Science.gov

Sample records for degree polarization rotator

  1. Detection of degree-scale B-mode polarization and studying cosmic polarization rotation with the BICEP1 and BICEP2 telescopes

    NASA Astrophysics Data System (ADS)

    Kaufman, Jonathan Philip

    The BICEP1 and BICEP2 telescopes studied the temperature and polarization of the Cosmic Microwave Background (CMB) from 2006 -- 2008 and 2010 -- 2012, respectively, producing the deepest maps of polarization created to date. From BICEP2 three-year data, we detect B-mode polarization at the degree-scale above the expectation from lensed-ΛCDM to greater than 5sigma significance, consistent with that expected from gravitational waves created during Inflation. Instrumental systematic effects have been characterized and ruled out, and galactic foreground contamination is disfavored by the data. Additionally, correlations between temperature and B-mode polarization and between E-mode and B-mode polarization show evidence of polarization rotation of --1° to 5sigma significance; however, adding systematic uncertainty reduces this significance to ˜ 2sigma. These measurements, combined with other CMB and astrophysical measurements, point to possible parity violating physics like cosmic birefringence, but more precise calibration techniques are required to break the degeneracy between cosmic polarization rotation and systematic effects. Improved calibration is possible with current generation technology and may be achieved within the next few years. In this work, I present experimental and analysis techniques employed for BICEP1 and BICEP2 to measure B-mode polarization and temperature and polarization correlations, as well as the scientific motivation, results, and a path forward for future measurements.

  2. A Translational Polarization Rotator

    NASA Technical Reports Server (NTRS)

    Chuss, David T.; Wollack, Edward J.; Pisano, Giampaolo; Ackiss, Sheridan; U-Yen, Kongpop; Ng, Ming wah

    2012-01-01

    We explore a free-space polarization modulator in which a variable phase introduction between right- and left-handed circular polarization components is used to rotate the linear polarization of the outgoing beam relative to that of the incoming beam. In this device, the polarization states are separated by a circular polarizer that consists of a quarter-wave plate in combination with a wire grid. A movable mirror is positioned behind and parallel to the circular polarizer. As the polarizer-mirror distance is separated, an incident liear polarization will be rotated through an angle that is proportional to the introduced phase delay. We demonstrate a prototype device that modulates Stokes Q and U over a 20% bandwidth.

  3. Polarizance of a synthetic mica crystal polarizer and the degree of linear polarization of an undulator beamline at 880 eV evaluated by the rotating-analyzer method

    SciTech Connect

    Imazono, Takashi; Hirono, Toko; Kimura, Hiroaki; Saitoh, Yuji; Ishino, Masahiko; Muramatsu, Yasuji; Koike, Masato; Sano, Kazuo

    2005-12-15

    The polarization performance of a reflection-type polarizer made with a synthetic mica (fluorophlogopite) single crystal (002) in symmetric Bragg geometry was evaluated at the photon energy of 880 eV by means of the rotating-analyzer method. An experiment was performed at the undulator beamline at the SPring-8. The reflectance in the s-polarization configuration was 2.6% at an incidence angle of around 45 deg. As the result of the analysis based on the rotating-analyzer method, the polarizance of the polarizer and the degree of linear polarization of the incident light at 880 eV were found to be 0.997{+-}0.002 and 0.993{+-}0.004, respectively.

  4. Detection of endometrial lesions by degree of linear polarization maps

    NASA Astrophysics Data System (ADS)

    Kim, Jihoon; Fazleabas, Asgerally; Walsh, Joseph T.

    2010-02-01

    Endometriosis is one of the most common causes of chronic pelvic pain and infertility and is characterized by the presence of endometrial glands and stroma outside of the uterine cavity. A novel laparoscopic polarization imaging system was designed to detect endometriosis by imaging endometrial lesions. Linearly polarized light with varying incident polarization angles illuminated endometrial lesions. Degree of linear polarization image maps of endometrial lesions were constructed by using remitted polarized light. The image maps were compared with regular laparoscopy image. The degree of linear polarization map contributed to the detection of endometriosis by revealing structures inside the lesion. The utilization of rotating incident polarization angle (IPA) for the linearly polarized light provides extended understanding of endometrial lesions. The developed polarization system with varying IPA and the collected image maps could provide improved characterization of endometrial lesions via higher visibility of the structure of the lesions and thereby improve diagnosis of endometriosis.

  5. Polarization Rotator For LCTV Spatial Light Modulator

    NASA Technical Reports Server (NTRS)

    Juday, Richard; Soutar, Colin

    1995-01-01

    Polarization varies electronically to select complex-amplitude operating curve. Curve best suited to specific optical-correlator task selected rapidly and repeatedly by use of simple electronic command. Operating curves adjusted only with difficulty, by mechanical rotation of polarizer. Contains electronically-variable polarization-rotating device in place of fixed polarizer, and possibly additional device in place of fixed analyzer.

  6. Polarizance of a synthetic mica crystal polarizer and the degree of linear polarization of an undulator beamline at 880 eV evaluated by the rotating-analyzer method

    NASA Astrophysics Data System (ADS)

    Imazono, Takashi; Hirono, Toko; Kimura, Hiroaki; Saitoh, Yuji; Ishino, Masahiko; Muramatsu, Yasuji; Koike, Masato; Sano, Kazuo

    2005-12-01

    The polarization performance of a reflection-type polarizer made with a synthetic mica (fluorophlogopite) single crystal (002) in symmetric Bragg geometry was evaluated at the photon energy of 880eV by means of the rotating-analyzer method. An experiment was performed at the undulator beamline at the SPring-8. The reflectance in the 880eV were found to be 0.997±0.002 and 0.993±0.004, respectively.

  7. Polarization rotation Bragg diffraction using Si wire waveguide grating and polarization rotator.

    PubMed

    Okayama, Hideaki; Onawa, Yosuke; Shimura, Daisuke; Yaegashi, Hiroki; Sasaki, Hironori

    2015-07-27

    We report polarization independent Bragg grating wavelength filter with high diffraction efficiency. A rib waveguide polarization rotator and antisymmetric grating structure for fundamental to first order diffraction are used to generate the polarization rotation Bragg diffraction. The diffraction efficiencies and peak wavelengths become the same for two orthogonal input polarizations. Strong diffraction is attained easily. The concept was verified by simulation and experiment. Polarization independent band-pass filter consisting of polarization beam splitter and polarization rotation Bragg diffraction was experimentally demonstrated.

  8. Transmission intensity disturbance in a rotating polarizer

    NASA Astrophysics Data System (ADS)

    Fan, J. Y.; Li, H. X.; Wu, F. Q.

    2008-01-01

    Random disturbance was observed in transmission intensity in various rotating prism polarizers when they were used in optical systems. As a result, the transmitted intensity exhibited cyclic significant deviation from the Malus cosine-squared law with rotation of prisms. The disturbance spoils the light quality transmitted through the polarizer thus dramatically depresses the accuracies of measurements when the prim polarizers were used in light path. A rigorous model is presented based on the solid basis of multi-beams interference, and theoretical results show good agreement with measured values and also indicate effective method for reducing the disturbance.

  9. Polarization rotation, reference frames, and Mach's principle

    NASA Astrophysics Data System (ADS)

    Brodutch, Aharon; Terno, Daniel R.

    2011-12-01

    Polarization of light rotates in a gravitational field. The accrued phase is operationally meaningful only with respect to a local polarization basis. In stationary space-times, we construct local reference frames that allow us to isolate the Machian gravimagnetic effect from the geodetic (mass) contribution to the rotation. The Machian effect is supplemented by the geometric term that arises from the choice of standard polarizations. The phase accrued along a close trajectory is gauge-independent and is zero in the Schwarzschild space-time. The geometric term may give a dominant contribution to the phase. We calculate polarization rotation for several trajectories and find it to be more significant than is usually believed, pointing to its possible role as a future gravity probe.

  10. Reducing parametric backscattering by polarization rotation

    SciTech Connect

    Barth, Ido; Fisch, Nathaniel J.

    2016-10-01

    When a laser passes through underdense plasmas, Raman and Brillouin Backscattering can reflect a substantial portion of the incident laser energy. This is a major loss mechanism, for example, in employing lasers in inertial confinement fusion. But, by slow rotation of the incident linear polarization, the overall reflectivity can be reduced significantly. Particle in cell simulations show that, for parameters similar to those of indirect drive fusion experiments, polarization rotation reduces the reflectivity by a factor of 5. A general, fluid-model based analytical estimation for the reflectivity reduction agrees with simulations. However, in identifying the source of the backscatter reduction, it is difficult to disentangle the rotating polarization from the frequency separation based approach used to engineer the beam's polarization. Though the backscatter reduction arises similarly to other approaches that employ frequency separation, in the case here, the intensity remains constant in time.

  11. Reducing parametric backscattering by polarization rotation

    DOE PAGES

    Barth, Ido; Fisch, Nathaniel J.

    2016-10-01

    When a laser passes through underdense plasmas, Raman and Brillouin Backscattering can reflect a substantial portion of the incident laser energy. This is a major loss mechanism, for example, in employing lasers in inertial confinement fusion. But, by slow rotation of the incident linear polarization, the overall reflectivity can be reduced significantly. Particle in cell simulations show that, for parameters similar to those of indirect drive fusion experiments, polarization rotation reduces the reflectivity by a factor of 5. A general, fluid-model based analytical estimation for the reflectivity reduction agrees with simulations. However, in identifying the source of the backscatter reduction,more » it is difficult to disentangle the rotating polarization from the frequency separation based approach used to engineer the beam's polarization. Though the backscatter reduction arises similarly to other approaches that employ frequency separation, in the case here, the intensity remains constant in time.« less

  12. Reducing parametric backscattering by polarization rotation

    NASA Astrophysics Data System (ADS)

    Barth, Ido; Fisch, Nathaniel J.

    2016-10-01

    When a laser passes through underdense plasmas, Raman and Brillouin Backscattering can reflect a substantial portion of the incident laser energy. This is a major loss mechanism, for example, in employing lasers in inertial confinement fusion. However, by slow rotation of the incident linear polarization, the overall reflectivity can be reduced significantly. Particle in cell simulations show that, for parameters similar to those of indirect drive fusion experiments, polarization rotation reduces the reflectivity by a factor of 5. A general, fluid-model based analytical estimation for the reflectivity reduction agrees with simulations. However, in identifying the source of the backscatter reduction, it is difficult to disentangle the rotating polarization from the frequency separation based approach used to engineer the beam's polarization. Although the backscatter reduction arises similarly to other approaches that employ frequency separation, in the case here, the intensity remains constant in time.

  13. Spectral degree of polarization uniformity for polarization-sensitive OCT.

    PubMed

    Baumann, Bernhard; Zotter, Stefan; Pircher, Michael; Götzinger, Erich; Rauscher, Sabine; Glösmann, Martin; Lammer, Jan; Schmidt-Erfurth, Ursula; Gröger, Marion; Hitzenberger, Christoph K

    Depolarization of light can be measured by polarization-sensitive optical coherence tomography (PS-OCT) and has been used to improve tissue discrimination as well as segmentation of pigmented structures. Most approaches to depolarization assessment for PS-OCT - such as the degree of polarization uniformity (DOPU) - rely on measuring the uniformity of polarization states using spatial evaluation kernels. In this article, we present a different approach which exploits the spectral dimension. We introduce the spectral DOPU for the pixelwise analysis of polarization state variations between sub-bands of the broadband light source spectrum. Alongside a comparison with conventional spatial and temporal DOPU algorithms, we demonstrate imaging in the healthy human retina, and apply the technique for contrasting hard exudates in diabetic retinopathy and investigating the pigment epithelium of the rat iris.

  14. Spectral degree of polarization uniformity for polarization-sensitive OCT

    NASA Astrophysics Data System (ADS)

    Baumann, Bernhard; Zotter, Stefan; Pircher, Michael; Götzinger, Erich; Rauscher, Sabine; Glösmann, Martin; Lammer, Jan; Schmidt-Erfurth, Ursula; Gröger, Marion; Hitzenberger, Christoph K.

    2015-12-01

    Depolarization of light can be measured by polarization-sensitive optical coherence tomography (PS-OCT) and has been used to improve tissue discrimination as well as segmentation of pigmented structures. Most approaches to depolarization assessment for PS-OCT - such as the degree of polarization uniformity (DOPU) - rely on measuring the uniformity of polarization states using spatial evaluation kernels. In this article, we present a different approach which exploits the spectral dimension. We introduce the spectral DOPU for the pixelwise analysis of polarization state variations between sub-bands of the broadband light source spectrum. Alongside a comparison with conventional spatial and temporal DOPU algorithms, we demonstrate imaging in the healthy human retina, and apply the technique for contrasting hard exudates in diabetic retinopathy and investigating the pigment epithelium of the rat iris.

  15. Electrically rotating suspended films of polar liquids

    NASA Astrophysics Data System (ADS)

    Shirsavar, R.; Amjadi, A.; Tonddast-Navaei, A.; Ejtehadi, M. R.

    2011-02-01

    Controlled rotation of a suspended soap water film, simply generated by applying an electric field, has been reported recently. The film rotates when the applied electric field exceeds a certain threshold. In this study, we investigate the phenomenon in films made of a number of other liquids with various physical and chemical properties. Our measurements show that the intrinsic electrical dipole moments of the liquid molecules seems to be vital for the corresponding film rotation. All the investigated rotating liquids have a molecular electric dipole moment of above 1 Debye, while weakly polar liquids do not rotate. However, the liquids investigated here cover a wide range of physical parameters (e.g. viscosity, density, conductivity, etc.). So far, no significant correlation has been observed between the electric field thresholds and macroscopic properties of the liquids.

  16. Renormalized vacuum polarization of rotating black holes

    NASA Astrophysics Data System (ADS)

    Ferreira, Hugo R. C.

    2015-04-01

    Quantum field theory on rotating black hole spacetimes is plagued with technical difficulties. Here, we describe a general method to renormalize and compute the vacuum polarization of a quantum field in the Hartle-Hawking state on rotating black holes. We exemplify the technique with a massive scalar field on the warped AdS3 black hole solution to topologically massive gravity, a deformation of (2 + 1)-dimensional Einstein gravity. We use a "quasi-Euclidean" technique, which generalizes the Euclidean techniques used for static spacetimes, and we subtract the divergences by matching to a sum over mode solutions on Minkowski spacetime. This allows us, for the first time, to have a general method to compute the renormalized vacuum polarization, for a given quantum state, on a rotating black hole, such as the physically relevant case of the Kerr black hole in four dimensions.

  17. Polarization Properties of Rotation Powered Pulsars

    NASA Technical Reports Server (NTRS)

    Harding Alice K.

    2009-01-01

    Polarization measurements of rotation-powered pulsars and their nebulae have unique diagnostic potential. The polarization position angle of the pulsar wind nebula, as is know for the Crab pulsar, can tell us the orientation of the spin axis. Phase-resolved polarimetry of pulsars has had enormous diagnostic capability at radio and optical wavelengths and could also be a powerful diagnostic in the X-ray range. Measurement of the polarization properties as a function of pulse phase can therefore provide a multidimensional mapping of the pulsar emission. In the 'rotating vector' model, radiation originating near a magnetic pole is expected to show a characteristic S-shaped swing of the position angle vs. pulse phase. In this case it is possible to determine the magnetic inclination and viewing angles. Radiation originating further from the poles or further above the neutron star surface will have a more complex polarization signature, as a result of relativistic effects of aberration and time-of-flight delays and may also cause depolarization of the signal. I will discuss predicted polarization properties of pulsed emission in polar cap models, where radiation originates near the neutron star surface at the magnetic poles, and in slot gap and outer gap models, where radiation originates over a range of altitudes out to the speed-of-light cylinder.

  18. Reducing parametric backscattering by polarization rotation

    NASA Astrophysics Data System (ADS)

    Barth, Ido; Fisch, Nathaniel

    2016-10-01

    When a laser passes through underdense plasmas, Raman and Brillouin Backscattering can reflect a substantial portion of the incident laser energy. This is a major loss mechanism, for example, in inertial confinement fusion. However, by slow rotation of the incident linear polarization, the overall reflectivity can be reduced significantly. Particle in cell simulations show that, for parameters similar to those of indirect drive fusion experiments, polarization rotation reduces the reflectivity by a factor of 5. A general, fluid-model based, analytical estimation for the reflectivity reduction agrees with simulations. This work was supported by NNSA Grant No. DE- NA0002948, AFOSR Grant No. FA9550-15-1-0391, and DOE Contract No. DE-AC02-09CH11466.

  19. Degree of polarization of type-II unpolarized light

    SciTech Connect

    Luis, Alfredo

    2007-05-15

    We address a quantitative determination of the degree of polarization of type-II unpolarized light via the computation of the distance between the polarization distribution and the uniform distribution associated with fully unpolarized light (i.e., type-I unpolarized light or natural light). We determine the maximum degree of polarization for type-II unpolarized light and the states reaching it. We show that the degree of polarization can be arbitrarily large, approaching complete polarization for increasing mean photon numbers.

  20. Macroscopic rotation of photon polarization induced by a single spin.

    PubMed

    Arnold, Christophe; Demory, Justin; Loo, Vivien; Lemaître, Aristide; Sagnes, Isabelle; Glazov, Mikhaïl; Krebs, Olivier; Voisin, Paul; Senellart, Pascale; Lanco, Loïc

    2015-02-17

    Entangling a single spin to the polarization of a single incoming photon, generated by an external source, would open new paradigms in quantum optics such as delayed-photon entanglement, deterministic logic gates or fault-tolerant quantum computing. These perspectives rely on the possibility that a single spin induces a macroscopic rotation of a photon polarization. Such polarization rotations induced by single spins were recently observed, yet limited to a few 10(-3) degrees due to poor spin-photon coupling. Here we report the enhancement by three orders of magnitude of the spin-photon interaction, using a cavity quantum electrodynamics device. A single hole spin in a semiconductor quantum dot is deterministically coupled to a micropillar cavity. The cavity-enhanced coupling between the incoming photons and the solid-state spin results in a polarization rotation by ± 6° when the spin is optically initialized in the up or down state. These results open the way towards a spin-based quantum network.

  1. Surface plasmon induced polarization rotation and optical vorticity in a single mode waveguide.

    PubMed

    Davids, P S; Block, B A; Reshotko, M R; Cadien, K C

    2007-07-23

    The control and manipulation of the mode polarization state in a single mode dielectric waveguide is of considerable significance for optical information processing utilizing the polarization state to store digital information and integrated photonic devices used for high speed signaling. Here we report on an integrated on-chip mode polarization rotation based on short metal Cu electrodes placed in close proximity to the dielectric waveguide core. Polarization mode rotation with specific rotation of 10(4) degrees/mm is observed for offset metallic electrodes placed diagonally along a single mode dielectric waveguide. The mechanism for the polarization rotation is shown to be directional coupling into guided surface plasmon modes at the metal corners and coupling between the guided plasmon modes. This inter-plasmon coupling gives rise to giant polarization rotation and optical vorticity (helical power flow) in the waveguide.

  2. Submicron omega-shaped plasmonic polarization rotator

    NASA Astrophysics Data System (ADS)

    Andrawis, Robert R.; Swillam, Mohamed A.; Soliman, Ezzeldin A.

    2014-10-01

    In this paper, a novel compact plasmonic polarization converter is proposed. This rotator is based on conversion between even and odd modes of the coupled nanostrip plasmonic transmission line. The even and odd modes of that line have vertical and horizontal polarization, respectively. The proposed structure is capable of transferring the optical field from the substrate to the surface of the chip. This energy transfer between the surface and the substrate can be utilized for multilevel optical routing in plasmonic circuits. The device is optimized using a genetic algorithm for optimal performance at the optical telecommunication range of 1.55 μm. The cross-coupling is minimized over a wide wavelength range. The results are confirmed using full-wave electromagnetic simulation. The study includes a sensitivity analysis of the device’s response to perturbation in its main parameters. This novel device is appropriate for various applications in telecommunications and biomedical sensing.

  3. Extremely compact slanted waveguide hybrid plasmonic polarization rotator

    NASA Astrophysics Data System (ADS)

    Nikoufard, Mahmoud; Hatami, Mohsen

    2017-01-01

    In this study, we proposed a novel slanted waveguide hybrid plasmonic polarization splitter based on mode evolution at 1.55 μm wavelength on silicon-on-insulator technology. The TM polarization is rotated to the TE polarization with a conversion length of 370 nm, polarization conversion efficiency of 85% and polarization extinction ratio larger than 18 dB.

  4. Degree of Polarization at Simultaneous Transmit: Theoretical Aspects

    SciTech Connect

    Galletti M.; Zrnic, D. S.

    2012-05-01

    We consider weather radar measurements at simultaneous transmission and simultaneous reception of horizontal and vertical polarizations and show that the degree of polarization at simultaneous transmit (p{sub s}) is related to differential reflectivity and copolar correlation coefficient at simultaneous transmit (namely, Z{sub DR}s and {rho}{sub hy}s). We evaluate the potential of degree of polarization at simultaneous transmit for weather radar applications. Ultimately, we explore the consequences of adjusting the transmit polarization state of dual-polarization weather radars to circular polarization.

  5. Freely-tunable broadband polarization rotator for terahertz waves

    NASA Astrophysics Data System (ADS)

    Peng, Ru-Wen; Fan, Ren-Hao; Zhou, Yu; Jiang, Shang-Chi; Xiong, Xiang; Huang, Xian-Rong; Wang, Mu

    It is known that commercially-available terahertz (THz) emitters usually generate linearly polarized waves only along certain directions, but in practice, a polarization rotator that is capable of rotating the polarization of THz waves to any direction is particularly desirable and it will have various important applications. In this work, we demonstrate a freely tunable polarization rotator for broadband THz waves using a three-rotating-layer metallic grating structure, which can conveniently rotate the polarization of a linearly polarized THz wave to any desired direction with nearly perfect conversion efficiency. The device performance has been experimentally demonstrated by both THz transmission spectra and direct imaging. The polarization rotation originates from multi wave interference in the three-layer grating structure based on the scattering-matrix analysis. We can expect that this active broadband polarization rotator has wide applications in analytical chemistry, biology, communication technology, imaging, etc.. Reference: R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and Mu Wang, Advanced Materials 27,1201(2015). Freely-tunable broadband polarization rotator for terahertz waves.

  6. Note: Fast, small, accurate 90° rotator for a polarizer.

    PubMed

    Shelton, David P; O'Donnell, William M; Norton, James L

    2011-03-01

    A permanent magnet stepper motor is modified to hold a dichroic polarizer inside the motor. Rotation of the polarizer by 90° ± 0.04° is accomplished within 80 ms. This device is used for measurements of the intensity ratio for two orthogonal linear polarized components of a light beam. The two selected polarizations can be rapidly alternated to allow for signal drift compensation, and the two selected polarizations are accurately orthogonal.

  7. Apodised aperture using rotation of plane of polarization

    DOEpatents

    Simmons, W.W.; Leppelmeier, G.W.; Johnson, B.C.

    1975-09-01

    An apodised aperture based on the rotation of plane of polarization producing desirable characteristics on a transmitted light beam such as beam profiling in high flux laser amplifier chains is described. The apodised aperture is made with a lossless element by using one or more polarizers and/or analyzers and magneto-optical Faraday means for selectively rotating the plane of polarized radiation over the cross section to effect the desired apodisation. (auth)

  8. Spirit 360-Degree View, Sol 388 (polar)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    NASA's Mars Exploration Rover Spirit used its navigation camera to take the images combined into this 360-degree view of the rover's surroundings on Spirit's 388th martian day, or sol (Feb. 4, 2005). Spirit had driven about 13 meters (43 feet) uphill toward 'Cumberland Ridge' on this sol. This location is catalogued as Spirit's Site 102, Position 513. The view is presented in a cylindrical projection with geometric and brightness seam correction.

  9. Measurement of Small Optical Polarization Rotations

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2009-01-01

    When data with and without an optically active sample are acquired simultaneously while one manually rotates the analyser, the graph of the first signal versus the second one is an ellipse whose shape shows the phase shift between the two signals; this shift is twice the optical rotation. There is no need to measure the rotation of the analyser or…

  10. Polarization rotation under two-photon Raman resonance for magnetometry

    SciTech Connect

    Pradhan, S.; Behera, R.; Das, A. K.

    2012-04-23

    The polarization rotation and coherent population trapping signal arising due to two photon process using linearly polarized light are found to be significantly enhanced for a Zeeman degenerate system. The zero crossing of the dispersive profile is found to be shifting proportional to the applied magnetic field, albeit the absorptive profile position remains invariant for a slightly imbalanced orthogonal circular polarization component. It provides an alternative method for precise measurement of vector magnetic field without requirement of a bias field. The use of polarization rotation signal for magnetic field measurement offers added advantage due to improved signal to noise ratio.

  11. Codes for QPSK modulation with invariance under 90 degrees rotation

    NASA Technical Reports Server (NTRS)

    Ungerboeck, Gottfried; Pietrobon, Steven S.

    1988-01-01

    The new rate 1/2 nonlinear convolutional codes for quadrature phase shift keying (QPSK) modulation allow the achievement of full 90 degree rotational invariance of coded QPSK signal sequences at no significant loss in real coding gains when compared to linear codes. For mobile communication systems operating in a fading environment with frequent periods of low signal-to-noise ratio and the possibility of losses of carrier phase synchronization in the receiver, the invariance to 90 degree ambiguous demodulation should be a significant advantage.

  12. New constraints on cosmic polarization rotation from B-mode polarization in the cosmic microwave background

    SciTech Connect

    Alighieri, Sperello di Serego; Ni, Wei-Tou; Pan, Wei-Ping E-mail: weitou@gmail.com

    2014-09-01

    SPTpol, POLARBEAR, and BICEP2 have recently measured the cosmic microwave background (CMB) B-mode polarization in various sky regions of several tens of square degrees and obtained BB power spectra in the multipole range 20-3000, detecting the components due to gravitational lensing and to inflationary gravitational waves. We analyze jointly the results of these three experiments and propose modifications to their analyses of the spectra to include in the model, in addition to the gravitational lensing and the inflationary gravitational wave components, and also the effects induced by the cosmic polarization rotation (CPR), if it exists within current upper limits. Although in principle our analysis would also lead to new constraints on CPR, in practice these can only be given on its fluctuations (δα{sup 2}), since constraints on its mean angle are inhibited by the derotation which is applied by current CMB polarization experiments, in order to cope with the insufficient calibration of the polarization angle. The combined data fits from all three experiments (with 29% CPR-SPTpol correlation, depending on the theoretical model) gives the constraint (δα{sup 2}){sup 1/2} < 27.3 mrad (1.°56), with r = 0.194 ± 0.033. These results show that the present data are consistent with no CPR detection and the constraint on CPR fluctuation is about 1.°5. This method of constraining the CPR is new, is complementary to previous tests, which use the radio and optical/UV polarization of radio galaxies and the CMB E-mode polarization, and adds a new constraint for the sky areas observed by SPTpol, POLARBEAR, and BICEP2.

  13. Polar rotation angle identifies elliptic islands in unsteady dynamical systems

    NASA Astrophysics Data System (ADS)

    Farazmand, Mohammad; Haller, George

    2016-02-01

    We propose rotation inferred from the polar decomposition of the flow gradient as a diagnostic for elliptic (or vortex-type) invariant regions in non-autonomous dynamical systems. We consider here two- and three-dimensional systems, in which polar rotation can be characterized by a single angle. For this polar rotation angle (PRA), we derive explicit formulas using the singular values and vectors of the flow gradient. We find that closed level sets of the PRA reveal elliptic islands in great detail, and singular level sets of the PRA uncover centers of such islands. Both features turn out to be objective (frame-invariant) for two-dimensional systems. We illustrate the diagnostic power of PRA for elliptic structures on several examples.

  14. Polarization of Directly Imaged Young Giant Planets as a Probe of Mass, Rotation, and Clouds

    NASA Technical Reports Server (NTRS)

    Marley, Mark Scott; Sengupta, Sujan

    2012-01-01

    Young, hot gas giant planets at large separations from their primaries have been directly imaged around several nearby stars. More such planets will likely be detected by ongoing and new imaging surveys with instruments such as the Gemini Planet Imager (GPI). Efforts continue to model the spectra of these planets in order to constrain their masses, effective temperatures, composition, and cloud structure. One potential tool for analyzing these objects, which has received relatively less attention, is polarization. Linear polarization of gas giant exoplanets can arise from the combined influences of light scattering by atmospheric dust and a rotationally distorted shape. The oblateness of gas giant planet increases of course with rotation rate and for fixed rotation also rises with decreasing gravity. Thus young, lower mass gas giant planets with youthful inflated radii could easily have oblateness greater than that of Saturn s 10%. We find that polarizations of over 1% may easily be produced in the near-infrared in such cases. This magnitude of polarization may be measurable by GPI and other instruments. Thus if detected, polarization of a young Jupiter places constraints on the combination of its gravity, rotation rate, and degree of cloudiness. We will present results of our multiple scattering analysis coupled with a self-consistent dusty atmospheric models to demonstrate the range of polarizations that might be expected from resolved exoplanets and the range of parameter space that such observations may inform.

  15. Scattering of circularly polarized light by a rotating black hole

    NASA Astrophysics Data System (ADS)

    Frolov, Valeri P.; Shoom, Andrey A.

    2012-07-01

    We study scattering of polarized light by a rotating (Kerr) black hole of mass M and angular momentum J. In order to keep trace of the polarization dependence of photon trajectories one can use the following dimensionless parameter: ɛ=±(ωM)-1, where ω is the photon frequency and the sign + (-) corresponds to the right (left) circular polarization. We assume that |ɛ|≪1 and use the modified geometric optics approximation developed in [Phys. Rev. D 84, 044026 (2011)]; that is, we include the first order in ɛ polarization-dependent terms into the eikonal equation. These corrections modify late-time behavior of photons. We demonstrate that the photon moves along a null curve, which in the limit ɛ=0 becomes a null geodesic. We focus on the scattering problem for polarized light. Namely, we consider the following problems: (i) How does the photon’s bending angle depend on its polarization? (ii) How does the position of the image of a pointlike source depend on its polarization? (iii) How does the arrival time of photons depend on their polarization? We perform the numerical calculations that illustrate these effects for an extremely rotating black hole and discuss their possible applications.

  16. Traceability study of optical fiber degree of polarization (DOP) measurement

    NASA Astrophysics Data System (ADS)

    Xu, Nan; Li, Jianwei; Li, Jian; Zhang, Zhixin

    2013-09-01

    Degree of polarization (DOP) is an important physical quantity for describing the optical polarization effect and is widely applied in optical fiber communication, optical fiber gyro and the related technologies. Currently, the optical polarization degree tester for the purpose of communication uses mainly two kinds of measurement methods: Stokes vector method and extremum method. At present, there isn't a standard to measure the accuracy and consistency of DOP parameter measurement by the devices listed above, affecting seriously the application of DOP parameter measurement in the fields of optical fiber gyro and optical fiber communication. So, it is urgent to table the accurate guarantees to trace the source of quantitative values of the DOP measuring devices and testers. In this paper, the polarization beam combination method is raised to research and manufacture the standard optical fiber light source device with the variable DOP, and an indicated error measurement has been conducted for a DOP meter. A kind of standard optical fiber light source device that uses a single light source to realize the variable DOP is put forward. It is used to provide the accurate and variable optical fiber polarization degree light with a scope of 0~100%. It is used to calibrate the DOP meters and widely applied in the field of national defense and optical communication fields. By using the standard optical power meter, DOP value by which the optical power meter calculates the optical signal can be measured, which will be used ultimately for calibration of the DOP meter. A measurement uncertainty of 0.5% is obtained using the polarization beam combination method.

  17. Wigner rotations and Iwasawa decompositions in polarization optics.

    PubMed

    Han, D; Kim, Y S; Noz, M E

    1999-07-01

    Wigner rotations and Iwasawa decompositions are manifestations of the internal space-time symmetries of massive and massless particles, respectively. It is shown to be possible to produce combinations of optical filters which exhibit transformations corresponding to Wigner rotations and Iwasawa decompositions. This is possible because the combined effects of rotation, phase-shift, and attenuation filters lead to transformation matrices of the six-parameter Lorentz group applicable to Jones vectors and Stokes parameters for polarized light waves. The symmetry transformations in special relativity lead to a set of experiments which can be performed in optics laboratories.

  18. Searching for Faraday rotation in cosmic microwave background polarization

    NASA Astrophysics Data System (ADS)

    Ruiz-Granados, B.; Battaner, E.; Florido, E.

    2016-08-01

    We use the Wilkinson Microwave Anisotropy Probe (WMAP) 9th-year foreground reduced data at 33, 41 and 61 GHz to derive a Faraday rotation at map and at angular power spectrum levels taking into account their observational errors. A processing mask provided by WMAP is used to avoid contamination from the disc of our Galaxy and local spurs. We have found a Faraday rotation component at both, map and power spectrum levels. The lack of correlation of the Faraday rotation with Galactic Faraday rotation, synchrotron and dust polarization from our Galaxy or with cosmic microwave background anisotropies or lensing suggests that it could be originated at reionization (ℓ ≲ 12). Even if the detected Faraday rotation signal is weak, the present study could contribute to establish magnetic fields strengths of B0 ˜ 10-8 G at reionization.

  19. Changes in the earth's rotation and low-degree gravitational field induced by earthquakes

    NASA Technical Reports Server (NTRS)

    Chao, B. Fong; Gross, Richard S.

    1987-01-01

    Analytical formulas based on the normal-mode theory are used together with a spherically symmetric earth model and the centroid-moment tensor solutions for earthquake sources to compute the earthquake-induced changes in the earth's rotation and low-degree harmonics of the gravitational field for the period 1977-1985. Spectral and statistical analyses are conducted on these changes. It is found that the earthquake-induced changes are two orders of magnitude smaller than those observed; most of these changes show strong evidence of nonrandomness either in their polarity or in their directions.

  20. Measurement of polarization with the Degree Angular Scale Interferometer

    NASA Astrophysics Data System (ADS)

    Leitch, E. M.; Kovac, J. M.; Pryke, C.; Carlstrom, J. E.; Halverson, N. W.; Holzapfel, W. L.; Dragovan, M.; Reddall, B.; Sandberg, E. S.

    2002-12-01

    Measurements of the cosmic microwave background (CMB) radiation can reveal with remarkable precision the conditions of the Universe when it was ~400,000 years old. The three most fundamental properties of the CMB are its frequency spectrum (which determines the temperature), and the fluctuations in both the temperature and polarization across a range of angular scales. The frequency spectrum has been well determined, and considerable progress has been made in measuring the power spectrum of the temperature fluctuations. But despite many efforts to measure the polarization, detection of this property of the CMB has hitherto been beyond the reach of even the most sensitive observations. Here we describe the Degree Angular Scale Interferometer (DASI), an array of radio telescopes, which for the past two years has conducted polarization-sensitive observations of the CMB from the Amundsen-Scott South Pole research station.

  1. Measurement of polarization with the Degree Angular Scale Interferometer.

    PubMed

    Leitch, E M; Kovac, J M; Pryke, C; Carlstrom, J E; Halverson, N W; Holzapfel, W L; Dragovan, M; Reddall, B; Sandberg, E S

    Measurements of the cosmic microwave background (CMB) radiation can reveal with remarkable precision the conditions of the Universe when it was approximately 400,000 years old. The three most fundamental properties of the CMB are its frequency spectrum (which determines the temperature), and the fluctuations in both the temperature and polarization across a range of angular scales. The frequency spectrum has been well determined, and considerable progress has been made in measuring the power spectrum of the temperature fluctuations. But despite many efforts to measure the polarization, detection of this property of the CMB has hitherto been beyond the reach of even the most sensitive observations. Here we describe the Degree Angular Scale Interferometer (DASI), an array of radio telescopes, which for the past two years has conducted polarization-sensitive observations of the CMB from the Amundsen-Scott South Pole research station.

  2. Polarization-induced phase noise in fiber optic Michelson interferometer with Faraday rotator mirrors

    NASA Astrophysics Data System (ADS)

    Wu, Yuefeng; Li, Fang; Zhang, Wentao; Xiao, Hao; Liu, Yuliang

    2008-11-01

    Polarization-induced phase noise in Michelson interferometer with imperfect Faraday rotator mirrors was investigated. This kind of noise generates from the rotation angle errors of Faraday rotator mirrors and external polarization perturbation. The conversion factor κ, representing the magnitude conversion ability from polarization-noise to polarization induced phase-noise, have been theoretically evaluated and experimentally investigated.

  3. Process and apparatus for measuring degree of polarization and angle of major axis of polarized beam of light

    DOEpatents

    Decker, Derek E.; Toeppen, John S.

    1994-01-01

    Apparatus and process are disclosed for calibrating measurements of the phase of the polarization of a polarized beam and the angle of the polarized optical beam's major axis of polarization at a diagnostic point with measurements of the same parameters at a point of interest along the polarized beam path prior to the diagnostic point. The process is carried out by measuring the phase angle of the polarization of the beam and angle of the major axis at the point of interest, using a rotatable polarizer and a detector, and then measuring these parameters again at a diagnostic point where a compensation apparatus, including a partial polarizer, which may comprise a stack of glass plates, is disposed normal to the beam path between a rotatable polarizer and a detector. The partial polarizer is then rotated both normal to the beam path and around the axis of the beam path until the detected phase of the beam polarization equals the phase measured at the point of interest. The rotatable polarizer at the diagnostic point may then be rotated manually to determine the angle of the major axis of the beam and this is compared with the measured angle of the major axis of the beam at the point of interest during calibration. Thereafter, changes in the polarization phase, and in the angle of the major axis, at the point of interest can be monitored by measuring the changes in these same parameters at the diagnostic point.

  4. Rotational polarities of sudden impulses in the magnetotail lobe

    NASA Technical Reports Server (NTRS)

    Kawano, H.; Yamamoto, T.; Kokubun, S.; Lepping, R. P.

    1992-01-01

    A sudden impulse (SI) is a sudden change in the magnetic field strength which is caused by a change in the solar wind pressure and is observed throughout the magnetosphere. In this report we have examined the rotations of the magnetic field vectors at times of SIs in the magnetotail lobe, by using IMP 6, 7, and 8 magnetometer data. The following properties have been found: (1) at the time of SI the arrowhead of the magnetic vector tends to rotate in one plane; (2) the plane of rotation tends to include the unperturbed magnetic field vector; (3) the plane of rotation tends to be aligned with the radial direction from the magnetotail axis; and (4) the magnetic vectors have a particular rotational polarity: when the plane of rotation is viewed so that the Sun is to the right of the viewed plane and the magnetotail axis is to the bottom, the arrowhead of the vector tends to rotate counterclockwise in this plane. These magnetic vector properties are consistent with those expected when part of an increase in solar wind lateral pressure squeezes the magnetotail axisymmetrically while moving tailward.

  5. Comparison of 180-degree and 90-degree needle rotation to reduce wound size in PIT-injected juvenile Chinook salmon

    SciTech Connect

    Bryson, Amanda J.; Woodley, Christa M.; Karls, Rhonda K.; Hall, Kathleen D.; Weiland, Mark A.; Deng, Zhiqun; Carlson, Thomas J.; Eppard, Matthew B.

    2013-04-30

    Animal telemetry, which requires the implantation of passive transponders or active transmitters, is used to monitor and assess fish stock and conservation to gain an understanding of fish movement and behavior. As new telemetry technologies become available, studies of their effects on species of interest are imperative as is development of implantation techniques. In this study, we investigated the effects of bevel rotation (0-, 90-, 180-degree axis rotation) on wound extent, tag loss, and wound healing rates in juvenile Chinook salmon injected with an 8-gauge needle, which is required for implantation of the novel injectable Juvenile Salmon Acoustic Telemetry Systems (JSATS) acoustic transmitter or large passive integrated transponder (PIT) tags. Although the injection sites were not closed after injection (e.g., with sutures or glue), there were no mortalities, dropped tags, or indications of fungus, ulceration, and/or redness around the wound. On Day 0 and post-implantation Day 7, the 90-degree bevel rotation produced smaller wound extent than the 180-degree bevel rotation. No axis rotation (0-degrees) resulted in the PIT tag frequently misleading or falling out upon injection. The results of this study indicated the 90-degree bevel rotation was the more efficient technique, produced less wound extent. Given the wound extent compared to size of fish, we recommend researchers should consider a 90-degree rotation over the 180-degree rotation in telemetry studies. Highlights •Three degrees of needle rotation were examined for effects in Chinook salmon. •Mortality, tag loss, wound extent, healing, and infection indicators were measured. •There were no mortalities, tag loss, or indications of infection. •The 90-degree needle rotation through Day 7 produced the smallest wound extent.

  6. Spirit 360-Degree View on Sol 409 (polar)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    NASA's Mars Exploration Rover Spirit used its navigation camera to take the images combined into this 360-degree view of the rover's surroundings on Spirit's 409th martian day, or sol (Feb. 26, 2005). Spirit had driven 2 meters (7 feet) on this sol to get in position on 'Cumberland Ridge' for looking into 'Tennessee Valley' to the east. This location is catalogued as Spirit's Site 108. Rover-wheel tracks from climbing the ridge are visible on the right. The summit of 'Husband Hill' is at the center, to the south. This view is presented in a polar projection with geometric and brightness seam correction.

  7. NON-ZEEMAN CIRCULAR POLARIZATION OF MOLECULAR ROTATIONAL SPECTRAL LINES

    SciTech Connect

    Houde, Martin; Jones, Scott; Rajabi, Fereshte; Hezareh, Talayeh

    2013-02-10

    We present measurements of circular polarization from rotational spectral lines of molecular species in Orion KL, most notably {sup 12}CO (J = 2 {yields} 1), obtained at the Caltech Submillimeter Observatory with the Four-Stokes-Parameter Spectral Line Polarimeter. We find levels of polarization of up to 1%-2% in general; for {sup 12}CO (J = 2 {yields} 1) this level is comparable to that of linear polarization also measured for that line. We present a physical model based on resonant scattering in an attempt to explain our observations. We discuss how slight differences in scattering amplitudes for radiation polarized parallel and perpendicular to the ambient magnetic field, responsible for the alignment of the scattering molecules, can lead to the observed circular polarization. We also show that the effect is proportional to the square of the magnitude of the plane of the sky component of the magnetic field and therefore opens up the possibility of measuring this parameter from circular polarization measurements of Zeeman insensitive molecules.

  8. Rotation of plasma membrane proteins measured by polarized fluorescence depletion

    NASA Astrophysics Data System (ADS)

    Barisas, B. George; Rahman, Noorul A.; Yoshida, Thomas M.; Roess, Deborah A.

    1990-05-01

    We have implemented a new laser microscopic method, polarized fluorescence depletion (PFD), for measuring the rotational dynamics of functional membrane proteins on individual, microscopically selected cells under physiological conditions. This method combines the long lifetimes of triplet-state probes with the sensitivity of fluorescence detection to measure macromolecular rotational correlation times from 10 microsec to > 1 ms. As examples, the rotational correlation time of Fc receptors (FcR) on the surface of 2H3 rat basophilic leukemia cells is 79.9 4.4 microsec at 4°C when labeled with eosin conjugates of IgE. This value is consistent with the known 100 kDa receptor size. When labeled with intact F4 anti-FcR monoclonal antibody, the rotational correlation time for FcER is increased about 2-fold to 170.8 +/- 6.5 microsec, consistent with receptor dimer formation on the plasma membrane and with the ability of this antibody to form FcER dimers on 2H3 cell surfaces. We have also examined the rotational diffusion of the luteinizing hormone receptor on plasma membranes of small ovine luteal cells. Luteinizing hormone receptors (LHR), when occupied by ovine luteinizing hormone (oLH), have a rotational correlation time of 20.5 +/- 0.1 microsec at 4°C. When occupied by human chorionic gonadotropin (hCG), LHR have a rotational correlation time of 46.2 +/- 0.4 microsec suggesting that binding of hCG triggers additional LHR interactions with plasma membrane proteins. Together these studies suggest the utility of PFD measurements in assessing molecular size and molecular association of membrane proteins on individual cells. Relative advantages of time- and frequency-domain implementations of PFD are also discussed.

  9. Switchable polarization rotation of visible light using a plasmonic metasurface

    NASA Astrophysics Data System (ADS)

    Earl, Stuart K.; James, Timothy D.; Gómez, Daniel E.; Marvel, Robert E.; Haglund, Richard F.; Roberts, Ann

    2017-01-01

    A metasurface comprising an array of silver nanorods supported by a thin film of the phase change material vanadium dioxide is used to rotate the primary polarization axis of visible light at a pre-determined wavelength. The dimensions of the rods were selected such that, across the two phases of vanadium dioxide, the two lateral localized plasmon resonances (in the plane of the metasurface) occur at the same wavelength. Illumination with linearly polarized light at 45° to the principal axes of the rod metasurface enables excitation of both of these resonances. Modulating the phase of the underlying substrate, we show that it is possible to reversibly switch which axis of the metasurface is resonant at the operating wavelength. Analysis of the resulting Stokes parameters indicates that the orientation of the principal linear polarization axis of the reflected signal is rotated by 90° around these wavelengths. Dynamic metasurfaces such as these have the potential to form the basis of an ultra-compact, low-energy multiplexer or router for an optical signal.

  10. The role of rotation and polar-cap currents on pulsar radio emission and polarization

    SciTech Connect

    Kumar, D.; Gangadhara, R. T. E-mail: ganga@iiap.res.in

    2013-06-01

    Perturbations such as rotation and polar-cap current (PC-current) have been believed to greatly affect the pulsar radio emission and polarization. The two effects have not been considered simultaneously in the literature; each one of these has been considered separately, and a picture has been deduced by simply superposing them, but such an approach can lead to spurious results. Hence, by considering pulsar rotation and PC-current perturbations together instead of one at a time, we have developed a single particle curvature radiation model, which is expected to be much more realistic. By simulating a set of typical pulse profiles, we have made an attempt to explain most of the observational results of pulsar radio emission and polarization. The model predicts that due to the perturbations the leading side component can become either stronger or weaker than the corresponding trailing one in any given cone, depending on the passage of the sight line and modulation (nonuniform source distribution). Further, we find that the phase delay of the polarization angle inflection point with respect to the core component greatly depends on the viewing geometry. The correlation between the sign reversal of circular polarization and the polarization angle swing in the case of core-dominated pulsars becomes obscure once the perturbations and modulation become significant. However, the correlation between the negative circular polarization and the increasing polarization angle and vice versa is very clear in the case of conal-double pulsars. The 'kinky'-type distortions in polarization angle swing could be due to the incoherent superposition of modulated emission in the presence of strong perturbations.

  11. Type synthesis of two-degrees-of-freedom rotational parallel mechanism with two continuous rotational axes

    NASA Astrophysics Data System (ADS)

    Xu, Yundou; Zhang, Dongsheng; Wang, Min; Yao, Jiantao; Zhao, Yongsheng

    2016-07-01

    The two-rotational-degrees-of-freedom(2R) parallel mechanism(PM) with two continuous rotational axes(CRAs) has a simple kinematic model. It is therefore easy to implement trajectory planning, parameter calibration, and motion control, which allows for a variety of application prospects. However, no systematic analysis on structural constraints of the 2R-PM with two CRAs has been performed, and there are only a few types of 2R-PM with two CRAs. Thus, a theory regarding the type synthesis of the 2R-PM with two CRAs is systematically established. First, combining the theories of reciprocal screw and space geometry, the spatial arrangement relationships of the constraint forces applied to the moving platform by the branches are explored, which give the 2R-PM two CRAs. The different distributions of the constraint forces in each branch are also studied. On the basis of the obtained structural constraints of branches, and considering the geometric relationships of constraint forces in each branch, the appropriate kinematic chains are constructed. Through the reasonable configuration of branch kinematic chains corresponding to every structural constraint, a series of new 2R-PMs with two CRAs are finally obtained.

  12. Role of rotational degrees of freedom in heavy-ion collisions

    SciTech Connect

    Moretto, L.G.

    1982-04-01

    The degrees of freedom affected by the angular momentum are identified. The relevance of the equilibrium fluctuations in a diffusive evolution of the system is discussed. The statistical limit is described and chosen as a reference for comparing with experiment. The rigid rotation regime is shown to be reached in a variety of reactions. The fragment spin alignment is measured from ..gamma..-ray multiplicities and anisotropies as well as from sequential fission angular distributions. Good agreement is obtained with the statistical model for the P/sub zz/ component of the polarization tensor. The P/sub xy/ component seems also to reach the statistical limit at large Q-value. The effect of shells on the angular momentum transferred to the fragments and on its misalignment is discussed theoretically and specific predictions are made.

  13. Three-parameter error analysis method based on rotating coordinates in rotating birefringent polarizer system

    SciTech Connect

    Cao, Junjie; Jia, Hongzhi

    2015-11-15

    We propose error analysis using a rotating coordinate system with three parameters of linearly polarized light—incidence angle, azimuth angle on the front surface, and angle between the incidence and vibration planes—and demonstrate the method on a rotating birefringent prism system. The transmittance and angles are calculated plane-by-plane using a birefringence ellipsoid model and the final transmitted intensity equation is deduced. The effects of oblique incidence, light interference, beam convergence, and misalignment of the rotation and prism axes are discussed. We simulate the entire error model using MATLAB and conduct experiments based on a built polarimeter. The simulation and experimental results are consistent and demonstrate the rationality and validity of this method.

  14. Three-parameter error analysis method based on rotating coordinates in rotating birefringent polarizer system.

    PubMed

    Cao, Junjie; Jia, Hongzhi

    2015-11-01

    We propose error analysis using a rotating coordinate system with three parameters of linearly polarized light--incidence angle, azimuth angle on the front surface, and angle between the incidence and vibration planes--and demonstrate the method on a rotating birefringent prism system. The transmittance and angles are calculated plane-by-plane using a birefringence ellipsoid model and the final transmitted intensity equation is deduced. The effects of oblique incidence, light interference, beam convergence, and misalignment of the rotation and prism axes are discussed. We simulate the entire error model using MATLAB and conduct experiments based on a built polarimeter. The simulation and experimental results are consistent and demonstrate the rationality and validity of this method.

  15. Three-parameter error analysis method based on rotating coordinates in rotating birefringent polarizer system

    NASA Astrophysics Data System (ADS)

    Cao, Junjie; Jia, Hongzhi

    2015-11-01

    We propose error analysis using a rotating coordinate system with three parameters of linearly polarized light—incidence angle, azimuth angle on the front surface, and angle between the incidence and vibration planes—and demonstrate the method on a rotating birefringent prism system. The transmittance and angles are calculated plane-by-plane using a birefringence ellipsoid model and the final transmitted intensity equation is deduced. The effects of oblique incidence, light interference, beam convergence, and misalignment of the rotation and prism axes are discussed. We simulate the entire error model using MATLAB and conduct experiments based on a built polarimeter. The simulation and experimental results are consistent and demonstrate the rationality and validity of this method.

  16. Automation of Mode Locking in a Nonlinear Polarization Rotation Fiber Laser through Output Polarization Measurements.

    PubMed

    Olivier, Michel; Gagnon, Marc-Daniel; Habel, Joé

    2016-02-28

    When a laser is mode-locked, it emits a train of ultra-short pulses at a repetition rate determined by the laser cavity length. This article outlines a new and inexpensive procedure to force mode locking in a pre-adjusted nonlinear polarization rotation fiber laser. This procedure is based on the detection of a sudden change in the output polarization state when mode locking occurs. This change is used to command the alignment of the intra-cavity polarization controller in order to find mode-locking conditions. More specifically, the value of the first Stokes parameter varies when the angle of the polarization controller is swept and, moreover, it undergoes an abrupt variation when the laser enters the mode-locked state. Monitoring this abrupt variation provides a practical easy-to-detect signal that can be used to command the alignment of the polarization controller and drive the laser towards mode locking. This monitoring is achieved by feeding a small portion of the signal to a polarization analyzer measuring the first Stokes parameter. A sudden change in the read out of this parameter from the analyzer will occur when the laser enters the mode-locked state. At this moment, the required angle of the polarization controller is kept fixed. The alignment is completed. This procedure provides an alternate way to existing automating procedures that use equipment such as an optical spectrum analyzer, an RF spectrum analyzer, a photodiode connected to an electronic pulse-counter or a nonlinear detecting scheme based on two-photon absorption or second harmonic generation. It is suitable for lasers mode locked by nonlinear polarization rotation. It is relatively easy to implement, it requires inexpensive means, especially at a wavelength of 1550 nm, and it lowers the production and operation costs incurred in comparison to the above-mentioned techniques.

  17. Sidelobes in the response of arrayed waveguide gratings caused by polarization rotation.

    PubMed

    Kleijn, Emil; Williams, Peter J; Whitbread, Neil D; Wale, Michael J; Smit, Meint K; Leijtens, Xaveer J M

    2012-09-24

    Earlier it was observed that polarization rotation in an AWG built from birefringent waveguides can result in sidelobes in its response. This effect was measured in a polarization sensitive AWG with an orthogonal layout. Now we investigate through detailed simulation whether this effect also exists in polarization desensitised AWGs. It is shown that a dispersion compensated AWG does not suffer from a polarization sidelobe. Alternatively, the AWG can be designed to minimize polarization rotation to suppress the sidelobe.

  18. Polarization Rotation and the Third Stokes Parameter: The Effects of Spacecraft Attitude and Faraday Rotation

    NASA Technical Reports Server (NTRS)

    Meissner, Thomas; Wentz, Frank J.

    2006-01-01

    The third Stokes parameter of ocean surface brightness temperatures measured by the WindSat instrument is sensitive to the rotation angle between the polarization vectors at the ocean surface and the instrument. This rotation angle depends on the spacecraft attitude (roll, pitch, yaw) as well as the Faraday rotation of the electromagnetic radiation passing through the Earth's ionosphere. Analyzing the WindSat antenna temperatures, we find biases in the third Stokes parameter as function of the along-scan position of up to 1.5 K in all feedhorns. This points to a misspecification of the reported spacecraft attitude. A single attitude correction of -0.16deg roll and 0.18deg pitch for the whole instrument eliminates all the biases. We also study the effect of Faraday rotation at 10.7 GHz on the accuracy of the third Stokes parameter and the sea surface wind direction retrieval and demonstrate how this error can be corrected using values from the International Reference Ionosphere for the total electron content when computing Faraday rotation.

  19. Strong Rotation of an Erupting Quiescent Polar Crown Prominence

    NASA Technical Reports Server (NTRS)

    2010-01-01

    On 5-6 June 2007, a large quiescent polar crown prominence was observed to erupt by the two Solar Terrestrial Relations Observatory (STEREO) spacecraft. This eruption was particularly visible in the 304 A channel of the Extreme Ultraviolet Imager (EUVI) telescopes. A detailed analysis of the fine structures in the images allows the three-dimensional structure of the erupting prominence to be derived. The prominence is seen to undergo substantial rotation of at least 90 along the radial axis as it rises, with indications that additional rotation occurred before the prominence rose into the STEREO fields of view. Two temporary structures ("spurs") are seen to form at an angle to the main spine of the prominence, and are interpreted as signs of reconnection. These reconnection events contribute to the overall rotation of the prominence. A significant fraction of the prominence material is drained through new field lines caused by one of the reconnection events, resulting in only a weak coronal mass ejection event observed by the STEREO and SOHO coronagraphs. The eruption is interpreted as being initiated by the helical kink instability, with subsequent modification by the reconnection events.

  20. Continuum estimates of rotational dielectric friction and polar solvation

    SciTech Connect

    Maroncelli, M.

    1997-01-01

    Dynamical solvation data recently obtained with the probe solute coumarin 153 are used to test the reliability of dielectric continuum models for estimating dielectric friction effects. In particular, the predictions of the Nee{endash}Zwanzig theory of rotational dielectric friction are examined in some detail. The analysis undertaken here uncovers an error made in virtually all previous applications of the Nee{endash}Zwanzig formalism. The error involves neglect of the solvent{close_quote}s electronic polarizability when calculating dielectric friction constants. In highly polar solvents the effect of this neglect is shown to be minor, so that the results of past studies should not be appreciably altered. However, in weakly polar and especially in nondipolar solvents, the proper inclusion of electronic polarizability terms is essential. The equivalence between the Nee{endash}Zwanzig theory of dielectric friction and more general continuum treatments of polar solvation dynamics is also demonstrated. This equivalence enables the use of solvation data to test the reliability of the Nee{endash}Zwanzig description of electrical interactions between a solute and solvent that form the core of this and related continuum theories of dielectric friction. Comparisons to experimental data show that, with the important exception of nondipolar solvents, such continuum treatments provide reasonably accurate ({plus_minus}40{percent}) predictors of time-dependent solvation and/or dielectric friction. {copyright} {ital 1997 American Institute of Physics.}

  1. Cavity-based high-efficiency and wideband 90° polarization rotator

    NASA Astrophysics Data System (ADS)

    Wang, Jiang; Shen, Zhongxiang; Wu, Wen

    2016-10-01

    We present a high-efficiency wideband 90° polarization rotator based on 2D array of substrate integrated waveguide cavities etched with three twisted slots, which can rotate a horizontally polarized incident wave into an outgoing vertically polarized wave. The twisted slots etched on the surface of the cavity are utilized to couple the wave into and out of the cavity with the polarization direction rotated. As a proof-of-concept, a prototype of the proposed rotator is fabricated and measured in the microwave regime. The proposed 90° polarization rotator features a low insertion loss of about 0.5 dB in the pass band with a factional bandwidth of 28.6%, as well as high polarization rotation efficiency of over 90%.

  2. Laser Oscillator Incorporating a Wedged Polarization Rotator and a Porro Prism as Cavity Mirror

    NASA Technical Reports Server (NTRS)

    Li, Steven

    2011-01-01

    A laser cavity was designed and implemented by using a wedged polarization rotator and a Porro prism in order to reduce the parts count, and to improve the laser reliability. In this invention, a z-cut quartz polarization rotator is used to compensate the wavelength retardance introduced by the Porro prism. The polarization rotator rotates the polarization of the linear polarized beam with a designed angle that is independent of the orientation of the rotator. This unique property was used to combine the retardance compensation and a Risley prism to a single optical component: a wedged polarization rotator. This greatly simplifies the laser alignment procedure and reduces the number of the laser optical components.

  3. Arc-Polarized, Nonlinear Alfven Waves and Rotational Discontinuities: Directions of Propogation?

    NASA Technical Reports Server (NTRS)

    Tsurutani, B. T.; Ho, C. M.; Sakurai, R.; Arballo, J. K.; Riley, P.; Balogh, A.

    1996-01-01

    Large amplitude, noncompressive Alfven waves and rotational discontinuities are shown to be arc-polarized. The slowly rotating Alfven wave portion plus the fast rotating discontinuity comprise 360(deg) in phase rotation. The magnetic field vector perturbation lies in a plane. There are two (or more) possible interpretations to the observations.

  4. Symmetrical polarization splitter/rotator design and application in a polarization insensitive WDM receiver.

    PubMed

    Ma, Yangjin; Liu, Yang; Guan, Hang; Gazman, Alexander; Li, Qi; Ding, Ran; Li, Yunchu; Bergman, Keren; Baehr-Jones, Tom; Hochberg, Michael

    2015-06-15

    In integrated photonics, the design goal of a polarization splitter/rotator (PSR) has been separating the TE0 and TM0 modes in a waveguide. This is a natural choice. But in theory, a PSR only needs to project the incoming State Of Polarization (SOP) orthogonally to its output ports, using any orthogonal mode basis set in the fiber. In this article, we introduce a novel PSR design that alternatively takes the linear combination of TE0 and TM0 (TE0 +/- TM0) as orthogonal bases. By contrast, existing approaches exclusively use TE0 and TM0 as their basis set. The design is based on two symmetric and robust structures: a bi-layer taper and a Y-junction, and involves no bends. To prove the concept, we incorporated it into a four-channel polarization insensitive wavelength division multiplexing (PI-WDM) receiver fabricated in a standard CMOS Si photonics process. 40 Gb/s data rate and 0.7 +/- 0.2 dB polarization dependent loss (PDL) is demonstrated on each channel. Lastly, we propose an improved PSR design with 12 μm device length, < 0.1 dB PDL, < 0.4 dB insertion loss and < 0.05 dB wavelength dependence across C-band for both polarizations. Overall, our PSR design concept is simple, easy to realize and presents a new perspective for future PSR designs.

  5. Atmospheric effects on earth rotation and polar motion

    NASA Technical Reports Server (NTRS)

    Salstein, David A.

    1988-01-01

    The variability in the earth's rotation rate not due to known solid body tides is dominated on time scales of about four years and less by variations in global atmospheric angular momentum (M) as derived from the zonal wind distribution. Among features seen in the length of day record produced by atmospheric forcing are the strong seasonal cycle, quasi-periodic fluctuations around 40-50 days, and an interannual signal forced by a strong Pacific warming event known as the El Nino. Momentum variations associated with these time scales arise in different latitudinal regions. Furthermore, winds in the stratosphere make a particularly important contribution to seasonal variability. Other related topics discussed here are: (1) comparisons of the M series from wind fields produced at different weather centers; (2) the torques that dynamically link the atmosphere and earth; and (3) longer-term nonatmospheric effects that can be seen upon removal of the atmospheric signal.an interestigapplication for climatological purposes is the use of the historical earth rotation series as a proxy for atmospheric wind variability prior to the era of upper-air data. Lastly, results pertaining to the role of atmospheric pressure systems in exciting rapid polar motion are presented.

  6. THE ROTATION PROFILE OF SOLAR MAGNETIC FIELDS BETWEEN {+-}60 Degree-Sign LATITUDES

    SciTech Connect

    Shi, X. J.; Xie, J. L.

    2013-08-10

    Through a cross-correlation analysis of the Carrington synoptic maps of solar photospheric magnetic fields from Carrington Rotation Nos. 1625 to 2129 (from 1975 February to 2012 October), the sidereal rotation rates of solar magnetic fields between {+-}60 Degree-Sign latitudes are investigated. It seems that the temporal variation of rotation rates should be related to the solar cycle phase. The rotation profile of magnetic fields is obtained: the sidereal rotation rates decrease from the equator to mid-latitude and reach their minimum values of about 13.16 deg day{sup -1} (13.17 deg day{sup -1}) at 53 Degree-Sign (54 Degree-Sign ) latitude in the northern (southern) hemisphere, then increase toward higher latitudes. This rotation profile is different from the differential rotation law obtained by Snodgrass from a cross-correlation analysis of daily magnetograms, in which the rotation rates show a steep decrease from the equator to the poles. However, it is much closer to the quasi-rigid rotation law derived by Stenflo from an auto-correlation analysis of daily magnetograms. Some possible interpretations are discussed for the resulting rotation profile.

  7. Degree of polarization in Young's double-slit interference experiment formed by stochastic electromagnetic beams.

    PubMed

    Chen, Ziyang; Pu, Jixiong

    2007-07-01

    We analyze the behavior of the degree of polarization in the interference field of Young's double-slit experiment. We analyze the degree of polarization in Young's double-slit interference experiment illuminated by stochastic electromagnetic beams. The distribution of the degree of polarization in the interference field for different correlation lengths and different slit widths is investigated. Furthermore, it is shown that the degree of polarization for a fixed observation point may take on values different from those it takes in the slits, depending not only on the value of the correlation length but also on the width of the slit.

  8. General relativistic x ray (UV) polarization rotations as a quantitative test for black holes

    NASA Technical Reports Server (NTRS)

    Stark, Richard F.

    1989-01-01

    It is now 11 years since a potentially easily observable and quantitative test for black holes using general relativistic polarization rotations was proposed (Stark and Connors 1977, and Connors and Stark 1977). General relativistic rotations of the x ray polarization plane of 10 to 100 degrees with x ray energy (between 1 and 100 keV) are predicted for black hole x ray binaries. (Classically, by symmetry, there is no rotation.) Unfortunately, x ray polarimetry has not been taken sufficiently seriously during this period, and this test has not yet been performed. A similar (though probably less clean) effect is expected in the UV for supermassive black holes in some quasars active galactic nuclei. Summarizing: (1) a quantitative test (proposed in 1977) for black holes exists; (2) x ray polarimetry of galactic x ray binaries sensitive to at least 1/2 percent between 1 keV and 100 keV is needed (polarimetry in the UV of quasars and AGN will also be of interest); and (3) proportional counters using timerise discrimination were shown in laboratory experiments able to perform x ray polarimetry and this and other methods need to be developed.

  9. Polarization control strategy of a laser communication terminal with a periscopic scanner using dual rotating waveplates.

    PubMed

    Jiang, Lun; Li, Na; Zhang, Li-Zhong; Wang, Chao; An, Yan; Hu, Yuan

    2016-11-20

    We assessed the problem of low mixing efficiency caused by unstable signal polarization because of a moving reflector in a laser communication terminal with a periscopic scanner. A real-time polarization compensation method based on rotating waveplates is presented, which keeps the receiving signal light polarization at 45° linear polarized and improves system mixing efficiency. A geometric model of the laser communication terminal was first established, its polarization transmission characteristics were analyzed by three-dimensional polarization tracks, and a system polarization transmission matrix was calculated. The relationship between scan angle and polarization of the output signal was simulated. The connections between a polarization-compensating λ/4 waveplate and the λ/2 waveplate rotation angle and scan angle were established. These findings will pave the way for real-time polarization control technology for coherent free-space laser communications.

  10. Rotational Inerfia of Continents: A Proposed Link between Polar Wandering and Plate Tectonics.

    PubMed

    Kane, M F

    1972-03-24

    A mechanism is proposed whereby displacement between continents and the earth's pole of rotation (polar wandering) gives rise to latitudinal transport of continental plates (continental drift) because of their relatively greater rotational inertia. When extended to short-term polar wobble, the hypothesis predicts an energy change nearly equivalent to the seismic energy rate.

  11. Rotational inertia of continents: A proposed link between polar wandering and plate tectonics

    USGS Publications Warehouse

    Kane, M.F.

    1972-01-01

    A mechanism is proposed whereby displacement between continents and the earth's pole of rotation (polar wandering) gives rise to latitudinal transport of continental plates (continental drift) because of their relatively greater rotational inertia. When extended to short-term polar wobble, the hypothesis predicts an energy change nearly equivalent to the seismic energy rate.

  12. A technique for measuring vertically and horizontally polarized microwave brightness temperatures using electronic polarization-basis rotation

    NASA Technical Reports Server (NTRS)

    Gasiewski, Albin J.

    1992-01-01

    This technique for electronically rotating the polarization basis of an orthogonal-linear polarization radiometer is based on the measurement of the first three feedhorn Stokes parameters, along with the subsequent transformation of this measured Stokes vector into a rotated coordinate frame. The technique requires an accurate measurement of the cross-correlation between the two orthogonal feedhorn modes, for which an innovative polarized calibration load was developed. The experimental portion of this investigation consisted of a proof of concept demonstration of the technique of electronic polarization basis rotation (EPBR) using a ground based 90-GHz dual orthogonal-linear polarization radiometer. Practical calibration algorithms for ground-, aircraft-, and space-based instruments were identified and tested. The theoretical effort consisted of radiative transfer modeling using the planar-stratified numerical model described in Gasiewski and Staelin (1990).

  13. Interferometric interpretation for the degree of polarization of classical optical beams

    NASA Astrophysics Data System (ADS)

    Leppänen, Lasse-Petteri; Saastamoinen, Kimmo; Friberg, Ari T.; Setälä, Tero

    2014-11-01

    We introduce an interferometric interpretation for the degree of polarization as a quantity characterizing the ability of a light beam to generate polarization modulation when it interferes with itself. The result is confirmed experimentally in Young's interferometer with beams of controlled degree of polarization and by comparing to a standard polarimetric measurement. The new interpretation is a consequence of the electromagnetic interference law that we formulate for stationary, quasi-monochromatic, partially polarized light beams in time domain. Our work provides fundamental insight into the role of polarization in electromagnetic coherence and interference.

  14. A high-efficiency and broadband reflective 90° linear polarization rotator based on anisotropic metamaterial

    NASA Astrophysics Data System (ADS)

    Zhao, Jingcheng; Cheng, Yongzhi

    2016-10-01

    In this paper, a high-efficiency and broadband reflective linear polarization rotator based on anisotropic metamaterial is proposed, which is verified by simulation and experiment. Simulated results indicate that our design can achieve 90° polarization rotation from 5.7 to 10.3 GHz with the relative bandwidth of 57.5 %, which is agreement well with experiment. The further simulated results indicate that our design can achieve linear polarization conversion or rotation by 90° under oblique incident angles with large range for both transverse electric and transverse magnetic waves. Finally, the amplitude and phase of reflective coefficients with different polarization, and surface current distribution of the unit cell structure are simulated to explain the physics mechanism of the high-efficiency and broadband polarization rotation. Our design will provide an important reference for the practical applications of the metamaterial in polarization manipulation.

  15. Femtosecond Raman induced polarization spectroscopy studies of coherent rotational dynamics in molecular fluids

    SciTech Connect

    Morgen, Michael Mark

    1997-05-01

    We develop a polarization-sensitive femtosecond pump probe technique, Raman induced polarization spectroscopy (RIPS), to study coherent rotation in molecular fluids. By observing the collisional dephasing of the coherently prepared rotational states, we are able to extract information concerning the effects of molecular interactions on the rotational motion. The technique is quite sensitive because of the zero background detection method, and is also versatile due to its nonresonant nature.

  16. Polarization rotation vector solitons in a graphene mode-locked fiber laser.

    PubMed

    Song, Yu Feng; Zhang, Han; Tang, Ding Yuan; Shen, De Yuan

    2012-11-19

    Polarization rotation vector solitons formed in a fiber laser passively mode locked with atomic layer graphene were experimentally investigated. It was found that different from the case of the polarization locked vector soliton formed in the laser, two extra sets of spectral sidebands always appear on the soliton spectrum of the polarization rotating vector solitons. We confirm that the new sets of spectral sidebands have the same formation mechanism as that of the Kelly sidebands.

  17. Long-Lived Hole Spin/Valley Polarization Probed by Kerr Rotation in Monolayer WSe2.

    PubMed

    Song, Xinlin; Xie, Saien; Kang, Kibum; Park, Jiwoong; Sih, Vanessa

    2016-08-10

    Time-resolved Kerr rotation and photoluminescence measurements are performed on MOCVD-grown monolayer tungsten diselenide (WSe2). We observe a surprisingly long-lived Kerr rotation signal (∼80 ns) at 10 K, which is attributed to spin/valley polarization of the resident holes. This polarization is robust to transverse magnetic field (up to 0.3 T). Wavelength-dependent measurements reveal that only excitation near the free exciton energy generates this long-lived spin/valley polarization.

  18. The tidal-rotational shape of the Moon and evidence for polar wander.

    PubMed

    Garrick-Bethell, Ian; Perera, Viranga; Nimmo, Francis; Zuber, Maria T

    2014-08-14

    The origin of the Moon's large-scale topography is important for understanding lunar geology, lunar orbital evolution and the Moon's orientation in the sky. Previous hypotheses for its origin have included late accretion events, large impacts, tidal effects and convection processes. However, testing these hypotheses and quantifying the Moon's topography is complicated by the large basins that have formed since the crust crystallized. Here we estimate the large-scale lunar topography and gravity spherical harmonics outside these basins and show that the bulk of the spherical harmonic degree-2 topography is consistent with a crust-building process controlled by early tidal heating throughout the Moon. The remainder of the degree-2 topography is consistent with a frozen tidal-rotational bulge that formed later, at a semi-major axis of about 32 Earth radii. The probability of the degree-2 shape having both tidal-heating and frozen shape characteristics by chance is less than 1%. We also infer that internal density contrasts eventually reoriented the Moon's polar axis by 36 ± 4°, to the configuration we observe today. Together, these results link the geology of the near and far sides, and resolve long-standing questions about the Moon's large-scale shape, gravity and history of polar wander.

  19. A spin rotator for producing a longitudinally polarized electron beam with MAMI

    NASA Astrophysics Data System (ADS)

    Steffens, K.-H.; Andresen, H. G.; Blume-Werry, J.; Klein, F.; Aulenbacher, K.; Reichert, E.

    1993-02-01

    The design and performance characteristics of a full 4 π-space spin rotator for 100 keV electrons are described. The spin rotator was developed as part of the acceleration scheme for polarized electrons in the MAINZ race track microtron cascade MAMI [1]. It allows to orientate the polarization vector in any direction before injection. Thus it is possible to optimize the longitudinal polarization component, required for experiments with polarized high energy electrons, at target position. With this scheme various experimental halls can be supplied with longitudinally polarized electrons in the full energy range of MAMI between 180 and 855 MeV.

  20. Complex degree of mutual polarization, generalized Malus law, and optics of observable quantities

    NASA Astrophysics Data System (ADS)

    Polyanskii, Peter V.

    2006-05-01

    Coherent and completely polarized optical radiation, being stationary multiply scattered, becomes globally non-polarized. Nevertheless, the degree of polarization equals unity at any point of the scattered field, which is characterized by nonuniform spatial distribution of the polarization azimuth and ellipticity, so that the state of polarization changes from point to point. In this paper we discuss some approaches to describe such "pseudodepolarized" optical fields and introduce convenient measures of the distance between the states of polarization in two points of such fields connected with the observable quantities.

  1. Degree of polarization and source counts of faint radio sources from Stacking Polarized intensity

    SciTech Connect

    Stil, J. M.; George, S. J.; Keller, B. W.; Taylor, A. R.

    2014-06-01

    We present stacking polarized intensity as a means to study the polarization of sources that are too faint to be detected individually in surveys of polarized radio sources. Stacking offers not only high sensitivity to the median signal of a class of radio sources, but also avoids a detection threshold in polarized intensity, and therefore an arbitrary exclusion of sources with a low percentage of polarization. Correction for polarization bias is done through a Monte Carlo analysis and tested on a simulated survey. We show that the nonlinear relation between the real polarized signal and the detected signal requires knowledge of the shape of the distribution of fractional polarization, which we constrain using the ratio of the upper quartile to the lower quartile of the distribution of stacked polarized intensities. Stacking polarized intensity for NRAO VLA Sky Survey (NVSS) sources down to the detection limit in Stokes I, we find a gradual increase in median fractional polarization that is consistent with a trend that was noticed before for bright NVSS sources, but is much more gradual than found by previous deep surveys of radio polarization. Consequently, the polarized radio source counts derived from our stacking experiment predict fewer polarized radio sources for future surveys with the Square Kilometre Array and its pathfinders.

  2. Linearly-polarized Yb-doped fiber laser based on 45-degree fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Fu, Shenggui; Liu, Xiaojuan; Guo, Liping; Ge, Xiaolu; Wei, Gongxiang

    2012-11-01

    In the paper, a 45 degree TFBG was fabricated in photosensitive fiber successfully using phase mask technique. The polarization-dependent loss characteristic of the TFBG was experimentally researched in the paper using a special measurement system. The measurement results showed that the 45 degree TFBG could act as a polarization possession element. Based on the 45 degree TFBG, a linearly-polarized Yb-doped fiber laser was demonstrated. The polarization-extinction ratio of the output laser is about 30 dB. The output power was about 13 mW with the pump power of 100 mW. The central wavelength of the laser is 1064nm and the wavelength bandwidth was about 0.7nm. Being a polarization device, the TFBG has the advantages of in-fiber, compact, good polarization capability and low price.

  3. Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters.

    PubMed

    Sun, Minghao; He, Honghui; Zeng, Nan; Du, E; Guo, Yihong; Peng, Cheng; He, Yonghong; Ma, Hui

    2014-05-10

    Polarization parameters contain rich information on the micro- and macro-structure of scattering media. However, many of these parameters are sensitive to the spatial orientation of anisotropic media, and may not effectively reveal the microstructural information. In this paper, we take polarization images of different textile samples at different azimuth angles. The results demonstrate that the rotation insensitive polarization parameters from rotating linear polarization imaging and Mueller matrix transformation methods can be used to distinguish the characteristic features of different textile samples. Further examinations using both experiments and Monte Carlo simulations reveal that the residue rotation dependence in these polarization parameters is due to the oblique incidence illumination. This study shows that such rotation independent parameters are potentially capable of quantitatively classifying anisotropic samples, such as textiles or biological tissues.

  4. Direct formulation of a 4-node hybrid shell element with rotational degrees of freedom

    NASA Technical Reports Server (NTRS)

    Aminpour, Mohammad A.

    1990-01-01

    A simple 4-node assumed-stress hybrid quadrilateral shell element with rotational or drilling degrees of freedom is formulated. The element formulation is based directly on a 4-node element. This direct formulation requires fewer computations than a similar element that is derived from an internal 8-node isoparametric element in which the midside degrees of freedom are eliminated in favor of rotational degree of freedom at the corner nodes. The formulation is based on the principle of minimum complementary energy. The membrane part of the element has 12 degrees of freedom including rotational degrees of freedom. The bending part of the element also has 12 degrees of freedom. The bending part of the quadratic variations for both in-plane and out-of-plane displacement fields and linear variations for both in-plane and out-of-plane rotation fields are assumed along the edges of the element. The element Cartesian-coordinate system is chosen such as to make the stress field invariant with respect to node numbering. The membrane part of the stress field is based on a 9-parameter equilibrating stress field, while the bending part is based on a 13-parameter equilibrating stress field. The element passes the patch test, is nearly insensitive to mesh distortion, does not lock, possesses the desirable invariance properties, has no spurious modes, and produces accurate and reliable results.

  5. Ellipticity-tunable attosecond XUV pulse generation with a rotating bichromatic circularly polarized laser field.

    PubMed

    Zhang, Xiaofan; Zhu, Xiaosong; Liu, Xi; Wang, Dian; Zhang, Qingbin; Lan, Pengfei; Lu, Peixiang

    2017-03-15

    We propose and theoretically demonstrate a method to generate attosecond XUV pulses with tunable ellipticity from aligned molecules irradiated by a bichromatic counterrotating circularly polarized (BCCP) driving laser field. By rotating the BCCP field, the attoseond XUV pulse varies from being left elliptically polarized to right elliptically polarized. The rotation of the BCCP field can be easily achieved by adjusting the relative phases between the two circularly polarized components. This scheme will benefit a broad range of applications, including the exploration of chiral-sensitive properties of the light-matter interaction and time-resolved imaging of magnetic structures.

  6. Electric polarization rotation in a hexaferrite with long-wavelength magnetic structures.

    PubMed

    Kimura, T; Lawes, G; Ramirez, A P

    2005-04-08

    We report on the control of electric polarization (P) by using magnetic fields (B) in a hexaferrite having magnetic order above room temperature (RT). The material investigated is hexagonal Ba0.5Sr1.5Zn2Fe12O22, which is a nonferroelectric helimagnetic insulator in the zero-field ground state. By applying B, the system undergoes successive metamagnetic transitions, and shows concomitant ferroelectric order in some of the B-induced phases with long-wavelength magnetic structures. The magnetoelectrically induced P can be rotated 360 degrees by external B. This opens up the potential for not only RT magnetoelectric devices but also devices based on the magnetically controlled electro-optical response.

  7. Design and development of an ambient-temperature continuously-rotating achromatic half-wave plate for CMB polarization modulation on the POLARBEAR-2 experiment

    NASA Astrophysics Data System (ADS)

    Hill, Charles A.; Beckman, Shawn; Chinone, Yuji; Goeckner-Wald, Neil; Hazumi, Masashi; Keating, Brian; Kusaka, Akito; Lee, Adrian T.; Matsuda, Frederick; Plambeck, Richard; Suzuki, Aritoki; Takakura, Satoru

    2016-07-01

    We describe the development of an ambient-temperature continuously-rotating half-wave plate (HWP) for study of the Cosmic Microwave Background (CMB) polarization by the POLARBEAR-2 (PB2) experiment. Rapid polarization modulation suppresses 1/f noise due to unpolarized atmospheric turbulence and improves sensitivity to degree-angular-scale CMB fluctuations where the inflationary gravitational wave signal is thought to exist. A HWP modulator rotates the input polarization signal and therefore allows a single polarimeter to measure both linear polarization states, eliminating systematic errors associated with differencing of orthogonal detectors. PB2 projects a 365-mm-diameter focal plane of 7,588 dichroic, 95/150 GHz transition-edge-sensor bolometers onto a 4-degree field of view that scans the sky at 1 degree per second. We find that a 500-mm-diameter ambient-temperature sapphire achromatic HWP rotating at 2 Hz is a suitable polarization modulator for PB2. We present the design considerations for the PB2 HWP, the construction of the HWP optical stack and rotation mechanism, and the performance of the fully-assembled HWP instrument. We conclude with a discussion of HWP polarization modulation for future Simons Array receivers.

  8. Estimation of the degree of polarization in low-light 3D integral imaging

    NASA Astrophysics Data System (ADS)

    Carnicer, Artur; Javidi, Bahram

    2016-06-01

    The calculation of the Stokes Parameters and the Degree of Polarization in 3D integral images requires a careful manipulation of the polarimetric elemental images. This fact is particularly important if the scenes are taken in low-light conditions. In this paper, we show that the Degree of Polarization can be effectively estimated even when elemental images are recorded with few photons. The original idea was communicated in [A. Carnicer and B. Javidi, "Polarimetric 3D integral imaging in photon-starved conditions," Opt. Express 23, 6408-6417 (2015)]. First, we use the Maximum Likelihood Estimation approach for generating the 3D integral image. Nevertheless, this method produces very noisy images and thus, the degree of polarization cannot be calculated. We suggest using a Total Variation Denoising filter as a way to improve the quality of the generated 3D images. As a result, noise is suppressed but high frequency information is preserved. Finally, the degree of polarization is obtained successfully.

  9. Transient stability enhancement of electric power generating systems by 120-degree phase rotation

    DOEpatents

    Cresap, Richard L.; Taylor, Carson W.; Kreipe, Michael J.

    1982-01-01

    A method and system for enhancing the transient stability of an intertied three-phase electric power generating system. A set of power exporting generators (10) is connected to a set of power importing generators (20). When a transient cannot be controlled by conventional stability controls, and imminent loss of synchronism is detected (such as when the equivalent rotor angle difference between the two generator sets exceeds a predetermined value, such as 150 degrees), the intertie is disconnected by circuit breakers. Then a switch (30) having a 120-degree phase rotation, or a circuit breaker having a 120-degree phase rotation is placed in the intertie. The intertie is then reconnected. This results in a 120-degree reduction in the equivalent rotor angle difference between the two generator sets, making the system more stable and allowing more time for the conventional controls to stabilize the transient.

  10. Progress Towards the Detection of Faraday Rotation on Spin Polarized 3He

    NASA Astrophysics Data System (ADS)

    Abney, Josh; Broering, Mark; Korsch, Wolfgang

    2016-03-01

    Off-resonance Faraday rotation can offer a new method to monitor the nuclear spin polarization of a dense 3He target and gain access to new information about the magnetic polarizability of the 3He nucleus. The interaction of the polarization state of light with the nuclear spin of the helium atom is very weak and has never been detected. A sensitive triple modulation technique has been developed which can detect the expected rotation angle on the order of 100 nrad. Once a Faraday rotation signal is observed, the next step is to separate the magnetic and electric contributions to the rotation by utilizing their different frequency dependencies. Recent studies involved optimizing several parameters which impact 3He target polarization. Progress towards detecting nuclear spin optical rotation on 3He will be reported. This research is supported by DOE Grant DE-FG02-99ER41101.

  11. Silicon waveguide polarization rotation Bragg grating with resonator cavity section

    NASA Astrophysics Data System (ADS)

    Okayama, Hideaki; Onawa, Yosuke; Shimura, Daisuke; Yaegashi, Hiroki; Sasaki, Hironori

    2017-04-01

    Bragg grating with resonator cavity that converts the input polarization to orthogonal polarization is reported. The device works similar to a Fabry–Pérot or ring resonators and very narrow polarization independent wavelength peak can be generated. The transfer matrix methods are used to examine the device characteristics. A 0.2-nm-wide polarization independent transmission wavelength peak was obtained by experiment. We also show theoretically using finite-difference-time-domain method that a flat-top response can be obtained by a two cavity structure.

  12. A 4-node assumed-stress hybrid shell element with rotational degrees of freedom

    NASA Technical Reports Server (NTRS)

    Aminpour, Mohammad A.

    1990-01-01

    An assumed-stress hybrid/mixed 4-node quadrilateral shell element is introduced that alleviates most of the deficiencies associated with such elements. The formulation of the element is based on the assumed-stress hybrid/mixed method using the Hellinger-Reissner variational principle. The membrane part of the element has 12 degrees of freedom including rotational or drilling degrees of freedom at the nodes. The bending part of the element also has 12 degrees of freedom. The bending part of the element uses the Reissner-Mindlin plate theory which takes into account the transverse shear contributions. The element formulation is derived from an 8-node isoparametric element. This process is accomplished by assuming quadratic variations for both in-plane and out-of-plane displacement fields and linear variations for both in-plane and out-of-plane rotation fields along the edges of the element. In addition, the degrees of freedom at midside nodes are approximated in terms of the degrees of freedom at corner nodes. During this process the rotational degrees of freedom at the corner nodes enter into the formulation of the element. The stress field are expressed in the element natural-coordinate system such that the element remains invariant with respect to node numbering.

  13. Enhancement of hidden structures of early skin fibrosis using polarization degree patterns and Pearson correlation analysis.

    PubMed

    Sviridov, Alexander P; Chernomordik, Victor; Hassan, Moinuddin; Boccara, Albert C; Russo, Angelo; Smith, Paul; Gandjbakhche, Amir

    2005-01-01

    The skin of athymic nude mice is irradiated with a single dose of x-ray irradiation that initiated fibrosis. Digital photographs of the irradiated mice are taken by illuminating the mouse skin with linearly polarized probe light of 650 nm. The specific pattern of the surface distribution of the degree of polarization enables the detection of initial skin fibrosis structures that were not visually apparent. Data processing of the raw spatial distributions of the degree of polarization based on Fourier filtering of the high-frequency noise improves subjective perception of the revealed structure in the images. In addition, Pearson correlation analysis provides information about skin structural size and directionality.

  14. Probing degrees of orientation of polar molecules with harmonic emission in ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Shi, Y. Z.; Zhang, B.; Li, W. Y.; Yu, S. J.; Chen, Y. J.

    2017-03-01

    The orientation of molecules with respect to the laser polarization brings rich physics into laser-molecule interaction. However, the degree of orientation of a polar molecule is difficult to measure in present experiments. Here, through numerical solution of the time-dependent Schrödinger equation, we show that high-order-harmonic generation from polar molecules with a large permanent dipole in ultrashort laser pulses can be used as a sensitive tool to probe the degree of orientation. The underlying mechanism is discussed.

  15. Polar flagella rotation in Vibrio parahaemolyticus confers resistance to bacteriophage infection

    PubMed Central

    Zhang, Hui; Li, Lu; Zhao, Zhe; Peng, Daxin; Zhou, Xiaohui

    2016-01-01

    Bacteriophage has been recognized as a novel approach to treat bacterial infectious diseases. However, phage resistance may reduce the efficacy of phage therapy. Here, we described a mechanism of bacterial resistance to phage infections. In Gram-negative enteric pathogen Vibrio parahaemolyticus, we found that polar flagella can reduce the phage infectivity. Deletion of polar flagella, but not the lateral flagella, can dramatically promote the adsorption of phage to the bacteria and enhances the phage infectivity to V. parahaemolyticus, indicating that polar flagella play an inhibitory role in the phage infection. Notably, it is the rotation, not the physical presence, of polar flagella that inhibits the phage infection of V. parahaemolyticus. Strikingly, phage dramatically reduces the virulence of V. parahaemolyticus only when polar flagella were absent both in vitro and in vivo. These results indicated that polar flagella rotation is a previously unidentified mechanism that confers bacteriophage resistance. PMID:27189325

  16. Electric Vector Rotations of π/2 in Polarized Circumstellar SiO Maser Emission

    NASA Astrophysics Data System (ADS)

    Kemball, A. J.; Diamond, P. J.; Richter, L.; Gonidakis, I.; Xue, R.

    2011-12-01

    This paper examines the detailed sub-milliarcsecond polarization properties of an individual SiO maser feature displaying a rotation in polarization electric vector position angle of approximately π/2 across the feature. Such rotations are a characteristic observational signature of circumstellar SiO masers detected toward a number of late-type, evolved stars. We employ a new calibration method for accurate circular very long baseline interferometric polarimetry at millimeter wavelengths to present the detailed Stokes {I, Q, U, V} properties for this feature. We analyze the fractional linear and circular polarization as a function of projected angular distance across the extent of the feature and compare these measurements against several theoretical models proposed for sharp rotations of electric vector position angle in polarized SiO maser emission. We find that the rotation is most likely caused by the angle θ between the line of sight and a projected magnetic field crossing the critical Van Vleck angle for maser propagation. The fractional linear polarization profile ml (θ) is well fitted by standard models for polarized maser transport, but we find less agreement for the fractional circular polarization profile mc (θ).

  17. ELECTRIC VECTOR ROTATIONS OF {pi}/2 IN POLARIZED CIRCUMSTELLAR SiO MASER EMISSION

    SciTech Connect

    Kemball, A. J.; Xue, R.; Diamond, P. J.; Gonidakis, I.; Richter, L.

    2011-12-10

    This paper examines the detailed sub-milliarcsecond polarization properties of an individual SiO maser feature displaying a rotation in polarization electric vector position angle of approximately {pi}/2 across the feature. Such rotations are a characteristic observational signature of circumstellar SiO masers detected toward a number of late-type, evolved stars. We employ a new calibration method for accurate circular very long baseline interferometric polarimetry at millimeter wavelengths to present the detailed Stokes (I, Q, U, V) properties for this feature. We analyze the fractional linear and circular polarization as a function of projected angular distance across the extent of the feature and compare these measurements against several theoretical models proposed for sharp rotations of electric vector position angle in polarized SiO maser emission. We find that the rotation is most likely caused by the angle {theta} between the line of sight and a projected magnetic field crossing the critical Van Vleck angle for maser propagation. The fractional linear polarization profile m{sub l} ({theta}) is well fitted by standard models for polarized maser transport, but we find less agreement for the fractional circular polarization profile m{sub c} ({theta}).

  18. Self-Calibration of BICEP1 Three-Year Data and Constraints on Astrophysical Polarization Rotation

    NASA Technical Reports Server (NTRS)

    Kaufman, J. P.; Miller, N. J.; Shimon, M.; Barkats, D.; Bischoff, C.; Buder, I.; Keating, B. G.; Kovac, J. M.; Ade, P. A. R.; Aikin, R.; Battle, J. O.; Bierman, E. M.; Bock, J. J.; Chiang, H. C.; Dowell, C. D.; Duband, L.; Filippini, J.; Hivon, E. F.; Holzapfel, W. L.; Hristov, V. V.; Jones, W. C.; Kernasovskiy, S. S.; Kuo, C. L.; Leitch, E. M.; Mason, P. V.

    2014-01-01

    Cosmic microwave background (CMB) polarimeters aspire to measure the faint B-mode signature predicted to arise from inflationary gravitational waves. They also have the potential to constrain cosmic birefringence, rotation of the polarization of the CMB arising from parity-violating physics, which would produce nonzero expectation values for the CMB's temperature to B-mode correlation (TB) and E-mode to B-mode correlation (EB) spectra. However, instrumental systematic effects can also cause these TB and EB correlations to be nonzero. In particular, an overall miscalibration of the polarization orientation of the detectors produces TB and EB spectra which are degenerate with isotropic cosmological birefringence, while also introducing a small but predictable bias on the BB spectrum. We find that BICEP1 three-year spectra, which use our standard calibration of detector polarization angles from a dielectric sheet, are consistent with a polarization rotation of alpha = -2.77deg +/- 0.86deg (statistical) +/- 1.3deg (systematic). We have revised the estimate of systematic error on the polarization rotation angle from the two-year analysis by comparing multiple calibration methods. We also account for the (negligible) impact of measured beam systematic effects. We investigate the polarization rotation for the BICEP1 100 GHz and 150 GHz bands separately to investigate theoretical models that produce frequency-dependent cosmic birefringence. We find no evidence in the data supporting either of these models or Faraday rotation of the CMB polarization by the Milky Way galaxy's magnetic field. If we assume that there is no cosmic birefringence, we can use the TB and EB spectra to calibrate detector polarization orientations, thus reducing bias of the cosmological B-mode spectrum from leaked E-modes due to possible polarization orientation miscalibration. After applying this "self-calibration" process, we find that the upper limit on the tensor-to-scalar ratio decreases

  19. Rectangular rotation of spherical harmonic expansion of arbitrary high degree and order

    NASA Astrophysics Data System (ADS)

    Fukushima, Toshio

    2017-02-01

    In order to move the polar singularity of arbitrary spherical harmonic expansion to a point on the equator, we rotate the expansion around the y-axis by 90° such that the x-axis becomes a new pole. The expansion coefficients are transformed by multiplying a special value of Wigner D-matrix and a normalization factor. The transformation matrix is unchanged whether the coefficients are 4 π fully normalized or Schmidt quasi-normalized. The matrix is recursively computed by the so-called X-number formulation (Fukushima in J Geodesy 86: 271-285, 2012a). As an example, we obtained 2190× 2190 coefficients of the rectangular rotated spherical harmonic expansion of EGM2008. A proper combination of the original and the rotated expansions will be useful in (i) integrating the polar orbits of artificial satellites precisely and (ii) synthesizing/analyzing the gravitational/geomagnetic potentials and their derivatives accurately in the high latitude regions including the arctic and antarctic area.

  20. Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces.

    PubMed

    Tong, Lianming; Miljković, Vladimir D; Käll, Mikael

    2010-01-01

    We demonstrate optical alignment and rotation of individual plasmonic nanostructures with lengths from tens of nanometers to several micrometers using a single beam of linearly polarized near-infrared laser light. Silver nanorods and dimers of gold nanoparticles align parallel to the laser polarization because of the high long-axis dipole polarizability. Silver nanowires, in contrast, spontaneously turn perpendicular to the incident polarization and predominantly attach at the wire ends, in agreement with electrodynamics simulations. Wires, rods, and dimers all rotate if the incident polarization is turned. In the case of nanowires, we demonstrate spinning at an angular frequency of approximately 1 Hz due to transfer of spin angular momentum from circularly polarized light.

  1. Interplay of polarization geometry and rotational dynamics in high-order harmonic generation from coherently rotating linear molecules.

    PubMed

    Faisal, F H M; Abdurrouf, A

    2008-03-28

    Recent reports on intense-field pump-probe experiments for high-order harmonic generation (HHG) from coherently rotating linear molecules have revealed remarkable characteristic effects of the simultaneous variation of the polarization geometry and the time delay on the high-order harmonic signals. We analyze the effects and give a unified theoretical account of the experimental observations. Furthermore, characteristic behavior at critical polarization angles are found that can help to identify the molecular orbital symmetry in connection with the problem of molecular imaging from the HHG data.

  2. Rotation of the cosmic microwave background polarization from weak gravitational lensing.

    PubMed

    Dai, Liang

    2014-01-31

    When a cosmic microwave background (CMB) photon travels from the surface of last scatter through spacetime metric perturbations, the polarization vector may rotate about its direction of propagation. This gravitational rotation is distinct from, and occurs in addition to, the lensing deflection of the photon trajectory. This rotation can be sourced by linear vector or tensor metric perturbations and is fully coherent with the curl deflection field. Therefore, lensing corrections to the CMB polarization power spectra as well as the temperature-polarization cross correlations due to nonscalar perturbations are modified. The rotation does not affect lensing by linear scalar perturbations, but needs to be included when calculations go to higher orders. We present complete results for weak lensing of the full-sky CMB power spectra by general linear metric perturbations, taking into account both deflection of the photon trajectory and rotation of the polarization. For the case of lensing by gravitational waves, we show that the B modes induced by the rotation largely cancel those induced by the curl component of deflection.

  3. Band gap engineering strategy via polarization rotation in perovskite ferroelectrics

    SciTech Connect

    Wang, Fenggong Grinberg, Ilya; Rappe, Andrew M.

    2014-04-14

    We propose a strategy to engineer the band gaps of perovskite oxide ferroelectrics, supported by first principles calculations. We find that the band gaps of perovskites can be substantially reduced by as much as 1.2 eV through local rhombohedral-to-tetragonal structural transition. Furthermore, the strong polarization of the rhombohedral perovskite is largely preserved by its tetragonal counterpart. The B-cation off-center displacements and the resulting enhancement of the antibonding character in the conduction band give rise to the wider band gaps of the rhombohedral perovskites. The correlation between the structure, polarization orientation, and electronic structure lays a good foundation for understanding the physics of more complex perovskite solid solutions and provides a route for the design of photovoltaic perovskite ferroelectrics.

  4. Demanding response time requirements on coherent receivers due to fast polarization rotations caused by lightning events.

    PubMed

    Krummrich, Peter M; Ronnenberg, David; Schairer, Wolfgang; Wienold, Daniel; Jenau, Frank; Herrmann, Maximilian

    2016-05-30

    Lightning events can cause fast polarization rotations and phase changes in optical transmission fibers due to strong electrical currents and magnetic fields. Whereas these are unlikely to affect legacy transmission systems with direct detection, different mechanisms have to be considered in systems with local oscillator based coherent receivers and digital signal processing. A theoretical analysis reveals that lightning events can result in polarization rotations with speeds as fast as a few hundred kRad/s. We discuss possible mechanisms how such lightning events can affect coherent receivers with digital signal processing. In experimental investigations with a high current pulse generator and transponder prototypes, we observed post FEC errors after polarization rotation events which can be expected from lightning strikes.

  5. Polarization rotation and coupling between silicon waveguide and hybrid plasmonic waveguide

    PubMed Central

    Kim, Sangsik; Qi, Minghao

    2015-01-01

    We present a polarization rotation and coupling scheme that rotates a TE0 mode in a silicon waveguide and simultaneously couples the rotated mode to a hybrid plasmonic (HP0) waveguide mode. Such a polarization rotation can be realized with a partially etched asymmetric hybrid plasmonic waveguide consisting of a silicon strip waveguide, a thin oxide spacer, and a metal cap made from copper, gold, silver or aluminum. Two implementations, one with and one without the tapering of the metal cap are presented, and different taper shapes (linear and exponential) are also analyzed. The devices have large 3 dB conversion bandwidths (over 200 nm at near infrared) and short length (< 5 μm), and achieve a maximum coupling factor of ∼ 78% with a linearly tapered silver metal cap. PMID:25969038

  6. Optically induced rotation of Rayleigh particles by vortex beams with different states of polarization

    NASA Astrophysics Data System (ADS)

    Li, Manman; Yan, Shaohui; Yao, Baoli; Liang, Yansheng; Lei, Ming; Yang, Yanlong

    2016-01-01

    Optical vortex beams carry optical orbital angular momentum (OAM) and can induce an orbital motion of trapped particles in optical trapping. We show that the state of polarization (SOP) of vortex beams will affect the details of this optically induced orbital motion to some extent. Numerical results demonstrate that focusing the vortex beams with circular, radial or azimuthal polarizations can induce a uniform orbital motion on a trapped Rayleigh particle, while in the focal field of the vortex beam with linear polarization the particle experiences a non-uniform orbital motion. Among the formers, the vortex beam with circular polarization induces a maximum optical torque on the particle. Furthermore, by varying the topological charge of the vortex beams, the vortex beam with circular polarization gives rise to an optimum torque superior to those given by the other three vortex beams. These facts suggest that the circularly polarized vortex beam is more suitable for rotating particles.

  7. Square-wave self-modulation in diode lasers with polarization-rotated optical feedback.

    PubMed

    Gavrielides, Athanasios; Erneux, Thomas; Sukow, David W; Burner, Guinevere; McLachlan, Taylor; Miller, John; Amonette, Jake

    2006-07-01

    The square-wave response of edge-emitting diode lasers subject to a delayed polarization-rotated optical feedback is studied in detail. Specifically, the polarization state of the feedback is rotated such that the natural laser mode is coupled into the orthogonal, unsupported mode. Square-wave self-modulated polarization intensities oscillating in antiphase are observed experimentally. We find numerically that these oscillations naturally appear for a broad range of values of parameters, provided that the feedback is sufficiently strong and the differential losses in the normally unsupported polarization mode are small. We then investigate the laser equations analytically and find that the square-wave oscillations are the result of a bifurcation phenomenon.

  8. Square-wave self-modulation in diode lasers with polarization-rotated optical feedback

    NASA Astrophysics Data System (ADS)

    Gavrielides, Athanasios; Erneux, Thomas; Sukow, David W.; Burner, Guinevere; McLachlan, Taylor; Miller, John; Amonette, Jake

    2006-07-01

    The square-wave response of edge-emitting diode lasers subject to a delayed polarization-rotated optical feedback is studied in detail. Specifically, the polarization state of the feedback is rotated such that the natural laser mode is coupled into the orthogonal, unsupported mode. Square-wave self-modulated polarization intensities oscillating in antiphase are observed experimentally. We find numerically that these oscillations naturally appear for a broad range of values of parameters, provided that the feedback is sufficiently strong and the differential losses in the normally unsupported polarization mode are small. We then investigate the laser equations analytically and find that the square-wave oscillations are the result of a bifurcation phenomenon.

  9. Real-time image difference detection using a polarization rotation spacial light modulator

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Liu, Hua-Kuang (Inventor)

    1990-01-01

    An image difference detection system is described, of the type wherein two created image representations such as transparencies representing the images to be compared lie coplanar, while light passes through the two transparencies and is formed into coincident images at the image plane for comparison. The two transparencies are formed by portions of a polarization rotation spacial light modulator display such as a multi-pixel liquid crystal display or a magneto optical rotation type. In a system where light passing through the two transparencies is polarized in transverse directions to enable the use of a Wollaston prism to bring the images into coincidence, a liquid crystal display can be used which is devoid of polarizing sheets that would interfere with transverse polarizing of the light passing through the two transparencies.

  10. Real-time image difference detection using a polarization rotation spacial light modulator

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin (Inventor); Liu, Hua-Kuang (Inventor)

    1988-01-01

    An image difference detection system is described, of the type wherein two created image representations such as transparencies representing the images to be compared lie coplanar, while light passes through the two transparencies and is formed into coincident images at the image plane for comparison. The two transparencies are formed by portions of a polarization-rotation spatial light modulator display such as a multi-pixel liquid crystal display or a magnetooptical rotation type display. In a system where light passing through the two transparencies is polarized in transverse directions to enable the use of a Wollaston prism to bring the images into coincidence, a liquid crystal display can be used which is devoid of polarizing sheets that would interfere with transverse polarizing of the light passing through the two transparencies.

  11. Rotation-Enabled 7-Degree of Freedom Seismometer for Geothermal Resource Development. Phase 1 Final Report

    SciTech Connect

    Pierson, Bob; Laughlin, Darren

    2013-10-29

    Under this Department of Energy (DOE) grant, A-Tech Corporation d.b.a. Applied Technology Associates (ATA), seeks to develop a seven-degree-of-freedom (7-DOF) seismic measurement tool for high-temperature geothermal applications. The Rotational-Enabled 7-DOF Seismometer includes a conventional tri-axial accelerometer, a conventional pressure sensor or hydrophone, and a tri-axial rotational sensor. The rotational sensing capability is novel, based upon ATA's innovative research in rotational sensing technologies. The geothermal industry requires tools for high-precision seismic monitoring of crack formation associated with Enhanced Geothermal System (EGS) stimulation activity. Currently, microseismic monitoring is conducted by deploying many seismic tools at different depth levels along a 'string' within drilled observation wells. Costs per string can be hundreds of thousands of dollars. Processing data from the spatial arrays of linear seismometers allows back-projection of seismic wave states. In contrast, a Rotational-Enabled 7-DOF Seismometer would simultaneously measure p-wave velocity, s-wave velocity, and incident seismic wave direction all from a single point measurement. In addition, the Rotational-Enabled 7-DOF Seismometer will, by its nature, separate p- and s-waves into different data streams, simplifying signal processing and facilitating analysis of seismic source signatures and geological characterization. By adding measurements of three additional degrees-of-freedom at each level and leveraging the information from this new seismic observable, it is likely that an equally accurate picture of subsurface seismic activity could be garnered with fewer levels per hole. The key cost savings would come from better siting of the well due to increased information content and a decrease in the number of confirmation wells drilled, also due to the increase in information per well. Improved seismic tools may also increase knowledge, understanding, and confidence

  12. Pulse train induced rotational excitation and orientation of a polar molecule.

    PubMed

    Tyagi, Ashish; Arya, Urvashi; Vidhani, Bhavna; Prasad, Vinod

    2014-08-14

    We investigate theoretically the rotational excitation and field free molecular orientation of polar HBr molecule, interacting with train of ultrashort laser pulses. By adjusting the number of pulses, pulse period and the intensity of the pulse, one can suppress a population while simultaneously enhancing the desired population in particular rotational state. We have used train of laser pulses of different shaped pulse envelopes. The dynamics and orientation of molecules in the presence of pulse train of different shapes is studied and explained.

  13. Predicting folded beam waveguide absorber behavior using full translational and rotational degree of freedom coupling

    NASA Astrophysics Data System (ADS)

    Pray, Carl; Campbell, Robert; Hambric, Stephen; Munro, Andrew

    2003-10-01

    Folded beam waveguide absorbers (WGAs) have been shown to be effective low-frequency damping devices. Early WGA studies were unable to accurately predict this damping behavior. These studies used only translational degrees of freedom (DOFs), which resulted in the underestimation of the WGA damping performance. A recent study [Munro and Hambric, ``Modeling folded beam waveguide absorber behavior using translational and rotational degree of freedom frequency response function coupling,'' Proc. NOISE-CON 2003] used translational and rotational DOF frequency response functions to predict folded beam WGA behavior when attached to a thick rectangular plate, where the plate and WGA rotational DOFs were estimated using the finite-differencing method. Each plate and WGA DOF was coupled independently using frequency domain substructure synthesis (FDSS) [Jetmundsen et al., ``Generalized frequency domain synthesis,'' J. Am. Helicopter Soc. 55-64, Jan (1988)], and the damping contributions due to each DOF were summed to give the total WGA damping prediction. This method gives a much improved damping estimate from previous methods but is inefficient for complex problems. In this study, all the DOFs for the plate and WGA are combined simultaneously using FDSS to predict the WGA damping behavior and plate response with folded beam WGAs attached.

  14. Gravitational rotation of polarization: Clarifying the gauge dependence and prediction for a double pulsar

    NASA Astrophysics Data System (ADS)

    Pen, Ue-Li; Wang, Xin; Yang, I.-Sheng

    2017-02-01

    From the basic concepts of general relativity, we investigate the rotation of the polarization angle by a moving gravitational lens. In particular, we clarify the existing confusion in the literature by showing and explaining why such rotation must explicitly depend on the relative motion between the observer and the lens. We update the prediction of such effect on the double pulsar PSR J0737-3039 and estimate a rotation angle of ˜10-7rad . Despite its tiny signal, this is 10 orders of magnitude larger than the previous prediction by Ruggiero and Tartaglia [1], which apparently was misguided by the confusion in the literature.

  15. Rotation of the optical polarization angle associated with the 2008 γ-ray flare of blazar W Comae

    SciTech Connect

    Sorcia, Marco; Benítez, Erika; Cabrera, José I.; Hiriart, David; López, José M.; Mújica, Raúl

    2014-10-10

    An R-band photopolarimetric variability analysis of the TeV bright blazar W Comae between 2008 February 28 and 2013 May 17 is presented. The source showed a gradual tendency to decrease its mean flux level with a total change of 3 mJy. A maximum and minimum brightness states in the R band of 14.25 ± 0.04 and 16.52 ± 0.1 mag, respectively, were observed, corresponding to a maximum variation of ΔF = 5.40 mJy. We estimated a minimum variability timescale of Δt = 3.3 days. A maximum polarization degree P = 33.8% ± 1.6%, with a maximum variation of ΔP = 33.2%, was found. One of our main results is the detection of a large rotation of the polarization angle from 78° to 315° (Δθ ∼ 237°) that coincides in time with the γ-ray flare observed in 2008 June. This result indicates that both optical and γ-ray emission regions could be co-spatial. During this flare, a correlation between the R-band flux and polarization degree was found with a correlation coefficient of r {sub F} {sub –} {sub p} = 0.93 ± 0.11. From the Stokes parameters, we infer the existence of two optically thin synchrotron components that contribute to the polarized flux. One of them is stable with a constant polarization degree of 11%. Assuming a shock-in jet model during the 2008 flare, we estimated a maximum Doppler factor δ {sub D} ∼ 27 and a minimum of δ {sub D} ∼ 16; a minimum viewing angle of the jet ∼2.°0; and a magnetic field B ∼ 0.12 G.

  16. Parsec-scale Faraday rotation and polarization of 20 active galactic nuclei jets

    NASA Astrophysics Data System (ADS)

    Kravchenko, E. V.; Kovalev, Y. Y.; Sokolovsky, K. V.

    2017-01-01

    We perform polarimetry analysis of 20 active galactic nuclei (AGN) jets using the Very Long Baseline Array (VLBA) at 1.4, 1.6, 2.2, 2.4, 4.6, 5.0, 8.1, 8.4, and 15.4 GHz. The study allowed us to investigate linearly polarized properties of the jets at parsec-scales: distribution of the Faraday rotation measure (RM) and fractional polarization along the jets, Faraday effects and structure of Faraday-corrected polarization images. Wavelength-dependence of the fractional polarization and polarization angle is consistent with external Faraday rotation, while some sources show internal rotation. The RM changes along the jets, systematically increasing its value towards synchrotron self-absorbed cores at shorter wavelengths. The highest core RM reaches 16,900 rad m-2 in the source rest frame for the quasar 0952+179, suggesting the presence of highly magnetized, dense media in these regions. The typical RM of transparent jet regions has values of an order of a hundred rad m-2 . Significant transverse rotation measure gradients are observed in seven sources. The magnetic field in the Faraday screen has no preferred orientation, and is observed to be random or regular from source to source. Half of the sources show evidence for the helical magnetic fields in their rotating magnetoionic media. At the same time jets themselves contain large-scale, ordered magnetic fields and tend to align its direction with the jet flow. The observed variety of polarized signatures can be explained by a model of spine-sheath jet structure.

  17. Secular Motion in a 2nd Degree and Order-Gravity Field with no Rotation

    NASA Astrophysics Data System (ADS)

    Scheeres, D. J.; Hu, W.

    2001-03-01

    The motion of a particle about a non-rotating 2nd degree and order-gravity field is investigated. Averaging conditions are applied to the particle motion and a qualitative analysis which reveals the general character of motion in this system is given. It is shown that the orbit plane will either be stationary or precess about the body's axis of minimum or maximum moment of inertia. It is also shown that the secular equations for this system can be integrated in terms of trigonometric, hyperbolic or elliptic functions. The explicit solutions are derived in all cases of interest.

  18. Development of Calibration-Free Imaging Ellipsometry Using Dual-Rotation of Polarizer and Analyzer

    NASA Astrophysics Data System (ADS)

    Cheon, Hyuknyeong; Bak, Heung-Jin; Oh, Hyekeun; Lee, Eun-Kyu; An, Ilsin

    2007-08-01

    Imaging ellipsometry is developed in the dual-rotation mode of a polarizer and an analyzer. In this system, the polarizer and analyzer are rotated by a stepping motor at 1:1 ratio and the offset between the azimuths of both elements is kept constant. For data reduction, a two-dimensional array detector collects multiple intensity images during rotation and waveform analysis is performed for each pixel. This system generates second and fourth harmonics in intensity waveform and \\{Δ, \\Psi\\} images are deduced from the amplitudes of these harmonics without considering their phases, which leads to calibration-free imaging ellipsometry. This system works well with an offset between two elements but it becomes less susceptible to an offset-setting error with a smaller offset. Besides the ease of operation, this system is simple to construct as no complicated control mechanism is required for each component.

  19. Circular Polarizations of Gravitational Waves from Core-Collapse Supernovae: A Clear Indication of Rapid Rotation.

    PubMed

    Hayama, Kazuhiro; Kuroda, Takami; Nakamura, Ko; Yamada, Shoichi

    2016-04-15

    We propose to employ the circular polarization of gravitational waves emitted by core-collapse supernovae as an unequivocal indication of rapid rotation deep in their cores just prior to collapse. It has been demonstrated by three dimensional simulations that nonaxisymmetric accretion flows may develop spontaneously via hydrodynamical instabilities in the postbounce cores. It is not surprising, then, that the gravitational waves emitted by such fluid motions are circularly polarized. We show, in this Letter, that a network of the second generation detectors of gravitational waves worldwide may be able to detect such polarizations up to the opposite side of the Galaxy as long as the rotation period of the core is shorter than a few seconds prior to collapse.

  20. Semiconductor sensor for optically measuring polarization rotation of optical wavefronts using rare earth iron garnets

    DOEpatents

    Duncan, Paul G.

    2002-01-01

    Described are the design of a rare earth iron garnet sensor element, optical methods of interrogating the sensor element, methods of coupling the optical sensor element to a waveguide, and an optical and electrical processing system for monitoring the polarization rotation of a linearly polarized wavefront undergoing external modulation due to magnetic field or electrical current fluctuation. The sensor element uses the Faraday effect, an intrinsic property of certain rare-earth iron garnet materials, to rotate the polarization state of light in the presence of a magnetic field. The sensor element may be coated with a thin-film mirror to effectively double the optical path length, providing twice the sensitivity for a given field strength or temperature change. A semiconductor sensor system using a rare earth iron garnet sensor element is described.

  1. Polarization singularities and orbital angular momentum sidebands from rotational symmetry broken by the Pockels effect

    NASA Astrophysics Data System (ADS)

    Lu, Xiancong; Wu, Ziwen; Zhang, Wuhong; Chen, Lixiang

    2014-05-01

    The law of angular momentum conservation is naturally linked to the rotational symmetry of the involved system. Here we demonstrate theoretically how to break the rotational symmetry of a uniaxial crystal via the electro-optic Pockels effect. By numerical method based on asymptotic expansion, we discover the 3D structure of polarization singularities in terms of C lines and L surfaces embedded in the emerging light. We visualize the controllable dynamics evolution of polarization singularities when undergoing the Pockels effect, which behaves just like the binary fission of a prokaryotic cell, i.e., the splitting of C points and fission of L lines are animated in analogy with the cleavage of nucleus and division of cytoplasm. We reveal the connection of polarization singularity dynamics with the accompanying generation of orbital angular momentum sidebands. It is unexpected that although the total angular momentum of light is not conserved, the total topological index of C points is conserved.

  2. Polarization singularities and orbital angular momentum sidebands from rotational symmetry broken by the Pockels effect.

    PubMed

    Lu, Xiancong; Wu, Ziwen; Zhang, Wuhong; Chen, Lixiang

    2014-05-02

    The law of angular momentum conservation is naturally linked to the rotational symmetry of the involved system. Here we demonstrate theoretically how to break the rotational symmetry of a uniaxial crystal via the electro-optic Pockels effect. By numerical method based on asymptotic expansion, we discover the 3D structure of polarization singularities in terms of C lines and L surfaces embedded in the emerging light. We visualize the controllable dynamics evolution of polarization singularities when undergoing the Pockels effect, which behaves just like the binary fission of a prokaryotic cell, i.e., the splitting of C points and fission of L lines are animated in analogy with the cleavage of nucleus and division of cytoplasm. We reveal the connection of polarization singularity dynamics with the accompanying generation of orbital angular momentum sidebands. It is unexpected that although the total angular momentum of light is not conserved, the total topological index of C points is conserved.

  3. Degree Angular Scale Interferometer 3 Year Cosmic Microwave Background Polarization Results

    NASA Astrophysics Data System (ADS)

    Leitch, E. M.; Kovac, J. M.; Halverson, N. W.; Carlstrom, J. E.; Pryke, C.; Smith, M. W. E.

    2005-05-01

    We present the analysis of the complete 3 yr data set obtained with the Degree Angular Scale Interferometer (DASI) polarization experiment, operating from the Amundsen-Scott South Pole research station. New data obtained at the end of the 2002 austral winter and throughout the 2003 season were added to the data from which the first detection of polarization of the cosmic microwave background (CMB) radiation was reported. The analysis of the combined data supports, with increased statistical power, all of the conclusions drawn from the initial data set. In particular, the detection of E-mode polarization is increased to the 6.3 σ confidence level, TE cross-polarization is detected at 2.9 σ, and B-mode polarization is consistent with zero, with an upper limit well below the level of the detected E-mode polarization. The results are in excellent agreement with the predictions of the cosmological model that has emerged from CMB temperature measurements. The analysis also demonstrates that contamination of the data by known sources of foreground emission is insignificant.

  4. Degree of dissociation of apohemoglobin studied by nano-second fluorescence-polarization technique.

    PubMed

    Kinosita, K; Mitaku, S; Ikegami, A

    1975-05-30

    A fluorescent dye 1-anilino-8-naphthalene sulfonate was complexed with human apohemoglobin and sperm whale apomyoglobin. Nanosecond fluorescence-polarization kinetics were measured for each of these complexes in KC1 solutions to obtain their fluorescence lifetimes and rotational correlation times. The rotational correlation time of apohemoglobin-dye complex was found to be 21 ns, which was about twice that of apomyoglobin-dye complex, 11 ns. These values were constant over an ionic strength range from 0 to 1.7. Circular dichroism spectra (215-300 nm) and fluorescence lifetimes of the complexes were also found to be independent of the ionic strength, indicating that no gross conformational change occurs with the change in the salt concentration, These results suggest that apohemoglobin remains dimeric over the ionic-strength range examined.

  5. Use of ferroelectric liquid crystal panels to control state and degree of polarization in light beams.

    PubMed

    Peinado, Alba; Lizana, Angel; Campos, Juan

    2014-02-01

    We propose a new technique that is able to generate a light beam with a controlled state of polarization (SoP) and a customized degree of polarization (DoP). The technique relies on the fact that effective depolarization can be achieved by temporally averaging a time-dependent SoP. Our proposed setup is based on a ferroelectric liquid crystal panel of retardance λ/2, with a fast polarization switching capability (33 Hz). A mathematical basis describing the experiment is given. In addition, simulation data is discussed, showing the possibility of generating any SoP with full control of the DoP. Finally, to prove the potential of the invention proposed, experimental results are provided as well, reaching an experimental minimum DoP of 0.14.

  6. Detection of polarization in the cosmic microwave background using DASI. Degree Angular Scale Interferometer.

    PubMed

    Kovac, J M; Leitch, E M; Pryke, C; Carlstrom, J E; Halverson, N W; Holzapfel, W L

    The past several years have seen the emergence of a standard cosmological model, in which small temperature differences in the cosmic microwave background (CMB) radiation on angular scales of the order of a degree are understood to arise from acoustic oscillations in the hot plasma of the early Universe, arising from primordial density fluctuations. Within the context of this model, recent measurements of the temperature fluctuations have led to profound conclusions about the origin, evolution and composition of the Universe. Using the measured temperature fluctuations, the theoretical framework predicts the level of polarization of the CMB with essentially no free parameters. Therefore, a measurement of the polarization is a critical test of the theory and thus of the validity of the cosmological parameters derived from the CMB measurements. Here we report the detection of polarization of the CMB with the Degree Angular Scale Interferometer (DASI). The polarization is deteced with high confidence, and its level and spatial distribution are in excellent agreement with the predictions of the standard theory.

  7. Low power autocorrelation technique based on the degree-of-polarization measurement

    NASA Astrophysics Data System (ADS)

    Hu, Junhao; Yu, Changyuan

    2010-12-01

    Based on the degree-of-polarization (DOP) measurement, an autocorrelation technique to measure the pulse width of chirp-free optical short pulse with a very low optical power (<-60 dBm) is demonstrated. The impacts of chirp and misalignment of the input light are also discussed in detail. The pulse width measurement results are consistent with the conventional second-harmonic generation (SHG) autocorrelation, while our autocorrelation technique does not require high input power or rigid optical alignment.

  8. Omni-directional and holonomic rolling platform with decoupled rotational and translational degrees of freedom

    DOEpatents

    Pin, F.G.; Killough, S.M.

    1994-12-20

    A wheel assembly includes a support, a cage rotatably mounted on the support and having a longitudinal rotation axis, a first ball wheel rotatably mounted in the cage and having a rotation axis orthogonal to the rotation axis of the cage, and a second ball wheel rotatably mounted in the cage and having a rotation axis orthogonal to the rotation axis or the cage and to the rotation axis of the first ball wheel. A control circuit includes a photodetector signal which indicates ground contact for each ball wheel, and a tachometer which indicates actual drive shaft velocity. 6 figures.

  9. Omni-directional and holonomic rolling platform with decoupled rotational and translational degrees of freedom

    DOEpatents

    Pin, Francois G.; Killough, Stephen M.

    1994-01-01

    A wheel assembly includes a support, a cage rotatably mounted on the support and having a longitudinal rotation axis, a first ball wheel rotatably mounted in the cage and having a rotation axis orthogonal to the rotation axis of the cage, and a second ball wheel rotatably mounted in the cage and having a rotation axis orthogonal to the rotation axis or the cage and to the rotation axis of the first ball wheel. A control circuit includes a photodetector signal which indicates ground contact for each ball wheel, and a tachometer which indicates actual drive shaft velocity.

  10. Switchable thulium-doped fiber laser from polarization rotation vector to scalar soliton

    PubMed Central

    Wu, Zhichao; Fu, Songnian; Jiang, Kai; Song, Jue; Li, Huizi; Tang, Ming; Shum, Ping; Liu, Deming

    2016-01-01

    We experimentally demonstrate switchable temporal soliton generation from a thulium-doped fiber laser (TDFL), using carbon nanotubes as the mode-locker. With the help of residual polarization dependent loss of a wavelength division multiplexer, a weak nonlinear polarization rotation (NPR) effect can be achieved within the laser cavity, which may provide joint contribution for passive mode-locking operation. By finely adjusting the polarization to alter the strength of NPR-based saturable absorption, the TDFL either approaches the operation regime of scalar soliton with strong NPR effect, or generates polarization rotation locked vector soliton (PRLVS) with weak NPR effect. The scalar solitons and PRLVSs possess 3-dB optical spectrum bandwidth of 2.2 nm and 2 nm, pulse-width of 1.8 ps and 2 ps, respectively. Moreover, the PRLVSs demonstrate a typical energy exchange between two polarized components on optical spectra and a period-doubling feature in time domain. Such operation principle can also be used in 1550 nm band fiber lasers and other nonlinear systems. PMID:27708427

  11. Switchable thulium-doped fiber laser from polarization rotation vector to scalar soliton

    NASA Astrophysics Data System (ADS)

    Wu, Zhichao; Fu, Songnian; Jiang, Kai; Song, Jue; Li, Huizi; Tang, Ming; Shum, Ping; Liu, Deming

    2016-10-01

    We experimentally demonstrate switchable temporal soliton generation from a thulium-doped fiber laser (TDFL), using carbon nanotubes as the mode-locker. With the help of residual polarization dependent loss of a wavelength division multiplexer, a weak nonlinear polarization rotation (NPR) effect can be achieved within the laser cavity, which may provide joint contribution for passive mode-locking operation. By finely adjusting the polarization to alter the strength of NPR-based saturable absorption, the TDFL either approaches the operation regime of scalar soliton with strong NPR effect, or generates polarization rotation locked vector soliton (PRLVS) with weak NPR effect. The scalar solitons and PRLVSs possess 3-dB optical spectrum bandwidth of 2.2 nm and 2 nm, pulse-width of 1.8 ps and 2 ps, respectively. Moreover, the PRLVSs demonstrate a typical energy exchange between two polarized components on optical spectra and a period-doubling feature in time domain. Such operation principle can also be used in 1550 nm band fiber lasers and other nonlinear systems.

  12. Polarization-induced noise in a fiber-optic Michelson interferometer with Faraday rotator mirror elements

    NASA Astrophysics Data System (ADS)

    Ferreira, L. A.; Santos, J. L.; Farahi, F.

    1995-10-01

    Faraday rotator mirror elements have been used in a number of applications as compensators for induced birefringence in retracing paths. In interferometric systems, such as the fiber-optic Michelson interferometer, this approach proved to be useful in providing maximum fringe visibility and insensitivity to the polarization state of light injected into the interferometer. However, it is found that, when the characteristics of the fiber coupler depend on the polarization state of the input beam, the efficiency of the Faraday mirror elements is limited. Theoretical analysis and experimental results in support of this statement are presented.

  13. Variable Polarization from Co-Rotating Interaction Regions in Massive Star Winds

    NASA Astrophysics Data System (ADS)

    Ignace, Richard; St. Louis, Nicole; Tremblay, Patrick; Proulx-Giraldeau, Felix

    2017-01-01

    Co-rotating Interaction Regions (CIRs) are a well-known phenomenon in the solar wind, and is a favored culprit for certain cyclical behavior observed in the spectra of some massive stars. A prime example are the discrete absorption components (DACs) seen in the UV wind lines of many O stars. Here we report on modeling for the variable continuum polarization that could arise from the presence of CIR structures. Considerations are limited to optically thin scattering. Using a core-halo approach for winds that are thick to electron scattering, an application to observed variable polarization of WR6 (EZ CMa; HD 50896) is presented.

  14. Tunable multiwavelength SOA fiber laser with ultra-narrow wavelength spacing based on nonlinear polarization rotation.

    PubMed

    Zhang, Zuxing; Wu, Jian; Xu, Kun; Hong, Xiaobin; Lin, Jintong

    2009-09-14

    A tunable multiwavelength fiber laser with ultra-narrow wavelength spacing and large wavelength number using a semiconductor optical amplifier (SOA) has been demonstrated. Intensity-dependent transmission induced by nonlinear polarization rotation in the SOA accounts for stable multiwavelength operation with wavelength spacing less than the homogenous broadening linewidth of the SOA. Stable multiwavelength lasing with wavelength spacing as small as 0.08 nm and wavelength number up to 126 is achieved at room temperature. Moreover, wavelength tuning of 20.2 nm is implemented via polarization tuning.

  15. Polarization-induced noise in a fiber-optic Michelson interferometer with Faraday rotator mirror elements.

    PubMed

    Ferreira, L A; Santos, J L; Farahi, F

    1995-10-01

    Faraday rotator mirror elements have been used in a number of applications as compensators for induced birefringence in retracing paths. In interferometric systems, such as the fiber-optic Michelson interferometer, this approach proved to be useful in providing maximum fringe visibility and insensitivity to the polarization state of light injected into the interferometer. However, it is found that, when the characteristics of the fiber coupler depend on the polarization state of the input beam, the efficiency of the Faraday mirror elements is limited. Theoretical analysis and experimental results in support of this statement are presented.

  16. Imaging the Stereodynamics of Cl + CH4(ν3 = 1): Polarization Dependence on the Rotational Branch and the Hyperfine Depolarization.

    PubMed

    Pan, Huilin; Yang, Jiayue; Wang, Fengyan; Liu, Kopin

    2014-11-06

    The transition state in the Cl + CH4 reaction is of Cl-H-C collinear geometry, which serves as the bottleneck to reaction. When the reactant CH4 is antisymmetrically stretch-excited to ν3 = 1 by absorbing a linearly polarized photon, all four C-H bonds are collectively excited, and any one of the H atoms could be attacked by the Cl atom. At first sight, it is not obvious how an excited spherical-top molecule like CH4 is aligned and what consequences will be on chemical reactivity by polarizing the CH4 reagents. As shown here, an enormous steric effect on reactivity is observed, which depends sensitively on the selected rotational states. By exploiting various rotational branches in optical excitation, we quantify the degree of stereospecificity for a few lowest rovibrational states of the aligned CH4(ν3 = 1) reagents, as well as account for the hyperfine depolarization factor. This information lays the foundation for a full stereorequirement study of the Cl + CH4(ν3 = 1) reaction.

  17. Circularly polarized few-cycle optical rogue waves: Rotating reduced Maxwell-Bloch equations

    NASA Astrophysics Data System (ADS)

    Xu, Shuwei; Porsezian, K.; He, Jingsong; Cheng, Yi

    2013-12-01

    The rotating reduced Maxwell-Bloch (RMB) equations, which describe the propagation of few-cycle optical pulses in a transparent media with two isotropic polarized electronic field components, are derived from a system of complete Maxwell-Bloch equations without using the slowly varying envelope approximations. Two hierarchies of the obtained rational solutions, including rogue waves, which are also called few-cycle optical rogue waves, of the rotating RMB equations are constructed explicitly through degenerate Darboux transformation. In addition to the above, the dynamical evolution of the first-, second-, and third-order few-cycle optical rogue waves are constructed with different patterns. For an electric field E in the three lower-order rogue waves, we find that rogue waves correspond to localized large amplitude oscillations of the polarized electric fields. Further a complementary relationship of two electric field components of rogue waves is discussed in terms of analytical formulas as well as numerical figures.

  18. Digital Beam Steering Device Based on Decoupled Birefringent Prism Deflector and Polarization Rotator

    NASA Technical Reports Server (NTRS)

    Pishnyak, Oleg; Kreminska, Lyubov; Laventovich, Oleg D.; Pouch, John J.; Miranda, Felix A.; Winker, Bruce K.

    2004-01-01

    We describe digital beam deflectors (DBDs) based on liquid crystals. Each stage of the device comprises a polarization rotator and a birefringent prism deflector. The birefringent prism deflects the beam by an angle that depends on polarization of the incident beam. The prism can be made of the uniaxial smectic A (SmA) liquid crystal (LC) or a solid crystal such as yttrium orthovanadate (YVO4). SmA prisms have high birefringence and can be constructed in a variety of shapes, including single prisms and prismatic blazed gratings of different angles and profiles. We address the challenges of uniform alignment of SmA, such as elimination of focal conic domains. Rotation of linear polarization is achieved by an electrically switched twisted nematic (TN) cell. A DBD composed of N rotator-deflector pairs steers the beam into 2(sup N) directions. As an example, we describe a four-stage DBD deflecting normally incident laser beam within the range of +/- 56 mrad with 8 mrad steps. Redirection of the beam is achieved by switching the TN cells.

  19. An imaging technique using rotational polarization microscopy for the microstructure analysis of carbon/carbon composites.

    PubMed

    Miaoling, Li; Lehua, Qi; Hejun, Li

    2012-01-01

    A novel image analysis technique was proposed for microstructure investigation of carbon/carbon (C/C) composites. The rotational polarization microscopy was developed to meet the special imaging requirements. The samples of C/C composites were observed in reflection polarized light microscope, where the analyzer was rotated instead of the stage, and the polarizer was taken out. The bireflectance of like-graphite negative uniaxial crystal was analyzed. It was the theoretic foundation of image collection and data processing. The analyzer was rotated through 36 × 10° intervals without any movement of the specimen. The polished cross-section of C/C composites took micrographs at each analyzer orientation. All image data collected from the same field of view were processed by image registration and image fusion. The synthesized images were obtained by calculating the maximum and minimum gray values and their differences at each point of the million pixels at 18 orientations of the analyzer. They are unique and quite reliable to be applied to analyze the microstructure of C/C composites. Subsequently, image segmentation was performed, and the feature parameters of each component were calculated. Good agreement was found between the results from image analysis and experimental data.

  20. Polarization rotator of arbitrary angle based on simple slot-array

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoming; Cao, Xiaohang; Yu, Junsheng; Chen, Xiaodong; Yao, Yuan; Qi, Limei; Chen, Zhijiao; Zhou, Jun

    2015-12-01

    A novel polarization rotator of arbitrary angle was proposed and realized based on simple slot arrays. To achieve the rotation of an arbitrary angle α, the slots on the first layer have to be at an angle of α to the slots on the second layer. Consequently, 90° rotation can be realized using two perpendicularly oriented slot arrays, which overturns the conventional notion of that perpendicular slot arrays are not possible to pass electromagnetic wave. In addition, such structure provides the same bandwidth comparing to its counterpart utilized for frequency selective surface (FSS). Furthermore, such structure is much easier to be fabricated compared to the substrate integrated waveguide (SIW) array. Moreover, low insertion loss can be achieved based on metallic material.

  1. Renormalized vacuum polarization on rotating warped AdS3 black holes

    NASA Astrophysics Data System (ADS)

    Ferreira, Hugo R. C.; Louko, Jorma

    2015-01-01

    We compute the renormalized vacuum polarization of a massive scalar field in the Hartle-Hawking state on (2 +1 )-dimensional rotating, spacelike stretched black hole solutions to topologically massive gravity, surrounded by a Dirichlet mirror that makes the state well defined. The Feynman propagator is written as a mode sum on the complex Riemannian section of the spacetime, and a Hadamard renormalization procedure is implemented by matching to a mode sum on the complex Riemannian section of a rotating Minkowski spacetime. No analytic continuation in the angular momentum parameter is invoked. Selected numerical results are given, demonstrating the numerical efficacy of the method. We anticipate that this method can be extended to wider classes of rotating black hole spacetimes, in particular to the Kerr spacetime in four dimensions.

  2. Scientific Verification of Faraday Rotation Modulators: Detection of Diffuse Polarized Galactic Emission

    NASA Technical Reports Server (NTRS)

    Moyerman, S.; Bierman, E.; Ade, P. A. R.; Aiken, R.; Barkats, D.; Bischoff, C.; Bock, J. J.; Chiang, H. C.; Dowell, C. D.; Duband, L.; Hivon, E. F.; Holzapel, W. L.; Hristov, V. V.; Jones, W. C.; Kaufman, J.; Keating, B. G.; Kovac, J. M.; Kuo, C. L.; Leitch, E. M.; Mason, P. V.; Matsumura, T.; Nguyen, H. T.; Ponthieu, N.; Pryke, C.; Wollack, E.

    2012-01-01

    The design and performance of a wide bandwidth linear polarization-modulator based on the Faraday effect is described. Faraday Rotation Modulators (FRMs) are solid-state polarization switches that are capable of modulation up to approx 10 kHz. Six FRMs were utilized during the 2006 observing season in the Background Imaging of Cosmic Extragalactic Polarization (BICEP) experiment; three FRMs were used at each of BICEP fs 100 and 150 GHz frequency bands. The technology was verified through high signal-to-noise detection of Galactic polarization using two of the six FRMs during four observing runs in 2006. The features exhibit strong agreement with BICEP fs measurements of the Galaxy using non-FRM pixels and with the Galactic polarization models. This marks the first detection of high signal-to-noise mm-wave celestial polarization using fast, active optical modulation. The performance of the FRMs during periods when they were not modulated was also analyzed and compared to results from BICEP fs 43 pixels without FRMs.

  3. Degradation in the degree of polarization in human retinal nerve fiber layer

    NASA Astrophysics Data System (ADS)

    Yin, Biwei; Wang, Bingqing; Rylander, Henry G.; Milner, Thomas E.

    2014-01-01

    Using a fiber-based swept-source (SS) polarization-sensitive optical coherence tomography (PS-OCT) system, we investigate the degree of polarization (DOP) of light backscattered from the retinal nerve fiber layer (RNFL) in normal human subjects. Algorithms for processing data were developed to analyze the deviation in phase retardation and intensity of backscattered light in directions parallel and perpendicular to the nerve fiber axis (fast and slow axes of RNFL). Considering superior, inferior, and nasal quadrants, we observe the strongest degradation in the DOP with increasing RNFL depth in the temporal quadrant. Retinal ganglion cell axons in normal human subjects are known to have the smallest diameter in the temporal quadrant, and the greater degradation observed in the DOP suggests that higher polarimetric noise may be associated with neural structure in the temporal RNFL. The association between depth degradation in the DOP and RNFL structural properties may broaden the utility of PS-OCT as a functional imaging technique.

  4. Imaging of polarization rotation in transmission resonances of periodic plasmonic structures

    NASA Astrophysics Data System (ADS)

    Arora, Pankaj; Krishnan, Ananth

    2014-05-01

    We imaged polarization rotation of transmitted light in 1D Periodic Plasmonic Structures (PPS) fabricated on thin metal coated dielectric substrate. Several PPS of 50% duty cycle and extremely low aspect ratio (height to width ratio) of 0.1 were designed using rigorous coupled wave analysis to exhibit transmission plasmonic resonances at optical wavelengths (400 nm to 700 nm). PPS were fabricated using electron beam lithography, evaporation and lift-off process on glass substrates coated with thin metal. The PPS were characterized using normally incident broadband visible light and crossaxis Polarizer Analyzer setup, with the transmitted light imaged in direct and momentum space using a camera. When the cross axis Polarizer Analyzer were positioned at +45° & -45° respectively w.r.t. plane of incidence, bright emissions of Green, Yellow or Red colors corresponding to transmission plasmonic resonances of the PPS with different periods, were observed in both direct and Fourier planes, instead of completely dark images. From the measured emission momentum in Fourier plane images and spectra of collected light, the emissions were attributed to the excitations of surface plasmons and the reason for surface plasmon excitation in this arrangement is strong coupling of hybrid modes with each other caused by the anisotropy introduced by grating which strongly enhances the efficiency of Polarization rotation. The presented structures behave as frequency selective half wave plates in transmission configuration and could also be used to eliminate the effect of direct beam while imaging the coupling to surface plasmons in periodic structures.

  5. Rotatable spin-polarized electron source for inverse-photoemission experiments

    SciTech Connect

    Stolwijk, S. D. Wortelen, H.; Schmidt, A. B.; Donath, M.

    2014-01-15

    We present a ROtatable Spin-polarized Electron source (ROSE) for the use in spin- and angle-resolved inverse-photoemission (SR-IPE) experiments. A key feature of the ROSE is a variable direction of the transversal electron beam polarization. As a result, the inverse-photoemission experiment becomes sensitive to two orthogonal in-plane polarization directions, and, for nonnormal electron incidence, to the out-of-plane polarization component. We characterize the ROSE and test its performance on the basis of SR-IPE experiments. Measurements on magnetized Ni films on W(110) serve as a reference to demonstrate the variable spin sensitivity. Moreover, investigations of the unoccupied spin-dependent surface electronic structure of Tl/Si(111) highlight the capability to analyze complex phenomena like spin rotations in momentum space. Essentially, the ROSE opens the way to further studies on complex spin-dependent effects in the field of surface magnetism and spin-orbit interaction at surfaces.

  6. Numerical calculation of the operation wavelength range of a polarization controller based on rotatable wave plates

    NASA Astrophysics Data System (ADS)

    Park, Hee Su; Sharma, Aditya

    2016-12-01

    We calculate the operation wavelength range of polarization controllers based on rotating wave plates such as paddle-type optical fiber devices. The coverages over arbitrary polarization conversion or arbitrary birefringence compensation are numerically estimated. The results present the acceptable phase retardation range of polarization controllers composed of two quarter-wave plates or a quarter-half-quarter-wave plate combination, and thereby determines the operation wavelength range of a given design. We further prove that a quarter-quarter-half-wave-plate combination is also an arbitrary birefringence compensator as well as a conventional quarter-half-quarter-wave-plate combination, and show that the two configurations have the identical range of acceptable phase retardance within the uncertainty of our numerical method.

  7. Polarized Electronic Absorption Spectrum at 300 Degree K and 77 Degree K: A Physical Chemistry Laboratory Experiment.

    ERIC Educational Resources Information Center

    Johnson, L. W.; Wong, K.

    1979-01-01

    This experiment demonstrates the polarization properties of the transition moment, vibronic activity in an excited state, cyrogenic techniques, crystal site splitting, and the use of mixed crystals. (BB)

  8. Performance bounds for the estimation of the degree of polarization from various sensing modalities.

    PubMed

    Wang, Wei; Schulz, Timothy J

    2010-06-01

    Performance bounds (Cramer-Rao bounds on root-mean-square errors) are computed for the estimation of the degree of polarization for reflected fields with active laser illumination [Proc. SPIE 5888, 58880N (2005)]. The bounds are computed from various sensing modalities, which involves the measurement and processing of (1) the four intensities outputs of a four-channel polarimeter, (2) the intensities of two orthogonal field components, and (3) the total intensity of the field. Each modality includes detector noise models and utilizes realistic data-collection models.

  9. Degree-scale cosmic microwave background polarization measurements from three years of BICEP1 data

    SciTech Connect

    Barkats, D.; Aikin, R.; Bock, J. J.; Filippini, J.; Hristov, V. V.; Bischoff, C.; Buder, I.; Kovac, J. M.; Kaufman, J. P.; Keating, B. G.; Bierman, E. M.; Su, M.; Ade, P. A. R.; Battle, J. O.; Dowell, C. D.; Chiang, H. C.; Duband, L.; Hivon, E. F.; Holzapfel, W. L.; Jones, W. C.; and others

    2014-03-10

    BICEP1 is a millimeter-wavelength telescope designed specifically to measure the inflationary B-mode polarization of the cosmic microwave background at degree angular scales. We present results from an analysis of the data acquired during three seasons of observations at the South Pole (2006-2008). This work extends the two-year result published in Chiang et al., with additional data from the third season and relaxed detector-selection criteria. This analysis also introduces a more comprehensive estimation of band power window functions, improved likelihood estimation methods, and a new technique for deprojecting monopole temperature-to-polarization leakage that reduces this class of systematic uncertainty to a negligible level. We present maps of temperature, E- and B-mode polarization, and their associated angular power spectra. The improvement in the map noise level and polarization spectra error bars are consistent with the 52% increase in integration time relative to Chiang et al. We confirm both self-consistency of the polarization data and consistency with the two-year results. We measure the angular power spectra at 21 ≤ ℓ ≤ 335 and find that the EE spectrum is consistent with Lambda cold dark matter cosmology, with the first acoustic peak of the EE spectrum now detected at 15σ. The BB spectrum remains consistent with zero. From B-modes only, we constrain the tensor-to-scalar ratio to r=0.03{sub −0.23}{sup +0.27}, or r < 0.70 at 95% confidence level.

  10. Optical rotation compensation for a holographic 3D display with a 360 degree horizontal viewing zone.

    PubMed

    Sando, Yusuke; Barada, Daisuke; Yatagai, Toyohiko

    2016-10-20

    A method for a continuous optical rotation compensation in a time-division-based holographic three-dimensional (3D) display with a rotating mirror is presented. Since the coordinate system of wavefronts after the mirror reflection rotates about the optical axis along with the rotation angle, compensation or cancellation is absolutely necessary to fix the reconstructed 3D object. In this study, we address this problem by introducing an optical image rotator based on a right-angle prism that rotates synchronously with the rotating mirror. The optical and continuous compensation reduces the occurrence of duplicate images, which leads to the improvement of the quality of reconstructed images. The effect of the optical rotation compensation is experimentally verified and a demonstration of holographic 3D display with the optical rotation compensation is presented.

  11. Effects of translational and rotational degrees of freedom on properties of the Mercedes-Benz water model

    NASA Astrophysics Data System (ADS)

    Urbic, T.; Mohoric, T.

    2017-03-01

    Non-equilibrium Monte Carlo and molecular dynamics simulations are used to study the effect of translational and rotational degrees of freedom on the structural and thermodynamic properties of the simple Mercedes-Benz water model. We establish a non-equilibrium steady state where rotational and translational temperatures can be tuned. We separately show that Monte Carlo simulations can be used to study non-equilibrium properties if sampling is performed correctly. By holding one of the temperatures constant and varying the other one, we investigate the effect of faster motion in the corresponding degrees of freedom on the properties of the simple water model. In particular, the situation where the rotational temperature exceeded the translational one is mimicking the effects of microwaves on the water model. A decrease of rotational temperature leads to the higher structural order while an increase causes the structure to be more Lennard-Jones fluid like.

  12. ROTATIONAL VARIABILITY OF EARTH'S POLAR REGIONS: IMPLICATIONS FOR DETECTING SNOWBALL PLANETS

    SciTech Connect

    Cowan, Nicolas B.; Robinson, Tyler; Agol, Eric; Meadows, Victoria S.; Shields, Aomawa L.; Livengood, Timothy A.; Deming, Drake; A'Hearn, Michael F.; Wellnitz, Dennis D.; Charbonneau, David; Lisse, Carey M.

    2011-04-10

    We have obtained the first time-resolved, disk-integrated observations of Earth's poles with the Deep Impact spacecraft as part of the EPOXI mission of opportunity. These data mimic what we will see when we point next-generation space telescopes at nearby exoplanets. We use principal component analysis (PCA) and rotational light curve inversion to characterize color inhomogeneities and map their spatial distribution from these unusual vantage points, as a complement to the equatorial views presented by Cowan et al. in 2009. We also perform the same PCA on a suite of simulated rotational multi-band light curves from NASA's Virtual Planetary Laboratory three-dimensional spectral Earth model. This numerical experiment allows us to understand what sorts of surface features PCA can robustly identify. We find that the EPOXI polar observations have similar broadband colors as the equatorial Earth, but with 20%-30% greater apparent albedo. This is because the polar observations are most sensitive to mid-latitudes, which tend to be more cloudy than the equatorial latitudes emphasized by the original EPOXI Earth observations. The cloudiness of the mid-latitudes also manifests itself in the form of increased variability at short wavelengths in the polar observations and as a dominant gray eigencolor in the south polar observation. We construct a simple reflectance model for a snowball Earth. By construction, our model has a higher Bond albedo than the modern Earth; its surface albedo is so high that Rayleigh scattering does not noticeably affect its spectrum. The rotational color variations occur at short wavelengths due to the large contrast between glacier ice and bare land in those wavebands. Thus, we find that both the broadband colors and diurnal color variations of such a planet would be easily distinguishable from the modern-day Earth, regardless of viewing angle.

  13. Rotational Variability of Earth's Polar Regions: Implications for Detecting Snowball Planets

    NASA Astrophysics Data System (ADS)

    Cowan, Nicolas B.; Robinson, Tyler; Livengood, Timothy A.; Deming, Drake; Agol, Eric; A'Hearn, Michael F.; Charbonneau, David; Lisse, Carey M.; Meadows, Victoria S.; Seager, Sara; Shields, Aomawa L.; Wellnitz, Dennis D.

    2011-04-01

    We have obtained the first time-resolved, disk-integrated observations of Earth's poles with the Deep Impact spacecraft as part of the EPOXI mission of opportunity. These data mimic what we will see when we point next-generation space telescopes at nearby exoplanets. We use principal component analysis (PCA) and rotational light curve inversion to characterize color inhomogeneities and map their spatial distribution from these unusual vantage points, as a complement to the equatorial views presented by Cowan et al. in 2009. We also perform the same PCA on a suite of simulated rotational multi-band light curves from NASA's Virtual Planetary Laboratory three-dimensional spectral Earth model. This numerical experiment allows us to understand what sorts of surface features PCA can robustly identify. We find that the EPOXI polar observations have similar broadband colors as the equatorial Earth, but with 20%-30% greater apparent albedo. This is because the polar observations are most sensitive to mid-latitudes, which tend to be more cloudy than the equatorial latitudes emphasized by the original EPOXI Earth observations. The cloudiness of the mid-latitudes also manifests itself in the form of increased variability at short wavelengths in the polar observations and as a dominant gray eigencolor in the south polar observation. We construct a simple reflectance model for a snowball Earth. By construction, our model has a higher Bond albedo than the modern Earth; its surface albedo is so high that Rayleigh scattering does not noticeably affect its spectrum. The rotational color variations occur at short wavelengths due to the large contrast between glacier ice and bare land in those wavebands. Thus, we find that both the broadband colors and diurnal color variations of such a planet would be easily distinguishable from the modern-day Earth, regardless of viewing angle.

  14. Enhanced Piezoelectric Response due to Polarization Rotation in Cobalt-Substituted BiFeO3 Epitaxial Thin Films.

    PubMed

    Shimizu, Keisuke; Hojo, Hajime; Ikuhara, Yuichi; Azuma, Masaki

    2016-10-01

    Polarization rotation induced by an external electric field in piezoelectric materials such as PbZr1-x Tix O3 is generally regarded as the origin of their large piezoelectric responses. Here, the piezoelectric responses of high-quality cobalt-substituted BiFeO3 epitaxial thin films with monoclinic distortions are systematically examined. It is demonstrated that polarization rotation plays a crucial role in improving the piezoelectric responses in this material.

  15. Error motion compensating tracking interferometer for the position measurement of objects with rotational degree of freedom

    NASA Astrophysics Data System (ADS)

    Holler, Mirko; Raabe, Jörg

    2015-05-01

    The nonaxial interferometric position measurement of rotating objects can be performed by imaging the laser beam of the interferometer to a rotating mirror which can be a sphere or a cylinder. This, however, requires such rotating mirrors to be centered on the axis of rotation as a wobble would result in loss of the interference signal. We present a tracking-type interferometer that performs such measurement in a general case where the rotating mirror may wobble on the axis of rotation, or even where the axis of rotation may be translating in space. Aside from tracking, meaning to measure and follow the position of the rotating mirror, the interferometric measurement errors induced by the tracking motion of the interferometer itself are optically compensated, preserving nanometric measurement accuracy. As an example, we show the application of this interferometer in a scanning x-ray tomography instrument.

  16. Study on the nonlinear polarization rotation law in a bulk semiconductor optical amplifier in a pump-probe scheme

    NASA Astrophysics Data System (ADS)

    Feng, Xianghua; Ji, Jiarong; Dou, Wenhua; Zhang, Guomin

    2012-10-01

    The physical mechanisms for the polarization rotation of the light in a bulk semiconductor optical amplifier (SOA) originate from the significant nonuniform distributions of carrier density across the active region. Due to this carrier density's nonuniformity, the effective refractive indexes experienced by transverse-electric (TE) and transverse-magnetic (TM) modes of the probe are different. This results in a phase shift between TE and TM modes of the light upon leaving the SOA. The bulk SOA polarization rotation's law can be analyzed theoretically and experimentally based on the method of measuring output power in a pump-probe scheme. The experiment employs polarizer driving by walking electromotor and power meter, the light power of every orientation is measured. The transformation law of output polarization is find for obvious polarization rotation in other perpendicular axes based on connection of ellipse in difference axes.

  17. Efficient cross-polarization using a composite 0 degrees pulse for NMR studies on static solids.

    PubMed

    Fukuchi, Masashi; Ramamoorthy, Ayyalusamy; Takegoshi, K

    2009-02-01

    In most solid-state NMR experiments, cross-polarization is an essential step to detect low-gamma nuclei such as (13)C and (15)N. In this study, we present a new cross-polarization scheme using spin-locks composed of composite 0 degrees pulses in the RF channels of high-gamma and low-gamma nuclei to establish the Hartmann-Hahn match. The composite 0 degrees pulses with no net nutation-angle{(2pi)(X)-(2pi)(-X)-(2pi)(Y)-(2pi)(-Y) -}(n) applied simultaneously to both high-gamma (I) and low-gamma (S) nuclei create an effective heteronuclear dipolar Hamiltonian H(d)((0))=d/2(2I(Z)S(Z)+I(X)S(X)+I(Y)S(Y)), which is capable of transferring the Z-component of the I spin magnetization to the Z-component of the S spin magnetization. It also retains a homonuclear dipolar coupling Hamiltonian that enables the flip-flop transfer among abundant spins. While our experimental results indicate that the new pulse sequence, called composite zero cross-polarization (COMPOZER-CP) performs well on adamantane, it is expected to be more valuable to study semi-solids like liquid crystalline materials and model lipid membranes. Theoretical analysis of COMPOZER-CP is presented along with experimental results. Our experimental results demonstrate that COMPOZER-CP overcomes the RF field inhomogeneity and Hartmann-Hahn mismatch for static solids. Experimental results comparing the performance of COMPOZER-CP with that of the traditional constant-amplitude CP and rampCP sequences are also presented in this paper.

  18. Triaxial Earth's rotation: Chandler wobble, free core nutation and diurnal polar motion (Abstract)

    NASA Astrophysics Data System (ADS)

    Sun, R.; Shen, W.-B.

    2015-08-01

    In this study, we formulate two-layered triaxial Earth rotation theory, focusing on the influence of the triaxiality on the Chandler wobble (CW), free core nutation (FCN) and diurnal polar motion. We estimate the frequencies of the normal modes CW and FCN, and results show that though the influence of two-layer triaxiality on the CW and FCN frequencies are very small, there appear some new natures. The response of the Earth's polar motion to the excitation consists of two parts. One is in response to the same frequency excitation and the other is in response to the opposite frequency excitation. For an Earth model with triaxial mantle and core, both of these two parts have four resonant frequencies rather than two that are suggested by rotational symmetric Earth model. However, due to the small strength of these new resonances, the effects of these resonances are only significant when the excitation frequencies are very near to these resonance frequencies. In addition, compared to the biaxial case, the influences of the triaxiality on the prograde and retrograde diurnal polar motions excited by ocean tide component K1 are estimated as - 1.4 μas and - 0.9 μas respectively, which should be taken into account in theory. This study is supported by National 973 Project China (grant No. 2013CB733305), NSFC (grant Nos. 41174011, 41210006, 41128003, 41021061).

  19. Polarization rotator-splitters and controllers in a Si3N4-on-SOI integrated photonics platform.

    PubMed

    Sacher, Wesley D; Huang, Ying; Ding, Liang; Barwicz, Tymon; Mikkelsen, Jared C; Taylor, Benjamin J F; Lo, Guo-Qiang; Poon, Joyce K S

    2014-05-05

    We demonstrate novel polarization management devices in a custom-designed silicon nitride (Si(3)N(4)) on silicon-on-insulator (SOI) integrated photonics platform. In the platform, Si(3)N(4) waveguides are defined atop silicon waveguides. A broadband polarization rotator-splitter using a TM0-TE1 mode converter in a composite Si(3)N(4)-silicon waveguide is demonstrated. The polarization crosstalk, insertion loss, and polarization dependent loss are less than -19 dB, 1.5 dB, and 1.0 dB, respectively, over a bandwidth of 80 nm. A polarization controller composed of polarization rotator-splitters, multimode interference couplers, and thin film heaters is also demonstrated.

  20. Rotational dynamics of type I Fc epsilon receptors on individually-selected rat mast cells studied by polarized fluorescence depletion.

    PubMed Central

    Rahman, N A; Pecht, I; Roess, D A; Barisas, B G

    1992-01-01

    We report the first application of polarized fluorescence depletion (PFD), a technique which combines the sensitivity of fluorescence detection with the long lifetimes of triplet probes, to the measurement of membrane protein rotational diffusion on individually selected, intact mammalian cells. We have examined the rotation of type I Fc epsilon receptors (Fc epsilon RI) on rat mucosal mast cells of the RBL-2H3 line in their resting monomeric and differently oligomerized states using as probes IgE and three monoclonal antibodies (mAbs; H10, J17, and F4) specific for the Fc epsilon RI. PFD experiments using eosin (EITC)-IgE show that individual Fc epsilon RI on cells have a rotational correlation time (RCT) at 4 degrees C of 79 +/- 4 microseconds. Similarly, Fc epsilon RI-bound EITC-Fab fragments of the J17 Fc epsilon RI-specific mAb exhibit an RCT of 76 +/- 6 microseconds. These values agree with previous measurements of Fc epsilon RI-bound IgE rotation by time-resolved phosphorescence anisotropy methods. Receptor-bound EITC-conjugated divalent J17 antibody exhibits an increased RCT of 140 +/- 6 microseconds. This is consistent with the ability of this mAb to form substantial amounts of Fc epsilon RI dimers on these cell surfaces. The ratio of limiting to initial anisotropy in these experiments remains constant at about 0.5 from 5 degrees C through 25 degrees C for IgE, Fab, and intact mAb receptor ligands. Extensive cross-linking by second antibody of cell-bound IgE, of intact Fc epsilon RI-specific mAbs or of their Fab fragments, however, produced large fixed anisotropies demonstrating, under these conditions, receptor immobilization in large aggregates. PFD using the mAbs H10 and F4 as receptor probes yielded values for triplet lifetimes, RCT values, and anisotropy parameters essentially indistinguishable from those obtained with the mAb J17 clone. Possible explanations for these observations are discussed. PMID:1547323

  1. New Atmospheric and Oceanic Angular Momentum Datasets for Predictions of Earth Rotation/Polar Motion

    NASA Astrophysics Data System (ADS)

    Salstein, D. A.; Stamatakos, N.

    2014-12-01

    We are reviewing the state of the art in available datasets for both atmospheric angular momentum (AAM) and oceanic angular momentum (OAM) for the purposes of analysis and prediction of both polar motion and length of day series. Both analyses and forecasts of these quantities have been used separately and in combination to aid in short and medium range predictions of Earth rotation parameters. The AAM and OAM combination, with the possible addition of hydrospheric angular momentum can form a proxy index for the Earth rotation parameters themselves due to the conservation of angular momentum in the Earth system. Such a combination of angular momentum of the geophysical fluids has helped in forecasts within periods up to about 10 days, due to the dynamic models, and together with extended statistical predictions of Earth rotation parameters out even as far as 90 days, according to Dill et al. (2013). We assess other dataset combinations that can be used in such analysis and prediction efforts for the Earth rotation parameters, and demonstrate the corresponding skill levels in doing so.

  2. Relaxation of rotational angular momentum of polar diatomic molecules in simple liquids

    SciTech Connect

    Padilla, A.; Perez, J.

    2007-03-15

    The relaxation processes of rotational angular momentum of polar diatomic molecules diluted in simple liquids are analyzed by applying a non-Markovian relaxation theory to the study of the binary time autocorrelation function of the angular momentum. This non-Markovian theory was previously applied to the study of the infrared and Raman spectroscopy, and also to the analysis of the rotational energy relaxation processes. We have obtained non-Markovian evolution equations for the two-time j-level angular momentum correlation components involved in the angular momentum correlation function. In these equations, the time-dependent angular momentum transfer rates and the pure orientational angular transfer rates are given in terms of the binary time autocorrelation function of the diatomic-solvent anisotropic interaction. The non-Markovian evolution equations converge to Markovian ones in the long time limit, reaching the angular momentum transfer rates in the usual time-independent form. Alternative time scales for the angular relaxation processes, relative to the individual rotational processes as well as to the global decay correlations, are introduced and analyzed. The theory is applied to the study of the angular momentum relaxation processes of HCl diluted in liquid SF{sub 6}, a system for which rotational energy relaxation and infrared and Raman spectroscopy was previously analyzed in the scope of the same theory.

  3. Square-wave oscillations in edge-emitting diode lasers with polarization-rotated optical feedback

    NASA Astrophysics Data System (ADS)

    Gavrielides, A.; Erneux, T.; Sukow, D. W.; Burner, G.; McLachlan, T.; Miller, J.; Amonette, J.

    2006-04-01

    The square-wave response of edge-emitting diode lasers subject to a delayed polarization-rotated optical feedback is studied experimentally and theoretically. Square-wave self-modulated polarization intensities of a period close to twice the delay τ of the feedback gradually appear through a sequence of bifurcations starting with a Hopf bifurcation (Gavrielides et al, Proc. SPIE 6115, to appear, 2006). In Gavrielides et al (submitted, 2006), squarewave solutions were determined analytically from the laser equations in the limit of large τ. A condition on the laser parameters was derived explaining why square-wave oscillations are preferentially observed for suffciently large feedback strength. In this paper, we concentrate on the relaxation oscillations that always appear at each intensity jump between the plateaus of the square-wave. We show analytically that if the feedback strength is progressively decreased, a bifurcation to sustained relaxation oscillations is possible for one of the two plateaus.

  4. Anomalous incident-angle and elliptical-polarization rotation of an elastically refracted P-wave.

    PubMed

    Fa, Lin; Fa, Yuxiao; Zhang, Yandong; Ding, Pengfei; Gong, Jiamin; Li, Guohui; Li, Lijun; Tang, Shaojie; Zhao, Meishan

    2015-08-05

    We report a newly discovered anomalous incident-angle of an elastically refracted P-wave, arising from a P-wave impinging on an interface between two VTI media with strong anisotropy. This anomalous incident-angle is found to be located in the post-critical incident-angle region corresponding to a refracted P-wave. Invoking Snell's law for a refracted P-wave provides two distinctive solutions before and after the anomalous incident-angle. For an inhomogeneously refracted and elliptically polarized P-wave at the anomalous incident-angle, its rotational direction experiences an acute variation, from left-hand elliptical to right-hand elliptical polarization. The new findings provide us an enhanced understanding of acoustical-wave scattering and lead potentially to widespread and novel applications.

  5. Quasiequilibrium nonlinearities in Faraday and Kerr rotation from spin-polarized carriers in GaAs

    SciTech Connect

    Joshua, Arjun; Venkataraman, V.

    2010-01-04

    Semiconductor Bloch equations (SBEs), which microscopically describe optical properties in terms of the dynamics of a Coulomb interacting, spin-unpolarized electron-hole plasma, can be solved in two limits: the coherent and the quasiequilibrium regimes. Recently, Nemec et al. reported circularly polarized pump-probe absorption spectra in the quasiequilibrium regime for carrier spin-polarized bulk GaAs at room temperature, which lacked a suitable microscopic theoretical understanding. We have very recently explained their results by solving the spin-SBEs in the quasiequilibrium regime (spin-Bethe-Salpeter equation), and accounted for spin-dependent mechanisms of optical nonlinearity. Here, we extend our theory to the microscopic calculation of Kerr and Faraday rotation in the quasiequilibrium regime, for which there are no experimental or theoretical results available.

  6. Directionally tunable and mechanically deformable ferroelectric crystals from rotating polar globular ionic molecules

    NASA Astrophysics Data System (ADS)

    Harada, Jun; Shimojo, Takafumi; Oyamaguchi, Hideaki; Hasegawa, Hiroyuki; Takahashi, Yukihiro; Satomi, Koichiro; Suzuki, Yasutaka; Kawamata, Jun; Inabe, Tamotsu

    2016-10-01

    Ferroelectrics are used in a wide range of applications, including memory elements, capacitors and sensors. Recently, molecular ferroelectric crystals have attracted interest as viable alternatives to conventional ceramic ferroelectrics because of their solution processability and lack of toxicity. Here we show that a class of molecular compounds—known as plastic crystals—can exhibit ferroelectricity if the constituents are judiciously chosen from polar ionic molecules. The intrinsic features of plastic crystals, for example, the rotational motion of molecules and phase transitions with lattice-symmetry changes, provide the crystals with unique ferroelectric properties relative to those of conventional molecular crystals. This allows a flexible alteration of the polarization axis direction in a grown crystal by applying an electric field. Owing to the tunable nature of the crystal orientation, together with mechanical deformability, this type of molecular crystal represents an attractive functional material that could find use in a diverse range of applications.

  7. Anomalous incident-angle and elliptical-polarization rotation of an elastically refracted P-wave

    NASA Astrophysics Data System (ADS)

    Fa, Lin; Fa, Yuxiao; Zhang, Yandong; Ding, Pengfei; Gong, Jiamin; Li, Guohui; Li, Lijun; Tang, Shaojie; Zhao, Meishan

    2015-08-01

    We report a newly discovered anomalous incident-angle of an elastically refracted P-wave, arising from a P-wave impinging on an interface between two VTI media with strong anisotropy. This anomalous incident-angle is found to be located in the post-critical incident-angle region corresponding to a refracted P-wave. Invoking Snell’s law for a refracted P-wave provides two distinctive solutions before and after the anomalous incident-angle. For an inhomogeneously refracted and elliptically polarized P-wave at the anomalous incident-angle, its rotational direction experiences an acute variation, from left-hand elliptical to right-hand elliptical polarization. The new findings provide us an enhanced understanding of acoustical-wave scattering and lead potentially to widespread and novel applications.

  8. Evaluation of diseased coronary arterial branches by polar representations of thallium-201 rotational myocardial imaging

    SciTech Connect

    Iino, T.; Toyosaki, N.; Katsuki, T.; Noda, T.; Natsume, T.; Yaginuma, T.; Hosoda, S.; Furuse, M.

    1987-09-01

    The perfusion territories in polar representations of stress Tl-201 rotational myocardial imaging in patients with angina pectoris who had one diseased coronary segment were analyzed. The lesions proximal or distal to the first major septal perforator in left anterior descending arteries were detected by the presence or absence of defects at the base of the anterior septum. Right coronary artery lesions were detected by the presence of defects at the basal posterior septum, in contrast to the preservation of myocardial uptake at this portion in lesions of the left circumflex artery. The specific defect patterns were detected in cases with lesions at the first diagonal, obtuse marginal, and posterolateral branches. Recognition of these defects in the polar maps allows detailed detection of diseased coronary arterial branches.

  9. Photonic crystal fiber polarization rotator based on the topological Zeeman effect.

    PubMed

    Chen, Lei; Zhang, Wei-Gang; Yan, Tie-Yi; Wang, Li; Sieg, Jonathan; Wang, Biao; Zhou, Quan; Zhang, Li-Yu

    2015-08-01

    A photonic crystal fiber polarization rotator (PR) is proposed based on the topological Zeeman effect. The proposed PR is achieved by permanently twisting a segment of sixfold symmetric photonic crystal fiber with a matched length, and under the optimized parameters, the PR can offer an almost 100% polarization conversion ratio in the wavelength of 1.55-μm band (∼200  nm bandwidth) and a compact length of about 157 μm based on the numerical simulation result of the full-vector finite-element method. The proposed in-line PCF PR can be easily fabricated based on state-of-art PCF manufacturing, and it is a potential inexpensive candidate in the application of modern communication systems.

  10. Parametric estimation of the square degree of polarization from two intensity images degraded by fully developed speckle noise.

    PubMed

    Roche, Muriel; Fade, Julien; Réfrégier, Philippe

    2007-09-01

    Active polarimetric imagery systems allow one to reveal polarimetric characteristics of the scene. Among them, the degree of polarization allows one to have information about the polarizing nature of an imaged object. Its estimation is standardly done from four images of the scene. Reducing this number of images can be of great interest for industrial applications, allowing in particular reduction of cost in terms of money and acquisition time. We propose a parametric method to estimate the square degree of polarization from only two measurements when coherent illumination is considered and when the images are corrupted with fully developed speckle, and we characterize the performances of the estimation.

  11. New kind of polarotaxis governed by degree of polarization: attraction of tabanid flies to differently polarizing host animals and water surfaces

    NASA Astrophysics Data System (ADS)

    Egri, Ádám; Blahó, Miklós; Sándor, András; Kriska, György; Gyurkovszky, Mónika; Farkas, Róbert; Horváth, Gábor

    2012-05-01

    Aquatic insects find their habitat from a remote distance by means of horizontal polarization of light reflected from the water surface. This kind of positive polarotaxis is governed by the horizontal direction of polarization (E-vector). Tabanid flies also detect water by this kind of polarotaxis. The host choice of blood-sucking female tabanids is partly governed by the linear polarization of light reflected from the host's coat. Since the coat-reflected light is not always horizontally polarized, host finding by female tabanids may be different from the established horizontal E-vector polarotaxis. To reveal the optical cue of the former polarotaxis, we performed choice experiments in the field with tabanid flies using aerial and ground-based visual targets with different degrees and directions of polarization. We observed a new kind of polarotaxis being governed by the degree of polarization rather than the E-vector direction of reflected light. We show here that female and male tabanids use polarotaxis governed by the horizontal E-vector to find water, while polarotaxis based on the degree of polarization serves host finding by female tabanids. As a practical by-product of our studies, we explain the enigmatic attractiveness of shiny black spheres used in canopy traps to catch tabanids.

  12. Analysis of High-Speed Rotating Flow in 2D Polar (r - θ)Coordinate

    NASA Astrophysics Data System (ADS)

    Pradhan, S.

    2016-03-01

    The generalized analytical model for the radial boundary layer in a high-speed rotating cylinder is formulated for studying the gas flow field due to insertion of mass, momentum and energy into the rotating cylinder in the polar (r - θ) plane. The analytical solution includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in a polar (r - θ) plane. The linearization approximation (Wood & Morton, J. Fluid Mech-1980; Pradhan & Kumaran, J. Fluid Mech-2011; Kumaran & Pradhan, J. Fluid Mech-2014) is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional assumptions in the analytical model include constant temperature in the base state (isothermal condition), and high Reynolds number, but there is no limitation on the stratification parameter. In this limit, the gas flow is restricted to a boundary layer of thickness (Re (1 / 3) R) at the wall of the cylinder. Here, the stratification parameter A = √ ((mΩ 2R2) / (2kB T)) . This parameter Ais the ratio of the peripheral speed, ΩR , to the most probable molecular speed, √(2 k_B T/m), the Reynolds number Re = (ρ _w ΩR2 / μ) , where m is the molecular mass, Ω and R are the rotational speed and radius of the cylinder, k_B is the Boltzmann constant, T is the gas temperature, ρ_w is the gas density at wall, and μ is the gas viscosity. The analytical solutions are then compared with direct simulation Monte Carlo (DSMC) simulations.

  13. Rotative polarization system of millimetric wave for detecting fiber orientation in CFRP

    SciTech Connect

    Urabe, K. )

    1992-02-01

    A new system for nondestructive and contact-free detection of fiber orientation in fiber reinforced composites such as CFRP was devised using 35 GHz millimetric wave. In this system, by rotating the polarization of the wave and compensating it after passing through the sample, changes of anisotropy caused by changes in fiber orientation of unidirectional CFRP or carbon fiber prepreg can be easily and efficiently checked. Scanning detection of fiber direction and of fiber misorientation are also possible with high sensitivity. Results of measurements with successful sensitivity are shown for several kinds of unidirectional samples with artificial fiber misorientations. 5 refs.

  14. Polarization Catastrophe Contributing to Rotation and Tornadic Motion in Cumulo-Nimbus Clouds

    NASA Astrophysics Data System (ADS)

    Handel, P. H.

    2007-05-01

    When the concentration of sub-micron ice particles in a cloud exceeds 2.5E21 per cubic cm, divided by the squared average number of water molecules per crystallite, the polarization catastrophe occurs. Then all ice crystallites nucleated on aerosol dust particles align their dipole moments in the same direction, and a large polarization vector field is generated in the cloud. Often this vector field has a radial component directed away from the vertical axis of the cloud. It is induced by the pre-existing electric field caused by the charged screening layers at the cloud surface, the screening shell of the cloud. The presence of a vertical component of the magnetic field of the earth creates a density of linear momentum G=DxB in the azimuthal direction, where D=eE+P is the electric displacement vector and e is the vacuum permittivity. This linear momentum density yields an angular momentum density vector directed upward in the nordic hemisphere, if the polarization vector points away from the vertical axis of the cloud. When the cloud becomes colloidally unstable, the crystallites grow beyond the size limit at which they still could carry a large ferroelectric saturation dipole moment, and the polarization vector quickly disappears. Then the cloud begins to rotate with an angular momentum that has the same direction. Due to the large average number of water molecules in a crystallite, the polarization catastrophe (PC) is present in practically all clouds, and is compensated by masking charges. In cumulo-nimbus (thunder-) clouds the collapse of the PC is rapid, and the masking charges lead to lightning, and in the upper atmosphere also to sprites, elves, and blue jets. In stratus clouds, however, the collapse is slow, and only leads to reverse polarity in dissipating clouds (minus on the bottom), as compared with growing clouds (plus on the bottom, because of the excess polarization charge). References: P.H. Handel: "Polarization Catastrophe Theory of Cloud

  15. Polarity mechanisms such as contact inhibition of locomotion regulate persistent rotational motion of mammalian cells on micropatterns.

    PubMed

    Camley, Brian A; Zhang, Yunsong; Zhao, Yanxiang; Li, Bo; Ben-Jacob, Eshel; Levine, Herbert; Rappel, Wouter-Jan

    2014-10-14

    Pairs of endothelial cells on adhesive micropatterns rotate persistently, but pairs of fibroblasts do not; coherent rotation is present in normal mammary acini and kidney cells but absent in cancerous cells. Why? To answer this question, we develop a computational model of pairs of mammalian cells on adhesive micropatterns using a phase field method and study the conditions under which persistent rotational motion (PRM) emerges. Our model couples the shape of the cell, the cell's internal chemical polarity, and interactions between cells such as volume exclusion and adhesion. We show that PRM can emerge from this minimal model and that the cell-cell interface may be influenced by the nucleus. We study the effect of various cell polarity mechanisms on rotational motion, including contact inhibition of locomotion, neighbor alignment, and velocity alignment, where cells align their polarity to their velocity. These polarity mechanisms strongly regulate PRM: Small differences in polarity mechanisms can create significant differences in collective rotation. We argue that the existence or absence of rotation under confinement may lead to insight into the cell's methods for coordinating collective cell motility.

  16. Plasmonic non-concentric nanorings array as an unidirectional nano-optical conveyor belt actuated by polarization rotation.

    PubMed

    Jiang, Min; Wang, Guanghui; Jiao, Wenxiang; Ying, Zhoufeng; Zou, Ningmu; Ho, Ho-Pui; Sun, Tianyu; Zhang, Xuping

    2017-01-15

    We report a nano-optical conveyor belt containing an array of gold plasmonic non-concentric nanorings (PNNRs) for the realization of trapping and unidirectional transportation of nanoparticles through rotating the polarization of an excitation beam. The location of hot spots within an asymmetric plasmonic nanostructure is polarization dependent, thus making it possible to manipulate a trapped target by rotating the incident polarization state. In the case of PNNR, the two poles have highly unbalanced trap potential. This greatly enhances the chance of transferring trapped particles between adjacent PNNRs in a given direction through rotating the polarization. As confirmed by three-dimensional finite-difference time-domain analysis, an array of PNNRs forms an unidirectional nano-optical conveyor belt, which delivers target nanoparticles or biomolecules over a long distance with nanometer accuracy. With the capacity to trap and to transfer, our design offers a versatile scheme for conducting mechanical sample manipulation in many on-chip optofluidic applications.

  17. Degradation in the degree of polarization in human retinal nerve fiber layer

    PubMed Central

    Yin, Biwei; Wang, Bingqing; Rylander, Henry G.; Milner, Thomas E.

    2014-01-01

    Abstract. Using a fiber-based swept-source (SS) polarization-sensitive optical coherence tomography (PS-OCT) system, we investigate the degree of polarization (DOP) of light backscattered from the retinal nerve fiber layer (RNFL) in normal human subjects. Algorithms for processing data were developed to analyze the deviation in phase retardation and intensity of backscattered light in directions parallel and perpendicular to the nerve fiber axis (fast and slow axes of RNFL). Considering superior, inferior, and nasal quadrants, we observe the strongest degradation in the DOP with increasing RNFL depth in the temporal quadrant. Retinal ganglion cell axons in normal human subjects are known to have the smallest diameter in the temporal quadrant, and the greater degradation observed in the DOP suggests that higher polarimetric noise may be associated with neural structure in the temporal RNFL. The association between depth degradation in the DOP and RNFL structural properties may broaden the utility of PS-OCT as a functional imaging technique. PMID:24390374

  18. Degree of polarization technique used in PMD compensation of optical microwave transmission systems

    NASA Astrophysics Data System (ADS)

    Liu, Hankui; Zhang, Xianmin; Chen, Kangsheng

    2004-06-01

    Polarization-mode dispersion (PMD) can severely degrade the performance of optical microwave transmission systems by inducing a periodic power fading of the received RF signal that depends on the subcarrier frequency and accumulated differential group delay (DGD) along fiber. We derive a compact analytical expression of the degree of polarization (DOP) of optical signal using Jones and Stokes representations based on first-order assumption. Using this expression, we quantify the signal DOP fading induced by PMD by means of numerical simulations for BPSK and ASK modulations. The dependences of signal DOP on subcarrier frequency, accumulated DGD, and modulation formats have been demonstrated. It is found that signal DOP has similar periodic fading with the power of received RF signal, which is caused by DGD. Moreover, if the DOP technique is used in the PMD compensation of the optical microwave transmission systems, the DOP degradation is more sensitive to the DGD in the system modulated by BPSK than by ASK. The performance of this technique is immune to residual chromatic dispersion of the fiber.

  19. Subnanosecond polarized fluorescence photobleaching: rotational diffusion of acetylcholine receptors on developing muscle cells.

    PubMed Central

    Yuan, Y; Axelrod, D

    1995-01-01

    Polarized fluorescence recovery after photobleaching (PFRAP) is a technique for measuring the rate of rotational motion of biomolecules on living, nondeoxygenated cells with characteristic times previously ranging from milliseconds to many seconds. Although very broad, that time range excludes the possibility of quantitatively observing freely rotating membrane protein monomers that typically should have a characteristic decay time of only several microseconds. This report describes an extension of the PFRAP technique to a much shorter time scale. With this new system, PFRAP experiments can be conducted with sample time as short as 0.4 microseconds and detection of possible characteristic times of less than 2 microseconds. The system is tested on rhodamine-alpha-bungarotoxin-labeled acetylcholine receptors (AChRs) on myotubes grown in primary cultures of embryonic rat muscle, in both endogenously clustered and nonclustered regions of AChR distribution. It is found that approximately 40% of the AChRs in nonclustered regions undergoes rotational diffusion fast enough to possibly arise from unrestricted monomer Brownian motion. The AChRs in clusters, on the other hand, are almost immobile. The effects of rat embryonic brain extract (which contains AChR aggregating factors) on the myotube AChR were also examined by the fast PFRAP system. Brain extract is known to abolish the presence of endogenous clusters and to induce the formation of new clusters. It is found here that rotational diffusion of AChR in the extract-induced clusters is as slow as that in endogenous clusters on untreated cells but that rotational diffusion in the nonclustered regions of extract-treated myotubes remains rapid. Images FIGURE 3 PMID:8527682

  20. Liquid crystal chiroptical polarization rotators for the near-UV region: theory, materials, and device applications

    NASA Astrophysics Data System (ADS)

    Saulnier, D.; Taylor, B.; Marshall, K. L.; Kessler, T. J.; Jacobs, S. D.

    2013-09-01

    The helical structure of a chiral-nematic liquid crystal (CLC) material produces a number of interesting optical properties, including selective reflection and optical rotatory power. To take advantage of the high optical rotation near the selective reflection peak for applications in the UV, either large concentrations of chiral components or those possessing very large helical twisting powers (HTP's) are necessary. It is difficult to find chiral twisting agents with high HTP that do not degrade the UV transmission. We report what we believe to be the first experimental observation of extraordinarily high optical rotation (<30°/μm) in the near UV for a long-pitch (13.8-μm) CLC mixture composed of the low-birefringence nematic host ZLI-1646 doped with a low concentration (e.g., 1 wt%) of the chiral dopant CB 15. This experimental finding is verified theoretically using a mathematical model developed by Belyakov, which improves on de Vries' original model for optical rotation far from the selective reflection peak by taking into account the nonlinearity of optical rotatory power as a function of liquid crystal (LC) layer thickness. Using this model, the optical rotation at λ = 355 nm for the 1% CB 15/ZLI-1646 mixture is determined computationally, with the results in agreement with experimental data obtained by evaluating a series of wedged cells using an areal mapping, Hinds Exicor 450XT Mueller Matrix Polarimeter. This finding now opens a path to novel LC optics for numerous near-UV applications. One such envisioned application for this class of materials would be UV distributed polarization rotators (UV-DPR's) for largeaperture, high-peak-power lasers.

  1. Mode-evolution-based polarization rotation and coupling between silicon and hybrid plasmonic waveguides

    NASA Astrophysics Data System (ADS)

    Kim, Sangsik; Qi, Minghao

    2015-12-01

    Hybrid plasmonic (HP) modes allow strong optical field confinement and simultaneously low propagation loss, offering a potentially compact and efficient platform for on-chip photonic applications. However, their implementation is hampered by the low coupling efficiency between dielectric guided modes and HP modes, caused by mode mismatch and polarization difference. In this work, we present a mode-evolution-based polarization rotation and coupling structure that adiabatically rotates the TE mode in a silicon waveguide and couples it to the HP mode in a strip silicon-dielectric-metal waveguide. Simulation shows that high coupling factors of 92%, 78%, 75%, and 73% are achievable using Ag, Au, Al, and Cu as the metal cap, respectively, at a conversion length of about 5 μm. For an extremely broad wavelength range of 1300-1800 nm, the coupling factor is >64% with a Ag metal cap, and the total back-reflection power, including all the mode reflections and backscattering, is below -40 dB, due to the adiabatic mode transition. Our device does not require high-resolution lithography and is tolerant to fabrication variations and imperfections. These attributes together make our device suitable for optical transport systems spanning all telecommunication bands.

  2. Mode-evolution-based polarization rotation and coupling between silicon and hybrid plasmonic waveguides

    PubMed Central

    Kim, Sangsik; Qi, Minghao

    2015-01-01

    Hybrid plasmonic (HP) modes allow strong optical field confinement and simultaneously low propagation loss, offering a potentially compact and efficient platform for on-chip photonic applications. However, their implementation is hampered by the low coupling efficiency between dielectric guided modes and HP modes, caused by mode mismatch and polarization difference. In this work, we present a mode-evolution-based polarization rotation and coupling structure that adiabatically rotates the TE mode in a silicon waveguide and couples it to the HP mode in a strip silicon-dielectric-metal waveguide. Simulation shows that high coupling factors of 92%, 78%, 75%, and 73% are achievable using Ag, Au, Al, and Cu as the metal cap, respectively, at a conversion length of about 5 μm. For an extremely broad wavelength range of 1300–1800 nm, the coupling factor is >64% with a Ag metal cap, and the total back-reflection power, including all the mode reflections and backscattering, is below −40 dB, due to the adiabatic mode transition. Our device does not require high-resolution lithography and is tolerant to fabrication variations and imperfections. These attributes together make our device suitable for optical transport systems spanning all telecommunication bands. PMID:26680655

  3. Mode-evolution-based polarization rotation and coupling between silicon and hybrid plasmonic waveguides.

    PubMed

    Kim, Sangsik; Qi, Minghao

    2015-12-18

    Hybrid plasmonic (HP) modes allow strong optical field confinement and simultaneously low propagation loss, offering a potentially compact and efficient platform for on-chip photonic applications. However, their implementation is hampered by the low coupling efficiency between dielectric guided modes and HP modes, caused by mode mismatch and polarization difference. In this work, we present a mode-evolution-based polarization rotation and coupling structure that adiabatically rotates the TE mode in a silicon waveguide and couples it to the HP mode in a strip silicon-dielectric-metal waveguide. Simulation shows that high coupling factors of 92%, 78%, 75%, and 73% are achievable using Ag, Au, Al, and Cu as the metal cap, respectively, at a conversion length of about 5 μm. For an extremely broad wavelength range of 1300-1800 nm, the coupling factor is >64% with a Ag metal cap, and the total back-reflection power, including all the mode reflections and backscattering, is below -40 dB, due to the adiabatic mode transition. Our device does not require high-resolution lithography and is tolerant to fabrication variations and imperfections. These attributes together make our device suitable for optical transport systems spanning all telecommunication bands.

  4. Rotational instability of the electric polarization and divergence of the shear elastic compliance

    NASA Astrophysics Data System (ADS)

    Cordero, F.; Langhammer, H. T.; Müller, T.; Buscaglia, V.; Nanni, P.

    2016-02-01

    The rotational instability of the electric polarization P during phase transformations between ferroelectric phases is of great practical interest, since it may be accompanied by extremely large values of the piezoelectric coefficient, and a divergence of the coupled shear compliance contributes to such enhancements. In the literature, this has been explicitly calculated in the framework of the Landau theory and discussed with specific numerical simulations involving tetragonal, orthorhombic, and rhombohedral ferroelectric phases. When monoclinic phases are involved, such an approach is practically impossible, and an approximated treatment has been proposed, based on the observation that in those cases there are shear strains almost linearly coupled to the transverse component of P , implying a divergence of the Curie-Weiss type in the associated compliances. Here the argument is extended to the general case of transitions whose major effect is a rotation of the polarization, and the limits of its validity are discussed. As experimental verification, the elastic response of BaTiO3 is measured and analyzed, together with those of other ferroelectric perovskites available in the literature, such as KNN.

  5. A passive technique for detecting copy-move forgery with rotation based on polar complex exponential transform

    NASA Astrophysics Data System (ADS)

    Emam, Mahmoud; Han, Qi; Yu, Liyang; Zhang, Ye; Niu, Xiamu

    2015-07-01

    Copy-move is one of the most common methods for image manipulation. Several methods have been proposed to detect and locate the tampered regions, while many methods failed when the copied regions are rotated before being pasted. A rotational invariant detecting method using Polar Complex Exponential Transform (PCET) is proposed in this paper. Firstly, the original image is divided into overlapping circular blocks, and PCET is employed to each block to extract the rotation-invariant robust features. Secondly, the Approximate Nearest Neighbors (ANN) of each feature vector are collected by Locality Sensitive Hashing (LSH). Experimental results show that the proposed technique is robust to rotation.

  6. Rotational excitation of simple polar molecules by H2 and electrons in diffuse clouds

    NASA Astrophysics Data System (ADS)

    Liszt, H. S.

    2012-02-01

    Context. Emission from strongly-polar molecules could be a probe of physical conditions in diffuse molecular gas. Aims: We wish to provide basic information needed to interpret emission from molecules having higher dipole moments than CO, originating in diffuse clouds where the density is relatively low and the temperature and electron fraction are relatively high compared to dark clouds. Methods: Parameter studies in LVG models are used to show how the low-lying rotational transitions of common polar molecules HCO+, HCN and CS vary with number density, column density and electron fraction; with molecular properties such as the charge state and permanent dipole moment; and with observational details such as the transition that is observed. Physically-based models are used to check the parameter studies and provide a basis for relating the few extant observations. Results: Parameter studies of LVG radiative transfer models show that lines of polar molecules are uniformly brighter for ions, for lower J-values and for higher dipole moments. Excitation by electrons is more important for J = 1-0 lines and contributes rather less to the brightness of CS J = 2-1 lines. If abundances are like those seen in absorption, the HCO+J = 1-0 line will be the brightest line after CO, followed by HCN (1-0) and CS (2-1). Because of the very weak rotational excitation in diffuse clouds, emission brightnesses and molecular column densities retain a nearly-linear proportionality under fixed physical conditions, even when transitions are quite optically thick; this implies that changes in relative intensities among different species can be used to infer changes in their relative abundances.

  7. Polar cap models of gamma-ray pulsars: Emision from single poles of nearly aligned rotators

    NASA Technical Reports Server (NTRS)

    Daugherty, Joseph K.; Harding, Alice K.

    1994-01-01

    We compare a new Monte Carlo simulation of polar cap models for gamma-ray pulsars with observations of sources detected above 10 MeV by the Compton Observatory (CGRO). We find that for models in which the inclination of the magnetic axis is comparable to the angular radius of the polar cap, the radiation from a single cap may exhibit a pusle with either a single broad peak as in PSR 1706-44 and PSR 1055-52, or a doubly peaked profile comparable to those observed from the Crab, Vela and Geminga pulsars. In general, double pulses are seen by observers whose line of sight penetrates into the cap interior and are due to enhanced emission near the rim. For cascades induced by culvature radiation, increased rim emission occurs even when electrons are accelerated over the entire cap, since electrons from the interior escape along magnetic field lines with less curvature and hence emit less radiation. However, we obtain better fits to the duty cycles of observed profiles if we make the empirical assumption that acceleration occurs only near the rim. In either case, the model energy spectra are consistent with most of the observed sources. The beaming factors expected from nearly aligned rotators, based on standard estimates for the cap radius, imply that their luminosities need not be as large as in the case of orthogonal rotators. However, small beam angles are also a difficutly with this model because they imply low detection probablities. In either case the polar cap radius is a critical factor, and in this context we point out that plasma loading of the field lines should make the caps larger than the usual estimates based on pure dipole fields.

  8. The polarization electric field and its effects in an anisotropic rotating magnetospheric plasma

    NASA Technical Reports Server (NTRS)

    Huang, T. S.; Birmingham, T. J.

    1992-01-01

    Spatial variations of density and temperature along a magnetic field line are evaluated for a plasma undergoing adiabatic motion in a rotating magnetosphere. The effects of centrifugal and gravitational forces are accounted for, as is anisotropy in the pitch angle distribution functions of individual species. A polarization electric field is invoked to eliminate the net electric charge density resulting from the aforementioned mass dependent forces and different anisotropies. The position of maximum density in a two-component, electron-ion plasma is determined both in the absence and in the presence of the polarization effect and compared. A scale height, generalized to include anisotropies, is derived for the density fall-off. The polarization electric field is also included in the parallel guiding center equation; equilibrium points are determined and compared in both individual and average senses with the position of density maximum. Finally a transverse (to magnetic field lines) electric component is deduced as a consequence of dissimilar charge neutralization on adjacent field lines. The E x B velocity resultant from such a 'fringing' electric field is calculated and compared with the magnitude of other drifts.

  9. Climatic impact of glacial cycle polar motion: Coupled oscillations of ice sheet mass and rotation pole position

    USGS Publications Warehouse

    Bills, Bruce G.; James, Thomas S.; Mengel, John G.

    1999-01-01

    Precessional motion of Earth's rotation axis relative to its orbit is a well-known source of long-period climatic variation. It is less well appreciated that growth and decay of polar ice sheets perturb the symmetry of the global mass distribution enough that the geographic location of the rotation axis will change by at least 15 km and possibly as much as 100 km during a single glacial cycle. This motion of the pole will change the seasonal and latitudinal pattern of temperatures. We present calculations, based on a diurnal average energy balance, which compare the summer and winter temperature anomalies due to a 1° decrease in obliquity with those due to a 1° motion of the rotation pole toward Hudson Bay. Both effects result in peak temperature perturbations of about 1° Celsius. The obliquity change primarily influences the amplitude of the seasonal cycle, while the polar motion primarily changes the annual mean temperatures. The polar motion induced temperature anomaly is such that it will act as a powerful negative feedback on ice sheet growth. We also explore the evolution of the coupled system composed of ice sheet mass and pole position. Oscillatory solutions result from the conflicting constraints of rotational and thermal stability. A positive mass anomaly on an otherwise featureless Earth is in rotational equilibrium only at the poles or the equator. The two polar equilibria are rotationally unstable, and the equatorial equilibrium, though rotationally stable, is thermally unstable. We find that with a plausible choice for the strength of coupling between the thermal and rotational systems, relatively modest external forcing can produce significant response at periods of 104–106 years, but it strongly attenuates polar motion at longer periods. We suggest that these coupled oscillations may contribute to the observed dominance of 100 kyr glacial cycles since the mid-Pleistocene and will tend to stabilize geographic patterns that are suitable to

  10. Relation between degree of polarization and Pauli color coded image to characterize scattering mechanisms

    NASA Astrophysics Data System (ADS)

    Maitra, Sanjit; Gartley, Michael G.; Kerekes, John P.

    2012-06-01

    Polarimetric image classification is sensitive to object orientation and scattering properties. This paper is a preliminary step to bridge the gap between visible wavelength polarimetric imaging and polarimetric SAR (POLSAR) imaging scattering mechanisms. In visible wavelength polarimetric imaging, the degree of linear polarization (DOLP) is widely used to represent the polarized component of the wave scattered from the objects in the scene. For Polarimetric SAR image representation, the Pauli color coding is used, which is based on linear combinations of scattering matrix elements. This paper presents a relation between DOLP and the Pauli decomposition components from the color coded Pauli reconstructed image based on laboratory measurements and first principle physics based image simulations. The objects in the scene are selected in such a way that it captures the three major scattering mechanisms such as the single or odd bounce, double or even bounce and volume scattering. The comparison is done between visible passive polarimetric imaging, active visible polarimetric imaging and active radio frequency POLSAR. The DOLP images are compared with the Pauli Color coded image with |HH-VV|, |HV|, |HH +VV| as the RGB channels. From the images, it is seen that the regions with high DOLP values showed high values of the HH component. This means the Pauli color coded image showed comparatively higher value of HH component for higher DOLP compared to other polarimetric components implying double bounce reflection. The comparison of the scattering mechanisms will help to create a synergy between POLSAR and visible wavelength polarimetric imaging and the idea can be further extended for image fusion.

  11. Effect of molecular anisotropy on the intensity and degree of polarization of light scattered from model atmospheres

    NASA Technical Reports Server (NTRS)

    Bahethi, O. P.; Fraser, R. S.

    1975-01-01

    Computations of the intensity, flux, degree of polarization, and the positions of neutral points are presented for models of the terrestrial gaseous and hazy atmospheres by incorporating the molecular anisotropy due to air in the Rayleigh scattering optical thickness and phase matrix. Molecular anisotropy causes significant changes in the intensity, flux and the degree of polarization of the scattered light. The positions of neutral points do not change significantly. When the Rayleigh scattering optical thickness is kept constant and the molecular anisotropy factor is included only in the Rayleigh phase matrix, the flux does not change and the intensity and positions of neutron points change by a small amount. The changes in the degree of polarization are still significant.

  12. Ultrawideband doublet pulse generation based on nonlinear polarization rotation of an elliptically polarized beam and its distribution over a fiber/wireless link.

    PubMed

    Chang, You Min; Lee, Junsu; Lee, Ju Han

    2010-09-13

    Proposed herein is an alternative photonic scheme for the generation of a doublet UWB pulse, which is based on the nonlinear polarization rotation of an elliptically polarized probe beam. The proposed scheme is a modified optical-fiber Kerr shutter that uses an elliptically polarized probe beam together with a linearly polarized control beam. Through theoretical analysis, it was shown that the optical-fiber-based Kerr shutter is capable of producing an ideal transfer function for the successful conversion of input Gaussian pulses into doublet pulses under special elliptical polarization states of the probe beam. An experimental verification was subsequently carried out to verify the working principle. Finally, the system performance of the generated UWB doublet pulses was assessed by propagating them over a 25-km-long standard single-mode fiber link, followed by wireless transmission. Error-free transmission was successfully achieved.

  13. Effect of molecular anisotropy on the intensity and degree of polarization of light scattered from model atmospheres

    NASA Technical Reports Server (NTRS)

    Bahethi, O. P.; Fraser, R. S.

    1980-01-01

    Computations of the properties of sunlight scattered from models of the earth-atmosphere system are presented to show the effect of molecular anisotropy on the intensity, flux, and degree of polarization of the scattered light. The values of these parameters change significantly when the anisotropy factor is neglected in the molecular optical thickness and scattering phase matrix. However, if the Rayleigh scattering optical thickness is kept constant and the molecular anisotropy factor is included only in the Rayleigh phase matrix, the flux does not change, the intensity changes by a small amount, but the changes in the degree of polarization are still significant.

  14. Blastomeres show differential fate changes in 8-cell Xenopus laevis embryos that are rotated 90 degrees before first cleavage

    NASA Technical Reports Server (NTRS)

    Huang, S.; Johnson, K. E.; Wang, H. Z.

    1998-01-01

    To study the mechanisms of dorsal axis specification, the alteration in dorsal cell fate of cleavage stage blastomeres in axis-respecified Xenopus laevis embryos was investigated. Fertilized eggs were rotated 90 degrees with the sperm entry point up or down with respect to the gravitational field. At the 8-cell stage, blastomeres were injected with the lineage tracers, Texas Red- or FITC-Dextran Amines. The distribution of the labeled progeny was mapped at the tail-bud stages (stages 35-38) and compared with the fate map of an 8-cell embryo raised in a normal orientation. As in the normal embryos, each blastomere in the rotated embryos has a characteristic and predictable cell fate. After 90 degrees rotation the blastomeres in the 8-cell stage embryo roughly switched their position by 90 degrees, but the fate of the blastomeres did not simply show a 90 degrees switch appropriate for their new location. Four types of fate change were observed: (i) the normal fate of the blastomere is conserved with little change; (ii) the normal fate is completely changed and a new fate is adopted according to the blastomere's new position: (iii) the normal fate is completely changed, but the new fate is not appropriate for its new position; and (4) the blastomere partially changed its fate and the new fate is a combination of its original fate and a fate appropriate to its new location. According to the changed fates, the blastomeres that adopt dorsal fates were identified in rotated embryos. This identification of dorsal blastomeres provides basic important information for further study of dorsal signaling in Xenopus embryos.

  15. {100}<100> or 45.degree.-rotated {100}<100>, semiconductor-based, large-area, flexible, electronic devices

    SciTech Connect

    Goyal, Amit

    2012-05-15

    Novel articles and methods to fabricate the same resulting in flexible, {100}<100> or 45.degree.-rotated {100}<100> oriented, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  16. Computational efficiency improvement with Wigner rotation technique in studying atoms in intense few-cycle circularly polarized pulses

    SciTech Connect

    Yuan, Minghu; Feng, Liqiang; Lü, Rui; Chu, Tianshu E-mail: tschu008@163.com

    2014-02-21

    We show that by introducing Wigner rotation technique into the solution of time-dependent Schrödinger equation in length gauge, computational efficiency can be greatly improved in describing atoms in intense few-cycle circularly polarized laser pulses. The methodology with Wigner rotation technique underlying our openMP parallel computational code for circularly polarized laser pulses is described. Results of test calculations to investigate the scaling property of the computational code with the number of the electronic angular basis function l as well as the strong field phenomena are presented and discussed for the hydrogen atom.

  17. Rotating waveplates as polarization modulators for Stokes polarimetry of the sun - Evaluation of seeing-induced crosstalk errors

    NASA Astrophysics Data System (ADS)

    Lites, Bruce W.

    1987-09-01

    A formalism for estimating the crosstalk error among Stokes I,Q,U,V introduced by seeing-induced image motion is presented. This formalism is applied to several modulation schemes for polarization involving rotating waveplates, and it is evaluated using an observed power spectrum of image motion obtained from the Vacuum Tower Telescope at the National Solar Observatory/Sunspot. It is shown that rotating waveplates offer an acceptable alternative for measurements of absorption line polarization of features observed on the solar disk, provided the detection can be carried out at video frame rates or faster.

  18. Effects of polar ice on the earth's rotation and gravitational potential

    NASA Technical Reports Server (NTRS)

    Trupin, Andrew S.

    1993-01-01

    The contributions of the Antarctic and the Greenland ice sheets to the earth's gravity, displacement, and rotation are estimated using gridded values of the net surface accumulation rates in the ice sheets of these two regions. It is found that the contributions to the low-order zonal harmonic coefficients of the earth's gravitational potential from Antarctica are between 2 and 10 times larger than the uncertainties of the zonal harmonics derived from satellite solutions; for Greenland, the coefficients are within an order of magnitude of the uncertainties of the satellite solutions. Polar contributions to the displacement of the center of mass of the solid earth, as seen in the frame of reference of satellites tracked from the earth surface, range from less than 1 mm to 1.5 cm over a 60-yr period.

  19. Electric Polarization Rotation in a Hexaferrite with Long-Wavelength Magnetic Structures

    NASA Astrophysics Data System (ADS)

    Kimura, T.; Lawes, G.; Ramirez, A. P.

    2005-04-01

    We report on the control of electric polarization (P) by using magnetic fields (B) in a hexaferrite having magnetic order above room temperature (RT). The material investigated is hexagonal Ba0.5Sr1.5Zn2Fe12O22, which is a nonferroelectric helimagnetic insulator in the zero-field ground state. By applying B, the system undergoes successive metamagnetic transitions, and shows concomitant ferroelectric order in some of the B-induced phases with long-wavelength magnetic structures. The magnetoelectrically induced P can be rotated 360° by external B. This opens up the potential for not only RT magnetoelectric devices but also devices based on the magnetically controlled electro-optical response.

  20. Complex index of refraction estimation from degree of polarization with diffuse scattering consideration.

    PubMed

    Zhan, Hanyu; Voelz, David G; Cho, Sang-Yeon; Xiao, Xifeng

    2015-11-20

    The estimation of the refractive index from optical scattering off a target's surface is an important task for remote sensing applications. Optical polarimetry is an approach that shows promise for refractive index estimation. However, this estimation often relies on polarimetric models that are limited to specular targets involving single surface scattering. Here, an analytic model is developed for the degree of polarization (DOP) associated with reflection from a rough surface that includes the effect of diffuse scattering. A multiplicative factor is derived to account for the diffuse component and evaluation of the model indicates that diffuse scattering can significantly affect the DOP values. The scattering model is used in a new approach for refractive index estimation from a series of DOP values that involves jointly estimating n, k, and ρ(d)with a nonlinear equation solver. The approach is shown to work well with simulation data and additive noise. When applied to laboratory-measured DOP values, the approach produces significantly improved index estimation results relative to reference values.

  1. Faraday rotation from magnesium II absorbers toward polarized background radio sources

    SciTech Connect

    Farnes, J. S.; O'Sullivan, S. P.; Corrigan, M. E.; Gaensler, B. M.

    2014-11-01

    Strong singly ionized magnesium (Mg II) absorption lines in quasar spectra typically serve as a proxy for intervening galaxies along the line of sight. Previous studies have found a correlation between the number of these Mg II absorbers and the Faraday rotation measure (RM) at ≈5 GHz. We cross-match a sample of 35,752 optically identified non-intrinsic Mg II absorption systems with 25,649 polarized background radio sources for which we have measurements of both the spectral index and RM at 1.4 GHz. We use the spectral index to split the resulting sample of 599 sources into flat-spectrum and steep-spectrum subsamples. We find that our flat-spectrum sample shows significant (∼3.5σ) evidence for a correlation between Mg II absorption and RM at 1.4 GHz, while our steep-spectrum sample shows no such correlation. We argue that such an effect cannot be explained by either luminosity or other observational effects, by evolution in another confounding variable, by wavelength-dependent polarization structure in an active galactic nucleus, by the Galactic foreground, by cosmological expansion, or by partial coverage models. We conclude that our data are most consistent with intervenors directly contributing to the Faraday rotation along the line of sight, and that the intervening systems must therefore have coherent magnetic fields of substantial strength ( B-bar =1.8±0.4 μG). Nevertheless, the weak nature of the correlation will require future high-resolution and broadband radio observations in order to place it on a much firmer statistical footing.

  2. Influence of collision energy and reagent rotation on the cross sections and product polarizations of the reaction F+ HCl

    NASA Astrophysics Data System (ADS)

    Duan, Zhi Xin; Li, Wen Liang; Qiu, Ming Hui

    2012-04-01

    Quasiclassical trajectory calculations have been carried out for the F+HCl reaction in three dimensions on a recent DHSN PES of the ground 12A' electronic state [M. P. Deskevich, M. Y. Hayes, K. Takahashi, R. T. Skodje, and D. J. Nesbitt, J. Chem. Phys. 124, 224303 (2006)]. The effects of the collision energy and the reagent initial rotational excitation on the cross sections and product polarization are studied for the v = 0 and j ⩽ 10 states of HCl over a wide collision energy range. It has been found that either the collision energy or the HCl rotational excitation increase remarkably reaction cross sections. The QCT-calculated integral cross sections are in good agreement with previous QM results. A detailed study on product polarization for the title reaction is also performed. The calculated results show that the product rotational angular momentum j' is not only aligned, but also oriented along the direction perpendicular to the scattering plane. The orientation of the HF product rotational angular momentum vector j' depends very sensitively on the collision energy and also affected by the reagent rotation. The theoretical findings and especially the roles of the collision energy and initial rotational momentum on the product polarization are discussed and reasonably explained by the HLH mass combination, the property of the PES, as well as the reactive mechanism.

  3. Influence of collision energy and reagent rotation on the cross sections and product polarizations of the reaction F + HCl.

    PubMed

    Duan, Zhi Xin; Li, Wen Liang; Qiu, Ming Hui

    2012-04-14

    Quasiclassical trajectory calculations have been carried out for the F+HCl reaction in three dimensions on a recent DHSN PES of the ground 1(2)A' electronic state [M. P. Deskevich, M. Y. Hayes, K. Takahashi, R. T. Skodje, and D. J. Nesbitt, J. Chem. Phys. 124, 224303 (2006)]. The effects of the collision energy and the reagent initial rotational excitation on the cross sections and product polarization are studied for the v = 0 and j ≤ 10 states of HCl over a wide collision energy range. It has been found that either the collision energy or the HCl rotational excitation increase remarkably reaction cross sections. The QCT-calculated integral cross sections are in good agreement with previous QM results. A detailed study on product polarization for the title reaction is also performed. The calculated results show that the product rotational angular momentum j' is not only aligned, but also oriented along the direction perpendicular to the scattering plane. The orientation of the HF product rotational angular momentum vector j' depends very sensitively on the collision energy and also affected by the reagent rotation. The theoretical findings and especially the roles of the collision energy and initial rotational momentum on the product polarization are discussed and reasonably explained by the HLH mass combination, the property of the PES, as well as the reactive mechanism.

  4. Chaos synchronization in vertical-cavity surface-emitting laser based on rotated polarization-preserved optical feedback

    SciTech Connect

    Nazhan, Salam; Ghassemlooy, Zabih; Busawon, Krishna

    2016-01-15

    In this paper, the influence of the rotating polarization-preserved optical feedback on the chaos synchronization of a vertical-cavity surface-emitting laser (VCSEL) is investigated experimentally. Two VCSELs' polarization modes (XP) and (YP) are gradually rotated and re-injected back into the VCSEL. The anti-phase dynamics synchronization of the two polarization modes is evaluated using the cross-correlation function. For a fixed optical feedback, a clear relationship is found between the cross-correlation coefficient and the polarization angle θ{sub p}. It is shown that high-quality anti-phase polarization-resolved chaos synchronization is achieved at higher values of θ{sub p}. The maximum value of the cross-correlation coefficient achieved is −0.99 with a zero time delay over a wide range of θ{sub p} beyond 65° with a poor synchronization dynamic at θ{sub p} less than 65°. Furthermore, it is observed that the antiphase irregular oscillation of the XP and YP modes changes with θ{sub p}. VCSEL under the rotating polarization optical feedback can be a good candidate as a chaotic synchronization source for a secure communication system.

  5. ROTATING MOTIONS AND MODELING OF THE ERUPTING SOLAR POLAR-CROWN PROMINENCE ON 2010 DECEMBER 6

    SciTech Connect

    Su, Yingna; Van Ballegooijen, Adriaan

    2013-02-10

    A large polar-crown prominence composed of different segments spanning nearly the entire solar disk erupted on 2010 December 6. Prior to the eruption, the filament in the active region part split into two layers: a lower layer and an elevated layer. The eruption occurs in several episodes. Around 14:12 UT, the lower layer of the active region filament breaks apart: One part ejects toward the west, while the other part ejects toward the east, which leads to the explosive eruption of the eastern quiescent filament. During the early rise phase, part of the quiescent filament sheet displays strong rolling motion (observed by STEREO-B) in the clockwise direction (viewed from east to west) around the filament axis. This rolling motion appears to start from the border of the active region, then propagates toward the east. The Atmospheric Imaging Assembly (AIA) observes another type of rotating motion: In some other parts of the erupting quiescent prominence, the vertical threads turn horizontal, then turn upside down. The elevated active region filament does not erupt until 18:00 UT, when the erupting quiescent filament has already reached a very large height. We develop two simplified three-dimensional models that qualitatively reproduce the observed rolling and rotating motions. The prominence in the models is assumed to consist of a collection of discrete blobs that are tied to particular field lines of a helical flux rope. The observed rolling motion is reproduced by continuous twist injection into the flux rope in Model 1 from the active region side. Asymmetric reconnection induced by the asymmetric distribution of the magnetic fields on the two sides of the filament may cause the observed rolling motion. The rotating motion of the prominence threads observed by AIA is consistent with the removal of the field line dips in Model 2 from the top down during the eruption.

  6. Structured caustic vector vortex optical field: manipulating optical angular momentum flux and polarization rotation

    PubMed Central

    Chen, Rui-Pin; Chen, Zhaozhong; Chew, Khian-Hooi; Li, Pei-Gang; Yu, Zhongliang; Ding, Jianping; He, Sailing

    2015-01-01

    A caustic vector vortex optical field is experimentally generated and demonstrated by a caustic-based approach. The desired caustic with arbitrary acceleration trajectories, as well as the structured states of polarization (SoP) and vortex orders located in different positions in the field cross-section, is generated by imposing the corresponding spatial phase function in a vector vortex optical field. Our study reveals that different spin and orbital angular momentum flux distributions (including opposite directions) in different positions in the cross-section of a caustic vector vortex optical field can be dynamically managed during propagation by intentionally choosing the initial polarization and vortex topological charges, as a result of the modulation of the caustic phase. We find that the SoP in the field cross-section rotates during propagation due to the existence of the vortex. The unique structured feature of the caustic vector vortex optical field opens the possibility of multi-manipulation of optical angular momentum fluxes and SoP, leading to more complex manipulation of the optical field scenarios. Thus this approach further expands the functionality of an optical system. PMID:26024434

  7. Generation of polarized shear Alfven waves by a rotating magnetic field source

    SciTech Connect

    Gigliotti, A.; Gekelman, W.; Pribyl, P.; Vincena, S.; Karavaev, A.; Shao, X.; Sharma, A. Surjalal; Papadopoulos, D.

    2009-09-15

    Experiments are performed in the Large Plasma Device at the University of California, Los Angeles to study the propagation of field-aligned, polarized kinetic shear Alfven waves radiated from a rotating magnetic field source created via a novel phased orthogonal loop antenna. Both right and left hand circular polarizations are generated at a wide range of frequencies from 0.21{<=}{omega}/{omega}{sub ci}<0.93. Propagation parallel to the background magnetic field near the Alfven velocity is observed along with a small parallel wave magnetic field component implying a shear mode. The peak-to-peak magnitude of the wave magnetic field, 33 cm away from the antenna, is on the order of 0.8% of the background field and drops off in the far field. The full width at half maximum of the wave energy changes little over a distance of 2.5 parallel wavelengths while the exponential decrease in wave energy as a function of distance can be attributed to collisional damping. Evidence of electron heating and ionization is observed during the pulse.

  8. Influence of third-degree geometric nonlinearities on the vibration and stability of pretwisted, preconed, rotating blades

    NASA Technical Reports Server (NTRS)

    Subrahmanyam, K. B.; Kaza, K. R. V.

    1986-01-01

    The governing coupled flapwise bending, edgewise bending, and torsional equations are derived including third-degree geometric nonlinear elastic terms by making use of the geometric nonlinear theory of elasticity in which the elongations and shears are negligible compared to unity. These equations are specialized for blades of doubly symmetric cross section with linear variation of pretwist over the blade length. The nonlinear steady state equations and the linearized perturbation equations are solved by using the Galerkin method, and by utilizing the nonrotating normal modes for the shape functions. Parametric results obtained for various cases of rotating blades from the present theoretical formulation are compared to those produced from the finite element code MSC/NASTRAN, and also to those produced from an in-house experimental test rig. It is shown that the spurious instabilities, observed for thin, rotating blades when second degree geometric nonlinearities are used, can be eliminated by including the third-degree elastic nonlinear terms. Furthermore, inclusion of third degree terms improves the correlation between the theory and experiment.

  9. Influence of third-degree geometric nonlinearities on the vibration and stability of pretwisted, preconed, rotating blades

    NASA Technical Reports Server (NTRS)

    Subrahmanyam, K. B.; Kaza, K. R. V.

    1987-01-01

    The governing coupled flapwise bending, edgewise bending, and torsional equations are derived including third-degree goemetric nonlinear elastic terms by making use of the geometric nonlinear theory of elasticity in which the elongations and shears are negligible compared to unity. These equations are specialized for blades of doubly symmetric cross section with linear variation of Pretwist over the blade length. The nonlinear steady state equations and the linearized perturbation equations are solved by using the Galerkin method, and by utilizing the nonrotating normal modes for the shape functions. Parametric results obtained for various cases of rotating blades from the present theoretical formulation are compared to those produced from the finite element code MSC/NASTRAN, and also to those produced from an in-house experimental test rig. It is shown that the spurious instabilities, observed for thin, rotating blades when second degree geometric nonlinearities are used, can be eliminated by including the third-degree elastic nonlinear terms. Furthermore, inclusion of third degree terms improves the correlation between the theory and experiment.

  10. Simple and complex square waves in an edge-emitting diode laser with polarization-rotated optical feedback.

    PubMed

    Gavrielides, Athanasios; Sukow, David W; Burner, Guinevere; McLachlan, Taylor; Miller, John; Amonette, Jake

    2010-05-01

    Numerical and experimental results are presented for an edge-emitting diode laser with delayed optical feedback, where the polarization state of the feedback is rotated such that the natural laser mode is coupled into the orthogonal, unsupported mode. We examine the bifurcation structure and dynamics that give rise to a class of periodic, polarization-modulated solutions, the simplest of which is a square wave solution with a period related to but longer than twice the external cavity roundtrip time. Such solutions typically emerge when the feedback is strong and the differential losses in the normally unsupported polarization mode are small. We also observe more complex waveforms that maintain the same periodicity.

  11. Simple and complex square waves in an edge-emitting diode laser with polarization-rotated optical feedback

    NASA Astrophysics Data System (ADS)

    Gavrielides, Athanasios; Sukow, David W.; Burner, Guinevere; McLachlan, Taylor; Miller, John; Amonette, Jake

    2010-05-01

    Numerical and experimental results are presented for an edge-emitting diode laser with delayed optical feedback, where the polarization state of the feedback is rotated such that the natural laser mode is coupled into the orthogonal, unsupported mode. We examine the bifurcation structure and dynamics that give rise to a class of periodic, polarization-modulated solutions, the simplest of which is a square wave solution with a period related to but longer than twice the external cavity roundtrip time. Such solutions typically emerge when the feedback is strong and the differential losses in the normally unsupported polarization mode are small. We also observe more complex waveforms that maintain the same periodicity.

  12. Polarization rotation of light propagating through a medium with efficient four-wave mixing and cross-phase modulation

    NASA Astrophysics Data System (ADS)

    Sahoo, Sushree S.; Bhowmick, Arup; Mohapatra, Ashok K.

    2017-03-01

    We have studied the rotation of an elliptically polarized light propagating through thermal rubidium vapor with efficient four-wave mixing (FWM) and cross-phase modulation (XPM). These nonlinear processes are enhanced by Zeeman coherence within the degenerate sub-levels of the two-level atomic system. The elliptically polarized light with small ellipticity is considered as the superposition of a strong-linearly-polarized pump beam and a weak-orthogonal-polarized probe beam. The interference of the probe and the newly generated light field due to degenerate FWM and their gain in the medium due to a large XPM induced by the pump beam leads to the rotation of the elliptical polarized light. A theoretical analysis of the probe propagation through the nonlinear medium was used to explain the experimental observation and the fitting of the experimental data gives the estimates of the third-order non-linear susceptibilities associated with FWM and XPM. Our study can provide useful parameters for the generation of efficient squeezed vacuum states and squeezed polarization states of light. Furthermore our study finds application in controlling the diffraction of a linearly-polarized light beam traversing the medium.

  13. SMMR data set development for GARP. [impact of cross polarization and Faraday rotation on SMMR derived brightness temperatures

    NASA Technical Reports Server (NTRS)

    Kogut, J.

    1981-01-01

    The NIMBUS 7 Scanning Multichannel Microwave Radiometer (SMMR) data are analyzed. The impact of cross polarization and Faraday rotation on SMMR derived brightness temperatures is evaluated. The algorithms used to retrieve the geophysical parameters are tested, refined, and compared with values derived by other techniques. The technical approach taken is described and the results presented.

  14. Asynchronous, self-controlled, all-optical label and payload separator using nonlinear polarization rotation in a semiconductor optical amplifier.

    PubMed

    Vegas Olmos, J; Monroy, I; Liu, Y; Garcia Larrode, M; Turkiewicz, J; Dorren, H; Koonen, A

    2004-09-06

    We demonstrate an all-optical label and payload separator based on nonlinear polarization rotation in a semiconductor optical amplifier (SOA). The proposed scheme uses a packet format composed of a label and payload information signal combined with a control signal by using polarization division multiplexing. The control signal is employed to separate the label from the payload signal by exploiting nonlinear polarization rotation in a SOA. Experimental results show a label from payload suppression factor of 22 dB. This scheme operates asynchronously and does not need external control signal. Clean and wide open eye diagrams are obtained for both the payload and the label signal operating at bit-rates of 10 Gbit/s and 625 Mbit/s, respectively.

  15. Absolute intensity and polarization of rotational Raman scattering from N2, O2, and CO2

    NASA Technical Reports Server (NTRS)

    Penney, C. M.; St.peters, R. L.; Lapp, M.

    1973-01-01

    An experimental examination of the absolute intensity, polarization, and relative line intensities of rotational Raman scattering (RRS) from N2, O2, and CO2 is reported. The absolute scattering intensity for N2 is characterized by its differential cross section for backscattering of incident light at 647.1 nm, which is calculated from basic measured values. The ratio of the corresponding cross section for O2 to that for N2 is 2.50 plus or minus 5 percent. The intensity recent for N2, O2, and CO2 are shown to compare favorably to values calculated from recent measurements of the depolarization of Rayleigh scattering plus RRS. Measured depolarizations of various RRS lines agree to within a few percent with the theoretical value of 3/4. Detailed error analyses are presented for intensity and depolarization measurements. Finally, extensive RRS spectra at nominal gas temperatures of 23 C, 75 C, and 125 C are presented and shown to compare favorably to theoretical predictions.

  16. Comparative analysis on arthroscopic sutures of large and extensive rotator cuff injuries in relation to the degree of osteopenia☆

    PubMed Central

    Almeida, Alexandre; Atti, Vinícius; Agostini, Daniel Cecconi; Valin, Márcio Rangel; de Almeida, Nayvaldo Couto; Agostini, Ana Paula

    2015-01-01

    Objective To analyze the results from arthroscopic suturing of large and extensive rotator cuff injuries, according to the patient's degree of osteopenia. Method 138 patients who underwent arthroscopic suturing of large and extensive rotator cuff injuries between 2003 and 2011 were analyzed. Those operated from October 2008 onwards formed a prospective cohort, while the remainder formed a retrospective cohort. Also from October 2008 onwards, bone densitometry evaluation was requested at the time of the surgical treatment. For the patients operated before this date, densitometry examinations performed up to two years before or after the surgical treatment were investigated. The patients were divided into three groups. Those with osteoporosis formed group 1 (n = 16); those with osteopenia, group 2 (n = 33); and normal individuals, group 3 (n = 55). Results In analyzing the University of California at Los Angeles (UCLA) scores of group 3 and comparing them with group 2, no statistically significant difference was seen (p = 0.070). Analysis on group 3 in comparison with group 1 showed a statistically significant difference (p = 0.027). Conclusion The results from arthroscopic suturing of large and extensive rotator cuff injuries seem to be influenced by the patient's bone mineral density, as assessed using bone densitometry. PMID:26229899

  17. Ultracompact and high efficient silicon-based polarization splitter-rotator using a partially-etched subwavelength grating coupler

    PubMed Central

    Xu, Yin; Xiao, Jinbiao

    2016-01-01

    On-chip polarization manipulation is pivotal for silicon-on-insulator material platform to realize polarization-transparent circuits and polarization-division-multiplexing transmissions, where polarization splitters and rotators are fundamental components. In this work, we propose an ultracompact and high efficient silicon-based polarization splitter-rotator (PSR) using a partially-etched subwavelength grating (SWG) coupler. The proposed PSR consists of a taper-integrated SWG coupler combined with a partially-etched waveguide between the input and output strip waveguides to make the input transverse-electric (TE) mode couple and convert to the output transverse-magnetic (TM) mode at the cross port while the input TM mode confine well in the strip waveguide during propagation and directly output from the bar port with nearly neglected coupling. Moreover, to better separate input polarizations, an additional tapered waveguide extended from the partially-etched waveguide is also added. From results, an ultracompact PSR of only 8.2 μm in length is achieved, which is so far the reported shortest one. The polarization conversion loss and efficiency are 0.12 dB and 98.52%, respectively, together with the crosstalk and reflection loss of −31.41/−22.43 dB and −34.74/−33.13 dB for input TE/TM mode at wavelength of 1.55 μm. These attributes make the present device suitable for constructing on-chip compact photonic integrated circuits with polarization-independence. PMID:27306112

  18. Ultracompact and high efficient silicon-based polarization splitter-rotator using a partially-etched subwavelength grating coupler

    NASA Astrophysics Data System (ADS)

    Xu, Yin; Xiao, Jinbiao

    2016-06-01

    On-chip polarization manipulation is pivotal for silicon-on-insulator material platform to realize polarization-transparent circuits and polarization-division-multiplexing transmissions, where polarization splitters and rotators are fundamental components. In this work, we propose an ultracompact and high efficient silicon-based polarization splitter-rotator (PSR) using a partially-etched subwavelength grating (SWG) coupler. The proposed PSR consists of a taper-integrated SWG coupler combined with a partially-etched waveguide between the input and output strip waveguides to make the input transverse-electric (TE) mode couple and convert to the output transverse-magnetic (TM) mode at the cross port while the input TM mode confine well in the strip waveguide during propagation and directly output from the bar port with nearly neglected coupling. Moreover, to better separate input polarizations, an additional tapered waveguide extended from the partially-etched waveguide is also added. From results, an ultracompact PSR of only 8.2 μm in length is achieved, which is so far the reported shortest one. The polarization conversion loss and efficiency are 0.12 dB and 98.52%, respectively, together with the crosstalk and reflection loss of ‑31.41/‑22.43 dB and ‑34.74/‑33.13 dB for input TE/TM mode at wavelength of 1.55 μm. These attributes make the present device suitable for constructing on-chip compact photonic integrated circuits with polarization-independence.

  19. Polarized foreground removal at low radio frequencies using rotation measure synthesis: uncovering the signature of hydrogen reionization

    NASA Astrophysics Data System (ADS)

    Geil, Paul M.; Gaensler, B. M.; Wyithe, J. Stuart B.

    2011-11-01

    Measurement of redshifted 21-cm emission from neutral hydrogen promises to be the most effective method for studying the reionization history of hydrogen and, indirectly, the first galaxies. These studies will be limited not by raw sensitivity to the signal, but rather, by bright foreground radiation from Galactic and extragalactic radio sources and the Galactic continuum. In addition, leakage due to gain errors and non-ideal feeds conspire to further contaminate low-frequency radio observations. This leakage leads to a portion of the complex linear polarization signal finding its way into Stokes I, and inhibits the detection of the non-polarized cosmological signal from the epoch of reionization. In this work, we show that rotation measure synthesis can be used to recover the signature of cosmic hydrogen reionization in the presence of contamination by polarized foregrounds. To achieve this, we apply the rotation measure synthesis technique to the Stokes I component of a synthetic data cube containing Galactic foreground emission, the effect of instrumental polarization leakage and redshifted 21-cm emission by neutral hydrogen from the epoch of reionization. This produces an effective Stokes I Faraday dispersion function for each line of sight, from which instrumental polarization leakage can be fitted and subtracted. Our results show that it is possible to recover the signature of reionization in its late stages (z≈ 7) by way of the 21-cm power spectrum, as well as through tomographic imaging of ionized cavities in the intergalactic medium.

  20. Degrees of polarization of reflected light eliciting polarotaxis in dragonflies (Odonata), mayflies (Ephemeroptera) and tabanid flies (Tabanidae).

    PubMed

    Kriska, György; Bernáth, Balázs; Farkas, Róbert; Horváth, Gábor

    2009-12-01

    With few exceptions insects whose larvae develop in freshwater possess positive polarotaxis, i.e., are attracted to sources of horizontally polarized light, because they detect water by means of the horizontal polarization of light reflected from the water surface. These insects can be deceived by artificial surfaces (e.g. oil lakes, asphalt roads, black plastic sheets, dark-coloured cars, black gravestones, dark glass surfaces, solar panels) reflecting highly and horizontally polarized light. Apart from the surface characteristics, the extent of such a 'polarized light pollution' depends on the illumination conditions, direction of view, and the threshold p* of polarization sensitivity of a given aquatic insect species. p* means the minimum degree of linear polarization p of reflected light that can elicit positive polarotaxis from a given insect species. Earlier there were no quantitative data on p* in aquatic insects. The aim of this work is to provide such data. Using imaging polarimetry in the red, green and blue parts of the spectrum, in multiple-choice field experiments we measured the threshold p* of ventral polarization sensitivity in mayflies, dragonflies and tabanid flies, the positive polarotaxis of which has been shown earlier. In the blue (450nm) spectral range, for example, we obtained the following thresholds: dragonflies: Enallagma cyathigerum (0%

  1. Current-induced giant polarization rotation using a ZnO single crystal doped with nitrogen ions

    PubMed Central

    Tate, Naoya; Kawazoe, Tadashi; Nomura, Wataru; Ohtsu, Motoichi

    2015-01-01

    Giant polarization rotation in a ZnO single crystal was experimentally demonstrated based on a novel phenomenon occurring at the nanometric scale. The ZnO crystal was doped with N+ and N2+ ions serving as p-type dopants. By applying an in-plane current using a unique arrangement of electrodes on the device, current-induced polarization rotation of the incident light was observed. From the results of experimental demonstrations and discussions, it was verified that this novel behavior originates from a specific distribution of dopants and the corresponding light–matter interactions in a nanometric space, which are allowed by the existence of such a dopant distribution. PMID:26246456

  2. A Testing Ground for Polarized Maser Transport: Multi-Epoch Analysis of a π/2 Electric Vector Rotation

    NASA Astrophysics Data System (ADS)

    Tobin, Taylor; Kemball, Athol J.

    2017-01-01

    The near circumstellar environment (NCSE) around Asymptotic Giant Branch (AGB) stars is chaotic, exhibiting shocks, turbulence, velocity gradients, and a potentially dynamically significant magnetic field (Vlemmings et al. 2005). Very Long Baseline Interferometry (VLBI) of masers emanating from these environments can provide sub-milliarcsecond angular resolution of the NCSE (Kemball 2002). Solidifying the origin of the polarization in these masers may be the key to understanding the magnitude and behavior of these stars' magnetic fields (eg. Goldreich et al. 1973; Elitzur 1996). However, other theories of polarized maser transport do not rely heavily on the magnetic field; some are more dependent on anisotropic pumping (Elitzur 1996; Watson 2009) or anisotropic resonant scattering (Asensio Ramos et al. 2005; Houde 2014). One optimal test of these theories is their ability to account for a π/2 rotation of the Electric Vector Position Angle (EVPA) observed in some maser features. The profile of linear polarization across such a feature varies with the generating mechanism. In this study, we utilize multi-epoch observations of ν=1, J=1-0 SiO maser emission around TX Cam (Diamond & Kemball 2003; Kemball et al. 2009; Gonidakis et al. 2010) to analyze a single feature with a π/2 rotation that persisted for five epochs and compare it to the behavior expected according to various theories of maser polarization. In addition, we analyze the low levels of circular polarization - now achievable due to recent improvements in millimeter-wavelength circular polarization reduction (Kemball & Richter 2011) - and compare their correlation with other parameters to further test these polarization generation theories.

  3. Rotationally inelastic scattering of NO(A(2)Σ(+)) + Ar: Differential cross sections and rotational angular momentum polarization.

    PubMed

    Sharples, Thomas R; Luxford, Thomas F M; Townsend, Dave; McKendrick, Kenneth G; Costen, Matthew L

    2015-11-28

    We present the implementation of a new crossed-molecular beam, velocity-map ion-imaging apparatus, optimized for collisions of electronically excited molecules. We have applied this apparatus to rotational energy transfer in NO(A(2)Σ(+), v = 0, N = 0, j = 0.5) + Ar collisions, at an average energy of 525 cm(-1). We report differential cross sections for scattering into NO(A(2)Σ(+), v = 0, N' = 3, 5, 6, 7, 8, and 9), together with quantum scattering calculations of the differential cross sections and angle dependent rotational alignment. The differential cross sections show dramatic forward scattered peaks, together with oscillatory behavior at larger scattering angles, while the rotational alignment moments are also found to oscillate as a function of scattering angle. In general, the quantum scattering calculations are found to agree well with experiment, reproducing the forward scattering and oscillatory behavior at larger scattering angles. Analysis of the quantum scattering calculations as a function of total rotational angular momentum indicates that the forward scattering peak originates from the attractive minimum in the potential energy surface at the N-end of the NO. Deviations in the quantum scattering predictions from the experimental results, for scattering at angles greater than 10°, are observed to be more significant for scattering to odd final N'. We suggest that this represents inaccuracies in the potential energy surface, and in particular in its representation of the difference between the N- and O-ends of the molecule, as given by the odd-order Legendre moments of the surface.

  4. Rotation of X-ray polarization in the glitches of a silicon crystal monochromator.

    PubMed

    Sutter, John P; Boada, Roberto; Bowron, Daniel T; Stepanov, Sergey A; Díaz-Moreno, Sofía

    2016-08-01

    EXAFS studies on dilute samples are usually carried out by collecting the fluorescence yield using a large-area multi-element detector. This method is susceptible to the 'glitches' produced by all single-crystal monochromators. Glitches are sharp dips or spikes in the diffracted intensity at specific crystal orientations. If incorrectly compensated, they degrade the spectroscopic data. Normalization of the fluorescence signal by the incident flux alone is sometimes insufficient to compensate for the glitches. Measurements performed at the state-of-the-art wiggler beamline I20-scanning at Diamond Light Source have shown that the glitches alter the spatial distribution of the sample's quasi-elastic X-ray scattering. Because glitches result from additional Bragg reflections, multiple-beam dynamical diffraction theory is necessary to understand their effects. Here, the glitches of the Si(111) four-bounce monochromator of I20-scanning just above the Ni K edge are associated with their Bragg reflections. A fitting procedure that treats coherent and Compton scattering is developed and applied to a sample of an extremely dilute (100 micromolal) aqueous solution of Ni(NO3)2. The depolarization of the wiggler X-ray beam out of the electron orbit is modeled. The fits achieve good agreement with the sample's quasi-elastic scattering with just a few parameters. The X-ray polarization is rotated up to ±4.3° within the glitches, as predicted by dynamical diffraction. These results will help users normalize EXAFS data at glitches.

  5. Rotation of X-ray polarization in the glitches of a silicon crystal monochromator

    PubMed Central

    Sutter, John P.; Boada, Roberto; Bowron, Daniel T.; Stepanov, Sergey A.; Díaz-Moreno, Sofía

    2016-01-01

    EXAFS studies on dilute samples are usually carried out by collecting the fluorescence yield using a large-area multi-element detector. This method is susceptible to the ‘glitches’ produced by all single-crystal monochromators. Glitches are sharp dips or spikes in the diffracted intensity at specific crystal orientations. If incorrectly compensated, they degrade the spectroscopic data. Normalization of the fluorescence signal by the incident flux alone is sometimes insufficient to compensate for the glitches. Measurements performed at the state-of-the-art wiggler beamline I20-scanning at Diamond Light Source have shown that the glitches alter the spatial distribution of the sample’s quasi-elastic X-ray scattering. Because glitches result from additional Bragg reflections, multiple-beam dynamical diffraction theory is necessary to understand their effects. Here, the glitches of the Si(111) four-bounce monochromator of I20-scanning just above the Ni K edge are associated with their Bragg reflections. A fitting procedure that treats coherent and Compton scattering is developed and applied to a sample of an extremely dilute (100 micromolal) aqueous solution of Ni(NO3)2. The depolarization of the wiggler X-ray beam out of the electron orbit is modeled. The fits achieve good agreement with the sample’s quasi-elastic scattering with just a few parameters. The X-ray polarization is rotated up to ±4.3° within the glitches, as predicted by dynamical diffraction. These results will help users normalize EXAFS data at glitches. PMID:27504076

  6. Single-angle-of-incidence single-element rotating-polarizer (Single SERP) ellipsometer for film-substrate systems

    NASA Astrophysics Data System (ADS)

    Zaghloul, A. R. M.

    2013-09-01

    The single-element rotating-polarizer ellipsometer is where a rotating polarizer is inserted into the incident beam and the reflected-signal intensity is detected using a photodetector. The polarizer is either rotated mechanically or electromagnetically. The angle of incidence of the beam is adjusted to detect the angles where the detector signal is dc. The ellipsometric function of the film-substrate system under measurement is of a unity magnitude at those detected angle(s). The number of required measurements (such angles of incidence) is related (directly proportional) to the number of system parameters to be determined: film thickness is one parameter, film optical constant is two parameters, and substrate optical constant is two parameters. The more parameters to be determined, the more the number of measurements required. This creates film-thickness bands, which number and width depend on the system physical properties and the wavelength used for measurement, and where a continuum exists above a certain film-thickness value. Accordingly, full characterization of film-substrate systems is limited to systems with large film thicknesses for the required multiple angles of incidence to exist. In this paper, we use only one detected angle of incidence to fully characterize the film-substrate system. This allows for film-substrate systems with much smaller film thicknesses to be fully characterized. A fast genetic algorithm is used to heuristically obtain all the system parameters: film thickness and optical constants of the film and the substrate, or any subset thereof.

  7. Design of a compact and integrated TM-rotated/TE-through polarization beam splitter for silicon-based slot waveguides.

    PubMed

    Xu, Yin; Xiao, Jinbiao

    2016-01-20

    A compact and integrated TM-rotated/TE-through polarization beam splitter for silicon-based slot waveguides is proposed and characterized. For the input TM mode, it is first transferred into the cross strip waveguide using a tapered directional coupler (DC), and then efficiently rotated to the corresponding TE mode using an L-shaped bending polarization rotator (PR). Finally, the TE mode for slot waveguide at the output end is obtained with the help of a strip-to-slot mode converter. By contrast, for the input TE mode, it almost passes through the slot waveguide directly and outputs at the bar end with nearly neglected coupling due to a large mode mismatch. Moreover, an additional S-bend connecting the tapered DC and bending PR is used to enhance the performance. Results show that a total device length of 19.6 μm is achieved, where the crosstalk (CT) and polarization conversion loss are, respectively -26.09 and 0.54 dB, for the TM mode, and the CT and insertion loss are, respectively, -22.21 and 0.41 dB, for the TE mode, both at 1.55 μm. The optical bandwidth is approximately 50 nm with a CT<-20  dB. In addition, fabrication tolerances and field evolution are also presented.

  8. 1:1 Ground-track resonance in a uniformly rotating 4th degree and order gravitational field

    NASA Astrophysics Data System (ADS)

    Feng, Jinglang; Noomen, Ron; Hou, Xiyun; Visser, Pieter; Yuan, Jianping

    2017-01-01

    Using a gravitational field truncated at the 4th degree and order, the 1:1 ground-track resonance is studied. To address the main properties of this resonance, a 1-degree of freedom (1-DOF) system is firstly studied. Equilibrium points (EPs), stability and resonance width are obtained. Different from previous studies, the inclusion of non-spherical terms higher than degree and order 2 introduces new phenomena. For a further study about this resonance, a 2-DOF model which includes a main resonance term (the 1-DOF system) and a perturbing resonance term is studied. With the aid of Poincaré sections, the generation of chaos in the phase space is studied in detail by addressing the overlap process of these two resonances with arbitrary combinations of eccentricity ( e) and inclination ( i). Retrograde orbits, near circular orbits and near polar orbits are found to have better stability against the perturbation of the second resonance. The situations of complete chaos are estimated in the e-i plane. By applying the maximum Lyapunov Characteristic Exponent (LCE), chaos is characterized quantitatively and similar conclusions can be achieved. This study is applied to three asteroids 1996 HW1, Vesta and Betulia, but the conclusions are not restricted to them.

  9. Prediction of Heat and Mass Transfer in a Rotating Ribbed Coolant Passage With a 180 Degree Turn

    NASA Technical Reports Server (NTRS)

    Rigby, David L.

    1999-01-01

    Numerical results are presented for flow in a rotating internal passage with a 180 degree turn and ribbed walls. Reynolds numbers ranging from 5200 to 7900, and Rotation numbers of 0.0 and 0.24 were considered. The straight sections of the channel have a square cross section, with square ribs spaced one hydraulic diameter (D) apart on two opposite sides. The ribs have a height of 0.1D and are not staggered from one side to the other. The full three dimensional Reynolds Averaged Navier-Stokes equations are solved combined with the Wilcox k-omega turbulence model. By solving an additional equation for mass transfer, it is possible to isolate the effect of buoyancy in the presence of rotation. That is, heat transfer induced buoyancy effects can be eliminated as in naphthalene sublimation experiments. Heat transfer, mass transfer and flow field results are presented with favorable agreement with available experimental data. It is shown that numerically predicting the reattachment between ribs is essential to achieving an accurate prediction of heat/mass transfer. For the low Reynolds numbers considered, the standard turbulence model did not produce reattachment between ribs. By modifying the wall boundary condition on omega, the turbulent specific dissipation rate, much better agreement with the flow structure and heat/ mass transfer was achieved. It is beyond the scope of the present work to make a general recommendation on the omega wall boundary condition. However, the present results suggest that the omega boundary condition should take into account the proximity to abrupt changes in geometry.

  10. A Flexure-Based Mechanism for Precision Adjustment of National Ignition Facility Target Shrouds in Three Rotational Degrees of Freedom

    DOE PAGES

    Boehm, K. -J.; Gibson, C. R.; Hollaway, J. R.; ...

    2016-09-01

    This study presents the design of a flexure-based mount allowing adjustment in three rotational degrees of freedom (DOFs) through high-precision set-screw actuators. The requirements of the application called for small but controlled angular adjustments for mounting a cantilevered beam. The proposed design is based on an array of parallel beams to provide sufficiently high stiffness in the translational directions while allowing angular adjustment through the actuators. A simplified physical model in combination with standard beam theory was applied to estimate the deflection profile and maximum stresses in the beams. A finite element model was built to calculate the stresses andmore » beam profiles for scenarios in which the flexure is simultaneously actuated in more than one DOF.« less

  11. A Flexure-Based Mechanism for Precision Adjustment of National Ignition Facility Target Shrouds in Three Rotational Degrees of Freedom

    SciTech Connect

    Boehm, K. -J.; Gibson, C. R.; Hollaway, J. R.; Espinoza-Loza, F.

    2016-09-01

    This study presents the design of a flexure-based mount allowing adjustment in three rotational degrees of freedom (DOFs) through high-precision set-screw actuators. The requirements of the application called for small but controlled angular adjustments for mounting a cantilevered beam. The proposed design is based on an array of parallel beams to provide sufficiently high stiffness in the translational directions while allowing angular adjustment through the actuators. A simplified physical model in combination with standard beam theory was applied to estimate the deflection profile and maximum stresses in the beams. A finite element model was built to calculate the stresses and beam profiles for scenarios in which the flexure is simultaneously actuated in more than one DOF.

  12. Frequency spectrum of focused broadband pulses of electromagnetic radiation generated by polarization currents with superluminally rotating distribution patterns.

    PubMed

    Ardavan, Houshang; Ardavan, Arzhang; Singleton, John

    2003-11-01

    We investigate the spectral features of the emission from a superluminal polarization current whose distribution pattern rotates (with an angular frequency omega) and oscillates (with a frequency omega > omega differing from an integral multiple of omega) at the same time. This type of polarization current is found in recent practical machines designed to investigate superluminal emission. Although all of the processes involved are linear, we find that the broadband emission contains frequencies that are higher than omega by a factor of the order of (omega/omega)2. This generation of frequencies not required for the creation of the source stems from mathematically rigorous consequences of the familiar classical expression for the retarded potential. The results suggest practical applications for superluminal polarization currents as broadband radio-frequency and infrared sources.

  13. Interlocked chiral/polar domain walls and large optical rotation in Ni{sub 3}TeO{sub 6}

    SciTech Connect

    Wang, Xueyun; Huang, Fei-Ting; Yang, Junjie; Oh, Yoon Seok; Cheong, Sang-Wook

    2015-07-01

    Chirality, i.e., handedness, pervades much of modern science from elementary particles, DNA-based biology to molecular chemistry; however, most of the chirality-relevant materials have been based on complex molecules. Here, we report inorganic single-crystalline Ni{sub 3}TeO{sub 6}, forming in a corundum-related R3 structure with both chirality and polarity. These chiral Ni{sub 3}TeO{sub 6} single crystals exhibit a large optical specific rotation (α)—1355° dm{sup −1} cm{sup 3} g{sup −1}. We demonstrate, for the first time, that in Ni{sub 3}TeO{sub 6}, chiral and polar domains form an intriguing domain pattern, resembling a radiation warning sign, which stems from interlocked chiral and polar domain walls through lowering of the wall energy.

  14. Helicity reversion in high-order-harmonic generation driven by bichromatic counter-rotating circularly polarized laser fields

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofan; Li, Liang; Zhu, Xiaosong; Liu, Xi; Zhang, Qingbin; Lan, Pengfei; Lu, Peixiang

    2016-11-01

    We investigate the polarization properties of high harmonics generated with the bichromatic counter-rotating circularly polarized (BCCP) laser fields by numerically solving the time-dependent Schrödinger equation (TDSE). It is found that the helicity of the elliptically polarized harmonic emission is reversed at particular harmonic orders. Based on the time-frequency analysis and the classical three-step model, the correspondence between the positions of helicity reversions and the classical trajectories of continuum electrons is established. It is shown that the electrons ionized at one lobe of laser field can be divided into different groups based on the different lobes they recombine at, and the harmonics generated by adjacent groups have opposite helicities. Our study performs a detailed analysis of high harmonics in terms of electron trajectories and depicts a clear and intuitive physical picture of the HHG process in BCCP laser fields.

  15. A dead-zone free ⁴He atomic magnetometer with intensity-modulated linearly polarized light and a liquid crystal polarization rotator.

    PubMed

    Wu, T; Peng, X; Lin, Z; Guo, H

    2015-10-01

    We demonstrate an all-optical (4)He atomic magnetometer experimental scheme based on an original Bell-Bloom configuration. A single intensity-modulated linearly polarized laser beam is used both for generating spin polarization within a single (4)He vapor and probing the spin precessing under a static magnetic field. The transmitted light signal from the vapor is then phase-sensitively detected at the modulation frequency and its harmonics, which lead to the atomic magnetic resonance signals. Based on this structure, a liquid crystal is added in our magnetometer system and constitutes a polarization rotator. By controlling the voltage applied on the liquid crystal, the light linear polarization vector can be kept perpendicular with the ambient magnetic field direction, which in turn provides the maximum resonance signal amplitude. Moreover, the system exhibits a magnetic-field noise floor of about 2pT/√Hz, which is not degraded due to the presence of the liquid crystal and varying magnetic field direction. The experiment results prove that our method can eliminate the dead-zone effect, improve the system spatial isotropy, and thus be suitable in mobile applications.

  16. Engineering new properties in PbTiO3 based superlattices: compositionally broken inversion symmetry and polarization rotation

    NASA Astrophysics Data System (ADS)

    Dawber, Matthew

    2013-03-01

    In this talk I will present results on two superlattice systems which contain ultra fine layers of PbTiO3 and another perovskite material. In recent years, much work has been done on the PbTiO3/SrTiO3 system, with a focus on improper ferroelectricity and the arrangement of ferroelectric domains. Here, we consider two different partner materials for PbTiO3, each of which introduces markedly different behavior in the resulting superlattice. PbTiO3/SrRuO3 superlattices with ultra-thin SrRuO3 layers were studied both experimentally and using density functional theory. Due to the superlattice geometry, the samples show a large anisotropy in their electrical resistivity, which can be controlled by changing the thickness of the PbTiO3 layers. Therefore, along the ferroelectric direction, SrRuO3 layers can act as dielectric, rather than metallic, elements. We show that, by reducing the thickness of the PbTiO3 layers, an increasingly important effect of polarization asymmetry due to compositional inversion symmetry breaking occurs. The compositional inversion symmetry breaking is seen in this bi-color superlattice due to the combined variation of A and B site ions within the superlattice. We have also achieved an experimental enhancement of the piezoelectric response and dielectric tunability in artificially layered epitaxial PbTiO3/CaTiO3 superlattices through an engineered rotation of the polarization direction. As the relative layer thicknesses within the superlattice were changed from sample to sample we found evidence for polarization rotation in multiple x-ray diffraction measurements. Associated changes in functional properties were seen in electrical measurements and piezoforce microscopy. These results demonstrate a new approach to inducing polarization rotation under ambient conditions in an artificially layered thin film. Work supported by NSF DMR1055413

  17. Obtaining high degree of circular polarization at x-ray free electron lasers via a reverse undulator taper

    NASA Astrophysics Data System (ADS)

    Schneidmiller, E. A.; Yurkov, M. V.

    2013-11-01

    Baseline design of a typical x-ray free electron laser (FEL) undulator assumes a planar configuration which results in a linear polarization of the FEL radiation. However, many experiments at x-ray FEL user facilities would profit from using a circularly polarized radiation. As a cheap upgrade, one can consider an installation of a short helical (or cross-planar) afterburner, but then one should have an efficient method to suppress the powerful linearly polarized background from the main undulator. In this paper we propose a new method for such a suppression: an application of the reverse taper in the main undulator. We discover that in a certain range of the taper strength, the density modulation (bunching) at saturation is practically the same as in the case of a nontapered undulator while the power of linearly polarized radiation is suppressed by orders of magnitude. Then strongly modulated electron beam radiates at full power in the afterburner. Considering the SASE3 undulator of the European XFEL as a practical example, we demonstrate that soft x-ray radiation pulses with peak power in excess of 100 GW and an ultimately high degree of circular polarization can be produced. The proposed method is rather universal, i.e., it can be used at SASE FELs and seeded (self-seeded) FELs, with any wavelength of interest, in a wide range of electron beam parameters, and with any repetition rate. It can be used at different x-ray FEL facilities, in particular at Linac Coherent Light Source after installation of the helical afterburner in the near future.

  18. Compact polarization rotator based on directional coupler of two waveguides with different width and height

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Yang, Junbo; Gao, Shaobo; Liang, Linmei

    2016-10-01

    The polarization control(PC), as one of the important issues in photonic information technologies, has attracted great attention. In this paper, we proposed an efficient and compact polarization converter on silicon-on-insulator (SOI) platform based on asymmetrical direction couplers (ADCs). The ADCs consists of two parallel fully etched straight waveguides with different sizes in both width and height. This polarization converter can realize direct conversion between the TE0 mode and the TM0 mode with high conversion efficiency. Numerical simulations show that the present PC has a good fabrication tolerance for the variation of the waveguide width and height with high polarization conversion efficiency up to 82%.

  19. Observations of Polarization and Brightness Variations with the Rotation for Asteroids 9 Metis, 52 Europa, and 1036 Ganymed

    NASA Astrophysics Data System (ADS)

    Nakayama, Hiroyuki; Fujii, Yasumasa; Ishiguro, Masateru; Nakamura, Ryosuke; Yokogawa, Sozo; Yoshida, Fumi; Mukai, Tadashi

    2000-07-01

    We present the results of photo-polarimetric observations for asteroids 9 Metis (S-type, main belt asteroid (MBA)), 52 Europa (C-type, MBA), and 1036 Ganymed (S-type, near-Earth asteroid), obtained at six wavelength bands. It is found, combining our new data with previous observations, that (1) larger maximum value of negative polarization Pmin=-1.37% and higher polarization slope h=0.27% deg -1 occur in 52 Europa, while smaller Pmin and lower h appear, i.e., -0.84%, 0.11% deg -1 for 9 Metis and -0.57%, 0.095% deg -1 for 1036 Ganymed. These results confirm the general trend of polarization-phase angle curves found previously between C- and S-type asteroids (see B. Goidet-Devel et al. 1995, Planet Space Sci.43, 779-786). (2) An increase of polarization with wavelength from 0.42 to 0.76 μm is found from the data with their root-mean-square errors in 9 Metis and 1036 Ganymed, in contrast with vice versa dependence in 52 Europa. (3) A relation of Pmin and geometric albedo A, presented in D. F. Lupishko and R. A. Mohamed (1996, Planet Space Sci.46, 47-74), leads to the resulting values of A for 0.15, 0.082, and 0.24 for 9 Metis, 52 Europa, and 1036 Ganymed, respectively. (4) The polarization observed for 9 Metis shows a significant time variation modified with the rotation of asteroid, but no clear relation between lightcurve and polarization curve appears. For 52 Europa and 1036 Ganymed, the observed time variation of polarization is weak. (5) A comparison of model simulation to the observations of lightcurve and geometric albedo A variation for 9 Metis suggests the existence of inhomogeneous albedo features on its surface, where the albedo was derived from the relation of Pmin and A.

  20. An experiment on electronic analog transformations of images of the moon. II - The degree of polarization

    NASA Astrophysics Data System (ADS)

    Novikov, V. V.; Popov, A. P.

    1984-01-01

    A method for electronic analog processing of polarization pictures was described, methods for constructing polarimetric maps of the moon were reviewed, and a polarimetric map of the moon at the first quarter was shown. For observing the moon on large reflecting telescopes, an automatic window shutter which produces exposures within the limits of 0.2 to 60 seconds was constructed, as well as a set of changeable cassettes that permits changing photographic plates during a comparable exposure time. Also considered were the information types made available by a polarimetric map, (e.g., regionalization of the lunar surface according to rock types. It was concluded that the elimination of additional photographic processes improved electronic analog processing, and that the electronic analog method allowed the production of measurements with spatial resolutions similar to original photograph resolutions.

  1. Coriolis coupling as a source of non-RRKM effects in triatomic near-symmetric top molecules: Diffusive intramolecular energy exchange between rotational and vibrational degrees of freedom.

    PubMed

    Kryvohuz, M; Marcus, R A

    2010-06-14

    A classical theory is proposed to describe the non-RRKM effects in activated asymmetric top triatomic molecules observed numerically in classical molecular dynamics simulations of ozone. The Coriolis coupling is shown to result in an effective diffusive energy exchange between the rotational and vibrational degrees of freedom. A stochastic differential equation is obtained for the K-component of the rotational angular momentum that governs the diffusion.

  2. Incorporation of polar Mellin transform in a hybrid optoelectronic correlator for scale and rotation invariant target recognition.

    PubMed

    Monjur, Mehjabin Sultana; Tseng, Shih; Tripathi, Renu; Shahriar, M S

    2014-06-01

    In this paper, we show that our proposed hybrid optoelectronic correlator (HOC), which correlates images using spatial light modulators (SLMs), detectors, and field-programmable gate arrays (FPGAs), is capable of detecting objects in a scale and rotation invariant manner, along with the shift invariance feature, by incorporating polar Mellin transform (PMT). For realistic images, we cut out a small circle at the center of the Fourier transform domain, as required for PMT, and illustrate how this process corresponds to correlating images with real and imaginary parts. Furthermore, we show how to carry out shift, rotation, and scale invariant detection of multiple matching objects simultaneously, a process previously thought to be incompatible with PMT-based correlators. We present results of numerical simulations to validate the concepts.

  3. Generation of radially polarized beams using an image-rotating resonator.

    SciTech Connect

    Armstrong, Darrell Jewell; Phillips, Mark Christopher; Smith, Arlee Virgil

    2003-01-01

    We generate optical vortex beams in a nanosecond optical parametric oscillator based on an image-rotating resonator. This efficient new method of vortex generation should be adaptable to pulsed or continuous lasers.

  4. Inelastic Scattering of NO by Kr: Rotational Polarization over a Rainbow.

    PubMed

    Chadwick, Helen; Nichols, Bethan; Gordon, Sean D S; Hornung, Balazs; Squires, Eleanor; Brouard, Mark; Kłos, Jacek; Alexander, Millard H; Aoiz, F Javier; Stolte, Steven

    2014-10-02

    We use molecular beams and ion imaging to determine quantum state resolved angular distributions of NO radicals after inelastic collision with Kr. We also determine both the sense and the plane of rotation (the rotational orientation and alignment, respectively) of the scattered NO. By full selection and then detection of the quantum parity of the NO molecule, our experiment is uniquely sensitive to quantum interference. For forward-scattered NO, we report hitherto unseen changes in the plane and sense of rotation with scattering angle and show, remarkably, that the rotation of the NO molecule after collision can be near-maximally oriented for certain transitions and scattering angles. These effects are enhanced by the full parity selection in the experiment and result from the interplay between attractive and repulsive forces.

  5. Polarization rotation associated critical phenomena in epitaxial PbTiO3 thin films near room temperature

    NASA Astrophysics Data System (ADS)

    Ma, Wenhui

    2016-04-01

    Strain-driven and temperature-driven monoclinic-orthorhombic phase transition in epitaxial PbTiO3 exhibit similar behavior under electric field, i.e., polarization discontinuity is reduced at the first-order ferroelectric-ferroelectric transition whose latent heat vanishes at a critical point. Due to critical phenomena the energy barrier for polarization rotation significantly diminishes, and hence thermodynamic response functions tend to diverge in the induced monoclinic states. Phenomenological calculations show that dielectric and piezoelectric properties are highly tunable by in-plane strain and electric field, and large electromechanical response may occur in epitaxial PbTiO3 thin films at room temperature. Phenomenological calculations show that large electrocaloric responsivity can also be expected at room temperature by manipulating the phase transition.

  6. A widely tunable wavelength converter based on nonlinear polarization rotation in a carbon-nanotube-deposited D-shaped fiber.

    PubMed

    Chow, K K; Yamashita, S; Song, Y W

    2009-04-27

    We demonstrate widely tunable wavelength conversion based on cross-phase modulation induced nonlinear polarization rotation in a carbon nanotubes (CNTs) deposited D-shaped fiber. A 5-centimeter-long CNT-deposited D-shaped fiber is used as the nonlinear medium for wavelength conversion of a 10 Gb/s non-return-to-zero signal. Wavelength tunable converted signal over 40 nm is obtained with around 2.5-dB power penalty in the bit-error-rate measurements.

  7. Planar chiral metamaterial design utilizing metal-silicides for giant circular dichroism and polarization rotation in the infrared region

    NASA Astrophysics Data System (ADS)

    Yan, Bo; Zhong, Kesong; Ma, Hongfeng; Li, Yun; Sui, Chenghua; Wang, Juanzhuan; Shi, Yi

    2017-01-01

    A planar chiral metamaterial (PCMM) comprizing double-layer sandwich structure utilizing metal-silicides in the shape of windmill is proposed in the infrared region (IR). Giant circular dichroism (CD) and polarization rotation are observed simultaneously. Furthermore, the effect of Drude model parameters (ωp,ωτ) of metal-silicides on CD and optical activity are also investigated. The results show that CD and optical activity reach maximum if ωp and ωτ are in the distribution of narrow trumpet shape.

  8. Polarity reversal of the optical rotation signals with change in direction of impulse conduction along the lobster nerve.

    PubMed Central

    Watanabe, A

    1993-01-01

    1. The optical rotation signal of nerve associated with excitation was recorded from peripheral nerve taken from a walking leg of a spiny lobster and its properties were analysed. 2. The polarity of the optical rotation signal was reversed when the site of stimulation was changed with reference to the site of optical recording, so that the direction of impulse conduction was reversed, in most of the preparations. 3. Apart from the main response, which is associated with the conducted impulse, a pre-response was found to exist, which manifested itself on anodic stimulation, in a tetrodotoxin-treated nerve, or during the refractory period of the nerve, when the site of stimulation was close to the site of optical recording. The polarity of the pre-response was also reversed when the site of stimulation was changed with reference to the site of optical recording. 4. When the nerve was inclined from the horizontal level, so that the angle of incidence of light to the nerve was changed, the main response changed its amplitude and sometimes its polarity, whereas the pre-response remained practically unchanged. Thus the dependence on the angle of incidence was different between the pre-response and the main response. 5. It is suggested that the dependence of amplitude and polarity of the main response on the angle of incidence of light cannot be explained by the change in molecular axes of the membrane macromolecules, but can only be explained by their conformational change; and therefore the main response can be used as a monitor for the molecular conformation. PMID:8410706

  9. A two degree of freedom micro-gripper with grasping and rotating functions for optical fibers assembling

    NASA Astrophysics Data System (ADS)

    Chen, Weihai; Shi, Xiaohui; Chen, Wenjie; Zhang, Jianbin

    2013-11-01

    In this paper, a two degree of freedom flexure-based micro-gripper is proposed and applied in the complicated assembling process of optical fibers. The design concept is modeled on the manipulation of human fingers. Therefore, the two tips of micro-gripper, just like human fingers, can easily grasp the optical fiber with a controllable force and precisely rotate it by the rubbing operation. In addition, some sensors installed on the micro-gripper can enhance the operating accuracy. In the developing process, pseudo-rigid-body model method and virtual work principle are employed to conduct theoretical design. Then the obtained theoretical model is validated and optimized by the finite element analysis. Fabrication of the micro-gripper adopts wire electro discharge machining technology and material of aluminum alloy (AL-7075). Experimental studies are carried out on the prototype to further validate the performance of micro-gripper. Experimental results indicate that the developed micro-gripper can well satisfy the requirements of our mission, which also means that it can be widely used in micro-manipulation field.

  10. A two degree of freedom micro-gripper with grasping and rotating functions for optical fibers assembling.

    PubMed

    Chen, Weihai; Shi, Xiaohui; Chen, Wenjie; Zhang, Jianbin

    2013-11-01

    In this paper, a two degree of freedom flexure-based micro-gripper is proposed and applied in the complicated assembling process of optical fibers. The design concept is modeled on the manipulation of human fingers. Therefore, the two tips of micro-gripper, just like human fingers, can easily grasp the optical fiber with a controllable force and precisely rotate it by the rubbing operation. In addition, some sensors installed on the micro-gripper can enhance the operating accuracy. In the developing process, pseudo-rigid-body model method and virtual work principle are employed to conduct theoretical design. Then the obtained theoretical model is validated and optimized by the finite element analysis. Fabrication of the micro-gripper adopts wire electro discharge machining technology and material of aluminum alloy (AL-7075). Experimental studies are carried out on the prototype to further validate the performance of micro-gripper. Experimental results indicate that the developed micro-gripper can well satisfy the requirements of our mission, which also means that it can be widely used in micro-manipulation field.

  11. Proposal for fabrication-tolerant SOI polarization splitter-rotator based on cascaded MMI couplers and an assisted bi-level taper

    PubMed Central

    Wang, Jing; Qi, Minghao; Xuan, Yi; Huang, Haiyang; Li, You; Li, Ming; Chen, Xin; Jia, Qi; Sheng, Zhen; Wu, Aimin; Li, Wei; Wang, Xi; Zou, Shichang; Gan, Fuwan

    2014-01-01

    A novel silicon-on-insulator (SOI) polarization splitter-rotator (PSR) with a large fabrication tolerance is proposed based on cascaded multimode interference (MMI) couplers and an assisted mode-evolution taper. The tapers are designed to adiabatically convert the input TM0 mode into the TE1 mode, which will output as the TE0 mode after processed by the subsequent MMI mode converter, 90-degree phase shifter (PS) and MMI 3 dB coupler. The numerical simulation results show that the proposed device has a < 0.5 dB insertion loss with < −17 dB crosstalk in C optical communication band. Fabrication tolerance analysis is also performed with respect to the deviations of MMI coupler width, PS width, slab height and upper-cladding refractive index, showing that this device could work well even when affected by considerable fabrication errors. With such a robust performance with a large bandwidth, this device offers potential applications for CMOS-compatible polarization diversity, especially in the booming 100 Gb/s coherent optical communications based on silicon photonics technology. PMID:25402029

  12. Asters, Vortices, and Rotating Spirals in Active Gels of Polar Filaments

    NASA Astrophysics Data System (ADS)

    Kruse, K.; Joanny, J. F.; Jülicher, F.; Prost, J.; Sekimoto, K.

    2004-02-01

    We develop a general theory for active viscoelastic materials made of polar filaments. This theory is motivated by the dynamics of the cytoskeleton. The continuous consumption of a fuel generates a nonequilibrium state characterized by the generation of flows and stresses. Our theory applies to any polar system with internal energy consumption such as active chemical gels and cytoskeletal networks which are set in motion by active processes at work in cells.

  13. Detection of B-mode polarization at degree angular scales by BICEP2.

    PubMed

    Ade, P A R; Aikin, R W; Barkats, D; Benton, S J; Bischoff, C A; Bock, J J; Brevik, J A; Buder, I; Bullock, E; Dowell, C D; Duband, L; Filippini, J P; Fliescher, S; Golwala, S R; Halpern, M; Hasselfield, M; Hildebrandt, S R; Hilton, G C; Hristov, V V; Irwin, K D; Karkare, K S; Kaufman, J P; Keating, B G; Kernasovskiy, S A; Kovac, J M; Kuo, C L; Leitch, E M; Lueker, M; Mason, P; Netterfield, C B; Nguyen, H T; O'Brient, R; Ogburn, R W; Orlando, A; Pryke, C; Reintsema, C D; Richter, S; Schwarz, R; Sheehy, C D; Staniszewski, Z K; Sudiwala, R V; Teply, G P; Tolan, J E; Turner, A D; Vieregg, A G; Wong, C L; Yoon, K W

    2014-06-20

    We report results from the BICEP2 experiment, a cosmic microwave background (CMB) polarimeter specifically designed to search for the signal of inflationary gravitational waves in the B-mode power spectrum around ℓ∼80. The telescope comprised a 26 cm aperture all-cold refracting optical system equipped with a focal plane of 512 antenna coupled transition edge sensor 150 GHz bolometers each with temperature sensitivity of ≈300  μK(CMB)√s. BICEP2 observed from the South Pole for three seasons from 2010 to 2012. A low-foreground region of sky with an effective area of 380 square deg was observed to a depth of 87 nK deg in Stokes Q and U. In this paper we describe the observations, data reduction, maps, simulations, and results. We find an excess of B-mode power over the base lensed-ΛCDM expectation in the range 30 < ℓ < 150, inconsistent with the null hypothesis at a significance of >5σ. Through jackknife tests and simulations based on detailed calibration measurements we show that systematic contamination is much smaller than the observed excess. Cross correlating against WMAP 23 GHz maps we find that Galactic synchrotron makes a negligible contribution to the observed signal. We also examine a number of available models of polarized dust emission and find that at their default parameter values they predict power ∼(5-10)× smaller than the observed excess signal (with no significant cross-correlation with our maps). However, these models are not sufficiently constrained by external public data to exclude the possibility of dust emission bright enough to explain the entire excess signal. Cross correlating BICEP2 against 100 GHz maps from the BICEP1 experiment, the excess signal is confirmed with 3σ significance and its spectral index is found to be consistent with that of the CMB, disfavoring dust at 1.7σ. The observed B-mode power spectrum is well fit by a lensed-ΛCDM+tensor theoretical model with tensor-to-scalar ratio r = 0

  14. Minimal model for spontaneous cell polarization and edge activity in oscillating, rotating and migrating cells

    NASA Astrophysics Data System (ADS)

    Raynaud, Franck; Ambühl, Mark E.; Gabella, Chiara; Bornert, Alicia; Sbalzarini, Ivo F.; Meister, Jean-Jacques; Verkhovsky, Alexander B.

    2016-04-01

    How cells break symmetry and organize activity at their edges to move directionally is a fundamental question in cell biology. Physical models of cell motility commonly incorporate gradients of regulatory proteins and/or feedback from the motion itself to describe the polarization of this edge activity. These approaches, however, fail to explain cell behaviour before the onset of polarization. We use polarizing and moving fish epidermal cells as a model system to bridge the gap between cell behaviours before and after polarization. Our analysis suggests a novel and simple principle of self-organizing cell activity, in which local cell-edge dynamics depends on the distance from the cell centre, but not on the orientation with respect to the front-back axis. We validate this principle with a stochastic model that faithfully reproduces a range of cell-migration behaviours. Our findings indicate that spontaneous polarization, persistent motion and cell shape are emergent properties of the local cell-edge dynamics controlled by the distance from the cell centre.

  15. Polarized fluorescence depletion reports orientation distribution and rotational dynamics of muscle cross-bridges.

    PubMed Central

    Bell, Marcus G; Dale, Robert E; van der Heide, Uulke A; Goldman, Yale E

    2002-01-01

    The method of polarized fluorescence depletion (PFD) has been applied to enhance the resolution of orientational distributions and dynamics obtained from fluorescence polarization (FP) experiments on ordered systems, particularly in muscle fibers. Previous FP data from single fluorescent probes were limited to the 2(nd)- and 4(th)-rank order parameters, and , of the probe angular distribution (beta) relative to the fiber axis and , a coefficient describing the extent of rapid probe motions. We applied intense 12-micros polarized photoselection pulses to transiently populate the triplet state of rhodamine probes and measured the polarization of the ground-state depletion using a weak interrogation beam. PFD provides dynamic information describing the extent of motions on the time scale between the fluorescence lifetime (e.g., 4 ns) and the duration of the photoselection pulse and it potentially supplies information about the probe angular distribution corresponding to order parameters above rank 4. Gizzard myosin regulatory light chain (RLC) was labeled with the 6-isomer of iodoacetamidotetramethylrhodamine and exchanged into rabbit psoas muscle fibers. In active contraction, dynamic motions of the RLC on the PFD time scale were intermediate between those observed in relaxation and rigor. The results indicate that previously observed disorder of the light chain region in contraction can be ascribed principally to dynamic motions on the microsecond time scale. PMID:12124286

  16. Transverse spin diffusion and spin rotation in very dilute, spin-polarized 3-4He mixtures

    NASA Astrophysics Data System (ADS)

    Candela, D.; McAllaster, D. R.; Wei, L.-J.

    1991-10-01

    We report measurements of the transverse-spin-diffusion coefficient D⊥ and the spin-rotation parameter Ωτ⊥ for two very dilute 3-4He mixtures (x3=1.82×10-3 and 6.26×10-4) spin polarized by an 8-T magnetic field. Brute-force spin polarization up to 40% was achieved at the lowest temperature, 6 mK. We find that Ωτ⊥ increases monotonically as the temperature is reduced through the Fermi temperature TF, in disagreement with the only previous experiment but in good agreement with recent theory. Unlike the earlier experiment, which measured spin echoes, the present experiments employed a spin-wave technique that avoids nonlinear excitation of the spin field. We compare our results with the recent calculations of Jeon and Mullin for spin transport in dilute gases with arbitrary polarization and degeneracy. The best fit to the data is obtained by scaling the quasiparticle interaction V(q) proposed by Ebner by a modest factor, 1.07. The corresponding s-wave scattering length is a=-1.21 Å. Good agreement is found for Ωτ⊥(T) at both concentrations and all temperatures, and for D⊥/Ωτ⊥(T) apart from the lower concentration at T<20 mK. The discrepancy in D⊥/Ωτ⊥ at the lowest temperatures and x3 could be explained by an unanticipated polarization dependence or by modification of the spin-wave boundary condition by processes occurring at the interface between the mixture and the silica cavity wall.

  17. Dark SPOT Detection Using Intensity and the Degree of Polarization in Fully Polarimetric SAR Images for Oil Polution Monitoring

    NASA Astrophysics Data System (ADS)

    Zakeri, F.; Amini, J.

    2015-12-01

    Oil spill surveillance is of great environmental and economical interest, directly contributing to improve environmental protection. Monitoring of oil spills using synthetic aperture radar (SAR) has received a considerable attention over the past few years, notably because of SAR data abilities like all-weather and day-and-night capturing. The degree of polarization (DoP) is a less computationally complex quantity characterizing a partially polarized electromagnetic field. The key to the proposed approach is making use of DoP as polarimetric information besides intensity ones to improve dark patches detection as the first step of oil spill monitoring. In the proposed approach first simple intensity threshold segmentation like Otsu method is applied to the image. Pixels with intensities below the threshold are regarded as potential dark spot pixels while the others are potential background pixels. Second, the DoP of potential dark spot pixels is estimated. Pixels with DoP below a certain threshold are the real dark-spot pixels. Choosing the threshold is a critical and challenging step. In order to solve choosing the appropriate threshold, we introduce a novel but simple method based on DoP of potential dark spot pixels. Finally, an area threshold is used to eliminate any remaining false targets. The proposed approach is tested on L band NASA/JPL UAVSAR data, covering the Deepwater Horizon oil spill in the Gulf of Mexico. Comparing the obtained results from the new method with conventional approaches like Otsu, K-means and GrowCut shows better achievement of the proposed algorithm. For instance, mean square error (MSE) 65%, Overall Accuracy 20% and correlation 40% are improved.

  18. Square-wave switching in vertical-cavity surface-emitting lasers with polarization-rotated optical feedback: Experiments and simulations

    NASA Astrophysics Data System (ADS)

    Sukow, David W.; Gilfillan, Taylor; Pope, Brenton; Torre, Maria S.; Gavrielides, Athanasios; Masoller, Cristina

    2012-09-01

    We study experimentally the dynamics of vertical-cavity surface-emitting lasers (VCSELs) with polarization-rotated (PR) optical feedback, such that the natural lasing polarization of a VCSEL is rotated by 90 deg and then is reinjected into the laser. We observe noisy, square-wave-like polarization switchings with periodicity slightly longer than twice the delay time, which degrade to (or alternate with) bursts of irregular oscillations. We present results of simulations that are in good agreement with the observations. The simulations demonstrate that close to threshold the regular switching is very sensitive to noise, while well above threshold is less affected by the noise strength. The frequency splitting between the two polarizations plays a key role in the switching regularity, and we identify wide parameter regions where deterministic and robust switching can be observed.

  19. An Improvement of Scanning Ellipsometer by Rotating a Polarizer and an Analyzer at a Speed Ratio of 1:3

    NASA Astrophysics Data System (ADS)

    El-Agez, Taher M.; Taya, Sofyan A.; El Tayyan, Ahmed A.

    2011-03-01

    We propose theoretically an improved spectroscopic ellipsometer to study the optical properties of solids. In this system, the polarizer and the analyzer are rotating synchronously in the same direction at a speed ratio 1:3. The light intensity received by the detector contains six Fourier coefficients, one dc and five ac. One can independently extract the ellipsometric parameters as well as the optical constants of a sample using any of six different sets of the Fourier coefficients. A comparison among these sets is presented to find the optimal set corresponding to the minimum percent error in the calculation of the real and imaginary parts of the dielectric function. The results from the simulated spectra of the complex refractive index of c-Si, ZnSe, and GaP are presented.

  20. Passively harmonic mode-locked pulses in thulium-doped fiber laser based on nonlinear polarization rotation

    NASA Astrophysics Data System (ADS)

    Jia, Qingsong; Wang, Tianshu; Ma, Wanzhuo; Liu, Peng; Zhang, Peng; Bo, Baoxue; Zhang, Yan

    2016-10-01

    A simple approach to generate passively harmonic mode-locked pulse trains in thulium-doped fiber laser based on nonlinear polarization rotation is proposed and demonstrated. Three different ways of mode-locked techniques have been employed in our structure to generate passively high-order harmonic mode-locked pulse trains; 128th-order passively harmonic mode-locked pulse train is achieved in the experiment and the repetition rate is 406.8 MHz. With the increase of the pump power, multiwavelength output can be tuned. A segment of dispersion compensation fiber is used to compensate the dispersion in the cavity; thus, the single pulse width is compressed from 617 to 48 ps.

  1. Square waveforms in edge-emitting diode laser subject to polarization-rotated optical feedback

    NASA Astrophysics Data System (ADS)

    Gavrielides, A.; Erneux, T.; Sukow, D. W.; Burner, G.; McLachlan, T.; Miller, J.; Amonette, J.

    2006-02-01

    The response of a diode laser resulting from an incoherent delayed optical feedback is considered from numerical and experimental perspectives. We concentrate on a class of solutions that appear as regular square waveforms. A two-field model is used and the bifurcation diagram of these square-wave regimes is studied. Conditions under which they typically appear are determined. The roles of various parameters are examined, particularly with regard to the gains and losses of the two polarization modes. Numerical results are in close agreement with experiments.

  2. Unpinning of rotating spiral waves in cardiac tissues by circularly polarized electric fields

    NASA Astrophysics Data System (ADS)

    Feng, Xia; Gao, Xiang; Pan, De-Bei; Li, Bing-Wei; Zhang, Hong

    2014-04-01

    Spiral waves anchored to obstacles in cardiac tissues may cause lethal arrhythmia. To unpin these anchored spirals, comparing to high-voltage side-effect traditional therapies, wave emission from heterogeneities (WEH) induced by the uniform electric field (UEF) has provided a low-voltage alternative. Here we provide a new approach using WEH induced by the circularly polarized electric field (CPEF), which has higher success rate and larger application scope than UEF, even with a lower voltage. And we also study the distribution of the membrane potential near an obstacle induced by CPEF to analyze its mechanism of unpinning. We hope this promising approach may provide a better alternative to terminate arrhythmia.

  3. Cycloid manipulation by electric field in BiFeO3 films: Coupling between polarization, octahedral rotation, and antiferromagnetic order

    NASA Astrophysics Data System (ADS)

    Popkov, A. F.; Kulagin, N. E.; Soloviov, S. V.; Sukmanova, K. S.; Gareeva, Z. V.; Zvezdin, A. K.

    2015-10-01

    The room temperature multiferroic BiFeO3, by far the most studied experimentally, exhibits outstanding ferroelectric properties with a cycloidal magnetic order in the bulk and many unexpected advantages for possible applications in spintronics, sensor techniques, and photovoltaics. To consider ferroelectric and magnetic phase transitions in multiferroic BiFeO3 under electric field, we suggest the Ginsburg-Landau-like approach based on the symmetry and P -ω -L coupling, where the order parameters are: P is the electric polarization, ω is the axial vector of antidistorsion (describing a rotation of the oxygen octahedrons), and L is the antiferromagnetic vector. The theoretical model is consistent with experiment and ab initio calculations data. We give the complete set of numerical coefficients of the model and explore the behavior of P and ω vectors in strong electric field. The proposed approach is particularly promising for the analysis of magnetoelectric phenomena whose length scale is significantly larger than the length of the cell used in ab initio calculations. The considered cycloid problem is the clear example of such a system. Electric field-induced transformations of cycloid are exemplified on an epitaxial BiFeO3 film grown on the (001)-oriented substrate. We show that the jump of vectors P and ω in the field E =6 MV/m is accompanied by a jump of a cycloid spin rotation plane. This effect is of particular interest for spintronics and nanoelectronics.

  4. Pulse bundles and passive harmonic mode-locked pulses in Tm-doped fiber laser based on nonlinear polarization rotation.

    PubMed

    Wang, Xiong; Zhou, Pu; Wang, Xiaolin; Xiao, Hu; Liu, Zejin

    2014-03-10

    We demonstrate the nanosecond-level pulses in Tm-doped fiber laser generated by passively harmonic mode-locking. Nonlinear polarization rotation performed by two polarization controllers (PCs) is employed to induce the self-starting harmonic mode-locking. The fundamental repetition rate of the laser is 448.8 kHz, decided by the length of the cavity. Bundles of pulses with up to 17 uniform subpulses are generated due to the split of pulse when the pump power increases and the PCs are adjusted. Continuous harmonic mode-locked pulse trains are obtained with 1st to 6th and even more than 15th order when the positions of the PCs are properly fixed and the pump power is scaled up. The widths of all the uniform individual pulses are mostly 3-5 ns, and pulse with width of 304 ns at fundamental repetition rate can also be generated by adjusting the PCs. Hysteresis phenomenon of the passively harmonic mode-locked pulses' repetition frequency versus pump power is observed. The rather wide 3dB spectral bandwidth of the pulse train (25 nm) indicates that they may resemble noise-like pulses.

  5. New imaging technique using degree of polarization for the study of polarimetric properties for non-invasive biomedical diagnostic

    NASA Astrophysics Data System (ADS)

    Buscemi, Isabella C.; Guyot, Steve; Lemoine, Jacques

    2012-06-01

    This research proposes a new imaging technique for near real time multispectral acquisition using CCD RGB cameras of the so called "Degree Of Polarization" (DOP) in polarimetry for future clinical investigation. The aim of exploiting the DOP as the contrast element is to demonstrate that the elliptical DOP provides more information characterizing complex medium than the more traditional linear and circular ones. The system considers an incoherent input white light beam and opportunely calibrated nematic crystals (LCVR), so no mechanical tools are necessary. The particular features of the system indicate it to be the perfect candidate for a new imaging system considering in-vivo (as well as ex-vivo) non invasive superficial diagnostic for medical application as dermatologic diagnostics, since no type of sample preparation is necessary, i.e. tissue biopsy, radiation or contrast agent injection. Thus the biomedical application of this method suggests a simple, direct, fast and also easily exploitable future employment, as a desirable mean for clinical investigation but also for digital recognition in biometrics. Further new elements to improve the model of light scattering and matter-light interaction will be acquired, in particular considering a very complete characterization of the system response using latex microspheres suspension to simulate turbid media with different concentration.

  6. Baroclinic turbulence on the polar β-plane in the rotating tank: Down to submesoscale

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Afanasyev, Y. D.

    2016-11-01

    The energy spectra of the baroclinic turbulence are examined in finely resolved laboratory flows. A wide range of wavenumbers and frequencies is accessible, including those dynamically similar to the oceanic meso- and submesoscales. Oceanographically relevant phenomena observed in the experiments include Rossby waves, alternating zonal jets, baroclinically unstable coastal currents as well as submesoscale filaments and eddies. Independent spectral decomposition methodologies (Fourier and Fourier-Bessel) applied in Cartesian and polar coordinates respectively provide a complementary framework for representing and interpreting the measured flows. Evolution of energy spectra in the wavenumber domain demonstrates that energy concentrates in zonal modes. The spectra in the frequency-wavenumber domain reveal a significant role of the linear dynamics in the form of the Rossby waves and baroclinic instability modes. The spectral analyses are extended to obtain energy fluxes between lengthscales and reveal an inverse cascade at larger (meso-) scales and a direct cascade at smaller (submeso-) scales.

  7. Information Leakage Problem in Efficient Bidirectional Quantum Secure Direct Communication with Single Photons in Both Polarization and Spatial-Mode Degrees of Freedom

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-Hao; Chen, Han-Wu; Liu, Wen-Jie

    2016-11-01

    The information leakage problem in the efficient bidirectional quantum secure direct communication protocol with single photons in both polarization and spatial-mode degrees of freedom is pointed out. Next, a way to revise this protocol to a truly secure one is given. We hope people pay more attention to the information leakage problem in order to design truly secure quantum communication protocols.

  8. Rotations of molecular photoelectron angular distributions in above threshold ionization of H2+ by intense circularly polarized attosecond UV laser pulses

    NASA Astrophysics Data System (ADS)

    Yuan, Kai-Jun; Chelkowski, Szczepan; Bandrauk, André D.

    2014-10-01

    We present molecular photoelectron angular distributions (MPADs) in multi-photon ionization processes by circularly polarized attosecond UV laser pulses. Simulations are performed on the single electron aligned molecular ion H_2^+ by solving corresponding 3D time-dependent Schrödinger equations. Numerical results of molecular above threshold ionization (MATI) show that rotations of MPADs with respect to the molecular and polarization axes depend on pulse intensities and photoelectron kinetic energies. We attribute the rotation to Γ, the difference between parallel and perpendicular ionization probabilities. It is found that in a resonant ionization process, the rotation angle is also a function of the symmetry of intermediate electronic states. The coherent population transfer between the initial and the resonant electronic states is controlled by pulse intensities. Such dependence of rotations on the pulse intensity is absent in Rydberg resonant ionizations as well as in MATI at large energy photons ℏω > Ip, where ω is angular frequency of photons and Ip is the molecular ionization potential. We describe these processes by a multi-photon perturbation theory model. Effects of molecular alignment and pulse ellipticities on rotations are investigated, confirming the essence of the ionization parameter Γ in rotations of MPADs.

  9. Molecular photoelectron angular distribution rotations in multi-photon resonant ionization of H{sub 2}{sup +} by circularly polarized ultraviolet laser pulses

    SciTech Connect

    Yuan, Kai-Jun Chelkowski, Szczepan; Bandrauk, André D.

    2015-04-14

    We study effects of pulse durations on molecular photoelectron angular distributions (MPADs) in ultrafast circular polarization ultraviolet resonant ionization processes. Simulations performed on aligned H{sub 2}{sup +} by numerically solving time dependent Schrödinger equations show rotations of MPADs with respect to the molecular symmetry axes. It is found that in multi-photon resonant ionization processes, rotation angles are sensitive to pulse durations, which we attribute to the coherent resonant excitation between the ground state and the intermediate excited electronic state induced by Rabi oscillations. Multi-photon nonresonant and single photon ionization processes are simulated and compared which exhibit a constant rotation angle. An asymmetry parameter is introduced to describe the pulse duration sensitivity by perturbation theory models. Influence of pulse frequency detunings on MPADs is also investigated where oscillations of rotations are absent at long pulse durations due to nonresonance excitation.

  10. New time-space-time optical packet switching node based on nonlinear polarization rotation of a semiconductor optical amplifier.

    PubMed

    Yongjun, Wang; Qinghua, Tian; Zhi, Wang; Xiaoqing, Zhu; Chen, Wu; Chao, Shang; Xin, Xiangjun

    2016-03-10

    In this paper, we establish a simple model to analyze the semiconductor optical amplifier's (SOA) nonlinear polarization rotation (NPR) and acquire the variable curves of phase difference between TE and TM modes with bias current, pump power, probe power, and linewidth enhancement factor (LEF). The results indicate that the optical switch based on the SOA's NPR can be realized by changing the pump's optical power and the main operating parameters, such as bias current and hold beam power, and then the pump power can be determined. On this basis, a time-space-time (T-S-T) optical packet switching node is proposed, in which the SOA's NPR switch is the basic element. Then, the T-S and S-T experimental systems are set up, and the experimental results demonstrate that the proposed switch scheme can implement the optical switching function in accordance with the routing requirement. The signal-to-noise ratio (SNR) exceeds 20 dB, and the extinction ratio (ER) is more than 10 dB after being delayed and switched in the node.

  11. Passively Q-switched mode-locking Erbium-doped fiber laser with net-normal dispersion using nonlinear polarization rotation technique

    NASA Astrophysics Data System (ADS)

    Wang, L. Y.; Xu, W. C.; Luo, Z. C.; Cao, W. J.; Luo, A. P.; Dong, J. L.; Wang, H. Y.

    2011-10-01

    We experimentally demonstrate a passively Q-switched mode-locking (QML) operation in an Erbium-doped fiber ring laser with net normal dispersion by using nonlinear polarization rotation technique. A 2 m long section of dispersion compensating fiber (DCF) with extra large positive dispersion was inserted into the cavity to ensure the fiber laser working in the region of net positive dispersion. By carefully adjusting the polarization controller, both uniform dissipative mode-locking pulses with fundamental repetition rate and QML pulse trains with tunable repetition rate from 71.58 to 98.83 kHz are achieved. It is found that the QML operation is caused by the interaction between the polarization state of the pulse and the intracavity polarizer.

  12. Analyzing the propagation behavior of coherence and polarization degrees of a phase-locked partially coherent radial flat-topped array laser beam in underwater turbulence.

    PubMed

    Kashani, Fatemeh Dabbagh; Yousefi, Masoud

    2016-08-10

    In this research, based on an analytical expression for cross-spectral density (CSD) matrix elements, coherence and polarization properties of phase-locked partially coherent flat-topped (PCFT) radial array laser beams propagating through weak oceanic turbulence are analyzed. Spectral degrees of coherence and polarization are analytically calculated using CSD matrix elements. Also, the effective width of spatial degree of coherence (EWSDC) is calculated numerically. The simulation is done by considering the effects of source parameters (such as radius of the array setup's circle, effective width of the spectral degree of coherence, and wavelength) and turbulent ocean factors (such as the rate of dissipation of the turbulent kinetic energy per unit mass of fluid and relative strength of temperature and salinity fluctuations, Kolmogorov micro-scale, and rate of dissipation of the mean squared temperature) in detail. Results indicate that any change in the amount of turbulence factors that increase the turbulence power reduces the EWSDC significantly and causes the reduction in the degree of polarization, and occurs at shorter propagation distances but with smaller magnitudes. In addition, being valid for all conditions, the degradation rate of the EWSDC of Gaussian array beams are more in comparison with the PCFT ones. The simulation and calculation results are shown by graphs.

  13. Flow and heat transfer in 180-degree turn square ducts: Effects of turning configuration and system rotation

    NASA Astrophysics Data System (ADS)

    Wang, Ten-See; Chyu, Ming-King

    1993-07-01

    Forced flow through channels connected by sharp bends is frequently encountered in various rocket and gas turbine engines. For example, the transfer ducts, the coolant channels surround the combustion chamber, the internal cooling passage in a blade or vane, the flow path in the fuel element of a nuclear rocket engine, the flow around a pressure relieve valve piston, and the recirculated base flow of multiple engine clustered nozzles. Transport phenomena involved in such a flow passage are complex and considered to be very different from those of conventional turning flow with relatively mild radii of curvature. While previous research pertaining to this subject has been focused primarily on the experimental heat transfer, very little analytical work is directed to understanding the flowfield and energy transport in the passage. Therefore, the primary goal of this paper is to benchmark the predicted wall heat fluxes using a state-of-the-art computational fluid dynamics (CFD) formulation against those of measurement for a rectangular turn duct. Other secondary goals include studying the effects of turning configurations, e.g., the semi-circular turn, and the rounded-corner turn, and the effect of system rotation. The computed heat fluxes for the rectangular turn duct compared favorably with those of the experimental data. The results show that the flow pattern, pressure drop, and heat transfer characteristics are different among the three turning configurations, and are substantially different with system rotation. Also demonstrated in this work is that the present computational approach is quite effective and efficient and will be suitable for flow and thermal modeling in rocket and turbine engine applications.

  14. GroundBIRD: Observing Cosmic Microwave Polarization at Large Angular Scale with Kinetic Inductance Detectors and High-Speed Rotating Telescope

    NASA Astrophysics Data System (ADS)

    Oguri, S.; Choi, J.; Damayanthi, T.; Hattori, M.; Hazumi, M.; Ishitsuka, H.; Karatsu, K.; Mima, S.; Minowa, M.; Nagasaki, T.; Otani, C.; Sekimoto, Y.; Tajima, O.; Tomita, N.; Yoshida, M.; Won, E.

    2016-08-01

    Cosmic microwave background (CMB) is an important source of information about the origin of our universe. In particular, odd-parity large angular scale patterns in the CMB polarization, the primordial B-modes, are strong evidence for an inflationary universe, related to the accelerating expansion of the metric. We are developing a unique telescope, GroundBIRD, to take CMB polarization measurements. The telescope combines novel techniques: high-speed rotation scanning, cold optics, and microwave kinetic inductance detectors (MKIDs). We evaluated the response of MKIDs on the rotation stage. Method of shielding from the geo-magnetic field is established. We have also developed a receiver cryostat. We are able to maintain a sufficient cold status for observations on the optical configuration. We plan to start commissioning the system by observing CMB in Japan in 2015-2016. We will then deploy GroundBIRD in the Canary Islands for further scientific observations.

  15. Light-particle emission as a probe of the rotational degrees of freedom in deep-inelastic reactions

    SciTech Connect

    Sobotka, L.G.

    1982-05-01

    The emission of alpha particles in coincidence with the most deeply inelastic heavy-ion reactions has been studied for /sup 181/Ta/sup +/ /sup 165/Ho at 1354 MeV laboratory energy and /sup nat/Ag + /sup 84/Kr at 664 MeV. Alpha particle energy spectra and angular distributions, in coincidence with a projectile-like fragment, were acquired both in the reaction plane and out of the reaction plane at a fixed in-plane angle. The in-plane data for both systems are employed to show that the bulk of the alpha particles in coincidence with the deep-inelastic exit channel can be explained by evaporation from the fully accelerated fragments. Average velocity diagrams, ..cap alpha..-particle energy spectra as a function of angle in several rest frames, and ..cap alpha..-particle angular distributions are presented. The out-of-plane alpha particle angular distributions and the gamma-ray multiplicities are used to study the transfer and partitioning of angular momentum between the two fragments. For the /sup nat/Ag + /sup 84/Kr system, individual fragment spins are extracted form the alpha particle angular distributions as a function of mass asymmetry while the sum of the fragment spins is derived from the gamma-ray multiplicities. These data, together with the fragment kinetic energies, are consistent with rigid rotation of an intermediate complex consisting of two substantially deformed spheroids in near proximity. These data also indicate that some angular momentum fractionation exists at the largest asymmetries examined. Out-of-plane alpha particle distributions, gamma-ray multiplicities, fragment spins as well as the formalism for the spin evaluation at various levels of sophistication are presented.

  16. Improving the Electrical Properties of Zr-Doped Bi3.15Nd0.85Ti3O12 Thin Films by Engineering Polarization Rotation

    NASA Astrophysics Data System (ADS)

    Yang, Feng; Guo, Yichen; Zong, Zhihao; Hao, Xuehong; Shi, Yiwen; Tang, Minghua

    2016-07-01

    Nd3+/Zr4+-cosubstituted bismuth titanate (BNTZ x , x = 0, 0.05, 0.1, 0.3, and 0.5) thin films have been fabricated by chemical solution deposition and their polarization hysteresis loops, leakage current, and capacitance butterfly loops investigated. Results show that, at Zr content of x = 0.1, both capacitance and remanent polarization can be greatly improved. The BNTZ0.1 film also exhibits fatigue-free, excellent leakage current characteristics ( I ≈ 9.44 × 10-9 A) at applied voltage of 3 V. High-quality c-axis-oriented BNTZ x = 0.1 films with improved electrical properties were fabricated; this finding supports the feasibility of engineering polarization rotation in ferroelectric bismuth titanate (as suggested theoretically by Roy et al. in Appl. Phys. Lett. 102:182901, 2013).

  17. Light-induced rotations of chiral birefringent microparticles in optical tweezers

    PubMed Central

    Donato, M. G.; Mazzulla, A.; Pagliusi, P.; Magazzù, A.; Hernandez, R. J.; Provenzano, C.; Gucciardi, P. G.; Maragò, O. M.; Cipparrone, G.

    2016-01-01

    We study the rotational dynamics of solid chiral and birefringent microparticles induced by elliptically polarized laser light in optical tweezers. We find that both reflection of left circularly polarized light and residual linear retardance affect the particle dynamics. The degree of ellipticity of laser light needed to induce rotations is found. The experimental results are compared with analytical calculations of the transfer of angular moment from elliptically polarized light to chiral birefringent particles. PMID:27601200

  18. Influence of size, proportion, and absorption coefficient of spherical scatterers on the degree of light polarization and the grain size of speckle pattern.

    PubMed

    Nader, Christelle Abou; Nassif, Rana; Pellen, Fabrice; Le Jeune, Bernard; Le Brun, Guy; Abboud, Marie

    2015-12-10

    In this paper, we present the evolution of speckle pattern polarimetric parameters in response to controlled changes in scatterer sizes, proportions, and the absorption coefficient in media. The experimental study was performed on mixtures of polystyrene microspheres with dye in order to ensure biological medium-like properties. The speckle grain sizes and degrees of polarization for linear and circular light were monitored. We observed helicity flipping in the degree of circular polarization for small scatterer proportion around 25%. Furthermore, linear depolarization decreased slightly for media containing more small particles. Good agreement was shown with numerical results computed using a Monte Carlo simulation of polarized light taking into account our experimental configuration. Speckle grain size also evolves with the increase of small scatterers as well as the media absorption coefficient. Such variations of properties are encountered during fruit maturation, in tissues in precancerous stages, and any transformation that causes a modification in particle proportions and absorption coefficient in biological media. The computed parameters proved to be sensitive to these changes.

  19. A Study of Broadband Faraday Rotation and Polarization Behavior over 1.3--10 GHz in 36 Discrete Radio Sources

    NASA Astrophysics Data System (ADS)

    Anderson, C. S.; Gaensler, B. M.; Feain, I. J.

    2016-07-01

    We present a broadband polarization analysis of 36 discrete polarized radio sources over a very broad, densely sampled frequency band. Our sample was selected on the basis of polarization behavior apparent in narrowband archival data at 1.4 GHz: half the sample shows complicated frequency-dependent polarization behavior (i.e., Faraday complexity) at these frequencies, while half shows comparatively simple behavior (i.e., they appear Faraday simple). We re-observed the sample using the Australia Telescope Compact Array in full polarization, with 6 GHz of densely sampled frequency coverage spanning 1.3-10 GHz. We have devised a general polarization modeling technique that allows us to identify multiple polarized emission components in a source, and to characterize their properties. We detect Faraday complex behavior in almost every source in our sample. Several sources exhibit particularly remarkable polarization behavior. By comparing our new and archival data, we have identified temporal variability in the broadband integrated polarization spectra of some sources. In a number of cases, the characteristics of the polarized emission components, including the range of Faraday depths over which they emit, their temporal variability, spectral index, and the linear extent of the source, allow us to argue that the spectropolarimetric data encode information about the magneto-ionic environment of active galactic nuclei themselves. Furthermore, the data place direct constraints on the geometry and magneto-ionic structure of this material. We discuss the consequences of restricted frequency bands on the detection and interpretation of polarization structures, and the implications for upcoming spectropolarimetric surveys.

  20. Rotationally inelastic scattering of NO(A{sup 2}Σ{sup +}) + Ar: Differential cross sections and rotational angular momentum polarization

    SciTech Connect

    Sharples, Thomas R.; Luxford, Thomas F. M.; McKendrick, Kenneth G.; Costen, Matthew L.; Townsend, Dave

    2015-11-28

    We present the implementation of a new crossed-molecular beam, velocity-map ion-imaging apparatus, optimized for collisions of electronically excited molecules. We have applied this apparatus to rotational energy transfer in NO(A{sup 2}Σ{sup +}, v = 0, N = 0, j = 0.5) + Ar collisions, at an average energy of 525 cm{sup −1}. We report differential cross sections for scattering into NO(A{sup 2}Σ{sup +}, v = 0, N′ = 3, 5, 6, 7, 8, and 9), together with quantum scattering calculations of the differential cross sections and angle dependent rotational alignment. The differential cross sections show dramatic forward scattered peaks, together with oscillatory behavior at larger scattering angles, while the rotational alignment moments are also found to oscillate as a function of scattering angle. In general, the quantum scattering calculations are found to agree well with experiment, reproducing the forward scattering and oscillatory behavior at larger scattering angles. Analysis of the quantum scattering calculations as a function of total rotational angular momentum indicates that the forward scattering peak originates from the attractive minimum in the potential energy surface at the N-end of the NO. Deviations in the quantum scattering predictions from the experimental results, for scattering at angles greater than 10°, are observed to be more significant for scattering to odd final N′. We suggest that this represents inaccuracies in the potential energy surface, and in particular in its representation of the difference between the N- and O-ends of the molecule, as given by the odd-order Legendre moments of the surface.

  1. Information Leakage in Efficient Bidirectional Quantum Secure Direct Communication with Single Photons in Both Polarization and Spatial-Mode Degrees of Freedom

    NASA Astrophysics Data System (ADS)

    Zhang, Cai; Situ, Haozhen

    2016-11-01

    Recently, Wang et al. presented a bidirectional quantum secure direct communication protocol with single photons in both polarization and spatial-mode degrees of freedom (Int. J. Theor. Phys. 54(10): 3443-3453, 2015). They claimed that their protocol was efficient and removed the drawback of information leakage. However, we found that the information leakage actually exists in their protocol. In this paper, we analyze Wang et al.'s protocol in detail. In addition, we propose an improvement to avoid the information leakage. The security of the improved protocol has also been discussed.

  2. Dynamic Multi-Party Quantum Private Comparison Protocol with Single Photons in Both Polarization and Spatial-Mode Degrees of Freedom

    NASA Astrophysics Data System (ADS)

    Liu, Wen; Wang, Yong-Bin

    2016-12-01

    A dynamic quantum private comparison protocol based on the single photons in both polarization and spatial-mode degrees of freedom is proposed. In this protocol, any two parties of n( n ≥ 4) parties can compare their private information with the help of others n - 2 parties. And any party can join in the protocol to take part in the comparison of n parties. Correctness analysis shows that the proposed protocol can be used to compare their information correctly. Security analysis shows that the proposed protocol can resist the general active attacks from an outside eavesdropper. And it can overcomes the problem of information leakage.

  3. Reducing the influence of direct reflection on return signal detection in a 3D imaging lidar system by rotating the polarizing beam splitter.

    PubMed

    Wang, Chunhui; Lee, Xiaobao; Cui, Tianxiang; Qu, Yang; Li, Yunxi; Li, Hailong; Wang, Qi

    2016-03-01

    The direction rule of the laser beam traveling through a deflected polarizing beam splitter (PBS) cube is derived. It reveals that, due to the influence of end-face reflection of the PBS at the detector side, the emergent beam coming from the incident beam parallels the direction of the original case without rotation, with only a very small translation interval between them. The formula of the translation interval is also given. Meanwhile, the emergent beam from the return signal at the detector side deflects at an angle twice that of the PBS rotation angle. The correctness has been verified by an experiment. The intensity transmittance of the emergent beam when propagating in the PBS is changes very little if the rotation angle is less than 35 deg. In a 3D imaging lidar system, by rotating the PBS cube by an angle, the direction of the return signal optical axis is separated from that of the origin, which can decrease or eliminate the influence of direct reflection caused by the prism end face on target return signal detection. This has been checked by experiment.

  4. Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids.

    PubMed

    Corzilius, Björn

    2016-10-21

    Dynamic nuclear polarization (DNP) is a powerful method to enhance sensitivity especially of solid-state magic-angle spinning (MAS) NMR by up to several orders of magnitude. The increased interest both from a practical as well as theoretical viewpoint has spawned several fields of active research such as the development of new polarizing agents with improved or unique properties and description of the underlying DNP mechanisms such as solid effect (SE) and cross effect (CE). Even though a novel class of unique polarizing agents based on high-spin metal ions such as Gd(iii) and Mn(ii) has already been utilized for MAS DNP a theoretical description of the involved DNP mechanism is still incomplete. Here, we review several aspects of DNP-relevant electron-paramagnetic resonance (EPR) properties of the general class of these half-integer high-spin metal ions with isotropic Zeeman interaction but significant zero-field splitting (ZFS). While the SE can be relatively easily described similar to that of a S = 1/2 system and is assumed to be effective only for polarizing agents featuring a narrow central EPR transitions (i.e., mS = -1/2 → +1/2) with respect to the nuclear Larmor frequency, the CE between two high-spin ions requires a more detailed theoretical investigation due to a multitude of possible transitions and matching conditions. This is especially interesting in light of recent understanding of CE being induced by MAS-driven level anti-crossings (LACs) between dipolar-coupled electron spins. We discuss the requirements of such CE-enabling LACs to occur due to anisotropy of ZFS, the expected adiabaticity, and the resulting possibilities of high-spin metal ion pairs to act as polarizing agents for DNP. This theoretical description serves as a framework for a detailed experimental study published directly following this work.

  5. Polarization measurement through combination polarizers

    NASA Astrophysics Data System (ADS)

    Bai, Yunfeng; Li, Linjun; He, Zhelong; Liu, Yanwei; Ma, Cheng; Shi, Guang; Liu, Lu

    2014-02-01

    Polarization measurement approaches only using polarizer and grating is present. The combination polarizers consists of two polarizers: one is γ degree with the X axis; the other is along the Y axis. Binary grating is covered by the combination polarizers, and based on Fraunhofer diffraction, the diffraction intensity formula is deduced. The polarization state of incident light can be gotten by fitting the diffraction pattern with the deduced formula. Compared with the traditional polarization measurement method, this measurement only uses polarizer and grating, therefore, it can be applied to measure a wide wavelength range without replacing device in theory.

  6. Development of a Precise Polarization Modulator for UV Spectropolarimetry

    NASA Astrophysics Data System (ADS)

    Ishikawa, S.; Shimizu, T.; Kano, R.; Bando, T.; Ishikawa, R.; Giono, G.; Tsuneta, S.; Nakayama, S.; Tajima, T.

    2015-10-01

    We developed a polarization modulation unit (PMU) to rotate a waveplate continuously in order to observe solar magnetic fields by spectropolarimetry. The non-uniformity of the PMU rotation may cause errors in the measurement of the degree of linear polarization (scale error) and its angle (crosstalk between Stokes-Q and -U), although it does not cause an artificial linear polarization signal (spurious polarization). We rotated a waveplate with the PMU to obtain a polarization modulation curve and estimated the scale error and crosstalk caused by the rotation non-uniformity. The estimated scale error and crosstalk were {<} 0.01 % for both. This PMU will be used as a waveplate motor for the Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP) rocket experiment. We confirm that the PMU performs and functions sufficiently well for CLASP.

  7. Diffraction image formation in optical systems with polarization aberrations. II - Amplitude response matrices for rotationally symmetric systems

    NASA Technical Reports Server (NTRS)

    Mcguire, James P., Jr.; Chipman, Russell A.

    1991-01-01

    In the previous paper in this series (McGuire and Chipman, 1990), a formulation was established for the calculation and analysis of diffraction image quality in polarizing optical systems illuminated with partially polarized, partially coherent light. In the present paper, the effect of second- and fourth-order polarization aberrations on the image plane diffraction patterns are examined. The amplitude response matrix is calculated for optical systems with small numerical apertures. Numerical results are presented for optical systems with circular apertures for three of the aberration types.

  8. Generation of FCC-compliant and background-free millimeter-wave ultrawideband signal based on nonlinear polarization rotation in a highly nonlinear fiber.

    PubMed

    Li, Wei; Wang, Wen Ting; Sun, Wen Hui; Liu, Jian Guo; Zhu, Ning Hua

    2014-05-05

    We propose a novel approach to generating millimeter-wave (MMW) ultrawideband (UWB) signal based on nonlinear polarization rotation (NPR) in a highly nonlinear fiber (HNLF). The MMW UWB signal is background-free by eliminating the baseband frequency components using an optical filter. The proposed scheme is theoretically analyzed and experimentally verified. The generated MMW UWB signal centered at 25.5 GHz has a 10-dB bandwidth of 7 GHz from 22 to 29 GHz, which fully satisfies the spectral mask regulated by the Federal Communications Commission (FCC).

  9. A spin-optoelectronic detector for the simultaneous measurement of the degree of circular polarization and intensity of a laser beam

    SciTech Connect

    Khamari, Shailesh K. Porwal, S.; Oak, S. M.; Sharma, T. K.

    2015-08-17

    Simultaneous measurement of the degree of circular polarization and intensity of a laser beam is essential in advanced photonic applications. However, it is not feasible with conventional helicity dependent detectors where an additional detector is needed to measure the intensity. Here, we report the development of a spin-optoelectronic detector that can measure the degree of circular polarization and the intensity of a laser beam simultaneously. The principle of operation of device is based on the two independent fundamental phenomena occurring in Au/InP hybrid structures, namely, Inverse Spin Hall Effect (ISHE) and the Photo-Voltaic (PV) Effect. The magnitude of ISHE and PV signals is simultaneously measured across the two pairs of contacts that are made on the top of device. No cross talk is observed between the two detectors made on the same chip. The all-electronic compact device is fast, operates at room temperature, and opens up the possibility of many applications in an integrated optoelectronic platform.

  10. Characteristics of electric-field-induced polarization rotation in <001>-poled Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals close to the morphotropic phase boundary

    NASA Astrophysics Data System (ADS)

    Peräntie, J.; Hagberg, J.; Uusimäki, A.; Tian, J.; Han, P.

    2012-08-01

    The special characteristics of polarization rotation and accompanying electric-field-induced ferroelectric-ferroelectric phase transitions in <001>-poled Pb(Mg1/3Nb2/3)1-xTixO3 (x = 27.4, 28.8, and 30.7 mol. %) single crystals close to the morphotropic phase boundary region were studied by means of dielectric and thermal measurements as a function of a unipolar electric field at various temperatures. Discontinuous first-order-type phase transition behavior was evidenced by distinct and sharp changes in polarization and thermal responses with accompanying hysteresis as a function of the electric field. All compositions of crystals showed either one or two reversible discontinuities along the polarization rotation paths, which can be understood by electric-field-induced phase transition sequences to the tetragonal phase through different monoclinic phases previously observed along the polarization rotation path. Together with increasing polarization, a field-induced reversible decrease in temperature was observed with increasing electric field, indicating increased dipolar entropy during the electric-field-induced phase transitions. Constructed electric field-temperature phase diagrams based on the polarization and thermal data suggest that the complex polarization rotation path extends to a wider composition range than previously observed. The measured thermal response showed that a transition from the monoclinic to the tetragonal phase produced a greater thermal change in comparison with a transition within two monoclinic phases.

  11. Slow rotational mobilities of antibodies and lipids associated with substrate-supported phospholipid monolayers as measured by polarized fluorescence photobleaching recovery.

    PubMed Central

    Timbs, M M; Thompson, N L

    1990-01-01

    Polarized fluorescence photobleaching recovery has been used to monitor slow rotational motions of a fluorescently-labeled anti-dinitrophenyl mouse IgGl monoclonal antibody (ANO2) specifically bound to substrate-supported monolayers composed of a mixture of distearoylphosphatidylcholine (DSPC) and dinitrophenyldioleoylphosphatidylethanolamine (DNP-DOPE). ANO2 antibodies were labeled with a new bifunctional carbocyanine fluorophore that has two amino-reactive groups; steady-state fluorescence anisotropy data confirmed the expected result that the ANO2-conjugated bifunctional probe had less independent flexibility than ANO2-conjugated unifunctional fluorescence labels. Rotational mobilities were also measured for the fluorescent lipid 1,1'-dioctadecyl 3,3,3',3'-tetramethylindocarbocyanine (dil) in DSPC and in mixed DSPC/DNP-DOPE monolayers in the presence and absence of unlabeled ANO2 antibodies. The apparent rotational correlation time and fractional mobility of ANO2 on supported monolayers were approximately 70 and approximately 0.3 s, respectively. These measured parameters of rotational mobility did not depend on the ANO2 surface density or on kinetic factors, but addition of unlabeled polyclonal anti-(mouse IgG) antibodies significantly decreased the apparent mobile fraction. The measured fluorescence recovery curves for dil were consistent with two fluorophore populations with rotational correlation times of approximately 4 and approximately 100 s and a population of immobile fluorescent lipid. No difference in fluorescence recovery and decay curves was measured for dil in DSPC monolayers, DSPC/DNP-DOPE monolayers, and DSPC/DNP-DOPE monolayers treated with unlabeled ANO2 antibodies. PMID:2207246

  12. Supercontinuum generation based on all-normal-dispersion Yb-doped fiber laser mode-locked by nonlinear polarization rotation: Influence of seed's output port

    NASA Astrophysics Data System (ADS)

    Xiao, Xiaosheng; Hua, Yi

    2016-10-01

    All-normal-dispersion (ANDi) mode-locked Yb-doped fiber laser is a promising seed source for supercontinuum (SC) generation, due to its compact structure and broadband output. The influences of output ports of the ANDi laser mode-locked by nonlinear polarization rotation (NPR), on the generated SC are investigated. Two output ports of ANDi laser are considered, one of which is the conventional nonlinear polarization rotation (NPR) port and the other is extracted from a coupler after the NPR port. It is found that, the SC originated from the coupler port is much broader than that from the NPR port, which is validated by lots of experiments with different output parameters. Furthermore, the conclusion is verified and generalized to general ANDi lasers by numerical simulations, because the output pulse from coupler port could be cleaner than that from NPR port. Besides, there are no significant differences in the phase coherence and temporal stability between the SCs generated from both ports. Hence for the SC generation based on ANDi laser, it is preferred to use the pulse of coupler port (i.e. pulse after NPR port) serving as the seed source.

  13. Polarization and intensity correlations in stochastic electromagnetic beams upon interaction with devices of polarization optics

    NASA Astrophysics Data System (ADS)

    Jacks, H. C.; Korotkova, O.

    2011-05-01

    Based on the recently formulated unified theory of coherence and polarization of light, we explore the behavior of the intensity-intensity correlations and the auxiliary quantity called the degree of cross-polarization in stochastic electromagnetic beams upon their passage through the devices of polarization optics. In particular, the effects of deterministic devices (such as polarizers, absorbers, compensators, and rotators) as well as of random devices (such as spatial light modulators) on passing beams are investigated. Our results may find applications in polarimetric communications, imaging and sensing.

  14. Dietary conjugated linoleic acid isomers change the unsaturation degree of hepatic fatty acids in neutral lipids but not in polar lipids.

    PubMed

    Martins, Susana V; Lopes, Paula A; Alves, Susana P; Alfaia, Cristina M; Nascimento, Mafalda; Castro, Matilde F; Bessa, Rui J B; Prates, José António Mestre

    2011-03-01

    The fatty acid composition of phospholipids plays a key role in the structural and functional properties of cellular membrane. In this study, it was hypothesized that conjugated linoleic acid (CLA) isomer supplementation changes the unsaturation degree of the fatty acids of neutral lipids (NLs) but not those of polar lipids (PLs). Thus, the main goal was to determine the pattern of fatty acid incorporation into hepatic PL and NL fractions. Wistar male rats were fed cis(c)9,trans(t)11 and t10,c12 CLA isomers, separately or as a mixture. Whereas the t10,c12 isomer incorporation in the PL fraction was similar when supplemented either individually or as a mixture, the c9,t11 isomer reached the highest values of incorporation when combined with t10,c12. In the PL fraction, the linoleic acid did not change; but the arachidonic acid decreased, especially in the rats given the mixture. Also in this fraction, the t10,c12 isomer, either separately or as a mixture, decreased the amounts of n-6 long-chain (LC) polyunsaturated fatty acids (PUFA) and increased those of the n-3 LC PUFA relative to the control. In the NL fraction, linoleic acid incorporation followed the diet composition, whereas the arachidonic acid was similar among treatments. Facing CLA isomer supplementation, the present study suggests that fatty acid incorporation into phospholipids, through the balance between n-6 and n-3 LC PUFA, is dependent upon maintaining the unsaturation degree of cellular membrane.

  15. The Rotational and Gravitational Effect of Earthquakes

    NASA Technical Reports Server (NTRS)

    Gross, Richard

    2000-01-01

    The static displacement field generated by an earthquake has the effect of rearranging the Earth's mass distribution and will consequently cause the Earth's rotation and gravitational field to change. Although the coseismic effect of earthquakes on the Earth's rotation and gravitational field have been modeled in the past, no unambiguous observations of this effect have yet been made. However, the Gravity Recovery And Climate Experiment (GRACE) satellite, which is scheduled to be launched in 2001, will measure time variations of the Earth's gravitational field to high degree and order with unprecedented accuracy. In this presentation, the modeled coseismic effect of earthquakes upon the Earth's gravitational field to degree and order 100 will be computed and compared to the expected accuracy of the GRACE measurements. In addition, the modeled second degree changes, corresponding to changes in the Earth's rotation, will be compared to length-of-day and polar motion excitation observations.

  16. Numerical calculation of the ion polarization in MEIC

    SciTech Connect

    Derbenev, Yaroslav; Lin, Fanglei; Morozov, Vasiliy; Zhang, Yuhong; Kondratenko, Anatoliy M.; Kondratenko, M. A.; Filatov, Yury N.

    2015-09-01

    Ion polarization in the Medium-energy Electron-Ion Collider (MEIC) is controlled by means of universal 3D spin rotators designed on the basis of "weak" solenoids. We use numerical calculations to demonstrate that the 3D rotators have negligible effect on the orbital properties of the ring. We present calculations of the polarization dynamics along the collider's orbit for both longitudinal and transverse polarization directions at a beam interaction point. We calculate the degree of depolarization due to the longitudinal and transverse beam emittances in case when the zero-integer spin resonance is compensated.

  17. Novel ultra-broadband polarization splitter-rotator based on mode-evolution tapers and a mode-sorting asymmetric Y-junction.

    PubMed

    Wang, Jing; Niu, Ben; Sheng, Zhen; Wu, Aimin; Li, Wei; Wang, Xi; Zou, Shichang; Qi, Minghao; Gan, Fuwan

    2014-06-02

    A novel silicon-on-insulator (SOI) polarization splitter-rotator is proposed based on mode-evolution tapers and a mode-sorting asymmetric Y-junction. The tapers are designed to adiabatically convert the input TM0 mode into the TE1 mode, which will evolve into the TE0 mode in the wide output arm while the input TE0 mode excites the TE0 mode in the narrow arm. The numerical simulation results show that the mode conversion efficiency increases with the lengths of the tapers and the Y-junction for the output waveguide widths in a large range. This proposed device has < 0.4 dB insertion loss with > 12 dB extinction ratio in an ultra-broad wavelength range from 1350 nm to 1750 nm. With such a broad operating bandwidth, this device offers potential applications for polarization diversity operating across every communication bands. Fabrication tolerance analysis is also performed in terms of the device width variation, the slab height variation and the variation of the upper-cladding refractive index.

  18. Behavioral analysis of polarization vision in tethered flying locusts.

    PubMed

    Mappes, M; Homberg, U

    2004-01-01

    For spatial navigation many insects rely on compass information derived from the polarization pattern of the sky. We demonstrate that tethered flying desert locusts (Schistocerca gregaria) show e-vector-dependent yaw-torque responses to polarized light presented from above. A slowly rotating polarizer (5.3 degrees s(-1)) induced periodic changes in yaw torque corresponding to the 180 degrees periodicity of the stimulus. Control experiments with a rotating diffuser, a weak intensity pattern, and a stationary polarizer showed that the response is not induced by intensity gradients in the stimulus. Polarotaxis was abolished after painting the dorsal rim areas of the compound eyes black, but remained unchanged after painting the eyes except the dorsal rim areas. During rotation of the polarizer, two e-vectors (preferred and avoided e-vector) induced no turning responses: they were broadly distributed from 0 to 180 degrees but, for a given animal, were perpendicular to each other. The data demonstrate polarization vision in the desert locust, as shown previously for bees, flies, crickets, and ants. Polarized light is perceived through the dorsal rim area of the compound eye, suggesting that polarization vision plays a role in compass navigation of the locust.

  19. Rotational spin Hall effect in a uniaxial crystal

    NASA Astrophysics Data System (ADS)

    Fadeyeva, Tatyana A.; Alexeyev, Constantine N.; Rubass, Alexander F.; Ivanov, Maksym O.; Zinov'ev, Alexey O.; Konovalenko, Victor L.; Volyar, Alexander V.

    2012-04-01

    We have considered the propagation process of the phase-matched array of singular beams through a uniaxial crystal. We have revealed that local beams in the array are rotated when propagating. However the right and left rotations are unequal. There are at least two processes responsible for the array rotation: the interference of local beams and the spatial depolarization. The interference takes place in the vortex birth and annihilation events forming the symmetrical part of the rotation. The depolarization process contributes to the asymmetry of the rotation that is called the rotational spin Hall effect. It can be brought to light due to the difference between the envelopes of the dependences of the angular displacement on the inclination angle of the local beams or the crystal length reaching the value some angular degree. The direction of the additional array rotation is exclusively defined by the handedness of the circular polarization in the initial beam array.

  20. Rotational spin Hall effect in a uniaxial crystal.

    PubMed

    Fadeyeva, Tatyana A; Alexeyev, Constantine N; Rubass, Alexander F; Ivanov, Maksym O; Zinov'ev, Alexey O; Konovalenko, Victor L; Volyar, Alexander V

    2012-04-01

    We have considered the propagation process of the phase-matched array of singular beams through a uniaxial crystal. We have revealed that local beams in the array are rotated when propagating. However the right and left rotations are unequal. There are at least two processes responsible for the array rotation: the interference of local beams and the spatial depolarization. The interference takes place in the vortex birth and annihilation events forming the symmetrical part of the rotation. The depolarization process contributes to the asymmetry of the rotation that is called the rotational spin Hall effect. It can be brought to light due to the difference between the envelopes of the dependences of the angular displacement on the inclination angle of the local beams or the crystal length reaching the value of some angular degree. The direction of the additional array rotation is exclusively defined by the handedness of the circular polarization in the initial beam array.

  1. Correlation of the Miocene Peach Spring Tuff with the geomagnetic polarity time scale and new constraints on tectonic rotations in the Mojave Desert, California

    USGS Publications Warehouse

    Hillhouse, John W.; Miller, David M.; Turrin, Brent D.

    2010-01-01

    We report new paleomagnetic results and 40Ar/39Ar ages from the Peach Spring Tuff (PST), a key marker bed that occurs in the desert region between Barstow, California, and Peach Springs, Arizona. The 40Ar/39Ar ages were determined using individual hand-picked sanidine crystals from ash-flow specimens used in previous paleomagnetic studies at eight sites correlated by mineralogy, stratigraphic position, and magnetic inclination. Site-mean ages, which range from 18.43 Ma to 18.78 Ma with analytical precision (1 s.d.) typically 0.04 Ma, were obtained from areas near Fort Rock, AZ; McCullough Mts, NV; Cima Dome, Parker Dam, Danby, Ludlow, Kane Wash, and Stoddard Wash, CA. The regional mean age determination is 18.71 ± 0.13 Ma, after the data were selected for sanidine crystals that yielded greater than 90% radiogenic argon (N = 40). This age determination is compatible with previous 40Ar/39Ar dating of the PST after taking various neutron-flux monitor calibrations into account. We report paleomagnetic results from eight new sites that bear on reconstructions of the Miocene basins associated with the Hector Formation, Barstow Formation, and similar fine-grained sedimentary deposits in the Barstow region. Key findings of the new paleomagnetic study pertain to age control of the Hector Formation and clockwise rotation of the Northeast Mojave Domain. Our study of a rhyolitic ash flow at Baxter Wash, northern Cady Mountains, confirms the correlation of the PST within the Hector Formation and prompts reinterpretation of the previously determined magnetostratigraphy. Our model correlates the PST to the normal-polarity zone just below the C6–C5E boundary (18.748 Ma) of the astronomically tuned Geomagnetic Polarity Time Scale. After emplacement of the Peach Spring Tuff at Alvord Mountain and the Cady Mountains, the southern part of the Northeast Mojave Domain (between Cady and Coyote Lake faults) underwent clockwise rotation of 30°–55°. Clockwise rotations increase with

  2. Correlation of the Miocene Peach Spring Tuff with the geomagnetic polarity time scale and new constraints on tectonic rotations in the Mojave Desert, California

    USGS Publications Warehouse

    Hillhouse, John W.; Miller, David M.; Turrin, Brent D.; Reynolds, Robert E.; Miller, David M.

    2010-01-01

    We report new paleomagnetic results and 40Ar/39Ar ages from the Peach Spring Tuff (PST), a key marker bed that occurs in the desert region between Barstow, California, and Peach Springs, Arizona. The 40Ar/39Ar ages were determined using individual hand-picked sanidine crystals from ash-flow specimens used in previous paleomagnetic studies at eight sites correlated by mineralogy, stratigraphic position, and magnetic inclination. Site-mean ages, which range from 18.43 Ma to 18.78 Ma with analytical precision (1 s.d.) typically 0.04 Ma, were obtained from areas near Fort Rock, AZ; McCullough Mts, NV; Cima Dome, Parker Dam, Danby, Ludlow, Kane Walsh, and Stoddard Wash, CA. The regional mean age determination is 18.71 ± 0.13 Ma, after the data were selected for sanidine crystals that yielded greater than 90% radiogenic argon (N=40). This age determination is compatible with previous 40Ar/39Ar dating of the PST after taking various neutron-flux monitor calibrations into account. We report paleomagnetic results from eight new sites that bear on reconstructions of the Miocene basins associated with the Hector Formation, Barstow Formation, and similar fine-grained sedimentary deposits in the Barstow region. Key findings of the new paleomagnetic study pertain to age control of the Hector Formation and clockwise rotation of the Northeast Mojave Domain. Our study of a rhyolitic ash flow at Baxter Wash, northern Cady Mountains, confirms the correlation of the PST within the Hector Formation and prompts reinterpretation of the previously determined magnetostratigraphy. Our model correlates the PST to the normal-polarity zone just below the C6-C5E boundary (18.748 Ma) of the astronomically tuned Geomagnetic Polarity Time Scale. After emplacement of the Peach Spring Tuff at Alvord Mountain and the Cady Mountains, the southern part of the Northeast Mojave Domain (between Cady and Coyote Lake faults) underwent clockwise rotation of 30°–55°. Clockwise rotations increase with

  3. Blazed vector grating liquid crystal cells with photocrosslinkable polymeric alignment films fabricated by one-step polarizer rotation method

    NASA Astrophysics Data System (ADS)

    Kawai, Kotaro; Kuzuwata, Mitsuru; Sasaki, Tomoyuki; Noda, Kohei; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2014-12-01

    Blazed vector grating liquid crystal (LC) cells, in which the directors of low-molar-mass LCs are antisymmetrically distributed, were fabricated by one-step exposure of an empty glass cell inner-coated with a photocrosslinkable polymer LC (PCLC) to UV light. By adopting a LC cell structure, twisted nematic (TN) and homogeneous (HOMO) alignments were obtained in the blazed vector grating LC cells. Moreover, the diffraction efficiency of the blazed vector grating LC cells was greatly improved by increasing the thickness of the device in comparison with that of a blazed vector grating with a thin film structure obtained in our previous study. In addition, the diffraction efficiency and polarization states of ±1st-order diffracted beams from the resultant blazed vector grating LC cells were controlled by designing a blazed pattern in the alignment films, and these diffraction properties were well explained on the basis of Jones calculus and the elastic continuum theory of nematic LCs.

  4. Visualizing molecular unidirectional rotation

    NASA Astrophysics Data System (ADS)

    Lin, Kang; Song, Qiying; Gong, Xiaochun; Ji, Qinying; Pan, Haifeng; Ding, Jingxin; Zeng, Heping; Wu, Jian

    2015-07-01

    We directly visualize the spatiotemporal evolution of a unidirectional rotating molecular rotational wave packet. Excited by two time-delayed polarization-skewed ultrashort laser pulses, the cigar- or disk-shaped rotational wave packet is impulsively kicked to unidirectionally rotate as a quantum rotor which afterwards disperses and exhibits field-free revivals. The rich dynamics can be coherently controlled by varying the timing or polarization of the excitation laser pulses. The numerical simulations very well reproduce the experimental observations and intuitively revivify the thoroughgoing evolution of the molecular rotational wave packet of unidirectional spin.

  5. Exploring Polarization Rotation Phase Instabilities in Super-Tetragonal BiFeO3 Epitaxial Thin Films and Their Technological Implications

    DOE PAGES

    Cao, Ye; Yang, Mr. Shuzhen; Jesse, Stephen; ...

    2016-01-01

    Many functional properties of ferroelectrics are underlain by structural instabilities, which render these materials very susceptible to small alternating applied fields (electric, mechanical, etc.) through certain constitutive coupling relations, e.g., elastic compliance and piezoelectric response, and often such instabilities can be shifted by static applied fields thus meaning tunable dynamic properties. Structural instabilities are naturally accommodated on the brink of morphotropic phase boundaries (MPB s) where multiple phases of small energy difference coexist in different crystallographic forms. Canonical MPB is realized through compositional mixture, as is typically exemplified by Pb(Zr1-xTix)O3 solid solutions and relaxor ferroelectrics of (1-x)PbMg1/3Nb2/3O3-xPbTiO3. More recently, amore » strain-driven MPB has been discovered in BiFeO3 (BFO) thin films epitaxially grown on LaAlO3 (LAO) crystal substrates (which imposes about -4.5% in-plane strains). Such an MPB is in between a rhombohedral (R) phase that bulk BFO exhibits and a so-called super-tetragonal (T) phase, which name hints at its giant lattice axial ratio (c/a ~ 1.23) and accordingly high electric polarization (~1.5 C m-2). The discovery of an MPB in BFO has revealed another facet of this multiferroic system, further adding opportunities to its many exotic functionalities such as domain wall conduction, magnetoelectric and photovoltaic effects As with other MPB s, large electric-field induced strains as well as more underlying lattice softening effects are observed near this MPB promising piezoelectric-based applications. In addition, T-phase BFO itself shows distinct properties, e.g., electronic band gap and optical absorption, from the R-phase and the resultant switching effects between them may also be exploitable. However, unlike conventional ferroelectric oxides where the phases across an MPB usually have subtle difference caused by rotations of an ion off-centering polarization, the BFO

  6. Exploring Polarization Rotation Phase Instabilities in Super-Tetragonal BiFeO3 Epitaxial Thin Films and Their Technological Implications

    SciTech Connect

    Cao, Ye; Yang, Mr. Shuzhen; Jesse, Stephen; Kravchenko, Ivan I; Yu, Pu; Chen, L. Q.; Kalinin, Sergei V; Wisinger, Nina Balke; Li, Qian

    2016-01-01

    Many functional properties of ferroelectrics are underlain by structural instabilities, which render these materials very susceptible to small alternating applied fields (electric, mechanical, etc.) through certain constitutive coupling relations, e.g., elastic compliance and piezoelectric response, and often such instabilities can be shifted by static applied fields thus meaning tunable dynamic properties. Structural instabilities are naturally accommodated on the brink of morphotropic phase boundaries (MPB s) where multiple phases of small energy difference coexist in different crystallographic forms. Canonical MPB is realized through compositional mixture, as is typically exemplified by Pb(Zr1-xTix)O3 solid solutions and relaxor ferroelectrics of (1-x)PbMg1/3Nb2/3O3-xPbTiO3. More recently, a strain-driven MPB has been discovered in BiFeO3 (BFO) thin films epitaxially grown on LaAlO3 (LAO) crystal substrates (which imposes about -4.5% in-plane strains). Such an MPB is in between a rhombohedral (R) phase that bulk BFO exhibits and a so-called super-tetragonal (T) phase, which name hints at its giant lattice axial ratio (c/a ~ 1.23) and accordingly high electric polarization (~1.5 C m-2). The discovery of an MPB in BFO has revealed another facet of this multiferroic system, further adding opportunities to its many exotic functionalities such as domain wall conduction, magnetoelectric and photovoltaic effects As with other MPB s, large electric-field induced strains as well as more underlying lattice softening effects are observed near this MPB promising piezoelectric-based applications. In addition, T-phase BFO itself shows distinct properties, e.g., electronic band gap and optical absorption, from the R-phase and the resultant switching effects between them may also be exploitable. However, unlike conventional ferroelectric oxides where the phases across an MPB usually have subtle difference caused by rotations of an ion off-centering polarization, the BFO system

  7. New mechanism of radiation polarization in type 1 Seyfert active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Silant'ev, N. A.; Gnedin, Yu. N.; Piotrovich, M. Yu.; Natsvlishvili, T. M.; Buliga, S. D.

    2016-10-01

    In most type 1 Seyfert active galactic nuclei (AGNs), the optical linear continuum polarization degree is usually small (less than 1 per cent) and the polarization position angle is nearly parallel to the AGN radio axis. However, there are many type 1 AGNs with unexplained intermediate values for both positional angles and polarization degrees. Our explanation of polarization degree and positional angle of type 1 Seyfert AGNs focuses on the reflection of non-polarized radiation from sub-parsec jets in optically thick accretion discs. The presence of a magnetic field surrounding the scattering media will induce Faraday rotation of the polarization plane, which may explain the intermediate values of positional angles if there is a magnetic field component normal to the accretion disc. The Faraday rotation depolarization effect in the disc diminishes the competition between polarization of the reflected radiation with the parallel component of polarization and the perpendicular polarization from internal radiation of the disc (the Milne problem) in favour of polarization of the reflected radiation. This effect allows us to explain the observed polarization of type 1 Seyfert AGN radiation even though the jet optical luminosity is much lower than the luminosity of the disc. We present the calculation of polarization degrees for a number of type 1 Seyfert AGNs.

  8. Polarization Aberrations

    NASA Technical Reports Server (NTRS)

    Mcguire, James P., Jr.; Chipman, Russell A.

    1990-01-01

    The analysis of the polarization characteristics displayed by optical systems can be divided into two categories: geometrical and physical. Geometrical analysis calculates the change in polarization of a wavefront between pupils in an optical instrument. Physical analysis propagates the polarized fields wherever the geometrical analysis is not valid, i.e., near the edges of stops, near images, in anisotropic media, etc. Polarization aberration theory provides a starting point for geometrical design and facilitates subsequent optimization. The polarization aberrations described arise from differences in the transmitted (or reflected) amplitudes and phases at interfaces. The polarization aberration matrix (PAM) is calculated for isotropic rotationally symmetric systems through fourth order and includes the interface phase, amplitude, linear diattenuation, and linear retardance aberrations. The exponential form of Jones matrices used are discussed. The PAM in Jones matrix is introduced. The exact calculation of polarization aberrations through polarization ray tracing is described. The report is divided into three sections: I. Rotationally Symmetric Optical Systems; II. Tilted and Decentered Optical Systems; and Polarization Analysis of LIDARs.

  9. Rotational Electrophoresis of Striped Metallic Microrods

    SciTech Connect

    Rose, K A; Meier, J A; Dougherty, G M; Santiago, J G

    2005-11-28

    Analytical models are developed for the translation and rotation of metallic rods in a uniform electric field. The limits of thin and thick electric double layers are considered. These models include the effect of stripes of different metals along the length of the particle. Modeling results are compared to experimental measurements for metallic rods. Experiments demonstrate the increased alignment of particles with increasing field strength and the increase in degree of alignment of thin versus thick electric double layers. The metal rods polarize in the applied field and align parallel to its direction due to torques on the polarized charge. The torque due to polarization has a second order dependence on the electric field strength. The particles are also shown to have an additional alignment torque component due to non-uniform densities along their length. The orientation distributions of dilute suspensions of particles are also shown to agree well with results predicted by a rotational convective-diffusion equation.

  10. A revolutionary rotatable electron energy analyzer for advanced high-resolution spin-polarized photoemission studies. Final Report

    SciTech Connect

    Waddill, G. D.; Willis, R. F.

    1999-10-01

    This report details the construction and testing of a unique analyzer for spin-polarized photoemission studies of magnetic materials. This report details the progress of this project for the period from 9/1/96 through 8/31/99. Progress can be divided into two distinct areas. These are the fabrication, construction, and initial testing of the instrumentation, and the concurrent program of preliminary investigations into materials and experiments appropriate for future studies using the instrumentation developed. The analyzer complete with special input electron optics and Mott detector has been assembled in a special design UHV chamber equipped with all the capabilities needed to perform the described programs of research. These include a sophisticated five motorized axis sample manipulator with low and high temperature capability and rapid temperature cycling (acquired in collaboration with Dr. J.G. Tobin of LLNL), vacuum leak detection and gauging, in situ thin film growth instrumentation, and sample cleaning and magnetizing capabilities, The initial testing of the analyzer has been completed with successful data acquisition using both the multichannel detector mode, and spin-dependent using the Mott detector channeltrons. The data collected using the Mott detector were not truly spin dependent (see below), but demonstrate the operation of the lens and detector design. Acquisition of truly spin-dependent data await use of the EPU. Preliminary indications suggest that the analyzer performs at or above the original design parameters. In the second area of progress, we have conducted a number of preliminary studies toward the ends of identifying appropriate initial systems for investigation, and to further explore new experiments that the new instrumentation will help to pioneer. More detailed descriptions of all of these advances are given.

  11. Anisotropic strain relaxation and the resulting degree of polarization by one- and two-step growth in nonpolar a-plane GaN grown on r-sapphire substrate

    SciTech Connect

    Feng, Shih-Wei Chen, Yu-Yu; Lai, Chih-Ming; Tu, Li-Wei; Han, Jung

    2013-12-21

    Anisotropic strain relaxation and the resulting degree of polarization of the electronic transition in nonpolar a-plane GaN using one- and two-step growth are studied. By using two-step growth, a slower coalescence and a longer roughening-recovery process lead to larger anisotropic strain relaxation, a less striated surface, and lower densities of basal stacking fault (BSF) and prismatic stacking fault (PSF). It is suggested that anisotropic in-plane strains, surface striation, and BSF and PSF densities in nonpolar a-GaN are consequences of the rate of coalescence, the period of roughening-recovery process, and the degree of anisotropic strain relaxation. In addition, the two-step growth mode can enhance the degree of polarization of the electronic transition. The simulation results of the k⋅p perturbation approach show that the oscillator strength and degree of polarization of the electronic transition strongly depend on the in-plane strains upon anisotropic in-plane strain relaxation. The research results provide important information for optimized growth of nonpolar III-nitrides. By using two-step growth and by fabricating the devices on the high-quality nonpolar free-standing GaN substrates, high-efficiency nonpolar a-plane InGaN LEDs can be realized. Nonpolar a-plane InGaN/GaN LEDs can exhibit a strongly polarized light to improve the contrast, glare, eye discomfort and eye strain, and efficiency in display application.

  12. Ionic liquids intercalated in montmorillonite as the sorptive phase for the extraction of low-polarity organic compounds from water by rotating-disk sorptive extraction.

    PubMed

    Fiscal-Ladino, Jhon A; Obando-Ceballos, Mónica; Rosero-Moreano, Milton; Montaño, Diego F; Cardona, Wilson; Giraldo, Luis F; Richter, Pablo

    2017-02-08

    Montmorillonite (MMT) clays were modified by the intercalation into their galleries of ionic liquids (IL) based on imidazolium quaternary ammonium salts. This new eco-materials exhibited good features for use as a sorptive phase in the extraction of low-polarity analytes from aqueous samples. Spectroscopic analyses of the modified clays were conducted and revealed an increase in the basal spacing and a shifting of the reflection plane towards lower values as a consequence of the effective intercalation of organic cations into the MMT structure. The novel sorbent developed herein was assayed as the sorptive phase in rotating-disk sorptive extraction (RDSE), using polychlorinated biphenyls (PCBs), representative of low-polarity pollutants, as model analytes. The final determination was made by gas chromatography with electron capture detection. Among the synthetized sorptive phases, the selected system for analytical purposes consisted of MMT modified with the 1-hexadecyl-3-methylimidazolium bromide (HDMIM-Br) IL. Satisfactory analytical features were achieved using a sample volume of 5 mL: the relative recoveries from a wastewater sample were higher than 80%, the detection limits were between 3 ng L(-1) and 43 ng L(-1), the precision (within-run precision) expressed as the relative standard deviation ranged from 2% to 24%, and the enrichment factors ranged between 18 and 28. Using RDSE, the extraction efficiency achieved for the selected MMT-HDMIM-Br phase was compared with other commercial solid phases/supports, such as polypropylene, polypropylene with 1-octanol (as a supported liquid membrane), octadecyl (C18) and octyl (C8), and showed the highest response for all the studied analytes. Under the optimized extraction conditions, this new device was applied in the analysis of the influent of a wastewater treatment plant in Santiago (Chile), demonstrating its applicability through the good recoveries and precision achieved with real samples.

  13. USING COORDINATED OBSERVATIONS IN POLARIZED WHITE LIGHT AND FARADAY ROTATION TO PROBE THE SPATIAL POSITION AND MAGNETIC FIELD OF AN INTERPLANETARY SHEATH

    SciTech Connect

    Xiong, Ming; Feng, Xueshang; Liu, Ying D.; Davies, Jackie A.; Harrison, Richard A.; Owens, Mathew J.; Davis, Chris J.

    2013-11-01

    Coronal mass ejections (CMEs) can be continuously tracked through a large portion of the inner heliosphere by direct imaging in visible and radio wavebands. White light (WL) signatures of solar wind transients, such as CMEs, result from Thomson scattering of sunlight by free electrons and therefore depend on both viewing geometry and electron density. The Faraday rotation (FR) of radio waves from extragalactic pulsars and quasars, which arises due to the presence of such solar wind features, depends on the line-of-sight magnetic field component B{sub ∥} and the electron density. To understand coordinated WL and FR observations of CMEs, we perform forward magnetohydrodynamic modeling of an Earth-directed shock and synthesize the signatures that would be remotely sensed at a number of widely distributed vantage points in the inner heliosphere. Removal of the background solar wind contribution reveals the shock-associated enhancements in WL and FR. While the efficiency of Thomson scattering depends on scattering angle, WL radiance I decreases with heliocentric distance r roughly according to the expression I∝r {sup –3}. The sheath region downstream of the Earth-directed shock is well viewed from the L4 and L5 Lagrangian points, demonstrating the benefits of these points in terms of space weather forecasting. The spatial position of the main scattering site r{sub sheath} and the mass of plasma at that position M{sub sheath} can be inferred from the polarization of the shock-associated enhancement in WL radiance. From the FR measurements, the local B{sub ∥sheath} at r{sub sheath} can then be estimated. Simultaneous observations in polarized WL and FR can not only be used to detect CMEs, but also to diagnose their plasma and magnetic field properties.

  14. No vertical axis rotations during Neogene transpressional orogeny in the NE Gobi Altai: coinciding Mongolian and Eurasian early Cretaceous apparent polar wander paths

    NASA Astrophysics Data System (ADS)

    Straathof, G. B.; Hinsbergen, D. V.; Kuiper, K. F.; Cunningham, W.; Wijbrans, J.

    2007-12-01

    Here we test the role of vertical axis rotations during transpressional mountain building. To this end, we carried out a paleomagnetic study in the NE Gobi Altai of southern Mongolia, sampling widely exposed lower Cretaceous lavas allowing comparison of rotation histories of the Ih Bogd, Baga Bogd and Artz Bogd restraining bends at the eastern termination of the Bogd strike-slip zone. We provide new 40Ar/39Ar ages to show that the stratigraphy of mafic lavas and fluvio-lacustrine sediments on the southern flanks of Mt Ih Bogd and Mt Baga Bogd have ages between ~125 and ~122 Ma, and a mafic sill that intrudes the sequence has an age of 118.2 ± 0.8 Ma. The lavas are older than previously dated lavas south of Artz Bogd, with ages of 119-115 Ma. Paleomagnetic results from the 119-115 Ma lavas south of Artz Bogd show a significant steeper inclination than both results from 125-122 Ma lavas of Baga Bogd and Ih Bogd, as well as from newly sampled and previously published younger lavas and necks of the 107-92 Ma Tsost Magmatic Field and Shovon and Khurmen Uul basalts. We explain this result by insufficient averaging of secular variation and small errors induced by overcorrection of bedding tilt. We show that individual lavas in the SE Artz Bogd locality represent individual spot readings of the Earth's magnetic field and integrate all results obtained from lower Cretaceous lavas in the Gobi Altai. We present a pole, or rather, an apparent polar wander path without significant plate motion from ~125-95 Ma, with n=126, ë=80.8, ö=158.4, ê=25.3, A95=2.5, paleo-latitude = 48.2 with a scatter Së=16.7 (Sl=15.3, Su=17.8) and a regionally consistent direction for the Gobi Altai of D/I = 11.1/65.9, ÄD/ÄI = 3.8/1.9. This is one of the best-determined paleopoles/APWP's for Asia. There is no significant deviation of the 125-95 Ma pole position of the Gobi Altai from the reference positions of Eurasia. Formation of the Ih Bogd, Baga Bogd and Artz Bogd restraining bends was thus

  15. Earth Rotation

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  16. Initial results and field applications of a polarization imaging camera

    NASA Astrophysics Data System (ADS)

    Olsen, R. Chris; Eyler, Michael; Puetz, Angela M.; Esterline, Chelsea

    2009-08-01

    The SALSA linear Stokes polarization camera from Bossa Nova Technologies (520-550 nm) uses an electronically rotated polarization filter to measure four states of polarization nearly simultaneously. Some initial imagery results are presented. Preliminary analysis results indicate that the intensity and degree of linear polarization (DOLP) information can be used for image classification purposes. The DOLP images also show that the camera has a good ability to distinguish asphalt patches of different ages. These positive results and the relative simplicity of the camera system show the camera's potential for field applications.

  17. A cratonic Middle Jurassic paleopole: Callovian-Oxfordian stillstand (J-2 cusp), rotation of the Colorado Plateau, and Jurassic North American apparent polar wander

    NASA Astrophysics Data System (ADS)

    Steiner, Maureen B.

    2003-06-01

    paleopoles are displaced counterclockwise relative to those of the Colorado Plateau, and in amounts consistent with other coeval craton-Colorado Plateau pole pairs. Together, six coeval paleopoles indicate that the Colorado Plateau has rotated clockwise by about 9.0 ± 3° since Late Pennsylvanian time. The cratonic Summerville paleopole also removes the uncertainty over the Jurassic North American apparent polar wander path. The statistically identical Summerville and lower Morrison paleopoles form a substantial data set, five paleopoles, which indicate that NA APW traced a path roughly along 60° latitude. The five paleopoles stand in stark contrast to the paleopole from the slightly older (5-8 Ma) Moat Volcanics. Spreading rates in the central Atlantic do not allow NA plate motion that would include both paleopoles positions. Because the weight of the data, five paleopoles from widely spaced localities and different tectonic blocks, the Moat Volcanics pole cannot be representative of North America in the Middle Jurassic.

  18. Statistical Polarization Mode Dispersion/Polarization Dependent Loss Emulator for Polarization Division Multiplexing Transmission Testing

    NASA Astrophysics Data System (ADS)

    Perlicki, Krzysztof

    2010-03-01

    A low-cost statistical polarization mode dispersion/polarization dependent loss emulator is presented in this article. The emulator was constructed by concatenating 15 highly birefringence optical-fiber segments and randomly varying the mode coupling between them by rotating the polarization state. The impact of polarization effects on polarization division multiplexing transmission quality was measured. The designed polarization mode dispersion/polarization dependent loss emulator was applied to mimic the polarization effects of real optical-fiber links.

  19. Rotational Variation of Daughter Species Production Rates in Comet 103P/Hartley: Implications for the Progeny of Daughter Species and the Degree of Chemical Heterogeneity

    NASA Technical Reports Server (NTRS)

    McKay, Adam J.; Chanover, Nancy J.; DiSanti, Michael A.; Morgenthaler, Jeffrey P.; Cochran, Anita L.; Harris, Walter M.; Russo, Neil Dello

    2013-01-01

    We present analysis of high spectral resolution optical spectra of Comet 103P/Hartley taken during its Fall 2010 apparition. These spectra include transitions belonging to CN, C2, CH, NH2, and OI. We measure production rates and mixing ratios from these spectra. We find evidence for large changes in production rates (factors of a few) over the course of a nucleus rotation, in agreement with other measurements. We also measure variability with rotational phase in the CN/H2O and C2/CN ratios, which has not been previously reported for any comet. There may also be variability in the NH2/H2O ratio with rotational phase, but this trend is not as clear as for CN/H2O. We interpret the changing mixing ratios as due to H2O and C2 being released primarily from the icy grain halo, while the CN parent molecule comes directly from the nucleus. There is evidence that the CH/CN ratio is higher pre-perihelion than post-perihelion. We conclude that the observed CN and NH2 abundances are consistent with HCN and NH3 being the dominant parent molecules for these species. The C2 and CH abundances are higher than those of candidate parent molecules (C2H2 and CH4 respectively), so there must be another source for these molecules in 103P's coma. Carbonaceous dust grains could serve as this source.

  20. Rotational variation of daughter species production rates in Comet 103P/Hartley: Implications for the progeny of daughter species and the degree of chemical heterogeneity

    NASA Astrophysics Data System (ADS)

    McKay, Adam J.; Chanover, Nancy J.; DiSanti, Michael A.; Morgenthaler, Jeffrey P.; Cochran, Anita L.; Harris, Walter M.; Russo, Neil Dello

    2014-03-01

    We present analysis of high spectral resolution optical spectra of Comet 103P/Hartley taken during its Fall 2010 apparition. These spectra include transitions belonging to CN, C2, CH, NH2, and OI. We measure production rates and mixing ratios from these spectra. We find evidence for large changes in production rates (factors of a few) over the course of a nucleus rotation, in agreement with other measurements. We also measure variability with rotational phase in the CN/H2O and C2/CN ratios, which has not been previously reported for any comet. There may also be variability in the NH2/H2O ratio with rotational phase, but this trend is not as clear as for CN/H2O. We interpret the changing mixing ratios as due to H2O and C2 being released primarily from the icy grain halo, while the CN parent molecule comes directly from the nucleus. There is evidence that the CH/CN ratio is higher pre-perihelion than post-perihelion. We conclude that the observed CN and NH2 abundances are consistent with HCN and NH3 being the dominant parent molecules for these species. The C2 and CH abundances are higher than those of candidate parent molecules (C2H2 and CH4 respectively), so there must be another source for these molecules in 103P's coma. Carbonaceous dust grains could serve as this source.

  1. Polarization-sensitive coherent plasmon cavity

    NASA Astrophysics Data System (ADS)

    Lee, Kyookeun; Lee, Seung-Yeol; Hong, Jongwoo; Lee, Byoungho

    2015-10-01

    Surface plasmon polaritons (SPPs) are surface-bounded electromagnetic waves, propagating along a metal-dielectric interface. Due to larger wavenumber of SPPs compared with propagating light in free-space, additional couplers are required to excite SPPs. Dielectric prisms, gratings, apertures, and optical antennas are widely used. Recently, controlling excitation property of SPPs with coherent characteristics of incident lights, such as polarization and interference has been demonstrated. In this work, we propose a coherent plasmon cavity whose energy density can be tuned by polarization of the incident light. With polarization-sensitive aperture array, it is possible to launch counter-propagating SPPs with phase difference controlled by an angle of polarization. By rotating the polarization angle by 90 degrees, the energy density inside the cavity is enhanced 45 times larger compared with the minimum case.

  2. Differential cross sections and product rotational polarization in A + BC reactions using wave packet methods: H+ + D2 and Li + HF examples.

    PubMed

    Zanchet, A; Roncero, O; González-Lezana, T; Rodríguez-López, A; Aguado, A; Sanz-Sanz, C; Gómez-Carrasco, S

    2009-12-31

    The state-to-state differential cross sections for some atom + diatom reactions have been calculated using a new wave packet code, MAD-WAVE3, which is described in some detail and uses either reactant or product Jacobi coordinates along the propagation. In order to show the accuracy and efficiency of the coordinate transformation required when using reactant Jacobi coordinates, as recently proposed [ J. Chem. Phys. 2006 , 125 , 054102 ], the method is first applied to the H + D(2) reaction as a benchmark, for which exact time-independent calculations are also performed. It is found that the use of reactant coordinates yields accurate results, with a computational effort slightly lower than that when using product coordinates. The H(+) + D(2) reaction, with the same masses but a much deeper insertion well, is also studied and exhibits a completely different mechanism, a complex-forming one which can be treated by statistical methods. Due to the longer range of the potential, product Jacobi coordinates are more efficient in this case. Differential cross sections for individual final rotational states of the products are obtained based on exact dynamical calculations for some selected total angular momenta, combined with the random phase approximation to save the high computational time required to calculate all partial waves with very long propagations. The results obtained are in excellent agreement with available exact time-independent calculations. Finally, the method is applied to the Li + HF system for which reactant coordinates are very well suited, and quantum differential cross sections are not available. The results are compared with recent quasiclassical simulations and experimental results [J. Chem. Phys. 2005, 122, 244304]. Furthermore, the polarization of the product angular momenta is also analyzed as a function of the scattering angle.

  3. Polar wander analysis from paleomagnetic data

    NASA Technical Reports Server (NTRS)

    Vandervoo, R.

    1978-01-01

    Utilizing marine magnetic anomalies and paleomagnetic pole positions, paleogeographic maps were constructed for three time intervals back to the Early Cretaceous. From the maps lithospheric plate motions were calculated and these global displacement fields were analyzed to determine best-fitting rigid rotations, which then could be ascribed to true polar wander. The values so obtained are no larger than a few degrees and are within the magnitude of the uncertainties involved.

  4. Jupiter Polar Winds Movie

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Bands of eastward and westward winds on Jupiter appear as concentric rotating circles in this movie composed of Cassini spacecraft images that have been re-projected as if the viewer were looking down at Jupiter's north pole and the planet were flattened.

    The sequence covers 70 days, from October 1 to December 9, 2000. Cassini's narrow-angle camera captured the images of Jupiter's atmosphere in the near-infrared region of the spectrum.

    What is surprising in this view is the coherent nature of the high-latitude flows, despite the very chaotic, mottled and non-banded appearance of the planet's polar regions. This is the first extended movie sequence to show the coherence and longevity of winds near the pole and the features blown around the planet by them.

    There are thousands of spots, each an active storm similar to the size to the largest of storms on Earth. Large terrestrial storms usually last only a week before they dissolve and are replaced by other storms. But many of the Jovian storms seen here, while occasionally changing latitude or merging with each other, persist for the entire 70 days. Until now, the lifetime of the high-latitude features was unknown. Their longevity is a mystery of Jovian weather.

    Cassini collected images of Jupiter for months before and after it passed the planet on December 30, 2000. Six or more images of the planet in each of several spectral filters were taken at evenly spaced intervals over the course of Jupiter's 10-hour rotation period. The entire sequence was repeated generally every other Jupiter rotation, yielding views of every sector of the planet at least once every 20 hours.

    The images used for the movie shown here were taken every 20 hours through a filter centered at a wavelength of 756 nanometers, where there are almost no absorptions in the planet's atmosphere. The images covering each rotation were mosaiced together to form a cylindrical map extending from 75 degrees north to 75 degrees south in

  5. SMAP Faraday Rotation

    NASA Technical Reports Server (NTRS)

    Le Vine, David

    2016-01-01

    Faraday rotation is a change in the polarization as signal propagates through the ionosphere. At L-band it is necessary to correct for this change and measurements are made on the spacecraft of the rotation angle. These figures show that there is good agreement between the SMAP measurements (blue) and predictions based on models (red).

  6. Perceiving polarization with the naked eye: characterization of human polarization sensitivity

    PubMed Central

    Temple, Shelby E.; McGregor, Juliette E.; Miles, Camilla; Graham, Laura; Miller, Josie; Buck, Jordan; Scott-Samuel, Nicholas E.; Roberts, Nicholas W.

    2015-01-01

    Like many animals, humans are sensitive to the polarization of light. We can detect the angle of polarization using an entoptic phenomenon called Haidinger's brushes, which is mediated by dichroic carotenoids in the macula lutea. While previous studies have characterized the spectral sensitivity of Haidinger's brushes, other aspects remain unexplored. We developed a novel methodology for presenting gratings in polarization-only contrast at varying degrees of polarization in order to measure the lower limits of human polarized light detection. Participants were, on average, able to perform the task down to a threshold of 56%, with some able to go as low as 23%. This makes humans the most sensitive vertebrate tested to date. Additionally, we quantified a nonlinear relationship between presented and perceived polarization angle when an observer is presented with a rotatable polarized light field. This result confirms a previous theoretical prediction of how uniaxial corneal birefringence impacts the perception of Haidinger's brushes. The rotational dynamics of Haidinger's brushes were then used to calculate corneal retardance. We suggest that psychophysical experiments, based upon the perception of polarized light, are amenable to the production of affordable technologies for self-assessment and longitudinal monitoring of visual dysfunctions such as age-related macular degeneration. PMID:26136441

  7. Perceiving polarization with the naked eye: characterization of human polarization sensitivity.

    PubMed

    Temple, Shelby E; McGregor, Juliette E; Miles, Camilla; Graham, Laura; Miller, Josie; Buck, Jordan; Scott-Samuel, Nicholas E; Roberts, Nicholas W

    2015-07-22

    Like many animals, humans are sensitive to the polarization of light. We can detect the angle of polarization using an entoptic phenomenon called Haidinger's brushes, which is mediated by dichroic carotenoids in the macula lutea. While previous studies have characterized the spectral sensitivity of Haidinger's brushes, other aspects remain unexplored. We developed a novel methodology for presenting gratings in polarization-only contrast at varying degrees of polarization in order to measure the lower limits of human polarized light detection. Participants were, on average, able to perform the task down to a threshold of 56%, with some able to go as low as 23%. This makes humans the most sensitive vertebrate tested to date. Additionally, we quantified a nonlinear relationship between presented and perceived polarization angle when an observer is presented with a rotatable polarized light field. This result confirms a previous theoretical prediction of how uniaxial corneal birefringence impacts the perception of Haidinger's brushes. The rotational dynamics of Haidinger's brushes were then used to calculate corneal retardance.We suggest that psychophysical experiments, based upon the perception of polarized light, are amenable to the production of affordable technologies for self-assessment and longitudinal monitoring of visual dysfunctions such as age-related macular degeneration.

  8. Large degree of polarization of photoluminescence caused by anisotropic strain in nonpolar a-plane MgxZn1-xO layers grown by plasma-assisted molecular beam epitaxy.

    PubMed

    Chen, X Y; Pan, X H; Chen, W; Chen, S S; Huang, J Y; Ye, Z Z

    2016-10-15

    A large degree of polarization (ρ) of photoluminescence (PL) approximate to 1 is obtained in each nonpolar a-plane MgxZn1-xO layer grown by plasma-assisted molecular beam epitaxy (MBE) with x=0.01, 0.03, and 0.10, respectively. Anisotropic in-plane strains are selectively introduced by using foreign substrates and doping with different Mg contents, which strongly modify the valence band structures, leading to anisotropic optical properties. A polarized Raman measurement shows that anisotropic in-plane strains along the y and z axes increase with the increasing Mg contents. Polarized PL spectra show that ρ gradually increases to 0.97 with decreasing in-plane strains, resulting from an increasing difference in transition energy (ΔE) between E⊥c and E‖c caused by a lift of the degeneracy of valence band structures. The obtained highly polarized emission is close to linear polarized light, which is desirable in the backlighting of liquid crystal displays.

  9. Polarized maser growth

    SciTech Connect

    Melrose, D.B.; Judge, A.C.

    2004-11-01

    A polarized maser is assumed to operate in an anisotropic medium with natural modes polarized differently to the maser. It is shown that when the spatial growth rate and the generalized Faraday rotation rate are comparable, the polarization of the growing radiation is different from those of the maser and medium. In particular, for a lineary polarized maser operating in a medium with linearly polarized natural modes, the growing radiation is partially circularly polarized. This provides a previously unrecognized source of circular polarization that may be relevant to pulsar radio emission.

  10. The Low-Degree Shape of Mercury

    NASA Astrophysics Data System (ADS)

    Perry, M. E.; Neumann, G. A.; Mazarico, E.; Hauck, S. A., II; Solomon, S. C.; Zuber, M. T.; Smith, D. E.; Phillips, R. J.; Margot, J. L.; Johnson, C. L.; Ernst, C. M.; Oberst, J.

    2015-12-01

    The shape of Mercury, particularly when combined with its geoid, provides clues to the planet's internal structure, thermal evolution, and rotational history. Twenty-five million elevation measurements of the northern hemisphere, acquired by the Mercury Laser Altimeter on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging spacecraft, were combined with 378 occultation measurements of radio-frequency signals from the spacecraft in the planet's southern hemisphere to reveal the low-degree shape of Mercury. We solved for the spherical-harmonic coefficients through degree and order 128 and found that Mercury's mean radius is 2439.36±0.02 km. The offset between the planet's centers of mass and figure is negligible (40±40 m) along the polar axis and modest (140±50 m) in the equatorial plane. Mercury's spherical-harmonic shape spectrum is dominated by degree 2, and the planet's first-order shape is that of a triaxial ellipsoid with semimajor axes a, b, and c. The polar radius, c, is 1.65 km less than (a+b)/2, and the equatorial difference, a-b, is 1.25 km. The long axis is rotated 15° west of Mercury's dynamically defined principal axis. Mercury's geoid is similarly dominated by degree 2 and well described by a triaxial ellipsoid. The degree-2 geoid and shape are highly correlated, but the power spectral density of the geoid at degree 2 is only 1% of its shape counterpart, implying substantial compensation of elevation variations on a global scale and that Mercury is not in hydrostatic equilibrium.

  11. Venus's southern polar vortex reveals precessing circulation.

    PubMed

    Luz, D; Berry, D L; Piccioni, G; Drossart, P; Politi, R; Wilson, C F; Erard, S; Nuccilli, F

    2011-04-29

    Initial images of Venus's south pole by the Venus Express mission have shown the presence of a bright, highly variable vortex, similar to that at the planet's north pole. Using high-resolution infrared measurements of polar winds from the Venus Express Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) instrument, we show the vortex to have a constantly varying internal structure, with a center of rotation displaced from the geographic south pole by ~3 degrees of latitude and that drifts around the pole with a period of 5 to 10 Earth days. This is indicative of a nonsymmetric and varying precession of the polar atmospheric circulation with respect to the planetary axis.

  12. Polarized emission in polariton condensates: Switching in a one-dimensional natural trap versus inversion in two dimensions

    NASA Astrophysics Data System (ADS)

    Cuadra, J.; Sarkar, D.; Viña, L.; Hvam, J. M.; Nalitov, A.; Solnyshkov, D.; Malpuech, G.

    2013-12-01

    We perform polarization resolved spectroscopy of two- and one-dimensional microcavity-polariton condensates, which are formed by exciting the system in the optical parametric oscillator configuration. We observe polarization inversion for linearly polarized pumping parallel to the wire in both the 1D and 2D systems. As the polarization plane of the pump is rotated, the degree of linear polarization of the 2D system oscillates between orthogonal polarizations with the same period as that of the pump. However, the 1D system switches abruptly between two states of high degree of linear polarization with half the period. Two complementary models, based on semiclassical Boltzmann kinetic equations and the Gross-Pitaevskii equation, respectively, obtain an excellent agreement with the experimental results, providing a deep insight into the mechanisms responsible for the polarization switching.

  13. Measurements of E-mode polarization and temperature-E-mode correlation in the cosmic microwave background from 100 square degrees of SPTPOL data

    SciTech Connect

    Crites, A. T.; Henning, J. W.; Ade, P. A. R.; Aird, K. A.; Austermann, J. E.; Beall, J. A.; Bender, A. N.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Chiang, H. C.; Cho, H-M.; Citron, R.; Crawford, T. M.; Haan, T. de; Dobbs, M. A.; Everett, W.; Gallicchio, J.; Gao, J.; George, E. M.; Gilbert, A.; Halverson, N. W.; Hanson, D.; Harrington, N.; Hilton, G. C.; Holder, G. P.; Holzapfel, W. L.; Hoover, S.; Hou, Z.; Hrubes, J. D.; Huang, N.; Hubmayr, J.; Irwin, K. D.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Li, D.; Liang, C.; Luong-Van, D.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Montroy, T. E.; Natoli, T.; Nibarger, J. P.; Novosad, V.; Padin, S.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Schaffer, K. K.; Smecher, G.; Stark, A. A.; Story, K. T.; Tucker, C.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Zahn, O.

    2015-05-18

    Here, we present measurements of $E$-mode polarization and temperature-$E$-mode correlation in the cosmic microwave background (CMB) using data from the first season of observations with SPTpol, the polarization-sensitive receiver currently installed on the South Pole Telescope (SPT). The observations used in this work cover 100~\\sqdeg\\ of sky with arcminute resolution at $150\\,$GHz. We also report the $E$-mode angular auto-power spectrum ($EE$) and the temperature-$E$-mode angular cross-power spectrum ($TE$) over the multipole range $500 < \\ell \\leq5000$. These power spectra improve on previous measurements in the high-$\\ell$ (small-scale) regime. We fit the combination of the SPTpol power spectra, data from \\planck\\, and previous SPT measurements with a six-parameter \\LCDM cosmological model. Furthermore, we find that the best-fit parameters are consistent with previous results. The improvement in high-$\\ell$ sensitivity over previous measurements leads to a significant improvement in the limit on polarized point-source power: after masking sources brighter than 50\\,mJy in unpolarized flux at 150\\,GHz, we find a 95\\% confidence upper limit on unclustered point-source power in the $EE$ spectrum of $D_\\ell = \\ell (\\ell+1) C_\\ell / 2 \\pi < 0.40 \\ \\mu{\\mbox{K}}^2$ at $\\ell=3000$, indicating that future $EE$ measurements will not be limited by power from unclustered point sources in the multipole range $\\ell < 3600$, and possibly much higher in $\\ell.$

  14. MEASUREMENTS OF E-MODE POLARIZATION AND TEMPERATURE-E-MODE CORRELATION IN THE COSMIC MICROWAVE BACKGROUND FROM 100 SQUARE DEGREES OF SPTPOL DATA

    SciTech Connect

    Crites, A. T.; Henning, J. W.; Ade, P. A. R.; Aird, K. A.; Austermann, J. E.; Beall, J. A.; Bender, A. N.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Chiang, H. C.; Cho, H-M.; Citron, R.; Crawford, T. M.; Haan, T. de; Dobbs, M. A.; Everett, W.; Gallicchio, J.; Gao, J.; George, E. M.; Gilbert, A.; Halverson, N. W.; Hanson, D.; Harrington, N.; Hilton, G. C.; Holder, G. P.; Holzapfel, W. L.; Hoover, S.; Hou, Z.; Hrubes, J. D.; Huang, N.; Hubmayr, J.; Irwin, K. D.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Li, D.; Liang, C.; Luong-Van, D.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Montroy, T. E.; Natoli, T.; Nibarger, J. P.; Novosad, V.; Padin, S.; Pryke, C.; Reichardt, C. L.; Ruhl, J. E.; Saliwanchik, B. R.; Sayre, J. T.; Schaffer, K. K.; Smecher, G.; Stark, A. A.; Story, K. T.; Tucker, C.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Zahn, O.

    2015-05-18

    We present measurements of E-mode polarization and temperature-E-mode correlation in the cosmic microwave background using data from the first season of observations with SPTpol, the polarization-sensitive receiver currently installed on the South Pole Telescope (SPT). The observations used in this work cover 100 ${{{\\rm deg} }^{2}}$ of sky with arcminute resolution at 150 GHz. We report the E-mode angular auto-power spectrum (EE) and the temperature-E-mode angular cross-power spectrum (TE) over the multipole range 500 < ℓ ≤ 5000. These power spectra improve on previous measurements in the high-ℓ (small-scale) regime. We fit the combination of the SPTpol power spectra, data from Planck, and previous SPT measurements with a six-parameter ΛCDM cosmological model. We find that the best-fit parameters are consistent with previous results. The improvement in high-ℓ sensitivity over previous measurements leads to a significant improvement in the limit on polarized point-source power: after masking sources brighter than 50 mJy in unpolarized flux at 150 GHz, we find a 95% confidence upper limit on unclustered point-source power in the EE spectrum of ${{D}_{\\ell }}=\\ell (\\ell +1){{C}_{\\ell }}/2\\pi \\lt 0.40\\ \\mu {{{\\rm K}}^{2}}$ at $\\ell =3000$, indicating that future EE measurements will not be limited by power from unclustered point sources in the multipole range $\\ell \\lt 3600$, and possibly much higher in $\\ell .$

  15. Polarity of the Amphibian Egg

    NASA Technical Reports Server (NTRS)

    Malacinski, G. M.

    1983-01-01

    Amphibian egg polarity and the mechanism which generates the polarity is addressed. Of particular concern is the question of whether the activation rotation which responds to gravity is a prerequisite for normal development.

  16. Properties of epitaxial, (001)- and (110)-oriented (PbMg1/3Nb2/3O3)2/3-(PbTiO3)1/3 films on silicon described by polarization rotation.

    PubMed

    Boota, Muhammad; Houwman, Evert P; Dekkers, Matthijn; Nguyen, Minh D; Vergeer, Kurt H; Lanzara, Giulia; Koster, Gertjan; Rijnders, Guus

    2016-01-01

    Epitaxial (PbMg1/3Nb2/3O3)2/3-(PbTiO3)1/3 (PMN-PT) films with different out-of-plane orientations were prepared using a CeO2/yttria stabilized ZrO2 bilayer buffer and symmetric SrRuO3 electrodes on silicon substrates by pulsed laser deposition. The orientation of the SrRuO3 bottom electrode, either (110) or (001), was controlled by the deposition conditions and the subsequent PMN-PT layer followed the orientation of the bottom electrode. The ferroelectric, dielectric and piezoelectric properties of the (SrRuO3/PMN-PT/SrRuO3) ferroelectric capacitors exhibit orientation dependence. The properties of the films are explained in terms of a model based on polarization rotation. At low applied fields domain switching dominates the polarization change. The model indicates that polarization rotation is easier in the (110) film, which is ascribed to a smaller effect of the clamping on the shearing of the pseudo-cubic unit cell compared to the (001) case.

  17. Properties of epitaxial, (001)- and (110)-oriented (PbMg1/3Nb2/3O3)2/3-(PbTiO3)1/3 films on silicon described by polarization rotation

    PubMed Central

    Boota, Muhammad; Houwman, Evert P.; Dekkers, Matthijn; Nguyen, Minh D.; Vergeer, Kurt H.; Lanzara, Giulia; Koster, Gertjan; Rijnders, Guus

    2016-01-01

    Abstract Epitaxial (PbMg1/3Nb2/3O3)2/3-(PbTiO3)1/3 (PMN-PT) films with different out-of-plane orientations were prepared using a CeO2/yttria stabilized ZrO2 bilayer buffer and symmetric SrRuO3 electrodes on silicon substrates by pulsed laser deposition. The orientation of the SrRuO3 bottom electrode, either (110) or (001), was controlled by the deposition conditions and the subsequent PMN-PT layer followed the orientation of the bottom electrode. The ferroelectric, dielectric and piezoelectric properties of the (SrRuO3/PMN-PT/SrRuO3) ferroelectric capacitors exhibit orientation dependence. The properties of the films are explained in terms of a model based on polarization rotation. At low applied fields domain switching dominates the polarization change. The model indicates that polarization rotation is easier in the (110) film, which is ascribed to a smaller effect of the clamping on the shearing of the pseudo-cubic unit cell compared to the (001) case. PMID:27877857

  18. Rotation rate measurement and calculation for calcite crystals in a C-point mode

    NASA Astrophysics Data System (ADS)

    Herne, Catherine M.; O'Brien, Ann E.

    2016-09-01

    A polarization singularity mode offers a unique tool for actuating an array of birefringent calcite crystals, and measurement of the rotation rates of these crystals is in turn a way to image modes with varying polarization. In this work, we show the calculated and measured rotation rates of individual calcite crystals in a C-point mode and their dependence on three key factors: polarization, mode intensity profile, and crystal size. The C-point is a polarization singularity mode in which the mode has a circularly polarized center surrounded by elliptically polarized regions, with the orientation of the ellipse varying azimuthally and the degree of ellipticity changing radially. The beam is focused into an optical trapping region, and micron-sized birefringent calcite crystals in solution are positioned at key points in the mode. The crystals experience different torques at each location. The spin angular momentum of the light is proportional to the degree of ellipticity and to the intensity at each point in the mode. Our technique for generating C-point modes results in an intensity profile with a nonlinear radial dependence. Our crystal growth process generates crystals of varying width and thickness; the crystal size and shape affect the drag forces and light torque acting on them. We explain the crystal growth process and estimations of torque, demonstrate the rate and direction of rotation of calcite crystals placed at different points in the laser mode, and discuss the difference between the estimated and measured rotation rates.

  19. Measurements of E-mode polarization and temperature-E-mode correlation in the cosmic microwave background from 100 square degrees of SPTPOL data

    DOE PAGES

    Crites, A. T.; Henning, J. W.; Ade, P. A. R.; ...

    2015-05-18

    Here, we present measurements ofmore » $E$-mode polarization and temperature-$E$$-mode correlation in the cosmic microwave background (CMB) using data from the first season of observations with SPTpol, the polarization-sensitive receiver currently installed on the South Pole Telescope (SPT). The observations used in this work cover 100~\\sqdeg\\ of sky with arcminute resolution at $$150\\,$GHz. We also report the $E$-mode angular auto-power spectrum ($EE$) and the temperature-$E$-mode angular cross-power spectrum ($TE$) over the multipole range $$500 < \\ell \\leq5000$$. These power spectra improve on previous measurements in the high-$$\\ell$$ (small-scale) regime. We fit the combination of the SPTpol power spectra, data from \\planck\\, and previous SPT measurements with a six-parameter \\LCDM cosmological model. Furthermore, we find that the best-fit parameters are consistent with previous results. The improvement in high-$$\\ell$$ sensitivity over previous measurements leads to a significant improvement in the limit on polarized point-source power: after masking sources brighter than 50\\,mJy in unpolarized flux at 150\\,GHz, we find a 95\\% confidence upper limit on unclustered point-source power in the $EE$ spectrum of $$D_\\ell = \\ell (\\ell+1) C_\\ell / 2 \\pi < 0.40 \\ \\mu{\\mbox{K}}^2$$ at $$\\ell=3000$$, indicating that future $EE$ measurements will not be limited by power from unclustered point sources in the multipole range $$\\ell < 3600$$, and possibly much higher in $$\\ell.$$« less

  20. Optical rotation and linear and circular depolarization rates in diffusively scattered light from chiral, racemic, and achiral turbid media.

    PubMed

    Hadley, Kevin C; Vitkin, I Alex

    2002-07-01

    The polarization properties of light scattered in a lateral direction from turbid media were studied. Polarization modulation and synchronous detection were used to measure, and Mueller calculus to model and derive, the degrees of surviving linear and circular polarization and the optical rotation induced by turbid samples. Polystyrene microspheres were used as scatterers in water solutions containing dissolved chiral, racemic, and achiral molecules. The preservation of circular polarization was found to exceed the linear polarization preservation for all samples examined. The optical rotation induced increased with the chiral molecule concentration only, whereas both linear and circular polarizations increased with an increase in the concentrations of chiral, racemic, and achiral molecules. This latter effect was shown to stem solely from the refractive index matching mechanism induced by the solute molecules, independent of their chiral nature.

  1. Crossed elliptical polarization undulator

    SciTech Connect

    Sasaki, Shigemi

    1997-05-01

    The first switching of polarization direction is possible by installing two identical helical undulators in series in a same straight section in a storage ring. By setting each undulator in a circular polarization mode in opposite handedness, one can obtain linearly polarized radiation with any required polarization direction depending on the modulator setting between two undulators. This scheme can be used without any major degradation of polarization degree in any low energy low emittance storage ring.

  2. Effects of rotation of fissioning nuclei in the angular distributions of prompt neutrons and gamma rays originating from the polarized-neutron-induced fission of 233U and 235U nuclei

    NASA Astrophysics Data System (ADS)

    Danilyan, G. V.; Klenke, J.; Kopach, Yu. N.; Krakhotin, V. A.; Novitsky, V. V.; Pavlov, V. S.; Shatalov, P. B.

    2014-06-01

    The results of an experiment devoted to searches for effects of rotation of fissioning nuclei in the angular distributions of prompt neutrons and gamma rays originating from the polarized-neutron-induced fission of 233U nuclei are presented. The effects discovered in these angular distributions are opposite in sign to their counterparts in the polarized-neutron-induced fission of 235U nuclei. This is at odds with data on the relative signs of respective effects in the angular distribution of alpha particles from the ternary fission of the same nuclei and may be indicative of problems in the model currently used to describe the effect in question. The report on which this article is based was presented at the seminar held at the Institute of Theoretical and Experimental Physics and dedicated to the 90th anniversary of the birth of Yu.G. Abov, corresponding member of Russian Academy of Sciences, Editor in Chief of the journal Physics of Atomic Nuclei.

  3. In-Flight Performance of the Polarization Modulator in the CLASP Rocket Experiment

    NASA Technical Reports Server (NTRS)

    Ishikawa, Shin-nosuke; Shimizu, Toshifumi; Kano, Ryohei; Bando, Takamasa; Ishikawa, Ryoko; Giono, Gabriel; Beabout, Dyana L.; Beabout, Brent L.; Nakayama, Satoshi; Tajima, Takao

    2016-01-01

    We developed a polarization modulation unit (PMU), a motor system to rotate a waveplate continuously. In polarization measurements, the continuous rotating waveplate is an important element as well as a polarization analyzer to record the incident polarization in a time series of camera exposures. The control logic of PMU was originally developed for the next Japanese solar observation satellite SOLAR-C by the SOLAR-C working group. We applied this PMU for the Chromospheric Lyman-alpha SpectroPolarimeter (CLASP). CLASP is a sounding rocket experiment to observe the linear polarization of the Lyman-alpha emission (121.6 nm vacuum ultraviolet) from the upper chromosphere and transition region of the Sun with a high polarization sensitivity of 0.1 % for the first time and investigate their vector magnetic field by the Hanle effect. The driver circuit was developed to optimize the rotation for the CLASP waveplate (12.5 rotations per minute). Rotation non-uniformity of the waveplate causes error in the polarization degree (i.e. scale error) and crosstalk between Stokes components. We confirmed that PMU has superior rotation uniformity in the ground test and the scale error and crosstalk of Stokes Q and U are less than 0.01 %. After PMU was attached to the CLASP instrument, we performed vibration tests and confirmed all PMU functions performance including rotation uniformity did not change. CLASP was successfully launched on September 3, 2015, and PMU functioned well as designed. PMU achieved a good rotation uniformity, and the high precision polarization measurement of CLASP was successfully achieved.

  4. In-flight performance of the polarization modulator in the CLASP rocket experiment

    NASA Astrophysics Data System (ADS)

    Ishikawa, Shin-nosuke; Shimizu, Toshifumi; Kano, Ryohei; Bando, Takamasa; Ishikawa, Ryoko; Giono, Gabriel; Beabout, Dyana L.; Beabout, Brent L.; Nakayama, Satoshi; Tajima, Takao

    2016-07-01

    We developed a polarization modulation unit (PMU), a motor system to rotate a waveplate continuously. In polarization measurements, the continuous rotating waveplate is an important element as well as a polarization analyzer to record the incident polarization in a time series of camera exposures. The control logic of PMU was originally developed for the next Japanese solar observation satellite SOLAR-C by the SOLAR-C working group. We applied this PMU for the Chromospheric Lyman-alpha SpectroPolarimeter (CLASP). CLASP is a sounding rocket experiment to observe the linear polarization of the Lyman-alpha emission (121.6 nm vacuum ultraviolet) from the upper chromosphere and transition region of the Sun with a high polarization sensitivity of 0.1 % for the first time and investigate their vector magnetic field by the Hanle effect. The driver circuit was developed to optimize the rotation for the CLASP waveplate (12.5 rotations per minute). Rotation non- uniformity of the waveplate causes error in the polarization degree (i.e. scale error) and crosstalk between Stokes components. We confirmed that PMU has superior rotation uniformity in the ground test and the scale error and crosstalk of Stokes Q and U are less than 0.01 %. After PMU was attached to the CLASP instrument, we performed vibration tests and confirmed all PMU functions performance including rotation uniformity did not change. CLASP was successfully launched on September 3, 2015, and PMU functioned well as designed. PMU achieved a good rotation uniformity, and the high precision polarization measurement of CLASP was successfully achieved.

  5. Faraday rotation as a probe of coronal and astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Mancuso, Salvatore

    Faraday rotation observations of polarized radiation from natural radio sources yield a unique diagnostic of coronal and astrophysical plasmas. We made observations of the radiogalaxy 4C+03.01 seen through the solar corona when the source was at a distance of 8.6 solar radii from the Sun. Nearly continuous polarimetric observations were made on March 28, 1997 with the Very Large Array (VLA) at frequencies of 1465 and 1635 MHz. Dual frequency polarization measurements yield the rotation measure, a quantity that is proportional to the product along the line of sight of the electron density and the line-of-sight component of the magnetic field. We measure a rotation measure of +6.2 +/- 1.0 rad m-2 attributable to the corona. We obtain a weak detection of rotation measure fluctuations which may be due to coronal Alfvén waves and derive model-dependent upper limits to the Alfvén wave flux at the coronal base. We also report dual frequency linear polarization observations of thirteen polarized radio sources made on four days in May 1997 at elongations ranging from 5 to 14 solar radii. A tridimensional model of the solar minimum corona was found to be in excellent agreement with the observed rotation measures and deviations from the values predicted by the model were suggestive of long wavelength coronal Alfvén waves. These observations were also used for detection of high frequency magnetohydrodynamic waves. These waves can be detected through a Faraday screen depolarization mechanism, that is a reduction of the observed degree of linear polarization of an extended polarized source when viewed through a medium in which the Faraday rotation varies randomly. The observations show no detectable depolarization, and rule out some turbulence models. Finally we derive expressions for auto- and cross- correlation functions of the Stokes parameters Q and U of the galactic synchrotron radiation. Fluctuations in the polarization characteristics of the galactic synchrotron

  6. Measuring the influence of aerosols and albedo on sky polarization.

    PubMed

    Kreuter, A; Emde, C; Blumthaler, M

    2010-11-01

    All-sky distributions of the polarized radiance are measured using an automated fish-eye camera system with a rotating polarizer. For a large range of aerosol and surface albedo situations, the influence on the degree of polarization and sky radiance is investigated. The range of aerosol optical depth and albedo is 0.05-0.5 and 0.1-0.75, respectively. For this range of parameters, a reduction of the degree of polarization from about 0.7 to 0.4 was observed. The analysis is done for 90° scattering angle in the principal plane under clear sky conditions for a broadband channel of 450 ± 25 nm and solar zenith angles between 55° and 60°. Radiative transfer calculations considering three different aerosol mixtures are performed and and agree with the measurements within the statistical error.

  7. Rotatable shear plate interferometer

    DOEpatents

    Duffus, Richard C.

    1988-01-01

    A rotatable shear plate interferometer comprises a transparent shear plate mounted obliquely in a tubular supporting member at 45.degree. with respect to its horizontal center axis. This tubular supporting member is supported rotatably around its center axis and a collimated laser beam is made incident on the shear plate along this center axis such that defocus in different directions can be easily measured.

  8. Metasurface polarization splitter.

    PubMed

    Slovick, Brian A; Zhou, You; Yu, Zhi Gang; Kravchenko, Ivan I; Briggs, Dayrl P; Moitra, Parikshit; Krishnamurthy, Srini; Valentine, Jason

    2017-03-28

    Polarization beam splitters, devices that separate the two orthogonal polarizations of light into different propagation directions, are among the most ubiquitous optical elements. However, traditionally polarization splitters rely on bulky optical materials, while emerging optoelectronic and photonic circuits require compact, chip-scale polarization splitters. Here, we show that a rectangular lattice of cylindrical silicon Mie resonators functions as a polarization splitter, efficiently reflecting one polarization while transmitting the other. We show that the polarization splitting arises from the anisotropic permittivity and permeability of the metasurface due to the twofold rotational symmetry of the rectangular unit cell. The high polarization efficiency, low loss and low profile make these metasurface polarization splitters ideally suited for monolithic integration with optoelectronic and photonic circuits.This article is part of the themed issue 'New horizons for nanophotonics'.

  9. Measurements of optical polarization properties in dental tissues and biomaterials

    NASA Astrophysics Data System (ADS)

    Fernández-Oliveras, Alicia; Pecho, Oscar E.; Rubiño, Manuel; Pérez, María M.

    2011-05-01

    Since biological tissues can have the intrinsic property of altering the polarization of incident light, optical polarization studies are important for a complete characterization. We have measured the polarized light scattered off of different dental tissues and biomaterials for a comparative study of their optical polarization property. The experimental setup was composed by a He-Ne laser, two linear polarizers and a detection system based on a photodiode. The laser beam was passed through one linear polarizer placed in front of the sample, beyond which the second linear polarizer (analyzer) and the photodiode detector were placed. First, the maximum laser-light intensity (reference condition) was attained without the sample in the laser path. Then, the sample was placed between the two polarizers and the polarization shift of the scattered laser light was determined by rotating the analyzer until the reference condition was reached. Two dental-resin composites (nanocomposite and hybrid) and two human dental tissues (enamel and dentine) were analyzed under repeatability conditions at three different locations on the sample: 20 measurements of the shift were taken and the average value and the uncertainty associated were calculated. For the human dentine the average value of the polarization shift found was 7 degrees, with an associated uncertainty of 2 degrees. For the human enamel and both dental-resin composites the average shift values were found to be similar to their corresponding uncertainties (2 degrees). The results suggest that although human dentine has notable polarization properties, dental-resin composites and human enamel do not show significant polarization shifts.

  10. Polarization twist in perovskite ferrielectrics

    PubMed Central

    Kitanaka, Yuuki; Hirano, Kiyotaka; Ogino, Motohiro; Noguchi, Yuji; Miyayama, Masaru; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2016-01-01

    Because the functions of polar materials are governed primarily by their polarization response to external stimuli, the majority of studies have focused on controlling polar lattice distortions. In some perovskite oxides, polar distortions coexist with nonpolar tilts and rotations of oxygen octahedra. The interplay between nonpolar and polar instabilities appears to play a crucial role, raising the question of how to design materials by exploiting their coupling. Here, we introduce the concept of ‘polarization twist’, which offers enhanced control over piezoelectric responses in polar materials. Our experimental and theoretical studies provide direct evidence that a ferrielectric perovskite exhibits a large piezoelectric response because of extended polar distortion, accompanied by nonpolar octahedral rotations, as if twisted polarization relaxes under electric fields. The concept underlying the polarization twist opens new possibilities for developing alternative materials in bulk and thin-film forms. PMID:27586824

  11. Partial polarizer filter

    NASA Technical Reports Server (NTRS)

    Title, A. M. (Inventor)

    1978-01-01

    A birefringent filter module comprises, in seriatum. (1) an entrance polarizer, (2) a first birefringent crystal responsive to optical energy exiting the entrance polarizer, (3) a partial polarizer responsive to optical energy exiting the first polarizer, (4) a second birefringent crystal responsive to optical energy exiting the partial polarizer, and (5) an exit polarizer. The first and second birefringent crystals have fast axes disposed + or -45 deg from the high transmitivity direction of the partial polarizer. Preferably, the second crystal has a length 1/2 that of the first crystal and the high transmitivity direction of the partial polarizer is nine times as great as the low transmitivity direction. To provide tuning, the polarizations of the energy entering the first crystal and leaving the second crystal are varied by either rotating the entrance and exit polarizers, or by sandwiching the entrance and exit polarizers between pairs of half wave plates that are rotated relative to the polarizers. A plurality of the filter modules may be cascaded.

  12. Cylindrical rotating triboelectric nanogenerator.

    PubMed

    Bai, Peng; Zhu, Guang; Liu, Ying; Chen, Jun; Jing, Qingshen; Yang, Weiqing; Ma, Jusheng; Zhang, Gong; Wang, Zhong Lin

    2013-07-23

    We demonstrate a cylindrical rotating triboelectric nanogenerator (TENG) based on sliding electrification for harvesting mechanical energy from rotational motion. The rotating TENG is based on a core-shell structure that is made of distinctly different triboelectric materials with alternative strip structures on the surface. The charge transfer is strengthened with the formation of polymer nanoparticles on surfaces. During coaxial rotation, a contact-induced electrification and the relative sliding between the contact surfaces of the core and the shell result in an "in-plane" lateral polarization, which drives the flow of electrons in the external load. A power density of 36.9 W/m(2) (short-circuit current of 90 μA and open-circuit voltage of 410 V) has been achieved by a rotating TENG with 8 strip units at a linear rotational velocity of 1.33 m/s (a rotation rate of 1000 r/min). The output can be further enhanced by integrating more strip units and/or applying larger linear rotational velocity. This rotating TENG can be used as a direct power source to drive small electronics, such as LED bulbs. This study proves the possibility to harvest mechanical energy by TENGs from rotational motion, demonstrating its potential for harvesting the flow energy of air or water for applications such as self-powered environmental sensors and wildlife tracking devices.

  13. The rotation of the Sun's core.

    NASA Astrophysics Data System (ADS)

    Paterno, L.; Sofia, S.; di Mauro, M. P.

    1996-10-01

    The rotation of the Sun's core, below 0.3Rsun_, is inferred from two independent new results. The first is based on the recent oblateness measurements carried out by the Solar Disk Sextant (SDS) instrument outside the Earth's atmosphere, and the second on the very accurate measurements of rotational splittings of the lowest degree acoustic modes, carried out in the framework of the helioseismic network IRIS. By using the theory of slowly rotating stars applied to a solar standard model, we deduce a set of rotational laws for the innermost layers, which are consistent with both the measured oblateness value and the results of the inversion of helioseismic data. The SDS and IRIS results indicate that the Sun's central regions rotate at a rate in between 1.5 and 2 times the surface equatorial angular velocity. As a result of our analysis, we deduce a quadrupole moment J_2_=2.22x10^-7^, which implies an advance of Mercury's perihelion of 42.98arcsec/c, in agreement with the theory of General Relativity and the measurements of Mercury's orbit by means of planetary radar ranging. However, very recent results obtained by the helioseismic network BISON indicate that core rotation is even slower than the polar surface rotation and therefore imply a completely different scenario than that proposed here. If we assume the intermediate solution of rigid body rotation, an alternate source of the oblateness may be attributed to a magnetic field of the order of 10^5^Gauss in the interior of the Sun.

  14. The RINGO2 and DIPOL optical polarization catalogue of blazars

    NASA Astrophysics Data System (ADS)

    Jermak, H.; Steele, I. A.; Lindfors, E.; Hovatta, T.; Nilsson, K.; Lamb, G. P.; Mundell, C.; Barres de Almeida, U.; Berdyugin, A.; Kadenius, V.; Reinthal, R.; Takalo, L.

    2016-11-01

    We present ˜2000 polarimetric and ˜3000 photometric observations of 15 γ-ray bright blazars over a period of 936 days (2008-10-11 to 2012-10-26) using data from the Tuorla blazar monitoring program (KVA DIPOL) and Liverpool Telescope (LT) RINGO2 polarimeters (supplemented with data from SkyCamZ (LT) and Fermi-LAT γ-ray data). In 11 out of 15 sources we identify a total of 19 electric vector position angle (EVPA) rotations and 95 flaring episodes. We group the sources into subclasses based on their broad-band spectral characteristics and compare their observed optical and γ-ray properties. We find that (1) the optical magnitude and γ-ray flux are positively correlated, (2) EVPA rotations can occur in any blazar subclass, four sources show rotations that go in one direction and immediately rotate back, (3) we see no difference in the γ-ray flaring rates in the sample; flares can occur during and outside of rotations with no preference for this behaviour, (4) the average degree of polarization (DoP), optical magnitude and γ-ray flux are lower during an EVPA rotation compared with during non-rotation and the distribution of the DoP during EVPA rotations is not drawn from the same parent sample as the distribution outside rotations, (5) the number of observed flaring events and optical polarization rotations are correlated, however we find no strong evidence for a temporal association between individual flares and rotations and (6) the maximum observed DoP increases from ˜10 per cent to ˜30 per cent to ˜40 per cent for subclasses with synchrotron peaks at high, intermediate and low frequencies, respectively.

  15. Optical wheel-rotation sensor

    SciTech Connect

    Veeser, L.; Rodriguez, P.; Forman, P.; Deeter, M.

    1994-05-01

    We describe a fiber-optic rotation sensor based on diffraction of light in a magneto-optic crystal (BIG). Exploitation of this effect permits the construction of a sensor requiring no polarization elements or lenses.

  16. Nonaxisymmetric oscillations of differentially rotating relativistic stars

    SciTech Connect

    Passamonti, Andrea; Stavridis, Adamantios; Kokkotas, Kostas D.

    2008-01-15

    Nonaxisymmetric oscillations of differentially rotating stars are studied using both slow rotation and Cowling approximation. The equilibrium stellar models are relativistic polytropes where differential rotation is described by the relativistic j-constant rotation law. The oscillation spectrum is studied versus three main parameters: the stellar compactness M/R, the degree of differential rotation A, and the number of maximum couplings l{sub max}. It is shown that the rotational splitting of the nonaxisymmetric modes are strongly enhanced by increasing the compactness of the star and the degree of differential rotation. Finally, we investigate the relation between the fundamental quadrupole mode and the corotation band of differentially rotating stars.

  17. Dishonorary Degrees

    ERIC Educational Resources Information Center

    Romano, Carlin

    2008-01-01

    If an honorary degree lacks values to begin with, does withdrawing it deliver a rebuke to the recipient? Is whatever honor that comes with the distinction embedded in the fancy paper, or is it wholly in the eye of the degree holder? Are honorary degrees really such silly things that individuals should mock their bestowal or withdrawal? The case of…

  18. Product rotational angular momentum polarization in the H+FCl(v=0-5, j=0, 3, 6, 9)→HF+Cl reaction.

    PubMed

    Wu, Victor Wei-Keh

    2011-05-28

    The product alignment and orientation of the title reaction on the ground potential energy surface of 1 (2)A' have been studied using the quasi-classical trajectory method. The calculations were carried out for case (a) at collision energies of 0.5-20 kcal mol(-1) with the initially rovibrational state of the reagent FCl molecule being at the v = 0 and j = 0 level to especially reveal in detail the dependence of the product integral cross section on collision energy. Further calculations at the collision energy of 15 kcal mol(-1) for case (b) at v = 0-5, and j = 0, and (c) at v = 0, and j = 3, 6, 9 initial states were carried out to reveal the effect of initially vibrational and rotational excitations on stereodynamics, respectively. Possessing final relative velocity k' (defined as a vector in the xz-plane), product alignment perpendicular to the reagent relative velocity vector k (defined as z- or parallel to the z-axis), for case (a) is found to be weaker at all collision energies, for case (b) is found to be vibrationally enhanced by the reactant molecule FCl, but for case (c), rather insensitive to initially rotational excitation. The rotational vector of product molecular orientation pointing to either negative or positive direction of the y-axis in the center of mass frame, e.g. origin of the coordinate system, is enhanced by collision energies regarding to 0.5-20 kcal mol(-1), while it becomes weaker at higher vibrational (v = 0-5) or rotational (j = 0, 3, 6, 9) excitation levels. Effects of collision energies and of rotational excitation at these collision energies, with 15 kcal mol(-1) as an example on the calculated PDDCSs are also shown and discussed. Detailed plots P(φ(r)) in the range of 0 ≤φ(r)≤ 360(o), and P(θ(r), φ(r)) in the ranges of 0 ≤θ(r)≤ 180° and 0 ≤φ(r)≤ 360° at collision energies 0.5-20 kcal mol(-1) have been presented. Overall, results of PDDCSs of the product alignment and product orientation at these collision

  19. Seismic Excitation of the Polar Motion

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin Fong; Gross, Richard S.; Han, Yan-Ben

    1996-01-01

    The mass redistribution in the earth as a result of an earthquake faulting changes the earth's inertia tensor, and hence its rotation. Using the complete formulae developed by Chao and Gross (1987) based on the normal mode theory, we calculated the earthquake-induced polar motion excitation for the largest 11,015 earthquakes that occurred during 1977.0-1993.6. The seismic excitations in this period are found to be two orders of magnitude below the detection threshold even with today's high precision earth rotation measurements. However, it was calculated that an earthquake of only one tenth the size of the great 1960 Chile event, if happened today, could be comfortably detected in polar motion observations. Furthermore, collectively these seismic excitations have a strong statistical tendency to nudge the pole towards approx. 140 deg E, away from the actually observed polar drift direction. This non-random behavior, similarly found in other earthquake-induced changes in earth rotation and low-degree gravitational field by Chao and Gross (1987), manifests some geodynamic behavior yet to be explored.

  20. SUNSPOT ROTATION, SIGMOIDAL FILAMENT, FLARE, AND CORONAL MASS EJECTION: THE EVENT ON 2000 FEBRUARY 10

    SciTech Connect

    Yan, X. L.; Qu, Z. Q.; Kong, D. F.

    2012-07-20

    We find that a sunspot with positive polarity had an obvious counterclockwise rotation and resulted in the formation and eruption of an inverse S-shaped filament in NOAA Active Region 08858 from 2000 February 9 to 10. The sunspot had two umbrae which rotated around each other by 195 Degree-Sign within about 24 hr. The average rotation rate was nearly 8 Degree-Sign hr{sup -1}. The fastest rotation in the photosphere took place during 14:00 UT to 22:01 UT on February 9, with a rotation rate of nearly 16 Degree-Sign hr{sup -1}. The fastest rotation in the chromosphere and the corona took place during 15:28 UT to 19:00 UT on February 9, with a rotation rate of nearly 20 Degree-Sign hr{sup -1}. Interestingly, the rapid increase of the positive magnetic flux occurred only during the fastest rotation of the rotating sunspot, the bright loop-shaped structure, and the filament. During the sunspot rotation, the inverse S-shaped filament gradually formed in the EUV filament channel. The filament experienced two eruptions. In the first eruption, the filament rose quickly and then the filament loops carrying the cool and the hot material were seen to spiral counterclockwise into the sunspot. About 10 minutes later, the filament became active and finally erupted. The filament eruption was accompanied with a C-class flare and a halo coronal mass ejection. These results provide evidence that sunspot rotation plays an important role in the formation and eruption of the sigmoidal active-region filament.

  1. Observation of polar vortices in oxide superlattices

    NASA Astrophysics Data System (ADS)

    Yadav, A. K.; Nelson, C. T.; Hsu, S. L.; Hong, Z.; Clarkson, J. D.; Schlepüetz, C. M.; Damodaran, A. R.; Shafer, P.; Arenholz, E.; Dedon, L. R.; Chen, D.; Vishwanath, A.; Minor, A. M.; Chen, L. Q.; Scott, J. F.; Martin, L. W.; Ramesh, R.

    2016-02-01

    The complex interplay of spin, charge, orbital and lattice degrees of freedom provides a plethora of exotic phases and physical phenomena. In recent years, complex spin topologies have emerged as a consequence of the electronic band structure and the interplay between spin and spin-orbit coupling in materials. Here we produce complex topologies of electrical polarization—namely, nanometre-scale vortex-antivortex (that is, clockwise-anticlockwise) arrays that are reminiscent of rotational spin topologies—by making use of the competition between charge, orbital and lattice degrees of freedom in superlattices of alternating lead titanate and strontium titanate layers. Atomic-scale mapping of the polar atomic displacements by scanning transmission electron microscopy reveals the presence of long-range ordered vortex-antivortex arrays that exhibit nearly continuous polarization rotation. Phase-field modelling confirms that the vortex array is the low-energy state for a range of superlattice periods. Within this range, the large gradient energy from the vortex structure is counterbalanced by the corresponding large reduction in overall electrostatic energy (which would otherwise arise from polar discontinuities at the lead titanate/strontium titanate interfaces) and the elastic energy associated with epitaxial constraints and domain formation. These observations have implications for the creation of new states of matter (such as dipolar skyrmions, hedgehog states) and associated phenomena in ferroic materials, such as electrically controllable chirality.

  2. Characterizing the micro structure and kinetics of fast changing samples by simultaneous polarization measurements

    NASA Astrophysics Data System (ADS)

    Liao, Ran; He, Honghui; Zeng, Nan; Ma, Hui

    2015-03-01

    Taking accurate measurements of the state of polarization (SOP) is the key for the success of polarization sensitive techniques which can provide rich information on the microstructure of complex scattering media, such as biological tissues. For static or slow varying samples, SOP measurements can be achieved by time-sequential recoding of different polarization components controlled by rotating polarizers and wave plates or temporal modulation devices such as photoelastic modulators or liquid crystal variable retarders. When the sample is moving or changing its status quickly, polarization components recoded at different time may correspond to different SOPs, which can lead to significant errors in the final results. Simultaneous polarization measurements are necessary for probing such dynamic samples. In this paper, using the simultaneously recorded polarization components, we are able to mimic time sequential polarization schemes and evaluate the errors. The results show that the kinetics of the sample will affect the systematic error and an increase in the statistical errors of the measured degree of polarization (DOP). We change the kinetics of samples with different stirring speed, which is indicated by the characteristic time of the auto-correlation function. It is also demonstrated that the simultaneously recorded polarization components reveals additional information on the orientation of fibrous scatterers as well as their translation and rotation kinetics.

  3. Rotating Connection for Electrical Cables

    NASA Technical Reports Server (NTRS)

    Manges, D. R.

    1986-01-01

    Cable reel provides electrical connections between fixed structure and rotating one. Reel carries power and signal lines while allowing rotating structure to turn up to 360 degrees with respect to fixed structure. Reel replaces sliprings. Can be used to electrically connect arm of robot with body. Reel releases cable to rotating part as it turns and takes up cable as rotating part comes back to its starting position, without tangling, twisting, or kinking.

  4. Numerical studies of Siberian snakes and spin rotators for RHIC

    SciTech Connect

    Luccio, A.

    1995-04-17

    For the program of polarized protons in RHIC, two Siberian snakes and four spin rotators per ring will be used. The Snakes will produce a complete spin flip. Spin Rotators, in pairs, will rotate the spin from the vertical direction to the horizontal plane at a given insertion, and back to the vertical after the insertion. Snakes, 180{degrees} apart and with their axis of spin precession at 90{degrees} to each other, are an effective means to avoid depolarization of the proton beam in traversing resonances. Classical snakes and rotators are made with magnetic solenoids or with a sequence of magnetic dipoles with fields alternately directed in the radial and vertical direction. Another possibility is to use helical magnets, essentially twisted dipoles, in which the field, transverse the axis of the magnet, continuously rotates as the particles proceed along it. After some comparative studies, the authors decided to adopt for RHIC an elegant solution with four helical magnets both for the snakes and the rotators proposed by Shatunov and Ptitsin. In order to simplify the construction of the magnets and to minimize cost, four identical super conducting helical modules will be used for each device. Snakes will be built with four right-handed helices. Spin rotators with two right-handed and two left-handed helices. The maximum field will be limited to 4 Tesla. While small bore helical undulators have been built for free electron lasers, large super conducting helical magnets have not been built yet. In spite of this difficulty, this choice is dictated by some distinctive advantages of helical over more conventional transverse snakes/rotators: (i) the devices are modular, they can be built with arrangements of identical modules, (ii) the maximum orbit excursion in the magnet is smaller, (iii) orbit excursion is independent from the separation between adjacent magnets, (iv) they allow an easier control of the spin rotation and the orientation of the spin precession axis.

  5. Dynamically polarized target for the gp2 and GpE experiments at Jefferson Lab

    DOE PAGES

    Pierce, J.; Maxwell, J.; Badman, T.; ...

    2013-12-16

    We describe a dynamically polarized target that has been utilized for two electron scattering experiments in Hall A at Jefferson Lab. The primary components of the target are a new, high cooling power 4 He evaporation refrigerator, and a re-purposed, superconducting split-coil magnet. It has been used to polarize protons in irradiated NH3 at a temperature of 1 K and at fields of 2.5 and 5.0 Tesla. The performance of the target material in the electron beam under these conditions will be discussed. The maximum polarizations of 28% and 95% were obtained at those fields, respectively. To satisfy the requirementsmore » of both experiments, the magnet had to be routinely rotated between angles of 0, 6, and 90 degrees with respect to the incident electron beam. This was accomplished using a new rotating vacuum seal which permits rotations to be performed in only a few minutes.« less

  6. The Drift of Saturn's North Polar Spot Observed by the Hubble Space Telescope.

    PubMed

    Caldwell, J; Turgeon, B; Hua, X M; Barnet, C D; Westphal, J A

    1993-04-16

    Polar projections of 50 images of Saturn at 889 nanometers and 25 images at 718 nanometers taken by the Hubble Space Telescope in November 1990, as well as 3 images at each wavelength taken in June 1991, have been examined. Among them, 31 show the north polar spot, which is associated with Saturn's polar hexagon, in locations suitable for measurement. In each image, planetocentric coordinates of the polar spot were determined, and the movement of the spot with respect to Saturn's system III rotation rate was studied. During the period of observation, the polar spot had first a short-term westward movement and then a long-term eastward drift. The rate of the long-term drift was -0.060 +/- 0.008 degrees per day with respect to system III, approximately 50 percent greater than previously determined from Voyager. The original 1980 and 1981 Voyager data were combined with the new Hubble images to form an 11-year base line. The eastward drift over the longer period was -0.0569 degrees per day. The long-term drift could be due to uncertainty in the standard value of the internal rotation period, which is 810.7939 +/- 0.148 degrees per 24-hour day. The short-term movement in November 1990 has a rate that is greater in magnitude but opposite in sign and probably represents a real, transient motion of the spot relative to the internal rotation system.

  7. Polarization at SLC

    SciTech Connect

    Swartz, M.L.

    1988-07-01

    The SLAC Linear Collider has been designed to readily accommodate polarized electron beams. Considerable effort has been made to implement a polarized source, a spin rotation system, and a system to monitor the beam polarization. Nearly all major components have been fabricated. At the current time, several source and polarimeter components have been installed. The installation and commissioning of the entire system will take place during available machine shutdown periods as the commissioning of SLC progresses. It is expected that a beam polarization of 45% will be achieved with no loss in luminosity. 13 refs., 15 figs.

  8. Vector Monte Carlo simulations on atmospheric scattering of polarization qubits.

    PubMed

    Li, Ming; Lu, Pengfei; Yu, Zhongyuan; Yan, Lei; Chen, Zhihui; Yang, Chuanghua; Luo, Xiao

    2013-03-01

    In this paper, a vector Monte Carlo (MC) method is proposed to study the influence of atmospheric scattering on polarization qubits for satellite-based quantum communication. The vector MC method utilizes a transmittance method to solve the photon free path for an inhomogeneous atmosphere and random number sampling to determine whether the type of scattering is aerosol scattering or molecule scattering. Simulations are performed for downlink and uplink. The degrees and the rotations of polarization are qualitatively and quantitatively obtained, which agree well with the measured results in the previous experiments. The results show that polarization qubits are well preserved in the downlink and uplink, while the number of received single photons is less than half of the total transmitted single photons for both links. Moreover, our vector MC method can be applied for the scattering of polarized light in other inhomogeneous random media.

  9. Polarization control at spin-driven ferroelectric domain walls.

    PubMed

    Leo, Naëmi; Bergman, Anders; Cano, Andres; Poudel, Narayan; Lorenz, Bernd; Fiebig, Manfred; Meier, Dennis

    2015-04-14

    Unusual electronic states arise at ferroelectric domain walls due to the local symmetry reduction, strain gradients and electrostatics. This particularly applies to improper ferroelectrics, where the polarization is induced by a structural or magnetic order parameter. Because of the subordinate nature of the polarization, the rigid mechanical and electrostatic boundary conditions that constrain domain walls in proper ferroics are lifted. Here we show that spin-driven ferroelectricity promotes the emergence of charged domain walls. This provides new degrees of flexibility for controlling domain-wall charges in a deterministic and reversible process. We create and position a domain wall by an electric field in Mn0.95Co0.05WO4. With a magnetic field we then rotate the polarization and convert neutral into charged domain walls, while its magnetic properties peg the wall to its location. Using atomistic Landau-Lifshitz-Gilbert simulations we quantify the polarization changes across the two wall types and highlight their general occurrence.

  10. Product rotational angular momentum polarization of H+FCl (v=0-5; j=0, 3, 6, 9) → HF+Cl and HCl+F at Erel=0.5-20 kcal mol(-1).

    PubMed

    Chao Wu, Victor Wei-Keh

    2015-12-01

    The rotational angular momentum polarizations of product molecules of the title reactions on the ground potential energy surface 1 (2)A' of DHTSN [Deskevic et al. J Chem Phys 2006, 124, 224303] have been studied using the quasi-classical trajectory method. Reaction dynamic results of the HF product channel comparing with another channel of HCl with 100,000 trajectories can be accurately resolved. We show the value of the polar p(ϑr) in the range of 0° ≤ ϑr ≤ 180(°), azimuthal p(φr) in the range of 0° ≤ φr ≤ 360(°), and dihedral p(ϑr, φr) in the ranges of 0(°) ≤ ϑr ≤ 180(°) and 0(°) ≤ φr ≤ 360(°); the angular distributions of the product molecules HF and HCl at relative Erel = 0.5, 1, 2, 5, 10, 15, and 20 kcal mol(-1); and four polarization-dependent differential cross sections (PDDCSs) of HF and HCl at Erel = 0.5, 1, 2, 5, 10, and 15 kcal mol(-1). p(φr) distributions at v = 0-5, and j = 0, 3, 6, 9 at every Erel are plotted cylindrically together. The stereo dynamic transformation reaction dependent upon the rovibrational states of the reactant molecule FCl and its relative translational energies around 0.5-5 kcal mol(-1) can be significantly differentiated. Translational and rovibrational enhancements of the title reactions on both early barrier potential energy surfaces have been shown in great detail and clarified. Reaction mechanisms of forward and backward scattering of the product molecules HF and HCl, respectively, have been obtained. Graphical Abstract H + FCl → either HF + Cl (left) or HCl + F (right) is moving along a trajectory on the respective PES.

  11. Elliptical polarization effects in a chromatically addressed Faraday current sensor

    NASA Astrophysics Data System (ADS)

    Li, G. D.; Aspey, R. A.; Kong, M. G.; Gibson, J. R.; Jones, G. R.

    1999-01-01

    Optical polarization processes in a parallel-sided glass element used in a Faraday rotation current sensor have been considered. In such sensors the path length necessary to produce sufficient rotation of the plane of polarization is produced by a multiplicity of reflections within the glass element. It is shown that such reflections induce ellipticity of polarization and that this affects the current-sensing performance of the sensor. Two reflection cases, corresponding to total internal reflections at a glass-air interface and reflections by aluminium-coated surfaces, are considered. The latter are shown to produce higher optical attenuation but a lower degree of elliptical polarization. The implications of the induced elliptical polarization in relation to chromatically modulated polychromatic light are considered. It is shown that the resolution of the Faraday sensing is improved by minimizing the ellipticity of the polarization with the aluminium-coated reflections. However a greater dynamic range and signal strength may be achievable with the total internal reflection element.

  12. Textures in south polar ice cap #2

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Textures of the south polar permanent residual ice cap and polar layered terrains. This 15 x 14 km area image (frame 7306) is centered near 87 degrees south, 341 degrees west.

    Figure caption from Science Magazine

  13. Textures in south polar ice cap #1

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Textures of the south polar permanent residual ice cap and polar layered terrains. This 30 x 29 km area image (frame 7709) is centered near 87 degrees south, 77 degrees west.

    Figure caption from Science Magazine

  14. The GOES-R Advanced Baseline Imager: polarization sensitivity and potential impacts

    NASA Astrophysics Data System (ADS)

    Pearlman, Aaron J.; Cao, Changyong; Wu, Xiangqian

    2015-09-01

    In contrast to the National Oceanic and Atmospheric Administration's (NOAA's) current geostationary imagers for operational weather forecasting, the next generation imager, the Advanced Baseline Imager (ABI) aboard the Geostationary Operational Environmental Satellite R-Series (GOES-R), will have six reflective solar bands - five more than currently available. These bands will be used for applications such as aerosol retrievals, which are influenced by polarization effects. These effects are determined by two factors: instrument polarization sensitivity and the polarization states of the observations. The former is measured as part of the pre-launch testing program performed by the instrument vendor. We analyzed the results of the pre-launch polarization sensitivity measurements of the 0.47 μm and 0.64 μm channels and used them in conjunction with simulated scene polarization states to estimate potential on-orbit radiometric impacts. The pre-launch test setups involved illuminating the ABI with an integrating sphere through either one or two polarizers. The measurement with one (rotating) polarizer yields the degree of linear polarization of ABI, and the measurements using two polarizers (one rotating and one fixed) characterized the non-ideal properties of the polarizer. To estimate the radiometric performance impacts from the instrument polarization sensitivity, we simulated polarized scenes using a radiative transfer code and accounted for the instrument polarization sensitivity over its field of regard. The results show the variation in the polarization impacts over the day and by regions of the full disk can reach up to 3.2% for the 0.47μm channel and 4.8% for the 0.64μm channel. Geostationary orbiters like the ABI give the unique opportunity to show these impacts throughout the day compared to low earth orbiters, which are more limited to certain times of day. This work may enhance the ability to diagnose anomalies on-orbit.

  15. First Polarized Proton Collisions at RHIC

    NASA Astrophysics Data System (ADS)

    Roser, T.; Ahrens, L.; Alessi, J.; Bai, M.; Beebe-Wang, J.; Brennan, J. M.; Brown, K. A.; Bunce, G.; Cameron, P.; Courant, E. D.; Drees, A.; Fischer, W.; Fliller, R.; Glenn, W.; Huang, H.; Luccio, A. U.; MacKay, W. W.; Makdisi, Y.; Montag, C.; Pilat, F.; Ptitsyn, V.; Satogata, T.; Tepikian, S.; Trbojevic, D.; Tsoupas, N.; van Zeijts, J.; Zelenski, A.; Zeno, K.; Deshpande, A.; Kurita, K.; Krueger, K.; Spinka, H.; Underwood, D.; Syphers, M.; Alekseev, I.; Svirida, D.; Ranjbar, V.; Tojo, J.; Jinnouchi, O.; Okamura, M.; Saito, N.

    2003-05-01

    We successfully injected polarized protons in both RHIC rings and maintained polarization during acceleration up to 100 GeV per ring using two Siberian snakes in each ring. Each snake consists of four helical superconducting dipoles which rotate the polarization by 180° about a horizontal axis. This is the first time that polarized protons have been accelerated to 100 GeV.

  16. [Review] Polarization and Polarimetry

    NASA Astrophysics Data System (ADS)

    Trippe, Sascha

    2014-02-01

    Polarization is a basic property of light and is fundamentally linked to the internal geometry of a source of radiation. Polarimetry complements photometric, spectroscopic, and imaging analyses of sources of radiation and has made possible multiple astrophysical discoveries. In this article I review (i) the physical basics of polarization: electromagnetic waves, photons, and parameterizations; (ii) astrophysical sources of polarization: scattering, synchrotron radiation, active media, and the Zeeman, Goldreich-Kylafis, and Hanle effects, as well as interactions between polarization and matter (like birefringence, Faraday rotation, or the Chandrasekhar-Fermi effect); (iii) observational methodology: on-sky geometry, influence of atmosphere and instrumental polarization, polarization statistics, and observational techniques for radio, optical, and X/γ wavelengths; and (iv) science cases for astronomical polarimetry: solar and stellar physics, planetary system bodies, interstellar matter, astrobiology, astronomical masers, pulsars, galactic magnetic fields, gamma-ray bursts, active galactic nuclei, and cosmic microwave background radiation.

  17. Earth rotation parameters from satellite techniques

    NASA Astrophysics Data System (ADS)

    Thaller, Daniela; Beutler, Gerhard; Jäggi, Adrian; Meindl, Michael; Dach, Rolf; Sosnica, Krzysztof; Baumann, Christian

    2013-04-01

    It has been demonstrated since several years that satellite techniques are capable of determining Earth Rotation Parameters (ERPs) with a daily or even sub-daily resolution. Especially Global Navigation Satellite Systems (GNSS) with their huge amount of observations can determine time series of polar motion (PM) and length of day (LOD) rather well. But also SLR with its spherical satellites whose orbital motions are easy to model and that allow long orbital arc lengths can deliver valuable contributions to Earth rotation. We analyze GNSS solutions (using GPS and GLONASS) and SLR solutions (using LAGEOS) regarding their potential of estimating polar motion and LOD with daily and subdaily temporal resolution. A steadily improving modeling applied in the analysis of space-geodetic data aims at improved time series of geodetic parameters, e.g., the ERPs. The Earth's gravity field and especially its temporal variations are one point of interest for an improved modeling for satellite techniques. For modeling the short-periodic gravity field variations induced by mass variations in the atmosphere and the oceans the GRACE science team provides the Atmosphere and Ocean Dealiasing (AOD) products. They contain 6-hourly gravity fields of the atmosphere and the oceans. We apply these corrections in the analysis of satellite-geodetic data and show the impact on the estimated ERPs. It is well known that the degree-2 coefficients of the Earth's gravity field are correlated with polar motion and LOD. We show to what extent temporal variations in the degree-2 coefficients are influencing the ERP estimates.

  18. Rotating Vesta

    NASA Video Gallery

    Astronomers combined 146 exposures taken by NASA's Hubble SpaceTelescope to make this 73-frame movie of the asteroid Vesta's rotation.Vesta completes a rotation every 5.34 hours.› Asteroid and...

  19. Probing the gravitational Faraday rotation using quasar X-ray microlensing.

    PubMed

    Chen, Bin

    2015-11-17

    The effect of gravitational Faraday rotation was predicted in the 1950s, but there is currently no practical method for measuring this effect. Measuring this effect is important because it will provide new evidence for correctness of general relativity, in particular, in the strong field limit. We predict that the observed degree and angle of the X-ray polarization of a cosmologically distant quasar microlensed by the random star field in a foreground galaxy or cluster lens vary rapidly and concurrently with flux during caustic-crossing events using the first simulation of quasar X-ray microlensing polarization light curves. Therefore, it is possible to detect gravitational Faraday rotation by monitoring the X-ray polarization of gravitationally microlensed quasars. Detecting this effect will also confirm the strong gravity nature of quasar X-ray emission.

  20. Probing the gravitational Faraday rotation using quasar X-ray microlensing

    PubMed Central

    Chen, Bin

    2015-01-01

    The effect of gravitational Faraday rotation was predicted in the 1950s, but there is currently no practical method for measuring this effect. Measuring this effect is important because it will provide new evidence for correctness of general relativity, in particular, in the strong field limit. We predict that the observed degree and angle of the X-ray polarization of a cosmologically distant quasar microlensed by the random star field in a foreground galaxy or cluster lens vary rapidly and concurrently with flux during caustic-crossing events using the first simulation of quasar X-ray microlensing polarization light curves. Therefore, it is possible to detect gravitational Faraday rotation by monitoring the X-ray polarization of gravitationally microlensed quasars. Detecting this effect will also confirm the strong gravity nature of quasar X-ray emission. PMID:26574051

  1. Polarization modulation polarimeter for an HPLC detector

    NASA Astrophysics Data System (ADS)

    Shindo, Yohji; Yazawa, Masanori; Izuka, Mituharu; Aoyama, Hideki; Kinnbara, Masao; Maeda, Shiro

    1997-04-01

    A polarization modulation polarimeter for a HPLC detector has been designed and constructed based on a principle, the electrical null-point detection method, which is entirely different from that of a commercially available polarimeters, the optical null-point detection method. The Mueller matrix method is used to analyze and evaluate important factors determining its performance. It is revealed that a crystal quartz Rochon prism must be used as a polarizer, and should be mounted on a rotatable stage equipped with a mechanism for precise adjustment to set its azimuth angle at 0 degrees as precisely as possible. Furthermore, all optical components used should have the least amount of the residual static birefringence. The total performance of our polarimeter is found to be equivalent to that of commercially available polarimeters.

  2. Rotational motion of Vesta

    NASA Astrophysics Data System (ADS)

    Rambaux, N.; Asmar, S. W.; Konopliv, A. S.

    2012-09-01

    Vesta is the second most massive body of the asteroid belt and contains a giant impact and a differentiated interior. Constraints on internal structure can be inferred from various observations such as gravity field measurements [1]. Especially, detailed knowledge of the rotational motion can help constrain the mass distribution inside the body, which in turn can lead to information on its history. Here, we compute the polar motion, precession-nutation, and length-of-day variations of Vesta. The Vesta's Pole position in space has been obtained by Dawn mission [1] and the orbital pole of Vesta at J2000 can be obtained from the Horizons ephemerides [2]. The obliquity, defined as the angle between the normal to the orbital plane and the figure axis, brings information on the moment of inertia if it has reached its equilibrium position [3], the present value from observations is around 27 degrees. That is far from the ˜ 0.03 deg expected for the equilibrium position. In addition, the required timescale to fully damped the obliquity appears to be very long following the same approach developed in [4]. Thus, it appears that the obliquity of Vesta has not yet relaxed in its Cassini state. The figure of Vesta appears to be triaxial and the Sun exerts a non-zero torque. By following the approach developed for the Earth [e.g. 5] and Ceres [4], we compute the nutation of Vesta. The nutational motion of Vesta is dominated by the semi-annual nutation (996 milli-arcseconds or 1.26 m surface displacement) related to the large obliquity of Vesta, and then terms related to harmonics and also to the planet's mean longitude. The detection of such small displacement requires tracking of Vesta's surface with high precision. The precession time of the axis of Vesta is very long, about 179,000 years.

  3. Analyzing Extragalactic Magnetic Fields Using Faraday Rotation Measure Synthesis

    NASA Astrophysics Data System (ADS)

    Pare, Dylan; Wang, Q. Daniel; Kamieneski, Patrick; Sullivan, Kendall

    2017-01-01

    Extragalactic magnetic fields are a poorly understood element of galaxies that are likely to play an important role in galaxy formation and evolution. Until recently, however, there was no way to observe these fields to a high level of detail, making it difficult to map the spatial distribution of these fields to any high degree of accuracy. Fortunately, a new technique known as Faraday Rotation Measure Synthesis allows for a more precise analysis of galactic magnetism. This technique uses the observed Faraday rotation of polarized emission from background sources to map the magnetic field of a foreground galaxy. This Faraday rotation occurs when the polarized emission encounters ionized, magnetized gas within the galaxy, causing the emission to be rotated by an amount proportional the magnetic field subjected to the ionized gas. Working as part of CHANG-ES (Continuum HAlos in Nearby Galaxies - an EVLA Survey), we have applied this technique in order to learn about the distribution of magnetic fields in the disks and halos of edge-on spiral galaxies. We will present maps of the galactic magnetic fields of CHANG-ES galaxies using this technique, indicating the potential of this technique in successfully mapping these distant fields.

  4. Rotationally Actuated Prosthetic Hand

    NASA Technical Reports Server (NTRS)

    Norton, William E.; Belcher, Jewell G., Jr.; Carden, James R.; Vest, Thomas W.

    1991-01-01

    Prosthetic hand attached to end of remaining part of forearm and to upper arm just above elbow. Pincerlike fingers pushed apart to degree depending on rotation of forearm. Simpler in design, simpler to operate, weighs less, and takes up less space.

  5. GUIDE FOR POLARIZED NEUTRONS

    DOEpatents

    Sailor, V.L.; Aichroth, R.W.

    1962-12-01

    The plane of polarization of a beam of polarized neutrons is changed by this invention, and the plane can be flipped back and forth quicitly in two directions in a trouble-free manner. The invention comprises a guide having a plurality of oppositely directed magnets forming a gap for the neutron beam and the gaps are spaced longitudinally in a spiral along the beam at small stepped angles. When it is desired to flip the plane of polarization the magnets are suitably rotated to change the direction of the spiral of the gaps. (AEC)

  6. Rotational testing.

    PubMed

    Furman, J M

    2016-01-01

    The natural stimulus for the semicircular canals is rotation of the head, which also might stimulate the otolith organs. Vestibular stimulation usually induces eye movements via the vestibulo-ocular reflex (VOR). The orientation of the subject with respect to the axis of rotation and the orientation of the axis of rotation with respect to gravity together determine which labyrinthine receptors are stimulated for particular motion trajectories. Rotational testing usually includes the measurement of eye movements via a video system but might use a subject's perception of motion. The most common types of rotational testing are whole-body computer-controlled sinusoidal or trapezoidal stimuli during earth-vertical axis rotation (EVAR), which stimulates primarily the horizontal semicircular canals bilaterally. Recently, manual impulsive rotations, known as head impulse testing (HIT), have been developed to assess individual horizontal semicircular canals. Most types of rotational stimuli are not used routinely in the clinical setting but may be used in selected research environments. This chapter will discuss clinically relevant rotational stimuli and several types of rotational testing that are used primarily in research settings.

  7. Rotational joint for prosthetic leg

    NASA Technical Reports Server (NTRS)

    Jones, W. C.; Owens, L. J.

    1977-01-01

    Device is installed in standard 30 millimeter tubing used for lower leg prosthetics. Unit allows proper rotation (about 3 degrees) of foot relative to the hip, during normal walking or running. Limited rotational movement with restoring force results in a more natural gait.

  8. Polarization-sensitive spectroradiometer: two methods for overcoming the problems of measuring reflectance spectra.

    PubMed

    Auer, S

    1979-02-15

    The spectra obtained using a spectroradiometer are incorrect if the incident light from the sample is polarized, and if, at the same time, polarization is introduced into the transmitted beam by components of the spectroradiometer. Two methods are proposed for obtaining correct power reflectance spectra. One way is to average two incorrect reflectance spectra, which are taken at mutually orthogonal angles of rotation of the radiometer about its optical axis. Another way is by averaging reflectance spectra of mutually orthogonal polarized light components. When the orientation of one component is chosen such that it is in the plane of polarization of the incoming light, the latter method also gives the correct degree of polarization.

  9. Polarization in SuperB

    SciTech Connect

    Wienands, Ulrich; Nosochkov, Yuri; Sullivan, Michael; Wittmer, Walter; Barber, Desmond; Biagini, Maria; Raimondi, Pantaleo; Koop, Ivan; Nikitin, Sergei; Sinyatkin, Sergey; /Novosibirsk, IYF

    2012-06-21

    SuperB, the 2nd-generation B-Factory with a luminosity of 10{sup 36}/cm{sup 2}/s proposed for LNF, is being designed from the start to be capable of providing a spin-polarized electron beam in the low-energy ring (LER) with longitudinal polarization at the interaction point. Due to the high luminosity at moderate beam current the beam lifetime is short (a few minutes), and a polarized injector will be used. Spin rotators have been designed and the equilibrium polarization evaluated. It will be shown that an average polarization of about 70% can be expected.

  10. Climate model studies of synchronously rotating planets.

    PubMed

    Joshi, Manoj

    2003-01-01

    M stars constitute 75% of main sequence stars though, until recently, their star systems have not been considered suitable places for habitable planets to exist. In this study the climate of a synchronously rotating planet around an M dwarf star is evaluated using a three-dimensional global atmospheric circulation model. The presence of clouds and evaporative cooling at the surface of the planet result in a cooler surface temperature at the subsolar point. Water ice forms at the polar regions and on the dark side, where the minimum temperature lies between -30 degrees C and 0 degrees C. As expected, rainfall is extremely high on the starlit side and extremely low on the dark side. The presence of a dry continent causes higher temperatures on the dayside, and allows accumulation of snow on the nightside. The absence of any oceans leads to higher day-night temperature differences, consistent with previous work. The present study reinforces recent conclusions that synchronously rotating planets within the circumstellar habitable zones of M dwarf stars should be habitable, and therefore M dwarf systems should not be excluded in future searches for exoplanets.

  11. Linear reduced cosserat medium with spherical tensor of inertia, where rotations are not observed in experiment

    NASA Astrophysics Data System (ADS)

    Grekova, E. F.

    2012-09-01

    We consider a linear reduced Cosserat medium: a linear elastic continuum, whose point bodies possess kinematically independent translational and rotational degrees of freedom, but the strain energy does not depend on the gradient of rotation of particles. In such a medium the force stress tensor is asymmetric, but the couple stress tensor is zero. This model can be applied for description of soils and granular media. Since for the time being the experimental technique for measurement of rotational deformations is not well developed, we investigate how the presence of rotational degrees of freedom affects the dynamics of translational displacements. We consider the case of the spherical tensor of inertia and isotropy with respect to the rotational degrees of freedom. Integration of the equation of balance of torques lets us in several cases to put in correspondence a linear reduced Cosserat continuum with the spherical tensor of inertia with a classical (non-polar elastic linear) medium with memory with the same equation for the balance of forces, written in terms of translational displacements. This is possible for the isotropic case and also if the anisotropy is present only in the tensor of elastic constants corresponding to the classical strain tensor. If the material is isotropic with respect to rotational deformations but the (anisotropic) coupling between rotational and classical translational strains is present, then the corresponding classical medium does not exist. If we ignore the rotational degrees of freedom when this coupling is present, this will lead us to the conclusion that the principle of material objectivity is violated.

  12. Effect of Alignment on Polarized Infrared Emission from Polycyclic Aromatic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Hoang, Thiem

    2017-04-01

    Polarized emission from polycyclic aromatic hydrocarbons (PAHs) potentially provides a new way to test the basic physics of the alignment of ultrasmall grains. In this paper, we present a new model of polarized PAH emission that takes into account the effect of PAH alignment with the magnetic field. We first generate a large sample of the grain angular momentum {\\boldsymbol{J}} by simulating the alignment of PAHs due to resonance paramagnetic relaxation that accounts for various interaction processes. We then calculate the polarization level of the PAH emission features for the different phases of the interstellar medium, including the cold neutral medium (CNM), reflection nebulae (RNe), and photodissociation regions. We find that a moderate degree of PAH alignment can significantly enhance the polarization degree of the PAH emission compared to the previous results obtained with randomly oriented angular momentum. In particular, we find that the smallest negatively charged PAHs in RNe can be excited to slightly suprathermal rotation due to enhanced ion collisional excitation, resulting in an increase of the polarization with the ionization fraction. Our results suggest that an RN is the most favorable environment in which to observe polarized PAH emission and to test the alignment physics of nanoparticles. Finally, we present an explicit relationship between the polarization level of PAH emission and the degree of external alignment for the CNM and RNe. The obtained relationship will be particularly useful for testing the alignment physics of PAHs in future observations.

  13. Center is at Latitude 30 Degrees South, Longitude 210 Degrees

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Center of the orthographic projection is at latitude 30 degrees S., longitude 210 degrees. Toward the top, the lowland plains of Elysium and Utopia Planitiae are separated from the darker heavily cratered highlands by a broad escarpment. The far bottom left is marked by the large light-colored ancient Hellas impact basin. The permanent south polar residual ice cap is located near the bottom.

  14. Polarization to the field enhancement by a gold dimer

    NASA Astrophysics Data System (ADS)

    Hong, Xin; Jin, Zheng

    2016-11-01

    Due to the effect of plasmonic coupling, gold nanoparticle dimers have been paid more attentions in bio-imaging. The coupling effect existing at the gap between a closely linked particle pair can make the local field strongly enhanced and in which the angle between the excitation polarization and the dimer axis plays a dominant role. We calculated the amplitude distribution under a highly focused illumination objective. The simulation results show that for such a model, 45 degrees between the excitation polarization and the dimer axis can produce an optimum signal. The enhancement thus obtained is 10.78 fold while the variation between peak-peak can reach 6.59 fold compared to a single plasmoic particle during the rotation of the polarization.

  15. POLARIZED PROTON COLLISIONS AT RHIC.

    SciTech Connect

    BAI, M.; AHRENS, L.; ALEKSEEV, I.G.; ALESSI, J.; ET AL.

    2005-05-16

    The Relativistic Heavy Ion Collider provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC. In 2002, polarized proton beams were first accelerated to 100 GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. Optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limited conditions are reported.

  16. Dynamic polarization vision in mantis shrimps

    PubMed Central

    Daly, Ilse M.; How, Martin J.; Partridge, Julian C.; Temple, Shelby E.; Marshall, N. Justin; Cronin, Thomas W.; Roberts, Nicholas W.

    2016-01-01

    Gaze stabilization is an almost ubiquitous animal behaviour, one that is required to see the world clearly and without blur. Stomatopods, however, only fix their eyes on scenes or objects of interest occasionally. Almost uniquely among animals they explore their visual environment with a series pitch, yaw and torsional (roll) rotations of their eyes, where each eye may also move largely independently of the other. In this work, we demonstrate that the torsional rotations are used to actively enhance their ability to see the polarization of light. Both Gonodactylus smithii and Odontodactylus scyllarus rotate their eyes to align particular photoreceptors relative to the angle of polarization of a linearly polarized visual stimulus, thereby maximizing the polarization contrast between an object of interest and its background. This is the first documented example of any animal displaying dynamic polarization vision, in which the polarization information is actively maximized through rotational eye movements. PMID:27401817

  17. Light polarization: A geometric-algebra approach

    NASA Astrophysics Data System (ADS)

    Baylis, W. E.; Bonenfant, J.; Derbyshire, J.; Huschilt, J.

    1993-06-01

    The geometric algebra of three-dimensional space (the ``Pauli algebra'') is known to provide an efficient geometric description of electromagnetic phenomena. Here, it is applied to the three-dimensional Stokes subspace to describe the polarization of an approximately monochromatic collimated beam of electromagnetic radiation. The coherency density ρ is a real element of the algebra whose components are the four Stokes parameters: a scalar representing the total photon flux density plus a three-dimensional vector whose direction and length in the Poincaré sphere give the type and degree of polarization. The detection of the radiation and the incoherent and coherent modification of the polarization by various optical elements are calculated by algebraic multiplication which has faithful representations in 2×2 matrices. One matrix representation of ρ is the coherency matrix with which Jones and Mueller matrices are related whereas another representation is the spin density matrix. However, the calculations are simplest to perform and interpret in the algebraic form independent of any particular matrix representation. It is shown that any possible change in the Stokes parameters can be treated algebraically by a combination of attenuation, depolarization, polarization, and rotation transformations of ρ. The geometric algebra thus unifies Stokes parameters, the Poincaré sphere, Jones and Mueller matrices, and the coherency and density matrices in a single, simple formalism.

  18. Rotating Wavepackets

    ERIC Educational Resources Information Center

    Lekner, John

    2008-01-01

    Any free-particle wavepacket solution of Schrodinger's equation can be converted by differentiations to wavepackets rotating about the original direction of motion. The angular momentum component along the motion associated with this rotation is an integral multiple of [h-bar]. It is an "intrinsic" angular momentum: independent of origin and…

  19. Paleomagnetic Determination of Vertical-Axis Block Rotation and Magnetostratigraphy in the Coachella Valley, California

    NASA Astrophysics Data System (ADS)

    Dimitroff, C.; Housen, B. A.; McNabb, J. C.; Dorsey, R. J.; Burmester, R. F.; Messe, G. T.

    2015-12-01

    Here, we report new paleomagnetism and magnetostratigraphy data from the Palm Spring Fm of the Mecca Hills, the Pleistocene conglomeratic sandstone in Desert Hot Springs and the Plio-Pleistocene San Timoteo beds from Live Oak Canyon. From the Mecca Hills, new data are from 29 sites and 112 samples. The paleomagnetic results yielded well-defined components of magnetization- defining seven polarity zones within the Ocotillo and upper Palm Spring Fm. Correlation to the geomagnetic polarity timescale, using the Bishop Ash near the top of the section as a tie point, places the Brunhes-Matuyama boundary near the base of the Ocotillo Fm, and the Jaramillo, Olduvai, and Reunion normal polarity sub-chrons in the upper Palm Spring Fm. This indicates the upper Palm Spring Fm in the Mecca Hills was deposited between 2.3 and 0.9 Ma. Sites from the Mecca Hills section have mean directions of D = 343, I = 53, α95 =11.3 N = 5 for normal sites, D = 175, I = -50, α95 = 4.9 N = 24 for reverse sites, and normal and reverse sites combined have a mean direction of D = 353, I = 51 α95 = 4.4. This indicates modest (7 degrees) CCW rotation of the section. Results from 19 sites (53 samples) of the Pleistocene conglomeritic sandstone from Desert Hot Springs have very well-defined paleomagnetic components. Six of the sites have normal polarity- 13 sites have reverse polarity. Sites with normal polarity have a mean direction of D = 358, I = 45, α95 = 13 and reverse sites have a mean of D = 182, I = -50, α95 = 6.6.The combined mean direction (in tilt-corrected coordinates) is D = 0.7, I = 49, α95 = 5.6 and indicates that 3.1° ± 2.3° of CW rotation has occurred at this location since ~1 to 1.5 Ma. Results from 8 sites (35 samples) of the upper-most San Timoteo beds from Live Oak Canyon also have well-defined paleomagnetic components for 6 sites. All of the results have normal polarity, and one site has a direction that is >40 degree from the other sites- the mean of the remaining 5

  20. POLARIZATION OF MAGNETIC DIPOLE EMISSION AND SPINNING DUST EMISSION FROM MAGNETIC NANOPARTICLES

    SciTech Connect

    Hoang, Thiem; Lazarian, Alex

    2016-04-20

    Magnetic dipole emission (MDE) from interstellar magnetic nanoparticles is potentially an important Galactic foreground in the microwave frequencies, and its polarization level may pose great challenges for achieving reliable measurements of cosmic microwave background B-mode signal. To obtain realistic predictions for the polarization of MDE, we first compute the degree of alignment of big silicate grains incorporated with magnetic inclusions. We find that thermally rotating big grains with magnetic inclusions are weakly aligned and can achieve alignment saturation when the magnetic alignment rate becomes much faster than the rotational damping rate. We then compute the degree of alignment for free-flying magnetic nanoparticles, taking into account various interaction processes of grains with the ambient gas and radiation field, including neutral collisions, ion collisions, and infrared emission. We find that the rotational damping by infrared emission can significantly decrease the degree of alignment of small particles from the saturation level, whereas the excitation by ion collisions can enhance the alignment of ultrasmall particles. Using the computed degrees of alignment, we predict the polarization level of MDE from free-flying magnetic nanoparticles to be rather low. Such a polarization level is within the upper limits measured for anomalous microwave emission (AME), which indicates that MDE from free-flying iron particles may not be ruled out as a source of AME. We also quantify rotational emission from free-flying iron nanoparticles with permanent magnetic moments and find that its emissivity is about one order of magnitude lower than that from spinning polycyclic aromatic hydrocarbons.

  1. Polarized cells, polar actions.

    PubMed

    Maddock, J R; Alley, M R; Shapiro, L

    1993-11-01

    The recognition of polar bacterial organization is just emerging. The examples of polar localization given here are from a variety of bacterial species and concern a disparate array of cellular functions. A number of well-characterized instances of polar localization of bacterial proteins, including the chemoreceptor complex in both C. crescentus and E. coli, the maltose-binding protein in E. coli, the B. japonicum surface attachment proteins, and the actin tail of L. monocytogenes within a mammalian cell, involve proteins or protein complexes that facilitate bacterial interaction with the environment, either the extracellular milieux or that within a plant or mammalian host. The significance of this observation remains unclear. Polarity in bacteria poses many problems, including the necessity for a mechanism for asymmetrically distributing proteins as well as a mechanism by which polar localization is maintained. Large structures, such as a flagellum, are anchored at the pole by means of the basal body that traverses the peptidoglycan wall. But for proteins and small complexes, whether in the periplasm or the membrane, one must invoke a mechanism that prevents the diffusion of these proteins away from the cell pole. Perhaps the periplasmic proteins are retained at the pole by the presence of the periseptal annulus (35). The constraining features for membrane components are not known. For large aggregates, such as the clusters of MCP, CheA, and CheW complexes, perhaps the size of the aggregate alone prevents displacement. In most cases of cellular asymmetry, bacteria are able to discriminate between the new pole and the old pole and to utilize this information for localization specificity. The maturation of new pole to old pole appears to be a common theme as well. Given numerous examples reported thus far, we propose that bacterial polarity displays specific rules and is a more general phenomenon than has been previously recognized.

  2. THE GALACTIC PLANE INFRARED POLARIZATION SURVEY (GPIPS)

    SciTech Connect

    Clemens, Dan P.; Pinnick, A. F.; Pavel, M. D.; Taylor, B. W. E-mail: apinnick@bu.edu E-mail: bwtaylor@bu.edu

    2012-06-01

    The scientific motivation, data collection strategy, data reduction, and analysis methods are presented for the Galactic Plane Infrared Polarization Survey (GPIPS). The chief goal for the Survey was to reveal the nature of the magnetic field threading the Galactic disk, in particular through regions of low to moderate extinction (1-20 mag of A{sub V} ) and star formation in the cool interstellar medium. The Survey region spans 76 deg{sup 2} of the northern Milky Way disk, from l = 18 Degree-Sign to 56 Degree-Sign and b =-1 Degree-Sign to +1 Degree-Sign . Linear polarimetric imaging observations began in 2006 in the near-infrared H band (1.6 {mu}m) using the Mimir instrument on the 1.8 m Perkins telescope, located outside Flagstaff, AZ. Mimir used a cold, fixed wire grid and a rotateable cold, compound half-wave plate to obtain 'step-and-integrate' polarimetry over its full 10 Multiplication-Sign 10 arcmin field of view. The GPIPS bright and faint polarimetric limits are approximately 7th and 15th mag, respectively, set by saturation and photon noise. Polarimetric uncertainties track with stellar magnitude, from about 0.1% to 25%, on average, from the brightest to faintest stars. Across the 3237 field GPIPS region, approximately 0.5 million stars are estimated to show detectable linear polarization (P/{sigma}{sub P} > 3); most of these have m{sub H} < 12. This represents many orders of magnitude improvement in the number of polarization measurements across this region. GPIPS observations are more than 90% complete and should finish in 2012.

  3. Seismic Excitation of the Polar Motion, 1977-1993

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin Fong; Gross, Richard S.; Han, Yan-Ben

    1996-01-01

    The mass redistribution in the earth as a result of an earthquake faulting changes the earth's inertia tensor, and hence its rotation. Using the complete formulae developed by CHAO and GROSS (1987) based on the normal mode theory, we calculated the earthquake-induced polar motion excitation for the largest 11,015 earthquakes that occurred during 1977.0-1993.6. The seismic excitations in this period are found to be two orders of magnitude below the detection threshold even with today's high precision earth rotation measurements. However, it was calculated that an earthquake of only one tenth the size of the great 1960 Chile event, if happened today, could be comfortably detected in polar motion observations. Furthermore, collectively these seismic excitations have a strong statistical tendency to nudge the pole towards approximately 140deg E, away from the actual observed polar drift direction. This non-random behavior, similarly found in other earthquake-induced changes in earth rotation and low-degree gravitational field by CHAO and GROSS (1987), manifests some geodynamic behavior yet to be explored.

  4. Supergranulation rotation

    NASA Astrophysics Data System (ADS)

    Schou, Jesper; Beck, John G.

    2001-01-01

    Simple convection models estimate the depth of supergranulation at approximately 15,000 km which suggests that supergranules should rotate at the rate of the plasma in the outer 2% of the Sun by radius. Previous measurements (Snodgrass & Ulrich, 1990; Beck & Schou, 2000) found that supergranules rotate significantly faster than this, with a size-dependent rotation rate. We expand on previous work and show that the torsional oscillation signal seen in the supergranules tracks that obtained for normal modes. We also find that the amplitudes and lifetimes of the supergranulation are size dependent.

  5. IO Rotation Movie

    NASA Technical Reports Server (NTRS)

    2000-01-01

    During its 1979 flyby, Voyager 2 observed Io only from a distance. However, the volcanic activity discovered by Voyager 1 months earlier was readily visible. This sequence of nine color images was collected using the Blue, Green and Orange filters from about 1.2 million kilometers. A 2.5 hour period is covered during which Io rotates 7 degrees.

    Rotating into view over the limb of Io are the plumes of the volcanoes Amirani (top) and Maui (lower). These plumes are very distinct against the black sky because they are being illuminated from behind. Notice that as Io rotates, the proportion of Io which is sunlit decreases greatly. This changing phase angle is because Io is moving between the spacecraft and the Sun.

    This time-lapse movie was produced at JPL by the Image Processing Laboratory in 1985.

  6. Circular Polarization in AGNs: Polarity and Spectra

    NASA Astrophysics Data System (ADS)

    Aller, M. F.; Aller, H. D.; Plotkin, R. M.

    2005-12-01

    Circular polarization (Stokes V) observations potentially provide information on the nature and origin of the underlying magnetic fields in AGNs. We have been systematically monitoring a group of sources with detectable circular polarization (V>0.1 percent, a level set by the instrumental polarization of our system) in all 4 Stokes parameters at 8.0 and 4.8 GHz since 2000, and also at 14.5 GHz since November 2003, with the University of Michigan prime focus paraboloid antenna. These data are compared with historical observations obtained with the same instrument at 8.0 and 4.8 GHz extending back to 1978. Specific goals are to study the temporal spectral behavior of Stokes V and its relation to variability in total flux and linear polarization, and to investigate the question of polarity stability on decade-long time scales using data obtained with the same instrumentation and at the same frequencies. The data are consistent with linear-to-circular mode conversion in partially opaque regions of the source. We find examples of polarity changes with time at one or more frequencies associated with outbursts in total flux and linear polarization, and polarity differences within the 3 frequencies at a single epoch in one case, 3C 279. Such behavior argues against the notion that the sign of Stokes V is a simple tracer of the net flow of magnetic energy from the central engine to the jet or an indicator of the direction of rotation of the spinning central black hole/accretion disk via the winding up of the initial seed magnetic field. This work was supported in part by NSF grant AST-0307629 and by funds from the University of Michigan.

  7. Polarization singularity democracy:WYSIWYG

    NASA Astrophysics Data System (ADS)

    Freund, Isaac

    2004-08-01

    The canonical point singularity of elliptically polarized light is a C point, an isolated point of circular polarization surrounded by a field of polarization ellipses. The defining singular property of a C point is that the surrounding ellipses rotate about the point. It is shown that this rotation is seen only for a particular line of sight (LOS) and, conversely, that there exists a unique LOS for every ellipse along which the ellipse is seen as a singularity. It is also shown that changes in LOS can turn singularities into stationary points and vice versa. The democratic behavior of polarization singularities and stationary points is a consequence of the fundamental ''what you see is what you get'' property of ellipse fields. Simple experiments are proposed for observing this unusual property of elliptically polarized light.

  8. Polar Magnetic Fields Observed During the Last Four Solar Minima

    NASA Astrophysics Data System (ADS)

    Sun, X.; Liu, Y.; Hoeksema, J. T.

    2008-12-01

    The Sun's polar fields during the current minimum are the weakest in at least four solar cycles. The field strengths are fairly symmetric, unlike at least the two previous minima. We compare data from the Wilcox Solar Observatory (WSO) and Michelson Doppler Imager (MDI) to follow the polar field changes since 1976. The polar field is never observed well from Earth because the ecliptic lies near the Sun's equator, and each year the view of the north (south) is completely hidden for several months around March 7 (September 7). Analysis of the most favorably oriented MDI synoptic maps each year allows us to derive the fairly slowly evolving large-scale polar magnetic field pattern from 1996 to the present. We account for differential rotation and other geometric effects. The analysis allows us to provide a useful interpolated or extrapolated correction that can be smoothly incorporated into the global synoptic or synchronic maps above about 70 degrees latitude. The polar field is important in modeling the large-scale coronal and heliospheric field, particularly at minimum. Even though there has been extremely little solar activity over the last several months, at the current solar minimum the structure of the corona is much less equatorial than usual, in part because the polar fields are relatively weak.

  9. Rotational Energy.

    ERIC Educational Resources Information Center

    Lockett, Keith

    1988-01-01

    Demonstrates several objects rolling down a slope to explain the energy transition among potential energy, translational kinetic energy, and rotational kinetic energy. Contains a problem from Galileo's rolling ball experiment. (YP)

  10. Solar rotation.

    NASA Astrophysics Data System (ADS)

    Dziembowski, W.

    Sunspot observations made by Johannes Hevelius in 1642 - 1644 are the first ones providing significant information about the solar differential rotation. In modern astronomy the determination of the rotation rate is done in a routine way by measuring positions of various structures on the solar surface as well as by studying the Doppler shifts of spectral lines. In recent years a progress in helioseismology enabled determination of the rotation rate in the layers inaccessible for direct observations. There are still uncertainties concerning, especially, the temporal variations of the rotation rate and its behaviour in the radiative interior. We are far from understanding the observations. Theoretical works have not yet resulted in a satisfactory model for the angular momentum transport in the convective zone.

  11. Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell

    PubMed Central

    Oura, Makoto; Yamamoto, Johtaro; Ishikawa, Hideto; Mikuni, Shintaro; Fukushima, Ryousuke; Kinjo, Masataka

    2016-01-01

    Rotational diffusion measurement is predicted as an important method in cell biology because the rotational properties directly reflect molecular interactions and environment in the cell. To prove this concept, polarization-dependent fluorescence correlation spectroscopy (pol-FCS) measurements of purified fluorescent proteins were conducted in viscous solution. With the comparison between the translational and rotational diffusion coefficients obtained from pol-FCS measurements, the hydrodynamic radius of an enhanced green fluorescent protein (EGFP) was estimated as a control measurement. The orientation of oligomer EGFP in living cells was also estimated by pol-FCS and compared with Monte Carlo simulations. The results of this pol-FCS experiment indicate that this method allows an estimation of the molecular orientation using the characteristics of rotational diffusion. Further, it can be applied to analyze the degree of molecular orientation and multimerization or detection of tiny aggregation of aggregate-prone proteins. PMID:27489044

  12. Soliton mode locking by nonlinear Faraday rotation

    SciTech Connect

    Wabnitz, S.; Westin, E.; Frey, R.; Flytzanis, C.

    1996-11-01

    We propose nonlinear Faraday rotation as a mechanism for achieving stable polarization mode locking of a soliton laser. We analyze by perturbation theory and beam-propagation simulations the interplay between bandwidth-limited gain, gain dichroism, and linear and nonlinear Faraday rotation. {copyright} {ital 1996 Optical Society of America.}

  13. Polarization at the SLC

    NASA Astrophysics Data System (ADS)

    Moffeit, Kenneth C.

    1989-05-01

    The Stanford Linear Collider was designed to accommodate polarized electron beams. Longitudinally polarized electrons colliding with unpolarized positrons at a center of mass energy near the Z0 mass can be used as novel and sensitive probes of the electroweak process. A gallium arsenide based photon emission source will provide a beam of longitudinally polarized electrons of about 45 percent polarization. A system of bend magnets and a superconducting solenoid will be used to rotate the spins so that the polarization is preserved while the 1.21 GeV electrons are stored in the damping ring. Another set of bend magnets and two superconducting solenoids orient the spin vectors so that longitudinal polarization of the electrons is achieved at the collision point with the unpolarized positrons. A system to monitor the polarization based on Mo/ller and Compton scattering will be used. Nearly all major components have been fabricated and tested. Subsystems of the source and polarimeters have been installed, and studies are in progress. The installation and commissioning of the entire system will take place during available machine shutdown periods as the commissioning of SLC progresses.

  14. Heme Distortions in Sperm-Whale Carbonmonoxy Myoglobin: Correlations between Rotational Strengths and Heme Distortions in MD-Generated Structures

    SciTech Connect

    KIEFL,CHRISTOPH; SCREERAMA,NARASIMHA; LU,YI; QIU,YAN; SHELNUTT,JOHN A.; WOODY,ROBERT W.

    2000-07-13

    The authors have investigated the effects of heme rotational isomerism in sperm-whale carbonmonoxy myoglobin using computational techniques. Several molecular dynamics simulations have been performed for the two rotational isomers A and B, which are related by a 180{degree} rotation around the {alpha}-{gamma} axis of the heme, of sperm-whale carbonmonoxy myoglobin in water. Both neutron diffraction and NMR structures were used as starting structures. In the absence of an experimental structure, the structure of isomer B was generated by rotating the heme in the structure of isomer A. Distortions of the heme from planarity were characterized by normal coordinate structural decomposition and by the angle of twist of the pyrrole rings from the heme plane. The heme distortions of the neutron diffraction structure were conserved in the MD trajectories, but in the NMR-based trajectories, where the heme distortions are less well defined, they differ from the original heme deformations. The protein matrix induced similar distortions on the heroes in orientations A and B. The results suggest that the binding site prefers a particular macrocycle conformation, and a 180{degree} rotation of the heme does not significantly alter the protein's preference for this conformation. The intrinsic rotational strengths of the two Soret transitions, separated according to their polarization in the heme plane, show strong correlations with the ruf-deformation and the average twist angle of the pyrrole rings. The total rotational strength, which includes contributions from the chromophores in the protein, shows a weaker correlation with heme distortions.

  15. Polarized and non-polarized leaf reflectances of Coleus blumei

    NASA Technical Reports Server (NTRS)

    Grant, Lois; Daughtry, C. S. T.; Vanderbilt, V. C.

    1987-01-01

    A polarization photometer has been used to measure the reflectance of three variegated portions of Coleus blumei, Benth. in five wavelength bands of the visible and near-infrared spectrum. The polarized component of the reflectance factor was found to be independent of wavelength, indicating that the polarized reflectance arises from the leaf surface. It is suggested that differences in the polarized component result from variations in surface features. The nonpolarized component of the reflectance factor is shown to be related to the internal leaf structure. The variation of the degree of polarization with wavelength was found to be greatest in the regions of the spectrum where absorption occurs.

  16. Particle rotational trapping on a floating electrode by rotating induced-charge electroosmosis.

    PubMed

    Ren, Yukun; Liu, Weiyu; Liu, Jiangwei; Tao, Ye; Guo, Yongbo; Jiang, Hongyuan

    2016-09-01

    We describe a novel rotating trait of induced-charge electroosmotic slip above a planar metal surface, a phenomenon termed "Rotating induced-charge electro-osmosis" (ROT-ICEO), in the context of a new microfluidic technology for tunable particle rotation or rotational trap. ROT-ICEO has a dynamic flow stagnation line (FSL) that rotates synchronously with a background circularly polarized electric field. We reveal that the rotating FSL of ROT-ICEO gives rise to a net hydrodynamic torque that is responsible for rotating fluids or particles in the direction of the applied rotating electric field either synchronously or asynchronously, the magnitude of which is adjusted by a balance between rotation of FSL and amplitude of angular-direction flow component oscillating at twice the field frequency. Supported by experimental observation, our physical demonstration with ROT-ICEO proves invaluable for the design of flexible electrokinetic framework in modern microfluidic system.

  17. Two degree of freedom camera mount

    NASA Technical Reports Server (NTRS)

    Ambrose, Robert O. (Inventor)

    2003-01-01

    A two degree of freedom camera mount. The camera mount includes a socket, a ball, a first linkage and a second linkage. The socket includes an interior surface and an opening. The ball is positioned within an interior of the socket. The ball includes a coupling point for rotating the ball relative to the socket and an aperture for mounting a camera. The first and second linkages are rotatably connected to the socket and slidably connected to the coupling point of the ball. Rotation of the linkages with respect to the socket causes the ball to rotate with respect to the socket.

  18. Electropumping of water with rotating electric fields.

    PubMed

    De Luca, Sergio; Todd, B D; Hansen, J S; Daivis, Peter J

    2013-04-21

    Pumping of fluids confined to nanometer dimension spaces is a technically challenging yet vitally important technological application with far reaching consequences for lab-on-a-chip devices, biomimetic nanoscale reactors, nanoscale filtration devices and the like. All current pumping mechanisms require some sort of direct intrusion into the nanofluidic system, and involve mechanical or electronic components. In this paper, we present the first nonequilibrium molecular dynamics results to demonstrate that non-intrusive electropumping of liquid water on the nanoscale can be performed by subtly exploiting the coupling of spin angular momentum to linear streaming momentum. A spatially uniform rotating electric field is applied to water molecules, which couples to their permanent electric dipole moments. The resulting molecular rotational momentum is converted into linear streaming momentum of the fluid. By selectively tuning the degree of hydrophobicity of the solid walls one can generate a net unidirectional flow. Our results for the linear streaming and angular velocities of the confined water are in general agreement with the extended hydrodynamical theory for this process, though also suggest refinements to the theory are required. These numerical experiments confirm that this new concept for pumping of polar nanofluids can be employed under laboratory conditions, opening up significant new technological possibilities.

  19. Electropumping of water with rotating electric fields

    NASA Astrophysics Data System (ADS)

    De Luca, Sergio; Todd, B. D.; Hansen, J. S.; Daivis, Peter J.

    2013-04-01

    Pumping of fluids confined to nanometer dimension spaces is a technically challenging yet vitally important technological application with far reaching consequences for lab-on-a-chip devices, biomimetic nanoscale reactors, nanoscale filtration devices and the like. All current pumping mechanisms require some sort of direct intrusion into the nanofluidic system, and involve mechanical or electronic components. In this paper, we present the first nonequilibrium molecular dynamics results to demonstrate that non-intrusive electropumping of liquid water on the nanoscale can be performed by subtly exploiting the coupling of spin angular momentum to linear streaming momentum. A spatially uniform rotating electric field is applied to water molecules, which couples to their permanent electric dipole moments. The resulting molecular rotational momentum is converted into linear streaming momentum of the fluid. By selectively tuning the degree of hydrophobicity of the solid walls one can generate a net unidirectional flow. Our results for the linear streaming and angular velocities of the confined water are in general agreement with the extended hydrodynamical theory for this process, though also suggest refinements to the theory are required. These numerical experiments confirm that this new concept for pumping of polar nanofluids can be employed under laboratory conditions, opening up significant new technological possibilities.

  20. Elliptical polarization of near-resonant linearly polarized probe light in optically pumped alkali metal vapor

    NASA Astrophysics Data System (ADS)

    Li, Yingying; Wang, Zhiguo; Jin, Shilong; Yuan, Jie; Luo, Hui

    2017-02-01

    Optically pumped alkali metal atoms currently provide a sensitive solution for magnetic microscopic measurements. As the most practicable plan, Faraday rotation of linearly polarized light is extensively used in spin polarization measurements of alkali metal atoms. In some cases, near-resonant Faraday rotation is applied to improve the sensitivity. However, the near-resonant linearly polarized probe light is elliptically polarized after passing through optically pumped alkali metal vapor. The ellipticity of transmitted near-resonant probe light is numerically calculated and experimentally measured. In addition, we also analyze the negative impact of elliptical polarization on Faraday rotation measurements. From our theoretical estimate and experimental results, the elliptical polarization forms an inevitable error in spin polarization measurements.

  1. Elliptical polarization of near-resonant linearly polarized probe light in optically pumped alkali metal vapor

    PubMed Central

    Li, Yingying; Wang, Zhiguo; Jin, Shilong; Yuan, Jie; Luo, Hui

    2017-01-01

    Optically pumped alkali metal atoms currently provide a sensitive solution for magnetic microscopic measurements. As the most practicable plan, Faraday rotation of linearly polarized light is extensively used in spin polarization measurements of alkali metal atoms. In some cases, near-resonant Faraday rotation is applied to improve the sensitivity. However, the near-resonant linearly polarized probe light is elliptically polarized after passing through optically pumped alkali metal vapor. The ellipticity of transmitted near-resonant probe light is numerically calculated and experimentally measured. In addition, we also analyze the negative impact of elliptical polarization on Faraday rotation measurements. From our theoretical estimate and experimental results, the elliptical polarization forms an inevitable error in spin polarization measurements. PMID:28216649

  2. Laser-polarization-dependent photoelectron angular distributions from polar molecules.

    PubMed

    Zhu, Xiaosong; Zhang, Qingbin; Hong, Weiyi; Lu, Peixiang; Xu, Zhizhan

    2011-11-21

    Photoelectron angular distributions (PADs) of oriented polar molecules in response to different polarized lasers are systematically investigated. It is found that the PADs of polar CO molecules show three distinct styles excited by linearly, elliptically and circularly polarized lasers respectively. In the case of elliptical polarization, a deep suppression is observed along the major axis and the distribution concentrates approximately along the minor axis. Additionally, it is also found that the concentrated distributions rotate clockwise as the ellipticity increases. Our investigation presents a method to manipulate the motion and angular distribution of photoelectrons by varying the polarization of the exciting pulses, and also implies the possibility to control the processes in laser-molecule interactions in future work.

  3. Relativity on Rotated Graph Paper

    NASA Astrophysics Data System (ADS)

    Salgado, Roberto

    2011-11-01

    We present visual calculations in special relativity using spacetime diagrams drawn on graph paper that has been rotated by 45 degrees. The rotated lines represent lightlike directions in Minkowski spacetime, and the boxes in the grid (called light-clock diamonds) represent ticks of an inertial observer's lightclock. We show that many quantitative results can be read off a spacetime diagram by counting boxes, using a minimal amount of algebra.

  4. Climate-Rotation Feedback on Mars

    NASA Technical Reports Server (NTRS)

    Bills, Bruce G.

    1999-01-01

    A new model is presented for the coupled evolution of climate and rotation, as applied to Mars. It has long been appreciated that changes in the orbital and rotational geometry of Mars will influence the seasonal and latitudinal pattern of insolation [1-5], and this will likely dominate climatic fluctuations on time scales of 10(exp 5) to 10(exp 7) years [6-9]. Equally important, but less widely appreciated, is the influence climatic change can have on rotational dynamics. The primary means by which climate influences rotation is via its influence on transport of mass (volatiles and dust) into and out of the polar regions. Many important issues remain unresolved: What are the ages of the polar caps? What climatic periods are recorded in the polar layered deposits? What is the long term obliquity history?

  5. Climate-Rotation Feedback on Mars

    NASA Technical Reports Server (NTRS)

    Bills, Bruce G.

    1999-01-01

    A new model is presented for the coupled evolution of climate and rotation, as applied to Mars. It has long been appreciated that changes in the orbital and rotational geometry of Mars will influence the seasonal and latitudinal pattern of insolation, and this will likely dominate climatic fluctuations on time scales of 10(exp 5) to 10(exp 7) years. Equally important, but less widely appreciated, is the influence climatic change can have on rotational dynamics. The primary means by which climate influences rotation is via its influence on transport of mass (volatiles and dust) into and out of the polar regions. Many important issues remain unresolved: What are the ages of the polar caps? What climatic periods are recorded in the polar layered deposits? What is the long term obliquity history? Additional information is contained in the original extended abstract.

  6. Effects of Bose-Einstein condensation of exciton polaritons in microcavities on the polarization of emitted light

    SciTech Connect

    Laussy, Fabrice P.; Shelykh, Ivan A.; Malpuech, Guillaume; Kavokin, Alexey

    2006-01-15

    It is shown theoretically that Bose condensation of spin-degenerated exciton polaritons results in spontaneous buildup of the linear polarization in emission spectra of semiconductor microcavities and therefore that linear polarization is a good order parameter for the polariton Bose condensation under unpolarized pumping. If spin degeneracy is lifted, an elliptically polarized light is emitted by the polariton condensate. The main axis of the ellipse rotates in time due to self-induced Larmor precession of the polariton condensate pseudospin. The polarization decay time is governed by the dephasing induced by the polariton-polariton interaction and is strongly dependent on the statistics of the condensed state. If the elliptical polarization preexists in the system as a result of pumping, the lifetime of the linear part of the polarization is also extremely sensitive to the degree of circular polarization induced in the system by pumping. This decay time can be used to measure the coherence degree of the condensate as a function of the polarization of the emitted light, as opposed to more conventional but harder particle counting experiments of the Hanbury Brown-Twiss type.

  7. Rotating apparatus for isoelectric focusing

    NASA Technical Reports Server (NTRS)

    Bier, Milan (Inventor)

    1986-01-01

    This disclosure is directed to an isoelectric focusing apparatus, wherein stabilization of the fluid containing the isolated proteins is achieved by carrying out the separation in a rotating cylinder with the separation cavity of the cylinder being segmented by means of filter elements. The filter elements are constituted of a material offering some degree of resistance to fluid convection, but allowing relatively free and unhindered passage of current and transport of proteins. The combined effect of segmentation and rotation has been found to be superior to either segmentation or rotation alone in maintaining the stability of the migrated fractions.

  8. A New Picture for the Internal Rotation of the Sun.

    NASA Astrophysics Data System (ADS)

    Morrow, Cherilynn Ann

    This thesis describes a helioseismic quest to determine the angular velocity inside the Sun as a function of depth and latitude. I analyze rotational frequency splittings extracted from 15 days of full-disk observations of the solar acoustic oscillations (1 = 15-99) obtained with the Fourier Tachometer (a Doppler analyzing instrument design by Tim Brown). I have compared the observed frequency splittings to those generated by several different physically -motivated models for the solar internal angular velocity. I also introduce convenient preliminary analysis techniques, which require no formal computations and which guide the choices of rotation models. My analysis suggests that the differential rotation in latitude observed at the solar surface pervades the convection zone and perhaps even deeper layers. Thus, the convection zone appears to contain little or no radial gradient of angular velocity. The analysis further indicates that the angular velocity of the outer portion of the radiative interior is constant, or nearly so, at a value that is intermediate between the relatively fast equatorial rate and the slower polar rate of the surface profile. This new picture of the Sun's internal rotation implies that a significant radial gradient exists only in a transitional layer between the convection zone and the radiative interior. The sign of the gradient in this layer reverses at a latitude of about 30 degrees, where the angular velocity of the "surface" profile at the base of the convection zone matches that of the interior: angular velocity decreases inward at latitudes below 30 degrees and increases inward at higher latitudes. This model has intriguing implications for the solar dynamo, for the current distribution and transport of angular momentum, and for the rotational and evolutionary history of the Sun. Frequency splittings from a novel reduction of higher degree oscillations (1 ~ 140-400), which potentially contain more detailed information on the

  9. Mental Rotation: Cross-Task Training and Generalization

    ERIC Educational Resources Information Center

    Stransky, Debi; Wilcox, Laurie M.; Dubrowski, Adam

    2010-01-01

    It is well established that performance on standard mental rotation tasks improves with training (Peters et al., 1995), but thus far there is little consensus regarding the degree of transfer to other tasks which also involve mental rotation. In Experiment 1, we assessed the effect of mental rotation training on participants' Mental Rotation Test…

  10. Polarization degree differences for the 3p {sup 2}P{sub 3/2}-3s {sup 2}S{sub 1/2} transition of N{sup 4+}(3p {sup 2}P{sub 3/2}) produced in N{sup 5+}-He and N{sup 5+}-H{sub 2} collisions

    SciTech Connect

    Liu, L.; Wang, J. G.; Zhao, Y. Q.; Janev, R. K.; Tanuma, H.

    2010-01-15

    The magnetic substate-selective single-electron-capture cross sections in collisions of N{sup 5+} with He and H{sub 2} are calculated using the two-center atomic orbital close-coupling method, and the polarization of emitted radiation from the excited state of N{sup 4+} is investigated for projectile energies between 1.2 and 7 keV/u. The polarization degrees for the 3p {sup 2}P{sub 3/2}-3s {sup 2}S{sub 1/2} transition of N{sup 4+}(3p {sup 2}P{sub 3/2}) produced in N{sup 5+}+He and N{sup 5+}+H{sub 2} electron-capture collisions are in general agreement with the experimental measurements. It is found both experimentally and theoretically that there exists a large difference between the polarization degrees of this radiation resulting from the N{sup 5+}+He and N{sup 5+}+H{sub 2} electron-capture collisions, namely, approx0.25 and approx0, respectively. By studying the time evolution of electron-capture dynamics in the two systems we have found that this difference is caused mainly by the difference in the interactions in the two systems at relatively small internuclear distances, consistent with the molecular picture of the collision dynamics.

  11. Minority-spin t2g states and the degree of spin polarization in ferromagnetic metallic La2-2xSr1+2xMn2O7 (x =0.38)

    NASA Astrophysics Data System (ADS)

    Sun, Zhe; Wang, Q.; Douglas, J. F.; Lin, H.; Sahrakorpi, S.; Barbiellini, B.; Markiewicz, R. S.; Bansil, A.; Fedorov, A. V.; Rotenberg, E.; Zheng, H.; Mitchell, J. F.; Dessau, D. S.

    2013-03-01

    Using angle-resolved photoemission spectroscopy (ARPES), we investigate the electronic band structure and Fermi surface of ferromagnetic La2-2xSr1+2xMn2O7 (x =0.38). Besides the expected two hole pockets and one electron pocket of majority-spin eg electrons, we show an extra electron pocket around the Γ point. A comparison with first-principles spin-polarized band-structure calculations shows that the extra electron pocket arises from t2g electrons of minority-spin character, indicating this compound is not a complete half-metallic ferromagnet, with similar expectations for lightly-doped cubic manganites. However, our data suggest that a complete half-metallic state is likely to be reached as long as the bandwidth is mildly reduced. Moreover, the band-resolved capability of ARPES enables us to investigate the band structure effects on spin polarization for different experimental conditions.

  12. Heterodyne grating interferometer based on a quasi-common-optical-path configuration for a two-degrees-of-freedom straightness measurement.

    PubMed

    Lee, Ju-Yi; Hsieh, Hung-Lin; Lerondel, Gilles; Deturche, Regis; Lu, Mini-Pei; Chen, Jyh-Chen

    2011-03-20

    We present a heterodyne grating interferometer based on a quasi-common-optical-path (QCOP) design for a two-degrees-of-freedom (DOF) straightness measurement. Two half-wave plates are utilized to rotate the polarizations of two orthogonally polarized beams. The grating movement can be calculated by measuring the phase difference variation in each axis. The experimental results demonstrate that our method has the ability to measure two-DOF straightness and still maintain high system stability. The proposed and demonstrated method, which relies on heterodyne interferometric phase measurement combined with the QCOP configuration, has the advantages of high measurement resolution, relatively straightforward operation, and high system stability.

  13. Heterodyne grating interferometer based on a quasi-common-optical-path configuration for a two-degrees-of-freedom straightness measurement

    SciTech Connect

    Lee, Ju-Yi; Hsieh, Hung-Lin; Lerondel, Gilles; Deturche, Regis; Lu, Mini-Pei; Chen, Jyh-Chen

    2011-03-20

    We present a heterodyne grating interferometer based on a quasi-common-optical-path (QCOP) design for a two-degrees-of-freedom (DOF) straightness measurement. Two half-wave plates are utilized to rotate the polarizations of two orthogonally polarized beams. The grating movement can be calculated by measuring the phase difference variation in each axis. The experimental results demonstrate that our method has the ability to measure two-DOF straightness and still maintain high system stability. The proposed and demonstrated method, which relies on heterodyne interferometric phase measurement combined with the QCOP configuration, has the advantages of high measurement resolution, relatively straightforward operation, and high system stability.

  14. Solar rotating magnetic dipole?. [around axis perpendicular to rotation axis of the sun

    NASA Technical Reports Server (NTRS)

    Antonucci, E.

    1974-01-01

    A magnetic dipole rotating around an axis perpendicular to the rotation axis of the sun can account for the characteristics of the surface large-scale solar magnetic fields through the solar cycle. The polarity patterns of the interplanetary magnetic field, predictable from this model, agree with the observed interplanetary magnetic sector structure.

  15. Polarization of Young Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Manjavacas, Elena; Miles-Páez, Paulo A.; Zapatero-Osorio, Maria Rosa; Goldman, Bertrand; Buenzli, Esther; Henning, Thomas; Pallé, Enric

    2016-08-01

    Linear polarization due to scattering processes can be used as a probe of the existence of atmospheric condensates in ultracool dwarfs. Models predict that the observed linear polarization increases with the degree of oblateness, which is inverse to the surface gravity.We aimed to measure optical linear polarization from a sample of six young brown dwarfs, with spectral types between M6 to L2, and cataloged previously as objects with low gravity using spectroscopy. These targets are believed to have dusty atmospheres as a consequence of their low gravity, therefore linearly polarized light is expected from these objects.Linear polarimetric data were collected in I and R-band using CAFOS at the 2.2m telescope in Calar Alto Observatory.We obtained results of linear polarization in the I-band compatible with non polarization for all the objects, and similar results for the polarization degree in the R-band for all objects with the exception of 2M0422. For this object we find a linear polarization degree of 0.81+-0.18%. 2M0422 is 10 deg to the south of the Taurus star-forming region, thus, we suspect that its polarization is caused by the dust in the cloud in which 2M0422 might be embedded.

  16. The polarization and ultraviolet spectrum of Markarian 231

    NASA Technical Reports Server (NTRS)

    Smith, Paul S.; Schmidt, Gary D.; Allen, Richard G.; Angel, J. R. P.

    1995-01-01

    Ultraviolet spectropolarimetry acquired with the Hubble Space Telescope (HST) of the peculiar Seyfert galaxy Mrk 231 is combined with new high-quality ground-based measurements to provide the first, nearly complete, record of its linear polarization from 1575 to 7900 A. The accompanying ultraviolet spectrum portrays the heavily extinguished emission-line spectrum of the active nucleus plus the emergence of a blue continuum shortward of approximately 2400 A. In addition, absorption features due to He I lambda 3188, Mg I lambda 2853, Mg II lambda 2798, and especially several resonance multiplets of Fe II are identified with a well-known optical absorption system blueshifted approximately 4600 km/s with respect to emission lines. The continuum is attributed to approximately 10(exp 5) hot, young stars surrounding the nucleus. This component dilutes the polarized nuclear light, implying that the intrinsic polarization of the active galactic nucleus (AGN) spectrum approaches 20% at 2800 A. The rapid decline in degree of polarization toward longer wavelengths is best explained by the strongly frequency-dependent scattering cross section of dust grains coupled with modest starlight dilution. Peculiar S-shaped inflections in both the degree and position angle of polarization through H alpha and other major emission lines are interpreted as effects of scattering from two regions offset in velocity by several hundred km/s. A third source of (weakly) polarized flux is required to explain a nearly 40 deg rotation in position angle between 3200 and 1800 A. The displaced absorption features, polarimetry, and optical/infrared properties of Mrk 231 all point to its classification as a low-ionization, or Mg II broad absorption line quasar, in which most, if not all, lines of sight to the active nucleus are heavily obscured by dust and low-ionization gas clouds.

  17. Differential rotation in rapidly rotating F-stars

    NASA Astrophysics Data System (ADS)

    Reiners, A.; Schmitt, J. H. M. M.

    2003-12-01

    We obtained high quality spectra of 135 stars of spectral types F and later and derived ``overall'' broadening functions in selected wavelength regions utilizing a Least Squares Deconvolution (LSD) procedure. Precision values of the projected rotational velocity v \\sini were derived from the first zero of the Fourier transformed profiles and the shapes of the profiles were analyzed for effects of differential rotation. The broadening profiles of 70 stars rotating faster than v \\sini = 45 km s-1 show no indications of multiplicity nor of spottedness. In those profiles we used the ratio of the first two zeros of the Fourier transform q_2/q_1 to search for deviations from rigid rotation. In the vast majority the profiles were found to be consistent with rigid rotation. Five stars were found to have flat profiles probably due to cool polar caps, in three stars cuspy profiles were found. Two out of those three cases may be due to extremely rapid rotation seen pole on, only in one case (v \\sini = 52 km s-1) is solar-like differential rotation the most plausible explanation for the observed profile. These results indicate that the strength of differential rotation diminishes in stars rotating as rapidly as v \\sini >~ 50 km s-1. Table A.1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.125.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/412/813 Based on observations collected at the European Southern Observatory, La Silla, 69.D-0015(B).

  18. Fine Structure of Solar Acoustic Oscillations Due to Rotation

    NASA Technical Reports Server (NTRS)

    Goode, P. R.; Dziembowski, W.

    1984-01-01

    The nature of the fine structure of high order, low degree five minute period solar oscillations following from various postulated forms of spherical rotation is predicted. The first and second order effects of rotation are included.

  19. Transmission of polarized light in skeletal muscle

    NASA Astrophysics Data System (ADS)

    Shuaib, Ali; Li, Xin; Yao, Gang

    2011-02-01

    Experiments were conducted to study polarized light transmission in fresh bovine skeletal muscle of varying thicknesses. Two-dimensional polarization-sensitive transmission images were acquired and analyzed using a numerical parametric fitting algorithm. The total transmittance intensity and degree-of-polarization were calculated for both central ballistic and surrounding scattering regions. Full Mueller matrix images were derived from the raw polarization images and the polar decomposition algorithm was applied to extract polarization parameters. The results suggest that polarized light propagation through skeletal muscle is affected by strong birefringence, diattenuation, multiple scattering induced depolarization and the sarcomere diffraction effect.

  20. The cell adhesion molecules Echinoid and Friend of Echinoid coordinate cell adhesion and cell signaling to regulate the fidelity of ommatidial rotation in the Drosophila eye.

    PubMed

    Fetting, Jennifer L; Spencer, Susan A; Wolff, Tanya

    2009-10-01

    Directed cellular movements are a universal feature of morphogenesis in multicellular organisms. Differential adhesion between the stationary and motile cells promotes these cellular movements to effect spatial patterning of cells. A prominent feature of Drosophila eye development is the 90 degrees rotational movement of the multicellular ommatidial precursors within a matrix of stationary cells. We demonstrate that the cell adhesion molecules Echinoid (Ed) and Friend of Echinoid (Fred) act throughout ommatidial rotation to modulate the degree of ommatidial precursor movement. We propose that differential levels of Ed and Fred between stationary and rotating cells at the initiation of rotation create a permissive environment for cell movement, and that uniform levels in these two populations later contribute to stopping the movement. Based on genetic data, we propose that ed and fred impart a second, independent, ;brake-like' contribution to this process via Egfr signaling. Ed and Fred are localized in largely distinct and dynamic patterns throughout rotation. However, ed and fred are required in only a subset of cells - photoreceptors R1, R7 and R6 - for normal rotation, cells that have only recently been linked to a role in planar cell polarity (PCP). This work also provides the first demonstration of a requirement for cone cells in the ommatidial rotation aspect of PCP. ed and fred also genetically interact with the PCP genes, but affect only the degree-of-rotation aspect of the PCP phenotype. Significantly, we demonstrate that at least one PCP protein, Stbm, is required in R7 to control the degree of ommatidial rotation.

  1. Polarization preservation and control in a figure-8 ring

    SciTech Connect

    Derbenev, Yaroslav S.; Morozov, Vasiliy; Lin, Fanglei; Zhang, Yuhong; Kondratenko, A. M.; Kondratenko, M. A.; Filatov, Yuri

    2016-02-01

    We present a complete scheme for managing the polarization of ion beams in Jefferson Lab's proposed Medium-energy Electron-Ion Collider (MEIC). It provides preservation of the ion polarization during all stages of beam acceleration and polarization control in the collider's experimental straights. We discuss characteristic features of the spin motion in accelerators with Siberian snakes and in accelerators of figure-8 shape. We propose 3D spin rotators for polarization control in the MEIC ion collider ring. We provide polarization calculations in the collider with the 3D rotator for deuteron and proton beams. The main polarization control features of the figure-8 design are summarized.

  2. Polarization Preservation and Control in a Figure-8 Ring

    NASA Astrophysics Data System (ADS)

    Derbenev, Ya. S.; Morozov, V. S.; Lin, F.; Zhang, Y.; Kondratenko, A. M.; Kondratenko, M. A.; Filatov, Yu. N.

    2016-02-01

    We present a complete scheme for managing the polarization of ion beams in Jefferson Lab’s proposed Medium-energy Electron-Ion Collider (MEIC). It provides preservation of the ion polarization during all stages of beam acceleration and polarization control in the collider’s experimental straights. We discuss characteristic features of the spin motion in accelerators with Siberian snakes and in accelerators of figure-8 shape. We propose 3D spin rotators for polarization control in the MEIC ion collider ring. We provide polarization calculations in the collider with the 3D rotator for deuteron and proton beams. The main polarization control features of the figure-8 design are summarized.

  3. SCATTERING POLARIZATION IN SOLAR FLARES

    SciTech Connect

    Štěpán, Jiří; Heinzel, Petr

    2013-11-20

    There is ongoing debate about the origin and even the very existence of a high degree of linear polarization of some chromospheric spectral lines observed in solar flares. The standard explanation of these measurements is in terms of the impact polarization caused by non-thermal proton and/or electron beams. In this work, we study the possible role of resonance line polarization due to radiation anisotropy in the inhomogeneous medium of the flare ribbons. We consider a simple two-dimensional model of the flaring chromosphere and we self-consistently solve the non-LTE problem taking into account the role of resonant scattering polarization and of the Hanle effect. Our calculations show that the horizontal plasma inhomogeneities at the boundary of the flare ribbons can lead to a significant radiation anisotropy in the line formation region and, consequently, to a fractional linear polarization of the emergent radiation of the order of several percent. Neglecting the effects of impact polarization, our model can provide a clue for resolving some of the common observational findings, namely: (1) why a high degree of polarization appears mainly at the edges of the flare ribbons; (2) why polarization can also be observed during the gradual phase of a flare; and (3) why polarization is mostly radial or tangential. We conclude that radiation transfer in realistic multi-dimensional models of solar flares needs to be considered as an essential ingredient for understanding the observed spectral line polarization.

  4. One-shot phase-shifting phase-grating interferometry with modulation of polarization: case of four interferograms.

    PubMed

    Rodriguez-Zurita, Gustavo; Meneses-Fabian, Cruz; Toto-Arellano, Noel-Ivan; Vázquez-Castillo, José F; Robledo-Sánchez, Carlos

    2008-05-26

    An experimental setup for optical phase extraction from 2-D interferograms using a one-shot phase-shifting technique able to achieve four interferograms with 90 degrees phase shifts in between is presented. The system uses a common-path interferometer consisting of two windows in the input plane and a phase grating in Fourier plane as its pupil. Each window has a birefringent wave plate attached in order to achieve nearly circular polarization of opposite rotations one respect to the other after being illuminated with a 45 degrees linear polarized beam. In the output, interference of the fields associated with replicated windows (diffraction orders) is achieved by a proper choice of the windows spacing with respect to the grating period. The phase shifts to achieve four interferograms simultaneously to perform phase-shifting interferometry can be obtained by placing linear polarizers on each diffraction orders before detection at an appropriate angle. Some experimental results are shown.

  5. Stress field rotation or block rotation: An example from the Lake Mead fault system

    NASA Technical Reports Server (NTRS)

    Ron, Hagai; Nur, Amos; Aydin, Atilla

    1990-01-01

    The Coulomb criterion, as applied by Anderson (1951), has been widely used as the basis for inferring paleostresses from in situ fault slip data, assuming that faults are optimally oriented relative to the tectonic stress direction. Consequently if stress direction is fixed during deformation so must be the faults. Freund (1974) has shown that faults, when arranged in sets, must generally rotate as they slip. Nur et al., (1986) showed how sufficiently large rotations require the development of new sets of faults which are more favorably oriented to the principal direction of stress. This leads to the appearance of multiple fault sets in which older faults are offset by younger ones, both having the same sense of slip. Consequently correct paleostress analysis must include the possible effect of fault and material rotation, in addition to stress field rotation. The combined effects of stress field rotation and material rotation were investigated in the Lake Meade Fault System (LMFS) especially in the Hoover Dam area. Fault inversion results imply an apparent 60 degrees clockwise (CW) rotation of the stress field since mid-Miocene time. In contrast structural data from the rest of the Great Basin suggest only a 30 degrees CW stress field rotation. By incorporating paleomagnetic and seismic evidence, the 30 degrees discrepancy can be neatly resolved. Based on paleomagnetic declination anomalies, it is inferred that slip on NW trending right lateral faults caused a local 30 degrees counter-clockwise (CCW) rotation of blocks and faults in the Lake Mead area. Consequently the inferred 60 degrees CW rotation of the stress field in the LMFS consists of an actual 30 degrees CW rotation of the stress field (as for the entire Great Basin) plus a local 30 degrees CCW material rotation of the LMFS fault blocks.

  6. Polarization mixing optical parametric oscillator.

    SciTech Connect

    Pearl, Shaul; Smith, Arlee Virgil; Arie, Ady; Blau, Pinhas; Kalmani, Gal

    2005-05-01

    We report the experimental realization of a new type of optical parametric oscillator in which oscillation is achieved by polarization rotation in a linear retarder, followed by nonlinear polarization mixing. The mixing is performed by a type II degenerate parametric downconversion in a periodically poled KTP crystal pumped by a 1064 nm pulsed Nd:YAG pump. A single, linearly polarized beam, precisely at the degenerate wavelength is generated. The output spectrum has a narrow linewidth (below the instrumentation bandwidth of 1 nm) and is highly stable with respect to variations in the crystal temperature.

  7. Faraday rotation system. Topical report

    SciTech Connect

    Bauman, L.E.; Wang, W.

    1994-07-01

    The Faraday Rotation System (FRS) is one of the advanced laser-based diagnostics developed at DIAL to provide support for the demonstration of prototype-scale coal-fired combustion magnetohydrodynamic (MHD) electrical power generation. Intended for application in the MHD channel, the system directly measures electron density through a measurement of the induced rotation in the polarization of a far infrared laser beam after passing through the MHD flow along the magnetic field lines. A measurement of the induced polarization ellipticity provides a measure of the electron collision frequency which together with the electron density gives the electron conductivity, a crucial parameter for MHD channel performance. The theory of the measurements, a description of the system, its capabilities, laboratory demonstration measurements on seeded flames with comparison to emission absorption measurements, and the current status of the system are presented in this final report.

  8. Circularly Polarized MHOHG with Bichromatic Circularly Polarized Laser Pulses

    NASA Astrophysics Data System (ADS)

    Bandrauk, Andre D.; Mauger, Francois; Uzer, Turgay

    2016-05-01

    Circularly polarized MHOHG-Molecular High Order Harmonic Generation is shown to occur efficiently with intense ultrashort bichromatic circularly polarized pulses due to frequent electron-parent -ion recollision with co-or counter-rotating incident circular pulses as predicted in 1995. We show in this context that molecules offer a very robust and efficient frameworkfor the production of circularly polarized harmonics for the generation of single circularly polarized ``attosecond'' pulses. The efficiency of such new MHOHG is shown to depend on the compatibility of the symmetry of the molecular medium with the net electric field generated by the combination of the laser pulses.Using a time-dependent symmetry analysis with concrete examples such as H 2 + vs H 3 + we show how all the features(harmonic order and ∧ polarization) of MHOHG can be explained and predicted.

  9. Polarized protons at RHIC

    SciTech Connect

    Makdisi, Y.

    1992-01-01

    The approval for construction of the Relativistic Heavy Ion Collider (RHIC) provides a potential opportunity to collide polarized proton beams at energies up to 500 GeV in the center of mass and high luminosities approaching 2 {times} 10{sup 32}/cm{sup 2}/sec. This capability is enhanced by the fact that the AGS has already accelerated polarized protons and relies on the newly completed Accumulator/Booster for providing the required polarized proton intensity and a system of spin rotators (Siberian snakes) to retain the polarization. The RHIC Spin Collaboration was formed and submitted a Letter of Intent to construct this polarized collider capability and utilize its physics opportunities. In this presentation, I will discuss the plans to upgrade the AGS, the proposed layout of the RHIC siberian snakes, and timetables. The physics focus is the measurement of the spin dependent parton distributions with such accessible probes including high p(t) jets, direct photons, and Drell Yan. The attainable sensitivities and the progress that has been reached in defining the detector requirements will be outlined.

  10. Polarized protons at RHIC

    SciTech Connect

    Makdisi, Y.

    1992-10-01

    The approval for construction of the Relativistic Heavy Ion Collider (RHIC) provides a potential opportunity to collide polarized proton beams at energies up to 500 GeV in the center of mass and high luminosities approaching 2 {times} 10{sup 32}/cm{sup 2}/sec. This capability is enhanced by the fact that the AGS has already accelerated polarized protons and relies on the newly completed Accumulator/Booster for providing the required polarized proton intensity and a system of spin rotators (Siberian snakes) to retain the polarization. The RHIC Spin Collaboration was formed and submitted a Letter of Intent to construct this polarized collider capability and utilize its physics opportunities. In this presentation, I will discuss the plans to upgrade the AGS, the proposed layout of the RHIC siberian snakes, and timetables. The physics focus is the measurement of the spin dependent parton distributions with such accessible probes including high p(t) jets, direct photons, and Drell Yan. The attainable sensitivities and the progress that has been reached in defining the detector requirements will be outlined.

  11. A Parametric Study of Erupting Flux Rope Rotation: Modeling the 'Cartwheel CME' on 9 April 2008

    NASA Technical Reports Server (NTRS)

    Kliem, B.; Toeroek, T.; Thompson, W. T.

    2012-01-01

    The rotation of erupting filaments in the solar corona is addressed through a parametric simulation study of unstable, rotating flux ropes in bipolar force-free initial equilibrium. The Lorentz force due to the external shear-field component and the relaxation of tension in the twisted field are the major contributors to the rotation in this model, while reconnection with the ambient field is of minor importance, due to the field's simple structure. In the low-beta corona, the rotation is not guided by the changing orientation of the vertical field component's polarity inversion line with height. The model yields strong initial rotations which saturate in the corona and differ qualitatively from the profile of rotation vs. height obtained in a recent simulation of an eruption without preexisting flux rope. Both major mechanisms writhe the flux rope axis, converting part of the initial twist helicity, and produce rotation profiles which, to a large part, are very similar within a range of shear-twist combinations. A difference lies in the tendency of twist-driven rotation to saturate at lower heights than shear-driven rotation. For parameters characteristic of the source regions of erupting filaments and coronal mass ejections, the shear field is found to be the dominant origin of rotations in the corona and to be required if the rotation reaches angles of order 90 degrees and higher; it dominates even if the twist exceeds the threshold of the helical kink instability. The contributions by shear and twist to the total rotation can be disentangled in the analysis of observations if the rotation and rise profiles are simultaneously compared with model calculations. The resulting twist estimate allows one to judge whether the helical kink instability occurred. This is demonstrated for the erupting prominence in the "Cartwheel CME" on 9 April 2008, which has shown a rotation of approximately 115 deg. up to a height of 1.5 Solar R above the photosphere. Out of a range of

  12. The Maximum Mass of Rotating Strange Stars

    NASA Astrophysics Data System (ADS)

    Szkudlarek, M.; Gondek-Rosiń; ska, D.; Villain, L.; Ansorg, M.

    2012-12-01

    Strange quark stars are considered as a possible alternative to neutron stars as compact objects (e.g. Weber 2003). A hot compact star (a proto-neutron star or a strange star) born in a supernova explosion or a remnant of neutron stars binary merger are expected to rotate differentially and be important sources of gravitational waves. We present results of the first relativistic calculations of differentially rotating strange quark stars for broad ranges of degree of differential rotation and maximum densities. Using a highly accurate, relativistic code we show that rotation may cause a significant increase of maximum allowed mass of strange stars, much larger than in the case of neutron stars with the same degree of differential rotation. Depending on the maximum allowed mass a massive neutron star (strange star) can be temporarily stabilized by differential rotation or collapse to a black hole.

  13. Cilia organize ependymal planar polarity

    PubMed Central

    Mirzadeh, Zaman; Han, Young-Goo; Soriano-Navarro, Mario; García-Verdugo, Jose Manuel; Alvarez-Buylla, Arturo

    2010-01-01

    Multi-ciliated epithelial cells, called ependymal cells, line the ventricles in the adult brain. Most ependymal cells are born prenatally and are derived from radial glia. Ependymal cells have a remarkable planar polarization that determines orientation of ciliary beating and propulsion of cerebrospinal fluid (CSF). Disruption of ependymal ciliary beating, by injury or disease, results in aberrant CSF circulation and hydrocephalus, a common disorder of the central nervous system. Very little is known about the mechanisms guiding ependymal planar polarity and whether this organization is acquired during ependymal cell development or is already present in radial glia. Here we show that basal bodies in ependymal cells in the lateral ventricle walls of adult mice are polarized in two ways: i) rotational; angle of individual basal bodies with respect to their long axis and ii) translational; the position of basal bodies on the apical surface of the cell. Conditional ablation of motile cilia disrupted rotational orientation, but translational polarity was largely preserved. In contrast, translational polarity was dramatically affected when radial glial primary cilia were ablated earlier in development. Remarkably, radial glia in the embryo have a translational polarity that predicts the orientation of mature ependymal cells. These results suggest that ependymal planar cell polarity is a multi-step process initially organized by primary cilia in radial glia and then refined by motile cilia in ependymal cells. PMID:20164345

  14. Cilia organize ependymal planar polarity.

    PubMed

    Mirzadeh, Zaman; Han, Young-Goo; Soriano-Navarro, Mario; García-Verdugo, Jose Manuel; Alvarez-Buylla, Arturo

    2010-02-17

    Multiciliated epithelial cells, called ependymal cells, line the ventricles in the adult brain. Most ependymal cells are born prenatally and are derived from radial glia. Ependymal cells have a remarkable planar polarization that determines orientation of ciliary beating and propulsion of CSF. Disruption of ependymal ciliary beating, by injury or disease, results in aberrant CSF circulation and hydrocephalus, a common disorder of the CNS. Very little is known about the mechanisms guiding ependymal planar polarity and whether this organization is acquired during ependymal cell development or is already present in radial glia. Here we show that basal bodies in ependymal cells in the lateral ventricle walls of adult mice are polarized in two ways: (1) rotational; angle of individual basal bodies with respect to their long axis and (2) translational; the position of basal bodies on the apical surface of the cell. Conditional ablation of motile cilia disrupted rotational orientation, but translational polarity was largely preserved. In contrast, translational polarity was dramatically affected when radial glial primary cilia were ablated earlier in development. Remarkably, radial glia in the embryo have a translational polarity that predicts the orientation of mature ependymal cells. These results suggest that ependymal planar cell polarity is a multistep process initially organized by primary cilia in radial glia and then refined by motile cilia in ependymal cells.

  15. Progress in geophysical aspects of the rotation of the earth

    NASA Technical Reports Server (NTRS)

    Lambeck, K.

    1978-01-01

    The geophysical causes and consequences of the Earth's rotation are reviewed. Specific topics covered include: (1) the motion of the rotation axis in space, precession and nutation; (2) the motion of the rotation axis relative to the Earth, polar motion; and (3) the rate of rotation about this axis, or changes in the length of day. Secular decrease in obliquity and evolution of the Earth-Moon system are also discussed.

  16. Polarization-independent mechanically induced long-period fiber gratings

    NASA Astrophysics Data System (ADS)

    Block, Ueyn L.; Ozcan, Aydogan; Digonnet, Michel J. F.; Fejer, Martin M.

    2002-05-01

    We have developed long-period fiber gratings (LPFGs) utilizing the photoelastic effect and have demonstrated polarization-independent operation. The LPFG is made by pressing a standard, jacketed single-mode fiber between a flat plate and a plate with grooves mechanically machined with a suitable period. The grating's transmission spectrum is easily tuned by adjusting pressure, grating tilt, and length. Furthermore, the grating can be completely erased by removing the pressure from the fiber. Grating attenuation greater than 25 dB has been demonstrated with a notch-location polarization dependence of +-4 nm. In this paper we report drastic reduction in this polarization dependence by two different approaches. Passing through the grating a second time after reflecting off a Faraday rotator mirror was successful; this method may be used with other types of LPFGs. The second approach utilizes our mechanical grating's ability to be double-passed with two fibers side-by-side. Between passes, a fiber-loop half-wave plate aligned at 45 degrees to the plane of the grooved plate swaps power between x- and y-polarization states. The resulting output's measured polarization dependence was smaller than +/- 0.2 nm. Further improvement is expected through careful tuning of the wave plate. We also report a computer model of the filter spectrum and its polarization dependence, which takes into account non-uniform index perturbation, lossy cladding modes, cladding index perturbation, as well as the polarization dependence of the photoelastic effect, characteristics not usually present in UV-induced LPFGs. The model generates transmission spectra that agree quite well with experimental results.

  17. Incorporating polarization in stereo vision-based 3D perception of non-Lambertian scenes

    NASA Astrophysics Data System (ADS)

    Berger, Kai; Voorhies, Randolph; Matthies, Larry

    2016-05-01

    Surfaces with specular, non-Lambertian reflectance are common in urban areas. Robot perception systems for applications in urban environments need to function effectively in the presence of such materials; however, both passive and active 3-D perception systems have difficulties with them. In this paper, we develop an approach using a stereo pair of polarization cameras to improve passive 3-D perception of specular surfaces. We use a commercial stereo camera pair with rotatable polarization filters in front of each lens to capture images with multiple orientations of the polarization filter. From these images, we estimate the degree of linear polarization (DOLP) and the angle of polarization (AOP) at each pixel in at least one camera. The AOP constrains the corresponding surface normal in the scene to lie in the plane of the observed angle of polarization. We embody this constraint an energy functional for a regularization-based stereo vision algorithm. This paper describes the theory of polarization needed for this approach, describes the new stereo vision algorithm, and presents results on synthetic and real images to evaluate performance.

  18. Rotating Apparatus for Isoelectric Focusing

    NASA Technical Reports Server (NTRS)

    Bier, M.

    1986-01-01

    Remixing of separated fractions prevented. Improved isoelectric focusing apparatus helps to prevent electro-osmosis and convection, both of which cause remixing of separated fractions. Fractionating column segmented and rotated about horizontal axis: Only combined effects of both features fully effective in making good separations. Improved apparatus slowly rotated continuously or rocked (at rotational amplitude of at least 180 degrees) about its horizontal axis so average gravitational vector experienced by fluid is zero and convection is therefore suppressed. Electro-osmosis suppressed and convection further suppressed by separating column into disklike compartments along its length with filters. Experiments have shown dimensions of apparatus not critical. Typical compartment and column volumes are 2 and 40 ml, respectively. Rotation speeds lie between 3 and 30 rpm.

  19. Mathematical Minute: Rotating a Function Graph

    ERIC Educational Resources Information Center

    Bravo, Daniel; Fera, Joseph

    2013-01-01

    Using calculus only, we find the angles you can rotate the graph of a differentiable function about the origin and still obtain a function graph. We then apply the solution to odd and even degree polynomials.

  20. Rotating reverse osmosis: a dynamic model for flux and rejection

    NASA Technical Reports Server (NTRS)

    Lee, S.; Lueptow, R. M.

    2001-01-01

    Reverse osmosis (RO) is a compact process for the removal of ionic and organic pollutants from contaminated water. However, flux decline and rejection deterioration due to concentration polarization and membrane fouling hinders the application of RO technology. In this study, a rotating cylindrical RO membrane is theoretically investigated as a novel method to reduce polarization and fouling. A dynamic model based on RO membrane transport incorporating concentration polarization is used to predict the performance of rotating RO system. Operating parameters such as rotational speed and transmembrane pressure play an important role in determining the flux and rejection in rotating RO. For a given geometry, a rotational speed sufficient to generate Taylor vortices in the annulus is essential to maintain high flux as well as high rejection. The flux and rejection were calculated for wide range of operating pressures and rotational speeds. c 2001 Elsevier Science B.V. All rights reserved.

  1. Coronal hole differential rotation rate observed with SWICS/Ulysses

    NASA Astrophysics Data System (ADS)

    Zurbuchen, Th.; Bochsler, P.; von Steiger, R.

    1996-07-01

    We discuss the latitude variation of the coronal hole differential rotation investigating persistent structures in high speed streams as observed from SWICS Ulysses during its first passage of the southern polar hole in 1993-1994. We find a slower rotation rate near the ecliptic than what is inferred from averaged photospheric features, e.g. from sunspots. At intermediate latitudes we find a rate similar to the equatorial rotation rate indicating a quasi-rigid rotation of the polar coronal hole. At latitudes >65° no persistent structures to determine the polar rotation have been observed. For the passage of the southern heliosphere in 1993/94 we find a latitudinal dependence of the sidereal rotation rate of the coronal hole which can be approximated by ωSW=[13.13+1.94 sin2(Θ)]°/day, where Θ denotes the solar latitude.

  2. [Polar and non polar notations of refraction].

    PubMed

    Touzeau, O; Gaujoux, T; Costantini, E; Borderie, V; Laroche, L

    2010-01-01

    Refraction can be expressed by four polar notations which correspond to four different combinations of spherical or cylindrical lenses. Conventional expressions of refraction (plus and minus cylinder notation) are described by sphere, cylinder, and axis. In the plus cylinder notation, the axis visualizes the most powerful meridian. The axis usually corresponds to the bow tie axis in curvature maps. Plus cylinder notation is also valuable for all relaxing procedures (i.e., selective suture ablation, arcuate keratotomy, etc.). In the cross-cylinder notation, two orthogonal cylinders can describe (without the sphere component) the actual refraction of both the principal meridians. This notation must be made before performing the vertex calculation. Using an association of a Jackson cross-cylinder and a spherical equivalent, refraction can be broken down into two pure components: astigmatism and sphere. All polar notations of refraction may perfectly characterize a single refraction but are not suitable for statistical analysis, which requires nonpolar expression. After doubling the axis, a rectangular projection breaks down the Jackson cross-cylinder, which has a polar axis, into two Jackson cross-cylinders on the 0 degrees /90 degrees and 45 degrees /135 degrees axis. This procedure results in the loss of the directional nature of the data. Refraction can be written in a nonpolar notation by three rectangular coordinates (x,y,z), which can also represent the spherocylinder by one point in a dioptric space. These three independent (orthogonal) variables have a concrete optical significance: a spherical component, a direct/inverse (WTR/ATR) component, and an oblique component of the astigmatism. Finally, nonpolar notations are useful for statistical analysis and graphical representation of refraction.

  3. Hybrid helical snakes and rotators for RHIC

    SciTech Connect

    Courant, E.D.

    1995-06-13

    The spin rotators and Siberian snakes presently envisaged for RHIC utilize helical dipole magnets. The snakes and the rotators each consist of four helices, each with a full twist (360{degrees}) of the field. Here we investigate an alternate layout, namely combinations of helical and pure bending magnet, and show that this may have advantages.

  4. Mercury: infrared evidence for nonsynchronous rotation.

    PubMed

    Soter, S L

    1966-09-02

    An infrared observation of the dark side of Mercury made by Pettit and Nicholson in 1923 led them to suggest that the planet rotates nonsynchronously. Their early measurements, if taken at face value, would imply a brightness temperature of about 180 degrees K for the dark side. The asymmetry of the infrared phase curve is further interpreted as suggesting direct rotation.

  5. ACCELERATING AND COLLIDING POLARIZED PROTONS IN RHIC WITH SIBERIAN SNAKES.

    SciTech Connect

    ROSER,T.; AHRENS,L.; ALESSI,J.; BAI,M.; BEEBE - WANG,J.; BRENNAN,J.M.; BROWN,K.A.; BUNCE,G.; CAMERON,P.; COURANT,E.D.; DREES,A.; FISCHER,W.; ET AL

    2002-06-02

    We successfully injected polarized protons in both RHIC rings and maintained polarization during acceleration up to 100 GeV per ring using two Siberian snakes in each ring. Each snake consists of four helical superconducting dipoles which rotate the polarization by 180{sup o} about a horizontal axis. This is the first time that polarized protons have been accelerated to 100 GeV. We report on our experiences during commissioning and operation of collider with polarized protons.

  6. Rotating Gravity Gradiometer Study

    NASA Technical Reports Server (NTRS)

    Forward, R. L.

    1976-01-01

    The application of a Rotating Gravity Gradiometer (RGG) system on board a Lunar Polar Orbiter (LPO) for the measurement of the Lunar gravity field was investigated. A data collection simulation study shows that a gradiometer will give significantly better gravity data than a doppler tracking system for the altitudes under consideration for the LOP, that the present demonstrated sensitivity of the RGG is adequate for measurement of the Lunar gravity gradient field, and that a single RGG instrument will provide almost as much data for geophysical interpretation as an orthogonal three axis RGG system. An engineering study of the RGG sensor/LPO spacecraft interface characteristics shows that the RGG systems under consideration are compatible with the present models of the LPO spacecraft.

  7. Polarization Properties of Synchrotron Radiation and its Applications.

    NASA Astrophysics Data System (ADS)

    Bjornsson, Claes-Ingvar

    of the Stokes parameters in terms of (theta). The dynamical behavior of the source is contained implicitly in the time dependence of (theta). A relativistically moving source exhibits two qualitatively different polarization behaviors depending on the amount of asymmetry in the magnetic field distribution. Only when the magnetic field distribution has a high degree of rotational symmetry around some direction can it be characterized by its average direction (single vector model). When this is not the case the polarization properties are very similar to a two-component model where changes in the polarization are due only to changes in the relative flux of the two components. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of school.) UMI.

  8. RHIC polarized proton performance in run-8.

    SciTech Connect

    Montag,C.; Abreu, N.; Ahrens, L.; Bai, M.; Barton, D.; et al.

    2008-06-23

    During Run-8, the Relativistic Heavy Ion Collider (RHIC) provided collisions of spin-polarized proton beams at two interaction regions. Helical spin rotators at these two interaction regions were used to control the spin orientation of both beams at the collision points. Physics data were taken with different orientations of the beam polarization. We present recent developments and improvements as well as the luminosity and polarization performance achieved during Run-8.

  9. Compact and robust linear Stokes polarization camera

    NASA Astrophysics Data System (ADS)

    Vedel, M.; Lechocinski, N.; Breugnot, S.

    2010-06-01

    We present novel applications of Bossa Nova Technologies Linear Stokes polarization camera. The SALSA camera is able to perform live measurement of Linear Stokes parameters, usual polarization parameters (Degree Of Linear Polarization and Angle Of Polarization) and other polarization based parameters (polarized image, depolarized image, virtual polarizer, polarization difference). First a brief description of the SALSA camera and its calibration is given. Then we present and discuss several results of target detection and contrast enhancement experiments. We will also introduce a novel polarization based metrological method of 3D shape measurement for in-line control of optical surfaces and control of highly aspheric optical surfaces. The architecture of the hardware and calibration results is presented. A new algorithm based on polarization imaging leading to the construction of the gradient field is described. Finally experimental results and observations as well as possible further steps are discussed.

  10. Fourier analysis for rotating-element ellipsometers.

    PubMed

    Cho, Yong Jai; Chegal, Won; Cho, Hyun Mo

    2011-01-15

    We introduce a Fourier analysis of the waveform of periodic light-irradiance variation to capture Fourier coefficients for multichannel rotating-element ellipsometers. In this analysis, the Fourier coefficients for a sample are obtained using a discrete Fourier transform on the exposures. The analysis gives a generic function that encompasses the discrete Fourier transform or the Hadamard transform, depending on the specific conditions. Unlike the Hadamard transform, a well-known data acquisition method that is used only for conventional multichannel rotating-element ellipsometers with line arrays with specific readout-mode timing, this Fourier analysis is applicable to various line arrays with either nonoverlap or overlap readout-mode timing. To assess the effects of the novel Fourier analysis, the Fourier coefficients for a sample were measured with a custom-built rotating-polarizer ellipsometer, using this Fourier analysis with various numbers of scans, integration times, and rotational speeds of the polarizer.

  11. The rotation of Titan and Ganymede

    NASA Astrophysics Data System (ADS)

    Van Hoolst, Tim; Coyette, Alexis; Baland, Rose-Marie; Trinh, Antony

    2016-10-01

    The rotation rates of Titan and Ganymede, the largest satellites of Saturn and Jupiter, are on average equal to their orbital mean motion. Here we discuss small deviations from the average rotation for both satellites and evaluate the polar motion of Titan induced by its surface fluid layers. We examine different causes at various time scales and assess possible consequences and the potential of using librations and polar motion as probes of the interior structure of the satellites.The rotation rate of Titan and Ganymede cannot be constant on the orbital time scale as a result of the gravitational torque of the central planet acting on the satellites. Titan is moreover expected to show significant polar motion and additional variations in the rotation rate due to angular momentum exchange with the atmosphere, mainly at seasonal periods. Observational evidence for deviations from the synchronous state has been reported several times for Titan but is unfortunately inconclusive. The measurements of the rotation variations are based on determinations of the shift in position of Cassini radar images taken during different flybys. The ESA JUICE (JUpiter ICy moons Explorer) mission will measure the rotation variations of Ganymede during its orbital phase around the satellite starting in 2032.We report on different theoretical aspects of the librations and polar motion. We consider the influence of the rheology of the ice shell and take into account Cassini measurements of the external gravitational field and of the topography of Titan and similar Galileo data about Ganymede. We also evaluate the librations and polar motion induced by Titan's hydrocarbon seas and use the most recent results of Titan's atmosphere dynamics. We finally evaluate the potential of rotation variations to constrain the satellite's interior structure, in particular its ice shell and ocean.

  12. Rotating Bioreactor

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The NASA Bioreactor provides a low turbulence culture environment which promotes the formation of large, three-dimensional cell clusters. Due to their high level of cellular organization and specialization, samples constructed in the bioreactor more closely resemble the original tumor or tissue found in the body. NASA-sponsored bioreactor research has been instrumental in helping scientists to better understand normal and cancerous tissue development. In cooperation with the medical community, the bioreactor design is being used to prepare better models of human colon, prostate, breast and ovarian tumors. Cartilage, bone marrow, heart muscle, skeletal muscle, pancreatic islet cells, liver and kidney are just a few of the normal tissues currently being cultured in rotating bioreactors by investigators.

  13. The rotational feedback on linear-momentum balance in glacial isostatic adjustment

    NASA Astrophysics Data System (ADS)

    Martinec, Zdenek; Hagedoorn, Jan

    2015-04-01

    The influence of changes in surface ice-mass redistribution and associated viscoelastic response of the Earth, known as glacial-isostatic adjustment (GIA), on the Earth's rotational dynamics has long been known. Equally important is the effect of the changes in the rotational dynamics on the viscoelastic deformation of the Earth. This signal, known as the rotational feedback, or more precisely, the rotational feedback on the sea-level equation, has been mathematically described by the sea-level equation extended for the term that is proportional to perturbation in the centrifugal potential and the second-degree tidal Love number. The perturbation in the centrifugal force due to changes in the Earth's rotational dynamics enters not only into the sea-level equation, but also into the conservation law of linear momentum such that the internal viscoelastic force, the perturbation in the gravitational force and the perturbation in the centrifugal force are in balance. Adding the centrifugal-force perturbation to the linear-momentum balance creates an additional rotational feedback on the viscoelastic deformations of the Earth. We term this feedback mechanism as the rotational feedback on the linear-momentum balance. We extend both the time-domain method for modelling the GIA response of laterally heterogeneous earth models and the traditional Laplace-domain method for modelling the GIA-induced rotational response to surface loading by considering the rotational feedback on linear-momentum balance. The correctness of the mathematical extensions of the methods is validated numerically by comparing the polar motion response to the GIA process and the rotationally-induced degree 2 and order 1 spherical harmonic component of the surface vertical displacement and gravity field. We present the difference between the case where the rotational feedback on linear-momentum balance is considered against that where it is not. Numerical simulations show that the resulting difference

  14. Spin Rotation of Formalism for Spin Tracking

    SciTech Connect

    Luccio,A.

    2008-02-01

    The problem of which coefficients are adequate to correctly represent the spin rotation in vector spin tracking for polarized proton and deuteron beams in synchrotrons is here re-examined in the light of recent discussions. The main aim of this note is to show where some previous erroneous results originated and how to code spin rotation in a tracking code. Some analysis of a recent experiment is presented that confirm the correctness of the assumptions.

  15. Polar Bear

    USGS Publications Warehouse

    Amstrup, S.D.; ,; Lentfer, J.W.

    1988-01-01

    Polar bears are long-lived, late-maturing carnivores that have relatively low rates of reproduction and natural mortality. Their populations are susceptible to disturbance from human activities, such as the exploration and development of mineral resources or hunting. Polar bear populations have been an important renewable resource available to coastal communities throughout the Arctic for thousands of years.

  16. Multiple degree of freedom object recognition using optical relational graph decision nets

    NASA Technical Reports Server (NTRS)

    Casasent, David P.; Lee, Andrew J.

    1988-01-01

    Multiple-degree-of-freedom object recognition concerns objects with no stable rest position with all scale, rotation, and aspect distortions possible. It is assumed that the objects are in a fairly benign background, so that feature extractors are usable. In-plane distortion invariance is provided by use of a polar-log coordinate transform feature space, and out-of-plane distortion invariance is provided by linear discriminant function design. Relational graph decision nets are considered for multiple-degree-of-freedom pattern recognition. The design of Fisher (1936) linear discriminant functions and synthetic discriminant function for use at the nodes of binary and multidecision nets is discussed. Case studies are detailed for two-class and multiclass problems. Simulation results demonstrate the robustness of the processors to quantization of the filter coefficients and to noise.

  17. Macrophage Polarization.

    PubMed

    Murray, Peter J

    2017-02-10

    Macrophage polarization refers to how macrophages have been activated at a given point in space and time. Polarization is not fixed, as macrophages are sufficiently plastic to integrate multiple signals, such as those from microbes, damaged tissues, and the normal tissue environment. Three broad pathways control polarization: epigenetic and cell survival pathways that prolong or shorten macrophage development and viability, the tissue microenvironment, and extrinsic factors, such as microbial products and cytokines released in inflammation. A plethora of advances have provided a framework for rationally purifying, describing, and manipulating macrophage polarization. Here, I assess the current state of knowledge about macrophage polarization and enumerate the major questions about how activated macrophages regulate the physiology of normal and damaged tissues.

  18. Quantum magnetism with polar alkali-metal dimers

    SciTech Connect

    Gorshkov, Alexey V.; Manmana, Salvatore R.; Chen Gang; Demler, Eugene; Lukin, Mikhail D.; Rey, Ana Maria

    2011-09-15

    We show that dipolar interactions between ultracold polar alkali-metal dimers in optical lattices can be used to realize a highly tunable generalization of the t-J model, which we refer to as the t-J-V-W model. The model features long-range spin-spin interactions J{sub z} and J{sub perpendicular} of XXZ type, long-range density-density interaction V, and long-range density-spin interaction W, all of which can be controlled in both magnitude and sign independently of each other and of the tunneling t. The spin's is encoded in the rotational degree of freedom of the molecules, while the interactions are controlled by applied static electric and continuous-wave microwave fields. Furthermore, we show that nuclear spins of the molecules can be used to implement an additional (orbital) degree of freedom that is coupled to the original rotational degree of freedom in a tunable way. The presented system is expected to exhibit exotic physics and to provide insights into strongly correlated phenomena in condensed-matter systems. Realistic experimental imperfections are discussed.

  19. Polarization Perception Device

    NASA Technical Reports Server (NTRS)

    Whitehead, Victor S. (Inventor); Coulson, Kinsell L. (Inventor)

    1997-01-01

    A polarization perception device comprises a base and a polarizing filter having opposite broad sides and a centerline perpendicular thereto. The filter is mounted on the base for relative rotation and with a major portion of the area of the filter substantially unobstructed on either side. A motor on the base automatically moves the filter angularly about its centerline at a speed slow enough to permit changes in light transmission by virtue of such movement to be perceived as light-dark pulses by a human observer, but fast enough so that the light phase of each such pulse occurs prior to fading of the light phase image of the preceding pulse from the observer's retina. In addition to an observer viewing a scene in real time through the filter while it is so angularly moved, or instead of such observation, the scene can be photographed, filmed or taped by a camera whose lens is positioned behind the filter.

  20. Polarization perception device

    NASA Technical Reports Server (NTRS)

    Whitehead, Victor S. (Inventor); Coulson, Kinsel L. (Inventor)

    1992-01-01

    A polarization perception device comprises a base and a polarizing filter having opposite broad sides and a centerline perpendicular thereto. The filter is mounted on the base for relative rotation and with a major portion of the area of the filter substantially unobstructed on either side. A motor on the base automatically moves the filter angularly about its centerline at a speed slow enough to permit changes in light transmission by virtue of such movement to be perceived as light-dark pulses by a human observer, but fast enough so that the light phase of each such pulse occurs prior to fading of the light phase image of the preceding pulse from the observer's retina. In addition to an observer viewing a scene in real time through the filter while it is so angularly moved, or instead of such observation, the scene can be photographed, filmed or taped by a camera whose lens is positioned behind the filter.

  1. Indexing Mount For Rotation Of Optical Component

    NASA Technical Reports Server (NTRS)

    Reichle, Donald J., Jr.; Barnes, Norman P.

    1993-01-01

    Indexing mount for polarizer, wave plate, birefringent plate, or other optical component facilitates rotation of component to one or more preset angles. Includes hexagonal nut holding polarizer or other optical component. Ball bearing loaded by screw engages notch on cylindrical extension of nut engaging bracket. Time-consuming and tedious angular adjustment unnecessary: component turned quickly and easily, by hand or by use of wrench, to preset angular positions maintained by simple ball-detent mechanism.

  2. METHOD AND APPARATUS FOR PRODUCING AND ANALYZING POLARIZED GAMMA RADIATION

    DOEpatents

    Hamermesh, M.; Hanna, S.S.; Perlow, G.J.

    1964-04-21

    A method of polarizing and resolving the plane of polarization of gamma rays is described. Polarization is produced by positioning a thin disc of ferromagnetic metal, cortaining /sup 57/Co, in a magnetic field. Resolution is accomplished by rotating a thin disc of iron enriched in /sup 57/Fe relative to a second magnetic field and noting the change of gamma absorption at each rotational position. (AEC)

  3. On spectral dependence of polarization of asteroids

    NASA Astrophysics Data System (ADS)

    Lupishko, D. F.; Shkuratov, Yu. G.

    2016-09-01

    From the analysis of all of the data available on the spectral dependence of polarization of light reflected by asteroids, it has been shown that the slope of the spectral dependence of polarization of asteroids changes its sign, when moving from the negative branch of the phase curve of polarization to the positive one. This effect also manifests itself in the spectral behavior of polarization of the Moon and, probably, in the polarization of the other atmosphereless bodies. From the analysis of a population of asteroids of different types, a weak correlation between the spectral slopes of the polarization degree and the albedo has been found.

  4. Polarized hard X-ray photoemission system with micro-positioning technique for probing ground-state symmetry of strongly correlated materials.

    PubMed

    Fujiwara, Hidenori; Naimen, Sho; Higashiya, Atsushi; Kanai, Yuina; Yomosa, Hiroshi; Yamagami, Kohei; Kiss, Takayuki; Kadono, Toshiharu; Imada, Shin; Yamasaki, Atsushi; Takase, Kouichi; Otsuka, Shintaro; Shimizu, Tomohiro; Shingubara, Shoso; Suga, Shigemasa; Yabashi, Makina; Tamasaku, Kenji; Ishikawa, Tetsuya; Sekiyama, Akira

    2016-05-01

    An angle-resolved linearly polarized hard X-ray photoemission spectroscopy (HAXPES) system has been developed to study the ground-state symmetry of strongly correlated materials. The linear polarization of the incoming X-ray beam is switched by a transmission-type phase retarder composed of two diamond (100) crystals. The best value of the degree of linear polarization was found to be -0.96, containing a vertical polarization component of 98%. A newly developed low-temperature two-axis manipulator enables easy polar and azimuthal rotations to select the detection direction of photoelectrons. The lowest temperature achieved was 9 K, offering the chance to access the ground state even for strongly correlated electron systems in cubic symmetry. A co-axial sample monitoring system with long-working-distance microscope enables the same region on the sample surface to be measured before and after rotation. Combining this sample monitoring system with a micro-focused X-ray beam by means of an ellipsoidal Kirkpatrick-Baez mirror (25 µm × 25 µm FWHM), polarized valence-band HAXPES has been performed on NiO for voltage application as resistive random access memory to demonstrate the micro-positioning technique and polarization switching.

  5. Correcting ionospheric Faraday rotation for ASKAP

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Shane; Gaensler, Bryan; Landecker, Tom L.; Willis, Tony

    2012-10-01

    Next-generation polarisation surveys, such as the POSSUM survey on ASKAP, aim to measure weak, statistical, cosmological effects associated with weak magnetic fields, and so will require unprecedented accuracy and stability for measuring polarisation vectors and their Faraday rotation measures (RMs). Ionospheric Faraday rotation (IFR) corrupts polarization observations and cannot be ignored at mid to low frequencies. In aperture-synthesis polarimetry IFR rotates individual visibilities and leads to a loss of coherence and accuracy of polarization angle determination. Through the POSSUM survey science team we have been involved in developing detailed ionospheric prediction software (POSSUM memos #10a,b) that will be used to correct the observed visibilities on ASKAP before imaging to obtain sufficiently accurate polarization and RM data. To provide a stringent test of this software, we propose a continuous 24 hr observing block using the 1.1-3.1 GHz band to monitor the variations caused by the time-variable ionosphere in the polarization angle and RM of a strongly polarized calibrator source, PKS B1903-802. We request a total of 96 hrs (4 x 24 hrs) to monitor the changes in the ionosphere every 3 to 6 months until BETA/ASKAP-12 is taking reliable polarization data.

  6. Uranus’ Hemispheric Asymmetries in Polar Cloud and Circulation Structures

    NASA Astrophysics Data System (ADS)

    Hammel, Heidi B.; Sromovsky, Lawrence; Fry, Pat; de Pater, Imke

    2015-11-01

    We report on the north polar region of Uranus in the post-equinoctial era. Near-IR imaging with Keck 2 using NIRC2 in 2012-2014 revealed numerous small bright features, as well as small dark features, between 50 degrees N and the north pole. Tracking of these features yielded circulation patterns, with the remarkable result that the region from 60 degrees to at least 83 degrees rotates about the northern pole as a solid body, with a drift rate of 4.1 degrees/hour westward relative to the interior (Sromovsky et al. 2015, Icarus 258, 192-223). For the south pole, the same latitude region had dramatically different characteristics, as judged by 1986 Voyager and 2003 Keck observations. The southern region showed no discrete near-IR features; detailed circulation measurements in that region were based solely on low-contrast features in re-analyzed Voyager images (Karkoschka, 2015, Icarus 250, 294-307). They revealed a large gradient in drift rates, with values reaching twice that seen in the corresponding northern region.The north-south asymmetry in circulation and cloud structure/morphology is surprising because the distribution of upper tropospheric methane is relatively symmetric: roughly constant over a region from 30 S to 30 N, and then declining at higher latitudes in both hemispheres. The methane distribution suggests symmetric down-welling motion in both polar regions, which would inhibit formation of condensation clouds there, in contrast to the observed dichotomy. Some asymmetry may be an effect of seasonal forcing, since the north versus south polar measurements were made during different seasons. If so, then major changes can be expected in the north polar region as Uranus proceeds toward its 2030 northern summer solstice. Hubble STIS observations expected in October of 2015 will further examine the vertical distribution and stability of the polar methane abundances. Future high-resolution imaging with Earth-based facilities will be able to track circulation

  7. Geodetic data support trapping of ethane in Titan's polar crust

    NASA Astrophysics Data System (ADS)

    Sotin, Christophe; Rambaux, Nicolas

    2016-04-01

    Titan's surface is characterized by polar depressions that strongly influence interpretations of the gravity data. This study investigates several geodynamical models that can explain these depressions. For each model, the values of the three moments of inertia are computed numerically by discretizing the interior in spherical coordinates. The study shows that a Pratt model where the polar subsurface is made of ethane clathrates can explain the polar depression, the abrupt jump in altitude at about 60 degrees latitude, and the values of the degree 2 gravity coefficients. This model, proposed by Choukroun and Sotin [1], is based on the stability of ethane clathrate hydrates relative to methane clathrate hydrates. In addition to fitting the geodetic data, it explains the absence of ethane in Titan's atmosphere although ethane is the main product of the photolysis of methane. Other geophysical models based on latitudinal variations in the tidal heating production or in the heat flux at the base of the icy crust do not provide such a good match to the gravity and topographic observations. The ethane-clathrate model predicts that all the ethane produced by photolysis of methane at the present rate during the last billion years could be stored in the polar subsurface. It is consistent with the age of Titan's surface and that of Titan's atmospheric methane inferred from geological and geochemical observations by the Cassini/Huygens mission. The present study also emphasizes the role of mass anomalies on the interpretation of the degree 2 gravity coefficients. It shows that for Titan, a slow rotator, the values of the two equatorial moments of inertia (MoI) are largely affected by the polar depressions whereas the value of polar MoI is not. Therefore, as pointed out by previous calculations [2], calculating the moment of inertia (MoI) factor from the value of J2 could lead to major errors. This is not the case for our preferred Titan's model for which the negative polar

  8. Sunspot Rotation, Flare Energetics and Flux Rope Helicity: The Eruptive Flare on 2005 May 13

    NASA Astrophysics Data System (ADS)

    Kazachenko, Maria; Canfield, R. C.; Longcope, D. W.; Qiu, J.; DesJardins, A.; Nightingale, R. W.

    2009-05-01

    We use MDI and TRACE observations of photospheric magnetic and velocity fields in NOAA 10759 to build a three-dimensional coronal magnetic field model. The most dramatic feature of this active region is the 34 degree rotation of its leading polarity sunspot over 40 hours. We describe a method for including such rotation in the framework of braiding and spinning in a magnetic charge topology (MCT) model. We apply this method to the buildup of energy and helicity associated with the eruptive flare of 2005 May 13. We find that adding rotation almost triples the modeled flare energy (-1.0×1031ergs) and flux rope self helicity (-7.1×1042 Mx2). This makes the results consistent with observations: the energy derived from GOES is -1.0×1031ergs, the magnetic cloud helicity from WIND is -5×1042 Mx2. Our combined analysis yields the first quantitative picture of the helicity and energy content processed through a flare in an active region with an obviously rotating sunspot and shows that rotation dominates the energy and helicity budget of this event.

  9. Hilly Surroundings (polar)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 360-degree view shows the terrain surrounding NASA's Mars Exploration Rover Spirit on the rover's 189th sol on Mars (July 15, 2004). It was assembled from images taken by the rover's navigation camera at a position referred to as Site 72, which is at the base of the 'West Spur' portion of the 'Columbia Hills.' The view is presented in a polar projection with geometrical seam correction.

  10. The Csbnd O rotation in the gaseous glycine. An energy decomposition analysis study

    NASA Astrophysics Data System (ADS)

    Chang, Xin; Chen, ZuoChang; Su, Peifeng; Wu, Wei

    2015-11-01

    The physical origins of the Csbnd O rotations in glycine are explored theoretically. By the localized molecular orbital energy decomposition analysis (LMO-EDA) method, the rotation barriers are decomposed into the electrostatic, exchange-repulsion, polarization, correlation and geometrical relaxation terms. In general, the Csbnd O rotations are controlled by Pauli repulsion and polarization interactions. However, if the rotated conformer has obvious inter-group interaction between COOH and NH2, the physical origin of the Csbnd O rotation is changed, which is governed by polarization and correlation interactions.

  11. Roles of viscosity, polarity, and hydrogen-bonding ability of a pyrrolidinium ionic liquid and its binary mixtures in the photophysics and rotational dynamics of the potent excited-state intramolecular proton-transfer probe 2,2'-bipyridine-3,3'-diol.

    PubMed

    Mandal, Sarthak; Ghosh, Surajit; Banerjee, Chiranjib; Kuchlyan, Jagannath; Sarkar, Nilmoni

    2013-06-06

    The room-temperature ionic liquid [C3mpyr][Tf2N] and its binary mixtures with methanol and acetonitrile provide microenvironments of varying viscosity, polarity, and hydrogen-bonding ability. The present work highlights their effects on the photophysics and rotational dynamics of a potent excited-state intramolecular double-proton-transfer (ESIDPT) probe, 2,2'-bipyridine-3,3'-diol [BP(OH)2]. The rotational diffusion of the proton-transferred diketo (DK) tautomer in [C3mpyr][Tf2N] ionic liquid was analyzed for the first time from the experimentally obtained temperature-dependent fluorescence anisotropy data using Stokes-Einstein-Debye (SED) hydrodynamic theory and Gierer-Wirtz quasihydrodynamic theory (GW-QHT). It was found that the rotation of the DK tautomer in neat ionic liquid is governed solely by the viscosity of the medium, as the experimentally observed boundary-condition parameter, Cobs, was very close to the GW boundary-condition parameter (CGW). On the basis of photophysical studies of BP(OH)2 in IL-cosolvent binary mixtures, we suggest that methanol molecules form hydrogen bonds with the cationic counterpart of the DK tautomers, as evidenced by the greater extent of the decrease in the fluorescence lifetime of BP(OH)2 upon addition of methanol compared to acetonitrile. It is also possible for the methanol molecules to form hydrogen bonds with the constituents of the RTIL, which is supported by the lesser extent of the decrease in the viscosity of the medium upon addition of methanol, leading to a less effective decrease in the rotational relaxation time compared to that observed upon acetonitrile addition.

  12. In-line extreme ultraviolet polarizer with hybrid configuration.

    PubMed

    Yang, Minghong; Tong, Xinling; Sun, Yan; Jiang, Desheng; Zhou, Ciming; Zhang, Dongsheng

    2009-03-01

    A novel hybrid Au-multilayer-Au in-line extreme ultraviolet (EUV) optical polarizer is presented in this paper. Different from all-Mo/Si multilayer EUV polarizer, this polarizer is based on the concept that Au surfaces work as reflecting elements for in-line optics routine, while polarization effect is realized by polarizing multilayer. Simulation shows that the proposed polarizer with 80 degrees-70 degrees-80 degrees angle configuration has about 30% of transmission and 12 eV of bandwidth half maximum, which enables more throughput and broader bandwidth than the all-multilayer one.

  13. Research on Copy-Move Image Forgery Detection Using Features of Discrete Polar Complex Exponential Transform

    NASA Astrophysics Data System (ADS)

    Gan, Yanfen; Zhong, Junliu

    2015-12-01

    With the aid of sophisticated photo-editing software, such as Photoshop, copy-move image forgery operation has been widely applied and has become a major concern in the field of information security in the modern society. A lot of work on detecting this kind of forgery has gained great achievements, but the detection results of geometrical transformations of copy-move regions are not so satisfactory. In this paper, a new method based on the Polar Complex Exponential Transform is proposed. This method addresses issues in image geometric moment, focusing on constructing rotation invariant moment and extracting features of the rotation invariant moment. In order to reduce rounding errors of the transform from the Polar coordinate system to the Cartesian coordinate system, a new transformation method is presented and discussed in detail at the same time. The new method constructs a 9 × 9 shrunk template to transform the Cartesian coordinate system back to the Polar coordinate system. It can reduce transform errors to a much greater degree. Forgery detection, such as copy-move image forgery detection, is a difficult procedure, but experiments prove our method is a great improvement in detecting and identifying forgery images affected by the rotated transform.

  14. Polar Glaciology

    NASA Technical Reports Server (NTRS)

    Robin, G. D.

    1984-01-01

    Two fields of research on polar ice sheets are likely to be of dominant interest during the 1990s. These are: the role of polar ice sheets in the hydrological cycle ocean-atmosphere-ice sheets-oceans, especially in relation to climate change; and the study and interpretation of material in deep ice cores to provide improved knowledge of past climates and of the varying levels of atmospheric constituents such as CO2, NOx, SO2, aerosols, etc., over the past 200,000 years. Both topics require a better knowledge of ice dynamics. Many of the studies that should be undertaken in polar regions by Earth Observing System require similar instruments and techniques to those used elsewhere over oceans and inland surfaces. However to study polar regions two special requirements need to be met: Earth Observing System satellite(s) need to be in a sufficiently high inclination orbit to cover most of the polar regions. Instruments must also be adapted, often by relatively limited changes, to give satisfactory data over polar ice. The observational requirements for polar ice sheets in the 1990s are summarized.

  15. Tomographic reconstruction of circularly polarized high-harmonic fields: 3D attosecond metrology.

    PubMed

    Chen, Cong; Tao, Zhensheng; Hernández-García, Carlos; Matyba, Piotr; Carr, Adra; Knut, Ronny; Kfir, Ofer; Zusin, Dimitry; Gentry, Christian; Grychtol, Patrik; Cohen, Oren; Plaja, Luis; Becker, Andreas; Jaron-Becker, Agnieszka; Kapteyn, Henry; Murnane, Margaret

    2016-02-01

    Bright, circularly polarized, extreme ultraviolet (EUV) and soft x-ray high-harmonic beams can now be produced using counter-rotating circularly polarized driving laser fields. Although the resulting circularly polarized harmonics consist of relatively simple pairs of peaks in the spectral domain, in the time domain, the field is predicted to emerge as a complex series of rotating linearly polarized bursts, varying rapidly in amplitude, frequency, and polarization. We extend attosecond metrology techniques to circularly polarized light by simultaneously irradiating a copper surface with circularly polarized high-harmonic and linearly polarized infrared laser fields. The resulting temporal modulation of the photoelectron spectra carries essential phase information about the EUV field. Utilizing the polarization selectivity of the solid surface and by rotating the circularly polarized EUV field in space, we fully retrieve the amplitude and phase of the circularly polarized harmonics, allowing us to reconstruct one of the most complex coherent light fields produced to date.

  16. Tomographic reconstruction of circularly polarized high-harmonic fields: 3D attosecond metrology

    PubMed Central

    Chen, Cong; Tao, Zhensheng; Hernández-García, Carlos; Matyba, Piotr; Carr, Adra; Knut, Ronny; Kfir, Ofer; Zusin, Dimitry; Gentry, Christian; Grychtol, Patrik; Cohen, Oren; Plaja, Luis; Becker, Andreas; Jaron-Becker, Agnieszka; Kapteyn, Henry; Murnane, Margaret

    2016-01-01

    Bright, circularly polarized, extreme ultraviolet (EUV) and soft x-ray high-harmonic beams can now be produced using counter-rotating circularly polarized driving laser fields. Although the resulting circularly polarized harmonics consist of relatively simple pairs of peaks in the spectral domain, in the time domain, the field is predicted to emerge as a complex series of rotating linearly polarized bursts, varying rapidly in amplitude, frequency, and polarization. We extend attosecond metrology techniques to circularly polarized light by simultaneously irradiating a copper surface with circularly polarized high-harmonic and linearly polarized infrared laser fields. The resulting temporal modulation of the photoelectron spectra carries essential phase information about the EUV field. Utilizing the polarization selectivity of the solid surface and by rotating the circularly polarized EUV field in space, we fully retrieve the amplitude and phase of the circularly polarized harmonics, allowing us to reconstruct one of the most complex coherent light fields produced to date. PMID:26989782

  17. Multilayer thin film design as far ultraviolet polarizers

    NASA Technical Reports Server (NTRS)

    Kim, Jongmin; Zukic, Muamer; Torr, Douglas T.

    1993-01-01

    We use a concept of induced transmission and absorption to design multilayer thin film reflection polarizers in the FUV region. We achieve high s-polarization reflectance and a high degree of polarization by means of a MgF2/Al/MgF2 three layer structure on an opaque thick film of aluminum as the substrate. For convenience they are designed at a 45 deg angle of incidence. For example, our polarizer designed for the Lyman-alpha line (121.6 nm) has 88.67 percent reflectance for the s-polarization case, and 1.21 percent for the p-polarization case, with a degree of polarization of 97.31 percent. If we make a double surface polarizer with this design, it will have a degree of polarization of 99.96 percent and s-polarization throughput of 78.62 percent.

  18. Your College Degree: The External Degree Way.

    ERIC Educational Resources Information Center

    Haponski, William C.; And Others

    Information on undertaking an external degree program to obtain a college education is presented. An external degree program is one that has no, or minimal requirements for residence (on-campus attendance). Most often it can be entered at any time of the year and usually grants credit for documented learning already acquired. An external degree…

  19. Rotating Reverse-Osmosis for Water Purification

    NASA Technical Reports Server (NTRS)

    Lueptow, RIchard M.

    2004-01-01

    A new design for a water-filtering device combines rotating filtration with reverse osmosis to create a rotating reverse- osmosis system. Rotating filtration has been used for separating plasma from whole blood, while reverse osmosis has been used in purification of water and in some chemical processes. Reverse- osmosis membranes are vulnerable to concentration polarization a type of fouling in which the chemicals meant not to pass through the reverse-osmosis membranes accumulate very near the surfaces of the membranes. The combination of rotating filtration and reverse osmosis is intended to prevent concentration polarization and thereby increase the desired flux of filtered water while decreasing the likelihood of passage of undesired chemical species through the filter. Devices based on this concept could be useful in a variety of commercial applications, including purification and desalination of drinking water, purification of pharmaceutical process water, treatment of household and industrial wastewater, and treatment of industrial process water. A rotating filter consists of a cylindrical porous microfilter rotating within a stationary concentric cylindrical outer shell (see figure). The aqueous suspension enters one end of the annulus between the inner and outer cylinders. Filtrate passes through the rotating cylindrical microfilter and is removed via a hollow shaft. The concentrated suspension is removed at the end of the annulus opposite the end where the suspension entered.

  20. Planck intermediate results. XIX. An overview of the polarized thermal emission from Galactic dust

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alina, D.; Alves, M. I. R.; Armitage-Caplan, C.; Arnaud, M.; Arzoumanian, D.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gouveia Dal Pino, E. M.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Ferrière, K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Harrison, D. L.; Helou, G.; Hernández-Monteagudo, C.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Magalhães, A. M.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pietrobon, D.; Plaszczynski, S.; Poidevin, F.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Zacchei, A.; Zonca, A.

    2015-04-01

    This paper presents an overview of the polarized sky as seen by Planck HFI at 353 GHz, which is the most sensitive Planck channel for dust polarization. We construct and analyse maps of dust polarization fraction and polarization angle at 1° resolution, taking into account noise bias and possible systematic effects. The sensitivity of the Planck HFI polarization measurements allows for the first time a mapping of Galactic dust polarized emission on large scales, including low column density regions. We find that the maximum observed dust polarization fraction is high (pmax = 19.8%), in particular in some regions of moderate hydrogen column density (NH < 2 × 1021 cm-2). The polarization fraction displays a large scatter at NH below a few 1021 cm-2. There is a general decrease in the dust polarization fraction with increasing column density above NH ≃ 1 × 1021 cm-2 and in particular a sharp drop above NH ≃ 1.5 × 1022 cm-2. We characterize the spatial structure of the polarization angle using the angle dispersion function. We find that the polarization angle is ordered over extended areas of several square degrees, separated by filamentary structures of high angle dispersion function. These appear as interfaces where the sky projection of the magnetic field changes abruptly without variations in the column density. The polarization fraction is found to be anti-correlated with the dispersion of polarization angles. These results suggest that, at the resolution of 1°, depolarization is due mainly to fluctuations in the magnetic field orientation along the line of sight, rather than to the loss of grain alignment in shielded regions. We also compare the polarization of thermal dust emission with that of synchrotron measured with Planck, low-frequency radio data, and Faraday rotation measurements toward extragalactic sources. These components bear resemblance along the Galactic plane and in some regions such as the Fan and North Polar Spur regions. The poor match