properties of galaxies during the interaction and subsequent merger.

  19. Evolution of the Frequency of Luminous (>=L*V) Close Galaxy Pairs at z < 1.2 in the COSMOS Field

    NASA Astrophysics Data System (ADS)

    Kartaltepe, J. S.; Sanders, D. B.; Scoville, N. Z.; Calzetti, D.; Capak, P.; Koekemoer, A.; Mobasher, B.; Murayama, T.; Salvato, M.; Sasaki, S. S.; Taniguchi, Y.

    2007-09-01

    We measure the fraction of luminous galaxies in pairs at projected separations of 5-20 kpc out to z=1.2 in the Cosmic Evolution Survey (COSMOS) field using ACS images and photometric redshifts derived from an extensive multiwavelength data set. Analysis of a complete sample of 106,188 galaxies more luminous than MV=-19.8 (~L*V) in the redshift range 0.1galaxy pairs. These data are supplemented by a local (z=0-0.1) value for the galaxy pair fraction derived from the Sloan Digital Sky Survey. After statistically correcting the COSMOS pair sample for chance line-of-sight superpositions, the evolution in the pair fraction is fit by a power law ~(1+z)n=3.1+/-0.1. If this strongly evolving pair fraction continues out to higher redshift, ~50% of all luminous galaxies at z~2 are in close pairs. This clearly signifies that galaxy mergers are a very significant and possibly dominant mechanism for galaxy evolution during the epoch of galaxy formation at z=1-3. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS5-26555 also based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; Kitt Peak National Observatory, Cerro Tololo Inter-American Observatory, and the National Optical Astronomy Observatory, which are operated by AURA, Inc., under cooperative agreement with the National Science Foundation; and the Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France, and the University of Hawaii.

  20. Finding the First Galaxies

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2009-01-01

    Astronomers study distant galaxies by taking long exposures in deep survey fields. They choose fields that are empty of known sources, so that they are statistically representative of the Universe as a whole. Astronomers can compare the distribution of the detected galaxies in brightness, color, morphology and redshift to theoretical models, in order to puzzle out the processes of galaxy evolution. In 2004, the Hubble Space Telescope was pointed at a small, deep-survey field in the southern constellation Fornax for more than 500 hours of exposure time. The resulting Hubble Ultra-Deep Field could see the faintest and most distant galaxies that the telescope is capable of viewing. These galaxies emitted their light less than 1 billion years after the Big Bang. From the Ultra Deep Field and other galaxy surveys, astronomers have built up a history of star formation in the universe. the peak occurred about7 billion years ago, about half of the age of the current universe, then the number of stars that were forming was about 15 time the rate today. Going backward in time to when the very first starts and galaxies formed, the average star-formation rate should drop to zero. but when looking at the most distant galaxies in the Ultra Deep field, the star formation rate is still higher than it is today. The faintest galaxies seen by Hubble are not the first galaxies that formed in the early universe. To detect these galaxies NASA is planning the James Webb Space Telescope for launch in 2013. Webb will have a 6.5-meter diameter primary mirror, much bigger than Hubble's 2.4-meter primary, and will be optimized for infrared observations to see the highly redshifted galaxies.

  1. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  2. Situating Ontario's Colleges between the American and European Models for Providing Opportunity for the Attainment of Baccalaureate Degrees in Applied Fields of Study

    ERIC Educational Resources Information Center

    Skolnik, Michael L.

    2016-01-01

    During the last third of the twentieth century, college sectors in many countries took on the role of expanding opportunities for baccalaureate degree attainment in applied fields of study. In many European countries, colleges came to constitute a parallel higher education sector that offered degree programs of an applied nature in contrast to the…

  3. Old Galaxies in the Young Universe

    NASA Astrophysics Data System (ADS)

    2004-07-01

    ). In order to better understand the formation process of galaxies and to verify if the hierarchical merging scenario is valid, a team of Italian and ESO astronomers [2] used ESO's Very Large Telescope as a "time machine" to do a search for very remote elliptical galaxies. However, this is not trivial. Distant elliptical galaxies, with their content of old and red stars, must be very faint objects indeed at optical wavelengths as the bulk of their light is redshifted into the infrared part of the spectrum. Remote elliptical galaxies are thus among the most difficult observational targets even for the largest telescopes; this is also why the 1.55 redshift record has persisted for so long. But this challenge did not stop the researchers. They obtained deep optical spectroscopy with the multi-mode FORS2 instrument on the VLT for a sample of 546 faint objects found in a sky area of 52 arcmin2 (or about one tenth of the area of the Full Moon) known as the K20 field, and which partly overlaps with the GOODS-South area. Their perseverance paid off and they were rewarded by the discovery of four old, massive galaxies with redshifts between 1.6 and 1.9. These galaxies are seen when the Universe was only about 25% of its present age of 13,700 million years. For one of the galaxies, the K20 team benefited also from the database of publicly available spectra in the GOODS-South area taken by the ESO/GOODS team. A new population of galaxies ESO PR Photo 21b/04 ESO PR Photo 21b/04 Averaged Spectrum of Old Galaxies (FORS2/VLT). [Preview - JPEG: 400 x 496 pix - 58k] [Normal - JPEG: 800 x 992 pix - 366k] [Hires - JPEG: 1700 x 2108 pix - 928k] Caption: ESO PR Photo 21b/04 shows the averaged spectrum (blue) of the four newly discovered old massive galaxies compared to a set of template spectra. The bottom compares it with the spectrum of a star having a surface temperature of 7200 degrees (green) and 6800 degrees (red), respectively. The upper graph makes a comparison with synthetic

  4. A PANCHROMATIC CATALOG OF EARLY-TYPE GALAXIES AT INTERMEDIATE REDSHIFT IN THE HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3 EARLY RELEASE SCIENCE FIELD

    SciTech Connect

    Rutkowski, M. J.; Cohen, S. H.; Windhorst, R. A.; Kaviraj, S.; Crockett, R. M.; Silk, J.; O'Connell, R. W.; Hathi, N. P.; McCarthy, P. J.; Ryan, R. E. Jr.; Koekemoer, A.; Bond, H. E.; Yan, H.; Kimble, R. A.; Balick, B.; Calzetti, D.; Disney, M. J.; Dopita, M. A.; Frogel, J. A.; Hall, D. N. B.; and others

    2012-03-01

    In the first of a series of forthcoming publications, we present a panchromatic catalog of 102 visually selected early-type galaxies (ETGs) from observations in the Early Release Science (ERS) program with the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) of the Great Observatories Origins Deep Survey-South (GOODS-S) field. Our ETGs span a large redshift range, 0.35 {approx}< z {approx}< 1.5, with each redshift spectroscopically confirmed by previous published surveys of the ERS field. We combine our measured WFC3 ERS and Advanced Camera for Surveys (ACS) GOODS-S photometry to gain continuous sensitivity from the rest-frame far-UV to near-IR emission for each ETG. The superior spatial resolution of the HST over this panchromatic baseline allows us to classify the ETGs by their small-scale internal structures, as well as their local environment. By fitting stellar population spectral templates to the broadband photometry of the ETGs, we determine that the average masses of the ETGs are comparable to the characteristic stellar mass of massive galaxies, 10{sup 11} < M{sub *}[M{sub Sun }]<10{sup 12}. By transforming the observed photometry into the Galaxy Evolution Explorer FUV and NUV, Johnson V, and Sloan Digital Sky Survey g' and r' bandpasses we identify a noteworthy diversity in the rest-frame UV-optical colors and find the mean rest-frame (FUV-V) = 3.5 and (NUV-V) = 3.3, with 1{sigma} standard deviations {approx_equal}1.0. The blue rest-frame UV-optical colors observed for most of the ETGs are evidence for star formation during the preceding gigayear, but no systems exhibit UV-optical photometry consistent with major recent ({approx}<50 Myr) starbursts. Future publications which address the diversity of stellar populations likely to be present in these ETGs, and the potential mechanisms by which recent star formation episodes are activated, are discussed.

  5. Tracing the Mass-Dependent Star Formation History of Late-Type Galaxies using X-ray Emission: Results from the CHANDRA Deep Fields

    NASA Technical Reports Server (NTRS)

    Lehmer, B.D; Brandt, W.N.; Schneider, D.P.; Steffen, A.T.; Alexander, D.M.; Bell, E.F.; Hornschemeier, A.E.; McIntosh, D.H.; Bauer, F.E.; Gilli, R.; Mainieri, V.; Silverman, J.D.; Tozzi, P.; Wolf, C.

    2008-01-01

    We report on the X-ray evolution over the last approx.9 Gyr of cosmic history (i.e., since z = 1.4) of late-type galaxy populations in the Chandra Deep Field-North and Extended Chandra Deep Field-South (CDF-N and E-CDF-S. respectively; jointly CDFs) survey fields. Our late-type galaxy sample consists of 2568 galaxies. which were identified using rest-frame optical colors and HST morphologies. We utilized X-ray stacking analyses to investigate the X-ray emission from these galaxies, emphasizing the contributions from normal galaxies that are not dominated by active galactic nuclei (AGNs). Over this redshift range, we find significant increases (factors of approx. 5-10) in the X-ray-to-optical mean luminosity ratio (L(sub x)/L(sub B)) and the X-ray-to-stellar-mass mean ratio (L(sub x)/M(sub *)) for galaxy populations selected by L(sub B) and M(sub *), respectively. When analyzing galaxy samples selected via SFR, we find that the mean X-ray-to-SFR ratio (L(sub x)/SFR) is consistent with being constant over the entire redshift range for galaxies with SFR = 1-100 Solar Mass/yr, thus demonstrating that X-ray emission can be used as a robust indicator of star-formation activity out to z approx. 1.4. We find that the star-formation activity (as traced by X-ray luminosity) per unit stellar mass in a given redshift bin increases with decreasing stellar mass over the redshift range z = 0.2-1, which is consistent with previous studies of how star-formation activity depends on stellar mass. Finally, we extend our X-ray analyses to Lyman break galaxies at z approx. 3 and estimate that L(sub x)/L(sub B) at z approx. 3 is similar to its value at z = 1.4.

  6. Reliability of Degree-Day Models to Predict the Development Time of Plutella xylostella (L.) under Field Conditions.

    PubMed

    Marchioro, C A; Krechemer, F S; de Moraes, C P; Foerster, L A

    2015-12-01

    The diamondback moth, Plutella xylostella (L.), is a cosmopolitan pest of brassicaceous crops occurring in regions with highly distinct climate conditions. Several studies have investigated the relationship between temperature and P. xylostella development rate, providing degree-day models for populations from different geographical regions. However, there are no data available to date to demonstrate the suitability of such models to make reliable projections on the development time for this species in field conditions. In the present study, 19 models available in the literature were tested regarding their ability to accurately predict the development time of two cohorts of P. xylostella under field conditions. Only 11 out of the 19 models tested accurately predicted the development time for the first cohort of P. xylostella, but only seven for the second cohort. Five models correctly predicted the development time for both cohorts evaluated. Our data demonstrate that the accuracy of the models available for P. xylostella varies widely and therefore should be used with caution for pest management purposes.

  7. Understanding the two-dimensional ionization structure in luminous infrared galaxies. A near-IR integral field spectroscopy perspective

    NASA Astrophysics Data System (ADS)

    Colina, Luis; Piqueras López, Javier; Arribas, Santiago; Riffel, Rogério; Riffel, Rogemar A.; Rodriguez-Ardila, Alberto; Pastoriza, Miriani; Storchi-Bergmann, Thaisa; Alonso-Herrero, Almudena; Sales, Dinalva

    2015-06-01

    We investigate the two-dimensional excitation structure of the interstellar medium (ISM) in a sample of luminous infrared galaxies (LIRGs) and Seyferts using near-IR integral field spectroscopy. This study extends to the near infrared the well-known optical and mid-IR emission line diagnostics used to classify activity in galaxies. Based on the spatially resolved spectroscopy of prototypes, we identify in the [FeII]1.64 μm/Brγ- H22.12 μm/Brγ plane regions dominated by the different heating sources, i.e. active galactic nuclei (AGNs), young main-sequence massive stars, and evolved stars i.e. supernovae. The ISM in LIRGs occupy a wide region in the near-IR diagnostic plane from -0.6 to +1.5 and from -1.2 to +0.8 (in log units) for the [FeII]/Brγ and H2/Brγ line ratios, respectively. The corresponding median(mode) ratios are +0.18(0.16) and +0.02(-0.04). Seyferts show on average larger values by factors ~2.5 and ~1.4 for the [FeII]/Brγ and H2/Brγ ratios, respectively. New areas and relations in the near-IR diagnostic plane are defined for the compact, high surface brightness regions dominated by AGN, young ionizing stars, and supernovae explosions, respectively. In addition to these high surface brightness regions, the diffuse regions affected by the AGN radiation field cover an area similar to that of Seyferts, but with high values in [FeII]/Brγ that are not as extreme. The extended, non-AGN diffuse regions cover a wide area in the near-IR diagnostic diagram that overlaps that of individual excitation mechanisms (i.e. AGN, young stars, and supernovae), but with its mode value to that of the young star-forming clumps. This indicates that the excitation conditions of the extended, diffuse ISM are likely due to a mixture of the different ionization sources, weighted by their spatial distribution and relative flux contribution. The integrated line ratios in LIRGs show higher excitation conditions i.e. towards AGNs, than those measured by the spatially resolved

  8. AN ALMA SURVEY OF SUBMILLIMETER GALAXIES IN THE EXTENDED CHANDRA DEEP FIELD SOUTH: NEAR-INFRARED MORPHOLOGIES AND STELLAR SIZES

    SciTech Connect

    Chen, Chian-Chou; Smail, Ian; Swinbank, A. M.; Simpson, J. M.; Ma, Cheng-Jiun; Alexander, D. M.; Danielson, A. L. R.; Edge, A. C.; Biggs, A. D.; Ivison, R. J.; Brandt, W. N.; Chapman, S. C.; Coppin, K. E. K.; Dannerbauer, H.; Greve, T. R.; Karim, A.; Menten, Karl M.; Schinnerer, E.; Walter, F.; Wardlow, J. L.; and others

    2015-02-01

    We analyze Hubble Space Telescope WFC3/H {sub 160}-band observations of a sample of 48 Atacama Large Millimeter/submillimeter Array detected submillimeter galaxies (SMGs) in the Extended Chandra Deep Field South field, to study their stellar morphologies and sizes. We detect 79% ± 17% of the SMGs in the H {sub 160}-band imaging with a median sensitivity of 27.8 mag, and most (80%) of the nondetections are SMGs with 870 μm fluxes of S {sub 870} < 3 mJy. With a surface brightness limit of μ {sub H} ∼ 26 mag arcsec{sup –2}, we find that 82% ± 9% of the H {sub 160}-band-detected SMGs at z = 1-3 appear to have disturbed morphologies, meaning they are visually classified as either irregulars or interacting systems, or both. By determining a Sérsic fit to the H {sub 160} surface brightness profiles, we derive a median Sérsic index of n = 1.2 ± 0.3 and a median half-light radius of r{sub e} = 4.4{sub −0.5}{sup +1.1} kpc for our SMGs at z = 1-3. We also find significant displacements between the positions of the H {sub 160} component and 870 μm emission in these systems, suggesting that the dusty starburst regions and less-obscured stellar distribution are not colocated. We find significant differences in the sizes and the Sérsic index between our z = 2-3 SMGs and z ∼ 2 quiescent galaxies, suggesting that a major transformation of the stellar light profile is needed in the quenching processes if SMGs are progenitors of the red-and-dead z ∼ 2 galaxies. Given the short-lived nature of SMGs, we postulate that the majority of the z = 2-3 SMGs with S {sub 870} ≳ 2 mJy are early/mid-stage major mergers.

  9. A GMBCG galaxy cluster catalog of 55,880 rich clusters from SDSS DR7

    SciTech Connect

    Hao, Jiangang; McKay, Timothy A.; Koester, Benjamin P.; Rykoff, Eli S.; Rozo, Eduardo; Annis, James; Wechsler, Risa H.; Evrard, August; Siegel, Seth R.; Becker, Matthew; Busha, Michael; /Fermilab /Michigan U. /Chicago U., Astron. Astrophys. Ctr. /UC, Santa Barbara /KICP, Chicago /KIPAC, Menlo Park /SLAC /Caltech /Brookhaven

    2010-08-01

    We present a large catalog of optically selected galaxy clusters from the application of a new Gaussian Mixture Brightest Cluster Galaxy (GMBCG) algorithm to SDSS Data Release 7 data. The algorithm detects clusters by identifying the red sequence plus Brightest Cluster Galaxy (BCG) feature, which is unique for galaxy clusters and does not exist among field galaxies. Red sequence clustering in color space is detected using an Error Corrected Gaussian Mixture Model. We run GMBCG on 8240 square degrees of photometric data from SDSS DR7 to assemble the largest ever optical galaxy cluster catalog, consisting of over 55,000 rich clusters across the redshift range from 0.1 < z < 0.55. We present Monte Carlo tests of completeness and purity and perform cross-matching with X-ray clusters and with the maxBCG sample at low redshift. These tests indicate high completeness and purity across the full redshift range for clusters with 15 or more members.

  10. A GMBCG Galaxy Cluster Catalog of 55,424 Rich Clusters from SDSS DR7

    SciTech Connect

    Hao, Jiangang; McKay, Timothy A.; Koester, Benjamin P.; Rykoff, Eli S.; Rozo, Eduardo; Annis, James; Wechsler, Risa H.; Evrard, August; Siegel, Seth R.; Becker, Matthew; Busha, Michael; Gerdes, David; Johnston, David E.; Sheldon, Erin; /Brookhaven

    2011-08-22

    We present a large catalog of optically selected galaxy clusters from the application of a new Gaussian Mixture Brightest Cluster Galaxy (GMBCG) algorithm to SDSS Data Release 7 data. The algorithm detects clusters by identifying the red sequence plus Brightest Cluster Galaxy (BCG) feature, which is unique for galaxy clusters and does not exist among field galaxies. Red sequence clustering in color space is detected using an Error Corrected Gaussian Mixture Model. We run GMBCG on 8240 square degrees of photometric data from SDSS DR7 to assemble the largest ever optical galaxy cluster catalog, consisting of over 55,000 rich clusters across the redshift range from 0.1 < z < 0.55. We present Monte Carlo tests of completeness and purity and perform cross-matching with X-ray clusters and with the maxBCG sample at low redshift. These tests indicate high completeness and purity across the full redshift range for clusters with 15 or more members.

  11. NEAR-INFRARED IMAGING OF A z = 6.42 QUASAR HOST GALAXY WITH THE HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3

    SciTech Connect

    Mechtley, M.; Windhorst, R. A.; Cohen, S. H.; Jansen, R. A.; Scannapieco, E.; Ryan, R. E.; Koekemoer, A. M.; Schneider, G.; Fan, X.; Hathi, N. P.; Keel, W. C.; Roettgering, H.; Schneider, D. P.; Strauss, M. A.; Yan, H. J.

    2012-09-10

    We report on deep near-infrared F125W (J) and F160W (H) Hubble Space Telescope Wide Field Camera 3 images of the z = 6.42 quasar J1148+5251 to attempt to detect rest-frame near-ultraviolet emission from the host galaxy. These observations included contemporaneous observations of a nearby star of similar near-infrared colors to measure temporal variations in the telescope and instrument point-spread function (PSF). We subtract the quasar point source using both this direct PSF and a model PSF. Using direct subtraction, we measure an upper limit for the quasar host galaxy of m{sub J} > 22.8 and m{sub H} > 23.0 AB mag (2 {sigma}). After subtracting our best model PSF, we measure a limiting surface brightness from 0.''3 to 0.''5 radius of {mu}{sub J} > 23.5 and {mu}{sub H} > 23.7 AB mag arcsec{sup -2} (2 {sigma}). We test the ability of the model subtraction method to recover the host galaxy flux by simulating host galaxies with varying integrated magnitude, effective radius, and Sersic index, and conducting the same analysis. These models indicate that the surface brightness limit ({mu}{sub J} > 23.5 AB mag arcsec{sup -2}) corresponds to an integrated upper limit of m{sub J} > 22-23 AB mag, consistent with the direct subtraction method. Combined with existing far-infrared observations, this gives an infrared excess log (IRX) > 1.0 and corresponding ultraviolet spectral slope {beta} > -1.2 {+-} 0.2. These values match those of most local luminous infrared galaxies, but are redder than those of almost all local star-forming galaxies and z {approx_equal} 6 Lyman break galaxies.

  12. Early Science with the Large Millimeter Telescope: Detection of Dust Emission in Multiple Images of a Normal Galaxy at z > 4 Lensed by a Frontier Fields Cluster

    NASA Astrophysics Data System (ADS)

    Pope, Alexandra; Montaña, Alfredo; Battisti, Andrew; Limousin, Marceau; Marchesini, Danilo; Wilson, Grant W.; Alberts, Stacey; Aretxaga, Itziar; Avila-Reese, Vladimir; Ramón Bermejo-Climent, José; Brammer, Gabriel; Bravo-Alfaro, Hector; Calzetti, Daniela; Chary, Ranga-Ram; Cybulski, Ryan; Giavalisco, Mauro; Hughes, David; Kado-Fong, Erin; Keller, Erica; Kirkpatrick, Allison; Labbe, Ivo; Lange-Vagle, Daniel; Lowenthal, James; Murphy, Eric; Oesch, Pascal; Rosa Gonzalez, Daniel; Sánchez-Argüelles, David; Shipley, Heath; Stefanon, Mauro; Vega, Olga; Whitaker, Katherine; Williams, Christina C.; Yun, Min; Zavala, Jorge A.; Zeballos, Milagros

    2017-04-01

    We directly detect dust emission in an optically detected, multiply imaged galaxy lensed by the Frontier Fields cluster MACSJ0717.5+3745. We detect two images of the same galaxy at 1.1 mm with the AzTEC camera on the Large Millimeter Telescope leaving no ambiguity in the counterpart identification. This galaxy, MACS0717_Az9, is at z > 4 and the strong lensing model (μ = 7.5) allows us to calculate an intrinsic IR luminosity of 9.7 × 1010 L ⊙ and an obscured star formation rate of 14.6 ± 4.5 M ⊙ yr‑1. The unobscured star formation rate from the UV is only 4.1 ± 0.3 M ⊙ yr‑1, which means the total star formation rate (18.7 ± 4.5 M ⊙ yr‑1) is dominated (75%–80%) by the obscured component. With an intrinsic stellar mass of only 6.9 × 109 M ⊙, MACS0717_Az9 is one of only a handful of z > 4 galaxies at these lower masses that is detected in dust emission. This galaxy lies close to the estimated star formation sequence at this epoch. However, it does not lie on the dust obscuration relation (IRX-β) for local starburst galaxies and is instead consistent with the Small Magellanic Cloud attenuation law. This remarkable lower mass galaxy, showing signs of both low metallicity and high dust content, may challenge our picture of dust production in the early universe.

  13. Galaxy Environment in the 3D-HST Fields: Witnessing the Onset of Satellite Quenching at z ∼ 1–2

    NASA Astrophysics Data System (ADS)

    Fossati, M.; Wilman, D. J.; Mendel, J. T.; Saglia, R. P.; Galametz, A.; Beifiori, A.; Bender, R.; Chan, J. C. C.; Fabricius, M.; Bandara, K.; Brammer, G. B.; Davies, R.; Förster Schreiber, N. M.; Genzel, R.; Hartley, W.; Kulkarni, S. K.; Lang, P.; Momcheva, I. G.; Nelson, E. J.; Skelton, R.; Tacconi, L. J.; Tadaki, K.; Übler, H.; van Dokkum, P. G.; Wisnioski, E.; Whitaker, K. E.; Wuyts, E.; Wuyts, S.

    2017-02-01

    We make publicly available a catalog of calibrated environmental measures for galaxies in the five 3D-Hubble Space Telescope (HST)/CANDELS deep fields. Leveraging the spectroscopic and grism redshifts from the 3D-HST survey, multiwavelength photometry from CANDELS, and wider field public data for edge corrections, we derive densities in fixed apertures to characterize the environment of galaxies brighter than {{JH}}140< 24 mag in the redshift range 0.5< z< 3.0. By linking observed galaxies to a mock sample, selected to reproduce the 3D-HST sample selection and redshift accuracy, each 3D-HST galaxy is assigned a probability density function of the host halo mass, and a probability that it is a central or a satellite galaxy. The same procedure is applied to a z = 0 sample selected from Sloan Digital Sky Survey. We compute the fraction of passive central and satellite galaxies as a function of stellar and halo mass, and redshift, and then derive the fraction of galaxies that were quenched by environment specific processes. Using the mock sample, we estimate that the timescale for satellite quenching is {t}{quench}∼ 2{--}5 {Gyr}; it is longer at lower stellar mass or lower redshift, but remarkably independent of halo mass. This indicates that, in the range of environments commonly found within the 3D-HST sample ({M}h≲ {10}14 {M}ȯ ), satellites are quenched by exhaustion of their gas reservoir in the absence of cosmological accretion. We find that the quenching times can be separated into a delay phase, during which satellite galaxies behave similarly to centrals at fixed stellar mass, and a phase where the star formation rate drops rapidly ({τ }f∼ 0.4{--}0.6 Gyr), as shown previously at z = 0. We conclude that this scenario requires satellite galaxies to retain a large reservoir of multi-phase gas upon accretion, even at high redshift, and that this gas sustains star formation for the long quenching times observed.

  14. THE CLUSTER AND FIELD GALAXY ACTIVE GALACTIC NUCLEUS FRACTION AT z = 1-1.5: EVIDENCE FOR A REVERSAL OF THE LOCAL ANTICORRELATION BETWEEN ENVIRONMENT AND AGN FRACTION

    SciTech Connect

    Martini, Paul; Miller, E. D.; Bautz, M.; Brodwin, M.; Stanford, S. A.; Gonzalez, Anthony H.; Hickox, R. C.; Stern, D.; Eisenhardt, P. R.; Galametz, A.; Norman, D.; Dey, A.; Jannuzi, B. T.; Murray, S.; Jones, C.; Brown, M. J. I.

    2013-05-01

    The fraction of cluster galaxies that host luminous active galactic nuclei (AGNs) is an important probe of AGN fueling processes, the cold interstellar medium at the centers of galaxies, and how tightly black holes and galaxies co-evolve. We present a new measurement of the AGN fraction in a sample of 13 clusters of galaxies (M {>=} 10{sup 14} M{sub Sun }) at 1 < z < 1.5 selected from the Spitzer/IRAC Shallow Cluster Survey, as well as the field fraction in the immediate vicinity of these clusters, and combine these data with measurements from the literature to quantify the relative evolution of cluster and field AGN from the present to z {approx} 3. We estimate that the cluster AGN fraction at 1 < z < 1.5 is f{sub A} = 3.0{sup +2.4}{sub -1.4}% for AGNs with a rest-frame, hard X-ray luminosity greater than L{sub X,{sub H}} {>=} 10{sup 44} erg s{sup -1}. This fraction is measured relative to all cluster galaxies more luminous than M{sup *}{sub 3.6}(z) + 1, where M{sup *}{sub 3.6}(z) is the absolute magnitude of the break in the galaxy luminosity function at the cluster redshift in the IRAC 3.6 {mu}m bandpass. The cluster AGN fraction is 30 times greater than the 3{sigma} upper limit on the value for AGNs of similar luminosity at z {approx} 0.25, as well as more than an order of magnitude greater than the AGN fraction at z {approx} 0.75. AGNs with L{sub X,{sub H}} {>=} 10{sup 43} erg s{sup -1} exhibit similarly pronounced evolution with redshift. In contrast to the local universe, where the luminous AGN fraction is higher in the field than in clusters, the X-ray and MIR-selected AGN fractions in the field and clusters are consistent at 1 < z < 1.5. This is evidence that the cluster AGN population has evolved more rapidly than the field population from z {approx} 1.5 to the present. This environment-dependent AGN evolution mimics the more rapid evolution of star-forming galaxies in clusters relative to the field.

  15. COSMOS Galaxy Morphology Pilot Project

    NASA Astrophysics Data System (ADS)

    Prescott, M.; Impey, C.; Scoville, N.; COSMOS Collaboration

    2004-05-01

    The COSMOS (Cosmic Evolution Survey) project will be the largest HST imaging survey ever, covering two square degrees with the ACS instrument. The survey is designed to sample the full range of cosmic structures up to scales of 100 Mpc, map the evolution of galaxy morphology, galaxy merging, and star formation out to z of 2, use weak lensing to reconstruct the dark matter distribution out to z of 1, and study the joint evolution of galaxies and black holes via the AGN population. Extensive multi-wavelength observations of the field have also been committed for X-ray, UV, FIR, NIR, millimeter, and radio wavelengths. We present results from a pilot project using only the central 10.4 by 10.4 arcmin portion of the field. The goal is to understand the reliability of galaxy morphological information derived from GALFIT and other methods. Morphology has been derived from both g and i ACS images in terms of bulge/disk ratio and Sersic index. These measures have been augmented by CAS and Gini coefficients as a way of identifying galaxies that are disturbed or interacting, or where the axisymmetric assumptions of GALFIT are not warranted. We present results on how morphology correlates with global quantities such as luminosity, scale length, and mean surface brightness as well as with various broad band color combinations, which serve as proxies for overall stellar populations and ages. Using photo-z's we study all these relationships in terms of cosmic evolution. This pilot project will be used to optimize analysis strategies for the much larger amount of data in the overall COSMOS project. Funding for this work was provided by a NSF Graduate Fellowship and a NASA/HST GO Grant.

  16. The very wide-field gzK galaxy survey - I. Details of the clustering properties of star-forming galaxies at z ˜ 2

    NASA Astrophysics Data System (ADS)

    Ishikawa, Shogo; Kashikawa, Nobunari; Toshikawa, Jun; Onoue, Masafusa

    2015-11-01

    We present the results of clustering analysis on z ˜ 2 star-forming galaxies. By combining our data with data from publicly available archives, we collect g-, zB/z- and K-band imaging data over 5.2 deg2, which represents the largest area BzK/gzK survey. We apply colour corrections to translate our filter set to those used in the original BzK selection for the gzK selection. Because of the wide survey area, we obtain a sample of 41 112 star-forming gzK galaxies at z ˜ 2 (sgzK galaxies) down to KAB < 23.0, and we determine high-quality two-point angular correlation functions (ACFs). Our ACFs show an apparent excess from power-law behaviour at small angular scale (θ ≲ 0.01°), which corresponds to the virial radius of a dark halo at z ˜ 2 with a mass of ˜1013 M⊙. We find that the correlation lengths are consistent with the previous estimates over the whole magnitude range; however, our results are evaluated with a smaller margin of error than that in previous studies. The large amount of data enables us to determine ACFs differentially depending on the luminosity of the subset of the data. The mean halo mass of faint sgzK galaxies (22.0 < K ≤ 23.0) was found to be < M_h > = (1.32^{+0.09}_{-0.12}) × 10^{12} h^{-1} M⊙, whereas bright sgzK galaxies (18.0 ≤ K ≤ 21.0) were found to reside in dark haloes with a mass of < M_h > = (3.26^{+1.23}_{-1.02}) × 10^{13} h^{-1} M⊙.

  17. THE BLACK HOLE MASSES AND STAR FORMATION RATES OF z>1 DUST OBSCURED GALAXIES: RESULTS FROM KECK OSIRIS INTEGRAL FIELD SPECTROSCOPY

    SciTech Connect

    Melbourne, J.; Soifer, B. T.; Matthews, K. E-mail: bts@ipac.caltech.edu

    2011-04-15

    We have obtained high spatial resolution Keck OSIRIS integral field spectroscopy of four z {approx} 1.5 ultra-luminous infrared galaxies that exhibit broad H{alpha} emission lines indicative of strong active galactic nucleus (AGN) activity. The observations were made with the Keck laser guide star adaptive optics system giving a spatial resolution of 0.''1 or <1 kpc at these redshifts. These high spatial resolution observations help to spatially separate the extended narrow-line regions-possibly powered by star formation-from the nuclear regions, which may be powered by both star formation and AGN activity. There is no evidence for extended, rotating gas disks in these four galaxies. Assuming dust correction factors as high as A(H{alpha}) = 4.8 mag, the observations suggest lower limits on the black hole masses of (1-9) x 10{sup 8} M{sub sun} and star formation rates <100 M{sub sun} yr{sup -1}. The black hole masses and star formation rates of the sample galaxies appear low in comparison to other high-z galaxies with similar host luminosities. We explore possible explanations for these observations, including host galaxy fading, black hole growth, and the shut down of star formation.

  18. GHASP: an Hα kinematic survey of spiral and irregular galaxies - III. 15 new velocity fields and study of 46 rotation curves

    NASA Astrophysics Data System (ADS)

    Garrido, O.; Marcelin, M.; Amram, P.

    2004-03-01

    We present Fabry-Pérot observations obtained in the frame of the GHASP survey (Gassendi Hα survey of SPirals). We have derived the Hα maps, the velocity fields and the rotation curves for a set of 15 galaxies. The data presented in this paper are combined with the data published in our two previous papers in order to make a preliminary analysis of the rotation curves obtained for 46 galaxies. We check the consistency of our data with the Tully-Fisher relationship and conclude that our Hα rotation curves reach the maximum velocity in most of the cases, even with solid-body rotating galaxies. We find that our rotation curves, on average, almost reach the isophotal radius R25. We confirm the trend, already mentioned by Rubin, Waterman & Kenney and Márquez et al., that the maximum extension of the Hα rotation curves increases with the type of the spiral galaxy, up to t~ 7-8 and we find that it decreases for magellanic and irregular galaxies. We also confirm the trend seen by Márquez et al. that later types tend to have lower values of the internal slope of the rotation curve, in agreement with Rubin et al.

  19. CLASH-VLT: spectroscopic confirmation of a z = 6.11 quintuply lensed galaxy in the Frontier Fields cluster RXC J2248.7-4431

    NASA Astrophysics Data System (ADS)

    Balestra, I.; Vanzella, E.; Rosati, P.; Monna, A.; Grillo, C.; Nonino, M.; Mercurio, A.; Biviano, A.; Bradley, L.; Coe, D.; Fritz, A.; Postman, M.; Seitz, S.; Scodeggio, M.; Tozzi, P.; Zheng, W.; Ziegler, B.; Zitrin, A.; Annunziatella, M.; Bartelmann, M.; Benitez, N.; Broadhurst, T.; Bouwens, R.; Czoske, O.; Donahue, M.; Ford, H.; Girardi, M.; Infante, L.; Jouvel, S.; Kelson, D.; Koekemoer, A.; Kuchner, U.; Lemze, D.; Lombardi, M.; Maier, C.; Medezinski, E.; Melchior, P.; Meneghetti, M.; Merten, J.; Molino, A.; Moustakas, L.; Presotto, V.; Smit, R.; Umetsu, K.

    2013-11-01

    We present VIsible Multi-Object Spectrograph (VIMOS) observations of a galaxy quintuply imaged by the Frontier Fields galaxy cluster RXC J2248.7-4431 . This sub-, high- galaxy has been recently discovered by Monna et al. (2013) using dropout techniques with the 16-band HST photometry acquired as part of the Cluster Lensing And Supernova survey with Hubble (CLASH). Obtained as part of the CLASH-VLT survey, the VIMOS medium-resolution spectra of this source show a very faint continuum between 8700 Å and 9300 Å and a prominent emission line at 8643 , which can be readily identified with Lyman- at . The emission line exhibits an asymmetric profile, with a more pronounced red wing. The rest-frame equivalent width of the line is , relatively well constrained thanks to the detection of the UV continuum, which is rarely achieved for a sub- galaxy at this redshift. After correcting formagnification, the star formation rate (SFR) estimated from the Ly line is SFRLyyr and that estimated from the UV data is SFRUVyr. We estimate that the effective radius of the source is kpc, which implies a star formation surface mass density yrkpc and, using the Kennicutt-Schmidt relation, a gas surface mass density pc. Our results support the idea that this magnified, distant galaxy is a young and compact object with luminosity at , when the Universe was just 1 Gyr old, with a similar amount of mass in gas and stars. In the spirit of the Frontier Fields initiative, we also publish the redshifts of several multiply imaged sources and other background objects, which will help improving the strong-lensing model of this galaxy cluster. This work is based on data collected at ESO VLT (prog.ID 186.A-0798) and at NASA HST.

  20. The SAMI Galaxy Survey: spatially resolving the environmental quenching of star formation in GAMA galaxies

    NASA Astrophysics Data System (ADS)

    Schaefer, A. L.; Croom, S. M.; Allen, J. T.; Brough, S.; Medling, A. M.; Ho, I.-T.; Scott, N.; Richards, S. N.; Pracy, M. B.; Gunawardhana, M. L. P.; Norberg, P.; Alpaslan, M.; Bauer, A. E.; Bekki, K.; Bland-Hawthorn, J.; Bloom, J. V.; Bryant, J. J.; Couch, W. J.; Driver, S. P.; Fogarty, L. M. R.; Foster, C.; Goldstein, G.; Green, A. W.; Hopkins, A. M.; Konstantopoulos, I. S.; Lawrence, J. S.; López-Sánchez, A. R.; Lorente, N. P. F.; Owers, M. S.; Sharp, R.; Sweet, S. M.; Taylor, E. N.; van de Sande, J.; Walcher, C. J.; Wong, O. I.

    2017-01-01

    We use data from the Sydney-AAO Multi-Object Integral Field Spectrograph Galaxy Survey and the Galaxy And Mass Assembly (GAMA) survey to investigate the spatially resolved signatures of the environmental quenching of star formation in galaxies. Using dust-corrected measurements of the distribution of Hα emission, we measure the radial profiles of star formation in a sample of 201 star-forming galaxies covering three orders of magnitude in stellar mass (M*; 108.1-1010.95 M⊙) and in fifth nearest neighbour local environment density (Σ5; 10-1.3-102.1 Mpc-2). We show that star formation rate gradients in galaxies are steeper in dense (log10(Σ5/Mpc2) > 0.5) environments by 0.58 ± 0.29 dex re^{-1} in galaxies with stellar masses in the range 10^{10} < M_{*}/M_{⊙} < 10^{11} and that this steepening is accompanied by a reduction in the integrated star formation rate. However, for any given stellar mass or environment density, the star formation morphology of galaxies shows large scatter. We also measure the degree to which the star formation is centrally concentrated using the unitless scale-radius ratio (r50,Hα/r50,cont), which compares the extent of ongoing star formation to previous star formation. With this metric, we find that the fraction of galaxies with centrally concentrated star formation increases with environment density, from ˜5 ± 4 per cent in low-density environments (log10(Σ5/Mpc2) < 0.0) to 30 ± 15 per cent in the highest density environments (log10(Σ5/Mpc2) > 1.0). These lines of evidence strongly suggest that with increasing local environment density, the star formation in galaxies is suppressed, and that this starts in their outskirts such that quenching occurs in an outside-in fashion in dense environments and is not instantaneous.

  1. Mass dependent galaxy transformation mechanisms in the complex environment of SuperGroup Abell 1882

    NASA Astrophysics Data System (ADS)

    Sengupta, Aparajita

    even in the far outskirts. However, unlike what we observe in this system, ideally would we expect the dwarf galaxies with their shallow potentials to be more vulnerable than more massive galaxies, and hence be quenched earlier. We propose harassment and/or ram-pressure stripping as the mechanism that might lead to the quenched galaxies near or inside the high density, high velocity dispersion region in and near the groups; and mergers as the mechanism for the intermediate mass quenched galaxies at the low density, low velocity dispersion outskirts. We also identify a starburst population preferentially occurring within the filaments, at least a subset of which must be progenitors of the quenched galaxies at the core of Abell 1882. This also indicates a higher degree of preprocessing within the filaments as compared to that of the field.

  2. In the neighbourhood of Tame Monsters. A study of galaxies near low-redshift quasars

    NASA Astrophysics Data System (ADS)

    Villarroel, B.

    2012-06-01

    Context. The impact of quasars on their galaxy neighbours is an important factor in the understanding of galaxy evolution models. Aims: The aim of this work is to characterize the intermediate-scale environments of quasars at low redshift (z < 0.2) with the most statistically complete sample to date using the seventh data release of the Sloan Digital Sky Survey. Methods: We have used 305 quasar-galaxy associations with spectroscopically measured redshifts within the projected distance range of 350 kpc, to calculate how surface densities of galaxies, colors, degree of ionization, dust extinction and star-formation rates change as a function of the distance to our quasar sample. We also identify the companion active galactic nuclei from our main galaxy sample and calculate surface density for different galaxy types. We have done this in three different quasar-galaxy redshift difference ranges |Δz| < 0.001, 0.006, and 0.012. Results: Our results suggest that there is a significant increase of the surface density of blue neighbours around our low-redshift quasar sample that is steeper than around non-active field galaxies of the same luminosity and redshift range. This may indicate that quasar formation is accomplished via a merging scenario. No significant changes in star formation rate, dust extinction, degree of ionization or color as a function of distance from the quasars was observed. We could not observe any direct effects from quasars on the their companion galaxies.

  3. Observations and Models of Galaxy Assembly Bias

    NASA Astrophysics Data System (ADS)

    Campbell, Duncan A.

    2017-01-01

    The assembly history of dark matter haloes imparts various correlations between a halo’s physical properties and its large scale environment, i.e. assembly bias. It is common for models of the galaxy-halo connection to assume that galaxy properties are only a function of halo mass, implicitly ignoring how assembly bias may affect galaxies. Recently, programs to model and constrain the degree to which galaxy properties are influenced by assembly bias have been undertaken; however, the extent and character of galaxy assembly bias remains a mystery. Nevertheless, characterizing and modeling galaxy assembly bias is an important step in understanding galaxy evolution and limiting any systematic effects assembly bias may pose in cosmological measurements using galaxy surveys.I will present work on modeling and constraining the effect of assembly bias in two galaxy properties: stellar mass and star-formation rate. Conditional abundance matching allows for these galaxy properties to be tied to halo formation history to a variable degree, making studies of the relative strength of assembly bias possible. Galaxy-galaxy clustering and galactic conformity, the degree to which galaxy color is correlated between neighbors, are sensitive observational measures of galaxy assembly bias. I will show how these measurements can be used to constrain galaxy assembly bias and the peril of ignoring it.

  4. The MOSFIRE Deep Evolution Field (MOSDEF) Survey: Rest-frame Optical Spectroscopy for ~1500 H-selected Galaxies at 1.37 < z < 3.8

    NASA Astrophysics Data System (ADS)

    Kriek, Mariska; Shapley, Alice E.; Reddy, Naveen A.; Siana, Brian; Coil, Alison L.; Mobasher, Bahram; Freeman, William R.; de Groot, Laura; Price, Sedona H.; Sanders, Ryan; Shivaei, Irene; Brammer, Gabriel B.; Momcheva, Ivelina G.; Skelton, Rosalind E.; van Dokkum, Pieter G.; Whitaker, Katherine E.; Aird, James; Azadi, Mojegan; Kassis, Marc; Bullock, James S.; Conroy, Charlie; Davé, Romeel; Kereš, Dušan; Krumholz, Mark

    2015-06-01

    In this paper we present the MOSFIRE Deep Evolution Field (MOSDEF) survey. The MOSDEF survey aims to obtain moderate-resolution (R = 3000-3650) rest-frame optical spectra (˜3700-7000 Å) for ˜1500 galaxies at 1.37≤ z≤ 3.80 in three well-studied CANDELS fields: AEGIS, COSMOS, and GOODS-N. Targets are selected in three redshift intervals: 1.37≤ z≤ 1.70, 2.09≤ z≤ 2.61, and 2.95≤ z≤ 3.80, down to fixed {H}{AB} (F160W) magnitudes of 24.0, 24.5, and 25.0, respectively, using the photometric and spectroscopic catalogs from the 3D-HST survey. We target both strong nebular emission lines (e.g., [O ii] λ λ 3727,3730, Hβ, [O iii] λ λ 4960,5008, Hα, [N ii] λ λ 6550,6585, and [S ii] λ λ 6718,6733) and stellar continuum and absorption features (e.g., Balmer lines, Ca-ii H and K, Mgb, 4000 Å break). Here we present an overview of our survey, the observational strategy, the data reduction and analysis, and the sample characteristics based on spectra obtained during the first 24 nights. To date, we have completed 21 masks, obtaining spectra for 591 galaxies. For ˜80% of the targets we derive a robust redshift from either emission or absorption lines. In addition, we confirm 55 additional galaxies, which were serendipitously detected. The MOSDEF galaxy sample includes unobscured star-forming, dusty star-forming, and quiescent galaxies and spans a wide range in stellar mass (˜ {10}9-{10}11.5 {M}⊙ ) and star formation rate (˜ {10}0-{10}3 {M}⊙ {{yr}}-1). The spectroscopically confirmed sample is roughly representative of an H-band limited galaxy sample at these redshifts. With its large sample size, broad diversity in galaxy properties, and wealth of available ancillary data, MOSDEF will transform our understanding of the stellar, gaseous, metal, dust, and black hole content of galaxies during the time when the universe was most active.

  5. The Kilo-Degree Survey

    NASA Astrophysics Data System (ADS)

    de Jong, J. T. A.; Kuijken, K.; Applegate, D.; Begeman, K.; Belikov, A.; Blake, C.; Bout, J.; Boxhoorn, D.; Buddelmeijer, H.; Buddendiek, A.; Cacciato, M.; Capaccioli, M.; Choi, A.; Cordes, O.; Covone, G.; Dall'Ora, M.; Edge, A.; Erben, T.; Franse, J.; Getman, F.; Grado, A.; Harnois-Deraps, J.; Helmich, E.; Herbonnet, R.; Heymans, C.; Hildebrandt, H.; Hoekstra, H.; Huang, Z.; Irisarri, N.; Joachimi, B.; Köhlinger, F.; Kitching, T.; La Barbera, F.; Lacerda, P.; McFarland, J.; Miller, L.; Nakajima, R.; Napolitano, N. R.; Paolillo, M.; Peacock, J.; Pila-Diez, B.; Puddu, E.; Radovich, M.; Rifatto, A.; Schneider, P.; Schrabback, T.; Sifon, C.; Sikkema, G.; Simon, P.; Sutherland, W.; Tudorica, A.; Valentijn, E.; van der Burg, R.; van Uitert, E.; van Waerbeke, L.; Velander, M.; Kleijn, G. V.; Viola, M.; Vriend, W.-J.

    2013-12-01

    The Kilo-Degree Survey (KiDS), a 1500-square-degree optical imaging survey with the recently commissioned OmegaCAM wide-field imager on the VLT Survey Telescope (VST), is described. KiDS will image two fields in u-,g-,r- and i-bands and, together with the VIKING survey, produce nine-band (u- to K-band) coverage over two fields. For the foreseeable future the KiDS/VIKING combination of superb image quality with wide wavelength coverage will be unique for surveys of its size and depth. The survey has been designed to tackle some of the most fundamental questions of cosmology and galaxy formation of today. The main science driver is mapping the dark matter distribution in the Universe and putting constraints on the expansion of the Universe and the equation of state of dark energy, all through weak gravitational lensing. However, the deep and wide imaging data will facilitate a wide variety of science cases.

  6. Magnetism in galaxies - Observational overview and next generation radio telescopes

    NASA Astrophysics Data System (ADS)

    Beck, Rainer

    2011-06-01

    The strength and structure of cosmic magnetic fields is best studied by observations of radio continuum emission, its polarization and its Faraday rotation. Fields with a well-ordered spiral structure exist in many types of galaxies. Total field strengths in spiral arms and bars are 20-30 μG and dynamically important. Strong fields in central regions can drive gas inflows towards an active nucleus. The strongest regular fields (10-15 μG) are found in interarm regions, sometimes forming ``magnetic spiral arms'' between the optical arms. The typical degree of polarization is a few % in spiral arms, but high (up to 50%) in interarm regions. The detailed field structures suggest interaction with gas flows. Faraday rotation measures of the polarization vectors reveals large-scale patterns in several spiral galaxies which are regarded as signatures of large-scale (coherent) fields generated by dynamos. - Polarization observations with the forthcoming large radio telescopes will open a new era in the observation of magnetic fields and should help to understand their origin. Low-frequency radio synchrotron emission traces low-energy cosmic ray electrons which can propagate further away from their origin. LOFAR (30-240 MHz) will allow us to map the structure of weak magnetic fields in the outer regions and halos of galaxies, in galaxy clusters and in the Milky Way. Polarization at higher frequencies (1-10 GHz), to be observed with the EVLA, MeerKAT, APERTIF and the SKA, will trace magnetic fields in the disks and central regions of galaxies in unprecedented detail. All-sky surveys of Faraday rotation measures towards a dense grid of polarized background sources with ASKAP and the SKA are dedicated to measure magnetic fields in distant intervening galaxies and clusters, and will be used to model the overall structure and strength of the magnetic field in the Milky Way.

  7. ATCA characterisation of first BETA fields

    NASA Astrophysics Data System (ADS)

    Feain, Ilana; Johnston, Simon

    2011-04-01

    To fully characterise 2 30 square degree fields that will become the first science fields observed on BETA and at the same time to extract new science from the ATCA observations. The fields are centred on the Circinus galaxy and the Fornax cluster (and including Fornax A)

  8. UV-DROPOUT GALAXIES IN THE GOODS-SOUTH FIELD FROM WFC3 EARLY RELEASE SCIENCE OBSERVATIONS

    SciTech Connect

    Hathi, N. P.; Ryan, R. E.; Cohen, S. H.; Windhorst, R. A.; Rutkowski, M. J.; Yan, H.; McCarthy, P. J.; O'Connell, R. W.; Koekemoer, A. M.; Bond, H. E.; Balick, B.; Calzetti, D.; Disney, M. J.; Dopita, M. A.; Frogel, Jay A.; Hall, D. N. B.; Holtzman, J. A.; Kimble, R. A.; Paresce, F.; Saha, A.

    2010-09-10

    We combine new high sensitivity ultraviolet (UV) imaging from the Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) with existing deep HST/Advanced Camera for Surveys optical images from the Great Observatories Origins Deep Survey (GOODS) program to identify UV-dropouts, which are Lyman break galaxy (LBG) candidates at z {approx_equal} 1-3. These new HST/WFC3 observations were taken over 50 arcmin{sup 2} in the GOODS-South field as a part of the Early Release Science program. The uniqueness of these new UV data is that they are observed in three UV/optical (WFC3 UVIS) channel filters (F225W, F275W, and F336W), which allows us to identify three different sets of UV-dropout samples. We apply Lyman break dropout selection criteria to identify F225W-, F275W-, and F336W-dropouts, which are z {approx_equal} 1.7, 2.1, and 2.7 LBG candidates, respectively. We use multi-wavelength imaging combined with available spectroscopic and photometric redshifts to carefully access the validity of our UV-dropout candidates. Our results are as follows: (1) these WFC3 UVIS filters are very reliable in selecting LBGs with z {approx_equal} 2.0, which helps to reduce the gap between the well-studied z {approx}> 3 and z {approx} 0 regimes; (2) the combined number counts with average redshift z {approx_equal} 2.2 agree very well with the observed change in the surface densities as a function of redshift when compared with the higher redshift LBG samples; and (3) the best-fit Schechter function parameters from the rest-frame UV luminosity functions at three different redshifts fit very well with the evolutionary trend of the characteristic absolute magnitude, M*, and the faint-end slope, {alpha}, as a function of redshift. This is the first study to illustrate the usefulness of the WFC3 UVIS channel observations to select z {approx}< 3 LBGs. The addition of the new WFC3 on the HST has made it possible to uniformly select LBGs from z {approx_equal} 1 to z {approx_equal} 9 and

  9. A SLUGGS and Gemini/GMOS combined study of the elliptical galaxy M60: wide-field photometry and kinematics of the globular cluster system

    NASA Astrophysics Data System (ADS)

    Pota, Vincenzo; Brodie, Jean P.; Bridges, Terry; Strader, Jay; Romanowsky, Aaron J.; Villaume, Alexa; Jennings, Zach; Faifer, Favio R.; Pastorello, Nicola; Forbes, Duncan A.; Campbell, Ainsley; Usher, Christopher; Foster, Caroline; Spitler, Lee R.; Caldwell, Nelson; Forte, Juan C.; Norris, Mark A.; Zepf, Stephen E.; Beasley, Michael A.; Gebhardt, Karl; Hanes, David A.; Sharples, Ray M.; Arnold, Jacob A.

    2015-06-01

    We present new wide-field photometry and spectroscopy of the globular clusters (GCs) around NGC 4649 (M60), the third brightest galaxy in the Virgo cluster. Imaging of NGC 4649 was assembled from a recently obtained Hubble Space Telescope/Advanced Camera for Surveys mosaic, and new Subaru/Suprime-Cam and archival Canada-France-Hawaii Telescope/MegaCam data. About 1200 sources were followed up spectroscopically using combined observations from three multi-object spectrographs: Keck/Deep Imaging Multi-Object Spectrograph, Gemini/Gemini Multi-Object Spectrograph and Multiple Mirror Telescope/Hectospec. We confirm 431 unique GCs belonging to NGC 4649, a factor of 3.5 larger than previous data sets and with a factor of 3 improvement in velocity precision. We confirm significant GC colour bimodality and find that the red GCs are more centrally concentrated, while the blue GCs are more spatially extended. We infer negative GC colour gradients in the innermost 20 kpc and flat gradients out to large radii. Rotation is detected along the galaxy major axis for all tracers: blue GCs, red GCs, galaxy stars and planetary nebulae. We compare the observed properties of NGC 4649 with galaxy formation models. We find that formation via a major merger between two gas-poor galaxies, followed by satellite accretion, can consistently reproduce the observations of NGC 4649 at different radii. We find no strong evidence to support an interaction between NGC 4649 and the neighbouring spiral galaxy NGC 4647. We identify interesting GC kinematic features in our data, such as counter-rotating subgroups and bumpy kinematic profiles, which encode more clues about the formation history of NGC 4649.

  10. Morphologically Disturbed Massive Galaxies: Nature and Evolution During 0.6 < z < 2.5 in the CANDELS UDS and GOODS-S Fields

    NASA Astrophysics Data System (ADS)

    Cook, Joshua S.; McIntosh, Daniel H.; Rizer, Zachary; Kartaltepe, Jeyhan S.; Koekemoer, Anton M.; Lotz, Jennifer; Conselice, Christopher; Hopkins, Philip F.; Wuyts, Stijn; Peth, Michael; Barro, Guillermo; Candels Collaboration

    2015-01-01

    Merging is predicted to be an important process in the early and turbulent assembly of massive galaxies. These violent encounters heavily impact galaxy morphology and structure. As such, the evolution of morphologically disturbed systems may help constrain the relative importance of merging, the answer to which is largely debated especially at higher redshifts. Disagreements between studies however, may be attributed to the various methods used to identify merging galaxies such as visual or quantitative classifications based on different rest-frame wavelengths. Using a new comprehensive catalog of visual rest-frame optical classifications based on HST/WFC3+ACS imaging from the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS), we compare the nature and evolution of merging and highly disturbed galaxy subsamples within the UDS and GOODS-S fields. We limit our sample for completeness to high-mass objects (Mstar > 1e10 Msun) with redshifts between 0.6 < z < 2.5. Most disturbed galaxies are star-forming and two-thirds have masses under 3e10 Msun. We note that one-third appear to be neither interacting nor merging, rather they are isolated and visually disk-like. Under the assumption that many disturbed or unusual morphologies are related to merging, we compare visually-selected subsamples to merger selections based on two popular quantitative methods (Gini-M20 and CAS). We find that all selections produce similar fractions across our redshift range, but the individual galaxies making up the respective fractions are often different. This may indicate that different classification methods are preferentially selecting objects undergoing either different processes such as major merging, minor merging and violent disk instabilities, or different stages of the same process.

  11. The ATLAS3D project - XXIX. The new look of early-type galaxies and surrounding fields disclosed by extremely deep optical images

    NASA Astrophysics Data System (ADS)

    Duc, Pierre-Alain; Cuillandre, Jean-Charles; Karabal, Emin; Cappellari, Michele; Alatalo, Katherine; Blitz, Leo; Bournaud, Frédéric; Bureau, Martin; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; McDermid, Richard M.; Michel-Dansac, Leo; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Paudel, Sanjaya; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2015-01-01

    Galactic archaeology based on star counts is instrumental to reconstruct the past mass assembly of Local Group galaxies. The development of new observing techniques and data reduction, coupled with the use of sensitive large field of view cameras, now allows us to pursue this technique in more distant galaxies exploiting their diffuse low surface brightness (LSB) light. As part of the ATLAS3D project, we have obtained with the MegaCam camera at the Canada-France-Hawaii Telescope extremely deep, multiband images of nearby early-type galaxies (ETGs). We present here a catalogue of 92 galaxies from the ATLAS3D sample, which are located in low- to medium-density environments. The observing strategy and data reduction pipeline, which achieve a gain of several magnitudes in the limiting surface brightness with respect to classical imaging surveys, are presented. The size and depth of the survey are compared to other recent deep imaging projects. The paper highlights the capability of LSB-optimized surveys at detecting new prominent structures that change the apparent morphology of galaxies. The intrinsic limitations of deep imaging observations are also discussed, among those, the contamination of the stellar haloes of galaxies by extended ghost reflections, and the cirrus emission from Galactic dust. The detection and systematic census of fine structures that trace the present and past mass assembly of ETGs are one of the prime goals of the project. We provide specific examples of each type of observed structures - tidal tails, stellar streams and shells - and explain how they were identified and classified. We give an overview of the initial results. The detailed statistical analysis will be presented in future papers.

  12. A small-scale dynamo in feedback-dominated galaxies as the origin of cosmic magnetic fields - I. The kinematic phase

    NASA Astrophysics Data System (ADS)

    Rieder, Michael; Teyssier, Romain

    2016-04-01

    The origin and evolution of magnetic fields in the Universe is still an open question. Their observations in galaxies suggest strong magnetic fields already at high redshift as well as at present time. However, neither primordial magnetic fields nor battery processes can account for such high field strengths, which implies the presence of a dynamo process with rapid growth rates in high-redshift galaxies and subsequent maintenance against decay. We investigate the particular role played by feedback mechanisms in creating strong fluid turbulence, allowing for a magnetic dynamo to emerge. Performing magnetohydrodynamic simulations of isolated cooling gas haloes, we compare the magnetic field evolution for various initial field topologies and various stellar feedback mechanisms. We find that feedback can indeed drive strong gas turbulence and dynamo action. We see typical properties of Kolmogorov turbulence with a k-5/3 kinetic energy spectrum, as well as a small-scale dynamo, with a k3/2 magnetic energy spectrum predicted by Kazantsev dynamo theory. We also investigate simulations with a final quiescent phase. As turbulence decreases, the galactic fountain settles into a thin, rotationally supported disc. The magnetic field develops a large-scale well-ordered structure with even symmetry, which is in good agreement with magnetic field observations of nearby spirals. Our findings suggest that weak initial seed fields were first amplified by a small-scale dynamo during a violent feedback-dominated early phase in the galaxy formation history, followed by a more quiescent evolution, where the fields have slowly decayed or were maintained via large-scale dynamo action.

  13. The Impact of College Experiences on Degree Completion in STEM Fields at Four-Year Institutions: Does Gender Matter?

    ERIC Educational Resources Information Center

    Gayles, Joy Gaston; Ampaw, Frim

    2014-01-01

    Degree attainment at the undergraduate level for women in science, technology, engineering, and mathematics (STEM) continues to be an issue of national concern, particularly when trying to explain disparaging gender differences in persistence. Thus, the purpose of this study was to examine factors that influence degree attainment for students in…

  14. The AMIGA sample of isolated galaxies. IV. A catalogue of neighbours around isolated galaxies

    NASA Astrophysics Data System (ADS)

    Verley, S.; Odewahn, S. C.; Verdes-Montenegro, L.; Leon, S.; Combes, F.; Sulentic, J.; Bergond, G.; Espada, D.; García, E.; Lisenfeld, U.; Sabater, J.

    2007-08-01

    Context: Studies of the effects of environment on galaxy properties and evolution require well defined control samples. Such isolated galaxy samples have up to now been small or poorly defined. The AMIGA project (Analysis of the interstellar Medium of Isolated GAlaxies) represents an attempt to define a statistically useful sample of the most isolated galaxies in the local (z ≤ 0.05) Universe. Aims: A suitable large sample for the AMIGA project already exists, the Catalogue of Isolated Galaxies (CIG, Karachentseva, 1973, Astrofizicheskie Issledovaniia Izvestiya Spetsial'noj Astrofizicheskoj Observatorii, 8, 3; 1050 galaxies), and we use this sample as a starting point to refine and perform a better quantification of its isolation properties. Methods: Digitised POSS-I E images were analysed out to a minimum projected radius R ≥ 0.5 Mpc around 950 CIG galaxies (those within Vr = 1500 km s-1 were excluded). We identified all galaxy candidates in each field brighter than B = 17.5 with a high degree of confidence using the LMORPHO software. We generated a catalogue of approximately 54 000 potential neighbours (redshifts exist for ≈30% of this sample). Results: Six hundred sixty-six galaxies pass and two hundred eighty-four fail the original CIG isolation criterion. The available redshift data confirm that our catalogue involves a largely background population rather than physically associated neighbours. We find that the exclusion of neighbours within a factor of four in size around each CIG galaxy, employed in the original isolation criterion, corresponds to Δ Vr ≈ 18 000 km s-1 indicating that it was a conservative limit. Conclusions: Galaxies in the CIG have been found to show different degrees of isolation. We conclude that a quantitative measure of this is mandatory. It will be the subject of future work based on the catalogue of neighbours obtained here. Full Table [see full text] is only available in electronic form at the CDS via anonymous ftp to cdsarc

  15. Gemini Frontier Fields: Wide-field Adaptive Optics Ks-band Imaging of the Galaxy Clusters MACS J0416.1-2403 and Abell 2744

    NASA Astrophysics Data System (ADS)

    Schirmer, M.; Carrasco, E. R.; Pessev, P.; Garrel, V.; Winge, C.; Neichel, B.; Vidal, F.

    2015-04-01

    We have observed two of the six Frontier Fields galaxy clusters, MACS J0416.1-2403 and Abell 2744, using the Gemini Multi-Conjugate Adaptive Optics System (GeMS) and the Gemini South Adaptive Optics Imager (GSAOI). With 0.″ 08-0.″ 10 FWHM our data are nearly diffraction-limited over a 100\\prime\\prime × 100\\prime\\prime wide area. GeMS/GSAOI complements the Hubble Space Telescope (HST) redwards of 1.6 μm with twice the angular resolution. We reach a 5σ depth of {{K}s}˜ 25.6 mag (AB) for compact sources. In this paper, we describe the observations, data processing, and initial public data release. We provide fully calibrated, co-added images matching the native GSAOI pixel scale as well as the larger plate scales of the HST release, adding to the legacy value of the Frontier Fields. Our work demonstrates that even for fields at high galactic latitude where natural guide stars are rare, current multi-conjugated adaptive optics technology at 8 m telescopes has opened a new window on the distant universe. Observations of a third Frontier Field, Abell 370, are planned. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina). Based on observations made with ESO Telescopes at the La Silla and Paranal Observatories, Chile.

  16. Active galaxies. A strong magnetic field in the jet base of a supermassive black hole.

    PubMed

    Martí-Vidal, Ivan; Muller, Sébastien; Vlemmings, Wouter; Horellou, Cathy; Aalto, Susanne

    2015-04-17

    Active galactic nuclei (AGN) host some of the most energetic phenomena in the universe. AGN are thought to be powered by accretion of matter onto a rotating disk that surrounds a supermassive black hole. Jet streams can be boosted in energy near the event horizon of the black hole and then flow outward along the rotation axis of the disk. The mechanism that forms such a jet and guides it over scales from a few light-days up to millions of light-years remains uncertain, but magnetic fields are thought to play a critical role. Using the Atacama Large Millimeter/submillimeter Array (ALMA), we have detected a polarization signal (Faraday rotation) related to the strong magnetic field at the jet base of a distant AGN, PKS 1830-211. The amount of Faraday rotation (rotation measure) is proportional to the integral of the magnetic field strength along the line of sight times the density of electrons. The high rotation measures derived suggest magnetic fields of at least tens of Gauss (and possibly considerably higher) on scales of the order of light-days (0.01 parsec) from the black hole.

  17. A strong magnetic field around the supermassive black hole at the centre of the Galaxy.

    PubMed

    Eatough, R P; Falcke, H; Karuppusamy, R; Lee, K J; Champion, D J; Keane, E F; Desvignes, G; Schnitzeler, D H F M; Spitler, L G; Kramer, M; Klein, B; Bassa, C; Bower, G C; Brunthaler, A; Cognard, I; Deller, A T; Demorest, P B; Freire, P C C; Kraus, A; Lyne, A G; Noutsos, A; Stappers, B; Wex, N

    2013-09-19

    Earth's nearest candidate supermassive black hole lies at the centre of the Milky Way. Its electromagnetic emission is thought to be powered by radiatively inefficient accretion of gas from its environment, which is a standard mode of energy supply for most galactic nuclei. X-ray measurements have already resolved a tenuous hot gas component from which the black hole can be fed. The magnetization of the gas, however, which is a crucial parameter determining the structure of the accretion flow, remains unknown. Strong magnetic fields can influence the dynamics of accretion, remove angular momentum from the infalling gas, expel matter through relativistic jets and lead to synchrotron emission such as that previously observed. Here we report multi-frequency radio measurements of a newly discovered pulsar close to the Galactic Centre and show that the pulsar's unusually large Faraday rotation (the rotation of the plane of polarization of the emission in the presence of an external magnetic field) indicates that there is a dynamically important magnetic field near the black hole. If this field is accreted down to the event horizon it provides enough magnetic flux to explain the observed emission--from radio to X-ray wavelengths--from the black hole.

  18. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Effect of smoothing of density field on reconstruction and anisotropic BAO analysis.

    NASA Astrophysics Data System (ADS)

    Vargas-Magaña, Mariana; Ho, Shirley; Fromenteau, Sebastien.; Cuesta, Antonio. J.

    2017-01-01

    The reconstruction algorithm introduced by Eisenstein et al. (2007), which is widely used in clustering analysis, is based on the inference of the first order Lagrangian displacement field from the Gaussian smoothed galaxy density field in redshift space. The 2smoothing scale applied to the density field affects the inferred displacement field that is used to move the galaxies, and partially 2erases the nonlinear evolution of the density field. In this article, we explore this crucial step 2in the reconstruction algorithm. We study the performance of the reconstruction technique using two metrics: first, we study the performance using the anisotropic clustering, extending previous studies focused on isotropic clustering; second, we study its effect on the displacement field. We find that smoothing has a strong effect in the quadrupole of the correlation function and affects the accuracy and precision 2with which we can measure DA(z) and H(z). We find that the optimal smoothing scale to use in the reconstruction algorithm applied to BOSS-CMASS is between 5-10 h-1Mpc. Varying from the "usual" 15h-1Mpc to 5h-1Mpc 2shows ˜ 0.3% variations in DA(z) and ˜ 0.4% H(z) and uncertainties are also reduced by 40% and 30% respectively. We also find that the accuracy of velocity field reconstruction depends strongly on the smoothing scale used for the density field. We measure the bias and uncertainties associated with different choices of smoothing length.

  19. The Morphology of Passively Evolving Galaxies at Z-2 from HST/WFC3 in the Hubble Ultra Deep Field

    NASA Technical Reports Server (NTRS)

    Cassata, P.; Giavalisco, M.; Guo, Yicheng; Ferguson, H.; Koekemoer, A.; Renzini, A.; Fontana, A.; Salimbeni, S.; Dickinson, M.; Casertano, S.; Conselice, C.J.; Grogin, N.; Lotz, J.M.; Papovich, C.; Lucas, R.A.; Straughn, A.; Gardner, J.P.; Moustakas, L.

    2009-01-01

    We discuss near-IR images of six passive galaxies (SSFR< 10(exp -2)/Gyr) at redshift 1.3 < z < 2.4 with stellar mass M approx 10(exp 11) solar mass, selected from the Great Observatories Origins Deep Survey (GOODS), obtained with WFC3/IR and the Hubble Space Telescope (HST). These WFC3 images provide the deepest and highest angular resolution view of the optical rest-frame morphology of such systems to date. We find that the light profile of these; galaxies is generally regular and well described by a Sersic model with index typical of today's spheroids. We confirm the existence of compact and massive early-type galaxies at z approx. 2: four out of six galaxies have T(sub e) approx. 1 kpc or less. The WFC3 images achieve limiting surface brightness mu approx. 26.5 mag/sq arcsec in the F160W bandpass; yet there is no evidence of a faint halo in the five compact galaxies of our sample, nor is a halo observed in their stacked image. We also find very weak "morphological k-correction" in the galaxies between the rest-frame UV (from the ACS z band), and the rest-frame optical (WFC3 H band): the visual classification, Sersic indices and physical sizes of these galaxies are independent or only mildly dependent on the wavelength, within the errors.

  20. Color Gradients and Stellar Population Gradients of Early-type Galaxies at z 2 in the Hubble Ultra Deep Field

    NASA Astrophysics Data System (ADS)

    Guo, Yicheng; Giavalisco, M.; Cassata, P.; Koekemoer, A.

    2011-01-01

    We report the detection of color gradients in massive (stellar mass M>1010 Msun) galaxies with low specific star formation rate (SSFR<10-11/yr) at redshift z 2. The galaxies are selected by means of SED fitting to spectral population synthesis models using the Great Observatories Origins Deep Survey (GOODS) broad--band photometry, which spans the optical, near--IR and mid--IR windows, augmented by recent ultra--deep near--IR images obtained with HST WFC3. The estimated stellar mass and SSFR would place these galaxies among today's Hubble early types, while their rest--frame optical morphology, as shown by the WFC3 images, is consistent with that of spheroidal systems. The inner regions of these galaxies are found to have redder rest UV--optical colors than their outer parts. The slope of the color gradient has no obvious dependence on the redshift and stellar mass of the galaxies. It does depend, however, on the overall dust obscuration and rest-frame U-V color of the galaxies mildly, with more obscured or redder galaxies having steeper color gradient. The slope of the color gradient is generally steeper than that of local early-type galaxies. We find that the gradient of a single parameter (age, extinction or metallicity) cannot fully explain the observed color gradient. To study the physical implications of these color gradients, we fit spatially resolved HST seven--bands photometry from ACS and WFC3 images (BVizYJH) in concentric shells across the light profile of each galaxies, sampling the color gradients. Regardless of the assumed metallicity gradient, the redder inner regions always have slightly higher dust obscuration than the bluer outer regions, implying that a dust gradient may partly contribute to the observed color gradients. Because of the age--metallicity degeneracy, the derived age gradient is coupled with the assumed metallicity gradient. We discuss the plausibility and implication of each derived age gradient.

  1. THE SPECTRALLY RESOLVED Lyα EMISSION OF THREE Lyα-SELECTED FIELD GALAXIES AT z ∼ 2.4 FROM THE HETDEX PILOT SURVEY

    SciTech Connect

    Chonis, Taylor S.; Finkelstein, Steven L.; Gebhardt, Karl; Overzier, Roderik A.; Song, Mimi; Blanc, Guillermo A.; Adams, Joshua J.; Kollmeier, Juna A.; Hill, Gary J.; Drory, Niv; Ciardullo, Robin; Gronwall, Caryl; Hagen, Alex; Zeimann, Gregory R.

    2013-10-01

    We present new results on the spectrally resolved Lyα emission of three Lyα-emitting field galaxies at z ∼ 2.4 with high Lyα equivalent width (>100 Å) and Lyα luminosity (∼10{sup 43} erg s{sup –1}). At 120 km s{sup –1} (FWHM) spectral resolution, the prominent double-peaked Lyα profile straddles the systemic velocity, where the velocity zero point is determined from spectroscopy of the galaxies' rest-frame optical nebular emission lines. The average velocity offset from systemic of the stronger redshifted emission component for our sample is 176 km s{sup –1} while the average total separation between the redshifted and main blueshifted emission components is 380 km s{sup –1}. These measurements are a factor of ∼2 smaller than for UV-continuum-selected galaxies that show Lyα in emission with lower Lyα equivalent widths. We compare our Lyα spectra to the predicted line profiles of a spherical 'expanding shell' Lyα radiative transfer grid that models large-scale galaxy outflows. Specifically, blueward of the systemic velocity where two galaxies show a weak, highly blueshifted (by ∼1000 km s{sup –1}) tertiary emission peak, the model line profiles are a relatively poor representation of the observed spectra. Since the neutral gas column density has a dominant influence over the shape of the Lyα line profile, we caution against equating the observed Lyα velocity offset with a physical outflow velocity, especially at lower spectral resolution where the unresolved Lyα velocity offset is a convoluted function of several degenerate parameters. Referring to rest-frame ultraviolet and optical Hubble Space Telescope imaging, we find that galaxy-galaxy interactions may play an important role in inducing a starburst that results in copious Lyα emission as well as perturbing the gas distribution and velocity field, both of which have strong influence over the Lyα emission line profile.

  2. z {approx} 7 GALAXY CANDIDATES FROM NICMOS OBSERVATIONS OVER THE HDF-SOUTH AND THE CDF-SOUTH AND HDF-NORTH GOODS FIELDS

    SciTech Connect

    Bouwens, Rychard J.; Illingworth, Garth D.; Gonzalez, Valentino; Holden, Brad; Magee, Dan; Labbe, Ivo; Franx, Marijn; Conselice, Christopher J.; Blakeslee, John; Van Dokkum, Pieter; Marchesini, Danilo; Zheng Wei

    2010-12-20

    We use {approx}88 arcmin{sup 2} of deep ({approx}>26.5 mag at 5{sigma}) NICMOS data over the two GOODS fields and the HDF-South to conduct a search for bright z {approx}> 7 galaxy candidates. This search takes advantage of an efficient preselection over 58 arcmin{sup 2} of NICMOS H{sub 160}-band data where only plausible z {approx}> 7 candidates are followed up with NICMOS J{sub 110}-band observations. {approx}248 arcmin{sup 2} of deep ground-based near-infrared data ({approx}>25.5 mag, 5{sigma}) are also considered in the search. In total, we report 15 z{sub 850}-dropout candidates over this area-7 of which are new to these search fields. Two possible z {approx} 9 J{sub 110}-dropout candidates are also found, but seem unlikely to correspond to z {approx} 9 galaxies (given the estimated contamination levels). The present z {approx} 9 search is used to set upper limits on the prevalence of such sources. Rigorous testing is undertaken to establish the level of contamination of our selections by photometric scatter, low-mass stars, supernovae, and spurious sources. The estimated contamination rate of our z {approx} 7 selection is {approx}24%. Through careful simulations, the effective volume available to our z {approx}> 7 selections is estimated and used to establish constraints on the volume density of luminous (L*{sub z{sub ={sub 3}}}, or {approx}-21 mag) galaxies from these searches. We find that the volume density of luminous star-forming galaxies at z {approx} 7 is 13{sup +8}{sub -5} times lower than at z {approx} 4 and >25 times lower (1{sigma}) at z {approx} 9 than at z {approx} 4. This is the most stringent constraint yet available on the volume density of {approx}>L*{sub z{sub ={sub 3}}} galaxies at z {approx} 9. The present wide-area, multi-field search limits cosmic variance to {approx}<20%. The evolution we find at the bright end of the UV LF is similar to that found from recent Subaru Suprime-Cam, HAWK-I or ERS WFC3/IR searches. The present paper also

  3. HUBBLE FRONTIER FIELDS FIRST COMPLETE CLUSTER DATA: FAINT GALAXIES AT z ∼ 5-10 FOR UV LUMINOSITY FUNCTIONS AND COSMIC REIONIZATION

    SciTech Connect

    Ishigaki, Masafumi; Ouchi, Masami; Ono, Yoshiaki; Kawamata, Ryota; Shimasaku, Kazuhiro; Oguri, Masamune

    2015-01-20

    We present comprehensive analyses of faint dropout galaxies up to z ∼ 10 with the first full-depth data set of the A2744 lensing cluster and parallel fields observed by the Hubble Frontier Fields (HFF) program. We identify 54 dropouts at z ∼ 5-10 in the HFF fields and enlarge the size of the z ∼ 9 galaxy sample obtained to date. Although the number of highly magnified (μ ∼ 10) galaxies is small because of the tiny survey volume of strong lensing, our study reaches the galaxies' intrinsic luminosities comparable to the deepest-field HUDF studies. We derive UV luminosity functions with these faint dropouts, carefully evaluating by intensive simulations the combination of observational incompleteness and lensing effects in the image plane, including magnification, distortion, and multiplication of images, with the evaluation of mass model dependencies. Our results confirm that the faint-end slope, α, is as steep as –2 at z ∼ 6-8 and strengthen the evidence for the rapid decrease of UV luminosity densities, ρ{sub UV}, at z > 8 from the large z ∼ 9 sample. We examine whether the rapid ρ{sub UV} decrease trend can be reconciled with the large Thomson scattering optical depth, τ{sub e}, measured by cosmic microwave background experiments, allowing a large space of free parameters, such as an average ionizing photon escape fraction and a stellar-population-dependent conversion factor. No parameter set can reproduce both the rapid ρ{sub UV} decrease and the large τ {sub e}. It is possible that the ρ{sub UV} decrease moderates at z ≳ 11, that the free parameters significantly evolve toward high z, or that there exist additional sources of reionization such as X-ray binaries and faint active galactic nuclei.

  4. A Wide Field CCD Survey for Low Surface Brightness Galaxies:I.Data Acquisition, Description, and Initial Results

    NASA Astrophysics Data System (ADS)

    O'Neil, Karen; Bothun, G. D.; Cornell, Mark E.

    1997-04-01

    A low surface brightness (LSB) galaxy survey of the Cancer and Pegasus galaxy clusters and the low density regime defined by the Great Wall, was undertaken between 1993 October 14 and 1996 April 17 using the University of Texas MacDonald Observatory 0.8 m telescope and a Loran-Fairchild 2048 X 2048 CCD camera. 127 galaxies were found with μB(0)≥22.0 mag/arcsec2, 119 of which are previously unidentified. Structural parameters [μB(0), α, r25, etc.] and colors (Johnson/Cousins U, B, V, I, & R, when possible) were determined for the galaxies. The majority of these galaxies (80%) were well fit by an exponential profile, while the remaining were either fit by a king profile (17%) or were too clumpy to be fit by any curve (3%). None of the galaxies were fit by a de Vaucouleurs (1959) r¼-type profile. The average central surface brightness of the sample is 23.06±0.20 mag/arcsec2. The central surface brightness distribution of the galaxies is flat from 22.0μB(0) to 24.0μB(0), at which point a sharp dropoff is observed. By eliminating the possibility the dropoff is due to selection or distance effects, we show that it is highly likely the drop off is due to the inability for extremely LSB galaxies to form in the cluster environment. Finally, previous data have shown that LSBs are deficient in molecular gas and dust. If we assume that LSBs have no dust and correct the sample to face-on surface brightness, the lowest surface brightness disk we detected has μB(0)=27.1. However, this sample shows the same noncorrelation between inclination and central surface brightness that is seen for the case of high surface brightness galaxies. This noncorrelation has been used as an argument to support the notion that disk galaxies are optically thick. Since its extremely unlikely that LSBs are optically thick (i.e., none are IRAS sources) this noncorrelation most likely reflects the large intrinsic range of disk galaxy surface brightness instead of variations in disk galaxy

  5. A STRONGLY LENSED MASSIVE ULTRACOMPACT QUIESCENT GALAXY AT z {approx} 2.4 IN THE COSMOS/UltraVISTA FIELD

    SciTech Connect

    Muzzin, Adam; Labbe, Ivo; Franx, Marijn; Holt, J.; Szomoru, Daniel; Van de Sande, Jesse; Van Dokkum, Pieter; Brammer, Gabriel; Marchesini, Danilo; Stefanon, Mauro; Buitrago, F.; Dunlop, James; Caputi, K. I.; Fynbo, J. P. U.; Milvang-Jensen, Bo; Le Fevre, Olivier; McCracken, Henry J.

    2012-12-20

    We report the discovery of a massive ultracompact quiescent galaxy that has been strongly lensed into multiple images by a foreground galaxy at z 0.960. This system was serendipitously discovered as a set of extremely K{sub s} -bright high-redshift galaxies with red J - K{sub s} colors using new data from the UltraVISTA YJHK{sub s} near-infrared survey. The system was also previously identified as an optically faint lens/source system using the COSMOS Advanced Camera for Surveys (ACS) imaging by Faure et al. Photometric redshifts for the three brightest images of the source galaxy determined from 27-band photometry place the source at z = 2.4 {+-} 0.1. We provide an updated lens model for the system that is a good fit to the positions and morphologies of the galaxies in the ACS image. The lens model implies that the magnification of the three brightest images is a factor of 4-5. We use the lens model, combined with the K{sub s} -band image, to constrain the size and Sersic profile of the galaxy. The best-fit model is an ultracompact galaxy (R{sub e} = 0.64{sup +0.08}{sub -0.18} kpc, lensing-corrected), with a Sersic profile that is intermediate between a disk and a bulge profile (n 2.2{sup +2.3}{sub -{sub 0.9}}), albeit with considerable uncertainties on the Sersic profile. We present aperture photometry for the source galaxy images that have been corrected for flux contamination from the central lens. The best-fit stellar population model is a massive galaxy (log(M{sub star}/M{sub Sun }) = 10.8{sup +0.1}{sub -0.1}, lensing-corrected) with an age of 1.0{sup +1.0}{sub -0.4} Gyr, moderate dust extinction (A{sub v} = 0.8{sup +0.5}{sub -0.6}), and a low specific star formation rate (log(SSFR) <-11.0 yr{sup -1}). This is typical of massive ''red-and-dead'' galaxies at this redshift and confirms that this source is the first bona fide strongly lensed massive ultracompact quiescent galaxy to be discovered. We conclude with a discussion of the prospects of finding a larger

  6. The DEEP2 Galaxy Redshift Survey: The Voronoi-Delaunay Method Catalog of Galaxy Groups

    SciTech Connect

    Gerke, Brian F.; Newman, Jeffrey A.; Davis, Marc; Marinoni, Christian; Yan, Renbin; Coil, Alison L.; Conroy, Charlie; Cooper, Michael C.; Faber, S.M.; Finkbeiner, Douglas P.; Guhathakurta, Puragra; Kaiser, Nick; Koo, David C.; Phillips, Andrew C.; Weiner, Benjamin J.; /Maryland U.

    2012-02-14

    We use the first 25% of the DEEP2 Galaxy Redshift Survey spectroscopic data to identify groups and clusters of galaxies in redshift space. The data set contains 8370 galaxies with confirmed redshifts in the range 0.7 {<=} z {<=} 1.4, over one square degree on the sky. Groups are identified using an algorithm (the Voronoi-Delaunay Method) that has been shown to accurately reproduce the statistics of groups in simulated DEEP2-like samples. We optimize this algorithm for the DEEP2 survey by applying it to realistic mock galaxy catalogs and assessing the results using a stringent set of criteria for measuring group-finding success, which we develop and describe in detail here. We find in particular that the group-finder can successfully identify {approx}78% of real groups and that {approx}79% of the galaxies that are true members of groups can be identified as such. Conversely, we estimate that {approx}55% of the groups we find can be definitively identified with real groups and that {approx}46% of the galaxies we place into groups are interloper field galaxies. Most importantly, we find that it is possible to measure the distribution of groups in redshift and velocity dispersion, n({sigma}, z), to an accuracy limited by cosmic variance, for dispersions greater than 350 km s{sup -1}. We anticipate that such measurements will allow strong constraints to be placed on the equation of state of the dark energy in the future. Finally, we present the first DEEP2 group catalog, which assigns 32% of the galaxies to 899 distinct groups with two or more members, 153 of which have velocity dispersions above 350 km s{sup -1}. We provide locations, redshifts and properties for this high-dispersion subsample. This catalog represents the largest sample to date of spectroscopically detected groups at z {approx} 1.

  7. Are dusty galaxies blue? Insights on UV attenuation from dust-selected galaxies

    SciTech Connect

    Casey, C. M.; Cooray, A.; Scoville, N. Z.; Sanders, D. B.; Lee, N.; Finkelstein, S. L.; Capak, P.; Conley, A.; De Zotti, G.; Farrah, D.; Fu, H.; Le Floc'h, E.; Ilbert, O.; Ivison, R. J.; Takeuchi, T. T.

    2014-12-01

    Galaxies' rest-frame ultraviolet (UV) properties are often used to directly infer the degree to which dust obscuration affects the measurement of star formation rates (SFRs). While much recent work has focused on calibrating dust attenuation in galaxies selected at rest-frame ultraviolet wavelengths, locally and at high-z, here we investigate attenuation in dusty, star forming galaxies (DSFGs) selected at far-infrared wavelengths. By combining multiwavelength coverage across 0.15-500 μm in the COSMOS field, in particular making use of Herschel imaging, and a rich data set on local galaxies, we find an empirical variation in the relationship between the rest-frame UV slope (β) and the ratio of infrared-to-ultraviolet emission (L {sub IR}/L {sub UV} ≡ IRX) as a function of infrared luminosity, or total SFR. Both locally and at high-z, galaxies above SFR ≳ 50 M {sub ☉} yr{sup –1} deviate from the nominal IRX-β relation toward bluer colors by a factor proportional to their increasing IR luminosity. We also estimate contamination rates of DSFGs on high-z dropout searches of <<1% at z ≲ 4-10, providing independent verification that contamination from very dusty foreground galaxies is low in Lyman-break galaxy searches. Overall, our results are consistent with the physical interpretation that DSFGs, e.g., galaxies with >50 M {sub ☉} yr{sup –1}, are dominated at all epochs by short-lived, extreme burst events, producing many young O and B stars that are primarily, yet not entirely, enshrouded in thick dust cocoons. The blue rest-frame UV slopes of DSFGs are inconsistent with the suggestion that most DSFGs at z ∼ 2 exhibit steady-state star formation in secular disks.

  8. The 2dF Galaxy Redshift Survey: luminosity dependence of galaxy clustering

    NASA Astrophysics Data System (ADS)

    Norberg, Peder; Baugh, Carlton M.; Hawkins, Ed; Maddox, Steve; Peacock, John A.; Cole, Shaun; Frenk, Carlos S.; Bland-Hawthorn, Joss; Bridges, Terry; Cannon, Russell; Colless, Matthew; Collins, Chris; Couch, Warrick; Dalton, Gavin; De Propris, Roberto; Driver, Simon P.; Efstathiou, George; Ellis, Richard S.; Glazebrook, Karl; Jackson, Carole; Lahav, Ofer; Lewis, Ian; Lumsden, Stuart; Madgwick, Darren; Peterson, Bruce A.; Sutherland, Will; Taylor, Keith

    2001-11-01

    We investigate the dependence of the strength of galaxy clustering on intrinsic luminosity using the Anglo-Australian two degree field galaxy redshift survey (2dFGRS). The 2dFGRS is over an order of magnitude larger than previous redshift surveys used to address this issue. We measure the projected two-point correlation function of galaxies in a series of volume-limited samples. The projected correlation function is free from any distortion of the clustering pattern induced by peculiar motions and is well described by a power law in pair separation over the range 0.1<(r/h-1Mpc)<10. The clustering of L*(MbJ-5log10h=-19.7) galaxies in real space is well-fitted by a correlation length r0=4.9+/-0.3h-1Mpc and power-law slope γ=1.71+/-0.06. The clustering amplitude increases slowly with absolute magnitude for galaxies fainter than M*, but rises more strongly at higher luminosities. At low luminosities, our results agree with measurements from the Southern Sky Redshift Survey 2 by Benoist et al. However, we find a weaker dependence of clustering strength on luminosity at the highest luminosities. The correlation function amplitude increases by a factor of 4.0 between MbJ-5log10h=-18 and -22.5, and the most luminous galaxies are 3.0 times more strongly clustered than L* galaxies. The power-law slope of the correlation function shows remarkably little variation for samples spanning a factor of 20 in luminosity. Our measurements are in very good agreement with the predictions of the hierarchical galaxy formation models of Benson et al.

  9. Exploring Dwarf Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Dunn, Jacqueline M.

    2017-01-01

    Dwarf galaxies are the most numerous galaxies in the universe, yet little is definitively understood about their formation and evolution. An evolutionary link has been proposed between dwarf irregular and dwarf elliptical galaxies by previous studies. The nature and existence of so-called dwarf spiral galaxies is still heavily debated. This project explores the properties of dwarf galaxies spanning a range in morphological type, luminosity, physical size, and surrounding environment (i.e. group / field galaxies). The goal of this project is to determine the range of exhibited properties for each type of dwarf galaxy using available ultraviolet, visible, and near-infrared imaging and spectra. Similarities in visible, broadband colors support the proposed evolutionary link dwarf irregular and dwarf elliptical galaxies when the range of brightness of the samples is constrained to the fainter galaxies. Here, comparisons amongst a sub-sample of 59 dwarf irregulars, 12 dwarf ellipticals, and 29 dwarf spirals will be presented using archival ultraviolet, visible, and near-infrared imaging. The effect of constraining the comparisons to the fainter sample members will be explored, as well as the effect of constraining the comparisons to the brighter sample members.

  10. Unveiling the Monsters: Characterization of Ultra-massive Galaxies in the Early Universe with IRAC Mapping of the NMBS-II/CFHTLS Fields

    NASA Astrophysics Data System (ADS)

    Marchesini, Danilo

    Observations of massive galaxies and their evolution with cosmic time place strong constraints on the physical processes of galaxy formation. Although substantial data have been collected on galaxies with masses log(Mstar/Msun)~11.2 out to z~4-5 from the recent myriad of ground-based near-infrared (NIR) surveys, very little is known about the evolution of the most massive (log(Mstar/Msun)>11.4) galaxies in the universe. At the tip of the Schechter function, their space density is estimated to be 30x lower than log (Mstar/Msun)=11 galaxies and hence only a few have been found, even in the widest-field surveys. We recently undertook the NMBS-II survey, a wide-field NIR medium-band survey designed to accurately characterize the stellar mass function, number density, stellar population and clustering properties of the most massive galaxies out to z=3. The NMBSII uses a set of five medium-bandwidth NIR filters to provide precise photometric redshifts and well-sampled spectral energy distributions (SEDs) of galaxies at z>1.5. The primary survey fields of the NMBS-II are the CFHTLS-deep fields; however, presently only 60% of these fields have IRAC coverage. The IRAC data are essential for accurately measuring photometric redshifts and stellar masses of the high-redshift population. IRAC data are also critical for separating the red quiescent from the red, dusty star-forming galaxies at z>0.8. In Cycle 10 (12/2013-10/2014), the PI Marchesini was awarded 22 hours of Spitzer time to complete the IRAC coverage of the NMBS-II fields, for a total area of 5.4 sq. deg. over 7 independent lines of sight. This proposal describes a program consisting of three main components. First, the newly acquired IRAC data at 3.6 and 4.5 micron awarded to the PI to complete the IRAC coverage of the NMBS-II fields will be reduced. Second, the addition of the Spitzer-IRAC and MIPS photometry to the NMBS-II K-selected catalogs will be completed. Third, a unique sample of ~300 ultra

  11. Ultraluminous infrared galaxies in the AKARI all-sky survey

    SciTech Connect

    Kilerci Eser, E.; Goto, T.; Doi, Y. E-mail: doi@ea.c.u-tokyo.ac.jp

    2014-12-10

    We present a new catalog of 118 ultraluminous infrared galaxies (ULIRGs) and one hyperluminous infrared galaxy (HLIRG) by cross-matching the AKARI all-sky survey with the Sloan Digital Sky Survey Data Release 10 (SDSS DR10) and the final data release of the Two-Degree Field Galaxy Redshift Survey. Forty of the ULIRGs and one HLIRG are new identifications. We find that ULIRGs are interacting pair galaxies or ongoing or postmergers. This is consistent with the widely accepted view: ULIRGs are major mergers of disk galaxies. We confirm the previously known positive trend between the active galactic nucleus fraction and infrared luminosity. We show that ULIRGs have a large offset from the main sequence up to z ∼ 1; their offset from the z ∼ 2 'main sequence' is relatively smaller. We find a result consistent with the previous studies showing that, compared to local star-forming SDSS galaxies of similar mass, local ULIRGs have lower oxygen abundances. We demonstrate for the first time that ULIRGs follow the fundamental metallicity relation (FMR). The scatter of ULIRGs around the FMR (0.09 dex-0.5 dex) is comparable to the scatter of z ∼ 2-3 galaxies. We provide the largest local (0.050

  12. Comparison of galaxy clusters selected by weak-lensing, optical spectroscopy, and X-rays in the deep lens survey F2 field

    SciTech Connect

    Starikova, Svetlana; Jones, Christine; Forman, William R.; Vikhlinin, Alexey; Kurtz, Michael J.; Fabricant, Daniel G.; Murray, Stephen S.; Geller, Margaret J.; Dell'Antonio, Ian P.

    2014-05-10

    We compare galaxy clusters selected in Chandra and XMM-Newton X-ray observations of the 4 deg{sup 2} Deep Lens Survey (DLS) F2 field to the cluster samples previously selected in the same field from a sensitive weak-lensing shear map derived from the DLS and from a detailed galaxy redshift survey—the Smithsonian Hectospec Lensing Survey (SHELS). Our Chandra and XMM-Newton observations cover 1.6 deg{sup 2} of the DLS F2 field, including all 12 weak-lensing peaks above a signal-to-noise ratio of 3.5, along with 16 of the 20 SHELS clusters with published velocity dispersions >500 km s{sup –1}. We detect 26 extended X-ray sources in this area and confirm 23 of them as galaxy clusters using the optical imaging. Approximately 75% of clusters detected in either X-ray or spectroscopic surveys are found in both; these follow the previously established scaling relations between velocity dispersion, L {sub X}, and T {sub X}. A lower percentage, 60%, of clusters are in common between X-ray and DLS samples. With the exception of a high false-positive rate in the DLS weak-lensing search (5 out of 12 DLS candidates appear to be false), differences between the three cluster detection methods can be attributed primarily to observational uncertainties and intrinsic scatter between different observables and cluster mass.

  13. The intense starburst HDF 850.1 in a galaxy overdensity at z ≈ 5.2 in the Hubble Deep Field.

    PubMed

    Walter, Fabian; Decarli, Roberto; Carilli, Chris; Bertoldi, Frank; Cox, Pierre; Da Cunha, Elisabete; Daddi, Emanuele; Dickinson, Mark; Downes, Dennis; Elbaz, David; Ellis, Richard; Hodge, Jacqueline; Neri, Roberto; Riechers, Dominik A; Weiss, Axel; Bell, Eric; Dannerbauer, Helmut; Krips, Melanie; Krumholz, Mark; Lentati, Lindley; Maiolino, Roberto; Menten, Karl; Rix, Hans-Walter; Robertson, Brant; Spinrad, Hyron; Stark, Dan P; Stern, Daniel

    2012-06-13

    The Hubble Deep Field provides one of the deepest multiwavelength views of the distant Universe and has led to the detection of thousands of galaxies seen throughout cosmic time. An early map of the Hubble Deep Field at a wavelength of 850 micrometres, which is sensitive to dust emission powered by star formation, revealed the brightest source in the field, dubbed HDF 850.1 (ref. 2). For more than a decade, and despite significant efforts, no counterpart was found at shorter wavelengths, and it was not possible to determine its redshift, size or mass. Here we report a redshift of z = 5.183 for HDF 850.1, from a millimetre-wave molecular line scan. This places HDF 850.1 in a galaxy overdensity at z ≈ 5.2, corresponding to a cosmic age of only 1.1 billion years after the Big Bang. This redshift is significantly higher than earlier estimates and higher than those of most of the hundreds of submillimetre-bright galaxies identified so far. The source has a star-formation rate of 850 solar masses per year and is spatially resolved on scales of 5 kiloparsecs, with an implied dynamical mass of about 1.3 × 10(11) solar masses, a significant fraction of which is present in the form of molecular gas. Despite our accurate determination of redshift and position, a counterpart emitting starlight remains elusive.

  14. Second-order solution for determining density and velocity fields of galaxies

    NASA Technical Reports Server (NTRS)

    Gramann, Mirt

    1993-01-01

    In this Letter, I use second-order Lagrangian perturbation theory to calculate an analytical expression relating density to velocity in a gravitating system. This solution can be used to compare peculiar velocity field measurements with observations of large-scale structure. The predictions of both linear theory and second-order theory are compared with the results of N-body simulations. While linear theory systematically overestimates the velocity flows in high-density regions, the second-order corrections calculated herein remove this systematic error.

  15. Ionized gas kinematics of galaxies in the CALIFA survey. I. Velocity fields, kinematic parameters of the dominant component, and presence of kinematically distinct gaseous systems

    NASA Astrophysics Data System (ADS)

    García-Lorenzo, B.; Márquez, I.; Barrera-Ballesteros, J. K.; Masegosa, J.; Husemann, B.; Falcón-Barroso, J.; Lyubenova, M.; Sánchez, S. F.; Walcher, J.; Mast, D.; García-Benito, R.; Méndez-Abreu, J.; van de Ven, G.; Spekkens, K.; Holmes, L.; Monreal-Ibero, A.; del Olmo, A.; Ziegler, B.; Bland-Hawthorn, J.; Sánchez-Blázquez, P.; Iglesias-Páramo, J.; Aguerri, J. A. L.; Papaderos, P.; Gomes, J. M.; Marino, R. A.; González Delgado, R. M.; Cortijo-Ferrero, C.; López-Sánchez, A. R.; Bekeraitė, S.; Wisotzki, L.; Bomans, D.

    2015-01-01

    Context. Ionized gas kinematics provide important clues to the dynamical structure of galaxies and hold constraints to the processes driving their evolution. Aims: The motivation of this work is to provide an overall characterization of the kinematic behavior of the ionized gas of the galaxies included in the Calar Alto Legacy Integral field Area (CALIFA), offering kinematic clues to potential users of the CALIFA survey for including kinematical criteria in their selection of targets for specific studies. From the first 200 galaxies observed by CALIFA survey in its two configurations, we present the two-dimensional kinematic view of the 177 galaxies satisfaying a gas content/detection threshold. Methods: After removing the stellar contribution, we used the cross-correlation technique to obtain the radial velocity of the dominant gaseous component for each spectrum in the CALIFA data cubes for different emission lines (namely, [O ii] λλ3726,3729, [O iii] λλ4959,5007, Hα+[N ii] λλ6548,6584, and [SII]λλ6716,6730). The main kinematic parameters measured on the plane of the sky were directly derived from the radial velocities with no assumptions on the internal prevailing motions. Evidence of the presence of several gaseous components with different kinematics were detected by using [O iii] λλ4959,5007 emission line profiles. Results: At the velocity resolution of CALIFA, most objects in the sample show regular velocity fields, although the ionized-gas kinematics are rarely consistent with simple coplanar circular motions. Thirty-five percent of the objects present evidence of a displacement between the photometric and kinematic centers larger than the original spaxel radii. Only 17% of the objects in the sample exhibit kinematic lopsidedness when comparing receding and approaching sides of the velocity fields, but most of them are interacting galaxies exhibiting nuclear activity (AGN or LINER). Early-type (E+S0) galaxies in the sample present clear

  16. Using the Major Field Test for a Bachelor's Degree in Business as a Learning Outcomes Assessment: Evidence from a Review of 20 Years of Institution-Based Research

    ERIC Educational Resources Information Center

    Ling, Guangming; Bochenek, Jennifer; Burkander, Kri

    2015-01-01

    By applying multilevel models with random effects, the authors reviewed and synthesized findings from 30 studies that were published in the last 20 years exploring the relationship between the Educational Testing Service Major Field Test for a Bachelor's Degree in Business (MFTB) and related factors. The results suggest that MFTB scores correlated…

  17. Factors That Predict Time to In-Field Employment of Associate Degree Graduates: A Study of One College in the Technical College System of Georgia

    ERIC Educational Resources Information Center

    Futch, Karon Wilkerson

    2014-01-01

    This regression study examined the set of graduate characteristics (age, gender, ethnicity), as well as Grade Point Average Motivation, and environmental factors (program of study, use of career services, internship completion, Grade Point Average) that predicted time to in-field employment among associate degree graduates. Graduates ranging from…

  18. Record-breaking ancient galaxy clusters

    NASA Astrophysics Data System (ADS)

    2003-12-01

    A tale of two record-breaking clusters hi-res Size hi-res: 768 kb Credits: for RDCS1252: NASA, ESA, J.Blakeslee (Johns Hopkins Univ.), M.Postman (Space Telescope Science Inst.) and P.Rosati, Chris Lidman & Ricardo Demarco (European Southern Observ.) for TNJ1338: NASA, ESA, G.Miley (Leiden Observ.) and R.Overzier (Leiden Obs) A tale of two record-breaking clusters Looking back in time to when the universe was in its formative youth, the Advanced Camera for Surveys (ACS) aboard the NASA/ESA Hubble Space Telescope captured these revealing images of two galaxy clusters. The image at left, which is made with an additional infrared exposure taken with the European Southern Observatory’s Very Large Telescope, shows mature galaxies in a massive cluster that existed when the cosmos was 5000 million years old. The cluster, called RDCS1252.9-2927, is as massive as ‘300 trillion’ suns and is the most massive known cluster for its epoch. The image reveals the core of the cluster and is part of a much larger mosaic of the entire cluster. Dominating the core are a pair of large, reddish elliptical galaxies [near centre of image]. Their red colour indicates an older population of stars. Most of the stars are at least 1000 million years old. The two galaxies appear to be interacting and may eventually merge to form a larger galaxy that is comparable to the brightest galaxies seen in present-day clusters. The red galaxies surrounding the central pair are also cluster members. The cluster probably contains many thousands of galaxies, but only about 50 can be seen in this image. The full mosaic (heic0313d) reveals several hundred cluster members. Many of the other galaxies in the image, including several of the blue galaxies, are foreground or background galaxies. The colour-composite image was assembled from two observations (through i and z filters) taken between May and June 2002 by the ACS Wide Field Camera, and one image with the ISAAC instrument on the VLT taken in 2002

  19. VizieR Online Data Catalog: Radial velocities of galaxies in A523 field (Girardi+, 2016)

    NASA Astrophysics Data System (ADS)

    Girardi, M.; Boschin, W.; Gastaldello, F.; Giovannini, G.; Govoni, F.; Murgia, M.; Barrena, R.; Ettori, S.; Trasatti, M.; Vacca, V.

    2016-09-01

    Multi-object spectroscopic observations of A523 were carried out at the TNG in 2012 December and 2014 January. We used the instrument DOLORES in MOS mode with the LR-B Grism. In summary, we observed six MOS masks for a total of 210 slits. The total exposure time was 3600s for three masks, 5400s for two masks and 7200s for the last one. Our photometric observations were carried out with the Wide Field Camera (WFC), mounted at the prime focus of the 2.5-m INT telescope. We observed A523 in g, r and i Sloan-Gunn filters in photometric conditions and a seeing of ~1.4arcsec. (1 data file).

  20. The orthogonally aligned dark halo of an edge-on lensing galaxy in the Hubble Frontier Fields: a challenge for modified gravity

    NASA Astrophysics Data System (ADS)

    Diego, Jose M.; Broadhurst, Tom; Benitez, Narciso; Lim, Jeremy; Lam, Daniel

    2015-05-01

    We examine a well-resolved lensed image that is bent by an edge-on lenticular galaxy, in the Hubble Frontier Fields (HFF) data of MACSJ0416.1-20403. The fortuitous combination of a long arc (zs ≈ 1 ± 0.2) intersecting an edge-on galaxy from the cluster (z = 0.4) provides an opportunity to constrain its dark matter (DM) halo and its orientation. We model the stellar lensing contribution and we add to this a standard parametrized dark halo component. Irrespective of the detailed choice of parameters, we obtain a combined total mass of ≈3 × 1011 M⊙. Depending on the dark halo parameters, the stellar contribution to this is limited to the range 5-15 × 1010 M⊙, or 20-50 per cent of the total mass, in good agreement with the independent (photmetric) stellar mass of 5 × 1010 M⊙ (Chabrier IMF), or 8 × 1010 M⊙ (Salpeter IMF). The major axis of the DM halo is constrained to be nearly orthogonal to the plane of the galaxy, and with an ellipticity e ≈ 0.15 corresponding to an axis ratio a/c = 0.54. We show that these conclusions are very weakly dependent on the model of the cluster, or the additional influence of neighbouring galaxies or the properties of the lensed source. Alternative theories of gravity that do not require DM are challenged by this finding since generically these must be tied to the baryonic component which is highly disfavoured by our results. Other such fortuitously useful lenses can be examined this way as they become uncovered with more HFF data to help provide a more statistical distribution of galaxy halo properties.

  1. INTEGRAL FIELD SPECTROSCOPY AND MULTI-WAVELENGTH IMAGING OF THE NEARBY SPIRAL GALAXY NGC 5668 : AN UNUSUAL FLATTENING IN METALLICITY GRADIENT

    SciTech Connect

    Marino, R. A.; Gil de Paz, A.; Castillo-Morales, A.; Perez-Gonzalez, P. G.; Gallego, J.; Zamorano, J.; Sanchez, S. F.

    2012-07-20

    We present an analysis of the full bidimensional optical spectral cube of the nearby spiral galaxy NGC 5668, observed with the Pmas fiber PAcK Integral Field Unit (IFU) at the Calar Alto observatory 3.5 m telescope. We make use of broadband imaging to provide further constraints on the evolutionary history of the galaxy. This data set will allow us to improve our understanding of the mechanisms that drive the evolution of disks. We investigated the properties of 62 H II regions and concentric rings in NGC 5668 and derived maps in ionized-gas attenuation and chemical (oxygen) abundances. We find that while inward of r {approx}36'' {approx} 4.4 kpc {approx} 0.36 (D{sub 25}/2) the derived O/H ratio follows the radial gradient typical of spiral galaxies, the abundance gradient beyond r {approx} 36'' flattens out. The analysis of the multi-wavelength surface brightness profiles of NGC 5668 is performed by fitting these profiles with those predicted by chemo-spectrophotometric evolutionary models of galaxy disks. From this, we infer a spin and circular velocity of {lambda} = 0.053 and v{sub c} = 167 km s{sup -1}, respectively. The metallicity gradient and rotation curve predicted by this best-fitting galaxy model nicely match the values derived from the IFU observations, especially within r {approx}36''. The same is true for the colors despite some small offsets and a reddening in the bluest colors beyond that radius. On the other hand, deviations of some of these properties in the outer disk indicate that a secondary mechanism, possibly gas transfer induced by the presence of a young bar, must have played a role in shaping the recent chemical and star formation histories of NGC 5668.

  2. The 4 Ms CHANDRA Deep Field-South Number Counts Apportioned by Source Class: Pervasive Active Galactic Nuclei and the Ascent of Normal Galaxies

    NASA Technical Reports Server (NTRS)

    Lehmer, Bret D.; Xue, Y. Q.; Brandt, W. N.; Alexander, D. M.; Bauer, F. E.; Brusa, M.; Comastri, A.; Gilli, R.; Hornschemeier, A. E.; Luo, B.; Paolillo, M.; Ptak, A.; Shemmer, O.; Schneider, D. P.; Tozzi, P.; Vignali, C.

    2012-01-01

    We present 0.5-2 keV, 2-8 keV, 4-8 keV, and 0.5-8 keV (hereafter soft, hard, ultra-hard, and full bands, respectively) cumulative and differential number-count (log N-log S ) measurements for the recently completed approx. equal to 4 Ms Chandra Deep Field-South (CDF-S) survey, the deepest X-ray survey to date. We implement a new Bayesian approach, which allows reliable calculation of number counts down to flux limits that are factors of approx. equal to 1.9-4.3 times fainter than the previously deepest number-count investigations. In the soft band (SB), the most sensitive bandpass in our analysis, the approx. equal to 4 Ms CDF-S reaches a maximum source density of approx. equal to 27,800 deg(sup -2). By virtue of the exquisite X-ray and multiwavelength data available in the CDF-S, we are able to measure the number counts from a variety of source populations (active galactic nuclei (AGNs), normal galaxies, and Galactic stars) and subpopulations (as a function of redshift, AGN absorption, luminosity, and galaxy morphology) and test models that describe their evolution. We find that AGNs still dominate the X-ray number counts down to the faintest flux levels for all bands and reach a limiting SB source density of approx. equal to 14,900 deg(sup -2), the highest reliable AGN source density measured at any wavelength. We find that the normal-galaxy counts rise rapidly near the flux limits and, at the limiting SB flux, reach source densities of approx. equal to 12,700 deg(sup -2) and make up 46% plus or minus 5% of the total number counts. The rapid rise of the galaxy counts toward faint fluxes, as well as significant normal-galaxy contributions to the overall number counts, indicates that normal galaxies will overtake AGNs just below the approx. equal to 4 Ms SB flux limit and will provide a numerically significant new X-ray source population in future surveys that reach below the approx. equal to 4 Ms sensitivity limit. We show that a future approx. equal to 10 Ms CDF

  3. Galaxy groups

    SciTech Connect

    Brent Tully, R.

    2015-02-01

    Galaxy groups can be characterized by the radius of decoupling from cosmic expansion, the radius of the caustic of second turnaround, and the velocity dispersion of galaxies within this latter radius. These parameters can be a challenge to measure, especially for small groups with few members. In this study, results are gathered pertaining to particularly well-studied groups over four decades in group mass. Scaling relations anticipated from theory are demonstrated and coefficients of the relationships are specified. There is an update of the relationship between light and mass for groups, confirming that groups with mass of a few times 10{sup 12}M{sub ⊙} are the most lit up while groups with more and less mass are darker. It is demonstrated that there is an interesting one-to-one correlation between the number of dwarf satellites in a group and the group mass. There is the suggestion that small variations in the slope of the luminosity function in groups are caused by the degree of depletion of intermediate luminosity systems rather than variations in the number per unit mass of dwarfs. Finally, returning to the characteristic radii of groups, the ratio of first to second turnaround depends on the dark matter and dark energy content of the universe and a crude estimate can be made from the current observations of Ω{sub matter}∼0.15 in a flat topology, with a 68% probability of being less than 0.44.

  4. Probing Early Galaxy Growth and Dusty Star-Forming Systems Across Diverse Environments in the 28 deg2 Herschel/Stripe82/HETDEX Field

    NASA Astrophysics Data System (ADS)

    Larson, Rebecca; Jogee, Shardha; Watson, Nicholas; Viero, Marco; Weinzirl, Tim; Yorke, Harold W.; Finkelstein, Steven; Papovich, Casey; Casey, Caitlin M.; Ciardullo, Robin; Gronwall, Caryl; LaMassa, Stephanie; Urry, C. Meg

    2015-08-01

    In the next few years, we will embark on an unprecedented study of how a million galaxies grow their stars and dark matter halos over a large a huge comoving volume (0.5 Gpc^3) in the cosmic web at the critical epoch (z~1.9 - 3.5), where cosmic star formation and black hole activity peak, and proto-clusters start to collapse. This study is enabled by the powerful synergy of six photometric and spectroscopic surveys, which are providing Herschel SPIRE, Spitzer IRAC, NEWFIRM K-band, DECam ugriz, and XMM X-ray imaging data, along with optical spectroscopic data from HETDEX over a very large-area (28 sq. deg.) in the Stripe82/HETDEX field. In this poster, we illustrate the power of these combined datasets and focus on studying dusty, star-forming systems (DSFSs) identified with the Herschel Stripe 82 Survey (HerS). Using the 250, 350, and 500 micron SPIRE data over our 28 sq. deg. field, we identify a number of possible high redshift (z > 4) DSFSs which will be prime candidates for follow-up observations. We discuss their properties and possible association with galaxies and quasars detected at X-ray, IR, optical, and UV wavelengths. We present examples of SED fits to DSFSs to constrain their star formation rates, redshifts and dust properties, and discuss broader implications for galaxy growth at early cosmic times. We acknowledge support from NSF grant AST-1413652 andthe JPL/NASA SURP Program.

  5. Infestation of grain fields and degree-day phenology of the cereal leaf beetle (Coleoptera: Chrysomelidae) in Utah: long-term patterns.

    PubMed

    Evans, Edward W; Carlile, Nolan R; Innes, Matthew B; Pitigala, Nadishan

    2014-02-01

    Scouting at key times in the seasonal development of insect pest populations, as guided by degree-day accumulation, is important for minimizing unwarranted insecticide application. Fields of small grains in northern Utah were censused weekly from 2001 to 2011, to assess infestation by the cereal leaf beetle, Oulema melanopus (L.) (Coleoptera: Chrysomelidae), and develop degree-day guidelines for measuring cereal leaf beetle abundance at peak egg and larval densities in any given year. Even in years of high overall numbers of cereal leaf beetle, relatively few fields were heavily infested (with 20 or more cereal leaf beetle eggs + larvae per 0.09 m2) at either egg or larval peak density during the growing season. In individual fields, the number of immature cereal leaf beetle (eggs + larvae) at peak larval density was positively related to the number of immature cereal leaf beetles present earlier at peak egg density. Although there was large variation among years in when cereal leaf beetle egg and larval numbers peaked during the season as measured by degree-day accumulation from 1 January, much of this variation was accounted for by the warmth of the early spring before significant egg laying occurred. Hence, degree-day estimates that account for early spring warmth can guide growers in scouting grain fields at peak egg densities to identify fields at high risk of subsequent economic damage from cereal leaf beetle larval feeding. The relatively low incidence of fields heavily infested by cereal leaf beetle in northern Utah emphasizes the benefit that growers can gain by scouting early before applying insecticide treatments.

  6. MULTIPLE GALAXY COLLISIONS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Here is a sampling of 15 ultraluminous infrared galaxies viewed by NASA's Hubble Space Telescope. Hubble's sharp vision reveals more complexity within these galaxies, which astronomers are interpreting as evidence of a multiple-galaxy pileup. These images, taken by the Wide Field and Planetary Camera 2, are part of a three-year study of 123 galaxies within 3 billion light-years of Earth. The study was conducted in 1996, 1997, and 1999. False colors were assigned to these photos to enhance fine details within these coalescing galaxies. Credits: NASA, Kirk Borne (Raytheon and NASA Goddard Space Flight Center, Greenbelt, Md.), Luis Colina (Instituto de Fisica de Cantabria, Spain), and Howard Bushouse and Ray Lucas (Space Telescope Science Institute, Baltimore, Md.)

  7. Measures of star formation rates from infrared (Herschel) and UV (GALEX) emissions of galaxies in the HerMES fields

    NASA Astrophysics Data System (ADS)

    Buat, V.; Giovannoli, E.; Burgarella, D.; Altieri, B.; Amblard, A.; Arumugam, V.; Aussel, H.; Babbedge, T.; Blain, A.; Bock, J.; Boselli, A.; Castro-Rodríguez, N.; Cava, A.; Chanial, P.; Clements, D. L.; Conley, A.; Conversi, L.; Cooray, A.; Dowell, C. D.; Dwek, E.; Eales, S.; Elbaz, D.; Fox, M.; Franceschini, A.; Gear, W.; Glenn, J.; Griffin, M.; Halpern, M.; Hatziminaoglou, E.; Heinis, S.; Ibar, E.; Isaak, K.; Ivison, R. J.; Lagache, G.; Levenson, L.; Lonsdale, C. J.; Lu, N.; Madden, S.; Maffei, B.; Magdis, G.; Mainetti, G.; Marchetti, L.; Morrison, G. E.; Nguyen, H. T.; O'Halloran, B.; Oliver, S. J.; Omont, A.; Owen, F. N.; Page, M. J.; Pannella, M.; Panuzzo, P.; Papageorgiou, A.; Pearson, C. P.; Pérez-Fournon, I.; Pohlen, M.; Rigopoulou, D.; Rizzo, D.; Roseboom, I. G.; Rowan-Robinson, M.; Sánchez Portal, M.; Schulz, B.; Seymour, N.; Shupe, D. L.; Smith, A. J.; Stevens, J. A.; Strazzullo, V.; Symeonidis, M.; Trichas, M.; Tugwell, K. E.; Vaccari, M.; Valiante, E.; Valtchanov, I.; Vigroux, L.; Wang, L.; Ward, R.; Wright, G.; Xu, C. K.; Zemcov, M.

    2010-11-01

    The reliability of infrared (IR) and ultraviolet (UV) emissions to measure star formation rates (SFRs) in galaxies is investigated for a large sample of galaxies observed with the Spectral and Photometric Imaging Receiver (SPIRE) and the Photodetector Array Camera and Spectrometer (PACS) instruments on Herschel as part of the Herschel Multi-Tiered Extragalactic Survey (HerMES) project. We build flux-limited 250-μm samples of sources at redshift z < 1, cross-matched with the Spitzer/MIPS and GALEX catalogues. About 60 per cent of the Herschel sources are detected in UV. The total IR luminosities, LIR, of the sources are estimated using a spectral energy distribution (SED) fitting code that fits to fluxes between 24 and 500 μm. Dust attenuation is discussed on the basis of commonly used diagnostics: the LIR/LUV ratio and the slope, β, of the UV continuum. A mean dust attenuation AUV of mag is measured in the samples. LIR/LUV is found to correlate with LIR. Galaxies with and 0.5 < z < 1 exhibit a mean dust attenuation AUV of about 0.7 mag lower than that found for their local counterparts, although with a large dispersion. Our galaxy samples span a large range of β and LIR/LUV values which, for the most part, are distributed between the ranges defined by the relations found locally for starburst and normal star-forming galaxies. As a consequence the recipe commonly applied to local starbursts is found to overestimate the dust attenuation correction in our galaxy sample by a factor of ~2-3. The SFRs deduced from LIR are found to account for about 90 per cent of the total SFR; this percentage drops to 71 per cent for galaxies with (or ). For these faint objects, one needs to combine UV and IR emissions to obtain an accurate measure of the SFR.

  8. Gemini Near Infrared Field Spectrograph Observations of the Seyfert 2 Galaxy Mrk 573: In Situ Acceleration of Ionized and Molecular Gas off Fueling Flows

    NASA Astrophysics Data System (ADS)

    Fischer, Travis C.; Machuca, C.; Diniz, M. R.; Crenshaw, D. M.; Kraemer, S. B.; Riffel, R. A.; Schmitt, H. R.; Baron, F.; Storchi-Bergmann, T.; Straughn, A. N.; Revalski, M.; Pope, C. L.

    2017-01-01

    We present near-infrared and optical emission-line and stellar kinematics of the Seyfert 2 galaxy Mrk 573 using the Near-Infrared Field Spectrograph (NIFS) at Gemini North and Dual Imaging Spectrograph at Apache Point Observatory, respectively. By obtaining full kinematic maps of the infrared ionized and molecular gas and stellar kinematics in a ∼700 × 2100 pc2 circumnuclear region of Mrk 573, we find that kinematics within the Narrow-Line Region are largely due to a combination of both rotation and in situ acceleration of material originating in the host disk. Combining these observations with large-scale, optical long-slit spectroscopy that traces ionized gas emission out to several kpcs, we find that rotation kinematics dominate the majority of the gas. We find that outflowing gas extends to distances less than 1 kpc, suggesting that outflows in Seyfert galaxies may not be powerful enough to evacuate their entire bulges.

  9. A Cluster and a Sea of Galaxies

    NASA Astrophysics Data System (ADS)

    2010-05-01

    A new wide-field image released today by ESO displays many thousands of distant galaxies, and more particularly a large group belonging to the massive galaxy cluster known as Abell 315. As crowded as it may appear, this assembly of galaxies is only the proverbial "tip of the iceberg", as Abell 315 - like most galaxy clusters - is dominated by dark matter. The huge mass of this cluster deflects light from background galaxies, distorting their observed shapes slightly. When looking at the sky with the unaided eye, we mostly only see stars within our Milky Way galaxy and some of its closest neighbours. More distant galaxies are just too faint to be perceived by the human eye, but if we could see them, they would literally cover the sky. This new image released by ESO is both a wide-field and long-exposure one, and reveals thousands of galaxies crowding an area on the sky roughly as large as the full Moon. These galaxies span a vast range of distances from us. Some are relatively close, as it is possible to distinguish their spiral arms or elliptical halos, especially in the upper part of the image. The more distant appear just like the faintest of blobs - their light has travelled through the Universe for eight billion years or more before reaching Earth. Beginning in the centre of the image and extending below and to the left, a concentration of about a hundred yellowish galaxies identifies a massive galaxy cluster, designated with the number 315 in the catalogue compiled by the American astronomer George Abell in 1958 [1]. The cluster is located between the faint, red and blue galaxies and the Earth, about two billion light-years away from us. It lies in the constellation of Cetus (the Whale). Galaxy clusters are some of the largest structures in the Universe held together by gravity. But there is more in these structures than the many galaxies we can see. Galaxies in these giants contribute to only ten percent of the mass, with hot gas in between galaxies

  10. Secular evolution in disk galaxies

    NASA Astrophysics Data System (ADS)

    Knapen, J. H.

    2013-05-01

    The detailed study of the different structural components of nearby galaxies can supply vital information about the secular, or internal, evolution of these galaxies which they may have undergone since their formation. We highlight a series of new studies based on the analysis of mid-infrared images of over 2000 local galaxies which we are collecting within the Spitzer Survey of Stellar Structure in Galaxies (S^4G). In particular, we discuss new results on the thick and thin disk components of galaxies, which turn out to be roughly equally massive, and whose properties indicate that the thick disks mostly formed in situ, and to a lesser degree as a result of galaxy-galaxy interactions and secular evolution. We then briefly review recent research into rings in galaxies, which are common and closely linked to secular evolution of galaxies. Finally, we report on the research into local galaxy morphology, kinematics and stellar populations that we will perform over the coming four years within the EU-funded initial training network DAGAL (Detailed Anatomy of GALaxies).

  11. The science case of WISH-Spec, an Integral-field unit for the WISH telescope to study the first populations of galaxies in the universe

    NASA Astrophysics Data System (ADS)

    Burgarella, Denis

    2015-08-01

    WISH is a new space science mission concept whose primary goal is to study the first galaxies in the early universe. WISH will be a 1.5m telescope equipped with a 1000 arcmin2 wide-field Near-IR camera that would fly in ~2020 in order to conduct unique ultra-deep and wide-area sky surveys in the wavelength range 1-5 micron. A spectroscopic mode (Integral-Field Unit) in the same Near-IR range is also planned. The primary science goal of WISH mission is to push the high-redshift frontier beyond the epoch of reionization by utilizing its unique imaging capability and the dedicated survey strategy. Which spectral range should we select to optimize the detection of very high-redshift (i.e., z > 5) galaxies ? In the rest-frame Far-UV or in the rest-frame Far-IR? In a recent paper, Burgarella et al. (2013) showed that the Far-UV dust attenuation (AFUV) reaches the same level at z ~ 3 than at z = 0 . This suggest that the early universe would be better studied in the rest-frame Far-UV. At z > 5, this Far-UV range moves into the Near-IR (1 - 5um) which is WISH’s preferred spectral range. The baseline of WISH-Spec is a 1x1 arcmin2 Integral-Field Unit (IFU) using slicers. WISH-Spec could observe in a parallel mode which translates into spectroscopic exposure times as long as the telescope lifetime. WISH features two 100-deg2 and 1000-deg2 surveys. However, WISHSpec will allow to acquire very large samples of high-redshift and primordial galaxies by combining spectroscopic detections within total (non contiguous) 1-deg2 and 10-deg2 fields of views. Therefore, the first strong advantage of WISHSpec wrt JWST is that 10^4 - 10^5 faint emission-line galaxies in 1 deg2 and 10^3 - 10^6 bright emission-line galaxies in 10 deg2 in the redshift range 3 < z < 8 will be detected.

  12. The stellar mass-halo mass relation of isolated field dwarfs: a critical test of ΛCDM at the edge of galaxy formation

    NASA Astrophysics Data System (ADS)

    Read, J. I.; Iorio, G.; Agertz, O.; Fraternali, F.

    2017-01-01

    We fit the rotation curves of isolated dwarf galaxies to directly measure the stellar mass-halo mass relation (M★ - M200) over the mass range 5 {×} 10^5 ≲ M_{*} / M_⊙ ≲ 108. By accounting for cusp-core transformations due to stellar feedback, we find a monotonic relation with little scatter. Such monotonicity implies that abundance matching should yield a similar M★ - M200 if the cosmological model is correct. Using the `field galaxy' stellar mass function from the Sloan Digital Sky Survey (SDSS) and the halo mass function from the Λ Cold Dark Matter Bolshoi simulation, we find remarkable agreement between the two. This holds down to M200 ˜ 5 × 109 M⊙, and to M200 ˜ 5 × 108 M⊙ if we assume a power law extrapolation of the SDSS stellar mass function below M★ ˜ 107 M⊙. However, if instead of SDSS we use the stellar mass function of nearby galaxy groups, then the agreement is poor. This occurs because the group stellar mass function is shallower than that of the field below M★ ˜ 109 M⊙, recovering the familiar `missing satellites' and `too big to fail' problems. Our result demonstrates that both problems are confined to group environments and must, therefore, owe to `galaxy formation physics' rather than exotic cosmology. Finally, we repeat our analysis for a Λ Warm Dark Matter cosmology, finding that it fails at 68% confidence for a thermal relic mass of mWDM < 1.25 keV, and mWDM < 2 keV if we use the power law extrapolation of SDSS. We conclude by making a number of predictions for future surveys based on these results.

  13. Hubble Frontier Fields: a high-precision strong-lensing analysis of the massive galaxy cluster Abell 2744 using ˜180 multiple images

    NASA Astrophysics Data System (ADS)

    Jauzac, M.; Richard, J.; Jullo, E.; Clément, B.; Limousin, M.; Kneib, J.-P.; Ebeling, H.; Natarajan, P.; Rodney, S.; Atek, H.; Massey, R.; Eckert, D.; Egami, E.; Rexroth, M.

    2015-09-01

    We present a high-precision mass model of galaxy cluster Abell 2744, based on a strong gravitational-lensing analysis of the Hubble Space Telescope Frontier Fields (HFF) imaging data, which now include both Advanced Camera for Surveys and Wide Field Camera 3 observations to the final depth. Taking advantage of the unprecedented depth of the visible and near-infrared data, we identify 34 new multiply imaged galaxies, bringing the total to 61, comprising 181 individual lensed images. In the process, we correct previous erroneous identifications and positions of multiple systems in the northern part of the cluster core. With the LENSTOOL software and the new sets of multiple images, we model the cluster using two cluster-scale dark matter haloes plus galaxy-scale haloes for the cluster members. Our best-fitting model predicts image positions with an rms error of 0.79 arcsec, which constitutes an improvement by almost a factor of 2 over previous parametric models of this cluster. We measure the total projected mass inside a 200 kpc aperture as (2.162 ± 0.005) × 1014 M⊙, thus reaching 1 per cent level precision for the second time, following the recent HFF measurement of MACSJ0416.1-2403. Importantly, the higher quality of the mass model translates into an overall improvement by a factor of 4 of the derived magnification factor. Together with our previous HFF gravitational lensing analysis, this work demonstrates that the HFF data enables high-precision mass measurements for massive galaxy clusters and the derivation of robust magnification maps to probe the early Universe.

  14. EIGEN-6C4 - The latest combined global gravity field model including GOCE data up to degree and order 1949 of GFZ Potsdam and GRGS Toulouse

    NASA Astrophysics Data System (ADS)

    Förste, Christoph; Bruinsma, Sean; Abrikosov, Oleg; Flechtner, Frank; Marty, Jean-Charles; Lemoine, Jean-Michel; Dahle, Christoph; Neumayer, Hans; Barthelmes, Franz; König, Rolf; Biancale, Richard

    2014-05-01

    GFZ Potsdam and GRGS Toulouse have a long-time close cooperation in the field of global gravity field determination. Here we focus on (1) GOCE gravity field determination and (2) computation of high resolution combined gravity field models. Such data products play a fundamental role in geodesy and Earth sciences, ranging from practical purposes, like precise orbit determination, to scientific applications, like investigations of the density structure of the Earth's interior. Here we present our combined gravity field model EIGEN-6C4 which is the fourth release of EIGEN-6C (EIGEN = European Improved Gravity model of the Earth by New techniques). The first release of EIGEN-6C, published in 2011, was the first global combined gravity field model containing GOCE data. It was computed from a combination of LAGEOS, GRACE and GOCE data, augmented with DTU10 surface gravity data, and it is complete to degree and order 1440 (corresponding to 14 km spatial resolution). The combination of the different data types has been done on the basis of full normal equations up to maximum degree/order 370. The spherical harmonic coefficients of the shorter wavelengths were obtained from a block diagonal normal equation from the terrestrial data only. The subsequent releases EIGEN-6C2 (2012) and EIGEN-6C3stat (2013) were complete to degree and order 1949 (corresponding to approx. 10 km spatial resolution) and comprise extended measurement time spans for the LAGEOS/GRACE as well as for the GOCE data. Now we present the new release EIGEN-6C4. This time variable combined gravity field model is again developed to degree and order 1949 and comprises the new GRACE Release 03 from GRGS and gradiometer data almost of the entire GOCE mission (Sept. 2009-Sept. 2013). Our combination of GRACE and GOCE data allows the construction of an accurate satellite-only contribution to the final combined model up to degree and order 260, where the GOCE gradiometer data contribute only for degrees upwards of

  15. Superluminous Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Ogle, Patrick M.; Lanz, Lauranne; Nader, Cyril; Helou, George

    2016-02-01

    We report the discovery of spiral galaxies that are as optically luminous as elliptical brightest cluster galaxies, with r-band monochromatic luminosity Lr = 8-14L* (4.3-7.5 × 1044 erg s-1). These super spiral galaxies are also giant and massive, with diameter D = 57-134 kpc and stellar mass Mstars = 0.3-3.4 × 1011M⊙. We find 53 super spirals out of a complete sample of 1616 SDSS galaxies with redshift z < 0.3 and Lr > 8L*. The closest example is found at z = 0.089. We use existing photometry to estimate their stellar masses and star formation rates (SFRs). The SDSS and Wide-field Infrared Survey Explorer colors are consistent with normal star-forming spirals on the blue sequence. However, the extreme masses and rapid SFRs of 5-65 M⊙ yr-1 place super spirals in a sparsely populated region of parameter space, above the star-forming main sequence of disk galaxies. Super spirals occupy a diverse range of environments, from isolation to cluster centers. We find four super spiral galaxy systems that are late-stage major mergers—a possible clue to their formation. We suggest that super spirals are a remnant population of unquenched, massive disk galaxies. They may eventually become massive lenticular galaxies after they are cut off from their gas supply and their disks fade.

  16. Brightest Cluster Galaxy Identification

    NASA Astrophysics Data System (ADS)

    Leisman, Luke; Haarsma, D. B.; Sebald, D. A.; ACCEPT Team

    2011-01-01

    Brightest cluster galaxies (BCGs) play an important role in several fields of astronomical research. The literature includes many different methods and criteria for identifying the BCG in the cluster, such as choosing the brightest galaxy, the galaxy nearest the X-ray peak, or the galaxy with the most extended profile. Here we examine a sample of 75 clusters from the Archive of Chandra Cluster Entropy Profile Tables (ACCEPT) and the Sloan Digital Sky Survey (SDSS), measuring masked magnitudes and profiles for BCG candidates in each cluster. We first identified galaxies by hand; in 15% of clusters at least one team member selected a different galaxy than the others.We also applied 6 other identification methods to the ACCEPT sample; in 30% of clusters at least one of these methods selected a different galaxy than the other methods. We then developed an algorithm that weighs brightness, profile, and proximity to the X-ray peak and centroid. This algorithm incorporates the advantages of by-hand identification (weighing multiple properties) and automated selection (repeatable and consistent). The BCG population chosen by the algorithm is more uniform in its properties than populations selected by other methods, particularly in the relation between absolute magnitude (a proxy for galaxy mass) and average gas temperature (a proxy for cluster mass). This work supported by a Barry M. Goldwater Scholarship and a Sid Jansma Summer Research Fellowship.

  17. Backwards Spiral Galaxy

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Astronomers using NASA's Hubble Space Telescope have found a spiral galaxy that may rotate in the opposite direction from what was expected.

    A picture of the oddball galaxy is available at http://heritage.stsci.edu or http://oposite.stsci.edu/pubinfo/pr/2002/03 or http://www.jpl.nasa.gov/images/wfpc . It was taken in May 2001 by Hubble's Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    The picture showed which side of galaxy NGC 4622 is closer to Earth; that information helped astronomers determine that the galaxy may be spinning clockwise. The image shows NGC 4622 and its outer pair of winding arms full of new stars, shown in blue.

    Astronomers are puzzled by the clockwise rotation because of the direction the outer spiral arms are pointing. Most spiral galaxies have arms of gas and stars that trail behind as they turn. But this galaxy has two 'leading' outer arms that point toward the direction of the galaxy's clockwise rotation. NGC 4622 also has a 'trailing' inner arm that is wrapped around the galaxy in the opposite direction. Based on galaxy simulations, a team of astronomers had expected that the galaxy was turning counterclockwise.

    NGC 4622 is a rare example of a spiral galaxy with arms pointing in opposite directions. Astronomers suspect this oddity was caused by the interaction of NGC 4622 with another galaxy. Its two outer arms are lopsided, meaning that something disturbed it. The new Hubble image suggests that NGC 4622 consumed a smaller companion galaxy.

    Galaxies, which consist of stars, gas, and dust, rotate very slowly. Our Sun, one of many stars in our Milky Way galaxy, completes a circuit around the Milky Way every 250 million years. NGC 4622 lies 111 million light-years away in the direction of the constellation Centaurus.

    The science team, consisting of Drs. Ron Buta and Gene Byrd from the University of Alabama, Tuscaloosa, and Tarsh Freeman of Bevill State

  18. The SCUBA-2 Cosmology Legacy Survey: Multiwavelength Counterparts to 103 Submillimeter Galaxies in the UKIDSS-UDS Field

    NASA Astrophysics Data System (ADS)

    Chen, Chian-Chou; Smail, Ian; Ivison, Rob J.; Arumugam, Vinodiran; Almaini, Omar; Conselice, Christopher J.; Geach, James E.; Hartley, Will G.; Ma, Cheng-Jiun; Mortlock, Alice; Simpson, Chris; Simpson, James M.; Swinbank, A. Mark; Aretxaga, Itziar; Blain, Andrew; Chapman, Scott C.; Dunlop, James S.; Farrah, Duncan; Halpern, Mark; Michałowski, Michał J.; van der Werf, Paul; Wilkinson, Aaron; Zavala, Jorge A.

    2016-04-01

    We present multiwavelength identifications for the counterparts of 1088 submillimeter sources detected at 850 μm in the SCUBA-2 Cosmology Legacy Survey study of the UKIRT Infrared Deep Sky Survey-Ultra-Deep Survey (UDS) field. By utilizing an Atacama Large Millimeter Array (ALMA) pilot study on a subset of our bright SCUBA-2 sample as a training set, along with the deep optical-near-infrared (OIR) data available in this field, we develop a novel technique, Optical-IR Triple Color (OIRTC), using z - K, K - [3.6], [3.6] - [4.5] colors to select the candidate submillimeter galaxy (SMG) counterparts. By combining radio identification and the OIRTC technique, we find counterpart candidates for 80% of the Class = 1 ≥ 4σ SCUBA-2 sample, defined as those that are covered by both radio and OIR imaging and the base sample for our scientific analyses. Based on the ALMA training set, we expect the accuracy of these identifications to be 82% ± 20%, with a completeness of 69% ± 16%, essentially as accurate as the traditional p-value technique but with higher completeness. We find that the fraction of SCUBA-2 sources having candidate counterparts is lower for fainter 850 μm sources, and we argue that for follow-up observations sensitive to SMGs with S850 ≳ 1 mJy across the whole ALMA beam, the fraction with multiple counterparts is likely to be >40% for SCUBA-2 sources at S850 ≳ 4 mJy. We find that the photometric redshift distribution for the SMGs is well fit by a lognormal distribution, with a median redshift of z = 2.3 ± 0.1. After accounting for the sources without any radio and/or OIRTC counterpart, we estimate the median redshift to be z = 2.6 ± 0.1 for SMGs with S850 > 1 mJy. We also use this new large sample to study the clustering of SMGs and the far-infrared properties of the unidentified submillimeter sources by stacking their Herschel SPIRE far-infrared emission.

  19. THE SCUBA-2 COSMOLOGY LEGACY SURVEY: MULTIWAVELENGTH COUNTERPARTS TO 10{sup 3} SUBMILLIMETER GALAXIES IN THE UKIDSS-UDS FIELD

    SciTech Connect

    Chen, Chian-Chou; Smail, Ian; Ma, Cheng-Jiun; Simpson, James M.; Swinbank, A. Mark; Ivison, Rob J.; Arumugam, Vinodiran; Mortlock, Alice; Dunlop, James S.; Michałowski, Michał J.; Almaini, Omar; Conselice, Christopher J.; Hartley, Will G.; Geach, James E.; Simpson, Chris; Aretxaga, Itziar; Blain, Andrew; Chapman, Scott C.; Farrah, Duncan; Halpern, Mark; and others

    2016-04-01

    We present multiwavelength identifications for the counterparts of 1088 submillimeter sources detected at 850 μm in the SCUBA-2 Cosmology Legacy Survey study of the UKIRT Infrared Deep Sky Survey-Ultra-Deep Survey (UDS) field. By utilizing an Atacama Large Millimeter Array (ALMA) pilot study on a subset of our bright SCUBA-2 sample as a training set, along with the deep optical–near-infrared (OIR) data available in this field, we develop a novel technique, Optical–IR Triple Color (OIRTC), using z − K, K − [3.6], [3.6] − [4.5] colors to select the candidate submillimeter galaxy (SMG) counterparts. By combining radio identification and the OIRTC technique, we find counterpart candidates for 80% of the Class = 1 ≥ 4σ SCUBA-2 sample, defined as those that are covered by both radio and OIR imaging and the base sample for our scientific analyses. Based on the ALMA training set, we expect the accuracy of these identifications to be 82% ± 20%, with a completeness of 69% ± 16%, essentially as accurate as the traditional p-value technique but with higher completeness. We find that the fraction of SCUBA-2 sources having candidate counterparts is lower for fainter 850 μm sources, and we argue that for follow-up observations sensitive to SMGs with S{sub 850} ≳ 1 mJy across the whole ALMA beam, the fraction with multiple counterparts is likely to be >40% for SCUBA-2 sources at S{sub 850} ≳ 4 mJy. We find that the photometric redshift distribution for the SMGs is well fit by a lognormal distribution, with a median redshift of z = 2.3 ± 0.1. After accounting for the sources without any radio and/or OIRTC counterpart, we estimate the median redshift to be z = 2.6 ± 0.1 for SMGs with S{sub 850} > 1 mJy. We also use this new large sample to study the clustering of SMGs and the far-infrared properties of the unidentified submillimeter sources by stacking their Herschel SPIRE far-infrared emission.

  20. The Cosmic Large-Scale Structure in X-rays (CLASSIX) Cluster Survey. I. Probing galaxy cluster magnetic fields with line of sight rotation measures

    NASA Astrophysics Data System (ADS)

    Böhringer, Hans; Chon, Gayoung; Kronberg, Philipp P.

    2016-11-01

    To search for a signature of an intracluster magnetic field, we compare measurements of Faraday rotation of polarised extragalactic radio sources in the line of sight of galaxy clusters with those outside. To this end, we correlated a catalogue of 1383 rotation measures of extragalactic polarised radio sources with galaxy clusters from the CLASSIX survey (combining REFLEX II and NORAS II) detected by their X-ray emission in the ROSAT All-Sky Survey. The survey covers 8.25 ster of the sky at | bII | ≥ 20°. We compared the rotation measures in the line of sight of clusters within their projected radii of r500 with those outside and found a significant excess of the dispersion of the rotation measures in the cluster regions. Since the observed rotation measure is the result of Faraday rotation in several presumably uncorrelated magnetised cells of the intracluster medium, the observations correspond to quantities averaged over several magnetic field directions and strengths. Therefore the interesting quantity is the dispersion or standard deviation of the rotation measure for an ensemble of clusters. In the analysis of the observations we found a standard deviation of the rotation measure inside r500 of about 120 (± 21) rad m-2. This compares to about 56 (± 8) rad m-2 outside. Correcting for the effect of the Galaxy with the mean rotation measure in a region of 10 deg radius in the outskirts of the clusters does not change the outcome quoted above. We show that the most X-ray luminous and thus most massive clusters contribute most to the observed excess rotation measure. Modelling the electron density distribution in the intracluster medium with a self-similar model based on the REXCESS Survey, we found that the dispersion of the rotation measure increases with the column density, and we deduce a magnetic field value of about 2-6 (l/ 10 kpc)- 1/2μG assuming a constant magnetic field strength, where l is the size of the coherently magnetised intracluster medium

  1. Dishonorary Degrees

    ERIC Educational Resources Information Center

    Romano, Carlin

    2008-01-01

    If an honorary degree lacks values to begin with, does withdrawing it deliver a rebuke to the recipient? Is whatever honor that comes with the distinction embedded in the fancy paper, or is it wholly in the eye of the degree holder? Are honorary degrees really such silly things that individuals should mock their bestowal or withdrawal? The case of…

  2. The Dragonfly Nearby Galaxies Survey: A Census of the Stellar Halos of Nearby Luminous Galaxies

    NASA Astrophysics Data System (ADS)

    Merritt, Allison T.

    2017-01-01

    The Dragonfly Telephoto Array, comprised of 48 individual Canon telephoto lenses operating together as a single telescope, is an innovative approach to low surface brightness imaging and the study of galactic stellar halos in particular. Sub-nanometer coatings on each optical element reduce scattered light from nearby bright stars and compact galaxy centers - typically a key obstacle for integrated light observations - by an order of magnitude, and Dragonfly's large field of view (2x2.6 degrees for a single frame) provides a large-scale view of stellar halos free from substructure biases. Using extremely deep (>30 mag/arcsec^2) optical imaging in g and r bands from the Dragonfly Nearby Galaxies Survey (DNGS), we have characterized the stellar halos of a sample of ~20 nearby luminous galaxies. I will present measurements of the stellar halo mass fractions of these galaxies as a function of stellar mass, morphology, and environment, and discuss the scatter in halo fractions in the context of the galaxies' individual accretion histories.

  3. Galaxy And Mass Assembly (GAMA): detection of low-surface-brightness galaxies from SDSS data

    NASA Astrophysics Data System (ADS)

    Williams, Richard P.; Baldry, I. K.; Kelvin, L. S.; James, P. A.; Driver, S. P.; Prescott, M.; Brough, S.; Brown, M. J. I.; Davies, L. J. M.; Holwerda, B. W.; Liske, J.; Norberg, P.; Moffett, A. J.; Wright, A. H.

    2016-12-01

    We report on a search for new low-surface-brightness galaxies (LSBGs) using Sloan Digital Sky Survey (SDSS) data within the Galaxy And Mass Assembly (GAMA) equatorial fields. The search method consisted of masking objects detected with SDSS PHOTO, combining gri images weighted to maximize the expected signal-to-noise ratio, and smoothing the images. The processed images were then run through a detection algorithm that finds all pixels above a set threshold and groups them based on their proximity to one another. The list of detections was cleaned of contaminants such as diffraction spikes and the faint wings of masked objects. From these, selecting potentially the brightest in terms of total flux, a list of 343 LSBGs was produced having been confirmed using VISTA Kilo-degree Infrared Galaxy Survey (VIKING) imaging. The photometry of this sample was refined using the deeper VIKING Z band as the aperture-defining band. Measuring their g - i and J - K colours shows that most are consistent with being at redshifts less than 0.2. The photometry is carried out using an AUTO aperture for each detection giving surface brightnesses of μr ≳ 25 mag arcsec-2 and magnitudes of r > 19.8 mag. None of these galaxies are bright enough to be within the GAMA main survey limit but could be part of future deeper surveys to measure the low-mass end of the galaxy stellar mass function.

  4. The AT-LESS CO(1-0) survey of submillimetre galaxies in the Extended Chandra Deep Field South: First results on cold molecular gas in galaxies at z ˜ 2

    NASA Astrophysics Data System (ADS)

    Huynh, Minh T.; Emonts, B. H. C.; Kimball, A. E.; Seymour, N.; Smail, Ian; Swinbank, A. M.; Brandt, W. N.; Casey, C. M.; Chapman, S. C.; Dannerbauer, H.; Hodge, J. A.; Ivison, R. J.; Schinnerer, E.; Thomson, A. P.; van derWerf, P.; Wardlow, J. L.

    2017-01-01

    We present the first results from our on-going Australia Telescope Compact Array survey of 12CO(1-0) in ALMA-identified submillimetre galaxies in the Extended Chandra Deep Field South. Strong detections of 12CO(1-0) emission from two submillimetre galaxies, ALESS 122.1 (z = 2.0232) and ALESS 67.1 (z = 2.1230), were obtained. We estimate gas masses of Mgas ˜ 1.3 × 1011 M⊙ and Mgas ˜ 1.0 × 1011M⊙ for ALESS 122.1 and ALESS 67.1, respectively, adopting αCO = 1.0. Dynamical mass estimates from the kinematics of the 12CO(1-0) line yields Mdynsin 2i = (2.1 ± 1.1) × 1011 M⊙ and (3.2 ± 0.9) × 1011 M⊙ for ALESS 122.1 and ALESS 67.1, respectively. This is consistent with the total baryonic mass estimates of these two systems. We examine star formation efficiency using the LFIR versus L^' }_CO(1-0) relation for samples of local ULIRGs and LIRGs, and more distant star-forming galaxies, with 12CO(1-0) detections. We find some evidence of a shallower slope for ULIRGs and SMGs compared to less luminous systems, but a larger sample is required for definite conclusions. We determine gas-to-dust ratios of 170 ± 30 and 140 ± 30 for ALESS 122.1 and ALESS 67.1, respectively, showing ALESS 122.1 has an unusually large gas reservoir. By combining the 38.1 GHz continuum detection of ALESS 122.1 with 1.4 and 5.5 GHz data, we estimate that the free-free contribution to radio emission at 38.1 GHz is 34 ± 17 μJy, yielding a star formation rate (1400 ± 700 M⊙ yr-1) consistent with that from the infrared luminosity.

  5. COLOR AND STELLAR POPULATION GRADIENTS IN PASSIVELY EVOLVING GALAXIES AT z {approx} 2 FROM HST/WFC3 DEEP IMAGING IN THE HUBBLE ULTRA DEEP FIELD

    SciTech Connect

    Guo Yicheng; Giavalisco, Mauro; Cassata, Paolo; Salimbeni, Sara; Ferguson, Henry C.; Koekemoer, Anton; Grogin, Norman A.; Lotz, Jennifer M.; Dickinson, Mark; Renzini, Alvio; Papovich, Casey; Tundo, Elena; Fontana, Adriano

    2011-07-01

    We report the detection of color gradients in six massive (stellar mass (M{sub star}) > 10{sup 10} M{sub sun}) and passively evolving (specific star formation rate <10{sup -11} yr{sup -1}) galaxies at redshift 1.3 < z < 2.5 identified in the Hubble Ultra Deep Field using ultra-deep Hubble Space Telescope (HST) Advanced Camera for Surveys and WFC3/IR images. After carefully matching the different point-spread functions, we obtain color maps and multi-band optical/near-IR photometry (BVizYJH) in concentric annuli, from the smallest resolved radial distance ({approx}1.7 kpc) up to several times the H-band effective radius. We find that the inner regions of these galaxies have redder rest-frame UV-optical colors (U - V, U - B, and B - V) than the outer parts. The slopes of the color gradient have no obvious dependence on the redshift and on the stellar mass of the galaxies. They do mildly depend, however, on the overall dust obscuration (E(B - V)) and rest-frame (U - V) color, with more obscured or redder galaxies having steeper color gradients. The z {approx} 2 color gradients are also steeper than those of local early-type ones. The gradient of a single parameter (age, extinction, or metallicity) cannot fully explain the observed color gradients. Fitting the spatially resolved HST seven-band photometry to stellar population synthesis models, we find that, regardless of assumptions on the metallicity gradient, the redder inner regions of the galaxies have slightly higher dust obscuration than the bluer outer regions, implying that dust partly contributes to the observed color gradients, although the magnitude depends on the assumed extinction law. Due to the age-metallicity degeneracy, the derived age gradient depends on the assumptions for the metallicity gradient. We discuss the implications of a number of assumptions for metallicity gradients on the formation and evolution of these galaxies. We find that the evolution of the mass-size relationship from z {approx} 2

  6. Color and Stellar Population Gradients in Passively Evolving Galaxies at z ~ 2 from HST/WFC3 Deep Imaging in the Hubble Ultra Deep Field

    NASA Astrophysics Data System (ADS)

    Guo, Yicheng; Giavalisco, Mauro; Cassata, Paolo; Ferguson, Henry C.; Dickinson, Mark; Renzini, Alvio; Koekemoer, Anton; Grogin, Norman A.; Papovich, Casey; Tundo, Elena; Fontana, Adriano; Lotz, Jennifer M.; Salimbeni, Sara

    2011-07-01

    We report the detection of color gradients in six massive (stellar mass (M star) > 1010 M ⊙) and passively evolving (specific star formation rate <10-11 yr-1) galaxies at redshift 1.3 < z < 2.5 identified in the Hubble Ultra Deep Field using ultra-deep Hubble Space Telescope (HST) Advanced Camera for Surveys and WFC3/IR images. After carefully matching the different point-spread functions, we obtain color maps and multi-band optical/near-IR photometry (BVizYJH) in concentric annuli, from the smallest resolved radial distance (≈1.7 kpc) up to several times the H-band effective radius. We find that the inner regions of these galaxies have redder rest-frame UV-optical colors (U - V, U - B, and B - V) than the outer parts. The slopes of the color gradient have no obvious dependence on the redshift and on the stellar mass of the galaxies. They do mildly depend, however, on the overall dust obscuration (E(B - V)) and rest-frame (U - V) color, with more obscured or redder galaxies having steeper color gradients. The z ~ 2 color gradients are also steeper than those of local early-type ones. The gradient of a single parameter (age, extinction, or metallicity) cannot fully explain the observed color gradients. Fitting the spatially resolved HST seven-band photometry to stellar population synthesis models, we find that, regardless of assumptions on the metallicity gradient, the redder inner regions of the galaxies have slightly higher dust obscuration than the bluer outer regions, implying that dust partly contributes to the observed color gradients, although the magnitude depends on the assumed extinction law. Due to the age-metallicity degeneracy, the derived age gradient depends on the assumptions for the metallicity gradient. We discuss the implications of a number of assumptions for metallicity gradients on the formation and evolution of these galaxies. We find that the evolution of the mass-size relationship from z ~ 2 to the present cannot be driven by in situ

  7. Cosmic Galaxy-IGM HI Relation at z ∼ 2–3 Probed in the COSMOS/UltraVISTA 1.6 Deg2 Field

    NASA Astrophysics Data System (ADS)

    Mukae, Shiro; Ouchi, Masami; Kakiichi, Koki; Suzuki, Nao; Ono, Yoshiaki; Cai, Zheng; Inoue, Akio K.; Chiang, Yi-Kuan; Shibuya, Takatoshi; Matsuda, Yuichi

    2017-02-01

    We present spatial correlations of galaxies and IGM neutral hydrogen H i in the COSMOS/UltraVISTA 1.62 deg2 field. Our data consist of 13,415 photo-z galaxies at z ∼ 2–3 with {K}s< 23.4 and the Lyα forest absorption lines in the background quasar spectra selected from SDSS data with no signature of damped Lyα system contamination. We estimate a galaxy overdensity δ gal in an impact parameter of 2.5 (proper) Mpc, and calculate the Lyα forest fluctuations {δ }< F> whose negative values correspond to the strong Lyα forest absorption lines. We identify weak evidence of an anti-correlation between δ gal and {δ }< F> with a Spearman’s rank correlation coefficient of ‑0.39 suggesting that the galaxy overdensities and the Lyα forest absorption lines positively correlate in space at the ∼90% confidence level. This positive correlation indicates that high-z galaxies exist around an excess of H i gas in the Lyα forest. We find four cosmic volumes, dubbed A obs, B obs, C obs, and D obs, that have extremely large (small) values of δ gal ≃ 0.8 (‑1) and {δ }< F> ≃ 0.1(-0.4), three of which, B obs–D obs, significantly depart from the δ gal–{δ }< F> correlation, and weaken the correlation signal. We perform cosmological hydrodynamical simulations and compare with our observational results. Our simulations reproduce the δ gal–{δ }< F> correlation, agreeing with the observational results. Moreover, our simulations have model counterparts of A obs–D obs, and suggest that the observations pinpoint, by chance, a galaxy overdensity like a proto-cluster, gas filaments lying on the quasar sightline, a large void, and orthogonal low-density filaments. Our simulations indicate that the significant departures of B obs–D obs are produced by the filamentary large-scale structures and the observation sightline effects.

  8. DEEP KECK u-BAND IMAGING OF THE HUBBLE ULTRA DEEP FIELD: A CATALOG OF z approx 3 LYMAN BREAK GALAXIES

    SciTech Connect

    Rafelski, Marc; Wolfe, Arthur M.; Cooke, Jeff; Chen, H.-W.; Armandroff, Taft E.; Wirth, Gregory D. E-mail: awolfe@ucsd.ed E-mail: hchen@oddjob.uchicago.ed E-mail: gwirth@keck.hawaii.ed

    2009-10-01

    We present a sample of 407 z approx 3 Lyman break galaxies (LBGs) to a limiting isophotal u-band magnitude of 27.6 mag in the Hubble Ultra Deep Field. The LBGs are selected using a combination of photometric redshifts and the u-band drop-out technique enabled by the introduction of an extremely deep u-band image obtained with the Keck I telescope and the blue channel of the Low Resolution Imaging Spectrometer. The Keck u-band image, totaling 9 hr of integration time, has a 1sigma depth of 30.7 mag arcsec{sup -2}, making it one of the most sensitive u-band images ever obtained. The u-band image also substantially improves the accuracy of photometric redshift measurements of approx50% of the z approx 3 LBGs, significantly reducing the traditional degeneracy of colors between z approx 3 and z approx 0.2 galaxies. This sample provides the most sensitive, high-resolution multi-filter imaging of reliably identified z approx 3 LBGs for morphological studies of galaxy formation and evolution and the star formation efficiency of gas at high redshift.

  9. PHOTOMETRIC PROPERTIES OF Ly{alpha} EMITTERS AT z {approx} 4.86 IN THE COSMOS 2 SQUARE DEGREE FIELD

    SciTech Connect

    Shioya, Y.; Taniguchi, Y.; Nagao, T.; Saito, T.; Trump, J.; Sasaki, S. S.; Ideue, Y.; Nakajima, A.; Matsuoka, K.; Murayama, T.; Scoville, N. Z.; Capak, P.; Ellis, R. S.; Sanders, D. B.; Kartaltepe, J.; Mobasher, B.; Aussel, H.; Koekemoer, A.; Carilli, C.; Garilli, B.

    2009-05-01

    We present results of a survey for Ly{alpha} emitters at z {approx} 4.86 based on optical narrowband ({lambda} {sub c} = 7126 A, {delta}{lambda} = 73 A) and broadband (B, V, r', i', and z') observations of the Cosmic Evolution Survey field using Suprime-Cam on the Subaru Telescope. We find 79 Ly{alpha} emitter (LAE) candidates at z {approx} 4.86 over a contiguous survey area of 1.83 deg{sup 2}, down to the Ly{alpha} line flux of 1.47 x 10{sup -17} erg s{sup -1} cm{sup -2}. We obtain the Ly{alpha} luminosity function with a best-fit Schechter parameters of log L* = 42.9{sup +0.5} {sub -0.3} erg s{sup -1} and {phi}* = 1.2{sup +8.0} {sub -1.1} x 10{sup -4} Mpc{sup -3} for {alpha} = -1.5 (fixed). The two-point correlation function for our LAE sample is {xi}(r) = (r/4.4{sup +5.7} {sub -2.9} Mpc){sup -1.90{+-}}{sup 0.22}. In order to investigate the field-to-field variations of the properties of Ly{alpha} emitters, we divide the survey area into nine tiles of 0.{sup 0}5 x 0.{sup 0}5 each. We find that the number density varies with a factor of {approx_equal}2 from field to field with high statistical significance. However, we find no significant field-to-field variance when we divide the field into four tiles with 0.{sup 0}7 x 0.{sup 0}7 each. We conclude that at least 0.5 deg{sup 2} survey area is required to derive averaged properties of LAEs at z {approx} 5, and our survey field is wide enough to overcome the cosmic variance.

  10. The tele-screening model for diabetic retinopathy: evaluating the influence of mydriasis on the gradability of a single-field 45 degrees digital fundus image.

    PubMed

    Raman, Rajiv; Rani, Padmaja Kumari; Mahajan, Sheshadri; Paul, Pradeep; Gnanamoorthy, P; Krishna, M S; Sharma, Tarun

    2007-10-01

    The purpose of this article was to study the influence of pupillary dilatation on the gradability of a single-field 45 degrees digital fundus images taken in a telescreening model for diabetic retinopathy. Telescreening camps for diabetic retinopathy were organized in rural south India. Sixty-eight patients with type 2 diabetes were enrolled. Single-field 45 degrees digital fundus images were obtained before (group I) and after pupillary dilatation (group II). Digital fundus images were obtained using nonmydriatic fundus camera and transmitted in real time to the base hospital for grading by a retinal specialist. Various factors that could influence the gradability of images were studied, including patients' age and visual acuity, experience of the photographer, and interobserver variability. After pupillary dilatation, the nongradability of digital fundus images was reduced from 29.1% to 8.6%. With each line of improvement in Snellen's Visual acuity, the gradability improved by 12.1%; likewise, with each year of age, the gradability improved by 5.5% following mydriasis. Interobserver variation was excellent (k = 0.88). The learning curve of photographer had no effect on image gradability. Pupillary dilatation improves the gradability of a single-field 45 degrees digital fundus image during telescreening of diabetic retinopathy.

  11. The Nature of Hard X-Ray (3–24 keV) Detected Luminous Infrared Galaxies in the COSMOS Field

    NASA Astrophysics Data System (ADS)

    Matsuoka, Kenta; Ueda, Yoshihiro

    2017-04-01

    We investigate the nature of far-infrared (70 μm) and hard X-ray (3–24 keV) selected galaxies in the COSMOS field detected with both Spitzer and the Nuclear Spectroscopic Telescope Array (NuSTAR). By matching the Spitzer-COSMOS catalog with the NuSTAR-COSMOS catalog, we obtain a sample consisting of a hyperluminous infrared galaxy with {log}({L}{IR}/{L}ȯ )≥slant 13, 12 ultraluminous infrared galaxies with 12≤slant {log} ({L}{IR}/{L}ȯ )≤slant 13, and 10 luminous infrared galaxies with 11≤slant {log} ({L}{IR}/{L}ȯ )≤slant 12, i.e., 23 Hy/U/LIRGs in total. Using their X-ray hardness ratios, we find that 12 sources are obscured active galactic nuclei (AGNs) with absorption column densities of {N}{{H}}> {10}22 cm‑2, including several Compton-thick ({N}{{H}}∼ {10}24 cm‑2) AGN candidates. On the basis of the infrared (60 μm) and intrinsic X-ray luminosities, we examine the relation between star formation (SF) and AGN luminosities of the 23 Hy/U/LIRGs. We find that the correlation is similar to that of the optically selected AGNs reported by Netzer, whereas local, far-infrared selected U/LIRGs show higher SF-to-AGN luminosity ratios than the average of our sample. This result suggests that our Hy/U/LIRGs detected both with Spitzer and NuSTAR are likely situated in a transition epoch between AGN-rising and cold-gas diminishing phases in SF-AGN evolutional sequences. The nature of a Compton-thick AGN candidate newly detected above 8 keV with NuSTAR (ID 245 in Civano et al.) is briefly discussed.

  12. The galaxy ancestor problem

    NASA Astrophysics Data System (ADS)

    Disney, M. J.; Lang, R. H.

    2012-11-01

    The Hubble Space Telescope (HST) findsgalaxies whose Tolman dimming exceeds 10 mag. Could evolution alone explain these as our ancestor galaxies or could they be representatives of quite a different dynasty whose descendants are no longer prominent today? We explore the latter hypothesis and argue that surface brightness selection effects naturally bring into focus quite different dynasties from different redshifts. Thus, the HST z = 7 galaxies could be examples of galaxies whose descendants are both too small and too choked with dust to be recognizable in our neighbourhood easily today. Conversely, the ancestors of the Milky Way and its obvious neighbours would have completely sunk below the sky at z > 1.2, unless they were more luminous in the past, although their diffused light could account for the missing re-ionization flux. This Succeeding Prominent Dynasties Hypothesis (SPDH) fits the existing observations both naturally and well even without evolution, including the bizarre distributions of galaxy surface brightness found in deep fields, the angular size ˜(1 + z)-1 law, 'downsizing' which turns out to be an 'illusion' in the sense that it does not imply evolution, 'infant mortality', that is, the discrepancy between stars born and stars seen, the existence of 'red nuggets', and finally the recently discovered and unexpected excess of quasar absorption line damped Lyα systems at high redshift. If galaxies were not significantly brighter in the past and the SPDH were true, then a large proportion of galaxies could remain sunk from sight, possibly at all redshifts, and these sunken galaxies could supply the missing re-ionization flux. We show that fishing these sunken galaxies out of the sky by their optical emissions alone is practically impossible, even when they are nearby. More ingenious methods are needed to detect them. It follows that disentangling galaxy evolution through studying ever higher redshift galaxies may be a forlorn hope because one could

  13. AN ULTRAVIOLET ULTRA-LUMINOUS LYMAN BREAK GALAXY AT Z = 2.78 IN NDWFS BOOeTES FIELD {sup ,} {sup ,}

    SciTech Connect

    Bian Fuyan; Fan Xiaohui; Jiang Linhua; McGreer, Ian; Wang Ran; Dey, Arjun; Green, Richard F.; Maiolino, Roberto; Walter, Fabian; Lin, Yen-Ting

    2012-10-01

    We present one of the most ultraviolet (UV) luminous Lyman break galaxies (LBGs; J1432+3358) at z = 2.78, discovered in the NOAO Deep Wide-Field Survey Booetes field. The R-band magnitude of J1432+3358 is 22.29 AB, more than two magnitudes brighter than typical L* LBGs at this redshift. The deep z-band image reveals two components of J1432+3358 separated by 1.''0 with a flux ratio of 3:1. The high signal-to-noise ratio rest-frame UV spectrum shows Ly{alpha} emission line and interstellar medium absorption lines. The absence of N V and C IV emission lines, and the non-detection in X-ray and radio wavelengths and mid-infrared (MIR) colors indicates weak or no active galactic nuclei (<10%) in this galaxy. The galaxy shows a broader line profile, with a FWHM of about 1000 km s{sup -1} and a larger outflow velocity ( Almost-Equal-To 500 km s{sup -1}) than those of typical z {approx} 3 LBGs. The physical properties are derived by fitting the spectral energy distribution (SED) with stellar synthesis models. The dust extinction, E(B - V) = 0.12, is similar to that in normal LBGs. The star formation rates (SFRs) derived from the SED fitting and the dust-corrected UV flux are consistent with each other, {approx}300 M{sub Sun} yr{sup -1}, and the stellar mass is (1.3 {+-} 0.3) Multiplication-Sign 10{sup 11} M{sub Sun }. The SFR and stellar mass in J1432+3358 are about an order of magnitude higher than those in normal LBGs. The SED-fitting results support that J1432+3358 has a continuous star formation history, with a star formation episode of 6.3 Multiplication-Sign 10{sup 8} yr. The morphology of J1432+3358 and its physical properties suggest that J1432+3358 is in an early phase of a 3:1 merger process. The unique properties and the low space number density ({approx}10{sup -7} Mpc{sup -3}) are consistent with the interpretation that such galaxies are either found in a short unobscured phase of the star formation or that a small fraction of intensive star-forming galaxies are

  14. VizieR Online Data Catalog: VEGAS: A VST Early-type GAlaxy Survey (Capaccioli+, 2015)

    NASA Astrophysics Data System (ADS)

    Capaccioli, M.; Spavone, M.; Grado, A.; Iodice, E.; Limatola, L.; Napolitano, N. R.; Cantiello, M.; Paolillo, M.; Romanowsky, A. J.; Forbes, D. A.; Puzia, T. H.; Raimondo, G.; Schipani, P.

    2015-11-01

    The VST Elliptical GAlaxies Survey (VEGAS) is a deep multiband (g,r,i) imaging survey of early-type galaxies in the southern hemisphere carried out with VST at the ESO Cerro Paranal Observatory (Chile). The large field of view (FOV) of the OmegaCAM mounted on VST (one square degree matched by pixels 0.21-arcsec wide), together with its high efficiency and spatial resolution (typically better than 1-arcsec; Kuijken, 2011Msngr.146....8K) allows us to map with a reasonable integration time the surface brightness of a galaxy out to isophotes encircling about 95% of the total light. Observations started in October 2011 (ESO Period 88), and since then, the survey has acquired exposures for about 20 bright galaxies (and for a wealth of companion objects in the field), for a totality of ~80h (up to Period 93). (1 data file).

  15. MaNGA: Mapping Nearby Galaxies at Apache Point Observatory

    NASA Astrophysics Data System (ADS)

    Bundy, Kevin

    2015-01-01

    I present the design and execution of a new survey to obtain resolved spectroscopy for 10,000 nearby galaxies called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory). One of three core programs in the 6-year SDSS-IV project that began on July 1st, 2014, MaNGA will deploy 17 fiber-bundle IFUs across the Sloan 2.5m Telescope's 3 degree field-of-view, targeting a mass-selected sample with a median redshift of 0.03, typical spatial resolution of 1-2 kpc, and a per-fiber signal-to-noise ratio of 4-8 in the outskirts of target galaxies. For each galaxy in the sample, MaNGA will provide maps and measured gradients of the composition and dynamics of both stars and gas. Early results highlight MaNGA's potential to shed light on the ionization and chemical enrichment of gas in galaxies, spatial patterns in their star formation histories, and the internal makeup of stellar populations. MaNGA's unprecedented data set will not only provide powerful new insight on galaxy formation and evolution but will serve as a valuable benchmark for future high-z observations from large telescopes as well as space-based facilities.

  16. The star formation histories of local group dwarf galaxies. I. Hubble space telescope/wide field planetary camera 2 observations

    SciTech Connect

    Weisz, Daniel R.; Dolphin, Andrew E.; Skillman, Evan D.; Holtzman, Jon; Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F.

    2014-07-10

    We present uniformly measured star formation histories (SFHs) of 40 Local Group (LG) dwarf galaxies based on color-magnitude diagram (CMD) analysis from archival Hubble Space Telescope imaging. We demonstrate that accurate SFHs can be recovered from CMDs that do not reach the oldest main sequence turn-off (MSTO), but emphasize that the oldest MSTO is critical for precisely constraining the earliest epochs of star formation. We find that: (1) the average lifetime SFHs of dwarf spheroidals (dSphs) can be approximated by an exponentially declining SFH with τ ∼ 5 Gyr; (2) lower luminosity dSphs are less likely to have extended SFHs than more luminous dSphs; (3) the average SFHs of dwarf irregulars (dIrrs), transition dwarfs, and dwarf ellipticals can be approximated by the combination of an exponentially declining SFH (τ ∼ 3-4 Gyr) for lookback ages >10-12 Gyr ago and a constant SFH thereafter; (4) the observed fraction of stellar mass formed prior to z = 2 ranges considerably (80% for galaxies with M < 10{sup 5} M{sub ☉} to 30% for galaxies with M > 10{sup 7} M{sub ☉}) and is largely explained by environment; (5) the distinction between 'ultra-faint' and 'classical' dSphs is arbitrary; (6) LG dIrrs formed a significantly higher fraction of stellar mass prior to z = 2 than the Sloan Digital Sky Survey galaxies from Leitner and the SFHs from the abundance matching models of Behroozi et al. This may indicate higher than expected star formation efficiencies at early times in low mass galaxies. Finally, we provide all the SFHs in tabulated electronic format for use by the community.

  17. FIRST SPECTROSCOPIC MEASUREMENTS OF [O III] EMISSION FROM Ly{alpha} SELECTED FIELD GALAXIES AT z {approx} 3.1

    SciTech Connect

    McLinden, Emily M.; Rhoads, James E.; Malhotra, Sangeeta; Hibon, Pascale; Richardson, Mark L. A.; Finkelstein, Steven L.; Cresci, Giovanni; Quirrenbach, Andreas; Pasquali, Anna; Bian Fuyan; Fan Xiaohui; Woodward, Charles E.

    2011-04-01

    We present the first spectroscopic measurements of the [O III] 5007 A line in two z {approx} 3.1 Ly{alpha} emitting galaxies (LAEs) using the new near-infrared instrument LUCIFER1 on the 8.4 m Large Binocular Telescope. We also describe the optical imaging and spectroscopic observations used to identify these LAEs. Using the [O III] line we have measured accurate systemic redshifts for these two galaxies, and discovered a velocity offset between the [O III] and Ly{alpha} lines in both, with the Ly{alpha} line peaking 342 and 125 km s{sup -1} redward of the systemic velocity. These velocity offsets imply that there are powerful outflows in high-redshift LAEs. They also ease the transmission of Ly{alpha} photons through the interstellar medium and intergalactic medium around the galaxies. By measuring these offsets directly, we can refine both Ly{alpha}-based tests for reionization, and Ly{alpha} luminosity function measurements where the Ly{alpha} forest affects the blue wing of the line. Our work also provides the first direct constraints on the strength of the [O III] line in high-redshift LAEs. We find [O III] fluxes of 7 and 36 x10{sup -17} erg s{sup -1} cm{sup -2} in two z {approx} 3.1 LAEs. These lines are strong enough to dominate broadband flux measurements that include the line (in this case, K{sub s} -band photometry). Spectral energy distribution fits that do not account for the lines would therefore overestimate the 4000 A (and/or Balmer) break strength in such galaxies, and hence also the ages and stellar masses of such high-z galaxies.

  18. Structure and stellar content of dwarf galaxies. VII. B and R photometry of 25 southern field dwarfs and a disk parameter analysis of the complete sample of nearby irregulars

    NASA Astrophysics Data System (ADS)

    Parodi, B. R.; Barazza, F. D.; Binggeli, B.

    2002-06-01

    We present B and R band surface photometry of 25 Southern field dwarf galaxies within a distance of 10 Mpc. For each galaxy we give the essential model-free photometric parameters and, by fitting exponentials to the surface brightness profiles, the central extrapolated surface brightness and the exponential scale length, in both colour bands. Surface brightness and colour profiles are shown. One of the objects, a very faint dwarf elliptical in the vicinity of NGC 2784, has been discovered in the course of this work. Drawing on the data from this and all previous papers of this series, we construct a complete sample of 72 late-type (``irregular'') dwarf galaxies in nearby groups and the field within the 10 Mpc volume, to study the exponential-disk parameter relations of these galaxies with respect to galaxy environment. We confirm our previous finding of statistically lower scale lengths/higher central surface brightnesses for field and group galaxies as compared to cluster galaxies. However, using a clear-cut definition of ``group'' versus ``field'' environment, we find no significant difference in the photometric structure of group and field irregulars. A difference in the star formation history may partly account for this structure-environment relation: for a given luminosity cluster dwarfs are on average redder than field and group galaxies. We also report evidence for the colour gradients of dwarf irregulars being roughly inversely proportional to the disk scale lengths. Supplementing our photometric data with kinematic data from the literature, we study possible relations with kinematic properties of the inner disk. Applying the dark matter scaling relations for a Burkert halo we show that for field and group galaxies of a given luminosity faster-than-mean disk rotational velocities at a radius of about two scale lengths are correlated with larger-than-mean disk scale lengths. Based on observations collected at the European Southern Observatory, La Silla

  19. Why Are Some Academic Fields Tipping toward Female? The Sex Composition of U.S. Fields of Doctoral Degree Receipt, 1971-2002

    ERIC Educational Resources Information Center

    England, Paula; Allison, Paul; Li, Su; Mark, Noah; Thompson, Jennifer; Budig, Michelle J.; Sun, Han

    2007-01-01

    Using data on the number of men and women who received doctorates in all academic fields from 1971 to 2002, the authors examine changes in the sex composition of fields. During this period, the proportion of women who received doctorates increased dramatically from 14 percent to 46 percent. Regression models with fixed effects indicate no evidence…