A statistical analysis of UK financial networks
NASA Astrophysics Data System (ADS)
Chu, J.; Nadarajah, S.
2017-04-01
In recent years, with a growing interest in big or large datasets, there has been a rise in the application of large graphs and networks to financial big data. Much of this research has focused on the construction and analysis of the network structure of stock markets, based on the relationships between stock prices. Motivated by Boginski et al. (2005), who studied the characteristics of a network structure of the US stock market, we construct network graphs of the UK stock market using same method. We fit four distributions to the degree density of the vertices from these graphs, the Pareto I, Fréchet, lognormal, and generalised Pareto distributions, and assess the goodness of fit. Our results show that the degree density of the complements of the market graphs, constructed using a negative threshold value close to zero, can be fitted well with the Fréchet and lognormal distributions.
NASA Astrophysics Data System (ADS)
Wahid, Juliana; Hussin, Naimah Mohd
2016-08-01
The construction of population of initial solution is a crucial task in population-based metaheuristic approach for solving curriculum-based university course timetabling problem because it can affect the convergence speed and also the quality of the final solution. This paper presents an exploration on combination of graph heuristics in construction approach in curriculum based course timetabling problem to produce a population of initial solutions. The graph heuristics were set as single and combination of two heuristics. In addition, several ways of assigning courses into room and timeslot are implemented. All settings of heuristics are then tested on the same curriculum based course timetabling problem instances and are compared with each other in terms of number of population produced. The result shows that combination of saturation degree followed by largest degree heuristic produce the highest number of population of initial solutions. The results from this study can be used in the improvement phase of algorithm that uses population of initial solutions.
Expanding our understanding of students' use of graphs for learning physics
NASA Astrophysics Data System (ADS)
Laverty, James T.
It is generally agreed that the ability to visualize functional dependencies or physical relationships as graphs is an important step in modeling and learning. However, several studies in Physics Education Research (PER) have shown that many students in fact do not master this form of representation and even have misconceptions about the meaning of graphs that impede learning physics concepts. Working with graphs in classroom settings has been shown to improve student abilities with graphs, particularly when the students can interact with them. We introduce a novel problem type in an online homework system, which requires students to construct the graphs themselves in free form, and requires no hand-grading by instructors. A study of pre/post-test data using the Test of Understanding Graphs in Kinematics (TUG-K) over several semesters indicates that students learn significantly more from these graph construction problems than from the usual graph interpretation problems, and that graph interpretation alone may not have any significant effect. The interpretation of graphs, as well as the representation translation between textual, mathematical, and graphical representations of physics scenarios, are frequently listed among the higher order thinking skills we wish to convey in an undergraduate course. But to what degree do we succeed? Do students indeed employ higher order thinking skills when working through graphing exercises? We investigate students working through a variety of graph problems, and, using a think-aloud protocol, aim to reconstruct the cognitive processes that the students go through. We find that to a certain degree, these problems become commoditized and do not trigger the desired higher order thinking processes; simply translating ``textbook-like'' problems into the graphical realm will not achieve any additional educational goals. Whether the students have to interpret or construct a graph makes very little difference in the methods used by the students. We will also look at the results of using graph problems in an online learning environment. We will show evidence that construction problems lead to a higher degree of difficulty and degree of discrimination than other graph problems and discuss the influence the course has on these variables.
Exact sampling of graphs with prescribed degree correlations
NASA Astrophysics Data System (ADS)
Bassler, Kevin E.; Del Genio, Charo I.; Erdős, Péter L.; Miklós, István; Toroczkai, Zoltán
2015-08-01
Many real-world networks exhibit correlations between the node degrees. For instance, in social networks nodes tend to connect to nodes of similar degree and conversely, in biological and technological networks, high-degree nodes tend to be linked with low-degree nodes. Degree correlations also affect the dynamics of processes supported by a network structure, such as the spread of opinions or epidemics. The proper modelling of these systems, i.e., without uncontrolled biases, requires the sampling of networks with a specified set of constraints. We present a solution to the sampling problem when the constraints imposed are the degree correlations. In particular, we develop an exact method to construct and sample graphs with a specified joint-degree matrix, which is a matrix providing the number of edges between all the sets of nodes of a given degree, for all degrees, thus completely specifying all pairwise degree correlations, and additionally, the degree sequence itself. Our algorithm always produces independent samples without backtracking. The complexity of the graph construction algorithm is {O}({NM}) where N is the number of nodes and M is the number of edges.
Using Zipf-Mandelbrot law and graph theory to evaluate animal welfare
NASA Astrophysics Data System (ADS)
de Oliveira, Caprice G. L.; Miranda, José G. V.; Japyassú, Hilton F.; El-Hani, Charbel N.
2018-02-01
This work deals with the construction and testing of metrics of welfare based on behavioral complexity, using assumptions derived from Zipf-Mandelbrot law and graph theory. To test these metrics we compared yellow-breasted capuchins (Sapajus xanthosternos) (Wied-Neuwied, 1826) (PRIMATES CEBIDAE) found in two institutions, subjected to different captive conditions: a Zoobotanical Garden (hereafter, ZOO; n = 14), in good welfare condition, and a Wildlife Rescue Center (hereafter, WRC; n = 8), in poor welfare condition. In the Zipf-Mandelbrot-based analysis, the power law exponent was calculated using behavior frequency values versus behavior rank value. These values allow us to evaluate variations in individual behavioral complexity. For each individual we also constructed a graph using the sequence of behavioral units displayed in each recording (average recording time per individual: 4 h 26 min in the ZOO, 4 h 30 min in the WRC). Then, we calculated the values of the main graph attributes, which allowed us to analyze the complexity of the connectivity of the behaviors displayed in the individuals' behavioral sequences. We found significant differences between the two groups for the slope values in the Zipf-Mandelbrot analysis. The slope values for the ZOO individuals approached -1, with graphs representing a power law, while the values for the WRC individuals diverged from -1, differing from a power law pattern. Likewise, we found significant differences for the graph attributes average degree, weighted average degree, and clustering coefficient when comparing the ZOO and WRC individual graphs. However, no significant difference was found for the attributes modularity and average path length. Both analyses were effective in detecting differences between the patterns of behavioral complexity in the two groups. The slope values for the ZOO individuals indicated a higher behavioral complexity when compared to the WRC individuals. Similarly, graph construction and the calculation of its attributes values allowed us to show that the complexity of the connectivity among the behaviors was higher in the ZOO than in the WRC individual graphs. These results show that the two measuring approaches introduced and tested in this paper were capable of capturing the differences in welfare levels between the two conditions, as shown by differences in behavioral complexity.
Are randomly grown graphs really random?
Callaway, D S; Hopcroft, J E; Kleinberg, J M; Newman, M E; Strogatz, S H
2001-10-01
We analyze a minimal model of a growing network. At each time step, a new vertex is added; then, with probability delta, two vertices are chosen uniformly at random and joined by an undirected edge. This process is repeated for t time steps. In the limit of large t, the resulting graph displays surprisingly rich characteristics. In particular, a giant component emerges in an infinite-order phase transition at delta=1/8. At the transition, the average component size jumps discontinuously but remains finite. In contrast, a static random graph with the same degree distribution exhibits a second-order phase transition at delta=1/4, and the average component size diverges there. These dramatic differences between grown and static random graphs stem from a positive correlation between the degrees of connected vertices in the grown graph-older vertices tend to have higher degree, and to link with other high-degree vertices, merely by virtue of their age. We conclude that grown graphs, however randomly they are constructed, are fundamentally different from their static random graph counterparts.
Hegarty, Peter; Lemieux, Anthony F; McQueen, Grant
2010-03-01
Graphs seem to connote facts more than words or tables do. Consequently, they seem unlikely places to spot implicit sexism at work. Yet, in 6 studies (N = 741), women and men constructed (Study 1) and recalled (Study 2) gender difference graphs with men's data first, and graphed powerful groups (Study 3) and individuals (Study 4) ahead of weaker ones. Participants who interpreted graph order as evidence of author "bias" inferred that the author graphed his or her own gender group first (Study 5). Women's, but not men's, preferences to graph men first were mitigated when participants graphed a difference between themselves and an opposite-sex friend prior to graphing gender differences (Study 6). Graph production and comprehension are affected by beliefs and suppositions about the groups represented in graphs to a greater degree than cognitive models of graph comprehension or realist models of scientific thinking have yet acknowledged.
Visibility graph analysis on quarterly macroeconomic series of China based on complex network theory
NASA Astrophysics Data System (ADS)
Wang, Na; Li, Dong; Wang, Qiwen
2012-12-01
The visibility graph approach and complex network theory provide a new insight into time series analysis. The inheritance of the visibility graph from the original time series was further explored in the paper. We found that degree distributions of visibility graphs extracted from Pseudo Brownian Motion series obtained by the Frequency Domain algorithm exhibit exponential behaviors, in which the exponential exponent is a binomial function of the Hurst index inherited in the time series. Our simulations presented that the quantitative relations between the Hurst indexes and the exponents of degree distribution function are different for different series and the visibility graph inherits some important features of the original time series. Further, we convert some quarterly macroeconomic series including the growth rates of value-added of three industry series and the growth rates of Gross Domestic Product series of China to graphs by the visibility algorithm and explore the topological properties of graphs associated from the four macroeconomic series, namely, the degree distribution and correlations, the clustering coefficient, the average path length, and community structure. Based on complex network analysis we find degree distributions of associated networks from the growth rates of value-added of three industry series are almost exponential and the degree distributions of associated networks from the growth rates of GDP series are scale free. We also discussed the assortativity and disassortativity of the four associated networks as they are related to the evolutionary process of the original macroeconomic series. All the constructed networks have “small-world” features. The community structures of associated networks suggest dynamic changes of the original macroeconomic series. We also detected the relationship among government policy changes, community structures of associated networks and macroeconomic dynamics. We find great influences of government policies in China on the changes of dynamics of GDP and the three industries adjustment. The work in our paper provides a new way to understand the dynamics of economic development.
Phillips, David J.; McGlaughlin, Alec; Ruth, David; Jager, Leah R.; Soldan, Anja
2015-01-01
Graph theory is increasingly being used to study brain connectivity across the spectrum of Alzheimer's disease (AD), but prior findings have been inconsistent, likely reflecting methodological differences. We systematically investigated how methods of graph creation (i.e., type of correlation matrix and edge weighting) affect structural network properties and group differences. We estimated the structural connectivity of brain networks based on correlation maps of cortical thickness obtained from MRI. Four groups were compared: 126 cognitively normal older adults, 103 individuals with Mild Cognitive Impairment (MCI) who retained MCI status for at least 3 years (stable MCI), 108 individuals with MCI who progressed to AD-dementia within 3 years (progressive MCI), and 105 individuals with AD-dementia. Small-world measures of connectivity (characteristic path length and clustering coefficient) differed across groups, consistent with prior studies. Groups were best discriminated by the Randić index, which measures the degree to which highly connected nodes connect to other highly connected nodes. The Randić index differentiated the stable and progressive MCI groups, suggesting that it might be useful for tracking and predicting the progression of AD. Notably, however, the magnitude and direction of group differences in all three measures were dependent on the method of graph creation, indicating that it is crucial to take into account how graphs are constructed when interpreting differences across diagnostic groups and studies. The algebraic connectivity measures showed few group differences, independent of the method of graph construction, suggesting that global connectivity as it relates to node degree is not altered in early AD. PMID:25984446
Analysis of quality raw data of second generation sequencers with Quality Assessment Software.
Ramos, Rommel Tj; Carneiro, Adriana R; Baumbach, Jan; Azevedo, Vasco; Schneider, Maria Pc; Silva, Artur
2011-04-18
Second generation technologies have advantages over Sanger; however, they have resulted in new challenges for the genome construction process, especially because of the small size of the reads, despite the high degree of coverage. Independent of the program chosen for the construction process, DNA sequences are superimposed, based on identity, to extend the reads, generating contigs; mismatches indicate a lack of homology and are not included. This process improves our confidence in the sequences that are generated. We developed Quality Assessment Software, with which one can review graphs showing the distribution of quality values from the sequencing reads. This software allow us to adopt more stringent quality standards for sequence data, based on quality-graph analysis and estimated coverage after applying the quality filter, providing acceptable sequence coverage for genome construction from short reads. Quality filtering is a fundamental step in the process of constructing genomes, as it reduces the frequency of incorrect alignments that are caused by measuring errors, which can occur during the construction process due to the size of the reads, provoking misassemblies. Application of quality filters to sequence data, using the software Quality Assessment, along with graphing analyses, provided greater precision in the definition of cutoff parameters, which increased the accuracy of genome construction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braunstein, Samuel L.; Ghosh, Sibasish; Severini, Simone
We reconsider density matrices of graphs as defined in quant-ph/0406165. The density matrix of a graph is the combinatorial Laplacian of the graph normalized to have unit trace. We describe a simple combinatorial condition (the 'degree condition') to test the separability of density matrices of graphs. The condition is directly related to the Peres-Horodecki partial transposition condition. We prove that the degree condition is necessary for separability, and we conjecture that it is also sufficient. We prove special cases of the conjecture involving nearest-point graphs and perfect matchings. We observe that the degree condition appears to have a value beyondmore » the density matrices of graphs. In fact, we point out that circulant density matrices and other matrices constructed from groups always satisfy the condition and indeed are separable with respect to any split. We isolate a number of problems and delineate further generalizations.« less
Spectral Upscaling for Graph Laplacian Problems with Application to Reservoir Simulation
Barker, Andrew T.; Lee, Chak S.; Vassilevski, Panayot S.
2017-10-26
Here, we consider coarsening procedures for graph Laplacian problems written in a mixed saddle-point form. In that form, in addition to the original (vertex) degrees of freedom (dofs), we also have edge degrees of freedom. We extend previously developed aggregation-based coarsening procedures applied to both sets of dofs to now allow more than one coarse vertex dof per aggregate. Those dofs are selected as certain eigenvectors of local graph Laplacians associated with each aggregate. Additionally, we coarsen the edge dofs by using traces of the discrete gradients of the already constructed coarse vertex dofs. These traces are defined on themore » interface edges that connect any two adjacent aggregates. The overall procedure is a modification of the spectral upscaling procedure developed in for the mixed finite element discretization of diffusion type PDEs which has the important property of maintaining inf-sup stability on coarse levels and having provable approximation properties. We consider applications to partitioning a general graph and to a finite volume discretization interpreted as a graph Laplacian, developing consistent and accurate coarse-scale models of a fine-scale problem.« less
Efficient dynamic graph construction for inductive semi-supervised learning.
Dornaika, F; Dahbi, R; Bosaghzadeh, A; Ruichek, Y
2017-10-01
Most of graph construction techniques assume a transductive setting in which the whole data collection is available at construction time. Addressing graph construction for inductive setting, in which data are coming sequentially, has received much less attention. For inductive settings, constructing the graph from scratch can be very time consuming. This paper introduces a generic framework that is able to make any graph construction method incremental. This framework yields an efficient and dynamic graph construction method that adds new samples (labeled or unlabeled) to a previously constructed graph. As a case study, we use the recently proposed Two Phase Weighted Regularized Least Square (TPWRLS) graph construction method. The paper has two main contributions. First, we use the TPWRLS coding scheme to represent new sample(s) with respect to an existing database. The representative coefficients are then used to update the graph affinity matrix. The proposed method not only appends the new samples to the graph but also updates the whole graph structure by discovering which nodes are affected by the introduction of new samples and by updating their edge weights. The second contribution of the article is the application of the proposed framework to the problem of graph-based label propagation using multiple observations for vision-based recognition tasks. Experiments on several image databases show that, without any significant loss in the accuracy of the final classification, the proposed dynamic graph construction is more efficient than the batch graph construction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Using a high-dimensional graph of semantic space to model relationships among words
Jackson, Alice F.; Bolger, Donald J.
2014-01-01
The GOLD model (Graph Of Language Distribution) is a network model constructed based on co-occurrence in a large corpus of natural language that may be used to explore what information may be present in a graph-structured model of language, and what information may be extracted through theoretically-driven algorithms as well as standard graph analysis methods. The present study will employ GOLD to examine two types of relationship between words: semantic similarity and associative relatedness. Semantic similarity refers to the degree of overlap in meaning between words, while associative relatedness refers to the degree to which two words occur in the same schematic context. It is expected that a graph structured model of language constructed based on co-occurrence should easily capture associative relatedness, because this type of relationship is thought to be present directly in lexical co-occurrence. However, it is hypothesized that semantic similarity may be extracted from the intersection of the set of first-order connections, because two words that are semantically similar may occupy similar thematic or syntactic roles across contexts and thus would co-occur lexically with the same set of nodes. Two versions the GOLD model that differed in terms of the co-occurence window, bigGOLD at the paragraph level and smallGOLD at the adjacent word level, were directly compared to the performance of a well-established distributional model, Latent Semantic Analysis (LSA). The superior performance of the GOLD models (big and small) suggest that a single acquisition and storage mechanism, namely co-occurrence, can account for associative and conceptual relationships between words and is more psychologically plausible than models using singular value decomposition (SVD). PMID:24860525
Using a high-dimensional graph of semantic space to model relationships among words.
Jackson, Alice F; Bolger, Donald J
2014-01-01
The GOLD model (Graph Of Language Distribution) is a network model constructed based on co-occurrence in a large corpus of natural language that may be used to explore what information may be present in a graph-structured model of language, and what information may be extracted through theoretically-driven algorithms as well as standard graph analysis methods. The present study will employ GOLD to examine two types of relationship between words: semantic similarity and associative relatedness. Semantic similarity refers to the degree of overlap in meaning between words, while associative relatedness refers to the degree to which two words occur in the same schematic context. It is expected that a graph structured model of language constructed based on co-occurrence should easily capture associative relatedness, because this type of relationship is thought to be present directly in lexical co-occurrence. However, it is hypothesized that semantic similarity may be extracted from the intersection of the set of first-order connections, because two words that are semantically similar may occupy similar thematic or syntactic roles across contexts and thus would co-occur lexically with the same set of nodes. Two versions the GOLD model that differed in terms of the co-occurence window, bigGOLD at the paragraph level and smallGOLD at the adjacent word level, were directly compared to the performance of a well-established distributional model, Latent Semantic Analysis (LSA). The superior performance of the GOLD models (big and small) suggest that a single acquisition and storage mechanism, namely co-occurrence, can account for associative and conceptual relationships between words and is more psychologically plausible than models using singular value decomposition (SVD).
Kandel, Benjamin M; Wang, Danny J J; Gee, James C; Avants, Brian B
2014-01-01
Although much attention has recently been focused on single-subject functional networks, using methods such as resting-state functional MRI, methods for constructing single-subject structural networks are in their infancy. Single-subject cortical networks aim to describe the self-similarity across the cortical structure, possibly signifying convergent developmental pathways. Previous methods for constructing single-subject cortical networks have used patch-based correlations and distance metrics based on curvature and thickness. We present here a method for constructing similarity-based cortical structural networks that utilizes a rotation-invariant representation of structure. The resulting graph metrics are closely linked to age and indicate an increasing degree of closeness throughout development in nearly all brain regions, perhaps corresponding to a more regular structure as the brain matures. The derived graph metrics demonstrate a four-fold increase in power for detecting age as compared to cortical thickness. This proof of concept study indicates that the proposed metric may be useful in identifying biologically relevant cortical patterns.
Isomorphism of dimer configurations and spanning trees on finite square lattices
NASA Astrophysics Data System (ADS)
Brankov, J. G.
1995-09-01
One-to-one mappings of the close-packed dimer configurations on a finite square lattice with free boundaries L onto the spanning trees of a related graph (or two-graph) G are found. The graph (two-graph) G can be constructed from L by: (1) deleting all the vertices of L with arbitrarily fixed parity of the row and column numbers; (2) suppressing all the vertices of degree 2 except those of degree 2 in L; (3) merging all the vertices of degree 1 into a single vertex g. The matrix Kirchhoff theorem reduces the enumeration problem for the spanning trees on G to the eigenvalue problem for the discrete Laplacian on the square lattice L'=G g with mixed Dirichlet-Neumann boundary conditions in at least one direction. That fact explains some of the unusual finite-size properties of the dimer model.
Constructing compact and effective graphs for recommender systems via node and edge aggregations
Lee, Sangkeun; Kahng, Minsuk; Lee, Sang-goo
2014-12-10
Exploiting graphs for recommender systems has great potential to flexibly incorporate heterogeneous information for producing better recommendation results. As our baseline approach, we first introduce a naive graph-based recommendation method, which operates with a heterogeneous log-metadata graph constructed from user log and content metadata databases. Although the na ve graph-based recommendation method is simple, it allows us to take advantages of heterogeneous information and shows promising flexibility and recommendation accuracy. However, it often leads to extensive processing time due to the sheer size of the graphs constructed from entire user log and content metadata databases. In this paper, we proposemore » node and edge aggregation approaches to constructing compact and e ective graphs called Factor-Item bipartite graphs by aggregating nodes and edges of a log-metadata graph. Furthermore, experimental results using real world datasets indicate that our approach can significantly reduce the size of graphs exploited for recommender systems without sacrificing the recommendation quality.« less
A Weight-Adaptive Laplacian Embedding for Graph-Based Clustering.
Cheng, De; Nie, Feiping; Sun, Jiande; Gong, Yihong
2017-07-01
Graph-based clustering methods perform clustering on a fixed input data graph. Thus such clustering results are sensitive to the particular graph construction. If this initial construction is of low quality, the resulting clustering may also be of low quality. We address this drawback by allowing the data graph itself to be adaptively adjusted in the clustering procedure. In particular, our proposed weight adaptive Laplacian (WAL) method learns a new data similarity matrix that can adaptively adjust the initial graph according to the similarity weight in the input data graph. We develop three versions of these methods based on the L2-norm, fuzzy entropy regularizer, and another exponential-based weight strategy, that yield three new graph-based clustering objectives. We derive optimization algorithms to solve these objectives. Experimental results on synthetic data sets and real-world benchmark data sets exhibit the effectiveness of these new graph-based clustering methods.
Patel, Ameera X; Bullmore, Edward T
2016-11-15
Connectome mapping using techniques such as functional magnetic resonance imaging (fMRI) has become a focus of systems neuroscience. There remain many statistical challenges in analysis of functional connectivity and network architecture from BOLD fMRI multivariate time series. One key statistic for any time series is its (effective) degrees of freedom, df, which will generally be less than the number of time points (or nominal degrees of freedom, N). If we know the df, then probabilistic inference on other fMRI statistics, such as the correlation between two voxel or regional time series, is feasible. However, we currently lack good estimators of df in fMRI time series, especially after the degrees of freedom of the "raw" data have been modified substantially by denoising algorithms for head movement. Here, we used a wavelet-based method both to denoise fMRI data and to estimate the (effective) df of the denoised process. We show that seed voxel correlations corrected for locally variable df could be tested for false positive connectivity with better control over Type I error and greater specificity of anatomical mapping than probabilistic connectivity maps using the nominal degrees of freedom. We also show that wavelet despiked statistics can be used to estimate all pairwise correlations between a set of regional nodes, assign a P value to each edge, and then iteratively add edges to the graph in order of increasing P. These probabilistically thresholded graphs are likely more robust to regional variation in head movement effects than comparable graphs constructed by thresholding correlations. Finally, we show that time-windowed estimates of df can be used for probabilistic connectivity testing or dynamic network analysis so that apparent changes in the functional connectome are appropriately corrected for the effects of transient noise bursts. Wavelet despiking is both an algorithm for fMRI time series denoising and an estimator of the (effective) df of denoised fMRI time series. Accurate estimation of df offers many potential advantages for probabilistically thresholding functional connectivity and network statistics tested in the context of spatially variant and non-stationary noise. Code for wavelet despiking, seed correlational testing and probabilistic graph construction is freely available to download as part of the BrainWavelet Toolbox at www.brainwavelet.org. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Rapoport, Amnon
The prediction that two different methods of constructing linear, tree graphs will yield the same formal structure of semantic space and measurement of word proximity was tested by comparing the distribution of node degree, the distribution of the number of pairs of nodes connected y times, and the distribution of adjective degree in trees…
A Note on the Kirchhoff and Additive Degree-Kirchhoff Indices of Graphs
NASA Astrophysics Data System (ADS)
Yang, Yujun; Klein, Douglas J.
2015-06-01
Two resistance-distance-based graph invariants, namely, the Kirchhoff index and the additive degree-Kirchhoff index, are studied. A relation between them is established, with inequalities for the additive degree-Kirchhoff index arising via the Kirchhoff index along with minimum, maximum, and average degrees. Bounds for the Kirchhoff and additive degree-Kirchhoff indices are also determined, and extremal graphs are characterised. In addition, an upper bound for the additive degree-Kirchhoff index is established to improve a previously known result.
NASA Astrophysics Data System (ADS)
Hao, Ruizhe; Huang, Jian
2017-08-01
Knowledge graph construction in military intelligence domain is sprouting but technically immature. This paper presents a method to construct the heterogeneous knowledge graph in the field of shipborne and airborne radar and equipment. Based on the expert knowledge and the up-to-date Internet open source information, we construct the knowledge graph of radar characteristic information and the equipment respectively, and establish relationships between two graphs, providing the pipeline and method for the intelligence organization and management in the context of the crowding battlefields big data.
First Instances of Generalized Expo-Rational Finite Elements on Triangulations
NASA Astrophysics Data System (ADS)
Dechevsky, Lubomir T.; Zanaty, Peter; Laksa˚, Arne; Bang, Børre
2011-12-01
In this communication we consider a construction of simplicial finite elements on triangulated two-dimensional polygonal domains. This construction is, in some sense, dual to the construction of generalized expo-rational B-splines (GERBS). The main result is in the obtaining of new polynomial simplicial patches of the first several lowest possible total polynomial degrees which exhibit Hermite interpolatory properties. The derivation of these results is based on the theory of piecewise polynomial GERBS called Euler Beta-function B-splines. We also provide 3-dimensional visualization of the graphs of the new polynomial simplicial patches and their control polygons.
Information Graph Flow: A Geometric Approximation of Quantum and Statistical Systems
NASA Astrophysics Data System (ADS)
Vanchurin, Vitaly
2018-05-01
Given a quantum (or statistical) system with a very large number of degrees of freedom and a preferred tensor product factorization of the Hilbert space (or of a space of distributions) we describe how it can be approximated with a very low-dimensional field theory with geometric degrees of freedom. The geometric approximation procedure consists of three steps. The first step is to construct weighted graphs (we call information graphs) with vertices representing subsystems (e.g., qubits or random variables) and edges representing mutual information (or the flow of information) between subsystems. The second step is to deform the adjacency matrices of the information graphs to that of a (locally) low-dimensional lattice using the graph flow equations introduced in the paper. (Note that the graph flow produces very sparse adjacency matrices and thus might also be used, for example, in machine learning or network science where the task of graph sparsification is of a central importance.) The third step is to define an emergent metric and to derive an effective description of the metric and possibly other degrees of freedom. To illustrate the procedure we analyze (numerically and analytically) two information graph flows with geometric attractors (towards locally one- and two-dimensional lattices) and metric perturbations obeying a geometric flow equation. Our analysis also suggests a possible approach to (a non-perturbative) quantum gravity in which the geometry (a secondary object) emerges directly from a quantum state (a primary object) due to the flow of the information graphs.
Information Graph Flow: A Geometric Approximation of Quantum and Statistical Systems
NASA Astrophysics Data System (ADS)
Vanchurin, Vitaly
2018-06-01
Given a quantum (or statistical) system with a very large number of degrees of freedom and a preferred tensor product factorization of the Hilbert space (or of a space of distributions) we describe how it can be approximated with a very low-dimensional field theory with geometric degrees of freedom. The geometric approximation procedure consists of three steps. The first step is to construct weighted graphs (we call information graphs) with vertices representing subsystems (e.g., qubits or random variables) and edges representing mutual information (or the flow of information) between subsystems. The second step is to deform the adjacency matrices of the information graphs to that of a (locally) low-dimensional lattice using the graph flow equations introduced in the paper. (Note that the graph flow produces very sparse adjacency matrices and thus might also be used, for example, in machine learning or network science where the task of graph sparsification is of a central importance.) The third step is to define an emergent metric and to derive an effective description of the metric and possibly other degrees of freedom. To illustrate the procedure we analyze (numerically and analytically) two information graph flows with geometric attractors (towards locally one- and two-dimensional lattices) and metric perturbations obeying a geometric flow equation. Our analysis also suggests a possible approach to (a non-perturbative) quantum gravity in which the geometry (a secondary object) emerges directly from a quantum state (a primary object) due to the flow of the information graphs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2010-09-30
The Umbra gbs (Graph-Based Search) library provides implementations of graph-based search/planning algorithms that can be applied to legacy graph data structures. Unlike some other graph algorithm libraries, this one does not require your graph class to inherit from a specific base class. Implementations of Dijkstra's Algorithm and A-Star search are included and can be used with graphs that are lazily-constructed.
Gomez-Pilar, Javier; Poza, Jesús; Bachiller, Alejandro; Gómez, Carlos; Núñez, Pablo; Lubeiro, Alba; Molina, Vicente; Hornero, Roberto
2018-02-01
The aim of this study was to introduce a novel global measure of graph complexity: Shannon graph complexity (SGC). This measure was specifically developed for weighted graphs, but it can also be applied to binary graphs. The proposed complexity measure was designed to capture the interplay between two properties of a system: the 'information' (calculated by means of Shannon entropy) and the 'order' of the system (estimated by means of a disequilibrium measure). SGC is based on the concept that complex graphs should maintain an equilibrium between the aforementioned two properties, which can be measured by means of the edge weight distribution. In this study, SGC was assessed using four synthetic graph datasets and a real dataset, formed by electroencephalographic (EEG) recordings from controls and schizophrenia patients. SGC was compared with graph density (GD), a classical measure used to evaluate graph complexity. Our results showed that SGC is invariant with respect to GD and independent of node degree distribution. Furthermore, its variation with graph size [Formula: see text] is close to zero for [Formula: see text]. Results from the real dataset showed an increment in the weight distribution balance during the cognitive processing for both controls and schizophrenia patients, although these changes are more relevant for controls. Our findings revealed that SGC does not need a comparison with null-hypothesis networks constructed by a surrogate process. In addition, SGC results on the real dataset suggest that schizophrenia is associated with a deficit in the brain dynamic reorganization related to secondary pathways of the brain network.
NASA Astrophysics Data System (ADS)
Stevens, Jeffrey
The past decade has seen the emergence of many hyperspectral image (HSI) analysis algorithms based on graph theory and derived manifold-coordinates. Yet, despite the growing number of algorithms, there has been limited study of the graphs constructed from spectral data themselves. Which graphs are appropriate for various HSI analyses--and why? This research aims to begin addressing these questions as the performance of graph-based techniques is inextricably tied to the graphical model constructed from the spectral data. We begin with a literature review providing a survey of spectral graph construction techniques currently used by the hyperspectral community, starting with simple constructs demonstrating basic concepts and then incrementally adding components to derive more complex approaches. Throughout this development, we discuss algorithm advantages and disadvantages for different types of hyperspectral analysis. A focus is provided on techniques influenced by spectral density through which the concept of community structure arises. Through the use of simulated and real HSI data, we demonstrate density-based edge allocation produces more uniform nearest neighbor lists than non-density based techniques through increasing the number of intracluster edges, facilitating higher k-nearest neighbor (k-NN) classification performance. Imposing the common mutuality constraint to symmetrify adjacency matrices is demonstrated to be beneficial in most circumstances, especially in rural (less cluttered) scenes. Many complex adaptive edge-reweighting techniques are shown to slightly degrade nearest-neighbor list characteristics. Analysis suggests this condition is possibly attributable to the validity of characterizing spectral density by a single variable representing data scale for each pixel. Additionally, it is shown that imposing mutuality hurts the performance of adaptive edge-allocation techniques or any technique that aims to assign a low number of edges (<10) to any pixel. A simple k bias addresses this problem. Many of the adaptive edge-reweighting techniques are based on the concept of codensity, so we explore codensity properties as they relate to density-based edge reweighting. We find that codensity may not be the best estimator of local scale due to variations in cluster density, so we introduce and compare two inherently density-weighted graph construction techniques from the data mining literature: shared nearest neighbors (SNN) and mutual proximity (MP). MP and SNN are not reliant upon a codensity measure, hence are not susceptible to its shortcomings. Neither has been used for hyperspectral analyses, so this presents the first study of these techniques on HSI data. We demonstrate MP and SNN can offer better performance, but in general none of the reweighting techniques improve the quality of these spectral graphs in our neighborhood structure tests. As such, these complex adaptive edge-reweighting techniques may need to be modified to increase their effectiveness. During this investigation, we probe deeper into properties of high-dimensional data and introduce the concept of concentration of measure (CoM)--the degradation in the efficacy of many common distance measures with increasing dimensionality--as it relates to spectral graph construction. CoM exists in pairwise distances between HSI pixels, but not to the degree experienced in random data of the same extrinsic dimension; a characteristic we demonstrate is due to the rich correlation and cluster structure present in HSI data. CoM can lead to hubness--a condition wherein some nodes have short distances (high similarities) to an exceptionally large number of nodes. We study hub presence in 49 HSI datasets of varying resolutions, altitudes, and spectral bands to demonstrate hubness effects are negligible in a k-NN classification example (generalized counting scenarios), but we note its impact on methods that use edge weights to derive manifold coordinates or splitting clusters based on spectral graph theory requires more investigation. Many of these new graph-related quantities can be exploited to demonstrate new techniques for HSI classification and anomaly detection. We present an initial exploration into this relatively new and exciting field based on an enhanced Schroedinger Eigenmap classification example and compare results to the current state-of-the-art approach. We produce equivalent results, but demonstrate different types of misclassifications, opening the door to combine the best of both approaches to achieve truly superior performance. A separate less mature hubness-assisted anomaly detector (HAAD) is also presented.
Couple Graph Based Label Propagation Method for Hyperspectral Remote Sensing Data Classification
NASA Astrophysics Data System (ADS)
Wang, X. P.; Hu, Y.; Chen, J.
2018-04-01
Graph based semi-supervised classification method are widely used for hyperspectral image classification. We present a couple graph based label propagation method, which contains both the adjacency graph and the similar graph. We propose to construct the similar graph by using the similar probability, which utilize the label similarity among examples probably. The adjacency graph was utilized by a common manifold learning method, which has effective improve the classification accuracy of hyperspectral data. The experiments indicate that the couple graph Laplacian which unite both the adjacency graph and the similar graph, produce superior classification results than other manifold Learning based graph Laplacian and Sparse representation based graph Laplacian in label propagation framework.
Cross over of recurrence networks to random graphs and random geometric graphs
NASA Astrophysics Data System (ADS)
Jacob, Rinku; Harikrishnan, K. P.; Misra, R.; Ambika, G.
2017-02-01
Recurrence networks are complex networks constructed from the time series of chaotic dynamical systems where the connection between two nodes is limited by the recurrence threshold. This condition makes the topology of every recurrence network unique with the degree distribution determined by the probability density variations of the representative attractor from which it is constructed. Here we numerically investigate the properties of recurrence networks from standard low-dimensional chaotic attractors using some basic network measures and show how the recurrence networks are different from random and scale-free networks. In particular, we show that all recurrence networks can cross over to random geometric graphs by adding sufficient amount of noise to the time series and into the classical random graphs by increasing the range of interaction to the system size. We also highlight the effectiveness of a combined plot of characteristic path length and clustering coefficient in capturing the small changes in the network characteristics.
NASA Astrophysics Data System (ADS)
Lacasa, Lucas
2014-09-01
Dynamical processes can be transformed into graphs through a family of mappings called visibility algorithms, enabling the possibility of (i) making empirical time series analysis and signal processing and (ii) characterizing classes of dynamical systems and stochastic processes using the tools of graph theory. Recent works show that the degree distribution of these graphs encapsulates much information on the signals' variability, and therefore constitutes a fundamental feature for statistical learning purposes. However, exact solutions for the degree distributions are only known in a few cases, such as for uncorrelated random processes. Here we analytically explore these distributions in a list of situations. We present a diagrammatic formalism which computes for all degrees their corresponding probability as a series expansion in a coupling constant which is the number of hidden variables. We offer a constructive solution for general Markovian stochastic processes and deterministic maps. As case tests we focus on Ornstein-Uhlenbeck processes, fully chaotic and quasiperiodic maps. Whereas only for certain degree probabilities can all diagrams be summed exactly, in the general case we show that the perturbation theory converges. In a second part, we make use of a variational technique to predict the complete degree distribution for special classes of Markovian dynamics with fast-decaying correlations. In every case we compare the theory with numerical experiments.
Preserving Differential Privacy in Degree-Correlation based Graph Generation
Wang, Yue; Wu, Xintao
2014-01-01
Enabling accurate analysis of social network data while preserving differential privacy has been challenging since graph features such as cluster coefficient often have high sensitivity, which is different from traditional aggregate functions (e.g., count and sum) on tabular data. In this paper, we study the problem of enforcing edge differential privacy in graph generation. The idea is to enforce differential privacy on graph model parameters learned from the original network and then generate the graphs for releasing using the graph model with the private parameters. In particular, we develop a differential privacy preserving graph generator based on the dK-graph generation model. We first derive from the original graph various parameters (i.e., degree correlations) used in the dK-graph model, then enforce edge differential privacy on the learned parameters, and finally use the dK-graph model with the perturbed parameters to generate graphs. For the 2K-graph model, we enforce the edge differential privacy by calibrating noise based on the smooth sensitivity, rather than the global sensitivity. By doing this, we achieve the strict differential privacy guarantee with smaller magnitude noise. We conduct experiments on four real networks and compare the performance of our private dK-graph models with the stochastic Kronecker graph generation model in terms of utility and privacy tradeoff. Empirical evaluations show the developed private dK-graph generation models significantly outperform the approach based on the stochastic Kronecker generation model. PMID:24723987
NASA Astrophysics Data System (ADS)
Ziemann, Amanda K.; Messinger, David W.; Albano, James A.; Basener, William F.
2012-06-01
Anomaly detection algorithms have historically been applied to hyperspectral imagery in order to identify pixels whose material content is incongruous with the background material in the scene. Typically, the application involves extracting man-made objects from natural and agricultural surroundings. A large challenge in designing these algorithms is determining which pixels initially constitute the background material within an image. The topological anomaly detection (TAD) algorithm constructs a graph theory-based, fully non-parametric topological model of the background in the image scene, and uses codensity to measure deviation from this background. In TAD, the initial graph theory structure of the image data is created by connecting an edge between any two pixel vertices x and y if the Euclidean distance between them is less than some resolution r. While this type of proximity graph is among the most well-known approaches to building a geometric graph based on a given set of data, there is a wide variety of dierent geometrically-based techniques. In this paper, we present a comparative test of the performance of TAD across four dierent constructs of the initial graph: mutual k-nearest neighbor graph, sigma-local graph for two different values of σ > 1, and the proximity graph originally implemented in TAD.
Analyzing locomotion synthesis with feature-based motion graphs.
Mahmudi, Mentar; Kallmann, Marcelo
2013-05-01
We propose feature-based motion graphs for realistic locomotion synthesis among obstacles. Among several advantages, feature-based motion graphs achieve improved results in search queries, eliminate the need of postprocessing for foot skating removal, and reduce the computational requirements in comparison to traditional motion graphs. Our contributions are threefold. First, we show that choosing transitions based on relevant features significantly reduces graph construction time and leads to improved search performances. Second, we employ a fast channel search method that confines the motion graph search to a free channel with guaranteed clearance among obstacles, achieving faster and improved results that avoid expensive collision checking. Lastly, we present a motion deformation model based on Inverse Kinematics applied over the transitions of a solution branch. Each transition is assigned a continuous deformation range that does not exceed the original transition cost threshold specified by the user for the graph construction. The obtained deformation improves the reachability of the feature-based motion graph and in turn also reduces the time spent during search. The results obtained by the proposed methods are evaluated and quantified, and they demonstrate significant improvements in comparison to traditional motion graph techniques.
Small diameter symmetric networks from linear groups
NASA Technical Reports Server (NTRS)
Campbell, Lowell; Carlsson, Gunnar E.; Dinneen, Michael J.; Faber, Vance; Fellows, Michael R.; Langston, Michael A.; Moore, James W.; Multihaupt, Andrew P.; Sexton, Harlan B.
1992-01-01
In this note is reported a collection of constructions of symmetric networks that provide the largest known values for the number of nodes that can be placed in a network of a given degree and diameter. Some of the constructions are in the range of current potential engineering significance. The constructions are Cayley graphs of linear groups obtained by experimental computation.
Learning a Health Knowledge Graph from Electronic Medical Records.
Rotmensch, Maya; Halpern, Yoni; Tlimat, Abdulhakim; Horng, Steven; Sontag, David
2017-07-20
Demand for clinical decision support systems in medicine and self-diagnostic symptom checkers has substantially increased in recent years. Existing platforms rely on knowledge bases manually compiled through a labor-intensive process or automatically derived using simple pairwise statistics. This study explored an automated process to learn high quality knowledge bases linking diseases and symptoms directly from electronic medical records. Medical concepts were extracted from 273,174 de-identified patient records and maximum likelihood estimation of three probabilistic models was used to automatically construct knowledge graphs: logistic regression, naive Bayes classifier and a Bayesian network using noisy OR gates. A graph of disease-symptom relationships was elicited from the learned parameters and the constructed knowledge graphs were evaluated and validated, with permission, against Google's manually-constructed knowledge graph and against expert physician opinions. Our study shows that direct and automated construction of high quality health knowledge graphs from medical records using rudimentary concept extraction is feasible. The noisy OR model produces a high quality knowledge graph reaching precision of 0.85 for a recall of 0.6 in the clinical evaluation. Noisy OR significantly outperforms all tested models across evaluation frameworks (p < 0.01).
Scale Construction for Graphing: An Investigation of Students' Resources
ERIC Educational Resources Information Center
Delgado, Cesar; Lucero, Margaret M.
2015-01-01
Graphing is a fundamental part of the scientific process. Scales are key but little-studied components of graphs. Adopting a resources-based framework of cognitive structure, we identify the potential intuitive resources that six undergraduates of diverse majors and years at a public US research university activated when constructing scales, and…
Degree sequence in message transfer
NASA Astrophysics Data System (ADS)
Yamuna, M.
2017-11-01
Message encryption is always an issue in current communication scenario. Methods are being devised using various domains. Graphs satisfy numerous unique properties which can be used for message transfer. In this paper, I propose a message encryption method based on degree sequence of graphs.
What energy functions can be minimized via graph cuts?
Kolmogorov, Vladimir; Zabih, Ramin
2004-02-01
In the last few years, several new algorithms based on graph cuts have been developed to solve energy minimization problems in computer vision. Each of these techniques constructs a graph such that the minimum cut on the graph also minimizes the energy. Yet, because these graph constructions are complex and highly specific to a particular energy function, graph cuts have seen limited application to date. In this paper, we give a characterization of the energy functions that can be minimized by graph cuts. Our results are restricted to functions of binary variables. However, our work generalizes many previous constructions and is easily applicable to vision problems that involve large numbers of labels, such as stereo, motion, image restoration, and scene reconstruction. We give a precise characterization of what energy functions can be minimized using graph cuts, among the energy functions that can be written as a sum of terms containing three or fewer binary variables. We also provide a general-purpose construction to minimize such an energy function. Finally, we give a necessary condition for any energy function of binary variables to be minimized by graph cuts. Researchers who are considering the use of graph cuts to optimize a particular energy function can use our results to determine if this is possible and then follow our construction to create the appropriate graph. A software implementation is freely available.
Analyzing and synthesizing phylogenies using tree alignment graphs.
Smith, Stephen A; Brown, Joseph W; Hinchliff, Cody E
2013-01-01
Phylogenetic trees are used to analyze and visualize evolution. However, trees can be imperfect datatypes when summarizing multiple trees. This is especially problematic when accommodating for biological phenomena such as horizontal gene transfer, incomplete lineage sorting, and hybridization, as well as topological conflict between datasets. Additionally, researchers may want to combine information from sets of trees that have partially overlapping taxon sets. To address the problem of analyzing sets of trees with conflicting relationships and partially overlapping taxon sets, we introduce methods for aligning, synthesizing and analyzing rooted phylogenetic trees within a graph, called a tree alignment graph (TAG). The TAG can be queried and analyzed to explore uncertainty and conflict. It can also be synthesized to construct trees, presenting an alternative to supertrees approaches. We demonstrate these methods with two empirical datasets. In order to explore uncertainty, we constructed a TAG of the bootstrap trees from the Angiosperm Tree of Life project. Analysis of the resulting graph demonstrates that areas of the dataset that are unresolved in majority-rule consensus tree analyses can be understood in more detail within the context of a graph structure, using measures incorporating node degree and adjacency support. As an exercise in synthesis (i.e., summarization of a TAG constructed from the alignment trees), we also construct a TAG consisting of the taxonomy and source trees from a recent comprehensive bird study. We synthesized this graph into a tree that can be reconstructed in a repeatable fashion and where the underlying source information can be updated. The methods presented here are tractable for large scale analyses and serve as a basis for an alternative to consensus tree and supertree methods. Furthermore, the exploration of these graphs can expose structures and patterns within the dataset that are otherwise difficult to observe.
Analyzing and Synthesizing Phylogenies Using Tree Alignment Graphs
Smith, Stephen A.; Brown, Joseph W.; Hinchliff, Cody E.
2013-01-01
Phylogenetic trees are used to analyze and visualize evolution. However, trees can be imperfect datatypes when summarizing multiple trees. This is especially problematic when accommodating for biological phenomena such as horizontal gene transfer, incomplete lineage sorting, and hybridization, as well as topological conflict between datasets. Additionally, researchers may want to combine information from sets of trees that have partially overlapping taxon sets. To address the problem of analyzing sets of trees with conflicting relationships and partially overlapping taxon sets, we introduce methods for aligning, synthesizing and analyzing rooted phylogenetic trees within a graph, called a tree alignment graph (TAG). The TAG can be queried and analyzed to explore uncertainty and conflict. It can also be synthesized to construct trees, presenting an alternative to supertrees approaches. We demonstrate these methods with two empirical datasets. In order to explore uncertainty, we constructed a TAG of the bootstrap trees from the Angiosperm Tree of Life project. Analysis of the resulting graph demonstrates that areas of the dataset that are unresolved in majority-rule consensus tree analyses can be understood in more detail within the context of a graph structure, using measures incorporating node degree and adjacency support. As an exercise in synthesis (i.e., summarization of a TAG constructed from the alignment trees), we also construct a TAG consisting of the taxonomy and source trees from a recent comprehensive bird study. We synthesized this graph into a tree that can be reconstructed in a repeatable fashion and where the underlying source information can be updated. The methods presented here are tractable for large scale analyses and serve as a basis for an alternative to consensus tree and supertree methods. Furthermore, the exploration of these graphs can expose structures and patterns within the dataset that are otherwise difficult to observe. PMID:24086118
Graph-based normalization and whitening for non-linear data analysis.
Aaron, Catherine
2006-01-01
In this paper we construct a graph-based normalization algorithm for non-linear data analysis. The principle of this algorithm is to get a spherical average neighborhood with unit radius. First we present a class of global dispersion measures used for "global normalization"; we then adapt these measures using a weighted graph to build a local normalization called "graph-based" normalization. Then we give details of the graph-based normalization algorithm and illustrate some results. In the second part we present a graph-based whitening algorithm built by analogy between the "global" and the "local" problem.
Biometric Subject Verification Based on Electrocardiographic Signals
NASA Technical Reports Server (NTRS)
Dusan, Sorin V. (Inventor); Jorgensen, Charles C. (Inventor)
2014-01-01
A method of authenticating or declining to authenticate an asserted identity of a candidate-person. In an enrollment phase, a reference PQRST heart action graph is provided or constructed from information obtained from a plurality of graphs that resemble each other for a known reference person, using a first graph comparison metric. In a verification phase, a candidate-person asserts his/her identity and presents a plurality of his/her heart cycle graphs. If a sufficient number of the candidate-person's measured graphs resemble each other, a representative composite graph is constructed from the candidate-person's graphs and is compared with a composite reference graph, for the person whose identity is asserted, using a second graph comparison metric. When the second metric value lies in a selected range, the candidate-person's assertion of identity is accepted.
Zhou, Mu; Zhang, Qiao; Xu, Kunjie; Tian, Zengshan; Wang, Yanmeng; He, Wei
2015-01-01
Due to the wide deployment of wireless local area networks (WLAN), received signal strength (RSS)-based indoor WLAN localization has attracted considerable attention in both academia and industry. In this paper, we propose a novel page rank-based indoor mapping and localization (PRIMAL) by using the gene-sequenced unlabeled WLAN RSS for simultaneous localization and mapping (SLAM). Specifically, first of all, based on the observation of the motion patterns of the people in the target environment, we use the Allen logic to construct the mobility graph to characterize the connectivity among different areas of interest. Second, the concept of gene sequencing is utilized to assemble the sporadically-collected RSS sequences into a signal graph based on the transition relations among different RSS sequences. Third, we apply the graph drawing approach to exhibit both the mobility graph and signal graph in a more readable manner. Finally, the page rank (PR) algorithm is proposed to construct the mapping from the signal graph into the mobility graph. The experimental results show that the proposed approach achieves satisfactory localization accuracy and meanwhile avoids the intensive time and labor cost involved in the conventional location fingerprinting-based indoor WLAN localization. PMID:26404274
An internet graph model based on trade-off optimization
NASA Astrophysics Data System (ADS)
Alvarez-Hamelin, J. I.; Schabanel, N.
2004-03-01
This paper presents a new model for the Internet graph (AS graph) based on the concept of heuristic trade-off optimization, introduced by Fabrikant, Koutsoupias and Papadimitriou in[CITE] to grow a random tree with a heavily tailed degree distribution. We propose here a generalization of this approach to generate a general graph, as a candidate for modeling the Internet. We present the results of our simulations and an analysis of the standard parameters measured in our model, compared with measurements from the physical Internet graph.
GraphReduce: Processing Large-Scale Graphs on Accelerator-Based Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Dipanjan; Song, Shuaiwen; Agarwal, Kapil
2015-11-15
Recent work on real-world graph analytics has sought to leverage the massive amount of parallelism offered by GPU devices, but challenges remain due to the inherent irregularity of graph algorithms and limitations in GPU-resident memory for storing large graphs. We present GraphReduce, a highly efficient and scalable GPU-based framework that operates on graphs that exceed the device’s internal memory capacity. GraphReduce adopts a combination of edge- and vertex-centric implementations of the Gather-Apply-Scatter programming model and operates on multiple asynchronous GPU streams to fully exploit the high degrees of parallelism in GPUs with efficient graph data movement between the host andmore » device.« less
What does the structure of its visibility graph tell us about the nature of the time series?
NASA Astrophysics Data System (ADS)
Franke, Jasper G.; Donner, Reik V.
2017-04-01
Visibility graphs are a recently introduced method to construct complex network representations based upon univariate time series in order to study their dynamical characteristics [1]. In the last years, this approach has been successfully applied to studying a considerable variety of geoscientific research questions and data sets, including non-trivial temporal patterns in complex earthquake catalogs [2] or time-reversibility in climate time series [3]. It has been shown that several characteristic features of the thus constructed networks differ between stochastic and deterministic (possibly chaotic) processes, which is, however, relatively hard to exploit in the case of real-world applications. In this study, we propose studying two new measures related with the network complexity of visibility graphs constructed from time series, one being a special type of network entropy [4] and the other a recently introduced measure of the heterogeneity of the network's degree distribution [5]. For paradigmatic model systems exhibiting bifurcation sequences between regular and chaotic dynamics, both properties clearly trace the transitions between both types of regimes and exhibit marked quantitative differences for regular and chaotic dynamics. Moreover, for dynamical systems with a small amount of additive noise, the considered properties demonstrate gradual changes prior to the bifurcation point. This finding appears closely related to the subsequent loss of stability of the current state known to lead to a critical slowing down as the transition point is approaches. In this spirit, both considered visibility graph characteristics provide alternative tracers of dynamical early warning signals consistent with classical indicators. Our results demonstrate that measures of visibility graph complexity (i) provide a potentially useful means to tracing changes in the dynamical patterns encoded in a univariate time series that originate from increasing autocorrelation and (ii) allow to systematically distinguish regular from deterministic-chaotic dynamics. We demonstrate the application of our method for different model systems as well as selected paleoclimate time series from the North Atlantic region. Notably, visibility graph based methods are particularly suited for studying the latter type of geoscientific data, since they do not impose intrinsic restrictions or assumptions on the nature of the time series under investigation in terms of noise process, linearity and sampling homogeneity. [1] Lacasa, Lucas, et al. "From time series to complex networks: The visibility graph." Proceedings of the National Academy of Sciences 105.13 (2008): 4972-4975. [2] Telesca, Luciano, and Michele Lovallo. "Analysis of seismic sequences by using the method of visibility graph." EPL (Europhysics Letters) 97.5 (2012): 50002. [3] Donges, Jonathan F., Reik V. Donner, and Jürgen Kurths. "Testing time series irreversibility using complex network methods." EPL (Europhysics Letters) 102.1 (2013): 10004. [4] Small, Michael. "Complex networks from time series: capturing dynamics." 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013), Beijing (2013): 2509-2512. [5] Jacob, Rinku, K.P. Harikrishnan, Ranjeev Misra, and G. Ambika. "Measure for degree heterogeneity in complex networks and its application to recurrence network analysis." arXiv preprint 1605.06607 (2016).
Data and graph interpretation practices among preservice science teachers
NASA Astrophysics Data System (ADS)
Bowen, G. Michael; Roth, Wolff-Michael
2005-12-01
The interpretation of data and construction and interpretation of graphs are central practices in science, which, according to recent reform documents, science and mathematics teachers are expected to foster in their classrooms. However, are (preservice) science teachers prepared to teach inquiry with the purpose of transforming and analyzing data, and interpreting graphical representations? That is, are preservice science teachers prepared to teach data analysis and graph interpretation practices that scientists use by default in their everyday work? The present study was designed to answer these and related questions. We investigated the responses of preservice elementary and secondary science teachers to data and graph interpretation tasks. Our investigation shows that, despite considerable preparation, and for many, despite bachelor of science degrees, preservice teachers do not enact the (authentic) practices that scientists routinely do when asked to interpret data or graphs. Detailed analyses are provided of what data and graph interpretation practices actually were enacted. We conclude that traditional schooling emphasizes particular beliefs in the mathematical nature of the universe that make it difficult for many individuals to deal with data possessing the random variation found in measurements of natural phenomena. The results suggest that preservice teachers need more experience in engaging in data and graph interpretation practices originating in activities that provide the degree of variation in and complexity of data present in realistic investigations.
Computing Information Value from RDF Graph Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
al-Saffar, Sinan; Heileman, Gregory
2010-11-08
Information value has been implicitly utilized and mostly non-subjectively computed in information retrieval (IR) systems. We explicitly define and compute the value of an information piece as a function of two parameters, the first is the potential semantic impact the target information can subjectively have on its recipient's world-knowledge, and the second parameter is trust in the information source. We model these two parameters as properties of RDF graphs. Two graphs are constructed, a target graph representing the semantics of the target body of information and a context graph representing the context of the consumer of that information. We computemore » information value subjectively as a function of both potential change to the context graph (impact) and the overlap between the two graphs (trust). Graph change is computed as a graph edit distance measuring the dissimilarity between the context graph before and after the learning of the target graph. A particular application of this subjective information valuation is in the construction of a personalized ranking component in Web search engines. Based on our method, we construct a Web re-ranking system that personalizes the information experience for the information-consumer.« less
Measuring Graph Comprehension, Critique, and Construction in Science
NASA Astrophysics Data System (ADS)
Lai, Kevin; Cabrera, Julio; Vitale, Jonathan M.; Madhok, Jacquie; Tinker, Robert; Linn, Marcia C.
2016-08-01
Interpreting and creating graphs plays a critical role in scientific practice. The K-12 Next Generation Science Standards call for students to use graphs for scientific modeling, reasoning, and communication. To measure progress on this dimension, we need valid and reliable measures of graph understanding in science. In this research, we designed items to measure graph comprehension, critique, and construction and developed scoring rubrics based on the knowledge integration (KI) framework. We administered the items to over 460 middle school students. We found that the items formed a coherent scale and had good reliability using both item response theory and classical test theory. The KI scoring rubric showed that most students had difficulty linking graphs features to science concepts, especially when asked to critique or construct graphs. In addition, students with limited access to computers as well as those who speak a language other than English at home have less integrated understanding than others. These findings point to the need to increase the integration of graphing into science instruction. The results suggest directions for further research leading to comprehensive assessments of graph understanding.
MISAGA: An Algorithm for Mining Interesting Subgraphs in Attributed Graphs.
He, Tiantian; Chan, Keith C C
2018-05-01
An attributed graph contains vertices that are associated with a set of attribute values. Mining clusters or communities, which are interesting subgraphs in the attributed graph is one of the most important tasks of graph analytics. Many problems can be defined as the mining of interesting subgraphs in attributed graphs. Algorithms that discover subgraphs based on predefined topologies cannot be used to tackle these problems. To discover interesting subgraphs in the attributed graph, we propose an algorithm called mining interesting subgraphs in attributed graph algorithm (MISAGA). MISAGA performs its tasks by first using a probabilistic measure to determine whether the strength of association between a pair of attribute values is strong enough to be interesting. Given the interesting pairs of attribute values, then the degree of association is computed for each pair of vertices using an information theoretic measure. Based on the edge structure and degree of association between each pair of vertices, MISAGA identifies interesting subgraphs by formulating it as a constrained optimization problem and solves it by identifying the optimal affiliation of subgraphs for the vertices in the attributed graph. MISAGA has been tested with several large-sized real graphs and is found to be potentially very useful for various applications.
Geometric Assortative Growth Model for Small-World Networks
2014-01-01
It has been shown that both humanly constructed and natural networks are often characterized by small-world phenomenon and assortative mixing. In this paper, we propose a geometrically growing model for small-world networks. The model displays both tunable small-world phenomenon and tunable assortativity. We obtain analytical solutions of relevant topological properties such as order, size, degree distribution, degree correlation, clustering, transitivity, and diameter. It is also worth noting that the model can be viewed as a generalization for an iterative construction of Farey graphs. PMID:24578661
A character network study of two Sci-Fi TV series
NASA Astrophysics Data System (ADS)
Tan, M. S. A.; Ujum, E. A.; Ratnavelu, K.
2014-03-01
This work is an analysis of the character networks in two science fiction television series: Stargate and Star Trek. These networks are constructed on the basis of scene co-occurrence between characters to indicate the presence of a connection. Global network structure measures such as the average path length, graph density, network diameter, average degree, median degree, maximum degree, and average clustering coefficient are computed as well as individual node centrality scores. The two fictional networks constructed are found to be quite similar in structure which is astonishing given that Stargate only ran for 18 years in comparison to the 48 years for Star Trek.
GraphReduce: Large-Scale Graph Analytics on Accelerator-Based HPC Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Dipanjan; Agarwal, Kapil; Song, Shuaiwen
2015-09-30
Recent work on real-world graph analytics has sought to leverage the massive amount of parallelism offered by GPU devices, but challenges remain due to the inherent irregularity of graph algorithms and limitations in GPU-resident memory for storing large graphs. We present GraphReduce, a highly efficient and scalable GPU-based framework that operates on graphs that exceed the device’s internal memory capacity. GraphReduce adopts a combination of both edge- and vertex-centric implementations of the Gather-Apply-Scatter programming model and operates on multiple asynchronous GPU streams to fully exploit the high degrees of parallelism in GPUs with efficient graph data movement between the hostmore » and the device.« less
Evolution of a Modified Binomial Random Graph by Agglomeration
NASA Astrophysics Data System (ADS)
Kang, Mihyun; Pachon, Angelica; Rodríguez, Pablo M.
2018-02-01
In the classical Erdős-Rényi random graph G( n, p) there are n vertices and each of the possible edges is independently present with probability p. The random graph G( n, p) is homogeneous in the sense that all vertices have the same characteristics. On the other hand, numerous real-world networks are inhomogeneous in this respect. Such an inhomogeneity of vertices may influence the connection probability between pairs of vertices. The purpose of this paper is to propose a new inhomogeneous random graph model which is obtained in a constructive way from the Erdős-Rényi random graph G( n, p). Given a configuration of n vertices arranged in N subsets of vertices (we call each subset a super-vertex), we define a random graph with N super-vertices by letting two super-vertices be connected if and only if there is at least one edge between them in G( n, p). Our main result concerns the threshold for connectedness. We also analyze the phase transition for the emergence of the giant component and the degree distribution. Even though our model begins with G( n, p), it assumes the existence of some community structure encoded in the configuration. Furthermore, under certain conditions it exhibits a power law degree distribution. Both properties are important for real-world applications.
Tyner, Bryan C; Fienup, Daniel M
2015-09-01
Graphing is socially significant for behavior analysts; however, graphing can be difficult to learn. Video modeling (VM) may be a useful instructional method but lacks evidence for effective teaching of computer skills. A between-groups design compared the effects of VM, text-based instruction, and no instruction on graphing performance. Participants who used VM constructed graphs significantly faster and with fewer errors than those who used text-based instruction or no instruction. Implications for instruction are discussed. © Society for the Experimental Analysis of Behavior.
Nonlinear Dynamics of River Runoff Elucidated by Horizontal Visibility Graphs
NASA Astrophysics Data System (ADS)
Lange, Holger; Rosso, Osvaldo A.
2017-04-01
We investigate a set of long-term river runoff time series at daily resolution from Brazil, monitored by the Agencia Nacional de Aguas. A total of 150 time series was obtained, with an average length of 65 years. Both long-term trends and human influence (water management, e.g. for power production) on the dynamical behaviour are analyzed. We use Horizontal Visibility Graphs (HVGs) to determine the individual temporal networks for the time series, and extract their degree and their distance (shortest path length) distributions. Statistical and information-theoretic properties of these distributions are calculated: robust estimators of skewness and kurtosis, the maximum degree occurring in the time series, the Shannon entropy, permutation complexity and Fisher Information. For the latter, we also compare the information measures obtained from the degree distributions to those using the original time series directly, to investigate the impact of graph construction on the dynamical properties as reflected in these measures. Focus is on one hand on universal properties of the HVG, common to all runoff series, and on site-specific aspects on the other. Results demonstrate that the assumption of power law behaviour for the degree distribtion does not generally hold, and that management has a significant impact on this distribution. We also show that a specific pretreatment of the time series conventional in hydrology, the elimination of seasonality by a separate z-transformation for each calendar day, is highly detrimental to the nonlinear behaviour. It changes long-term correlations and the overall dynamics towards more random behaviour. Analysis based on the transformed data easily leads to spurious results, and bear a high risk of misinterpretation.
New methods for analyzing semantic graph based assessments in science education
NASA Astrophysics Data System (ADS)
Vikaros, Lance Steven
This research investigated how the scoring of semantic graphs (known by many as concept maps) could be improved and automated in order to address issues of inter-rater reliability and scalability. As part of the NSF funded SENSE-IT project to introduce secondary school science students to sensor networks (NSF Grant No. 0833440), semantic graphs illustrating how temperature change affects water ecology were collected from 221 students across 16 schools. The graphing task did not constrain students' use of terms, as is often done with semantic graph based assessment due to coding and scoring concerns. The graphing software used provided real-time feedback to help students learn how to construct graphs, stay on topic and effectively communicate ideas. The collected graphs were scored by human raters using assessment methods expected to boost reliability, which included adaptations of traditional holistic and propositional scoring methods, use of expert raters, topical rubrics, and criterion graphs. High levels of inter-rater reliability were achieved, demonstrating that vocabulary constraints may not be necessary after all. To investigate a new approach to automating the scoring of graphs, thirty-two different graph features characterizing graphs' structure, semantics, configuration and process of construction were then used to predict human raters' scoring of graphs in order to identify feature patterns correlated to raters' evaluations of graphs' topical accuracy and complexity. Results led to the development of a regression model able to predict raters' scoring with 77% accuracy, with 46% accuracy expected when used to score new sets of graphs, as estimated via cross-validation tests. Although such performance is comparable to other graph and essay based scoring systems, cross-context testing of the model and methods used to develop it would be needed before it could be recommended for widespread use. Still, the findings suggest techniques for improving the reliability and scalability of semantic graph based assessments without requiring constraint of how ideas are expressed.
Graph-state formalism for mutually unbiased bases
NASA Astrophysics Data System (ADS)
Spengler, Christoph; Kraus, Barbara
2013-11-01
A pair of orthonormal bases is called mutually unbiased if all mutual overlaps between any element of one basis and an arbitrary element of the other basis coincide. In case the dimension, d, of the considered Hilbert space is a power of a prime number, complete sets of d+1 mutually unbiased bases (MUBs) exist. Here we present a method based on the graph-state formalism to construct such sets of MUBs. We show that for n p-level systems, with p being prime, one particular graph suffices to easily construct a set of pn+1 MUBs. In fact, we show that a single n-dimensional vector, which is associated with this graph, can be used to generate a complete set of MUBs and demonstrate that this vector can be easily determined. Finally, we discuss some advantages of our formalism regarding the analysis of entanglement structures in MUBs, as well as experimental realizations.
Visibility graphs and symbolic dynamics
NASA Astrophysics Data System (ADS)
Lacasa, Lucas; Just, Wolfram
2018-07-01
Visibility algorithms are a family of geometric and ordering criteria by which a real-valued time series of N data is mapped into a graph of N nodes. This graph has been shown to often inherit in its topology nontrivial properties of the series structure, and can thus be seen as a combinatorial representation of a dynamical system. Here we explore in some detail the relation between visibility graphs and symbolic dynamics. To do that, we consider the degree sequence of horizontal visibility graphs generated by the one-parameter logistic map, for a range of values of the parameter for which the map shows chaotic behaviour. Numerically, we observe that in the chaotic region the block entropies of these sequences systematically converge to the Lyapunov exponent of the time series. Hence, Pesin's identity suggests that these block entropies are converging to the Kolmogorov-Sinai entropy of the physical measure, which ultimately suggests that the algorithm is implicitly and adaptively constructing phase space partitions which might have the generating property. To give analytical insight, we explore the relation k(x) , x ∈ [ 0 , 1 ] that, for a given datum with value x, assigns in graph space a node with degree k. In the case of the out-degree sequence, such relation is indeed a piece-wise constant function. By making use of explicit methods and tools from symbolic dynamics we are able to analytically show that the algorithm indeed performs an effective partition of the phase space and that such partition is naturally expressed as a countable union of subintervals, where the endpoints of each subinterval are related to the fixed point structure of the iterates of the map and the subinterval enumeration is associated with particular ordering structures that we called motifs.
Bipartite separability and nonlocal quantum operations on graphs
NASA Astrophysics Data System (ADS)
Dutta, Supriyo; Adhikari, Bibhas; Banerjee, Subhashish; Srikanth, R.
2016-07-01
In this paper we consider the separability problem for bipartite quantum states arising from graphs. Earlier it was proved that the degree criterion is the graph-theoretic counterpart of the familiar positive partial transpose criterion for separability, although there are entangled states with positive partial transpose for which the degree criterion fails. Here we introduce the concept of partially symmetric graphs and degree symmetric graphs by using the well-known concept of partial transposition of a graph and degree criteria, respectively. Thus, we provide classes of bipartite separable states of dimension m ×n arising from partially symmetric graphs. We identify partially asymmetric graphs that lack the property of partial symmetry. We develop a combinatorial procedure to create a partially asymmetric graph from a given partially symmetric graph. We show that this combinatorial operation can act as an entanglement generator for mixed states arising from partially symmetric graphs.
Li, Xiaojin; Hu, Xintao; Jin, Changfeng; Han, Junwei; Liu, Tianming; Guo, Lei; Hao, Wei; Li, Lingjiang
2013-01-01
Previous studies have investigated both structural and functional brain networks via graph-theoretical methods. However, there is an important issue that has not been adequately discussed before: what is the optimal theoretical graph model for describing the structural networks of human brain? In this paper, we perform a comparative study to address this problem. Firstly, large-scale cortical regions of interest (ROIs) are localized by recently developed and validated brain reference system named Dense Individualized Common Connectivity-based Cortical Landmarks (DICCCOL) to address the limitations in the identification of the brain network ROIs in previous studies. Then, we construct structural brain networks based on diffusion tensor imaging (DTI) data. Afterwards, the global and local graph properties of the constructed structural brain networks are measured using the state-of-the-art graph analysis algorithms and tools and are further compared with seven popular theoretical graph models. In addition, we compare the topological properties between two graph models, namely, stickiness-index-based model (STICKY) and scale-free gene duplication model (SF-GD), that have higher similarity with the real structural brain networks in terms of global and local graph properties. Our experimental results suggest that among the seven theoretical graph models compared in this study, STICKY and SF-GD models have better performances in characterizing the structural human brain network.
Model-based morphological segmentation and labeling of coronary angiograms.
Haris, K; Efstratiadis, S N; Maglaveras, N; Pappas, C; Gourassas, J; Louridas, G
1999-10-01
A method for extraction and labeling of the coronary arterial tree (CAT) using minimal user supervision in single-view angiograms is proposed. The CAT structural description (skeleton and borders) is produced, along with quantitative information for the artery dimensions and assignment of coded labels, based on a given coronary artery model represented by a graph. The stages of the method are: 1) CAT tracking and detection; 2) artery skeleton and border estimation; 3) feature graph creation; and iv) artery labeling by graph matching. The approximate CAT centerline and borders are extracted by recursive tracking based on circular template analysis. The accurate skeleton and borders of each CAT segment are computed, based on morphological homotopy modification and watershed transform. The approximate centerline and borders are used for constructing the artery segment enclosing area (ASEA), where the defined skeleton and border curves are considered as markers. Using the marked ASEA, an artery gradient image is constructed where all the ASEA pixels (except the skeleton ones) are assigned the gradient magnitude of the original image. The artery gradient image markers are imposed as its unique regional minima by the homotopy modification method, the watershed transform is used for extracting the artery segment borders, and the feature graph is updated. Finally, given the created feature graph and the known model graph, a graph matching algorithm assigns the appropriate labels to the extracted CAT using weighted maximal cliques on the association graph corresponding to the two given graphs. Experimental results using clinical digitized coronary angiograms are presented.
Protograph based LDPC codes with minimum distance linearly growing with block size
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Jones, Christopher; Dolinar, Sam; Thorpe, Jeremy
2005-01-01
We propose several LDPC code constructions that simultaneously achieve good threshold and error floor performance. Minimum distance is shown to grow linearly with block size (similar to regular codes of variable degree at least 3) by considering ensemble average weight enumerators. Our constructions are based on projected graph, or protograph, structures that support high-speed decoder implementations. As with irregular ensembles, our constructions are sensitive to the proportion of degree-2 variable nodes. A code with too few such nodes tends to have an iterative decoding threshold that is far from the capacity threshold. A code with too many such nodes tends to not exhibit a minimum distance that grows linearly in block length. In this paper we also show that precoding can be used to lower the threshold of regular LDPC codes. The decoding thresholds of the proposed codes, which have linearly increasing minimum distance in block size, outperform that of regular LDPC codes. Furthermore, a family of low to high rate codes, with thresholds that adhere closely to their respective channel capacity thresholds, is presented. Simulation results for a few example codes show that the proposed codes have low error floors as well as good threshold SNFt performance.
Horizontal visibility graphs generated by type-I intermittency
NASA Astrophysics Data System (ADS)
Núñez, Ángel M.; Luque, Bartolo; Lacasa, Lucas; Gómez, Jose Patricio; Robledo, Alberto
2013-05-01
The type-I intermittency route to (or out of) chaos is investigated within the horizontal visibility (HV) graph theory. For that purpose, we address the trajectories generated by unimodal maps close to an inverse tangent bifurcation and construct their associated HV graphs. We show how the alternation of laminar episodes and chaotic bursts imprints a fingerprint in the resulting graph structure. Accordingly, we derive a phenomenological theory that predicts quantitative values for several network parameters. In particular, we predict that the characteristic power-law scaling of the mean length of laminar trend sizes is fully inherited by the variance of the graph degree distribution, in good agreement with the numerics. We also report numerical evidence on how the characteristic power-law scaling of the Lyapunov exponent as a function of the distance to the tangent bifurcation is inherited in the graph by an analogous scaling of block entropy functionals defined on the graph. Furthermore, we are able to recast the full set of HV graphs generated by intermittent dynamics into a renormalization-group framework, where the fixed points of its graph-theoretical renormalization-group flow account for the different types of dynamics. We also establish that the nontrivial fixed point of this flow coincides with the tangency condition and that the corresponding invariant graph exhibits extremal entropic properties.
Temporal dynamics and impact of event interactions in cyber-social populations
NASA Astrophysics Data System (ADS)
Zhang, Yi-Qing; Li, Xiang
2013-03-01
The advance of information technologies provides powerful measures to digitize social interactions and facilitate quantitative investigations. To explore large-scale indoor interactions of a social population, we analyze 18 715 users' Wi-Fi access logs recorded in a Chinese university campus during 3 months, and define event interaction (EI) to characterize the concurrent interactions of multiple users inferred by their geographic coincidences—co-locating in the same small region at the same time. We propose three rules to construct a transmission graph, which depicts the topological and temporal features of event interactions. The vertex dynamics of transmission graph tells that the active durations of EIs fall into the truncated power-law distributions, which is independent on the number of involved individuals. The edge dynamics of transmission graph reports that the transmission durations present a truncated power-law pattern independent on the daily and weekly periodicities. Besides, in the aggregated transmission graph, low-degree vertices previously neglected in the aggregated static networks may participate in the large-degree EIs, which is verified by three data sets covering different sizes of social populations with various rendezvouses. This work highlights the temporal significance of event interactions in cyber-social populations.
Wong, Pak C.; Mackey, Patrick S.; Perrine, Kenneth A.; Foote, Harlan P.; Thomas, James J.
2008-12-23
Methods for visualizing a graph by automatically drawing elements of the graph as labels are disclosed. In one embodiment, the method comprises receiving node information and edge information from an input device and/or communication interface, constructing a graph layout based at least in part on that information, wherein the edges are automatically drawn as labels, and displaying the graph on a display device according to the graph layout. In some embodiments, the nodes are automatically drawn as labels instead of, or in addition to, the label-edges.
A graph-based approach to inequality assessment
NASA Astrophysics Data System (ADS)
Palestini, Arsen; Pignataro, Giuseppe
2016-08-01
In a population consisting of heterogeneous types, whose income factors are indicated by nonnegative vectors, policies aggregating different factors can be represented by coalitions in a cooperative game, whose characteristic function is a multi-factor inequality index. When it is not possible to form all coalitions, the feasible ones can be indicated by a graph. We redefine Shapley and Banzhaf values on graph games to deduce some properties involving the degrees of the graph vertices and marginal contributions to overall inequality. An example is finally provided based on a modified multi-factor Atkinson index.
Tree-Based Unrooted Phylogenetic Networks.
Francis, A; Huber, K T; Moulton, V
2018-02-01
Phylogenetic networks are a generalization of phylogenetic trees that are used to represent non-tree-like evolutionary histories that arise in organisms such as plants and bacteria, or uncertainty in evolutionary histories. An unrooted phylogenetic network on a non-empty, finite set X of taxa, or network, is a connected, simple graph in which every vertex has degree 1 or 3 and whose leaf set is X. It is called a phylogenetic tree if the underlying graph is a tree. In this paper we consider properties of tree-based networks, that is, networks that can be constructed by adding edges into a phylogenetic tree. We show that although they have some properties in common with their rooted analogues which have recently drawn much attention in the literature, they have some striking differences in terms of both their structural and computational properties. We expect that our results could eventually have applications to, for example, detecting horizontal gene transfer or hybridization which are important factors in the evolution of many organisms.
Plane representations of graphs and visibility between parallel segments
NASA Astrophysics Data System (ADS)
Tamassia, R.; Tollis, I. G.
1985-04-01
Several layout compaction strategies for VLSI are based on the concept of visibility between parallel segments, where we say that two parallel segments of a given set are visible if they can be joined by a segment orthogonal to them, which does not intersect any other segment. This paper studies visibility representations of graphs, which are constructed by mapping vertices to horizontal segments, and edges to vertical segments drawn between visible vertex-segments. Clearly, every graph that admits such a representation must be a planar. The authors consider three types of visibility representations, and give complete characterizations of the classes of graphs that admit them. Furthermore, they present linear time algorithms for testing the existence of and constructing visibility representations of planar graphs.
Ma, Hong-Wu; Zhao, Xue-Ming; Yuan, Ying-Jin; Zeng, An-Ping
2004-08-12
Metabolic networks are organized in a modular, hierarchical manner. Methods for a rational decomposition of the metabolic network into relatively independent functional subsets are essential to better understand the modularity and organization principle of a large-scale, genome-wide network. Network decomposition is also necessary for functional analysis of metabolism by pathway analysis methods that are often hampered by the problem of combinatorial explosion due to the complexity of metabolic network. Decomposition methods proposed in literature are mainly based on the connection degree of metabolites. To obtain a more reasonable decomposition, the global connectivity structure of metabolic networks should be taken into account. In this work, we use a reaction graph representation of a metabolic network for the identification of its global connectivity structure and for decomposition. A bow-tie connectivity structure similar to that previously discovered for metabolite graph is found also to exist in the reaction graph. Based on this bow-tie structure, a new decomposition method is proposed, which uses a distance definition derived from the path length between two reactions. An hierarchical classification tree is first constructed from the distance matrix among the reactions in the giant strong component of the bow-tie structure. These reactions are then grouped into different subsets based on the hierarchical tree. Reactions in the IN and OUT subsets of the bow-tie structure are subsequently placed in the corresponding subsets according to a 'majority rule'. Compared with the decomposition methods proposed in literature, ours is based on combined properties of the global network structure and local reaction connectivity rather than, primarily, on the connection degree of metabolites. The method is applied to decompose the metabolic network of Escherichia coli. Eleven subsets are obtained. More detailed investigations of the subsets show that reactions in the same subset are really functionally related. The rational decomposition of metabolic networks, and subsequent studies of the subsets, make it more amenable to understand the inherent organization and functionality of metabolic networks at the modular level. http://genome.gbf.de/bioinformatics/
Directional Agglomeration Multigrid Techniques for High Reynolds Number Viscous Flow Solvers
NASA Technical Reports Server (NTRS)
1998-01-01
A preconditioned directional-implicit agglomeration algorithm is developed for solving two- and three-dimensional viscous flows on highly anisotropic unstructured meshes of mixed-element types. The multigrid smoother consists of a pre-conditioned point- or line-implicit solver which operates on lines constructed in the unstructured mesh using a weighted graph algorithm. Directional coarsening or agglomeration is achieved using a similar weighted graph algorithm. A tight coupling of the line construction and directional agglomeration algorithms enables the use of aggressive coarsening ratios in the multigrid algorithm, which in turn reduces the cost of a multigrid cycle. Convergence rates which are independent of the degree of grid stretching are demonstrated in both two and three dimensions. Further improvement of the three-dimensional convergence rates through a GMRES technique is also demonstrated.
Directional Agglomeration Multigrid Techniques for High-Reynolds Number Viscous Flows
NASA Technical Reports Server (NTRS)
Mavriplis, Dimitri J.
1998-01-01
A preconditioned directional-implicit agglomeration algorithm is developed for solving two- and three-dimensional viscous flows on highly anisotropic unstructured meshes of mixed-element types. The multigrid smoother consists of a pre-conditioned point- or line-implicit solver which operates on lines constructed in the unstructured mesh using a weighted graph algorithm. Directional coarsening or agglomeration is achieved using a similar weighted graph algorithm. A tight coupling of the line construction and directional agglomeration algorithms enables the use of aggressive coarsening ratios in the multigrid algorithm, which in turn reduces the cost of a multigrid cycle. Convergence rates which are independent of the degree of grid stretching are demonstrated in both two and three dimensions. Further improvement of the three-dimensional convergence rates through a GMRES technique is also demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brost, Randolph C.; McLendon, William Clarence,
2013-01-01
Modeling geospatial information with semantic graphs enables search for sites of interest based on relationships between features, without requiring strong a priori models of feature shape or other intrinsic properties. Geospatial semantic graphs can be constructed from raw sensor data with suitable preprocessing to obtain a discretized representation. This report describes initial work toward extending geospatial semantic graphs to include temporal information, and initial results applying semantic graph techniques to SAR image data. We describe an efficient graph structure that includes geospatial and temporal information, which is designed to support simultaneous spatial and temporal search queries. We also report amore » preliminary implementation of feature recognition, semantic graph modeling, and graph search based on input SAR data. The report concludes with lessons learned and suggestions for future improvements.« less
Optimized Graph Learning Using Partial Tags and Multiple Features for Image and Video Annotation.
Song, Jingkuan; Gao, Lianli; Nie, Feiping; Shen, Heng Tao; Yan, Yan; Sebe, Nicu
2016-11-01
In multimedia annotation, due to the time constraints and the tediousness of manual tagging, it is quite common to utilize both tagged and untagged data to improve the performance of supervised learning when only limited tagged training data are available. This is often done by adding a geometry-based regularization term in the objective function of a supervised learning model. In this case, a similarity graph is indispensable to exploit the geometrical relationships among the training data points, and the graph construction scheme essentially determines the performance of these graph-based learning algorithms. However, most of the existing works construct the graph empirically and are usually based on a single feature without using the label information. In this paper, we propose a semi-supervised annotation approach by learning an optimized graph (OGL) from multi-cues (i.e., partial tags and multiple features), which can more accurately embed the relationships among the data points. Since OGL is a transductive method and cannot deal with novel data points, we further extend our model to address the out-of-sample issue. Extensive experiments on image and video annotation show the consistent superiority of OGL over the state-of-the-art methods.
The investigation of social networks based on multi-component random graphs
NASA Astrophysics Data System (ADS)
Zadorozhnyi, V. N.; Yudin, E. B.
2018-01-01
The methods of non-homogeneous random graphs calibration are developed for social networks simulation. The graphs are calibrated by the degree distributions of the vertices and the edges. The mathematical foundation of the methods is formed by the theory of random graphs with the nonlinear preferential attachment rule and the theory of Erdôs-Rényi random graphs. In fact, well-calibrated network graph models and computer experiments with these models would help developers (owners) of the networks to predict their development correctly and to choose effective strategies for controlling network projects.
Short paths in expander graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleinberg, J.; Rubinfeld, R.
Graph expansion has proved to be a powerful general tool for analyzing the behavior of routing algorithms and the interconnection networks on which they run. We develop new routing algorithms and structural results for bounded-degree expander graphs. Our results are unified by the fact that they are all based upon, and extend, a body of work asserting that expanders are rich in short, disjoint paths. In particular, our work has consequences for the disjoint paths problem, multicommodify flow, and graph minor containment. We show: (i) A greedy algorithm for approximating the maximum disjoint paths problem achieves a polylogarithmic approximation ratiomore » in bounded-degree expanders. Although our algorithm is both deterministic and on-line, its performance guarantee is an improvement over previous bounds in expanders. (ii) For a multicommodily flow problem with arbitrary demands on a bounded-degree expander, there is a (1 + {epsilon})-optimal solution using only flow paths of polylogarithmic length. It follows that the multicommodity flow algorithm of Awerbuch and Leighton runs in nearly linear time per commodity in expanders. Our analysis is based on establishing the following: given edge weights on an expander G, one can increase some of the weights very slightly so the resulting shortest-path metric is smooth - the min-weight path between any pair of nodes uses a polylogarithmic number of edges. (iii) Every bounded-degree expander on n nodes contains every graph with O(n/log{sup O(1)} n) nodes and edges as a minor.« less
Fixation probability on clique-based graphs
NASA Astrophysics Data System (ADS)
Choi, Jeong-Ok; Yu, Unjong
2018-02-01
The fixation probability of a mutant in the evolutionary dynamics of Moran process is calculated by the Monte-Carlo method on a few families of clique-based graphs. It is shown that the complete suppression of fixation can be realized with the generalized clique-wheel graph in the limit of small wheel-clique ratio and infinite size. The family of clique-star is an amplifier, and clique-arms graph changes from amplifier to suppressor as the fitness of the mutant increases. We demonstrate that the overall structure of a graph can be more important to determine the fixation probability than the degree or the heat heterogeneity. The dependence of the fixation probability on the position of the first mutant is discussed.
Topological Characterization of Carbon Graphite and Crystal Cubic Carbon Structures.
Siddiqui, Wei Gao Muhammad Kamran; Naeem, Muhammad; Rehman, Najma Abdul
2017-09-07
Graph theory is used for modeling, designing, analysis and understanding chemical structures or chemical networks and their properties. The molecular graph is a graph consisting of atoms called vertices and the chemical bond between atoms called edges. In this article, we study the chemical graphs of carbon graphite and crystal structure of cubic carbon. Moreover, we compute and give closed formulas of degree based additive topological indices, namely hyper-Zagreb index, first multiple and second multiple Zagreb indices, and first and second Zagreb polynomials.
Constructing the L2-Graph for Robust Subspace Learning and Subspace Clustering.
Peng, Xi; Yu, Zhiding; Yi, Zhang; Tang, Huajin
2017-04-01
Under the framework of graph-based learning, the key to robust subspace clustering and subspace learning is to obtain a good similarity graph that eliminates the effects of errors and retains only connections between the data points from the same subspace (i.e., intrasubspace data points). Recent works achieve good performance by modeling errors into their objective functions to remove the errors from the inputs. However, these approaches face the limitations that the structure of errors should be known prior and a complex convex problem must be solved. In this paper, we present a novel method to eliminate the effects of the errors from the projection space (representation) rather than from the input space. We first prove that l 1 -, l 2 -, l ∞ -, and nuclear-norm-based linear projection spaces share the property of intrasubspace projection dominance, i.e., the coefficients over intrasubspace data points are larger than those over intersubspace data points. Based on this property, we introduce a method to construct a sparse similarity graph, called L2-graph. The subspace clustering and subspace learning algorithms are developed upon L2-graph. We conduct comprehensive experiment on subspace learning, image clustering, and motion segmentation and consider several quantitative benchmarks classification/clustering accuracy, normalized mutual information, and running time. Results show that L2-graph outperforms many state-of-the-art methods in our experiments, including L1-graph, low rank representation (LRR), and latent LRR, least square regression, sparse subspace clustering, and locally linear representation.
On the Existence of Simultaneous Edge Disjoint Realizations of Degree Sequences with ’Few’ Edges
1975-08-01
constructing graphs and digraphs with given valences and factors. Discrete Math . 6 (1973) 79-88. 3. M. Keren, Realization of a sun of sequences by a sum...appear. 5. S. Kundu, The k factor conjecture is true. Discrete Math . 6 (1973) 367-376. 6. S. Kundu, Disjoint representation of tree realizable
Mathematical modeling of the malignancy of cancer using graph evolution.
Gunduz-Demir, Cigdem
2007-10-01
We report a novel computational method based on graph evolution process to model the malignancy of brain cancer called glioma. In this work, we analyze the phases that a graph passes through during its evolution and demonstrate strong relation between the malignancy of cancer and the phase of its graph. From the photomicrographs of tissues, which are diagnosed as normal, low-grade cancerous and high-grade cancerous, we construct cell-graphs based on the locations of cells; we probabilistically generate an edge between every pair of cells depending on the Euclidean distance between them. For a cell-graph, we extract connectivity information including the properties of its connected components in order to analyze the phase of the cell-graph. Working with brain tissue samples surgically removed from 12 patients, we demonstrate that cell-graphs generated for different tissue types evolve differently and that they exhibit different phase properties, which distinguish a tissue type from another.
Li, Rui; Zhang, Xiaodong; Li, Hanzhe; Zhang, Liming; Lu, Zhufeng; Chen, Jiangcheng
2018-08-01
Brain control technology can restore communication between the brain and a prosthesis, and choosing a Brain-Computer Interface (BCI) paradigm to evoke electroencephalogram (EEG) signals is an essential step for developing this technology. In this paper, the Scene Graph paradigm used for controlling prostheses was proposed; this paradigm is based on Steady-State Visual Evoked Potentials (SSVEPs) regarding the Scene Graph of a subject's intention. A mathematic model was built to predict SSVEPs evoked by the proposed paradigm and a sinusoidal stimulation method was used to present the Scene Graph stimulus to elicit SSVEPs from subjects. Then, a 2-degree of freedom (2-DOF) brain-controlled prosthesis system was constructed to validate the performance of the Scene Graph-SSVEP (SG-SSVEP)-based BCI. The classification of SG-SSVEPs was detected via the Canonical Correlation Analysis (CCA) approach. To assess the efficiency of proposed BCI system, the performances of traditional SSVEP-BCI system were compared. Experimental results from six subjects suggested that the proposed system effectively enhanced the SSVEP responses, decreased the degradation of SSVEP strength and reduced the visual fatigue in comparison with the traditional SSVEP-BCI system. The average signal to noise ratio (SNR) of SG-SSVEP was 6.31 ± 2.64 dB, versus 3.38 ± 0.78 dB of traditional-SSVEP. In addition, the proposed system achieved good performances in prosthesis control. The average accuracy was 94.58% ± 7.05%, and the corresponding high information transfer rate (IRT) was 19.55 ± 3.07 bit/min. The experimental results revealed that the SG-SSVEP based BCI system achieves the good performance and improved the stability relative to the conventional approach. Copyright © 2018 Elsevier B.V. All rights reserved.
Genome alignment with graph data structures: a comparison
2014-01-01
Background Recent advances in rapid, low-cost sequencing have opened up the opportunity to study complete genome sequences. The computational approach of multiple genome alignment allows investigation of evolutionarily related genomes in an integrated fashion, providing a basis for downstream analyses such as rearrangement studies and phylogenetic inference. Graphs have proven to be a powerful tool for coping with the complexity of genome-scale sequence alignments. The potential of graphs to intuitively represent all aspects of genome alignments led to the development of graph-based approaches for genome alignment. These approaches construct a graph from a set of local alignments, and derive a genome alignment through identification and removal of graph substructures that indicate errors in the alignment. Results We compare the structures of commonly used graphs in terms of their abilities to represent alignment information. We describe how the graphs can be transformed into each other, and identify and classify graph substructures common to one or more graphs. Based on previous approaches, we compile a list of modifications that remove these substructures. Conclusion We show that crucial pieces of alignment information, associated with inversions and duplications, are not visible in the structure of all graphs. If we neglect vertex or edge labels, the graphs differ in their information content. Still, many ideas are shared among all graph-based approaches. Based on these findings, we outline a conceptual framework for graph-based genome alignment that can assist in the development of future genome alignment tools. PMID:24712884
Generalized graph states based on Hadamard matrices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Shawn X.; Yu, Nengkun; Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario N1G 2W1
2015-07-15
Graph states are widely used in quantum information theory, including entanglement theory, quantum error correction, and one-way quantum computing. Graph states have a nice structure related to a certain graph, which is given by either a stabilizer group or an encoding circuit, both can be directly given by the graph. To generalize graph states, whose stabilizer groups are abelian subgroups of the Pauli group, one approach taken is to study non-abelian stabilizers. In this work, we propose to generalize graph states based on the encoding circuit, which is completely determined by the graph and a Hadamard matrix. We study themore » entanglement structures of these generalized graph states and show that they are all maximally mixed locally. We also explore the relationship between the equivalence of Hadamard matrices and local equivalence of the corresponding generalized graph states. This leads to a natural generalization of the Pauli (X, Z) pairs, which characterizes the local symmetries of these generalized graph states. Our approach is also naturally generalized to construct graph quantum codes which are beyond stabilizer codes.« less
The Interplay of Graph and Text in the Acquisition of Historical Constructs
ERIC Educational Resources Information Center
Shand, Kristen
2009-01-01
Graphs are often conjoined with text passages in history textbooks to help students comprehend complex constructs. Four linkages connect text and graphs: appropriate elements, fitting patterns, suitable labels and causal markers. Graphs in current textbooks contain few such linkages and seldom mirror the construct under study. An experiment…
Classification of hyperbolic singularities of rank zero of integrable Hamiltonian systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oshemkov, Andrey A
2010-10-06
A complete invariant is constructed that is a solution of the problem of semilocal classification of saddle singularities of integrable Hamiltonian systems. Namely, a certain combinatorial object (an f{sub n}-graph) is associated with every nondegenerate saddle singularity of rank zero; as a result, the problem of semilocal classification of saddle singularities of rank zero is reduced to the problem of enumeration of the f{sub n}-graphs. This enables us to describe a simple algorithm for obtaining the lists of saddle singularities of rank zero for a given number of degrees of freedom and a given complexity. Bibliography: 24 titles.
An Expert System toward Buiding An Earth Science Knowledge Graph
NASA Astrophysics Data System (ADS)
Zhang, J.; Duan, X.; Ramachandran, R.; Lee, T. J.; Bao, Q.; Gatlin, P. N.; Maskey, M.
2017-12-01
In this ongoing work, we aim to build foundations of Cognitive Computing for Earth Science research. The goal of our project is to develop an end-to-end automated methodology for incrementally constructing Knowledge Graphs for Earth Science (KG4ES). These knowledge graphs can then serve as the foundational components for building cognitive systems in Earth science, enabling researchers to uncover new patterns and hypotheses that are virtually impossible to identify today. In addition, this research focuses on developing mining algorithms needed to exploit these constructed knowledge graphs. As such, these graphs will free knowledge from publications that are generated in a very linear, deterministic manner, and structure knowledge in a way that users can both interact and connect with relevant pieces of information. Our major contributions are two-fold. First, we have developed an end-to-end methodology for constructing Knowledge Graphs for Earth Science (KG4ES) using existing corpus of journal papers and reports. One of the key challenges in any machine learning, especially deep learning applications, is the need for robust and large training datasets. We have developed techniques capable of automatically retraining models and incrementally building and updating KG4ES, based on ever evolving training data. We also adopt the evaluation instrument based on common research methodologies used in Earth science research, especially in Atmospheric Science. Second, we have developed an algorithm to infer new knowledge that can exploit the constructed KG4ES. In more detail, we have developed a network prediction algorithm aiming to explore and predict possible new connections in the KG4ES and aid in new knowledge discovery.
The Role of Microcomputer-Based Laboratories in Learning To Make Graphs of Distance and Velocity.
ERIC Educational Resources Information Center
Brasell, Heather
Two questions about the effects of microcomputer-based laboratory (MBL) activities on graphing skills were addressed in this study: (1) the extent to which activities help students link their concrete experiences with motion with graphic representations of these experiences; and (2) the degree of importance of the real-time aspect of the MBL in…
G-Hash: Towards Fast Kernel-based Similarity Search in Large Graph Databases.
Wang, Xiaohong; Smalter, Aaron; Huan, Jun; Lushington, Gerald H
2009-01-01
Structured data including sets, sequences, trees and graphs, pose significant challenges to fundamental aspects of data management such as efficient storage, indexing, and similarity search. With the fast accumulation of graph databases, similarity search in graph databases has emerged as an important research topic. Graph similarity search has applications in a wide range of domains including cheminformatics, bioinformatics, sensor network management, social network management, and XML documents, among others.Most of the current graph indexing methods focus on subgraph query processing, i.e. determining the set of database graphs that contains the query graph and hence do not directly support similarity search. In data mining and machine learning, various graph kernel functions have been designed to capture the intrinsic similarity of graphs. Though successful in constructing accurate predictive and classification models for supervised learning, graph kernel functions have (i) high computational complexity and (ii) non-trivial difficulty to be indexed in a graph database.Our objective is to bridge graph kernel function and similarity search in graph databases by proposing (i) a novel kernel-based similarity measurement and (ii) an efficient indexing structure for graph data management. Our method of similarity measurement builds upon local features extracted from each node and their neighboring nodes in graphs. A hash table is utilized to support efficient storage and fast search of the extracted local features. Using the hash table, a graph kernel function is defined to capture the intrinsic similarity of graphs and for fast similarity query processing. We have implemented our method, which we have named G-hash, and have demonstrated its utility on large chemical graph databases. Our results show that the G-hash method achieves state-of-the-art performance for k-nearest neighbor (k-NN) classification. Most importantly, the new similarity measurement and the index structure is scalable to large database with smaller indexing size, faster indexing construction time, and faster query processing time as compared to state-of-the-art indexing methods such as C-tree, gIndex, and GraphGrep.
Man-made objects cuing in satellite imagery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skurikhin, Alexei N
2009-01-01
We present a multi-scale framework for man-made structures cuing in satellite image regions. The approach is based on a hierarchical image segmentation followed by structural analysis. A hierarchical segmentation produces an image pyramid that contains a stack of irregular image partitions, represented as polygonized pixel patches, of successively reduced levels of detail (LOOs). We are jumping off from the over-segmented image represented by polygons attributed with spectral and texture information. The image is represented as a proximity graph with vertices corresponding to the polygons and edges reflecting polygon relations. This is followed by the iterative graph contraction based on Boruvka'smore » Minimum Spanning Tree (MST) construction algorithm. The graph contractions merge the patches based on their pairwise spectral and texture differences. Concurrently with the construction of the irregular image pyramid, structural analysis is done on the agglomerated patches. Man-made object cuing is based on the analysis of shape properties of the constructed patches and their spatial relations. The presented framework can be used as pre-scanning tool for wide area monitoring to quickly guide the further analysis to regions of interest.« less
ERIC Educational Resources Information Center
Hattikudur, Shanta; Prather, Richard W.; Asquith, Pamela; Alibali, Martha W.; Knuth, Eric J.; Nathan, Mitchell
2012-01-01
Middle-school students are expected to understand key components of graphs, such as slope and y-intercept. However, constructing graphs is a skill that has received relatively little research attention. This study examined students' construction of graphs of linear functions, focusing specifically on the relative difficulties of graphing slope and…
Ivanciuc, Ovidiu
2013-06-01
Chemical and molecular graphs have fundamental applications in chemoinformatics, quantitative structureproperty relationships (QSPR), quantitative structure-activity relationships (QSAR), virtual screening of chemical libraries, and computational drug design. Chemoinformatics applications of graphs include chemical structure representation and coding, database search and retrieval, and physicochemical property prediction. QSPR, QSAR and virtual screening are based on the structure-property principle, which states that the physicochemical and biological properties of chemical compounds can be predicted from their chemical structure. Such structure-property correlations are usually developed from topological indices and fingerprints computed from the molecular graph and from molecular descriptors computed from the three-dimensional chemical structure. We present here a selection of the most important graph descriptors and topological indices, including molecular matrices, graph spectra, spectral moments, graph polynomials, and vertex topological indices. These graph descriptors are used to define several topological indices based on molecular connectivity, graph distance, reciprocal distance, distance-degree, distance-valency, spectra, polynomials, and information theory concepts. The molecular descriptors and topological indices can be developed with a more general approach, based on molecular graph operators, which define a family of graph indices related by a common formula. Graph descriptors and topological indices for molecules containing heteroatoms and multiple bonds are computed with weighting schemes based on atomic properties, such as the atomic number, covalent radius, or electronegativity. The correlation in QSPR and QSAR models can be improved by optimizing some parameters in the formula of topological indices, as demonstrated for structural descriptors based on atomic connectivity and graph distance.
Constructing Dense Graphs with Unique Hamiltonian Cycles
ERIC Educational Resources Information Center
Lynch, Mark A. M.
2012-01-01
It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…
A method for independent component graph analysis of resting-state fMRI.
Ribeiro de Paula, Demetrius; Ziegler, Erik; Abeyasinghe, Pubuditha M; Das, Tushar K; Cavaliere, Carlo; Aiello, Marco; Heine, Lizette; di Perri, Carol; Demertzi, Athena; Noirhomme, Quentin; Charland-Verville, Vanessa; Vanhaudenhuyse, Audrey; Stender, Johan; Gomez, Francisco; Tshibanda, Jean-Flory L; Laureys, Steven; Owen, Adrian M; Soddu, Andrea
2017-03-01
Independent component analysis (ICA) has been extensively used for reducing task-free BOLD fMRI recordings into spatial maps and their associated time-courses. The spatially identified independent components can be considered as intrinsic connectivity networks (ICNs) of non-contiguous regions. To date, the spatial patterns of the networks have been analyzed with techniques developed for volumetric data. Here, we detail a graph building technique that allows these ICNs to be analyzed with graph theory. First, ICA was performed at the single-subject level in 15 healthy volunteers using a 3T MRI scanner. The identification of nine networks was performed by a multiple-template matching procedure and a subsequent component classification based on the network "neuronal" properties. Second, for each of the identified networks, the nodes were defined as 1,015 anatomically parcellated regions. Third, between-node functional connectivity was established by building edge weights for each networks. Group-level graph analysis was finally performed for each network and compared to the classical network. Network graph comparison between the classically constructed network and the nine networks showed significant differences in the auditory and visual medial networks with regard to the average degree and the number of edges, while the visual lateral network showed a significant difference in the small-worldness. This novel approach permits us to take advantage of the well-recognized power of ICA in BOLD signal decomposition and, at the same time, to make use of well-established graph measures to evaluate connectivity differences. Moreover, by providing a graph for each separate network, it can offer the possibility to extract graph measures in a specific way for each network. This increased specificity could be relevant for studying pathological brain activity or altered states of consciousness as induced by anesthesia or sleep, where specific networks are known to be altered in different strength.
Trust from the past: Bayesian Personalized Ranking based Link Prediction in Knowledge Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Baichuan; Choudhury, Sutanay; Al-Hasan, Mohammad
2016-02-01
Estimating the confidence for a link is a critical task for Knowledge Graph construction. Link prediction, or predicting the likelihood of a link in a knowledge graph based on prior state is a key research direction within this area. We propose a Latent Feature Embedding based link recommendation model for prediction task and utilize Bayesian Personalized Ranking based optimization technique for learning models for each predicate. Experimental results on large-scale knowledge bases such as YAGO2 show that our approach achieves substantially higher performance than several state-of-art approaches. Furthermore, we also study the performance of the link prediction algorithm in termsmore » of topological properties of the Knowledge Graph and present a linear regression model to reason about its expected level of accuracy.« less
Groupies in multitype random graphs.
Shang, Yilun
2016-01-01
A groupie in a graph is a vertex whose degree is not less than the average degree of its neighbors. Under some mild conditions, we show that the proportion of groupies is very close to 1/2 in multitype random graphs (such as stochastic block models), which include Erdős-Rényi random graphs, random bipartite, and multipartite graphs as special examples. Numerical examples are provided to illustrate the theoretical results.
Fast generation of sparse random kernel graphs
Hagberg, Aric; Lemons, Nathan; Du, Wen -Bo
2015-09-10
The development of kernel-based inhomogeneous random graphs has provided models that are flexible enough to capture many observed characteristics of real networks, and that are also mathematically tractable. We specify a class of inhomogeneous random graph models, called random kernel graphs, that produces sparse graphs with tunable graph properties, and we develop an efficient generation algorithm to sample random instances from this model. As real-world networks are usually large, it is essential that the run-time of generation algorithms scales better than quadratically in the number of vertices n. We show that for many practical kernels our algorithm runs in timemore » at most ο(n(logn)²). As an example, we show how to generate samples of power-law degree distribution graphs with tunable assortativity.« less
Composing Data Parallel Code for a SPARQL Graph Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castellana, Vito G.; Tumeo, Antonino; Villa, Oreste
Big data analytics process large amount of data to extract knowledge from them. Semantic databases are big data applications that adopt the Resource Description Framework (RDF) to structure metadata through a graph-based representation. The graph based representation provides several benefits, such as the possibility to perform in memory processing with large amounts of parallelism. SPARQL is a language used to perform queries on RDF-structured data through graph matching. In this paper we present a tool that automatically translates SPARQL queries to parallel graph crawling and graph matching operations. The tool also supports complex SPARQL constructs, which requires more than basicmore » graph matching for their implementation. The tool generates parallel code annotated with OpenMP pragmas for x86 Shared-memory Multiprocessors (SMPs). With respect to commercial database systems such as Virtuoso, our approach reduces memory occupation due to join operations and provides higher performance. We show the scaling of the automatically generated graph-matching code on a 48-core SMP.« less
A global/local affinity graph for image segmentation.
Xiaofang Wang; Yuxing Tang; Masnou, Simon; Liming Chen
2015-04-01
Construction of a reliable graph capturing perceptual grouping cues of an image is fundamental for graph-cut based image segmentation methods. In this paper, we propose a novel sparse global/local affinity graph over superpixels of an input image to capture both short- and long-range grouping cues, and thereby enabling perceptual grouping laws, including proximity, similarity, continuity, and to enter in action through a suitable graph-cut algorithm. Moreover, we also evaluate three major visual features, namely, color, texture, and shape, for their effectiveness in perceptual segmentation and propose a simple graph fusion scheme to implement some recent findings from psychophysics, which suggest combining these visual features with different emphases for perceptual grouping. In particular, an input image is first oversegmented into superpixels at different scales. We postulate a gravitation law based on empirical observations and divide superpixels adaptively into small-, medium-, and large-sized sets. Global grouping is achieved using medium-sized superpixels through a sparse representation of superpixels' features by solving a ℓ0-minimization problem, and thereby enabling continuity or propagation of local smoothness over long-range connections. Small- and large-sized superpixels are then used to achieve local smoothness through an adjacent graph in a given feature space, and thus implementing perceptual laws, for example, similarity and proximity. Finally, a bipartite graph is also introduced to enable propagation of grouping cues between superpixels of different scales. Extensive experiments are carried out on the Berkeley segmentation database in comparison with several state-of-the-art graph constructions. The results show the effectiveness of the proposed approach, which outperforms state-of-the-art graphs using four different objective criteria, namely, the probabilistic rand index, the variation of information, the global consistency error, and the boundary displacement error.
Parrondo's games based on complex networks and the paradoxical effect.
Ye, Ye; Wang, Lu; Xie, Nenggang
2013-01-01
Parrondo's games were first constructed using a simple tossing scenario, which demonstrates the following paradoxical situation: in sequences of games, a winning expectation may be obtained by playing the games in a random order, although each game (game A or game B) in the sequence may result in losing when played individually. The available Parrondo's games based on the spatial niche (the neighboring environment) are applied in the regular networks. The neighbors of each node are the same in the regular graphs, whereas they are different in the complex networks. Here, Parrondo's model based on complex networks is proposed, and a structure of game B applied in arbitrary topologies is constructed. The results confirm that Parrondo's paradox occurs. Moreover, the size of the region of the parameter space that elicits Parrondo's paradox depends on the heterogeneity of the degree distributions of the networks. The higher heterogeneity yields a larger region of the parameter space where the strong paradox occurs. In addition, we use scale-free networks to show that the network size has no significant influence on the region of the parameter space where the strong or weak Parrondo's paradox occurs. The region of the parameter space where the strong Parrondo's paradox occurs reduces slightly when the average degree of the network increases.
On the degree conjecture for separability of multipartite quantum states
NASA Astrophysics Data System (ADS)
Hassan, Ali Saif M.; Joag, Pramod S.
2008-01-01
We settle the so-called degree conjecture for the separability of multipartite quantum states, which are normalized graph Laplacians, first given by Braunstein et al. [Phys. Rev. A 73, 012320 (2006)]. The conjecture states that a multipartite quantum state is separable if and only if the degree matrix of the graph associated with the state is equal to the degree matrix of the partial transpose of this graph. We call this statement to be the strong form of the conjecture. In its weak version, the conjecture requires only the necessity, that is, if the state is separable, the corresponding degree matrices match. We prove the strong form of the conjecture for pure multipartite quantum states using the modified tensor product of graphs defined by Hassan and Joag [J. Phys. A 40, 10251 (2007)], as both necessary and sufficient condition for separability. Based on this proof, we give a polynomial-time algorithm for completely factorizing any pure multipartite quantum state. By polynomial-time algorithm, we mean that the execution time of this algorithm increases as a polynomial in m, where m is the number of parts of the quantum system. We give a counterexample to show that the conjecture fails, in general, even in its weak form, for multipartite mixed states. Finally, we prove this conjecture, in its weak form, for a class of multipartite mixed states, giving only a necessary condition for separability.
NASA Astrophysics Data System (ADS)
Yamamoto, Takanori; Bannai, Hideo; Nagasaki, Masao; Miyano, Satoru
We present new decomposition heuristics for finding the optimal solution for the maximum-weight connected graph problem, which is known to be NP-hard. Previous optimal algorithms for solving the problem decompose the input graph into subgraphs using heuristics based on node degree. We propose new heuristics based on betweenness centrality measures, and show through computational experiments that our new heuristics tend to reduce the number of subgraphs in the decomposition, and therefore could lead to the reduction in computational time for finding the optimal solution. The method is further applied to analysis of biological pathway data.
Akama, Hiroyuki; Miyake, Maki; Jung, Jaeyoung; Murphy, Brian
2015-01-01
In this study, we introduce an original distance definition for graphs, called the Markov-inverse-F measure (MiF). This measure enables the integration of classical graph theory indices with new knowledge pertaining to structural feature extraction from semantic networks. MiF improves the conventional Jaccard and/or Simpson indices, and reconciles both the geodesic information (random walk) and co-occurrence adjustment (degree balance and distribution). We measure the effectiveness of graph-based coefficients through the application of linguistic graph information for a neural activity recorded during conceptual processing in the human brain. Specifically, the MiF distance is computed between each of the nouns used in a previous neural experiment and each of the in-between words in a subgraph derived from the Edinburgh Word Association Thesaurus of English. From the MiF-based information matrix, a machine learning model can accurately obtain a scalar parameter that specifies the degree to which each voxel in (the MRI image of) the brain is activated by each word or each principal component of the intermediate semantic features. Furthermore, correlating the voxel information with the MiF-based principal components, a new computational neurolinguistics model with a network connectivity paradigm is created. This allows two dimensions of context space to be incorporated with both semantic and neural distributional representations.
Evolutionary dynamics on graphs: Efficient method for weak selection
NASA Astrophysics Data System (ADS)
Fu, Feng; Wang, Long; Nowak, Martin A.; Hauert, Christoph
2009-04-01
Investigating the evolutionary dynamics of game theoretical interactions in populations where individuals are arranged on a graph can be challenging in terms of computation time. Here, we propose an efficient method to study any type of game on arbitrary graph structures for weak selection. In this limit, evolutionary game dynamics represents a first-order correction to neutral evolution. Spatial correlations can be empirically determined under neutral evolution and provide the basis for formulating the game dynamics as a discrete Markov process by incorporating a detailed description of the microscopic dynamics based on the neutral correlations. This framework is then applied to one of the most intriguing questions in evolutionary biology: the evolution of cooperation. We demonstrate that the degree heterogeneity of a graph impedes cooperation and that the success of tit for tat depends not only on the number of rounds but also on the degree of the graph. Moreover, considering the mutation-selection equilibrium shows that the symmetry of the stationary distribution of states under weak selection is skewed in favor of defectors for larger selection strengths. In particular, degree heterogeneity—a prominent feature of scale-free networks—generally results in a more pronounced increase in the critical benefit-to-cost ratio required for evolution to favor cooperation as compared to regular graphs. This conclusion is corroborated by an analysis of the effects of population structures on the fixation probabilities of strategies in general 2×2 games for different types of graphs. Computer simulations confirm the predictive power of our method and illustrate the improved accuracy as compared to previous studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Minghai; Duan, Mojie; Fan, Jue
The thermodynamics and kinetics of protein folding and protein conformational changes are governed by the underlying free energy landscape. However, the multidimensional nature of the free energy landscape makes it difficult to describe. We propose to use a weighted-graph approach to depict the free energy landscape with the nodes on the graph representing the conformational states and the edge weights reflecting the free energy barriers between the states. Our graph is constructed from a molecular dynamics trajectory and does not involve projecting the multi-dimensional free energy landscape onto a low-dimensional space defined by a few order parameters. The calculation ofmore » free energy barriers was based on transition-path theory using the MSMBuilder2 package. We compare our graph with the widely used transition disconnectivity graph (TRDG) which is constructed from the same trajectory and show that our approach gives more accurate description of the free energy landscape than the TRDG approach even though the latter can be organized into a simple tree representation. The weighted-graph is a general approach and can be used on any complex system.« less
Anisotropic Laplace-Beltrami Eigenmaps: Bridging Reeb Graphs and Skeletons*
Shi, Yonggang; Lai, Rongjie; Krishna, Sheila; Sicotte, Nancy; Dinov, Ivo; Toga, Arthur W.
2010-01-01
In this paper we propose a novel approach of computing skeletons of robust topology for simply connected surfaces with boundary by constructing Reeb graphs from the eigenfunctions of an anisotropic Laplace-Beltrami operator. Our work brings together the idea of Reeb graphs and skeletons by incorporating a flux-based weight function into the Laplace-Beltrami operator. Based on the intrinsic geometry of the surface, the resulting Reeb graph is pose independent and captures the global profile of surface geometry. Our algorithm is very efficient and it only takes several seconds to compute on neuroanatomical structures such as the cingulate gyrus and corpus callosum. In our experiments, we show that the Reeb graphs serve well as an approximate skeleton with consistent topology while following the main body of conventional skeletons quite accurately. PMID:21339850
Dim target detection method based on salient graph fusion
NASA Astrophysics Data System (ADS)
Hu, Ruo-lan; Shen, Yi-yan; Jiang, Jun
2018-02-01
Dim target detection is one key problem in digital image processing field. With development of multi-spectrum imaging sensor, it becomes a trend to improve the performance of dim target detection by fusing the information from different spectral images. In this paper, one dim target detection method based on salient graph fusion was proposed. In the method, Gabor filter with multi-direction and contrast filter with multi-scale were combined to construct salient graph from digital image. And then, the maximum salience fusion strategy was designed to fuse the salient graph from different spectral images. Top-hat filter was used to detect dim target from the fusion salient graph. Experimental results show that proposal method improved the probability of target detection and reduced the probability of false alarm on clutter background images.
Scale-free Graphs for General Aviation Flight Schedules
NASA Technical Reports Server (NTRS)
Alexandov, Natalia M. (Technical Monitor); Kincaid, Rex K.
2003-01-01
In the late 1990s a number of researchers noticed that networks in biology, sociology, and telecommunications exhibited similar characteristics unlike standard random networks. In particular, they found that the cummulative degree distributions of these graphs followed a power law rather than a binomial distribution and that their clustering coefficients tended to a nonzero constant as the number of nodes, n, became large rather than O(1/n). Moreover, these networks shared an important property with traditional random graphs as n becomes large the average shortest path length scales with log n. This latter property has been coined the small-world property. When taken together these three properties small-world, power law, and constant clustering coefficient describe what are now most commonly referred to as scale-free networks. Since 1997 at least six books and over 400 articles have been written about scale-free networks. In this manuscript an overview of the salient characteristics of scale-free networks. Computational experience will be provided for two mechanisms that grow (dynamic) scale-free graphs. Additional computational experience will be given for constructing (static) scale-free graphs via a tabu search optimization approach. Finally, a discussion of potential applications to general aviation networks is given.
Assembly planning based on subassembly extraction
NASA Technical Reports Server (NTRS)
Lee, Sukhan; Shin, Yeong Gil
1990-01-01
A method is presented for the automatic determination of assembly partial orders from a liaison graph representation of an assembly through the extraction of preferred subassemblies. In particular, the authors show how to select a set of tentative subassemblies by decomposing a liaison graph into a set of subgraphs based on feasibility and difficulty of disassembly, how to evaluate each of the tentative subassemblies in terms of assembly cost using the subassembly selection indices, and how to construct a hierarchical partial order graph (HPOG) as an assembly plan. The method provides an approach to assembly planning by identifying spatial parallelism in assembly as a means of constructing temporal relationships among assembly operations and solves the problem of finding a cost-effective assembly plan in a flexible environment. A case study of the assembly planning of a mechanical assembly is presented.
Efficient quantum pseudorandomness with simple graph states
NASA Astrophysics Data System (ADS)
Mezher, Rawad; Ghalbouni, Joe; Dgheim, Joseph; Markham, Damian
2018-02-01
Measurement based (MB) quantum computation allows for universal quantum computing by measuring individual qubits prepared in entangled multipartite states, known as graph states. Unless corrected for, the randomness of the measurements leads to the generation of ensembles of random unitaries, where each random unitary is identified with a string of possible measurement results. We show that repeating an MB scheme an efficient number of times, on a simple graph state, with measurements at fixed angles and no feedforward corrections, produces a random unitary ensemble that is an ɛ -approximate t design on n qubits. Unlike previous constructions, the graph is regular and is also a universal resource for measurement based quantum computing, closely related to the brickwork state.
Evolutionary graph theory: breaking the symmetry between interaction and replacement
Ohtsuki, Hisashi; Pacheco, Jorge M.; Nowak, Martin A.
2008-01-01
We study evolutionary dynamics in a population whose structure is given by two graphs: the interaction graph determines who plays with whom in an evolutionary game; the replacement graph specifies the geometry of evolutionary competition and updating. First, we calculate the fixation probabilities of frequency dependent selection between two strategies or phenotypes. We consider three different update mechanisms: birth-death, death-birth and imitation. Then, as a particular example, we explore the evolution of cooperation. Suppose the interaction graph is a regular graph of degree h, the replacement graph is a regular graph of degree g and the overlap between the two graphs is a regular graph of degree l. We show that cooperation is favored by natural selection if b/c > hg/l. Here, b and c denote the benefit and cost of the altruistic act. This result holds for death-birth updating, weak selection and large population size. Note that the optimum population structure for cooperators is given by maximum overlap between the interaction and the replacement graph (g = h = l), which means that the two graphs are identical. We also prove that a modified replicator equation can describe how the expected values of the frequencies of an arbitrary number of strategies change on replacement and interaction graphs: the two graphs induce a transformation of the payoff matrix. PMID:17350049
Weights and topology: a study of the effects of graph construction on 3D image segmentation.
Grady, Leo; Jolly, Marie-Pierre
2008-01-01
Graph-based algorithms have become increasingly popular for medical image segmentation. The fundamental process for each of these algorithms is to use the image content to generate a set of weights for the graph and then set conditions for an optimal partition of the graph with respect to these weights. To date, the heuristics used for generating the weighted graphs from image intensities have largely been ignored, while the primary focus of attention has been on the details of providing the partitioning conditions. In this paper we empirically study the effects of graph connectivity and weighting function on the quality of the segmentation results. To control for algorithm-specific effects, we employ both the Graph Cuts and Random Walker algorithms in our experiments.
Adaptive random walks on the class of Web graphs
NASA Astrophysics Data System (ADS)
Tadić, B.
2001-09-01
We study random walk with adaptive move strategies on a class of directed graphs with variable wiring diagram. The graphs are grown from the evolution rules compatible with the dynamics of the world-wide Web [B. Tadić, Physica A 293, 273 (2001)], and are characterized by a pair of power-law distributions of out- and in-degree for each value of the parameter β, which measures the degree of rewiring in the graph. The walker adapts its move strategy according to locally available information both on out-degree of the visited node and in-degree of target node. A standard random walk, on the other hand, uses the out-degree only. We compute the distribution of connected subgraphs visited by an ensemble of walkers, the average access time and survival probability of the walks. We discuss these properties of the walk dynamics relative to the changes in the global graph structure when the control parameter β is varied. For β≥ 3, corresponding to the world-wide Web, the access time of the walk to a given level of hierarchy on the graph is much shorter compared to the standard random walk on the same graph. By reducing the amount of rewiring towards rigidity limit β↦βc≲ 0.1, corresponding to the range of naturally occurring biochemical networks, the survival probability of adaptive and standard random walk become increasingly similar. The adaptive random walk can be used as an efficient message-passing algorithm on this class of graphs for large degree of rewiring.
NASA Astrophysics Data System (ADS)
Kase, Sue E.; Vanni, Michelle; Knight, Joanne A.; Su, Yu; Yan, Xifeng
2016-05-01
Within operational environments decisions must be made quickly based on the information available. Identifying an appropriate knowledge base and accurately formulating a search query are critical tasks for decision-making effectiveness in dynamic situations. The spreading of graph data management tools to access large graph databases is a rapidly emerging research area of potential benefit to the intelligence community. A graph representation provides a natural way of modeling data in a wide variety of domains. Graph structures use nodes, edges, and properties to represent and store data. This research investigates the advantages of information search by graph query initiated by the analyst and interactively refined within the contextual dimensions of the answer space toward a solution. The paper introduces SLQ, a user-friendly graph querying system enabling the visual formulation of schemaless and structureless graph queries. SLQ is demonstrated with an intelligence analyst information search scenario focused on identifying individuals responsible for manufacturing a mosquito-hosted deadly virus. The scenario highlights the interactive construction of graph queries without prior training in complex query languages or graph databases, intuitive navigation through the problem space, and visualization of results in graphical format.
Social and place-focused communities in location-based online social networks
NASA Astrophysics Data System (ADS)
Brown, Chloë; Nicosia, Vincenzo; Scellato, Salvatore; Noulas, Anastasios; Mascolo, Cecilia
2013-06-01
Thanks to widely available, cheap Internet access and the ubiquity of smartphones, millions of people around the world now use online location-based social networking services. Understanding the structural properties of these systems and their dependence upon users' habits and mobility has many potential applications, including resource recommendation and link prediction. Here, we construct and characterise social and place-focused graphs by using longitudinal information about declared social relationships and about users' visits to physical places collected from a popular online location-based social service. We show that although the social and place-focused graphs are constructed from the same data set, they have quite different structural properties. We find that the social and location-focused graphs have different global and meso-scale structure, and in particular that social and place-focused communities have negligible overlap. Consequently, group inference based on community detection performed on the social graph alone fails to isolate place-focused groups, even though these do exist in the network. By studying the evolution of tie structure within communities, we show that the time period over which location data are aggregated has a substantial impact on the stability of place-focused communities, and that information about place-based groups may be more useful for user-centric applications than that obtained from the analysis of social communities alone.
Efficient parallel and out of core algorithms for constructing large bi-directed de Bruijn graphs.
Kundeti, Vamsi K; Rajasekaran, Sanguthevar; Dinh, Hieu; Vaughn, Matthew; Thapar, Vishal
2010-11-15
Assembling genomic sequences from a set of overlapping reads is one of the most fundamental problems in computational biology. Algorithms addressing the assembly problem fall into two broad categories - based on the data structures which they employ. The first class uses an overlap/string graph and the second type uses a de Bruijn graph. However with the recent advances in short read sequencing technology, de Bruijn graph based algorithms seem to play a vital role in practice. Efficient algorithms for building these massive de Bruijn graphs are very essential in large sequencing projects based on short reads. In an earlier work, an O(n/p) time parallel algorithm has been given for this problem. Here n is the size of the input and p is the number of processors. This algorithm enumerates all possible bi-directed edges which can overlap with a node and ends up generating Θ(nΣ) messages (Σ being the size of the alphabet). In this paper we present a Θ(n/p) time parallel algorithm with a communication complexity that is equal to that of parallel sorting and is not sensitive to Σ. The generality of our algorithm makes it very easy to extend it even to the out-of-core model and in this case it has an optimal I/O complexity of Θ(nlog(n/B)Blog(M/B)) (M being the main memory size and B being the size of the disk block). We demonstrate the scalability of our parallel algorithm on a SGI/Altix computer. A comparison of our algorithm with the previous approaches reveals that our algorithm is faster--both asymptotically and practically. We demonstrate the scalability of our sequential out-of-core algorithm by comparing it with the algorithm used by VELVET to build the bi-directed de Bruijn graph. Our experiments reveal that our algorithm can build the graph with a constant amount of memory, which clearly outperforms VELVET. We also provide efficient algorithms for the bi-directed chain compaction problem. The bi-directed de Bruijn graph is a fundamental data structure for any sequence assembly program based on Eulerian approach. Our algorithms for constructing Bi-directed de Bruijn graphs are efficient in parallel and out of core settings. These algorithms can be used in building large scale bi-directed de Bruijn graphs. Furthermore, our algorithms do not employ any all-to-all communications in a parallel setting and perform better than the prior algorithms. Finally our out-of-core algorithm is extremely memory efficient and can replace the existing graph construction algorithm in VELVET.
Greenberger-Horne-Zeilinger paradoxes from qudit graph states.
Tang, Weidong; Yu, Sixia; Oh, C H
2013-03-08
One fascinating way of revealing quantum nonlocality is the all-versus-nothing test due to Greenberger, Horne, and Zeilinger (GHZ) known as the GHZ paradox. So far genuine multipartite and multilevel GHZ paradoxes are known to exist only in systems containing an odd number of particles. Here we shall construct GHZ paradoxes for an arbitrary number (greater than 3) of particles with the help of qudit graph states on a special kind of graphs, called GHZ graphs. Furthermore, based on the GHZ paradox arising from a GHZ graph, we derive a Bell inequality with two d-outcome observables for each observer, whose maximal violation attained by the corresponding graph state, and a Kochen-Specker inequality testing the quantum contextuality in a state-independent fashion.
Automatic determination of fault effects on aircraft functionality
NASA Technical Reports Server (NTRS)
Feyock, Stefan
1989-01-01
The problem of determining the behavior of physical systems subsequent to the occurrence of malfunctions is discussed. It is established that while it was reasonable to assume that the most important fault behavior modes of primitive components and simple subsystems could be known and predicted, interactions within composite systems reached levels of complexity that precluded the use of traditional rule-based expert system techniques. Reasoning from first principles, i.e., on the basis of causal models of the physical system, was required. The first question that arises is, of course, how the causal information required for such reasoning should be represented. The bond graphs presented here occupy a position intermediate between qualitative and quantitative models, allowing the automatic derivation of Kuipers-like qualitative constraint models as well as state equations. Their most salient feature, however, is that entities corresponding to components and interactions in the physical system are explicitly represented in the bond graph model, thus permitting systematic model updates to reflect malfunctions. Researchers show how this is done, as well as presenting a number of techniques for obtaining qualitative information from the state equations derivable from bond graph models. One insight is the fact that one of the most important advantages of the bond graph ontology is the highly systematic approach to model construction it imposes on the modeler, who is forced to classify the relevant physical entities into a small number of categories, and to look for two highly specific types of interactions among them. The systematic nature of bond graph model construction facilitates the process to the point where the guidelines are sufficiently specific to be followed by modelers who are not domain experts. As a result, models of a given system constructed by different modelers will have extensive similarities. Researchers conclude by pointing out that the ease of updating bond graph models to reflect malfunctions is a manifestation of the systematic nature of bond graph construction, and the regularity of the relationship between bond graph models and physical reality.
A Ring Construction Using Finite Directed Graphs
ERIC Educational Resources Information Center
Bardzell, Michael
2012-01-01
In this paper we discuss an interesting class of noncommutative rings which can be constructed using finite directed graphs. This construction also creates a vector space. These structures provide undergraduate students connections between ring theory and graph theory and, among other things, allow them to see a ring unity element that looks quite…
Undergraduate Student Construction and Interpretation of Graphs in Physics Lab Activities
ERIC Educational Resources Information Center
Nixon, Ryan S.; Godfrey, T. J.; Mayhew, Nicholas T.; Wiegert, Craig C.
2016-01-01
Lab activities are an important element of an undergraduate physics course. In these lab activities, students construct and interpret graphs in order to connect the procedures of the lab with an understanding of the related physics concepts. This study investigated undergraduate students' construction and interpretation of graphs with best-fit…
Focus-based filtering + clustering technique for power-law networks with small world phenomenon
NASA Astrophysics Data System (ADS)
Boutin, François; Thièvre, Jérôme; Hascoët, Mountaz
2006-01-01
Realistic interaction networks usually present two main properties: a power-law degree distribution and a small world behavior. Few nodes are linked to many nodes and adjacent nodes are likely to share common neighbors. Moreover, graph structure usually presents a dense core that is difficult to explore with classical filtering and clustering techniques. In this paper, we propose a new filtering technique accounting for a user-focus. This technique extracts a tree-like graph with also power-law degree distribution and small world behavior. Resulting structure is easily drawn with classical force-directed drawing algorithms. It is also quickly clustered and displayed into a multi-level silhouette tree (MuSi-Tree) from any user-focus. We built a new graph filtering + clustering + drawing API and report a case study.
Xu, Xin; Huang, Zhenhua; Graves, Daniel; Pedrycz, Witold
2014-12-01
In order to deal with the sequential decision problems with large or continuous state spaces, feature representation and function approximation have been a major research topic in reinforcement learning (RL). In this paper, a clustering-based graph Laplacian framework is presented for feature representation and value function approximation (VFA) in RL. By making use of clustering-based techniques, that is, K-means clustering or fuzzy C-means clustering, a graph Laplacian is constructed by subsampling in Markov decision processes (MDPs) with continuous state spaces. The basis functions for VFA can be automatically generated from spectral analysis of the graph Laplacian. The clustering-based graph Laplacian is integrated with a class of approximation policy iteration algorithms called representation policy iteration (RPI) for RL in MDPs with continuous state spaces. Simulation and experimental results show that, compared with previous RPI methods, the proposed approach needs fewer sample points to compute an efficient set of basis functions and the learning control performance can be improved for a variety of parameter settings.
Strong parameterization and coordination encirclements of graph of Penrose tiling vertices
NASA Astrophysics Data System (ADS)
Shutov, A. V.; Maleev, A. V.
2017-07-01
The coordination encirclements in a graph of Penrose tiling vertices have been investigated based on the analysis of vertice parameters. A strong parameterization of these vertices is developed in the form of a tiling of a parameter set in the region corresponding to different first coordination encirclements of vertices. An algorithm for constructing tilings of a set of parameters determining different coordination encirclements in a graph of Penrose tiling vertices of order n is proposed.
Listing triangles in expected linear time on a class of power law graphs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nordman, Daniel J.; Wilson, Alyson G.; Phillips, Cynthia Ann
Enumerating triangles (3-cycles) in graphs is a kernel operation for social network analysis. For example, many community detection methods depend upon finding common neighbors of two related entities. We consider Cohen's simple and elegant solution for listing triangles: give each node a 'bucket.' Place each edge into the bucket of its endpoint of lowest degree, breaking ties consistently. Each node then checks each pair of edges in its bucket, testing for the adjacency that would complete that triangle. Cohen presents an informal argument that his algorithm should run well on real graphs. We formalize this argument by providing an analysismore » for the expected running time on a class of random graphs, including power law graphs. We consider a rigorously defined method for generating a random simple graph, the erased configuration model (ECM). In the ECM each node draws a degree independently from a marginal degree distribution, endpoints pair randomly, and we erase self loops and multiedges. If the marginal degree distribution has a finite second moment, it follows immediately that Cohen's algorithm runs in expected linear time. Furthermore, it can still run in expected linear time even when the degree distribution has such a heavy tail that the second moment is not finite. We prove that Cohen's algorithm runs in expected linear time when the marginal degree distribution has finite 4/3 moment and no vertex has degree larger than {radical}n. In fact we give the precise asymptotic value of the expected number of edge pairs per bucket. A finite 4/3 moment is required; if it is unbounded, then so is the number of pairs. The marginal degree distribution of a power law graph has bounded 4/3 moment when its exponent {alpha} is more than 7/3. Thus for this class of power law graphs, with degree at most {radical}n, Cohen's algorithm runs in expected linear time. This is precisely the value of {alpha} for which the clustering coefficient tends to zero asymptotically, and it is in the range that is relevant for the degree distribution of the World-Wide Web.« less
Cartographic generalization of urban street networks based on gravitational field theory
NASA Astrophysics Data System (ADS)
Liu, Gang; Li, Yongshu; Li, Zheng; Guo, Jiawei
2014-05-01
The automatic generalization of urban street networks is a constant and important aspect of geographical information science. Previous studies show that the dual graph for street-street relationships more accurately reflects the overall morphological properties and importance of streets than do other methods. In this study, we construct a dual graph to represent street-street relationship and propose an approach to generalize street networks based on gravitational field theory. We retain the global structural properties and topological connectivity of an original street network and borrow from gravitational field theory to define the gravitational force between nodes. The concept of multi-order neighbors is introduced and the gravitational force is taken as the measure of the importance contribution between nodes. The importance of a node is defined as the result of the interaction between a given node and its multi-order neighbors. Degree distribution is used to evaluate the level of maintaining the global structure and topological characteristics of a street network and to illustrate the efficiency of the suggested method. Experimental results indicate that the proposed approach can be used in generalizing street networks and retaining their density characteristics, connectivity and global structure.
On the degree conjecture for separability of multipartite quantum states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan, Ali Saif M.; Joag, Pramod S.
2008-01-15
We settle the so-called degree conjecture for the separability of multipartite quantum states, which are normalized graph Laplacians, first given by Braunstein et al. [Phys. Rev. A 73, 012320 (2006)]. The conjecture states that a multipartite quantum state is separable if and only if the degree matrix of the graph associated with the state is equal to the degree matrix of the partial transpose of this graph. We call this statement to be the strong form of the conjecture. In its weak version, the conjecture requires only the necessity, that is, if the state is separable, the corresponding degree matricesmore » match. We prove the strong form of the conjecture for pure multipartite quantum states using the modified tensor product of graphs defined by Hassan and Joag [J. Phys. A 40, 10251 (2007)], as both necessary and sufficient condition for separability. Based on this proof, we give a polynomial-time algorithm for completely factorizing any pure multipartite quantum state. By polynomial-time algorithm, we mean that the execution time of this algorithm increases as a polynomial in m, where m is the number of parts of the quantum system. We give a counterexample to show that the conjecture fails, in general, even in its weak form, for multipartite mixed states. Finally, we prove this conjecture, in its weak form, for a class of multipartite mixed states, giving only a necessary condition for separability.« less
Semantic super networks: A case analysis of Wikipedia papers
NASA Astrophysics Data System (ADS)
Kostyuchenko, Evgeny; Lebedeva, Taisiya; Goritov, Alexander
2017-11-01
An algorithm for constructing super-large semantic networks has been developed in current work. Algorithm was tested using the "Cosmos" category of the Internet encyclopedia "Wikipedia" as an example. During the implementation, a parser for the syntax analysis of Wikipedia pages was developed. A graph based on list of articles and categories was formed. On the basis of the obtained graph analysis, algorithms for finding domains of high connectivity in a graph were proposed and tested. Algorithms for constructing a domain based on the number of links and the number of articles in the current subject area is considered. The shortcomings of these algorithms are shown and explained, an algorithm is developed on their joint use. The possibility of applying a combined algorithm for obtaining the final domain is shown. The problem of instability of the received domain was discovered when starting an algorithm from two neighboring vertices related to the domain.
Polanía, Rafael; Paulus, Walter; Antal, Andrea; Nitsche, Michael A
2011-02-01
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that alters cortical excitability and activity in a polarity-dependent way. Stimulation for a few minutes has been shown to induce plastic alterations of cortical excitability and to improve cognitive performance. These effects might be related to stimulation-induced alterations of functional cortical network connectivity. We aimed to investigate the impact of tDCS on cortical network function by functional connectivity and graph theoretical analysis of the BOLD fMRI spontaneous activity. fMRI resting-state datasets were acquired immediately before and after 10-min bipolar tDCS during rest, with the anode placed over the left primary motor cortex (M1) and the cathode over the contralateral frontopolar cortex. For each dataset, grey matter voxel-based synchronization matrices were calculated and thresholded to construct undirected graphs. Nodal connectivity degree and minimum path length maps were calculated and compared before and after tDCS. Nodal minimum path lengths significantly increased in the left somatomotor (SM1) cortex after anodal tDCS, which means that the number of direct functional connections from the left SM1 to topologically distant grey matter voxels significantly decreased. In contrast, functional coupling between premotor and superior parietal areas with the left SM1 significantly increased. Additionally, the nodal connectivity degree in the left posterior cingulate cortex (PCC) area as well as in the right dorsolateral prefrontal cortex (right DLPFC) significantly increased. In summary, we provide initial support that tDCS-induced neuroplastic alterations might be related to functional connectivity changes in the human brain. Additionally, we propose our approach as a powerful method to track for neuroplastic changes in the human brain. Copyright © 2010 Elsevier Inc. All rights reserved.
Bayesian segmentation of atrium wall using globally-optimal graph cuts on 3D meshes.
Veni, Gopalkrishna; Fu, Zhisong; Awate, Suyash P; Whitaker, Ross T
2013-01-01
Efficient segmentation of the left atrium (LA) wall from delayed enhancement MRI is challenging due to inconsistent contrast, combined with noise, and high variation in atrial shape and size. We present a surface-detection method that is capable of extracting the atrial wall by computing an optimal a-posteriori estimate. This estimation is done on a set of nested meshes, constructed from an ensemble of segmented training images, and graph cuts on an associated multi-column, proper-ordered graph. The graph/mesh is a part of a template/model that has an associated set of learned intensity features. When this mesh is overlaid onto a test image, it produces a set of costs which lead to an optimal segmentation. The 3D mesh has an associated weighted, directed multi-column graph with edges that encode smoothness and inter-surface penalties. Unlike previous graph-cut methods that impose hard constraints on the surface properties, the proposed method follows from a Bayesian formulation resulting in soft penalties on spatial variation of the cuts through the mesh. The novelty of this method also lies in the construction of proper-ordered graphs on complex shapes for choosing among distinct classes of base shapes for automatic LA segmentation. We evaluate the proposed segmentation framework on simulated and clinical cardiac MRI.
Employing the therapeutic operating characteristic (TOC) graph for individualised dose prescription.
Hoffmann, Aswin L; Huizenga, Henk; Kaanders, Johannes H A M
2013-03-07
In current practice, patients scheduled for radiotherapy are treated according to 'rigid' protocols with predefined dose prescriptions that do not consider risk-taking preferences of individuals. The therapeutic operating characteristic (TOC) graph is applied as a decision-aid to assess the trade-off between treatment benefit and morbidity to facilitate dose prescription customisation. Historical dose-response data from prostate cancer patient cohorts treated with 3D-conformal radiotherapy is used to construct TOC graphs. Next, intensity-modulated (IMRT) plans are generated by optimisation based on dosimetric criteria and dose-response relationships. TOC graphs are constructed for dose-scaling of the optimised IMRT plan and individualised dose prescription. The area under the TOC curve (AUC) is estimated to measure the therapeutic power of these plans. On a continuous scale, the TOC graph directly visualises treatment benefit and morbidity risk of physicians' or patients' choices for dose (de-)escalation. The trade-off between these probabilities facilitates the selection of an individualised dose prescription. TOC graphs show broader therapeutic window and higher AUCs with increasing target dose heterogeneity. The TOC graph gives patients and physicians access to a decision-aid and read-out of the trade-off between treatment benefit and morbidity risks for individualised dose prescription customisation over a continuous range of dose levels.
Employing the therapeutic operating characteristic (TOC) graph for individualised dose prescription
2013-01-01
Background In current practice, patients scheduled for radiotherapy are treated according to ‘rigid’ protocols with predefined dose prescriptions that do not consider risk-taking preferences of individuals. The therapeutic operating characteristic (TOC) graph is applied as a decision-aid to assess the trade-off between treatment benefit and morbidity to facilitate dose prescription customisation. Methods Historical dose-response data from prostate cancer patient cohorts treated with 3D-conformal radiotherapy is used to construct TOC graphs. Next, intensity-modulated (IMRT) plans are generated by optimisation based on dosimetric criteria and dose-response relationships. TOC graphs are constructed for dose-scaling of the optimised IMRT plan and individualised dose prescription. The area under the TOC curve (AUC) is estimated to measure the therapeutic power of these plans. Results On a continuous scale, the TOC graph directly visualises treatment benefit and morbidity risk of physicians’ or patients’ choices for dose (de-)escalation. The trade-off between these probabilities facilitates the selection of an individualised dose prescription. TOC graphs show broader therapeutic window and higher AUCs with increasing target dose heterogeneity. Conclusions The TOC graph gives patients and physicians access to a decision-aid and read-out of the trade-off between treatment benefit and morbidity risks for individualised dose prescription customisation over a continuous range of dose levels. PMID:23497640
Graph theory and the Virasoro master equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obers, N.A.J.
1991-01-01
A brief history of affine Lie algebra, the Virasoro algebra and its culmination in the Virasoro master equation is given. By studying ansaetze of the master equation, the author obtains exact solutions and gains insight in the structure of large slices of affine-Virasoro space. He finds an isomorphism between the constructions in the ansatz SO(n){sub diag}, which is a set of unitary, generically irrational affine-Virasoro constructions on SO(n), and the unlabeled graphs of order n. On the one hand, the conformal constructions, are classified by the graphs, while, conversely, a group-theoretic and conformal field-theoretic identification is obtained for every graphmore » of graph theory. He also defines a class of magic Lie group bases in which the Virasoro master equation admits a simple metric ansatz {l brace}g{sub metric}{r brace}, whose structure is visible in the high-level expansion. When a magic basis is real on compact g, the corresponding g{sub metric} is a large system of unitary, generically irrational conformal field theories. Examples in this class include the graph-theory ansatz SO(n){sub diag} in the Cartesian basis of SO(n), and the ansatz SU(n){sub metric} in the Pauli-like basis of SU(n). Finally, he defines the sine-area graphs' of SU(n), which label the conformal field theories of SU(n){sub metric}, and he notes that, in similar fashion, each magic basis of g defines a generalized graph theory on g which labels the conformal field theories of g{sub metric}.« less
NASA Astrophysics Data System (ADS)
Rodrigues, A. C.; Machado, B. S.; Florence, G.; Hamad, A. P.; Sakamoto, A. C.; Fujita, A.; Baccalá, L. A.; Amaro, E.; Sameshima, K.
2014-12-01
Here we propose and evaluate a new approach to analyse multichannel mesial temporal lobe epilepsy EEG data from eight patients through complex network and synchronization theories. The method employs a Granger causality test to infer the directed connectivity graphs and a wavelet transform based phase synchronization measure whose characteristics allow studying dynamical transitions during epileptic seizures. We present a new combined graph measure that quantifies the level of network hub formation, called network hub out-degree, which closely reflects the level of synchronization observed during the ictus.
Reflecting on Graphs: Attributes of Graph Choice and Construction Practices in Biology
Angra, Aakanksha; Gardner, Stephanie M.
2017-01-01
Undergraduate biology education reform aims to engage students in scientific practices such as experimental design, experimentation, and data analysis and communication. Graphs are ubiquitous in the biological sciences, and creating effective graphical representations involves quantitative and disciplinary concepts and skills. Past studies document student difficulties with graphing within the contexts of classroom or national assessments without evaluating student reasoning. Operating under the metarepresentational competence framework, we conducted think-aloud interviews to reveal differences in reasoning and graph quality between undergraduate biology students, graduate students, and professors in a pen-and-paper graphing task. All professors planned and thought about data before graph construction. When reflecting on their graphs, professors and graduate students focused on the function of graphs and experimental design, while most undergraduate students relied on intuition and data provided in the task. Most undergraduate students meticulously plotted all data with scaled axes, while professors and some graduate students transformed the data, aligned the graph with the research question, and reflected on statistics and sample size. Differences in reasoning and approaches taken in graph choice and construction corroborate and extend previous findings and provide rich targets for undergraduate and graduate instruction. PMID:28821538
Forecasting Construction Cost Index based on visibility graph: A network approach
NASA Astrophysics Data System (ADS)
Zhang, Rong; Ashuri, Baabak; Shyr, Yu; Deng, Yong
2018-03-01
Engineering News-Record (ENR), a professional magazine in the field of global construction engineering, publishes Construction Cost Index (CCI) every month. Cost estimators and contractors assess projects, arrange budgets and prepare bids by forecasting CCI. However, fluctuations and uncertainties of CCI cause irrational estimations now and then. This paper aims at achieving more accurate predictions of CCI based on a network approach in which time series is firstly converted into a visibility graph and future values are forecasted relied on link prediction. According to the experimental results, the proposed method shows satisfactory performance since the error measures are acceptable. Compared with other methods, the proposed method is easier to implement and is able to forecast CCI with less errors. It is convinced that the proposed method is efficient to provide considerably accurate CCI predictions, which will make contributions to the construction engineering by assisting individuals and organizations in reducing costs and making project schedules.
A Graph Summarization Algorithm Based on RFID Logistics
NASA Astrophysics Data System (ADS)
Sun, Yan; Hu, Kongfa; Lu, Zhipeng; Zhao, Li; Chen, Ling
Radio Frequency Identification (RFID) applications are set to play an essential role in object tracking and supply chain management systems. The volume of data generated by a typical RFID application will be enormous as each item will generate a complete history of all the individual locations that it occupied at every point in time. The movement trails of such RFID data form gigantic commodity flowgraph representing the locations and durations of the path stages traversed by each item. In this paper, we use graph to construct a warehouse of RFID commodity flows, and introduce a database-style operation to summarize graphs, which produces a summary graph by grouping nodes based on user-selected node attributes, further allows users to control the hierarchy of summaries. It can cut down the size of graphs, and provide convenience for users to study just on the shrunk graph which they interested. Through extensive experiments, we demonstrate the effectiveness and efficiency of the proposed method.
Supervoxels for graph cuts-based deformable image registration using guided image filtering
NASA Astrophysics Data System (ADS)
Szmul, Adam; Papież, Bartłomiej W.; Hallack, Andre; Grau, Vicente; Schnabel, Julia A.
2017-11-01
We propose combining a supervoxel-based image representation with the concept of graph cuts as an efficient optimization technique for three-dimensional (3-D) deformable image registration. Due to the pixels/voxels-wise graph construction, the use of graph cuts in this context has been mainly limited to two-dimensional (2-D) applications. However, our work overcomes some of the previous limitations by posing the problem on a graph created by adjacent supervoxels, where the number of nodes in the graph is reduced from the number of voxels to the number of supervoxels. We demonstrate how a supervoxel image representation combined with graph cuts-based optimization can be applied to 3-D data. We further show that the application of a relaxed graph representation of the image, followed by guided image filtering over the estimated deformation field, allows us to model "sliding motion." Applying this method to lung image registration results in highly accurate image registration and anatomically plausible estimations of the deformations. Evaluation of our method on a publicly available computed tomography lung image dataset leads to the observation that our approach compares very favorably with state of the art methods in continuous and discrete image registration, achieving target registration error of 1.16 mm on average per landmark.
Supervoxels for Graph Cuts-Based Deformable Image Registration Using Guided Image Filtering.
Szmul, Adam; Papież, Bartłomiej W; Hallack, Andre; Grau, Vicente; Schnabel, Julia A
2017-10-04
In this work we propose to combine a supervoxel-based image representation with the concept of graph cuts as an efficient optimization technique for 3D deformable image registration. Due to the pixels/voxels-wise graph construction, the use of graph cuts in this context has been mainly limited to 2D applications. However, our work overcomes some of the previous limitations by posing the problem on a graph created by adjacent supervoxels, where the number of nodes in the graph is reduced from the number of voxels to the number of supervoxels. We demonstrate how a supervoxel image representation, combined with graph cuts-based optimization can be applied to 3D data. We further show that the application of a relaxed graph representation of the image, followed by guided image filtering over the estimated deformation field, allows us to model 'sliding motion'. Applying this method to lung image registration, results in highly accurate image registration and anatomically plausible estimations of the deformations. Evaluation of our method on a publicly available Computed Tomography lung image dataset (www.dir-lab.com) leads to the observation that our new approach compares very favorably with state-of-the-art in continuous and discrete image registration methods achieving Target Registration Error of 1.16mm on average per landmark.
Supervoxels for Graph Cuts-Based Deformable Image Registration Using Guided Image Filtering
Szmul, Adam; Papież, Bartłomiej W.; Hallack, Andre; Grau, Vicente; Schnabel, Julia A.
2017-01-01
In this work we propose to combine a supervoxel-based image representation with the concept of graph cuts as an efficient optimization technique for 3D deformable image registration. Due to the pixels/voxels-wise graph construction, the use of graph cuts in this context has been mainly limited to 2D applications. However, our work overcomes some of the previous limitations by posing the problem on a graph created by adjacent supervoxels, where the number of nodes in the graph is reduced from the number of voxels to the number of supervoxels. We demonstrate how a supervoxel image representation, combined with graph cuts-based optimization can be applied to 3D data. We further show that the application of a relaxed graph representation of the image, followed by guided image filtering over the estimated deformation field, allows us to model ‘sliding motion’. Applying this method to lung image registration, results in highly accurate image registration and anatomically plausible estimations of the deformations. Evaluation of our method on a publicly available Computed Tomography lung image dataset (www.dir-lab.com) leads to the observation that our new approach compares very favorably with state-of-the-art in continuous and discrete image registration methods achieving Target Registration Error of 1.16mm on average per landmark. PMID:29225433
Small covers of graph-associahedra and realization of cycles
NASA Astrophysics Data System (ADS)
Gaifullin, A. A.
2016-11-01
An oriented connected closed manifold M^n is called a URC-manifold if for any oriented connected closed manifold N^n of the same dimension there exists a nonzero-degree mapping of a finite-fold covering \\widehat{M}^n of M^n onto N^n. This condition is equivalent to the following: for any n-dimensional integral homology class of any topological space X, a multiple of it can be realized as the image of the fundamental class of a finite-fold covering \\widehat{M}^n of M^n under a continuous mapping f\\colon \\widehat{M}^n\\to X. In 2007 the author gave a constructive proof of Thom's classical result that a multiple of any integral homology class can be realized as an image of the fundamental class of an oriented smooth manifold. This construction yields the existence of URC-manifolds of all dimensions. For an important class of manifolds, the so-called small covers of graph-associahedra corresponding to connected graphs, we prove that either they or their two-fold orientation coverings are URC-manifolds. In particular, we obtain that the two-fold covering of the small cover of the usual Stasheff associahedron is a URC-manifold. In dimensions 4 and higher, this manifold is simpler than all the previously known URC-manifolds. Bibliography: 39 titles.
ERIC Educational Resources Information Center
Botzer, Galit; Yerushalmy, Michal
2008-01-01
This paper examines the relation between bodily actions, artifact-mediated activities, and semiotic processes that students experience while producing and interpreting graphs of two-dimensional motion in the plane. We designed a technology-based setting that enabled students to engage in embodied semiotic activities and experience two modes of…
A Set of Handwriting Features for Use in Automated Writer Identification.
Miller, John J; Patterson, Robert Bradley; Gantz, Donald T; Saunders, Christopher P; Walch, Mark A; Buscaglia, JoAnn
2017-05-01
A writer's biometric identity can be characterized through the distribution of physical feature measurements ("writer's profile"); a graph-based system that facilitates the quantification of these features is described. To accomplish this quantification, handwriting is segmented into basic graphical forms ("graphemes"), which are "skeletonized" to yield the graphical topology of the handwritten segment. The graph-based matching algorithm compares the graphemes first by their graphical topology and then by their geometric features. Graphs derived from known writers can be compared against graphs extracted from unknown writings. The process is computationally intensive and relies heavily upon statistical pattern recognition algorithms. This article focuses on the quantification of these physical features and the construction of the associated pattern recognition methods for using the features to discriminate among writers. The graph-based system described in this article has been implemented in a highly accurate and approximately language-independent biometric recognition system of writers of cursive documents. © 2017 American Academy of Forensic Sciences.
Hu, Weiming; Gao, Jin; Xing, Junliang; Zhang, Chao; Maybank, Stephen
2017-01-01
An appearance model adaptable to changes in object appearance is critical in visual object tracking. In this paper, we treat an image patch as a two-order tensor which preserves the original image structure. We design two graphs for characterizing the intrinsic local geometrical structure of the tensor samples of the object and the background. Graph embedding is used to reduce the dimensions of the tensors while preserving the structure of the graphs. Then, a discriminant embedding space is constructed. We prove two propositions for finding the transformation matrices which are used to map the original tensor samples to the tensor-based graph embedding space. In order to encode more discriminant information in the embedding space, we propose a transfer-learning- based semi-supervised strategy to iteratively adjust the embedding space into which discriminative information obtained from earlier times is transferred. We apply the proposed semi-supervised tensor-based graph embedding learning algorithm to visual tracking. The new tracking algorithm captures an object's appearance characteristics during tracking and uses a particle filter to estimate the optimal object state. Experimental results on the CVPR 2013 benchmark dataset demonstrate the effectiveness of the proposed tracking algorithm.
Quantum speedup of the traveling-salesman problem for bounded-degree graphs
NASA Astrophysics Data System (ADS)
Moylett, Dominic J.; Linden, Noah; Montanaro, Ashley
2017-03-01
The traveling-salesman problem is one of the most famous problems in graph theory. However, little is currently known about the extent to which quantum computers could speed up algorithms for the problem. In this paper, we prove a quadratic quantum speedup when the degree of each vertex is at most 3 by applying a quantum backtracking algorithm to a classical algorithm by Xiao and Nagamochi. We then use similar techniques to accelerate a classical algorithm for when the degree of each vertex is at most 4, before speeding up higher-degree graphs via reductions to these instances.
VISAGE: Interactive Visual Graph Querying.
Pienta, Robert; Navathe, Shamkant; Tamersoy, Acar; Tong, Hanghang; Endert, Alex; Chau, Duen Horng
2016-06-01
Extracting useful patterns from large network datasets has become a fundamental challenge in many domains. We present VISAGE, an interactive visual graph querying approach that empowers users to construct expressive queries, without writing complex code (e.g., finding money laundering rings of bankers and business owners). Our contributions are as follows: (1) we introduce graph autocomplete , an interactive approach that guides users to construct and refine queries, preventing over-specification; (2) VISAGE guides the construction of graph queries using a data-driven approach, enabling users to specify queries with varying levels of specificity, from concrete and detailed (e.g., query by example), to abstract (e.g., with "wildcard" nodes of any types), to purely structural matching; (3) a twelve-participant, within-subject user study demonstrates VISAGE's ease of use and the ability to construct graph queries significantly faster than using a conventional query language; (4) VISAGE works on real graphs with over 468K edges, achieving sub-second response times for common queries.
VISAGE: Interactive Visual Graph Querying
Pienta, Robert; Navathe, Shamkant; Tamersoy, Acar; Tong, Hanghang; Endert, Alex; Chau, Duen Horng
2017-01-01
Extracting useful patterns from large network datasets has become a fundamental challenge in many domains. We present VISAGE, an interactive visual graph querying approach that empowers users to construct expressive queries, without writing complex code (e.g., finding money laundering rings of bankers and business owners). Our contributions are as follows: (1) we introduce graph autocomplete, an interactive approach that guides users to construct and refine queries, preventing over-specification; (2) VISAGE guides the construction of graph queries using a data-driven approach, enabling users to specify queries with varying levels of specificity, from concrete and detailed (e.g., query by example), to abstract (e.g., with “wildcard” nodes of any types), to purely structural matching; (3) a twelve-participant, within-subject user study demonstrates VISAGE’s ease of use and the ability to construct graph queries significantly faster than using a conventional query language; (4) VISAGE works on real graphs with over 468K edges, achieving sub-second response times for common queries. PMID:28553670
A general method for computing Tutte polynomials of self-similar graphs
NASA Astrophysics Data System (ADS)
Gong, Helin; Jin, Xian'an
2017-10-01
Self-similar graphs were widely studied in both combinatorics and statistical physics. Motivated by the construction of the well-known 3-dimensional Sierpiński gasket graphs, in this paper we introduce a family of recursively constructed self-similar graphs whose inner duals are of the self-similar property. By combining the dual property of the Tutte polynomial and the subgraph-decomposition trick, we show that the Tutte polynomial of this family of graphs can be computed in an iterative way and in particular the exact expression of the formula of the number of their spanning trees is derived. Furthermore, we show our method is a general one that is easily extended to compute Tutte polynomials for other families of self-similar graphs such as Farey graphs, 2-dimensional Sierpiński gasket graphs, Hanoi graphs, modified Koch graphs, Apollonian graphs, pseudofractal scale-free web, fractal scale-free network, etc.
Graph processing platforms at scale: practices and experiences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Seung-Hwan; Lee, Sangkeun; Brown, Tyler C
2015-01-01
Graph analysis unveils hidden associations of data in many phenomena and artifacts, such as road network, social networks, genomic information, and scientific collaboration. Unfortunately, a wide diversity in the characteristics of graphs and graph operations make it challenging to find a right combination of tools and implementation of algorithms to discover desired knowledge from the target data set. This study presents an extensive empirical study of three representative graph processing platforms: Pegasus, GraphX, and Urika. Each system represents a combination of options in data model, processing paradigm, and infrastructure. We benchmarked each platform using three popular graph operations, degree distribution,more » connected components, and PageRank over a variety of real-world graphs. Our experiments show that each graph processing platform shows different strength, depending the type of graph operations. While Urika performs the best in non-iterative operations like degree distribution, GraphX outputforms iterative operations like connected components and PageRank. In addition, we discuss challenges to optimize the performance of each platform over large scale real world graphs.« less
SpectralNET – an application for spectral graph analysis and visualization
Forman, Joshua J; Clemons, Paul A; Schreiber, Stuart L; Haggarty, Stephen J
2005-01-01
Background Graph theory provides a computational framework for modeling a variety of datasets including those emerging from genomics, proteomics, and chemical genetics. Networks of genes, proteins, small molecules, or other objects of study can be represented as graphs of nodes (vertices) and interactions (edges) that can carry different weights. SpectralNET is a flexible application for analyzing and visualizing these biological and chemical networks. Results Available both as a standalone .NET executable and as an ASP.NET web application, SpectralNET was designed specifically with the analysis of graph-theoretic metrics in mind, a computational task not easily accessible using currently available applications. Users can choose either to upload a network for analysis using a variety of input formats, or to have SpectralNET generate an idealized random network for comparison to a real-world dataset. Whichever graph-generation method is used, SpectralNET displays detailed information about each connected component of the graph, including graphs of degree distribution, clustering coefficient by degree, and average distance by degree. In addition, extensive information about the selected vertex is shown, including degree, clustering coefficient, various distance metrics, and the corresponding components of the adjacency, Laplacian, and normalized Laplacian eigenvectors. SpectralNET also displays several graph visualizations, including a linear dimensionality reduction for uploaded datasets (Principal Components Analysis) and a non-linear dimensionality reduction that provides an elegant view of global graph structure (Laplacian eigenvectors). Conclusion SpectralNET provides an easily accessible means of analyzing graph-theoretic metrics for data modeling and dimensionality reduction. SpectralNET is publicly available as both a .NET application and an ASP.NET web application from . Source code is available upon request. PMID:16236170
SpectralNET--an application for spectral graph analysis and visualization.
Forman, Joshua J; Clemons, Paul A; Schreiber, Stuart L; Haggarty, Stephen J
2005-10-19
Graph theory provides a computational framework for modeling a variety of datasets including those emerging from genomics, proteomics, and chemical genetics. Networks of genes, proteins, small molecules, or other objects of study can be represented as graphs of nodes (vertices) and interactions (edges) that can carry different weights. SpectralNET is a flexible application for analyzing and visualizing these biological and chemical networks. Available both as a standalone .NET executable and as an ASP.NET web application, SpectralNET was designed specifically with the analysis of graph-theoretic metrics in mind, a computational task not easily accessible using currently available applications. Users can choose either to upload a network for analysis using a variety of input formats, or to have SpectralNET generate an idealized random network for comparison to a real-world dataset. Whichever graph-generation method is used, SpectralNET displays detailed information about each connected component of the graph, including graphs of degree distribution, clustering coefficient by degree, and average distance by degree. In addition, extensive information about the selected vertex is shown, including degree, clustering coefficient, various distance metrics, and the corresponding components of the adjacency, Laplacian, and normalized Laplacian eigenvectors. SpectralNET also displays several graph visualizations, including a linear dimensionality reduction for uploaded datasets (Principal Components Analysis) and a non-linear dimensionality reduction that provides an elegant view of global graph structure (Laplacian eigenvectors). SpectralNET provides an easily accessible means of analyzing graph-theoretic metrics for data modeling and dimensionality reduction. SpectralNET is publicly available as both a .NET application and an ASP.NET web application from http://chembank.broad.harvard.edu/resources/. Source code is available upon request.
Optimal graph based segmentation using flow lines with application to airway wall segmentation.
Petersen, Jens; Nielsen, Mads; Lo, Pechin; Saghir, Zaigham; Dirksen, Asger; de Bruijne, Marleen
2011-01-01
This paper introduces a novel optimal graph construction method that is applicable to multi-dimensional, multi-surface segmentation problems. Such problems are often solved by refining an initial coarse surface within the space given by graph columns. Conventional columns are not well suited for surfaces with high curvature or complex shapes but the proposed columns, based on properly generated flow lines, which are non-intersecting, guarantee solutions that do not self-intersect and are better able to handle such surfaces. The method is applied to segment human airway walls in computed tomography images. Comparison with manual annotations on 649 cross-sectional images from 15 different subjects shows significantly smaller contour distances and larger area of overlap than are obtained with recently published graph based methods. Airway abnormality measurements obtained with the method on 480 scan pairs from a lung cancer screening trial are reproducible and correlate significantly with lung function.
Pan, Yongke; Niu, Wenjia
2017-01-01
Semisupervised Discriminant Analysis (SDA) is a semisupervised dimensionality reduction algorithm, which can easily resolve the out-of-sample problem. Relative works usually focus on the geometric relationships of data points, which are not obvious, to enhance the performance of SDA. Different from these relative works, the regularized graph construction is researched here, which is important in the graph-based semisupervised learning methods. In this paper, we propose a novel graph for Semisupervised Discriminant Analysis, which is called combined low-rank and k-nearest neighbor (LRKNN) graph. In our LRKNN graph, we map the data to the LR feature space and then the kNN is adopted to satisfy the algorithmic requirements of SDA. Since the low-rank representation can capture the global structure and the k-nearest neighbor algorithm can maximally preserve the local geometrical structure of the data, the LRKNN graph can significantly improve the performance of SDA. Extensive experiments on several real-world databases show that the proposed LRKNN graph is an efficient graph constructor, which can largely outperform other commonly used baselines. PMID:28316616
NASA Astrophysics Data System (ADS)
Palmeri, Anthony
This research project was developed to provide extensive practice and exposure to data collection and data representation in a high school science classroom. The student population engaged in this study included 40 high school sophomores enrolled in two microbiology classes. Laboratory investigations and activities were deliberately designed to include quantitative data collection that necessitated organization and graphical representation. These activities were embedded into the curriculum and conducted in conjunction with the normal and expected course content, rather than as a separate entity. It was expected that routine practice with graph construction and interpretation would result in improved competency when graphing data and proficiency in analyzing graphs. To objectively test the effectiveness in achieving this goal, a pre-test and post-test that included graph construction, interpretation, interpolation, extrapolation, and analysis was administered. Based on the results of a paired T-Test, graphical literacy was significantly enhanced by extensive practice and exposure to data representation.
A novel model for DNA sequence similarity analysis based on graph theory.
Qi, Xingqin; Wu, Qin; Zhang, Yusen; Fuller, Eddie; Zhang, Cun-Quan
2011-01-01
Determination of sequence similarity is one of the major steps in computational phylogenetic studies. As we know, during evolutionary history, not only DNA mutations for individual nucleotide but also subsequent rearrangements occurred. It has been one of major tasks of computational biologists to develop novel mathematical descriptors for similarity analysis such that various mutation phenomena information would be involved simultaneously. In this paper, different from traditional methods (eg, nucleotide frequency, geometric representations) as bases for construction of mathematical descriptors, we construct novel mathematical descriptors based on graph theory. In particular, for each DNA sequence, we will set up a weighted directed graph. The adjacency matrix of the directed graph will be used to induce a representative vector for DNA sequence. This new approach measures similarity based on both ordering and frequency of nucleotides so that much more information is involved. As an application, the method is tested on a set of 0.9-kb mtDNA sequences of twelve different primate species. All output phylogenetic trees with various distance estimations have the same topology, and are generally consistent with the reported results from early studies, which proves the new method's efficiency; we also test the new method on a simulated data set, which shows our new method performs better than traditional global alignment method when subsequent rearrangements happen frequently during evolutionary history.
NASA Astrophysics Data System (ADS)
Ghaderi, A. H.; Darooneh, A. H.
The behavior of nonlinear systems can be analyzed by artificial neural networks. Air temperature change is one example of the nonlinear systems. In this work, a new neural network method is proposed for forecasting maximum air temperature in two cities. In this method, the regular graph concept is used to construct some partially connected neural networks that have regular structures. The learning results of fully connected ANN and networks with proposed method are compared. In some case, the proposed method has the better result than conventional ANN. After specifying the best network, the effect of input pattern numbers on the prediction is studied and the results show that the increase of input patterns has a direct effect on the prediction accuracy.
Random graph models of social networks.
Newman, M E J; Watts, D J; Strogatz, S H
2002-02-19
We describe some new exactly solvable models of the structure of social networks, based on random graphs with arbitrary degree distributions. We give models both for simple unipartite networks, such as acquaintance networks, and bipartite networks, such as affiliation networks. We compare the predictions of our models to data for a number of real-world social networks and find that in some cases, the models are in remarkable agreement with the data, whereas in others the agreement is poorer, perhaps indicating the presence of additional social structure in the network that is not captured by the random graph.
Exclusivity structures and graph representatives of local complementation orbits
NASA Astrophysics Data System (ADS)
Cabello, Adán; Parker, Matthew G.; Scarpa, Giannicola; Severini, Simone
2013-07-01
We describe a construction that maps any connected graph G on three or more vertices into a larger graph, H(G), whose independence number is strictly smaller than its Lovász number which is equal to its fractional packing number. The vertices of H(G) represent all possible events consistent with the stabilizer group of the graph state associated with G, and exclusive events are adjacent. Mathematically, the graph H(G) corresponds to the orbit of G under local complementation. Physically, the construction translates into graph-theoretic terms the connection between a graph state and a Bell inequality maximally violated by quantum mechanics. In the context of zero-error information theory, the construction suggests a protocol achieving the maximum rate of entanglement-assisted capacity, a quantum mechanical analogue of the Shannon capacity, for each H(G). The violation of the Bell inequality is expressed by the one-shot version of this capacity being strictly larger than the independence number. Finally, given the correspondence between graphs and exclusivity structures, we are able to compute the independence number for certain infinite families of graphs with the use of quantum non-locality, therefore highlighting an application of quantum theory in the proof of a purely combinatorial statement.
Application-Specific Graph Sampling for Frequent Subgraph Mining and Community Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purohit, Sumit; Choudhury, Sutanay; Holder, Lawrence B.
Graph mining is an important data analysis methodology, but struggles as the input graph size increases. The scalability and usability challenges posed by such large graphs make it imperative to sample the input graph and reduce its size. The critical challenge in sampling is to identify the appropriate algorithm to insure the resulting analysis does not suffer heavily from the data reduction. Predicting the expected performance degradation for a given graph and sampling algorithm is also useful. In this paper, we present different sampling approaches for graph mining applications such as Frequent Subgrpah Mining (FSM), and Community Detection (CD). Wemore » explore graph metrics such as PageRank, Triangles, and Diversity to sample a graph and conclude that for heterogeneous graphs Triangles and Diversity perform better than degree based metrics. We also present two new sampling variations for targeted graph mining applications. We present empirical results to show that knowledge of the target application, along with input graph properties can be used to select the best sampling algorithm. We also conclude that performance degradation is an abrupt, rather than gradual phenomena, as the sample size decreases. We present the empirical results to show that the performance degradation follows a logistic function.« less
Random Walk Graph Laplacian-Based Smoothness Prior for Soft Decoding of JPEG Images.
Liu, Xianming; Cheung, Gene; Wu, Xiaolin; Zhao, Debin
2017-02-01
Given the prevalence of joint photographic experts group (JPEG) compressed images, optimizing image reconstruction from the compressed format remains an important problem. Instead of simply reconstructing a pixel block from the centers of indexed discrete cosine transform (DCT) coefficient quantization bins (hard decoding), soft decoding reconstructs a block by selecting appropriate coefficient values within the indexed bins with the help of signal priors. The challenge thus lies in how to define suitable priors and apply them effectively. In this paper, we combine three image priors-Laplacian prior for DCT coefficients, sparsity prior, and graph-signal smoothness prior for image patches-to construct an efficient JPEG soft decoding algorithm. Specifically, we first use the Laplacian prior to compute a minimum mean square error initial solution for each code block. Next, we show that while the sparsity prior can reduce block artifacts, limiting the size of the overcomplete dictionary (to lower computation) would lead to poor recovery of high DCT frequencies. To alleviate this problem, we design a new graph-signal smoothness prior (desired signal has mainly low graph frequencies) based on the left eigenvectors of the random walk graph Laplacian matrix (LERaG). Compared with the previous graph-signal smoothness priors, LERaG has desirable image filtering properties with low computation overhead. We demonstrate how LERaG can facilitate recovery of high DCT frequencies of a piecewise smooth signal via an interpretation of low graph frequency components as relaxed solutions to normalized cut in spectral clustering. Finally, we construct a soft decoding algorithm using the three signal priors with appropriate prior weights. Experimental results show that our proposal outperforms the state-of-the-art soft decoding algorithms in both objective and subjective evaluations noticeably.
Limits on relief through constrained exchange on random graphs
NASA Astrophysics Data System (ADS)
LaViolette, Randall A.; Ellebracht, Lory A.; Gieseler, Charles J.
2007-09-01
Agents are represented by nodes on a random graph (e.g., “small world”). Each agent is endowed with a zero-mean random value that may be either positive or negative. All agents attempt to find relief, i.e., to reduce the magnitude of that initial value, to zero if possible, through exchanges. The exchange occurs only between the agents that are linked, a constraint that turns out to dominate the results. The exchange process continues until Pareto equilibrium is achieved. Only 40-90% of the agents achieved relief on small-world graphs with mean degree between 2 and 40. Even fewer agents achieved relief on scale-free-like graphs with a truncated power-law degree distribution. The rate at which relief grew with increasing degree was slow, only at most logarithmic for all of the graphs considered; viewed in reverse, the fraction of nodes that achieve relief is resilient to the removal of links.
Taking Advantage of Automated Assessment of Student-Constructed Graphs in Science
ERIC Educational Resources Information Center
Vitale, Jonathan M.; Lai, Kevin; Linn, Marcia C.
2015-01-01
We present a new system for automated scoring of graph construction items that address complex science concepts, feature qualitative prompts, and support a range of possible solutions. This system utilizes analysis of spatial features (e.g., slope of a line) to evaluate potential student ideas represented within graphs. Student ideas are then…
Almasi, Sepideh; Xu, Xiaoyin; Ben-Zvi, Ayal; Lacoste, Baptiste; Gu, Chenghua; Miller, Eric L
2015-02-01
A novel approach to determine the global topological structure of a microvasculature network from noisy and low-resolution fluorescence microscopy data that does not require the detailed segmentation of the vessel structure is proposed here. The method is most appropriate for problems where the tortuosity of the network is relatively low and proceeds by directly computing a piecewise linear approximation to the vasculature skeleton through the construction of a graph in three dimensions whose edges represent the skeletal approximation and vertices are located at Critical Points (CPs) on the microvasculature. The CPs are defined as vessel junctions or locations of relatively large curvature along the centerline of a vessel. Our method consists of two phases. First, we provide a CP detection technique that, for junctions in particular, does not require any a priori geometric information such as direction or degree. Second, connectivity between detected nodes is determined via the solution of a Binary Integer Program (BIP) whose variables determine whether a potential edge between nodes is or is not included in the final graph. The utility function in this problem reflects both intensity-based and structural information along the path connecting the two nodes. Qualitative and quantitative results confirm the usefulness and accuracy of this method. This approach provides a mean of correctly capturing the connectivity patterns in vessels that are missed by more traditional segmentation and binarization schemes because of imperfections in the images which manifest as dim or broken vessels. Copyright © 2014 Elsevier B.V. All rights reserved.
Water Vapor Reaches Mars' Middle Atmosphere During Global Dust Storm
2018-01-23
Rising air during a 2007 global dust storm on Mars lofted water vapor into the planet's middle atmosphere, researchers learned from data graphed here, derived from observations by the Mars Climate Sounder instrument on NASA's Mars Reconnaissance Orbiter. The two vertical black lines in the right half of the graph (at about 260 and 310 on the horizontal scale) mark the beginning and end of the most recent global dust storm on Mars, which burst from regional scale to globe-encircling scale in July 2007. The presence of more colored dots, particularly green ones, in the upper portion of the graph between those lines, compared to the upper portion of the graph outside those lines, documents the uplift of water vapor in connection with the global dust storm. The vertical scale is altitude, labeled at left in kilometers above the surface of Mars (50 kilometers is about 30 miles; 80 kilometers is about 50 miles). The color bar below the graph gives the key to how much water vapor each dot represents, in parts per million, by volume, in Mars' atmosphere. Note that green to yellow represents about 100 times as much water as purple does. The horizontal axis of the graph is time, from January 2006 to February 2008. It is labeled with numbers representing the 360 degrees of Mars' orbit around the Sun, from zero to 360 degrees and then further on to include the first 30 degrees of the following Martian year. (The zero point is autumnal equinox -- end of summer -- in Mars' northern hemisphere.) This graph, based on Mars Reconnaissance Orbiter observations, was used in a January 2018 paper in Nature Astronomy by Nicholas Heavens of Hampton University in Hampton, Virginia, and co-authors. The paper presents Martian dust storms' uplifting effect on water vapor as a factor in seasonal patterns that other spacecraft have detected in the rate of hydrogen escaping from the top of Mars' atmosphere. https://photojournal.jpl.nasa.gov/catalog/PIA22080
Solving Set Cover with Pairs Problem using Quantum Annealing
NASA Astrophysics Data System (ADS)
Cao, Yudong; Jiang, Shuxian; Perouli, Debbie; Kais, Sabre
2016-09-01
Here we consider using quantum annealing to solve Set Cover with Pairs (SCP), an NP-hard combinatorial optimization problem that plays an important role in networking, computational biology, and biochemistry. We show an explicit construction of Ising Hamiltonians whose ground states encode the solution of SCP instances. We numerically simulate the time-dependent Schrödinger equation in order to test the performance of quantum annealing for random instances and compare with that of simulated annealing. We also discuss explicit embedding strategies for realizing our Hamiltonian construction on the D-wave type restricted Ising Hamiltonian based on Chimera graphs. Our embedding on the Chimera graph preserves the structure of the original SCP instance and in particular, the embedding for general complete bipartite graphs and logical disjunctions may be of broader use than that the specific problem we deal with.
Yoink: An interaction-based partitioning API.
Zheng, Min; Waller, Mark P
2018-05-15
Herein, we describe the implementation details of our interaction-based partitioning API (application programming interface) called Yoink for QM/MM modeling and fragment-based quantum chemistry studies. Interactions are detected by computing density descriptors such as reduced density gradient, density overlap regions indicator, and single exponential decay detector. Only molecules having an interaction with a user-definable QM core are added to the QM region of a hybrid QM/MM calculation. Moreover, a set of molecule pairs having density-based interactions within a molecular system can be computed in Yoink, and an interaction graph can then be constructed. Standard graph clustering methods can then be applied to construct fragments for further quantum chemical calculations. The Yoink API is licensed under Apache 2.0 and can be accessed via yoink.wallerlab.org. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Volkov, Sergey
2017-11-01
This paper presents a new method of numerical computation of the mass-independent QED contributions to the electron anomalous magnetic moment which arise from Feynman graphs without closed electron loops. The method is based on a forestlike subtraction formula that removes all ultraviolet and infrared divergences in each Feynman graph before integration in Feynman-parametric space. The integration is performed by an importance sampling Monte-Carlo algorithm with the probability density function that is constructed for each Feynman graph individually. The method is fully automated at any order of the perturbation series. The results of applying the method to 2-loop, 3-loop, 4-loop Feynman graphs, and to some individual 5-loop graphs are presented, as well as the comparison of this method with other ones with respect to Monte Carlo convergence speed.
Node degree distribution in spanning trees
NASA Astrophysics Data System (ADS)
Pozrikidis, C.
2016-03-01
A method is presented for computing the number of spanning trees involving one link or a specified group of links, and excluding another link or a specified group of links, in a network described by a simple graph in terms of derivatives of the spanning-tree generating function defined with respect to the eigenvalues of the Kirchhoff (weighted Laplacian) matrix. The method is applied to deduce the node degree distribution in a complete or randomized set of spanning trees of an arbitrary network. An important feature of the proposed method is that the explicit construction of spanning trees is not required. It is shown that the node degree distribution in the spanning trees of the complete network is described by the binomial distribution. Numerical results are presented for the node degree distribution in square, triangular, and honeycomb lattices.
A Multi-Objective Partition Method for Marine Sensor Networks Based on Degree of Event Correlation.
Huang, Dongmei; Xu, Chenyixuan; Zhao, Danfeng; Song, Wei; He, Qi
2017-09-21
Existing marine sensor networks acquire data from sea areas that are geographically divided, and store the data independently in their affiliated sea area data centers. In the case of marine events across multiple sea areas, the current network structure needs to retrieve data from multiple data centers, and thus severely affects real-time decision making. In this study, in order to provide a fast data retrieval service for a marine sensor network, we use all the marine sensors as the vertices, establish the edge based on marine events, and abstract the marine sensor network as a graph. Then, we construct a multi-objective balanced partition method to partition the abstract graph into multiple regions and store them in the cloud computing platform. This method effectively increases the correlation of the sensors and decreases the retrieval cost. On this basis, an incremental optimization strategy is designed to dynamically optimize existing partitions when new sensors are added into the network. Experimental results show that the proposed method can achieve the optimal layout for distributed storage in the process of disaster data retrieval in the China Sea area, and effectively optimize the result of partitions when new buoys are deployed, which eventually will provide efficient data access service for marine events.
Face recognition based on two-dimensional discriminant sparse preserving projection
NASA Astrophysics Data System (ADS)
Zhang, Dawei; Zhu, Shanan
2018-04-01
In this paper, a supervised dimensionality reduction algorithm named two-dimensional discriminant sparse preserving projection (2DDSPP) is proposed for face recognition. In order to accurately model manifold structure of data, 2DDSPP constructs within-class affinity graph and between-class affinity graph by the constrained least squares (LS) and l1 norm minimization problem, respectively. Based on directly operating on image matrix, 2DDSPP integrates graph embedding (GE) with Fisher criterion. The obtained projection subspace preserves within-class neighborhood geometry structure of samples, while keeping away samples from different classes. The experimental results on the PIE and AR face databases show that 2DDSPP can achieve better recognition performance.
Creating single-subject design graphs in Microsoft Excel 2007.
Dixon, Mark R; Jackson, James W; Small, Stacey L; Horner-King, Mollie J; Lik, Nicholas Mui Ker; Garcia, Yors; Rosales, Rocio
2009-01-01
Over 10 years have passed since the publication of Carr and Burkholder's (1998) technical article on how to construct single-subject graphs using Microsoft Excel. Over the course of the past decade, the Excel program has undergone a series of revisions that make the Carr and Burkholder paper somewhat difficult to follow with newer versions. The present article provides task analyses for constructing various types of commonly used single-subject design graphs in Microsoft Excel 2007. The task analyses were evaluated using a between-subjects design that compared the graphing skills of 22 behavior-analytic graduate students using Excel 2007 and either the Carr and Burkholder or newly developed task analyses. Results indicate that the new task analyses yielded more accurate and faster graph construction than the Carr and Burkholder instructions.
CREATING SINGLE-SUBJECT DESIGN GRAPHS IN MICROSOFT EXCELTM 2007
Dixon, Mark R; Jackson, James W; Small, Stacey L; Horner-King, Mollie J; Lik, Nicholas Mui Ker; Garcia, Yors; Rosales, Rocio
2009-01-01
Over 10 years have passed since the publication of Carr and Burkholder's (1998) technical article on how to construct single-subject graphs using Microsoft Excel. Over the course of the past decade, the Excel program has undergone a series of revisions that make the Carr and Burkholder paper somewhat difficult to follow with newer versions. The present article provides task analyses for constructing various types of commonly used single-subject design graphs in Microsoft Excel 2007. The task analyses were evaluated using a between-subjects design that compared the graphing skills of 22 behavior-analytic graduate students using Excel 2007 and either the Carr and Burkholder or newly developed task analyses. Results indicate that the new task analyses yielded more accurate and faster graph construction than the Carr and Burkholder instructions. PMID:19949515
Function plot response: A scalable system for teaching kinematics graphs
NASA Astrophysics Data System (ADS)
Laverty, James; Kortemeyer, Gerd
2012-08-01
Understanding and interpreting graphs are essential skills in all sciences. While students are mostly proficient in plotting given functions and reading values off graphs, they frequently lack the ability to construct and interpret graphs in a meaningful way. Students can use graphs as representations of value pairs, but often fail to interpret them as the representation of functions, and mostly fail to use them as representations of physical reality. Working with graphs in classroom settings has been shown to improve student abilities with graphs, particularly when the students can interact with them. We introduce a novel problem type in an online homework system, which requires students to construct the graphs themselves in free form, and requires no hand-grading by instructors. Initial experiences using the new problem type in an introductory physics course are reported.
Tong, Yubing; Udupa, Jayaram K; Ciesielski, Krzysztof C; Wu, Caiyun; McDonough, Joseph M; Mong, David A; Campbell, Robert M
2017-01-01
Dynamic or 4D imaging of the thorax has many applications. Both prospective and retrospective respiratory gating and tracking techniques have been developed for 4D imaging via CT and MRI. For pediatric imaging, due to radiation concerns, MRI becomes the de facto modality of choice. In thoracic insufficiency syndrome (TIS), patients often suffer from extreme malformations of the chest wall, diaphragm, and/or spine with inability of the thorax to support normal respiration or lung growth (Campbell et al., 2003, Campbell and Smith, 2007), as such patient cooperation needed by some of the gating and tracking techniques are difficult to realize without causing patient discomfort and interference with the breathing mechanism itself. Therefore (ventilator-supported) free-breathing MRI acquisition is currently the best choice for imaging these patients. This, however, raises a question of how to create a consistent 4D image from such acquisitions. This paper presents a novel graph-based technique for compiling the best 4D image volume representing the thorax over one respiratory cycle from slice images acquired during unencumbered natural tidal-breathing of pediatric TIS patients. In our approach, for each coronal (or sagittal) slice position, images are acquired at a rate of about 200-300ms/slice over several natural breathing cycles which yields over 2000 slices. A weighted graph is formed where each acquired slice constitutes a node and the weight of the arc between two nodes defines the degree of contiguity in space and time of the two slices. For each respiratory phase, an optimal 3D spatial image is constructed by finding the best path in the graph in the spatial direction. The set of all such 3D images for a given respiratory cycle constitutes a 4D image. Subsequently, the best 4D image among all such constructed images is found over all imaged respiratory cycles. Two types of evaluation studies are carried out to understand the behavior of this algorithm and in comparison to a method called Random Stacking - a 4D phantom study and 10 4D MRI acquisitions from TIS patients and normal subjects. The 4D phantom was constructed by 3D printing the pleural spaces of an adult thorax, which were segmented in a breath-held MRI acquisition. Qualitative visual inspection via cine display of the slices in space and time and in 3D rendered form showed smooth variation for all data sets constructed by the proposed method. Quantitative evaluation was carried out to measure spatial and temporal contiguity of the slices via segmented pleural spaces. The optimal method showed smooth variation of the pleural space as compared to Random Stacking whose behavior was erratic. The volumes of the pleural spaces at the respiratory phase corresponding to end inspiration and end expiration were compared to volumes obtained from breath-hold acquisitions at roughly the same phase. The mean difference was found to be roughly 3%. The proposed method is purely image-based and post-hoc and does not need breath holding or external surrogates or instruments to record respiratory motion or tidal volume. This is important and practically warranted for pediatric patients. The constructed 4D images portray spatial and temporal smoothness that should be expected in a consistent 4D volume. We believe that the method can be routinely used for thoracic 4D imaging. Copyright © 2016 Elsevier B.V. All rights reserved.
Constructing Temporally Extended Actions through Incremental Community Detection
Li, Ge
2018-01-01
Hierarchical reinforcement learning works on temporally extended actions or skills to facilitate learning. How to automatically form such abstraction is challenging, and many efforts tackle this issue in the options framework. While various approaches exist to construct options from different perspectives, few of them concentrate on options' adaptability during learning. This paper presents an algorithm to create options and enhance their quality online. Both aspects operate on detected communities of the learning environment's state transition graph. We first construct options from initial samples as the basis of online learning. Then a rule-based community revision algorithm is proposed to update graph partitions, based on which existing options can be continuously tuned. Experimental results in two problems indicate that options from initial samples may perform poorly in more complex environments, and our presented strategy can effectively improve options and get better results compared with flat reinforcement learning. PMID:29849543
Protograph LDPC Codes with Node Degrees at Least 3
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Jones, Christopher
2006-01-01
In this paper we present protograph codes with a small number of degree-3 nodes and one high degree node. The iterative decoding threshold for proposed rate 1/2 codes are lower, by about 0.2 dB, than the best known irregular LDPC codes with degree at least 3. The main motivation is to gain linear minimum distance to achieve low error floor. Also to construct rate-compatible protograph-based LDPC codes for fixed block length that simultaneously achieves low iterative decoding threshold and linear minimum distance. We start with a rate 1/2 protograph LDPC code with degree-3 nodes and one high degree node. Higher rate codes are obtained by connecting check nodes with degree-2 non-transmitted nodes. This is equivalent to constraint combining in the protograph. The condition where all constraints are combined corresponds to the highest rate code. This constraint must be connected to nodes of degree at least three for the graph to have linear minimum distance. Thus having node degree at least 3 for rate 1/2 guarantees linear minimum distance property to be preserved for higher rates. Through examples we show that the iterative decoding threshold as low as 0.544 dB can be achieved for small protographs with node degrees at least three. A family of low- to high-rate codes with minimum distance linearly increasing in block size and with capacity-approaching performance thresholds is presented. FPGA simulation results for a few example codes show that the proposed codes perform as predicted.
miniTri Mantevo miniapp v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, Johathan; Stark, Dylan; Wolf, Michael
2016-02-02
miniTri is a miniapplication developed as part of the Mantevo project. Given a graph, miniTri enumerates all triangles in this graph and computes a metric for each triangle based on the triangle edge and vertex degree. The output of miniTri is a summary of this metric. miniTri mimics the computational requirements of an important set of data science applications. Several approaches to this problem are included in the miniTri software.
Encoding phylogenetic trees in terms of weighted quartets.
Grünewald, Stefan; Huber, Katharina T; Moulton, Vincent; Semple, Charles
2008-04-01
One of the main problems in phylogenetics is to develop systematic methods for constructing evolutionary or phylogenetic trees. For a set of species X, an edge-weighted phylogenetic X-tree or phylogenetic tree is a (graph theoretical) tree with leaf set X and no degree 2 vertices, together with a map assigning a non-negative length to each edge of the tree. Within phylogenetics, several methods have been proposed for constructing such trees that work by trying to piece together quartet trees on X, i.e. phylogenetic trees each having four leaves in X. Hence, it is of interest to characterise when a collection of quartet trees corresponds to a (unique) phylogenetic tree. Recently, Dress and Erdös provided such a characterisation for binary phylogenetic trees, that is, phylogenetic trees all of whose internal vertices have degree 3. Here we provide a new characterisation for arbitrary phylogenetic trees.
Attribute-based Decision Graphs: A framework for multiclass data classification.
Bertini, João Roberto; Nicoletti, Maria do Carmo; Zhao, Liang
2017-01-01
Graph-based algorithms have been successfully applied in machine learning and data mining tasks. A simple but, widely used, approach to build graphs from vector-based data is to consider each data instance as a vertex and connecting pairs of it using a similarity measure. Although this abstraction presents some advantages, such as arbitrary shape representation of the original data, it is still tied to some drawbacks, for example, it is dependent on the choice of a pre-defined distance metric and is biased by the local information among data instances. Aiming at exploring alternative ways to build graphs from data, this paper proposes an algorithm for constructing a new type of graph, called Attribute-based Decision Graph-AbDG. Given a vector-based data set, an AbDG is built by partitioning each data attribute range into disjoint intervals and representing each interval as a vertex. The edges are then established between vertices from different attributes according to a pre-defined pattern. Classification is performed through a matching process among the attribute values of the new instance and AbDG. Moreover, AbDG provides an inner mechanism to handle missing attribute values, which contributes for expanding its applicability. Results of classification tasks have shown that AbDG is a competitive approach when compared to well-known multiclass algorithms. The main contribution of the proposed framework is the combination of the advantages of attribute-based and graph-based techniques to perform robust pattern matching data classification, while permitting the analysis the input data considering only a subset of its attributes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Comparing Internet Probing Methodologies Through an Analysis of Large Dynamic Graphs
2014-06-01
comparable Internet topologies in less time. We compare these by modeling union of traceroute outputs as graphs, and using standard graph theoretical...topologies in less time. We compare these by modeling union of traceroute outputs as graphs, and using standard graph theoretical measurements as well...We compare these by modeling union of traceroute outputs as graphs, and study the graphs by using vertex and edge count, average vertex degree
ERIC Educational Resources Information Center
Bilardello, Nicholas; Valdes, Linda
1998-01-01
Introduces a method for constructing phylogenies using molecular traits and elementary graph theory. Discusses analyzing molecular data and using weighted graphs, minimum-weight spanning trees, and rooted cube phylogenies to display the data. (DDR)
Azad, Ariful; Buluç, Aydın
2016-05-16
We describe parallel algorithms for computing maximal cardinality matching in a bipartite graph on distributed-memory systems. Unlike traditional algorithms that match one vertex at a time, our algorithms process many unmatched vertices simultaneously using a matrix-algebraic formulation of maximal matching. This generic matrix-algebraic framework is used to develop three efficient maximal matching algorithms with minimal changes. The newly developed algorithms have two benefits over existing graph-based algorithms. First, unlike existing parallel algorithms, cardinality of matching obtained by the new algorithms stays constant with increasing processor counts, which is important for predictable and reproducible performance. Second, relying on bulk-synchronous matrix operations,more » these algorithms expose a higher degree of parallelism on distributed-memory platforms than existing graph-based algorithms. We report high-performance implementations of three maximal matching algorithms using hybrid OpenMP-MPI and evaluate the performance of these algorithm using more than 35 real and randomly generated graphs. On real instances, our algorithms achieve up to 200 × speedup on 2048 cores of a Cray XC30 supercomputer. Even higher speedups are obtained on larger synthetically generated graphs where our algorithms show good scaling on up to 16,384 cores.« less
A novel weight determination method for time series data aggregation
NASA Astrophysics Data System (ADS)
Xu, Paiheng; Zhang, Rong; Deng, Yong
2017-09-01
Aggregation in time series is of great importance in time series smoothing, predicting and other time series analysis process, which makes it crucial to address the weights in times series correctly and reasonably. In this paper, a novel method to obtain the weights in time series is proposed, in which we adopt induced ordered weighted aggregation (IOWA) operator and visibility graph averaging (VGA) operator and linearly combine the weights separately generated by the two operator. The IOWA operator is introduced to the weight determination of time series, through which the time decay factor is taken into consideration. The VGA operator is able to generate weights with respect to the degree distribution in the visibility graph constructed from the corresponding time series, which reflects the relative importance of vertices in time series. The proposed method is applied to two practical datasets to illustrate its merits. The aggregation of Construction Cost Index (CCI) demonstrates the ability of proposed method to smooth time series, while the aggregation of The Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) illustrate how proposed method maintain the variation tendency of original data.
Multi-phase simultaneous segmentation of tumor in lung 4D-CT data with context information.
Shen, Zhengwen; Wang, Huafeng; Xi, Weiwen; Deng, Xiaogang; Chen, Jin; Zhang, Yu
2017-01-01
Lung 4D computed tomography (4D-CT) plays an important role in high-precision radiotherapy because it characterizes respiratory motion, which is crucial for accurate target definition. However, the manual segmentation of a lung tumor is a heavy workload for doctors because of the large number of lung 4D-CT data slices. Meanwhile, tumor segmentation is still a notoriously challenging problem in computer-aided diagnosis. In this paper, we propose a new method based on an improved graph cut algorithm with context information constraint to find a convenient and robust approach of lung 4D-CT tumor segmentation. We combine all phases of the lung 4D-CT into a global graph, and construct a global energy function accordingly. The sub-graph is first constructed for each phase. A context cost term is enforced to achieve segmentation results in every phase by adding a context constraint between neighboring phases. A global energy function is finally constructed by combining all cost terms. The optimization is achieved by solving a max-flow/min-cut problem, which leads to simultaneous and robust segmentation of the tumor in all the lung 4D-CT phases. The effectiveness of our approach is validated through experiments on 10 different lung 4D-CT cases. The comparison with the graph cut without context constraint, the level set method and the graph cut with star shape prior demonstrates that the proposed method obtains more accurate and robust segmentation results.
Graph theory and the Virasoro master equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Obers, N.A.J.
1991-04-01
A brief history of affine Lie algebra, the Virasoro algebra and its culmination in the Virasoro master equations is given. By studying ansaetze of the master equation, we obtain exact solutions and gain insight in the structure of large slices of affine-Virasoro space. We find an isomorphism between the constructions in the ansatz SO(n){sub diag}, which is a set of unitary, generically irrational affine-Virasoro constructions on SO(n), and the unlabelled graphs, while, conversely, a group-theoretic and conformal field-theoretic identification is obtained for every graph of graph theory. We also define a class of magic'' Lie group bases in which themore » Virasoro master equation admits a simple metric ansatz (gmetric), whose structure is visible in the high-level expansion. When a magic basis is real on compact g, the corresponding g{sub metric} is a large system of unitary, generically irrational conformal field theories. Examples in this class include the graph-theory ansatz SO(n){sub diag} in the Cartesian basis of SO(n), and the ansatz SU(n){sub metric} in the Pauli-like basis of SU(n). Finally, we define the sine-area graphs'' of SU(n), which label the conformal field theories of SU(n){sub metric}, and we note that, in similar fashion, each magic basis of g defines a generalized graph theory on g which labels the conformal field theories of g{sub metric}. 24 figs., 4 tabs.« less
Graph-based layout analysis for PDF documents
NASA Astrophysics Data System (ADS)
Xu, Canhui; Tang, Zhi; Tao, Xin; Li, Yun; Shi, Cao
2013-03-01
To increase the flexibility and enrich the reading experience of e-book on small portable screens, a graph based method is proposed to perform layout analysis on Portable Document Format (PDF) documents. Digital born document has its inherent advantages like representing texts and fractional images in explicit form, which can be straightforwardly exploited. To integrate traditional image-based document analysis and the inherent meta-data provided by PDF parser, the page primitives including text, image and path elements are processed to produce text and non text layer for respective analysis. Graph-based method is developed in superpixel representation level, and page text elements corresponding to vertices are used to construct an undirected graph. Euclidean distance between adjacent vertices is applied in a top-down manner to cut the graph tree formed by Kruskal's algorithm. And edge orientation is then used in a bottom-up manner to extract text lines from each sub tree. On the other hand, non-textual objects are segmented by connected component analysis. For each segmented text and non-text composite, a 13-dimensional feature vector is extracted for labelling purpose. The experimental results on selected pages from PDF books are presented.
A reusable knowledge acquisition shell: KASH
NASA Technical Reports Server (NTRS)
Westphal, Christopher; Williams, Stephen; Keech, Virginia
1991-01-01
KASH (Knowledge Acquisition SHell) is proposed to assist a knowledge engineer by providing a set of utilities for constructing knowledge acquisition sessions based on interviewing techniques. The information elicited from domain experts during the sessions is guided by a question dependency graph (QDG). The QDG defined by the knowledge engineer, consists of a series of control questions about the domain that are used to organize the knowledge of an expert. The content information supplies by the expert, in response to the questions, is represented in the form of a concept map. These maps can be constructed in a top-down or bottom-up manner by the QDG and used by KASH to generate the rules for a large class of expert system domains. Additionally, the concept maps can support the representation of temporal knowledge. The high degree of reusability encountered in the QDG and concept maps can vastly reduce the development times and costs associated with producing intelligent decision aids, training programs, and process control functions.
Nagoor Gani, A; Latha, S R
2016-01-01
A Hamiltonian cycle in a graph is a cycle that visits each node/vertex exactly once. A graph containing a Hamiltonian cycle is called a Hamiltonian graph. There have been several researches to find the number of Hamiltonian cycles of a Hamilton graph. As the number of vertices and edges grow, it becomes very difficult to keep track of all the different ways through which the vertices are connected. Hence, analysis of large graphs can be efficiently done with the assistance of a computer system that interprets graphs as matrices. And, of course, a good and well written algorithm will expedite the analysis even faster. The most convenient way to quickly test whether there is an edge between two vertices is to represent graphs using adjacent matrices. In this paper, a new algorithm is proposed to find fuzzy Hamiltonian cycle using adjacency matrix and the degree of the vertices of a fuzzy graph. A fuzzy graph structure is also modeled to illustrate the proposed algorithms with the selected air network of Indigo airlines.
Safaei, Soroush; Blanco, Pablo J; Müller, Lucas O; Hellevik, Leif R; Hunter, Peter J
2018-01-01
We propose a detailed CellML model of the human cerebral circulation that runs faster than real time on a desktop computer and is designed for use in clinical settings when the speed of response is important. A lumped parameter mathematical model, which is based on a one-dimensional formulation of the flow of an incompressible fluid in distensible vessels, is constructed using a bond graph formulation to ensure mass conservation and energy conservation. The model includes arterial vessels with geometric and anatomical data based on the ADAN circulation model. The peripheral beds are represented by lumped parameter compartments. We compare the hemodynamics predicted by the bond graph formulation of the cerebral circulation with that given by a classical one-dimensional Navier-Stokes model working on top of the whole-body ADAN model. Outputs from the bond graph model, including the pressure and flow signatures and blood volumes, are compared with physiological data.
Gain-Sparsity and Symmetry-Forced Rigidity in the Plane.
Jordán, Tibor; Kaszanitzky, Viktória E; Tanigawa, Shin-Ichi
We consider planar bar-and-joint frameworks with discrete point group symmetry in which the joint positions are as generic as possible subject to the symmetry constraint. We provide combinatorial characterizations for symmetry-forced rigidity of such structures with rotation symmetry or dihedral symmetry of order 2 k with odd k , unifying and extending previous work on this subject. We also explore the matroidal background of our results and show that the matroids induced by the row independence of the orbit matrices of the symmetric frameworks are isomorphic to gain sparsity matroids defined on the quotient graph of the framework, whose edges are labeled by elements of the corresponding symmetry group. The proofs are based on new Henneberg type inductive constructions of the gain graphs that correspond to the bases of the matroids in question, which can also be seen as symmetry preserving graph operations in the original graph.
Label Information Guided Graph Construction for Semi-Supervised Learning.
Zhuang, Liansheng; Zhou, Zihan; Gao, Shenghua; Yin, Jingwen; Lin, Zhouchen; Ma, Yi
2017-09-01
In the literature, most existing graph-based semi-supervised learning methods only use the label information of observed samples in the label propagation stage, while ignoring such valuable information when learning the graph. In this paper, we argue that it is beneficial to consider the label information in the graph learning stage. Specifically, by enforcing the weight of edges between labeled samples of different classes to be zero, we explicitly incorporate the label information into the state-of-the-art graph learning methods, such as the low-rank representation (LRR), and propose a novel semi-supervised graph learning method called semi-supervised low-rank representation. This results in a convex optimization problem with linear constraints, which can be solved by the linearized alternating direction method. Though we take LRR as an example, our proposed method is in fact very general and can be applied to any self-representation graph learning methods. Experiment results on both synthetic and real data sets demonstrate that the proposed graph learning method can better capture the global geometric structure of the data, and therefore is more effective for semi-supervised learning tasks.
NOUS: Construction and Querying of Dynamic Knowledge Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhury, Sutanay; Agarwal, Khushbu; Purohit, Sumit
The ability to construct domain specific knowledge graphs (KG) and perform question-answering or hypothesis generation is a trans- formative capability. Despite their value, automated construction of knowledge graphs remains an expensive technical challenge that is beyond the reach for most enterprises and academic institutions. We propose an end-to-end framework for developing custom knowl- edge graph driven analytics for arbitrary application domains. The uniqueness of our system lies A) in its combination of curated KGs along with knowledge extracted from unstructured text, B) support for advanced trending and explanatory questions on a dynamic KG, and C) the ability to answer queriesmore » where the answer is embedded across multiple data sources.« less
Test-Retest Reliability of Graph Metrics in Functional Brain Networks: A Resting-State fNIRS Study
Niu, Haijing; Li, Zhen; Liao, Xuhong; Wang, Jinhui; Zhao, Tengda; Shu, Ni; Zhao, Xiaohu; He, Yong
2013-01-01
Recent research has demonstrated the feasibility of combining functional near-infrared spectroscopy (fNIRS) and graph theory approaches to explore the topological attributes of human brain networks. However, the test-retest (TRT) reliability of the application of graph metrics to these networks remains to be elucidated. Here, we used resting-state fNIRS and a graph-theoretical approach to systematically address TRT reliability as it applies to various features of human brain networks, including functional connectivity, global network metrics and regional nodal centrality metrics. Eighteen subjects participated in two resting-state fNIRS scan sessions held ∼20 min apart. Functional brain networks were constructed for each subject by computing temporal correlations on three types of hemoglobin concentration information (HbO, HbR, and HbT). This was followed by a graph-theoretical analysis, and then an intraclass correlation coefficient (ICC) was further applied to quantify the TRT reliability of each network metric. We observed that a large proportion of resting-state functional connections (∼90%) exhibited good reliability (0.6< ICC <0.74). For global and nodal measures, reliability was generally threshold-sensitive and varied among both network metrics and hemoglobin concentration signals. Specifically, the majority of global metrics exhibited fair to excellent reliability, with notably higher ICC values for the clustering coefficient (HbO: 0.76; HbR: 0.78; HbT: 0.53) and global efficiency (HbO: 0.76; HbR: 0.70; HbT: 0.78). Similarly, both nodal degree and efficiency measures also showed fair to excellent reliability across nodes (degree: 0.52∼0.84; efficiency: 0.50∼0.84); reliability was concordant across HbO, HbR and HbT and was significantly higher than that of nodal betweenness (0.28∼0.68). Together, our results suggest that most graph-theoretical network metrics derived from fNIRS are TRT reliable and can be used effectively for brain network research. This study also provides important guidance on the choice of network metrics of interest for future applied research in developmental and clinical neuroscience. PMID:24039763
Mathematical Minute: Rotating a Function Graph
ERIC Educational Resources Information Center
Bravo, Daniel; Fera, Joseph
2013-01-01
Using calculus only, we find the angles you can rotate the graph of a differentiable function about the origin and still obtain a function graph. We then apply the solution to odd and even degree polynomials.
NASA Astrophysics Data System (ADS)
Albirri, E. R.; Sugeng, K. A.; Aldila, D.
2018-04-01
Nowadays, in the modern world, since technology and human civilization start to progress, all city in the world is almost connected. The various places in this world are easier to visit. It is an impact of transportation technology and highway construction. The cities which have been connected can be represented by graph. Graph clustering is one of ways which is used to answer some problems represented by graph. There are some methods in graph clustering to solve the problem spesifically. One of them is Highly Connected Subgraphs (HCS) method. HCS is used to identify cluster based on the graph connectivity k for graph G. The connectivity in graph G is denoted by k(G)> \\frac{n}{2} that n is the total of vertices in G, then it is called as HCS or the cluster. This research used literature review and completed with simulation of program in a software. We modified HCS algorithm by using weighted graph. The modification is located in the Process Phase. Process Phase is used to cut the connected graph G into two subgraphs H and \\bar{H}. We also made a program by using software Octave-401. Then we applied the data of Flight Routes Mapping of One of Airlines in Indonesia to our program.
Thermodynamic characterization of networks using graph polynomials
NASA Astrophysics Data System (ADS)
Ye, Cheng; Comin, César H.; Peron, Thomas K. DM.; Silva, Filipi N.; Rodrigues, Francisco A.; Costa, Luciano da F.; Torsello, Andrea; Hancock, Edwin R.
2015-09-01
In this paper, we present a method for characterizing the evolution of time-varying complex networks by adopting a thermodynamic representation of network structure computed from a polynomial (or algebraic) characterization of graph structure. Commencing from a representation of graph structure based on a characteristic polynomial computed from the normalized Laplacian matrix, we show how the polynomial is linked to the Boltzmann partition function of a network. This allows us to compute a number of thermodynamic quantities for the network, including the average energy and entropy. Assuming that the system does not change volume, we can also compute the temperature, defined as the rate of change of entropy with energy. All three thermodynamic variables can be approximated using low-order Taylor series that can be computed using the traces of powers of the Laplacian matrix, avoiding explicit computation of the normalized Laplacian spectrum. These polynomial approximations allow a smoothed representation of the evolution of networks to be constructed in the thermodynamic space spanned by entropy, energy, and temperature. We show how these thermodynamic variables can be computed in terms of simple network characteristics, e.g., the total number of nodes and node degree statistics for nodes connected by edges. We apply the resulting thermodynamic characterization to real-world time-varying networks representing complex systems in the financial and biological domains. The study demonstrates that the method provides an efficient tool for detecting abrupt changes and characterizing different stages in network evolution.
Evolving network simulation study. From regular lattice to scale free network
NASA Astrophysics Data System (ADS)
Makowiec, D.
2005-12-01
The Watts-Strogatz algorithm of transferring the square lattice to a small world network is modified by introducing preferential rewiring constrained by connectivity demand. The evolution of the network is two-step: sequential preferential rewiring of edges controlled by p and updating the information about changes done. The evolving system self-organizes into stationary states. The topological transition in the graph structure is noticed with respect to p. Leafy phase a graph formed by multiple connected vertices (graph skeleton) with plenty of leaves attached to each skeleton vertex emerges when p is small enough to pretend asynchronous evolution. Tangling phase where edges of a graph circulate frequently among low degree vertices occurs when p is large. There exist conditions at which the resulting stationary network ensemble provides networks which degree distribution exhibit power-law decay in large interval of degrees.
An In-Depth Analysis of the Chung-Lu Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winlaw, M.; DeSterck, H.; Sanders, G.
2015-10-28
In the classic Erd}os R enyi random graph model [5] each edge is chosen with uniform probability and the degree distribution is binomial, limiting the number of graphs that can be modeled using the Erd}os R enyi framework [10]. The Chung-Lu model [1, 2, 3] is an extension of the Erd}os R enyi model that allows for more general degree distributions. The probability of each edge is no longer uniform and is a function of a user-supplied degree sequence, which by design is the expected degree sequence of the model. This property makes it an easy model to work withmore » theoretically and since the Chung-Lu model is a special case of a random graph model with a given degree sequence, many of its properties are well known and have been studied extensively [2, 3, 13, 8, 9]. It is also an attractive null model for many real-world networks, particularly those with power-law degree distributions and it is sometimes used as a benchmark for comparison with other graph generators despite some of its limitations [12, 11]. We know for example, that the average clustering coe cient is too low relative to most real world networks. As well, measures of a nity are also too low relative to most real-world networks of interest. However, despite these limitations or perhaps because of them, the Chung-Lu model provides a basis for comparing new graph models.« less
Li, Zhigang; Shi, Zhongping; Li, Xin
2014-05-01
Several fermentations with consecutively feeding of acetate/butyrate were conducted in a 7 L fermentor and the results indicated that exogenous acetate/butyrate enhanced solvents productivities by 47.1% and 39.2% respectively, and changed butyrate/acetate ratios greatly. Then extracellular butyrate/acetate ratios were utilized for calculation of acids rates and the results revealed that acetate and butyrate formation pathways were almost blocked by corresponding acids feeding. In addition, models for acetate/butyrate feeding fermentations were constructed by graph theory based on calculation results and relevant reports. Solvents concentrations and butanol/acetone ratios of these fermentations were also calculated and the results of models calculation matched fermentation data accurately which demonstrated that models were constructed in a reasonable way. Copyright © 2014 Elsevier Ltd. All rights reserved.
EEG analysis of seizure patterns using visibility graphs for detection of generalized seizures.
Wang, Lei; Long, Xi; Arends, Johan B A M; Aarts, Ronald M
2017-10-01
The traditional EEG features in the time and frequency domain show limited seizure detection performance in the epileptic population with intellectual disability (ID). In addition, the influence of EEG seizure patterns on detection performance was less studied. A single-channel EEG signal can be mapped into visibility graphs (VGS), including basic visibility graph (VG), horizontal VG (HVG), and difference VG (DVG). These graphs were used to characterize different EEG seizure patterns. To demonstrate its effectiveness in identifying EEG seizure patterns and detecting generalized seizures, EEG recordings of 615h on one EEG channel from 29 epileptic patients with ID were analyzed. A novel feature set with discriminative power for seizure detection was obtained by using the VGS method. The degree distributions (DDs) of DVG can clearly distinguish EEG of each seizure pattern. The degree entropy and power-law degree power in DVG were proposed here for the first time, and they show significant difference between seizure and non-seizure EEG. The connecting structure measured by HVG can better distinguish seizure EEG from background than those by VG and DVG. A traditional EEG feature set based on frequency analysis was used here as a benchmark feature set. With a support vector machine (SVM) classifier, the seizure detection performance of the benchmark feature set (sensitivity of 24%, FD t /h of 1.8s) can be improved by combining our proposed VGS features extracted from one EEG channel (sensitivity of 38%, FD t /h of 1.4s). The proposed VGS-based features can help improve seizure detection for ID patients. Copyright © 2017 Elsevier B.V. All rights reserved.
Bipartite entangled stabilizer mutually unbiased bases as maximum cliques of Cayley graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dam, Wim van; Howard, Mark; Department of Physics, University of California, Santa Barbara, California 93106
2011-07-15
We examine the existence and structure of particular sets of mutually unbiased bases (MUBs) in bipartite qudit systems. In contrast to well-known power-of-prime MUB constructions, we restrict ourselves to using maximally entangled stabilizer states as MUB vectors. Consequently, these bipartite entangled stabilizer MUBs (BES MUBs) provide no local information, but are sufficient and minimal for decomposing a wide variety of interesting operators including (mixtures of) Jamiolkowski states, entanglement witnesses, and more. The problem of finding such BES MUBs can be mapped, in a natural way, to that of finding maximum cliques in a family of Cayley graphs. Some relationships withmore » known power-of-prime MUB constructions are discussed, and observables for BES MUBs are given explicitly in terms of Pauli operators.« less
Bipartite entangled stabilizer mutually unbiased bases as maximum cliques of Cayley graphs
NASA Astrophysics Data System (ADS)
van Dam, Wim; Howard, Mark
2011-07-01
We examine the existence and structure of particular sets of mutually unbiased bases (MUBs) in bipartite qudit systems. In contrast to well-known power-of-prime MUB constructions, we restrict ourselves to using maximally entangled stabilizer states as MUB vectors. Consequently, these bipartite entangled stabilizer MUBs (BES MUBs) provide no local information, but are sufficient and minimal for decomposing a wide variety of interesting operators including (mixtures of) Jamiołkowski states, entanglement witnesses, and more. The problem of finding such BES MUBs can be mapped, in a natural way, to that of finding maximum cliques in a family of Cayley graphs. Some relationships with known power-of-prime MUB constructions are discussed, and observables for BES MUBs are given explicitly in terms of Pauli operators.
EAGLE: 'EAGLE'Is an' Algorithmic Graph Library for Exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-01-16
The Resource Description Framework (RDF) and SPARQL Protocol and RDF Query Language (SPARQL) were introduced about a decade ago to enable flexible schema-free data interchange on the Semantic Web. Today data scientists use the framework as a scalable graph representation for integrating, querying, exploring and analyzing data sets hosted at different sources. With increasing adoption, the need for graph mining capabilities for the Semantic Web has emerged. Today there is no tools to conduct "graph mining" on RDF standard data sets. We address that need through implementation of popular iterative Graph Mining algorithms (Triangle count, Connected component analysis, degree distribution,more » diversity degree, PageRank, etc.). We implement these algorithms as SPARQL queries, wrapped within Python scripts and call our software tool as EAGLE. In RDF style, EAGLE stands for "EAGLE 'Is an' algorithmic graph library for exploration. EAGLE is like 'MATLAB' for 'Linked Data.'« less
Localization in random bipartite graphs: Numerical and empirical study
NASA Astrophysics Data System (ADS)
Slanina, František
2017-05-01
We investigate adjacency matrices of bipartite graphs with a power-law degree distribution. Motivation for this study is twofold: first, vibrational states in granular matter and jammed sphere packings; second, graphs encoding social interaction, especially electronic commerce. We establish the position of the mobility edge and show that it strongly depends on the power in the degree distribution and on the ratio of the sizes of the two parts of the bipartite graph. At the jamming threshold, where the two parts have the same size, localization vanishes. We found that the multifractal spectrum is nontrivial in the delocalized phase, but still near the mobility edge. We also study an empirical bipartite graph, namely, the Amazon reviewer-item network. We found that in this specific graph the mobility edge disappears, and we draw a conclusion from this fact regarding earlier empirical studies of the Amazon network.
Localization in random bipartite graphs: Numerical and empirical study.
Slanina, František
2017-05-01
We investigate adjacency matrices of bipartite graphs with a power-law degree distribution. Motivation for this study is twofold: first, vibrational states in granular matter and jammed sphere packings; second, graphs encoding social interaction, especially electronic commerce. We establish the position of the mobility edge and show that it strongly depends on the power in the degree distribution and on the ratio of the sizes of the two parts of the bipartite graph. At the jamming threshold, where the two parts have the same size, localization vanishes. We found that the multifractal spectrum is nontrivial in the delocalized phase, but still near the mobility edge. We also study an empirical bipartite graph, namely, the Amazon reviewer-item network. We found that in this specific graph the mobility edge disappears, and we draw a conclusion from this fact regarding earlier empirical studies of the Amazon network.
Renal cortex segmentation using optimal surface search with novel graph construction.
Li, Xiuli; Chen, Xinjian; Yao, Jianhua; Zhang, Xing; Tian, Jie
2011-01-01
In this paper, we propose a novel approach to solve the renal cortex segmentation problem, which has rarely been studied. In this study, the renal cortex segmentation problem is handled as a multiple-surfaces extraction problem, which is solved using the optimal surface search method. We propose a novel graph construction scheme in the optimal surface search to better accommodate multiple surfaces. Different surface sub-graphs are constructed according to their properties, and inter-surface relationships are also modeled in the graph. The proposed method was tested on 17 clinical CT datasets. The true positive volume fraction (TPVF) and false positive volume fraction (FPVF) are 74.10% and 0.08%, respectively. The experimental results demonstrate the effectiveness of the proposed method.
Modelling disease outbreaks in realistic urban social networks
NASA Astrophysics Data System (ADS)
Eubank, Stephen; Guclu, Hasan; Anil Kumar, V. S.; Marathe, Madhav V.; Srinivasan, Aravind; Toroczkai, Zoltán; Wang, Nan
2004-05-01
Most mathematical models for the spread of disease use differential equations based on uniform mixing assumptions or ad hoc models for the contact process. Here we explore the use of dynamic bipartite graphs to model the physical contact patterns that result from movements of individuals between specific locations. The graphs are generated by large-scale individual-based urban traffic simulations built on actual census, land-use and population-mobility data. We find that the contact network among people is a strongly connected small-world-like graph with a well-defined scale for the degree distribution. However, the locations graph is scale-free, which allows highly efficient outbreak detection by placing sensors in the hubs of the locations network. Within this large-scale simulation framework, we then analyse the relative merits of several proposed mitigation strategies for smallpox spread. Our results suggest that outbreaks can be contained by a strategy of targeted vaccination combined with early detection without resorting to mass vaccination of a population.
Reflecting on Graphs: Attributes of Graph Choice and Construction Practices in Biology.
Angra, Aakanksha; Gardner, Stephanie M
2017-01-01
Undergraduate biology education reform aims to engage students in scientific practices such as experimental design, experimentation, and data analysis and communication. Graphs are ubiquitous in the biological sciences, and creating effective graphical representations involves quantitative and disciplinary concepts and skills. Past studies document student difficulties with graphing within the contexts of classroom or national assessments without evaluating student reasoning. Operating under the metarepresentational competence framework, we conducted think-aloud interviews to reveal differences in reasoning and graph quality between undergraduate biology students, graduate students, and professors in a pen-and-paper graphing task. All professors planned and thought about data before graph construction. When reflecting on their graphs, professors and graduate students focused on the function of graphs and experimental design, while most undergraduate students relied on intuition and data provided in the task. Most undergraduate students meticulously plotted all data with scaled axes, while professors and some graduate students transformed the data, aligned the graph with the research question, and reflected on statistics and sample size. Differences in reasoning and approaches taken in graph choice and construction corroborate and extend previous findings and provide rich targets for undergraduate and graduate instruction. © 2017 A. Angra and S. M. Gardner. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Graph Representations of Flow and Transport in Fracture Networks using Machine Learning
NASA Astrophysics Data System (ADS)
Srinivasan, G.; Viswanathan, H. S.; Karra, S.; O'Malley, D.; Godinez, H. C.; Hagberg, A.; Osthus, D.; Mohd-Yusof, J.
2017-12-01
Flow and transport of fluids through fractured systems is governed by the properties and interactions at the micro-scale. Retaining information about the micro-structure such as fracture length, orientation, aperture and connectivity in mesh-based computational models results in solving for millions to billions of degrees of freedom and quickly renders the problem computationally intractable. Our approach depicts fracture networks graphically, by mapping fractures to nodes and intersections to edges, thereby greatly reducing computational burden. Additionally, we use machine learning techniques to build simulators on the graph representation, trained on data from the mesh-based high fidelity simulations to speed up computation by orders of magnitude. We demonstrate our methodology on ensembles of discrete fracture networks, dividing up the data into training and validation sets. Our machine learned graph-based solvers result in over 3 orders of magnitude speedup without any significant sacrifice in accuracy.
Classifying Web Pages by Using Knowledge Bases for Entity Retrieval
NASA Astrophysics Data System (ADS)
Kiritani, Yusuke; Ma, Qiang; Yoshikawa, Masatoshi
In this paper, we propose a novel method to classify Web pages by using knowledge bases for entity search, which is a kind of typical Web search for information related to a person, location or organization. First, we map a Web page to entities according to the similarities between the page and the entities. Various methods for computing such similarity are applied. For example, we can compute the similarity between a given page and a Wikipedia article describing a certain entity. The frequency of an entity appearing in the page is another factor used in computing the similarity. Second, we construct a directed acyclic graph, named PEC graph, based on the relations among Web pages, entities, and categories, by referring to YAGO, a knowledge base built on Wikipedia and WordNet. Finally, by analyzing the PEC graph, we classify Web pages into categories. The results of some preliminary experiments validate the methods proposed in this paper.
Bipartite graphs as models of population structures in evolutionary multiplayer games.
Peña, Jorge; Rochat, Yannick
2012-01-01
By combining evolutionary game theory and graph theory, "games on graphs" study the evolutionary dynamics of frequency-dependent selection in population structures modeled as geographical or social networks. Networks are usually represented by means of unipartite graphs, and social interactions by two-person games such as the famous prisoner's dilemma. Unipartite graphs have also been used for modeling interactions going beyond pairwise interactions. In this paper, we argue that bipartite graphs are a better alternative to unipartite graphs for describing population structures in evolutionary multiplayer games. To illustrate this point, we make use of bipartite graphs to investigate, by means of computer simulations, the evolution of cooperation under the conventional and the distributed N-person prisoner's dilemma. We show that several implicit assumptions arising from the standard approach based on unipartite graphs (such as the definition of replacement neighborhoods, the intertwining of individual and group diversity, and the large overlap of interaction neighborhoods) can have a large impact on the resulting evolutionary dynamics. Our work provides a clear example of the importance of construction procedures in games on graphs, of the suitability of bigraphs and hypergraphs for computational modeling, and of the importance of concepts from social network analysis such as centrality, centralization and bipartite clustering for the understanding of dynamical processes occurring on networked population structures.
Zhang, Li; Qian, Liqiang; Ding, Chuntao; Zhou, Weida; Li, Fanzhang
2015-09-01
The family of discriminant neighborhood embedding (DNE) methods is typical graph-based methods for dimension reduction, and has been successfully applied to face recognition. This paper proposes a new variant of DNE, called similarity-balanced discriminant neighborhood embedding (SBDNE) and applies it to cancer classification using gene expression data. By introducing a novel similarity function, SBDNE deals with two data points in the same class and the different classes with different ways. The homogeneous and heterogeneous neighbors are selected according to the new similarity function instead of the Euclidean distance. SBDNE constructs two adjacent graphs, or between-class adjacent graph and within-class adjacent graph, using the new similarity function. According to these two adjacent graphs, we can generate the local between-class scatter and the local within-class scatter, respectively. Thus, SBDNE can maximize the between-class scatter and simultaneously minimize the within-class scatter to find the optimal projection matrix. Experimental results on six microarray datasets show that SBDNE is a promising method for cancer classification. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Effects of rTMS Combined with Motor Training on Functional Connectivity in Alpha Frequency Band.
Jin, Jing-Na; Wang, Xin; Li, Ying; Jin, Fang; Liu, Zhi-Peng; Yin, Tao
2017-01-01
It has recently been reported that repetitive transcranial magnetic stimulation combined with motor training (rTMS-MT) could improve motor function in post-stroke patients. However, the effects of rTMS-MT on cortical function using functional connectivity and graph theoretical analysis remain unclear. Ten healthy subjects were recruited to receive rTMS immediately before application of MT. Low frequency rTMS was delivered to the dominant hemisphere and non-dominant hand performed MT over 14 days. The reaction time of Nine-Hole Peg Test and electroencephalography (EEG) in resting condition with eyes closed were recorded before and after rTMS-MT. Functional connectivity was assessed by phase synchronization index (PSI), and subsequently thresholded to construct undirected graphs in alpha frequency band (8-13 Hz). We found a significant decrease in reaction time after rTMS-MT. The functional connectivity between the parietal and frontal cortex, and the graph theory statistics of node degree and efficiency in the parietal cortex increased. Besides the functional connectivity between premotor and frontal cortex, the degree and efficiency of premotor cortex showed opposite results. In addition, the number of connections significantly increased within inter-hemispheres and inter-regions. In conclusion, this study could be helpful in our understanding of how rTMS-MT modulates brain activity. The methods and results in this study could be taken as reference in future studies of the effects of rTMS-MT in stroke patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kupavskii, A B; Raigorodskii, A M
2013-10-31
We investigate in detail some properties of distance graphs constructed on the integer lattice. Such graphs find wide applications in problems of combinatorial geometry, in particular, such graphs were employed to answer Borsuk's question in the negative and to obtain exponential estimates for the chromatic number of the space. This work is devoted to the study of the number of cliques and the chromatic number of such graphs under certain conditions. Constructions of sequences of distance graphs are given, in which the graphs have unit length edges and contain a large number of triangles that lie on a sphere of radius 1/√3more » (which is the minimum possible). At the same time, the chromatic numbers of the graphs depend exponentially on their dimension. The results of this work strengthen and generalize some of the results obtained in a series of papers devoted to related issues. Bibliography: 29 titles.« less
ERIC Educational Resources Information Center
Xi, Xiaoming
2010-01-01
Motivated by cognitive theories of graph comprehension, this study systematically manipulated characteristics of a line graph description task in a speaking test in ways to mitigate the influence of graph familiarity, a potential source of construct-irrelevant variance. It extends Xi (2005), which found that the differences in holistic scores on…
Building Scalable Knowledge Graphs for Earth Science
NASA Technical Reports Server (NTRS)
Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick; Zhang, Jia; Duan, Xiaoyi; Miller, J. J.; Bugbee, Kaylin; Christopher, Sundar; Freitag, Brian
2017-01-01
Knowledge Graphs link key entities in a specific domain with other entities via relationships. From these relationships, researchers can query knowledge graphs for probabilistic recommendations to infer new knowledge. Scientific papers are an untapped resource which knowledge graphs could leverage to accelerate research discovery. Goal: Develop an end-to-end (semi) automated methodology for constructing Knowledge Graphs for Earth Science.
Distributed MPC based consensus for single-integrator multi-agent systems.
Cheng, Zhaomeng; Fan, Ming-Can; Zhang, Hai-Tao
2015-09-01
This paper addresses model predictive control schemes for consensus in multi-agent systems (MASs) with discrete-time single-integrator dynamics under switching directed interaction graphs. The control horizon is extended to be greater than one which endows the closed-loop system with extra degree of freedom. We derive sufficient conditions on the sampling period and the interaction graph to achieve consensus by using the property of infinite products of stochastic matrices. Consensus can be achieved asymptotically if the sampling period is selected such that the interaction graph among agents has a directed spanning tree jointly. Significantly, if the interaction graph always has a spanning tree, one can select an arbitrary large sampling period to guarantee consensus. Finally, several simulations are conducted to illustrate the effectiveness of the theoretical results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Building an EEG-fMRI Multi-Modal Brain Graph: A Concurrent EEG-fMRI Study
Yu, Qingbao; Wu, Lei; Bridwell, David A.; Erhardt, Erik B.; Du, Yuhui; He, Hao; Chen, Jiayu; Liu, Peng; Sui, Jing; Pearlson, Godfrey; Calhoun, Vince D.
2016-01-01
The topological architecture of brain connectivity has been well-characterized by graph theory based analysis. However, previous studies have primarily built brain graphs based on a single modality of brain imaging data. Here we develop a framework to construct multi-modal brain graphs using concurrent EEG-fMRI data which are simultaneously collected during eyes open (EO) and eyes closed (EC) resting states. FMRI data are decomposed into independent components with associated time courses by group independent component analysis (ICA). EEG time series are segmented, and then spectral power time courses are computed and averaged within 5 frequency bands (delta; theta; alpha; beta; low gamma). EEG-fMRI brain graphs, with EEG electrodes and fMRI brain components serving as nodes, are built by computing correlations within and between fMRI ICA time courses and EEG spectral power time courses. Dynamic EEG-fMRI graphs are built using a sliding window method, versus static ones treating the entire time course as stationary. In global level, static graph measures and properties of dynamic graph measures are different across frequency bands and are mainly showing higher values in eyes closed than eyes open. Nodal level graph measures of a few brain components are also showing higher values during eyes closed in specific frequency bands. Overall, these findings incorporate fMRI spatial localization and EEG frequency information which could not be obtained by examining only one modality. This work provides a new approach to examine EEG-fMRI associations within a graph theoretic framework with potential application to many topics. PMID:27733821
NASA Astrophysics Data System (ADS)
Alshehhi, Rasha; Marpu, Prashanth Reddy
2017-04-01
Extraction of road networks in urban areas from remotely sensed imagery plays an important role in many urban applications (e.g. road navigation, geometric correction of urban remote sensing images, updating geographic information systems, etc.). It is normally difficult to accurately differentiate road from its background due to the complex geometry of the buildings and the acquisition geometry of the sensor. In this paper, we present a new method for extracting roads from high-resolution imagery based on hierarchical graph-based image segmentation. The proposed method consists of: 1. Extracting features (e.g., using Gabor and morphological filtering) to enhance the contrast between road and non-road pixels, 2. Graph-based segmentation consisting of (i) Constructing a graph representation of the image based on initial segmentation and (ii) Hierarchical merging and splitting of image segments based on color and shape features, and 3. Post-processing to remove irregularities in the extracted road segments. Experiments are conducted on three challenging datasets of high-resolution images to demonstrate the proposed method and compare with other similar approaches. The results demonstrate the validity and superior performance of the proposed method for road extraction in urban areas.
Zhang, Feng; Liao, Xiangke; Peng, Shaoliang; Cui, Yingbo; Wang, Bingqiang; Zhu, Xiaoqian; Liu, Jie
2016-06-01
' The de novo assembly of DNA sequences is increasingly important for biological researches in the genomic era. After more than one decade since the Human Genome Project, some challenges still exist and new solutions are being explored to improve de novo assembly of genomes. String graph assembler (SGA), based on the string graph theory, is a new method/tool developed to address the challenges. In this paper, based on an in-depth analysis of SGA we prove that the SGA-based sequence de novo assembly is an NP-complete problem. According to our analysis, SGA outperforms other similar methods/tools in memory consumption, but costs much more time, of which 60-70 % is spent on the index construction. Upon this analysis, we introduce a hybrid parallel optimization algorithm and implement this algorithm in the TianHe-2's parallel framework. Simulations are performed with different datasets. For data of small size the optimized solution is 3.06 times faster than before, and for data of middle size it's 1.60 times. The results demonstrate an evident performance improvement, with the linear scalability for parallel FM-index construction. This results thus contribute significantly to improving the efficiency of de novo assembly of DNA sequences.
Entraining the topology and the dynamics of a network of phase oscillators
NASA Astrophysics Data System (ADS)
Sendiña-Nadal, I.; Leyva, I.; Buldú, J. M.; Almendral, J. A.; Boccaletti, S.
2009-04-01
We show that the topology and dynamics of a network of unsynchronized Kuramoto oscillators can be simultaneously controlled by means of a forcing mechanism which yields a phase locking of the oscillators to that of an external pacemaker in connection with the reshaping of the network’s degree distribution. The entrainment mechanism is based on the addition, at regular time intervals, of unidirectional links from oscillators that follow the dynamics of a pacemaker to oscillators in the pristine graph whose phases hold a prescribed phase relationship. Such a dynamically based rule in the attachment process leads to the emergence of a power-law shape in the final degree distribution of the graph whenever the network is entrained to the dynamics of the pacemaker. We show that the arousal of a scale-free distribution in connection with the success of the entrainment process is a robust feature, characterizing different networks’ initial configurations and parameters.
Use of Graph Database for the Integration of Heterogeneous Biological Data.
Yoon, Byoung-Ha; Kim, Seon-Kyu; Kim, Seon-Young
2017-03-01
Understanding complex relationships among heterogeneous biological data is one of the fundamental goals in biology. In most cases, diverse biological data are stored in relational databases, such as MySQL and Oracle, which store data in multiple tables and then infer relationships by multiple-join statements. Recently, a new type of database, called the graph-based database, was developed to natively represent various kinds of complex relationships, and it is widely used among computer science communities and IT industries. Here, we demonstrate the feasibility of using a graph-based database for complex biological relationships by comparing the performance between MySQL and Neo4j, one of the most widely used graph databases. We collected various biological data (protein-protein interaction, drug-target, gene-disease, etc.) from several existing sources, removed duplicate and redundant data, and finally constructed a graph database containing 114,550 nodes and 82,674,321 relationships. When we tested the query execution performance of MySQL versus Neo4j, we found that Neo4j outperformed MySQL in all cases. While Neo4j exhibited a very fast response for various queries, MySQL exhibited latent or unfinished responses for complex queries with multiple-join statements. These results show that using graph-based databases, such as Neo4j, is an efficient way to store complex biological relationships. Moreover, querying a graph database in diverse ways has the potential to reveal novel relationships among heterogeneous biological data.
Use of Graph Database for the Integration of Heterogeneous Biological Data
Yoon, Byoung-Ha; Kim, Seon-Kyu
2017-01-01
Understanding complex relationships among heterogeneous biological data is one of the fundamental goals in biology. In most cases, diverse biological data are stored in relational databases, such as MySQL and Oracle, which store data in multiple tables and then infer relationships by multiple-join statements. Recently, a new type of database, called the graph-based database, was developed to natively represent various kinds of complex relationships, and it is widely used among computer science communities and IT industries. Here, we demonstrate the feasibility of using a graph-based database for complex biological relationships by comparing the performance between MySQL and Neo4j, one of the most widely used graph databases. We collected various biological data (protein-protein interaction, drug-target, gene-disease, etc.) from several existing sources, removed duplicate and redundant data, and finally constructed a graph database containing 114,550 nodes and 82,674,321 relationships. When we tested the query execution performance of MySQL versus Neo4j, we found that Neo4j outperformed MySQL in all cases. While Neo4j exhibited a very fast response for various queries, MySQL exhibited latent or unfinished responses for complex queries with multiple-join statements. These results show that using graph-based databases, such as Neo4j, is an efficient way to store complex biological relationships. Moreover, querying a graph database in diverse ways has the potential to reveal novel relationships among heterogeneous biological data. PMID:28416946
Principles of cophylogenetic maps
NASA Astrophysics Data System (ADS)
Charleston, Michael A.
Cophylogeny is the study of the relationships between phylogenies of ecologically related groups (taxa, geographical areas, genes etc.), where one, the "host" phylogeny, is independent and the other, the "associate" phylogeny, is hypothesized to be dependent to some degree on the host. Given two such phylogenies our aim is to estimate the past associations between the host and associate taxa. This chapter describes cophylogeny and discusses some of its basic pri nciples. The necessary properties of any cophylogenetic method are described. Charleston [5] created a graph which contains all the potential solutions to a given cophylogenetic problem. The vertices of this graph are associations, either observed or hypothetical, between "host" and associated taxonomic units, and the arcs correspond to the associate phylogeny. A new and more general method of constructing the Jungle is presented, which will correctly account for reticulate host and/or parasite phylogenies. Keywords: cophylogeny, coevolution, gene tree/species tree, host/parasite coevolution, host switch, horizontal transfer, biogeography.
Object recognition in images via a factor graph model
NASA Astrophysics Data System (ADS)
He, Yong; Wang, Long; Wu, Zhaolin; Zhang, Haisu
2018-04-01
Object recognition in images suffered from huge search space and uncertain object profile. Recently, the Bag-of- Words methods are utilized to solve these problems, especially the 2-dimension CRF(Conditional Random Field) model. In this paper we suggest the method based on a general and flexible fact graph model, which can catch the long-range correlation in Bag-of-Words by constructing a network learning framework contrasted from lattice in CRF. Furthermore, we explore a parameter learning algorithm based on the gradient descent and Loopy Sum-Product algorithms for the factor graph model. Experimental results on Graz 02 dataset show that, the recognition performance of our method in precision and recall is better than a state-of-art method and the original CRF model, demonstrating the effectiveness of the proposed method.
Enhanced low-rank representation via sparse manifold adaption for semi-supervised learning.
Peng, Yong; Lu, Bao-Liang; Wang, Suhang
2015-05-01
Constructing an informative and discriminative graph plays an important role in various pattern recognition tasks such as clustering and classification. Among the existing graph-based learning models, low-rank representation (LRR) is a very competitive one, which has been extensively employed in spectral clustering and semi-supervised learning (SSL). In SSL, the graph is composed of both labeled and unlabeled samples, where the edge weights are calculated based on the LRR coefficients. However, most of existing LRR related approaches fail to consider the geometrical structure of data, which has been shown beneficial for discriminative tasks. In this paper, we propose an enhanced LRR via sparse manifold adaption, termed manifold low-rank representation (MLRR), to learn low-rank data representation. MLRR can explicitly take the data local manifold structure into consideration, which can be identified by the geometric sparsity idea; specifically, the local tangent space of each data point was sought by solving a sparse representation objective. Therefore, the graph to depict the relationship of data points can be built once the manifold information is obtained. We incorporate a regularizer into LRR to make the learned coefficients preserve the geometric constraints revealed in the data space. As a result, MLRR combines both the global information emphasized by low-rank property and the local information emphasized by the identified manifold structure. Extensive experimental results on semi-supervised classification tasks demonstrate that MLRR is an excellent method in comparison with several state-of-the-art graph construction approaches. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bounded-Degree Approximations of Stochastic Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinn, Christopher J.; Pinar, Ali; Kiyavash, Negar
2017-06-01
We propose algorithms to approximate directed information graphs. Directed information graphs are probabilistic graphical models that depict causal dependencies between stochastic processes in a network. The proposed algorithms identify optimal and near-optimal approximations in terms of Kullback-Leibler divergence. The user-chosen sparsity trades off the quality of the approximation against visual conciseness and computational tractability. One class of approximations contains graphs with speci ed in-degrees. Another class additionally requires that the graph is connected. For both classes, we propose algorithms to identify the optimal approximations and also near-optimal approximations, using a novel relaxation of submodularity. We also propose algorithms to identifymore » the r-best approximations among these classes, enabling robust decision making.« less
Layout design in order to improve efficiency in manufacturing
NASA Astrophysics Data System (ADS)
Siregar, I.; Tarigan, U.; Nasution, T. H.
2018-02-01
This research was conducted at the company that produces bobbins and ream type cigarette paper. Problems that found on the production process is the back and forth (back tracking) movement. Back and forth (back tracking) movement extending the total distance moved by the material and increase the total moment of transfer materials thus reducing the efficiency of the transfer of materials in the production process. The purpose of this study is to give design for the layout of production facilities in the company, so that the expected production produced by the company can reach the targets set by the management company. The method used in this research is the Graph-Based Construction and Travel Chart Method. The results of the analysis of the proposed layout with Graph-Based Construction was selected with a total value that is equal to the moment of transfer of 780 758 m / year. This result is better than the actual layout in the amount of 1,021,038.12 meters / year and the results of the method Travel Alternative Chart I of 826.236,60 meters/year, Alternative II of 1.004.433,56 meters / year, and Alternative III for 828,467.12 meters/year. The design layout of Graph-Based Construction material increases the transfer efficiency for 23.53%. With this layout proposal, expected production capacity will be increased along with the shortening of the distance of the displacement that must be passed by the material to be processed.
Graph-Based Semi-Supervised Hyperspectral Image Classification Using Spatial Information
NASA Astrophysics Data System (ADS)
Jamshidpour, N.; Homayouni, S.; Safari, A.
2017-09-01
Hyperspectral image classification has been one of the most popular research areas in the remote sensing community in the past decades. However, there are still some problems that need specific attentions. For example, the lack of enough labeled samples and the high dimensionality problem are two most important issues which degrade the performance of supervised classification dramatically. The main idea of semi-supervised learning is to overcome these issues by the contribution of unlabeled samples, which are available in an enormous amount. In this paper, we propose a graph-based semi-supervised classification method, which uses both spectral and spatial information for hyperspectral image classification. More specifically, two graphs were designed and constructed in order to exploit the relationship among pixels in spectral and spatial spaces respectively. Then, the Laplacians of both graphs were merged to form a weighted joint graph. The experiments were carried out on two different benchmark hyperspectral data sets. The proposed method performed significantly better than the well-known supervised classification methods, such as SVM. The assessments consisted of both accuracy and homogeneity analyses of the produced classification maps. The proposed spectral-spatial SSL method considerably increased the classification accuracy when the labeled training data set is too scarce.When there were only five labeled samples for each class, the performance improved 5.92% and 10.76% compared to spatial graph-based SSL, for AVIRIS Indian Pine and Pavia University data sets respectively.
Reliability Evaluation of Machine Center Components Based on Cascading Failure Analysis
NASA Astrophysics Data System (ADS)
Zhang, Ying-Zhi; Liu, Jin-Tong; Shen, Gui-Xiang; Long, Zhe; Sun, Shu-Guang
2017-07-01
In order to rectify the problems that the component reliability model exhibits deviation, and the evaluation result is low due to the overlook of failure propagation in traditional reliability evaluation of machine center components, a new reliability evaluation method based on cascading failure analysis and the failure influenced degree assessment is proposed. A direct graph model of cascading failure among components is established according to cascading failure mechanism analysis and graph theory. The failure influenced degrees of the system components are assessed by the adjacency matrix and its transposition, combined with the Pagerank algorithm. Based on the comprehensive failure probability function and total probability formula, the inherent failure probability function is determined to realize the reliability evaluation of the system components. Finally, the method is applied to a machine center, it shows the following: 1) The reliability evaluation values of the proposed method are at least 2.5% higher than those of the traditional method; 2) The difference between the comprehensive and inherent reliability of the system component presents a positive correlation with the failure influenced degree of the system component, which provides a theoretical basis for reliability allocation of machine center system.
Bond Graph Model of Cerebral Circulation: Toward Clinically Feasible Systemic Blood Flow Simulations
Safaei, Soroush; Blanco, Pablo J.; Müller, Lucas O.; Hellevik, Leif R.; Hunter, Peter J.
2018-01-01
We propose a detailed CellML model of the human cerebral circulation that runs faster than real time on a desktop computer and is designed for use in clinical settings when the speed of response is important. A lumped parameter mathematical model, which is based on a one-dimensional formulation of the flow of an incompressible fluid in distensible vessels, is constructed using a bond graph formulation to ensure mass conservation and energy conservation. The model includes arterial vessels with geometric and anatomical data based on the ADAN circulation model. The peripheral beds are represented by lumped parameter compartments. We compare the hemodynamics predicted by the bond graph formulation of the cerebral circulation with that given by a classical one-dimensional Navier-Stokes model working on top of the whole-body ADAN model. Outputs from the bond graph model, including the pressure and flow signatures and blood volumes, are compared with physiological data. PMID:29551979
Constructing a Graph Database for Semantic Literature-Based Discovery.
Hristovski, Dimitar; Kastrin, Andrej; Dinevski, Dejan; Rindflesch, Thomas C
2015-01-01
Literature-based discovery (LBD) generates discoveries, or hypotheses, by combining what is already known in the literature. Potential discoveries have the form of relations between biomedical concepts; for example, a drug may be determined to treat a disease other than the one for which it was intended. LBD views the knowledge in a domain as a network; a set of concepts along with the relations between them. As a starting point, we used SemMedDB, a database of semantic relations between biomedical concepts extracted with SemRep from Medline. SemMedDB is distributed as a MySQL relational database, which has some problems when dealing with network data. We transformed and uploaded SemMedDB into the Neo4j graph database, and implemented the basic LBD discovery algorithms with the Cypher query language. We conclude that storing the data needed for semantic LBD is more natural in a graph database. Also, implementing LBD discovery algorithms is conceptually simpler with a graph query language when compared with standard SQL.
How Fast Do Trees Grow? Using Tables and Graphs to Explore Slope
ERIC Educational Resources Information Center
Joram, Elana; Oleson, Vicki
2007-01-01
This article describes a lesson unit in which students constructed tables and graphs to represent the growth of different trees. Students then compared the graphs to develop an understanding of slope.
Graph-based segmentation for RGB-D data using 3-D geometry enhanced superpixels.
Yang, Jingyu; Gan, Ziqiao; Li, Kun; Hou, Chunping
2015-05-01
With the advances of depth sensing technologies, color image plus depth information (referred to as RGB-D data hereafter) is more and more popular for comprehensive description of 3-D scenes. This paper proposes a two-stage segmentation method for RGB-D data: 1) oversegmentation by 3-D geometry enhanced superpixels and 2) graph-based merging with label cost from superpixels. In the oversegmentation stage, 3-D geometrical information is reconstructed from the depth map. Then, a K-means-like clustering method is applied to the RGB-D data for oversegmentation using an 8-D distance metric constructed from both color and 3-D geometrical information. In the merging stage, treating each superpixel as a node, a graph-based model is set up to relabel the superpixels into semantically-coherent segments. In the graph-based model, RGB-D proximity, texture similarity, and boundary continuity are incorporated into the smoothness term to exploit the correlations of neighboring superpixels. To obtain a compact labeling, the label term is designed to penalize labels linking to similar superpixels that likely belong to the same object. Both the proposed 3-D geometry enhanced superpixel clustering method and the graph-based merging method from superpixels are evaluated by qualitative and quantitative results. By the fusion of color and depth information, the proposed method achieves superior segmentation performance over several state-of-the-art algorithms.
The ergodicity landscape of quantum theories
NASA Astrophysics Data System (ADS)
Ho, Wen Wei; Radičević, Đorđe
2018-02-01
This paper is a physicist’s review of the major conceptual issues concerning the problem of spectral universality in quantum systems. Here, we present a unified, graph-based view of all archetypical models of such universality (billiards, particles in random media, interacting spin or fermion systems). We find phenomenological relations between the onset of ergodicity (Gaussian-random delocalization of eigenstates) and the structure of the appropriate graphs, and we construct a heuristic picture of summing trajectories on graphs that describes why a generic interacting system should be ergodic. We also provide an operator-based discussion of quantum chaos and propose criteria to distinguish bases that can usefully diagnose ergodicity. The result of this analysis is a rough but systematic outline of how ergodicity changes across the space of all theories with a given Hilbert space dimension. As a particular example, we study the SYK model and report on the transition from maximal to partial ergodicity as the disorder strength is decreased.
Improved segmentation of abnormal cervical nuclei using a graph-search based approach
NASA Astrophysics Data System (ADS)
Zhang, Ling; Liu, Shaoxiong; Wang, Tianfu; Chen, Siping; Sonka, Milan
2015-03-01
Reliable segmentation of abnormal nuclei in cervical cytology is of paramount importance in automation-assisted screening techniques. This paper presents a general method for improving the segmentation of abnormal nuclei using a graph-search based approach. More specifically, the proposed method focuses on the improvement of coarse (initial) segmentation. The improvement relies on a transform that maps round-like border in the Cartesian coordinate system into lines in the polar coordinate system. The costs consisting of nucleus-specific edge and region information are assigned to the nodes. The globally optimal path in the constructed graph is then identified by dynamic programming. We have tested the proposed method on abnormal nuclei from two cervical cell image datasets, Herlev and H and E stained liquid-based cytology (HELBC), and the comparative experiments with recent state-of-the-art approaches demonstrate the superior performance of the proposed method.
Visibility Graph Based Time Series Analysis.
Stephen, Mutua; Gu, Changgui; Yang, Huijie
2015-01-01
Network based time series analysis has made considerable achievements in the recent years. By mapping mono/multivariate time series into networks, one can investigate both it's microscopic and macroscopic behaviors. However, most proposed approaches lead to the construction of static networks consequently providing limited information on evolutionary behaviors. In the present paper we propose a method called visibility graph based time series analysis, in which series segments are mapped to visibility graphs as being descriptions of the corresponding states and the successively occurring states are linked. This procedure converts a time series to a temporal network and at the same time a network of networks. Findings from empirical records for stock markets in USA (S&P500 and Nasdaq) and artificial series generated by means of fractional Gaussian motions show that the method can provide us rich information benefiting short-term and long-term predictions. Theoretically, we propose a method to investigate time series from the viewpoint of network of networks.
Graph-based biomedical text summarization: An itemset mining and sentence clustering approach.
Nasr Azadani, Mozhgan; Ghadiri, Nasser; Davoodijam, Ensieh
2018-06-12
Automatic text summarization offers an efficient solution to access the ever-growing amounts of both scientific and clinical literature in the biomedical domain by summarizing the source documents while maintaining their most informative contents. In this paper, we propose a novel graph-based summarization method that takes advantage of the domain-specific knowledge and a well-established data mining technique called frequent itemset mining. Our summarizer exploits the Unified Medical Language System (UMLS) to construct a concept-based model of the source document and mapping the document to the concepts. Then, it discovers frequent itemsets to take the correlations among multiple concepts into account. The method uses these correlations to propose a similarity function based on which a represented graph is constructed. The summarizer then employs a minimum spanning tree based clustering algorithm to discover various subthemes of the document. Eventually, it generates the final summary by selecting the most informative and relative sentences from all subthemes within the text. We perform an automatic evaluation over a large number of summaries using the Recall-Oriented Understudy for Gisting Evaluation (ROUGE) metrics. The results demonstrate that the proposed summarization system outperforms various baselines and benchmark approaches. The carried out research suggests that the incorporation of domain-specific knowledge and frequent itemset mining equips the summarization system in a better way to address the informativeness measurement of the sentences. Moreover, clustering the graph nodes (sentences) can enable the summarizer to target different main subthemes of a source document efficiently. The evaluation results show that the proposed approach can significantly improve the performance of the summarization systems in the biomedical domain. Copyright © 2018. Published by Elsevier Inc.
F-RAG: Generating Atomic Coordinates from RNA Graphs by Fragment Assembly.
Jain, Swati; Schlick, Tamar
2017-11-24
Coarse-grained models represent attractive approaches to analyze and simulate ribonucleic acid (RNA) molecules, for example, for structure prediction and design, as they simplify the RNA structure to reduce the conformational search space. Our structure prediction protocol RAGTOP (RNA-As-Graphs Topology Prediction) represents RNA structures as tree graphs and samples graph topologies to produce candidate graphs. However, for a more detailed study and analysis, construction of atomic from coarse-grained models is required. Here we present our graph-based fragment assembly algorithm (F-RAG) to convert candidate three-dimensional (3D) tree graph models, produced by RAGTOP into atomic structures. We use our related RAG-3D utilities to partition graphs into subgraphs and search for structurally similar atomic fragments in a data set of RNA 3D structures. The fragments are edited and superimposed using common residues, full atomic models are scored using RAGTOP's knowledge-based potential, and geometries of top scoring models is optimized. To evaluate our models, we assess all-atom RMSDs and Interaction Network Fidelity (a measure of residue interactions) with respect to experimentally solved structures and compare our results to other fragment assembly programs. For a set of 50 RNA structures, we obtain atomic models with reasonable geometries and interactions, particularly good for RNAs containing junctions. Additional improvements to our protocol and databases are outlined. These results provide a good foundation for further work on RNA structure prediction and design applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Unimodular lattice triangulations as small-world and scale-free random graphs
NASA Astrophysics Data System (ADS)
Krüger, B.; Schmidt, E. M.; Mecke, K.
2015-02-01
Real-world networks, e.g., the social relations or world-wide-web graphs, exhibit both small-world and scale-free behaviour. We interpret lattice triangulations as planar graphs by identifying triangulation vertices with graph nodes and one-dimensional simplices with edges. Since these triangulations are ergodic with respect to a certain Pachner flip, applying different Monte Carlo simulations enables us to calculate average properties of random triangulations, as well as canonical ensemble averages, using an energy functional that is approximately the variance of the degree distribution. All considered triangulations have clustering coefficients comparable with real-world graphs; for the canonical ensemble there are inverse temperatures with small shortest path length independent of system size. Tuning the inverse temperature to a quasi-critical value leads to an indication of scale-free behaviour for degrees k≥slant 5. Using triangulations as a random graph model can improve the understanding of real-world networks, especially if the actual distance of the embedded nodes becomes important.
Network reconstruction via graph blending
NASA Astrophysics Data System (ADS)
Estrada, Rolando
2016-05-01
Graphs estimated from empirical data are often noisy and incomplete due to the difficulty of faithfully observing all the components (nodes and edges) of the true graph. This problem is particularly acute for large networks where the number of components may far exceed available surveillance capabilities. Errors in the observed graph can render subsequent analyses invalid, so it is vital to develop robust methods that can minimize these observational errors. Errors in the observed graph may include missing and spurious components, as well fused (multiple nodes are merged into one) and split (a single node is misinterpreted as many) nodes. Traditional graph reconstruction methods are only able to identify missing or spurious components (primarily edges, and to a lesser degree nodes), so we developed a novel graph blending framework that allows us to cast the full estimation problem as a simple edge addition/deletion problem. Armed with this framework, we systematically investigate the viability of various topological graph features, such as the degree distribution or the clustering coefficients, and existing graph reconstruction methods for tackling the full estimation problem. Our experimental results suggest that incorporating any topological feature as a source of information actually hinders reconstruction accuracy. We provide a theoretical analysis of this phenomenon and suggest several avenues for improving this estimation problem.
NASA Astrophysics Data System (ADS)
Cruz-Roa, Angel; Xu, Jun; Madabhushi, Anant
2015-01-01
Nuclear architecture or the spatial arrangement of individual cancer nuclei on histopathology images has been shown to be associated with different grades and differential risk for a number of solid tumors such as breast, prostate, and oropharyngeal. Graph-based representations of individual nuclei (nuclei representing the graph nodes) allows for mining of quantitative metrics to describe tumor morphology. These graph features can be broadly categorized into global and local depending on the type of graph construction method. While a number of local graph (e.g. Cell Cluster Graphs) and global graph (e.g. Voronoi, Delaunay Triangulation, Minimum Spanning Tree) features have been shown to associated with cancer grade, risk, and outcome for different cancer types, the sensitivity of the preceding segmentation algorithms in identifying individual nuclei can have a significant bearing on the discriminability of the resultant features. This therefore begs the question as to which features while being discriminative of cancer grade and aggressiveness are also the most resilient to the segmentation errors. These properties are particularly desirable in the context of digital pathology images, where the method of slide preparation, staining, and type of nuclear segmentation algorithm employed can all dramatically affect the quality of the nuclear graphs and corresponding features. In this paper we evaluated the trade off between discriminability and stability of both global and local graph-based features in conjunction with a few different segmentation algorithms and in the context of two different histopathology image datasets of breast cancer from whole-slide images (WSI) and tissue microarrays (TMA). Specifically in this paper we investigate a few different performance measures including stability, discriminability and stability vs discriminability trade off, all of which are based on p-values from the Kruskal-Wallis one-way analysis of variance for local and global graph features. Apart from identifying the set of local and global features that satisfied the trade off between stability and discriminability, our most interesting finding was that a simple segmentation method was sufficient to identify the most discriminant features for invasive tumour detection in TMAs, whereas for tumour grading in WSI, the graph based features were more sensitive to the accuracy of the segmentation algorithm employed.
Topological evolution of the internet public opinion
NASA Astrophysics Data System (ADS)
Lian, Ying; Dong, Xuefan; Liu, Yijun
2017-11-01
The Internet forms a platform featured with high liquidity, accessibility and concealment for the public to express their respective views on certain events, thus leading to a large network graph. Due to such environmental features, the public opinions formed on the Internet are different from those on traditional media. Studies focusing on the former area are relatively fewer. In addition, the majority of existing methods proposed for constructing the Internet public opinion topological structure are based on the classic BA model, thus resulting in drawbacks in the range of simplicity and a lack of strict deduction. Therefore, based on the complex networks theory, a model applied to describe the topology of the Internet public opinion is deduced with rigorous derivation in the present paper. Results show that the proposed expression could well reflect the degree distribution of Internet public opinion which follows an analogous power law distribution, and that the peak value and the degree distribution are not correlative to each other. Moreover, it has been also proved that compared to the classic BA model, the proposed model has better accuracy performance in the description of the degree distribution of the Internet public opinion, which contributes to future studies focusing on this area. Thus, an attempt has been made to give the first theoretical description of the Internet public opinion topology in the present paper. In addition, it is also the first paper focusing on the solution of networks degree distribution with an exponential growth form.
Vertex centrality as a measure of information flow in Italian Corporate Board Networks
NASA Astrophysics Data System (ADS)
Grassi, Rosanna
2010-06-01
The aim of this article is to investigate the governance models of companies listed on the Italian Stock Exchange by using a network approach, which describes the interlinks between boards of directors. Following mainstream literature, I construct a weighted graph representing the listed companies (vertices) and their relationships (weighted edges), the Corporate Board Network; I then apply three different vertex centrality measures: degree, betweenness and flow betweenness. What emerges from the network construction and by applying the degree centrality is a structure with a large number of connections but not particularly dense, where the presence of a small number of highly connected nodes (hubs) is evident. Then I focus on betweenness and flow betweenness; indeed I expect that these centrality measures may give a representation of the intensity of the relationship between companies, capturing the volume of information flowing from one vertex to another. Finally, I investigate the possible scale-free structure of the network.
Multifractal analysis of visibility graph-based Ito-related connectivity time series.
Czechowski, Zbigniew; Lovallo, Michele; Telesca, Luciano
2016-02-01
In this study, we investigate multifractal properties of connectivity time series resulting from the visibility graph applied to normally distributed time series generated by the Ito equations with multiplicative power-law noise. We show that multifractality of the connectivity time series (i.e., the series of numbers of links outgoing any node) increases with the exponent of the power-law noise. The multifractality of the connectivity time series could be due to the width of connectivity degree distribution that can be related to the exit time of the associated Ito time series. Furthermore, the connectivity time series are characterized by persistence, although the original Ito time series are random; this is due to the procedure of visibility graph that, connecting the values of the time series, generates persistence but destroys most of the nonlinear correlations. Moreover, the visibility graph is sensitive for detecting wide "depressions" in input time series.
On the design of a hierarchical SS7 network: A graph theoretical approach
NASA Astrophysics Data System (ADS)
Krauss, Lutz; Rufa, Gerhard
1994-04-01
This contribution is concerned with the design of Signaling System No. 7 networks based on graph theoretical methods. A hierarchical network topology is derived by combining the advantage of the hierarchical network structure with the realization of node disjoint routes between nodes of the network. By using specific features of this topology, we develop an algorithm to construct circle-free routing data and to assure bidirectionality also in case of failure situations. The methods described are based on the requirements that the network topology, as well as the routing data, may be easily changed.
Building dynamic population graph for accurate correspondence detection.
Du, Shaoyi; Guo, Yanrong; Sanroma, Gerard; Ni, Dong; Wu, Guorong; Shen, Dinggang
2015-12-01
In medical imaging studies, there is an increasing trend for discovering the intrinsic anatomical difference across individual subjects in a dataset, such as hand images for skeletal bone age estimation. Pair-wise matching is often used to detect correspondences between each individual subject and a pre-selected model image with manually-placed landmarks. However, the large anatomical variability across individual subjects can easily compromise such pair-wise matching step. In this paper, we present a new framework to simultaneously detect correspondences among a population of individual subjects, by propagating all manually-placed landmarks from a small set of model images through a dynamically constructed image graph. Specifically, we first establish graph links between models and individual subjects according to pair-wise shape similarity (called as forward step). Next, we detect correspondences for the individual subjects with direct links to any of model images, which is achieved by a new multi-model correspondence detection approach based on our recently-published sparse point matching method. To correct those inaccurate correspondences, we further apply an error detection mechanism to automatically detect wrong correspondences and then update the image graph accordingly (called as backward step). After that, all subject images with detected correspondences are included into the set of model images, and the above two steps of graph expansion and error correction are repeated until accurate correspondences for all subject images are established. Evaluations on real hand X-ray images demonstrate that our proposed method using a dynamic graph construction approach can achieve much higher accuracy and robustness, when compared with the state-of-the-art pair-wise correspondence detection methods as well as a similar method but using static population graph. Copyright © 2015 Elsevier B.V. All rights reserved.
Measuring Graph Comprehension, Critique, and Construction in Science
ERIC Educational Resources Information Center
Lai, Kevin; Cabrera, Julio; Vitale, Jonathan M.; Madhok, Jacquie; Tinker, Robert; Linn, Marcia C.
2016-01-01
Interpreting and creating graphs plays a critical role in scientific practice. The K-12 Next Generation Science Standards call for students to use graphs for scientific modeling, reasoning, and communication. To measure progress on this dimension, we need valid and reliable measures of graph understanding in science. In this research, we designed…
Distributed Sensing and Processing: A Graphical Model Approach
2005-11-30
that Ramanujan graph toplogies maximize the convergence rate of distributed detection consensus algorithms, improving over three orders of...small world type network designs. 14. SUBJECT TERMS Ramanujan graphs, sensor network topology, sensor network...that Ramanujan graphs, for which there are explicit algebraic constructions, have large eigenratios, converging much faster than structured graphs
Fractal analysis of the short time series in a visibility graph method
NASA Astrophysics Data System (ADS)
Li, Ruixue; Wang, Jiang; Yu, Haitao; Deng, Bin; Wei, Xile; Chen, Yingyuan
2016-05-01
The aim of this study is to evaluate the performance of the visibility graph (VG) method on short fractal time series. In this paper, the time series of Fractional Brownian motions (fBm), characterized by different Hurst exponent H, are simulated and then mapped into a scale-free visibility graph, of which the degree distributions show the power-law form. The maximum likelihood estimation (MLE) is applied to estimate power-law indexes of degree distribution, and in this progress, the Kolmogorov-Smirnov (KS) statistic is used to test the performance of estimation of power-law index, aiming to avoid the influence of droop head and heavy tail in degree distribution. As a result, we find that the MLE gives an optimal estimation of power-law index when KS statistic reaches its first local minimum. Based on the results from KS statistic, the relationship between the power-law index and the Hurst exponent is reexamined and then amended to meet short time series. Thus, a method combining VG, MLE and KS statistics is proposed to estimate Hurst exponents from short time series. Lastly, this paper also offers an exemplification to verify the effectiveness of the combined method. In addition, the corresponding results show that the VG can provide a reliable estimation of Hurst exponents.
Differentials on graph complexes II: hairy graphs
NASA Astrophysics Data System (ADS)
Khoroshkin, Anton; Willwacher, Thomas; Živković, Marko
2017-10-01
We study the cohomology of the hairy graph complexes which compute the rational homotopy of embedding spaces, generalizing the Vassiliev invariants of knot theory. We provide spectral sequences converging to zero whose first pages contain the hairy graph cohomology. Our results yield a way to construct many nonzero hairy graph cohomology classes out of (known) non-hairy classes by studying the cancellations in those sequences. This provide a first glimpse at the tentative global structure of the hairy graph cohomology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coram, Jamie L.; Morrow, James D.; Perkins, David Nikolaus
2015-09-01
This document describes the PANTHER R&D Application, a proof-of-concept user interface application developed under the PANTHER Grand Challenge LDRD. The purpose of the application is to explore interaction models for graph analytics, drive algorithmic improvements from an end-user point of view, and support demonstration of PANTHER technologies to potential customers. The R&D Application implements a graph-centric interaction model that exposes analysts to the algorithms contained within the GeoGraphy graph analytics library. Users define geospatial-temporal semantic graph queries by constructing search templates based on nodes, edges, and the constraints among them. Users then analyze the results of the queries using bothmore » geo-spatial and temporal visualizations. Development of this application has made user experience an explicit driver for project and algorithmic level decisions that will affect how analysts one day make use of PANTHER technologies.« less
Integer sequence discovery from small graphs
Hoppe, Travis; Petrone, Anna
2015-01-01
We have exhaustively enumerated all simple, connected graphs of a finite order and have computed a selection of invariants over this set. Integer sequences were constructed from these invariants and checked against the Online Encyclopedia of Integer Sequences (OEIS). 141 new sequences were added and six sequences were extended. From the graph database, we were able to programmatically suggest relationships among the invariants. It will be shown that we can readily visualize any sequence of graphs with a given criteria. The code has been released as an open-source framework for further analysis and the database was constructed to be extensible to invariants not considered in this work. PMID:27034526
NASA Technical Reports Server (NTRS)
Butler, Ricky W.; Sjogren, Jon A.
1998-01-01
This paper documents the NASA Langley PVS graph theory library. The library provides fundamental definitions for graphs, subgraphs, walks, paths, subgraphs generated by walks, trees, cycles, degree, separating sets, and four notions of connectedness. Theorems provided include Ramsey's and Menger's and the equivalence of all four notions of connectedness.
US GeoData Available Through the Internet
,
2000-01-01
The U.S. Geological Survey (USGS) offers certain US GeoData data sets through the Internet. They can be retrieved using the World Wide Web or anonymous File Transfer Protocol (FTP). The data bases and their directory paths are as follows: * 1:24,000-scale digital line graph data in SDTS format (/pub/data/DLG/24K) * 1:2,000,000-scale digital line graph data in SDTS format (/pub/data/DLG/2M) * 1:100,000-scale digital line graph data (/pub/data/DLG/100K) * 1:100,000-scale land use and land cover data (/pub/data/LULC/100K) * 1:250,000-scale land use and land cover data (/pub/data/LULC/250K) * 1-degree digital elevation model data (/pub/data/DEM/250)
SemaTyP: a knowledge graph based literature mining method for drug discovery.
Sang, Shengtian; Yang, Zhihao; Wang, Lei; Liu, Xiaoxia; Lin, Hongfei; Wang, Jian
2018-05-30
Drug discovery is the process through which potential new medicines are identified. High-throughput screening and computer-aided drug discovery/design are the two main drug discovery methods for now, which have successfully discovered a series of drugs. However, development of new drugs is still an extremely time-consuming and expensive process. Biomedical literature contains important clues for the identification of potential treatments. It could support experts in biomedicine on their way towards new discoveries. Here, we propose a biomedical knowledge graph-based drug discovery method called SemaTyP, which discovers candidate drugs for diseases by mining published biomedical literature. We first construct a biomedical knowledge graph with the relations extracted from biomedical abstracts, then a logistic regression model is trained by learning the semantic types of paths of known drug therapies' existing in the biomedical knowledge graph, finally the learned model is used to discover drug therapies for new diseases. The experimental results show that our method could not only effectively discover new drug therapies for new diseases, but also could provide the potential mechanism of action of the candidate drugs. In this paper we propose a novel knowledge graph based literature mining method for drug discovery. It could be a supplementary method for current drug discovery methods.
Graph-based structural change detection for rotating machinery monitoring
NASA Astrophysics Data System (ADS)
Lu, Guoliang; Liu, Jie; Yan, Peng
2018-01-01
Detection of structural changes is critically important in operational monitoring of a rotating machine. This paper presents a novel framework for this purpose, where a graph model for data modeling is adopted to represent/capture statistical dynamics in machine operations. Meanwhile we develop a numerical method for computing temporal anomalies in the constructed graphs. The martingale-test method is employed for the change detection when making decisions on possible structural changes, where excellent performance is demonstrated outperforming exciting results such as the autoregressive-integrated-moving average (ARIMA) model. Comprehensive experimental results indicate good potentials of the proposed algorithm in various engineering applications. This work is an extension of a recent result (Lu et al., 2017).
Detecting community structure via the maximal sub-graphs and belonging degrees in complex networks
NASA Astrophysics Data System (ADS)
Cui, Yaozu; Wang, Xingyuan; Eustace, Justine
2014-12-01
Community structure is a common phenomenon in complex networks, and it has been shown that some communities in complex networks often overlap each other. So in this paper we propose a new algorithm to detect overlapping community structure in complex networks. To identify the overlapping community structure, our algorithm firstly extracts fully connected sub-graphs which are maximal sub-graphs from original networks. Then two maximal sub-graphs having the key pair-vertices can be merged into a new larger sub-graph using some belonging degree functions. Furthermore we extend the modularity function to evaluate the proposed algorithm. In addition, overlapping nodes between communities are founded successfully. Finally we report the comparison between the modularity and the computational complexity of the proposed algorithm with some other existing algorithms. The experimental results show that the proposed algorithm gives satisfactory results.
Measuring geographic segregation: a graph-based approach
NASA Astrophysics Data System (ADS)
Hong, Seong-Yun; Sadahiro, Yukio
2014-04-01
Residential segregation is a multidimensional phenomenon that encompasses several conceptually distinct aspects of geographical separation between populations. While various indices have been developed as a response to different definitions of segregation, the reliance on such single-figure indices could oversimplify the complex, multidimensional phenomena. In this regard, this paper suggests an alternative graph-based approach that provides more detailed information than simple indices: The concentration profile graphically conveys information about how evenly a population group is distributed over the study region, and the spatial proximity profile depicts the degree of clustering across different threshold levels. These graphs can also be summarized into single numbers for comparative purposes, but the interpretation can be more accurate by inspecting the additional information. To demonstrate the use of these methods, the residential patterns of three major ethnic groups in Auckland, namely Māori, Pacific peoples, and Asians, are examined using the 2006 census data.
NASA Astrophysics Data System (ADS)
Yin, Y.; Sonka, M.
2010-03-01
A novel method is presented for definition of search lines in a variety of surface segmentation approaches. The method is inspired by properties of electric field direction lines and is applicable to general-purpose n-D shapebased image segmentation tasks. Its utility is demonstrated in graph construction and optimal segmentation of multiple mutually interacting objects. The properties of the electric field-based graph construction guarantee that inter-object graph connecting lines are non-intersecting and inherently covering the entire object-interaction space. When applied to inter-object cross-surface mapping, our approach generates one-to-one and all-to-all vertex correspondent pairs between the regions of mutual interaction. We demonstrate the benefits of the electric field approach in several examples ranging from relatively simple single-surface segmentation to complex multiobject multi-surface segmentation of femur-tibia cartilage. The performance of our approach is demonstrated in 60 MR images from the Osteoarthritis Initiative (OAI), in which our approach achieved a very good performance as judged by surface positioning errors (average of 0.29 and 0.59 mm for signed and unsigned cartilage positioning errors, respectively).
Construction of phylogenetic trees by kernel-based comparative analysis of metabolic networks.
Oh, S June; Joung, Je-Gun; Chang, Jeong-Ho; Zhang, Byoung-Tak
2006-06-06
To infer the tree of life requires knowledge of the common characteristics of each species descended from a common ancestor as the measuring criteria and a method to calculate the distance between the resulting values of each measure. Conventional phylogenetic analysis based on genomic sequences provides information about the genetic relationships between different organisms. In contrast, comparative analysis of metabolic pathways in different organisms can yield insights into their functional relationships under different physiological conditions. However, evaluating the similarities or differences between metabolic networks is a computationally challenging problem, and systematic methods of doing this are desirable. Here we introduce a graph-kernel method for computing the similarity between metabolic networks in polynomial time, and use it to profile metabolic pathways and to construct phylogenetic trees. To compare the structures of metabolic networks in organisms, we adopted the exponential graph kernel, which is a kernel-based approach with a labeled graph that includes a label matrix and an adjacency matrix. To construct the phylogenetic trees, we used an unweighted pair-group method with arithmetic mean, i.e., a hierarchical clustering algorithm. We applied the kernel-based network profiling method in a comparative analysis of nine carbohydrate metabolic networks from 81 biological species encompassing Archaea, Eukaryota, and Eubacteria. The resulting phylogenetic hierarchies generally support the tripartite scheme of three domains rather than the two domains of prokaryotes and eukaryotes. By combining the kernel machines with metabolic information, the method infers the context of biosphere development that covers physiological events required for adaptation by genetic reconstruction. The results show that one may obtain a global view of the tree of life by comparing the metabolic pathway structures using meta-level information rather than sequence information. This method may yield further information about biological evolution, such as the history of horizontal transfer of each gene, by studying the detailed structure of the phylogenetic tree constructed by the kernel-based method.
Cluster Tails for Critical Power-Law Inhomogeneous Random Graphs
NASA Astrophysics Data System (ADS)
van der Hofstad, Remco; Kliem, Sandra; van Leeuwaarden, Johan S. H.
2018-04-01
Recently, the scaling limit of cluster sizes for critical inhomogeneous random graphs of rank-1 type having finite variance but infinite third moment degrees was obtained in Bhamidi et al. (Ann Probab 40:2299-2361, 2012). It was proved that when the degrees obey a power law with exponent τ \\in (3,4), the sequence of clusters ordered in decreasing size and multiplied through by n^{-(τ -2)/(τ -1)} converges as n→ ∞ to a sequence of decreasing non-degenerate random variables. Here, we study the tails of the limit of the rescaled largest cluster, i.e., the probability that the scaling limit of the largest cluster takes a large value u, as a function of u. This extends a related result of Pittel (J Combin Theory Ser B 82(2):237-269, 2001) for the Erdős-Rényi random graph to the setting of rank-1 inhomogeneous random graphs with infinite third moment degrees. We make use of delicate large deviations and weak convergence arguments.
Durand, Patrick; Labarre, Laurent; Meil, Alain; Divo, Jean-Louis; Vandenbrouck, Yves; Viari, Alain; Wojcik, Jérôme
2006-01-17
A large variety of biological data can be represented by graphs. These graphs can be constructed from heterogeneous data coming from genomic and post-genomic technologies, but there is still need for tools aiming at exploring and analysing such graphs. This paper describes GenoLink, a software platform for the graphical querying and exploration of graphs. GenoLink provides a generic framework for representing and querying data graphs. This framework provides a graph data structure, a graph query engine, allowing to retrieve sub-graphs from the entire data graph, and several graphical interfaces to express such queries and to further explore their results. A query consists in a graph pattern with constraints attached to the vertices and edges. A query result is the set of all sub-graphs of the entire data graph that are isomorphic to the pattern and satisfy the constraints. The graph data structure does not rely upon any particular data model but can dynamically accommodate for any user-supplied data model. However, for genomic and post-genomic applications, we provide a default data model and several parsers for the most popular data sources. GenoLink does not require any programming skill since all operations on graphs and the analysis of the results can be carried out graphically through several dedicated graphical interfaces. GenoLink is a generic and interactive tool allowing biologists to graphically explore various sources of information. GenoLink is distributed either as a standalone application or as a component of the Genostar/Iogma platform. Both distributions are free for academic research and teaching purposes and can be requested at academy@genostar.com. A commercial licence form can be obtained for profit company at info@genostar.com. See also http://www.genostar.org.
Durand, Patrick; Labarre, Laurent; Meil, Alain; Divo1, Jean-Louis; Vandenbrouck, Yves; Viari, Alain; Wojcik, Jérôme
2006-01-01
Background A large variety of biological data can be represented by graphs. These graphs can be constructed from heterogeneous data coming from genomic and post-genomic technologies, but there is still need for tools aiming at exploring and analysing such graphs. This paper describes GenoLink, a software platform for the graphical querying and exploration of graphs. Results GenoLink provides a generic framework for representing and querying data graphs. This framework provides a graph data structure, a graph query engine, allowing to retrieve sub-graphs from the entire data graph, and several graphical interfaces to express such queries and to further explore their results. A query consists in a graph pattern with constraints attached to the vertices and edges. A query result is the set of all sub-graphs of the entire data graph that are isomorphic to the pattern and satisfy the constraints. The graph data structure does not rely upon any particular data model but can dynamically accommodate for any user-supplied data model. However, for genomic and post-genomic applications, we provide a default data model and several parsers for the most popular data sources. GenoLink does not require any programming skill since all operations on graphs and the analysis of the results can be carried out graphically through several dedicated graphical interfaces. Conclusion GenoLink is a generic and interactive tool allowing biologists to graphically explore various sources of information. GenoLink is distributed either as a standalone application or as a component of the Genostar/Iogma platform. Both distributions are free for academic research and teaching purposes and can be requested at academy@genostar.com. A commercial licence form can be obtained for profit company at info@genostar.com. See also . PMID:16417636
a Super Voxel-Based Riemannian Graph for Multi Scale Segmentation of LIDAR Point Clouds
NASA Astrophysics Data System (ADS)
Li, Minglei
2018-04-01
Automatically segmenting LiDAR points into respective independent partitions has become a topic of great importance in photogrammetry, remote sensing and computer vision. In this paper, we cast the problem of point cloud segmentation as a graph optimization problem by constructing a Riemannian graph. The scale space of the observed scene is explored by an octree-based over-segmentation with different depths. The over-segmentation produces many super voxels which restrict the structure of the scene and will be used as nodes of the graph. The Kruskal coordinates are used to compute edge weights that are proportional to the geodesic distance between nodes. Then we compute the edge-weight matrix in which the elements reflect the sectional curvatures associated with the geodesic paths between super voxel nodes on the scene surface. The final segmentation results are generated by clustering similar super voxels and cutting off the weak edges in the graph. The performance of this method was evaluated on LiDAR point clouds for both indoor and outdoor scenes. Additionally, extensive comparisons to state of the art techniques show that our algorithm outperforms on many metrics.
Graphical Solution of Polynomial Equations
ERIC Educational Resources Information Center
Grishin, Anatole
2009-01-01
Graphing utilities, such as the ubiquitous graphing calculator, are often used in finding the approximate real roots of polynomial equations. In this paper the author offers a simple graphing technique that allows one to find all solutions of a polynomial equation (1) of arbitrary degree; (2) with real or complex coefficients; and (3) possessing…
Picture grammars in classification and semantic interpretation of 3D coronary vessels visualisations
NASA Astrophysics Data System (ADS)
Ogiela, M. R.; Tadeusiewicz, R.; Trzupek, M.
2009-09-01
The work presents the new opportunity for making semantic descriptions and analysis of medical structures, especially coronary vessels CT spatial reconstructions, with the use of AI graph-based linguistic formalisms. In the paper there will be discussed the manners of applying methods of computational intelligence to the development of a syntactic semantic description of spatial visualisations of the heart's coronary vessels. Such descriptions may be used for both smart ordering of images while archiving them and for their semantic searches in medical multimedia databases. Presented methodology of analysis can furthermore be used for attaining other goals related performance of computer-assisted semantic interpretation of selected elements and/or the entire 3D structure of the coronary vascular tree. These goals are achieved through the use of graph-based image formalisms based on IE graphs generating grammars that allow discovering and automatic semantic interpretation of irregularities visualised on the images obtained during diagnostic examinations of the heart muscle. The basis for the construction of 3D reconstructions of biological objects used in this work are visualisations obtained from helical CT scans, yet the method itself may be applied also for other methods of medical 3D images acquisition. The obtained semantic information makes it possible to make a description of the structure focused on the semantics of various morphological forms of the visualised vessels from the point of view of the operation of coronary circulation and the blood supply of the heart muscle. Thanks to these, the analysis conducted allows fast and — to a great degree — automated interpretation of the semantics of various morphological changes in the coronary vascular tree, and especially makes it possible to detect these stenoses in the lumen of the vessels that can cause critical decrease in blood supply to extensive or especially important fragments of the heart muscle.
A Random Walk Approach to Query Informative Constraints for Clustering.
Abin, Ahmad Ali
2017-08-09
This paper presents a random walk approach to the problem of querying informative constraints for clustering. The proposed method is based on the properties of the commute time, that is the expected time taken for a random walk to travel between two nodes and return, on the adjacency graph of data. Commute time has the nice property of that, the more short paths connect two given nodes in a graph, the more similar those nodes are. Since computing the commute time takes the Laplacian eigenspectrum into account, we use this property in a recursive fashion to query informative constraints for clustering. At each recursion, the proposed method constructs the adjacency graph of data and utilizes the spectral properties of the commute time matrix to bipartition the adjacency graph. Thereafter, the proposed method benefits from the commute times distance on graph to query informative constraints between partitions. This process iterates for each partition until the stop condition becomes true. Experiments on real-world data show the efficiency of the proposed method for constraints selection.
Learning locality preserving graph from data.
Zhang, Yan-Ming; Huang, Kaizhu; Hou, Xinwen; Liu, Cheng-Lin
2014-11-01
Machine learning based on graph representation, or manifold learning, has attracted great interest in recent years. As the discrete approximation of data manifold, the graph plays a crucial role in these kinds of learning approaches. In this paper, we propose a novel learning method for graph construction, which is distinct from previous methods in that it solves an optimization problem with the aim of directly preserving the local information of the original data set. We show that the proposed objective has close connections with the popular Laplacian Eigenmap problem, and is hence well justified. The optimization turns out to be a quadratic programming problem with n(n-1)/2 variables (n is the number of data points). Exploiting the sparsity of the graph, we further propose a more efficient cutting plane algorithm to solve the problem, making the method better scalable in practice. In the context of clustering and semi-supervised learning, we demonstrated the advantages of our proposed method by experiments.
Pattern recognition tool based on complex network-based approach
NASA Astrophysics Data System (ADS)
Casanova, Dalcimar; Backes, André Ricardo; Martinez Bruno, Odemir
2013-02-01
This work proposed a generalization of the method proposed by the authors: 'A complex network-based approach for boundary shape analysis'. Instead of modelling a contour into a graph and use complex networks rules to characterize it, here, we generalize the technique. This way, the work proposes a mathematical tool for characterization signals, curves and set of points. To evaluate the pattern description power of the proposal, an experiment of plat identification based on leaf veins image are conducted. Leaf vein is a taxon characteristic used to plant identification proposes, and one of its characteristics is that these structures are complex, and difficult to be represented as a signal or curves and this way to be analyzed in a classical pattern recognition approach. Here, we model the veins as a set of points and model as graphs. As features, we use the degree and joint degree measurements in a dynamic evolution. The results demonstrates that the technique has a good power of discrimination and can be used for plant identification, as well as other complex pattern recognition tasks.
Efficient enumeration of monocyclic chemical graphs with given path frequencies
2014-01-01
Background The enumeration of chemical graphs (molecular graphs) satisfying given constraints is one of the fundamental problems in chemoinformatics and bioinformatics because it leads to a variety of useful applications including structure determination and development of novel chemical compounds. Results We consider the problem of enumerating chemical graphs with monocyclic structure (a graph structure that contains exactly one cycle) from a given set of feature vectors, where a feature vector represents the frequency of the prescribed paths in a chemical compound to be constructed and the set is specified by a pair of upper and lower feature vectors. To enumerate all tree-like (acyclic) chemical graphs from a given set of feature vectors, Shimizu et al. and Suzuki et al. proposed efficient branch-and-bound algorithms based on a fast tree enumeration algorithm. In this study, we devise a novel method for extending these algorithms to enumeration of chemical graphs with monocyclic structure by designing a fast algorithm for testing uniqueness. The results of computational experiments reveal that the computational efficiency of the new algorithm is as good as those for enumeration of tree-like chemical compounds. Conclusions We succeed in expanding the class of chemical graphs that are able to be enumerated efficiently. PMID:24955135
On Edge Exchangeable Random Graphs
NASA Astrophysics Data System (ADS)
Janson, Svante
2017-06-01
We study a recent model for edge exchangeable random graphs introduced by Crane and Dempsey; in particular we study asymptotic properties of the random simple graph obtained by merging multiple edges. We study a number of examples, and show that the model can produce dense, sparse and extremely sparse random graphs. One example yields a power-law degree distribution. We give some examples where the random graph is dense and converges a.s. in the sense of graph limit theory, but also an example where a.s. every graph limit is the limit of some subsequence. Another example is sparse and yields convergence to a non-integrable generalized graphon defined on (0,∞).
L1-norm locally linear representation regularization multi-source adaptation learning.
Tao, Jianwen; Wen, Shiting; Hu, Wenjun
2015-09-01
In most supervised domain adaptation learning (DAL) tasks, one has access only to a small number of labeled examples from target domain. Therefore the success of supervised DAL in this "small sample" regime needs the effective utilization of the large amounts of unlabeled data to extract information that is useful for generalization. Toward this end, we here use the geometric intuition of manifold assumption to extend the established frameworks in existing model-based DAL methods for function learning by incorporating additional information about the target geometric structure of the marginal distribution. We would like to ensure that the solution is smooth with respect to both the ambient space and the target marginal distribution. In doing this, we propose a novel L1-norm locally linear representation regularization multi-source adaptation learning framework which exploits the geometry of the probability distribution, which has two techniques. Firstly, an L1-norm locally linear representation method is presented for robust graph construction by replacing the L2-norm reconstruction measure in LLE with L1-norm one, which is termed as L1-LLR for short. Secondly, considering the robust graph regularization, we replace traditional graph Laplacian regularization with our new L1-LLR graph Laplacian regularization and therefore construct new graph-based semi-supervised learning framework with multi-source adaptation constraint, which is coined as L1-MSAL method. Moreover, to deal with the nonlinear learning problem, we also generalize the L1-MSAL method by mapping the input data points from the input space to a high-dimensional reproducing kernel Hilbert space (RKHS) via a nonlinear mapping. Promising experimental results have been obtained on several real-world datasets such as face, visual video and object. Copyright © 2015 Elsevier Ltd. All rights reserved.
Eigenvalues of the Laplacian of a graph
NASA Technical Reports Server (NTRS)
Anderson, W. N., Jr.; Morley, T. D.
1971-01-01
Let G be a finite undirected graph with no loops or multiple edges. The Laplacian matrix of G, Delta(G), is defined by Delta sub ii = degree of vertex i and Delta sub ij = -1 if there is an edge between vertex i and vertex j. The structure of the graph G is related to the eigenvalues of Delta(G); in particular, it is proved that all the eigenvalues of Delta(G) are nonnegative, less than or equal to the number of vertices, and less than or equal to twice the maximum vertex degree. Precise conditions for equality are given.
Spadafore, Maxwell; Najarian, Kayvan; Boyle, Alan P
2017-11-29
Transcription factors (TFs) form a complex regulatory network within the cell that is crucial to cell functioning and human health. While methods to establish where a TF binds to DNA are well established, these methods provide no information describing how TFs interact with one another when they do bind. TFs tend to bind the genome in clusters, and current methods to identify these clusters are either limited in scope, unable to detect relationships beyond motif similarity, or not applied to TF-TF interactions. Here, we present a proximity-based graph clustering approach to identify TF clusters using either ChIP-seq or motif search data. We use TF co-occurrence to construct a filtered, normalized adjacency matrix and use the Markov Clustering Algorithm to partition the graph while maintaining TF-cluster and cluster-cluster interactions. We then apply our graph structure beyond clustering, using it to increase the accuracy of motif-based TFBS searching for an example TF. We show that our method produces small, manageable clusters that encapsulate many known, experimentally validated transcription factor interactions and that our method is capable of capturing interactions that motif similarity methods might miss. Our graph structure is able to significantly increase the accuracy of motif TFBS searching, demonstrating that the TF-TF connections within the graph correlate with biological TF-TF interactions. The interactions identified by our method correspond to biological reality and allow for fast exploration of TF clustering and regulatory dynamics.
Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games
Peña, Jorge; Rochat, Yannick
2012-01-01
By combining evolutionary game theory and graph theory, “games on graphs” study the evolutionary dynamics of frequency-dependent selection in population structures modeled as geographical or social networks. Networks are usually represented by means of unipartite graphs, and social interactions by two-person games such as the famous prisoner’s dilemma. Unipartite graphs have also been used for modeling interactions going beyond pairwise interactions. In this paper, we argue that bipartite graphs are a better alternative to unipartite graphs for describing population structures in evolutionary multiplayer games. To illustrate this point, we make use of bipartite graphs to investigate, by means of computer simulations, the evolution of cooperation under the conventional and the distributed N-person prisoner’s dilemma. We show that several implicit assumptions arising from the standard approach based on unipartite graphs (such as the definition of replacement neighborhoods, the intertwining of individual and group diversity, and the large overlap of interaction neighborhoods) can have a large impact on the resulting evolutionary dynamics. Our work provides a clear example of the importance of construction procedures in games on graphs, of the suitability of bigraphs and hypergraphs for computational modeling, and of the importance of concepts from social network analysis such as centrality, centralization and bipartite clustering for the understanding of dynamical processes occurring on networked population structures. PMID:22970237
NASA Astrophysics Data System (ADS)
Wang, Jiang; Yang, Chen; Wang, Ruofan; Yu, Haitao; Cao, Yibin; Liu, Jing
2016-10-01
In this paper, EEG series are applied to construct functional connections with the correlation between different regions in order to investigate the nonlinear characteristic and the cognitive function of the brain with Alzheimer's disease (AD). First, limited penetrable visibility graph (LPVG) and phase space method map single EEG series into networks, and investigate the underlying chaotic system dynamics of AD brain. Topological properties of the networks are extracted, such as average path length and clustering coefficient. It is found that the network topology of AD in several local brain regions are different from that of the control group with no statistically significant difference existing all over the brain. Furthermore, in order to detect the abnormality of AD brain as a whole, functional connections among different brain regions are reconstructed based on similarity of clustering coefficient sequence (CCSS) of EEG series in the four frequency bands (delta, theta, alpha, and beta), which exhibit obvious small-world properties. Graph analysis demonstrates that for both methodologies, the functional connections between regions of AD brain decrease, particularly in the alpha frequency band. AD causes the graph index complexity of the functional network decreased, the small-world properties weakened, and the vulnerability increased. The obtained results show that the brain functional network constructed by LPVG and phase space method might be more effective to distinguish AD from the normal control than the analysis of single series, which is helpful for revealing the underlying pathological mechanism of the disease.
NASA Astrophysics Data System (ADS)
Sharma, Harshita; Zerbe, Norman; Heim, Daniel; Wienert, Stephan; Lohmann, Sebastian; Hellwich, Olaf; Hufnagl, Peter
2016-03-01
This paper describes a novel graph-based method for efficient representation and subsequent classification in histological whole slide images of gastric cancer. Her2/neu immunohistochemically stained and haematoxylin and eosin stained histological sections of gastric carcinoma are digitized. Immunohistochemical staining is used in practice by pathologists to determine extent of malignancy, however, it is laborious to visually discriminate the corresponding malignancy levels in the more commonly used haematoxylin and eosin stain, and this study attempts to solve this problem using a computer-based method. Cell nuclei are first isolated at high magnification using an automatic cell nuclei segmentation strategy, followed by construction of cell nuclei attributed relational graphs of the tissue regions. These graphs represent tissue architecture comprehensively, as they contain information about cell nuclei morphology as vertex attributes, along with knowledge of neighborhood in the form of edge linking and edge attributes. Global graph characteristics are derived and ensemble learning is used to discriminate between three types of malignancy levels, namely, non-tumor, Her2/neu positive tumor and Her2/neu negative tumor. Performance is compared with state of the art methods including four texture feature groups (Haralick, Gabor, Local Binary Patterns and Varma Zisserman features), color and intensity features, and Voronoi diagram and Delaunay triangulation. Texture, color and intensity information is also combined with graph-based knowledge, followed by correlation analysis. Quantitative assessment is performed using two cross validation strategies. On investigating the experimental results, it can be concluded that the proposed method provides a promising way for computer-based analysis of histopathological images of gastric cancer.
Sudden emergence of q-regular subgraphs in random graphs
NASA Astrophysics Data System (ADS)
Pretti, M.; Weigt, M.
2006-07-01
We investigate the computationally hard problem whether a random graph of finite average vertex degree has an extensively large q-regular subgraph, i.e., a subgraph with all vertices having degree equal to q. We reformulate this problem as a constraint-satisfaction problem, and solve it using the cavity method of statistical physics at zero temperature. For q = 3, we find that the first large q-regular subgraphs appear discontinuously at an average vertex degree c3 - reg simeq 3.3546 and contain immediately about 24% of all vertices in the graph. This transition is extremely close to (but different from) the well-known 3-core percolation point c3 - core simeq 3.3509. For q > 3, the q-regular subgraph percolation threshold is found to coincide with that of the q-core.
Cairelli, Michael J.; Miller, Christopher M.; Fiszman, Marcelo; Workman, T. Elizabeth; Rindflesch, Thomas C.
2013-01-01
Applying the principles of literature-based discovery (LBD), we elucidate the paradox that obesity is beneficial in critical care despite contributing to disease generally. Our approach enhances a previous extension to LBD, called “discovery browsing,” and is implemented using Semantic MEDLINE, which summarizes the results of a PubMed search into an interactive graph of semantic predications. The methodology allows a user to construct argumentation underpinning an answer to a biomedical question by engaging the user in an iterative process between system output and user knowledge. Components of the Semantic MEDLINE output graph identified as “interesting” by the user both contribute to subsequent searches and are constructed into a logical chain of relationships constituting an explanatory network in answer to the initial question. Based on this methodology we suggest that phthalates leached from plastic in critical care interventions activate PPAR gamma, which is anti-inflammatory and abundant in obese patients. PMID:24551329
Reaction Mechanism Generator: Automatic construction of chemical kinetic mechanisms
NASA Astrophysics Data System (ADS)
Gao, Connie W.; Allen, Joshua W.; Green, William H.; West, Richard H.
2016-06-01
Reaction Mechanism Generator (RMG) constructs kinetic models composed of elementary chemical reaction steps using a general understanding of how molecules react. Species thermochemistry is estimated through Benson group additivity and reaction rate coefficients are estimated using a database of known rate rules and reaction templates. At its core, RMG relies on two fundamental data structures: graphs and trees. Graphs are used to represent chemical structures, and trees are used to represent thermodynamic and kinetic data. Models are generated using a rate-based algorithm which excludes species from the model based on reaction fluxes. RMG can generate reaction mechanisms for species involving carbon, hydrogen, oxygen, sulfur, and nitrogen. It also has capabilities for estimating transport and solvation properties, and it automatically computes pressure-dependent rate coefficients and identifies chemically-activated reaction paths. RMG is an object-oriented program written in Python, which provides a stable, robust programming architecture for developing an extensible and modular code base with a large suite of unit tests. Computationally intensive functions are cythonized for speed improvements.
Unsupervised Metric Fusion Over Multiview Data by Graph Random Walk-Based Cross-View Diffusion.
Wang, Yang; Zhang, Wenjie; Wu, Lin; Lin, Xuemin; Zhao, Xiang
2017-01-01
Learning an ideal metric is crucial to many tasks in computer vision. Diverse feature representations may combat this problem from different aspects; as visual data objects described by multiple features can be decomposed into multiple views, thus often provide complementary information. In this paper, we propose a cross-view fusion algorithm that leads to a similarity metric for multiview data by systematically fusing multiple similarity measures. Unlike existing paradigms, we focus on learning distance measure by exploiting a graph structure of data samples, where an input similarity matrix can be improved through a propagation of graph random walk. In particular, we construct multiple graphs with each one corresponding to an individual view, and a cross-view fusion approach based on graph random walk is presented to derive an optimal distance measure by fusing multiple metrics. Our method is scalable to a large amount of data by enforcing sparsity through an anchor graph representation. To adaptively control the effects of different views, we dynamically learn view-specific coefficients, which are leveraged into graph random walk to balance multiviews. However, such a strategy may lead to an over-smooth similarity metric where affinities between dissimilar samples may be enlarged by excessively conducting cross-view fusion. Thus, we figure out a heuristic approach to controlling the iteration number in the fusion process in order to avoid over smoothness. Extensive experiments conducted on real-world data sets validate the effectiveness and efficiency of our approach.
Salem, Saeed; Ozcaglar, Cagri
2014-01-01
Advances in genomic technologies have enabled the accumulation of vast amount of genomic data, including gene expression data for multiple species under various biological and environmental conditions. Integration of these gene expression datasets is a promising strategy to alleviate the challenges of protein functional annotation and biological module discovery based on a single gene expression data, which suffers from spurious coexpression. We propose a joint mining algorithm that constructs a weighted hybrid similarity graph whose nodes are the coexpression links. The weight of an edge between two coexpression links in this hybrid graph is a linear combination of the topological similarities and co-appearance similarities of the corresponding two coexpression links. Clustering the weighted hybrid similarity graph yields recurrent coexpression link clusters (modules). Experimental results on Human gene expression datasets show that the reported modules are functionally homogeneous as evident by their enrichment with biological process GO terms and KEGG pathways.
Using Betweenness Centrality to Identify Manifold Shortcuts
Cukierski, William J.; Foran, David J.
2010-01-01
High-dimensional data presents a challenge to tasks of pattern recognition and machine learning. Dimensionality reduction (DR) methods remove the unwanted variance and make these tasks tractable. Several nonlinear DR methods, such as the well known ISOMAP algorithm, rely on a neighborhood graph to compute geodesic distances between data points. These graphs can contain unwanted edges which connect disparate regions of one or more manifolds. This topological sensitivity is well known [1], [2], [3], yet handling high-dimensional, noisy data in the absence of a priori manifold knowledge, remains an open and difficult problem. This work introduces a divisive, edge-removal method based on graph betweenness centrality which can robustly identify manifold-shorting edges. The problem of graph construction in high dimension is discussed and the proposed algorithm is fit into the ISOMAP workflow. ROC analysis is performed and the performance is tested on synthetic and real datasets. PMID:20607142
A Robust Crowdsourcing-Based Indoor Localization System.
Zhou, Baoding; Li, Qingquan; Mao, Qingzhou; Tu, Wei
2017-04-14
WiFi fingerprinting-based indoor localization has been widely used due to its simplicity and can be implemented on the smartphones. The major drawback of WiFi fingerprinting is that the radio map construction is very labor-intensive and time-consuming. Another drawback of WiFi fingerprinting is the Received Signal Strength (RSS) variance problem, caused by environmental changes and device diversity. RSS variance severely degrades the localization accuracy. In this paper, we propose a robust crowdsourcing-based indoor localization system (RCILS). RCILS can automatically construct the radio map using crowdsourcing data collected by smartphones. RCILS abstracts the indoor map as the semantics graph in which the edges are the possible user paths and the vertexes are the location where users may take special activities. RCILS extracts the activity sequence contained in the trajectories by activity detection and pedestrian dead-reckoning. Based on the semantics graph and activity sequence, crowdsourcing trajectories can be located and a radio map is constructed based on the localization results. For the RSS variance problem, RCILS uses the trajectory fingerprint model for indoor localization. During online localization, RCILS obtains an RSS sequence and realizes localization by matching the RSS sequence with the radio map. To evaluate RCILS, we apply RCILS in an office building. Experiment results demonstrate the efficiency and robustness of RCILS.
A Robust Crowdsourcing-Based Indoor Localization System
Zhou, Baoding; Li, Qingquan; Mao, Qingzhou; Tu, Wei
2017-01-01
WiFi fingerprinting-based indoor localization has been widely used due to its simplicity and can be implemented on the smartphones. The major drawback of WiFi fingerprinting is that the radio map construction is very labor-intensive and time-consuming. Another drawback of WiFi fingerprinting is the Received Signal Strength (RSS) variance problem, caused by environmental changes and device diversity. RSS variance severely degrades the localization accuracy. In this paper, we propose a robust crowdsourcing-based indoor localization system (RCILS). RCILS can automatically construct the radio map using crowdsourcing data collected by smartphones. RCILS abstracts the indoor map as the semantics graph in which the edges are the possible user paths and the vertexes are the location where users may take special activities. RCILS extracts the activity sequence contained in the trajectories by activity detection and pedestrian dead-reckoning. Based on the semantics graph and activity sequence, crowdsourcing trajectories can be located and a radio map is constructed based on the localization results. For the RSS variance problem, RCILS uses the trajectory fingerprint model for indoor localization. During online localization, RCILS obtains an RSS sequence and realizes localization by matching the RSS sequence with the radio map. To evaluate RCILS, we apply RCILS in an office building. Experiment results demonstrate the efficiency and robustness of RCILS. PMID:28420108
Network Reliability: The effect of local network structure on diffusive processes
Youssef, Mina; Khorramzadeh, Yasamin; Eubank, Stephen
2014-01-01
This paper re-introduces the network reliability polynomial – introduced by Moore and Shannon in 1956 – for studying the effect of network structure on the spread of diseases. We exhibit a representation of the polynomial that is well-suited for estimation by distributed simulation. We describe a collection of graphs derived from Erdős-Rényi and scale-free-like random graphs in which we have manipulated assortativity-by-degree and the number of triangles. We evaluate the network reliability for all these graphs under a reliability rule that is related to the expected size of a connected component. Through these extensive simulations, we show that for positively or neutrally assortative graphs, swapping edges to increase the number of triangles does not increase the network reliability. Also, positively assortative graphs are more reliable than neutral or disassortative graphs with the same number of edges. Moreover, we show the combined effect of both assortativity-by-degree and the presence of triangles on the critical point and the size of the smallest subgraph that is reliable. PMID:24329321
Shareholding Networks in Japan
NASA Astrophysics Data System (ADS)
Souma, Wataru; Fujiwara, Yoshi; Aoyama, Hideaki
2005-06-01
The Japanese shareholding network existing at the end of March 2002 is studied empirically. The network is constructed from 2,303 listed companies and 53 non-listed financial institutions. We consider this network as a directed graph by drawing edges from shareholders to stock corporations. The lengths of the shareholder lists vary with the companies, and the most comprehensive lists contain the top 30 shareholders. Consequently, the distribution of incoming edges has an upper bound, while that of outgoing edges has no bound. The distribution of outgoing degrees is well explained by the power law function with an exponential tail. The exponent in the power law range is γ = 1.7. To understand these features from the viewpoint of a company's growth, we consider the correlations between the outgoing degree and the company's age, profit, and total assets.
Hewitt, Robin; Gobbi, Alberto; Lee, Man-Ling
2005-01-01
Relational databases are the current standard for storing and retrieving data in the pharmaceutical and biotech industries. However, retrieving data from a relational database requires specialized knowledge of the database schema and of the SQL query language. At Anadys, we have developed an easy-to-use system for searching and reporting data in a relational database to support our drug discovery project teams. This system is fast and flexible and allows users to access all data without having to write SQL queries. This paper presents the hierarchical, graph-based metadata representation and SQL-construction methods that, together, are the basis of this system's capabilities.
Modeling flow and transport in fracture networks using graphs
NASA Astrophysics Data System (ADS)
Karra, S.; O'Malley, D.; Hyman, J. D.; Viswanathan, H. S.; Srinivasan, G.
2018-03-01
Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizations of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. The good accuracy and the low computational cost, with O (104) times lower times than the DFN, makes the graph algorithm an ideal technique to incorporate in uncertainty quantification methods.
Modeling flow and transport in fracture networks using graphs.
Karra, S; O'Malley, D; Hyman, J D; Viswanathan, H S; Srinivasan, G
2018-03-01
Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizations of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. The good accuracy and the low computational cost, with O(10^{4}) times lower times than the DFN, makes the graph algorithm an ideal technique to incorporate in uncertainty quantification methods.
Modeling flow and transport in fracture networks using graphs
Karra, S.; O'Malley, D.; Hyman, J. D.; ...
2018-03-09
Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizationsmore » of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. In conclusion, the good accuracy and the low computational cost, with O(10 4) times lower times than the DFN, makes the graph algorithm an ideal technique to incorporate in uncertainty quantification methods.« less
Modeling flow and transport in fracture networks using graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karra, S.; O'Malley, D.; Hyman, J. D.
Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizationsmore » of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. In conclusion, the good accuracy and the low computational cost, with O(10 4) times lower times than the DFN, makes the graph algorithm an ideal technique to incorporate in uncertainty quantification methods.« less
Product-State Approximations to Quantum States
NASA Astrophysics Data System (ADS)
Brandão, Fernando G. S. L.; Harrow, Aram W.
2016-02-01
We show that for any many-body quantum state there exists an unentangled quantum state such that most of the two-body reduced density matrices are close to those of the original state. This is a statement about the monogamy of entanglement, which cannot be shared without limit in the same way as classical correlation. Our main application is to Hamiltonians that are sums of two-body terms. For such Hamiltonians we show that there exist product states with energy that is close to the ground-state energy whenever the interaction graph of the Hamiltonian has high degree. This proves the validity of mean-field theory and gives an explicitly bounded approximation error. If we allow states that are entangled within small clusters of systems but product across clusters then good approximations exist when the Hamiltonian satisfies one or more of the following properties: (1) high degree, (2) small expansion, or (3) a ground state where the blocks in the partition have sublinear entanglement. Previously this was known only in the case of small expansion or in the regime where the entanglement was close to zero. Our approximations allow an extensive error in energy, which is the scale considered by the quantum PCP (probabilistically checkable proof) and NLTS (no low-energy trivial-state) conjectures. Thus our results put restrictions on the possible Hamiltonians that could be used for a possible proof of the qPCP or NLTS conjectures. By contrast the classical PCP constructions are often based on constraint graphs with high degree. Likewise we show that the parallel repetition that is possible with classical constraint satisfaction problems cannot also be possible for quantum Hamiltonians, unless qPCP is false. The main technical tool behind our results is a collection of new classical and quantum de Finetti theorems which do not make any symmetry assumptions on the underlying states.
Frog: Asynchronous Graph Processing on GPU with Hybrid Coloring Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Xuanhua; Luo, Xuan; Liang, Junling
GPUs have been increasingly used to accelerate graph processing for complicated computational problems regarding graph theory. Many parallel graph algorithms adopt the asynchronous computing model to accelerate the iterative convergence. Unfortunately, the consistent asynchronous computing requires locking or atomic operations, leading to significant penalties/overheads when implemented on GPUs. As such, coloring algorithm is adopted to separate the vertices with potential updating conflicts, guaranteeing the consistency/correctness of the parallel processing. Common coloring algorithms, however, may suffer from low parallelism because of a large number of colors generally required for processing a large-scale graph with billions of vertices. We propose a light-weightmore » asynchronous processing framework called Frog with a preprocessing/hybrid coloring model. The fundamental idea is based on Pareto principle (or 80-20 rule) about coloring algorithms as we observed through masses of realworld graph coloring cases. We find that a majority of vertices (about 80%) are colored with only a few colors, such that they can be read and updated in a very high degree of parallelism without violating the sequential consistency. Accordingly, our solution separates the processing of the vertices based on the distribution of colors. In this work, we mainly answer three questions: (1) how to partition the vertices in a sparse graph with maximized parallelism, (2) how to process large-scale graphs that cannot fit into GPU memory, and (3) how to reduce the overhead of data transfers on PCIe while processing each partition. We conduct experiments on real-world data (Amazon, DBLP, YouTube, RoadNet-CA, WikiTalk and Twitter) to evaluate our approach and make comparisons with well-known non-preprocessed (such as Totem, Medusa, MapGraph and Gunrock) and preprocessed (Cusha) approaches, by testing four classical algorithms (BFS, PageRank, SSSP and CC). On all the tested applications and datasets, Frog is able to significantly outperform existing GPU-based graph processing systems except Gunrock and MapGraph. MapGraph gets better performance than Frog when running BFS on RoadNet-CA. The comparison between Gunrock and Frog is inconclusive. Frog can outperform Gunrock more than 1.04X when running PageRank and SSSP, while the advantage of Frog is not obvious when running BFS and CC on some datasets especially for RoadNet-CA.« less
Visualization and recommendation of large image collections toward effective sensemaking
NASA Astrophysics Data System (ADS)
Gu, Yi; Wang, Chaoli; Nemiroff, Robert; Kao, David; Parra, Denis
2016-03-01
In our daily lives, images are among the most commonly found data which we need to handle. We present iGraph, a graph-based approach for visual analytics of large image collections and their associated text information. Given such a collection, we compute the similarity between images, the distance between texts, and the connection between image and text to construct iGraph, a compound graph representation which encodes the underlying relationships among these images and texts. To enable effective visual navigation and comprehension of iGraph with tens of thousands of nodes and hundreds of millions of edges, we present a progressive solution that offers collection overview, node comparison, and visual recommendation. Our solution not only allows users to explore the entire collection with representative images and keywords but also supports detailed comparison for understanding and intuitive guidance for navigation. The visual exploration of iGraph is further enhanced with the implementation of bubble sets to highlight group memberships of nodes, suggestion of abnormal keywords or time periods based on text outlier detection, and comparison of four different recommendation solutions. For performance speedup, multiple graphics processing units and central processing units are utilized for processing and visualization in parallel. We experiment with two image collections and leverage a cluster driving a display wall of nearly 50 million pixels. We show the effectiveness of our approach by demonstrating experimental results and conducting a user study.
Development of antibiotic regimens using graph based evolutionary algorithms.
Corns, Steven M; Ashlock, Daniel A; Bryden, Kenneth M
2013-12-01
This paper examines the use of evolutionary algorithms in the development of antibiotic regimens given to production animals. A model is constructed that combines the lifespan of the animal and the bacteria living in the animal's gastro-intestinal tract from the early finishing stage until the animal reaches market weight. This model is used as the fitness evaluation for a set of graph based evolutionary algorithms to assess the impact of diversity control on the evolving antibiotic regimens. The graph based evolutionary algorithms have two objectives: to find an antibiotic treatment regimen that maintains the weight gain and health benefits of antibiotic use and to reduce the risk of spreading antibiotic resistant bacteria. This study examines different regimens of tylosin phosphate use on bacteria populations divided into Gram positive and Gram negative types, with a focus on Campylobacter spp. Treatment regimens were found that provided decreased antibiotic resistance relative to conventional methods while providing nearly the same benefits as conventional antibiotic regimes. By using a graph to control the information flow in the evolutionary algorithm, a variety of solutions along the Pareto front can be found automatically for this and other multi-objective problems. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Exploratory Item Classification Via Spectral Graph Clustering
Chen, Yunxiao; Li, Xiaoou; Liu, Jingchen; Xu, Gongjun; Ying, Zhiliang
2017-01-01
Large-scale assessments are supported by a large item pool. An important task in test development is to assign items into scales that measure different characteristics of individuals, and a popular approach is cluster analysis of items. Classical methods in cluster analysis, such as the hierarchical clustering, K-means method, and latent-class analysis, often induce a high computational overhead and have difficulty handling missing data, especially in the presence of high-dimensional responses. In this article, the authors propose a spectral clustering algorithm for exploratory item cluster analysis. The method is computationally efficient, effective for data with missing or incomplete responses, easy to implement, and often outperforms traditional clustering algorithms in the context of high dimensionality. The spectral clustering algorithm is based on graph theory, a branch of mathematics that studies the properties of graphs. The algorithm first constructs a graph of items, characterizing the similarity structure among items. It then extracts item clusters based on the graphical structure, grouping similar items together. The proposed method is evaluated through simulations and an application to the revised Eysenck Personality Questionnaire. PMID:29033476
Thermodynamic characterization of synchronization-optimized oscillator networks
NASA Astrophysics Data System (ADS)
Yanagita, Tatsuo; Ichinomiya, Takashi
2014-12-01
We consider a canonical ensemble of synchronization-optimized networks of identical oscillators under external noise. By performing a Markov chain Monte Carlo simulation using the Kirchhoff index, i.e., the sum of the inverse eigenvalues of the Laplacian matrix (as a graph Hamiltonian of the network), we construct more than 1 000 different synchronization-optimized networks. We then show that the transition from star to core-periphery structure depends on the connectivity of the network, and is characterized by the node degree variance of the synchronization-optimized ensemble. We find that thermodynamic properties such as heat capacity show anomalies for sparse networks.
Reflecting on Graphs: Attributes of Graph Choice and Construction Practices in Biology
ERIC Educational Resources Information Center
Angra, Aakanksha; Gardner, Stephanie M.
2017-01-01
Undergraduate biology education reform aims to engage students in scientific practices such as experimental design, experimentation, and data analysis and communication. Graphs are ubiquitous in the biological sciences, and creating effective graphical representations involves quantitative and disciplinary concepts and skills. Past studies…
PDB2Graph: A toolbox for identifying critical amino acids map in proteins based on graph theory.
Niknam, Niloofar; Khakzad, Hamed; Arab, Seyed Shahriar; Naderi-Manesh, Hossein
2016-05-01
The integrative and cooperative nature of protein structure involves the assessment of topological and global features of constituent parts. Network concept takes complete advantage of both of these properties in the analysis concomitantly. High compatibility to structural concepts or physicochemical properties in addition to exploiting a remarkable simplification in the system has made network an ideal tool to explore biological systems. There are numerous examples in which different protein structural and functional characteristics have been clarified by the network approach. Here, we present an interactive and user-friendly Matlab-based toolbox, PDB2Graph, devoted to protein structure network construction, visualization, and analysis. Moreover, PDB2Graph is an appropriate tool for identifying critical nodes involved in protein structural robustness and function based on centrality indices. It maps critical amino acids in protein networks and can greatly aid structural biologists in selecting proper amino acid candidates for manipulating protein structures in a more reasonable and rational manner. To introduce the capability and efficiency of PDB2Graph in detail, the structural modification of Calmodulin through allosteric binding of Ca(2+) is considered. In addition, a mutational analysis for three well-identified model proteins including Phage T4 lysozyme, Barnase and Ribonuclease HI, was performed to inspect the influence of mutating important central residues on protein activity. Copyright © 2016 Elsevier Ltd. All rights reserved.
A new measure based on degree distribution that links information theory and network graph analysis
2012-01-01
Background Detailed connection maps of human and nonhuman brains are being generated with new technologies, and graph metrics have been instrumental in understanding the general organizational features of these structures. Neural networks appear to have small world properties: they have clustered regions, while maintaining integrative features such as short average pathlengths. Results We captured the structural characteristics of clustered networks with short average pathlengths through our own variable, System Difference (SD), which is computationally simple and calculable for larger graph systems. SD is a Jaccardian measure generated by averaging all of the differences in the connection patterns between any two nodes of a system. We calculated SD over large random samples of matrices and found that high SD matrices have a low average pathlength and a larger number of clustered structures. SD is a measure of degree distribution with high SD matrices maximizing entropic properties. Phi (Φ), an information theory metric that assesses a system’s capacity to integrate information, correlated well with SD - with SD explaining over 90% of the variance in systems above 11 nodes (tested for 4 to 13 nodes). However, newer versions of Φ do not correlate well with the SD metric. Conclusions The new network measure, SD, provides a link between high entropic structures and degree distributions as related to small world properties. PMID:22726594
Zhang, Pin; Liang, Yanmei; Chang, Shengjiang; Fan, Hailun
2013-08-01
Accurate segmentation of renal tissues in abdominal computed tomography (CT) image sequences is an indispensable step for computer-aided diagnosis and pathology detection in clinical applications. In this study, the goal is to develop a radiology tool to extract renal tissues in CT sequences for the management of renal diagnosis and treatments. In this paper, the authors propose a new graph-cuts-based active contours model with an adaptive width of narrow band for kidney extraction in CT image sequences. Based on graph cuts and contextual continuity, the segmentation is carried out slice-by-slice. In the first stage, the middle two adjacent slices in a CT sequence are segmented interactively based on the graph cuts approach. Subsequently, the deformable contour evolves toward the renal boundaries by the proposed model for the kidney extraction of the remaining slices. In this model, the energy function combining boundary with regional information is optimized in the constructed graph and the adaptive search range is determined by contextual continuity and the object size. In addition, in order to reduce the complexity of the min-cut computation, the nodes in the graph only have n-links for fewer edges. The total 30 CT images sequences with normal and pathological renal tissues are used to evaluate the accuracy and effectiveness of our method. The experimental results reveal that the average dice similarity coefficient of these image sequences is from 92.37% to 95.71% and the corresponding standard deviation for each dataset is from 2.18% to 3.87%. In addition, the average automatic segmentation time for one kidney in each slice is about 0.36 s. Integrating the graph-cuts-based active contours model with contextual continuity, the algorithm takes advantages of energy minimization and the characteristics of image sequences. The proposed method achieves effective results for kidney segmentation in CT sequences.
Visibility Graph Based Time Series Analysis
Stephen, Mutua; Gu, Changgui; Yang, Huijie
2015-01-01
Network based time series analysis has made considerable achievements in the recent years. By mapping mono/multivariate time series into networks, one can investigate both it’s microscopic and macroscopic behaviors. However, most proposed approaches lead to the construction of static networks consequently providing limited information on evolutionary behaviors. In the present paper we propose a method called visibility graph based time series analysis, in which series segments are mapped to visibility graphs as being descriptions of the corresponding states and the successively occurring states are linked. This procedure converts a time series to a temporal network and at the same time a network of networks. Findings from empirical records for stock markets in USA (S&P500 and Nasdaq) and artificial series generated by means of fractional Gaussian motions show that the method can provide us rich information benefiting short-term and long-term predictions. Theoretically, we propose a method to investigate time series from the viewpoint of network of networks. PMID:26571115
The Container Problem in Bubble-Sort Graphs
NASA Astrophysics Data System (ADS)
Suzuki, Yasuto; Kaneko, Keiichi
Bubble-sort graphs are variants of Cayley graphs. A bubble-sort graph is suitable as a topology for massively parallel systems because of its simple and regular structure. Therefore, in this study, we focus on n-bubble-sort graphs and propose an algorithm to obtain n-1 disjoint paths between two arbitrary nodes in time bounded by a polynomial in n, the degree of the graph plus one. We estimate the time complexity of the algorithm and the sum of the path lengths after proving the correctness of the algorithm. In addition, we report the results of computer experiments evaluating the average performance of the algorithm.
Correlation based networks of equity returns sampled at different time horizons
NASA Astrophysics Data System (ADS)
Tumminello, M.; di Matteo, T.; Aste, T.; Mantegna, R. N.
2007-01-01
We investigate the planar maximally filtered graphs of the portfolio of the 300 most capitalized stocks traded at the New York Stock Exchange during the time period 2001 2003. Topological properties such as the average length of shortest paths, the betweenness and the degree are computed on different planar maximally filtered graphs generated by sampling the returns at different time horizons ranging from 5 min up to one trading day. This analysis confirms that the selected stocks compose a hierarchical system progressively structuring as the sampling time horizon increases. Finally, a cluster formation, associated to economic sectors, is quantitatively investigated.
Brain anatomical networks in world class gymnasts: a DTI tractography study.
Wang, Bin; Fan, Yuanyuan; Lu, Min; Li, Shumei; Song, Zheng; Peng, Xiaoling; Zhang, Ruibin; Lin, Qixiang; He, Yong; Wang, Jun; Huang, Ruiwang
2013-01-15
The excellent motor skills of world class gymnasts amaze everyone. People marvel at the way they precisely control their movements and wonder how the brain structure and function of these elite athletes differ from those of non-athletes. In this study, we acquired diffusion images from thirteen world class gymnasts and fourteen matched controls, constructed their anatomical networks, and calculated the topological properties of each network based on graph theory. From a connectivity-based analysis, we found that most of the edges with increased connection density in the champions were linked to brain regions that are located in the sensorimotor, attentional, and default-mode systems. From graph-based metrics, we detected significantly greater global and local efficiency but shorter characteristic path length in the anatomical networks of the champions compared with the controls. Moreover, in the champions we found a significantly higher nodal degree and greater regional efficiency in several brain regions that correspond to motor and attention functions. These included the left precentral gyrus, left postcentral gyrus, right anterior cingulate gyrus and temporal lobes. In addition, we revealed an increase in the mean fractional anisotropy of the corticospinal tract in the champions, possibly in response to long-term gymnastic training. Our study indicates that neuroanatomical adaptations and plastic changes occur in gymnasts' brain anatomical networks either in response to long-term intensive gymnastic training or as an innate predisposition or both. Our findings may help to explain gymnastic skills at the highest levels of performance and aid in understanding the neural mechanisms that distinguish expert gymnasts from novices. Copyright © 2012 Elsevier Inc. All rights reserved.
Attributed relational graphs for cell nucleus segmentation in fluorescence microscopy images.
Arslan, Salim; Ersahin, Tulin; Cetin-Atalay, Rengul; Gunduz-Demir, Cigdem
2013-06-01
More rapid and accurate high-throughput screening in molecular cellular biology research has become possible with the development of automated microscopy imaging, for which cell nucleus segmentation commonly constitutes the core step. Although several promising methods exist for segmenting the nuclei of monolayer isolated and less-confluent cells, it still remains an open problem to segment the nuclei of more-confluent cells, which tend to grow in overlayers. To address this problem, we propose a new model-based nucleus segmentation algorithm. This algorithm models how a human locates a nucleus by identifying the nucleus boundaries and piecing them together. In this algorithm, we define four types of primitives to represent nucleus boundaries at different orientations and construct an attributed relational graph on the primitives to represent their spatial relations. Then, we reduce the nucleus identification problem to finding predefined structural patterns in the constructed graph and also use the primitives in region growing to delineate the nucleus borders. Working with fluorescence microscopy images, our experiments demonstrate that the proposed algorithm identifies nuclei better than previous nucleus segmentation algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Yubin; Shankar, Mallikarjun; Park, Byung H.
Designing a database system for both efficient data management and data services has been one of the enduring challenges in the healthcare domain. In many healthcare systems, data services and data management are often viewed as two orthogonal tasks; data services refer to retrieval and analytic queries such as search, joins, statistical data extraction, and simple data mining algorithms, while data management refers to building error-tolerant and non-redundant database systems. The gap between service and management has resulted in rigid database systems and schemas that do not support effective analytics. We compose a rich graph structure from an abstracted healthcaremore » RDBMS to illustrate how we can fill this gap in practice. We show how a healthcare graph can be automatically constructed from a normalized relational database using the proposed 3NF Equivalent Graph (3EG) transformation.We discuss a set of real world graph queries such as finding self-referrals, shared providers, and collaborative filtering, and evaluate their performance over a relational database and its 3EG-transformed graph. Experimental results show that the graph representation serves as multiple de-normalized tables, thus reducing complexity in a database and enhancing data accessibility of users. Based on this finding, we propose an ensemble framework of databases for healthcare applications.« less
Searches over graphs representing geospatial-temporal remote sensing data
Brost, Randolph; Perkins, David Nikolaus
2018-03-06
Various technologies pertaining to identifying objects of interest in remote sensing images by searching over geospatial-temporal graph representations are described herein. Graphs are constructed by representing objects in remote sensing images as nodes, and connecting nodes with undirected edges representing either distance or adjacency relationships between objects and directed edges representing changes in time. Geospatial-temporal graph searches are made computationally efficient by taking advantage of characteristics of geospatial-temporal data in remote sensing images through the application of various graph search techniques.
Adaptive graph-based multiple testing procedures
Klinglmueller, Florian; Posch, Martin; Koenig, Franz
2016-01-01
Multiple testing procedures defined by directed, weighted graphs have recently been proposed as an intuitive visual tool for constructing multiple testing strategies that reflect the often complex contextual relations between hypotheses in clinical trials. Many well-known sequentially rejective tests, such as (parallel) gatekeeping tests or hierarchical testing procedures are special cases of the graph based tests. We generalize these graph-based multiple testing procedures to adaptive trial designs with an interim analysis. These designs permit mid-trial design modifications based on unblinded interim data as well as external information, while providing strong family wise error rate control. To maintain the familywise error rate, it is not required to prespecify the adaption rule in detail. Because the adaptive test does not require knowledge of the multivariate distribution of test statistics, it is applicable in a wide range of scenarios including trials with multiple treatment comparisons, endpoints or subgroups, or combinations thereof. Examples of adaptations are dropping of treatment arms, selection of subpopulations, and sample size reassessment. If, in the interim analysis, it is decided to continue the trial as planned, the adaptive test reduces to the originally planned multiple testing procedure. Only if adaptations are actually implemented, an adjusted test needs to be applied. The procedure is illustrated with a case study and its operating characteristics are investigated by simulations. PMID:25319733
Local Difference Measures between Complex Networks for Dynamical System Model Evaluation
Lange, Stefan; Donges, Jonathan F.; Volkholz, Jan; Kurths, Jürgen
2015-01-01
A faithful modeling of real-world dynamical systems necessitates model evaluation. A recent promising methodological approach to this problem has been based on complex networks, which in turn have proven useful for the characterization of dynamical systems. In this context, we introduce three local network difference measures and demonstrate their capabilities in the field of climate modeling, where these measures facilitate a spatially explicit model evaluation. Building on a recent study by Feldhoff et al. [1] we comparatively analyze statistical and dynamical regional climate simulations of the South American monsoon system. Three types of climate networks representing different aspects of rainfall dynamics are constructed from the modeled precipitation space-time series. Specifically, we define simple graphs based on positive as well as negative rank correlations between rainfall anomaly time series at different locations, and such based on spatial synchronizations of extreme rain events. An evaluation against respective networks built from daily satellite data provided by the Tropical Rainfall Measuring Mission 3B42 V7 reveals far greater differences in model performance between network types for a fixed but arbitrary climate model than between climate models for a fixed but arbitrary network type. We identify two sources of uncertainty in this respect. Firstly, climate variability limits fidelity, particularly in the case of the extreme event network; and secondly, larger geographical link lengths render link misplacements more likely, most notably in the case of the anticorrelation network; both contributions are quantified using suitable ensembles of surrogate networks. Our model evaluation approach is applicable to any multidimensional dynamical system and especially our simple graph difference measures are highly versatile as the graphs to be compared may be constructed in whatever way required. Generalizations to directed as well as edge- and node-weighted graphs are discussed. PMID:25856374
Local difference measures between complex networks for dynamical system model evaluation.
Lange, Stefan; Donges, Jonathan F; Volkholz, Jan; Kurths, Jürgen
2015-01-01
A faithful modeling of real-world dynamical systems necessitates model evaluation. A recent promising methodological approach to this problem has been based on complex networks, which in turn have proven useful for the characterization of dynamical systems. In this context, we introduce three local network difference measures and demonstrate their capabilities in the field of climate modeling, where these measures facilitate a spatially explicit model evaluation.Building on a recent study by Feldhoff et al. [8] we comparatively analyze statistical and dynamical regional climate simulations of the South American monsoon system [corrected]. types of climate networks representing different aspects of rainfall dynamics are constructed from the modeled precipitation space-time series. Specifically, we define simple graphs based on positive as well as negative rank correlations between rainfall anomaly time series at different locations, and such based on spatial synchronizations of extreme rain events. An evaluation against respective networks built from daily satellite data provided by the Tropical Rainfall Measuring Mission 3B42 V7 reveals far greater differences in model performance between network types for a fixed but arbitrary climate model than between climate models for a fixed but arbitrary network type. We identify two sources of uncertainty in this respect. Firstly, climate variability limits fidelity, particularly in the case of the extreme event network; and secondly, larger geographical link lengths render link misplacements more likely, most notably in the case of the anticorrelation network; both contributions are quantified using suitable ensembles of surrogate networks. Our model evaluation approach is applicable to any multidimensional dynamical system and especially our simple graph difference measures are highly versatile as the graphs to be compared may be constructed in whatever way required. Generalizations to directed as well as edge- and node-weighted graphs are discussed.
Predicting conversion from MCI to AD using resting-state fMRI, graph theoretical approach and SVM.
Hojjati, Seyed Hani; Ebrahimzadeh, Ata; Khazaee, Ali; Babajani-Feremi, Abbas
2017-04-15
We investigated identifying patients with mild cognitive impairment (MCI) who progress to Alzheimer's disease (AD), MCI converter (MCI-C), from those with MCI who do not progress to AD, MCI non-converter (MCI-NC), based on resting-state fMRI (rs-fMRI). Graph theory and machine learning approach were utilized to predict progress of patients with MCI to AD using rs-fMRI. Eighteen MCI converts (average age 73.6 years; 11 male) and 62 age-matched MCI non-converters (average age 73.0 years, 28 male) were included in this study. We trained and tested a support vector machine (SVM) to classify MCI-C from MCI-NC using features constructed based on the local and global graph measures. A novel feature selection algorithm was developed and utilized to select an optimal subset of features. Using subset of optimal features in SVM, we classified MCI-C from MCI-NC with an accuracy, sensitivity, specificity, and the area under the receiver operating characteristic (ROC) curve of 91.4%, 83.24%, 90.1%, and 0.95, respectively. Furthermore, results of our statistical analyses were used to identify the affected brain regions in AD. To the best of our knowledge, this is the first study that combines the graph measures (constructed based on rs-fMRI) with machine learning approach and accurately classify MCI-C from MCI-NC. Results of this study demonstrate potential of the proposed approach for early AD diagnosis and demonstrate capability of rs-fMRI to predict conversion from MCI to AD by identifying affected brain regions underlying this conversion. Copyright © 2017 Elsevier B.V. All rights reserved.
Approximate ground states of the random-field Potts model from graph cuts
NASA Astrophysics Data System (ADS)
Kumar, Manoj; Kumar, Ravinder; Weigel, Martin; Banerjee, Varsha; Janke, Wolfhard; Puri, Sanjay
2018-05-01
While the ground-state problem for the random-field Ising model is polynomial, and can be solved using a number of well-known algorithms for maximum flow or graph cut, the analog random-field Potts model corresponds to a multiterminal flow problem that is known to be NP-hard. Hence an efficient exact algorithm is very unlikely to exist. As we show here, it is nevertheless possible to use an embedding of binary degrees of freedom into the Potts spins in combination with graph-cut methods to solve the corresponding ground-state problem approximately in polynomial time. We benchmark this heuristic algorithm using a set of quasiexact ground states found for small systems from long parallel tempering runs. For a not-too-large number q of Potts states, the method based on graph cuts finds the same solutions in a fraction of the time. We employ the new technique to analyze the breakup length of the random-field Potts model in two dimensions.
ERIC Educational Resources Information Center
Forster, Patricia A.
2004-01-01
Interpretation and construction of graphs are central to the study of physics and to performance in physics. In this paper, I explore the interpretation and construction processes called upon in questions with a graphical component, in Western Australian Physics Tertiary Entrance Examinations. In addition, I list errors made by students as…
Evaluating a Contextual-Based Course on Data Analysis for the Physics Laboratory
ERIC Educational Resources Information Center
Kukliansky, Ida; Eshach, Haim
2014-01-01
The interpretation of data and construction and understanding of graphs are central practices in science; therefore, an important skill needed in the undergraduate physics laboratory is the ability to analyze data obtained from experiments. Often students are not able to reach logical deductions based on data, acquired from the experiments that…
Two-character motion analysis and synthesis.
Kwon, Taesoo; Cho, Young-Sang; Park, Sang Il; Shin, Sung Yong
2008-01-01
In this paper, we deal with the problem of synthesizing novel motions of standing-up martial arts such as Kickboxing, Karate, and Taekwondo performed by a pair of human-like characters while reflecting their interactions. Adopting an example-based paradigm, we address three non-trivial issues embedded in this problem: motion modeling, interaction modeling, and motion synthesis. For the first issue, we present a semi-automatic motion labeling scheme based on force-based motion segmentation and learning-based action classification. We also construct a pair of motion transition graphs each of which represents an individual motion stream. For the second issue, we propose a scheme for capturing the interactions between two players. A dynamic Bayesian network is adopted to build a motion transition model on top of the coupled motion transition graph that is constructed from an example motion stream. For the last issue, we provide a scheme for synthesizing a novel sequence of coupled motions, guided by the motion transition model. Although the focus of the present work is on martial arts, we believe that the framework of the proposed approach can be conveyed to other two-player motions as well.
Local adjacency metric dimension of sun graph and stacked book graph
NASA Astrophysics Data System (ADS)
Yulisda Badri, Alifiah; Darmaji
2018-03-01
A graph is a mathematical system consisting of a non-empty set of nodes and a set of empty sides. One of the topics to be studied in graph theory is the metric dimension. Application in the metric dimension is the navigation robot system on a path. Robot moves from one vertex to another vertex in the field by minimizing the errors that occur in translating the instructions (code) obtained from the vertices of that location. To move the robot must give different instructions (code). In order for the robot to move efficiently, the robot must be fast to translate the code of the nodes of the location it passes. so that the location vertex has a minimum distance. However, if the robot must move with the vertex location on a very large field, so the robot can not detect because the distance is too far.[6] In this case, the robot can determine its position by utilizing location vertices based on adjacency. The problem is to find the minimum cardinality of the required location vertex, and where to put, so that the robot can determine its location. The solution to this problem is the dimension of adjacency metric and adjacency metric bases. Rodrguez-Velzquez and Fernau combine the adjacency metric dimensions with local metric dimensions, thus becoming the local adjacency metric dimension. In the local adjacency metric dimension each vertex in the graph may have the same adjacency representation as the terms of the vertices. To obtain the local metric dimension of values in the graph of the Sun and the stacked book graph is used the construction method by considering the representation of each adjacent vertex of the graph.
Discrete Mathematical Approaches to Graph-Based Traffic Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joslyn, Cliff A.; Cowley, Wendy E.; Hogan, Emilie A.
2014-04-01
Modern cyber defense and anlaytics requires general, formal models of cyber systems. Multi-scale network models are prime candidates for such formalisms, using discrete mathematical methods based in hierarchically-structured directed multigraphs which also include rich sets of labels. An exemplar of an application of such an approach is traffic analysis, that is, observing and analyzing connections between clients, servers, hosts, and actors within IP networks, over time, to identify characteristic or suspicious patterns. Towards that end, NetFlow (or more generically, IPFLOW) data are available from routers and servers which summarize coherent groups of IP packets flowing through the network. In thismore » paper, we consider traffic analysis of Netflow using both basic graph statistics and two new mathematical measures involving labeled degree distributions and time interval overlap measures. We do all of this over the VAST test data set of 96M synthetic Netflow graph edges, against which we can identify characteristic patterns of simulated ground-truth network attacks.« less
Route Network Construction with Location-Direction-Enabled Photographs
NASA Astrophysics Data System (ADS)
Fujita, Hideyuki; Sagara, Shota; Ohmori, Tadashi; Shintani, Takahiko
2018-05-01
We propose a method for constructing a geometric graph for generating routes that summarize a geographical area and also have visual continuity by using a set of location-direction-enabled photographs. A location- direction-enabled photograph is a photograph that has information about the location (position of the camera at the time of shooting) and the direction (direction of the camera at the time of shooting). Each nodes of the graph corresponds to a location-direction-enabled photograph. The location of each node is the location of the corresponding photograph, and a route on the graph corresponds to a route in the geographic area and a sequence of photographs. The proposed graph is constructed to represent characteristic spots and paths linking the spots, and it is assumed to be a kind of a spatial summarization of the area with the photographs. Therefore, we call the routes on the graph as spatial summary route. Each route on the proposed graph also has a visual continuity, which means that we can understand the spatial relationship among the continuous photographs on the route such as moving forward, backward, turning right, etc. In this study, when the changes in the shooting position and shooting direction satisfied a given threshold, the route was defined to have visual continuity. By presenting the photographs in order along the generated route, information can be presented sequentially, while maintaining visual continuity to a great extent.
Siyah Mansoory, Meysam; Oghabian, Mohammad Ali; Jafari, Amir Homayoun; Shahbabaie, Alireza
2017-01-01
Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obligatory for graph construction and analysis is consistently underestimated by LC, because not all the bivariate distributions, but only the marginals are Gaussian. In a number of studies, Mutual Information (MI) has been employed, as a similarity measure between each two time series of the brain regions, a pure nonlinear measure. Owing to the complex fractal organization of the brain indicating self-similarity, more information on the brain can be revealed by fMRI Fractal Dimension (FD) analysis. In the present paper, Box-Counting Fractal Dimension (BCFD) is introduced for graph theoretical analysis of fMRI data in 17 methamphetamine drug users and 18 normal controls. Then, BCFD performance was evaluated compared to those of LC and MI methods. Moreover, the global topological graph properties of the brain networks inclusive of global efficiency, clustering coefficient and characteristic path length in addict subjects were investigated too. Compared to normal subjects by using statistical tests (P<0.05), topological graph properties were postulated to be disrupted significantly during the resting-state fMRI. Based on the results, analyzing the graph topological properties (representing the brain networks) based on BCFD is a more reliable method than LC and MI.
Feedback topology and XOR-dynamics in Boolean networks with varying input structure
NASA Astrophysics Data System (ADS)
Ciandrini, L.; Maffi, C.; Motta, A.; Bassetti, B.; Cosentino Lagomarsino, M.
2009-08-01
We analyze a model of fixed in-degree random Boolean networks in which the fraction of input-receiving nodes is controlled by the parameter γ . We investigate analytically and numerically the dynamics of graphs under a parallel XOR updating scheme. This scheme is interesting because it is accessible analytically and its phenomenology is at the same time under control and as rich as the one of general Boolean networks. We give analytical formulas for the dynamics on general graphs, showing that with a XOR-type evolution rule, dynamic features are direct consequences of the topological feedback structure, in analogy with the role of relevant components in Kauffman networks. Considering graphs with fixed in-degree, we characterize analytically and numerically the feedback regions using graph decimation algorithms (Leaf Removal). With varying γ , this graph ensemble shows a phase transition that separates a treelike graph region from one in which feedback components emerge. Networks near the transition point have feedback components made of disjoint loops, in which each node has exactly one incoming and one outgoing link. Using this fact, we provide analytical estimates of the maximum period starting from topological considerations.
Feedback topology and XOR-dynamics in Boolean networks with varying input structure.
Ciandrini, L; Maffi, C; Motta, A; Bassetti, B; Cosentino Lagomarsino, M
2009-08-01
We analyze a model of fixed in-degree random Boolean networks in which the fraction of input-receiving nodes is controlled by the parameter gamma. We investigate analytically and numerically the dynamics of graphs under a parallel XOR updating scheme. This scheme is interesting because it is accessible analytically and its phenomenology is at the same time under control and as rich as the one of general Boolean networks. We give analytical formulas for the dynamics on general graphs, showing that with a XOR-type evolution rule, dynamic features are direct consequences of the topological feedback structure, in analogy with the role of relevant components in Kauffman networks. Considering graphs with fixed in-degree, we characterize analytically and numerically the feedback regions using graph decimation algorithms (Leaf Removal). With varying gamma , this graph ensemble shows a phase transition that separates a treelike graph region from one in which feedback components emerge. Networks near the transition point have feedback components made of disjoint loops, in which each node has exactly one incoming and one outgoing link. Using this fact, we provide analytical estimates of the maximum period starting from topological considerations.
Edge compression techniques for visualization of dense directed graphs.
Dwyer, Tim; Henry Riche, Nathalie; Marriott, Kim; Mears, Christopher
2013-12-01
We explore the effectiveness of visualizing dense directed graphs by replacing individual edges with edges connected to 'modules'-or groups of nodes-such that the new edges imply aggregate connectivity. We only consider techniques that offer a lossless compression: that is, where the entire graph can still be read from the compressed version. The techniques considered are: a simple grouping of nodes with identical neighbor sets; Modular Decomposition which permits internal structure in modules and allows them to be nested; and Power Graph Analysis which further allows edges to cross module boundaries. These techniques all have the same goal--to compress the set of edges that need to be rendered to fully convey connectivity--but each successive relaxation of the module definition permits fewer edges to be drawn in the rendered graph. Each successive technique also, we hypothesize, requires a higher degree of mental effort to interpret. We test this hypothetical trade-off with two studies involving human participants. For Power Graph Analysis we propose a novel optimal technique based on constraint programming. This enables us to explore the parameter space for the technique more precisely than could be achieved with a heuristic. Although applicable to many domains, we are motivated by--and discuss in particular--the application to software dependency analysis.
Community structure and scale-free collections of Erdős-Rényi graphs.
Seshadhri, C; Kolda, Tamara G; Pinar, Ali
2012-05-01
Community structure plays a significant role in the analysis of social networks and similar graphs, yet this structure is little understood and not well captured by most models. We formally define a community to be a subgraph that is internally highly connected and has no deeper substructure. We use tools of combinatorics to show that any such community must contain a dense Erdős-Rényi (ER) subgraph. Based on mathematical arguments, we hypothesize that any graph with a heavy-tailed degree distribution and community structure must contain a scale-free collection of dense ER subgraphs. These theoretical observations corroborate well with empirical evidence. From this, we propose the Block Two-Level Erdős-Rényi (BTER) model, and demonstrate that it accurately captures the observable properties of many real-world social networks.
US GeoData Available Through the Internet
,
2000-01-01
The U.S. Geological Survey (USGS) offers certain US GeoData data sets through the Internet. They can be retrieved using the World Wide Web or anonymous File Transfer Protocol (FTP). The data bases and their directory paths are as follows: * 1:24,000-scale digital line graph data in SDTS format (/pub/data/DLG/24K) * 1:2,000,000-scale digital line graph data in SDTS format (/pub/data/DLG/2M) * 1:100,000-scale digital line graph data (/pub/data/DLG/100K) * 1:100,000-scale land use and land cover data (/pub/data/LULC/100K) * 1:250,000-scale land use and land cover data (/pub/data/LULC/250K) * 1:24,000-scale digital elevation data (/pub/data/DEM/7.5min) * 1-degree digital elevation model data (/pub/data/DEM/250)
Volatility behavior of visibility graph EMD financial time series from Ising interacting system
NASA Astrophysics Data System (ADS)
Zhang, Bo; Wang, Jun; Fang, Wen
2015-08-01
A financial market dynamics model is developed and investigated by stochastic Ising system, where the Ising model is the most popular ferromagnetic model in statistical physics systems. Applying two graph based analysis and multiscale entropy method, we investigate and compare the statistical volatility behavior of return time series and the corresponding IMF series derived from the empirical mode decomposition (EMD) method. And the real stock market indices are considered to be comparatively studied with the simulation data of the proposed model. Further, we find that the degree distribution of visibility graph for the simulation series has the power law tails, and the assortative network exhibits the mixing pattern property. All these features are in agreement with the real market data, the research confirms that the financial model established by the Ising system is reasonable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, Andrew T.; Gelever, Stephan A.; Lee, Chak S.
2017-12-12
smoothG is a collection of parallel C++ classes/functions that algebraically constructs reduced models of different resolutions from a given high-fidelity graph model. In addition, smoothG also provides efficient linear solvers for the reduced models. Other than pure graph problem, the software finds its application in subsurface flow and power grid simulations in which graph Laplacians are found
Comparison of Student Understanding of Line Graph Slope in Physics and Mathematics
ERIC Educational Resources Information Center
Planinic, Maja; Milin-Sipus, Zeljka; Katic, Helena; Susac, Ana; Ivanjek, Lana
2012-01-01
This study gives an insight into the differences between student understanding of line graph slope in the context of physics (kinematics) and mathematics. Two pairs of parallel physics and mathematics questions that involved estimation and interpretation of line graph slope were constructed and administered to 114 Croatian second year high school…
Graph theoretical model of a sensorimotor connectome in zebrafish.
Stobb, Michael; Peterson, Joshua M; Mazzag, Borbala; Gahtan, Ethan
2012-01-01
Mapping the detailed connectivity patterns (connectomes) of neural circuits is a central goal of neuroscience. The best quantitative approach to analyzing connectome data is still unclear but graph theory has been used with success. We present a graph theoretical model of the posterior lateral line sensorimotor pathway in zebrafish. The model includes 2,616 neurons and 167,114 synaptic connections. Model neurons represent known cell types in zebrafish larvae, and connections were set stochastically following rules based on biological literature. Thus, our model is a uniquely detailed computational representation of a vertebrate connectome. The connectome has low overall connection density, with 2.45% of all possible connections, a value within the physiological range. We used graph theoretical tools to compare the zebrafish connectome graph to small-world, random and structured random graphs of the same size. For each type of graph, 100 randomly generated instantiations were considered. Degree distribution (the number of connections per neuron) varied more in the zebrafish graph than in same size graphs with less biological detail. There was high local clustering and a short average path length between nodes, implying a small-world structure similar to other neural connectomes and complex networks. The graph was found not to be scale-free, in agreement with some other neural connectomes. An experimental lesion was performed that targeted three model brain neurons, including the Mauthner neuron, known to control fast escape turns. The lesion decreased the number of short paths between sensory and motor neurons analogous to the behavioral effects of the same lesion in zebrafish. This model is expandable and can be used to organize and interpret a growing database of information on the zebrafish connectome.
Network analysis reveals disrupted functional brain circuitry in drug-naive social anxiety disorder.
Yang, Xun; Liu, Jin; Meng, Yajing; Xia, Mingrui; Cui, Zaixu; Wu, Xi; Hu, Xinyu; Zhang, Wei; Gong, Gaolang; Gong, Qiyong; Sweeney, John A; He, Yong
2017-12-07
Social anxiety disorder (SAD) is a common and disabling condition characterized by excessive fear and avoidance of public scrutiny. Psychoradiology studies have suggested that the emotional and behavior deficits in SAD are associated with abnormalities in regional brain function and functional connectivity. However, little is known about whether intrinsic functional brain networks in patients with SAD are topologically disrupted. Here, we collected resting-state fMRI data from 33 drug-naive patients with SAD and 32 healthy controls (HC), constructed functional networks with 34 predefined regions based on previous meta-analytic research with task-based fMRI in SAD, and performed network-based statistic and graph-theory analyses. The network-based statistic analysis revealed a single connected abnormal circuitry including the frontolimbic circuit (termed the "fear circuit", including the dorsolateral prefrontal cortex, ventral medial prefrontal cortex and insula) and posterior cingulate/occipital areas supporting perceptual processing. In this single altered network, patients with SAD had higher functional connectivity than HC. At the global level, graph-theory analysis revealed that the patients exhibited a lower normalized characteristic path length than HC, which suggests a disorder-related shift of network topology toward randomized configurations. SAD-related deficits in nodal degree, efficiency and participation coefficient were detected in the parahippocampal gyrus, posterior cingulate cortex, dorsolateral prefrontal cortex, insula and the calcarine sulcus. Aspects of abnormal connectivity were associated with anxiety symptoms. These findings highlight the aberrant topological organization of functional brain network organization in SAD, which provides insights into the neural mechanisms underlying excessive fear and avoidance of social interactions in patients with debilitating social anxiety. Copyright © 2017. Published by Elsevier Inc.
Graph modeling systems and methods
Neergaard, Mike
2015-10-13
An apparatus and a method for vulnerability and reliability modeling are provided. The method generally includes constructing a graph model of a physical network using a computer, the graph model including a plurality of terminating vertices to represent nodes in the physical network, a plurality of edges to represent transmission paths in the physical network, and a non-terminating vertex to represent a non-nodal vulnerability along a transmission path in the physical network. The method additionally includes evaluating the vulnerability and reliability of the physical network using the constructed graph model, wherein the vulnerability and reliability evaluation includes a determination of whether each terminating and non-terminating vertex represents a critical point of failure. The method can be utilized to evaluate wide variety of networks, including power grid infrastructures, communication network topologies, and fluid distribution systems.
Results on Vertex Degree and K-Connectivity in Uniform S-Intersection Graphs
2014-01-01
distribution. A uniform s-intersection graph models the topology of a secure wireless sensor network employing the widely used s-composite key predistribution scheme. Our theoretical findings is also confirmed by numerical results.
Headridge, J B; Smith, D R
1972-07-01
An induction-heated graphite furnace, coupled to a Unicam SP 90 atomic-absorption spectrometer, is described for the direct determination of trace elements in metals and alloys. The furnace is capable of operation at temperatures up to 2400 degrees , and has been used to obtain calibration graphs for the determination of ppm quantities of bismuth in lead-base alloys, cast irons and stainless steels, and for the determination of cadmium at the ppm level in zinc-base alloys. Milligram samples of the alloys were atomized directly. Calibration graphs for the determination of the elements in solutions were obtained for comparison. The accuracy and precision of the determination are presented and discussed.
SKIMMR: facilitating knowledge discovery in life sciences by machine-aided skim reading
Burns, Gully A.P.C.
2014-01-01
Background. Unlike full reading, ‘skim-reading’ involves the process of looking quickly over information in an attempt to cover more material whilst still being able to retain a superficial view of the underlying content. Within this work, we specifically emulate this natural human activity by providing a dynamic graph-based view of entities automatically extracted from text. For the extraction, we use shallow parsing, co-occurrence analysis and semantic similarity computation techniques. Our main motivation is to assist biomedical researchers and clinicians in coping with increasingly large amounts of potentially relevant articles that are being published ongoingly in life sciences. Methods. To construct the high-level network overview of articles, we extract weighted binary statements from the text. We consider two types of these statements, co-occurrence and similarity, both organised in the same distributional representation (i.e., in a vector-space model). For the co-occurrence weights, we use point-wise mutual information that indicates the degree of non-random association between two co-occurring entities. For computing the similarity statement weights, we use cosine distance based on the relevant co-occurrence vectors. These statements are used to build fuzzy indices of terms, statements and provenance article identifiers, which support fuzzy querying and subsequent result ranking. These indexing and querying processes are then used to construct a graph-based interface for searching and browsing entity networks extracted from articles, as well as articles relevant to the networks being browsed. Last but not least, we describe a methodology for automated experimental evaluation of the presented approach. The method uses formal comparison of the graphs generated by our tool to relevant gold standards based on manually curated PubMed, TREC challenge and MeSH data. Results. We provide a web-based prototype (called ‘SKIMMR’) that generates a network of inter-related entities from a set of documents which a user may explore through our interface. When a particular area of the entity network looks interesting to a user, the tool displays the documents that are the most relevant to those entities of interest currently shown in the network. We present this as a methodology for browsing a collection of research articles. To illustrate the practical applicability of SKIMMR, we present examples of its use in the domains of Spinal Muscular Atrophy and Parkinson’s Disease. Finally, we report on the results of experimental evaluation using the two domains and one additional dataset based on the TREC challenge. The results show how the presented method for machine-aided skim reading outperforms tools like PubMed regarding focused browsing and informativeness of the browsing context. PMID:25097821
What can we learn from the network approach in finance?
NASA Astrophysics Data System (ADS)
Janos, Kertesz
2005-03-01
Correlations between variations of stock prices reveal information about relationships between companies. Different methods of analysis have been applied to such data in order to uncover the taxonomy of the market. We use Mantegna's miminum spanning tree (MST) method for daily data in a dynamic way: By introducing a moving window we study the temporal changes in the structure of the network defined by this ``asset tree.'' The MST is scale free with a significantly changing exponent of the degree distribution for crash periods, which demonstrates the restructuring of the network due to the enhancement of correlations. This approach is compared to that based on what we call ``asset graphs:'' We start from an empty graph with no edges where the vertices correspond to stocks and then, one by one, we insert edges between the vertices according to the rank of their correlation strength. We study the properties of the creatred (weighted) networks, such as topologically different growth types, number and size of clusters and clustering coefficient. Furthermore, we define new tools like subgraph intensity and coherence to describe the role of the weights. We also investigate the time shifted cross correlation functions for high frequency data and find a characteristic time delay in many cases representing that some stocks lead the price changes while others follow them. These data can be used to construct a directed network of influence.
Compacting de Bruijn graphs from sequencing data quickly and in low memory.
Chikhi, Rayan; Limasset, Antoine; Medvedev, Paul
2016-06-15
As the quantity of data per sequencing experiment increases, the challenges of fragment assembly are becoming increasingly computational. The de Bruijn graph is a widely used data structure in fragment assembly algorithms, used to represent the information from a set of reads. Compaction is an important data reduction step in most de Bruijn graph based algorithms where long simple paths are compacted into single vertices. Compaction has recently become the bottleneck in assembly pipelines, and improving its running time and memory usage is an important problem. We present an algorithm and a tool bcalm 2 for the compaction of de Bruijn graphs. bcalm 2 is a parallel algorithm that distributes the input based on a minimizer hashing technique, allowing for good balance of memory usage throughout its execution. For human sequencing data, bcalm 2 reduces the computational burden of compacting the de Bruijn graph to roughly an hour and 3 GB of memory. We also applied bcalm 2 to the 22 Gbp loblolly pine and 20 Gbp white spruce sequencing datasets. Compacted graphs were constructed from raw reads in less than 2 days and 40 GB of memory on a single machine. Hence, bcalm 2 is at least an order of magnitude more efficient than other available methods. Source code of bcalm 2 is freely available at: https://github.com/GATB/bcalm rayan.chikhi@univ-lille1.fr. © The Author 2016. Published by Oxford University Press.
Representation of activity in images using geospatial temporal graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brost, Randolph; McLendon, III, William C.; Parekh, Ojas D.
Various technologies pertaining to modeling patterns of activity observed in remote sensing images using geospatial-temporal graphs are described herein. Graphs are constructed by representing objects in remote sensing images as nodes, and connecting nodes with undirected edges representing either distance or adjacency relationships between objects and directed edges representing changes in time. Activity patterns may be discerned from the graphs by coding nodes representing persistent objects like buildings differently from nodes representing ephemeral objects like vehicles, and examining the geospatial-temporal relationships of ephemeral nodes within the graph.
Complex network description of the ionosphere
NASA Astrophysics Data System (ADS)
Lu, Shikun; Zhang, Hao; Li, Xihai; Li, Yihong; Niu, Chao; Yang, Xiaoyun; Liu, Daizhi
2018-03-01
Complex networks have emerged as an essential approach of geoscience to generate novel insights into the nature of geophysical systems. To investigate the dynamic processes in the ionosphere, a directed complex network is constructed, based on a probabilistic graph of the vertical total electron content (VTEC) from 2012. The results of the power-law hypothesis test show that both the out-degree and in-degree distribution of the ionospheric network are not scale-free. Thus, the distribution of the interactions in the ionosphere is homogenous. None of the geospatial positions play an eminently important role in the propagation of the dynamic ionospheric processes. The spatial analysis of the ionospheric network shows that the interconnections principally exist between adjacent geographical locations, indicating that the propagation of the dynamic processes primarily depends on the geospatial distance in the ionosphere. Moreover, the joint distribution of the edge distances with respect to longitude and latitude directions shows that the dynamic processes travel further along the longitude than along the latitude in the ionosphere. The analysis of small-world-ness
indicates that the ionospheric network possesses the small-world property, which can make the ionosphere stable and efficient in the propagation of dynamic processes.
Non-rigid image registration using graph-cuts.
Tang, Tommy W H; Chung, Albert C S
2007-01-01
Non-rigid image registration is an ill-posed yet challenging problem due to its supernormal high degree of freedoms and inherent requirement of smoothness. Graph-cuts method is a powerful combinatorial optimization tool which has been successfully applied into image segmentation and stereo matching. Under some specific constraints, graph-cuts method yields either a global minimum or a local minimum in a strong sense. Thus, it is interesting to see the effects of using graph-cuts in non-rigid image registration. In this paper, we formulate non-rigid image registration as a discrete labeling problem. Each pixel in the source image is assigned a displacement label (which is a vector) indicating which position in the floating image it is spatially corresponding to. A smoothness constraint based on first derivative is used to penalize sharp changes in displacement labels across pixels. The whole system can be optimized by using the graph-cuts method via alpha-expansions. We compare 2D and 3D registration results of our method with two state-of-the-art approaches. It is found that our method is more robust to different challenging non-rigid registration cases with higher registration accuracy.
Path-sum solution of the Weyl quantum walk in 3 + 1 dimensions
NASA Astrophysics Data System (ADS)
D'Ariano, G. M.; Mosco, N.; Perinotti, P.; Tosini, A.
2017-10-01
We consider the Weyl quantum walk in 3+1 dimensions, that is a discrete-time walk describing a particle with two internal degrees of freedom moving on a Cayley graph of the group
Signalling Network Construction for Modelling Plant Defence Response
Miljkovic, Dragana; Stare, Tjaša; Mozetič, Igor; Podpečan, Vid; Petek, Marko; Witek, Kamil; Dermastia, Marina; Lavrač, Nada; Gruden, Kristina
2012-01-01
Plant defence signalling response against various pathogens, including viruses, is a complex phenomenon. In resistant interaction a plant cell perceives the pathogen signal, transduces it within the cell and performs a reprogramming of the cell metabolism leading to the pathogen replication arrest. This work focuses on signalling pathways crucial for the plant defence response, i.e., the salicylic acid, jasmonic acid and ethylene signal transduction pathways, in the Arabidopsis thaliana model plant. The initial signalling network topology was constructed manually by defining the representation formalism, encoding the information from public databases and literature, and composing a pathway diagram. The manually constructed network structure consists of 175 components and 387 reactions. In order to complement the network topology with possibly missing relations, a new approach to automated information extraction from biological literature was developed. This approach, named Bio3graph, allows for automated extraction of biological relations from the literature, resulting in a set of (component1, reaction, component2) triplets and composing a graph structure which can be visualised, compared to the manually constructed topology and examined by the experts. Using a plant defence response vocabulary of components and reaction types, Bio3graph was applied to a set of 9,586 relevant full text articles, resulting in 137 newly detected reactions between the components. Finally, the manually constructed topology and the new reactions were merged to form a network structure consisting of 175 components and 524 reactions. The resulting pathway diagram of plant defence signalling represents a valuable source for further computational modelling and interpretation of omics data. The developed Bio3graph approach, implemented as an executable language processing and graph visualisation workflow, is publically available at http://ropot.ijs.si/bio3graph/and can be utilised for modelling other biological systems, given that an adequate vocabulary is provided. PMID:23272172
NASA Astrophysics Data System (ADS)
Yamasaki, Hayata; Soeda, Akihito; Murao, Mio
2017-09-01
We introduce and analyze graph-associated entanglement cost, a generalization of the entanglement cost of quantum states to multipartite settings. We identify a necessary and sufficient condition for any multipartite entangled state to be constructible when quantum communication between the multiple parties is restricted to a quantum network represented by a tree. The condition for exact state construction is expressed in terms of the Schmidt ranks of the state defined with respect to edges of the tree. We also study approximate state construction and provide a second-order asymptotic analysis.
Topological structure of dictionary graphs
NASA Astrophysics Data System (ADS)
Fukś, Henryk; Krzemiński, Mark
2009-09-01
We investigate the topological structure of the subgraphs of dictionary graphs constructed from WordNet and Moby thesaurus data. In the process of learning a foreign language, the learner knows only a subset of all words of the language, corresponding to a subgraph of a dictionary graph. When this subgraph grows with time, its topological properties change. We introduce the notion of the pseudocore and argue that the growth of the vocabulary roughly follows decreasing pseudocore numbers—that is, one first learns words with a high pseudocore number followed by smaller pseudocores. We also propose an alternative strategy for vocabulary growth, involving decreasing core numbers as opposed to pseudocore numbers. We find that as the core or pseudocore grows in size, the clustering coefficient first decreases, then reaches a minimum and starts increasing again. The minimum occurs when the vocabulary reaches a size between 103 and 104. A simple model exhibiting similar behavior is proposed. The model is based on a generalized geometric random graph. Possible implications for language learning are discussed.
2014-01-01
Background Advances in genomic technologies have enabled the accumulation of vast amount of genomic data, including gene expression data for multiple species under various biological and environmental conditions. Integration of these gene expression datasets is a promising strategy to alleviate the challenges of protein functional annotation and biological module discovery based on a single gene expression data, which suffers from spurious coexpression. Results We propose a joint mining algorithm that constructs a weighted hybrid similarity graph whose nodes are the coexpression links. The weight of an edge between two coexpression links in this hybrid graph is a linear combination of the topological similarities and co-appearance similarities of the corresponding two coexpression links. Clustering the weighted hybrid similarity graph yields recurrent coexpression link clusters (modules). Experimental results on Human gene expression datasets show that the reported modules are functionally homogeneous as evident by their enrichment with biological process GO terms and KEGG pathways. PMID:25221624
Visualizing multiattribute Web transactions using a freeze technique
NASA Astrophysics Data System (ADS)
Hao, Ming C.; Cotting, Daniel; Dayal, Umeshwar; Machiraju, Vijay; Garg, Pankaj
2003-05-01
Web transactions are multidimensional and have a number of attributes: client, URL, response times, and numbers of messages. One of the key questions is how to simultaneously lay out in a graph the multiple relationships, such as the relationships between the web client response times and URLs in a web access application. In this paper, we describe a freeze technique to enhance a physics-based visualization system for web transactions. The idea is to freeze one set of objects before laying out the next set of objects during the construction of the graph. As a result, we substantially reduce the force computation time. This technique consists of three steps: automated classification, a freeze operation, and a graph layout. These three steps are iterated until the final graph is generated. This iterated-freeze technique has been prototyped in several e-service applications at Hewlett Packard Laboratories. It has been used to visually analyze large volumes of service and sales transactions at online web sites.
Reaction Mechanism Generator: Automatic construction of chemical kinetic mechanisms
Gao, Connie W.; Allen, Joshua W.; Green, William H.; ...
2016-02-24
Reaction Mechanism Generator (RMG) constructs kinetic models composed of elementary chemical reaction steps using a general understanding of how molecules react. Species thermochemistry is estimated through Benson group additivity and reaction rate coefficients are estimated using a database of known rate rules and reaction templates. At its core, RMG relies on two fundamental data structures: graphs and trees. Graphs are used to represent chemical structures, and trees are used to represent thermodynamic and kinetic data. Models are generated using a rate-based algorithm which excludes species from the model based on reaction fluxes. RMG can generate reaction mechanisms for species involvingmore » carbon, hydrogen, oxygen, sulfur, and nitrogen. It also has capabilities for estimating transport and solvation properties, and it automatically computes pressure-dependent rate coefficients and identifies chemically-activated reaction paths. RMG is an object-oriented program written in Python, which provides a stable, robust programming architecture for developing an extensible and modular code base with a large suite of unit tests. Computationally intensive functions are cythonized for speed improvements.« less
Graph pyramids for protein function prediction
2015-01-01
Background Uncovering the hidden organizational characteristics and regularities among biological sequences is the key issue for detailed understanding of an underlying biological phenomenon. Thus pattern recognition from nucleic acid sequences is an important affair for protein function prediction. As proteins from the same family exhibit similar characteristics, homology based approaches predict protein functions via protein classification. But conventional classification approaches mostly rely on the global features by considering only strong protein similarity matches. This leads to significant loss of prediction accuracy. Methods Here we construct the Protein-Protein Similarity (PPS) network, which captures the subtle properties of protein families. The proposed method considers the local as well as the global features, by examining the interactions among 'weakly interacting proteins' in the PPS network and by using hierarchical graph analysis via the graph pyramid. Different underlying properties of the protein families are uncovered by operating the proposed graph based features at various pyramid levels. Results Experimental results on benchmark data sets show that the proposed hierarchical voting algorithm using graph pyramid helps to improve computational efficiency as well the protein classification accuracy. Quantitatively, among 14,086 test sequences, on an average the proposed method misclassified only 21.1 sequences whereas baseline BLAST score based global feature matching method misclassified 362.9 sequences. With each correctly classified test sequence, the fast incremental learning ability of the proposed method further enhances the training model. Thus it has achieved more than 96% protein classification accuracy using only 20% per class training data. PMID:26044522
Graph pyramids for protein function prediction.
Sandhan, Tushar; Yoo, Youngjun; Choi, Jin; Kim, Sun
2015-01-01
Uncovering the hidden organizational characteristics and regularities among biological sequences is the key issue for detailed understanding of an underlying biological phenomenon. Thus pattern recognition from nucleic acid sequences is an important affair for protein function prediction. As proteins from the same family exhibit similar characteristics, homology based approaches predict protein functions via protein classification. But conventional classification approaches mostly rely on the global features by considering only strong protein similarity matches. This leads to significant loss of prediction accuracy. Here we construct the Protein-Protein Similarity (PPS) network, which captures the subtle properties of protein families. The proposed method considers the local as well as the global features, by examining the interactions among 'weakly interacting proteins' in the PPS network and by using hierarchical graph analysis via the graph pyramid. Different underlying properties of the protein families are uncovered by operating the proposed graph based features at various pyramid levels. Experimental results on benchmark data sets show that the proposed hierarchical voting algorithm using graph pyramid helps to improve computational efficiency as well the protein classification accuracy. Quantitatively, among 14,086 test sequences, on an average the proposed method misclassified only 21.1 sequences whereas baseline BLAST score based global feature matching method misclassified 362.9 sequences. With each correctly classified test sequence, the fast incremental learning ability of the proposed method further enhances the training model. Thus it has achieved more than 96% protein classification accuracy using only 20% per class training data.
Percolation on bipartite scale-free networks
NASA Astrophysics Data System (ADS)
Hooyberghs, H.; Van Schaeybroeck, B.; Indekeu, J. O.
2010-08-01
Recent studies introduced biased (degree-dependent) edge percolation as a model for failures in real-life systems. In this work, such process is applied to networks consisting of two types of nodes with edges running only between nodes of unlike type. Such bipartite graphs appear in many social networks, for instance in affiliation networks and in sexual-contact networks in which both types of nodes show the scale-free characteristic for the degree distribution. During the depreciation process, an edge between nodes with degrees k and q is retained with a probability proportional to (, where α is positive so that links between hubs are more prone to failure. The removal process is studied analytically by introducing a generating functions theory. We deduce exact self-consistent equations describing the system at a macroscopic level and discuss the percolation transition. Critical exponents are obtained by exploiting the Fortuin-Kasteleyn construction which provides a link between our model and a limit of the Potts model.
Quantum walk on a chimera graph
NASA Astrophysics Data System (ADS)
Xu, Shu; Sun, Xiangxiang; Wu, Jizhou; Zhang, Wei-Wei; Arshed, Nigum; Sanders, Barry C.
2018-05-01
We analyse a continuous-time quantum walk on a chimera graph, which is a graph of choice for designing quantum annealers, and we discover beautiful quantum walk features such as localization that starkly distinguishes classical from quantum behaviour. Motivated by technological thrusts, we study continuous-time quantum walk on enhanced variants of the chimera graph and on diminished chimera graph with a random removal of vertices. We explain the quantum walk by constructing a generating set for a suitable subgroup of graph isomorphisms and corresponding symmetry operators that commute with the quantum walk Hamiltonian; the Hamiltonian and these symmetry operators provide a complete set of labels for the spectrum and the stationary states. Our quantum walk characterization of the chimera graph and its variants yields valuable insights into graphs used for designing quantum-annealers.
Hébert-Dufresne, Laurent; Grochow, Joshua A; Allard, Antoine
2016-08-18
We introduce a network statistic that measures structural properties at the micro-, meso-, and macroscopic scales, while still being easy to compute and interpretable at a glance. Our statistic, the onion spectrum, is based on the onion decomposition, which refines the k-core decomposition, a standard network fingerprinting method. The onion spectrum is exactly as easy to compute as the k-cores: It is based on the stages at which each vertex gets removed from a graph in the standard algorithm for computing the k-cores. Yet, the onion spectrum reveals much more information about a network, and at multiple scales; for example, it can be used to quantify node heterogeneity, degree correlations, centrality, and tree- or lattice-likeness. Furthermore, unlike the k-core decomposition, the combined degree-onion spectrum immediately gives a clear local picture of the network around each node which allows the detection of interesting subgraphs whose topological structure differs from the global network organization. This local description can also be leveraged to easily generate samples from the ensemble of networks with a given joint degree-onion distribution. We demonstrate the utility of the onion spectrum for understanding both static and dynamic properties on several standard graph models and on many real-world networks.
Constructing financial network based on PMFG and threshold method
NASA Astrophysics Data System (ADS)
Nie, Chun-Xiao; Song, Fu-Tie
2018-04-01
Based on planar maximally filtered graph (PMFG) and threshold method, we introduced a correlation-based network named PMFG-based threshold network (PTN). We studied the community structure of PTN and applied ISOMAP algorithm to represent PTN in low-dimensional Euclidean space. The results show that the community corresponds well to the cluster in the Euclidean space. Further, we studied the dynamics of the community structure and constructed the normalized mutual information (NMI) matrix. Based on the real data in the market, we found that the volatility of the market can lead to dramatic changes in the community structure, and the structure is more stable during the financial crisis.
Flexibility in data interpretation: effects of representational format.
Braithwaite, David W; Goldstone, Robert L
2013-01-01
Graphs and tables differentially support performance on specific tasks. For tasks requiring reading off single data points, tables are as good as or better than graphs, while for tasks involving relationships among data points, graphs often yield better performance. However, the degree to which graphs and tables support flexibility across a range of tasks is not well-understood. In two experiments, participants detected main and interaction effects in line graphs and tables of bivariate data. Graphs led to more efficient performance, but also lower flexibility, as indicated by a larger discrepancy in performance across tasks. In particular, detection of main effects of variables represented in the graph legend was facilitated relative to detection of main effects of variables represented in the x-axis. Graphs may be a preferable representational format when the desired task or analytical perspective is known in advance, but may also induce greater interpretive bias than tables, necessitating greater care in their use and design.
Digging into Data with Graphics
ERIC Educational Resources Information Center
Bradstreet, Thomas E.; Palcza, John S.
2012-01-01
Data from a cough challenge study are displayed with dot charts to demonstrate the importance of graphs in understanding data, principles of graph construction and visual perception. The data are available for use in the classroom.
SAGE: String-overlap Assembly of GEnomes.
Ilie, Lucian; Haider, Bahlul; Molnar, Michael; Solis-Oba, Roberto
2014-09-15
De novo genome assembly of next-generation sequencing data is one of the most important current problems in bioinformatics, essential in many biological applications. In spite of significant amount of work in this area, better solutions are still very much needed. We present a new program, SAGE, for de novo genome assembly. As opposed to most assemblers, which are de Bruijn graph based, SAGE uses the string-overlap graph. SAGE builds upon great existing work on string-overlap graph and maximum likelihood assembly, bringing an important number of new ideas, such as the efficient computation of the transitive reduction of the string overlap graph, the use of (generalized) edge multiplicity statistics for more accurate estimation of read copy counts, and the improved use of mate pairs and min-cost flow for supporting edge merging. The assemblies produced by SAGE for several short and medium-size genomes compared favourably with those of existing leading assemblers. SAGE benefits from innovations in almost every aspect of the assembly process: error correction of input reads, string-overlap graph construction, read copy counts estimation, overlap graph analysis and reduction, contig extraction, and scaffolding. We hope that these new ideas will help advance the current state-of-the-art in an essential area of research in genomics.
Zhou, Jian; Wang, Lusheng; Wang, Weidong; Zhou, Qingfeng
2017-01-01
In future scenarios of heterogeneous and dense networks, randomly-deployed small star networks (SSNs) become a key paradigm, whose system performance is restricted to inter-SSN interference and requires an efficient resource allocation scheme for interference coordination. Traditional resource allocation schemes do not specifically focus on this paradigm and are usually too time consuming in dense networks. In this article, a very efficient graph-based scheme is proposed, which applies the maximal independent set (MIS) concept in graph theory to help divide SSNs into almost interference-free groups. We first construct an interference graph for the system based on a derived distance threshold indicating for any pair of SSNs whether there is intolerable inter-SSN interference or not. Then, SSNs are divided into MISs, and the same resource can be repetitively used by all the SSNs in each MIS. Empirical parameters and equations are set in the scheme to guarantee high performance. Finally, extensive scenarios both dense and nondense are randomly generated and simulated to demonstrate the performance of our scheme, indicating that it outperforms the classical max K-cut-based scheme in terms of system capacity, utility and especially time cost. Its achieved system capacity, utility and fairness can be close to the near-optimal strategy obtained by a time-consuming simulated annealing search. PMID:29113109
Ring system-based chemical graph generation for de novo molecular design
NASA Astrophysics Data System (ADS)
Miyao, Tomoyuki; Kaneko, Hiromasa; Funatsu, Kimito
2016-05-01
Generating chemical graphs in silico by combining building blocks is important and fundamental in virtual combinatorial chemistry. A premise in this area is that generated structures should be irredundant as well as exhaustive. In this study, we develop structure generation algorithms regarding combining ring systems as well as atom fragments. The proposed algorithms consist of three parts. First, chemical structures are generated through a canonical construction path. During structure generation, ring systems can be treated as reduced graphs having fewer vertices than those in the original ones. Second, diversified structures are generated by a simple rule-based generation algorithm. Third, the number of structures to be generated can be estimated with adequate accuracy without actual exhaustive generation. The proposed algorithms were implemented in structure generator Molgilla. As a practical application, Molgilla generated chemical structures mimicking rosiglitazone in terms of a two dimensional pharmacophore pattern. The strength of the algorithms lies in simplicity and flexibility. Therefore, they may be applied to various computer programs regarding structure generation by combining building blocks.
Machine learning in a graph framework for subcortical segmentation
NASA Astrophysics Data System (ADS)
Guo, Zhihui; Kashyap, Satyananda; Sonka, Milan; Oguz, Ipek
2017-02-01
Automated and reliable segmentation of subcortical structures from human brain magnetic resonance images is of great importance for volumetric and shape analyses in quantitative neuroimaging studies. However, poor boundary contrast and variable shape of these structures make the automated segmentation a tough task. We propose a 3D graph-based machine learning method, called LOGISMOS-RF, to segment the caudate and the putamen from brain MRI scans in a robust and accurate way. An atlas-based tissue classification and bias-field correction method is applied to the images to generate an initial segmentation for each structure. Then a 3D graph framework is utilized to construct a geometric graph for each initial segmentation. A locally trained random forest classifier is used to assign a cost to each graph node. The max-flow algorithm is applied to solve the segmentation problem. Evaluation was performed on a dataset of T1-weighted MRI's of 62 subjects, with 42 images used for training and 20 images for testing. For comparison, FreeSurfer, FSL and BRAINSCut approaches were also evaluated using the same dataset. Dice overlap coefficients and surface-to-surfaces distances between the automated segmentation and expert manual segmentations indicate the results of our method are statistically significantly more accurate than the three other methods, for both the caudate (Dice: 0.89 +/- 0.03) and the putamen (0.89 +/- 0.03).
Min, Yu-Sun; Chang, Yongmin; Park, Jang Woo; Lee, Jong-Min; Cha, Jungho; Yang, Jin-Ju; Kim, Chul-Hyun; Hwang, Jong-Moon; Yoo, Ji-Na; Jung, Tae-Du
2015-06-01
To investigate the global functional reorganization of the brain following spinal cord injury with graph theory based approach by creating whole brain functional connectivity networks from resting state-functional magnetic resonance imaging (rs-fMRI), characterizing the reorganization of these networks using graph theoretical metrics and to compare these metrics between patients with spinal cord injury (SCI) and age-matched controls. Twenty patients with incomplete cervical SCI (14 males, 6 females; age, 55±14.1 years) and 20 healthy subjects (10 males, 10 females; age, 52.9±13.6 years) participated in this study. To analyze the characteristics of the whole brain network constructed with functional connectivity using rs-fMRI, graph theoretical measures were calculated including clustering coefficient, characteristic path length, global efficiency and small-worldness. Clustering coefficient, global efficiency and small-worldness did not show any difference between controls and SCIs in all density ranges. The normalized characteristic path length to random network was higher in SCI patients than in controls and reached statistical significance at 12%-13% of density (p<0.05, uncorrected). The graph theoretical approach in brain functional connectivity might be helpful to reveal the information processing after SCI. These findings imply that patients with SCI can build on preserved competent brain control. Further analyses, such as topological rearrangement and hub region identification, will be needed for better understanding of neuroplasticity in patients with SCI.
Application of kernel functions for accurate similarity search in large chemical databases.
Wang, Xiaohong; Huan, Jun; Smalter, Aaron; Lushington, Gerald H
2010-04-29
Similarity search in chemical structure databases is an important problem with many applications in chemical genomics, drug design, and efficient chemical probe screening among others. It is widely believed that structure based methods provide an efficient way to do the query. Recently various graph kernel functions have been designed to capture the intrinsic similarity of graphs. Though successful in constructing accurate predictive and classification models, graph kernel functions can not be applied to large chemical compound database due to the high computational complexity and the difficulties in indexing similarity search for large databases. To bridge graph kernel function and similarity search in chemical databases, we applied a novel kernel-based similarity measurement, developed in our team, to measure similarity of graph represented chemicals. In our method, we utilize a hash table to support new graph kernel function definition, efficient storage and fast search. We have applied our method, named G-hash, to large chemical databases. Our results show that the G-hash method achieves state-of-the-art performance for k-nearest neighbor (k-NN) classification. Moreover, the similarity measurement and the index structure is scalable to large chemical databases with smaller indexing size, and faster query processing time as compared to state-of-the-art indexing methods such as Daylight fingerprints, C-tree and GraphGrep. Efficient similarity query processing method for large chemical databases is challenging since we need to balance running time efficiency and similarity search accuracy. Our previous similarity search method, G-hash, provides a new way to perform similarity search in chemical databases. Experimental study validates the utility of G-hash in chemical databases.
Information-optimal genome assembly via sparse read-overlap graphs.
Shomorony, Ilan; Kim, Samuel H; Courtade, Thomas A; Tse, David N C
2016-09-01
In the context of third-generation long-read sequencing technologies, read-overlap-based approaches are expected to play a central role in the assembly step. A fundamental challenge in assembling from a read-overlap graph is that the true sequence corresponds to a Hamiltonian path on the graph, and, under most formulations, the assembly problem becomes NP-hard, restricting practical approaches to heuristics. In this work, we avoid this seemingly fundamental barrier by first setting the computational complexity issue aside, and seeking an algorithm that targets information limits In particular, we consider a basic feasibility question: when does the set of reads contain enough information to allow unambiguous reconstruction of the true sequence? Based on insights from this information feasibility question, we present an algorithm-the Not-So-Greedy algorithm-to construct a sparse read-overlap graph. Unlike most other assembly algorithms, Not-So-Greedy comes with a performance guarantee: whenever information feasibility conditions are satisfied, the algorithm reduces the assembly problem to an Eulerian path problem on the resulting graph, and can thus be solved in linear time. In practice, this theoretical guarantee translates into assemblies of higher quality. Evaluations on both simulated reads from real genomes and a PacBio Escherichia coli K12 dataset demonstrate that Not-So-Greedy compares favorably with standard string graph approaches in terms of accuracy of the resulting read-overlap graph and contig N50. Available at github.com/samhykim/nsg courtade@eecs.berkeley.edu or dntse@stanford.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Identifying patients with Alzheimer's disease using resting-state fMRI and graph theory.
Khazaee, Ali; Ebrahimzadeh, Ata; Babajani-Feremi, Abbas
2015-11-01
Study of brain network on the basis of resting-state functional magnetic resonance imaging (fMRI) has provided promising results to investigate changes in connectivity among different brain regions because of diseases. Graph theory can efficiently characterize different aspects of the brain network by calculating measures of integration and segregation. In this study, we combine graph theoretical approaches with advanced machine learning methods to study functional brain network alteration in patients with Alzheimer's disease (AD). Support vector machine (SVM) was used to explore the ability of graph measures in diagnosis of AD. We applied our method on the resting-state fMRI data of twenty patients with AD and twenty age and gender matched healthy subjects. The data were preprocessed and each subject's graph was constructed by parcellation of the whole brain into 90 distinct regions using the automated anatomical labeling (AAL) atlas. The graph measures were then calculated and used as the discriminating features. Extracted network-based features were fed to different feature selection algorithms to choose most significant features. In addition to the machine learning approach, statistical analysis was performed on connectivity matrices to find altered connectivity patterns in patients with AD. Using the selected features, we were able to accurately classify patients with AD from healthy subjects with accuracy of 100%. Results of this study show that pattern recognition and graph of brain network, on the basis of the resting state fMRI data, can efficiently assist in the diagnosis of AD. Classification based on the resting-state fMRI can be used as a non-invasive and automatic tool to diagnosis of Alzheimer's disease. Copyright © 2015 International Federation of Clinical Neurophysiology. All rights reserved.
Method for Location of An External Dump in Surface Mining Using the A-Star Algorithm
NASA Astrophysics Data System (ADS)
Zajączkowski, Maciej; Kasztelewicz, Zbigniew; Sikora, Mateusz
2014-10-01
The construction of a surface mine always involves the necessity of accessing deposits through the removal of the residual overburden above. In the beginning phase of exploitation, the masses of overburden are located outside the perimeters of the excavation site, on the external dump, until the moment of internal dumping. In the case of lignite surface mines, these dumps can cover a ground surface of several dozen to a few thousand hectares. This results from a high concentration of lignite extraction, counted in millions of Mg per year, and the relatively large depth of its residual deposits. Determining the best place for the location of an external dump requires a detailed analysis of existing options, followed by a choice of the most favorable one. This article, using the case study of an open-cast lignite mine, presents the selection method for an external dump location based on graph theory and the A-star algorithm. This algorithm, based on the spatial distribution of individual intersections on the graph, seeks specified graph states, continually expanding them with additional elementary fields until the required surface area for the external dump - defined by the lowest value of the occupied site - is achieved. To do this, it is necessary to accurately identify the factors affecting the choice of dump location. On such a basis, it is then possible to specify the target function, which reflects the individual costs of dump construction on a given site. This is discussed further in chapter 3. The area of potential dump location has been divided into elementary fields, each represented by a corresponding geometrical locus. Ascribed to this locus, in addition to its geodesic coordinates, are the appropriate attributes reflecting the degree of development of its elementary field. These tasks can be carried out automatically thanks to the integration of the method with the system of geospatial data management for the given area. The collection of loci, together with geodesic coordinates, constitutes the points on the graph used during exploration. This is done using the A-star algorithm, which uses a heuristic function, allowing it to identify the optimal solution; therefore, the collection of elementary fields, which occupy the potential construction area of a dump, characterized by the lowest value representing the cost of occupation and dumping of overburden in the area. The precision of the boundary, generated by the algorithm, is dependent on the established size of the elementary field, and should be refined each time by the designer of the surface mine. This article presents the application of the above method of dump location using the example of "Tomisławice," a lignite surface mine owned by PAK KWB Konin S. A. The method made it possible to identify the most favorable dump location on the northeast side of the initial pit, within 2 kilometers of its surrounding area (discussed further in chapter 3). This method is universal in nature and, after certain modifications, can be implemented for other surface mines as well.
Adaptive distance metric learning for diffusion tensor image segmentation.
Kong, Youyong; Wang, Defeng; Shi, Lin; Hui, Steve C N; Chu, Winnie C W
2014-01-01
High quality segmentation of diffusion tensor images (DTI) is of key interest in biomedical research and clinical application. In previous studies, most efforts have been made to construct predefined metrics for different DTI segmentation tasks. These methods require adequate prior knowledge and tuning parameters. To overcome these disadvantages, we proposed to automatically learn an adaptive distance metric by a graph based semi-supervised learning model for DTI segmentation. An original discriminative distance vector was first formulated by combining both geometry and orientation distances derived from diffusion tensors. The kernel metric over the original distance and labels of all voxels were then simultaneously optimized in a graph based semi-supervised learning approach. Finally, the optimization task was efficiently solved with an iterative gradient descent method to achieve the optimal solution. With our approach, an adaptive distance metric could be available for each specific segmentation task. Experiments on synthetic and real brain DTI datasets were performed to demonstrate the effectiveness and robustness of the proposed distance metric learning approach. The performance of our approach was compared with three classical metrics in the graph based semi-supervised learning framework.
Adaptive Distance Metric Learning for Diffusion Tensor Image Segmentation
Kong, Youyong; Wang, Defeng; Shi, Lin; Hui, Steve C. N.; Chu, Winnie C. W.
2014-01-01
High quality segmentation of diffusion tensor images (DTI) is of key interest in biomedical research and clinical application. In previous studies, most efforts have been made to construct predefined metrics for different DTI segmentation tasks. These methods require adequate prior knowledge and tuning parameters. To overcome these disadvantages, we proposed to automatically learn an adaptive distance metric by a graph based semi-supervised learning model for DTI segmentation. An original discriminative distance vector was first formulated by combining both geometry and orientation distances derived from diffusion tensors. The kernel metric over the original distance and labels of all voxels were then simultaneously optimized in a graph based semi-supervised learning approach. Finally, the optimization task was efficiently solved with an iterative gradient descent method to achieve the optimal solution. With our approach, an adaptive distance metric could be available for each specific segmentation task. Experiments on synthetic and real brain DTI datasets were performed to demonstrate the effectiveness and robustness of the proposed distance metric learning approach. The performance of our approach was compared with three classical metrics in the graph based semi-supervised learning framework. PMID:24651858
NASA Astrophysics Data System (ADS)
Seppke, Benjamin; Dreschler-Fischer, Leonie; Wilms, Christian
2016-08-01
The extraction of road signatures from remote sensing images as a promising indicator for urbanization is a classical segmentation problem. However, some segmentation algorithms often lead to non-sufficient results. One way to overcome this problem is the usage of superpixels, that represent a locally coherent cluster of connected pixels. Superpixels allow flexible, highly adaptive segmentation approaches due to the possibility of merging as well as splitting and form new basic image entities. On the other hand, superpixels require an appropriate representation containing all relevant information about topology and geometry to maximize their advantages.In this work, we present a combined geometric and topological representation based on a special graph representation, the so-called RS-graph. Moreover, we present the use of the RS-graph by means of a case study: the extraction of partially occluded road networks in rural areas from open source (spectral) remote sensing images by tracking. In addition, multiprocessing and GPU-based parallelization is used to speed up the construction of the representation and the application.
Comparing morphologies of drainage basins on Mars and Earth using integral-geometry and neural maps
NASA Technical Reports Server (NTRS)
Stepinski, T. F.; Coradetti, S.
2004-01-01
We compare morphologies of drainage basins on Mars and Earth in order to confine the formation process of Martian valley networks. Basins on both planets are computationally extracted from digital topography. Integral-geometry methods are used to represent each basin by a circularity function that encapsulates its internal structure. The shape of such a function is an indicator of the style of fluvial erosion. We use the self-organizing map technique to construct a similarity graph for all basins. The graph reveals systematic differences between morphologies of basins on the two planets. This dichotomy indicates that terrestrial and Martian surfaces were eroded differently. We argue that morphologies of Martian basins are incompatible with runoff from sustained, homogeneous rainfall. Fluvial environments compatible with observed morphologies are discussed. We also construct a similarity graph based on the comparison of basins hypsometric curves to demonstrate that hypsometry is incapable of discriminating between terrestrial and Martian basins. INDEX TERMS: 1824 Hydrology: Geomorphology (1625); 1886 Hydrology: Weathering (1625); 5415 Planetology: Solid Surface Planets: Erosion and weathering; 6225 Planetology: Solar System Objects Mars. Citation: Stepinski, T. F., and S. Coradetti (2004), Comparing morphologies of drainage basins on Mars and Earth using integral-ge
Graph Theory Approach for Studying Food Webs
NASA Astrophysics Data System (ADS)
Longjas, A.; Tejedor, A.; Foufoula-Georgiou, E.
2017-12-01
Food webs are complex networks of feeding interactions among species in ecological communities. Metrics describing food web structure have been proposed to compare and classify food webs ranging from food chain length, connectance, degree distribution, centrality measures, to the presence of motifs (distinct compartments), among others. However, formal methodologies for studying both food web topology and the dynamic processes operating on them are still lacking. Here, we utilize a quantitative framework using graph theory within which a food web is represented by a directed graph, i.e., a collection of vertices (species or trophic species defined as sets of species sharing the same predators and prey) and directed edges (predation links). This framework allows us to identify apex (environmental "source" node) to outlet (top predators) subnetworks and compute the steady-state flux (e.g., carbon, nutrients, energy etc.) in the food web. We use this framework to (1) construct vulnerability maps that quantify the relative change of flux delivery to the top predators in response to perturbations in prey species (2) identify keystone species, whose loss would precipitate further species extinction, and (3) introduce a suite of graph-theoretic metrics to quantify the topologic (imposed by food web connectivity) and dynamic (dictated by the flux partitioning and distribution) components of a food web's complexity. By projecting food webs into a 2D Topodynamic Complexity Space whose coordinates are given by Number of alternative paths (topologic) and Leakage Index (dynamic), we show that this space provides a basis for food web comparison and provide physical insights into their dynamic behavior.
On some labelings of triangular snake and central graph of triangular snake graph
NASA Astrophysics Data System (ADS)
Agasthi, P.; Parvathi, N.
2018-04-01
A Triangular snake Tn is obtained from a path u 1 u 2 … u n by joining ui and u i+1 to a new vertex wi for 1≤i≤n‑1. A Central graph of Triangular snake C(T n ) is obtained by subdividing each edge of Tn exactly once and joining all the non adjacent vertices of Tn . In this paper the ways to construct square sum, square difference, Root Mean square, strongly Multiplicative, Even Mean and Odd Mean labeling for Triangular Snake and Central graph of Triangular Snake graphs are reported.
Chou, Ming-Chung; Ko, Chih-Hung; Chang, Jer-Ming; Hsieh, Tsyh-Jyi
2018-05-04
End-stage renal disease (ESRD) patients on hemodialysis were demonstrated to exhibit silent and invisible white-matter alterations which would likely lead to disruptions of brain structural networks. Therefore, the purpose of this study was to investigate the disruptions of brain structural network in ESRD patients. Thiry-three ESRD patients with normal-appearing brain tissues and 29 age- and gender-matched healthy controls were enrolled in this study and underwent both cognitive ability screening instrument (CASI) assessment and diffusion tensor imaging (DTI) acquisition. Brain structural connectivity network was constructed using probabilistic tractography with automatic anatomical labeling template. Graph-theory analysis was performed to detect the alterations of node-strength, node-degree, node-local efficiency, and node-clustering coefficient in ESRD patients. Correlational analysis was performed to understand the relationship between network measures, CASI score, and dialysis duration. Structural connectivity, node-strength, node-degree, and node-local efficiency were significantly decreased, whereas node-clustering coefficient was significantly increased in ESRD patients as compared with healthy controls. The disrupted local structural networks were generally associated with common neurological complications of ESRD patients, but the correlational analysis did not reveal significant correlation between network measures, CASI score, and dialysis duration. Graph-theory analysis was helpful to investigate disruptions of brain structural network in ESRD patients with normal-appearing brain tissues. Copyright © 2018. Published by Elsevier Masson SAS.
Caeyenberghs, Karen; Leemans, Alexander; Heitger, Marcus H; Leunissen, Inge; Dhollander, Thijs; Sunaert, Stefan; Dupont, Patrick; Swinnen, Stephan P
2012-04-01
Patients with traumatic brain injury show clear impairments in behavioural flexibility and inhibition that often persist beyond the time of injury, affecting independent living and psychosocial functioning. Functional magnetic resonance imaging studies have shown that patients with traumatic brain injury typically show increased and more broadly dispersed frontal and parietal activity during performance of cognitive control tasks. We constructed binary and weighted functional networks and calculated their topological properties using a graph theoretical approach. Twenty-three adults with traumatic brain injury and 26 age-matched controls were instructed to switch between coordination modes while making spatially and temporally coupled circular motions with joysticks during event-related functional magnetic resonance imaging. Results demonstrated that switching performance was significantly lower in patients with traumatic brain injury compared with control subjects. Furthermore, although brain networks of both groups exhibited economical small-world topology, altered functional connectivity was demonstrated in patients with traumatic brain injury. In particular, compared with controls, patients with traumatic brain injury showed increased connectivity degree and strength, and higher values of local efficiency, suggesting adaptive mechanisms in this group. Finally, the degree of increased connectivity was significantly correlated with poorer switching task performance and more severe brain injury. We conclude that analysing the functional brain network connectivity provides new insights into understanding cognitive control changes following brain injury.
Visibility graph analysis on heartbeat dynamics of meditation training
NASA Astrophysics Data System (ADS)
Jiang, Sen; Bian, Chunhua; Ning, Xinbao; Ma, Qianli D. Y.
2013-06-01
We apply the visibility graph analysis to human heartbeat dynamics by constructing the complex networks of heartbeat interval time series and investigating the statistical properties of the network before and during chi and yoga meditation. The experiment results show that visibility graph analysis can reveal the dynamical changes caused by meditation training manifested as regular heartbeat, which is closely related to the adjustment of autonomous neural system, and visibility graph analysis is effective to evaluate the effect of meditation.
Stavrakas, Vassilis; Melas, Ioannis N; Sakellaropoulos, Theodore; Alexopoulos, Leonidas G
2015-01-01
Modeling of signal transduction pathways is instrumental for understanding cells' function. People have been tackling modeling of signaling pathways in order to accurately represent the signaling events inside cells' biochemical microenvironment in a way meaningful for scientists in a biological field. In this article, we propose a method to interrogate such pathways in order to produce cell-specific signaling models. We integrate available prior knowledge of protein connectivity, in a form of a Prior Knowledge Network (PKN) with phosphoproteomic data to construct predictive models of the protein connectivity of the interrogated cell type. Several computational methodologies focusing on pathways' logic modeling using optimization formulations or machine learning algorithms have been published on this front over the past few years. Here, we introduce a light and fast approach that uses a breadth-first traversal of the graph to identify the shortest pathways and score proteins in the PKN, fitting the dependencies extracted from the experimental design. The pathways are then combined through a heuristic formulation to produce a final topology handling inconsistencies between the PKN and the experimental scenarios. Our results show that the algorithm we developed is efficient and accurate for the construction of medium and large scale signaling networks. We demonstrate the applicability of the proposed approach by interrogating a manually curated interaction graph model of EGF/TNFA stimulation against made up experimental data. To avoid the possibility of erroneous predictions, we performed a cross-validation analysis. Finally, we validate that the introduced approach generates predictive topologies, comparable to the ILP formulation. Overall, an efficient approach based on graph theory is presented herein to interrogate protein-protein interaction networks and to provide meaningful biological insights.
Encapsulation of Volatile Citronella Essential Oil by Coacervation: Efficiency and Release Study
NASA Astrophysics Data System (ADS)
Manaf, M. A.; Subuki, I.; Jai, J.; Raslan, R.; Mustapa, A. N.
2018-05-01
The volatile citronella essential oil was encapsulated by simple coacervation and complex coacervation using Arabic gum and gelatin as wall material. Glutaraldehyde was used in the methodology as crosslinking agent. The citronella standard calibration graph obtained with R2 of 0.9523 was used for the accurate determination of encapsulation efficiency and release study. The release kinetic was analysed based on Fick"s law of diffusion for polymeric system and linear graph of Log fraction release over Log time was constructed to determine the release rate constant, k and diffusion coefficient, n. Both coacervation methods in the present study produce encapsulation efficiency around 94%. The produced capsules for both coacervation processes were discussed based on the capsules morphology and release kinetic mechanisms.
HBNG: Graph theory based visualization of hydrogen bond networks in protein structures.
Tiwari, Abhishek; Tiwari, Vivek
2007-07-09
HBNG is a graph theory based tool for visualization of hydrogen bond network in 2D. Digraphs generated by HBNG facilitate visualization of cooperativity and anticooperativity chains and rings in protein structures. HBNG takes hydrogen bonds list files (output from HBAT, HBEXPLORE, HBPLUS and STRIDE) as input and generates a DOT language script and constructs digraphs using freeware AT and T Graphviz tool. HBNG is useful in the enumeration of favorable topologies of hydrogen bond networks in protein structures and determining the effect of cooperativity and anticooperativity on protein stability and folding. HBNG can be applied to protein structure comparison and in the identification of secondary structural regions in protein structures. Program is available from the authors for non-commercial purposes.
Supermanifolds from Feynman graphs
NASA Astrophysics Data System (ADS)
Marcolli, Matilde; Rej, Abhijnan
2008-08-01
We generalize the computation of Feynman integrals of log divergent graphs in terms of the Kirchhoff polynomial to the case of graphs with both fermionic and bosonic edges, to which we assign a set of ordinary and Grassmann variables. This procedure gives a computation of the Feynman integrals in terms of a period on a supermanifold, for graphs admitting a basis of the first homology satisfying a condition generalizing the log divergence in this context. The analog in this setting of the graph hypersurfaces is a graph supermanifold given by the divisor of zeros and poles of the Berezinian of a matrix associated with the graph, inside a superprojective space. We introduce a Grothendieck group for supermanifolds and identify the subgroup generated by the graph supermanifolds. This can be seen as a general procedure for constructing interesting classes of supermanifolds with associated periods.
Information fusion-based approach for studying influence on Twitter using belief theory.
Azaza, Lobna; Kirgizov, Sergey; Savonnet, Marinette; Leclercq, Éric; Gastineau, Nicolas; Faiz, Rim
2016-01-01
Influence in Twitter has become recently a hot research topic, since this micro-blogging service is widely used to share and disseminate information. Some users are more able than others to influence and persuade peers. Thus, studying most influential users leads to reach a large-scale information diffusion area, something very useful in marketing or political campaigns. In this study, we propose a new approach for multi-level influence assessment on multi-relational networks, such as Twitter . We define a social graph to model the relationships between users as a multiplex graph where users are represented by nodes, and links model the different relations between them (e.g., retweets , mentions , and replies ). We explore how relations between nodes in this graph could reveal about the influence degree and propose a generic computational model to assess influence degree of a certain node. This is based on the conjunctive combination rule from the belief functions theory to combine different types of relations. We experiment the proposed method on a large amount of data gathered from Twitter during the European Elections 2014 and deduce top influential candidates. The results show that our model is flexible enough to to consider multiple interactions combination according to social scientists needs or requirements and that the numerical results of the belief theory are accurate. We also evaluate the approach over the CLEF RepLab 2014 data set and show that our approach leads to quite interesting results.
Boersma, Maria; Smit, Dirk J A; Boomsma, Dorret I; De Geus, Eco J C; Delemarre-van de Waal, Henriette A; Stam, Cornelis J
2013-01-01
The child brain is a small-world network, which is hypothesized to change toward more ordered configurations with development. In graph theoretical studies, comparing network topologies under different conditions remains a critical point. Constructing a minimum spanning tree (MST) might present a solution, since it does not require setting a threshold and uses a fixed number of nodes and edges. In this study, the MST method is introduced to examine developmental changes in functional brain network topology in young children. Resting-state electroencephalography was recorded from 227 children twice at 5 and 7 years of age. Synchronization likelihood (SL) weighted matrices were calculated in three different frequency bands from which MSTs were constructed, which represent constructs of the most important routes for information flow in a network. From these trees, several parameters were calculated to characterize developmental change in network organization. The MST diameter and eccentricity significantly increased, while the leaf number and hierarchy significantly decreased in the alpha band with development. Boys showed significant higher leaf number, betweenness, degree and hierarchy and significant lower SL, diameter, and eccentricity than girls in the theta band. The developmental changes indicate a shift toward more decentralized line-like trees, which supports the previously hypothesized increase toward regularity of brain networks with development. Additionally, girls showed more line-like decentralized configurations, which is consistent with the view that girls are ahead of boys in brain development. MST provides an elegant method sensitive to capture subtle developmental changes in network organization without the bias of network comparison.
Multiscale Embedded Gene Co-expression Network Analysis
Song, Won-Min; Zhang, Bin
2015-01-01
Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG) has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3), the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) by: i) introducing quality control of co-expression similarities, ii) parallelizing embedded network construction, and iii) developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs). We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA). MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma. PMID:26618778
Multiscale Embedded Gene Co-expression Network Analysis.
Song, Won-Min; Zhang, Bin
2015-11-01
Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG) has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3), the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) by: i) introducing quality control of co-expression similarities, ii) parallelizing embedded network construction, and iii) developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs). We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA). MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma.
Local dependence in random graph models: characterization, properties and statistical inference
Schweinberger, Michael; Handcock, Mark S.
2015-01-01
Summary Dependent phenomena, such as relational, spatial and temporal phenomena, tend to be characterized by local dependence in the sense that units which are close in a well-defined sense are dependent. In contrast with spatial and temporal phenomena, though, relational phenomena tend to lack a natural neighbourhood structure in the sense that it is unknown which units are close and thus dependent. Owing to the challenge of characterizing local dependence and constructing random graph models with local dependence, many conventional exponential family random graph models induce strong dependence and are not amenable to statistical inference. We take first steps to characterize local dependence in random graph models, inspired by the notion of finite neighbourhoods in spatial statistics and M-dependence in time series, and we show that local dependence endows random graph models with desirable properties which make them amenable to statistical inference. We show that random graph models with local dependence satisfy a natural domain consistency condition which every model should satisfy, but conventional exponential family random graph models do not satisfy. In addition, we establish a central limit theorem for random graph models with local dependence, which suggests that random graph models with local dependence are amenable to statistical inference. We discuss how random graph models with local dependence can be constructed by exploiting either observed or unobserved neighbourhood structure. In the absence of observed neighbourhood structure, we take a Bayesian view and express the uncertainty about the neighbourhood structure by specifying a prior on a set of suitable neighbourhood structures. We present simulation results and applications to two real world networks with ‘ground truth’. PMID:26560142
Dinh, Hieu; Rajasekaran, Sanguthevar
2011-07-15
Exact-match overlap graphs have been broadly used in the context of DNA assembly and the shortest super string problem where the number of strings n ranges from thousands to billions. The length ℓ of the strings is from 25 to 1000, depending on the DNA sequencing technologies. However, many DNA assemblers using overlap graphs suffer from the need for too much time and space in constructing the graphs. It is nearly impossible for these DNA assemblers to handle the huge amount of data produced by the next-generation sequencing technologies where the number n of strings could be several billions. If the overlap graph is explicitly stored, it would require Ω(n(2)) memory, which could be prohibitive in practice when n is greater than a hundred million. In this article, we propose a novel data structure using which the overlap graph can be compactly stored. This data structure requires only linear time to construct and and linear memory to store. For a given set of input strings (also called reads), we can informally define an exact-match overlap graph as follows. Each read is represented as a node in the graph and there is an edge between two nodes if the corresponding reads overlap sufficiently. A formal description follows. The maximal exact-match overlap of two strings x and y, denoted by ov(max)(x, y), is the longest string which is a suffix of x and a prefix of y. The exact-match overlap graph of n given strings of length ℓ is an edge-weighted graph in which each vertex is associated with a string and there is an edge (x, y) of weight ω=ℓ-|ov(max)(x, y)| if and only if ω ≤ λ, where |ov(max)(x, y)| is the length of ov(max)(x, y) and λ is a given threshold. In this article, we show that the exact-match overlap graphs can be represented by a compact data structure that can be stored using at most (2λ-1)(2⌈logn⌉+⌈logλ⌉)n bits with a guarantee that the basic operation of accessing an edge takes O(log λ) time. We also propose two algorithms for constructing the data structure for the exact-match overlap graph. The first algorithm runs in O(λℓnlogn) worse-case time and requires O(λ) extra memory. The second one runs in O(λℓn) time and requires O(n) extra memory. Our experimental results on a huge amount of simulated data from sequence assembly show that the data structure can be constructed efficiently in time and memory. Our DNA sequence assembler that incorporates the data structure is freely available on the web at http://www.engr.uconn.edu/~htd06001/assembler/leap.zip
Hamiltonian Cycle Enumeration via Fermion-Zeon Convolution
NASA Astrophysics Data System (ADS)
Staples, G. Stacey
2017-12-01
Beginning with a simple graph having finite vertex set V, operators are induced on fermion and zeon algebras by the action of the graph's adjacency matrix and combinatorial Laplacian on the vector space spanned by the graph's vertices. When the graph is simple (undirected with no loops or multiple edges), the matrices are symmetric and the induced operators are self-adjoint. The goal of the current paper is to recover a number of known graph-theoretic results from quantum observables constructed as linear operators on fermion and zeon Fock spaces. By considering an "indeterminate" fermion/zeon Fock space, a fermion-zeon convolution operator is defined whose trace recovers the number of Hamiltonian cycles in the graph. This convolution operator is a quantum observable whose expectation reveals the number of Hamiltonian cycles in the graph.
NASA Astrophysics Data System (ADS)
Mali, P.; Manna, S. K.; Mukhopadhyay, A.; Haldar, P. K.; Singh, G.
2018-03-01
Multiparticle emission data in nucleus-nucleus collisions are studied in a graph theoretical approach. The sandbox algorithm used to analyze complex networks is employed to characterize the multifractal properties of the visibility graphs associated with the pseudorapidity distribution of charged particles produced in high-energy heavy-ion collisions. Experimental data on 28Si+Ag/Br interaction at laboratory energy Elab = 14 . 5 A GeV, and 16O+Ag/Br and 32S+Ag/Br interactions both at Elab = 200 A GeV, are used in this analysis. We observe a scale free nature of the degree distributions of the visibility and horizontal visibility graphs associated with the event-wise pseudorapidity distributions. Equivalent event samples simulated by ultra-relativistic quantum molecular dynamics, produce degree distributions that are almost identical to the respective experiment. However, the multifractal variables obtained by using sandbox algorithm for the experiment to some extent differ from the respective simulated results.
Scenario driven data modelling: a method for integrating diverse sources of data and data streams
2011-01-01
Background Biology is rapidly becoming a data intensive, data-driven science. It is essential that data is represented and connected in ways that best represent its full conceptual content and allows both automated integration and data driven decision-making. Recent advancements in distributed multi-relational directed graphs, implemented in the form of the Semantic Web make it possible to deal with complicated heterogeneous data in new and interesting ways. Results This paper presents a new approach, scenario driven data modelling (SDDM), that integrates multi-relational directed graphs with data streams. SDDM can be applied to virtually any data integration challenge with widely divergent types of data and data streams. In this work, we explored integrating genetics data with reports from traditional media. SDDM was applied to the New Delhi metallo-beta-lactamase gene (NDM-1), an emerging global health threat. The SDDM process constructed a scenario, created a RDF multi-relational directed graph that linked diverse types of data to the Semantic Web, implemented RDF conversion tools (RDFizers) to bring content into the Sematic Web, identified data streams and analytical routines to analyse those streams, and identified user requirements and graph traversals to meet end-user requirements. Conclusions We provided an example where SDDM was applied to a complex data integration challenge. The process created a model of the emerging NDM-1 health threat, identified and filled gaps in that model, and constructed reliable software that monitored data streams based on the scenario derived multi-relational directed graph. The SDDM process significantly reduced the software requirements phase by letting the scenario and resulting multi-relational directed graph define what is possible and then set the scope of the user requirements. Approaches like SDDM will be critical to the future of data intensive, data-driven science because they automate the process of converting massive data streams into usable knowledge. PMID:22165854
On the Kirchhoff Index of Graphs
NASA Astrophysics Data System (ADS)
Das, Kinkar C.
2013-09-01
Let G be a connected graph of order n with Laplacian eigenvalues μ1 ≥ μ2 ≥ ... ≥ μn-1 > mn = 0. The Kirchhoff index of G is defined as [xxx] In this paper. we give lower and upper bounds on Kf of graphs in terms on n, number of edges, maximum degree, and number of spanning trees. Moreover, we present lower and upper bounds on the Nordhaus-Gaddum-type result for the Kirchhoff index.
An improvement of the measurement of time series irreversibility with visibility graph approach
NASA Astrophysics Data System (ADS)
Wu, Zhenyu; Shang, Pengjian; Xiong, Hui
2018-07-01
We propose a method to improve the measure of real-valued time series irreversibility which contains two tools: the directed horizontal visibility graph and the Kullback-Leibler divergence. The degree of time irreversibility is estimated by the Kullback-Leibler divergence between the in and out degree distributions presented in the associated visibility graph. In our work, we reframe the in and out degree distributions by encoding them with different embedded dimensions used in calculating permutation entropy(PE). With this improved method, we can not only estimate time series irreversibility efficiently, but also detect time series irreversibility from multiple dimensions. We verify the validity of our method and then estimate the amount of time irreversibility of series generated by chaotic maps as well as global stock markets over the period 2005-2015. The result shows that the amount of time irreversibility reaches the peak with embedded dimension d = 3 under circumstances of experiment and financial markets.
GraphCrunch 2: Software tool for network modeling, alignment and clustering.
Kuchaiev, Oleksii; Stevanović, Aleksandar; Hayes, Wayne; Pržulj, Nataša
2011-01-19
Recent advancements in experimental biotechnology have produced large amounts of protein-protein interaction (PPI) data. The topology of PPI networks is believed to have a strong link to their function. Hence, the abundance of PPI data for many organisms stimulates the development of computational techniques for the modeling, comparison, alignment, and clustering of networks. In addition, finding representative models for PPI networks will improve our understanding of the cell just as a model of gravity has helped us understand planetary motion. To decide if a model is representative, we need quantitative comparisons of model networks to real ones. However, exact network comparison is computationally intractable and therefore several heuristics have been used instead. Some of these heuristics are easily computable "network properties," such as the degree distribution, or the clustering coefficient. An important special case of network comparison is the network alignment problem. Analogous to sequence alignment, this problem asks to find the "best" mapping between regions in two networks. It is expected that network alignment might have as strong an impact on our understanding of biology as sequence alignment has had. Topology-based clustering of nodes in PPI networks is another example of an important network analysis problem that can uncover relationships between interaction patterns and phenotype. We introduce the GraphCrunch 2 software tool, which addresses these problems. It is a significant extension of GraphCrunch which implements the most popular random network models and compares them with the data networks with respect to many network properties. Also, GraphCrunch 2 implements the GRAph ALigner algorithm ("GRAAL") for purely topological network alignment. GRAAL can align any pair of networks and exposes large, dense, contiguous regions of topological and functional similarities far larger than any other existing tool. Finally, GraphCruch 2 implements an algorithm for clustering nodes within a network based solely on their topological similarities. Using GraphCrunch 2, we demonstrate that eukaryotic and viral PPI networks may belong to different graph model families and show that topology-based clustering can reveal important functional similarities between proteins within yeast and human PPI networks. GraphCrunch 2 is a software tool that implements the latest research on biological network analysis. It parallelizes computationally intensive tasks to fully utilize the potential of modern multi-core CPUs. It is open-source and freely available for research use. It runs under the Windows and Linux platforms.
Some constructions of biharmonic maps and Chen’s conjecture on biharmonic hypersurfaces
NASA Astrophysics Data System (ADS)
Ou, Ye-Lin
2012-04-01
We give several construction methods and use them to produce many examples of proper biharmonic maps including biharmonic tori of any dimension in Euclidean spheres (Theorem 2.2, Corollaries 2.3, 2.4 and 2.6), biharmonic maps between spheres (Theorem 2.9) and into spheres (Theorem 2.10) via orthogonal multiplications and eigenmaps. We also study biharmonic graphs of maps, derive the equation for a function whose graph is a biharmonic hypersurface in a Euclidean space, and give an equivalent formulation of Chen's conjecture on biharmonic hypersurfaces by using the biharmonic graph equation (Theorem 4.1) which paves a way for the analytic study of the conjecture.
Using Peano Curves to Construct Laplacians on Fractals
NASA Astrophysics Data System (ADS)
Molitor, Denali; Ott, Nadia; Strichartz, Robert
2015-12-01
We describe a new method to construct Laplacians on fractals using a Peano curve from the circle onto the fractal, extending an idea that has been used in the case of certain Julia sets. The Peano curve allows us to visualize eigenfunctions of the Laplacian by graphing the pullback to the circle. We study in detail three fractals: the pentagasket, the octagasket and the magic carpet. We also use the method for two nonfractal self-similar sets, the torus and the equilateral triangle, obtaining appealing new visualizations of eigenfunctions on the triangle. In contrast to the many familiar pictures of approximations to standard Peano curves, that do no show self-intersections, our descriptions of approximations to the Peano curves have self-intersections that play a vital role in constructing graph approximations to the fractal with explicit graph Laplacians that give the fractal Laplacian in the limit.
Experimental Study of Quantum Graphs With and Without Time-Reversal Invariance
NASA Astrophysics Data System (ADS)
Anlage, Steven Mark; Fu, Ziyuan; Koch, Trystan; Antonsen, Thomas; Ott, Edward
An experimental setup consisting of a microwave network is used to simulate quantum graphs. The random coupling model (RCM) is applied to describe the universal statistical properties of the system with and without time-reversal invariance. The networks which are large compared to the wavelength, are constructed from coaxial cables connected by T junctions, and by making nodes with circulators time-reversal invariance for microwave propagation in the networks can be broken. The results of experimental study of microwave networks with and without time-reversal invariance are presented both in frequency domain and time domain. With the measured S-parameter data of two-port networks, the impedance statistics and the nearest-neighbor spacing statistics are examined. Moreover, the experiments of time reversal mirrors for networks demonstrate that the reconstruction quality can be used to quantify the degree of the time-reversal invariance for wave propagation. Numerical models of networks are also presented to verify the time domain experiments. We acknowledge support under contract AFOSR COE Grant FA9550-15-1-0171 and the ONR Grant N000141512134.
Shock waves on complex networks
NASA Astrophysics Data System (ADS)
Mones, Enys; Araújo, Nuno A. M.; Vicsek, Tamás; Herrmann, Hans J.
2014-05-01
Power grids, road maps, and river streams are examples of infrastructural networks which are highly vulnerable to external perturbations. An abrupt local change of load (voltage, traffic density, or water level) might propagate in a cascading way and affect a significant fraction of the network. Almost discontinuous perturbations can be modeled by shock waves which can eventually interfere constructively and endanger the normal functionality of the infrastructure. We study their dynamics by solving the Burgers equation under random perturbations on several real and artificial directed graphs. Even for graphs with a narrow distribution of node properties (e.g., degree or betweenness), a steady state is reached exhibiting a heterogeneous load distribution, having a difference of one order of magnitude between the highest and average loads. Unexpectedly we find for the European power grid and for finite Watts-Strogatz networks a broad pronounced bimodal distribution for the loads. To identify the most vulnerable nodes, we introduce the concept of node-basin size, a purely topological property which we show to be strongly correlated to the average load of a node.
A mathematical model for generating bipartite graphs and its application to protein networks
NASA Astrophysics Data System (ADS)
Nacher, J. C.; Ochiai, T.; Hayashida, M.; Akutsu, T.
2009-12-01
Complex systems arise in many different contexts from large communication systems and transportation infrastructures to molecular biology. Most of these systems can be organized into networks composed of nodes and interacting edges. Here, we present a theoretical model that constructs bipartite networks with the particular feature that the degree distribution can be tuned depending on the probability rate of fundamental processes. We then use this model to investigate protein-domain networks. A protein can be composed of up to hundreds of domains. Each domain represents a conserved sequence segment with specific functional tasks. We analyze the distribution of domains in Homo sapiens and Arabidopsis thaliana organisms and the statistical analysis shows that while (a) the number of domain types shared by k proteins exhibits a power-law distribution, (b) the number of proteins composed of k types of domains decays as an exponential distribution. The proposed mathematical model generates bipartite graphs and predicts the emergence of this mixing of (a) power-law and (b) exponential distributions. Our theoretical and computational results show that this model requires (1) growth process and (2) copy mechanism.
Quantitative evaluation of simulated functional brain networks in graph theoretical analysis.
Lee, Won Hee; Bullmore, Ed; Frangou, Sophia
2017-02-01
There is increasing interest in the potential of whole-brain computational models to provide mechanistic insights into resting-state brain networks. It is therefore important to determine the degree to which computational models reproduce the topological features of empirical functional brain networks. We used empirical connectivity data derived from diffusion spectrum and resting-state functional magnetic resonance imaging data from healthy individuals. Empirical and simulated functional networks, constrained by structural connectivity, were defined based on 66 brain anatomical regions (nodes). Simulated functional data were generated using the Kuramoto model in which each anatomical region acts as a phase oscillator. Network topology was studied using graph theory in the empirical and simulated data. The difference (relative error) between graph theory measures derived from empirical and simulated data was then estimated. We found that simulated data can be used with confidence to model graph measures of global network organization at different dynamic states and highlight the sensitive dependence of the solutions obtained in simulated data on the specified connection densities. This study provides a method for the quantitative evaluation and external validation of graph theory metrics derived from simulated data that can be used to inform future study designs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Image processing meta-algorithm development via genetic manipulation of existing algorithm graphs
NASA Astrophysics Data System (ADS)
Schalkoff, Robert J.; Shaaban, Khaled M.
1999-07-01
Automatic algorithm generation for image processing applications is not a new idea, however previous work is either restricted to morphological operates or impractical. In this paper, we show recent research result in the development and use of meta-algorithms, i.e. algorithms which lead to new algorithms. Although the concept is generally applicable, the application domain in this work is restricted to image processing. The meta-algorithm concept described in this paper is based upon out work in dynamic algorithm. The paper first present the concept of dynamic algorithms which, on the basis of training and archived algorithmic experience embedded in an algorithm graph (AG), dynamically adjust the sequence of operations applied to the input image data. Each node in the tree-based representation of a dynamic algorithm with out degree greater than 2 is a decision node. At these nodes, the algorithm examines the input data and determines which path will most likely achieve the desired results. This is currently done using nearest-neighbor classification. The details of this implementation are shown. The constrained perturbation of existing algorithm graphs, coupled with a suitable search strategy, is one mechanism to achieve meta-algorithm an doffers rich potential for the discovery of new algorithms. In our work, a meta-algorithm autonomously generates new dynamic algorithm graphs via genetic recombination of existing algorithm graphs. The AG representation is well suited to this genetic-like perturbation, using a commonly- employed technique in artificial neural network synthesis, namely the blueprint representation of graphs. A number of exam. One of the principal limitations of our current approach is the need for significant human input in the learning phase. Efforts to overcome this limitation are discussed. Future research directions are indicated.
NASA Astrophysics Data System (ADS)
Scarano, Grace Hotchkiss
2000-10-01
Current reform documents in science and mathematics call for teachers to include inquiry and data analysis in their teaching. This interpretive quasi-ethnographic case study examined two middle school science teachers as they planned and implemented inquiry and graphing in their science curricula. The focus question for this research was: What are middle school science teachers' experiences as they include graphing and inquiry-based student research projects in their curricula? How is teaching these areas different from usual teaching? The research examined two teachers teaching their favorite unit, parts of other familiar units, graphing, and student inquiry. Four main types of data were gathered: (1) observations of teachers' instruction, (2) interviews and meetings with the teachers, (3) curricular artifacts, and (4) questionnaires and other written material. The study took place over a seven-month period. The findings revealed that these two teachers had different ideologies of schooling and that these ideologies shaped the teachers' planning and implementation of their usual content as well as graphing and inquiry. One teacher's ideology was technical, and the other's was constructive. Six themes emerged as salient features of their teaching: (1) the role of developing a vision for curricular implementation, (2) curricular decisions: internal and external authority, (3) views of knowing and learning, (4) perceptions of the nature of science, (5) attending to a personal concern in teaching, and (6) reflection. The textures of these themes varied between the two teachers, and formed a coherent yet dynamic system within which each teacher maneuvered. This study found that both teachers found it challenging to include inquiry in their curricula, even though both had attended workshops designed to help teachers use student inquiry. The constructive teacher's implementation was more in line with the notions that are central to constructivism and current non-traditional views of the nature of science than was that of the technical teacher. The teacher with a technical ideology relied on the scientific method to organize student projects and implemented inquiry as a technique to increase student-centered work. It is proposed that teachers with technical ideologies need to undergo an ideological shift toward constructive ideologies of schooling in order to teach graphing and inquiry in ways that are aligned with current reform efforts.
Sharper Graph-Theoretical Conditions for the Stabilization of Complex Reaction Networks
Knight, Daniel; Shinar, Guy; Feinberg, Martin
2015-01-01
Across the landscape of all possible chemical reaction networks there is a surprising degree of stable behavior, despite what might be substantial complexity and nonlinearity in the governing differential equations. At the same time there are reaction networks, in particular those that arise in biology, for which richer behavior is exhibited. Thus, it is of interest to understand network-structural features whose presence enforces dull, stable behavior and whose absence permits the dynamical richness that might be necessary for life. We present conditions on a network’s Species-Reaction Graph that ensure a high degree of stable behavior, so long as the kinetic rate functions satisfy certain weak and natural constraints. These graph-theoretical conditions are considerably more incisive than those reported earlier. PMID:25600138
Roots and decompositions of three-dimensional topological objects
NASA Astrophysics Data System (ADS)
Matveev, Sergei V.
2012-06-01
In 1942 M.H.A. Newman formulated and proved a simple lemma of great importance for various fields of mathematics, including algebra and the theory of Gröbner-Shirshov bases. Later it was called the Diamond Lemma, since its key construction was illustrated by a diamond-shaped diagram. In 2005 the author suggested a new version of this lemma suitable for topological applications. This paper gives a survey of results on the existence and uniqueness of prime decompositions of various topological objects: three-dimensional manifolds, knots in thickened surfaces, knotted graphs, three-dimensional orbifolds, and knotted theta-curves in three-dimensional manifolds. As it turned out, all these topological objects admit a prime decomposition, although it is not unique in some cases (for example, in the case of orbifolds). For theta-curves and knots of geometric degree 1 in a thickened torus, the algebraic structure of the corresponding semigroups can be completely described. In both cases the semigroups are quotients of free groups by explicit commutation relations. Bibliography: 33 titles.
Sy, B K; Deller, J R
1989-05-01
An intelligent communication device is developed to assist the nonverbal, motor disabled in the generation of written and spoken messages. The device is centered on a knowledge base of the grammatical rules and message elements. A "belief" reasoning scheme based on both the information from external sources and the embedded knowledge is used to optimize the process of message search. The search for the message elements is conceptualized as a path search in the language graph, and a special frame architecture is used to construct and to partition the graph. Bayesian "belief" reasoning from the Dempster-Shafer theory of evidence is augmented to cope with time-varying evidence. An "information fusion" strategy is also introduced to integrate various forms of external information. Experimental testing of the prototype system is discussed.
Flexibility in data interpretation: effects of representational format
Braithwaite, David W.; Goldstone, Robert L.
2013-01-01
Graphs and tables differentially support performance on specific tasks. For tasks requiring reading off single data points, tables are as good as or better than graphs, while for tasks involving relationships among data points, graphs often yield better performance. However, the degree to which graphs and tables support flexibility across a range of tasks is not well-understood. In two experiments, participants detected main and interaction effects in line graphs and tables of bivariate data. Graphs led to more efficient performance, but also lower flexibility, as indicated by a larger discrepancy in performance across tasks. In particular, detection of main effects of variables represented in the graph legend was facilitated relative to detection of main effects of variables represented in the x-axis. Graphs may be a preferable representational format when the desired task or analytical perspective is known in advance, but may also induce greater interpretive bias than tables, necessitating greater care in their use and design. PMID:24427145
Using soft-hard fusion for misinformation detection and pattern of life analysis in OSINT
NASA Astrophysics Data System (ADS)
Levchuk, Georgiy; Shabarekh, Charlotte
2017-05-01
Today's battlefields are shifting to "denied areas", where the use of U.S. Military air and ground assets is limited. To succeed, the U.S. intelligence analysts increasingly rely on available open-source intelligence (OSINT) which is fraught with inconsistencies, biased reporting and fake news. Analysts need automated tools for retrieval of information from OSINT sources, and these solutions must identify and resolve conflicting and deceptive information. In this paper, we present a misinformation detection model (MDM) which converts text to attributed knowledge graphs and runs graph-based analytics to identify misinformation. At the core of our solution is identification of knowledge conflicts in the fused multi-source knowledge graph, and semi-supervised learning to compute locally consistent reliability and credibility scores for the documents and sources, respectively. We present validation of proposed method using an open source dataset constructed from the online investigations of MH17 downing in Eastern Ukraine.
Dragicevic, Arnaud; Boulanger, Vincent; Bruciamacchie, Max; Chauchard, Sandrine; Dupouey, Jean-Luc; Stenger, Anne
2017-04-21
In order to unveil the value of network connectivity, we formalize the construction of ecological networks in forest environments as an optimal control dynamic graph-theoretic problem. The network is based on a set of bioreserves and patches linked by ecological corridors. The node dynamics, built upon the consensus protocol, form a time evolutive Mahalanobis distance weighted by the opportunity costs of timber production. We consider a case of complete graph, where the ecological network is fully connected, and a case of incomplete graph, where the ecological network is partially connected. The results show that the network equilibrium depends on the size of the reception zone, while the network connectivity depends on the environmental compatibility between the ecological areas. Through shadow prices, we find that securing connectivity in partially connected networks is more expensive than in fully connected networks, but should be undertaken when the opportunity costs are significant. Copyright © 2017 Elsevier Ltd. All rights reserved.
Brain white matter fiber estimation and tractography using Q-ball imaging and Bayesian MODEL.
Lu, Meng
2015-01-01
Diffusion tensor imaging allows for the non-invasive in vivo mapping of the brain tractography. However, fiber bundles have complex structures such as fiber crossings, fiber branchings and fibers with large curvatures that tensor imaging (DTI) cannot accurately handle. This study presents a novel brain white matter tractography method using Q-ball imaging as the data source instead of DTI, because QBI can provide accurate information about multiple fiber crossings and branchings in a single voxel using an orientation distribution function (ODF). The presented method also uses graph theory to construct the Bayesian model-based graph, so that the fiber tracking between two voxels can be represented as the shortest path in a graph. Our experiment showed that our new method can accurately handle brain white matter fiber crossings and branchings, and reconstruct brain tractograhpy both in phantom data and real brain data.
On the Primitive Ideal spaces of the C(*) -algebras of graphs
NASA Astrophysics Data System (ADS)
Bates, Teresa
2005-11-01
We characterise the topological spaces which arise as the primitive ideal spaces of the Cuntz-Krieger algebras of graphs satisfying condition (K): directed graphs in which every vertex lying on a loop lies on at least two loops. We deduce that the spaces which arise as Prim;C(*(E)) are precisely the spaces which arise as the primitive ideal spaces of AF-algebras. Finally, we construct a graph wt{E} from E such that C(*(wt{E})) is an AF-algebra and Prim;C(*(E)) and Prim;C(*(wt{E})) are homeomorphic.
Doostparast Torshizi, Abolfazl; Petzold, Linda R
2018-01-01
Data integration methods that combine data from different molecular levels such as genome, epigenome, transcriptome, etc., have received a great deal of interest in the past few years. It has been demonstrated that the synergistic effects of different biological data types can boost learning capabilities and lead to a better understanding of the underlying interactions among molecular levels. In this paper we present a graph-based semi-supervised classification algorithm that incorporates latent biological knowledge in the form of biological pathways with gene expression and DNA methylation data. The process of graph construction from biological pathways is based on detecting condition-responsive genes, where 3 sets of genes are finally extracted: all condition responsive genes, high-frequency condition-responsive genes, and P-value-filtered genes. The proposed approach is applied to ovarian cancer data downloaded from the Human Genome Atlas. Extensive numerical experiments demonstrate superior performance of the proposed approach compared to other state-of-the-art algorithms, including the latest graph-based classification techniques. Simulation results demonstrate that integrating various data types enhances classification performance and leads to a better understanding of interrelations between diverse omics data types. The proposed approach outperforms many of the state-of-the-art data integration algorithms. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Contact Graph Routing Enhancements Developed in ION for DTN
NASA Technical Reports Server (NTRS)
Segui, John S.; Burleigh, Scott
2013-01-01
The Interplanetary Overlay Network (ION) software suite is an open-source, flight-ready implementation of networking protocols including the Delay/Disruption Tolerant Networking (DTN) Bundle Protocol (BP), the CCSDS (Consultative Committee for Space Data Systems) File Delivery Protocol (CFDP), and many others including the Contact Graph Routing (CGR) DTN routing system. While DTN offers the capability to tolerate disruption and long signal propagation delays in transmission, without an appropriate routing protocol, no data can be delivered. CGR was built for space exploration networks with scheduled communication opportunities (typically based on trajectories and orbits), represented as a contact graph. Since CGR uses knowledge of future connectivity, the contact graph can grow rather large, and so efficient processing is desired. These enhancements allow CGR to scale to predicted NASA space network complexities and beyond. This software improves upon CGR by adopting an earliest-arrival-time cost metric and using the Dijkstra path selection algorithm. Moving to Dijkstra path selection also enables construction of an earliest- arrival-time tree for multicast routing. The enhancements have been rolled into ION 3.0 available on sourceforge.net.
NASA Astrophysics Data System (ADS)
Garciá-Arteaga, Juan D.; Corredor, Germán.; Wang, Xiangxue; Velcheti, Vamsidhar; Madabhushi, Anant; Romero, Eduardo
2017-11-01
Tumor-infiltrating lymphocytes occurs when various classes of white blood cells migrate from the blood stream towards the tumor, infiltrating it. The presence of TIL is predictive of the response of the patient to therapy. In this paper, we show how the automatic detection of lymphocytes in digital H and E histopathological images and the quantitative evaluation of the global lymphocyte configuration, evaluated through global features extracted from non-parametric graphs, constructed from the lymphocytes' detected positions, can be correlated to the patient's outcome in early-stage non-small cell lung cancer (NSCLC). The method was assessed on a tissue microarray cohort composed of 63 NSCLC cases. From the evaluated graphs, minimum spanning trees and K-nn showed the highest predictive ability, yielding F1 Scores of 0.75 and 0.72 and accuracies of 0.67 and 0.69, respectively. The predictive power of the proposed methodology indicates that graphs may be used to develop objective measures of the infiltration grade of tumors, which can, in turn, be used by pathologists to improve the decision making and treatment planning processes.
NASA Astrophysics Data System (ADS)
Levchuk, Georgiy; Colonna-Romano, John; Eslami, Mohammed
2017-05-01
The United States increasingly relies on cyber-physical systems to conduct military and commercial operations. Attacks on these systems have increased dramatically around the globe. The attackers constantly change their methods, making state-of-the-art commercial and military intrusion detection systems ineffective. In this paper, we present a model to identify functional behavior of network devices from netflow traces. Our model includes two innovations. First, we define novel features for a host IP using detection of application graph patterns in IP's host graph constructed from 5-min aggregated packet flows. Second, we present the first application, to the best of our knowledge, of Graph Semi-Supervised Learning (GSSL) to the space of IP behavior classification. Using a cyber-attack dataset collected from NetFlow packet traces, we show that GSSL trained with only 20% of the data achieves higher attack detection rates than Support Vector Machines (SVM) and Naïve Bayes (NB) classifiers trained with 80% of data points. We also show how to improve detection quality by filtering out web browsing data, and conclude with discussion of future research directions.
Effects of Verbal and Graphed Feedback on Treatment Integrity
ERIC Educational Resources Information Center
Zoder-Martell, Kimberly; Dufrene, Brad; Sterling, Heather; Tingstrom, Daniel; Blaze, John; Duncan, Neelima; Harpole, Lauren
2013-01-01
Treatment integrity is the degree to which an intervention is implemented as designed and is critical for concluding whether the intervention is responsible for treatment outcomes. This study aimed to add to the integrity literature by examining graphed performance feedback alone and in conjunction with verbal performance feedback for increasing…
Quantum secret sharing with qudit graph states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keet, Adrian; Fortescue, Ben; Sanders, Barry C.
We present a unified formalism for threshold quantum secret sharing using graph states of systems with prime dimension. We construct protocols for three varieties of secret sharing: with classical and quantum secrets shared between parties over both classical and quantum channels.
Accumulate repeat accumulate codes
NASA Technical Reports Server (NTRS)
Abbasfar, Aliazam; Divsalar, Dariush; Yao, Kung
2004-01-01
In this paper we propose an innovative channel coding scheme called 'Accumulate Repeat Accumulate codes' (ARA). This class of codes can be viewed as serial turbo-like codes, or as a subclass of Low Density Parity Check (LDPC) codes, thus belief propagation can be used for iterative decoding of ARA codes on a graph. The structure of encoder for this class can be viewed as precoded Repeat Accumulate (RA) code or as precoded Irregular Repeat Accumulate (IRA) code, where simply an accumulator is chosen as a precoder. Thus ARA codes have simple, and very fast encoder structure when they representing LDPC codes. Based on density evolution for LDPC codes through some examples for ARA codes, we show that for maximum variable node degree 5 a minimum bit SNR as low as 0.08 dB from channel capacity for rate 1/2 can be achieved as the block size goes to infinity. Thus based on fixed low maximum variable node degree, its threshold outperforms not only the RA and IRA codes but also the best known LDPC codes with the dame maximum node degree. Furthermore by puncturing the accumulators any desired high rate codes close to code rate 1 can be obtained with thresholds that stay close to the channel capacity thresholds uniformly. Iterative decoding simulation results are provided. The ARA codes also have projected graph or protograph representation that allows for high speed decoder implementation.
Some remarks on the topology of hyperbolic actions of Rn on n-manifolds
NASA Astrophysics Data System (ADS)
Bouloc, Damien
2017-11-01
This paper contains some results on the topology of a nondegenerate action of Rn on a compact connected n-manifold M when the action is totally hyperbolic (i.e. its toric degree is zero). We study the R-action generated by a fixed vector of Rn, that provides some results on the number of hyperbolic domains and the number of fixed points of the action. We study with more details the case of the 2-sphere, in particular we investigate some combinatorial properties of the associated 4-valent graph embedded in S2. We also construct hyperbolic actions in dimension 3, on the sphere S3 and on the projective space RP3.
Paving the Way Towards Reactive Planar Spanner Construction in Wireless Networks
NASA Astrophysics Data System (ADS)
Frey, Hannes; Rührup, Stefan
A spanner is a subgraph of a given graph that supports the original graph's shortest path lengths up to a constant factor. Planar spanners and their distributed construction are of particular interest for geographic routing, which is an efficient localized routing scheme for wireless ad hoc and sensor networks. Planarity of the network graph is a key criterion for guaranteed delivery, while the spanner property supports efficiency in terms of path length. We consider the problem of reactive local spanner construction, where a node's local topology is determined on demand. Known message-efficient reactive planarization algorithms do not preserve the spanner property, while reactive spanner constructions with a low message overhead have not been described so far. We introduce the concept of direct planarization which may be an enabler of efficient reactive spanner construction. Given an edge, nodes check for all incident intersecting edges a certain geometric criterion and withdraw the edge if this criterion is not satisfied. We use this concept to derive a generic reactive topology control mechanism and consider two geometric criteria. Simulation results show that direct planarization increases the performance of localized geographic routing by providing shorter paths than existing reactive approaches.
Protein interaction networks from literature mining
NASA Astrophysics Data System (ADS)
Ihara, Sigeo
2005-03-01
The ability to accurately predict and understand physiological changes in the biological network system in response to disease or drug therapeutics is of crucial importance in life science. The extensive amount of gene expression data generated from even a single microarray experiment often proves difficult to fully interpret and comprehend the biological significance. An increasing knowledge of protein interactions stored in the PubMed database, as well as the advancement of natural language processing, however, makes it possible to construct protein interaction networks from the gene expression information that are essential for understanding the biological meaning. From the in house literature mining system we have developed, the protein interaction network for humans was constructed. By analysis based on the graph-theoretical characterization of the total interaction network in literature, we found that the network is scale-free and semantic long-ranged interactions (i.e. inhibit, induce) between proteins dominate in the total interaction network, reducing the degree exponent. Interaction networks generated based on scientific text in which the interaction event is ambiguously described result in disconnected networks. In contrast interaction networks based on text in which the interaction events are clearly stated result in strongly connected networks. The results of protein-protein interaction networks obtained in real applications from microarray experiments are discussed: For example, comparisons of the gene expression data indicative of either a good or a poor prognosis for acute lymphoblastic leukemia with MLL rearrangements, using our system, showed newly discovered signaling cross-talk.
Jan, Hengtai; Chao, Yi-Ping; Cho, Kuan-Hung; Kuo, Li-Wei
2013-01-01
Investigating the brain connective network using the modern graph theory has been widely applied in cognitive and clinical neuroscience research. In this study, we aimed to investigate the effects of streamline-based fiber tractography on the change of network properties and established a systematic framework to understand how an adequate network matrix scaling can be determined. The network properties, including degree, efficiency and betweenness centrality, show similar tendency in both left and right hemispheres. By employing the curve-fitting process with exponential law and measuring the residuals, the association between changes of network properties and threshold of track numbers is found and an adequate range of investigating the lateralization of brain network is suggested. The proposed approach can be further applied in clinical applications to improve the diagnostic sensitivity using network analysis with graph theory.
Integrative gene network construction to analyze cancer recurrence using semi-supervised learning.
Park, Chihyun; Ahn, Jaegyoon; Kim, Hyunjin; Park, Sanghyun
2014-01-01
The prognosis of cancer recurrence is an important research area in bioinformatics and is challenging due to the small sample sizes compared to the vast number of genes. There have been several attempts to predict cancer recurrence. Most studies employed a supervised approach, which uses only a few labeled samples. Semi-supervised learning can be a great alternative to solve this problem. There have been few attempts based on manifold assumptions to reveal the detailed roles of identified cancer genes in recurrence. In order to predict cancer recurrence, we proposed a novel semi-supervised learning algorithm based on a graph regularization approach. We transformed the gene expression data into a graph structure for semi-supervised learning and integrated protein interaction data with the gene expression data to select functionally-related gene pairs. Then, we predicted the recurrence of cancer by applying a regularization approach to the constructed graph containing both labeled and unlabeled nodes. The average improvement rate of accuracy for three different cancer datasets was 24.9% compared to existing supervised and semi-supervised methods. We performed functional enrichment on the gene networks used for learning. We identified that those gene networks are significantly associated with cancer-recurrence-related biological functions. Our algorithm was developed with standard C++ and is available in Linux and MS Windows formats in the STL library. The executable program is freely available at: http://embio.yonsei.ac.kr/~Park/ssl.php.
Merli, M. Giovanna; Moody, James; Smith, Jeffrey; Li, Jing; Weir, Sharon; Chen, Xiangsheng
2014-01-01
We explore the network coverage of a sample of female sex workers (FSWs) in China recruited through Respondent Drive Sampling (RDS) as part of an effort to evaluate the claim of RDS of population representation with empirical data. We take advantage of unique information on the social networks of FSWs obtained from two overlapping studies --RDS and a venue-based sampling approach (PLACE) -- and use an exponential random graph modeling (ERGM) framework from local networks to construct a likely network from which our observed RDS sample is drawn. We then run recruitment chains over this simulated network to assess the assumption that the RDS chain referral process samples participants in proportion to their degree and the extent to which RDS satisfactorily covers certain parts of the network. We find evidence that, contrary to assumptions, RDS oversamples low degree nodes and geographically central areas of the network. Unlike previous evaluations of RDS which have explored the performance of RDS sampling chains on a non-hidden population, or the performance of simulated chains over previously mapped realistic social networks, our study provides a robust, empirically grounded evaluation of the performance of RDS chains on a real-world hidden population. PMID:24834869
Corona graphs as a model of small-world networks
NASA Astrophysics Data System (ADS)
Lv, Qian; Yi, Yuhao; Zhang, Zhongzhi
2015-11-01
We introduce recursive corona graphs as a model of small-world networks. We investigate analytically the critical characteristics of the model, including order and size, degree distribution, average path length, clustering coefficient, and the number of spanning trees, as well as Kirchhoff index. Furthermore, we study the spectra for the adjacency matrix and the Laplacian matrix for the model. We obtain explicit results for all the quantities of the recursive corona graphs, which are similar to those observed in real-life networks.
Resistance distance and Kirchhoff index in circulant graphs
NASA Astrophysics Data System (ADS)
Zhang, Heping; Yang, Yujun
The resistance distance rij between vertices i and j of a connected (molecular) graph G is computed as the effective resistance between nodes i and j in the corresponding network constructed from G by replacing each edge of G with a unit resistor. The Kirchhoff index Kf(G) is the sum of resistance distances between all pairs of vertices. In this work, closed-form formulae for Kirchhoff index and resistance distances of circulant graphs are derived in terms of Laplacian spectrum and eigenvectors. Special formulae are also given for four classes of circulant graphs (complete graphs, complete graphs minus a perfect matching, cycles, Möbius ladders Mp). In particular, the asymptotic behavior of Kf(Mp) as p ? ? is obtained, that is, Kf(Mp) grows as ⅙p3 as p ? ?.
Evolutionary dynamics of social dilemmas in structured heterogeneous populations.
Santos, F C; Pacheco, J M; Lenaerts, Tom
2006-02-28
Real populations have been shown to be heterogeneous, in which some individuals have many more contacts than others. This fact contrasts with the traditional homogeneous setting used in studies of evolutionary game dynamics. We incorporate heterogeneity in the population by studying games on graphs, in which the variability in connectivity ranges from single-scale graphs, for which heterogeneity is small and associated degree distributions exhibit a Gaussian tale, to scale-free graphs, for which heterogeneity is large with degree distributions exhibiting a power-law behavior. We study the evolution of cooperation, modeled in terms of the most popular dilemmas of cooperation. We show that, for all dilemmas, increasing heterogeneity favors the emergence of cooperation, such that long-term cooperative behavior easily resists short-term noncooperative behavior. Moreover, we show how cooperation depends on the intricate ties between individuals in scale-free populations.
Exotic equilibria of Harary graphs and a new minimum degree lower bound for synchronization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canale, Eduardo A., E-mail: ecanale@pol.una.py; Monzón, Pablo, E-mail: monzon@fing.edu.uy
2015-02-15
This work is concerned with stability of equilibria in the homogeneous (equal frequencies) Kuramoto model of weakly coupled oscillators. In 2012 [R. Taylor, J. Phys. A: Math. Theor. 45, 1–15 (2012)], a sufficient condition for almost global synchronization was found in terms of the minimum degree–order ratio of the graph. In this work, a new lower bound for this ratio is given. The improvement is achieved by a concrete infinite sequence of regular graphs. Besides, non standard unstable equilibria of the graphs studied in Wiley et al. [Chaos 16, 015103 (2006)] are shown to exist as conjectured in that work.
Interference graph-based dynamic frequency reuse in optical attocell networks
NASA Astrophysics Data System (ADS)
Liu, Huanlin; Xia, Peijie; Chen, Yong; Wu, Lan
2017-11-01
Indoor optical attocell network may achieve higher capacity than radio frequency (RF) or Infrared (IR)-based wireless systems. It is proposed as a special type of visible light communication (VLC) system using Light Emitting Diodes (LEDs). However, the system spectral efficiency may be severely degraded owing to the inter-cell interference (ICI), particularly for dense deployment scenarios. To address these issues, we construct the spectral interference graph for indoor optical attocell network, and propose the Dynamic Frequency Reuse (DFR) and Weighted Dynamic Frequency Reuse (W-DFR) algorithms to decrease ICI and improve the spectral efficiency performance. The interference graph makes LEDs can transmit data without interference and select the minimum sub-bands needed for frequency reuse. Then, DFR algorithm reuses the system frequency equally across service-providing cells to mitigate spectrum interference. While W-DFR algorithm can reuse the system frequency by using the bandwidth weight (BW), which is defined based on the number of service users. Numerical results show that both of the proposed schemes can effectively improve the average spectral efficiency (ASE) of the system. Additionally, improvement of the user data rate is also obtained by analyzing its cumulative distribution function (CDF).
Zhang, Qin
2015-07-01
Probabilistic graphical models (PGMs) such as Bayesian network (BN) have been widely applied in uncertain causality representation and probabilistic reasoning. Dynamic uncertain causality graph (DUCG) is a newly presented model of PGMs, which can be applied to fault diagnosis of large and complex industrial systems, disease diagnosis, and so on. The basic methodology of DUCG has been previously presented, in which only the directed acyclic graph (DAG) was addressed. However, the mathematical meaning of DUCG was not discussed. In this paper, the DUCG with directed cyclic graphs (DCGs) is addressed. In contrast, BN does not allow DCGs, as otherwise the conditional independence will not be satisfied. The inference algorithm for the DUCG with DCGs is presented, which not only extends the capabilities of DUCG from DAGs to DCGs but also enables users to decompose a large and complex DUCG into a set of small, simple sub-DUCGs, so that a large and complex knowledge base can be easily constructed, understood, and maintained. The basic mathematical definition of a complete DUCG with or without DCGs is proved to be a joint probability distribution (JPD) over a set of random variables. The incomplete DUCG as a part of a complete DUCG may represent a part of JPD. Examples are provided to illustrate the methodology.
Visibility graph network analysis of natural gas price: The case of North American market
NASA Astrophysics Data System (ADS)
Sun, Mei; Wang, Yaqi; Gao, Cuixia
2016-11-01
Fluctuations in prices of natural gas significantly affect global economy. Therefore, the research on the characteristics of natural gas price fluctuations, turning points and its influencing cycle on the subsequent price series is of great significance. Global natural gas trade concentrates on three regional markets: the North American market, the European market and the Asia-Pacific market, with North America having the most developed natural gas financial market. In addition, perfect legal supervision and coordinated regulations make the North American market more open and more competitive. This paper focuses on the North American natural gas market specifically. The Henry Hub natural gas spot price time series is converted to a visibility graph network which provides a new direction for macro analysis of time series, and several indicators are investigated: degree and degree distribution, the average shortest path length and community structure. The internal mechanisms underlying price fluctuations are explored through the indicators. The results show that the natural gas prices visibility graph network (NGP-VGN) is of small-world and scale-free properties simultaneously. After random rearrangement of original price time series, the degree distribution of network becomes exponential distribution, different from the original ones. This means that, the original price time series is of long-range negative correlation fractal characteristic. In addition, nodes with large degree correspond to significant geopolitical or economic events. Communities correspond to time cycles in visibility graph network. The cycles of time series and the impact scope of hubs can be found by community structure partition.
Final Report: Sampling-Based Algorithms for Estimating Structure in Big Data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matulef, Kevin Michael
The purpose of this project was to develop sampling-based algorithms to discover hidden struc- ture in massive data sets. Inferring structure in large data sets is an increasingly common task in many critical national security applications. These data sets come from myriad sources, such as network traffic, sensor data, and data generated by large-scale simulations. They are often so large that traditional data mining techniques are time consuming or even infeasible. To address this problem, we focus on a class of algorithms that do not compute an exact answer, but instead use sampling to compute an approximate answer using fewermore » resources. The particular class of algorithms that we focus on are streaming algorithms , so called because they are designed to handle high-throughput streams of data. Streaming algorithms have only a small amount of working storage - much less than the size of the full data stream - so they must necessarily use sampling to approximate the correct answer. We present two results: * A streaming algorithm called HyperHeadTail , that estimates the degree distribution of a graph (i.e., the distribution of the number of connections for each node in a network). The degree distribution is a fundamental graph property, but prior work on estimating the degree distribution in a streaming setting was impractical for many real-world application. We improve upon prior work by developing an algorithm that can handle streams with repeated edges, and graph structures that evolve over time. * An algorithm for the task of maintaining a weighted subsample of items in a stream, when the items must be sampled according to their weight, and the weights are dynamically changing. To our knowledge, this is the first such algorithm designed for dynamically evolving weights. We expect it may be useful as a building block for other streaming algorithms on dynamic data sets.« less
A Weighted Configuration Model and Inhomogeneous Epidemics
NASA Astrophysics Data System (ADS)
Britton, Tom; Deijfen, Maria; Liljeros, Fredrik
2011-12-01
A random graph model with prescribed degree distribution and degree dependent edge weights is introduced. Each vertex is independently equipped with a random number of half-edges and each half-edge is assigned an integer valued weight according to a distribution that is allowed to depend on the degree of its vertex. Half-edges with the same weight are then paired randomly to create edges. An expression for the threshold for the appearance of a giant component in the resulting graph is derived using results on multi-type branching processes. The same technique also gives an expression for the basic reproduction number for an epidemic on the graph where the probability that a certain edge is used for transmission is a function of the edge weight (reflecting how closely `connected' the corresponding vertices are). It is demonstrated that, if vertices with large degree tend to have large (small) weights on their edges and if the transmission probability increases with the edge weight, then it is easier (harder) for the epidemic to take off compared to a randomized epidemic with the same degree and weight distribution. A recipe for calculating the probability of a large outbreak in the epidemic and the size of such an outbreak is also given. Finally, the model is fitted to three empirical weighted networks of importance for the spread of contagious diseases and it is shown that R 0 can be substantially over- or underestimated if the correlation between degree and weight is not taken into account.
The Significance of Rising Sea Levels.
ERIC Educational Resources Information Center
Conway, Gregory J.
1989-01-01
Describes an activity in which students graph changes in tides and ocean levels over a period in order to obtain a visual representation of the changes taking place and their effects upon the Earth. Provides questions for students to answer after construction of the graphs. (RT)
A system for routing arbitrary directed graphs on SIMD architectures
NASA Technical Reports Server (NTRS)
Tomboulian, Sherryl
1987-01-01
There are many problems which can be described in terms of directed graphs that contain a large number of vertices where simple computations occur using data from connecting vertices. A method is given for parallelizing such problems on an SIMD machine model that is bit-serial and uses only nearest neighbor connections for communication. Each vertex of the graph will be assigned to a processor in the machine. Algorithms are given that will be used to implement movement of data along the arcs of the graph. This architecture and algorithms define a system that is relatively simple to build and can do graph processing. All arcs can be transversed in parallel in time O(T), where T is empirically proportional to the diameter of the interconnection network times the average degree of the graph. Modifying or adding a new arc takes the same time as parallel traversal.
Asada, Yukiko; Abel, Hannah; Skedgel, Chris; Warner, Grace
2017-12-01
Policy Points: Effective graphs can be a powerful tool in communicating health inequality. The choice of graphs is often based on preferences and familiarity rather than science. According to the literature on graph perception, effective graphs allow human brains to decode visual cues easily. Dot charts are easier to decode than bar charts, and thus they are more effective. Dot charts are a flexible and versatile way to display information about health inequality. Consistent with the health risk communication literature, the captions accompanying health inequality graphs should provide a numerical, explicitly calculated description of health inequality, expressed in absolute and relative terms, from carefully thought-out perspectives. Graphs are an essential tool for communicating health inequality, a key health policy concern. The choice of graphs is often driven by personal preferences and familiarity. Our article is aimed at health policy researchers developing health inequality graphs for policy and scientific audiences and seeks to (1) raise awareness of the effective use of graphs in communicating health inequality; (2) advocate for a particular type of graph (ie, dot charts) to depict health inequality; and (3) suggest key considerations for the captions accompanying health inequality graphs. Using composite review methods, we selected the prevailing recommendations for improving graphs in scientific reporting. To find the origins of these recommendations, we reviewed the literature on graph perception and then applied what we learned to the context of health inequality. In addition, drawing from the numeracy literature in health risk communication, we examined numeric and verbal formats to explain health inequality graphs. Many disciplines offer commonsense recommendations for visually presenting quantitative data. The literature on graph perception, which defines effective graphs as those allowing the easy decoding of visual cues in human brains, shows that with their more accurate and easier-to-decode visual cues, dot charts are more effective than bar charts. Dot charts can flexibly present a large amount of information in limited space. They also can easily accommodate typical health inequality information to describe a health variable (eg, life expectancy) by an inequality domain (eg, income) with domain groups (eg, poor and rich) in a population (eg, Canada) over time periods (eg, 2010 and 2017). The numeracy literature suggests that a health inequality graph's caption should provide a numerical, explicitly calculated description of health inequality expressed in absolute and relative terms, from carefully thought-out perspectives. Given the ubiquity of graphs, the health inequality field should learn from the vibrant multidisciplinary literature how to construct effective graphic communications, especially by considering to use dot charts. © 2017 Milbank Memorial Fund.
NOUS: A Knowledge Graph Management System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knowledge graphs represent information as entities and relationships between them. For tasks such as natural language question answering or automated analysis of text, a knowledge graph provides valuable context to establish the specific type of entities being discussed. It allow us to derive better context about newly arriving information and leads to intelligent reasoning capabilities. We address two primary needs: A) Automated construction of knowledge graphs is a technically challenging, expensive process; and B) The ability to synthesize new information by monitoring newly emerging knowledge is a transformational capability that does not exist in state of the art systems.
Compound analysis via graph kernels incorporating chirality.
Brown, J B; Urata, Takashi; Tamura, Takeyuki; Arai, Midori A; Kawabata, Takeo; Akutsu, Tatsuya
2010-12-01
High accuracy is paramount when predicting biochemical characteristics using Quantitative Structural-Property Relationships (QSPRs). Although existing graph-theoretic kernel methods combined with machine learning techniques are efficient for QSPR model construction, they cannot distinguish topologically identical chiral compounds which often exhibit different biological characteristics. In this paper, we propose a new method that extends the recently developed tree pattern graph kernel to accommodate stereoisomers. We show that Support Vector Regression (SVR) with a chiral graph kernel is useful for target property prediction by demonstrating its application to a set of human vitamin D receptor ligands currently under consideration for their potential anti-cancer effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Visweswara Sathanur, Arun; Choudhury, Sutanay; Joslyn, Cliff A.
Property graphs can be used to represent heterogeneous networks with attributed vertices and edges. Given one property graph, simulating another graph with same or greater size with identical statistical properties with respect to the attributes and connectivity is critical for privacy preservation and benchmarking purposes. In this work we tackle the problem of capturing the statistical dependence of the edge connectivity on the vertex labels and using the same distribution to regenerate property graphs of the same or expanded size in a scalable manner. However, accurate simulation becomes a challenge when the attributes do not completely explain the network structure.more » We propose the Property Graph Model (PGM) approach that uses an attribute (or label) augmentation strategy to mitigate the problem and preserve the graph connectivity as measured via degree distribution, vertex label distributions and edge connectivity. Our proposed algorithm is scalable with a linear complexity in the number of edges in the target graph. We illustrate the efficacy of the PGM approach in regenerating and expanding the datasets by leveraging two distinct illustrations.« less
Genus Ranges of 4-Regular Rigid Vertex Graphs
Buck, Dorothy; Dolzhenko, Egor; Jonoska, Nataša; Saito, Masahico; Valencia, Karin
2016-01-01
A rigid vertex of a graph is one that has a prescribed cyclic order of its incident edges. We study orientable genus ranges of 4-regular rigid vertex graphs. The (orientable) genus range is a set of genera values over all orientable surfaces into which a graph is embedded cellularly, and the embeddings of rigid vertex graphs are required to preserve the prescribed cyclic order of incident edges at every vertex. The genus ranges of 4-regular rigid vertex graphs are sets of consecutive integers, and we address two questions: which intervals of integers appear as genus ranges of such graphs, and what types of graphs realize a given genus range. For graphs with 2n vertices (n > 1), we prove that all intervals [a, b] for all a < b ≤ n, and singletons [h, h] for some h ≤ n, are realized as genus ranges. For graphs with 2n − 1 vertices (n ≥ 1), we prove that all intervals [a, b] for all a < b ≤ n except [0, n], and [h, h] for some h ≤ n, are realized as genus ranges. We also provide constructions of graphs that realize these ranges. PMID:27807395
Ringo: Interactive Graph Analytics on Big-Memory Machines
Perez, Yonathan; Sosič, Rok; Banerjee, Arijit; Puttagunta, Rohan; Raison, Martin; Shah, Pararth; Leskovec, Jure
2016-01-01
We present Ringo, a system for analysis of large graphs. Graphs provide a way to represent and analyze systems of interacting objects (people, proteins, webpages) with edges between the objects denoting interactions (friendships, physical interactions, links). Mining graphs provides valuable insights about individual objects as well as the relationships among them. In building Ringo, we take advantage of the fact that machines with large memory and many cores are widely available and also relatively affordable. This allows us to build an easy-to-use interactive high-performance graph analytics system. Graphs also need to be built from input data, which often resides in the form of relational tables. Thus, Ringo provides rich functionality for manipulating raw input data tables into various kinds of graphs. Furthermore, Ringo also provides over 200 graph analytics functions that can then be applied to constructed graphs. We show that a single big-memory machine provides a very attractive platform for performing analytics on all but the largest graphs as it offers excellent performance and ease of use as compared to alternative approaches. With Ringo, we also demonstrate how to integrate graph analytics with an iterative process of trial-and-error data exploration and rapid experimentation, common in data mining workloads. PMID:27081215
Ringo: Interactive Graph Analytics on Big-Memory Machines.
Perez, Yonathan; Sosič, Rok; Banerjee, Arijit; Puttagunta, Rohan; Raison, Martin; Shah, Pararth; Leskovec, Jure
2015-01-01
We present Ringo, a system for analysis of large graphs. Graphs provide a way to represent and analyze systems of interacting objects (people, proteins, webpages) with edges between the objects denoting interactions (friendships, physical interactions, links). Mining graphs provides valuable insights about individual objects as well as the relationships among them. In building Ringo, we take advantage of the fact that machines with large memory and many cores are widely available and also relatively affordable. This allows us to build an easy-to-use interactive high-performance graph analytics system. Graphs also need to be built from input data, which often resides in the form of relational tables. Thus, Ringo provides rich functionality for manipulating raw input data tables into various kinds of graphs. Furthermore, Ringo also provides over 200 graph analytics functions that can then be applied to constructed graphs. We show that a single big-memory machine provides a very attractive platform for performing analytics on all but the largest graphs as it offers excellent performance and ease of use as compared to alternative approaches. With Ringo, we also demonstrate how to integrate graph analytics with an iterative process of trial-and-error data exploration and rapid experimentation, common in data mining workloads.
A semantic graph-based approach to biomedical summarisation.
Plaza, Laura; Díaz, Alberto; Gervás, Pablo
2011-09-01
Access to the vast body of research literature that is available in biomedicine and related fields may be improved by automatic summarisation. This paper presents a method for summarising biomedical scientific literature that takes into consideration the characteristics of the domain and the type of documents. To address the problem of identifying salient sentences in biomedical texts, concepts and relations derived from the Unified Medical Language System (UMLS) are arranged to construct a semantic graph that represents the document. A degree-based clustering algorithm is then used to identify different themes or topics within the text. Different heuristics for sentence selection, intended to generate different types of summaries, are tested. A real document case is drawn up to illustrate how the method works. A large-scale evaluation is performed using the recall-oriented understudy for gisting-evaluation (ROUGE) metrics. The results are compared with those achieved by three well-known summarisers (two research prototypes and a commercial application) and two baselines. Our method significantly outperforms all summarisers and baselines. The best of our heuristics achieves an improvement in performance of almost 7.7 percentage units in the ROUGE-1 score over the LexRank summariser (0.7862 versus 0.7302). A qualitative analysis of the summaries also shows that our method succeeds in identifying sentences that cover the main topic of the document and also considers other secondary or "satellite" information that might be relevant to the user. The method proposed is proved to be an efficient approach to biomedical literature summarisation, which confirms that the use of concepts rather than terms can be very useful in automatic summarisation, especially when dealing with highly specialised domains. Copyright © 2011 Elsevier B.V. All rights reserved.
Resistance Distances and Kirchhoff Index in Generalised Join Graphs
NASA Astrophysics Data System (ADS)
Chen, Haiyan
2017-03-01
The resistance distance between any two vertices of a connected graph is defined as the effective resistance between them in the electrical network constructed from the graph by replacing each edge with a unit resistor. The Kirchhoff index of a graph is defined as the sum of all the resistance distances between any pair of vertices of the graph. Let G=H[G1, G2, …, Gk ] be the generalised join graph of G1, G2, …, Gk determined by H. In this paper, we first give formulae for resistance distances and Kirchhoff index of G in terms of parameters of {G'_i}s and H. Then, we show that computing resistance distances and Kirchhoff index of G can be decomposed into simpler ones. Finally, we obtain explicit formulae for resistance distances and Kirchhoff index of G when {G'_i}s and H take some special graphs, such as the complete graph, the path, and the cycle.
Multi-parametric centrality method for graph network models
NASA Astrophysics Data System (ADS)
Ivanov, Sergei Evgenievich; Gorlushkina, Natalia Nikolaevna; Ivanova, Lubov Nikolaevna
2018-04-01
The graph model networks are investigated to determine centrality, weights and the significance of vertices. For centrality analysis appliesa typical method that includesany one of the properties of graph vertices. In graph theory, methods of analyzing centrality are used: in terms by degree, closeness, betweenness, radiality, eccentricity, page-rank, status, Katz and eigenvector. We have proposed a new method of multi-parametric centrality, which includes a number of basic properties of the network member. The mathematical model of multi-parametric centrality method is developed. Comparison of results for the presented method with the centrality methods is carried out. For evaluate the results for the multi-parametric centrality methodthe graph model with hundreds of vertices is analyzed. The comparative analysis showed the accuracy of presented method, includes simultaneously a number of basic properties of vertices.
Visibility graph analysis of very short-term heart rate variability during sleep
NASA Astrophysics Data System (ADS)
Hou, F. Z.; Li, F. W.; Wang, J.; Yan, F. R.
2016-09-01
Based on a visibility-graph algorithm, complex networks were constructed from very short-term heart rate variability (HRV) during different sleep stages. Network measurements progressively changed from rapid eye movement (REM) sleep to light sleep and then deep sleep, exhibiting promising ability for sleep assessment. Abnormal activation of the cardiovascular controls with enhanced 'small-world' couplings and altered fractal organization during REM sleep indicates that REM could be a potential risk factor for adverse cardiovascular event, especially in males, older individuals, and people who are overweight. Additionally, an apparent influence of gender, aging, and obesity on sleep was demonstrated in healthy adults, which may be helpful for establishing expected sleep-HRV patterns in different populations.
The Fragment Network: A Chemistry Recommendation Engine Built Using a Graph Database.
Hall, Richard J; Murray, Christopher W; Verdonk, Marcel L
2017-07-27
The hit validation stage of a fragment-based drug discovery campaign involves probing the SAR around one or more fragment hits. This often requires a search for similar compounds in a corporate collection or from commercial suppliers. The Fragment Network is a graph database that allows a user to efficiently search chemical space around a compound of interest. The result set is chemically intuitive, naturally grouped by substitution pattern and meaningfully sorted according to the number of observations of each transformation in medicinal chemistry databases. This paper describes the algorithms used to construct and search the Fragment Network and provides examples of how it may be used in a drug discovery context.
Overlapping communities from dense disjoint and high total degree clusters
NASA Astrophysics Data System (ADS)
Zhang, Hongli; Gao, Yang; Zhang, Yue
2018-04-01
Community plays an important role in the field of sociology, biology and especially in domains of computer science, where systems are often represented as networks. And community detection is of great importance in the domains. A community is a dense subgraph of the whole graph with more links between its members than between its members to the outside nodes, and nodes in the same community probably share common properties or play similar roles in the graph. Communities overlap when nodes in a graph belong to multiple communities. A vast variety of overlapping community detection methods have been proposed in the literature, and the local expansion method is one of the most successful techniques dealing with large networks. The paper presents a density-based seeding method, in which dense disjoint local clusters are searched and selected as seeds. The proposed method selects a seed by the total degree and density of local clusters utilizing merely local structures of the network. Furthermore, this paper proposes a novel community refining phase via minimizing the conductance of each community, through which the quality of identified communities is largely improved in linear time. Experimental results in synthetic networks show that the proposed seeding method outperforms other seeding methods in the state of the art and the proposed refining method largely enhances the quality of the identified communities. Experimental results in real graphs with ground-truth communities show that the proposed approach outperforms other state of the art overlapping community detection algorithms, in particular, it is more than two orders of magnitude faster than the existing global algorithms with higher quality, and it obtains much more accurate community structure than the current local algorithms without any priori information.
Cycle/Cocycle Oblique Projections on Oriented Graphs
NASA Astrophysics Data System (ADS)
Polettini, Matteo
2015-01-01
It is well known that the edge vector space of an oriented graph can be decomposed in terms of cycles and cocycles (alias cuts, or bonds), and that a basis for the cycle and the cocycle spaces can be generated by adding and removing edges to an arbitrarily chosen spanning tree. In this paper, we show that the edge vector space can also be decomposed in terms of cycles and the generating edges of cocycles (called cochords), or of cocycles and the generating edges of cycles (called chords). From this observation follows a construction in terms of oblique complementary projection operators. We employ this algebraic construction to prove several properties of unweighted Kirchhoff-Symanzik matrices, encoding the mutual superposition between cycles and cocycles. In particular, we prove that dual matrices of planar graphs have the same spectrum (up to multiplicities). We briefly comment on how this construction provides a refined formalization of Kirchhoff's mesh analysis of electrical circuits, which has lately been applied to generic thermodynamic networks.
Interactive Web Graphs for Economic Principles.
ERIC Educational Resources Information Center
Kaufman, Dennis A.; Kaufman, Rebecca S.
2002-01-01
Describes a Web site with animation and interactive activities containing graphs and basic economics concepts. Features changes in supply and market equilibrium, the construction of the long-run average cost curve, short-run profit maximization, long-run market equilibrium, and changes in aggregate demand and aggregate supply. States the…
Efficient FPT Algorithms for (Strict) Compatibility of Unrooted Phylogenetic Trees.
Baste, Julien; Paul, Christophe; Sau, Ignasi; Scornavacca, Celine
2017-04-01
In phylogenetics, a central problem is to infer the evolutionary relationships between a set of species X; these relationships are often depicted via a phylogenetic tree-a tree having its leaves labeled bijectively by elements of X and without degree-2 nodes-called the "species tree." One common approach for reconstructing a species tree consists in first constructing several phylogenetic trees from primary data (e.g., DNA sequences originating from some species in X), and then constructing a single phylogenetic tree maximizing the "concordance" with the input trees. The obtained tree is our estimation of the species tree and, when the input trees are defined on overlapping-but not identical-sets of labels, is called "supertree." In this paper, we focus on two problems that are central when combining phylogenetic trees into a supertree: the compatibility and the strict compatibility problems for unrooted phylogenetic trees. These problems are strongly related, respectively, to the notions of "containing as a minor" and "containing as a topological minor" in the graph community. Both problems are known to be fixed parameter tractable in the number of input trees k, by using their expressibility in monadic second-order logic and a reduction to graphs of bounded treewidth. Motivated by the fact that the dependency on k of these algorithms is prohibitively large, we give the first explicit dynamic programming algorithms for solving these problems, both running in time [Formula: see text], where n is the total size of the input.
A model of language inflection graphs
NASA Astrophysics Data System (ADS)
Fukś, Henryk; Farzad, Babak; Cao, Yi
2014-01-01
Inflection graphs are highly complex networks representing relationships between inflectional forms of words in human languages. For so-called synthetic languages, such as Latin or Polish, they have particularly interesting structure due to the abundance of inflectional forms. We construct the simplest form of inflection graphs, namely a bipartite graph in which one group of vertices corresponds to dictionary headwords and the other group to inflected forms encountered in a given text. We, then, study projection of this graph on the set of headwords. The projection decomposes into a large number of connected components, to be called word groups. Distribution of sizes of word group exhibits some remarkable properties, resembling cluster distribution in a lattice percolation near the critical point. We propose a simple model which produces graphs of this type, reproducing the desired component distribution and other topological features.
Topological visual mapping in robotics.
Romero, Anna; Cazorla, Miguel
2012-08-01
A key problem in robotics is the construction of a map from its environment. This map could be used in different tasks, like localization, recognition, obstacle avoidance, etc. Besides, the simultaneous location and mapping (SLAM) problem has had a lot of interest in the robotics community. This paper presents a new method for visual mapping, using topological instead of metric information. For that purpose, we propose prior image segmentation into regions in order to group the extracted invariant features in a graph so that each graph defines a single region of the image. Although others methods have been proposed for visual SLAM, our method is complete, in the sense that it makes all the process: it presents a new method for image matching; it defines a way to build the topological map; and it also defines a matching criterion for loop-closing. The matching process will take into account visual features and their structure using the graph transformation matching (GTM) algorithm, which allows us to process the matching and to remove out the outliers. Then, using this image comparison method, we propose an algorithm for constructing topological maps. During the experimentation phase, we will test the robustness of the method and its ability constructing topological maps. We have also introduced new hysteresis behavior in order to solve some problems found building the graph.
An Optimal CDS Construction Algorithm with Activity Scheduling in Ad Hoc Networks
Penumalli, Chakradhar; Palanichamy, Yogesh
2015-01-01
A new energy efficient optimal Connected Dominating Set (CDS) algorithm with activity scheduling for mobile ad hoc networks (MANETs) is proposed. This algorithm achieves energy efficiency by minimizing the Broadcast Storm Problem [BSP] and at the same time considering the node's remaining energy. The Connected Dominating Set is widely used as a virtual backbone or spine in mobile ad hoc networks [MANETs] or Wireless Sensor Networks [WSN]. The CDS of a graph representing a network has a significant impact on an efficient design of routing protocol in wireless networks. Here the CDS is a distributed algorithm with activity scheduling based on unit disk graph [UDG]. The node's mobility and residual energy (RE) are considered as parameters in the construction of stable optimal energy efficient CDS. The performance is evaluated at various node densities, various transmission ranges, and mobility rates. The theoretical analysis and simulation results of this algorithm are also presented which yield better results. PMID:26221627
Navigability of Random Geometric Graphs in the Universe and Other Spacetimes.
Cunningham, William; Zuev, Konstantin; Krioukov, Dmitri
2017-08-18
Random geometric graphs in hyperbolic spaces explain many common structural and dynamical properties of real networks, yet they fail to predict the correct values of the exponents of power-law degree distributions observed in real networks. In that respect, random geometric graphs in asymptotically de Sitter spacetimes, such as the Lorentzian spacetime of our accelerating universe, are more attractive as their predictions are more consistent with observations in real networks. Yet another important property of hyperbolic graphs is their navigability, and it remains unclear if de Sitter graphs are as navigable as hyperbolic ones. Here we study the navigability of random geometric graphs in three Lorentzian manifolds corresponding to universes filled only with dark energy (de Sitter spacetime), only with matter, and with a mixture of dark energy and matter. We find these graphs are navigable only in the manifolds with dark energy. This result implies that, in terms of navigability, random geometric graphs in asymptotically de Sitter spacetimes are as good as random hyperbolic graphs. It also establishes a connection between the presence of dark energy and navigability of the discretized causal structure of spacetime, which provides a basis for a different approach to the dark energy problem in cosmology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagberg, Aric; Swart, Pieter; S Chult, Daniel
NetworkX is a Python language package for exploration and analysis of networks and network algorithms. The core package provides data structures for representing many types of networks, or graphs, including simple graphs, directed graphs, and graphs with parallel edges and self loops. The nodes in NetworkX graphs can be any (hashable) Python object and edges can contain arbitrary data; this flexibility mades NetworkX ideal for representing networks found in many different scientific fields. In addition to the basic data structures many graph algorithms are implemented for calculating network properties and structure measures: shortest paths, betweenness centrality, clustering, and degree distributionmore » and many more. NetworkX can read and write various graph formats for eash exchange with existing data, and provides generators for many classic graphs and popular graph models, such as the Erdoes-Renyi, Small World, and Barabasi-Albert models, are included. The ease-of-use and flexibility of the Python programming language together with connection to the SciPy tools make NetworkX a powerful tool for scientific computations. We discuss some of our recent work studying synchronization of coupled oscillators to demonstrate how NetworkX enables research in the field of computational networks.« less
2013-10-15
statistic,” in Artifical Intelligence and Statistics (AISTATS), 2013. [6] ——, “Detecting activity in graphs via the Graph Ellipsoid Scan Statistic... Artifical Intelligence and Statistics (AISTATS), 2013. [8] ——, “Near-optimal anomaly detection in graphs using Lovász Extended Scan Statistic,” in Neural...networks,” in Artificial Intelligence and Statistics (AISTATS), 2010. 11 [11] D. Aldous, “The random walk construction of uniform spanning trees and
Spread of information and infection on finite random networks
NASA Astrophysics Data System (ADS)
Isham, Valerie; Kaczmarska, Joanna; Nekovee, Maziar
2011-04-01
The modeling of epidemic-like processes on random networks has received considerable attention in recent years. While these processes are inherently stochastic, most previous work has been focused on deterministic models that ignore important fluctuations that may persist even in the infinite network size limit. In a previous paper, for a class of epidemic and rumor processes, we derived approximate models for the full probability distribution of the final size of the epidemic, as opposed to only mean values. In this paper we examine via direct simulations the adequacy of the approximate model to describe stochastic epidemics and rumors on several random network topologies: homogeneous networks, Erdös-Rényi (ER) random graphs, Barabasi-Albert scale-free networks, and random geometric graphs. We find that the approximate model is reasonably accurate in predicting the probability of spread. However, the position of the threshold and the conditional mean of the final size for processes near the threshold are not well described by the approximate model even in the case of homogeneous networks. We attribute this failure to the presence of other structural properties beyond degree-degree correlations, and in particular clustering, which are present in any finite network but are not incorporated in the approximate model. In order to test this “hypothesis” we perform additional simulations on a set of ER random graphs where degree-degree correlations and clustering are separately and independently introduced using recently proposed algorithms from the literature. Our results show that even strong degree-degree correlations have only weak effects on the position of the threshold and the conditional mean of the final size. On the other hand, the introduction of clustering greatly affects both the position of the threshold and the conditional mean. Similar analysis for the Barabasi-Albert scale-free network confirms the significance of clustering on the dynamics of rumor spread. For this network, though, with its highly skewed degree distribution, the addition of positive correlation had a much stronger effect on the final size distribution than was found for the simple random graph.
Knowledge Representation Issues in Semantic Graphs for Relationship Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barthelemy, M; Chow, E; Eliassi-Rad, T
2005-02-02
An important task for Homeland Security is the prediction of threat vulnerabilities, such as through the detection of relationships between seemingly disjoint entities. A structure used for this task is a ''semantic graph'', also known as a ''relational data graph'' or an ''attributed relational graph''. These graphs encode relationships as typed links between a pair of typed nodes. Indeed, semantic graphs are very similar to semantic networks used in AI. The node and link types are related through an ontology graph (also known as a schema). Furthermore, each node has a set of attributes associated with it (e.g., ''age'' maymore » be an attribute of a node of type ''person''). Unfortunately, the selection of types and attributes for both nodes and links depends on human expertise and is somewhat subjective and even arbitrary. This subjectiveness introduces biases into any algorithm that operates on semantic graphs. Here, we raise some knowledge representation issues for semantic graphs and provide some possible solutions using recently developed ideas in the field of complex networks. In particular, we use the concept of transitivity to evaluate the relevance of individual links in the semantic graph for detecting relationships. We also propose new statistical measures for semantic graphs and illustrate these semantic measures on graphs constructed from movies and terrorism data.« less
Triadic Closure in Configuration Models with Unbounded Degree Fluctuations
NASA Astrophysics Data System (ADS)
van der Hofstad, Remco; van Leeuwaarden, Johan S. H.; Stegehuis, Clara
2018-01-01
The configuration model generates random graphs with any given degree distribution, and thus serves as a null model for scale-free networks with power-law degrees and unbounded degree fluctuations. For this setting, we study the local clustering c(k), i.e., the probability that two neighbors of a degree-k node are neighbors themselves. We show that c(k) progressively falls off with k and the graph size n and eventually for k=Ω (√{n}) settles on a power law c(k)˜ n^{5-2τ }k^{-2(3-τ )} with τ \\in (2,3) the power-law exponent of the degree distribution. This fall-off has been observed in the majority of real-world networks and signals the presence of modular or hierarchical structure. Our results agree with recent results for the hidden-variable model and also give the expected number of triangles in the configuration model when counting triangles only once despite the presence of multi-edges. We show that only triangles consisting of triplets with uniquely specified degrees contribute to the triangle counting.
Toward the optimization of normalized graph Laplacian.
Xie, Bo; Wang, Meng; Tao, Dacheng
2011-04-01
Normalized graph Laplacian has been widely used in many practical machine learning algorithms, e.g., spectral clustering and semisupervised learning. However, all of them use the Euclidean distance to construct the graph Laplacian, which does not necessarily reflect the inherent distribution of the data. In this brief, we propose a method to directly optimize the normalized graph Laplacian by using pairwise constraints. The learned graph is consistent with equivalence and nonequivalence pairwise relationships, and thus it can better represent similarity between samples. Meanwhile, our approach, unlike metric learning, automatically determines the scale factor during the optimization. The learned normalized Laplacian matrix can be directly applied in spectral clustering and semisupervised learning algorithms. Comprehensive experiments demonstrate the effectiveness of the proposed approach.
Typical performance of approximation algorithms for NP-hard problems
NASA Astrophysics Data System (ADS)
Takabe, Satoshi; Hukushima, Koji
2016-11-01
Typical performance of approximation algorithms is studied for randomized minimum vertex cover problems. A wide class of random graph ensembles characterized by an arbitrary degree distribution is discussed with the presentation of a theoretical framework. Herein, three approximation algorithms are examined: linear-programming relaxation, loopy-belief propagation, and the leaf-removal algorithm. The former two algorithms are analyzed using a statistical-mechanical technique, whereas the average-case analysis of the last one is conducted using the generating function method. These algorithms have a threshold in the typical performance with increasing average degree of the random graph, below which they find true optimal solutions with high probability. Our study reveals that there exist only three cases, determined by the order of the typical performance thresholds. In addition, we provide some conditions for classification of the graph ensembles and demonstrate explicitly some examples for the difference in thresholds.
Quantifying randomness in real networks
NASA Astrophysics Data System (ADS)
Orsini, Chiara; Dankulov, Marija M.; Colomer-de-Simón, Pol; Jamakovic, Almerima; Mahadevan, Priya; Vahdat, Amin; Bassler, Kevin E.; Toroczkai, Zoltán; Boguñá, Marián; Caldarelli, Guido; Fortunato, Santo; Krioukov, Dmitri
2015-10-01
Represented as graphs, real networks are intricate combinations of order and disorder. Fixing some of the structural properties of network models to their values observed in real networks, many other properties appear as statistical consequences of these fixed observables, plus randomness in other respects. Here we employ the dk-series, a complete set of basic characteristics of the network structure, to study the statistical dependencies between different network properties. We consider six real networks--the Internet, US airport network, human protein interactions, technosocial web of trust, English word network, and an fMRI map of the human brain--and find that many important local and global structural properties of these networks are closely reproduced by dk-random graphs whose degree distributions, degree correlations and clustering are as in the corresponding real network. We discuss important conceptual, methodological, and practical implications of this evaluation of network randomness, and release software to generate dk-random graphs.
MPI Runtime Error Detection with MUST: Advances in Deadlock Detection
Hilbrich, Tobias; Protze, Joachim; Schulz, Martin; ...
2013-01-01
The widely used Message Passing Interface (MPI) is complex and rich. As a result, application developers require automated tools to avoid and to detect MPI programming errors. We present the Marmot Umpire Scalable Tool (MUST) that detects such errors with significantly increased scalability. We present improvements to our graph-based deadlock detection approach for MPI, which cover future MPI extensions. Our enhancements also check complex MPI constructs that no previous graph-based detection approach handled correctly. Finally, we present optimizations for the processing of MPI operations that reduce runtime deadlock detection overheads. Existing approaches often require ( p ) analysis time permore » MPI operation, for p processes. We empirically observe that our improvements lead to sub-linear or better analysis time per operation for a wide range of real world applications.« less
Epidemic Threshold in Structured Scale-Free Networks
NASA Astrophysics Data System (ADS)
EguíLuz, VíCtor M.; Klemm, Konstantin
2002-08-01
We analyze the spreading of viruses in scale-free networks with high clustering and degree correlations, as found in the Internet graph. For the susceptible-infected-susceptible model of epidemics the prevalence undergoes a phase transition at a finite threshold of the transmission probability. Comparing with the absence of a finite threshold in networks with purely random wiring, our result suggests that high clustering (modularity) and degree correlations protect scale-free networks against the spreading of viruses. We introduce and verify a quantitative description of the epidemic threshold based on the connectivity of the neighborhoods of the hubs.
Glocker, Ben; Paragios, Nikos; Komodakis, Nikos; Tziritas, Georgios; Navab, Nassir
2007-01-01
In this paper we propose a novel non-rigid volume registration based on discrete labeling and linear programming. The proposed framework reformulates registration as a minimal path extraction in a weighted graph. The space of solutions is represented using a set of a labels which are assigned to predefined displacements. The graph topology corresponds to a superimposed regular grid onto the volume. Links between neighborhood control points introduce smoothness, while links between the graph nodes and the labels (end-nodes) measure the cost induced to the objective function through the selection of a particular deformation for a given control point once projected to the entire volume domain, Higher order polynomials are used to express the volume deformation from the ones of the control points. Efficient linear programming that can guarantee the optimal solution up to (a user-defined) bound is considered to recover the optimal registration parameters. Therefore, the method is gradient free, can encode various similarity metrics (simple changes on the graph construction), can guarantee a globally sub-optimal solution and is computational tractable. Experimental validation using simulated data with known deformation, as well as manually segmented data demonstrate the extreme potentials of our approach.
Graphs, matrices, and the GraphBLAS: Seven good reasons
Kepner, Jeremy; Bader, David; Buluç, Aydın; ...
2015-01-01
The analysis of graphs has become increasingly important to a wide range of applications. Graph analysis presents a number of unique challenges in the areas of (1) software complexity, (2) data complexity, (3) security, (4) mathematical complexity, (5) theoretical analysis, (6) serial performance, and (7) parallel performance. Implementing graph algorithms using matrix-based approaches provides a number of promising solutions to these challenges. The GraphBLAS standard (istcbigdata.org/GraphBlas) is being developed to bring the potential of matrix based graph algorithms to the broadest possible audience. The GraphBLAS mathematically defines a core set of matrix-based graph operations that can be used to implementmore » a wide class of graph algorithms in a wide range of programming environments. This paper provides an introduction to the GraphBLAS and describes how the GraphBLAS can be used to address many of the challenges associated with analysis of graphs.« less
On Connected Diagrams and Cumulants of Erdős-Rényi Matrix Models
NASA Astrophysics Data System (ADS)
Khorunzhiy, O.
2008-08-01
Regarding the adjacency matrices of n-vertex graphs and related graph Laplacian we introduce two families of discrete matrix models constructed both with the help of the Erdős-Rényi ensemble of random graphs. Corresponding matrix sums represent the characteristic functions of the average number of walks and closed walks over the random graph. These sums can be considered as discrete analogues of the matrix integrals of random matrix theory. We study the diagram structure of the cumulant expansions of logarithms of these matrix sums and analyze the limiting expressions as n → ∞ in the cases of constant and vanishing edge probabilities.
Non-Weyl asymptotics for quantum graphs with general coupling conditions
NASA Astrophysics Data System (ADS)
Davies, E. Brian; Exner, Pavel; Lipovský, Jiří
2010-11-01
Inspired by a recent result of Davies and Pushnitski, we study resonance asymptotics of quantum graphs with general coupling conditions at the vertices. We derive a criterion for the asymptotics to be of a non-Weyl character. We show that for balanced vertices with permutation-invariant couplings the asymptotics is non-Weyl only in the case of Kirchhoff or anti-Kirchhoff conditions. While for graphs without permutation symmetry numerous examples of non-Weyl behaviour can be constructed. Furthermore, we present an insight into what makes the Kirchhoff/anti-Kirchhoff coupling particular from the resonance point of view. Finally, we demonstrate a generalization to quantum graphs with unequal edge weights.
Evaluation of the health status of six volunteers from the Mars 500 project using pulse analysis.
Shi, Hong-Zhi; Fan, Quan-Chun; Gao, Jian-Yi; Liu, Jun-Lian; Bai, Gui-E; Mi, Tao; Zhao, Shuang; Liu, Yu; Xu, Dong; Guo, Zhi-Feng; Li, Yong-Zhi
2017-08-01
To comprehensively evaluate the health status of 6 volunteers from the Mars 500 Project through analyzing their pulse graphs and determining the changes in cardiovascular function, degree of fatigue and autonomic nervous function. Six volunteers were recruited; all were male aged 26-38 years (average 31.83±4.96 years). Characteristic parameters reflflecting the status of cardiovascular functions were extracted, which included left ventricular contraction, vascular elasticity and peripheral resistance. The degree of fatigue was determined depending on the difference between the calendar age and biological age, which was calculated through the analysis of blood pressure value and characteristic parameters. Based on the values of pulse height variation and pulse time variation on a 30-s pulse graph, autonomic nervous function was evaluated. All parameters examined were marked on an equilateral polygon to form an irregular polygon of the actual fifigure, then health status was evaluated based on the coverage area of the actual fifigure. The results demonstrated: (1) volunteers developed weakened pulse power, increased vascular tension and peripheral resistance, and slight decreased ventricular systolic function; (2) the degree of fatigue was basically mild or moderate; and (3) autonomic nervous function was excited but generally balanced. These volunteers were in the state of sub-health. According to Chinese medicine theories, such symptoms are mainly caused by the weakening of healthy qi, Gan (Liver) failing in free coursing, and disharmony between Gan and Wei (Stomach), which manifests as a weak and string-like pulse.
The correlation of metrics in complex networks with applications in functional brain networks
NASA Astrophysics Data System (ADS)
Li, C.; Wang, H.; de Haan, W.; Stam, C. J.; Van Mieghem, P.
2011-11-01
An increasing number of network metrics have been applied in network analysis. If metric relations were known better, we could more effectively characterize networks by a small set of metrics to discover the association between network properties/metrics and network functioning. In this paper, we investigate the linear correlation coefficients between widely studied network metrics in three network models (Bárabasi-Albert graphs, Erdös-Rényi random graphs and Watts-Strogatz small-world graphs) as well as in functional brain networks of healthy subjects. The metric correlations, which we have observed and theoretically explained, motivate us to propose a small representative set of metrics by including only one metric from each subset of mutually strongly dependent metrics. The following contributions are considered important. (a) A network with a given degree distribution can indeed be characterized by a small representative set of metrics. (b) Unweighted networks, which are obtained from weighted functional brain networks with a fixed threshold, and Erdös-Rényi random graphs follow a similar degree distribution. Moreover, their metric correlations and the resultant representative metrics are similar as well. This verifies the influence of degree distribution on metric correlations. (c) Most metric correlations can be explained analytically. (d) Interestingly, the most studied metrics so far, the average shortest path length and the clustering coefficient, are strongly correlated and, thus, redundant. Whereas spectral metrics, though only studied recently in the context of complex networks, seem to be essential in network characterizations. This representative set of metrics tends to both sufficiently and effectively characterize networks with a given degree distribution. In the study of a specific network, however, we have to at least consider the representative set so that important network properties will not be neglected.
Analysis of quantum error correction with symmetric hypergraph states
NASA Astrophysics Data System (ADS)
Wagner, T.; Kampermann, H.; Bruß, D.
2018-03-01
Graph states have been used to construct quantum error correction codes for independent errors. Hypergraph states generalize graph states, and symmetric hypergraph states have been shown to allow for the correction of correlated errors. In this paper, it is shown that symmetric hypergraph states are not useful for the correction of independent errors, at least for up to 30 qubits. Furthermore, error correction for error models with protected qubits is explored. A class of known graph codes for this scenario is generalized to hypergraph codes.
Information Retrieval and Graph Analysis Approaches for Book Recommendation.
Benkoussas, Chahinez; Bellot, Patrice
2015-01-01
A combination of multiple information retrieval approaches is proposed for the purpose of book recommendation. In this paper, book recommendation is based on complex user's query. We used different theoretical retrieval models: probabilistic as InL2 (Divergence from Randomness model) and language model and tested their interpolated combination. Graph analysis algorithms such as PageRank have been successful in Web environments. We consider the application of this algorithm in a new retrieval approach to related document network comprised of social links. We called Directed Graph of Documents (DGD) a network constructed with documents and social information provided from each one of them. Specifically, this work tackles the problem of book recommendation in the context of INEX (Initiative for the Evaluation of XML retrieval) Social Book Search track. A series of reranking experiments demonstrate that combining retrieval models yields significant improvements in terms of standard ranked retrieval metrics. These results extend the applicability of link analysis algorithms to different environments.
Information Retrieval and Graph Analysis Approaches for Book Recommendation
Benkoussas, Chahinez; Bellot, Patrice
2015-01-01
A combination of multiple information retrieval approaches is proposed for the purpose of book recommendation. In this paper, book recommendation is based on complex user's query. We used different theoretical retrieval models: probabilistic as InL2 (Divergence from Randomness model) and language model and tested their interpolated combination. Graph analysis algorithms such as PageRank have been successful in Web environments. We consider the application of this algorithm in a new retrieval approach to related document network comprised of social links. We called Directed Graph of Documents (DGD) a network constructed with documents and social information provided from each one of them. Specifically, this work tackles the problem of book recommendation in the context of INEX (Initiative for the Evaluation of XML retrieval) Social Book Search track. A series of reranking experiments demonstrate that combining retrieval models yields significant improvements in terms of standard ranked retrieval metrics. These results extend the applicability of link analysis algorithms to different environments. PMID:26504899
Experimental Study of Quantum Graphs with Microwave Networks
NASA Astrophysics Data System (ADS)
Fu, Ziyuan; Koch, Trystan; Antonsen, Thomas; Ott, Edward; Anlage, Steven; Wave Chaos Team
An experimental setup consisting of microwave networks is used to simulate quantum graphs. The networks are constructed from coaxial cables connected by T junctions. The networks are built for operation both at room temperature and superconducting versions that operate at cryogenic temperatures. In the experiments, a phase shifter is connected to one of the network bonds to generate an ensemble of quantum graphs by varying the phase delay. The eigenvalue spectrum is found from S-parameter measurements on one-port graphs. With the experimental data, the nearest-neighbor spacing statistics and the impedance statistics of the graphs are examined. It is also demonstrated that time-reversal invariance for microwave propagation in the graphs can be broken without increasing dissipation significantly by making nodes with circulators. Random matrix theory (RMT) successfully describes universal statistical properties of the system. We acknowledge support under contract AFOSR COE Grant FA9550-15-1-0171.
Isospectral discrete and quantum graphs with the same flip counts and nodal counts
NASA Astrophysics Data System (ADS)
Juul, Jonas S.; Joyner, Christopher H.
2018-06-01
The existence of non-isomorphic graphs which share the same Laplace spectrum (to be referred to as isospectral graphs) leads naturally to the following question: what additional information is required in order to resolve isospectral graphs? It was suggested by Band, Shapira and Smilansky that this might be achieved by either counting the number of nodal domains or the number of times the eigenfunctions change sign (the so-called flip count) (Band et al 2006 J. Phys. A: Math. Gen. 39 13999–4014 Band and Smilansky 2007 Eur. Phys. J. Spec. Top. 145 171–9). Recent examples of (discrete) isospectral graphs with the same flip count and nodal count have been constructed by Ammann by utilising Godsil–McKay switching (Ammann private communication). Here, we provide a simple alternative mechanism that produces systematic examples of both discrete and quantum isospectral graphs with the same flip and nodal counts.
NASA Astrophysics Data System (ADS)
Wu, Ang-Kun; Tian, Liang; Liu, Yang-Yu
2018-01-01
A bridge in a graph is an edge whose removal disconnects the graph and increases the number of connected components. We calculate the fraction of bridges in a wide range of real-world networks and their randomized counterparts. We find that real networks typically have more bridges than their completely randomized counterparts, but they have a fraction of bridges that is very similar to their degree-preserving randomizations. We define an edge centrality measure, called bridgeness, to quantify the importance of a bridge in damaging a network. We find that certain real networks have a very large average and variance of bridgeness compared to their degree-preserving randomizations and other real networks. Finally, we offer an analytical framework to calculate the bridge fraction and the average and variance of bridgeness for uncorrelated random networks with arbitrary degree distributions.
Color normalization of histology slides using graph regularized sparse NMF
NASA Astrophysics Data System (ADS)
Sha, Lingdao; Schonfeld, Dan; Sethi, Amit
2017-03-01
Computer based automatic medical image processing and quantification are becoming popular in digital pathology. However, preparation of histology slides can vary widely due to differences in staining equipment, procedures and reagents, which can reduce the accuracy of algorithms that analyze their color and texture information. To re- duce the unwanted color variations, various supervised and unsupervised color normalization methods have been proposed. Compared with supervised color normalization methods, unsupervised color normalization methods have advantages of time and cost efficient and universal applicability. Most of the unsupervised color normaliza- tion methods for histology are based on stain separation. Based on the fact that stain concentration cannot be negative and different parts of the tissue absorb different stains, nonnegative matrix factorization (NMF), and particular its sparse version (SNMF), are good candidates for stain separation. However, most of the existing unsupervised color normalization method like PCA, ICA, NMF and SNMF fail to consider important information about sparse manifolds that its pixels occupy, which could potentially result in loss of texture information during color normalization. Manifold learning methods like Graph Laplacian have proven to be very effective in interpreting high-dimensional data. In this paper, we propose a novel unsupervised stain separation method called graph regularized sparse nonnegative matrix factorization (GSNMF). By considering the sparse prior of stain concentration together with manifold information from high-dimensional image data, our method shows better performance in stain color deconvolution than existing unsupervised color deconvolution methods, especially in keeping connected texture information. To utilized the texture information, we construct a nearest neighbor graph between pixels within a spatial area of an image based on their distances using heat kernal in lαβ space. The representation of a pixel in the stain density space is constrained to follow the feature distance of the pixel to pixels in the neighborhood graph. Utilizing color matrix transfer method with the stain concentrations found using our GSNMF method, the color normalization performance was also better than existing methods.
A graph signal filtering-based approach for detection of different edge types on airborne lidar data
NASA Astrophysics Data System (ADS)
Bayram, Eda; Vural, Elif; Alatan, Aydin
2017-10-01
Airborne Laser Scanning is a well-known remote sensing technology, which provides a dense and highly accurate, yet unorganized point cloud of earth surface. During the last decade, extracting information from the data generated by airborne LiDAR systems has been addressed by many studies in geo-spatial analysis and urban monitoring applications. However, the processing of LiDAR point clouds is challenging due to their irregular structure and 3D geometry. In this study, we propose a novel framework for the detection of the boundaries of an object or scene captured by LiDAR. Our approach is motivated by edge detection techniques in vision research and it is established on graph signal filtering which is an exciting and promising field of signal processing for irregular data types. Due to the convenient applicability of graph signal processing tools on unstructured point clouds, we achieve the detection of the edge points directly on 3D data by using a graph representation that is constructed exclusively to answer the requirements of the application. Moreover, considering the elevation data as the (graph) signal, we leverage aerial characteristic of the airborne LiDAR data. The proposed method can be employed both for discovering the jump edges on a segmentation problem and for exploring the crease edges on a LiDAR object on a reconstruction/modeling problem, by only adjusting the filter characteristics.
Brain gray matter structural network in myotonic dystrophy type 1.
Sugiyama, Atsuhiko; Sone, Daichi; Sato, Noriko; Kimura, Yukio; Ota, Miho; Maikusa, Norihide; Maekawa, Tomoko; Enokizono, Mikako; Mori-Yoshimura, Madoka; Ohya, Yasushi; Kuwabara, Satoshi; Matsuda, Hiroshi
2017-01-01
This study aimed to investigate abnormalities in structural covariance network constructed from gray matter volume in myotonic dystrophy type 1 (DM1) patients by using graph theoretical analysis for further clarification of the underlying mechanisms of central nervous system involvement. Twenty-eight DM1 patients (4 childhood onset, 10 juvenile onset, 14 adult onset), excluding three cases from 31 consecutive patients who underwent magnetic resonance imaging in a certain period, and 28 age- and sex- matched healthy control subjects were included in this study. The normalized gray matter images of both groups were subjected to voxel based morphometry (VBM) and Graph Analysis Toolbox for graph theoretical analysis. VBM revealed extensive gray matter atrophy in DM1 patients, including cortical and subcortical structures. On graph theoretical analysis, there were no significant differences between DM1 and control groups in terms of the global measures of connectivity. Betweenness centrality was increased in several regions including the left fusiform gyrus, whereas it was decreased in the right striatum. The absence of significant differences between the groups in global network measurements on graph theoretical analysis is consistent with the fact that the general cognitive function is preserved in DM1 patients. In DM1 patients, increased connectivity in the left fusiform gyrus and decreased connectivity in the right striatum might be associated with impairment in face perception and theory of mind, and schizotypal-paranoid personality traits, respectively.
Adjusting protein graphs based on graph entropy.
Peng, Sheng-Lung; Tsay, Yu-Wei
2014-01-01
Measuring protein structural similarity attempts to establish a relationship of equivalence between polymer structures based on their conformations. In several recent studies, researchers have explored protein-graph remodeling, instead of looking a minimum superimposition for pairwise proteins. When graphs are used to represent structured objects, the problem of measuring object similarity become one of computing the similarity between graphs. Graph theory provides an alternative perspective as well as efficiency. Once a protein graph has been created, its structural stability must be verified. Therefore, a criterion is needed to determine if a protein graph can be used for structural comparison. In this paper, we propose a measurement for protein graph remodeling based on graph entropy. We extend the concept of graph entropy to determine whether a graph is suitable for representing a protein. The experimental results suggest that when applied, graph entropy helps a conformational on protein graph modeling. Furthermore, it indirectly contributes to protein structural comparison if a protein graph is solid.
Adjusting protein graphs based on graph entropy
2014-01-01
Measuring protein structural similarity attempts to establish a relationship of equivalence between polymer structures based on their conformations. In several recent studies, researchers have explored protein-graph remodeling, instead of looking a minimum superimposition for pairwise proteins. When graphs are used to represent structured objects, the problem of measuring object similarity become one of computing the similarity between graphs. Graph theory provides an alternative perspective as well as efficiency. Once a protein graph has been created, its structural stability must be verified. Therefore, a criterion is needed to determine if a protein graph can be used for structural comparison. In this paper, we propose a measurement for protein graph remodeling based on graph entropy. We extend the concept of graph entropy to determine whether a graph is suitable for representing a protein. The experimental results suggest that when applied, graph entropy helps a conformational on protein graph modeling. Furthermore, it indirectly contributes to protein structural comparison if a protein graph is solid. PMID:25474347
A path following algorithm for the graph matching problem.
Zaslavskiy, Mikhail; Bach, Francis; Vert, Jean-Philippe
2009-12-01
We propose a convex-concave programming approach for the labeled weighted graph matching problem. The convex-concave programming formulation is obtained by rewriting the weighted graph matching problem as a least-square problem on the set of permutation matrices and relaxing it to two different optimization problems: a quadratic convex and a quadratic concave optimization problem on the set of doubly stochastic matrices. The concave relaxation has the same global minimum as the initial graph matching problem, but the search for its global minimum is also a hard combinatorial problem. We, therefore, construct an approximation of the concave problem solution by following a solution path of a convex-concave problem obtained by linear interpolation of the convex and concave formulations, starting from the convex relaxation. This method allows to easily integrate the information on graph label similarities into the optimization problem, and therefore, perform labeled weighted graph matching. The algorithm is compared with some of the best performing graph matching methods on four data sets: simulated graphs, QAPLib, retina vessel images, and handwritten Chinese characters. In all cases, the results are competitive with the state of the art.
Ground-based determination of atmospheric radiance for correction of ERTS-1 data
NASA Technical Reports Server (NTRS)
Peacock, K.
1974-01-01
A technique is described for estimating the atmospheric radiance observed by a downward sensor (ERTS) using ground-based measurements. A formula is obtained for the sky radiance at the time of the ERTS overpass from the radiometric measurement of the sky radiance made at a particular solar zenith angle and air mass. A graph illustrates ground-based sky radiance measurements as a function of the scattering angle for a range of solar air masses. Typical values for sky radiance at a solar zenith angle of 48 degrees are given.
Bachelor's Degree Recipients Report, 1997.
ERIC Educational Resources Information Center
Mulvey, Patrick J.; Nicholson, Starr
1998-01-01
This report analyzes data on bachelor's degree recipients in physics or astronomy in 1997. Data are from a survey of senior-level physics majors (n=1,696) and the American Institute of Physics' Enrollments and Degrees Survey, and include text, tables, and graphs. The report notes that: (1) the number of undergraduates who received bachelor's…
Developing and Using an Applet to Enrich Students' Concept Image of Rational Polynomials
ERIC Educational Resources Information Center
Mason, John
2015-01-01
This article draws on extensive experience working with secondary and tertiary teachers and educators using an applet to display rational polynomials (up to degree 7 in numerator and denominator), as support for the challenge to deduce as much as possible about the graph from the graphs of the numerator and the denominator. Pedagogical and design…
An Analytical Framework for Fast Estimation of Capacity and Performance in Communication Networks
2012-01-25
standard random graph (due to Erdos- Renyi ) in the regime where the average degrees remain fixed (and above 1) and the number of nodes get large, is not...abs/1010.3305 (Oct 2010). [6] O. Narayan, I. Saniee, G. H. Tucci, “Lack of Spectral Gap and Hyperbolicity in Asymptotic Erdös- Renyi Random Graphs
ERIC Educational Resources Information Center
Chan, Siu Y.
2001-01-01
Discussion of information overload focuses on a study of masters degree students at a Hong Kong university that investigated the effectiveness of graphs as decision aids to reduce adverse effects of information overload on decision quality. Results of a simulation of a business prediction task with a sample of business managers are presented.…
Leveraging graph topology and semantic context for pharmacovigilance through twitter-streams.
Eshleman, Ryan; Singh, Rahul
2016-10-06
Adverse drug events (ADEs) constitute one of the leading causes of post-therapeutic death and their identification constitutes an important challenge of modern precision medicine. Unfortunately, the onset and effects of ADEs are often underreported complicating timely intervention. At over 500 million posts per day, Twitter is a commonly used social media platform. The ubiquity of day-to-day personal information exchange on Twitter makes it a promising target for data mining for ADE identification and intervention. Three technical challenges are central to this problem: (1) identification of salient medical keywords in (noisy) tweets, (2) mapping drug-effect relationships, and (3) classification of such relationships as adverse or non-adverse. We use a bipartite graph-theoretic representation called a drug-effect graph (DEG) for modeling drug and side effect relationships by representing the drugs and side effects as vertices. We construct individual DEGs on two data sources. The first DEG is constructed from the drug-effect relationships found in FDA package inserts as recorded in the SIDER database. The second DEG is constructed by mining the history of Twitter users. We use dictionary-based information extraction to identify medically-relevant concepts in tweets. Drugs, along with co-occurring symptoms are connected with edges weighted by temporal distance and frequency. Finally, information from the SIDER DEG is integrate with the Twitter DEG and edges are classified as either adverse or non-adverse using supervised machine learning. We examine both graph-theoretic and semantic features for the classification task. The proposed approach can identify adverse drug effects with high accuracy with precision exceeding 85 % and F1 exceeding 81 %. When compared with leading methods at the state-of-the-art, which employ un-enriched graph-theoretic analysis alone, our method leads to improvements ranging between 5 and 8 % in terms of the aforementioned measures. Additionally, we employ our method to discover several ADEs which, though present in medical literature and Twitter-streams, are not represented in the SIDER databases. We present a DEG integration model as a powerful formalism for the analysis of drug-effect relationships that is general enough to accommodate diverse data sources, yet rigorous enough to provide a strong mechanism for ADE identification.
What can graph theory tell us about word learning and lexical retrieval?
Vitevitch, Michael S
2008-04-01
Graph theory and the new science of networks provide a mathematically rigorous approach to examine the development and organization of complex systems. These tools were applied to the mental lexicon to examine the organization of words in the lexicon and to explore how that structure might influence the acquisition and retrieval of phonological word-forms. Pajek, a program for large network analysis and visualization (V. Batagelj & A. Mvrar, 1998), was used to examine several characteristics of a network derived from a computerized database of the adult lexicon. Nodes in the network represented words, and a link connected two nodes if the words were phonological neighbors. The average path length and clustering coefficient suggest that the phonological network exhibits small-world characteristics. The degree distribution was fit better by an exponential rather than a power-law function. Finally, the network exhibited assortative mixing by degree. Some of these structural characteristics were also found in graphs that were formed by 2 simple stochastic processes suggesting that similar processes might influence the development of the lexicon. The graph theoretic perspective may provide novel insights about the mental lexicon and lead to future studies that help us better understand language development and processing.
Upper bound for the span of pencil graph
NASA Astrophysics Data System (ADS)
Parvathi, N.; Vimala Rani, A.
2018-04-01
An L(2,1)-Coloring or Radio Coloring or λ coloring of a graph is a function f from the vertex set V(G) to the set of all nonnegative integers such that |f(x) ‑ f(y)| ≥ 2 if d(x,y) = 1 and |f(x) ‑ f(y)| ≥ 1 if d(x,y)=2, where d(x,y) denotes the distance between x and y in G. The L(2,1)-coloring number or span number λ(G) of G is the smallest number k such that G has an L(2,1)-coloring with max{f(v) : v ∈ V(G)} = k. [2]The minimum number of colors used in L(2,1)-coloring is called the radio number rn(G) of G (Positive integer). Griggs and yeh conjectured that λ(G) ≤ Δ2 for any simple graph with maximum degree Δ>2. In this article, we consider some special graphs like, n-sunlet graph, pencil graph families and derive its upper bound of (G) and rn(G).
Stracuzzi, David John; Brost, Randolph C.; Phillips, Cynthia A.; ...
2015-09-26
Geospatial semantic graphs provide a robust foundation for representing and analyzing remote sensor data. In particular, they support a variety of pattern search operations that capture the spatial and temporal relationships among the objects and events in the data. However, in the presence of large data corpora, even a carefully constructed search query may return a large number of unintended matches. This work considers the problem of calculating a quality score for each match to the query, given that the underlying data are uncertain. As a result, we present a preliminary evaluation of three methods for determining both match qualitymore » scores and associated uncertainty bounds, illustrated in the context of an example based on overhead imagery data.« less
Output-Sensitive Construction of Reeb Graphs.
Doraiswamy, H; Natarajan, V
2012-01-01
The Reeb graph of a scalar function represents the evolution of the topology of its level sets. This paper describes a near-optimal output-sensitive algorithm for computing the Reeb graph of scalar functions defined over manifolds or non-manifolds in any dimension. Key to the simplicity and efficiency of the algorithm is an alternate definition of the Reeb graph that considers equivalence classes of level sets instead of individual level sets. The algorithm works in two steps. The first step locates all critical points of the function in the domain. Critical points correspond to nodes in the Reeb graph. Arcs connecting the nodes are computed in the second step by a simple search procedure that works on a small subset of the domain that corresponds to a pair of critical points. The paper also describes a scheme for controlled simplification of the Reeb graph and two different graph layout schemes that help in the effective presentation of Reeb graphs for visual analysis of scalar fields. Finally, the Reeb graph is employed in four different applications-surface segmentation, spatially-aware transfer function design, visualization of interval volumes, and interactive exploration of time-varying data.
K-theory of locally finite graph C∗-algebras
NASA Astrophysics Data System (ADS)
Iyudu, Natalia
2013-09-01
We calculate the K-theory of the Cuntz-Krieger algebra OE associated with an infinite, locally finite graph, via the Bass-Hashimoto operator. The formulae we get express the Grothendieck group and the Whitehead group in purely graph theoretic terms. We consider the category of finite (black-and-white, bi-directed) subgraphs with certain graph homomorphisms and construct a continuous functor to abelian groups. In this category K0 is an inductive limit of K-groups of finite graphs, which were calculated in Cornelissen et al. (2008) [3]. In the case of an infinite graph with the finite Betti number we obtain the formula for the Grothendieck group K0(OE)=Z, where β(E) is the first Betti number and γ(E) is the valency number of the graph E. We note that in the infinite case the torsion part of K0, which is present in the case of a finite graph, vanishes. The Whitehead group depends only on the first Betti number: K1(OE)=Z. These allow us to provide a counterexample to the fact, which holds for finite graphs, that K1(OE) is the torsion free part of K0(OE).
Comparing Algorithms for Graph Isomorphism Using Discrete- and Continuous-Time Quantum Random Walks
Rudinger, Kenneth; Gamble, John King; Bach, Eric; ...
2013-07-01
Berry and Wang [Phys. Rev. A 83, 042317 (2011)] show numerically that a discrete-time quan- tum random walk of two noninteracting particles is able to distinguish some non-isomorphic strongly regular graphs from the same family. Here we analytically demonstrate how it is possible for these walks to distinguish such graphs, while continuous-time quantum walks of two noninteracting parti- cles cannot. We show analytically and numerically that even single-particle discrete-time quantum random walks can distinguish some strongly regular graphs, though not as many as two-particle noninteracting discrete-time walks. Additionally, we demonstrate how, given the same quantum random walk, subtle di erencesmore » in the graph certi cate construction algorithm can nontrivially im- pact the walk's distinguishing power. We also show that no continuous-time walk of a xed number of particles can distinguish all strongly regular graphs when used in conjunction with any of the graph certi cates we consider. We extend this constraint to discrete-time walks of xed numbers of noninteracting particles for one kind of graph certi cate; it remains an open question as to whether or not this constraint applies to the other graph certi cates we consider.« less
Dominating Scale-Free Networks Using Generalized Probabilistic Methods
Molnár,, F.; Derzsy, N.; Czabarka, É.; Székely, L.; Szymanski, B. K.; Korniss, G.
2014-01-01
We study ensemble-based graph-theoretical methods aiming to approximate the size of the minimum dominating set (MDS) in scale-free networks. We analyze both analytical upper bounds of dominating sets and numerical realizations for applications. We propose two novel probabilistic dominating set selection strategies that are applicable to heterogeneous networks. One of them obtains the smallest probabilistic dominating set and also outperforms the deterministic degree-ranked method. We show that a degree-dependent probabilistic selection method becomes optimal in its deterministic limit. In addition, we also find the precise limit where selecting high-degree nodes exclusively becomes inefficient for network domination. We validate our results on several real-world networks, and provide highly accurate analytical estimates for our methods. PMID:25200937
Assortative model for social networks
NASA Astrophysics Data System (ADS)
Catanzaro, Michele; Caldarelli, Guido; Pietronero, Luciano
2004-09-01
In this Brief Report we present a version of a network growth model, generalized in order to describe the behavior of social networks. The case of study considered is the preprint archive at cul.arxiv.org. Each node corresponds to a scientist, and a link is present whenever two authors wrote a paper together. This graph is a nice example of degree-assortative network, that is, to say a network where sites with similar degree are connected to each other. The model presented is one of the few able to reproduce such behavior, giving some insight on the microscopic dynamics at the basis of the graph structure.
Aligning Biomolecular Networks Using Modular Graph Kernels
NASA Astrophysics Data System (ADS)
Towfic, Fadi; Greenlee, M. Heather West; Honavar, Vasant
Comparative analysis of biomolecular networks constructed using measurements from different conditions, tissues, and organisms offer a powerful approach to understanding the structure, function, dynamics, and evolution of complex biological systems. We explore a class of algorithms for aligning large biomolecular networks by breaking down such networks into subgraphs and computing the alignment of the networks based on the alignment of their subgraphs. The resulting subnetworks are compared using graph kernels as scoring functions. We provide implementations of the resulting algorithms as part of BiNA, an open source biomolecular network alignment toolkit. Our experiments using Drosophila melanogaster, Saccharomyces cerevisiae, Mus musculus and Homo sapiens protein-protein interaction networks extracted from the DIP repository of protein-protein interaction data demonstrate that the performance of the proposed algorithms (as measured by % GO term enrichment of subnetworks identified by the alignment) is competitive with some of the state-of-the-art algorithms for pair-wise alignment of large protein-protein interaction networks. Our results also show that the inter-species similarity scores computed based on graph kernels can be used to cluster the species into a species tree that is consistent with the known phylogenetic relationships among the species.
A scale-free network with limiting on vertices
NASA Astrophysics Data System (ADS)
Tang, Lian; Wang, Bin
2010-05-01
We propose and analyze a random graph model which explains a phenomena in the economic company network in which company may not expand its business at some time due to the limiting of money and capacity. The random graph process is defined as follows: at any time-step t, (i) with probability α(k) and independently of other time-step, each vertex vi (i≤t-1) is inactive which means it cannot be connected by more edges, where k is the degree of vi at the time-step t; (ii) a new vertex vt is added along with m edges incident with vt at one time and its neighbors are chosen in the manner of preferential attachment. We prove that the degree distribution P(k) of this random graph process satisfies P(k)∝C1k if α(ṡ) is a constant α0; and P(k)∝C2k-3 if α(ℓ)↓0 as ℓ↑∞, where C1,C2 are two positive constants. The analytical result is found to be in good agreement with that obtained by numerical simulations. Furthermore, we get the degree distributions in this model with m-varying functions by simulation.
Visibility graph approach to exchange rate series
NASA Astrophysics Data System (ADS)
Yang, Yue; Wang, Jianbo; Yang, Huijie; Mang, Jingshi
2009-10-01
By means of a visibility graph, we investigate six important exchange rate series. It is found that the series convert into scale-free and hierarchically structured networks. The relationship between the scaling exponents of the degree distributions and the Hurst exponents obeys the analytical prediction for fractal Brownian motions. The visibility graph can be used to obtain reliable values of Hurst exponents of the series. The characteristics are explained by using the multifractal structures of the series. The exchange rate of EURO to Japanese Yen is widely used to evaluate risk and to estimate trends in speculative investments. Interestingly, the hierarchies of the visibility graphs for the exchange rate series of these two currencies are significantly weak compared with that of the other series.
Neural Network of Body Representation Differs between Transsexuals and Cissexuals
Lin, Chia-Shu; Ku, Hsiao-Lun; Chao, Hsiang-Tai; Tu, Pei-Chi; Li, Cheng-Ta; Cheng, Chou-Ming; Su, Tung-Ping; Lee, Ying-Chiao; Hsieh, Jen-Chuen
2014-01-01
Body image is the internal representation of an individual’s own physical appearance. Individuals with gender identity disorder (GID), commonly referred to as transsexuals (TXs), are unable to form a satisfactory body image due to the dissonance between their biological sex and gender identity. We reasoned that changes in the resting-state functional connectivity (rsFC) network would neurologically reflect such experiential incongruence in TXs. Using graph theory-based network analysis, we investigated the regional changes of the degree centrality of the rsFC network. The degree centrality is an index of the functional importance of a node in a neural network. We hypothesized that three key regions of the body representation network, i.e., the primary somatosensory cortex, the superior parietal lobule and the insula, would show a higher degree centrality in TXs. Twenty-three pre-treatment TXs (11 male-to-female and 12 female-to-male TXs) as one psychosocial group and 23 age-matched healthy cissexual control subjects (CISs, 11 males and 12 females) were recruited. Resting-state functional magnetic resonance imaging was performed, and binarized rsFC networks were constructed. The TXs demonstrated a significantly higher degree centrality in the bilateral superior parietal lobule and the primary somatosensory cortex. In addition, the connectivity between the right insula and the bilateral primary somatosensory cortices was negatively correlated with the selfness rating of their desired genders. These data indicate that the key components of body representation manifest in TXs as critical function hubs in the rsFC network. The negative association may imply a coping mechanism that dissociates bodily emotion from body image. The changes in the functional connectome may serve as representational markers for the dysphoric bodily self of TXs. PMID:24465785
Rubin, Leah H; Yao, Li; Keedy, Sarah K; Reilly, James L; Bishop, Jeffrey R; Carter, C Sue; Pournajafi-Nazarloo, Hossein; Drogos, Lauren L; Tamminga, Carol A; Pearlson, Godfrey D; Keshavan, Matcheri S; Clementz, Brett A; Hill, Scot K; Liao, Wei; Ji, Gong-Jun; Lui, Su; Sweeney, John A
2017-01-02
Oxytocin (OT) and arginine vasopressin (AVP) exert robust and sexually dimorphic influences on cognition and emotion. How these hormones regulate relevant functional brain systems is not well understood. OT and AVP serum concentrations were assayed in 60 healthy individuals (36 women). Brain functional networks assessed with resting-state functional magnetic resonance imaging (rs-fMRI) were constructed with graph theory-based approaches that characterize brain networks as connected nodes. Sex differences were demonstrated in rs-fMRI. Men showed higher nodal degree (connectedness) and efficiency (information propagation capacity) in left inferior frontal gyrus (IFG) and bilateral superior temporal gyrus (STG) and higher nodal degree in left rolandic operculum. Women showed higher nodal betweenness (being part of paths between nodes) in right putamen and left inferior parietal gyrus (IPG). Higher hormone levels were associated with less intrinsic connectivity. In men, higher AVP was associated with lower nodal degree and efficiency in left IFG (pars orbitalis) and left STG and less efficiency in left IFG (pars triangularis). In women, higher AVP was associated with lower betweenness in left IPG, and higher OT was associated with lower nodal degree in left IFG (pars orbitalis). Hormones differentially correlate with brain networks that are important for emotion processing and cognition in men and women. AVP in men and OT in women may regulate orbital frontal cortex connectivity, which is important in emotion processing. Hormone associations with STG and pars triangularis in men and parietal cortex in women may account for well-established sex differences in verbal and visuospatial abilities, respectively. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Acausal measurement-based quantum computing
NASA Astrophysics Data System (ADS)
Morimae, Tomoyuki
2014-07-01
In measurement-based quantum computing, there is a natural "causal cone" among qubits of the resource state, since the measurement angle on a qubit has to depend on previous measurement results in order to correct the effect of by-product operators. If we respect the no-signaling principle, by-product operators cannot be avoided. Here we study the possibility of acausal measurement-based quantum computing by using the process matrix framework [Oreshkov, Costa, and Brukner, Nat. Commun. 3, 1092 (2012), 10.1038/ncomms2076]. We construct a resource process matrix for acausal measurement-based quantum computing restricting local operations to projective measurements. The resource process matrix is an analog of the resource state of the standard causal measurement-based quantum computing. We find that if we restrict local operations to projective measurements the resource process matrix is (up to a normalization factor and trivial ancilla qubits) equivalent to the decorated graph state created from the graph state of the corresponding causal measurement-based quantum computing. We also show that it is possible to consider a causal game whose causal inequality is violated by acausal measurement-based quantum computing.
Improving the Accuracy of Attribute Extraction using the Relatedness between Attribute Values
NASA Astrophysics Data System (ADS)
Bollegala, Danushka; Tani, Naoki; Ishizuka, Mitsuru
Extracting attribute-values related to entities from web texts is an important step in numerous web related tasks such as information retrieval, information extraction, and entity disambiguation (namesake disambiguation). For example, for a search query that contains a personal name, we can not only return documents that contain that personal name, but if we have attribute-values such as the organization for which that person works, we can also suggest documents that contain information related to that organization, thereby improving the user's search experience. Despite numerous potential applications of attribute extraction, it remains a challenging task due to the inherent noise in web data -- often a single web page contains multiple entities and attributes. We propose a graph-based approach to select the correct attribute-values from a set of candidate attribute-values extracted for a particular entity. First, we build an undirected weighted graph in which, attribute-values are represented by nodes, and the edge that connects two nodes in the graph represents the degree of relatedness between the corresponding attribute-values. Next, we find the maximum spanning tree of this graph that connects exactly one attribute-value for each attribute-type. The proposed method outperforms previously proposed attribute extraction methods on a dataset that contains 5000 web pages.