Sample records for degree-based graph construction

  1. Preserving Differential Privacy in Degree-Correlation based Graph Generation

    PubMed Central

    Wang, Yue; Wu, Xintao

    2014-01-01

    Enabling accurate analysis of social network data while preserving differential privacy has been challenging since graph features such as cluster coefficient often have high sensitivity, which is different from traditional aggregate functions (e.g., count and sum) on tabular data. In this paper, we study the problem of enforcing edge differential privacy in graph generation. The idea is to enforce differential privacy on graph model parameters learned from the original network and then generate the graphs for releasing using the graph model with the private parameters. In particular, we develop a differential privacy preserving graph generator based on the dK-graph generation model. We first derive from the original graph various parameters (i.e., degree correlations) used in the dK-graph model, then enforce edge differential privacy on the learned parameters, and finally use the dK-graph model with the perturbed parameters to generate graphs. For the 2K-graph model, we enforce the edge differential privacy by calibrating noise based on the smooth sensitivity, rather than the global sensitivity. By doing this, we achieve the strict differential privacy guarantee with smaller magnitude noise. We conduct experiments on four real networks and compare the performance of our private dK-graph models with the stochastic Kronecker graph generation model in terms of utility and privacy tradeoff. Empirical evaluations show the developed private dK-graph generation models significantly outperform the approach based on the stochastic Kronecker generation model. PMID:24723987

  2. Exact sampling of graphs with prescribed degree correlations

    NASA Astrophysics Data System (ADS)

    Bassler, Kevin E.; Del Genio, Charo I.; Erdős, Péter L.; Miklós, István; Toroczkai, Zoltán

    2015-08-01

    Many real-world networks exhibit correlations between the node degrees. For instance, in social networks nodes tend to connect to nodes of similar degree and conversely, in biological and technological networks, high-degree nodes tend to be linked with low-degree nodes. Degree correlations also affect the dynamics of processes supported by a network structure, such as the spread of opinions or epidemics. The proper modelling of these systems, i.e., without uncontrolled biases, requires the sampling of networks with a specified set of constraints. We present a solution to the sampling problem when the constraints imposed are the degree correlations. In particular, we develop an exact method to construct and sample graphs with a specified joint-degree matrix, which is a matrix providing the number of edges between all the sets of nodes of a given degree, for all degrees, thus completely specifying all pairwise degree correlations, and additionally, the degree sequence itself. Our algorithm always produces independent samples without backtracking. The complexity of the graph construction algorithm is {O}({NM}) where N is the number of nodes and M is the number of edges.

  3. Efficient dynamic graph construction for inductive semi-supervised learning.

    PubMed

    Dornaika, F; Dahbi, R; Bosaghzadeh, A; Ruichek, Y

    2017-10-01

    Most of graph construction techniques assume a transductive setting in which the whole data collection is available at construction time. Addressing graph construction for inductive setting, in which data are coming sequentially, has received much less attention. For inductive settings, constructing the graph from scratch can be very time consuming. This paper introduces a generic framework that is able to make any graph construction method incremental. This framework yields an efficient and dynamic graph construction method that adds new samples (labeled or unlabeled) to a previously constructed graph. As a case study, we use the recently proposed Two Phase Weighted Regularized Least Square (TPWRLS) graph construction method. The paper has two main contributions. First, we use the TPWRLS coding scheme to represent new sample(s) with respect to an existing database. The representative coefficients are then used to update the graph affinity matrix. The proposed method not only appends the new samples to the graph but also updates the whole graph structure by discovering which nodes are affected by the introduction of new samples and by updating their edge weights. The second contribution of the article is the application of the proposed framework to the problem of graph-based label propagation using multiple observations for vision-based recognition tasks. Experiments on several image databases show that, without any significant loss in the accuracy of the final classification, the proposed dynamic graph construction is more efficient than the batch graph construction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. New Methods of Spectral-Density Based Graph Construction and Their Application to Hyperspectral Image Analysis

    NASA Astrophysics Data System (ADS)

    Stevens, Jeffrey

    pixel. A simple k bias addresses this problem. Many of the adaptive edge-reweighting techniques are based on the concept of codensity, so we explore codensity properties as they relate to density-based edge reweighting. We find that codensity may not be the best estimator of local scale due to variations in cluster density, so we introduce and compare two inherently density-weighted graph construction techniques from the data mining literature: shared nearest neighbors (SNN) and mutual proximity (MP). MP and SNN are not reliant upon a codensity measure, hence are not susceptible to its shortcomings. Neither has been used for hyperspectral analyses, so this presents the first study of these techniques on HSI data. We demonstrate MP and SNN can offer better performance, but in general none of the reweighting techniques improve the quality of these spectral graphs in our neighborhood structure tests. As such, these complex adaptive edge-reweighting techniques may need to be modified to increase their effectiveness. During this investigation, we probe deeper into properties of high-dimensional data and introduce the concept of concentration of measure (CoM)--the degradation in the efficacy of many common distance measures with increasing dimensionality--as it relates to spectral graph construction. CoM exists in pairwise distances between HSI pixels, but not to the degree experienced in random data of the same extrinsic dimension; a characteristic we demonstrate is due to the rich correlation and cluster structure present in HSI data. CoM can lead to hubness--a condition wherein some nodes have short distances (high similarities) to an exceptionally large number of nodes. We study hub presence in 49 HSI datasets of varying resolutions, altitudes, and spectral bands to demonstrate hubness effects are negligible in a k-NN classification example (generalized counting scenarios), but we note its impact on methods that use edge weights to derive manifold coordinates or splitting

  5. Graphing the order of the sexes: constructing, recalling, interpreting, and putting the self in gender difference graphs.

    PubMed

    Hegarty, Peter; Lemieux, Anthony F; McQueen, Grant

    2010-03-01

    Graphs seem to connote facts more than words or tables do. Consequently, they seem unlikely places to spot implicit sexism at work. Yet, in 6 studies (N = 741), women and men constructed (Study 1) and recalled (Study 2) gender difference graphs with men's data first, and graphed powerful groups (Study 3) and individuals (Study 4) ahead of weaker ones. Participants who interpreted graph order as evidence of author "bias" inferred that the author graphed his or her own gender group first (Study 5). Women's, but not men's, preferences to graph men first were mitigated when participants graphed a difference between themselves and an opposite-sex friend prior to graphing gender differences (Study 6). Graph production and comprehension are affected by beliefs and suppositions about the groups represented in graphs to a greater degree than cognitive models of graph comprehension or realist models of scientific thinking have yet acknowledged.

  6. A Note on the Kirchhoff and Additive Degree-Kirchhoff Indices of Graphs

    NASA Astrophysics Data System (ADS)

    Yang, Yujun; Klein, Douglas J.

    2015-06-01

    Two resistance-distance-based graph invariants, namely, the Kirchhoff index and the additive degree-Kirchhoff index, are studied. A relation between them is established, with inequalities for the additive degree-Kirchhoff index arising via the Kirchhoff index along with minimum, maximum, and average degrees. Bounds for the Kirchhoff and additive degree-Kirchhoff indices are also determined, and extremal graphs are characterised. In addition, an upper bound for the additive degree-Kirchhoff index is established to improve a previously known result.

  7. Measuring Graph Comprehension, Critique, and Construction in Science

    NASA Astrophysics Data System (ADS)

    Lai, Kevin; Cabrera, Julio; Vitale, Jonathan M.; Madhok, Jacquie; Tinker, Robert; Linn, Marcia C.

    2016-08-01

    Interpreting and creating graphs plays a critical role in scientific practice. The K-12 Next Generation Science Standards call for students to use graphs for scientific modeling, reasoning, and communication. To measure progress on this dimension, we need valid and reliable measures of graph understanding in science. In this research, we designed items to measure graph comprehension, critique, and construction and developed scoring rubrics based on the knowledge integration (KI) framework. We administered the items to over 460 middle school students. We found that the items formed a coherent scale and had good reliability using both item response theory and classical test theory. The KI scoring rubric showed that most students had difficulty linking graphs features to science concepts, especially when asked to critique or construct graphs. In addition, students with limited access to computers as well as those who speak a language other than English at home have less integrated understanding than others. These findings point to the need to increase the integration of graphing into science instruction. The results suggest directions for further research leading to comprehensive assessments of graph understanding.

  8. Constructing compact and effective graphs for recommender systems via node and edge aggregations

    DOE PAGES

    Lee, Sangkeun; Kahng, Minsuk; Lee, Sang-goo

    2014-12-10

    Exploiting graphs for recommender systems has great potential to flexibly incorporate heterogeneous information for producing better recommendation results. As our baseline approach, we first introduce a naive graph-based recommendation method, which operates with a heterogeneous log-metadata graph constructed from user log and content metadata databases. Although the na ve graph-based recommendation method is simple, it allows us to take advantages of heterogeneous information and shows promising flexibility and recommendation accuracy. However, it often leads to extensive processing time due to the sheer size of the graphs constructed from entire user log and content metadata databases. In this paper, we proposemore » node and edge aggregation approaches to constructing compact and e ective graphs called Factor-Item bipartite graphs by aggregating nodes and edges of a log-metadata graph. Furthermore, experimental results using real world datasets indicate that our approach can significantly reduce the size of graphs exploited for recommender systems without sacrificing the recommendation quality.« less

  9. GraphReduce: Processing Large-Scale Graphs on Accelerator-Based Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Dipanjan; Song, Shuaiwen; Agarwal, Kapil

    2015-11-15

    Recent work on real-world graph analytics has sought to leverage the massive amount of parallelism offered by GPU devices, but challenges remain due to the inherent irregularity of graph algorithms and limitations in GPU-resident memory for storing large graphs. We present GraphReduce, a highly efficient and scalable GPU-based framework that operates on graphs that exceed the device’s internal memory capacity. GraphReduce adopts a combination of edge- and vertex-centric implementations of the Gather-Apply-Scatter programming model and operates on multiple asynchronous GPU streams to fully exploit the high degrees of parallelism in GPUs with efficient graph data movement between the host andmore » device.« less

  10. Reflecting on Graphs: Attributes of Graph Choice and Construction Practices in Biology

    PubMed Central

    Angra, Aakanksha; Gardner, Stephanie M.

    2017-01-01

    Undergraduate biology education reform aims to engage students in scientific practices such as experimental design, experimentation, and data analysis and communication. Graphs are ubiquitous in the biological sciences, and creating effective graphical representations involves quantitative and disciplinary concepts and skills. Past studies document student difficulties with graphing within the contexts of classroom or national assessments without evaluating student reasoning. Operating under the metarepresentational competence framework, we conducted think-aloud interviews to reveal differences in reasoning and graph quality between undergraduate biology students, graduate students, and professors in a pen-and-paper graphing task. All professors planned and thought about data before graph construction. When reflecting on their graphs, professors and graduate students focused on the function of graphs and experimental design, while most undergraduate students relied on intuition and data provided in the task. Most undergraduate students meticulously plotted all data with scaled axes, while professors and some graduate students transformed the data, aligned the graph with the research question, and reflected on statistics and sample size. Differences in reasoning and approaches taken in graph choice and construction corroborate and extend previous findings and provide rich targets for undergraduate and graduate instruction. PMID:28821538

  11. Scale Construction for Graphing: An Investigation of Students' Resources

    ERIC Educational Resources Information Center

    Delgado, Cesar; Lucero, Margaret M.

    2015-01-01

    Graphing is a fundamental part of the scientific process. Scales are key but little-studied components of graphs. Adopting a resources-based framework of cognitive structure, we identify the potential intuitive resources that six undergraduates of diverse majors and years at a public US research university activated when constructing scales, and…

  12. Constructing Dense Graphs with Unique Hamiltonian Cycles

    ERIC Educational Resources Information Center

    Lynch, Mark A. M.

    2012-01-01

    It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…

  13. GraphReduce: Large-Scale Graph Analytics on Accelerator-Based HPC Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Dipanjan; Agarwal, Kapil; Song, Shuaiwen

    2015-09-30

    Recent work on real-world graph analytics has sought to leverage the massive amount of parallelism offered by GPU devices, but challenges remain due to the inherent irregularity of graph algorithms and limitations in GPU-resident memory for storing large graphs. We present GraphReduce, a highly efficient and scalable GPU-based framework that operates on graphs that exceed the device’s internal memory capacity. GraphReduce adopts a combination of both edge- and vertex-centric implementations of the Gather-Apply-Scatter programming model and operates on multiple asynchronous GPU streams to fully exploit the high degrees of parallelism in GPUs with efficient graph data movement between the hostmore » and the device.« less

  14. A Ring Construction Using Finite Directed Graphs

    ERIC Educational Resources Information Center

    Bardzell, Michael

    2012-01-01

    In this paper we discuss an interesting class of noncommutative rings which can be constructed using finite directed graphs. This construction also creates a vector space. These structures provide undergraduate students connections between ring theory and graph theory and, among other things, allow them to see a ring unity element that looks quite…

  15. Combination of graph heuristics in producing initial solution of curriculum based course timetabling problem

    NASA Astrophysics Data System (ADS)

    Wahid, Juliana; Hussin, Naimah Mohd

    2016-08-01

    The construction of population of initial solution is a crucial task in population-based metaheuristic approach for solving curriculum-based university course timetabling problem because it can affect the convergence speed and also the quality of the final solution. This paper presents an exploration on combination of graph heuristics in construction approach in curriculum based course timetabling problem to produce a population of initial solutions. The graph heuristics were set as single and combination of two heuristics. In addition, several ways of assigning courses into room and timeslot are implemented. All settings of heuristics are then tested on the same curriculum based course timetabling problem instances and are compared with each other in terms of number of population produced. The result shows that combination of saturation degree followed by largest degree heuristic produce the highest number of population of initial solutions. The results from this study can be used in the improvement phase of algorithm that uses population of initial solutions.

  16. A Weight-Adaptive Laplacian Embedding for Graph-Based Clustering.

    PubMed

    Cheng, De; Nie, Feiping; Sun, Jiande; Gong, Yihong

    2017-07-01

    Graph-based clustering methods perform clustering on a fixed input data graph. Thus such clustering results are sensitive to the particular graph construction. If this initial construction is of low quality, the resulting clustering may also be of low quality. We address this drawback by allowing the data graph itself to be adaptively adjusted in the clustering procedure. In particular, our proposed weight adaptive Laplacian (WAL) method learns a new data similarity matrix that can adaptively adjust the initial graph according to the similarity weight in the input data graph. We develop three versions of these methods based on the L2-norm, fuzzy entropy regularizer, and another exponential-based weight strategy, that yield three new graph-based clustering objectives. We derive optimization algorithms to solve these objectives. Experimental results on synthetic data sets and real-world benchmark data sets exhibit the effectiveness of these new graph-based clustering methods.

  17. On construction method of shipborne and airborne radar intelligence and related equipment knowledge graph

    NASA Astrophysics Data System (ADS)

    Hao, Ruizhe; Huang, Jian

    2017-08-01

    Knowledge graph construction in military intelligence domain is sprouting but technically immature. This paper presents a method to construct the heterogeneous knowledge graph in the field of shipborne and airborne radar and equipment. Based on the expert knowledge and the up-to-date Internet open source information, we construct the knowledge graph of radar characteristic information and the equipment respectively, and establish relationships between two graphs, providing the pipeline and method for the intelligence organization and management in the context of the crowding battlefields big data.

  18. Analyzing locomotion synthesis with feature-based motion graphs.

    PubMed

    Mahmudi, Mentar; Kallmann, Marcelo

    2013-05-01

    We propose feature-based motion graphs for realistic locomotion synthesis among obstacles. Among several advantages, feature-based motion graphs achieve improved results in search queries, eliminate the need of postprocessing for foot skating removal, and reduce the computational requirements in comparison to traditional motion graphs. Our contributions are threefold. First, we show that choosing transitions based on relevant features significantly reduces graph construction time and leads to improved search performances. Second, we employ a fast channel search method that confines the motion graph search to a free channel with guaranteed clearance among obstacles, achieving faster and improved results that avoid expensive collision checking. Lastly, we present a motion deformation model based on Inverse Kinematics applied over the transitions of a solution branch. Each transition is assigned a continuous deformation range that does not exceed the original transition cost threshold specified by the user for the graph construction. The obtained deformation improves the reachability of the feature-based motion graph and in turn also reduces the time spent during search. The results obtained by the proposed methods are evaluated and quantified, and they demonstrate significant improvements in comparison to traditional motion graph techniques.

  19. Reflecting on Graphs: Attributes of Graph Choice and Construction Practices in Biology.

    PubMed

    Angra, Aakanksha; Gardner, Stephanie M

    2017-01-01

    Undergraduate biology education reform aims to engage students in scientific practices such as experimental design, experimentation, and data analysis and communication. Graphs are ubiquitous in the biological sciences, and creating effective graphical representations involves quantitative and disciplinary concepts and skills. Past studies document student difficulties with graphing within the contexts of classroom or national assessments without evaluating student reasoning. Operating under the metarepresentational competence framework, we conducted think-aloud interviews to reveal differences in reasoning and graph quality between undergraduate biology students, graduate students, and professors in a pen-and-paper graphing task. All professors planned and thought about data before graph construction. When reflecting on their graphs, professors and graduate students focused on the function of graphs and experimental design, while most undergraduate students relied on intuition and data provided in the task. Most undergraduate students meticulously plotted all data with scaled axes, while professors and some graduate students transformed the data, aligned the graph with the research question, and reflected on statistics and sample size. Differences in reasoning and approaches taken in graph choice and construction corroborate and extend previous findings and provide rich targets for undergraduate and graduate instruction. © 2017 A. Angra and S. M. Gardner. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. A wavelet-based estimator of the degrees of freedom in denoised fMRI time series for probabilistic testing of functional connectivity and brain graphs.

    PubMed

    Patel, Ameera X; Bullmore, Edward T

    2016-11-15

    Connectome mapping using techniques such as functional magnetic resonance imaging (fMRI) has become a focus of systems neuroscience. There remain many statistical challenges in analysis of functional connectivity and network architecture from BOLD fMRI multivariate time series. One key statistic for any time series is its (effective) degrees of freedom, df, which will generally be less than the number of time points (or nominal degrees of freedom, N). If we know the df, then probabilistic inference on other fMRI statistics, such as the correlation between two voxel or regional time series, is feasible. However, we currently lack good estimators of df in fMRI time series, especially after the degrees of freedom of the "raw" data have been modified substantially by denoising algorithms for head movement. Here, we used a wavelet-based method both to denoise fMRI data and to estimate the (effective) df of the denoised process. We show that seed voxel correlations corrected for locally variable df could be tested for false positive connectivity with better control over Type I error and greater specificity of anatomical mapping than probabilistic connectivity maps using the nominal degrees of freedom. We also show that wavelet despiked statistics can be used to estimate all pairwise correlations between a set of regional nodes, assign a P value to each edge, and then iteratively add edges to the graph in order of increasing P. These probabilistically thresholded graphs are likely more robust to regional variation in head movement effects than comparable graphs constructed by thresholding correlations. Finally, we show that time-windowed estimates of df can be used for probabilistic connectivity testing or dynamic network analysis so that apparent changes in the functional connectome are appropriately corrected for the effects of transient noise bursts. Wavelet despiking is both an algorithm for fMRI time series denoising and an estimator of the (effective) df of denoised

  1. Forecasting Construction Cost Index based on visibility graph: A network approach

    NASA Astrophysics Data System (ADS)

    Zhang, Rong; Ashuri, Baabak; Shyr, Yu; Deng, Yong

    2018-03-01

    Engineering News-Record (ENR), a professional magazine in the field of global construction engineering, publishes Construction Cost Index (CCI) every month. Cost estimators and contractors assess projects, arrange budgets and prepare bids by forecasting CCI. However, fluctuations and uncertainties of CCI cause irrational estimations now and then. This paper aims at achieving more accurate predictions of CCI based on a network approach in which time series is firstly converted into a visibility graph and future values are forecasted relied on link prediction. According to the experimental results, the proposed method shows satisfactory performance since the error measures are acceptable. Compared with other methods, the proposed method is easier to implement and is able to forecast CCI with less errors. It is convinced that the proposed method is efficient to provide considerably accurate CCI predictions, which will make contributions to the construction engineering by assisting individuals and organizations in reducing costs and making project schedules.

  2. Quantum speedup of the traveling-salesman problem for bounded-degree graphs

    NASA Astrophysics Data System (ADS)

    Moylett, Dominic J.; Linden, Noah; Montanaro, Ashley

    2017-03-01

    The traveling-salesman problem is one of the most famous problems in graph theory. However, little is currently known about the extent to which quantum computers could speed up algorithms for the problem. In this paper, we prove a quadratic quantum speedup when the degree of each vertex is at most 3 by applying a quantum backtracking algorithm to a classical algorithm by Xiao and Nagamochi. We then use similar techniques to accelerate a classical algorithm for when the degree of each vertex is at most 4, before speeding up higher-degree graphs via reductions to these instances.

  3. NOUS: Construction and Querying of Dynamic Knowledge Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Sutanay; Agarwal, Khushbu; Purohit, Sumit

    The ability to construct domain specific knowledge graphs (KG) and perform question-answering or hypothesis generation is a trans- formative capability. Despite their value, automated construction of knowledge graphs remains an expensive technical challenge that is beyond the reach for most enterprises and academic institutions. We propose an end-to-end framework for developing custom knowl- edge graph driven analytics for arbitrary application domains. The uniqueness of our system lies A) in its combination of curated KGs along with knowledge extracted from unstructured text, B) support for advanced trending and explanatory questions on a dynamic KG, and C) the ability to answer queriesmore » where the answer is embedded across multiple data sources.« less

  4. Assessing the impact of background spectral graph construction techniques on the topological anomaly detection algorithm

    NASA Astrophysics Data System (ADS)

    Ziemann, Amanda K.; Messinger, David W.; Albano, James A.; Basener, William F.

    2012-06-01

    Anomaly detection algorithms have historically been applied to hyperspectral imagery in order to identify pixels whose material content is incongruous with the background material in the scene. Typically, the application involves extracting man-made objects from natural and agricultural surroundings. A large challenge in designing these algorithms is determining which pixels initially constitute the background material within an image. The topological anomaly detection (TAD) algorithm constructs a graph theory-based, fully non-parametric topological model of the background in the image scene, and uses codensity to measure deviation from this background. In TAD, the initial graph theory structure of the image data is created by connecting an edge between any two pixel vertices x and y if the Euclidean distance between them is less than some resolution r. While this type of proximity graph is among the most well-known approaches to building a geometric graph based on a given set of data, there is a wide variety of dierent geometrically-based techniques. In this paper, we present a comparative test of the performance of TAD across four dierent constructs of the initial graph: mutual k-nearest neighbor graph, sigma-local graph for two different values of σ > 1, and the proximity graph originally implemented in TAD.

  5. Fixation probability on clique-based graphs

    NASA Astrophysics Data System (ADS)

    Choi, Jeong-Ok; Yu, Unjong

    2018-02-01

    The fixation probability of a mutant in the evolutionary dynamics of Moran process is calculated by the Monte-Carlo method on a few families of clique-based graphs. It is shown that the complete suppression of fixation can be realized with the generalized clique-wheel graph in the limit of small wheel-clique ratio and infinite size. The family of clique-star is an amplifier, and clique-arms graph changes from amplifier to suppressor as the fitness of the mutant increases. We demonstrate that the overall structure of a graph can be more important to determine the fixation probability than the degree or the heat heterogeneity. The dependence of the fixation probability on the position of the first mutant is discussed.

  6. Graph-state formalism for mutually unbiased bases

    NASA Astrophysics Data System (ADS)

    Spengler, Christoph; Kraus, Barbara

    2013-11-01

    A pair of orthonormal bases is called mutually unbiased if all mutual overlaps between any element of one basis and an arbitrary element of the other basis coincide. In case the dimension, d, of the considered Hilbert space is a power of a prime number, complete sets of d+1 mutually unbiased bases (MUBs) exist. Here we present a method based on the graph-state formalism to construct such sets of MUBs. We show that for n p-level systems, with p being prime, one particular graph suffices to easily construct a set of pn+1 MUBs. In fact, we show that a single n-dimensional vector, which is associated with this graph, can be used to generate a complete set of MUBs and demonstrate that this vector can be easily determined. Finally, we discuss some advantages of our formalism regarding the analysis of entanglement structures in MUBs, as well as experimental realizations.

  7. Graph-based normalization and whitening for non-linear data analysis.

    PubMed

    Aaron, Catherine

    2006-01-01

    In this paper we construct a graph-based normalization algorithm for non-linear data analysis. The principle of this algorithm is to get a spherical average neighborhood with unit radius. First we present a class of global dispersion measures used for "global normalization"; we then adapt these measures using a weighted graph to build a local normalization called "graph-based" normalization. Then we give details of the graph-based normalization algorithm and illustrate some results. In the second part we present a graph-based whitening algorithm built by analogy between the "global" and the "local" problem.

  8. A graph-based approach to inequality assessment

    NASA Astrophysics Data System (ADS)

    Palestini, Arsen; Pignataro, Giuseppe

    2016-08-01

    In a population consisting of heterogeneous types, whose income factors are indicated by nonnegative vectors, policies aggregating different factors can be represented by coalitions in a cooperative game, whose characteristic function is a multi-factor inequality index. When it is not possible to form all coalitions, the feasible ones can be indicated by a graph. We redefine Shapley and Banzhaf values on graph games to deduce some properties involving the degrees of the graph vertices and marginal contributions to overall inequality. An example is finally provided based on a modified multi-factor Atkinson index.

  9. Adjusting protein graphs based on graph entropy.

    PubMed

    Peng, Sheng-Lung; Tsay, Yu-Wei

    2014-01-01

    Measuring protein structural similarity attempts to establish a relationship of equivalence between polymer structures based on their conformations. In several recent studies, researchers have explored protein-graph remodeling, instead of looking a minimum superimposition for pairwise proteins. When graphs are used to represent structured objects, the problem of measuring object similarity become one of computing the similarity between graphs. Graph theory provides an alternative perspective as well as efficiency. Once a protein graph has been created, its structural stability must be verified. Therefore, a criterion is needed to determine if a protein graph can be used for structural comparison. In this paper, we propose a measurement for protein graph remodeling based on graph entropy. We extend the concept of graph entropy to determine whether a graph is suitable for representing a protein. The experimental results suggest that when applied, graph entropy helps a conformational on protein graph modeling. Furthermore, it indirectly contributes to protein structural comparison if a protein graph is solid.

  10. Adjusting protein graphs based on graph entropy

    PubMed Central

    2014-01-01

    Measuring protein structural similarity attempts to establish a relationship of equivalence between polymer structures based on their conformations. In several recent studies, researchers have explored protein-graph remodeling, instead of looking a minimum superimposition for pairwise proteins. When graphs are used to represent structured objects, the problem of measuring object similarity become one of computing the similarity between graphs. Graph theory provides an alternative perspective as well as efficiency. Once a protein graph has been created, its structural stability must be verified. Therefore, a criterion is needed to determine if a protein graph can be used for structural comparison. In this paper, we propose a measurement for protein graph remodeling based on graph entropy. We extend the concept of graph entropy to determine whether a graph is suitable for representing a protein. The experimental results suggest that when applied, graph entropy helps a conformational on protein graph modeling. Furthermore, it indirectly contributes to protein structural comparison if a protein graph is solid. PMID:25474347

  11. The Interplay of Graph and Text in the Acquisition of Historical Constructs

    ERIC Educational Resources Information Center

    Shand, Kristen

    2009-01-01

    Graphs are often conjoined with text passages in history textbooks to help students comprehend complex constructs. Four linkages connect text and graphs: appropriate elements, fitting patterns, suitable labels and causal markers. Graphs in current textbooks contain few such linkages and seldom mirror the construct under study. An experiment…

  12. Couple Graph Based Label Propagation Method for Hyperspectral Remote Sensing Data Classification

    NASA Astrophysics Data System (ADS)

    Wang, X. P.; Hu, Y.; Chen, J.

    2018-04-01

    Graph based semi-supervised classification method are widely used for hyperspectral image classification. We present a couple graph based label propagation method, which contains both the adjacency graph and the similar graph. We propose to construct the similar graph by using the similar probability, which utilize the label similarity among examples probably. The adjacency graph was utilized by a common manifold learning method, which has effective improve the classification accuracy of hyperspectral data. The experiments indicate that the couple graph Laplacian which unite both the adjacency graph and the similar graph, produce superior classification results than other manifold Learning based graph Laplacian and Sparse representation based graph Laplacian in label propagation framework.

  13. Generalized graph states based on Hadamard matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Shawn X.; Yu, Nengkun; Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario N1G 2W1

    2015-07-15

    Graph states are widely used in quantum information theory, including entanglement theory, quantum error correction, and one-way quantum computing. Graph states have a nice structure related to a certain graph, which is given by either a stabilizer group or an encoding circuit, both can be directly given by the graph. To generalize graph states, whose stabilizer groups are abelian subgroups of the Pauli group, one approach taken is to study non-abelian stabilizers. In this work, we propose to generalize graph states based on the encoding circuit, which is completely determined by the graph and a Hadamard matrix. We study themore » entanglement structures of these generalized graph states and show that they are all maximally mixed locally. We also explore the relationship between the equivalence of Hadamard matrices and local equivalence of the corresponding generalized graph states. This leads to a natural generalization of the Pauli (X, Z) pairs, which characterizes the local symmetries of these generalized graph states. Our approach is also naturally generalized to construct graph quantum codes which are beyond stabilizer codes.« less

  14. On the degree distribution of horizontal visibility graphs associated with Markov processes and dynamical systems: diagrammatic and variational approaches

    NASA Astrophysics Data System (ADS)

    Lacasa, Lucas

    2014-09-01

    Dynamical processes can be transformed into graphs through a family of mappings called visibility algorithms, enabling the possibility of (i) making empirical time series analysis and signal processing and (ii) characterizing classes of dynamical systems and stochastic processes using the tools of graph theory. Recent works show that the degree distribution of these graphs encapsulates much information on the signals' variability, and therefore constitutes a fundamental feature for statistical learning purposes. However, exact solutions for the degree distributions are only known in a few cases, such as for uncorrelated random processes. Here we analytically explore these distributions in a list of situations. We present a diagrammatic formalism which computes for all degrees their corresponding probability as a series expansion in a coupling constant which is the number of hidden variables. We offer a constructive solution for general Markovian stochastic processes and deterministic maps. As case tests we focus on Ornstein-Uhlenbeck processes, fully chaotic and quasiperiodic maps. Whereas only for certain degree probabilities can all diagrams be summed exactly, in the general case we show that the perturbation theory converges. In a second part, we make use of a variational technique to predict the complete degree distribution for special classes of Markovian dynamics with fast-decaying correlations. In every case we compare the theory with numerical experiments.

  15. An internet graph model based on trade-off optimization

    NASA Astrophysics Data System (ADS)

    Alvarez-Hamelin, J. I.; Schabanel, N.

    2004-03-01

    This paper presents a new model for the Internet graph (AS graph) based on the concept of heuristic trade-off optimization, introduced by Fabrikant, Koutsoupias and Papadimitriou in[CITE] to grow a random tree with a heavily tailed degree distribution. We propose here a generalization of this approach to generate a general graph, as a candidate for modeling the Internet. We present the results of our simulations and an analysis of the standard parameters measured in our model, compared with measurements from the physical Internet graph.

  16. Constructing a Graph Database for Semantic Literature-Based Discovery.

    PubMed

    Hristovski, Dimitar; Kastrin, Andrej; Dinevski, Dejan; Rindflesch, Thomas C

    2015-01-01

    Literature-based discovery (LBD) generates discoveries, or hypotheses, by combining what is already known in the literature. Potential discoveries have the form of relations between biomedical concepts; for example, a drug may be determined to treat a disease other than the one for which it was intended. LBD views the knowledge in a domain as a network; a set of concepts along with the relations between them. As a starting point, we used SemMedDB, a database of semantic relations between biomedical concepts extracted with SemRep from Medline. SemMedDB is distributed as a MySQL relational database, which has some problems when dealing with network data. We transformed and uploaded SemMedDB into the Neo4j graph database, and implemented the basic LBD discovery algorithms with the Cypher query language. We conclude that storing the data needed for semantic LBD is more natural in a graph database. Also, implementing LBD discovery algorithms is conceptually simpler with a graph query language when compared with standard SQL.

  17. Visibility graph analysis on quarterly macroeconomic series of China based on complex network theory

    NASA Astrophysics Data System (ADS)

    Wang, Na; Li, Dong; Wang, Qiwen

    2012-12-01

    The visibility graph approach and complex network theory provide a new insight into time series analysis. The inheritance of the visibility graph from the original time series was further explored in the paper. We found that degree distributions of visibility graphs extracted from Pseudo Brownian Motion series obtained by the Frequency Domain algorithm exhibit exponential behaviors, in which the exponential exponent is a binomial function of the Hurst index inherited in the time series. Our simulations presented that the quantitative relations between the Hurst indexes and the exponents of degree distribution function are different for different series and the visibility graph inherits some important features of the original time series. Further, we convert some quarterly macroeconomic series including the growth rates of value-added of three industry series and the growth rates of Gross Domestic Product series of China to graphs by the visibility algorithm and explore the topological properties of graphs associated from the four macroeconomic series, namely, the degree distribution and correlations, the clustering coefficient, the average path length, and community structure. Based on complex network analysis we find degree distributions of associated networks from the growth rates of value-added of three industry series are almost exponential and the degree distributions of associated networks from the growth rates of GDP series are scale free. We also discussed the assortativity and disassortativity of the four associated networks as they are related to the evolutionary process of the original macroeconomic series. All the constructed networks have “small-world” features. The community structures of associated networks suggest dynamic changes of the original macroeconomic series. We also detected the relationship among government policy changes, community structures of associated networks and macroeconomic dynamics. We find great influences of government

  18. Undergraduate Student Construction and Interpretation of Graphs in Physics Lab Activities

    ERIC Educational Resources Information Center

    Nixon, Ryan S.; Godfrey, T. J.; Mayhew, Nicholas T.; Wiegert, Craig C.

    2016-01-01

    Lab activities are an important element of an undergraduate physics course. In these lab activities, students construct and interpret graphs in order to connect the procedures of the lab with an understanding of the related physics concepts. This study investigated undergraduate students' construction and interpretation of graphs with best-fit…

  19. Are randomly grown graphs really random?

    PubMed

    Callaway, D S; Hopcroft, J E; Kleinberg, J M; Newman, M E; Strogatz, S H

    2001-10-01

    We analyze a minimal model of a growing network. At each time step, a new vertex is added; then, with probability delta, two vertices are chosen uniformly at random and joined by an undirected edge. This process is repeated for t time steps. In the limit of large t, the resulting graph displays surprisingly rich characteristics. In particular, a giant component emerges in an infinite-order phase transition at delta=1/8. At the transition, the average component size jumps discontinuously but remains finite. In contrast, a static random graph with the same degree distribution exhibits a second-order phase transition at delta=1/4, and the average component size diverges there. These dramatic differences between grown and static random graphs stem from a positive correlation between the degrees of connected vertices in the grown graph-older vertices tend to have higher degree, and to link with other high-degree vertices, merely by virtue of their age. We conclude that grown graphs, however randomly they are constructed, are fundamentally different from their static random graph counterparts.

  20. Retrospective 4D MR image construction from free-breathing slice Acquisitions: A novel graph-based approach.

    PubMed

    Tong, Yubing; Udupa, Jayaram K; Ciesielski, Krzysztof C; Wu, Caiyun; McDonough, Joseph M; Mong, David A; Campbell, Robert M

    2017-01-01

    Dynamic or 4D imaging of the thorax has many applications. Both prospective and retrospective respiratory gating and tracking techniques have been developed for 4D imaging via CT and MRI. For pediatric imaging, due to radiation concerns, MRI becomes the de facto modality of choice. In thoracic insufficiency syndrome (TIS), patients often suffer from extreme malformations of the chest wall, diaphragm, and/or spine with inability of the thorax to support normal respiration or lung growth (Campbell et al., 2003, Campbell and Smith, 2007), as such patient cooperation needed by some of the gating and tracking techniques are difficult to realize without causing patient discomfort and interference with the breathing mechanism itself. Therefore (ventilator-supported) free-breathing MRI acquisition is currently the best choice for imaging these patients. This, however, raises a question of how to create a consistent 4D image from such acquisitions. This paper presents a novel graph-based technique for compiling the best 4D image volume representing the thorax over one respiratory cycle from slice images acquired during unencumbered natural tidal-breathing of pediatric TIS patients. In our approach, for each coronal (or sagittal) slice position, images are acquired at a rate of about 200-300ms/slice over several natural breathing cycles which yields over 2000 slices. A weighted graph is formed where each acquired slice constitutes a node and the weight of the arc between two nodes defines the degree of contiguity in space and time of the two slices. For each respiratory phase, an optimal 3D spatial image is constructed by finding the best path in the graph in the spatial direction. The set of all such 3D images for a given respiratory cycle constitutes a 4D image. Subsequently, the best 4D image among all such constructed images is found over all imaged respiratory cycles. Two types of evaluation studies are carried out to understand the behavior of this algorithm and in

  1. Constructing the L2-Graph for Robust Subspace Learning and Subspace Clustering.

    PubMed

    Peng, Xi; Yu, Zhiding; Yi, Zhang; Tang, Huajin

    2017-04-01

    Under the framework of graph-based learning, the key to robust subspace clustering and subspace learning is to obtain a good similarity graph that eliminates the effects of errors and retains only connections between the data points from the same subspace (i.e., intrasubspace data points). Recent works achieve good performance by modeling errors into their objective functions to remove the errors from the inputs. However, these approaches face the limitations that the structure of errors should be known prior and a complex convex problem must be solved. In this paper, we present a novel method to eliminate the effects of the errors from the projection space (representation) rather than from the input space. We first prove that l 1 -, l 2 -, l ∞ -, and nuclear-norm-based linear projection spaces share the property of intrasubspace projection dominance, i.e., the coefficients over intrasubspace data points are larger than those over intersubspace data points. Based on this property, we introduce a method to construct a sparse similarity graph, called L2-graph. The subspace clustering and subspace learning algorithms are developed upon L2-graph. We conduct comprehensive experiment on subspace learning, image clustering, and motion segmentation and consider several quantitative benchmarks classification/clustering accuracy, normalized mutual information, and running time. Results show that L2-graph outperforms many state-of-the-art methods in our experiments, including L1-graph, low rank representation (LRR), and latent LRR, least square regression, sparse subspace clustering, and locally linear representation.

  2. Expanding our understanding of students' use of graphs for learning physics

    NASA Astrophysics Data System (ADS)

    Laverty, James T.

    It is generally agreed that the ability to visualize functional dependencies or physical relationships as graphs is an important step in modeling and learning. However, several studies in Physics Education Research (PER) have shown that many students in fact do not master this form of representation and even have misconceptions about the meaning of graphs that impede learning physics concepts. Working with graphs in classroom settings has been shown to improve student abilities with graphs, particularly when the students can interact with them. We introduce a novel problem type in an online homework system, which requires students to construct the graphs themselves in free form, and requires no hand-grading by instructors. A study of pre/post-test data using the Test of Understanding Graphs in Kinematics (TUG-K) over several semesters indicates that students learn significantly more from these graph construction problems than from the usual graph interpretation problems, and that graph interpretation alone may not have any significant effect. The interpretation of graphs, as well as the representation translation between textual, mathematical, and graphical representations of physics scenarios, are frequently listed among the higher order thinking skills we wish to convey in an undergraduate course. But to what degree do we succeed? Do students indeed employ higher order thinking skills when working through graphing exercises? We investigate students working through a variety of graph problems, and, using a think-aloud protocol, aim to reconstruct the cognitive processes that the students go through. We find that to a certain degree, these problems become commoditized and do not trigger the desired higher order thinking processes; simply translating ``textbook-like'' problems into the graphical realm will not achieve any additional educational goals. Whether the students have to interpret or construct a graph makes very little difference in the methods used by the

  3. New methods for analyzing semantic graph based assessments in science education

    NASA Astrophysics Data System (ADS)

    Vikaros, Lance Steven

    This research investigated how the scoring of semantic graphs (known by many as concept maps) could be improved and automated in order to address issues of inter-rater reliability and scalability. As part of the NSF funded SENSE-IT project to introduce secondary school science students to sensor networks (NSF Grant No. 0833440), semantic graphs illustrating how temperature change affects water ecology were collected from 221 students across 16 schools. The graphing task did not constrain students' use of terms, as is often done with semantic graph based assessment due to coding and scoring concerns. The graphing software used provided real-time feedback to help students learn how to construct graphs, stay on topic and effectively communicate ideas. The collected graphs were scored by human raters using assessment methods expected to boost reliability, which included adaptations of traditional holistic and propositional scoring methods, use of expert raters, topical rubrics, and criterion graphs. High levels of inter-rater reliability were achieved, demonstrating that vocabulary constraints may not be necessary after all. To investigate a new approach to automating the scoring of graphs, thirty-two different graph features characterizing graphs' structure, semantics, configuration and process of construction were then used to predict human raters' scoring of graphs in order to identify feature patterns correlated to raters' evaluations of graphs' topical accuracy and complexity. Results led to the development of a regression model able to predict raters' scoring with 77% accuracy, with 46% accuracy expected when used to score new sets of graphs, as estimated via cross-validation tests. Although such performance is comparable to other graph and essay based scoring systems, cross-context testing of the model and methods used to develop it would be needed before it could be recommended for widespread use. Still, the findings suggest techniques for improving the

  4. Graph-based layout analysis for PDF documents

    NASA Astrophysics Data System (ADS)

    Xu, Canhui; Tang, Zhi; Tao, Xin; Li, Yun; Shi, Cao

    2013-03-01

    To increase the flexibility and enrich the reading experience of e-book on small portable screens, a graph based method is proposed to perform layout analysis on Portable Document Format (PDF) documents. Digital born document has its inherent advantages like representing texts and fractional images in explicit form, which can be straightforwardly exploited. To integrate traditional image-based document analysis and the inherent meta-data provided by PDF parser, the page primitives including text, image and path elements are processed to produce text and non text layer for respective analysis. Graph-based method is developed in superpixel representation level, and page text elements corresponding to vertices are used to construct an undirected graph. Euclidean distance between adjacent vertices is applied in a top-down manner to cut the graph tree formed by Kruskal's algorithm. And edge orientation is then used in a bottom-up manner to extract text lines from each sub tree. On the other hand, non-textual objects are segmented by connected component analysis. For each segmented text and non-text composite, a 13-dimensional feature vector is extracted for labelling purpose. The experimental results on selected pages from PDF books are presented.

  5. Graph theoretic analysis of structural connectivity across the spectrum of Alzheimer's disease: The importance of graph creation methods

    PubMed Central

    Phillips, David J.; McGlaughlin, Alec; Ruth, David; Jager, Leah R.; Soldan, Anja

    2015-01-01

    Graph theory is increasingly being used to study brain connectivity across the spectrum of Alzheimer's disease (AD), but prior findings have been inconsistent, likely reflecting methodological differences. We systematically investigated how methods of graph creation (i.e., type of correlation matrix and edge weighting) affect structural network properties and group differences. We estimated the structural connectivity of brain networks based on correlation maps of cortical thickness obtained from MRI. Four groups were compared: 126 cognitively normal older adults, 103 individuals with Mild Cognitive Impairment (MCI) who retained MCI status for at least 3 years (stable MCI), 108 individuals with MCI who progressed to AD-dementia within 3 years (progressive MCI), and 105 individuals with AD-dementia. Small-world measures of connectivity (characteristic path length and clustering coefficient) differed across groups, consistent with prior studies. Groups were best discriminated by the Randić index, which measures the degree to which highly connected nodes connect to other highly connected nodes. The Randić index differentiated the stable and progressive MCI groups, suggesting that it might be useful for tracking and predicting the progression of AD. Notably, however, the magnitude and direction of group differences in all three measures were dependent on the method of graph creation, indicating that it is crucial to take into account how graphs are constructed when interpreting differences across diagnostic groups and studies. The algebraic connectivity measures showed few group differences, independent of the method of graph construction, suggesting that global connectivity as it relates to node degree is not altered in early AD. PMID:25984446

  6. A new measure based on degree distribution that links information theory and network graph analysis

    PubMed Central

    2012-01-01

    Background Detailed connection maps of human and nonhuman brains are being generated with new technologies, and graph metrics have been instrumental in understanding the general organizational features of these structures. Neural networks appear to have small world properties: they have clustered regions, while maintaining integrative features such as short average pathlengths. Results We captured the structural characteristics of clustered networks with short average pathlengths through our own variable, System Difference (SD), which is computationally simple and calculable for larger graph systems. SD is a Jaccardian measure generated by averaging all of the differences in the connection patterns between any two nodes of a system. We calculated SD over large random samples of matrices and found that high SD matrices have a low average pathlength and a larger number of clustered structures. SD is a measure of degree distribution with high SD matrices maximizing entropic properties. Phi (Φ), an information theory metric that assesses a system’s capacity to integrate information, correlated well with SD - with SD explaining over 90% of the variance in systems above 11 nodes (tested for 4 to 13 nodes). However, newer versions of Φ do not correlate well with the SD metric. Conclusions The new network measure, SD, provides a link between high entropic structures and degree distributions as related to small world properties. PMID:22726594

  7. Renal cortex segmentation using optimal surface search with novel graph construction.

    PubMed

    Li, Xiuli; Chen, Xinjian; Yao, Jianhua; Zhang, Xing; Tian, Jie

    2011-01-01

    In this paper, we propose a novel approach to solve the renal cortex segmentation problem, which has rarely been studied. In this study, the renal cortex segmentation problem is handled as a multiple-surfaces extraction problem, which is solved using the optimal surface search method. We propose a novel graph construction scheme in the optimal surface search to better accommodate multiple surfaces. Different surface sub-graphs are constructed according to their properties, and inter-surface relationships are also modeled in the graph. The proposed method was tested on 17 clinical CT datasets. The true positive volume fraction (TPVF) and false positive volume fraction (FPVF) are 74.10% and 0.08%, respectively. The experimental results demonstrate the effectiveness of the proposed method.

  8. A Graph Summarization Algorithm Based on RFID Logistics

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Hu, Kongfa; Lu, Zhipeng; Zhao, Li; Chen, Ling

    Radio Frequency Identification (RFID) applications are set to play an essential role in object tracking and supply chain management systems. The volume of data generated by a typical RFID application will be enormous as each item will generate a complete history of all the individual locations that it occupied at every point in time. The movement trails of such RFID data form gigantic commodity flowgraph representing the locations and durations of the path stages traversed by each item. In this paper, we use graph to construct a warehouse of RFID commodity flows, and introduce a database-style operation to summarize graphs, which produces a summary graph by grouping nodes based on user-selected node attributes, further allows users to control the hierarchy of summaries. It can cut down the size of graphs, and provide convenience for users to study just on the shrunk graph which they interested. Through extensive experiments, we demonstrate the effectiveness and efficiency of the proposed method.

  9. Taking Advantage of Automated Assessment of Student-Constructed Graphs in Science

    ERIC Educational Resources Information Center

    Vitale, Jonathan M.; Lai, Kevin; Linn, Marcia C.

    2015-01-01

    We present a new system for automated scoring of graph construction items that address complex science concepts, feature qualitative prompts, and support a range of possible solutions. This system utilizes analysis of spatial features (e.g., slope of a line) to evaluate potential student ideas represented within graphs. Student ideas are then…

  10. Quantification of Graph Complexity Based on the Edge Weight Distribution Balance: Application to Brain Networks.

    PubMed

    Gomez-Pilar, Javier; Poza, Jesús; Bachiller, Alejandro; Gómez, Carlos; Núñez, Pablo; Lubeiro, Alba; Molina, Vicente; Hornero, Roberto

    2018-02-01

    The aim of this study was to introduce a novel global measure of graph complexity: Shannon graph complexity (SGC). This measure was specifically developed for weighted graphs, but it can also be applied to binary graphs. The proposed complexity measure was designed to capture the interplay between two properties of a system: the 'information' (calculated by means of Shannon entropy) and the 'order' of the system (estimated by means of a disequilibrium measure). SGC is based on the concept that complex graphs should maintain an equilibrium between the aforementioned two properties, which can be measured by means of the edge weight distribution. In this study, SGC was assessed using four synthetic graph datasets and a real dataset, formed by electroencephalographic (EEG) recordings from controls and schizophrenia patients. SGC was compared with graph density (GD), a classical measure used to evaluate graph complexity. Our results showed that SGC is invariant with respect to GD and independent of node degree distribution. Furthermore, its variation with graph size [Formula: see text] is close to zero for [Formula: see text]. Results from the real dataset showed an increment in the weight distribution balance during the cognitive processing for both controls and schizophrenia patients, although these changes are more relevant for controls. Our findings revealed that SGC does not need a comparison with null-hypothesis networks constructed by a surrogate process. In addition, SGC results on the real dataset suggest that schizophrenia is associated with a deficit in the brain dynamic reorganization related to secondary pathways of the brain network.

  11. Dim target detection method based on salient graph fusion

    NASA Astrophysics Data System (ADS)

    Hu, Ruo-lan; Shen, Yi-yan; Jiang, Jun

    2018-02-01

    Dim target detection is one key problem in digital image processing field. With development of multi-spectrum imaging sensor, it becomes a trend to improve the performance of dim target detection by fusing the information from different spectral images. In this paper, one dim target detection method based on salient graph fusion was proposed. In the method, Gabor filter with multi-direction and contrast filter with multi-scale were combined to construct salient graph from digital image. And then, the maximum salience fusion strategy was designed to fuse the salient graph from different spectral images. Top-hat filter was used to detect dim target from the fusion salient graph. Experimental results show that proposal method improved the probability of target detection and reduced the probability of false alarm on clutter background images.

  12. Efficient parallel and out of core algorithms for constructing large bi-directed de Bruijn graphs.

    PubMed

    Kundeti, Vamsi K; Rajasekaran, Sanguthevar; Dinh, Hieu; Vaughn, Matthew; Thapar, Vishal

    2010-11-15

    any sequence assembly program based on Eulerian approach. Our algorithms for constructing Bi-directed de Bruijn graphs are efficient in parallel and out of core settings. These algorithms can be used in building large scale bi-directed de Bruijn graphs. Furthermore, our algorithms do not employ any all-to-all communications in a parallel setting and perform better than the prior algorithms. Finally our out-of-core algorithm is extremely memory efficient and can replace the existing graph construction algorithm in VELVET.

  13. Using Zipf-Mandelbrot law and graph theory to evaluate animal welfare

    NASA Astrophysics Data System (ADS)

    de Oliveira, Caprice G. L.; Miranda, José G. V.; Japyassú, Hilton F.; El-Hani, Charbel N.

    2018-02-01

    This work deals with the construction and testing of metrics of welfare based on behavioral complexity, using assumptions derived from Zipf-Mandelbrot law and graph theory. To test these metrics we compared yellow-breasted capuchins (Sapajus xanthosternos) (Wied-Neuwied, 1826) (PRIMATES CEBIDAE) found in two institutions, subjected to different captive conditions: a Zoobotanical Garden (hereafter, ZOO; n = 14), in good welfare condition, and a Wildlife Rescue Center (hereafter, WRC; n = 8), in poor welfare condition. In the Zipf-Mandelbrot-based analysis, the power law exponent was calculated using behavior frequency values versus behavior rank value. These values allow us to evaluate variations in individual behavioral complexity. For each individual we also constructed a graph using the sequence of behavioral units displayed in each recording (average recording time per individual: 4 h 26 min in the ZOO, 4 h 30 min in the WRC). Then, we calculated the values of the main graph attributes, which allowed us to analyze the complexity of the connectivity of the behaviors displayed in the individuals' behavioral sequences. We found significant differences between the two groups for the slope values in the Zipf-Mandelbrot analysis. The slope values for the ZOO individuals approached -1, with graphs representing a power law, while the values for the WRC individuals diverged from -1, differing from a power law pattern. Likewise, we found significant differences for the graph attributes average degree, weighted average degree, and clustering coefficient when comparing the ZOO and WRC individual graphs. However, no significant difference was found for the attributes modularity and average path length. Both analyses were effective in detecting differences between the patterns of behavioral complexity in the two groups. The slope values for the ZOO individuals indicated a higher behavioral complexity when compared to the WRC individuals. Similarly, graph construction and the

  14. Adaptive graph-based multiple testing procedures

    PubMed Central

    Klinglmueller, Florian; Posch, Martin; Koenig, Franz

    2016-01-01

    Multiple testing procedures defined by directed, weighted graphs have recently been proposed as an intuitive visual tool for constructing multiple testing strategies that reflect the often complex contextual relations between hypotheses in clinical trials. Many well-known sequentially rejective tests, such as (parallel) gatekeeping tests or hierarchical testing procedures are special cases of the graph based tests. We generalize these graph-based multiple testing procedures to adaptive trial designs with an interim analysis. These designs permit mid-trial design modifications based on unblinded interim data as well as external information, while providing strong family wise error rate control. To maintain the familywise error rate, it is not required to prespecify the adaption rule in detail. Because the adaptive test does not require knowledge of the multivariate distribution of test statistics, it is applicable in a wide range of scenarios including trials with multiple treatment comparisons, endpoints or subgroups, or combinations thereof. Examples of adaptations are dropping of treatment arms, selection of subpopulations, and sample size reassessment. If, in the interim analysis, it is decided to continue the trial as planned, the adaptive test reduces to the originally planned multiple testing procedure. Only if adaptations are actually implemented, an adjusted test needs to be applied. The procedure is illustrated with a case study and its operating characteristics are investigated by simulations. PMID:25319733

  15. Visibility Graph Based Time Series Analysis

    PubMed Central

    Stephen, Mutua; Gu, Changgui; Yang, Huijie

    2015-01-01

    Network based time series analysis has made considerable achievements in the recent years. By mapping mono/multivariate time series into networks, one can investigate both it’s microscopic and macroscopic behaviors. However, most proposed approaches lead to the construction of static networks consequently providing limited information on evolutionary behaviors. In the present paper we propose a method called visibility graph based time series analysis, in which series segments are mapped to visibility graphs as being descriptions of the corresponding states and the successively occurring states are linked. This procedure converts a time series to a temporal network and at the same time a network of networks. Findings from empirical records for stock markets in USA (S&P500 and Nasdaq) and artificial series generated by means of fractional Gaussian motions show that the method can provide us rich information benefiting short-term and long-term predictions. Theoretically, we propose a method to investigate time series from the viewpoint of network of networks. PMID:26571115

  16. Visibility Graph Based Time Series Analysis.

    PubMed

    Stephen, Mutua; Gu, Changgui; Yang, Huijie

    2015-01-01

    Network based time series analysis has made considerable achievements in the recent years. By mapping mono/multivariate time series into networks, one can investigate both it's microscopic and macroscopic behaviors. However, most proposed approaches lead to the construction of static networks consequently providing limited information on evolutionary behaviors. In the present paper we propose a method called visibility graph based time series analysis, in which series segments are mapped to visibility graphs as being descriptions of the corresponding states and the successively occurring states are linked. This procedure converts a time series to a temporal network and at the same time a network of networks. Findings from empirical records for stock markets in USA (S&P500 and Nasdaq) and artificial series generated by means of fractional Gaussian motions show that the method can provide us rich information benefiting short-term and long-term predictions. Theoretically, we propose a method to investigate time series from the viewpoint of network of networks.

  17. Detecting community structure via the maximal sub-graphs and belonging degrees in complex networks

    NASA Astrophysics Data System (ADS)

    Cui, Yaozu; Wang, Xingyuan; Eustace, Justine

    2014-12-01

    Community structure is a common phenomenon in complex networks, and it has been shown that some communities in complex networks often overlap each other. So in this paper we propose a new algorithm to detect overlapping community structure in complex networks. To identify the overlapping community structure, our algorithm firstly extracts fully connected sub-graphs which are maximal sub-graphs from original networks. Then two maximal sub-graphs having the key pair-vertices can be merged into a new larger sub-graph using some belonging degree functions. Furthermore we extend the modularity function to evaluate the proposed algorithm. In addition, overlapping nodes between communities are founded successfully. Finally we report the comparison between the modularity and the computational complexity of the proposed algorithm with some other existing algorithms. The experimental results show that the proposed algorithm gives satisfactory results.

  18. G-Hash: Towards Fast Kernel-based Similarity Search in Large Graph Databases.

    PubMed

    Wang, Xiaohong; Smalter, Aaron; Huan, Jun; Lushington, Gerald H

    2009-01-01

    Structured data including sets, sequences, trees and graphs, pose significant challenges to fundamental aspects of data management such as efficient storage, indexing, and similarity search. With the fast accumulation of graph databases, similarity search in graph databases has emerged as an important research topic. Graph similarity search has applications in a wide range of domains including cheminformatics, bioinformatics, sensor network management, social network management, and XML documents, among others.Most of the current graph indexing methods focus on subgraph query processing, i.e. determining the set of database graphs that contains the query graph and hence do not directly support similarity search. In data mining and machine learning, various graph kernel functions have been designed to capture the intrinsic similarity of graphs. Though successful in constructing accurate predictive and classification models for supervised learning, graph kernel functions have (i) high computational complexity and (ii) non-trivial difficulty to be indexed in a graph database.Our objective is to bridge graph kernel function and similarity search in graph databases by proposing (i) a novel kernel-based similarity measurement and (ii) an efficient indexing structure for graph data management. Our method of similarity measurement builds upon local features extracted from each node and their neighboring nodes in graphs. A hash table is utilized to support efficient storage and fast search of the extracted local features. Using the hash table, a graph kernel function is defined to capture the intrinsic similarity of graphs and for fast similarity query processing. We have implemented our method, which we have named G-hash, and have demonstrated its utility on large chemical graph databases. Our results show that the G-hash method achieves state-of-the-art performance for k-nearest neighbor (k-NN) classification. Most importantly, the new similarity measurement and the index

  19. Output-Sensitive Construction of Reeb Graphs.

    PubMed

    Doraiswamy, H; Natarajan, V

    2012-01-01

    The Reeb graph of a scalar function represents the evolution of the topology of its level sets. This paper describes a near-optimal output-sensitive algorithm for computing the Reeb graph of scalar functions defined over manifolds or non-manifolds in any dimension. Key to the simplicity and efficiency of the algorithm is an alternate definition of the Reeb graph that considers equivalence classes of level sets instead of individual level sets. The algorithm works in two steps. The first step locates all critical points of the function in the domain. Critical points correspond to nodes in the Reeb graph. Arcs connecting the nodes are computed in the second step by a simple search procedure that works on a small subset of the domain that corresponds to a pair of critical points. The paper also describes a scheme for controlled simplification of the Reeb graph and two different graph layout schemes that help in the effective presentation of Reeb graphs for visual analysis of scalar fields. Finally, the Reeb graph is employed in four different applications-surface segmentation, spatially-aware transfer function design, visualization of interval volumes, and interactive exploration of time-varying data.

  20. Methods of visualizing graphs

    DOEpatents

    Wong, Pak C.; Mackey, Patrick S.; Perrine, Kenneth A.; Foote, Harlan P.; Thomas, James J.

    2008-12-23

    Methods for visualizing a graph by automatically drawing elements of the graph as labels are disclosed. In one embodiment, the method comprises receiving node information and edge information from an input device and/or communication interface, constructing a graph layout based at least in part on that information, wherein the edges are automatically drawn as labels, and displaying the graph on a display device according to the graph layout. In some embodiments, the nodes are automatically drawn as labels instead of, or in addition to, the label-edges.

  1. Attribute-based Decision Graphs: A framework for multiclass data classification.

    PubMed

    Bertini, João Roberto; Nicoletti, Maria do Carmo; Zhao, Liang

    2017-01-01

    Graph-based algorithms have been successfully applied in machine learning and data mining tasks. A simple but, widely used, approach to build graphs from vector-based data is to consider each data instance as a vertex and connecting pairs of it using a similarity measure. Although this abstraction presents some advantages, such as arbitrary shape representation of the original data, it is still tied to some drawbacks, for example, it is dependent on the choice of a pre-defined distance metric and is biased by the local information among data instances. Aiming at exploring alternative ways to build graphs from data, this paper proposes an algorithm for constructing a new type of graph, called Attribute-based Decision Graph-AbDG. Given a vector-based data set, an AbDG is built by partitioning each data attribute range into disjoint intervals and representing each interval as a vertex. The edges are then established between vertices from different attributes according to a pre-defined pattern. Classification is performed through a matching process among the attribute values of the new instance and AbDG. Moreover, AbDG provides an inner mechanism to handle missing attribute values, which contributes for expanding its applicability. Results of classification tasks have shown that AbDG is a competitive approach when compared to well-known multiclass algorithms. The main contribution of the proposed framework is the combination of the advantages of attribute-based and graph-based techniques to perform robust pattern matching data classification, while permitting the analysis the input data considering only a subset of its attributes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Graph-Based Object Class Discovery

    NASA Astrophysics Data System (ADS)

    Xia, Shengping; Hancock, Edwin R.

    We are interested in the problem of discovering the set of object classes present in a database of images using a weakly supervised graph-based framework. Rather than making use of the ”Bag-of-Features (BoF)” approach widely used in current work on object recognition, we represent each image by a graph using a group of selected local invariant features. Using local feature matching and iterative Procrustes alignment, we perform graph matching and compute a similarity measure. Borrowing the idea of query expansion , we develop a similarity propagation based graph clustering (SPGC) method. Using this method class specific clusters of the graphs can be obtained. Such a cluster can be generally represented by using a higher level graph model whose vertices are the clustered graphs, and the edge weights are determined by the pairwise similarity measure. Experiments are performed on a dataset, in which the number of images increases from 1 to 50K and the number of objects increases from 1 to over 500. Some objects have been discovered with total recall and a precision 1 in a single cluster.

  3. Information visualisation based on graph models

    NASA Astrophysics Data System (ADS)

    Kasyanov, V. N.; Kasyanova, E. V.

    2013-05-01

    Information visualisation is a key component of support tools for many applications in science and engineering. A graph is an abstract structure that is widely used to model information for its visualisation. In this paper, we consider practical and general graph formalism called hierarchical graphs and present the Higres and Visual Graph systems aimed at supporting information visualisation on the base of hierarchical graph models.

  4. Label Information Guided Graph Construction for Semi-Supervised Learning.

    PubMed

    Zhuang, Liansheng; Zhou, Zihan; Gao, Shenghua; Yin, Jingwen; Lin, Zhouchen; Ma, Yi

    2017-09-01

    In the literature, most existing graph-based semi-supervised learning methods only use the label information of observed samples in the label propagation stage, while ignoring such valuable information when learning the graph. In this paper, we argue that it is beneficial to consider the label information in the graph learning stage. Specifically, by enforcing the weight of edges between labeled samples of different classes to be zero, we explicitly incorporate the label information into the state-of-the-art graph learning methods, such as the low-rank representation (LRR), and propose a novel semi-supervised graph learning method called semi-supervised low-rank representation. This results in a convex optimization problem with linear constraints, which can be solved by the linearized alternating direction method. Though we take LRR as an example, our proposed method is in fact very general and can be applied to any self-representation graph learning methods. Experiment results on both synthetic and real data sets demonstrate that the proposed graph learning method can better capture the global geometric structure of the data, and therefore is more effective for semi-supervised learning tasks.

  5. Spectral Upscaling for Graph Laplacian Problems with Application to Reservoir Simulation

    DOE PAGES

    Barker, Andrew T.; Lee, Chak S.; Vassilevski, Panayot S.

    2017-10-26

    Here, we consider coarsening procedures for graph Laplacian problems written in a mixed saddle-point form. In that form, in addition to the original (vertex) degrees of freedom (dofs), we also have edge degrees of freedom. We extend previously developed aggregation-based coarsening procedures applied to both sets of dofs to now allow more than one coarse vertex dof per aggregate. Those dofs are selected as certain eigenvectors of local graph Laplacians associated with each aggregate. Additionally, we coarsen the edge dofs by using traces of the discrete gradients of the already constructed coarse vertex dofs. These traces are defined on themore » interface edges that connect any two adjacent aggregates. The overall procedure is a modification of the spectral upscaling procedure developed in for the mixed finite element discretization of diffusion type PDEs which has the important property of maintaining inf-sup stability on coarse levels and having provable approximation properties. We consider applications to partitioning a general graph and to a finite volume discretization interpreted as a graph Laplacian, developing consistent and accurate coarse-scale models of a fine-scale problem.« less

  6. Measuring geographic segregation: a graph-based approach

    NASA Astrophysics Data System (ADS)

    Hong, Seong-Yun; Sadahiro, Yukio

    2014-04-01

    Residential segregation is a multidimensional phenomenon that encompasses several conceptually distinct aspects of geographical separation between populations. While various indices have been developed as a response to different definitions of segregation, the reliance on such single-figure indices could oversimplify the complex, multidimensional phenomena. In this regard, this paper suggests an alternative graph-based approach that provides more detailed information than simple indices: The concentration profile graphically conveys information about how evenly a population group is distributed over the study region, and the spatial proximity profile depicts the degree of clustering across different threshold levels. These graphs can also be summarized into single numbers for comparative purposes, but the interpretation can be more accurate by inspecting the additional information. To demonstrate the use of these methods, the residential patterns of three major ethnic groups in Auckland, namely Māori, Pacific peoples, and Asians, are examined using the 2006 census data.

  7. Supervoxels for graph cuts-based deformable image registration using guided image filtering

    NASA Astrophysics Data System (ADS)

    Szmul, Adam; Papież, Bartłomiej W.; Hallack, Andre; Grau, Vicente; Schnabel, Julia A.

    2017-11-01

    We propose combining a supervoxel-based image representation with the concept of graph cuts as an efficient optimization technique for three-dimensional (3-D) deformable image registration. Due to the pixels/voxels-wise graph construction, the use of graph cuts in this context has been mainly limited to two-dimensional (2-D) applications. However, our work overcomes some of the previous limitations by posing the problem on a graph created by adjacent supervoxels, where the number of nodes in the graph is reduced from the number of voxels to the number of supervoxels. We demonstrate how a supervoxel image representation combined with graph cuts-based optimization can be applied to 3-D data. We further show that the application of a relaxed graph representation of the image, followed by guided image filtering over the estimated deformation field, allows us to model "sliding motion." Applying this method to lung image registration results in highly accurate image registration and anatomically plausible estimations of the deformations. Evaluation of our method on a publicly available computed tomography lung image dataset leads to the observation that our approach compares very favorably with state of the art methods in continuous and discrete image registration, achieving target registration error of 1.16 mm on average per landmark.

  8. Supervoxels for Graph Cuts-Based Deformable Image Registration Using Guided Image Filtering.

    PubMed

    Szmul, Adam; Papież, Bartłomiej W; Hallack, Andre; Grau, Vicente; Schnabel, Julia A

    2017-10-04

    In this work we propose to combine a supervoxel-based image representation with the concept of graph cuts as an efficient optimization technique for 3D deformable image registration. Due to the pixels/voxels-wise graph construction, the use of graph cuts in this context has been mainly limited to 2D applications. However, our work overcomes some of the previous limitations by posing the problem on a graph created by adjacent supervoxels, where the number of nodes in the graph is reduced from the number of voxels to the number of supervoxels. We demonstrate how a supervoxel image representation, combined with graph cuts-based optimization can be applied to 3D data. We further show that the application of a relaxed graph representation of the image, followed by guided image filtering over the estimated deformation field, allows us to model 'sliding motion'. Applying this method to lung image registration, results in highly accurate image registration and anatomically plausible estimations of the deformations. Evaluation of our method on a publicly available Computed Tomography lung image dataset (www.dir-lab.com) leads to the observation that our new approach compares very favorably with state-of-the-art in continuous and discrete image registration methods achieving Target Registration Error of 1.16mm on average per landmark.

  9. Computing Information Value from RDF Graph Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    al-Saffar, Sinan; Heileman, Gregory

    2010-11-08

    Information value has been implicitly utilized and mostly non-subjectively computed in information retrieval (IR) systems. We explicitly define and compute the value of an information piece as a function of two parameters, the first is the potential semantic impact the target information can subjectively have on its recipient's world-knowledge, and the second parameter is trust in the information source. We model these two parameters as properties of RDF graphs. Two graphs are constructed, a target graph representing the semantics of the target body of information and a context graph representing the context of the consumer of that information. We computemore » information value subjectively as a function of both potential change to the context graph (impact) and the overlap between the two graphs (trust). Graph change is computed as a graph edit distance measuring the dissimilarity between the context graph before and after the learning of the target graph. A particular application of this subjective information valuation is in the construction of a personalized ranking component in Web search engines. Based on our method, we construct a Web re-ranking system that personalizes the information experience for the information-consumer.« less

  10. Trust from the past: Bayesian Personalized Ranking based Link Prediction in Knowledge Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Baichuan; Choudhury, Sutanay; Al-Hasan, Mohammad

    2016-02-01

    Estimating the confidence for a link is a critical task for Knowledge Graph construction. Link prediction, or predicting the likelihood of a link in a knowledge graph based on prior state is a key research direction within this area. We propose a Latent Feature Embedding based link recommendation model for prediction task and utilize Bayesian Personalized Ranking based optimization technique for learning models for each predicate. Experimental results on large-scale knowledge bases such as YAGO2 show that our approach achieves substantially higher performance than several state-of-art approaches. Furthermore, we also study the performance of the link prediction algorithm in termsmore » of topological properties of the Knowledge Graph and present a linear regression model to reason about its expected level of accuracy.« less

  11. Cross over of recurrence networks to random graphs and random geometric graphs

    NASA Astrophysics Data System (ADS)

    Jacob, Rinku; Harikrishnan, K. P.; Misra, R.; Ambika, G.

    2017-02-01

    Recurrence networks are complex networks constructed from the time series of chaotic dynamical systems where the connection between two nodes is limited by the recurrence threshold. This condition makes the topology of every recurrence network unique with the degree distribution determined by the probability density variations of the representative attractor from which it is constructed. Here we numerically investigate the properties of recurrence networks from standard low-dimensional chaotic attractors using some basic network measures and show how the recurrence networks are different from random and scale-free networks. In particular, we show that all recurrence networks can cross over to random geometric graphs by adding sufficient amount of noise to the time series and into the classical random graphs by increasing the range of interaction to the system size. We also highlight the effectiveness of a combined plot of characteristic path length and clustering coefficient in capturing the small changes in the network characteristics.

  12. Graph reconstruction using covariance-based methods.

    PubMed

    Sulaimanov, Nurgazy; Koeppl, Heinz

    2016-12-01

    Methods based on correlation and partial correlation are today employed in the reconstruction of a statistical interaction graph from high-throughput omics data. These dedicated methods work well even for the case when the number of variables exceeds the number of samples. In this study, we investigate how the graphs extracted from covariance and concentration matrix estimates are related by using Neumann series and transitive closure and through discussing concrete small examples. Considering the ideal case where the true graph is available, we also compare correlation and partial correlation methods for large realistic graphs. In particular, we perform the comparisons with optimally selected parameters based on the true underlying graph and with data-driven approaches where the parameters are directly estimated from the data.

  13. The investigation of social networks based on multi-component random graphs

    NASA Astrophysics Data System (ADS)

    Zadorozhnyi, V. N.; Yudin, E. B.

    2018-01-01

    The methods of non-homogeneous random graphs calibration are developed for social networks simulation. The graphs are calibrated by the degree distributions of the vertices and the edges. The mathematical foundation of the methods is formed by the theory of random graphs with the nonlinear preferential attachment rule and the theory of Erdôs-Rényi random graphs. In fact, well-calibrated network graph models and computer experiments with these models would help developers (owners) of the networks to predict their development correctly and to choose effective strategies for controlling network projects.

  14. A graph-based approach to construct target-focused libraries for virtual screening.

    PubMed

    Naderi, Misagh; Alvin, Chris; Ding, Yun; Mukhopadhyay, Supratik; Brylinski, Michal

    2016-01-01

    . Furthermore, in a procedure mimicking the real application, where one expects to discover novel compounds based on a small set of already developed bioactives, eSynth is capable of generating diverse collections of molecules with the desired activity profiles. Thus, we are very optimistic that our effort will contribute to targeted drug discovery. eSynth is freely available to the academic community at www.brylinski.org/content/molecular-synthesis.Graphical abstractAssuming that organic compounds are composed of sets of rigid fragments connected by flexible linkers, a molecule can be decomposed into its building blocks tracking their atomic connectivity. Here, we developed eSynth, an automated method to synthesize new compounds by reconnecting these building blocks following the connectivity patterns via an exhaustive graph-based search algorithm. eSynth opens up a possibility to rapidly construct virtual screening libraries for targeted drug discovery.

  15. Supervoxels for Graph Cuts-Based Deformable Image Registration Using Guided Image Filtering

    PubMed Central

    Szmul, Adam; Papież, Bartłomiej W.; Hallack, Andre; Grau, Vicente; Schnabel, Julia A.

    2017-01-01

    In this work we propose to combine a supervoxel-based image representation with the concept of graph cuts as an efficient optimization technique for 3D deformable image registration. Due to the pixels/voxels-wise graph construction, the use of graph cuts in this context has been mainly limited to 2D applications. However, our work overcomes some of the previous limitations by posing the problem on a graph created by adjacent supervoxels, where the number of nodes in the graph is reduced from the number of voxels to the number of supervoxels. We demonstrate how a supervoxel image representation, combined with graph cuts-based optimization can be applied to 3D data. We further show that the application of a relaxed graph representation of the image, followed by guided image filtering over the estimated deformation field, allows us to model ‘sliding motion’. Applying this method to lung image registration, results in highly accurate image registration and anatomically plausible estimations of the deformations. Evaluation of our method on a publicly available Computed Tomography lung image dataset (www.dir-lab.com) leads to the observation that our new approach compares very favorably with state-of-the-art in continuous and discrete image registration methods achieving Target Registration Error of 1.16mm on average per landmark. PMID:29225433

  16. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.

    PubMed

    Li, Rui; Zhang, Xiaodong; Li, Hanzhe; Zhang, Liming; Lu, Zhufeng; Chen, Jiangcheng

    2018-08-01

    Brain control technology can restore communication between the brain and a prosthesis, and choosing a Brain-Computer Interface (BCI) paradigm to evoke electroencephalogram (EEG) signals is an essential step for developing this technology. In this paper, the Scene Graph paradigm used for controlling prostheses was proposed; this paradigm is based on Steady-State Visual Evoked Potentials (SSVEPs) regarding the Scene Graph of a subject's intention. A mathematic model was built to predict SSVEPs evoked by the proposed paradigm and a sinusoidal stimulation method was used to present the Scene Graph stimulus to elicit SSVEPs from subjects. Then, a 2-degree of freedom (2-DOF) brain-controlled prosthesis system was constructed to validate the performance of the Scene Graph-SSVEP (SG-SSVEP)-based BCI. The classification of SG-SSVEPs was detected via the Canonical Correlation Analysis (CCA) approach. To assess the efficiency of proposed BCI system, the performances of traditional SSVEP-BCI system were compared. Experimental results from six subjects suggested that the proposed system effectively enhanced the SSVEP responses, decreased the degradation of SSVEP strength and reduced the visual fatigue in comparison with the traditional SSVEP-BCI system. The average signal to noise ratio (SNR) of SG-SSVEP was 6.31 ± 2.64 dB, versus 3.38 ± 0.78 dB of traditional-SSVEP. In addition, the proposed system achieved good performances in prosthesis control. The average accuracy was 94.58% ± 7.05%, and the corresponding high information transfer rate (IRT) was 19.55 ± 3.07 bit/min. The experimental results revealed that the SG-SSVEP based BCI system achieves the good performance and improved the stability relative to the conventional approach. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Annotation Graphs: A Graph-Based Visualization for Meta-Analysis of Data Based on User-Authored Annotations.

    PubMed

    Zhao, Jian; Glueck, Michael; Breslav, Simon; Chevalier, Fanny; Khan, Azam

    2017-01-01

    User-authored annotations of data can support analysts in the activity of hypothesis generation and sensemaking, where it is not only critical to document key observations, but also to communicate insights between analysts. We present annotation graphs, a dynamic graph visualization that enables meta-analysis of data based on user-authored annotations. The annotation graph topology encodes annotation semantics, which describe the content of and relations between data selections, comments, and tags. We present a mixed-initiative approach to graph layout that integrates an analyst's manual manipulations with an automatic method based on similarity inferred from the annotation semantics. Various visual graph layout styles reveal different perspectives on the annotation semantics. Annotation graphs are implemented within C8, a system that supports authoring annotations during exploratory analysis of a dataset. We apply principles of Exploratory Sequential Data Analysis (ESDA) in designing C8, and further link these to an existing task typology in the visualization literature. We develop and evaluate the system through an iterative user-centered design process with three experts, situated in the domain of analyzing HCI experiment data. The results suggest that annotation graphs are effective as a method of visually extending user-authored annotations to data meta-analysis for discovery and organization of ideas.

  18. Visibility graphs and symbolic dynamics

    NASA Astrophysics Data System (ADS)

    Lacasa, Lucas; Just, Wolfram

    2018-07-01

    Visibility algorithms are a family of geometric and ordering criteria by which a real-valued time series of N data is mapped into a graph of N nodes. This graph has been shown to often inherit in its topology nontrivial properties of the series structure, and can thus be seen as a combinatorial representation of a dynamical system. Here we explore in some detail the relation between visibility graphs and symbolic dynamics. To do that, we consider the degree sequence of horizontal visibility graphs generated by the one-parameter logistic map, for a range of values of the parameter for which the map shows chaotic behaviour. Numerically, we observe that in the chaotic region the block entropies of these sequences systematically converge to the Lyapunov exponent of the time series. Hence, Pesin's identity suggests that these block entropies are converging to the Kolmogorov-Sinai entropy of the physical measure, which ultimately suggests that the algorithm is implicitly and adaptively constructing phase space partitions which might have the generating property. To give analytical insight, we explore the relation k(x) , x ∈ [ 0 , 1 ] that, for a given datum with value x, assigns in graph space a node with degree k. In the case of the out-degree sequence, such relation is indeed a piece-wise constant function. By making use of explicit methods and tools from symbolic dynamics we are able to analytically show that the algorithm indeed performs an effective partition of the phase space and that such partition is naturally expressed as a countable union of subintervals, where the endpoints of each subinterval are related to the fixed point structure of the iterates of the map and the subinterval enumeration is associated with particular ordering structures that we called motifs.

  19. What energy functions can be minimized via graph cuts?

    PubMed

    Kolmogorov, Vladimir; Zabih, Ramin

    2004-02-01

    In the last few years, several new algorithms based on graph cuts have been developed to solve energy minimization problems in computer vision. Each of these techniques constructs a graph such that the minimum cut on the graph also minimizes the energy. Yet, because these graph constructions are complex and highly specific to a particular energy function, graph cuts have seen limited application to date. In this paper, we give a characterization of the energy functions that can be minimized by graph cuts. Our results are restricted to functions of binary variables. However, our work generalizes many previous constructions and is easily applicable to vision problems that involve large numbers of labels, such as stereo, motion, image restoration, and scene reconstruction. We give a precise characterization of what energy functions can be minimized using graph cuts, among the energy functions that can be written as a sum of terms containing three or fewer binary variables. We also provide a general-purpose construction to minimize such an energy function. Finally, we give a necessary condition for any energy function of binary variables to be minimized by graph cuts. Researchers who are considering the use of graph cuts to optimize a particular energy function can use our results to determine if this is possible and then follow our construction to create the appropriate graph. A software implementation is freely available.

  20. Learning a Health Knowledge Graph from Electronic Medical Records.

    PubMed

    Rotmensch, Maya; Halpern, Yoni; Tlimat, Abdulhakim; Horng, Steven; Sontag, David

    2017-07-20

    Demand for clinical decision support systems in medicine and self-diagnostic symptom checkers has substantially increased in recent years. Existing platforms rely on knowledge bases manually compiled through a labor-intensive process or automatically derived using simple pairwise statistics. This study explored an automated process to learn high quality knowledge bases linking diseases and symptoms directly from electronic medical records. Medical concepts were extracted from 273,174 de-identified patient records and maximum likelihood estimation of three probabilistic models was used to automatically construct knowledge graphs: logistic regression, naive Bayes classifier and a Bayesian network using noisy OR gates. A graph of disease-symptom relationships was elicited from the learned parameters and the constructed knowledge graphs were evaluated and validated, with permission, against Google's manually-constructed knowledge graph and against expert physician opinions. Our study shows that direct and automated construction of high quality health knowledge graphs from medical records using rudimentary concept extraction is feasible. The noisy OR model produces a high quality knowledge graph reaching precision of 0.85 for a recall of 0.6 in the clinical evaluation. Noisy OR significantly outperforms all tested models across evaluation frameworks (p < 0.01).

  1. A comparison of video modeling, text-based instruction, and no instruction for creating multiple baseline graphs in Microsoft Excel.

    PubMed

    Tyner, Bryan C; Fienup, Daniel M

    2015-09-01

    Graphing is socially significant for behavior analysts; however, graphing can be difficult to learn. Video modeling (VM) may be a useful instructional method but lacks evidence for effective teaching of computer skills. A between-groups design compared the effects of VM, text-based instruction, and no instruction on graphing performance. Participants who used VM constructed graphs significantly faster and with fewer errors than those who used text-based instruction or no instruction. Implications for instruction are discussed. © Society for the Experimental Analysis of Behavior.

  2. Graph-Based Semi-Supervised Hyperspectral Image Classification Using Spatial Information

    NASA Astrophysics Data System (ADS)

    Jamshidpour, N.; Homayouni, S.; Safari, A.

    2017-09-01

    Hyperspectral image classification has been one of the most popular research areas in the remote sensing community in the past decades. However, there are still some problems that need specific attentions. For example, the lack of enough labeled samples and the high dimensionality problem are two most important issues which degrade the performance of supervised classification dramatically. The main idea of semi-supervised learning is to overcome these issues by the contribution of unlabeled samples, which are available in an enormous amount. In this paper, we propose a graph-based semi-supervised classification method, which uses both spectral and spatial information for hyperspectral image classification. More specifically, two graphs were designed and constructed in order to exploit the relationship among pixels in spectral and spatial spaces respectively. Then, the Laplacians of both graphs were merged to form a weighted joint graph. The experiments were carried out on two different benchmark hyperspectral data sets. The proposed method performed significantly better than the well-known supervised classification methods, such as SVM. The assessments consisted of both accuracy and homogeneity analyses of the produced classification maps. The proposed spectral-spatial SSL method considerably increased the classification accuracy when the labeled training data set is too scarce.When there were only five labeled samples for each class, the performance improved 5.92% and 10.76% compared to spatial graph-based SSL, for AVIRIS Indian Pine and Pavia University data sets respectively.

  3. A clustering-based graph Laplacian framework for value function approximation in reinforcement learning.

    PubMed

    Xu, Xin; Huang, Zhenhua; Graves, Daniel; Pedrycz, Witold

    2014-12-01

    In order to deal with the sequential decision problems with large or continuous state spaces, feature representation and function approximation have been a major research topic in reinforcement learning (RL). In this paper, a clustering-based graph Laplacian framework is presented for feature representation and value function approximation (VFA) in RL. By making use of clustering-based techniques, that is, K-means clustering or fuzzy C-means clustering, a graph Laplacian is constructed by subsampling in Markov decision processes (MDPs) with continuous state spaces. The basis functions for VFA can be automatically generated from spectral analysis of the graph Laplacian. The clustering-based graph Laplacian is integrated with a class of approximation policy iteration algorithms called representation policy iteration (RPI) for RL in MDPs with continuous state spaces. Simulation and experimental results show that, compared with previous RPI methods, the proposed approach needs fewer sample points to compute an efficient set of basis functions and the learning control performance can be improved for a variety of parameter settings.

  4. Decomposition of metabolic network into functional modules based on the global connectivity structure of reaction graph.

    PubMed

    Ma, Hong-Wu; Zhao, Xue-Ming; Yuan, Ying-Jin; Zeng, An-Ping

    2004-08-12

    Metabolic networks are organized in a modular, hierarchical manner. Methods for a rational decomposition of the metabolic network into relatively independent functional subsets are essential to better understand the modularity and organization principle of a large-scale, genome-wide network. Network decomposition is also necessary for functional analysis of metabolism by pathway analysis methods that are often hampered by the problem of combinatorial explosion due to the complexity of metabolic network. Decomposition methods proposed in literature are mainly based on the connection degree of metabolites. To obtain a more reasonable decomposition, the global connectivity structure of metabolic networks should be taken into account. In this work, we use a reaction graph representation of a metabolic network for the identification of its global connectivity structure and for decomposition. A bow-tie connectivity structure similar to that previously discovered for metabolite graph is found also to exist in the reaction graph. Based on this bow-tie structure, a new decomposition method is proposed, which uses a distance definition derived from the path length between two reactions. An hierarchical classification tree is first constructed from the distance matrix among the reactions in the giant strong component of the bow-tie structure. These reactions are then grouped into different subsets based on the hierarchical tree. Reactions in the IN and OUT subsets of the bow-tie structure are subsequently placed in the corresponding subsets according to a 'majority rule'. Compared with the decomposition methods proposed in literature, ours is based on combined properties of the global network structure and local reaction connectivity rather than, primarily, on the connection degree of metabolites. The method is applied to decompose the metabolic network of Escherichia coli. Eleven subsets are obtained. More detailed investigations of the subsets show that reactions in the

  5. Differentials on graph complexes II: hairy graphs

    NASA Astrophysics Data System (ADS)

    Khoroshkin, Anton; Willwacher, Thomas; Živković, Marko

    2017-10-01

    We study the cohomology of the hairy graph complexes which compute the rational homotopy of embedding spaces, generalizing the Vassiliev invariants of knot theory. We provide spectral sequences converging to zero whose first pages contain the hairy graph cohomology. Our results yield a way to construct many nonzero hairy graph cohomology classes out of (known) non-hairy classes by studying the cancellations in those sequences. This provide a first glimpse at the tentative global structure of the hairy graph cohomology.

  6. Using a high-dimensional graph of semantic space to model relationships among words

    PubMed Central

    Jackson, Alice F.; Bolger, Donald J.

    2014-01-01

    The GOLD model (Graph Of Language Distribution) is a network model constructed based on co-occurrence in a large corpus of natural language that may be used to explore what information may be present in a graph-structured model of language, and what information may be extracted through theoretically-driven algorithms as well as standard graph analysis methods. The present study will employ GOLD to examine two types of relationship between words: semantic similarity and associative relatedness. Semantic similarity refers to the degree of overlap in meaning between words, while associative relatedness refers to the degree to which two words occur in the same schematic context. It is expected that a graph structured model of language constructed based on co-occurrence should easily capture associative relatedness, because this type of relationship is thought to be present directly in lexical co-occurrence. However, it is hypothesized that semantic similarity may be extracted from the intersection of the set of first-order connections, because two words that are semantically similar may occupy similar thematic or syntactic roles across contexts and thus would co-occur lexically with the same set of nodes. Two versions the GOLD model that differed in terms of the co-occurence window, bigGOLD at the paragraph level and smallGOLD at the adjacent word level, were directly compared to the performance of a well-established distributional model, Latent Semantic Analysis (LSA). The superior performance of the GOLD models (big and small) suggest that a single acquisition and storage mechanism, namely co-occurrence, can account for associative and conceptual relationships between words and is more psychologically plausible than models using singular value decomposition (SVD). PMID:24860525

  7. Using a high-dimensional graph of semantic space to model relationships among words.

    PubMed

    Jackson, Alice F; Bolger, Donald J

    2014-01-01

    The GOLD model (Graph Of Language Distribution) is a network model constructed based on co-occurrence in a large corpus of natural language that may be used to explore what information may be present in a graph-structured model of language, and what information may be extracted through theoretically-driven algorithms as well as standard graph analysis methods. The present study will employ GOLD to examine two types of relationship between words: semantic similarity and associative relatedness. Semantic similarity refers to the degree of overlap in meaning between words, while associative relatedness refers to the degree to which two words occur in the same schematic context. It is expected that a graph structured model of language constructed based on co-occurrence should easily capture associative relatedness, because this type of relationship is thought to be present directly in lexical co-occurrence. However, it is hypothesized that semantic similarity may be extracted from the intersection of the set of first-order connections, because two words that are semantically similar may occupy similar thematic or syntactic roles across contexts and thus would co-occur lexically with the same set of nodes. Two versions the GOLD model that differed in terms of the co-occurence window, bigGOLD at the paragraph level and smallGOLD at the adjacent word level, were directly compared to the performance of a well-established distributional model, Latent Semantic Analysis (LSA). The superior performance of the GOLD models (big and small) suggest that a single acquisition and storage mechanism, namely co-occurrence, can account for associative and conceptual relationships between words and is more psychologically plausible than models using singular value decomposition (SVD).

  8. A novel model for DNA sequence similarity analysis based on graph theory.

    PubMed

    Qi, Xingqin; Wu, Qin; Zhang, Yusen; Fuller, Eddie; Zhang, Cun-Quan

    2011-01-01

    Determination of sequence similarity is one of the major steps in computational phylogenetic studies. As we know, during evolutionary history, not only DNA mutations for individual nucleotide but also subsequent rearrangements occurred. It has been one of major tasks of computational biologists to develop novel mathematical descriptors for similarity analysis such that various mutation phenomena information would be involved simultaneously. In this paper, different from traditional methods (eg, nucleotide frequency, geometric representations) as bases for construction of mathematical descriptors, we construct novel mathematical descriptors based on graph theory. In particular, for each DNA sequence, we will set up a weighted directed graph. The adjacency matrix of the directed graph will be used to induce a representative vector for DNA sequence. This new approach measures similarity based on both ordering and frequency of nucleotides so that much more information is involved. As an application, the method is tested on a set of 0.9-kb mtDNA sequences of twelve different primate species. All output phylogenetic trees with various distance estimations have the same topology, and are generally consistent with the reported results from early studies, which proves the new method's efficiency; we also test the new method on a simulated data set, which shows our new method performs better than traditional global alignment method when subsequent rearrangements happen frequently during evolutionary history.

  9. Short paths in expander graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinberg, J.; Rubinfeld, R.

    Graph expansion has proved to be a powerful general tool for analyzing the behavior of routing algorithms and the interconnection networks on which they run. We develop new routing algorithms and structural results for bounded-degree expander graphs. Our results are unified by the fact that they are all based upon, and extend, a body of work asserting that expanders are rich in short, disjoint paths. In particular, our work has consequences for the disjoint paths problem, multicommodify flow, and graph minor containment. We show: (i) A greedy algorithm for approximating the maximum disjoint paths problem achieves a polylogarithmic approximation ratiomore » in bounded-degree expanders. Although our algorithm is both deterministic and on-line, its performance guarantee is an improvement over previous bounds in expanders. (ii) For a multicommodily flow problem with arbitrary demands on a bounded-degree expander, there is a (1 + {epsilon})-optimal solution using only flow paths of polylogarithmic length. It follows that the multicommodity flow algorithm of Awerbuch and Leighton runs in nearly linear time per commodity in expanders. Our analysis is based on establishing the following: given edge weights on an expander G, one can increase some of the weights very slightly so the resulting shortest-path metric is smooth - the min-weight path between any pair of nodes uses a polylogarithmic number of edges. (iii) Every bounded-degree expander on n nodes contains every graph with O(n/log{sup O(1)} n) nodes and edges as a minor.« less

  10. Analyzing and synthesizing phylogenies using tree alignment graphs.

    PubMed

    Smith, Stephen A; Brown, Joseph W; Hinchliff, Cody E

    2013-01-01

    Phylogenetic trees are used to analyze and visualize evolution. However, trees can be imperfect datatypes when summarizing multiple trees. This is especially problematic when accommodating for biological phenomena such as horizontal gene transfer, incomplete lineage sorting, and hybridization, as well as topological conflict between datasets. Additionally, researchers may want to combine information from sets of trees that have partially overlapping taxon sets. To address the problem of analyzing sets of trees with conflicting relationships and partially overlapping taxon sets, we introduce methods for aligning, synthesizing and analyzing rooted phylogenetic trees within a graph, called a tree alignment graph (TAG). The TAG can be queried and analyzed to explore uncertainty and conflict. It can also be synthesized to construct trees, presenting an alternative to supertrees approaches. We demonstrate these methods with two empirical datasets. In order to explore uncertainty, we constructed a TAG of the bootstrap trees from the Angiosperm Tree of Life project. Analysis of the resulting graph demonstrates that areas of the dataset that are unresolved in majority-rule consensus tree analyses can be understood in more detail within the context of a graph structure, using measures incorporating node degree and adjacency support. As an exercise in synthesis (i.e., summarization of a TAG constructed from the alignment trees), we also construct a TAG consisting of the taxonomy and source trees from a recent comprehensive bird study. We synthesized this graph into a tree that can be reconstructed in a repeatable fashion and where the underlying source information can be updated. The methods presented here are tractable for large scale analyses and serve as a basis for an alternative to consensus tree and supertree methods. Furthermore, the exploration of these graphs can expose structures and patterns within the dataset that are otherwise difficult to observe.

  11. Analyzing and Synthesizing Phylogenies Using Tree Alignment Graphs

    PubMed Central

    Smith, Stephen A.; Brown, Joseph W.; Hinchliff, Cody E.

    2013-01-01

    Phylogenetic trees are used to analyze and visualize evolution. However, trees can be imperfect datatypes when summarizing multiple trees. This is especially problematic when accommodating for biological phenomena such as horizontal gene transfer, incomplete lineage sorting, and hybridization, as well as topological conflict between datasets. Additionally, researchers may want to combine information from sets of trees that have partially overlapping taxon sets. To address the problem of analyzing sets of trees with conflicting relationships and partially overlapping taxon sets, we introduce methods for aligning, synthesizing and analyzing rooted phylogenetic trees within a graph, called a tree alignment graph (TAG). The TAG can be queried and analyzed to explore uncertainty and conflict. It can also be synthesized to construct trees, presenting an alternative to supertrees approaches. We demonstrate these methods with two empirical datasets. In order to explore uncertainty, we constructed a TAG of the bootstrap trees from the Angiosperm Tree of Life project. Analysis of the resulting graph demonstrates that areas of the dataset that are unresolved in majority-rule consensus tree analyses can be understood in more detail within the context of a graph structure, using measures incorporating node degree and adjacency support. As an exercise in synthesis (i.e., summarization of a TAG constructed from the alignment trees), we also construct a TAG consisting of the taxonomy and source trees from a recent comprehensive bird study. We synthesized this graph into a tree that can be reconstructed in a repeatable fashion and where the underlying source information can be updated. The methods presented here are tractable for large scale analyses and serve as a basis for an alternative to consensus tree and supertree methods. Furthermore, the exploration of these graphs can expose structures and patterns within the dataset that are otherwise difficult to observe. PMID:24086118

  12. Discrete Mathematical Approaches to Graph-Based Traffic Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joslyn, Cliff A.; Cowley, Wendy E.; Hogan, Emilie A.

    2014-04-01

    Modern cyber defense and anlaytics requires general, formal models of cyber systems. Multi-scale network models are prime candidates for such formalisms, using discrete mathematical methods based in hierarchically-structured directed multigraphs which also include rich sets of labels. An exemplar of an application of such an approach is traffic analysis, that is, observing and analyzing connections between clients, servers, hosts, and actors within IP networks, over time, to identify characteristic or suspicious patterns. Towards that end, NetFlow (or more generically, IPFLOW) data are available from routers and servers which summarize coherent groups of IP packets flowing through the network. In thismore » paper, we consider traffic analysis of Netflow using both basic graph statistics and two new mathematical measures involving labeled degree distributions and time interval overlap measures. We do all of this over the VAST test data set of 96M synthetic Netflow graph edges, against which we can identify characteristic patterns of simulated ground-truth network attacks.« less

  13. Semi-Supervised Tensor-Based Graph Embedding Learning and Its Application to Visual Discriminant Tracking.

    PubMed

    Hu, Weiming; Gao, Jin; Xing, Junliang; Zhang, Chao; Maybank, Stephen

    2017-01-01

    An appearance model adaptable to changes in object appearance is critical in visual object tracking. In this paper, we treat an image patch as a two-order tensor which preserves the original image structure. We design two graphs for characterizing the intrinsic local geometrical structure of the tensor samples of the object and the background. Graph embedding is used to reduce the dimensions of the tensors while preserving the structure of the graphs. Then, a discriminant embedding space is constructed. We prove two propositions for finding the transformation matrices which are used to map the original tensor samples to the tensor-based graph embedding space. In order to encode more discriminant information in the embedding space, we propose a transfer-learning- based semi-supervised strategy to iteratively adjust the embedding space into which discriminative information obtained from earlier times is transferred. We apply the proposed semi-supervised tensor-based graph embedding learning algorithm to visual tracking. The new tracking algorithm captures an object's appearance characteristics during tracking and uses a particle filter to estimate the optimal object state. Experimental results on the CVPR 2013 benchmark dataset demonstrate the effectiveness of the proposed tracking algorithm.

  14. Groupies in multitype random graphs.

    PubMed

    Shang, Yilun

    2016-01-01

    A groupie in a graph is a vertex whose degree is not less than the average degree of its neighbors. Under some mild conditions, we show that the proportion of groupies is very close to 1/2 in multitype random graphs (such as stochastic block models), which include Erdős-Rényi random graphs, random bipartite, and multipartite graphs as special examples. Numerical examples are provided to illustrate the theoretical results.

  15. Development of antibiotic regimens using graph based evolutionary algorithms.

    PubMed

    Corns, Steven M; Ashlock, Daniel A; Bryden, Kenneth M

    2013-12-01

    This paper examines the use of evolutionary algorithms in the development of antibiotic regimens given to production animals. A model is constructed that combines the lifespan of the animal and the bacteria living in the animal's gastro-intestinal tract from the early finishing stage until the animal reaches market weight. This model is used as the fitness evaluation for a set of graph based evolutionary algorithms to assess the impact of diversity control on the evolving antibiotic regimens. The graph based evolutionary algorithms have two objectives: to find an antibiotic treatment regimen that maintains the weight gain and health benefits of antibiotic use and to reduce the risk of spreading antibiotic resistant bacteria. This study examines different regimens of tylosin phosphate use on bacteria populations divided into Gram positive and Gram negative types, with a focus on Campylobacter spp. Treatment regimens were found that provided decreased antibiotic resistance relative to conventional methods while providing nearly the same benefits as conventional antibiotic regimes. By using a graph to control the information flow in the evolutionary algorithm, a variety of solutions along the Pareto front can be found automatically for this and other multi-objective problems. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Information Graph Flow: A Geometric Approximation of Quantum and Statistical Systems

    NASA Astrophysics Data System (ADS)

    Vanchurin, Vitaly

    2018-05-01

    Given a quantum (or statistical) system with a very large number of degrees of freedom and a preferred tensor product factorization of the Hilbert space (or of a space of distributions) we describe how it can be approximated with a very low-dimensional field theory with geometric degrees of freedom. The geometric approximation procedure consists of three steps. The first step is to construct weighted graphs (we call information graphs) with vertices representing subsystems (e.g., qubits or random variables) and edges representing mutual information (or the flow of information) between subsystems. The second step is to deform the adjacency matrices of the information graphs to that of a (locally) low-dimensional lattice using the graph flow equations introduced in the paper. (Note that the graph flow produces very sparse adjacency matrices and thus might also be used, for example, in machine learning or network science where the task of graph sparsification is of a central importance.) The third step is to define an emergent metric and to derive an effective description of the metric and possibly other degrees of freedom. To illustrate the procedure we analyze (numerically and analytically) two information graph flows with geometric attractors (towards locally one- and two-dimensional lattices) and metric perturbations obeying a geometric flow equation. Our analysis also suggests a possible approach to (a non-perturbative) quantum gravity in which the geometry (a secondary object) emerges directly from a quantum state (a primary object) due to the flow of the information graphs.

  17. Information Graph Flow: A Geometric Approximation of Quantum and Statistical Systems

    NASA Astrophysics Data System (ADS)

    Vanchurin, Vitaly

    2018-06-01

    Given a quantum (or statistical) system with a very large number of degrees of freedom and a preferred tensor product factorization of the Hilbert space (or of a space of distributions) we describe how it can be approximated with a very low-dimensional field theory with geometric degrees of freedom. The geometric approximation procedure consists of three steps. The first step is to construct weighted graphs (we call information graphs) with vertices representing subsystems (e.g., qubits or random variables) and edges representing mutual information (or the flow of information) between subsystems. The second step is to deform the adjacency matrices of the information graphs to that of a (locally) low-dimensional lattice using the graph flow equations introduced in the paper. (Note that the graph flow produces very sparse adjacency matrices and thus might also be used, for example, in machine learning or network science where the task of graph sparsification is of a central importance.) The third step is to define an emergent metric and to derive an effective description of the metric and possibly other degrees of freedom. To illustrate the procedure we analyze (numerically and analytically) two information graph flows with geometric attractors (towards locally one- and two-dimensional lattices) and metric perturbations obeying a geometric flow equation. Our analysis also suggests a possible approach to (a non-perturbative) quantum gravity in which the geometry (a secondary object) emerges directly from a quantum state (a primary object) due to the flow of the information graphs.

  18. Bipartite separability and nonlocal quantum operations on graphs

    NASA Astrophysics Data System (ADS)

    Dutta, Supriyo; Adhikari, Bibhas; Banerjee, Subhashish; Srikanth, R.

    2016-07-01

    In this paper we consider the separability problem for bipartite quantum states arising from graphs. Earlier it was proved that the degree criterion is the graph-theoretic counterpart of the familiar positive partial transpose criterion for separability, although there are entangled states with positive partial transpose for which the degree criterion fails. Here we introduce the concept of partially symmetric graphs and degree symmetric graphs by using the well-known concept of partial transposition of a graph and degree criteria, respectively. Thus, we provide classes of bipartite separable states of dimension m ×n arising from partially symmetric graphs. We identify partially asymmetric graphs that lack the property of partial symmetry. We develop a combinatorial procedure to create a partially asymmetric graph from a given partially symmetric graph. We show that this combinatorial operation can act as an entanglement generator for mixed states arising from partially symmetric graphs.

  19. Multiple degree of freedom object recognition using optical relational graph decision nets

    NASA Technical Reports Server (NTRS)

    Casasent, David P.; Lee, Andrew J.

    1988-01-01

    Multiple-degree-of-freedom object recognition concerns objects with no stable rest position with all scale, rotation, and aspect distortions possible. It is assumed that the objects are in a fairly benign background, so that feature extractors are usable. In-plane distortion invariance is provided by use of a polar-log coordinate transform feature space, and out-of-plane distortion invariance is provided by linear discriminant function design. Relational graph decision nets are considered for multiple-degree-of-freedom pattern recognition. The design of Fisher (1936) linear discriminant functions and synthetic discriminant function for use at the nodes of binary and multidecision nets is discussed. Case studies are detailed for two-class and multiclass problems. Simulation results demonstrate the robustness of the processors to quantization of the filter coefficients and to noise.

  20. Data and graph interpretation practices among preservice science teachers

    NASA Astrophysics Data System (ADS)

    Bowen, G. Michael; Roth, Wolff-Michael

    2005-12-01

    The interpretation of data and construction and interpretation of graphs are central practices in science, which, according to recent reform documents, science and mathematics teachers are expected to foster in their classrooms. However, are (preservice) science teachers prepared to teach inquiry with the purpose of transforming and analyzing data, and interpreting graphical representations? That is, are preservice science teachers prepared to teach data analysis and graph interpretation practices that scientists use by default in their everyday work? The present study was designed to answer these and related questions. We investigated the responses of preservice elementary and secondary science teachers to data and graph interpretation tasks. Our investigation shows that, despite considerable preparation, and for many, despite bachelor of science degrees, preservice teachers do not enact the (authentic) practices that scientists routinely do when asked to interpret data or graphs. Detailed analyses are provided of what data and graph interpretation practices actually were enacted. We conclude that traditional schooling emphasizes particular beliefs in the mathematical nature of the universe that make it difficult for many individuals to deal with data possessing the random variation found in measurements of natural phenomena. The results suggest that preservice teachers need more experience in engaging in data and graph interpretation practices originating in activities that provide the degree of variation in and complexity of data present in realistic investigations.

  1. PDB2Graph: A toolbox for identifying critical amino acids map in proteins based on graph theory.

    PubMed

    Niknam, Niloofar; Khakzad, Hamed; Arab, Seyed Shahriar; Naderi-Manesh, Hossein

    2016-05-01

    The integrative and cooperative nature of protein structure involves the assessment of topological and global features of constituent parts. Network concept takes complete advantage of both of these properties in the analysis concomitantly. High compatibility to structural concepts or physicochemical properties in addition to exploiting a remarkable simplification in the system has made network an ideal tool to explore biological systems. There are numerous examples in which different protein structural and functional characteristics have been clarified by the network approach. Here, we present an interactive and user-friendly Matlab-based toolbox, PDB2Graph, devoted to protein structure network construction, visualization, and analysis. Moreover, PDB2Graph is an appropriate tool for identifying critical nodes involved in protein structural robustness and function based on centrality indices. It maps critical amino acids in protein networks and can greatly aid structural biologists in selecting proper amino acid candidates for manipulating protein structures in a more reasonable and rational manner. To introduce the capability and efficiency of PDB2Graph in detail, the structural modification of Calmodulin through allosteric binding of Ca(2+) is considered. In addition, a mutational analysis for three well-identified model proteins including Phage T4 lysozyme, Barnase and Ribonuclease HI, was performed to inspect the influence of mutating important central residues on protein activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Optimal graph based segmentation using flow lines with application to airway wall segmentation.

    PubMed

    Petersen, Jens; Nielsen, Mads; Lo, Pechin; Saghir, Zaigham; Dirksen, Asger; de Bruijne, Marleen

    2011-01-01

    This paper introduces a novel optimal graph construction method that is applicable to multi-dimensional, multi-surface segmentation problems. Such problems are often solved by refining an initial coarse surface within the space given by graph columns. Conventional columns are not well suited for surfaces with high curvature or complex shapes but the proposed columns, based on properly generated flow lines, which are non-intersecting, guarantee solutions that do not self-intersect and are better able to handle such surfaces. The method is applied to segment human airway walls in computed tomography images. Comparison with manual annotations on 649 cross-sectional images from 15 different subjects shows significantly smaller contour distances and larger area of overlap than are obtained with recently published graph based methods. Airway abnormality measurements obtained with the method on 480 scan pairs from a lung cancer screening trial are reproducible and correlate significantly with lung function.

  3. Coordinates and intervals in graph-based reference genomes.

    PubMed

    Rand, Knut D; Grytten, Ivar; Nederbragt, Alexander J; Storvik, Geir O; Glad, Ingrid K; Sandve, Geir K

    2017-05-18

    It has been proposed that future reference genomes should be graph structures in order to better represent the sequence diversity present in a species. However, there is currently no standard method to represent genomic intervals, such as the positions of genes or transcription factor binding sites, on graph-based reference genomes. We formalize offset-based coordinate systems on graph-based reference genomes and introduce methods for representing intervals on these reference structures. We show the advantage of our methods by representing genes on a graph-based representation of the newest assembly of the human genome (GRCh38) and its alternative loci for regions that are highly variable. More complex reference genomes, containing alternative loci, require methods to represent genomic data on these structures. Our proposed notation for genomic intervals makes it possible to fully utilize the alternative loci of the GRCh38 assembly and potential future graph-based reference genomes. We have made a Python package for representing such intervals on offset-based coordinate systems, available at https://github.com/uio-cels/offsetbasedgraph . An interactive web-tool using this Python package to visualize genes on a graph created from GRCh38 is available at https://github.com/uio-cels/genomicgraphcoords .

  4. Degree sequence in message transfer

    NASA Astrophysics Data System (ADS)

    Yamuna, M.

    2017-11-01

    Message encryption is always an issue in current communication scenario. Methods are being devised using various domains. Graphs satisfy numerous unique properties which can be used for message transfer. In this paper, I propose a message encryption method based on degree sequence of graphs.

  5. Measuring Graph Comprehension, Critique, and Construction in Science

    ERIC Educational Resources Information Center

    Lai, Kevin; Cabrera, Julio; Vitale, Jonathan M.; Madhok, Jacquie; Tinker, Robert; Linn, Marcia C.

    2016-01-01

    Interpreting and creating graphs plays a critical role in scientific practice. The K-12 Next Generation Science Standards call for students to use graphs for scientific modeling, reasoning, and communication. To measure progress on this dimension, we need valid and reliable measures of graph understanding in science. In this research, we designed…

  6. A Graph Based Interface for Representing Volume Visualization Results

    NASA Technical Reports Server (NTRS)

    Patten, James M.; Ma, Kwan-Liu

    1998-01-01

    This paper discusses a graph based user interface for representing the results of the volume visualization process. As images are rendered, they are connected to other images in a graph based on their rendering parameters. The user can take advantage of the information in this graph to understand how certain rendering parameter changes affect a dataset, making the visualization process more efficient. Because the graph contains more information than is contained in an unstructured history of images, the image graph is also helpful for collaborative visualization and animation.

  7. Horizontal visibility graphs generated by type-I intermittency

    NASA Astrophysics Data System (ADS)

    Núñez, Ángel M.; Luque, Bartolo; Lacasa, Lucas; Gómez, Jose Patricio; Robledo, Alberto

    2013-05-01

    The type-I intermittency route to (or out of) chaos is investigated within the horizontal visibility (HV) graph theory. For that purpose, we address the trajectories generated by unimodal maps close to an inverse tangent bifurcation and construct their associated HV graphs. We show how the alternation of laminar episodes and chaotic bursts imprints a fingerprint in the resulting graph structure. Accordingly, we derive a phenomenological theory that predicts quantitative values for several network parameters. In particular, we predict that the characteristic power-law scaling of the mean length of laminar trend sizes is fully inherited by the variance of the graph degree distribution, in good agreement with the numerics. We also report numerical evidence on how the characteristic power-law scaling of the Lyapunov exponent as a function of the distance to the tangent bifurcation is inherited in the graph by an analogous scaling of block entropy functionals defined on the graph. Furthermore, we are able to recast the full set of HV graphs generated by intermittent dynamics into a renormalization-group framework, where the fixed points of its graph-theoretical renormalization-group flow account for the different types of dynamics. We also establish that the nontrivial fixed point of this flow coincides with the tangency condition and that the corresponding invariant graph exhibits extremal entropic properties.

  8. VISAGE: Interactive Visual Graph Querying.

    PubMed

    Pienta, Robert; Navathe, Shamkant; Tamersoy, Acar; Tong, Hanghang; Endert, Alex; Chau, Duen Horng

    2016-06-01

    Extracting useful patterns from large network datasets has become a fundamental challenge in many domains. We present VISAGE, an interactive visual graph querying approach that empowers users to construct expressive queries, without writing complex code (e.g., finding money laundering rings of bankers and business owners). Our contributions are as follows: (1) we introduce graph autocomplete , an interactive approach that guides users to construct and refine queries, preventing over-specification; (2) VISAGE guides the construction of graph queries using a data-driven approach, enabling users to specify queries with varying levels of specificity, from concrete and detailed (e.g., query by example), to abstract (e.g., with "wildcard" nodes of any types), to purely structural matching; (3) a twelve-participant, within-subject user study demonstrates VISAGE's ease of use and the ability to construct graph queries significantly faster than using a conventional query language; (4) VISAGE works on real graphs with over 468K edges, achieving sub-second response times for common queries.

  9. VISAGE: Interactive Visual Graph Querying

    PubMed Central

    Pienta, Robert; Navathe, Shamkant; Tamersoy, Acar; Tong, Hanghang; Endert, Alex; Chau, Duen Horng

    2017-01-01

    Extracting useful patterns from large network datasets has become a fundamental challenge in many domains. We present VISAGE, an interactive visual graph querying approach that empowers users to construct expressive queries, without writing complex code (e.g., finding money laundering rings of bankers and business owners). Our contributions are as follows: (1) we introduce graph autocomplete, an interactive approach that guides users to construct and refine queries, preventing over-specification; (2) VISAGE guides the construction of graph queries using a data-driven approach, enabling users to specify queries with varying levels of specificity, from concrete and detailed (e.g., query by example), to abstract (e.g., with “wildcard” nodes of any types), to purely structural matching; (3) a twelve-participant, within-subject user study demonstrates VISAGE’s ease of use and the ability to construct graph queries significantly faster than using a conventional query language; (4) VISAGE works on real graphs with over 468K edges, achieving sub-second response times for common queries. PMID:28553670

  10. Hierarchical graph-based segmentation for extracting road networks from high-resolution satellite images

    NASA Astrophysics Data System (ADS)

    Alshehhi, Rasha; Marpu, Prashanth Reddy

    2017-04-01

    Extraction of road networks in urban areas from remotely sensed imagery plays an important role in many urban applications (e.g. road navigation, geometric correction of urban remote sensing images, updating geographic information systems, etc.). It is normally difficult to accurately differentiate road from its background due to the complex geometry of the buildings and the acquisition geometry of the sensor. In this paper, we present a new method for extracting roads from high-resolution imagery based on hierarchical graph-based image segmentation. The proposed method consists of: 1. Extracting features (e.g., using Gabor and morphological filtering) to enhance the contrast between road and non-road pixels, 2. Graph-based segmentation consisting of (i) Constructing a graph representation of the image based on initial segmentation and (ii) Hierarchical merging and splitting of image segments based on color and shape features, and 3. Post-processing to remove irregularities in the extracted road segments. Experiments are conducted on three challenging datasets of high-resolution images to demonstrate the proposed method and compare with other similar approaches. The results demonstrate the validity and superior performance of the proposed method for road extraction in urban areas.

  11. Graph-based segmentation for RGB-D data using 3-D geometry enhanced superpixels.

    PubMed

    Yang, Jingyu; Gan, Ziqiao; Li, Kun; Hou, Chunping

    2015-05-01

    With the advances of depth sensing technologies, color image plus depth information (referred to as RGB-D data hereafter) is more and more popular for comprehensive description of 3-D scenes. This paper proposes a two-stage segmentation method for RGB-D data: 1) oversegmentation by 3-D geometry enhanced superpixels and 2) graph-based merging with label cost from superpixels. In the oversegmentation stage, 3-D geometrical information is reconstructed from the depth map. Then, a K-means-like clustering method is applied to the RGB-D data for oversegmentation using an 8-D distance metric constructed from both color and 3-D geometrical information. In the merging stage, treating each superpixel as a node, a graph-based model is set up to relabel the superpixels into semantically-coherent segments. In the graph-based model, RGB-D proximity, texture similarity, and boundary continuity are incorporated into the smoothness term to exploit the correlations of neighboring superpixels. To obtain a compact labeling, the label term is designed to penalize labels linking to similar superpixels that likely belong to the same object. Both the proposed 3-D geometry enhanced superpixel clustering method and the graph-based merging method from superpixels are evaluated by qualitative and quantitative results. By the fusion of color and depth information, the proposed method achieves superior segmentation performance over several state-of-the-art algorithms.

  12. Evolution of a Modified Binomial Random Graph by Agglomeration

    NASA Astrophysics Data System (ADS)

    Kang, Mihyun; Pachon, Angelica; Rodríguez, Pablo M.

    2018-02-01

    In the classical Erdős-Rényi random graph G( n, p) there are n vertices and each of the possible edges is independently present with probability p. The random graph G( n, p) is homogeneous in the sense that all vertices have the same characteristics. On the other hand, numerous real-world networks are inhomogeneous in this respect. Such an inhomogeneity of vertices may influence the connection probability between pairs of vertices. The purpose of this paper is to propose a new inhomogeneous random graph model which is obtained in a constructive way from the Erdős-Rényi random graph G( n, p). Given a configuration of n vertices arranged in N subsets of vertices (we call each subset a super-vertex), we define a random graph with N super-vertices by letting two super-vertices be connected if and only if there is at least one edge between them in G( n, p). Our main result concerns the threshold for connectedness. We also analyze the phase transition for the emergence of the giant component and the degree distribution. Even though our model begins with G( n, p), it assumes the existence of some community structure encoded in the configuration. Furthermore, under certain conditions it exhibits a power law degree distribution. Both properties are important for real-world applications.

  13. Graph-based biomedical text summarization: An itemset mining and sentence clustering approach.

    PubMed

    Nasr Azadani, Mozhgan; Ghadiri, Nasser; Davoodijam, Ensieh

    2018-06-12

    Automatic text summarization offers an efficient solution to access the ever-growing amounts of both scientific and clinical literature in the biomedical domain by summarizing the source documents while maintaining their most informative contents. In this paper, we propose a novel graph-based summarization method that takes advantage of the domain-specific knowledge and a well-established data mining technique called frequent itemset mining. Our summarizer exploits the Unified Medical Language System (UMLS) to construct a concept-based model of the source document and mapping the document to the concepts. Then, it discovers frequent itemsets to take the correlations among multiple concepts into account. The method uses these correlations to propose a similarity function based on which a represented graph is constructed. The summarizer then employs a minimum spanning tree based clustering algorithm to discover various subthemes of the document. Eventually, it generates the final summary by selecting the most informative and relative sentences from all subthemes within the text. We perform an automatic evaluation over a large number of summaries using the Recall-Oriented Understudy for Gisting Evaluation (ROUGE) metrics. The results demonstrate that the proposed summarization system outperforms various baselines and benchmark approaches. The carried out research suggests that the incorporation of domain-specific knowledge and frequent itemset mining equips the summarization system in a better way to address the informativeness measurement of the sentences. Moreover, clustering the graph nodes (sentences) can enable the summarizer to target different main subthemes of a source document efficiently. The evaluation results show that the proposed approach can significantly improve the performance of the summarization systems in the biomedical domain. Copyright © 2018. Published by Elsevier Inc.

  14. MISAGA: An Algorithm for Mining Interesting Subgraphs in Attributed Graphs.

    PubMed

    He, Tiantian; Chan, Keith C C

    2018-05-01

    An attributed graph contains vertices that are associated with a set of attribute values. Mining clusters or communities, which are interesting subgraphs in the attributed graph is one of the most important tasks of graph analytics. Many problems can be defined as the mining of interesting subgraphs in attributed graphs. Algorithms that discover subgraphs based on predefined topologies cannot be used to tackle these problems. To discover interesting subgraphs in the attributed graph, we propose an algorithm called mining interesting subgraphs in attributed graph algorithm (MISAGA). MISAGA performs its tasks by first using a probabilistic measure to determine whether the strength of association between a pair of attribute values is strong enough to be interesting. Given the interesting pairs of attribute values, then the degree of association is computed for each pair of vertices using an information theoretic measure. Based on the edge structure and degree of association between each pair of vertices, MISAGA identifies interesting subgraphs by formulating it as a constrained optimization problem and solves it by identifying the optimal affiliation of subgraphs for the vertices in the attributed graph. MISAGA has been tested with several large-sized real graphs and is found to be potentially very useful for various applications.

  15. Random Walk Graph Laplacian-Based Smoothness Prior for Soft Decoding of JPEG Images.

    PubMed

    Liu, Xianming; Cheung, Gene; Wu, Xiaolin; Zhao, Debin

    2017-02-01

    Given the prevalence of joint photographic experts group (JPEG) compressed images, optimizing image reconstruction from the compressed format remains an important problem. Instead of simply reconstructing a pixel block from the centers of indexed discrete cosine transform (DCT) coefficient quantization bins (hard decoding), soft decoding reconstructs a block by selecting appropriate coefficient values within the indexed bins with the help of signal priors. The challenge thus lies in how to define suitable priors and apply them effectively. In this paper, we combine three image priors-Laplacian prior for DCT coefficients, sparsity prior, and graph-signal smoothness prior for image patches-to construct an efficient JPEG soft decoding algorithm. Specifically, we first use the Laplacian prior to compute a minimum mean square error initial solution for each code block. Next, we show that while the sparsity prior can reduce block artifacts, limiting the size of the overcomplete dictionary (to lower computation) would lead to poor recovery of high DCT frequencies. To alleviate this problem, we design a new graph-signal smoothness prior (desired signal has mainly low graph frequencies) based on the left eigenvectors of the random walk graph Laplacian matrix (LERaG). Compared with the previous graph-signal smoothness priors, LERaG has desirable image filtering properties with low computation overhead. We demonstrate how LERaG can facilitate recovery of high DCT frequencies of a piecewise smooth signal via an interpretation of low graph frequency components as relaxed solutions to normalized cut in spectral clustering. Finally, we construct a soft decoding algorithm using the three signal priors with appropriate prior weights. Experimental results show that our proposal outperforms the state-of-the-art soft decoding algorithms in both objective and subjective evaluations noticeably.

  16. Genome alignment with graph data structures: a comparison

    PubMed Central

    2014-01-01

    Background Recent advances in rapid, low-cost sequencing have opened up the opportunity to study complete genome sequences. The computational approach of multiple genome alignment allows investigation of evolutionarily related genomes in an integrated fashion, providing a basis for downstream analyses such as rearrangement studies and phylogenetic inference. Graphs have proven to be a powerful tool for coping with the complexity of genome-scale sequence alignments. The potential of graphs to intuitively represent all aspects of genome alignments led to the development of graph-based approaches for genome alignment. These approaches construct a graph from a set of local alignments, and derive a genome alignment through identification and removal of graph substructures that indicate errors in the alignment. Results We compare the structures of commonly used graphs in terms of their abilities to represent alignment information. We describe how the graphs can be transformed into each other, and identify and classify graph substructures common to one or more graphs. Based on previous approaches, we compile a list of modifications that remove these substructures. Conclusion We show that crucial pieces of alignment information, associated with inversions and duplications, are not visible in the structure of all graphs. If we neglect vertex or edge labels, the graphs differ in their information content. Still, many ideas are shared among all graph-based approaches. Based on these findings, we outline a conceptual framework for graph-based genome alignment that can assist in the development of future genome alignment tools. PMID:24712884

  17. Fast generation of sparse random kernel graphs

    DOE PAGES

    Hagberg, Aric; Lemons, Nathan; Du, Wen -Bo

    2015-09-10

    The development of kernel-based inhomogeneous random graphs has provided models that are flexible enough to capture many observed characteristics of real networks, and that are also mathematically tractable. We specify a class of inhomogeneous random graph models, called random kernel graphs, that produces sparse graphs with tunable graph properties, and we develop an efficient generation algorithm to sample random instances from this model. As real-world networks are usually large, it is essential that the run-time of generation algorithms scales better than quadratically in the number of vertices n. We show that for many practical kernels our algorithm runs in timemore » at most ο(n(logn)²). As an example, we show how to generate samples of power-law degree distribution graphs with tunable assortativity.« less

  18. On the modification Highly Connected Subgraphs (HCS) algorithm in graph clustering for weighted graph

    NASA Astrophysics Data System (ADS)

    Albirri, E. R.; Sugeng, K. A.; Aldila, D.

    2018-04-01

    Nowadays, in the modern world, since technology and human civilization start to progress, all city in the world is almost connected. The various places in this world are easier to visit. It is an impact of transportation technology and highway construction. The cities which have been connected can be represented by graph. Graph clustering is one of ways which is used to answer some problems represented by graph. There are some methods in graph clustering to solve the problem spesifically. One of them is Highly Connected Subgraphs (HCS) method. HCS is used to identify cluster based on the graph connectivity k for graph G. The connectivity in graph G is denoted by k(G)> \\frac{n}{2} that n is the total of vertices in G, then it is called as HCS or the cluster. This research used literature review and completed with simulation of program in a software. We modified HCS algorithm by using weighted graph. The modification is located in the Process Phase. Process Phase is used to cut the connected graph G into two subgraphs H and \\bar{H}. We also made a program by using software Octave-401. Then we applied the data of Flight Routes Mapping of One of Airlines in Indonesia to our program.

  19. A Novel Graph Constructor for Semisupervised Discriminant Analysis: Combined Low-Rank and k-Nearest Neighbor Graph

    PubMed Central

    Pan, Yongke; Niu, Wenjia

    2017-01-01

    Semisupervised Discriminant Analysis (SDA) is a semisupervised dimensionality reduction algorithm, which can easily resolve the out-of-sample problem. Relative works usually focus on the geometric relationships of data points, which are not obvious, to enhance the performance of SDA. Different from these relative works, the regularized graph construction is researched here, which is important in the graph-based semisupervised learning methods. In this paper, we propose a novel graph for Semisupervised Discriminant Analysis, which is called combined low-rank and k-nearest neighbor (LRKNN) graph. In our LRKNN graph, we map the data to the LR feature space and then the kNN is adopted to satisfy the algorithmic requirements of SDA. Since the low-rank representation can capture the global structure and the k-nearest neighbor algorithm can maximally preserve the local geometrical structure of the data, the LRKNN graph can significantly improve the performance of SDA. Extensive experiments on several real-world databases show that the proposed LRKNN graph is an efficient graph constructor, which can largely outperform other commonly used baselines. PMID:28316616

  20. A genetic graph-based approach for partitional clustering.

    PubMed

    Menéndez, Héctor D; Barrero, David F; Camacho, David

    2014-05-01

    Clustering is one of the most versatile tools for data analysis. In the recent years, clustering that seeks the continuity of data (in opposition to classical centroid-based approaches) has attracted an increasing research interest. It is a challenging problem with a remarkable practical interest. The most popular continuity clustering method is the spectral clustering (SC) algorithm, which is based on graph cut: It initially generates a similarity graph using a distance measure and then studies its graph spectrum to find the best cut. This approach is sensitive to the parameters of the metric, and a correct parameter choice is critical to the quality of the cluster. This work proposes a new algorithm, inspired by SC, that reduces the parameter dependency while maintaining the quality of the solution. The new algorithm, named genetic graph-based clustering (GGC), takes an evolutionary approach introducing a genetic algorithm (GA) to cluster the similarity graph. The experimental validation shows that GGC increases robustness of SC and has competitive performance in comparison with classical clustering methods, at least, in the synthetic and real dataset used in the experiments.

  1. Graph-based retrospective 4D image construction from free-breathing MRI slice acquisitions

    NASA Astrophysics Data System (ADS)

    Tong, Yubing; Udupa, Jayaram K.; Ciesielski, Krzysztof C.; McDonough, Joseph M.; Mong, Andrew; Campbell, Robert M.

    2014-03-01

    4D or dynamic imaging of the thorax has many potential applications [1, 2]. CT and MRI offer sufficient speed to acquire motion information via 4D imaging. However they have different constraints and requirements. For both modalities both prospective and retrospective respiratory gating and tracking techniques have been developed [3, 4]. For pediatric imaging, x-ray radiation becomes a primary concern and MRI remains as the de facto choice. The pediatric subjects we deal with often suffer from extreme malformations of their chest wall, diaphragm, and/or spine, as such patient cooperation needed by some of the gating and tracking techniques are difficult to realize without causing patient discomfort. Moreover, we are interested in the mechanical function of their thorax in its natural form in tidal breathing. Therefore free-breathing MRI acquisition is the ideal modality of imaging for these patients. In our set up, for each coronal (or sagittal) slice position, slice images are acquired at a rate of about 200-300 ms/slice over several natural breathing cycles. This produces typically several thousands of slices which contain both the anatomic and dynamic information. However, it is not trivial to form a consistent and well defined 4D volume from these data. In this paper, we present a novel graph-based combinatorial optimization solution for constructing the best possible 4D scene from such data entirely in the digital domain. Our proposed method is purely image-based and does not need breath holding or any external surrogates or instruments to record respiratory motion or tidal volume. Both adult and children patients' data are used to illustrate the performance of the proposed method. Experimental results show that the reconstructed 4D scenes are smooth and consistent spatially and temporally, agreeing with known shape and motion of the lungs.

  2. SemaTyP: a knowledge graph based literature mining method for drug discovery.

    PubMed

    Sang, Shengtian; Yang, Zhihao; Wang, Lei; Liu, Xiaoxia; Lin, Hongfei; Wang, Jian

    2018-05-30

    Drug discovery is the process through which potential new medicines are identified. High-throughput screening and computer-aided drug discovery/design are the two main drug discovery methods for now, which have successfully discovered a series of drugs. However, development of new drugs is still an extremely time-consuming and expensive process. Biomedical literature contains important clues for the identification of potential treatments. It could support experts in biomedicine on their way towards new discoveries. Here, we propose a biomedical knowledge graph-based drug discovery method called SemaTyP, which discovers candidate drugs for diseases by mining published biomedical literature. We first construct a biomedical knowledge graph with the relations extracted from biomedical abstracts, then a logistic regression model is trained by learning the semantic types of paths of known drug therapies' existing in the biomedical knowledge graph, finally the learned model is used to discover drug therapies for new diseases. The experimental results show that our method could not only effectively discover new drug therapies for new diseases, but also could provide the potential mechanism of action of the candidate drugs. In this paper we propose a novel knowledge graph based literature mining method for drug discovery. It could be a supplementary method for current drug discovery methods.

  3. Plane representations of graphs and visibility between parallel segments

    NASA Astrophysics Data System (ADS)

    Tamassia, R.; Tollis, I. G.

    1985-04-01

    Several layout compaction strategies for VLSI are based on the concept of visibility between parallel segments, where we say that two parallel segments of a given set are visible if they can be joined by a segment orthogonal to them, which does not intersect any other segment. This paper studies visibility representations of graphs, which are constructed by mapping vertices to horizontal segments, and edges to vertical segments drawn between visible vertex-segments. Clearly, every graph that admits such a representation must be a planar. The authors consider three types of visibility representations, and give complete characterizations of the classes of graphs that admit them. Furthermore, they present linear time algorithms for testing the existence of and constructing visibility representations of planar graphs.

  4. Models construction for acetone-butanol-ethanol fermentations with acetate/butyrate consecutively feeding by graph theory.

    PubMed

    Li, Zhigang; Shi, Zhongping; Li, Xin

    2014-05-01

    Several fermentations with consecutively feeding of acetate/butyrate were conducted in a 7 L fermentor and the results indicated that exogenous acetate/butyrate enhanced solvents productivities by 47.1% and 39.2% respectively, and changed butyrate/acetate ratios greatly. Then extracellular butyrate/acetate ratios were utilized for calculation of acids rates and the results revealed that acetate and butyrate formation pathways were almost blocked by corresponding acids feeding. In addition, models for acetate/butyrate feeding fermentations were constructed by graph theory based on calculation results and relevant reports. Solvents concentrations and butanol/acetone ratios of these fermentations were also calculated and the results of models calculation matched fermentation data accurately which demonstrated that models were constructed in a reasonable way. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Hierarchical graphs for rule-based modeling of biochemical systems

    PubMed Central

    2011-01-01

    Background In rule-based modeling, graphs are used to represent molecules: a colored vertex represents a component of a molecule, a vertex attribute represents the internal state of a component, and an edge represents a bond between components. Components of a molecule share the same color. Furthermore, graph-rewriting rules are used to represent molecular interactions. A rule that specifies addition (removal) of an edge represents a class of association (dissociation) reactions, and a rule that specifies a change of a vertex attribute represents a class of reactions that affect the internal state of a molecular component. A set of rules comprises an executable model that can be used to determine, through various means, the system-level dynamics of molecular interactions in a biochemical system. Results For purposes of model annotation, we propose the use of hierarchical graphs to represent structural relationships among components and subcomponents of molecules. We illustrate how hierarchical graphs can be used to naturally document the structural organization of the functional components and subcomponents of two proteins: the protein tyrosine kinase Lck and the T cell receptor (TCR) complex. We also show that computational methods developed for regular graphs can be applied to hierarchical graphs. In particular, we describe a generalization of Nauty, a graph isomorphism and canonical labeling algorithm. The generalized version of the Nauty procedure, which we call HNauty, can be used to assign canonical labels to hierarchical graphs or more generally to graphs with multiple edge types. The difference between the Nauty and HNauty procedures is minor, but for completeness, we provide an explanation of the entire HNauty algorithm. Conclusions Hierarchical graphs provide more intuitive formal representations of proteins and other structured molecules with multiple functional components than do the regular graphs of current languages for specifying rule-based models

  6. Improved segmentation of abnormal cervical nuclei using a graph-search based approach

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Liu, Shaoxiong; Wang, Tianfu; Chen, Siping; Sonka, Milan

    2015-03-01

    Reliable segmentation of abnormal nuclei in cervical cytology is of paramount importance in automation-assisted screening techniques. This paper presents a general method for improving the segmentation of abnormal nuclei using a graph-search based approach. More specifically, the proposed method focuses on the improvement of coarse (initial) segmentation. The improvement relies on a transform that maps round-like border in the Cartesian coordinate system into lines in the polar coordinate system. The costs consisting of nucleus-specific edge and region information are assigned to the nodes. The globally optimal path in the constructed graph is then identified by dynamic programming. We have tested the proposed method on abnormal nuclei from two cervical cell image datasets, Herlev and H and E stained liquid-based cytology (HELBC), and the comparative experiments with recent state-of-the-art approaches demonstrate the superior performance of the proposed method.

  7. The Role of Microcomputer-Based Laboratories in Learning To Make Graphs of Distance and Velocity.

    ERIC Educational Resources Information Center

    Brasell, Heather

    Two questions about the effects of microcomputer-based laboratory (MBL) activities on graphing skills were addressed in this study: (1) the extent to which activities help students link their concrete experiences with motion with graphic representations of these experiences; and (2) the degree of importance of the real-time aspect of the MBL in…

  8. Graphs, matrices, and the GraphBLAS: Seven good reasons

    DOE PAGES

    Kepner, Jeremy; Bader, David; Buluç, Aydın; ...

    2015-01-01

    The analysis of graphs has become increasingly important to a wide range of applications. Graph analysis presents a number of unique challenges in the areas of (1) software complexity, (2) data complexity, (3) security, (4) mathematical complexity, (5) theoretical analysis, (6) serial performance, and (7) parallel performance. Implementing graph algorithms using matrix-based approaches provides a number of promising solutions to these challenges. The GraphBLAS standard (istcbigdata.org/GraphBlas) is being developed to bring the potential of matrix based graph algorithms to the broadest possible audience. The GraphBLAS mathematically defines a core set of matrix-based graph operations that can be used to implementmore » a wide class of graph algorithms in a wide range of programming environments. This paper provides an introduction to the GraphBLAS and describes how the GraphBLAS can be used to address many of the challenges associated with analysis of graphs.« less

  9. Network reconstruction via graph blending

    NASA Astrophysics Data System (ADS)

    Estrada, Rolando

    2016-05-01

    Graphs estimated from empirical data are often noisy and incomplete due to the difficulty of faithfully observing all the components (nodes and edges) of the true graph. This problem is particularly acute for large networks where the number of components may far exceed available surveillance capabilities. Errors in the observed graph can render subsequent analyses invalid, so it is vital to develop robust methods that can minimize these observational errors. Errors in the observed graph may include missing and spurious components, as well fused (multiple nodes are merged into one) and split (a single node is misinterpreted as many) nodes. Traditional graph reconstruction methods are only able to identify missing or spurious components (primarily edges, and to a lesser degree nodes), so we developed a novel graph blending framework that allows us to cast the full estimation problem as a simple edge addition/deletion problem. Armed with this framework, we systematically investigate the viability of various topological graph features, such as the degree distribution or the clustering coefficients, and existing graph reconstruction methods for tackling the full estimation problem. Our experimental results suggest that incorporating any topological feature as a source of information actually hinders reconstruction accuracy. We provide a theoretical analysis of this phenomenon and suggest several avenues for improving this estimation problem.

  10. Graph theory and the Virasoro master equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obers, N.A.J.

    1991-01-01

    A brief history of affine Lie algebra, the Virasoro algebra and its culmination in the Virasoro master equation is given. By studying ansaetze of the master equation, the author obtains exact solutions and gains insight in the structure of large slices of affine-Virasoro space. He finds an isomorphism between the constructions in the ansatz SO(n){sub diag}, which is a set of unitary, generically irrational affine-Virasoro constructions on SO(n), and the unlabeled graphs of order n. On the one hand, the conformal constructions, are classified by the graphs, while, conversely, a group-theoretic and conformal field-theoretic identification is obtained for every graphmore » of graph theory. He also defines a class of magic Lie group bases in which the Virasoro master equation admits a simple metric ansatz {l brace}g{sub metric}{r brace}, whose structure is visible in the high-level expansion. When a magic basis is real on compact g, the corresponding g{sub metric} is a large system of unitary, generically irrational conformal field theories. Examples in this class include the graph-theory ansatz SO(n){sub diag} in the Cartesian basis of SO(n), and the ansatz SU(n){sub metric} in the Pauli-like basis of SU(n). Finally, he defines the sine-area graphs' of SU(n), which label the conformal field theories of SU(n){sub metric}, and he notes that, in similar fashion, each magic basis of g defines a generalized graph theory on g which labels the conformal field theories of g{sub metric}.« less

  11. Efficient quantum pseudorandomness with simple graph states

    NASA Astrophysics Data System (ADS)

    Mezher, Rawad; Ghalbouni, Joe; Dgheim, Joseph; Markham, Damian

    2018-02-01

    Measurement based (MB) quantum computation allows for universal quantum computing by measuring individual qubits prepared in entangled multipartite states, known as graph states. Unless corrected for, the randomness of the measurements leads to the generation of ensembles of random unitaries, where each random unitary is identified with a string of possible measurement results. We show that repeating an MB scheme an efficient number of times, on a simple graph state, with measurements at fixed angles and no feedforward corrections, produces a random unitary ensemble that is an ɛ -approximate t design on n qubits. Unlike previous constructions, the graph is regular and is also a universal resource for measurement based quantum computing, closely related to the brickwork state.

  12. Composing Data Parallel Code for a SPARQL Graph Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castellana, Vito G.; Tumeo, Antonino; Villa, Oreste

    Big data analytics process large amount of data to extract knowledge from them. Semantic databases are big data applications that adopt the Resource Description Framework (RDF) to structure metadata through a graph-based representation. The graph based representation provides several benefits, such as the possibility to perform in memory processing with large amounts of parallelism. SPARQL is a language used to perform queries on RDF-structured data through graph matching. In this paper we present a tool that automatically translates SPARQL queries to parallel graph crawling and graph matching operations. The tool also supports complex SPARQL constructs, which requires more than basicmore » graph matching for their implementation. The tool generates parallel code annotated with OpenMP pragmas for x86 Shared-memory Multiprocessors (SMPs). With respect to commercial database systems such as Virtuoso, our approach reduces memory occupation due to join operations and provides higher performance. We show the scaling of the automatically generated graph-matching code on a 48-core SMP.« less

  13. Graph-matching based CTA.

    PubMed

    Maksimov, Dmitry; Hesser, Jürgen; Brockmann, Carolin; Jochum, Susanne; Dietz, Tiina; Schnitzer, Andreas; Düber, Christoph; Schoenberg, Stefan O; Diehl, Steffen

    2009-12-01

    Separating bone, calcification, and vessels in computer tomography angiography (CTA) allows for a detailed diagnosis of vessel stenosis. This paper presents a new, graph-based technique that solves this difficult problem with high accuracy. The approach requires one native data set and one that is contrast enhanced. On each data set, an attributed level-graph is derived and both graphs are matched by dynamic programming to differentiate between bone, on one hand side, and vessel/calcification on the other hand side. Lumen and calcified regions are then separated by a profile technique. Evaluation is based on data from vessels of pelvis and lower extremities of elderly patients. Due to substantial calcification and motion of patients between and during the acquisitions, the underlying approach is tested on a class of difficult cases. Analysis requires 3-5 min on a Pentium IV 3 GHz for a 700 MByte data set. Among 37 patients, our approach correctly identifies all three components in 80% of cases correctly compared to visual control. Critical inconsistencies with visual inspection were found in 6% of all cases; 70% of these inconsistencies are due to small vessels that have 1) a diameter near the resolution of the CT and 2) are passing next to bony structures. All other remaining deviations are found in an incorrect handling of the iliac artery since the slice thickness is near the diameter of this vessel and since the orientation is not in cranio-caudal direction. Increasing resolution is thus expected to solve many the aforementioned difficulties.

  14. Safety models incorporating graph theory based transit indicators.

    PubMed

    Quintero, Liliana; Sayed, Tarek; Wahba, Mohamed M

    2013-01-01

    There is a considerable need for tools to enable the evaluation of the safety of transit networks at the planning stage. One interesting approach for the planning of public transportation systems is the study of networks. Network techniques involve the analysis of systems by viewing them as a graph composed of a set of vertices (nodes) and edges (links). Once the transport system is visualized as a graph, various network properties can be evaluated based on the relationships between the network elements. Several indicators can be calculated including connectivity, coverage, directness and complexity, among others. The main objective of this study is to investigate the relationship between network-based transit indicators and safety. The study develops macro-level collision prediction models that explicitly incorporate transit physical and operational elements and transit network indicators as explanatory variables. Several macro-level (zonal) collision prediction models were developed using a generalized linear regression technique, assuming a negative binomial error structure. The models were grouped into four main themes: transit infrastructure, transit network topology, transit route design, and transit performance and operations. The safety models showed that collisions were significantly associated with transit network properties such as: connectivity, coverage, overlapping degree and the Local Index of Transit Availability. As well, the models showed a significant relationship between collisions and some transit physical and operational attributes such as the number of routes, frequency of routes, bus density, length of bus and 3+ priority lanes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. A global/local affinity graph for image segmentation.

    PubMed

    Xiaofang Wang; Yuxing Tang; Masnou, Simon; Liming Chen

    2015-04-01

    Construction of a reliable graph capturing perceptual grouping cues of an image is fundamental for graph-cut based image segmentation methods. In this paper, we propose a novel sparse global/local affinity graph over superpixels of an input image to capture both short- and long-range grouping cues, and thereby enabling perceptual grouping laws, including proximity, similarity, continuity, and to enter in action through a suitable graph-cut algorithm. Moreover, we also evaluate three major visual features, namely, color, texture, and shape, for their effectiveness in perceptual segmentation and propose a simple graph fusion scheme to implement some recent findings from psychophysics, which suggest combining these visual features with different emphases for perceptual grouping. In particular, an input image is first oversegmented into superpixels at different scales. We postulate a gravitation law based on empirical observations and divide superpixels adaptively into small-, medium-, and large-sized sets. Global grouping is achieved using medium-sized superpixels through a sparse representation of superpixels' features by solving a ℓ0-minimization problem, and thereby enabling continuity or propagation of local smoothness over long-range connections. Small- and large-sized superpixels are then used to achieve local smoothness through an adjacent graph in a given feature space, and thus implementing perceptual laws, for example, similarity and proximity. Finally, a bipartite graph is also introduced to enable propagation of grouping cues between superpixels of different scales. Extensive experiments are carried out on the Berkeley segmentation database in comparison with several state-of-the-art graph constructions. The results show the effectiveness of the proposed approach, which outperforms state-of-the-art graphs using four different objective criteria, namely, the probabilistic rand index, the variation of information, the global consistency error, and the

  16. Kidney segmentation in CT sequences using graph cuts based active contours model and contextual continuity.

    PubMed

    Zhang, Pin; Liang, Yanmei; Chang, Shengjiang; Fan, Hailun

    2013-08-01

    Accurate segmentation of renal tissues in abdominal computed tomography (CT) image sequences is an indispensable step for computer-aided diagnosis and pathology detection in clinical applications. In this study, the goal is to develop a radiology tool to extract renal tissues in CT sequences for the management of renal diagnosis and treatments. In this paper, the authors propose a new graph-cuts-based active contours model with an adaptive width of narrow band for kidney extraction in CT image sequences. Based on graph cuts and contextual continuity, the segmentation is carried out slice-by-slice. In the first stage, the middle two adjacent slices in a CT sequence are segmented interactively based on the graph cuts approach. Subsequently, the deformable contour evolves toward the renal boundaries by the proposed model for the kidney extraction of the remaining slices. In this model, the energy function combining boundary with regional information is optimized in the constructed graph and the adaptive search range is determined by contextual continuity and the object size. In addition, in order to reduce the complexity of the min-cut computation, the nodes in the graph only have n-links for fewer edges. The total 30 CT images sequences with normal and pathological renal tissues are used to evaluate the accuracy and effectiveness of our method. The experimental results reveal that the average dice similarity coefficient of these image sequences is from 92.37% to 95.71% and the corresponding standard deviation for each dataset is from 2.18% to 3.87%. In addition, the average automatic segmentation time for one kidney in each slice is about 0.36 s. Integrating the graph-cuts-based active contours model with contextual continuity, the algorithm takes advantages of energy minimization and the characteristics of image sequences. The proposed method achieves effective results for kidney segmentation in CT sequences.

  17. Interference graph-based dynamic frequency reuse in optical attocell networks

    NASA Astrophysics Data System (ADS)

    Liu, Huanlin; Xia, Peijie; Chen, Yong; Wu, Lan

    2017-11-01

    Indoor optical attocell network may achieve higher capacity than radio frequency (RF) or Infrared (IR)-based wireless systems. It is proposed as a special type of visible light communication (VLC) system using Light Emitting Diodes (LEDs). However, the system spectral efficiency may be severely degraded owing to the inter-cell interference (ICI), particularly for dense deployment scenarios. To address these issues, we construct the spectral interference graph for indoor optical attocell network, and propose the Dynamic Frequency Reuse (DFR) and Weighted Dynamic Frequency Reuse (W-DFR) algorithms to decrease ICI and improve the spectral efficiency performance. The interference graph makes LEDs can transmit data without interference and select the minimum sub-bands needed for frequency reuse. Then, DFR algorithm reuses the system frequency equally across service-providing cells to mitigate spectrum interference. While W-DFR algorithm can reuse the system frequency by using the bandwidth weight (BW), which is defined based on the number of service users. Numerical results show that both of the proposed schemes can effectively improve the average spectral efficiency (ASE) of the system. Additionally, improvement of the user data rate is also obtained by analyzing its cumulative distribution function (CDF).

  18. Case-Based Plan Recognition Using Action Sequence Graphs

    DTIC Science & Technology

    2014-10-01

    resized as necessary. Similarly, trace- based reasoning (Zarka et al., 2013) and episode -based reasoning (Sánchez-Marré, 2005) store fixed-length...is a goal state of Π, where satisfies has the same semantics as originally laid out in Ghallab, Nau & Traverso (2004). Action 0 is ...Although there are syntactic similarities between planning encoding graphs and action sequence graphs, important semantic differences exist because the

  19. Greenberger-Horne-Zeilinger paradoxes from qudit graph states.

    PubMed

    Tang, Weidong; Yu, Sixia; Oh, C H

    2013-03-08

    One fascinating way of revealing quantum nonlocality is the all-versus-nothing test due to Greenberger, Horne, and Zeilinger (GHZ) known as the GHZ paradox. So far genuine multipartite and multilevel GHZ paradoxes are known to exist only in systems containing an odd number of particles. Here we shall construct GHZ paradoxes for an arbitrary number (greater than 3) of particles with the help of qudit graph states on a special kind of graphs, called GHZ graphs. Furthermore, based on the GHZ paradox arising from a GHZ graph, we derive a Bell inequality with two d-outcome observables for each observer, whose maximal violation attained by the corresponding graph state, and a Kochen-Specker inequality testing the quantum contextuality in a state-independent fashion.

  20. Multi-label literature classification based on the Gene Ontology graph.

    PubMed

    Jin, Bo; Muller, Brian; Zhai, Chengxiang; Lu, Xinghua

    2008-12-08

    The Gene Ontology is a controlled vocabulary for representing knowledge related to genes and proteins in a computable form. The current effort of manually annotating proteins with the Gene Ontology is outpaced by the rate of accumulation of biomedical knowledge in literature, which urges the development of text mining approaches to facilitate the process by automatically extracting the Gene Ontology annotation from literature. The task is usually cast as a text classification problem, and contemporary methods are confronted with unbalanced training data and the difficulties associated with multi-label classification. In this research, we investigated the methods of enhancing automatic multi-label classification of biomedical literature by utilizing the structure of the Gene Ontology graph. We have studied three graph-based multi-label classification algorithms, including a novel stochastic algorithm and two top-down hierarchical classification methods for multi-label literature classification. We systematically evaluated and compared these graph-based classification algorithms to a conventional flat multi-label algorithm. The results indicate that, through utilizing the information from the structure of the Gene Ontology graph, the graph-based multi-label classification methods can significantly improve predictions of the Gene Ontology terms implied by the analyzed text. Furthermore, the graph-based multi-label classifiers are capable of suggesting Gene Ontology annotations (to curators) that are closely related to the true annotations even if they fail to predict the true ones directly. A software package implementing the studied algorithms is available for the research community. Through utilizing the information from the structure of the Gene Ontology graph, the graph-based multi-label classification methods have better potential than the conventional flat multi-label classification approach to facilitate protein annotation based on the literature.

  1. Graph processing platforms at scale: practices and experiences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Seung-Hwan; Lee, Sangkeun; Brown, Tyler C

    2015-01-01

    Graph analysis unveils hidden associations of data in many phenomena and artifacts, such as road network, social networks, genomic information, and scientific collaboration. Unfortunately, a wide diversity in the characteristics of graphs and graph operations make it challenging to find a right combination of tools and implementation of algorithms to discover desired knowledge from the target data set. This study presents an extensive empirical study of three representative graph processing platforms: Pegasus, GraphX, and Urika. Each system represents a combination of options in data model, processing paradigm, and infrastructure. We benchmarked each platform using three popular graph operations, degree distribution,more » connected components, and PageRank over a variety of real-world graphs. Our experiments show that each graph processing platform shows different strength, depending the type of graph operations. While Urika performs the best in non-iterative operations like degree distribution, GraphX outputforms iterative operations like connected components and PageRank. In addition, we discuss challenges to optimize the performance of each platform over large scale real world graphs.« less

  2. A note on the stability and discriminability of graph-based features for classification problems in digital pathology

    NASA Astrophysics Data System (ADS)

    Cruz-Roa, Angel; Xu, Jun; Madabhushi, Anant

    2015-01-01

    Nuclear architecture or the spatial arrangement of individual cancer nuclei on histopathology images has been shown to be associated with different grades and differential risk for a number of solid tumors such as breast, prostate, and oropharyngeal. Graph-based representations of individual nuclei (nuclei representing the graph nodes) allows for mining of quantitative metrics to describe tumor morphology. These graph features can be broadly categorized into global and local depending on the type of graph construction method. While a number of local graph (e.g. Cell Cluster Graphs) and global graph (e.g. Voronoi, Delaunay Triangulation, Minimum Spanning Tree) features have been shown to associated with cancer grade, risk, and outcome for different cancer types, the sensitivity of the preceding segmentation algorithms in identifying individual nuclei can have a significant bearing on the discriminability of the resultant features. This therefore begs the question as to which features while being discriminative of cancer grade and aggressiveness are also the most resilient to the segmentation errors. These properties are particularly desirable in the context of digital pathology images, where the method of slide preparation, staining, and type of nuclear segmentation algorithm employed can all dramatically affect the quality of the nuclear graphs and corresponding features. In this paper we evaluated the trade off between discriminability and stability of both global and local graph-based features in conjunction with a few different segmentation algorithms and in the context of two different histopathology image datasets of breast cancer from whole-slide images (WSI) and tissue microarrays (TMA). Specifically in this paper we investigate a few different performance measures including stability, discriminability and stability vs discriminability trade off, all of which are based on p-values from the Kruskal-Wallis one-way analysis of variance for local and global

  3. Local adjacency metric dimension of sun graph and stacked book graph

    NASA Astrophysics Data System (ADS)

    Yulisda Badri, Alifiah; Darmaji

    2018-03-01

    A graph is a mathematical system consisting of a non-empty set of nodes and a set of empty sides. One of the topics to be studied in graph theory is the metric dimension. Application in the metric dimension is the navigation robot system on a path. Robot moves from one vertex to another vertex in the field by minimizing the errors that occur in translating the instructions (code) obtained from the vertices of that location. To move the robot must give different instructions (code). In order for the robot to move efficiently, the robot must be fast to translate the code of the nodes of the location it passes. so that the location vertex has a minimum distance. However, if the robot must move with the vertex location on a very large field, so the robot can not detect because the distance is too far.[6] In this case, the robot can determine its position by utilizing location vertices based on adjacency. The problem is to find the minimum cardinality of the required location vertex, and where to put, so that the robot can determine its location. The solution to this problem is the dimension of adjacency metric and adjacency metric bases. Rodrguez-Velzquez and Fernau combine the adjacency metric dimensions with local metric dimensions, thus becoming the local adjacency metric dimension. In the local adjacency metric dimension each vertex in the graph may have the same adjacency representation as the terms of the vertices. To obtain the local metric dimension of values in the graph of the Sun and the stacked book graph is used the construction method by considering the representation of each adjacent vertex of the graph.

  4. Unsupervised Metric Fusion Over Multiview Data by Graph Random Walk-Based Cross-View Diffusion.

    PubMed

    Wang, Yang; Zhang, Wenjie; Wu, Lin; Lin, Xuemin; Zhao, Xiang

    2017-01-01

    Learning an ideal metric is crucial to many tasks in computer vision. Diverse feature representations may combat this problem from different aspects; as visual data objects described by multiple features can be decomposed into multiple views, thus often provide complementary information. In this paper, we propose a cross-view fusion algorithm that leads to a similarity metric for multiview data by systematically fusing multiple similarity measures. Unlike existing paradigms, we focus on learning distance measure by exploiting a graph structure of data samples, where an input similarity matrix can be improved through a propagation of graph random walk. In particular, we construct multiple graphs with each one corresponding to an individual view, and a cross-view fusion approach based on graph random walk is presented to derive an optimal distance measure by fusing multiple metrics. Our method is scalable to a large amount of data by enforcing sparsity through an anchor graph representation. To adaptively control the effects of different views, we dynamically learn view-specific coefficients, which are leveraged into graph random walk to balance multiviews. However, such a strategy may lead to an over-smooth similarity metric where affinities between dissimilar samples may be enlarged by excessively conducting cross-view fusion. Thus, we figure out a heuristic approach to controlling the iteration number in the fusion process in order to avoid over smoothness. Extensive experiments conducted on real-world data sets validate the effectiveness and efficiency of our approach.

  5. a Super Voxel-Based Riemannian Graph for Multi Scale Segmentation of LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Li, Minglei

    2018-04-01

    Automatically segmenting LiDAR points into respective independent partitions has become a topic of great importance in photogrammetry, remote sensing and computer vision. In this paper, we cast the problem of point cloud segmentation as a graph optimization problem by constructing a Riemannian graph. The scale space of the observed scene is explored by an octree-based over-segmentation with different depths. The over-segmentation produces many super voxels which restrict the structure of the scene and will be used as nodes of the graph. The Kruskal coordinates are used to compute edge weights that are proportional to the geodesic distance between nodes. Then we compute the edge-weight matrix in which the elements reflect the sectional curvatures associated with the geodesic paths between super voxel nodes on the scene surface. The final segmentation results are generated by clustering similar super voxels and cutting off the weak edges in the graph. The performance of this method was evaluated on LiDAR point clouds for both indoor and outdoor scenes. Additionally, extensive comparisons to state of the art techniques show that our algorithm outperforms on many metrics.

  6. Mathematical modeling of the malignancy of cancer using graph evolution.

    PubMed

    Gunduz-Demir, Cigdem

    2007-10-01

    We report a novel computational method based on graph evolution process to model the malignancy of brain cancer called glioma. In this work, we analyze the phases that a graph passes through during its evolution and demonstrate strong relation between the malignancy of cancer and the phase of its graph. From the photomicrographs of tissues, which are diagnosed as normal, low-grade cancerous and high-grade cancerous, we construct cell-graphs based on the locations of cells; we probabilistically generate an edge between every pair of cells depending on the Euclidean distance between them. For a cell-graph, we extract connectivity information including the properties of its connected components in order to analyze the phase of the cell-graph. Working with brain tissue samples surgically removed from 12 patients, we demonstrate that cell-graphs generated for different tissue types evolve differently and that they exhibit different phase properties, which distinguish a tissue type from another.

  7. On Edge Exchangeable Random Graphs

    NASA Astrophysics Data System (ADS)

    Janson, Svante

    2017-06-01

    We study a recent model for edge exchangeable random graphs introduced by Crane and Dempsey; in particular we study asymptotic properties of the random simple graph obtained by merging multiple edges. We study a number of examples, and show that the model can produce dense, sparse and extremely sparse random graphs. One example yields a power-law degree distribution. We give some examples where the random graph is dense and converges a.s. in the sense of graph limit theory, but also an example where a.s. every graph limit is the limit of some subsequence. Another example is sparse and yields convergence to a non-integrable generalized graphon defined on (0,∞).

  8. Graph-based structural change detection for rotating machinery monitoring

    NASA Astrophysics Data System (ADS)

    Lu, Guoliang; Liu, Jie; Yan, Peng

    2018-01-01

    Detection of structural changes is critically important in operational monitoring of a rotating machine. This paper presents a novel framework for this purpose, where a graph model for data modeling is adopted to represent/capture statistical dynamics in machine operations. Meanwhile we develop a numerical method for computing temporal anomalies in the constructed graphs. The martingale-test method is employed for the change detection when making decisions on possible structural changes, where excellent performance is demonstrated outperforming exciting results such as the autoregressive-integrated-moving average (ARIMA) model. Comprehensive experimental results indicate good potentials of the proposed algorithm in various engineering applications. This work is an extension of a recent result (Lu et al., 2017).

  9. Evolutionary dynamics on graphs: Efficient method for weak selection

    NASA Astrophysics Data System (ADS)

    Fu, Feng; Wang, Long; Nowak, Martin A.; Hauert, Christoph

    2009-04-01

    Investigating the evolutionary dynamics of game theoretical interactions in populations where individuals are arranged on a graph can be challenging in terms of computation time. Here, we propose an efficient method to study any type of game on arbitrary graph structures for weak selection. In this limit, evolutionary game dynamics represents a first-order correction to neutral evolution. Spatial correlations can be empirically determined under neutral evolution and provide the basis for formulating the game dynamics as a discrete Markov process by incorporating a detailed description of the microscopic dynamics based on the neutral correlations. This framework is then applied to one of the most intriguing questions in evolutionary biology: the evolution of cooperation. We demonstrate that the degree heterogeneity of a graph impedes cooperation and that the success of tit for tat depends not only on the number of rounds but also on the degree of the graph. Moreover, considering the mutation-selection equilibrium shows that the symmetry of the stationary distribution of states under weak selection is skewed in favor of defectors for larger selection strengths. In particular, degree heterogeneity—a prominent feature of scale-free networks—generally results in a more pronounced increase in the critical benefit-to-cost ratio required for evolution to favor cooperation as compared to regular graphs. This conclusion is corroborated by an analysis of the effects of population structures on the fixation probabilities of strategies in general 2×2 games for different types of graphs. Computer simulations confirm the predictive power of our method and illustrate the improved accuracy as compared to previous studies.

  10. A proximity-based graph clustering method for the identification and application of transcription factor clusters.

    PubMed

    Spadafore, Maxwell; Najarian, Kayvan; Boyle, Alan P

    2017-11-29

    Transcription factors (TFs) form a complex regulatory network within the cell that is crucial to cell functioning and human health. While methods to establish where a TF binds to DNA are well established, these methods provide no information describing how TFs interact with one another when they do bind. TFs tend to bind the genome in clusters, and current methods to identify these clusters are either limited in scope, unable to detect relationships beyond motif similarity, or not applied to TF-TF interactions. Here, we present a proximity-based graph clustering approach to identify TF clusters using either ChIP-seq or motif search data. We use TF co-occurrence to construct a filtered, normalized adjacency matrix and use the Markov Clustering Algorithm to partition the graph while maintaining TF-cluster and cluster-cluster interactions. We then apply our graph structure beyond clustering, using it to increase the accuracy of motif-based TFBS searching for an example TF. We show that our method produces small, manageable clusters that encapsulate many known, experimentally validated transcription factor interactions and that our method is capable of capturing interactions that motif similarity methods might miss. Our graph structure is able to significantly increase the accuracy of motif TFBS searching, demonstrating that the TF-TF connections within the graph correlate with biological TF-TF interactions. The interactions identified by our method correspond to biological reality and allow for fast exploration of TF clustering and regulatory dynamics.

  11. Supermanifolds from Feynman graphs

    NASA Astrophysics Data System (ADS)

    Marcolli, Matilde; Rej, Abhijnan

    2008-08-01

    We generalize the computation of Feynman integrals of log divergent graphs in terms of the Kirchhoff polynomial to the case of graphs with both fermionic and bosonic edges, to which we assign a set of ordinary and Grassmann variables. This procedure gives a computation of the Feynman integrals in terms of a period on a supermanifold, for graphs admitting a basis of the first homology satisfying a condition generalizing the log divergence in this context. The analog in this setting of the graph hypersurfaces is a graph supermanifold given by the divisor of zeros and poles of the Berezinian of a matrix associated with the graph, inside a superprojective space. We introduce a Grothendieck group for supermanifolds and identify the subgroup generated by the graph supermanifolds. This can be seen as a general procedure for constructing interesting classes of supermanifolds with associated periods.

  12. Graph-associated entanglement cost of a multipartite state in exact and finite-block-length approximate constructions

    NASA Astrophysics Data System (ADS)

    Yamasaki, Hayata; Soeda, Akihito; Murao, Mio

    2017-09-01

    We introduce and analyze graph-associated entanglement cost, a generalization of the entanglement cost of quantum states to multipartite settings. We identify a necessary and sufficient condition for any multipartite entangled state to be constructible when quantum communication between the multiple parties is restricted to a quantum network represented by a tree. The condition for exact state construction is expressed in terms of the Schmidt ranks of the state defined with respect to edges of the tree. We also study approximate state construction and provide a second-order asymptotic analysis.

  13. Adaptive random walks on the class of Web graphs

    NASA Astrophysics Data System (ADS)

    Tadić, B.

    2001-09-01

    We study random walk with adaptive move strategies on a class of directed graphs with variable wiring diagram. The graphs are grown from the evolution rules compatible with the dynamics of the world-wide Web [B. Tadić, Physica A 293, 273 (2001)], and are characterized by a pair of power-law distributions of out- and in-degree for each value of the parameter β, which measures the degree of rewiring in the graph. The walker adapts its move strategy according to locally available information both on out-degree of the visited node and in-degree of target node. A standard random walk, on the other hand, uses the out-degree only. We compute the distribution of connected subgraphs visited by an ensemble of walkers, the average access time and survival probability of the walks. We discuss these properties of the walk dynamics relative to the changes in the global graph structure when the control parameter β is varied. For β≥ 3, corresponding to the world-wide Web, the access time of the walk to a given level of hierarchy on the graph is much shorter compared to the standard random walk on the same graph. By reducing the amount of rewiring towards rigidity limit β↦βc≲ 0.1, corresponding to the range of naturally occurring biochemical networks, the survival probability of adaptive and standard random walk become increasingly similar. The adaptive random walk can be used as an efficient message-passing algorithm on this class of graphs for large degree of rewiring.

  14. G-Bean: an ontology-graph based web tool for biomedical literature retrieval.

    PubMed

    Wang, James Z; Zhang, Yuanyuan; Dong, Liang; Li, Lin; Srimani, Pradip K; Yu, Philip S

    2014-01-01

    Currently, most people use NCBI's PubMed to search the MEDLINE database, an important bibliographical information source for life science and biomedical information. However, PubMed has some drawbacks that make it difficult to find relevant publications pertaining to users' individual intentions, especially for non-expert users. To ameliorate the disadvantages of PubMed, we developed G-Bean, a graph based biomedical search engine, to search biomedical articles in MEDLINE database more efficiently. G-Bean addresses PubMed's limitations with three innovations: (1) Parallel document index creation: a multithreaded index creation strategy is employed to generate the document index for G-Bean in parallel; (2) Ontology-graph based query expansion: an ontology graph is constructed by merging four major UMLS (Version 2013AA) vocabularies, MeSH, SNOMEDCT, CSP and AOD, to cover all concepts in National Library of Medicine (NLM) database; a Personalized PageRank algorithm is used to compute concept relevance in this ontology graph and the Term Frequency - Inverse Document Frequency (TF-IDF) weighting scheme is used to re-rank the concepts. The top 500 ranked concepts are selected for expanding the initial query to retrieve more accurate and relevant information; (3) Retrieval and re-ranking of documents based on user's search intention: after the user selects any article from the existing search results, G-Bean analyzes user's selections to determine his/her true search intention and then uses more relevant and more specific terms to retrieve additional related articles. The new articles are presented to the user in the order of their relevance to the already selected articles. Performance evaluation with 106 OHSUMED benchmark queries shows that G-Bean returns more relevant results than PubMed does when using these queries to search the MEDLINE database. PubMed could not even return any search result for some OHSUMED queries because it failed to form the appropriate Boolean

  15. Aspects of Performance on Line Graph Description Tasks: Influenced by Graph Familiarity and Different Task Features

    ERIC Educational Resources Information Center

    Xi, Xiaoming

    2010-01-01

    Motivated by cognitive theories of graph comprehension, this study systematically manipulated characteristics of a line graph description task in a speaking test in ways to mitigate the influence of graph familiarity, a potential source of construct-irrelevant variance. It extends Xi (2005), which found that the differences in holistic scores on…

  16. Graph theory and the Virasoro master equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obers, N.A.J.

    1991-04-01

    A brief history of affine Lie algebra, the Virasoro algebra and its culmination in the Virasoro master equations is given. By studying ansaetze of the master equation, we obtain exact solutions and gain insight in the structure of large slices of affine-Virasoro space. We find an isomorphism between the constructions in the ansatz SO(n){sub diag}, which is a set of unitary, generically irrational affine-Virasoro constructions on SO(n), and the unlabelled graphs, while, conversely, a group-theoretic and conformal field-theoretic identification is obtained for every graph of graph theory. We also define a class of magic'' Lie group bases in which themore » Virasoro master equation admits a simple metric ansatz (gmetric), whose structure is visible in the high-level expansion. When a magic basis is real on compact g, the corresponding g{sub metric} is a large system of unitary, generically irrational conformal field theories. Examples in this class include the graph-theory ansatz SO(n){sub diag} in the Cartesian basis of SO(n), and the ansatz SU(n){sub metric} in the Pauli-like basis of SU(n). Finally, we define the sine-area graphs'' of SU(n), which label the conformal field theories of SU(n){sub metric}, and we note that, in similar fashion, each magic basis of g defines a generalized graph theory on g which labels the conformal field theories of g{sub metric}. 24 figs., 4 tabs.« less

  17. Random graph models of social networks.

    PubMed

    Newman, M E J; Watts, D J; Strogatz, S H

    2002-02-19

    We describe some new exactly solvable models of the structure of social networks, based on random graphs with arbitrary degree distributions. We give models both for simple unipartite networks, such as acquaintance networks, and bipartite networks, such as affiliation networks. We compare the predictions of our models to data for a number of real-world social networks and find that in some cases, the models are in remarkable agreement with the data, whereas in others the agreement is poorer, perhaps indicating the presence of additional social structure in the network that is not captured by the random graph.

  18. Anisotropic Laplace-Beltrami Eigenmaps: Bridging Reeb Graphs and Skeletons*

    PubMed Central

    Shi, Yonggang; Lai, Rongjie; Krishna, Sheila; Sicotte, Nancy; Dinov, Ivo; Toga, Arthur W.

    2010-01-01

    In this paper we propose a novel approach of computing skeletons of robust topology for simply connected surfaces with boundary by constructing Reeb graphs from the eigenfunctions of an anisotropic Laplace-Beltrami operator. Our work brings together the idea of Reeb graphs and skeletons by incorporating a flux-based weight function into the Laplace-Beltrami operator. Based on the intrinsic geometry of the surface, the resulting Reeb graph is pose independent and captures the global profile of surface geometry. Our algorithm is very efficient and it only takes several seconds to compute on neuroanatomical structures such as the cingulate gyrus and corpus callosum. In our experiments, we show that the Reeb graphs serve well as an approximate skeleton with consistent topology while following the main body of conventional skeletons quite accurately. PMID:21339850

  19. Evolutionary graph theory: breaking the symmetry between interaction and replacement

    PubMed Central

    Ohtsuki, Hisashi; Pacheco, Jorge M.; Nowak, Martin A.

    2008-01-01

    We study evolutionary dynamics in a population whose structure is given by two graphs: the interaction graph determines who plays with whom in an evolutionary game; the replacement graph specifies the geometry of evolutionary competition and updating. First, we calculate the fixation probabilities of frequency dependent selection between two strategies or phenotypes. We consider three different update mechanisms: birth-death, death-birth and imitation. Then, as a particular example, we explore the evolution of cooperation. Suppose the interaction graph is a regular graph of degree h, the replacement graph is a regular graph of degree g and the overlap between the two graphs is a regular graph of degree l. We show that cooperation is favored by natural selection if b/c > hg/l. Here, b and c denote the benefit and cost of the altruistic act. This result holds for death-birth updating, weak selection and large population size. Note that the optimum population structure for cooperators is given by maximum overlap between the interaction and the replacement graph (g = h = l), which means that the two graphs are identical. We also prove that a modified replicator equation can describe how the expected values of the frequencies of an arbitrary number of strategies change on replacement and interaction graphs: the two graphs induce a transformation of the payoff matrix. PMID:17350049

  20. Mathematical Minute: Rotating a Function Graph

    ERIC Educational Resources Information Center

    Bravo, Daniel; Fera, Joseph

    2013-01-01

    Using calculus only, we find the angles you can rotate the graph of a differentiable function about the origin and still obtain a function graph. We then apply the solution to odd and even degree polynomials.

  1. Weights and topology: a study of the effects of graph construction on 3D image segmentation.

    PubMed

    Grady, Leo; Jolly, Marie-Pierre

    2008-01-01

    Graph-based algorithms have become increasingly popular for medical image segmentation. The fundamental process for each of these algorithms is to use the image content to generate a set of weights for the graph and then set conditions for an optimal partition of the graph with respect to these weights. To date, the heuristics used for generating the weighted graphs from image intensities have largely been ignored, while the primary focus of attention has been on the details of providing the partitioning conditions. In this paper we empirically study the effects of graph connectivity and weighting function on the quality of the segmentation results. To control for algorithm-specific effects, we employ both the Graph Cuts and Random Walker algorithms in our experiments.

  2. An Expert System toward Buiding An Earth Science Knowledge Graph

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Duan, X.; Ramachandran, R.; Lee, T. J.; Bao, Q.; Gatlin, P. N.; Maskey, M.

    2017-12-01

    In this ongoing work, we aim to build foundations of Cognitive Computing for Earth Science research. The goal of our project is to develop an end-to-end automated methodology for incrementally constructing Knowledge Graphs for Earth Science (KG4ES). These knowledge graphs can then serve as the foundational components for building cognitive systems in Earth science, enabling researchers to uncover new patterns and hypotheses that are virtually impossible to identify today. In addition, this research focuses on developing mining algorithms needed to exploit these constructed knowledge graphs. As such, these graphs will free knowledge from publications that are generated in a very linear, deterministic manner, and structure knowledge in a way that users can both interact and connect with relevant pieces of information. Our major contributions are two-fold. First, we have developed an end-to-end methodology for constructing Knowledge Graphs for Earth Science (KG4ES) using existing corpus of journal papers and reports. One of the key challenges in any machine learning, especially deep learning applications, is the need for robust and large training datasets. We have developed techniques capable of automatically retraining models and incrementally building and updating KG4ES, based on ever evolving training data. We also adopt the evaluation instrument based on common research methodologies used in Earth science research, especially in Atmospheric Science. Second, we have developed an algorithm to infer new knowledge that can exploit the constructed KG4ES. In more detail, we have developed a network prediction algorithm aiming to explore and predict possible new connections in the KG4ES and aid in new knowledge discovery.

  3. Graph-based linear scaling electronic structure theory.

    PubMed

    Niklasson, Anders M N; Mniszewski, Susan M; Negre, Christian F A; Cawkwell, Marc J; Swart, Pieter J; Mohd-Yusof, Jamal; Germann, Timothy C; Wall, Michael E; Bock, Nicolas; Rubensson, Emanuel H; Djidjev, Hristo

    2016-06-21

    We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.

  4. Graph-based linear scaling electronic structure theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niklasson, Anders M. N., E-mail: amn@lanl.gov; Negre, Christian F. A.; Cawkwell, Marc J.

    2016-06-21

    We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.

  5. Fitchi: haplotype genealogy graphs based on the Fitch algorithm.

    PubMed

    Matschiner, Michael

    2016-04-15

    : In population genetics and phylogeography, haplotype genealogy graphs are important tools for the visualization of population structure based on sequence data. In this type of graph, node sizes are often drawn in proportion to haplotype frequencies and edge lengths represent the minimum number of mutations separating adjacent nodes. I here present Fitchi, a new program that produces publication-ready haplotype genealogy graphs based on the Fitch algorithm. http://www.evoinformatics.eu/fitchi.htm : michaelmatschiner@mac.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Constructing graph models for software system development and analysis

    NASA Astrophysics Data System (ADS)

    Pogrebnoy, Andrey V.

    2017-01-01

    We propose a concept for creating the instrumentation for functional and structural decisions rationale during the software system (SS) development. We propose to develop SS simultaneously on two models - functional (FM) and structural (SM). FM is a source code of the SS. Adequate representation of the FM in the form of a graph model (GM) is made automatically and called SM. The problem of creating and visualizing GM is considered from the point of applying it as a uniform platform for the adequate representation of the SS source code. We propose three levels of GM detailing: GM1 - for visual analysis of the source code and for SS version control, GM2 - for resources optimization and analysis of connections between SS components, GM3 - for analysis of the SS functioning in dynamics. The paper includes examples of constructing all levels of GM.

  7. A graph-based system for network-vulnerability analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swiler, L.P.; Phillips, C.

    1998-06-01

    This paper presents a graph-based approach to network vulnerability analysis. The method is flexible, allowing analysis of attacks from both outside and inside the network. It can analyze risks to a specific network asset, or examine the universe of possible consequences following a successful attack. The graph-based tool can identify the set of attack paths that have a high probability of success (or a low effort cost) for the attacker. The system could be used to test the effectiveness of making configuration changes, implementing an intrusion detection system, etc. The analysis system requires as input a database of common attacks,more » broken into atomic steps, specific network configuration and topology information, and an attacker profile. The attack information is matched with the network configuration information and an attacker profile to create a superset attack graph. Nodes identify a stage of attack, for example the class of machines the attacker has accessed and the user privilege level he or she has compromised. The arcs in the attack graph represent attacks or stages of attacks. By assigning probabilities of success on the arcs or costs representing level-of-effort for the attacker, various graph algorithms such as shortest-path algorithms can identify the attack paths with the highest probability of success.« less

  8. A PVS Graph Theory Library

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Sjogren, Jon A.

    1998-01-01

    This paper documents the NASA Langley PVS graph theory library. The library provides fundamental definitions for graphs, subgraphs, walks, paths, subgraphs generated by walks, trees, cycles, degree, separating sets, and four notions of connectedness. Theorems provided include Ramsey's and Menger's and the equivalence of all four notions of connectedness.

  9. A graph-based network-vulnerability analysis system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swiler, L.P.; Phillips, C.; Gaylor, T.

    1998-05-03

    This paper presents a graph based approach to network vulnerability analysis. The method is flexible, allowing analysis of attacks from both outside and inside the network. It can analyze risks to a specific network asset, or examine the universe of possible consequences following a successful attack. The analysis system requires as input a database of common attacks, broken into atomic steps, specific network configuration and topology information, and an attacker profile. The attack information is matched with the network configuration information and an attacker profile to create a superset attack graph. Nodes identify a stage of attack, for example themore » class of machines the attacker has accessed and the user privilege level he or she has compromised. The arcs in the attack graph represent attacks or stages of attacks. By assigning probabilities of success on the arcs or costs representing level of effort for the attacker, various graph algorithms such as shortest path algorithms can identify the attack paths with the highest probability of success.« less

  10. A graph-based network-vulnerability analysis system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swiler, L.P.; Phillips, C.; Gaylor, T.

    1998-01-01

    This report presents a graph-based approach to network vulnerability analysis. The method is flexible, allowing analysis of attacks from both outside and inside the network. It can analyze risks to a specific network asset, or examine the universe of possible consequences following a successful attack. The analysis system requires as input a database of common attacks, broken into atomic steps, specific network configuration and topology information, and an attacker profile. The attack information is matched with the network configuration information and an attacker profile to create a superset attack graph. Nodes identify a stage of attack, for example the classmore » of machines the attacker has accessed and the user privilege level he or she has compromised. The arcs in the attack graph represent attacks or stages of attacks. By assigning probabilities of success on the arcs or costs representing level-of-effort for the attacker, various graph algorithms such as shortest-path algorithms can identify the attack paths with the highest probability of success.« less

  11. Scale-free Graphs for General Aviation Flight Schedules

    NASA Technical Reports Server (NTRS)

    Alexandov, Natalia M. (Technical Monitor); Kincaid, Rex K.

    2003-01-01

    In the late 1990s a number of researchers noticed that networks in biology, sociology, and telecommunications exhibited similar characteristics unlike standard random networks. In particular, they found that the cummulative degree distributions of these graphs followed a power law rather than a binomial distribution and that their clustering coefficients tended to a nonzero constant as the number of nodes, n, became large rather than O(1/n). Moreover, these networks shared an important property with traditional random graphs as n becomes large the average shortest path length scales with log n. This latter property has been coined the small-world property. When taken together these three properties small-world, power law, and constant clustering coefficient describe what are now most commonly referred to as scale-free networks. Since 1997 at least six books and over 400 articles have been written about scale-free networks. In this manuscript an overview of the salient characteristics of scale-free networks. Computational experience will be provided for two mechanisms that grow (dynamic) scale-free graphs. Additional computational experience will be given for constructing (static) scale-free graphs via a tabu search optimization approach. Finally, a discussion of potential applications to general aviation networks is given.

  12. Multifractal analysis of visibility graph-based Ito-related connectivity time series.

    PubMed

    Czechowski, Zbigniew; Lovallo, Michele; Telesca, Luciano

    2016-02-01

    In this study, we investigate multifractal properties of connectivity time series resulting from the visibility graph applied to normally distributed time series generated by the Ito equations with multiplicative power-law noise. We show that multifractality of the connectivity time series (i.e., the series of numbers of links outgoing any node) increases with the exponent of the power-law noise. The multifractality of the connectivity time series could be due to the width of connectivity degree distribution that can be related to the exit time of the associated Ito time series. Furthermore, the connectivity time series are characterized by persistence, although the original Ito time series are random; this is due to the procedure of visibility graph that, connecting the values of the time series, generates persistence but destroys most of the nonlinear correlations. Moreover, the visibility graph is sensitive for detecting wide "depressions" in input time series.

  13. Extended Graph-Based Models for Enhanced Similarity Search in Cavbase.

    PubMed

    Krotzky, Timo; Fober, Thomas; Hüllermeier, Eyke; Klebe, Gerhard

    2014-01-01

    To calculate similarities between molecular structures, measures based on the maximum common subgraph are frequently applied. For the comparison of protein binding sites, these measures are not fully appropriate since graphs representing binding sites on a detailed atomic level tend to get very large. In combination with an NP-hard problem, a large graph leads to a computationally demanding task. Therefore, for the comparison of binding sites, a less detailed coarse graph model is used building upon so-called pseudocenters. Consistently, a loss of structural data is caused since many atoms are discarded and no information about the shape of the binding site is considered. This is usually resolved by performing subsequent calculations based on additional information. These steps are usually quite expensive, making the whole approach very slow. The main drawback of a graph-based model solely based on pseudocenters, however, is the loss of information about the shape of the protein surface. In this study, we propose a novel and efficient modeling formalism that does not increase the size of the graph model compared to the original approach, but leads to graphs containing considerably more information assigned to the nodes. More specifically, additional descriptors considering surface characteristics are extracted from the local surface and attributed to the pseudocenters stored in Cavbase. These properties are evaluated as additional node labels, which lead to a gain of information and allow for much faster but still very accurate comparisons between different structures.

  14. A comparative study of theoretical graph models for characterizing structural networks of human brain.

    PubMed

    Li, Xiaojin; Hu, Xintao; Jin, Changfeng; Han, Junwei; Liu, Tianming; Guo, Lei; Hao, Wei; Li, Lingjiang

    2013-01-01

    Previous studies have investigated both structural and functional brain networks via graph-theoretical methods. However, there is an important issue that has not been adequately discussed before: what is the optimal theoretical graph model for describing the structural networks of human brain? In this paper, we perform a comparative study to address this problem. Firstly, large-scale cortical regions of interest (ROIs) are localized by recently developed and validated brain reference system named Dense Individualized Common Connectivity-based Cortical Landmarks (DICCCOL) to address the limitations in the identification of the brain network ROIs in previous studies. Then, we construct structural brain networks based on diffusion tensor imaging (DTI) data. Afterwards, the global and local graph properties of the constructed structural brain networks are measured using the state-of-the-art graph analysis algorithms and tools and are further compared with seven popular theoretical graph models. In addition, we compare the topological properties between two graph models, namely, stickiness-index-based model (STICKY) and scale-free gene duplication model (SF-GD), that have higher similarity with the real structural brain networks in terms of global and local graph properties. Our experimental results suggest that among the seven theoretical graph models compared in this study, STICKY and SF-GD models have better performances in characterizing the structural human brain network.

  15. Nonlinear Dynamics of River Runoff Elucidated by Horizontal Visibility Graphs

    NASA Astrophysics Data System (ADS)

    Lange, Holger; Rosso, Osvaldo A.

    2017-04-01

    We investigate a set of long-term river runoff time series at daily resolution from Brazil, monitored by the Agencia Nacional de Aguas. A total of 150 time series was obtained, with an average length of 65 years. Both long-term trends and human influence (water management, e.g. for power production) on the dynamical behaviour are analyzed. We use Horizontal Visibility Graphs (HVGs) to determine the individual temporal networks for the time series, and extract their degree and their distance (shortest path length) distributions. Statistical and information-theoretic properties of these distributions are calculated: robust estimators of skewness and kurtosis, the maximum degree occurring in the time series, the Shannon entropy, permutation complexity and Fisher Information. For the latter, we also compare the information measures obtained from the degree distributions to those using the original time series directly, to investigate the impact of graph construction on the dynamical properties as reflected in these measures. Focus is on one hand on universal properties of the HVG, common to all runoff series, and on site-specific aspects on the other. Results demonstrate that the assumption of power law behaviour for the degree distribtion does not generally hold, and that management has a significant impact on this distribution. We also show that a specific pretreatment of the time series conventional in hydrology, the elimination of seasonality by a separate z-transformation for each calendar day, is highly detrimental to the nonlinear behaviour. It changes long-term correlations and the overall dynamics towards more random behaviour. Analysis based on the transformed data easily leads to spurious results, and bear a high risk of misinterpretation.

  16. Learning locality preserving graph from data.

    PubMed

    Zhang, Yan-Ming; Huang, Kaizhu; Hou, Xinwen; Liu, Cheng-Lin

    2014-11-01

    Machine learning based on graph representation, or manifold learning, has attracted great interest in recent years. As the discrete approximation of data manifold, the graph plays a crucial role in these kinds of learning approaches. In this paper, we propose a novel learning method for graph construction, which is distinct from previous methods in that it solves an optimization problem with the aim of directly preserving the local information of the original data set. We show that the proposed objective has close connections with the popular Laplacian Eigenmap problem, and is hence well justified. The optimization turns out to be a quadratic programming problem with n(n-1)/2 variables (n is the number of data points). Exploiting the sparsity of the graph, we further propose a more efficient cutting plane algorithm to solve the problem, making the method better scalable in practice. In the context of clustering and semi-supervised learning, we demonstrated the advantages of our proposed method by experiments.

  17. A sediment graph model based on SCS-CN method

    NASA Astrophysics Data System (ADS)

    Singh, P. K.; Bhunya, P. K.; Mishra, S. K.; Chaube, U. C.

    2008-01-01

    SummaryThis paper proposes new conceptual sediment graph models based on coupling of popular and extensively used methods, viz., Nash model based instantaneous unit sediment graph (IUSG), soil conservation service curve number (SCS-CN) method, and Power law. These models vary in their complexity and this paper tests their performance using data of the Nagwan watershed (area = 92.46 km 2) (India). The sensitivity of total sediment yield and peak sediment flow rate computations to model parameterisation is analysed. The exponent of the Power law, β, is more sensitive than other model parameters. The models are found to have substantial potential for computing sediment graphs (temporal sediment flow rate distribution) as well as total sediment yield.

  18. A Graph Based Backtracking Algorithm for Solving General CSPs

    NASA Technical Reports Server (NTRS)

    Pang, Wanlin; Goodwin, Scott D.

    2003-01-01

    Many AI tasks can be formalized as constraint satisfaction problems (CSPs), which involve finding values for variables subject to constraints. While solving a CSP is an NP-complete task in general, tractable classes of CSPs have been identified based on the structure of the underlying constraint graphs. Much effort has been spent on exploiting structural properties of the constraint graph to improve the efficiency of finding a solution. These efforts contributed to development of a class of CSP solving algorithms called decomposition algorithms. The strength of CSP decomposition is that its worst-case complexity depends on the structural properties of the constraint graph and is usually better than the worst-case complexity of search methods. Its practical application is limited, however, since it cannot be applied if the CSP is not decomposable. In this paper, we propose a graph based backtracking algorithm called omega-CDBT, which shares merits and overcomes the weaknesses of both decomposition and search approaches.

  19. Bipartite entangled stabilizer mutually unbiased bases as maximum cliques of Cayley graphs

    NASA Astrophysics Data System (ADS)

    van Dam, Wim; Howard, Mark

    2011-07-01

    We examine the existence and structure of particular sets of mutually unbiased bases (MUBs) in bipartite qudit systems. In contrast to well-known power-of-prime MUB constructions, we restrict ourselves to using maximally entangled stabilizer states as MUB vectors. Consequently, these bipartite entangled stabilizer MUBs (BES MUBs) provide no local information, but are sufficient and minimal for decomposing a wide variety of interesting operators including (mixtures of) Jamiołkowski states, entanglement witnesses, and more. The problem of finding such BES MUBs can be mapped, in a natural way, to that of finding maximum cliques in a family of Cayley graphs. Some relationships with known power-of-prime MUB constructions are discussed, and observables for BES MUBs are given explicitly in terms of Pauli operators.

  20. Retina verification system based on biometric graph matching.

    PubMed

    Lajevardi, Seyed Mehdi; Arakala, Arathi; Davis, Stephen A; Horadam, Kathy J

    2013-09-01

    This paper presents an automatic retina verification framework based on the biometric graph matching (BGM) algorithm. The retinal vasculature is extracted using a family of matched filters in the frequency domain and morphological operators. Then, retinal templates are defined as formal spatial graphs derived from the retinal vasculature. The BGM algorithm, a noisy graph matching algorithm, robust to translation, non-linear distortion, and small rotations, is used to compare retinal templates. The BGM algorithm uses graph topology to define three distance measures between a pair of graphs, two of which are new. A support vector machine (SVM) classifier is used to distinguish between genuine and imposter comparisons. Using single as well as multiple graph measures, the classifier achieves complete separation on a training set of images from the VARIA database (60% of the data), equaling the state-of-the-art for retina verification. Because the available data set is small, kernel density estimation (KDE) of the genuine and imposter score distributions of the training set are used to measure performance of the BGM algorithm. In the one dimensional case, the KDE model is validated with the testing set. A 0 EER on testing shows that the KDE model is a good fit for the empirical distribution. For the multiple graph measures, a novel combination of the SVM boundary and the KDE model is used to obtain a fair comparison with the KDE model for the single measure. A clear benefit in using multiple graph measures over a single measure to distinguish genuine and imposter comparisons is demonstrated by a drop in theoretical error of between 60% and more than two orders of magnitude.

  1. A method for independent component graph analysis of resting-state fMRI.

    PubMed

    Ribeiro de Paula, Demetrius; Ziegler, Erik; Abeyasinghe, Pubuditha M; Das, Tushar K; Cavaliere, Carlo; Aiello, Marco; Heine, Lizette; di Perri, Carol; Demertzi, Athena; Noirhomme, Quentin; Charland-Verville, Vanessa; Vanhaudenhuyse, Audrey; Stender, Johan; Gomez, Francisco; Tshibanda, Jean-Flory L; Laureys, Steven; Owen, Adrian M; Soddu, Andrea

    2017-03-01

    Independent component analysis (ICA) has been extensively used for reducing task-free BOLD fMRI recordings into spatial maps and their associated time-courses. The spatially identified independent components can be considered as intrinsic connectivity networks (ICNs) of non-contiguous regions. To date, the spatial patterns of the networks have been analyzed with techniques developed for volumetric data. Here, we detail a graph building technique that allows these ICNs to be analyzed with graph theory. First, ICA was performed at the single-subject level in 15 healthy volunteers using a 3T MRI scanner. The identification of nine networks was performed by a multiple-template matching procedure and a subsequent component classification based on the network "neuronal" properties. Second, for each of the identified networks, the nodes were defined as 1,015 anatomically parcellated regions. Third, between-node functional connectivity was established by building edge weights for each networks. Group-level graph analysis was finally performed for each network and compared to the classical network. Network graph comparison between the classically constructed network and the nine networks showed significant differences in the auditory and visual medial networks with regard to the average degree and the number of edges, while the visual lateral network showed a significant difference in the small-worldness. This novel approach permits us to take advantage of the well-recognized power of ICA in BOLD signal decomposition and, at the same time, to make use of well-established graph measures to evaluate connectivity differences. Moreover, by providing a graph for each separate network, it can offer the possibility to extract graph measures in a specific way for each network. This increased specificity could be relevant for studying pathological brain activity or altered states of consciousness as induced by anesthesia or sleep, where specific networks are known to be altered in

  2. Ring system-based chemical graph generation for de novo molecular design

    NASA Astrophysics Data System (ADS)

    Miyao, Tomoyuki; Kaneko, Hiromasa; Funatsu, Kimito

    2016-05-01

    Generating chemical graphs in silico by combining building blocks is important and fundamental in virtual combinatorial chemistry. A premise in this area is that generated structures should be irredundant as well as exhaustive. In this study, we develop structure generation algorithms regarding combining ring systems as well as atom fragments. The proposed algorithms consist of three parts. First, chemical structures are generated through a canonical construction path. During structure generation, ring systems can be treated as reduced graphs having fewer vertices than those in the original ones. Second, diversified structures are generated by a simple rule-based generation algorithm. Third, the number of structures to be generated can be estimated with adequate accuracy without actual exhaustive generation. The proposed algorithms were implemented in structure generator Molgilla. As a practical application, Molgilla generated chemical structures mimicking rosiglitazone in terms of a two dimensional pharmacophore pattern. The strength of the algorithms lies in simplicity and flexibility. Therefore, they may be applied to various computer programs regarding structure generation by combining building blocks.

  3. Building Scalable Knowledge Graphs for Earth Science

    NASA Technical Reports Server (NTRS)

    Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick; Zhang, Jia; Duan, Xiaoyi; Miller, J. J.; Bugbee, Kaylin; Christopher, Sundar; Freitag, Brian

    2017-01-01

    Knowledge Graphs link key entities in a specific domain with other entities via relationships. From these relationships, researchers can query knowledge graphs for probabilistic recommendations to infer new knowledge. Scientific papers are an untapped resource which knowledge graphs could leverage to accelerate research discovery. Goal: Develop an end-to-end (semi) automated methodology for constructing Knowledge Graphs for Earth Science.

  4. Graphing Misconceptions and Possible Remedies Using Microcomputer-Based Labs.

    ERIC Educational Resources Information Center

    Barclay, William L.

    Graphing is a common and powerful symbol system for representing concrete data. Yet research has shown that students often have graphical misconceptions about how graphs are related to the concrete event. Currently, the Technical Education Research Center (TERC) is developing microcomputer-based laboratories (MBL) science units that use probes to…

  5. G-Bean: an ontology-graph based web tool for biomedical literature retrieval

    PubMed Central

    2014-01-01

    Background Currently, most people use NCBI's PubMed to search the MEDLINE database, an important bibliographical information source for life science and biomedical information. However, PubMed has some drawbacks that make it difficult to find relevant publications pertaining to users' individual intentions, especially for non-expert users. To ameliorate the disadvantages of PubMed, we developed G-Bean, a graph based biomedical search engine, to search biomedical articles in MEDLINE database more efficiently. Methods G-Bean addresses PubMed's limitations with three innovations: (1) Parallel document index creation: a multithreaded index creation strategy is employed to generate the document index for G-Bean in parallel; (2) Ontology-graph based query expansion: an ontology graph is constructed by merging four major UMLS (Version 2013AA) vocabularies, MeSH, SNOMEDCT, CSP and AOD, to cover all concepts in National Library of Medicine (NLM) database; a Personalized PageRank algorithm is used to compute concept relevance in this ontology graph and the Term Frequency - Inverse Document Frequency (TF-IDF) weighting scheme is used to re-rank the concepts. The top 500 ranked concepts are selected for expanding the initial query to retrieve more accurate and relevant information; (3) Retrieval and re-ranking of documents based on user's search intention: after the user selects any article from the existing search results, G-Bean analyzes user's selections to determine his/her true search intention and then uses more relevant and more specific terms to retrieve additional related articles. The new articles are presented to the user in the order of their relevance to the already selected articles. Results Performance evaluation with 106 OHSUMED benchmark queries shows that G-Bean returns more relevant results than PubMed does when using these queries to search the MEDLINE database. PubMed could not even return any search result for some OHSUMED queries because it failed to

  6. Reflecting on Graphs: Attributes of Graph Choice and Construction Practices in Biology

    ERIC Educational Resources Information Center

    Angra, Aakanksha; Gardner, Stephanie M.

    2017-01-01

    Undergraduate biology education reform aims to engage students in scientific practices such as experimental design, experimentation, and data analysis and communication. Graphs are ubiquitous in the biological sciences, and creating effective graphical representations involves quantitative and disciplinary concepts and skills. Past studies…

  7. Information extraction and knowledge graph construction from geoscience literature

    NASA Astrophysics Data System (ADS)

    Wang, Chengbin; Ma, Xiaogang; Chen, Jianguo; Chen, Jingwen

    2018-03-01

    Geoscience literature published online is an important part of open data, and brings both challenges and opportunities for data analysis. Compared with studies of numerical geoscience data, there are limited works on information extraction and knowledge discovery from textual geoscience data. This paper presents a workflow and a few empirical case studies for that topic, with a focus on documents written in Chinese. First, we set up a hybrid corpus combining the generic and geology terms from geology dictionaries to train Chinese word segmentation rules of the Conditional Random Fields model. Second, we used the word segmentation rules to parse documents into individual words, and removed the stop-words from the segmentation results to get a corpus constituted of content-words. Third, we used a statistical method to analyze the semantic links between content-words, and we selected the chord and bigram graphs to visualize the content-words and their links as nodes and edges in a knowledge graph, respectively. The resulting graph presents a clear overview of key information in an unstructured document. This study proves the usefulness of the designed workflow, and shows the potential of leveraging natural language processing and knowledge graph technologies for geoscience.

  8. [A retrieval method of drug molecules based on graph collapsing].

    PubMed

    Qu, J W; Lv, X Q; Liu, Z M; Liao, Y; Sun, P H; Wang, B; Tang, Z

    2018-04-18

    To establish a compact and efficient hypergraph representation and a graph-similarity-based retrieval method of molecules to achieve effective and efficient medicine information retrieval. Chemical structural formula (CSF) was a primary search target as a unique and precise identifier for each compound at the molecular level in the research field of medicine information retrieval. To retrieve medicine information effectively and efficiently, a complete workflow of the graph-based CSF retrieval system was introduced. This system accepted the photos taken from smartphones and the sketches drawn on tablet personal computers as CSF inputs, and formalized the CSFs with the corresponding graphs. Then this paper proposed a compact and efficient hypergraph representation for molecules on the basis of analyzing factors that directly affected the efficiency of graph matching. According to the characteristics of CSFs, a hierarchical collapsing method combining graph isomorphism and frequent subgraph mining was adopted. There was yet a fundamental challenge, subgraph overlapping during the collapsing procedure, which hindered the method from establishing the correct compact hypergraph of an original CSF graph. Therefore, a graph-isomorphism-based algorithm was proposed to select dominant acyclic subgraphs on the basis of overlapping analysis. Finally, the spatial similarity among graphical CSFs was evaluated by multi-dimensional measures of similarity. To evaluate the performance of the proposed method, the proposed system was firstly compared with Wikipedia Chemical Structure Explorer (WCSE), the state-of-the-art system that allowed CSF similarity searching within Wikipedia molecules dataset, on retrieval accuracy. The system achieved higher values on mean average precision, discounted cumulative gain, rank-biased precision, and expected reciprocal rank than WCSE from the top-2 to the top-10 retrieved results. Specifically, the system achieved 10%, 1.41, 6.42%, and 1

  9. Integer sequence discovery from small graphs

    PubMed Central

    Hoppe, Travis; Petrone, Anna

    2015-01-01

    We have exhaustively enumerated all simple, connected graphs of a finite order and have computed a selection of invariants over this set. Integer sequences were constructed from these invariants and checked against the Online Encyclopedia of Integer Sequences (OEIS). 141 new sequences were added and six sequences were extended. From the graph database, we were able to programmatically suggest relationships among the invariants. It will be shown that we can readily visualize any sequence of graphs with a given criteria. The code has been released as an open-source framework for further analysis and the database was constructed to be extensible to invariants not considered in this work. PMID:27034526

  10. Scaling Up Graph-Based Semisupervised Learning via Prototype Vector Machines

    PubMed Central

    Zhang, Kai; Lan, Liang; Kwok, James T.; Vucetic, Slobodan; Parvin, Bahram

    2014-01-01

    When the amount of labeled data are limited, semi-supervised learning can improve the learner's performance by also using the often easily available unlabeled data. In particular, a popular approach requires the learned function to be smooth on the underlying data manifold. By approximating this manifold as a weighted graph, such graph-based techniques can often achieve state-of-the-art performance. However, their high time and space complexities make them less attractive on large data sets. In this paper, we propose to scale up graph-based semisupervised learning using a set of sparse prototypes derived from the data. These prototypes serve as a small set of data representatives, which can be used to approximate the graph-based regularizer and to control model complexity. Consequently, both training and testing become much more efficient. Moreover, when the Gaussian kernel is used to define the graph affinity, a simple and principled method to select the prototypes can be obtained. Experiments on a number of real-world data sets demonstrate encouraging performance and scaling properties of the proposed approach. It also compares favorably with models learned via ℓ1-regularization at the same level of model sparsity. These results demonstrate the efficacy of the proposed approach in producing highly parsimonious and accurate models for semisupervised learning. PMID:25720002

  11. Plan-graph Based Heuristics for Conformant Probabilistic Planning

    NASA Technical Reports Server (NTRS)

    Ramakrishnan, Salesh; Pollack, Martha E.; Smith, David E.

    2004-01-01

    In this paper, we introduce plan-graph based heuristics to solve a variation of the conformant probabilistic planning (CPP) problem. In many real-world problems, it is the case that the sensors are unreliable or take too many resources to provide knowledge about the environment. These domains are better modeled as conformant planning problems. POMDP based techniques are currently the most successful approach for solving CPP but have the limitation of state- space explosion. Recent advances in deterministic and conformant planning have shown that plan-graphs can be used to enhance the performance significantly. We show that this enhancement can also be translated to CPP. We describe our process for developing the plan-graph heuristics and estimating the probability of a partial plan. We compare the performance of our planner PVHPOP when used with different heuristics. We also perform a comparison with a POMDP solver to show over a order of magnitude improvement in performance.

  12. Graph cuts for curvature based image denoising.

    PubMed

    Bae, Egil; Shi, Juan; Tai, Xue-Cheng

    2011-05-01

    Minimization of total variation (TV) is a well-known method for image denoising. Recently, the relationship between TV minimization problems and binary MRF models has been much explored. This has resulted in some very efficient combinatorial optimization algorithms for the TV minimization problem in the discrete setting via graph cuts. To overcome limitations, such as staircasing effects, of the relatively simple TV model, variational models based upon higher order derivatives have been proposed. The Euler's elastica model is one such higher order model of central importance, which minimizes the curvature of all level lines in the image. Traditional numerical methods for minimizing the energy in such higher order models are complicated and computationally complex. In this paper, we will present an efficient minimization algorithm based upon graph cuts for minimizing the energy in the Euler's elastica model, by simplifying the problem to that of solving a sequence of easy graph representable problems. This sequence has connections to the gradient flow of the energy function, and converges to a minimum point. The numerical experiments show that our new approach is more effective in maintaining smooth visual results while preserving sharp features better than TV models.

  13. Bipartite entangled stabilizer mutually unbiased bases as maximum cliques of Cayley graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dam, Wim van; Howard, Mark; Department of Physics, University of California, Santa Barbara, California 93106

    2011-07-15

    We examine the existence and structure of particular sets of mutually unbiased bases (MUBs) in bipartite qudit systems. In contrast to well-known power-of-prime MUB constructions, we restrict ourselves to using maximally entangled stabilizer states as MUB vectors. Consequently, these bipartite entangled stabilizer MUBs (BES MUBs) provide no local information, but are sufficient and minimal for decomposing a wide variety of interesting operators including (mixtures of) Jamiolkowski states, entanglement witnesses, and more. The problem of finding such BES MUBs can be mapped, in a natural way, to that of finding maximum cliques in a family of Cayley graphs. Some relationships withmore » known power-of-prime MUB constructions are discussed, and observables for BES MUBs are given explicitly in terms of Pauli operators.« less

  14. Data-based Decision-making: Teachers' Comprehension of Curriculum-based Measurement Progress-monitoring Graphs

    ERIC Educational Resources Information Center

    van den Bosch, Roxette M.; Espin, Christine A.; Chung, Siuman; Saab, Nadira

    2017-01-01

    Teachers have difficulty using data from Curriculum-based Measurement (CBM) progress graphs of students with learning difficulties for instructional decision-making. As a first step in unraveling those difficulties, we studied teachers' comprehension of CBM graphs. Using think-aloud methodology, we examined 23 teachers' ability to…

  15. Optimized Graph Learning Using Partial Tags and Multiple Features for Image and Video Annotation.

    PubMed

    Song, Jingkuan; Gao, Lianli; Nie, Feiping; Shen, Heng Tao; Yan, Yan; Sebe, Nicu

    2016-11-01

    In multimedia annotation, due to the time constraints and the tediousness of manual tagging, it is quite common to utilize both tagged and untagged data to improve the performance of supervised learning when only limited tagged training data are available. This is often done by adding a geometry-based regularization term in the objective function of a supervised learning model. In this case, a similarity graph is indispensable to exploit the geometrical relationships among the training data points, and the graph construction scheme essentially determines the performance of these graph-based learning algorithms. However, most of the existing works construct the graph empirically and are usually based on a single feature without using the label information. In this paper, we propose a semi-supervised annotation approach by learning an optimized graph (OGL) from multi-cues (i.e., partial tags and multiple features), which can more accurately embed the relationships among the data points. Since OGL is a transductive method and cannot deal with novel data points, we further extend our model to address the out-of-sample issue. Extensive experiments on image and video annotation show the consistent superiority of OGL over the state-of-the-art methods.

  16. What does the structure of its visibility graph tell us about the nature of the time series?

    NASA Astrophysics Data System (ADS)

    Franke, Jasper G.; Donner, Reik V.

    2017-04-01

    Visibility graphs are a recently introduced method to construct complex network representations based upon univariate time series in order to study their dynamical characteristics [1]. In the last years, this approach has been successfully applied to studying a considerable variety of geoscientific research questions and data sets, including non-trivial temporal patterns in complex earthquake catalogs [2] or time-reversibility in climate time series [3]. It has been shown that several characteristic features of the thus constructed networks differ between stochastic and deterministic (possibly chaotic) processes, which is, however, relatively hard to exploit in the case of real-world applications. In this study, we propose studying two new measures related with the network complexity of visibility graphs constructed from time series, one being a special type of network entropy [4] and the other a recently introduced measure of the heterogeneity of the network's degree distribution [5]. For paradigmatic model systems exhibiting bifurcation sequences between regular and chaotic dynamics, both properties clearly trace the transitions between both types of regimes and exhibit marked quantitative differences for regular and chaotic dynamics. Moreover, for dynamical systems with a small amount of additive noise, the considered properties demonstrate gradual changes prior to the bifurcation point. This finding appears closely related to the subsequent loss of stability of the current state known to lead to a critical slowing down as the transition point is approaches. In this spirit, both considered visibility graph characteristics provide alternative tracers of dynamical early warning signals consistent with classical indicators. Our results demonstrate that measures of visibility graph complexity (i) provide a potentially useful means to tracing changes in the dynamical patterns encoded in a univariate time series that originate from increasing autocorrelation and (ii

  17. The parametric modified limited penetrable visibility graph for constructing complex networks from time series

    NASA Astrophysics Data System (ADS)

    Li, Xiuming; Sun, Mei; Gao, Cuixia; Han, Dun; Wang, Minggang

    2018-02-01

    This paper presents the parametric modified limited penetrable visibility graph (PMLPVG) algorithm for constructing complex networks from time series. We modify the penetrable visibility criterion of limited penetrable visibility graph (LPVG) in order to improve the rationality of the original penetrable visibility and preserve the dynamic characteristics of the time series. The addition of view angle provides a new approach to characterize the dynamic structure of the time series that is invisible in the previous algorithm. The reliability of the PMLPVG algorithm is verified by applying it to three types of artificial data as well as the actual data of natural gas prices in different regions. The empirical results indicate that PMLPVG algorithm can distinguish the different time series from each other. Meanwhile, the analysis results of natural gas prices data using PMLPVG are consistent with the detrended fluctuation analysis (DFA). The results imply that the PMLPVG algorithm may be a reasonable and significant tool for identifying various time series in different fields.

  18. Graph-based real-time fault diagnostics

    NASA Technical Reports Server (NTRS)

    Padalkar, S.; Karsai, G.; Sztipanovits, J.

    1988-01-01

    A real-time fault detection and diagnosis capability is absolutely crucial in the design of large-scale space systems. Some of the existing AI-based fault diagnostic techniques like expert systems and qualitative modelling are frequently ill-suited for this purpose. Expert systems are often inadequately structured, difficult to validate and suffer from knowledge acquisition bottlenecks. Qualitative modelling techniques sometimes generate a large number of failure source alternatives, thus hampering speedy diagnosis. In this paper we present a graph-based technique which is well suited for real-time fault diagnosis, structured knowledge representation and acquisition and testing and validation. A Hierarchical Fault Model of the system to be diagnosed is developed. At each level of hierarchy, there exist fault propagation digraphs denoting causal relations between failure modes of subsystems. The edges of such a digraph are weighted with fault propagation time intervals. Efficient and restartable graph algorithms are used for on-line speedy identification of failure source components.

  19. Exclusivity structures and graph representatives of local complementation orbits

    NASA Astrophysics Data System (ADS)

    Cabello, Adán; Parker, Matthew G.; Scarpa, Giannicola; Severini, Simone

    2013-07-01

    We describe a construction that maps any connected graph G on three or more vertices into a larger graph, H(G), whose independence number is strictly smaller than its Lovász number which is equal to its fractional packing number. The vertices of H(G) represent all possible events consistent with the stabilizer group of the graph state associated with G, and exclusive events are adjacent. Mathematically, the graph H(G) corresponds to the orbit of G under local complementation. Physically, the construction translates into graph-theoretic terms the connection between a graph state and a Bell inequality maximally violated by quantum mechanics. In the context of zero-error information theory, the construction suggests a protocol achieving the maximum rate of entanglement-assisted capacity, a quantum mechanical analogue of the Shannon capacity, for each H(G). The violation of the Bell inequality is expressed by the one-shot version of this capacity being strictly larger than the independence number. Finally, given the correspondence between graphs and exclusivity structures, we are able to compute the independence number for certain infinite families of graphs with the use of quantum non-locality, therefore highlighting an application of quantum theory in the proof of a purely combinatorial statement.

  20. SpectralNET--an application for spectral graph analysis and visualization.

    PubMed

    Forman, Joshua J; Clemons, Paul A; Schreiber, Stuart L; Haggarty, Stephen J

    2005-10-19

    Graph theory provides a computational framework for modeling a variety of datasets including those emerging from genomics, proteomics, and chemical genetics. Networks of genes, proteins, small molecules, or other objects of study can be represented as graphs of nodes (vertices) and interactions (edges) that can carry different weights. SpectralNET is a flexible application for analyzing and visualizing these biological and chemical networks. Available both as a standalone .NET executable and as an ASP.NET web application, SpectralNET was designed specifically with the analysis of graph-theoretic metrics in mind, a computational task not easily accessible using currently available applications. Users can choose either to upload a network for analysis using a variety of input formats, or to have SpectralNET generate an idealized random network for comparison to a real-world dataset. Whichever graph-generation method is used, SpectralNET displays detailed information about each connected component of the graph, including graphs of degree distribution, clustering coefficient by degree, and average distance by degree. In addition, extensive information about the selected vertex is shown, including degree, clustering coefficient, various distance metrics, and the corresponding components of the adjacency, Laplacian, and normalized Laplacian eigenvectors. SpectralNET also displays several graph visualizations, including a linear dimensionality reduction for uploaded datasets (Principal Components Analysis) and a non-linear dimensionality reduction that provides an elegant view of global graph structure (Laplacian eigenvectors). SpectralNET provides an easily accessible means of analyzing graph-theoretic metrics for data modeling and dimensionality reduction. SpectralNET is publicly available as both a .NET application and an ASP.NET web application from http://chembank.broad.harvard.edu/resources/. Source code is available upon request.

  1. Content-based image retrieval by matching hierarchical attributed region adjacency graphs

    NASA Astrophysics Data System (ADS)

    Fischer, Benedikt; Thies, Christian J.; Guld, Mark O.; Lehmann, Thomas M.

    2004-05-01

    Content-based image retrieval requires a formal description of visual information. In medical applications, all relevant biological objects have to be represented by this description. Although color as the primary feature has proven successful in publicly available retrieval systems of general purpose, this description is not applicable to most medical images. Additionally, it has been shown that global features characterizing the whole image do not lead to acceptable results in the medical context or that they are only suitable for specific applications. For a general purpose content-based comparison of medical images, local, i.e. regional features that are collected on multiple scales must be used. A hierarchical attributed region adjacency graph (HARAG) provides such a representation and transfers image comparison to graph matching. However, building a HARAG from an image requires a restriction in size to be computationally feasible while at the same time all visually plausible information must be preserved. For this purpose, mechanisms for the reduction of the graph size are presented. Even with a reduced graph, the problem of graph matching remains NP-complete. In this paper, the Similarity Flooding approach and Hopfield-style neural networks are adapted from the graph matching community to the needs of HARAG comparison. Based on synthetic image material build from simple geometric objects, all visually similar regions were matched accordingly showing the framework's general applicability to content-based image retrieval of medical images.

  2. Quantum walk on a chimera graph

    NASA Astrophysics Data System (ADS)

    Xu, Shu; Sun, Xiangxiang; Wu, Jizhou; Zhang, Wei-Wei; Arshed, Nigum; Sanders, Barry C.

    2018-05-01

    We analyse a continuous-time quantum walk on a chimera graph, which is a graph of choice for designing quantum annealers, and we discover beautiful quantum walk features such as localization that starkly distinguishes classical from quantum behaviour. Motivated by technological thrusts, we study continuous-time quantum walk on enhanced variants of the chimera graph and on diminished chimera graph with a random removal of vertices. We explain the quantum walk by constructing a generating set for a suitable subgroup of graph isomorphisms and corresponding symmetry operators that commute with the quantum walk Hamiltonian; the Hamiltonian and these symmetry operators provide a complete set of labels for the spectrum and the stationary states. Our quantum walk characterization of the chimera graph and its variants yields valuable insights into graphs used for designing quantum-annealers.

  3. Graph-Based Semantic Web Service Composition for Healthcare Data Integration.

    PubMed

    Arch-Int, Ngamnij; Arch-Int, Somjit; Sonsilphong, Suphachoke; Wanchai, Paweena

    2017-01-01

    Within the numerous and heterogeneous web services offered through different sources, automatic web services composition is the most convenient method for building complex business processes that permit invocation of multiple existing atomic services. The current solutions in functional web services composition lack autonomous queries of semantic matches within the parameters of web services, which are necessary in the composition of large-scale related services. In this paper, we propose a graph-based Semantic Web Services composition system consisting of two subsystems: management time and run time. The management-time subsystem is responsible for dependency graph preparation in which a dependency graph of related services is generated automatically according to the proposed semantic matchmaking rules. The run-time subsystem is responsible for discovering the potential web services and nonredundant web services composition of a user's query using a graph-based searching algorithm. The proposed approach was applied to healthcare data integration in different health organizations and was evaluated according to two aspects: execution time measurement and correctness measurement.

  4. On some labelings of triangular snake and central graph of triangular snake graph

    NASA Astrophysics Data System (ADS)

    Agasthi, P.; Parvathi, N.

    2018-04-01

    A Triangular snake Tn is obtained from a path u 1 u 2 … u n by joining ui and u i+1 to a new vertex wi for 1≤i≤n‑1. A Central graph of Triangular snake C(T n ) is obtained by subdividing each edge of Tn exactly once and joining all the non adjacent vertices of Tn . In this paper the ways to construct square sum, square difference, Root Mean square, strongly Multiplicative, Even Mean and Odd Mean labeling for Triangular Snake and Central graph of Triangular Snake graphs are reported.

  5. Intuitive color-based visualization of multimedia content as large graphs

    NASA Astrophysics Data System (ADS)

    Delest, Maylis; Don, Anthony; Benois-Pineau, Jenny

    2004-06-01

    Data visualization techniques are penetrating in various technological areas. In the field of multimedia such as information search and retrieval in multimedia archives, or digital media production and post-production, data visualization methodologies based on large graphs give an exciting alternative to conventional storyboard visualization. In this paper we develop a new approach to visualization of multimedia (video) documents based both on large graph clustering and preliminary video segmenting and indexing.

  6. A semantic graph-based approach to biomedical summarisation.

    PubMed

    Plaza, Laura; Díaz, Alberto; Gervás, Pablo

    2011-09-01

    Access to the vast body of research literature that is available in biomedicine and related fields may be improved by automatic summarisation. This paper presents a method for summarising biomedical scientific literature that takes into consideration the characteristics of the domain and the type of documents. To address the problem of identifying salient sentences in biomedical texts, concepts and relations derived from the Unified Medical Language System (UMLS) are arranged to construct a semantic graph that represents the document. A degree-based clustering algorithm is then used to identify different themes or topics within the text. Different heuristics for sentence selection, intended to generate different types of summaries, are tested. A real document case is drawn up to illustrate how the method works. A large-scale evaluation is performed using the recall-oriented understudy for gisting-evaluation (ROUGE) metrics. The results are compared with those achieved by three well-known summarisers (two research prototypes and a commercial application) and two baselines. Our method significantly outperforms all summarisers and baselines. The best of our heuristics achieves an improvement in performance of almost 7.7 percentage units in the ROUGE-1 score over the LexRank summariser (0.7862 versus 0.7302). A qualitative analysis of the summaries also shows that our method succeeds in identifying sentences that cover the main topic of the document and also considers other secondary or "satellite" information that might be relevant to the user. The method proposed is proved to be an efficient approach to biomedical literature summarisation, which confirms that the use of concepts rather than terms can be very useful in automatic summarisation, especially when dealing with highly specialised domains. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Employing the therapeutic operating characteristic (TOC) graph for individualised dose prescription.

    PubMed

    Hoffmann, Aswin L; Huizenga, Henk; Kaanders, Johannes H A M

    2013-03-07

    In current practice, patients scheduled for radiotherapy are treated according to 'rigid' protocols with predefined dose prescriptions that do not consider risk-taking preferences of individuals. The therapeutic operating characteristic (TOC) graph is applied as a decision-aid to assess the trade-off between treatment benefit and morbidity to facilitate dose prescription customisation. Historical dose-response data from prostate cancer patient cohorts treated with 3D-conformal radiotherapy is used to construct TOC graphs. Next, intensity-modulated (IMRT) plans are generated by optimisation based on dosimetric criteria and dose-response relationships. TOC graphs are constructed for dose-scaling of the optimised IMRT plan and individualised dose prescription. The area under the TOC curve (AUC) is estimated to measure the therapeutic power of these plans. On a continuous scale, the TOC graph directly visualises treatment benefit and morbidity risk of physicians' or patients' choices for dose (de-)escalation. The trade-off between these probabilities facilitates the selection of an individualised dose prescription. TOC graphs show broader therapeutic window and higher AUCs with increasing target dose heterogeneity. The TOC graph gives patients and physicians access to a decision-aid and read-out of the trade-off between treatment benefit and morbidity risks for individualised dose prescription customisation over a continuous range of dose levels.

  8. Overlapping community detection based on link graph using distance dynamics

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Zhang, Jing; Cai, Li-Jun

    2018-01-01

    The distance dynamics model was recently proposed to detect the disjoint community of a complex network. To identify the overlapping structure of a network using the distance dynamics model, an overlapping community detection algorithm, called L-Attractor, is proposed in this paper. The process of L-Attractor mainly consists of three phases. In the first phase, L-Attractor transforms the original graph to a link graph (a new edge graph) to assure that one node has multiple distances. In the second phase, using the improved distance dynamics model, a dynamic interaction process is introduced to simulate the distance dynamics (shrink or stretch). Through the dynamic interaction process, all distances converge, and the disjoint community structure of the link graph naturally manifests itself. In the third phase, a recovery method is designed to convert the disjoint community structure of the link graph to the overlapping community structure of the original graph. Extensive experiments are conducted on the LFR benchmark networks as well as real-world networks. Based on the results, our algorithm demonstrates higher accuracy and quality than other state-of-the-art algorithms.

  9. Function plot response: A scalable system for teaching kinematics graphs

    NASA Astrophysics Data System (ADS)

    Laverty, James; Kortemeyer, Gerd

    2012-08-01

    Understanding and interpreting graphs are essential skills in all sciences. While students are mostly proficient in plotting given functions and reading values off graphs, they frequently lack the ability to construct and interpret graphs in a meaningful way. Students can use graphs as representations of value pairs, but often fail to interpret them as the representation of functions, and mostly fail to use them as representations of physical reality. Working with graphs in classroom settings has been shown to improve student abilities with graphs, particularly when the students can interact with them. We introduce a novel problem type in an online homework system, which requires students to construct the graphs themselves in free form, and requires no hand-grading by instructors. Initial experiences using the new problem type in an introductory physics course are reported.

  10. Chemical graphs, molecular matrices and topological indices in chemoinformatics and quantitative structure-activity relationships.

    PubMed

    Ivanciuc, Ovidiu

    2013-06-01

    Chemical and molecular graphs have fundamental applications in chemoinformatics, quantitative structureproperty relationships (QSPR), quantitative structure-activity relationships (QSAR), virtual screening of chemical libraries, and computational drug design. Chemoinformatics applications of graphs include chemical structure representation and coding, database search and retrieval, and physicochemical property prediction. QSPR, QSAR and virtual screening are based on the structure-property principle, which states that the physicochemical and biological properties of chemical compounds can be predicted from their chemical structure. Such structure-property correlations are usually developed from topological indices and fingerprints computed from the molecular graph and from molecular descriptors computed from the three-dimensional chemical structure. We present here a selection of the most important graph descriptors and topological indices, including molecular matrices, graph spectra, spectral moments, graph polynomials, and vertex topological indices. These graph descriptors are used to define several topological indices based on molecular connectivity, graph distance, reciprocal distance, distance-degree, distance-valency, spectra, polynomials, and information theory concepts. The molecular descriptors and topological indices can be developed with a more general approach, based on molecular graph operators, which define a family of graph indices related by a common formula. Graph descriptors and topological indices for molecules containing heteroatoms and multiple bonds are computed with weighting schemes based on atomic properties, such as the atomic number, covalent radius, or electronegativity. The correlation in QSPR and QSAR models can be improved by optimizing some parameters in the formula of topological indices, as demonstrated for structural descriptors based on atomic connectivity and graph distance.

  11. Multiparty Quantum Blind Signature Scheme Based on Graph States

    NASA Astrophysics Data System (ADS)

    Jian-Wu, Liang; Xiao-Shu, Liu; Jin-Jing, Shi; Ying, Guo

    2018-05-01

    A multiparty quantum blind signature scheme is proposed based on the principle of graph state, in which the unitary operations of graph state particles can be applied to generate the quantum blind signature and achieve verification. Different from the classical blind signature based on the mathematical difficulty, the scheme could guarantee not only the anonymity but also the unconditionally security. The analysis shows that the length of the signature generated in our scheme does not become longer as the number of signers increases, and it is easy to increase or decrease the number of signers.

  12. Discrimination Power of Polynomial-Based Descriptors for Graphs by Using Functional Matrices.

    PubMed

    Dehmer, Matthias; Emmert-Streib, Frank; Shi, Yongtang; Stefu, Monica; Tripathi, Shailesh

    2015-01-01

    In this paper, we study the discrimination power of graph measures that are based on graph-theoretical matrices. The paper generalizes the work of [M. Dehmer, M. Moosbrugger. Y. Shi, Encoding structural information uniquely with polynomial-based descriptors by employing the Randić matrix, Applied Mathematics and Computation, 268(2015), 164-168]. We demonstrate that by using the new functional matrix approach, exhaustively generated graphs can be discriminated more uniquely than shown in the mentioned previous work.

  13. Creating single-subject design graphs in Microsoft Excel 2007.

    PubMed

    Dixon, Mark R; Jackson, James W; Small, Stacey L; Horner-King, Mollie J; Lik, Nicholas Mui Ker; Garcia, Yors; Rosales, Rocio

    2009-01-01

    Over 10 years have passed since the publication of Carr and Burkholder's (1998) technical article on how to construct single-subject graphs using Microsoft Excel. Over the course of the past decade, the Excel program has undergone a series of revisions that make the Carr and Burkholder paper somewhat difficult to follow with newer versions. The present article provides task analyses for constructing various types of commonly used single-subject design graphs in Microsoft Excel 2007. The task analyses were evaluated using a between-subjects design that compared the graphing skills of 22 behavior-analytic graduate students using Excel 2007 and either the Carr and Burkholder or newly developed task analyses. Results indicate that the new task analyses yielded more accurate and faster graph construction than the Carr and Burkholder instructions.

  14. CREATING SINGLE-SUBJECT DESIGN GRAPHS IN MICROSOFT EXCELTM 2007

    PubMed Central

    Dixon, Mark R; Jackson, James W; Small, Stacey L; Horner-King, Mollie J; Lik, Nicholas Mui Ker; Garcia, Yors; Rosales, Rocio

    2009-01-01

    Over 10 years have passed since the publication of Carr and Burkholder's (1998) technical article on how to construct single-subject graphs using Microsoft Excel. Over the course of the past decade, the Excel program has undergone a series of revisions that make the Carr and Burkholder paper somewhat difficult to follow with newer versions. The present article provides task analyses for constructing various types of commonly used single-subject design graphs in Microsoft Excel 2007. The task analyses were evaluated using a between-subjects design that compared the graphing skills of 22 behavior-analytic graduate students using Excel 2007 and either the Carr and Burkholder or newly developed task analyses. Results indicate that the new task analyses yielded more accurate and faster graph construction than the Carr and Burkholder instructions. PMID:19949515

  15. Graph modeling systems and methods

    DOEpatents

    Neergaard, Mike

    2015-10-13

    An apparatus and a method for vulnerability and reliability modeling are provided. The method generally includes constructing a graph model of a physical network using a computer, the graph model including a plurality of terminating vertices to represent nodes in the physical network, a plurality of edges to represent transmission paths in the physical network, and a non-terminating vertex to represent a non-nodal vulnerability along a transmission path in the physical network. The method additionally includes evaluating the vulnerability and reliability of the physical network using the constructed graph model, wherein the vulnerability and reliability evaluation includes a determination of whether each terminating and non-terminating vertex represents a critical point of failure. The method can be utilized to evaluate wide variety of networks, including power grid infrastructures, communication network topologies, and fluid distribution systems.

  16. The Container Problem in Bubble-Sort Graphs

    NASA Astrophysics Data System (ADS)

    Suzuki, Yasuto; Kaneko, Keiichi

    Bubble-sort graphs are variants of Cayley graphs. A bubble-sort graph is suitable as a topology for massively parallel systems because of its simple and regular structure. Therefore, in this study, we focus on n-bubble-sort graphs and propose an algorithm to obtain n-1 disjoint paths between two arbitrary nodes in time bounded by a polynomial in n, the degree of the graph plus one. We estimate the time complexity of the algorithm and the sum of the path lengths after proving the correctness of the algorithm. In addition, we report the results of computer experiments evaluating the average performance of the algorithm.

  17. Learning Mathematics with Interactive Whiteboards and Computer-Based Graphing Utility

    ERIC Educational Resources Information Center

    Erbas, Ayhan Kursat; Ince, Muge; Kaya, Sukru

    2015-01-01

    The purpose of this study was to explore the effect of a technology-supported learning environment utilizing an interactive whiteboard (IWB) and NuCalc graphing software compared to a traditional direct instruction-based environment on student achievement in graphs of quadratic functions and attitudes towards mathematics and technology. Sixty-five…

  18. A general method for computing Tutte polynomials of self-similar graphs

    NASA Astrophysics Data System (ADS)

    Gong, Helin; Jin, Xian'an

    2017-10-01

    Self-similar graphs were widely studied in both combinatorics and statistical physics. Motivated by the construction of the well-known 3-dimensional Sierpiński gasket graphs, in this paper we introduce a family of recursively constructed self-similar graphs whose inner duals are of the self-similar property. By combining the dual property of the Tutte polynomial and the subgraph-decomposition trick, we show that the Tutte polynomial of this family of graphs can be computed in an iterative way and in particular the exact expression of the formula of the number of their spanning trees is derived. Furthermore, we show our method is a general one that is easily extended to compute Tutte polynomials for other families of self-similar graphs such as Farey graphs, 2-dimensional Sierpiński gasket graphs, Hanoi graphs, modified Koch graphs, Apollonian graphs, pseudofractal scale-free web, fractal scale-free network, etc.

  19. Graph-cut based discrete-valued image reconstruction.

    PubMed

    Tuysuzoglu, Ahmet; Karl, W Clem; Stojanovic, Ivana; Castañòn, David; Ünlü, M Selim

    2015-05-01

    Efficient graph-cut methods have been used with great success for labeling and denoising problems occurring in computer vision. Unfortunately, the presence of linear image mappings has prevented the use of these techniques in most discrete-amplitude image reconstruction problems. In this paper, we develop a graph-cut based framework for the direct solution of discrete amplitude linear image reconstruction problems cast as regularized energy function minimizations. We first analyze the structure of discrete linear inverse problem cost functions to show that the obstacle to the application of graph-cut methods to their solution is the variable mixing caused by the presence of the linear sensing operator. We then propose to use a surrogate energy functional that overcomes the challenges imposed by the sensing operator yet can be utilized efficiently in existing graph-cut frameworks. We use this surrogate energy functional to devise a monotonic iterative algorithm for the solution of discrete valued inverse problems. We first provide experiments using local convolutional operators and show the robustness of the proposed technique to noise and stability to changes in regularization parameter. Then we focus on nonlocal, tomographic examples where we consider limited-angle data problems. We compare our technique with state-of-the-art discrete and continuous image reconstruction techniques. Experiments show that the proposed method outperforms state-of-the-art techniques in challenging scenarios involving discrete valued unknowns.

  20. Identifying Threats Using Graph-based Anomaly Detection

    NASA Astrophysics Data System (ADS)

    Eberle, William; Holder, Lawrence; Cook, Diane

    Much of the data collected during the monitoring of cyber and other infrastructures is structural in nature, consisting of various types of entities and relationships between them. The detection of threatening anomalies in such data is crucial to protecting these infrastructures. We present an approach to detecting anomalies in a graph-based representation of such data that explicitly represents these entities and relationships. The approach consists of first finding normative patterns in the data using graph-based data mining and then searching for small, unexpected deviations to these normative patterns, assuming illicit behavior tries to mimic legitimate, normative behavior. The approach is evaluated using several synthetic and real-world datasets. Results show that the approach has high truepositive rates, low false-positive rates, and is capable of detecting complex structural anomalies in real-world domains including email communications, cellphone calls and network traffic.

  1. Accurate airway segmentation based on intensity structure analysis and graph-cut

    NASA Astrophysics Data System (ADS)

    Meng, Qier; Kitsaka, Takayuki; Nimura, Yukitaka; Oda, Masahiro; Mori, Kensaku

    2016-03-01

    This paper presents a novel airway segmentation method based on intensity structure analysis and graph-cut. Airway segmentation is an important step in analyzing chest CT volumes for computerized lung cancer detection, emphysema diagnosis, asthma diagnosis, and pre- and intra-operative bronchoscope navigation. However, obtaining a complete 3-D airway tree structure from a CT volume is quite challenging. Several researchers have proposed automated algorithms basically based on region growing and machine learning techniques. However these methods failed to detect the peripheral bronchi branches. They caused a large amount of leakage. This paper presents a novel approach that permits more accurate extraction of complex bronchial airway region. Our method are composed of three steps. First, the Hessian analysis is utilized for enhancing the line-like structure in CT volumes, then a multiscale cavity-enhancement filter is employed to detect the cavity-like structure from the previous enhanced result. In the second step, we utilize the support vector machine (SVM) to construct a classifier for removing the FP regions generated. Finally, the graph-cut algorithm is utilized to connect all of the candidate voxels to form an integrated airway tree. We applied this method to sixteen cases of 3D chest CT volumes. The results showed that the branch detection rate of this method can reach about 77.7% without leaking into the lung parenchyma areas.

  2. Application-Specific Graph Sampling for Frequent Subgraph Mining and Community Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purohit, Sumit; Choudhury, Sutanay; Holder, Lawrence B.

    Graph mining is an important data analysis methodology, but struggles as the input graph size increases. The scalability and usability challenges posed by such large graphs make it imperative to sample the input graph and reduce its size. The critical challenge in sampling is to identify the appropriate algorithm to insure the resulting analysis does not suffer heavily from the data reduction. Predicting the expected performance degradation for a given graph and sampling algorithm is also useful. In this paper, we present different sampling approaches for graph mining applications such as Frequent Subgrpah Mining (FSM), and Community Detection (CD). Wemore » explore graph metrics such as PageRank, Triangles, and Diversity to sample a graph and conclude that for heterogeneous graphs Triangles and Diversity perform better than degree based metrics. We also present two new sampling variations for targeted graph mining applications. We present empirical results to show that knowledge of the target application, along with input graph properties can be used to select the best sampling algorithm. We also conclude that performance degradation is an abrupt, rather than gradual phenomena, as the sample size decreases. We present the empirical results to show that the performance degradation follows a logistic function.« less

  3. Limits on relief through constrained exchange on random graphs

    NASA Astrophysics Data System (ADS)

    LaViolette, Randall A.; Ellebracht, Lory A.; Gieseler, Charles J.

    2007-09-01

    Agents are represented by nodes on a random graph (e.g., “small world”). Each agent is endowed with a zero-mean random value that may be either positive or negative. All agents attempt to find relief, i.e., to reduce the magnitude of that initial value, to zero if possible, through exchanges. The exchange occurs only between the agents that are linked, a constraint that turns out to dominate the results. The exchange process continues until Pareto equilibrium is achieved. Only 40-90% of the agents achieved relief on small-world graphs with mean degree between 2 and 40. Even fewer agents achieved relief on scale-free-like graphs with a truncated power-law degree distribution. The rate at which relief grew with increasing degree was slow, only at most logarithmic for all of the graphs considered; viewed in reverse, the fraction of nodes that achieve relief is resilient to the removal of links.

  4. Graph-based signal integration for high-throughput phenotyping

    PubMed Central

    2012-01-01

    Background Electronic Health Records aggregated in Clinical Data Warehouses (CDWs) promise to revolutionize Comparative Effectiveness Research and suggest new avenues of research. However, the effectiveness of CDWs is diminished by the lack of properly labeled data. We present a novel approach that integrates knowledge from the CDW, the biomedical literature, and the Unified Medical Language System (UMLS) to perform high-throughput phenotyping. In this paper, we automatically construct a graphical knowledge model and then use it to phenotype breast cancer patients. We compare the performance of this approach to using MetaMap when labeling records. Results MetaMap's overall accuracy at identifying breast cancer patients was 51.1% (n=428); recall=85.4%, precision=26.2%, and F1=40.1%. Our unsupervised graph-based high-throughput phenotyping had accuracy of 84.1%; recall=46.3%, precision=61.2%, and F1=52.8%. Conclusions We conclude that our approach is a promising alternative for unsupervised high-throughput phenotyping. PMID:23320851

  5. Discrimination Power of Polynomial-Based Descriptors for Graphs by Using Functional Matrices

    PubMed Central

    Dehmer, Matthias; Emmert-Streib, Frank; Shi, Yongtang; Stefu, Monica; Tripathi, Shailesh

    2015-01-01

    In this paper, we study the discrimination power of graph measures that are based on graph-theoretical matrices. The paper generalizes the work of [M. Dehmer, M. Moosbrugger. Y. Shi, Encoding structural information uniquely with polynomial-based descriptors by employing the Randić matrix, Applied Mathematics and Computation, 268(2015), 164–168]. We demonstrate that by using the new functional matrix approach, exhaustively generated graphs can be discriminated more uniquely than shown in the mentioned previous work. PMID:26479495

  6. Node degree distribution in spanning trees

    NASA Astrophysics Data System (ADS)

    Pozrikidis, C.

    2016-03-01

    A method is presented for computing the number of spanning trees involving one link or a specified group of links, and excluding another link or a specified group of links, in a network described by a simple graph in terms of derivatives of the spanning-tree generating function defined with respect to the eigenvalues of the Kirchhoff (weighted Laplacian) matrix. The method is applied to deduce the node degree distribution in a complete or randomized set of spanning trees of an arbitrary network. An important feature of the proposed method is that the explicit construction of spanning trees is not required. It is shown that the node degree distribution in the spanning trees of the complete network is described by the binomial distribution. Numerical results are presented for the node degree distribution in square, triangular, and honeycomb lattices.

  7. Multi-modal classification of neurodegenerative disease by progressive graph-based transductive learning

    PubMed Central

    Wang, Zhengxia; Zhu, Xiaofeng; Adeli, Ehsan; Zhu, Yingying; Nie, Feiping; Munsell, Brent

    2018-01-01

    Graph-based transductive learning (GTL) is a powerful machine learning technique that is used when sufficient training data is not available. In particular, conventional GTL approaches first construct a fixed inter-subject relation graph that is based on similarities in voxel intensity values in the feature domain, which can then be used to propagate the known phenotype data (i.e., clinical scores and labels) from the training data to the testing data in the label domain. However, this type of graph is exclusively learned in the feature domain, and primarily due to outliers in the observed features, may not be optimal for label propagation in the label domain. To address this limitation, a progressive GTL (pGTL) method is proposed that gradually finds an intrinsic data representation that more accurately aligns imaging features with the phenotype data. In general, optimal feature-to-phenotype alignment is achieved using an iterative approach that: (1) refines inter-subject relationships observed in the feature domain by using the learned intrinsic data representation in the label domain, (2) updates the intrinsic data representation from the refined inter-subject relationships, and (3) verifies the intrinsic data representation on the training data to guarantee an optimal classification when applied to testing data. Additionally, the iterative approach is extended to multi-modal imaging data to further improve pGTL classification accuracy. Using Alzheimer’s disease and Parkinson’s disease study data, the classification accuracy of the proposed pGTL method is compared to several state-of-the-art classification methods, and the results show pGTL can more accurately identify subjects, even at different progression stages, in these two study data sets. PMID:28551556

  8. SpectralNET – an application for spectral graph analysis and visualization

    PubMed Central

    Forman, Joshua J; Clemons, Paul A; Schreiber, Stuart L; Haggarty, Stephen J

    2005-01-01

    Background Graph theory provides a computational framework for modeling a variety of datasets including those emerging from genomics, proteomics, and chemical genetics. Networks of genes, proteins, small molecules, or other objects of study can be represented as graphs of nodes (vertices) and interactions (edges) that can carry different weights. SpectralNET is a flexible application for analyzing and visualizing these biological and chemical networks. Results Available both as a standalone .NET executable and as an ASP.NET web application, SpectralNET was designed specifically with the analysis of graph-theoretic metrics in mind, a computational task not easily accessible using currently available applications. Users can choose either to upload a network for analysis using a variety of input formats, or to have SpectralNET generate an idealized random network for comparison to a real-world dataset. Whichever graph-generation method is used, SpectralNET displays detailed information about each connected component of the graph, including graphs of degree distribution, clustering coefficient by degree, and average distance by degree. In addition, extensive information about the selected vertex is shown, including degree, clustering coefficient, various distance metrics, and the corresponding components of the adjacency, Laplacian, and normalized Laplacian eigenvectors. SpectralNET also displays several graph visualizations, including a linear dimensionality reduction for uploaded datasets (Principal Components Analysis) and a non-linear dimensionality reduction that provides an elegant view of global graph structure (Laplacian eigenvectors). Conclusion SpectralNET provides an easily accessible means of analyzing graph-theoretic metrics for data modeling and dimensionality reduction. SpectralNET is publicly available as both a .NET application and an ASP.NET web application from . Source code is available upon request. PMID:16236170

  9. Information Measures of Degree Distributions with an Application to Labeled Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joslyn, Cliff A.; Purvine, Emilie AH

    2016-01-11

    The problem of describing the distribution of labels over a set of objects is relevant to many domains. For example: cyber security, social media, and protein interactions all care about the manner in which labels are distributed among different objects. In this paper we present three interacting statistical measures on label distributions, inspired by entropy and information theory. Labeled graphs are discussed as a specific case of labels distributed over a set of edges. We describe a use case in cyber security using a labeled directed multi-graph of IPFLOW. Finally we show how these measures respond when labels are updatedmore » in certain ways.« less

  10. A framework for graph-based synthesis, analysis, and visualization of HPC cluster job data.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayo, Jackson R.; Kegelmeyer, W. Philip, Jr.; Wong, Matthew H.

    The monitoring and system analysis of high performance computing (HPC) clusters is of increasing importance to the HPC community. Analysis of HPC job data can be used to characterize system usage and diagnose and examine failure modes and their effects. This analysis is not straightforward, however, due to the complex relationships that exist between jobs. These relationships are based on a number of factors, including shared compute nodes between jobs, proximity of jobs in time, etc. Graph-based techniques represent an approach that is particularly well suited to this problem, and provide an effective technique for discovering important relationships in jobmore » queuing and execution data. The efficacy of these techniques is rooted in the use of a semantic graph as a knowledge representation tool. In a semantic graph job data, represented in a combination of numerical and textual forms, can be flexibly processed into edges, with corresponding weights, expressing relationships between jobs, nodes, users, and other relevant entities. This graph-based representation permits formal manipulation by a number of analysis algorithms. This report presents a methodology and software implementation that leverages semantic graph-based techniques for the system-level monitoring and analysis of HPC clusters based on job queuing and execution data. Ontology development and graph synthesis is discussed with respect to the domain of HPC job data. The framework developed automates the synthesis of graphs from a database of job information. It also provides a front end, enabling visualization of the synthesized graphs. Additionally, an analysis engine is incorporated that provides performance analysis, graph-based clustering, and failure prediction capabilities for HPC systems.« less

  11. Graph pyramids for protein function prediction.

    PubMed

    Sandhan, Tushar; Yoo, Youngjun; Choi, Jin; Kim, Sun

    2015-01-01

    Uncovering the hidden organizational characteristics and regularities among biological sequences is the key issue for detailed understanding of an underlying biological phenomenon. Thus pattern recognition from nucleic acid sequences is an important affair for protein function prediction. As proteins from the same family exhibit similar characteristics, homology based approaches predict protein functions via protein classification. But conventional classification approaches mostly rely on the global features by considering only strong protein similarity matches. This leads to significant loss of prediction accuracy. Here we construct the Protein-Protein Similarity (PPS) network, which captures the subtle properties of protein families. The proposed method considers the local as well as the global features, by examining the interactions among 'weakly interacting proteins' in the PPS network and by using hierarchical graph analysis via the graph pyramid. Different underlying properties of the protein families are uncovered by operating the proposed graph based features at various pyramid levels. Experimental results on benchmark data sets show that the proposed hierarchical voting algorithm using graph pyramid helps to improve computational efficiency as well the protein classification accuracy. Quantitatively, among 14,086 test sequences, on an average the proposed method misclassified only 21.1 sequences whereas baseline BLAST score based global feature matching method misclassified 362.9 sequences. With each correctly classified test sequence, the fast incremental learning ability of the proposed method further enhances the training model. Thus it has achieved more than 96% protein classification accuracy using only 20% per class training data.

  12. Efficient Graph-Based Resource Allocation Scheme Using Maximal Independent Set for Randomly- Deployed Small Star Networks

    PubMed Central

    Zhou, Jian; Wang, Lusheng; Wang, Weidong; Zhou, Qingfeng

    2017-01-01

    In future scenarios of heterogeneous and dense networks, randomly-deployed small star networks (SSNs) become a key paradigm, whose system performance is restricted to inter-SSN interference and requires an efficient resource allocation scheme for interference coordination. Traditional resource allocation schemes do not specifically focus on this paradigm and are usually too time consuming in dense networks. In this article, a very efficient graph-based scheme is proposed, which applies the maximal independent set (MIS) concept in graph theory to help divide SSNs into almost interference-free groups. We first construct an interference graph for the system based on a derived distance threshold indicating for any pair of SSNs whether there is intolerable inter-SSN interference or not. Then, SSNs are divided into MISs, and the same resource can be repetitively used by all the SSNs in each MIS. Empirical parameters and equations are set in the scheme to guarantee high performance. Finally, extensive scenarios both dense and nondense are randomly generated and simulated to demonstrate the performance of our scheme, indicating that it outperforms the classical max K-cut-based scheme in terms of system capacity, utility and especially time cost. Its achieved system capacity, utility and fairness can be close to the near-optimal strategy obtained by a time-consuming simulated annealing search. PMID:29113109

  13. Graph-Based Semantic Web Service Composition for Healthcare Data Integration

    PubMed Central

    2017-01-01

    Within the numerous and heterogeneous web services offered through different sources, automatic web services composition is the most convenient method for building complex business processes that permit invocation of multiple existing atomic services. The current solutions in functional web services composition lack autonomous queries of semantic matches within the parameters of web services, which are necessary in the composition of large-scale related services. In this paper, we propose a graph-based Semantic Web Services composition system consisting of two subsystems: management time and run time. The management-time subsystem is responsible for dependency graph preparation in which a dependency graph of related services is generated automatically according to the proposed semantic matchmaking rules. The run-time subsystem is responsible for discovering the potential web services and nonredundant web services composition of a user's query using a graph-based searching algorithm. The proposed approach was applied to healthcare data integration in different health organizations and was evaluated according to two aspects: execution time measurement and correctness measurement. PMID:29065602

  14. EAGLE: 'EAGLE'Is an' Algorithmic Graph Library for Exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-01-16

    The Resource Description Framework (RDF) and SPARQL Protocol and RDF Query Language (SPARQL) were introduced about a decade ago to enable flexible schema-free data interchange on the Semantic Web. Today data scientists use the framework as a scalable graph representation for integrating, querying, exploring and analyzing data sets hosted at different sources. With increasing adoption, the need for graph mining capabilities for the Semantic Web has emerged. Today there is no tools to conduct "graph mining" on RDF standard data sets. We address that need through implementation of popular iterative Graph Mining algorithms (Triangle count, Connected component analysis, degree distribution,more » diversity degree, PageRank, etc.). We implement these algorithms as SPARQL queries, wrapped within Python scripts and call our software tool as EAGLE. In RDF style, EAGLE stands for "EAGLE 'Is an' algorithmic graph library for exploration. EAGLE is like 'MATLAB' for 'Linked Data.'« less

  15. Localization in random bipartite graphs: Numerical and empirical study

    NASA Astrophysics Data System (ADS)

    Slanina, František

    2017-05-01

    We investigate adjacency matrices of bipartite graphs with a power-law degree distribution. Motivation for this study is twofold: first, vibrational states in granular matter and jammed sphere packings; second, graphs encoding social interaction, especially electronic commerce. We establish the position of the mobility edge and show that it strongly depends on the power in the degree distribution and on the ratio of the sizes of the two parts of the bipartite graph. At the jamming threshold, where the two parts have the same size, localization vanishes. We found that the multifractal spectrum is nontrivial in the delocalized phase, but still near the mobility edge. We also study an empirical bipartite graph, namely, the Amazon reviewer-item network. We found that in this specific graph the mobility edge disappears, and we draw a conclusion from this fact regarding earlier empirical studies of the Amazon network.

  16. Localization in random bipartite graphs: Numerical and empirical study.

    PubMed

    Slanina, František

    2017-05-01

    We investigate adjacency matrices of bipartite graphs with a power-law degree distribution. Motivation for this study is twofold: first, vibrational states in granular matter and jammed sphere packings; second, graphs encoding social interaction, especially electronic commerce. We establish the position of the mobility edge and show that it strongly depends on the power in the degree distribution and on the ratio of the sizes of the two parts of the bipartite graph. At the jamming threshold, where the two parts have the same size, localization vanishes. We found that the multifractal spectrum is nontrivial in the delocalized phase, but still near the mobility edge. We also study an empirical bipartite graph, namely, the Amazon reviewer-item network. We found that in this specific graph the mobility edge disappears, and we draw a conclusion from this fact regarding earlier empirical studies of the Amazon network.

  17. Topological structure of dictionary graphs

    NASA Astrophysics Data System (ADS)

    Fukś, Henryk; Krzemiński, Mark

    2009-09-01

    We investigate the topological structure of the subgraphs of dictionary graphs constructed from WordNet and Moby thesaurus data. In the process of learning a foreign language, the learner knows only a subset of all words of the language, corresponding to a subgraph of a dictionary graph. When this subgraph grows with time, its topological properties change. We introduce the notion of the pseudocore and argue that the growth of the vocabulary roughly follows decreasing pseudocore numbers—that is, one first learns words with a high pseudocore number followed by smaller pseudocores. We also propose an alternative strategy for vocabulary growth, involving decreasing core numbers as opposed to pseudocore numbers. We find that as the core or pseudocore grows in size, the clustering coefficient first decreases, then reaches a minimum and starts increasing again. The minimum occurs when the vocabulary reaches a size between 103 and 104. A simple model exhibiting similar behavior is proposed. The model is based on a generalized geometric random graph. Possible implications for language learning are discussed.

  18. Comparing Internet Probing Methodologies Through an Analysis of Large Dynamic Graphs

    DTIC Science & Technology

    2014-06-01

    comparable Internet topologies in less time. We compare these by modeling union of traceroute outputs as graphs, and using standard graph theoretical...topologies in less time. We compare these by modeling union of traceroute outputs as graphs, and using standard graph theoretical measurements as well...We compare these by modeling union of traceroute outputs as graphs, and study the graphs by using vertex and edge count, average vertex degree

  19. Memoryless cooperative graph search based on the simulated annealing algorithm

    NASA Astrophysics Data System (ADS)

    Hou, Jian; Yan, Gang-Feng; Fan, Zhen

    2011-04-01

    We have studied the problem of reaching a globally optimal segment for a graph-like environment with a single or a group of autonomous mobile agents. Firstly, two efficient simulated-annealing-like algorithms are given for a single agent to solve the problem in a partially known environment and an unknown environment, respectively. It shows that under both proposed control strategies, the agent will eventually converge to a globally optimal segment with probability 1. Secondly, we use multi-agent searching to simultaneously reduce the computation complexity and accelerate convergence based on the algorithms we have given for a single agent. By exploiting graph partition, a gossip-consensus method based scheme is presented to update the key parameter—radius of the graph, ensuring that the agents spend much less time finding a globally optimal segment.

  20. Employing the therapeutic operating characteristic (TOC) graph for individualised dose prescription

    PubMed Central

    2013-01-01

    Background In current practice, patients scheduled for radiotherapy are treated according to ‘rigid’ protocols with predefined dose prescriptions that do not consider risk-taking preferences of individuals. The therapeutic operating characteristic (TOC) graph is applied as a decision-aid to assess the trade-off between treatment benefit and morbidity to facilitate dose prescription customisation. Methods Historical dose-response data from prostate cancer patient cohorts treated with 3D-conformal radiotherapy is used to construct TOC graphs. Next, intensity-modulated (IMRT) plans are generated by optimisation based on dosimetric criteria and dose-response relationships. TOC graphs are constructed for dose-scaling of the optimised IMRT plan and individualised dose prescription. The area under the TOC curve (AUC) is estimated to measure the therapeutic power of these plans. Results On a continuous scale, the TOC graph directly visualises treatment benefit and morbidity risk of physicians’ or patients’ choices for dose (de-)escalation. The trade-off between these probabilities facilitates the selection of an individualised dose prescription. TOC graphs show broader therapeutic window and higher AUCs with increasing target dose heterogeneity. Conclusions The TOC graph gives patients and physicians access to a decision-aid and read-out of the trade-off between treatment benefit and morbidity risks for individualised dose prescription customisation over a continuous range of dose levels. PMID:23497640

  1. Strong parameterization and coordination encirclements of graph of Penrose tiling vertices

    NASA Astrophysics Data System (ADS)

    Shutov, A. V.; Maleev, A. V.

    2017-07-01

    The coordination encirclements in a graph of Penrose tiling vertices have been investigated based on the analysis of vertice parameters. A strong parameterization of these vertices is developed in the form of a tiling of a parameter set in the region corresponding to different first coordination encirclements of vertices. An algorithm for constructing tilings of a set of parameters determining different coordination encirclements in a graph of Penrose tiling vertices of order n is proposed.

  2. GraphMeta: Managing HPC Rich Metadata in Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Dong; Chen, Yong; Carns, Philip

    High-performance computing (HPC) systems face increasingly critical metadata management challenges, especially in the approaching exascale era. These challenges arise not only from exploding metadata volumes, but also from increasingly diverse metadata, which contains data provenance and arbitrary user-defined attributes in addition to traditional POSIX metadata. This ‘rich’ metadata is becoming critical to supporting advanced data management functionality such as data auditing and validation. In our prior work, we identified a graph-based model as a promising solution to uniformly manage HPC rich metadata due to its flexibility and generality. However, at the same time, graph-based HPC rich metadata anagement also introducesmore » significant challenges to the underlying infrastructure. In this study, we first identify the challenges on the underlying infrastructure to support scalable, high-performance rich metadata management. Based on that, we introduce GraphMeta, a graphbased engine designed for this use case. It achieves performance scalability by introducing a new graph partitioning algorithm and a write-optimal storage engine. We evaluate GraphMeta under both synthetic and real HPC metadata workloads, compare it with other approaches, and demonstrate its advantages in terms of efficiency and usability for rich metadata management in HPC systems.« less

  3. Lung lobe segmentation based on statistical atlas and graph cuts

    NASA Astrophysics Data System (ADS)

    Nimura, Yukitaka; Kitasaka, Takayuki; Honma, Hirotoshi; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi; Mori, Kensaku

    2012-03-01

    This paper presents a novel method that can extract lung lobes by utilizing probability atlas and multilabel graph cuts. Information about pulmonary structures plays very important role for decision of the treatment strategy and surgical planning. The human lungs are divided into five anatomical regions, the lung lobes. Precise segmentation and recognition of lung lobes are indispensable tasks in computer aided diagnosis systems and computer aided surgery systems. A lot of methods for lung lobe segmentation are proposed. However, these methods only target the normal cases. Therefore, these methods cannot extract the lung lobes in abnormal cases, such as COPD cases. To extract lung lobes in abnormal cases, this paper propose a lung lobe segmentation method based on probability atlas of lobe location and multilabel graph cuts. The process consists of three components; normalization based on the patient's physique, probability atlas generation, and segmentation based on graph cuts. We apply this method to six cases of chest CT images including COPD cases. Jaccard index was 79.1%.

  4. Exploratory Item Classification Via Spectral Graph Clustering

    PubMed Central

    Chen, Yunxiao; Li, Xiaoou; Liu, Jingchen; Xu, Gongjun; Ying, Zhiliang

    2017-01-01

    Large-scale assessments are supported by a large item pool. An important task in test development is to assign items into scales that measure different characteristics of individuals, and a popular approach is cluster analysis of items. Classical methods in cluster analysis, such as the hierarchical clustering, K-means method, and latent-class analysis, often induce a high computational overhead and have difficulty handling missing data, especially in the presence of high-dimensional responses. In this article, the authors propose a spectral clustering algorithm for exploratory item cluster analysis. The method is computationally efficient, effective for data with missing or incomplete responses, easy to implement, and often outperforms traditional clustering algorithms in the context of high dimensionality. The spectral clustering algorithm is based on graph theory, a branch of mathematics that studies the properties of graphs. The algorithm first constructs a graph of items, characterizing the similarity structure among items. It then extracts item clusters based on the graphical structure, grouping similar items together. The proposed method is evaluated through simulations and an application to the revised Eysenck Personality Questionnaire. PMID:29033476

  5. A graph-based approach for the retrieval of multi-modality medical images.

    PubMed

    Kumar, Ashnil; Kim, Jinman; Wen, Lingfeng; Fulham, Michael; Feng, Dagan

    2014-02-01

    In this paper, we address the retrieval of multi-modality medical volumes, which consist of two different imaging modalities, acquired sequentially, from the same scanner. One such example, positron emission tomography and computed tomography (PET-CT), provides physicians with complementary functional and anatomical features as well as spatial relationships and has led to improved cancer diagnosis, localisation, and staging. The challenge of multi-modality volume retrieval for cancer patients lies in representing the complementary geometric and topologic attributes between tumours and organs. These attributes and relationships, which are used for tumour staging and classification, can be formulated as a graph. It has been demonstrated that graph-based methods have high accuracy for retrieval by spatial similarity. However, naïvely representing all relationships on a complete graph obscures the structure of the tumour-anatomy relationships. We propose a new graph structure derived from complete graphs that structurally constrains the edges connected to tumour vertices based upon the spatial proximity of tumours and organs. This enables retrieval on the basis of tumour localisation. We also present a similarity matching algorithm that accounts for different feature sets for graph elements from different imaging modalities. Our method emphasises the relationships between a tumour and related organs, while still modelling patient-specific anatomical variations. Constraining tumours to related anatomical structures improves the discrimination potential of graphs, making it easier to retrieve similar images based on tumour location. We evaluated our retrieval methodology on a dataset of clinical PET-CT volumes. Our results showed that our method enabled the retrieval of multi-modality images using spatial features. Our graph-based retrieval algorithm achieved a higher precision than several other retrieval techniques: gray-level histograms as well as state

  6. Thermodynamic characterization of networks using graph polynomials

    NASA Astrophysics Data System (ADS)

    Ye, Cheng; Comin, César H.; Peron, Thomas K. DM.; Silva, Filipi N.; Rodrigues, Francisco A.; Costa, Luciano da F.; Torsello, Andrea; Hancock, Edwin R.

    2015-09-01

    In this paper, we present a method for characterizing the evolution of time-varying complex networks by adopting a thermodynamic representation of network structure computed from a polynomial (or algebraic) characterization of graph structure. Commencing from a representation of graph structure based on a characteristic polynomial computed from the normalized Laplacian matrix, we show how the polynomial is linked to the Boltzmann partition function of a network. This allows us to compute a number of thermodynamic quantities for the network, including the average energy and entropy. Assuming that the system does not change volume, we can also compute the temperature, defined as the rate of change of entropy with energy. All three thermodynamic variables can be approximated using low-order Taylor series that can be computed using the traces of powers of the Laplacian matrix, avoiding explicit computation of the normalized Laplacian spectrum. These polynomial approximations allow a smoothed representation of the evolution of networks to be constructed in the thermodynamic space spanned by entropy, energy, and temperature. We show how these thermodynamic variables can be computed in terms of simple network characteristics, e.g., the total number of nodes and node degree statistics for nodes connected by edges. We apply the resulting thermodynamic characterization to real-world time-varying networks representing complex systems in the financial and biological domains. The study demonstrates that the method provides an efficient tool for detecting abrupt changes and characterizing different stages in network evolution.

  7. Classification of user interfaces for graph-based online analytical processing

    NASA Astrophysics Data System (ADS)

    Michaelis, James R.

    2016-05-01

    In the domain of business intelligence, user-oriented software for conducting multidimensional analysis via Online- Analytical Processing (OLAP) is now commonplace. In this setting, datasets commonly have well-defined sets of dimensions and measures around which analysis tasks can be conducted. However, many forms of data used in intelligence operations - deriving from social networks, online communications, and text corpora - will consist of graphs with varying forms of potential dimensional structure. Hence, enabling OLAP over such data collections requires explicit definition and extraction of supporting dimensions and measures. Further, as Graph OLAP remains an emerging technique, limited research has been done on its user interface requirements. Namely, on effective pairing of interface designs to different types of graph-derived dimensions and measures. This paper presents a novel technique for pairing of user interface designs to Graph OLAP datasets, rooted in Analytic Hierarchy Process (AHP) driven comparisons. Attributes of the classification strategy are encoded through an AHP ontology, developed in our alternate work and extended to support pairwise comparison of interfaces. Specifically, according to their ability, as perceived by Subject Matter Experts, to support dimensions and measures corresponding to Graph OLAP dataset attributes. To frame this discussion, a survey is provided both on existing variations of Graph OLAP, as well as existing interface designs previously applied in multidimensional analysis settings. Following this, a review of our AHP ontology is provided, along with a listing of corresponding dataset and interface attributes applicable toward SME recommendation structuring. A walkthrough of AHP-based recommendation encoding via the ontology-based approach is then provided. The paper concludes with a short summary of proposed future directions seen as essential for this research area.

  8. Non-rigid image registration using graph-cuts.

    PubMed

    Tang, Tommy W H; Chung, Albert C S

    2007-01-01

    Non-rigid image registration is an ill-posed yet challenging problem due to its supernormal high degree of freedoms and inherent requirement of smoothness. Graph-cuts method is a powerful combinatorial optimization tool which has been successfully applied into image segmentation and stereo matching. Under some specific constraints, graph-cuts method yields either a global minimum or a local minimum in a strong sense. Thus, it is interesting to see the effects of using graph-cuts in non-rigid image registration. In this paper, we formulate non-rigid image registration as a discrete labeling problem. Each pixel in the source image is assigned a displacement label (which is a vector) indicating which position in the floating image it is spatially corresponding to. A smoothness constraint based on first derivative is used to penalize sharp changes in displacement labels across pixels. The whole system can be optimized by using the graph-cuts method via alpha-expansions. We compare 2D and 3D registration results of our method with two state-of-the-art approaches. It is found that our method is more robust to different challenging non-rigid registration cases with higher registration accuracy.

  9. Constructing financial network based on PMFG and threshold method

    NASA Astrophysics Data System (ADS)

    Nie, Chun-Xiao; Song, Fu-Tie

    2018-04-01

    Based on planar maximally filtered graph (PMFG) and threshold method, we introduced a correlation-based network named PMFG-based threshold network (PTN). We studied the community structure of PTN and applied ISOMAP algorithm to represent PTN in low-dimensional Euclidean space. The results show that the community corresponds well to the cluster in the Euclidean space. Further, we studied the dynamics of the community structure and constructed the normalized mutual information (NMI) matrix. Based on the real data in the market, we found that the volatility of the market can lead to dramatic changes in the community structure, and the structure is more stable during the financial crisis.

  10. A Graph-Based Recovery and Decomposition of Swanson’s Hypothesis using Semantic Predications

    PubMed Central

    Cameron, Delroy; Bodenreider, Olivier; Yalamanchili, Hima; Danh, Tu; Vallabhaneni, Sreeram; Thirunarayan, Krishnaprasad; Sheth, Amit P.; Rindflesch, Thomas C.

    2014-01-01

    Objectives This paper presents a methodology for recovering and decomposing Swanson’s Raynaud Syndrome–Fish Oil Hypothesis semi-automatically. The methodology leverages the semantics of assertions extracted from biomedical literature (called semantic predications) along with structured background knowledge and graph-based algorithms to semi-automatically capture the informative associations originally discovered manually by Swanson. Demonstrating that Swanson’s manually intensive techniques can be undertaken semi-automatically, paves the way for fully automatic semantics-based hypothesis generation from scientific literature. Methods Semantic predications obtained from biomedical literature allow the construction of labeled directed graphs which contain various associations among concepts from the literature. By aggregating such associations into informative subgraphs, some of the relevant details originally articulated by Swanson has been uncovered. However, by leveraging background knowledge to bridge important knowledge gaps in the literature, a methodology for semi-automatically capturing the detailed associations originally explicated in natural language by Swanson has been developed. Results Our methodology not only recovered the 3 associations commonly recognized as Swanson’s Hypothesis, but also decomposed them into an additional 16 detailed associations, formulated as chains of semantic predications. Altogether, 14 out of the 19 associations that can be attributed to Swanson were retrieved using our approach. To the best of our knowledge, such an in-depth recovery and decomposition of Swanson’s Hypothesis has never been attempted. Conclusion In this work therefore, we presented a methodology for semi- automatically recovering and decomposing Swanson’s RS-DFO Hypothesis using semantic representations and graph algorithms. Our methodology provides new insights into potential prerequisites for semantics-driven Literature-Based Discovery (LBD

  11. Building dynamic population graph for accurate correspondence detection.

    PubMed

    Du, Shaoyi; Guo, Yanrong; Sanroma, Gerard; Ni, Dong; Wu, Guorong; Shen, Dinggang

    2015-12-01

    In medical imaging studies, there is an increasing trend for discovering the intrinsic anatomical difference across individual subjects in a dataset, such as hand images for skeletal bone age estimation. Pair-wise matching is often used to detect correspondences between each individual subject and a pre-selected model image with manually-placed landmarks. However, the large anatomical variability across individual subjects can easily compromise such pair-wise matching step. In this paper, we present a new framework to simultaneously detect correspondences among a population of individual subjects, by propagating all manually-placed landmarks from a small set of model images through a dynamically constructed image graph. Specifically, we first establish graph links between models and individual subjects according to pair-wise shape similarity (called as forward step). Next, we detect correspondences for the individual subjects with direct links to any of model images, which is achieved by a new multi-model correspondence detection approach based on our recently-published sparse point matching method. To correct those inaccurate correspondences, we further apply an error detection mechanism to automatically detect wrong correspondences and then update the image graph accordingly (called as backward step). After that, all subject images with detected correspondences are included into the set of model images, and the above two steps of graph expansion and error correction are repeated until accurate correspondences for all subject images are established. Evaluations on real hand X-ray images demonstrate that our proposed method using a dynamic graph construction approach can achieve much higher accuracy and robustness, when compared with the state-of-the-art pair-wise correspondence detection methods as well as a similar method but using static population graph. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Change of Brain Functional Connectivity in Patients With Spinal Cord Injury: Graph Theory Based Approach.

    PubMed

    Min, Yu-Sun; Chang, Yongmin; Park, Jang Woo; Lee, Jong-Min; Cha, Jungho; Yang, Jin-Ju; Kim, Chul-Hyun; Hwang, Jong-Moon; Yoo, Ji-Na; Jung, Tae-Du

    2015-06-01

    To investigate the global functional reorganization of the brain following spinal cord injury with graph theory based approach by creating whole brain functional connectivity networks from resting state-functional magnetic resonance imaging (rs-fMRI), characterizing the reorganization of these networks using graph theoretical metrics and to compare these metrics between patients with spinal cord injury (SCI) and age-matched controls. Twenty patients with incomplete cervical SCI (14 males, 6 females; age, 55±14.1 years) and 20 healthy subjects (10 males, 10 females; age, 52.9±13.6 years) participated in this study. To analyze the characteristics of the whole brain network constructed with functional connectivity using rs-fMRI, graph theoretical measures were calculated including clustering coefficient, characteristic path length, global efficiency and small-worldness. Clustering coefficient, global efficiency and small-worldness did not show any difference between controls and SCIs in all density ranges. The normalized characteristic path length to random network was higher in SCI patients than in controls and reached statistical significance at 12%-13% of density (p<0.05, uncorrected). The graph theoretical approach in brain functional connectivity might be helpful to reveal the information processing after SCI. These findings imply that patients with SCI can build on preserved competent brain control. Further analyses, such as topological rearrangement and hub region identification, will be needed for better understanding of neuroplasticity in patients with SCI.

  13. Exotic equilibria of Harary graphs and a new minimum degree lower bound for synchronization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canale, Eduardo A., E-mail: ecanale@pol.una.py; Monzón, Pablo, E-mail: monzon@fing.edu.uy

    2015-02-15

    This work is concerned with stability of equilibria in the homogeneous (equal frequencies) Kuramoto model of weakly coupled oscillators. In 2012 [R. Taylor, J. Phys. A: Math. Theor. 45, 1–15 (2012)], a sufficient condition for almost global synchronization was found in terms of the minimum degree–order ratio of the graph. In this work, a new lower bound for this ratio is given. The improvement is achieved by a concrete infinite sequence of regular graphs. Besides, non standard unstable equilibria of the graphs studied in Wiley et al. [Chaos 16, 015103 (2006)] are shown to exist as conjectured in that work.

  14. Graph State-Based Quantum Group Authentication Scheme

    NASA Astrophysics Data System (ADS)

    Liao, Longxia; Peng, Xiaoqi; Shi, Jinjing; Guo, Ying

    2017-02-01

    Motivated by the elegant structure of the graph state, we design an ingenious quantum group authentication scheme, which is implemented by operating appropriate operations on the graph state and can solve the problem of multi-user authentication. Three entities, the group authentication server (GAS) as a verifier, multiple users as provers and the trusted third party Trent are included. GAS and Trent assist the multiple users in completing the authentication process, i.e., GAS is responsible for registering all the users while Trent prepares graph states. All the users, who request for authentication, encode their authentication keys on to the graph state by performing Pauli operators. It demonstrates that a novel authentication scheme can be achieved with the flexible use of graph state, which can synchronously authenticate a large number of users, meanwhile the provable security can be guaranteed definitely.

  15. Graph pyramids for protein function prediction

    PubMed Central

    2015-01-01

    Background Uncovering the hidden organizational characteristics and regularities among biological sequences is the key issue for detailed understanding of an underlying biological phenomenon. Thus pattern recognition from nucleic acid sequences is an important affair for protein function prediction. As proteins from the same family exhibit similar characteristics, homology based approaches predict protein functions via protein classification. But conventional classification approaches mostly rely on the global features by considering only strong protein similarity matches. This leads to significant loss of prediction accuracy. Methods Here we construct the Protein-Protein Similarity (PPS) network, which captures the subtle properties of protein families. The proposed method considers the local as well as the global features, by examining the interactions among 'weakly interacting proteins' in the PPS network and by using hierarchical graph analysis via the graph pyramid. Different underlying properties of the protein families are uncovered by operating the proposed graph based features at various pyramid levels. Results Experimental results on benchmark data sets show that the proposed hierarchical voting algorithm using graph pyramid helps to improve computational efficiency as well the protein classification accuracy. Quantitatively, among 14,086 test sequences, on an average the proposed method misclassified only 21.1 sequences whereas baseline BLAST score based global feature matching method misclassified 362.9 sequences. With each correctly classified test sequence, the fast incremental learning ability of the proposed method further enhances the training model. Thus it has achieved more than 96% protein classification accuracy using only 20% per class training data. PMID:26044522

  16. Graph-based semi-supervised learning with genomic data integration using condition-responsive genes applied to phenotype classification.

    PubMed

    Doostparast Torshizi, Abolfazl; Petzold, Linda R

    2018-01-01

    Data integration methods that combine data from different molecular levels such as genome, epigenome, transcriptome, etc., have received a great deal of interest in the past few years. It has been demonstrated that the synergistic effects of different biological data types can boost learning capabilities and lead to a better understanding of the underlying interactions among molecular levels. In this paper we present a graph-based semi-supervised classification algorithm that incorporates latent biological knowledge in the form of biological pathways with gene expression and DNA methylation data. The process of graph construction from biological pathways is based on detecting condition-responsive genes, where 3 sets of genes are finally extracted: all condition responsive genes, high-frequency condition-responsive genes, and P-value-filtered genes. The proposed approach is applied to ovarian cancer data downloaded from the Human Genome Atlas. Extensive numerical experiments demonstrate superior performance of the proposed approach compared to other state-of-the-art algorithms, including the latest graph-based classification techniques. Simulation results demonstrate that integrating various data types enhances classification performance and leads to a better understanding of interrelations between diverse omics data types. The proposed approach outperforms many of the state-of-the-art data integration algorithms. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  17. Theoretical Bound of CRLB for Energy Efficient Technique of RSS-Based Factor Graph Geolocation

    NASA Astrophysics Data System (ADS)

    Kahar Aziz, Muhammad Reza; Heriansyah; Saputra, EfaMaydhona; Musa, Ardiansyah

    2018-03-01

    To support the increase of wireless geolocation development as the key of the technology in the future, this paper proposes theoretical bound derivation, i.e., Cramer Rao lower bound (CRLB) for energy efficient of received signal strength (RSS)-based factor graph wireless geolocation technique. The theoretical bound derivation is crucially important to evaluate whether the energy efficient technique of RSS-based factor graph wireless geolocation is effective as well as to open the opportunity to further innovation of the technique. The CRLB is derived in this paper by using the Fisher information matrix (FIM) of the main formula of the RSS-based factor graph geolocation technique, which is lied on the Jacobian matrix. The simulation result shows that the derived CRLB has the highest accuracy as a bound shown by its lowest root mean squared error (RMSE) curve compared to the RMSE curve of the RSS-based factor graph geolocation technique. Hence, the derived CRLB becomes the lower bound for the efficient technique of RSS-based factor graph wireless geolocation.

  18. Key-Node-Separated Graph Clustering and Layouts for Human Relationship Graph Visualization.

    PubMed

    Itoh, Takayuki; Klein, Karsten

    2015-01-01

    Many graph-drawing methods apply node-clustering techniques based on the density of edges to find tightly connected subgraphs and then hierarchically visualize the clustered graphs. However, users may want to focus on important nodes and their connections to groups of other nodes for some applications. For this purpose, it is effective to separately visualize the key nodes detected based on adjacency and attributes of the nodes. This article presents a graph visualization technique for attribute-embedded graphs that applies a graph-clustering algorithm that accounts for the combination of connections and attributes. The graph clustering step divides the nodes according to the commonality of connected nodes and similarity of feature value vectors. It then calculates the distances between arbitrary pairs of clusters according to the number of connecting edges and the similarity of feature value vectors and finally places the clusters based on the distances. Consequently, the technique separates important nodes that have connections to multiple large clusters and improves the visibility of such nodes' connections. To test this technique, this article presents examples with human relationship graph datasets, including a coauthorship and Twitter communication network dataset.

  19. BootGraph: probabilistic fiber tractography using bootstrap algorithms and graph theory.

    PubMed

    Vorburger, Robert S; Reischauer, Carolin; Boesiger, Peter

    2013-02-01

    Bootstrap methods have recently been introduced to diffusion-weighted magnetic resonance imaging to estimate the measurement uncertainty of ensuing diffusion parameters directly from the acquired data without the necessity to assume a noise model. These methods have been previously combined with deterministic streamline tractography algorithms to allow for the assessment of connection probabilities in the human brain. Thereby, the local noise induced disturbance in the diffusion data is accumulated additively due to the incremental progression of streamline tractography algorithms. Graph based approaches have been proposed to overcome this drawback of streamline techniques. For this reason, the bootstrap method is in the present work incorporated into a graph setup to derive a new probabilistic fiber tractography method, called BootGraph. The acquired data set is thereby converted into a weighted, undirected graph by defining a vertex in each voxel and edges between adjacent vertices. By means of the cone of uncertainty, which is derived using the wild bootstrap, a weight is thereafter assigned to each edge. Two path finding algorithms are subsequently applied to derive connection probabilities. While the first algorithm is based on the shortest path approach, the second algorithm takes all existing paths between two vertices into consideration. Tracking results are compared to an established algorithm based on the bootstrap method in combination with streamline fiber tractography and to another graph based algorithm. The BootGraph shows a very good performance in crossing situations with respect to false negatives and permits incorporating additional constraints, such as a curvature threshold. By inheriting the advantages of the bootstrap method and graph theory, the BootGraph method provides a computationally efficient and flexible probabilistic tractography setup to compute connection probability maps and virtual fiber pathways without the drawbacks of

  20. Network reconstruction based on proteomic data and prior knowledge of protein connectivity using graph theory.

    PubMed

    Stavrakas, Vassilis; Melas, Ioannis N; Sakellaropoulos, Theodore; Alexopoulos, Leonidas G

    2015-01-01

    Modeling of signal transduction pathways is instrumental for understanding cells' function. People have been tackling modeling of signaling pathways in order to accurately represent the signaling events inside cells' biochemical microenvironment in a way meaningful for scientists in a biological field. In this article, we propose a method to interrogate such pathways in order to produce cell-specific signaling models. We integrate available prior knowledge of protein connectivity, in a form of a Prior Knowledge Network (PKN) with phosphoproteomic data to construct predictive models of the protein connectivity of the interrogated cell type. Several computational methodologies focusing on pathways' logic modeling using optimization formulations or machine learning algorithms have been published on this front over the past few years. Here, we introduce a light and fast approach that uses a breadth-first traversal of the graph to identify the shortest pathways and score proteins in the PKN, fitting the dependencies extracted from the experimental design. The pathways are then combined through a heuristic formulation to produce a final topology handling inconsistencies between the PKN and the experimental scenarios. Our results show that the algorithm we developed is efficient and accurate for the construction of medium and large scale signaling networks. We demonstrate the applicability of the proposed approach by interrogating a manually curated interaction graph model of EGF/TNFA stimulation against made up experimental data. To avoid the possibility of erroneous predictions, we performed a cross-validation analysis. Finally, we validate that the introduced approach generates predictive topologies, comparable to the ILP formulation. Overall, an efficient approach based on graph theory is presented herein to interrogate protein-protein interaction networks and to provide meaningful biological insights.

  1. Eigenvalues of the Laplacian of a graph

    NASA Technical Reports Server (NTRS)

    Anderson, W. N., Jr.; Morley, T. D.

    1971-01-01

    Let G be a finite undirected graph with no loops or multiple edges. The Laplacian matrix of G, Delta(G), is defined by Delta sub ii = degree of vertex i and Delta sub ij = -1 if there is an edge between vertex i and vertex j. The structure of the graph G is related to the eigenvalues of Delta(G); in particular, it is proved that all the eigenvalues of Delta(G) are nonnegative, less than or equal to the number of vertices, and less than or equal to twice the maximum vertex degree. Precise conditions for equality are given.

  2. Construction of phylogenetic trees by kernel-based comparative analysis of metabolic networks.

    PubMed

    Oh, S June; Joung, Je-Gun; Chang, Jeong-Ho; Zhang, Byoung-Tak

    2006-06-06

    To infer the tree of life requires knowledge of the common characteristics of each species descended from a common ancestor as the measuring criteria and a method to calculate the distance between the resulting values of each measure. Conventional phylogenetic analysis based on genomic sequences provides information about the genetic relationships between different organisms. In contrast, comparative analysis of metabolic pathways in different organisms can yield insights into their functional relationships under different physiological conditions. However, evaluating the similarities or differences between metabolic networks is a computationally challenging problem, and systematic methods of doing this are desirable. Here we introduce a graph-kernel method for computing the similarity between metabolic networks in polynomial time, and use it to profile metabolic pathways and to construct phylogenetic trees. To compare the structures of metabolic networks in organisms, we adopted the exponential graph kernel, which is a kernel-based approach with a labeled graph that includes a label matrix and an adjacency matrix. To construct the phylogenetic trees, we used an unweighted pair-group method with arithmetic mean, i.e., a hierarchical clustering algorithm. We applied the kernel-based network profiling method in a comparative analysis of nine carbohydrate metabolic networks from 81 biological species encompassing Archaea, Eukaryota, and Eubacteria. The resulting phylogenetic hierarchies generally support the tripartite scheme of three domains rather than the two domains of prokaryotes and eukaryotes. By combining the kernel machines with metabolic information, the method infers the context of biosphere development that covers physiological events required for adaptation by genetic reconstruction. The results show that one may obtain a global view of the tree of life by comparing the metabolic pathway structures using meta-level information rather than sequence

  3. Diffusion-based recommendation with trust relations on tripartite graphs

    NASA Astrophysics Data System (ADS)

    Wang, Ximeng; Liu, Yun; Zhang, Guangquan; Xiong, Fei; Lu, Jie

    2017-08-01

    The diffusion-based recommendation approach is a vital branch in recommender systems, which successfully applies physical dynamics to make recommendations for users on bipartite or tripartite graphs. Trust links indicate users’ social relations and can provide the benefit of reducing data sparsity. However, traditional diffusion-based algorithms only consider rating links when making recommendations. In this paper, the complementarity of users’ implicit and explicit trust is exploited, and a novel resource-allocation strategy is proposed, which integrates these two kinds of trust relations on tripartite graphs. Through empirical studies on three benchmark datasets, our proposed method obtains better performance than most of the benchmark algorithms in terms of accuracy, diversity and novelty. According to the experimental results, our method is an effective and reasonable way to integrate additional features into the diffusion-based recommendation approach.

  4. TrajGraph: A Graph-Based Visual Analytics Approach to Studying Urban Network Centralities Using Taxi Trajectory Data.

    PubMed

    Huang, Xiaoke; Zhao, Ye; Yang, Jing; Zhang, Chong; Ma, Chao; Ye, Xinyue

    2016-01-01

    We propose TrajGraph, a new visual analytics method, for studying urban mobility patterns by integrating graph modeling and visual analysis with taxi trajectory data. A special graph is created to store and manifest real traffic information recorded by taxi trajectories over city streets. It conveys urban transportation dynamics which can be discovered by applying graph analysis algorithms. To support interactive, multiscale visual analytics, a graph partitioning algorithm is applied to create region-level graphs which have smaller size than the original street-level graph. Graph centralities, including Pagerank and betweenness, are computed to characterize the time-varying importance of different urban regions. The centralities are visualized by three coordinated views including a node-link graph view, a map view and a temporal information view. Users can interactively examine the importance of streets to discover and assess city traffic patterns. We have implemented a fully working prototype of this approach and evaluated it using massive taxi trajectories of Shenzhen, China. TrajGraph's capability in revealing the importance of city streets was evaluated by comparing the calculated centralities with the subjective evaluations from a group of drivers in Shenzhen. Feedback from a domain expert was collected. The effectiveness of the visual interface was evaluated through a formal user study. We also present several examples and a case study to demonstrate the usefulness of TrajGraph in urban transportation analysis.

  5. A model of language inflection graphs

    NASA Astrophysics Data System (ADS)

    Fukś, Henryk; Farzad, Babak; Cao, Yi

    2014-01-01

    Inflection graphs are highly complex networks representing relationships between inflectional forms of words in human languages. For so-called synthetic languages, such as Latin or Polish, they have particularly interesting structure due to the abundance of inflectional forms. We construct the simplest form of inflection graphs, namely a bipartite graph in which one group of vertices corresponds to dictionary headwords and the other group to inflected forms encountered in a given text. We, then, study projection of this graph on the set of headwords. The projection decomposes into a large number of connected components, to be called word groups. Distribution of sizes of word group exhibits some remarkable properties, resembling cluster distribution in a lattice percolation near the critical point. We propose a simple model which produces graphs of this type, reproducing the desired component distribution and other topological features.

  6. A Comparison of Two Tree Construction Methods for Obtaining Proximity Measures among Words. Number 47.

    ERIC Educational Resources Information Center

    Rapoport, Amnon

    The prediction that two different methods of constructing linear, tree graphs will yield the same formal structure of semantic space and measurement of word proximity was tested by comparing the distribution of node degree, the distribution of the number of pairs of nodes connected y times, and the distribution of adjective degree in trees…

  7. Visual graph query formulation and exploration: a new perspective on information retrieval at the edge

    NASA Astrophysics Data System (ADS)

    Kase, Sue E.; Vanni, Michelle; Knight, Joanne A.; Su, Yu; Yan, Xifeng

    2016-05-01

    Within operational environments decisions must be made quickly based on the information available. Identifying an appropriate knowledge base and accurately formulating a search query are critical tasks for decision-making effectiveness in dynamic situations. The spreading of graph data management tools to access large graph databases is a rapidly emerging research area of potential benefit to the intelligence community. A graph representation provides a natural way of modeling data in a wide variety of domains. Graph structures use nodes, edges, and properties to represent and store data. This research investigates the advantages of information search by graph query initiated by the analyst and interactively refined within the contextual dimensions of the answer space toward a solution. The paper introduces SLQ, a user-friendly graph querying system enabling the visual formulation of schemaless and structureless graph queries. SLQ is demonstrated with an intelligence analyst information search scenario focused on identifying individuals responsible for manufacturing a mosquito-hosted deadly virus. The scenario highlights the interactive construction of graph queries without prior training in complex query languages or graph databases, intuitive navigation through the problem space, and visualization of results in graphical format.

  8. Listing triangles in expected linear time on a class of power law graphs.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordman, Daniel J.; Wilson, Alyson G.; Phillips, Cynthia Ann

    Enumerating triangles (3-cycles) in graphs is a kernel operation for social network analysis. For example, many community detection methods depend upon finding common neighbors of two related entities. We consider Cohen's simple and elegant solution for listing triangles: give each node a 'bucket.' Place each edge into the bucket of its endpoint of lowest degree, breaking ties consistently. Each node then checks each pair of edges in its bucket, testing for the adjacency that would complete that triangle. Cohen presents an informal argument that his algorithm should run well on real graphs. We formalize this argument by providing an analysismore » for the expected running time on a class of random graphs, including power law graphs. We consider a rigorously defined method for generating a random simple graph, the erased configuration model (ECM). In the ECM each node draws a degree independently from a marginal degree distribution, endpoints pair randomly, and we erase self loops and multiedges. If the marginal degree distribution has a finite second moment, it follows immediately that Cohen's algorithm runs in expected linear time. Furthermore, it can still run in expected linear time even when the degree distribution has such a heavy tail that the second moment is not finite. We prove that Cohen's algorithm runs in expected linear time when the marginal degree distribution has finite 4/3 moment and no vertex has degree larger than {radical}n. In fact we give the precise asymptotic value of the expected number of edge pairs per bucket. A finite 4/3 moment is required; if it is unbounded, then so is the number of pairs. The marginal degree distribution of a power law graph has bounded 4/3 moment when its exponent {alpha} is more than 7/3. Thus for this class of power law graphs, with degree at most {radical}n, Cohen's algorithm runs in expected linear time. This is precisely the value of {alpha} for which the clustering coefficient tends to zero asymptotically

  9. GenoLink: a graph-based querying and browsing system for investigating the function of genes and proteins.

    PubMed

    Durand, Patrick; Labarre, Laurent; Meil, Alain; Divo, Jean-Louis; Vandenbrouck, Yves; Viari, Alain; Wojcik, Jérôme

    2006-01-17

    A large variety of biological data can be represented by graphs. These graphs can be constructed from heterogeneous data coming from genomic and post-genomic technologies, but there is still need for tools aiming at exploring and analysing such graphs. This paper describes GenoLink, a software platform for the graphical querying and exploration of graphs. GenoLink provides a generic framework for representing and querying data graphs. This framework provides a graph data structure, a graph query engine, allowing to retrieve sub-graphs from the entire data graph, and several graphical interfaces to express such queries and to further explore their results. A query consists in a graph pattern with constraints attached to the vertices and edges. A query result is the set of all sub-graphs of the entire data graph that are isomorphic to the pattern and satisfy the constraints. The graph data structure does not rely upon any particular data model but can dynamically accommodate for any user-supplied data model. However, for genomic and post-genomic applications, we provide a default data model and several parsers for the most popular data sources. GenoLink does not require any programming skill since all operations on graphs and the analysis of the results can be carried out graphically through several dedicated graphical interfaces. GenoLink is a generic and interactive tool allowing biologists to graphically explore various sources of information. GenoLink is distributed either as a standalone application or as a component of the Genostar/Iogma platform. Both distributions are free for academic research and teaching purposes and can be requested at academy@genostar.com. A commercial licence form can be obtained for profit company at info@genostar.com. See also http://www.genostar.org.

  10. GenoLink: a graph-based querying and browsing system for investigating the function of genes and proteins

    PubMed Central

    Durand, Patrick; Labarre, Laurent; Meil, Alain; Divo1, Jean-Louis; Vandenbrouck, Yves; Viari, Alain; Wojcik, Jérôme

    2006-01-01

    Background A large variety of biological data can be represented by graphs. These graphs can be constructed from heterogeneous data coming from genomic and post-genomic technologies, but there is still need for tools aiming at exploring and analysing such graphs. This paper describes GenoLink, a software platform for the graphical querying and exploration of graphs. Results GenoLink provides a generic framework for representing and querying data graphs. This framework provides a graph data structure, a graph query engine, allowing to retrieve sub-graphs from the entire data graph, and several graphical interfaces to express such queries and to further explore their results. A query consists in a graph pattern with constraints attached to the vertices and edges. A query result is the set of all sub-graphs of the entire data graph that are isomorphic to the pattern and satisfy the constraints. The graph data structure does not rely upon any particular data model but can dynamically accommodate for any user-supplied data model. However, for genomic and post-genomic applications, we provide a default data model and several parsers for the most popular data sources. GenoLink does not require any programming skill since all operations on graphs and the analysis of the results can be carried out graphically through several dedicated graphical interfaces. Conclusion GenoLink is a generic and interactive tool allowing biologists to graphically explore various sources of information. GenoLink is distributed either as a standalone application or as a component of the Genostar/Iogma platform. Both distributions are free for academic research and teaching purposes and can be requested at academy@genostar.com. A commercial licence form can be obtained for profit company at info@genostar.com. See also . PMID:16417636

  11. Hierarchical graphs for better annotations of rule-based models of biochemical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Bin; Hlavacek, William

    2009-01-01

    In the graph-based formalism of the BioNetGen language (BNGL), graphs are used to represent molecules, with a colored vertex representing a component of a molecule, a vertex label representing the internal state of a component, and an edge representing a bond between components. Components of a molecule share the same color. Furthermore, graph-rewriting rules are used to represent molecular interactions, with a rule that specifies addition (removal) of an edge representing a class of association (dissociation) reactions and with a rule that specifies a change of vertex label representing a class of reactions that affect the internal state of amore » molecular component. A set of rules comprises a mathematical/computational model that can be used to determine, through various means, the system-level dynamics of molecular interactions in a biochemical system. Here, for purposes of model annotation, we propose an extension of BNGL that involves the use of hierarchical graphs to represent (1) relationships among components and subcomponents of molecules and (2) relationships among classes of reactions defined by rules. We illustrate how hierarchical graphs can be used to naturally document the structural organization of the functional components and subcomponents of two proteins: the protein tyrosine kinase Lck and the T cell receptor (TCR)/CD3 complex. Likewise, we illustrate how hierarchical graphs can be used to document the similarity of two related rules for kinase-catalyzed phosphorylation of a protein substrate. We also demonstrate how a hierarchical graph representing a protein can be encoded in an XML-based format.« less

  12. Graph Kernels for Molecular Similarity.

    PubMed

    Rupp, Matthias; Schneider, Gisbert

    2010-04-12

    Molecular similarity measures are important for many cheminformatics applications like ligand-based virtual screening and quantitative structure-property relationships. Graph kernels are formal similarity measures defined directly on graphs, such as the (annotated) molecular structure graph. Graph kernels are positive semi-definite functions, i.e., they correspond to inner products. This property makes them suitable for use with kernel-based machine learning algorithms such as support vector machines and Gaussian processes. We review the major types of kernels between graphs (based on random walks, subgraphs, and optimal assignments, respectively), and discuss their advantages, limitations, and successful applications in cheminformatics. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Molecular graph convolutions: moving beyond fingerprints.

    PubMed

    Kearnes, Steven; McCloskey, Kevin; Berndl, Marc; Pande, Vijay; Riley, Patrick

    2016-08-01

    Molecular "fingerprints" encoding structural information are the workhorse of cheminformatics and machine learning in drug discovery applications. However, fingerprint representations necessarily emphasize particular aspects of the molecular structure while ignoring others, rather than allowing the model to make data-driven decisions. We describe molecular graph convolutions, a machine learning architecture for learning from undirected graphs, specifically small molecules. Graph convolutions use a simple encoding of the molecular graph-atoms, bonds, distances, etc.-which allows the model to take greater advantage of information in the graph structure. Although graph convolutions do not outperform all fingerprint-based methods, they (along with other graph-based methods) represent a new paradigm in ligand-based virtual screening with exciting opportunities for future improvement.

  14. The Replicator Equation on Graphs

    PubMed Central

    Ohtsuki, Hisashi; Nowak, Martin A.

    2008-01-01

    We study evolutionary games on graphs. Each player is represented by a vertex of the graph. The edges denote who meets whom. A player can use any one of n strategies. Players obtain a payoff from interaction with all their immediate neighbors. We consider three different update rules, called ‘birth-death’, ‘death-birth’ and ‘imitation’. A fourth update rule, ‘pairwise comparison’, is shown to be equivalent to birth-death updating in our model. We use pair-approximation to describe the evolutionary game dynamics on regular graphs of degree k. In the limit of weak selection, we can derive a differential equation which describes how the average frequency of each strategy on the graph changes over time. Remarkably, this equation is a replicator equation with a transformed payoff matrix. Therefore, moving a game from a well-mixed population (the complete graph) onto a regular graph simply results in a transformation of the payoff matrix. The new payoff matrix is the sum of the original payoff matrix plus another matrix, which describes the local competition of strategies. We discuss the application of our theory to four particular examples, the Prisoner’s Dilemma, the Snow-Drift game, a coordination game and the Rock-Scissors-Paper game. PMID:16860343

  15. Efficient enumeration of monocyclic chemical graphs with given path frequencies

    PubMed Central

    2014-01-01

    Background The enumeration of chemical graphs (molecular graphs) satisfying given constraints is one of the fundamental problems in chemoinformatics and bioinformatics because it leads to a variety of useful applications including structure determination and development of novel chemical compounds. Results We consider the problem of enumerating chemical graphs with monocyclic structure (a graph structure that contains exactly one cycle) from a given set of feature vectors, where a feature vector represents the frequency of the prescribed paths in a chemical compound to be constructed and the set is specified by a pair of upper and lower feature vectors. To enumerate all tree-like (acyclic) chemical graphs from a given set of feature vectors, Shimizu et al. and Suzuki et al. proposed efficient branch-and-bound algorithms based on a fast tree enumeration algorithm. In this study, we devise a novel method for extending these algorithms to enumeration of chemical graphs with monocyclic structure by designing a fast algorithm for testing uniqueness. The results of computational experiments reveal that the computational efficiency of the new algorithm is as good as those for enumeration of tree-like chemical compounds. Conclusions We succeed in expanding the class of chemical graphs that are able to be enumerated efficiently. PMID:24955135

  16. Structural graph-based morphometry: A multiscale searchlight framework based on sulcal pits.

    PubMed

    Takerkart, Sylvain; Auzias, Guillaume; Brun, Lucile; Coulon, Olivier

    2017-01-01

    Studying the topography of the cortex has proved valuable in order to characterize populations of subjects. In particular, the recent interest towards the deepest parts of the cortical sulci - the so-called sulcal pits - has opened new avenues in that regard. In this paper, we introduce the first fully automatic brain morphometry method based on the study of the spatial organization of sulcal pits - Structural Graph-Based Morphometry (SGBM). Our framework uses attributed graphs to model local patterns of sulcal pits, and further relies on three original contributions. First, a graph kernel is defined to provide a new similarity measure between pit-graphs, with few parameters that can be efficiently estimated from the data. Secondly, we present the first searchlight scheme dedicated to brain morphometry, yielding dense information maps covering the full cortical surface. Finally, a multi-scale inference strategy is designed to jointly analyze the searchlight information maps obtained at different spatial scales. We demonstrate the effectiveness of our framework by studying gender differences and cortical asymmetries: we show that SGBM can both localize informative regions and estimate their spatial scales, while providing results which are consistent with the literature. Thanks to the modular design of our kernel and the vast array of available kernel methods, SGBM can easily be extended to include a more detailed description of the sulcal patterns and solve different statistical problems. Therefore, we suggest that our SGBM framework should be useful for both reaching a better understanding of the normal brain and defining imaging biomarkers in clinical settings. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. On the degree conjecture for separability of multipartite quantum states

    NASA Astrophysics Data System (ADS)

    Hassan, Ali Saif M.; Joag, Pramod S.

    2008-01-01

    We settle the so-called degree conjecture for the separability of multipartite quantum states, which are normalized graph Laplacians, first given by Braunstein et al. [Phys. Rev. A 73, 012320 (2006)]. The conjecture states that a multipartite quantum state is separable if and only if the degree matrix of the graph associated with the state is equal to the degree matrix of the partial transpose of this graph. We call this statement to be the strong form of the conjecture. In its weak version, the conjecture requires only the necessity, that is, if the state is separable, the corresponding degree matrices match. We prove the strong form of the conjecture for pure multipartite quantum states using the modified tensor product of graphs defined by Hassan and Joag [J. Phys. A 40, 10251 (2007)], as both necessary and sufficient condition for separability. Based on this proof, we give a polynomial-time algorithm for completely factorizing any pure multipartite quantum state. By polynomial-time algorithm, we mean that the execution time of this algorithm increases as a polynomial in m, where m is the number of parts of the quantum system. We give a counterexample to show that the conjecture fails, in general, even in its weak form, for multipartite mixed states. Finally, we prove this conjecture, in its weak form, for a class of multipartite mixed states, giving only a necessary condition for separability.

  18. On the degree conjecture for separability of multipartite quantum states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, Ali Saif M.; Joag, Pramod S.

    2008-01-15

    We settle the so-called degree conjecture for the separability of multipartite quantum states, which are normalized graph Laplacians, first given by Braunstein et al. [Phys. Rev. A 73, 012320 (2006)]. The conjecture states that a multipartite quantum state is separable if and only if the degree matrix of the graph associated with the state is equal to the degree matrix of the partial transpose of this graph. We call this statement to be the strong form of the conjecture. In its weak version, the conjecture requires only the necessity, that is, if the state is separable, the corresponding degree matricesmore » match. We prove the strong form of the conjecture for pure multipartite quantum states using the modified tensor product of graphs defined by Hassan and Joag [J. Phys. A 40, 10251 (2007)], as both necessary and sufficient condition for separability. Based on this proof, we give a polynomial-time algorithm for completely factorizing any pure multipartite quantum state. By polynomial-time algorithm, we mean that the execution time of this algorithm increases as a polynomial in m, where m is the number of parts of the quantum system. We give a counterexample to show that the conjecture fails, in general, even in its weak form, for multipartite mixed states. Finally, we prove this conjecture, in its weak form, for a class of multipartite mixed states, giving only a necessary condition for separability.« less

  19. Bayesian segmentation of atrium wall using globally-optimal graph cuts on 3D meshes.

    PubMed

    Veni, Gopalkrishna; Fu, Zhisong; Awate, Suyash P; Whitaker, Ross T

    2013-01-01

    Efficient segmentation of the left atrium (LA) wall from delayed enhancement MRI is challenging due to inconsistent contrast, combined with noise, and high variation in atrial shape and size. We present a surface-detection method that is capable of extracting the atrial wall by computing an optimal a-posteriori estimate. This estimation is done on a set of nested meshes, constructed from an ensemble of segmented training images, and graph cuts on an associated multi-column, proper-ordered graph. The graph/mesh is a part of a template/model that has an associated set of learned intensity features. When this mesh is overlaid onto a test image, it produces a set of costs which lead to an optimal segmentation. The 3D mesh has an associated weighted, directed multi-column graph with edges that encode smoothness and inter-surface penalties. Unlike previous graph-cut methods that impose hard constraints on the surface properties, the proposed method follows from a Bayesian formulation resulting in soft penalties on spatial variation of the cuts through the mesh. The novelty of this method also lies in the construction of proper-ordered graphs on complex shapes for choosing among distinct classes of base shapes for automatic LA segmentation. We evaluate the proposed segmentation framework on simulated and clinical cardiac MRI.

  20. NOUS: A Knowledge Graph Management System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knowledge graphs represent information as entities and relationships between them. For tasks such as natural language question answering or automated analysis of text, a knowledge graph provides valuable context to establish the specific type of entities being discussed. It allow us to derive better context about newly arriving information and leads to intelligent reasoning capabilities. We address two primary needs: A) Automated construction of knowledge graphs is a technically challenging, expensive process; and B) The ability to synthesize new information by monitoring newly emerging knowledge is a transformational capability that does not exist in state of the art systems.

  1. A novel method for identifying a graph-based representation of 3-D microvascular networks from fluorescence microscopy image stacks.

    PubMed

    Almasi, Sepideh; Xu, Xiaoyin; Ben-Zvi, Ayal; Lacoste, Baptiste; Gu, Chenghua; Miller, Eric L

    2015-02-01

    A novel approach to determine the global topological structure of a microvasculature network from noisy and low-resolution fluorescence microscopy data that does not require the detailed segmentation of the vessel structure is proposed here. The method is most appropriate for problems where the tortuosity of the network is relatively low and proceeds by directly computing a piecewise linear approximation to the vasculature skeleton through the construction of a graph in three dimensions whose edges represent the skeletal approximation and vertices are located at Critical Points (CPs) on the microvasculature. The CPs are defined as vessel junctions or locations of relatively large curvature along the centerline of a vessel. Our method consists of two phases. First, we provide a CP detection technique that, for junctions in particular, does not require any a priori geometric information such as direction or degree. Second, connectivity between detected nodes is determined via the solution of a Binary Integer Program (BIP) whose variables determine whether a potential edge between nodes is or is not included in the final graph. The utility function in this problem reflects both intensity-based and structural information along the path connecting the two nodes. Qualitative and quantitative results confirm the usefulness and accuracy of this method. This approach provides a mean of correctly capturing the connectivity patterns in vessels that are missed by more traditional segmentation and binarization schemes because of imperfections in the images which manifest as dim or broken vessels. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. A graph-based approach for designing extensible pipelines

    PubMed Central

    2012-01-01

    Background In bioinformatics, it is important to build extensible and low-maintenance systems that are able to deal with the new tools and data formats that are constantly being developed. The traditional and simplest implementation of pipelines involves hardcoding the execution steps into programs or scripts. This approach can lead to problems when a pipeline is expanding because the incorporation of new tools is often error prone and time consuming. Current approaches to pipeline development such as workflow management systems focus on analysis tasks that are systematically repeated without significant changes in their course of execution, such as genome annotation. However, more dynamism on the pipeline composition is necessary when each execution requires a different combination of steps. Results We propose a graph-based approach to implement extensible and low-maintenance pipelines that is suitable for pipeline applications with multiple functionalities that require different combinations of steps in each execution. Here pipelines are composed automatically by compiling a specialised set of tools on demand, depending on the functionality required, instead of specifying every sequence of tools in advance. We represent the connectivity of pipeline components with a directed graph in which components are the graph edges, their inputs and outputs are the graph nodes, and the paths through the graph are pipelines. To that end, we developed special data structures and a pipeline system algorithm. We demonstrate the applicability of our approach by implementing a format conversion pipeline for the fields of population genetics and genetic epidemiology, but our approach is also helpful in other fields where the use of multiple software is necessary to perform comprehensive analyses, such as gene expression and proteomics analyses. The project code, documentation and the Java executables are available under an open source license at http

  3. Functional brain networks in Alzheimer's disease: EEG analysis based on limited penetrable visibility graph and phase space method

    NASA Astrophysics Data System (ADS)

    Wang, Jiang; Yang, Chen; Wang, Ruofan; Yu, Haitao; Cao, Yibin; Liu, Jing

    2016-10-01

    In this paper, EEG series are applied to construct functional connections with the correlation between different regions in order to investigate the nonlinear characteristic and the cognitive function of the brain with Alzheimer's disease (AD). First, limited penetrable visibility graph (LPVG) and phase space method map single EEG series into networks, and investigate the underlying chaotic system dynamics of AD brain. Topological properties of the networks are extracted, such as average path length and clustering coefficient. It is found that the network topology of AD in several local brain regions are different from that of the control group with no statistically significant difference existing all over the brain. Furthermore, in order to detect the abnormality of AD brain as a whole, functional connections among different brain regions are reconstructed based on similarity of clustering coefficient sequence (CCSS) of EEG series in the four frequency bands (delta, theta, alpha, and beta), which exhibit obvious small-world properties. Graph analysis demonstrates that for both methodologies, the functional connections between regions of AD brain decrease, particularly in the alpha frequency band. AD causes the graph index complexity of the functional network decreased, the small-world properties weakened, and the vulnerability increased. The obtained results show that the brain functional network constructed by LPVG and phase space method might be more effective to distinguish AD from the normal control than the analysis of single series, which is helpful for revealing the underlying pathological mechanism of the disease.

  4. Modeling flow and transport in fracture networks using graphs

    NASA Astrophysics Data System (ADS)

    Karra, S.; O'Malley, D.; Hyman, J. D.; Viswanathan, H. S.; Srinivasan, G.

    2018-03-01

    Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizations of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. The good accuracy and the low computational cost, with O (104) times lower times than

  5. Modeling flow and transport in fracture networks using graphs.

    PubMed

    Karra, S; O'Malley, D; Hyman, J D; Viswanathan, H S; Srinivasan, G

    2018-03-01

    Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizations of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. The good accuracy and the low computational cost, with O(10^{4}) times lower times

  6. Modeling flow and transport in fracture networks using graphs

    DOE PAGES

    Karra, S.; O'Malley, D.; Hyman, J. D.; ...

    2018-03-09

    Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizationsmore » of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. In conclusion, the good accuracy and the low computational cost, with O(10 4

  7. Modeling flow and transport in fracture networks using graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karra, S.; O'Malley, D.; Hyman, J. D.

    Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizationsmore » of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. In conclusion, the good accuracy and the low computational cost, with O(10 4

  8. HBNG: Graph theory based visualization of hydrogen bond networks in protein structures.

    PubMed

    Tiwari, Abhishek; Tiwari, Vivek

    2007-07-09

    HBNG is a graph theory based tool for visualization of hydrogen bond network in 2D. Digraphs generated by HBNG facilitate visualization of cooperativity and anticooperativity chains and rings in protein structures. HBNG takes hydrogen bonds list files (output from HBAT, HBEXPLORE, HBPLUS and STRIDE) as input and generates a DOT language script and constructs digraphs using freeware AT and T Graphviz tool. HBNG is useful in the enumeration of favorable topologies of hydrogen bond networks in protein structures and determining the effect of cooperativity and anticooperativity on protein stability and folding. HBNG can be applied to protein structure comparison and in the identification of secondary structural regions in protein structures. Program is available from the authors for non-commercial purposes.

  9. Graph theoretical model of a sensorimotor connectome in zebrafish.

    PubMed

    Stobb, Michael; Peterson, Joshua M; Mazzag, Borbala; Gahtan, Ethan

    2012-01-01

    Mapping the detailed connectivity patterns (connectomes) of neural circuits is a central goal of neuroscience. The best quantitative approach to analyzing connectome data is still unclear but graph theory has been used with success. We present a graph theoretical model of the posterior lateral line sensorimotor pathway in zebrafish. The model includes 2,616 neurons and 167,114 synaptic connections. Model neurons represent known cell types in zebrafish larvae, and connections were set stochastically following rules based on biological literature. Thus, our model is a uniquely detailed computational representation of a vertebrate connectome. The connectome has low overall connection density, with 2.45% of all possible connections, a value within the physiological range. We used graph theoretical tools to compare the zebrafish connectome graph to small-world, random and structured random graphs of the same size. For each type of graph, 100 randomly generated instantiations were considered. Degree distribution (the number of connections per neuron) varied more in the zebrafish graph than in same size graphs with less biological detail. There was high local clustering and a short average path length between nodes, implying a small-world structure similar to other neural connectomes and complex networks. The graph was found not to be scale-free, in agreement with some other neural connectomes. An experimental lesion was performed that targeted three model brain neurons, including the Mauthner neuron, known to control fast escape turns. The lesion decreased the number of short paths between sensory and motor neurons analogous to the behavioral effects of the same lesion in zebrafish. This model is expandable and can be used to organize and interpret a growing database of information on the zebrafish connectome.

  10. Motifs in triadic random graphs based on Steiner triple systems

    NASA Astrophysics Data System (ADS)

    Winkler, Marco; Reichardt, Jörg

    2013-08-01

    Conventionally, pairwise relationships between nodes are considered to be the fundamental building blocks of complex networks. However, over the last decade, the overabundance of certain subnetwork patterns, i.e., the so-called motifs, has attracted much attention. It has been hypothesized that these motifs, instead of links, serve as the building blocks of network structures. Although the relation between a network's topology and the general properties of the system, such as its function, its robustness against perturbations, or its efficiency in spreading information, is the central theme of network science, there is still a lack of sound generative models needed for testing the functional role of subgraph motifs. Our work aims to overcome this limitation. We employ the framework of exponential random graph models (ERGMs) to define models based on triadic substructures. The fact that only a small portion of triads can actually be set independently poses a challenge for the formulation of such models. To overcome this obstacle, we use Steiner triple systems (STSs). These are partitions of sets of nodes into pair-disjoint triads, which thus can be specified independently. Combining the concepts of ERGMs and STSs, we suggest generative models capable of generating ensembles of networks with nontrivial triadic Z-score profiles. Further, we discover inevitable correlations between the abundance of triad patterns, which occur solely for statistical reasons and need to be taken into account when discussing the functional implications of motif statistics. Moreover, we calculate the degree distributions of our triadic random graphs analytically.

  11. On the Kirchhoff Index of Graphs

    NASA Astrophysics Data System (ADS)

    Das, Kinkar C.

    2013-09-01

    Let G be a connected graph of order n with Laplacian eigenvalues μ1 ≥ μ2 ≥ ... ≥ μn-1 > mn = 0. The Kirchhoff index of G is defined as [xxx] In this paper. we give lower and upper bounds on Kf of graphs in terms on n, number of edges, maximum degree, and number of spanning trees. Moreover, we present lower and upper bounds on the Nordhaus-Gaddum-type result for the Kirchhoff index.

  12. Better Decomposition Heuristics for the Maximum-Weight Connected Graph Problem Using Betweenness Centrality

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takanori; Bannai, Hideo; Nagasaki, Masao; Miyano, Satoru

    We present new decomposition heuristics for finding the optimal solution for the maximum-weight connected graph problem, which is known to be NP-hard. Previous optimal algorithms for solving the problem decompose the input graph into subgraphs using heuristics based on node degree. We propose new heuristics based on betweenness centrality measures, and show through computational experiments that our new heuristics tend to reduce the number of subgraphs in the decomposition, and therefore could lead to the reduction in computational time for finding the optimal solution. The method is further applied to analysis of biological pathway data.

  13. Graph-based analysis of kinetics on multidimensional potential-energy surfaces.

    PubMed

    Okushima, T; Niiyama, T; Ikeda, K S; Shimizu, Y

    2009-09-01

    The aim of this paper is twofold: one is to give a detailed description of an alternative graph-based analysis method, which we call saddle connectivity graph, for analyzing the global topography and the dynamical properties of many-dimensional potential-energy landscapes and the other is to give examples of applications of this method in the analysis of the kinetics of realistic systems. A Dijkstra-type shortest path algorithm is proposed to extract dynamically dominant transition pathways by kinetically defining transition costs. The applicability of this approach is first confirmed by an illustrative example of a low-dimensional random potential. We then show that a coarse-graining procedure tailored for saddle connectivity graphs can be used to obtain the kinetic properties of 13- and 38-atom Lennard-Jones clusters. The coarse-graining method not only reduces the complexity of the graphs, but also, with iterative use, reveals a self-similar hierarchical structure in these clusters. We also propose that the self-similarity is common to many-atom Lennard-Jones clusters.

  14. Use of Graph Database for the Integration of Heterogeneous Biological Data.

    PubMed

    Yoon, Byoung-Ha; Kim, Seon-Kyu; Kim, Seon-Young

    2017-03-01

    Understanding complex relationships among heterogeneous biological data is one of the fundamental goals in biology. In most cases, diverse biological data are stored in relational databases, such as MySQL and Oracle, which store data in multiple tables and then infer relationships by multiple-join statements. Recently, a new type of database, called the graph-based database, was developed to natively represent various kinds of complex relationships, and it is widely used among computer science communities and IT industries. Here, we demonstrate the feasibility of using a graph-based database for complex biological relationships by comparing the performance between MySQL and Neo4j, one of the most widely used graph databases. We collected various biological data (protein-protein interaction, drug-target, gene-disease, etc.) from several existing sources, removed duplicate and redundant data, and finally constructed a graph database containing 114,550 nodes and 82,674,321 relationships. When we tested the query execution performance of MySQL versus Neo4j, we found that Neo4j outperformed MySQL in all cases. While Neo4j exhibited a very fast response for various queries, MySQL exhibited latent or unfinished responses for complex queries with multiple-join statements. These results show that using graph-based databases, such as Neo4j, is an efficient way to store complex biological relationships. Moreover, querying a graph database in diverse ways has the potential to reveal novel relationships among heterogeneous biological data.

  15. Use of Graph Database for the Integration of Heterogeneous Biological Data

    PubMed Central

    Yoon, Byoung-Ha; Kim, Seon-Kyu

    2017-01-01

    Understanding complex relationships among heterogeneous biological data is one of the fundamental goals in biology. In most cases, diverse biological data are stored in relational databases, such as MySQL and Oracle, which store data in multiple tables and then infer relationships by multiple-join statements. Recently, a new type of database, called the graph-based database, was developed to natively represent various kinds of complex relationships, and it is widely used among computer science communities and IT industries. Here, we demonstrate the feasibility of using a graph-based database for complex biological relationships by comparing the performance between MySQL and Neo4j, one of the most widely used graph databases. We collected various biological data (protein-protein interaction, drug-target, gene-disease, etc.) from several existing sources, removed duplicate and redundant data, and finally constructed a graph database containing 114,550 nodes and 82,674,321 relationships. When we tested the query execution performance of MySQL versus Neo4j, we found that Neo4j outperformed MySQL in all cases. While Neo4j exhibited a very fast response for various queries, MySQL exhibited latent or unfinished responses for complex queries with multiple-join statements. These results show that using graph-based databases, such as Neo4j, is an efficient way to store complex biological relationships. Moreover, querying a graph database in diverse ways has the potential to reveal novel relationships among heterogeneous biological data. PMID:28416946

  16. EvoGraph: On-The-Fly Efficient Mining of Evolving Graphs on GPU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Dipanjan; Song, Shuaiwen

    With the prevalence of the World Wide Web and social networks, there has been a growing interest in high performance analytics for constantly-evolving dynamic graphs. Modern GPUs provide massive AQ1 amount of parallelism for efficient graph processing, but the challenges remain due to their lack of support for the near real-time streaming nature of dynamic graphs. Specifically, due to the current high volume and velocity of graph data combined with the complexity of user queries, traditional processing methods by first storing the updates and then repeatedly running static graph analytics on a sequence of versions or snapshots are deemed undesirablemore » and computational infeasible on GPU. We present EvoGraph, a highly efficient and scalable GPU- based dynamic graph analytics framework.« less

  17. Building occupancy simulation and data assimilation using a graph-based agent-oriented model

    NASA Astrophysics Data System (ADS)

    Rai, Sanish; Hu, Xiaolin

    2018-07-01

    Building occupancy simulation and estimation simulates the dynamics of occupants and estimates their real-time spatial distribution in a building. It requires a simulation model and an algorithm for data assimilation that assimilates real-time sensor data into the simulation model. Existing building occupancy simulation models include agent-based models and graph-based models. The agent-based models suffer high computation cost for simulating large numbers of occupants, and graph-based models overlook the heterogeneity and detailed behaviors of individuals. Recognizing the limitations of existing models, this paper presents a new graph-based agent-oriented model which can efficiently simulate large numbers of occupants in various kinds of building structures. To support real-time occupancy dynamics estimation, a data assimilation framework based on Sequential Monte Carlo Methods is also developed and applied to the graph-based agent-oriented model to assimilate real-time sensor data. Experimental results show the effectiveness of the developed model and the data assimilation framework. The major contributions of this work are to provide an efficient model for building occupancy simulation that can accommodate large numbers of occupants and an effective data assimilation framework that can provide real-time estimations of building occupancy from sensor data.

  18. Graph configuration model based evaluation of the education-occupation match.

    PubMed

    Gadar, Laszlo; Abonyi, Janos

    2018-01-01

    To study education-occupation matchings we developed a bipartite network model of education to work transition and a graph configuration model based metric. We studied the career paths of 15 thousand Hungarian students based on the integrated database of the National Tax Administration, the National Health Insurance Fund, and the higher education information system of the Hungarian Government. A brief analysis of gender pay gap and the spatial distribution of over-education is presented to demonstrate the background of the research and the resulted open dataset. We highlighted the hierarchical and clustered structure of the career paths based on the multi-resolution analysis of the graph modularity. The results of the cluster analysis can support policymakers to fine-tune the fragmented program structure of higher education.

  19. Bipartite graphs as models of population structures in evolutionary multiplayer games.

    PubMed

    Peña, Jorge; Rochat, Yannick

    2012-01-01

    By combining evolutionary game theory and graph theory, "games on graphs" study the evolutionary dynamics of frequency-dependent selection in population structures modeled as geographical or social networks. Networks are usually represented by means of unipartite graphs, and social interactions by two-person games such as the famous prisoner's dilemma. Unipartite graphs have also been used for modeling interactions going beyond pairwise interactions. In this paper, we argue that bipartite graphs are a better alternative to unipartite graphs for describing population structures in evolutionary multiplayer games. To illustrate this point, we make use of bipartite graphs to investigate, by means of computer simulations, the evolution of cooperation under the conventional and the distributed N-person prisoner's dilemma. We show that several implicit assumptions arising from the standard approach based on unipartite graphs (such as the definition of replacement neighborhoods, the intertwining of individual and group diversity, and the large overlap of interaction neighborhoods) can have a large impact on the resulting evolutionary dynamics. Our work provides a clear example of the importance of construction procedures in games on graphs, of the suitability of bigraphs and hypergraphs for computational modeling, and of the importance of concepts from social network analysis such as centrality, centralization and bipartite clustering for the understanding of dynamical processes occurring on networked population structures.

  20. Modeling oil generation with time-temperature index graphs based on the Arrhenius equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, J.M.; Lewan, M.D.; Hennet, R.J.C.

    1991-04-01

    The time and depth of oil generation from petroleum source rocks containing type II kerogens can be determined using time-temperature index (TTI) graphs based on the Arrhenius equation. Activation energies (E) and frequency factors (A) used in the Arrhenius equation were obtained from hydrous pyrolysis experiments on rock samples in which the kerogens represent the range of type II kerogen compositions encountered in most petroleum basins. The E and A values obtained were used to construct graphs that define the beginning and end of oil generation for most type II kerogens having chemical compositions in the range of these standards.more » Activation energies of these standard kerogens vary inversely with their sulfur content. The kerogen with the highest sulfur content had the lowest E value and was the fastest in generating oil, whereas the kerogen with the lowest sulfur content had the highest E value and was the slowest in generating oil. These standard kerogens were designated as types IIA, B, C, and D on the basis of decreasing sulfur content and corresponding increasing time-temperature requirements for generating oil. The {Sigma}TTI{sub ARR} values determined graphically with these type II kerogen standards in two basin models were compared with a computer calculation using 2,000 increments. The graphical method came within {plus minus} 3% of the computer calculation. As type II kerogens are the major oil generators in the world, these graphs should have wide application in making preliminary evaluations of the depth of the oil window in exploration areas.« less

  1. Efficient, graph-based white matter connectivity from orientation distribution functions via multi-directional graph propagation

    NASA Astrophysics Data System (ADS)

    Boucharin, Alexis; Oguz, Ipek; Vachet, Clement; Shi, Yundi; Sanchez, Mar; Styner, Martin

    2011-03-01

    The use of regional connectivity measurements derived from diffusion imaging datasets has become of considerable interest in the neuroimaging community in order to better understand cortical and subcortical white matter connectivity. Current connectivity assessment methods are based on streamline fiber tractography, usually applied in a Monte-Carlo fashion. In this work we present a novel, graph-based method that performs a fully deterministic, efficient and stable connectivity computation. The method handles crossing fibers and deals well with multiple seed regions. The computation is based on a multi-directional graph propagation method applied to sampled orientation distribution function (ODF), which can be computed directly from the original diffusion imaging data. We show early results of our method on synthetic and real datasets. The results illustrate the potential of our method towards subjectspecific connectivity measurements that are performed in an efficient, stable and reproducible manner. Such individual connectivity measurements would be well suited for application in population studies of neuropathology, such as Autism, Huntington's Disease, Multiple Sclerosis or leukodystrophies. The proposed method is generic and could easily be applied to non-diffusion data as long as local directional data can be derived.

  2. Edge compression techniques for visualization of dense directed graphs.

    PubMed

    Dwyer, Tim; Henry Riche, Nathalie; Marriott, Kim; Mears, Christopher

    2013-12-01

    We explore the effectiveness of visualizing dense directed graphs by replacing individual edges with edges connected to 'modules'-or groups of nodes-such that the new edges imply aggregate connectivity. We only consider techniques that offer a lossless compression: that is, where the entire graph can still be read from the compressed version. The techniques considered are: a simple grouping of nodes with identical neighbor sets; Modular Decomposition which permits internal structure in modules and allows them to be nested; and Power Graph Analysis which further allows edges to cross module boundaries. These techniques all have the same goal--to compress the set of edges that need to be rendered to fully convey connectivity--but each successive relaxation of the module definition permits fewer edges to be drawn in the rendered graph. Each successive technique also, we hypothesize, requires a higher degree of mental effort to interpret. We test this hypothetical trade-off with two studies involving human participants. For Power Graph Analysis we propose a novel optimal technique based on constraint programming. This enables us to explore the parameter space for the technique more precisely than could be achieved with a heuristic. Although applicable to many domains, we are motivated by--and discuss in particular--the application to software dependency analysis.

  3. Small covers of graph-associahedra and realization of cycles

    NASA Astrophysics Data System (ADS)

    Gaifullin, A. A.

    2016-11-01

    An oriented connected closed manifold M^n is called a URC-manifold if for any oriented connected closed manifold N^n of the same dimension there exists a nonzero-degree mapping of a finite-fold covering \\widehat{M}^n of M^n onto N^n. This condition is equivalent to the following: for any n-dimensional integral homology class of any topological space X, a multiple of it can be realized as the image of the fundamental class of a finite-fold covering \\widehat{M}^n of M^n under a continuous mapping f\\colon \\widehat{M}^n\\to X. In 2007 the author gave a constructive proof of Thom's classical result that a multiple of any integral homology class can be realized as an image of the fundamental class of an oriented smooth manifold. This construction yields the existence of URC-manifolds of all dimensions. For an important class of manifolds, the so-called small covers of graph-associahedra corresponding to connected graphs, we prove that either they or their two-fold orientation coverings are URC-manifolds. In particular, we obtain that the two-fold covering of the small cover of the usual Stasheff associahedron is a URC-manifold. In dimensions 4 and higher, this manifold is simpler than all the previously known URC-manifolds. Bibliography: 39 titles.

  4. F-RAG: Generating Atomic Coordinates from RNA Graphs by Fragment Assembly.

    PubMed

    Jain, Swati; Schlick, Tamar

    2017-11-24

    Coarse-grained models represent attractive approaches to analyze and simulate ribonucleic acid (RNA) molecules, for example, for structure prediction and design, as they simplify the RNA structure to reduce the conformational search space. Our structure prediction protocol RAGTOP (RNA-As-Graphs Topology Prediction) represents RNA structures as tree graphs and samples graph topologies to produce candidate graphs. However, for a more detailed study and analysis, construction of atomic from coarse-grained models is required. Here we present our graph-based fragment assembly algorithm (F-RAG) to convert candidate three-dimensional (3D) tree graph models, produced by RAGTOP into atomic structures. We use our related RAG-3D utilities to partition graphs into subgraphs and search for structurally similar atomic fragments in a data set of RNA 3D structures. The fragments are edited and superimposed using common residues, full atomic models are scored using RAGTOP's knowledge-based potential, and geometries of top scoring models is optimized. To evaluate our models, we assess all-atom RMSDs and Interaction Network Fidelity (a measure of residue interactions) with respect to experimentally solved structures and compare our results to other fragment assembly programs. For a set of 50 RNA structures, we obtain atomic models with reasonable geometries and interactions, particularly good for RNAs containing junctions. Additional improvements to our protocol and databases are outlined. These results provide a good foundation for further work on RNA structure prediction and design applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. A searching and reporting system for relational databases using a graph-based metadata representation.

    PubMed

    Hewitt, Robin; Gobbi, Alberto; Lee, Man-Ling

    2005-01-01

    Relational databases are the current standard for storing and retrieving data in the pharmaceutical and biotech industries. However, retrieving data from a relational database requires specialized knowledge of the database schema and of the SQL query language. At Anadys, we have developed an easy-to-use system for searching and reporting data in a relational database to support our drug discovery project teams. This system is fast and flexible and allows users to access all data without having to write SQL queries. This paper presents the hierarchical, graph-based metadata representation and SQL-construction methods that, together, are the basis of this system's capabilities.

  6. Artistic image analysis using graph-based learning approaches.

    PubMed

    Carneiro, Gustavo

    2013-08-01

    We introduce a new methodology for the problem of artistic image analysis, which among other tasks, involves the automatic identification of visual classes present in an art work. In this paper, we advocate the idea that artistic image analysis must explore a graph that captures the network of artistic influences by computing the similarities in terms of appearance and manual annotation. One of the novelties of our methodology is the proposed formulation that is a principled way of combining these two similarities in a single graph. Using this graph, we show that an efficient random walk algorithm based on an inverted label propagation formulation produces more accurate annotation and retrieval results compared with the following baseline algorithms: bag of visual words, label propagation, matrix completion, and structural learning. We also show that the proposed approach leads to a more efficient inference and training procedures. This experiment is run on a database containing 988 artistic images (with 49 visual classification problems divided into a multiclass problem with 27 classes and 48 binary problems), where we show the inference and training running times, and quantitative comparisons with respect to several retrieval and annotation performance measures.

  7. Searches over graphs representing geospatial-temporal remote sensing data

    DOEpatents

    Brost, Randolph; Perkins, David Nikolaus

    2018-03-06

    Various technologies pertaining to identifying objects of interest in remote sensing images by searching over geospatial-temporal graph representations are described herein. Graphs are constructed by representing objects in remote sensing images as nodes, and connecting nodes with undirected edges representing either distance or adjacency relationships between objects and directed edges representing changes in time. Geospatial-temporal graph searches are made computationally efficient by taking advantage of characteristics of geospatial-temporal data in remote sensing images through the application of various graph search techniques.

  8. Unimodular lattice triangulations as small-world and scale-free random graphs

    NASA Astrophysics Data System (ADS)

    Krüger, B.; Schmidt, E. M.; Mecke, K.

    2015-02-01

    Real-world networks, e.g., the social relations or world-wide-web graphs, exhibit both small-world and scale-free behaviour. We interpret lattice triangulations as planar graphs by identifying triangulation vertices with graph nodes and one-dimensional simplices with edges. Since these triangulations are ergodic with respect to a certain Pachner flip, applying different Monte Carlo simulations enables us to calculate average properties of random triangulations, as well as canonical ensemble averages, using an energy functional that is approximately the variance of the degree distribution. All considered triangulations have clustering coefficients comparable with real-world graphs; for the canonical ensemble there are inverse temperatures with small shortest path length independent of system size. Tuning the inverse temperature to a quasi-critical value leads to an indication of scale-free behaviour for degrees k≥slant 5. Using triangulations as a random graph model can improve the understanding of real-world networks, especially if the actual distance of the embedded nodes becomes important.

  9. Molecular graph convolutions: moving beyond fingerprints

    NASA Astrophysics Data System (ADS)

    Kearnes, Steven; McCloskey, Kevin; Berndl, Marc; Pande, Vijay; Riley, Patrick

    2016-08-01

    Molecular "fingerprints" encoding structural information are the workhorse of cheminformatics and machine learning in drug discovery applications. However, fingerprint representations necessarily emphasize particular aspects of the molecular structure while ignoring others, rather than allowing the model to make data-driven decisions. We describe molecular graph convolutions, a machine learning architecture for learning from undirected graphs, specifically small molecules. Graph convolutions use a simple encoding of the molecular graph—atoms, bonds, distances, etc.—which allows the model to take greater advantage of information in the graph structure. Although graph convolutions do not outperform all fingerprint-based methods, they (along with other graph-based methods) represent a new paradigm in ligand-based virtual screening with exciting opportunities for future improvement.

  10. An automatic graph-based approach for artery/vein classification in retinal images.

    PubMed

    Dashtbozorg, Behdad; Mendonça, Ana Maria; Campilho, Aurélio

    2014-03-01

    The classification of retinal vessels into artery/vein (A/V) is an important phase for automating the detection of vascular changes, and for the calculation of characteristic signs associated with several systemic diseases such as diabetes, hypertension, and other cardiovascular conditions. This paper presents an automatic approach for A/V classification based on the analysis of a graph extracted from the retinal vasculature. The proposed method classifies the entire vascular tree deciding on the type of each intersection point (graph nodes) and assigning one of two labels to each vessel segment (graph links). Final classification of a vessel segment as A/V is performed through the combination of the graph-based labeling results with a set of intensity features. The results of this proposed method are compared with manual labeling for three public databases. Accuracy values of 88.3%, 87.4%, and 89.8% are obtained for the images of the INSPIRE-AVR, DRIVE, and VICAVR databases, respectively. These results demonstrate that our method outperforms recent approaches for A/V classification.

  11. A novel line segment detection algorithm based on graph search

    NASA Astrophysics Data System (ADS)

    Zhao, Hong-dan; Liu, Guo-ying; Song, Xu

    2018-02-01

    To overcome the problem of extracting line segment from an image, a method of line segment detection was proposed based on the graph search algorithm. After obtaining the edge detection result of the image, the candidate straight line segments are obtained in four directions. For the candidate straight line segments, their adjacency relationships are depicted by a graph model, based on which the depth-first search algorithm is employed to determine how many adjacent line segments need to be merged. Finally we use the least squares method to fit the detected straight lines. The comparative experimental results verify that the proposed algorithm has achieved better results than the line segment detector (LSD).

  12. Results on Vertex Degree and K-Connectivity in Uniform S-Intersection Graphs

    DTIC Science & Technology

    2014-01-01

    distribution. A uniform s-intersection graph models the topology of a secure wireless sensor network employing the widely used s-composite key predistribution scheme. Our theoretical findings is also confirmed by numerical results.

  13. Genus Ranges of 4-Regular Rigid Vertex Graphs

    PubMed Central

    Buck, Dorothy; Dolzhenko, Egor; Jonoska, Nataša; Saito, Masahico; Valencia, Karin

    2016-01-01

    A rigid vertex of a graph is one that has a prescribed cyclic order of its incident edges. We study orientable genus ranges of 4-regular rigid vertex graphs. The (orientable) genus range is a set of genera values over all orientable surfaces into which a graph is embedded cellularly, and the embeddings of rigid vertex graphs are required to preserve the prescribed cyclic order of incident edges at every vertex. The genus ranges of 4-regular rigid vertex graphs are sets of consecutive integers, and we address two questions: which intervals of integers appear as genus ranges of such graphs, and what types of graphs realize a given genus range. For graphs with 2n vertices (n > 1), we prove that all intervals [a, b] for all a < b ≤ n, and singletons [h, h] for some h ≤ n, are realized as genus ranges. For graphs with 2n − 1 vertices (n ≥ 1), we prove that all intervals [a, b] for all a < b ≤ n except [0, n], and [h, h] for some h ≤ n, are realized as genus ranges. We also provide constructions of graphs that realize these ranges. PMID:27807395

  14. Mathematical foundations of the GraphBLAS

    DOE PAGES

    Kepner, Jeremy; Aaltonen, Peter; Bader, David; ...

    2016-12-01

    The GraphBLAS standard (GraphBlas.org) is being developed to bring the potential of matrix-based graph algorithms to the broadest possible audience. Mathematically, the GraphBLAS defines a core set of matrix-based graph operations that can be used to implement a wide class of graph algorithms in a wide range of programming environments. This study provides an introduction to the mathematics of the GraphBLAS. Graphs represent connections between vertices with edges. Matrices can represent a wide range of graphs using adjacency matrices or incidence matrices. Adjacency matrices are often easier to analyze while incidence matrices are often better for representing data. Fortunately, themore » two are easily connected by matrix multiplication. A key feature of matrix mathematics is that a very small number of matrix operations can be used to manipulate a very wide range of graphs. This composability of a small number of operations is the foundation of the GraphBLAS. A standard such as the GraphBLAS can only be effective if it has low performance overhead. Finally, performance measurements of prototype GraphBLAS implementations indicate that the overhead is low.« less

  15. Graph State-Based Quantum Secret Sharing with the Chinese Remainder Theorem

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Luo, Peng; Wang, Yijun

    2016-11-01

    Quantum secret sharing (QSS) is a significant quantum cryptography technology in the literature. Dividing an initial secret into several sub-secrets which are then transferred to other legal participants so that it can be securely recovered in a collaboration fashion. In this paper, we develop a quantum route selection based on the encoded quantum graph state, thus enabling the practical QSS scheme in the small-scale complex quantum network. Legal participants are conveniently designated with the quantum route selection using the entanglement of the encoded graph states. Each participant holds a vertex of the graph state so that legal participants are selected through performing operations on specific vertices. The Chinese remainder theorem (CRT) strengthens the security of the recovering process of the initial secret among the legal participants. The security is ensured by the entanglement of the encoded graph states that are cooperatively prepared and shared by legal users beforehand with the sub-secrets embedded in the CRT over finite fields.

  16. Representation of activity in images using geospatial temporal graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brost, Randolph; McLendon, III, William C.; Parekh, Ojas D.

    Various technologies pertaining to modeling patterns of activity observed in remote sensing images using geospatial-temporal graphs are described herein. Graphs are constructed by representing objects in remote sensing images as nodes, and connecting nodes with undirected edges representing either distance or adjacency relationships between objects and directed edges representing changes in time. Activity patterns may be discerned from the graphs by coding nodes representing persistent objects like buildings differently from nodes representing ephemeral objects like vehicles, and examining the geospatial-temporal relationships of ephemeral nodes within the graph.

  17. Helping Students Make Sense of Graphs: An Experimental Trial of SmartGraphs Software

    ERIC Educational Resources Information Center

    Zucker, Andrew; Kay, Rachel; Staudt, Carolyn

    2014-01-01

    Graphs are commonly used in science, mathematics, and social sciences to convey important concepts; yet students at all ages demonstrate difficulties interpreting graphs. This paper reports on an experimental study of free, Web-based software called SmartGraphs that is specifically designed to help students overcome their misconceptions regarding…

  18. Graph Theory Approach for Studying Food Webs

    NASA Astrophysics Data System (ADS)

    Longjas, A.; Tejedor, A.; Foufoula-Georgiou, E.

    2017-12-01

    Food webs are complex networks of feeding interactions among species in ecological communities. Metrics describing food web structure have been proposed to compare and classify food webs ranging from food chain length, connectance, degree distribution, centrality measures, to the presence of motifs (distinct compartments), among others. However, formal methodologies for studying both food web topology and the dynamic processes operating on them are still lacking. Here, we utilize a quantitative framework using graph theory within which a food web is represented by a directed graph, i.e., a collection of vertices (species or trophic species defined as sets of species sharing the same predators and prey) and directed edges (predation links). This framework allows us to identify apex (environmental "source" node) to outlet (top predators) subnetworks and compute the steady-state flux (e.g., carbon, nutrients, energy etc.) in the food web. We use this framework to (1) construct vulnerability maps that quantify the relative change of flux delivery to the top predators in response to perturbations in prey species (2) identify keystone species, whose loss would precipitate further species extinction, and (3) introduce a suite of graph-theoretic metrics to quantify the topologic (imposed by food web connectivity) and dynamic (dictated by the flux partitioning and distribution) components of a food web's complexity. By projecting food webs into a 2D Topodynamic Complexity Space whose coordinates are given by Number of alternative paths (topologic) and Leakage Index (dynamic), we show that this space provides a basis for food web comparison and provide physical insights into their dynamic behavior.

  19. Graph configuration model based evaluation of the education-occupation match

    PubMed Central

    2018-01-01

    To study education—occupation matchings we developed a bipartite network model of education to work transition and a graph configuration model based metric. We studied the career paths of 15 thousand Hungarian students based on the integrated database of the National Tax Administration, the National Health Insurance Fund, and the higher education information system of the Hungarian Government. A brief analysis of gender pay gap and the spatial distribution of over-education is presented to demonstrate the background of the research and the resulted open dataset. We highlighted the hierarchical and clustered structure of the career paths based on the multi-resolution analysis of the graph modularity. The results of the cluster analysis can support policymakers to fine-tune the fragmented program structure of higher education. PMID:29509783

  20. Nonschematic drawing recognition: a new approach based on attributed graph grammar with flexible embedding

    NASA Astrophysics Data System (ADS)

    Lee, Kyu J.; Kunii, T. L.; Noma, T.

    1993-01-01

    In this paper, we propose a syntactic pattern recognition method for non-schematic drawings, based on a new attributed graph grammar with flexible embedding. In our graph grammar, the embedding rule permits the nodes of a guest graph to be arbitrarily connected with the nodes of a host graph. The ambiguity caused by this flexible embedding is controlled with the evaluation of synthesized attributes and the check of context sensitivity. To integrate parsing with the synthesized attribute evaluation and the context sensitivity check, we also develop a bottom up parsing algorithm.

  1. Graph-based network analysis of resting-state functional MRI.

    PubMed

    Wang, Jinhui; Zuo, Xinian; He, Yong

    2010-01-01

    In the past decade, resting-state functional MRI (R-fMRI) measures of brain activity have attracted considerable attention. Based on changes in the blood oxygen level-dependent signal, R-fMRI offers a novel way to assess the brain's spontaneous or intrinsic (i.e., task-free) activity with both high spatial and temporal resolutions. The properties of both the intra- and inter-regional connectivity of resting-state brain activity have been well documented, promoting our understanding of the brain as a complex network. Specifically, the topological organization of brain networks has been recently studied with graph theory. In this review, we will summarize the recent advances in graph-based brain network analyses of R-fMRI signals, both in typical and atypical populations. Application of these approaches to R-fMRI data has demonstrated non-trivial topological properties of functional networks in the human brain. Among these is the knowledge that the brain's intrinsic activity is organized as a small-world, highly efficient network, with significant modularity and highly connected hub regions. These network properties have also been found to change throughout normal development, aging, and in various pathological conditions. The literature reviewed here suggests that graph-based network analyses are capable of uncovering system-level changes associated with different processes in the resting brain, which could provide novel insights into the understanding of the underlying physiological mechanisms of brain function. We also highlight several potential research topics in the future.

  2. Molecular graph convolutions: moving beyond fingerprints

    PubMed Central

    Kearnes, Steven; McCloskey, Kevin; Berndl, Marc; Pande, Vijay; Riley, Patrick

    2016-01-01

    Molecular “fingerprints” encoding structural information are the workhorse of cheminformatics and machine learning in drug discovery applications. However, fingerprint representations necessarily emphasize particular aspects of the molecular structure while ignoring others, rather than allowing the model to make data-driven decisions. We describe molecular graph convolutions, a machine learning architecture for learning from undirected graphs, specifically small molecules. Graph convolutions use a simple encoding of the molecular graph—atoms, bonds, distances, etc.—which allows the model to take greater advantage of information in the graph structure. Although graph convolutions do not outperform all fingerprint-based methods, they (along with other graph-based methods) represent a new paradigm in ligand-based virtual screening with exciting opportunities for future improvement. PMID:27558503

  3. Contact Graph Routing

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott C.

    2011-01-01

    Contact Graph Routing (CGR) is a dynamic routing system that computes routes through a time-varying topology of scheduled communication contacts in a network based on the DTN (Delay-Tolerant Networking) architecture. It is designed to enable dynamic selection of data transmission routes in a space network based on DTN. This dynamic responsiveness in route computation should be significantly more effective and less expensive than static routing, increasing total data return while at the same time reducing mission operations cost and risk. The basic strategy of CGR is to take advantage of the fact that, since flight mission communication operations are planned in detail, the communication routes between any pair of bundle agents in a population of nodes that have all been informed of one another's plans can be inferred from those plans rather than discovered via dialogue (which is impractical over long one-way-light-time space links). Messages that convey this planning information are used to construct contact graphs (time-varying models of network connectivity) from which CGR automatically computes efficient routes for bundles. Automatic route selection increases the flexibility and resilience of the space network, simplifying cross-support and reducing mission management costs. Note that there are no routing tables in Contact Graph Routing. The best route for a bundle destined for a given node may routinely be different from the best route for a different bundle destined for the same node, depending on bundle priority, bundle expiration time, and changes in the current lengths of transmission queues for neighboring nodes; routes must be computed individually for each bundle, from the Bundle Protocol agent's current network connectivity model for the bundle s destination node (the contact graph). Clearly this places a premium on optimizing the implementation of the route computation algorithm. The scalability of CGR to very large networks remains a research topic

  4. Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games

    PubMed Central

    Peña, Jorge; Rochat, Yannick

    2012-01-01

    By combining evolutionary game theory and graph theory, “games on graphs” study the evolutionary dynamics of frequency-dependent selection in population structures modeled as geographical or social networks. Networks are usually represented by means of unipartite graphs, and social interactions by two-person games such as the famous prisoner’s dilemma. Unipartite graphs have also been used for modeling interactions going beyond pairwise interactions. In this paper, we argue that bipartite graphs are a better alternative to unipartite graphs for describing population structures in evolutionary multiplayer games. To illustrate this point, we make use of bipartite graphs to investigate, by means of computer simulations, the evolution of cooperation under the conventional and the distributed N-person prisoner’s dilemma. We show that several implicit assumptions arising from the standard approach based on unipartite graphs (such as the definition of replacement neighborhoods, the intertwining of individual and group diversity, and the large overlap of interaction neighborhoods) can have a large impact on the resulting evolutionary dynamics. Our work provides a clear example of the importance of construction procedures in games on graphs, of the suitability of bigraphs and hypergraphs for computational modeling, and of the importance of concepts from social network analysis such as centrality, centralization and bipartite clustering for the understanding of dynamical processes occurring on networked population structures. PMID:22970237

  5. Constructing Pairing-Friendly Elliptic Curves under Embedding Degree 1 for Securing Critical Infrastructures.

    PubMed

    Wang, Maocai; Dai, Guangming; Choo, Kim-Kwang Raymond; Jayaraman, Prem Prakash; Ranjan, Rajiv

    2016-01-01

    Information confidentiality is an essential requirement for cyber security in critical infrastructure. Identity-based cryptography, an increasingly popular branch of cryptography, is widely used to protect the information confidentiality in the critical infrastructure sector due to the ability to directly compute the user's public key based on the user's identity. However, computational requirements complicate the practical application of Identity-based cryptography. In order to improve the efficiency of identity-based cryptography, this paper presents an effective method to construct pairing-friendly elliptic curves with low hamming weight 4 under embedding degree 1. Based on the analysis of the Complex Multiplication(CM) method, the soundness of our method to calculate the characteristic of the finite field is proved. And then, three relative algorithms to construct pairing-friendly elliptic curve are put forward. 10 elliptic curves with low hamming weight 4 under 160 bits are presented to demonstrate the utility of our approach. Finally, the evaluation also indicates that it is more efficient to compute Tate pairing with our curves, than that of Bertoni et al.

  6. Constructing Pairing-Friendly Elliptic Curves under Embedding Degree 1 for Securing Critical Infrastructures

    PubMed Central

    Dai, Guangming

    2016-01-01

    Information confidentiality is an essential requirement for cyber security in critical infrastructure. Identity-based cryptography, an increasingly popular branch of cryptography, is widely used to protect the information confidentiality in the critical infrastructure sector due to the ability to directly compute the user’s public key based on the user’s identity. However, computational requirements complicate the practical application of Identity-based cryptography. In order to improve the efficiency of identity-based cryptography, this paper presents an effective method to construct pairing-friendly elliptic curves with low hamming weight 4 under embedding degree 1. Based on the analysis of the Complex Multiplication(CM) method, the soundness of our method to calculate the characteristic of the finite field is proved. And then, three relative algorithms to construct pairing-friendly elliptic curve are put forward. 10 elliptic curves with low hamming weight 4 under 160 bits are presented to demonstrate the utility of our approach. Finally, the evaluation also indicates that it is more efficient to compute Tate pairing with our curves, than that of Bertoni et al. PMID:27564373

  7. Frog: Asynchronous Graph Processing on GPU with Hybrid Coloring Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xuanhua; Luo, Xuan; Liang, Junling

    GPUs have been increasingly used to accelerate graph processing for complicated computational problems regarding graph theory. Many parallel graph algorithms adopt the asynchronous computing model to accelerate the iterative convergence. Unfortunately, the consistent asynchronous computing requires locking or atomic operations, leading to significant penalties/overheads when implemented on GPUs. As such, coloring algorithm is adopted to separate the vertices with potential updating conflicts, guaranteeing the consistency/correctness of the parallel processing. Common coloring algorithms, however, may suffer from low parallelism because of a large number of colors generally required for processing a large-scale graph with billions of vertices. We propose a light-weightmore » asynchronous processing framework called Frog with a preprocessing/hybrid coloring model. The fundamental idea is based on Pareto principle (or 80-20 rule) about coloring algorithms as we observed through masses of realworld graph coloring cases. We find that a majority of vertices (about 80%) are colored with only a few colors, such that they can be read and updated in a very high degree of parallelism without violating the sequential consistency. Accordingly, our solution separates the processing of the vertices based on the distribution of colors. In this work, we mainly answer three questions: (1) how to partition the vertices in a sparse graph with maximized parallelism, (2) how to process large-scale graphs that cannot fit into GPU memory, and (3) how to reduce the overhead of data transfers on PCIe while processing each partition. We conduct experiments on real-world data (Amazon, DBLP, YouTube, RoadNet-CA, WikiTalk and Twitter) to evaluate our approach and make comparisons with well-known non-preprocessed (such as Totem, Medusa, MapGraph and Gunrock) and preprocessed (Cusha) approaches, by testing four classical algorithms (BFS, PageRank, SSSP and CC). On all the tested applications

  8. Object recognition in images via a factor graph model

    NASA Astrophysics Data System (ADS)

    He, Yong; Wang, Long; Wu, Zhaolin; Zhang, Haisu

    2018-04-01

    Object recognition in images suffered from huge search space and uncertain object profile. Recently, the Bag-of- Words methods are utilized to solve these problems, especially the 2-dimension CRF(Conditional Random Field) model. In this paper we suggest the method based on a general and flexible fact graph model, which can catch the long-range correlation in Bag-of-Words by constructing a network learning framework contrasted from lattice in CRF. Furthermore, we explore a parameter learning algorithm based on the gradient descent and Loopy Sum-Product algorithms for the factor graph model. Experimental results on Graz 02 dataset show that, the recognition performance of our method in precision and recall is better than a state-of-art method and the original CRF model, demonstrating the effectiveness of the proposed method.

  9. An effective trust-based recommendation method using a novel graph clustering algorithm

    NASA Astrophysics Data System (ADS)

    Moradi, Parham; Ahmadian, Sajad; Akhlaghian, Fardin

    2015-10-01

    Recommender systems are programs that aim to provide personalized recommendations to users for specific items (e.g. music, books) in online sharing communities or on e-commerce sites. Collaborative filtering methods are important and widely accepted types of recommender systems that generate recommendations based on the ratings of like-minded users. On the other hand, these systems confront several inherent issues such as data sparsity and cold start problems, caused by fewer ratings against the unknowns that need to be predicted. Incorporating trust information into the collaborative filtering systems is an attractive approach to resolve these problems. In this paper, we present a model-based collaborative filtering method by applying a novel graph clustering algorithm and also considering trust statements. In the proposed method first of all, the problem space is represented as a graph and then a sparsest subgraph finding algorithm is applied on the graph to find the initial cluster centers. Then, the proposed graph clustering algorithm is performed to obtain the appropriate users/items clusters. Finally, the identified clusters are used as a set of neighbors to recommend unseen items to the current active user. Experimental results based on three real-world datasets demonstrate that the proposed method outperforms several state-of-the-art recommender system methods.

  10. Observer-based consensus of networked thrust-propelled vehicles with directed graphs.

    PubMed

    Cang, Weiye; Li, Zhongkui; Wang, Hanlei

    2017-11-01

    In this paper, we investigate the consensus problem for networked underactuated thrust-propelled vehicles (TPVs) interacting on directed graphs. We propose distributed observer-based consensus protocols, which avoid the reliance on the measurements of translational velocities and accelerations. Using the input-output analysis, we present necessary and sufficient conditions to ensure that the observer-based protocols can achieve consensus for both the cases without and with constant communication delays, provided that the communication graph contains a directed spanning tree. Simulation examples are finally provided to illustrate the effectiveness of the control schemes. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Constructing Phylogenies.

    ERIC Educational Resources Information Center

    Bilardello, Nicholas; Valdes, Linda

    1998-01-01

    Introduces a method for constructing phylogenies using molecular traits and elementary graph theory. Discusses analyzing molecular data and using weighted graphs, minimum-weight spanning trees, and rooted cube phylogenies to display the data. (DDR)

  12. A Hybrid Parallel Strategy Based on String Graph Theory to Improve De Novo DNA Assembly on the TianHe-2 Supercomputer.

    PubMed

    Zhang, Feng; Liao, Xiangke; Peng, Shaoliang; Cui, Yingbo; Wang, Bingqiang; Zhu, Xiaoqian; Liu, Jie

    2016-06-01

    ' The de novo assembly of DNA sequences is increasingly important for biological researches in the genomic era. After more than one decade since the Human Genome Project, some challenges still exist and new solutions are being explored to improve de novo assembly of genomes. String graph assembler (SGA), based on the string graph theory, is a new method/tool developed to address the challenges. In this paper, based on an in-depth analysis of SGA we prove that the SGA-based sequence de novo assembly is an NP-complete problem. According to our analysis, SGA outperforms other similar methods/tools in memory consumption, but costs much more time, of which 60-70 % is spent on the index construction. Upon this analysis, we introduce a hybrid parallel optimization algorithm and implement this algorithm in the TianHe-2's parallel framework. Simulations are performed with different datasets. For data of small size the optimized solution is 3.06 times faster than before, and for data of middle size it's 1.60 times. The results demonstrate an evident performance improvement, with the linear scalability for parallel FM-index construction. This results thus contribute significantly to improving the efficiency of de novo assembly of DNA sequences.

  13. Toward the optimization of normalized graph Laplacian.

    PubMed

    Xie, Bo; Wang, Meng; Tao, Dacheng

    2011-04-01

    Normalized graph Laplacian has been widely used in many practical machine learning algorithms, e.g., spectral clustering and semisupervised learning. However, all of them use the Euclidean distance to construct the graph Laplacian, which does not necessarily reflect the inherent distribution of the data. In this brief, we propose a method to directly optimize the normalized graph Laplacian by using pairwise constraints. The learned graph is consistent with equivalence and nonequivalence pairwise relationships, and thus it can better represent similarity between samples. Meanwhile, our approach, unlike metric learning, automatically determines the scale factor during the optimization. The learned normalized Laplacian matrix can be directly applied in spectral clustering and semisupervised learning algorithms. Comprehensive experiments demonstrate the effectiveness of the proposed approach.

  14. Protograph LDPC Codes with Node Degrees at Least 3

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Jones, Christopher

    2006-01-01

    In this paper we present protograph codes with a small number of degree-3 nodes and one high degree node. The iterative decoding threshold for proposed rate 1/2 codes are lower, by about 0.2 dB, than the best known irregular LDPC codes with degree at least 3. The main motivation is to gain linear minimum distance to achieve low error floor. Also to construct rate-compatible protograph-based LDPC codes for fixed block length that simultaneously achieves low iterative decoding threshold and linear minimum distance. We start with a rate 1/2 protograph LDPC code with degree-3 nodes and one high degree node. Higher rate codes are obtained by connecting check nodes with degree-2 non-transmitted nodes. This is equivalent to constraint combining in the protograph. The condition where all constraints are combined corresponds to the highest rate code. This constraint must be connected to nodes of degree at least three for the graph to have linear minimum distance. Thus having node degree at least 3 for rate 1/2 guarantees linear minimum distance property to be preserved for higher rates. Through examples we show that the iterative decoding threshold as low as 0.544 dB can be achieved for small protographs with node degrees at least three. A family of low- to high-rate codes with minimum distance linearly increasing in block size and with capacity-approaching performance thresholds is presented. FPGA simulation results for a few example codes show that the proposed codes perform as predicted.

  15. Nested Tracking Graphs

    DOE PAGES

    Lukasczyk, Jonas; Weber, Gunther; Maciejewski, Ross; ...

    2017-06-01

    Tracking graphs are a well established tool in topological analysis to visualize the evolution of components and their properties over time, i.e., when components appear, disappear, merge, and split. However, tracking graphs are limited to a single level threshold and the graphs may vary substantially even under small changes to the threshold. To examine the evolution of features for varying levels, users have to compare multiple tracking graphs without a direct visual link between them. We propose a novel, interactive, nested graph visualization based on the fact that the tracked superlevel set components for different levels are related to eachmore » other through their nesting hierarchy. This approach allows us to set multiple tracking graphs in context to each other and enables users to effectively follow the evolution of components for different levels simultaneously. We show the effectiveness of our approach on datasets from finite pointset methods, computational fluid dynamics, and cosmology simulations.« less

  16. Robust Algorithms for on Minor-Free Graphs Based on the Sherali-Adams Hierarchy

    NASA Astrophysics Data System (ADS)

    Magen, Avner; Moharrami, Mohammad

    This work provides a Linear Programming-based Polynomial Time Approximation Scheme (PTAS) for two classical NP-hard problems on graphs when the input graph is guaranteed to be planar, or more generally Minor Free. The algorithm applies a sufficiently large number (some function of when approximation is required) of rounds of the so-called Sherali-Adams Lift-and-Project system. needed to obtain a -approximation, where f is some function that depends only on the graph that should be avoided as a minor. The problem we discuss are the well-studied problems, the and problems. An curious fact we expose is that in the world of minor-free graph, the is harder in some sense than the.

  17. Cluster Tails for Critical Power-Law Inhomogeneous Random Graphs

    NASA Astrophysics Data System (ADS)

    van der Hofstad, Remco; Kliem, Sandra; van Leeuwaarden, Johan S. H.

    2018-04-01

    Recently, the scaling limit of cluster sizes for critical inhomogeneous random graphs of rank-1 type having finite variance but infinite third moment degrees was obtained in Bhamidi et al. (Ann Probab 40:2299-2361, 2012). It was proved that when the degrees obey a power law with exponent τ \\in (3,4), the sequence of clusters ordered in decreasing size and multiplied through by n^{-(τ -2)/(τ -1)} converges as n→ ∞ to a sequence of decreasing non-degenerate random variables. Here, we study the tails of the limit of the rescaled largest cluster, i.e., the probability that the scaling limit of the largest cluster takes a large value u, as a function of u. This extends a related result of Pittel (J Combin Theory Ser B 82(2):237-269, 2001) for the Erdős-Rényi random graph to the setting of rank-1 inhomogeneous random graphs with infinite third moment degrees. We make use of delicate large deviations and weak convergence arguments.

  18. Information-optimal genome assembly via sparse read-overlap graphs.

    PubMed

    Shomorony, Ilan; Kim, Samuel H; Courtade, Thomas A; Tse, David N C

    2016-09-01

    In the context of third-generation long-read sequencing technologies, read-overlap-based approaches are expected to play a central role in the assembly step. A fundamental challenge in assembling from a read-overlap graph is that the true sequence corresponds to a Hamiltonian path on the graph, and, under most formulations, the assembly problem becomes NP-hard, restricting practical approaches to heuristics. In this work, we avoid this seemingly fundamental barrier by first setting the computational complexity issue aside, and seeking an algorithm that targets information limits In particular, we consider a basic feasibility question: when does the set of reads contain enough information to allow unambiguous reconstruction of the true sequence? Based on insights from this information feasibility question, we present an algorithm-the Not-So-Greedy algorithm-to construct a sparse read-overlap graph. Unlike most other assembly algorithms, Not-So-Greedy comes with a performance guarantee: whenever information feasibility conditions are satisfied, the algorithm reduces the assembly problem to an Eulerian path problem on the resulting graph, and can thus be solved in linear time. In practice, this theoretical guarantee translates into assemblies of higher quality. Evaluations on both simulated reads from real genomes and a PacBio Escherichia coli K12 dataset demonstrate that Not-So-Greedy compares favorably with standard string graph approaches in terms of accuracy of the resulting read-overlap graph and contig N50. Available at github.com/samhykim/nsg courtade@eecs.berkeley.edu or dntse@stanford.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. [A graph cuts-based interactive method for segmentation of magnetic resonance images of meningioma].

    PubMed

    Li, Shuan-qiang; Feng, Qian-jin; Chen, Wu-fan; Lin, Ya-zhong

    2011-06-01

    For accurate segmentation of the magnetic resonance (MR) images of meningioma, we propose a novel interactive segmentation method based on graph cuts. The high dimensional image features was extracted, and for each pixel, the probabilities of its origin, either the tumor or the background regions, were estimated by exploiting the weighted K-nearest neighborhood classifier. Based on these probabilities, a new energy function was proposed. Finally, a graph cut optimal framework was used for the solution of the energy function. The proposed method was evaluated by application in the segmentation of MR images of meningioma, and the results showed that the method significantly improved the segmentation accuracy compared with the gray level information-based graph cut method.

  20. Resistance distance and Kirchhoff index in circulant graphs

    NASA Astrophysics Data System (ADS)

    Zhang, Heping; Yang, Yujun

    The resistance distance rij between vertices i and j of a connected (molecular) graph G is computed as the effective resistance between nodes i and j in the corresponding network constructed from G by replacing each edge of G with a unit resistor. The Kirchhoff index Kf(G) is the sum of resistance distances between all pairs of vertices. In this work, closed-form formulae for Kirchhoff index and resistance distances of circulant graphs are derived in terms of Laplacian spectrum and eigenvectors. Special formulae are also given for four classes of circulant graphs (complete graphs, complete graphs minus a perfect matching, cycles, Möbius ladders Mp). In particular, the asymptotic behavior of Kf(Mp) as p ? ? is obtained, that is, Kf(Mp) grows as ⅙p3 as p ? ?.

  1. Evolutionary Games of Multiplayer Cooperation on Graphs

    PubMed Central

    Arranz, Jordi; Traulsen, Arne

    2016-01-01

    There has been much interest in studying evolutionary games in structured populations, often modeled as graphs. However, most analytical results so far have only been obtained for two-player or linear games, while the study of more complex multiplayer games has been usually tackled by computer simulations. Here we investigate evolutionary multiplayer games on graphs updated with a Moran death-Birth process. For cycles, we obtain an exact analytical condition for cooperation to be favored by natural selection, given in terms of the payoffs of the game and a set of structure coefficients. For regular graphs of degree three and larger, we estimate this condition using a combination of pair approximation and diffusion approximation. For a large class of cooperation games, our approximations suggest that graph-structured populations are stronger promoters of cooperation than populations lacking spatial structure. Computer simulations validate our analytical approximations for random regular graphs and cycles, but show systematic differences for graphs with many loops such as lattices. In particular, our simulation results show that these kinds of graphs can even lead to more stringent conditions for the evolution of cooperation than well-mixed populations. Overall, we provide evidence suggesting that the complexity arising from many-player interactions and spatial structure can be captured by pair approximation in the case of random graphs, but that it need to be handled with care for graphs with high clustering. PMID:27513946

  2. Ringo: Interactive Graph Analytics on Big-Memory Machines.

    PubMed

    Perez, Yonathan; Sosič, Rok; Banerjee, Arijit; Puttagunta, Rohan; Raison, Martin; Shah, Pararth; Leskovec, Jure

    2015-01-01

    We present Ringo, a system for analysis of large graphs. Graphs provide a way to represent and analyze systems of interacting objects (people, proteins, webpages) with edges between the objects denoting interactions (friendships, physical interactions, links). Mining graphs provides valuable insights about individual objects as well as the relationships among them. In building Ringo, we take advantage of the fact that machines with large memory and many cores are widely available and also relatively affordable. This allows us to build an easy-to-use interactive high-performance graph analytics system. Graphs also need to be built from input data, which often resides in the form of relational tables. Thus, Ringo provides rich functionality for manipulating raw input data tables into various kinds of graphs. Furthermore, Ringo also provides over 200 graph analytics functions that can then be applied to constructed graphs. We show that a single big-memory machine provides a very attractive platform for performing analytics on all but the largest graphs as it offers excellent performance and ease of use as compared to alternative approaches. With Ringo, we also demonstrate how to integrate graph analytics with an iterative process of trial-and-error data exploration and rapid experimentation, common in data mining workloads.

  3. Ringo: Interactive Graph Analytics on Big-Memory Machines

    PubMed Central

    Perez, Yonathan; Sosič, Rok; Banerjee, Arijit; Puttagunta, Rohan; Raison, Martin; Shah, Pararth; Leskovec, Jure

    2016-01-01

    We present Ringo, a system for analysis of large graphs. Graphs provide a way to represent and analyze systems of interacting objects (people, proteins, webpages) with edges between the objects denoting interactions (friendships, physical interactions, links). Mining graphs provides valuable insights about individual objects as well as the relationships among them. In building Ringo, we take advantage of the fact that machines with large memory and many cores are widely available and also relatively affordable. This allows us to build an easy-to-use interactive high-performance graph analytics system. Graphs also need to be built from input data, which often resides in the form of relational tables. Thus, Ringo provides rich functionality for manipulating raw input data tables into various kinds of graphs. Furthermore, Ringo also provides over 200 graph analytics functions that can then be applied to constructed graphs. We show that a single big-memory machine provides a very attractive platform for performing analytics on all but the largest graphs as it offers excellent performance and ease of use as compared to alternative approaches. With Ringo, we also demonstrate how to integrate graph analytics with an iterative process of trial-and-error data exploration and rapid experimentation, common in data mining workloads. PMID:27081215

  4. OpenMP Parallelization and Optimization of Graph-Based Machine Learning Algorithms

    DOE PAGES

    Meng, Zhaoyi; Koniges, Alice; He, Yun Helen; ...

    2016-09-21

    In this paper, we investigate the OpenMP parallelization and optimization of two novel data classification algorithms. The new algorithms are based on graph and PDE solution techniques and provide significant accuracy and performance advantages over traditional data classification algorithms in serial mode. The methods leverage the Nystrom extension to calculate eigenvalue/eigenvectors of the graph Laplacian and this is a self-contained module that can be used in conjunction with other graph-Laplacian based methods such as spectral clustering. We use performance tools to collect the hotspots and memory access of the serial codes and use OpenMP as the parallelization language to parallelizemore » the most time-consuming parts. Where possible, we also use library routines. We then optimize the OpenMP implementations and detail the performance on traditional supercomputer nodes (in our case a Cray XC30), and test the optimization steps on emerging testbed systems based on Intel’s Knights Corner and Landing processors. We show both performance improvement and strong scaling behavior. Finally, a large number of optimization techniques and analyses are necessary before the algorithm reaches almost ideal scaling.« less

  5. MOOC construction and application in professional degree postgraduate education: taking Introduction to Engineering Optics as an example

    NASA Astrophysics Data System (ADS)

    Hu, Feng; Zhou, Jin-peng; Wang, Xing-shu

    2017-08-01

    Aiming at the deficiency of the traditional postgraduate education mode for professional degree, such as the conflict between work and study, restricted supply and demand and poor efficiency of course teaching, the emergence of Massive Open Online Course (MOOC) which has large scale, online and open features can make up for the shortage of traditional professional degree postgraduate education mode by introducing MOOC teaching mode. However, it is still a fangle to integrate MOOC into the traditional postgraduate education for professional degree and there are no standard methods for reference in the construction of MOOC courses as well as the corresponding evaluations. In this paper, the construction method and practical experience of MOOC courses for professional degree postgraduate education are discussed in details, based on the MOOC course of Introduction to Engineering Optics. Firstly, the principle of MOOC course contents for professional degree postgraduate education is introduced from the aspects of students' demand, MOOC features and practical applications. Secondly, the optimization of MOOC teaching mode is discussed in order to improve the teaching quality and learning efficiency. Thirdly, in order to overcome the deficiency of current MOOC examination schemes, a novel MOOC evaluation scheme is proposed which is capable of assessing students' learning attitude as well as their ability and performance differences. Finally, a practical summary is given about how to integrate the MOOC teaching mode into the postgraduate education for professional degree, including the constructions of teaching team, course system as well as other factors. From the paper, we can conclude that the integration of MOOC teaching mode into the postgraduate education for professional degree will improve the teaching quality and efficiency.

  6. Brain network dynamics characterization in epileptic seizures. Joint directed graph and pairwise synchronization measures

    NASA Astrophysics Data System (ADS)

    Rodrigues, A. C.; Machado, B. S.; Florence, G.; Hamad, A. P.; Sakamoto, A. C.; Fujita, A.; Baccalá, L. A.; Amaro, E.; Sameshima, K.

    2014-12-01

    Here we propose and evaluate a new approach to analyse multichannel mesial temporal lobe epilepsy EEG data from eight patients through complex network and synchronization theories. The method employs a Granger causality test to infer the directed connectivity graphs and a wavelet transform based phase synchronization measure whose characteristics allow studying dynamical transitions during epileptic seizures. We present a new combined graph measure that quantifies the level of network hub formation, called network hub out-degree, which closely reflects the level of synchronization observed during the ictus.

  7. Registration of 3D spectral OCT volumes combining ICP with a graph-based approach

    NASA Astrophysics Data System (ADS)

    Niemeijer, Meindert; Lee, Kyungmoo; Garvin, Mona K.; Abràmoff, Michael D.; Sonka, Milan

    2012-02-01

    The introduction of spectral Optical Coherence Tomography (OCT) scanners has enabled acquisition of high resolution, 3D cross-sectional volumetric images of the retina. 3D-OCT is used to detect and manage eye diseases such as glaucoma and age-related macular degeneration. To follow-up patients over time, image registration is a vital tool to enable more precise, quantitative comparison of disease states. In this work we present a 3D registrationmethod based on a two-step approach. In the first step we register both scans in the XY domain using an Iterative Closest Point (ICP) based algorithm. This algorithm is applied to vessel segmentations obtained from the projection image of each scan. The distance minimized in the ICP algorithm includes measurements of the vessel orientation and vessel width to allow for a more robust match. In the second step, a graph-based method is applied to find the optimal translation along the depth axis of the individual A-scans in the volume to match both scans. The cost image used to construct the graph is based on the mean squared error (MSE) between matching A-scans in both images at different translations. We have applied this method to the registration of Optic Nerve Head (ONH) centered 3D-OCT scans of the same patient. First, 10 3D-OCT scans of 5 eyes with glaucoma imaged in vivo were registered for a qualitative evaluation of the algorithm performance. Then, 17 OCT data set pairs of 17 eyes with known deformation were used for quantitative assessment of the method's robustness.

  8. Anomaly detection in hyperspectral imagery: statistics vs. graph-based algorithms

    NASA Astrophysics Data System (ADS)

    Berkson, Emily E.; Messinger, David W.

    2016-05-01

    Anomaly detection (AD) algorithms are frequently applied to hyperspectral imagery, but different algorithms produce different outlier results depending on the image scene content and the assumed background model. This work provides the first comparison of anomaly score distributions between common statistics-based anomaly detection algorithms (RX and subspace-RX) and the graph-based Topological Anomaly Detector (TAD). Anomaly scores in statistical AD algorithms should theoretically approximate a chi-squared distribution; however, this is rarely the case with real hyperspectral imagery. The expected distribution of scores found with graph-based methods remains unclear. We also look for general trends in algorithm performance with varied scene content. Three separate scenes were extracted from the hyperspectral MegaScene image taken over downtown Rochester, NY with the VIS-NIR-SWIR ProSpecTIR instrument. In order of most to least cluttered, we study an urban, suburban, and rural scene. The three AD algorithms were applied to each scene, and the distributions of the most anomalous 5% of pixels were compared. We find that subspace-RX performs better than RX, because the data becomes more normal when the highest variance principal components are removed. We also see that compared to statistical detectors, anomalies detected by TAD are easier to separate from the background. Due to their different underlying assumptions, the statistical and graph-based algorithms highlighted different anomalies within the urban scene. These results will lead to a deeper understanding of these algorithms and their applicability across different types of imagery.

  9. Visibility graph analysis on heartbeat dynamics of meditation training

    NASA Astrophysics Data System (ADS)

    Jiang, Sen; Bian, Chunhua; Ning, Xinbao; Ma, Qianli D. Y.

    2013-06-01

    We apply the visibility graph analysis to human heartbeat dynamics by constructing the complex networks of heartbeat interval time series and investigating the statistical properties of the network before and during chi and yoga meditation. The experiment results show that visibility graph analysis can reveal the dynamical changes caused by meditation training manifested as regular heartbeat, which is closely related to the adjustment of autonomous neural system, and visibility graph analysis is effective to evaluate the effect of meditation.

  10. Efficient Graph Based Assembly of Short-Read Sequences on Hybrid Core Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sczyrba, Alex; Pratap, Abhishek; Canon, Shane

    2011-03-22

    Advanced architectures can deliver dramatically increased throughput for genomics and proteomics applications, reducing time-to-completion in some cases from days to minutes. One such architecture, hybrid-core computing, marries a traditional x86 environment with a reconfigurable coprocessor, based on field programmable gate array (FPGA) technology. In addition to higher throughput, increased performance can fundamentally improve research quality by allowing more accurate, previously impractical approaches. We will discuss the approach used by Convey?s de Bruijn graph constructor for short-read, de-novo assembly. Bioinformatics applications that have random access patterns to large memory spaces, such as graph-based algorithms, experience memory performance limitations on cache-based x86more » servers. Convey?s highly parallel memory subsystem allows application-specific logic to simultaneously access 8192 individual words in memory, significantly increasing effective memory bandwidth over cache-based memory systems. Many algorithms, such as Velvet and other de Bruijn graph based, short-read, de-novo assemblers, can greatly benefit from this type of memory architecture. Furthermore, small data type operations (four nucleotides can be represented in two bits) make more efficient use of logic gates than the data types dictated by conventional programming models.JGI is comparing the performance of Convey?s graph constructor and Velvet on both synthetic and real data. We will present preliminary results on memory usage and run time metrics for various data sets with different sizes, from small microbial and fungal genomes to very large cow rumen metagenome. For genomes with references we will also present assembly quality comparisons between the two assemblers.« less

  11. An asynchronous traversal engine for graph-based rich metadata management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Dong; Carns, Philip; Ross, Robert B.

    Rich metadata in high-performance computing (HPC) systems contains extended information about users, jobs, data files, and their relationships. Property graphs are a promising data model to represent heterogeneous rich metadata flexibly. Specifically, a property graph can use vertices to represent different entities and edges to record the relationships between vertices with unique annotations. The high-volume HPC use case, with millions of entities and relationships, naturally requires an out-of-core distributed property graph database, which must support live updates (to ingest production information in real time), low-latency point queries (for frequent metadata operations such as permission checking), and large-scale traversals (for provenancemore » data mining). Among these needs, large-scale property graph traversals are particularly challenging for distributed graph storage systems. Most existing graph systems implement a "level synchronous" breadth-first search algorithm that relies on global synchronization in each traversal step. This performs well in many problem domains; but a rich metadata management system is characterized by imbalanced graphs, long traversal lengths, and concurrent workloads, each of which has the potential to introduce or exacerbate stragglers (i.e., abnormally slow steps or servers in a graph traversal) that lead to low overall throughput for synchronous traversal algorithms. Previous research indicated that the straggler problem can be mitigated by using asynchronous traversal algorithms, and many graph-processing frameworks have successfully demonstrated this approach. Such systems require the graph to be loaded into a separate batch-processing framework instead of being iteratively accessed, however. In this work, we investigate a general asynchronous graph traversal engine that can operate atop a rich metadata graph in its native format. We outline a traversal-aware query language and key optimizations (traversal

  12. An asynchronous traversal engine for graph-based rich metadata management

    DOE PAGES

    Dai, Dong; Carns, Philip; Ross, Robert B.; ...

    2016-06-23

    Rich metadata in high-performance computing (HPC) systems contains extended information about users, jobs, data files, and their relationships. Property graphs are a promising data model to represent heterogeneous rich metadata flexibly. Specifically, a property graph can use vertices to represent different entities and edges to record the relationships between vertices with unique annotations. The high-volume HPC use case, with millions of entities and relationships, naturally requires an out-of-core distributed property graph database, which must support live updates (to ingest production information in real time), low-latency point queries (for frequent metadata operations such as permission checking), and large-scale traversals (for provenancemore » data mining). Among these needs, large-scale property graph traversals are particularly challenging for distributed graph storage systems. Most existing graph systems implement a "level synchronous" breadth-first search algorithm that relies on global synchronization in each traversal step. This performs well in many problem domains; but a rich metadata management system is characterized by imbalanced graphs, long traversal lengths, and concurrent workloads, each of which has the potential to introduce or exacerbate stragglers (i.e., abnormally slow steps or servers in a graph traversal) that lead to low overall throughput for synchronous traversal algorithms. Previous research indicated that the straggler problem can be mitigated by using asynchronous traversal algorithms, and many graph-processing frameworks have successfully demonstrated this approach. Such systems require the graph to be loaded into a separate batch-processing framework instead of being iteratively accessed, however. In this work, we investigate a general asynchronous graph traversal engine that can operate atop a rich metadata graph in its native format. We outline a traversal-aware query language and key optimizations (traversal

  13. Applying graph partitioning methods in measurement-based dynamic load balancing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatele, Abhinav; Fourestier, Sebastien; Menon, Harshitha

    Load imbalance leads to an increasing waste of resources as an application is scaled to more and more processors. Achieving the best parallel efficiency for a program requires optimal load balancing which is a NP-hard problem. However, finding near-optimal solutions to this problem for complex computational science and engineering applications is becoming increasingly important. Charm++, a migratable objects based programming model, provides a measurement-based dynamic load balancing framework. This framework instruments and then migrates over-decomposed objects to balance computational load and communication at runtime. This paper explores the use of graph partitioning algorithms, traditionally used for partitioning physical domains/meshes, formore » measurement-based dynamic load balancing of parallel applications. In particular, we present repartitioning methods developed in a graph partitioning toolbox called SCOTCH that consider the previous mapping to minimize migration costs. We also discuss a new imbalance reduction algorithm for graphs with irregular load distributions. We compare several load balancing algorithms using microbenchmarks on Intrepid and Ranger and evaluate the effect of communication, number of cores and number of objects on the benefit achieved from load balancing. New algorithms developed in SCOTCH lead to better performance compared to the METIS partitioners for several cases, both in terms of the application execution time and fewer number of objects migrated.« less

  14. Machine learning in a graph framework for subcortical segmentation

    NASA Astrophysics Data System (ADS)

    Guo, Zhihui; Kashyap, Satyananda; Sonka, Milan; Oguz, Ipek

    2017-02-01

    Automated and reliable segmentation of subcortical structures from human brain magnetic resonance images is of great importance for volumetric and shape analyses in quantitative neuroimaging studies. However, poor boundary contrast and variable shape of these structures make the automated segmentation a tough task. We propose a 3D graph-based machine learning method, called LOGISMOS-RF, to segment the caudate and the putamen from brain MRI scans in a robust and accurate way. An atlas-based tissue classification and bias-field correction method is applied to the images to generate an initial segmentation for each structure. Then a 3D graph framework is utilized to construct a geometric graph for each initial segmentation. A locally trained random forest classifier is used to assign a cost to each graph node. The max-flow algorithm is applied to solve the segmentation problem. Evaluation was performed on a dataset of T1-weighted MRI's of 62 subjects, with 42 images used for training and 20 images for testing. For comparison, FreeSurfer, FSL and BRAINSCut approaches were also evaluated using the same dataset. Dice overlap coefficients and surface-to-surfaces distances between the automated segmentation and expert manual segmentations indicate the results of our method are statistically significantly more accurate than the three other methods, for both the caudate (Dice: 0.89 +/- 0.03) and the putamen (0.89 +/- 0.03).

  15. Graphs and Tracks Revisited

    NASA Astrophysics Data System (ADS)

    Christian, Wolfgang; Belloni, Mario

    2013-04-01

    We have recently developed a Graphs and Tracks model based on an earlier program by David Trowbridge, as shown in Fig. 1. Our model can show position, velocity, acceleration, and energy graphs and can be used for motion-to-graphs exercises. Users set the heights of the track segments, and the model displays the motion of the ball on the track together with position, velocity, and acceleration graphs. This ready-to-run model is available in the ComPADRE OSP Collection at www.compadre.org/osp/items/detail.cfm?ID=12023.

  16. K-theory of locally finite graph C∗-algebras

    NASA Astrophysics Data System (ADS)

    Iyudu, Natalia

    2013-09-01

    We calculate the K-theory of the Cuntz-Krieger algebra OE associated with an infinite, locally finite graph, via the Bass-Hashimoto operator. The formulae we get express the Grothendieck group and the Whitehead group in purely graph theoretic terms. We consider the category of finite (black-and-white, bi-directed) subgraphs with certain graph homomorphisms and construct a continuous functor to abelian groups. In this category K0 is an inductive limit of K-groups of finite graphs, which were calculated in Cornelissen et al. (2008) [3]. In the case of an infinite graph with the finite Betti number we obtain the formula for the Grothendieck group K0(OE)=Z, where β(E) is the first Betti number and γ(E) is the valency number of the graph E. We note that in the infinite case the torsion part of K0, which is present in the case of a finite graph, vanishes. The Whitehead group depends only on the first Betti number: K1(OE)=Z. These allow us to provide a counterexample to the fact, which holds for finite graphs, that K1(OE) is the torsion free part of K0(OE).

  17. Compound analysis via graph kernels incorporating chirality.

    PubMed

    Brown, J B; Urata, Takashi; Tamura, Takeyuki; Arai, Midori A; Kawabata, Takeo; Akutsu, Tatsuya

    2010-12-01

    High accuracy is paramount when predicting biochemical characteristics using Quantitative Structural-Property Relationships (QSPRs). Although existing graph-theoretic kernel methods combined with machine learning techniques are efficient for QSPR model construction, they cannot distinguish topologically identical chiral compounds which often exhibit different biological characteristics. In this paper, we propose a new method that extends the recently developed tree pattern graph kernel to accommodate stereoisomers. We show that Support Vector Regression (SVR) with a chiral graph kernel is useful for target property prediction by demonstrating its application to a set of human vitamin D receptor ligands currently under consideration for their potential anti-cancer effects.

  18. Automatic graph-cut based segmentation of bones from knee magnetic resonance images for osteoarthritis research.

    PubMed

    Ababneh, Sufyan Y; Prescott, Jeff W; Gurcan, Metin N

    2011-08-01

    In this paper, a new, fully automated, content-based system is proposed for knee bone segmentation from magnetic resonance images (MRI). The purpose of the bone segmentation is to support the discovery and characterization of imaging biomarkers for the incidence and progression of osteoarthritis, a debilitating joint disease, which affects a large portion of the aging population. The segmentation algorithm includes a novel content-based, two-pass disjoint block discovery mechanism, which is designed to support automation, segmentation initialization, and post-processing. The block discovery is achieved by classifying the image content to bone and background blocks according to their similarity to the categories in the training data collected from typical bone structures. The classified blocks are then used to design an efficient graph-cut based segmentation algorithm. This algorithm requires constructing a graph using image pixel data followed by applying a maximum-flow algorithm which generates a minimum graph-cut that corresponds to an initial image segmentation. Content-based refinements and morphological operations are then applied to obtain the final segmentation. The proposed segmentation technique does not require any user interaction and can distinguish between bone and highly similar adjacent structures, such as fat tissues with high accuracy. The performance of the proposed system is evaluated by testing it on 376 MR images from the Osteoarthritis Initiative (OAI) database. This database included a selection of single images containing the femur and tibia from 200 subjects with varying levels of osteoarthritis severity. Additionally, a full three-dimensional segmentation of the bones from ten subjects with 14 slices each, and synthetic images with background having intensity and spatial characteristics similar to those of bone are used to assess the robustness and consistency of the developed algorithm. The results show an automatic bone detection rate of

  19. Multi-parametric centrality method for graph network models

    NASA Astrophysics Data System (ADS)

    Ivanov, Sergei Evgenievich; Gorlushkina, Natalia Nikolaevna; Ivanova, Lubov Nikolaevna

    2018-04-01

    The graph model networks are investigated to determine centrality, weights and the significance of vertices. For centrality analysis appliesa typical method that includesany one of the properties of graph vertices. In graph theory, methods of analyzing centrality are used: in terms by degree, closeness, betweenness, radiality, eccentricity, page-rank, status, Katz and eigenvector. We have proposed a new method of multi-parametric centrality, which includes a number of basic properties of the network member. The mathematical model of multi-parametric centrality method is developed. Comparison of results for the presented method with the centrality methods is carried out. For evaluate the results for the multi-parametric centrality methodthe graph model with hundreds of vertices is analyzed. The comparative analysis showed the accuracy of presented method, includes simultaneously a number of basic properties of vertices.

  20. Resistance Distances and Kirchhoff Index in Generalised Join Graphs

    NASA Astrophysics Data System (ADS)

    Chen, Haiyan

    2017-03-01

    The resistance distance between any two vertices of a connected graph is defined as the effective resistance between them in the electrical network constructed from the graph by replacing each edge with a unit resistor. The Kirchhoff index of a graph is defined as the sum of all the resistance distances between any pair of vertices of the graph. Let G=H[G1, G2, …, Gk ] be the generalised join graph of G1, G2, …, Gk determined by H. In this paper, we first give formulae for resistance distances and Kirchhoff index of G in terms of parameters of {G'_i}s and H. Then, we show that computing resistance distances and Kirchhoff index of G can be decomposed into simpler ones. Finally, we obtain explicit formulae for resistance distances and Kirchhoff index of G when {G'_i}s and H take some special graphs, such as the complete graph, the path, and the cycle.

  1. How Fast Do Trees Grow? Using Tables and Graphs to Explore Slope

    ERIC Educational Resources Information Center

    Joram, Elana; Oleson, Vicki

    2007-01-01

    This article describes a lesson unit in which students constructed tables and graphs to represent the growth of different trees. Students then compared the graphs to develop an understanding of slope.

  2. Integer Flows and Circuit Covers of Graphs and Signed Graphs

    NASA Astrophysics Data System (ADS)

    Cheng, Jian

    The work in Chapter 2 is motivated by Tutte and Jaeger's pioneering work on converting modulo flows into integer-valued flows for ordinary graphs. For a signed graphs (G, sigma), we first prove that for each k ∈ {2, 3}, if (G, sigma) is (k - 1)-edge-connected and contains an even number of negative edges when k = 2, then every modulo k-flow of (G, sigma) can be converted into an integer-valued ( k + 1)-ow with a larger or the same support. We also prove that if (G, sigma) is odd-(2p+1)-edge-connected, then (G, sigma) admits a modulo circular (2 + 1/ p)-flows if and only if it admits an integer-valued circular (2 + 1/p)-flows, which improves all previous result by Xu and Zhang (DM2005), Schubert and Steffen (EJC2015), and Zhu (JCTB2015). Shortest circuit cover conjecture is one of the major open problems in graph theory. It states that every bridgeless graph G contains a set of circuits F such that each edge is contained in at least one member of F and the length of F is at most 7/5∥E(G)∥. This concept was recently generalized to signed graphs by Macajova et al. (JGT2015). In Chapter 3, we improve their upper bound from 11∥E( G)∥ to 14/3 ∥E(G)∥, and if G is 2-edgeconnected and has even negativeness, then it can be further reduced to 11/3 ∥E(G)∥. Tutte's 3-flow conjecture has been studied by many graph theorists in the last several decades. As a new approach to this conjecture, DeVos and Thomassen considered the vectors as ow values and found that there is a close relation between vector S1-flows and integer 3-NZFs. Motivated by their observation, in Chapter 4, we prove that if a graph G admits a vector S1-flow with rank at most two, then G admits an integer 3-NZF. The concept of even factors is highly related to the famous Four Color Theorem. We conclude this dissertation in Chapter 5 with an improvement of a recent result by Chen and Fan (JCTB2016) on the upperbound of even factors. We show that if a graph G contains an even factor, then it

  3. A preliminary study on atrial epicardial mapping signals based on Graph Theory.

    PubMed

    Sun, Liqian; Yang, Cuiwei; Zhang, Lin; Chen, Ying; Wu, Zhong; Shao, Jun

    2014-07-01

    In order to get a better understanding of atrial fibrillation, we introduced a method based on Graph Theory to interpret the relations of different parts of the atria. Atrial electrograms under sinus rhythm and atrial fibrillation were collected from eight living mongrel dogs with cholinergic AF model. These epicardial signals were acquired from 95 unipolar electrodes attached to the surface of the atria and four pulmonary veins. Then, we analyzed the electrode correlations using Graph Theory. The topology, the connectivity and the parameters of graphs during different rhythms were studied. Our results showed that the connectivity of graphs varied from sinus rhythm to atrial fibrillation and there were parameter gradients in various parts of the atria. The results provide spatial insight into the interaction between different parts of the atria and the method may have its potential for studying atrial fibrillation. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  4. Dynamic Uncertain Causality Graph for Knowledge Representation and Probabilistic Reasoning: Directed Cyclic Graph and Joint Probability Distribution.

    PubMed

    Zhang, Qin

    2015-07-01

    Probabilistic graphical models (PGMs) such as Bayesian network (BN) have been widely applied in uncertain causality representation and probabilistic reasoning. Dynamic uncertain causality graph (DUCG) is a newly presented model of PGMs, which can be applied to fault diagnosis of large and complex industrial systems, disease diagnosis, and so on. The basic methodology of DUCG has been previously presented, in which only the directed acyclic graph (DAG) was addressed. However, the mathematical meaning of DUCG was not discussed. In this paper, the DUCG with directed cyclic graphs (DCGs) is addressed. In contrast, BN does not allow DCGs, as otherwise the conditional independence will not be satisfied. The inference algorithm for the DUCG with DCGs is presented, which not only extends the capabilities of DUCG from DAGs to DCGs but also enables users to decompose a large and complex DUCG into a set of small, simple sub-DUCGs, so that a large and complex knowledge base can be easily constructed, understood, and maintained. The basic mathematical definition of a complete DUCG with or without DCGs is proved to be a joint probability distribution (JPD) over a set of random variables. The incomplete DUCG as a part of a complete DUCG may represent a part of JPD. Examples are provided to illustrate the methodology.

  5. The Construction of {P}_{2}\\vartriangleright H-antimagic graph using smaller edge-antimagic vertex labeling

    NASA Astrophysics Data System (ADS)

    Prihandini, Rafiantika M.; Agustin, I. H.; Dafik

    2018-04-01

    In this paper we use simple and non trivial graph. If there exist a bijective function g:V(G) \\cup E(G)\\to \\{1,2,\\ldots,|V(G)|+|E(G)|\\}, such that for all subgraphs {P}2\\vartriangleright H of G isomorphic to H, then graph G is called an (a, b)-{P}2\\vartriangleright H-antimagic total graph. Furthermore, we can consider the total {P}2\\vartriangleright H-weights W({P}2\\vartriangleright H)={\\sum }v\\in V({P2\\vartriangleright H)}f(v)+{\\sum }e\\in E({P2\\vartriangleright H)}f(e) which should form an arithmetic sequence {a, a + d, a + 2d, …, a + (n ‑ 1)d}, where a and d are positive integers and n is the number of all subgraphs isomorphic to H. Our paper describes the existence of super (a, b)-{P}2\\vartriangleright H antimagic total labeling for graph operation of comb product namely of G=L\\vartriangleright H, where L is a (b, d*)-edge antimagic vertex labeling graph and H is a connected graph.

  6. Sudden emergence of q-regular subgraphs in random graphs

    NASA Astrophysics Data System (ADS)

    Pretti, M.; Weigt, M.

    2006-07-01

    We investigate the computationally hard problem whether a random graph of finite average vertex degree has an extensively large q-regular subgraph, i.e., a subgraph with all vertices having degree equal to q. We reformulate this problem as a constraint-satisfaction problem, and solve it using the cavity method of statistical physics at zero temperature. For q = 3, we find that the first large q-regular subgraphs appear discontinuously at an average vertex degree c3 - reg simeq 3.3546 and contain immediately about 24% of all vertices in the graph. This transition is extremely close to (but different from) the well-known 3-core percolation point c3 - core simeq 3.3509. For q > 3, the q-regular subgraph percolation threshold is found to coincide with that of the q-core.

  7. QSPR modeling: graph connectivity indices versus line graph connectivity indices

    PubMed

    Basak; Nikolic; Trinajstic; Amic; Beslo

    2000-07-01

    Five QSPR models of alkanes were reinvestigated. Properties considered were molecular surface-dependent properties (boiling points and gas chromatographic retention indices) and molecular volume-dependent properties (molar volumes and molar refractions). The vertex- and edge-connectivity indices were used as structural parameters. In each studied case we computed connectivity indices of alkane trees and alkane line graphs and searched for the optimum exponent. Models based on indices with an optimum exponent and on the standard value of the exponent were compared. Thus, for each property we generated six QSPR models (four for alkane trees and two for the corresponding line graphs). In all studied cases QSPR models based on connectivity indices with optimum exponents have better statistical characteristics than the models based on connectivity indices with the standard value of the exponent. The comparison between models based on vertex- and edge-connectivity indices gave in two cases (molar volumes and molar refractions) better models based on edge-connectivity indices and in three cases (boiling points for octanes and nonanes and gas chromatographic retention indices) better models based on vertex-connectivity indices. Thus, it appears that the edge-connectivity index is more appropriate to be used in the structure-molecular volume properties modeling and the vertex-connectivity index in the structure-molecular surface properties modeling. The use of line graphs did not improve the predictive power of the connectivity indices. Only in one case (boiling points of nonanes) a better model was obtained with the use of line graphs.

  8. A graph-based approach to detect spatiotemporal dynamics in satellite image time series

    NASA Astrophysics Data System (ADS)

    Guttler, Fabio; Ienco, Dino; Nin, Jordi; Teisseire, Maguelonne; Poncelet, Pascal

    2017-08-01

    Enhancing the frequency of satellite acquisitions represents a key issue for Earth Observation community nowadays. Repeated observations are crucial for monitoring purposes, particularly when intra-annual process should be taken into account. Time series of images constitute a valuable source of information in these cases. The goal of this paper is to propose a new methodological framework to automatically detect and extract spatiotemporal information from satellite image time series (SITS). Existing methods dealing with such kind of data are usually classification-oriented and cannot provide information about evolutions and temporal behaviors. In this paper we propose a graph-based strategy that combines object-based image analysis (OBIA) with data mining techniques. Image objects computed at each individual timestamp are connected across the time series and generates a set of evolution graphs. Each evolution graph is associated to a particular area within the study site and stores information about its temporal evolution. Such information can be deeply explored at the evolution graph scale or used to compare the graphs and supply a general picture at the study site scale. We validated our framework on two study sites located in the South of France and involving different types of natural, semi-natural and agricultural areas. The results obtained from a Landsat SITS support the quality of the methodological approach and illustrate how the framework can be employed to extract and characterize spatiotemporal dynamics.

  9. Efficient Generation of Dancing Animation Synchronizing with Music Based on Meta Motion Graphs

    NASA Astrophysics Data System (ADS)

    Xu, Jianfeng; Takagi, Koichi; Sakazawa, Shigeyuki

    This paper presents a system for automatic generation of dancing animation that is synchronized with a piece of music by re-using motion capture data. Basically, the dancing motion is synthesized according to the rhythm and intensity features of music. For this purpose, we propose a novel meta motion graph structure to embed the necessary features including both rhythm and intensity, which is constructed on the motion capture database beforehand. In this paper, we consider two scenarios for non-streaming music and streaming music, where global search and local search are required respectively. In the case of the former, once a piece of music is input, the efficient dynamic programming algorithm can be employed to globally search a best path in the meta motion graph, where an objective function is properly designed by measuring the quality of beat synchronization, intensity matching, and motion smoothness. In the case of the latter, the input music is stored in a buffer in a streaming mode, then an efficient search method is presented for a certain amount of music data (called a segment) in the buffer with the same objective function, resulting in a segment-based search approach. For streaming applications, we define an additional property in the above meta motion graph to deal with the unpredictable future music, which guarantees that there is some motion to match the unknown remaining music. A user study with totally 60 subjects demonstrates that our system outperforms the stat-of-the-art techniques in both scenarios. Furthermore, our system improves the synthesis speed greatly (maximal speedup is more than 500 times), which is essential for mobile applications. We have implemented our system on commercially available smart phones and confirmed that it works well on these mobile phones.

  10. Graph Theory-Based Pinning Synchronization of Stochastic Complex Dynamical Networks.

    PubMed

    Li, Xiao-Jian; Yang, Guang-Hong

    2017-02-01

    This paper is concerned with the adaptive pinning synchronization problem of stochastic complex dynamical networks (CDNs). Based on algebraic graph theory and Lyapunov theory, pinning controller design conditions are derived, and the rigorous convergence analysis of synchronization errors in the probability sense is also conducted. Compared with the existing results, the topology structures of stochastic CDN are allowed to be unknown due to the use of graph theory. In particular, it is shown that the selection of nodes for pinning depends on the unknown lower bounds of coupling strengths. Finally, an example on a Chua's circuit network is given to validate the effectiveness of the theoretical results.

  11. Visibility graph approach to exchange rate series

    NASA Astrophysics Data System (ADS)

    Yang, Yue; Wang, Jianbo; Yang, Huijie; Mang, Jingshi

    2009-10-01

    By means of a visibility graph, we investigate six important exchange rate series. It is found that the series convert into scale-free and hierarchically structured networks. The relationship between the scaling exponents of the degree distributions and the Hurst exponents obeys the analytical prediction for fractal Brownian motions. The visibility graph can be used to obtain reliable values of Hurst exponents of the series. The characteristics are explained by using the multifractal structures of the series. The exchange rate of EURO to Japanese Yen is widely used to evaluate risk and to estimate trends in speculative investments. Interestingly, the hierarchies of the visibility graphs for the exchange rate series of these two currencies are significantly weak compared with that of the other series.

  12. Automatic brain tissue segmentation based on graph filter.

    PubMed

    Kong, Youyong; Chen, Xiaopeng; Wu, Jiasong; Zhang, Pinzheng; Chen, Yang; Shu, Huazhong

    2018-05-09

    Accurate segmentation of brain tissues from magnetic resonance imaging (MRI) is of significant importance in clinical applications and neuroscience research. Accurate segmentation is challenging due to the tissue heterogeneity, which is caused by noise, bias filed and partial volume effects. To overcome this limitation, this paper presents a novel algorithm for brain tissue segmentation based on supervoxel and graph filter. Firstly, an effective supervoxel method is employed to generate effective supervoxels for the 3D MRI image. Secondly, the supervoxels are classified into different types of tissues based on filtering of graph signals. The performance is evaluated on the BrainWeb 18 dataset and the Internet Brain Segmentation Repository (IBSR) 18 dataset. The proposed method achieves mean dice similarity coefficient (DSC) of 0.94, 0.92 and 0.90 for the segmentation of white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF) for BrainWeb 18 dataset, and mean DSC of 0.85, 0.87 and 0.57 for the segmentation of WM, GM and CSF for IBSR18 dataset. The proposed approach can well discriminate different types of brain tissues from the brain MRI image, which has high potential to be applied for clinical applications.

  13. Embodied Semiotic Activities and Their Role in the Construction of Mathematical Meaning of Motion Graphs

    ERIC Educational Resources Information Center

    Botzer, Galit; Yerushalmy, Michal

    2008-01-01

    This paper examines the relation between bodily actions, artifact-mediated activities, and semiotic processes that students experience while producing and interpreting graphs of two-dimensional motion in the plane. We designed a technology-based setting that enabled students to engage in embodied semiotic activities and experience two modes of…

  14. Experimental Study of Quantum Graphs with Microwave Networks

    NASA Astrophysics Data System (ADS)

    Fu, Ziyuan; Koch, Trystan; Antonsen, Thomas; Ott, Edward; Anlage, Steven; Wave Chaos Team

    An experimental setup consisting of microwave networks is used to simulate quantum graphs. The networks are constructed from coaxial cables connected by T junctions. The networks are built for operation both at room temperature and superconducting versions that operate at cryogenic temperatures. In the experiments, a phase shifter is connected to one of the network bonds to generate an ensemble of quantum graphs by varying the phase delay. The eigenvalue spectrum is found from S-parameter measurements on one-port graphs. With the experimental data, the nearest-neighbor spacing statistics and the impedance statistics of the graphs are examined. It is also demonstrated that time-reversal invariance for microwave propagation in the graphs can be broken without increasing dissipation significantly by making nodes with circulators. Random matrix theory (RMT) successfully describes universal statistical properties of the system. We acknowledge support under contract AFOSR COE Grant FA9550-15-1-0171.

  15. Structure-Based Low-Rank Model With Graph Nuclear Norm Regularization for Noise Removal.

    PubMed

    Ge, Qi; Jing, Xiao-Yuan; Wu, Fei; Wei, Zhi-Hui; Xiao, Liang; Shao, Wen-Ze; Yue, Dong; Li, Hai-Bo

    2017-07-01

    Nonlocal image representation methods, including group-based sparse coding and block-matching 3-D filtering, have shown their great performance in application to low-level tasks. The nonlocal prior is extracted from each group consisting of patches with similar intensities. Grouping patches based on intensity similarity, however, gives rise to disturbance and inaccuracy in estimation of the true images. To address this problem, we propose a structure-based low-rank model with graph nuclear norm regularization. We exploit the local manifold structure inside a patch and group the patches by the distance metric of manifold structure. With the manifold structure information, a graph nuclear norm regularization is established and incorporated into a low-rank approximation model. We then prove that the graph-based regularization is equivalent to a weighted nuclear norm and the proposed model can be solved by a weighted singular-value thresholding algorithm. Extensive experiments on additive white Gaussian noise removal and mixed noise removal demonstrate that the proposed method achieves a better performance than several state-of-the-art algorithms.

  16. A graph edit dictionary for correcting errors in roof topology graphs reconstructed from point clouds

    NASA Astrophysics Data System (ADS)

    Xiong, B.; Oude Elberink, S.; Vosselman, G.

    2014-07-01

    In the task of 3D building model reconstruction from point clouds we face the problem of recovering a roof topology graph in the presence of noise, small roof faces and low point densities. Errors in roof topology graphs will seriously affect the final modelling results. The aim of this research is to automatically correct these errors. We define the graph correction as a graph-to-graph problem, similar to the spelling correction problem (also called the string-to-string problem). The graph correction is more complex than string correction, as the graphs are 2D while strings are only 1D. We design a strategy based on a dictionary of graph edit operations to automatically identify and correct the errors in the input graph. For each type of error the graph edit dictionary stores a representative erroneous subgraph as well as the corrected version. As an erroneous roof topology graph may contain several errors, a heuristic search is applied to find the optimum sequence of graph edits to correct the errors one by one. The graph edit dictionary can be expanded to include entries needed to cope with errors that were previously not encountered. Experiments show that the dictionary with only fifteen entries already properly corrects one quarter of erroneous graphs in about 4500 buildings, and even half of the erroneous graphs in one test area, achieving as high as a 95% acceptance rate of the reconstructed models.

  17. Curriculum-Based Measurement, Program Development, Graphing Performance and Increasing Efficiency.

    ERIC Educational Resources Information Center

    Deno, Stanley L.; And Others

    1987-01-01

    Four brief articles look at aspects of curriculum based measurement (CBM) for academically handicapped students including procedures of CBM with examples, different approaches to graphing student performance, and solutions to the problem of making time to measure student progress frequently. (DB)

  18. A matrix-algebraic formulation of distributed-memory maximal cardinality matching algorithms in bipartite graphs

    DOE PAGES

    Azad, Ariful; Buluç, Aydın

    2016-05-16

    We describe parallel algorithms for computing maximal cardinality matching in a bipartite graph on distributed-memory systems. Unlike traditional algorithms that match one vertex at a time, our algorithms process many unmatched vertices simultaneously using a matrix-algebraic formulation of maximal matching. This generic matrix-algebraic framework is used to develop three efficient maximal matching algorithms with minimal changes. The newly developed algorithms have two benefits over existing graph-based algorithms. First, unlike existing parallel algorithms, cardinality of matching obtained by the new algorithms stays constant with increasing processor counts, which is important for predictable and reproducible performance. Second, relying on bulk-synchronous matrix operations,more » these algorithms expose a higher degree of parallelism on distributed-memory platforms than existing graph-based algorithms. We report high-performance implementations of three maximal matching algorithms using hybrid OpenMP-MPI and evaluate the performance of these algorithm using more than 35 real and randomly generated graphs. On real instances, our algorithms achieve up to 200 × speedup on 2048 cores of a Cray XC30 supercomputer. Even higher speedups are obtained on larger synthetically generated graphs where our algorithms show good scaling on up to 16,384 cores.« less

  19. Self-similarity analysis of eubacteria genome based on weighted graph.

    PubMed

    Qi, Zhao-Hui; Li, Ling; Zhang, Zhi-Meng; Qi, Xiao-Qin

    2011-07-07

    We introduce a weighted graph model to investigate the self-similarity characteristics of eubacteria genomes. The regular treating in similarity comparison about genome is to discover the evolution distance among different genomes. Few people focus their attention on the overall statistical characteristics of each gene compared with other genes in the same genome. In our model, each genome is attributed to a weighted graph, whose topology describes the similarity relationship among genes in the same genome. Based on the related weighted graph theory, we extract some quantified statistical variables from the topology, and give the distribution of some variables derived from the largest social structure in the topology. The 23 eubacteria recently studied by Sorimachi and Okayasu are markedly classified into two different groups by their double logarithmic point-plots describing the similarity relationship among genes of the largest social structure in genome. The results show that the proposed model may provide us with some new sights to understand the structures and evolution patterns determined from the complete genomes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Recursive Feature Extraction in Graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2014-08-14

    ReFeX extracts recursive topological features from graph data. The input is a graph as a csv file and the output is a csv file containing feature values for each node in the graph. The features are based on topological counts in the neighborhoods of each nodes, as well as recursive summaries of neighbors' features.

  1. A technology mapping based on graph of excitations and outputs for finite state machines

    NASA Astrophysics Data System (ADS)

    Kania, Dariusz; Kulisz, Józef

    2017-11-01

    A new, efficient technology mapping method of FSMs, dedicated for PAL-based PLDs is proposed. The essence of the method consists in searching for the minimal set of PAL-based logic blocks that cover a set of multiple-output implicants describing the transition and output functions of an FSM. The method is based on a new concept of graph: the Graph of Excitations and Outputs. The proposed algorithm was tested using the FSM benchmarks. The obtained results were compared with the classical technology mapping of FSM.

  2. Graph characterization via Ihara coefficients.

    PubMed

    Ren, Peng; Wilson, Richard C; Hancock, Edwin R

    2011-02-01

    The novel contributions of this paper are twofold. First, we demonstrate how to characterize unweighted graphs in a permutation-invariant manner using the polynomial coefficients from the Ihara zeta function, i.e., the Ihara coefficients. Second, we generalize the definition of the Ihara coefficients to edge-weighted graphs. For an unweighted graph, the Ihara zeta function is the reciprocal of a quasi characteristic polynomial of the adjacency matrix of the associated oriented line graph. Since the Ihara zeta function has poles that give rise to infinities, the most convenient numerically stable representation is to work with the coefficients of the quasi characteristic polynomial. Moreover, the polynomial coefficients are invariant to vertex order permutations and also convey information concerning the cycle structure of the graph. To generalize the representation to edge-weighted graphs, we make use of the reduced Bartholdi zeta function. We prove that the computation of the Ihara coefficients for unweighted graphs is a special case of our proposed method for unit edge weights. We also present a spectral analysis of the Ihara coefficients and indicate their advantages over other graph spectral methods. We apply the proposed graph characterization method to capturing graph-class structure and clustering graphs. Experimental results reveal that the Ihara coefficients are more effective than methods based on Laplacian spectra.

  3. Knowledge Representation Issues in Semantic Graphs for Relationship Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barthelemy, M; Chow, E; Eliassi-Rad, T

    2005-02-02

    An important task for Homeland Security is the prediction of threat vulnerabilities, such as through the detection of relationships between seemingly disjoint entities. A structure used for this task is a ''semantic graph'', also known as a ''relational data graph'' or an ''attributed relational graph''. These graphs encode relationships as typed links between a pair of typed nodes. Indeed, semantic graphs are very similar to semantic networks used in AI. The node and link types are related through an ontology graph (also known as a schema). Furthermore, each node has a set of attributes associated with it (e.g., ''age'' maymore » be an attribute of a node of type ''person''). Unfortunately, the selection of types and attributes for both nodes and links depends on human expertise and is somewhat subjective and even arbitrary. This subjectiveness introduces biases into any algorithm that operates on semantic graphs. Here, we raise some knowledge representation issues for semantic graphs and provide some possible solutions using recently developed ideas in the field of complex networks. In particular, we use the concept of transitivity to evaluate the relevance of individual links in the semantic graph for detecting relationships. We also propose new statistical measures for semantic graphs and illustrate these semantic measures on graphs constructed from movies and terrorism data.« less

  4. Graph-based optimization of epitope coverage for vaccine antigen design

    DOE PAGES

    Theiler, James Patrick; Korber, Bette Tina Marie

    2017-01-29

    Epigraph is a recently developed algorithm that enables the computationally efficient design of single or multi-antigen vaccines to maximize the potential epitope coverage for a diverse pathogen population. Potential epitopes are defined as short contiguous stretches of proteins, comparable in length to T-cell epitopes. This optimal coverage problem can be formulated in terms of a directed graph, with candidate antigens represented as paths that traverse this graph. Epigraph protein sequences can also be used as the basis for designing peptides for experimental evaluation of immune responses in natural infections to highly variable proteins. The epigraph tool suite also enables rapidmore » characterization of populations of diverse sequences from an immunological perspective. Fundamental distance measures are based on immunologically relevant shared potential epitope frequencies, rather than simple Hamming or phylogenetic distances. Here, we provide a mathematical description of the epigraph algorithm, include a comparison of different heuristics that can be used when graphs are not acyclic, and we describe an additional tool we have added to the web-based epigraph tool suite that provides frequency summaries of all distinct potential epitopes in a population. Lastly, we also show examples of the graphical output and summary tables that can be generated using the epigraph tool suite and explain their content and applications.« less

  5. Graph-based optimization of epitope coverage for vaccine antigen design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theiler, James Patrick; Korber, Bette Tina Marie

    Epigraph is a recently developed algorithm that enables the computationally efficient design of single or multi-antigen vaccines to maximize the potential epitope coverage for a diverse pathogen population. Potential epitopes are defined as short contiguous stretches of proteins, comparable in length to T-cell epitopes. This optimal coverage problem can be formulated in terms of a directed graph, with candidate antigens represented as paths that traverse this graph. Epigraph protein sequences can also be used as the basis for designing peptides for experimental evaluation of immune responses in natural infections to highly variable proteins. The epigraph tool suite also enables rapidmore » characterization of populations of diverse sequences from an immunological perspective. Fundamental distance measures are based on immunologically relevant shared potential epitope frequencies, rather than simple Hamming or phylogenetic distances. Here, we provide a mathematical description of the epigraph algorithm, include a comparison of different heuristics that can be used when graphs are not acyclic, and we describe an additional tool we have added to the web-based epigraph tool suite that provides frequency summaries of all distinct potential epitopes in a population. Lastly, we also show examples of the graphical output and summary tables that can be generated using the epigraph tool suite and explain their content and applications.« less

  6. PuReD-MCL: a graph-based PubMed document clustering methodology.

    PubMed

    Theodosiou, T; Darzentas, N; Angelis, L; Ouzounis, C A

    2008-09-01

    Biomedical literature is the principal repository of biomedical knowledge, with PubMed being the most complete database collecting, organizing and analyzing such textual knowledge. There are numerous efforts that attempt to exploit this information by using text mining and machine learning techniques. We developed a novel approach, called PuReD-MCL (Pubmed Related Documents-MCL), which is based on the graph clustering algorithm MCL and relevant resources from PubMed. PuReD-MCL avoids using natural language processing (NLP) techniques directly; instead, it takes advantage of existing resources, available from PubMed. PuReD-MCL then clusters documents efficiently using the MCL graph clustering algorithm, which is based on graph flow simulation. This process allows users to analyse the results by highlighting important clues, and finally to visualize the clusters and all relevant information using an interactive graph layout algorithm, for instance BioLayout Express 3D. The methodology was applied to two different datasets, previously used for the validation of the document clustering tool TextQuest. The first dataset involves the organisms Escherichia coli and yeast, whereas the second is related to Drosophila development. PuReD-MCL successfully reproduces the annotated results obtained from TextQuest, while at the same time provides additional insights into the clusters and the corresponding documents. Source code in perl and R are available from http://tartara.csd.auth.gr/~theodos/

  7. Kernel approach to molecular similarity based on iterative graph similarity.

    PubMed

    Rupp, Matthias; Proschak, Ewgenij; Schneider, Gisbert

    2007-01-01

    Similarity measures for molecules are of basic importance in chemical, biological, and pharmaceutical applications. We introduce a molecular similarity measure defined directly on the annotated molecular graph, based on iterative graph similarity and optimal assignments. We give an iterative algorithm for the computation of the proposed molecular similarity measure, prove its convergence and the uniqueness of the solution, and provide an upper bound on the required number of iterations necessary to achieve a desired precision. Empirical evidence for the positive semidefiniteness of certain parametrizations of our function is presented. We evaluated our molecular similarity measure by using it as a kernel in support vector machine classification and regression applied to several pharmaceutical and toxicological data sets, with encouraging results.

  8. A Model of Knowledge Based Information Retrieval with Hierarchical Concept Graph.

    ERIC Educational Resources Information Center

    Kim, Young Whan; Kim, Jin H.

    1990-01-01

    Proposes a model of knowledge-based information retrieval (KBIR) that is based on a hierarchical concept graph (HCG) which shows relationships between index terms and constitutes a hierarchical thesaurus as a knowledge base. Conceptual distance between a query and an object is discussed and the use of Boolean operators is described. (25…

  9. Patch-based iterative conditional geostatistical simulation using graph cuts

    NASA Astrophysics Data System (ADS)

    Li, Xue; Mariethoz, Gregoire; Lu, DeTang; Linde, Niklas

    2016-08-01

    Training image-based geostatistical methods are increasingly popular in groundwater hydrology even if existing algorithms present limitations that often make real-world applications difficult. These limitations include a computational cost that can be prohibitive for high-resolution 3-D applications, the presence of visual artifacts in the model realizations, and a low variability between model realizations due to the limited pool of patterns available in a finite-size training image. In this paper, we address these issues by proposing an iterative patch-based algorithm which adapts a graph cuts methodology that is widely used in computer graphics. Our adapted graph cuts method optimally cuts patches of pixel values borrowed from the training image and assembles them successively, each time accounting for the information of previously stitched patches. The initial simulation result might display artifacts, which are identified as regions of high cost. These artifacts are reduced by iteratively placing new patches in high-cost regions. In contrast to most patch-based algorithms, the proposed scheme can also efficiently address point conditioning. An advantage of the method is that the cut process results in the creation of new patterns that are not present in the training image, thereby increasing pattern variability. To quantify this effect, a new measure of variability is developed, the merging index, quantifies the pattern variability in the realizations with respect to the training image. A series of sensitivity analyses demonstrates the stability of the proposed graph cuts approach, which produces satisfying simulations for a wide range of parameters values. Applications to 2-D and 3-D cases are compared to state-of-the-art multiple-point methods. The results show that the proposed approach obtains significant speedups and increases variability between realizations. Connectivity functions applied to 2-D models transport simulations in 3-D models are used to

  10. Visual texture perception via graph-based semi-supervised learning

    NASA Astrophysics Data System (ADS)

    Zhang, Qin; Dong, Junyu; Zhong, Guoqiang

    2018-04-01

    Perceptual features, for example direction, contrast and repetitiveness, are important visual factors for human to perceive a texture. However, it needs to perform psychophysical experiment to quantify these perceptual features' scale, which requires a large amount of human labor and time. This paper focuses on the task of obtaining perceptual features' scale of textures by small number of textures with perceptual scales through a rating psychophysical experiment (what we call labeled textures) and a mass of unlabeled textures. This is the scenario that the semi-supervised learning is naturally suitable for. This is meaningful for texture perception research, and really helpful for the perceptual texture database expansion. A graph-based semi-supervised learning method called random multi-graphs, RMG for short, is proposed to deal with this task. We evaluate different kinds of features including LBP, Gabor, and a kind of unsupervised deep features extracted by a PCA-based deep network. The experimental results show that our method can achieve satisfactory effects no matter what kind of texture features are used.

  11. Bounded-Degree Approximations of Stochastic Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, Christopher J.; Pinar, Ali; Kiyavash, Negar

    2017-06-01

    We propose algorithms to approximate directed information graphs. Directed information graphs are probabilistic graphical models that depict causal dependencies between stochastic processes in a network. The proposed algorithms identify optimal and near-optimal approximations in terms of Kullback-Leibler divergence. The user-chosen sparsity trades off the quality of the approximation against visual conciseness and computational tractability. One class of approximations contains graphs with speci ed in-degrees. Another class additionally requires that the graph is connected. For both classes, we propose algorithms to identify the optimal approximations and also near-optimal approximations, using a novel relaxation of submodularity. We also propose algorithms to identifymore » the r-best approximations among these classes, enabling robust decision making.« less

  12. Contact Graph Routing Enhancements Developed in ION for DTN

    NASA Technical Reports Server (NTRS)

    Segui, John S.; Burleigh, Scott

    2013-01-01

    The Interplanetary Overlay Network (ION) software suite is an open-source, flight-ready implementation of networking protocols including the Delay/Disruption Tolerant Networking (DTN) Bundle Protocol (BP), the CCSDS (Consultative Committee for Space Data Systems) File Delivery Protocol (CFDP), and many others including the Contact Graph Routing (CGR) DTN routing system. While DTN offers the capability to tolerate disruption and long signal propagation delays in transmission, without an appropriate routing protocol, no data can be delivered. CGR was built for space exploration networks with scheduled communication opportunities (typically based on trajectories and orbits), represented as a contact graph. Since CGR uses knowledge of future connectivity, the contact graph can grow rather large, and so efficient processing is desired. These enhancements allow CGR to scale to predicted NASA space network complexities and beyond. This software improves upon CGR by adopting an earliest-arrival-time cost metric and using the Dijkstra path selection algorithm. Moving to Dijkstra path selection also enables construction of an earliest- arrival-time tree for multicast routing. The enhancements have been rolled into ION 3.0 available on sourceforge.net.

  13. Cycle/Cocycle Oblique Projections on Oriented Graphs

    NASA Astrophysics Data System (ADS)

    Polettini, Matteo

    2015-01-01

    It is well known that the edge vector space of an oriented graph can be decomposed in terms of cycles and cocycles (alias cuts, or bonds), and that a basis for the cycle and the cocycle spaces can be generated by adding and removing edges to an arbitrarily chosen spanning tree. In this paper, we show that the edge vector space can also be decomposed in terms of cycles and the generating edges of cocycles (called cochords), or of cocycles and the generating edges of cycles (called chords). From this observation follows a construction in terms of oblique complementary projection operators. We employ this algebraic construction to prove several properties of unweighted Kirchhoff-Symanzik matrices, encoding the mutual superposition between cycles and cocycles. In particular, we prove that dual matrices of planar graphs have the same spectrum (up to multiplicities). We briefly comment on how this construction provides a refined formalization of Kirchhoff's mesh analysis of electrical circuits, which has lately been applied to generic thermodynamic networks.

  14. Building an EEG-fMRI Multi-Modal Brain Graph: A Concurrent EEG-fMRI Study

    PubMed Central

    Yu, Qingbao; Wu, Lei; Bridwell, David A.; Erhardt, Erik B.; Du, Yuhui; He, Hao; Chen, Jiayu; Liu, Peng; Sui, Jing; Pearlson, Godfrey; Calhoun, Vince D.

    2016-01-01

    The topological architecture of brain connectivity has been well-characterized by graph theory based analysis. However, previous studies have primarily built brain graphs based on a single modality of brain imaging data. Here we develop a framework to construct multi-modal brain graphs using concurrent EEG-fMRI data which are simultaneously collected during eyes open (EO) and eyes closed (EC) resting states. FMRI data are decomposed into independent components with associated time courses by group independent component analysis (ICA). EEG time series are segmented, and then spectral power time courses are computed and averaged within 5 frequency bands (delta; theta; alpha; beta; low gamma). EEG-fMRI brain graphs, with EEG electrodes and fMRI brain components serving as nodes, are built by computing correlations within and between fMRI ICA time courses and EEG spectral power time courses. Dynamic EEG-fMRI graphs are built using a sliding window method, versus static ones treating the entire time course as stationary. In global level, static graph measures and properties of dynamic graph measures are different across frequency bands and are mainly showing higher values in eyes closed than eyes open. Nodal level graph measures of a few brain components are also showing higher values during eyes closed in specific frequency bands. Overall, these findings incorporate fMRI spatial localization and EEG frequency information which could not be obtained by examining only one modality. This work provides a new approach to examine EEG-fMRI associations within a graph theoretic framework with potential application to many topics. PMID:27733821

  15. Functional grouping of similar genes using eigenanalysis on minimum spanning tree based neighborhood graph.

    PubMed

    Jothi, R; Mohanty, Sraban Kumar; Ojha, Aparajita

    2016-04-01

    Gene expression data clustering is an important biological process in DNA microarray analysis. Although there have been many clustering algorithms for gene expression analysis, finding a suitable and effective clustering algorithm is always a challenging problem due to the heterogeneous nature of gene profiles. Minimum Spanning Tree (MST) based clustering algorithms have been successfully employed to detect clusters of varying shapes and sizes. This paper proposes a novel clustering algorithm using Eigenanalysis on Minimum Spanning Tree based neighborhood graph (E-MST). As MST of a set of points reflects the similarity of the points with their neighborhood, the proposed algorithm employs a similarity graph obtained from k(') rounds of MST (k(')-MST neighborhood graph). By studying the spectral properties of the similarity matrix obtained from k(')-MST graph, the proposed algorithm achieves improved clustering results. We demonstrate the efficacy of the proposed algorithm on 12 gene expression datasets. Experimental results show that the proposed algorithm performs better than the standard clustering algorithms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Upper bound for the span of pencil graph

    NASA Astrophysics Data System (ADS)

    Parvathi, N.; Vimala Rani, A.

    2018-04-01

    An L(2,1)-Coloring or Radio Coloring or λ coloring of a graph is a function f from the vertex set V(G) to the set of all nonnegative integers such that |f(x) ‑ f(y)| ≥ 2 if d(x,y) = 1 and |f(x) ‑ f(y)| ≥ 1 if d(x,y)=2, where d(x,y) denotes the distance between x and y in G. The L(2,1)-coloring number or span number λ(G) of G is the smallest number k such that G has an L(2,1)-coloring with max{f(v) : v ∈ V(G)} = k. [2]The minimum number of colors used in L(2,1)-coloring is called the radio number rn(G) of G (Positive integer). Griggs and yeh conjectured that λ(G) ≤ Δ2 for any simple graph with maximum degree Δ>2. In this article, we consider some special graphs like, n-sunlet graph, pencil graph families and derive its upper bound of (G) and rn(G).

  17. Sketch Matching on Topology Product Graph.

    PubMed

    Liang, Shuang; Luo, Jun; Liu, Wenyin; Wei, Yichen

    2015-08-01

    Sketch matching is the fundamental problem in sketch based interfaces. After years of study, it remains challenging when there exists large irregularity and variations in the hand drawn sketch shapes. While most existing works exploit topology relations and graph representations for this problem, they are usually limited by the coarse topology exploration and heuristic (thus suboptimal) similarity metrics between graphs. We present a new sketch matching method with two novel contributions. We introduce a comprehensive definition of topology relations, which results in a rich and informative graph representation of sketches. For graph matching, we propose topology product graph that retains the full correspondence for matching two graphs. Based on it, we derive an intuitive sketch similarity metric whose exact solution is easy to compute. In addition, the graph representation and new metric naturally support partial matching, an important practical problem that received less attention in the literature. Extensive experimental results on a real challenging dataset and the superior performance of our method show that it outperforms the state-of-the-art.

  18. Mathematical formula recognition using graph grammar

    NASA Astrophysics Data System (ADS)

    Lavirotte, Stephane; Pottier, Loic

    1998-04-01

    This paper describes current results of Ofr, a system for extracting and understanding mathematical expressions in documents. Such a tool could be really useful to be able to re-use knowledge in scientific books which are not available in electronic form. We currently also study use of this system for direct input of formulas with a graphical tablet for computer algebra system softwares. Existing solutions for mathematical recognition have problems to analyze 2D expressions like vectors and matrices. This is because they often try to use extended classical grammar to analyze formulas, relatively to baseline. But a lot of mathematical notations do not respect rules for such a parsing and that is the reason why they fail to extend text parsing technic. We investigate graph grammar and graph rewriting as a solution to recognize 2D mathematical notations. Graph grammar provide a powerful formalism to describe structural manipulations of multi-dimensional data. The main two problems to solve are ambiguities between rules of grammar and construction of graph.

  19. Bond Graph Model of Cerebral Circulation: Toward Clinically Feasible Systemic Blood Flow Simulations.

    PubMed

    Safaei, Soroush; Blanco, Pablo J; Müller, Lucas O; Hellevik, Leif R; Hunter, Peter J

    2018-01-01

    We propose a detailed CellML model of the human cerebral circulation that runs faster than real time on a desktop computer and is designed for use in clinical settings when the speed of response is important. A lumped parameter mathematical model, which is based on a one-dimensional formulation of the flow of an incompressible fluid in distensible vessels, is constructed using a bond graph formulation to ensure mass conservation and energy conservation. The model includes arterial vessels with geometric and anatomical data based on the ADAN circulation model. The peripheral beds are represented by lumped parameter compartments. We compare the hemodynamics predicted by the bond graph formulation of the cerebral circulation with that given by a classical one-dimensional Navier-Stokes model working on top of the whole-body ADAN model. Outputs from the bond graph model, including the pressure and flow signatures and blood volumes, are compared with physiological data.

  20. Bond Graph Model of Cerebral Circulation: Toward Clinically Feasible Systemic Blood Flow Simulations

    PubMed Central

    Safaei, Soroush; Blanco, Pablo J.; Müller, Lucas O.; Hellevik, Leif R.; Hunter, Peter J.

    2018-01-01

    We propose a detailed CellML model of the human cerebral circulation that runs faster than real time on a desktop computer and is designed for use in clinical settings when the speed of response is important. A lumped parameter mathematical model, which is based on a one-dimensional formulation of the flow of an incompressible fluid in distensible vessels, is constructed using a bond graph formulation to ensure mass conservation and energy conservation. The model includes arterial vessels with geometric and anatomical data based on the ADAN circulation model. The peripheral beds are represented by lumped parameter compartments. We compare the hemodynamics predicted by the bond graph formulation of the cerebral circulation with that given by a classical one-dimensional Navier-Stokes model working on top of the whole-body ADAN model. Outputs from the bond graph model, including the pressure and flow signatures and blood volumes, are compared with physiological data. PMID:29551979

  1. Supporting Fourth Graders' Ability to Interpret Graphs through Real-Time Graphing Technology: A Preliminary Study

    ERIC Educational Resources Information Center

    Deniz, Hasan; Dulger, Mehmet F.

    2012-01-01

    This study examined to what extent inquiry-based instruction supported with real-time graphing technology improves fourth grader's ability to interpret graphs as representations of physical science concepts such as motion and temperature. This study also examined whether there is any difference between inquiry-based instruction supported with…

  2. Bachelor's Degree Recipients Report, 1997.

    ERIC Educational Resources Information Center

    Mulvey, Patrick J.; Nicholson, Starr

    1998-01-01

    This report analyzes data on bachelor's degree recipients in physics or astronomy in 1997. Data are from a survey of senior-level physics majors (n=1,696) and the American Institute of Physics' Enrollments and Degrees Survey, and include text, tables, and graphs. The report notes that: (1) the number of undergraduates who received bachelor's…

  3. A comparison of graph- and kernel-based -omics data integration algorithms for classifying complex traits.

    PubMed

    Yan, Kang K; Zhao, Hongyu; Pang, Herbert

    2017-12-06

    High-throughput sequencing data are widely collected and analyzed in the study of complex diseases in quest of improving human health. Well-studied algorithms mostly deal with single data source, and cannot fully utilize the potential of these multi-omics data sources. In order to provide a holistic understanding of human health and diseases, it is necessary to integrate multiple data sources. Several algorithms have been proposed so far, however, a comprehensive comparison of data integration algorithms for classification of binary traits is currently lacking. In this paper, we focus on two common classes of integration algorithms, graph-based that depict relationships with subjects denoted by nodes and relationships denoted by edges, and kernel-based that can generate a classifier in feature space. Our paper provides a comprehensive comparison of their performance in terms of various measurements of classification accuracy and computation time. Seven different integration algorithms, including graph-based semi-supervised learning, graph sharpening integration, composite association network, Bayesian network, semi-definite programming-support vector machine (SDP-SVM), relevance vector machine (RVM) and Ada-boost relevance vector machine are compared and evaluated with hypertension and two cancer data sets in our study. In general, kernel-based algorithms create more complex models and require longer computation time, but they tend to perform better than graph-based algorithms. The performance of graph-based algorithms has the advantage of being faster computationally. The empirical results demonstrate that composite association network, relevance vector machine, and Ada-boost RVM are the better performers. We provide recommendations on how to choose an appropriate algorithm for integrating data from multiple sources.

  4. EEG analysis of seizure patterns using visibility graphs for detection of generalized seizures.

    PubMed

    Wang, Lei; Long, Xi; Arends, Johan B A M; Aarts, Ronald M

    2017-10-01

    The traditional EEG features in the time and frequency domain show limited seizure detection performance in the epileptic population with intellectual disability (ID). In addition, the influence of EEG seizure patterns on detection performance was less studied. A single-channel EEG signal can be mapped into visibility graphs (VGS), including basic visibility graph (VG), horizontal VG (HVG), and difference VG (DVG). These graphs were used to characterize different EEG seizure patterns. To demonstrate its effectiveness in identifying EEG seizure patterns and detecting generalized seizures, EEG recordings of 615h on one EEG channel from 29 epileptic patients with ID were analyzed. A novel feature set with discriminative power for seizure detection was obtained by using the VGS method. The degree distributions (DDs) of DVG can clearly distinguish EEG of each seizure pattern. The degree entropy and power-law degree power in DVG were proposed here for the first time, and they show significant difference between seizure and non-seizure EEG. The connecting structure measured by HVG can better distinguish seizure EEG from background than those by VG and DVG. A traditional EEG feature set based on frequency analysis was used here as a benchmark feature set. With a support vector machine (SVM) classifier, the seizure detection performance of the benchmark feature set (sensitivity of 24%, FD t /h of 1.8s) can be improved by combining our proposed VGS features extracted from one EEG channel (sensitivity of 38%, FD t /h of 1.4s). The proposed VGS-based features can help improve seizure detection for ID patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Local dependence in random graph models: characterization, properties and statistical inference

    PubMed Central

    Schweinberger, Michael; Handcock, Mark S.

    2015-01-01

    Summary Dependent phenomena, such as relational, spatial and temporal phenomena, tend to be characterized by local dependence in the sense that units which are close in a well-defined sense are dependent. In contrast with spatial and temporal phenomena, though, relational phenomena tend to lack a natural neighbourhood structure in the sense that it is unknown which units are close and thus dependent. Owing to the challenge of characterizing local dependence and constructing random graph models with local dependence, many conventional exponential family random graph models induce strong dependence and are not amenable to statistical inference. We take first steps to characterize local dependence in random graph models, inspired by the notion of finite neighbourhoods in spatial statistics and M-dependence in time series, and we show that local dependence endows random graph models with desirable properties which make them amenable to statistical inference. We show that random graph models with local dependence satisfy a natural domain consistency condition which every model should satisfy, but conventional exponential family random graph models do not satisfy. In addition, we establish a central limit theorem for random graph models with local dependence, which suggests that random graph models with local dependence are amenable to statistical inference. We discuss how random graph models with local dependence can be constructed by exploiting either observed or unobserved neighbourhood structure. In the absence of observed neighbourhood structure, we take a Bayesian view and express the uncertainty about the neighbourhood structure by specifying a prior on a set of suitable neighbourhood structures. We present simulation results and applications to two real world networks with ‘ground truth’. PMID:26560142

  6. The Impact of Microcomputer-Based Science Labs on Children's Graphing Skills.

    ERIC Educational Resources Information Center

    Mokros, Janice R.

    Microcomputer-based laboratories (MBL), the use of microcomputers for student-directed data acquisition and analysis, represents a promising new development in science laboratory instruction. This descriptive study determined the impact of MBLs on middle school students' understanding of graphs of distance and velocity. The study was based on the…

  7. Graph-based geometric-iconic guide-wire tracking.

    PubMed

    Honnorat, Nicolas; Vaillant, Régis; Paragios, Nikos

    2011-01-01

    In this paper we introduce a novel hybrid graph-based approach for Guide-wire tracking. The image support is captured by steerable filters and improved through tensor voting. Then, a graphical model is considered that represents guide-wire extraction/tracking through a B-spline control-point model. Points with strong geometric interest (landmarks) are automatically determined and anchored to such a representation. Tracking is then performed through discrete MRFs that optimize the spatio-temporal positions of the control points while establishing landmark temporal correspondences. Promising results demonstrate the potentials of our method.

  8. Large-scale quantum networks based on graphs

    NASA Astrophysics Data System (ADS)

    Epping, Michael; Kampermann, Hermann; Bruß, Dagmar

    2016-05-01

    Society relies and depends increasingly on information exchange and communication. In the quantum world, security and privacy is a built-in feature for information processing. The essential ingredient for exploiting these quantum advantages is the resource of entanglement, which can be shared between two or more parties. The distribution of entanglement over large distances constitutes a key challenge for current research and development. Due to losses of the transmitted quantum particles, which typically scale exponentially with the distance, intermediate quantum repeater stations are needed. Here we show how to generalise the quantum repeater concept to the multipartite case, by describing large-scale quantum networks, i.e. network nodes and their long-distance links, consistently in the language of graphs and graph states. This unifying approach comprises both the distribution of multipartite entanglement across the network, and the protection against errors via encoding. The correspondence to graph states also provides a tool for optimising the architecture of quantum networks.

  9. Graph-based similarity concepts in virtual screening.

    PubMed

    Hutter, Michael C

    2011-03-01

    Applying similarity for finding new promising compounds is a key issue in drug design. Conversely, quantifying similarity between molecules has remained a difficult task despite the numerous approaches. Here, some general aspects along with recent developments regarding similarity criteria are collected. For the purpose of virtual screening, the compounds have to be encoded into a computer-readable format that permits a comparison, according to given similarity criteria, comprising the use of the 3D structure, fingerprints, graph-based and alignment-based approaches. Whereas finding the most common substructures is the most obvious method, more recent approaches take into account chemical modifications that appear throughout existing drugs, from various therapeutic categories and targets.

  10. Network Security Risk Assessment System Based on Attack Graph and Markov Chain

    NASA Astrophysics Data System (ADS)

    Sun, Fuxiong; Pi, Juntao; Lv, Jin; Cao, Tian

    2017-10-01

    Network security risk assessment technology can be found in advance of the network problems and related vulnerabilities, it has become an important means to solve the problem of network security. Based on attack graph and Markov chain, this paper provides a Network Security Risk Assessment Model (NSRAM). Based on the network infiltration tests, NSRAM generates the attack graph by the breadth traversal algorithm. Combines with the international standard CVSS, the attack probability of atomic nodes are counted, and then the attack transition probabilities of ones are calculated by Markov chain. NSRAM selects the optimal attack path after comprehensive measurement to assessment network security risk. The simulation results show that NSRAM can reflect the actual situation of network security objectively.

  11. Detecting black bear source–sink dynamics using individual-based genetic graphs

    PubMed Central

    Draheim, Hope M.; Moore, Jennifer A.; Etter, Dwayne; Winterstein, Scott R.; Scribner, Kim T.

    2016-01-01

    Source–sink dynamics affects population connectivity, spatial genetic structure and population viability for many species. We introduce a novel approach that uses individual-based genetic graphs to identify source–sink areas within a continuously distributed population of black bears (Ursus americanus) in the northern lower peninsula (NLP) of Michigan, USA. Black bear harvest samples (n = 569, from 2002, 2006 and 2010) were genotyped at 12 microsatellite loci and locations were compared across years to identify areas of consistent occupancy over time. We compared graph metrics estimated for a genetic model with metrics from 10 ecological models to identify ecological factors that were associated with sources and sinks. We identified 62 source nodes, 16 of which represent important source areas (net flux > 0.7) and 79 sink nodes. Source strength was significantly correlated with bear local harvest density (a proxy for bear density) and habitat suitability. Additionally, resampling simulations showed our approach is robust to potential sampling bias from uneven sample dispersion. Findings demonstrate black bears in the NLP exhibit asymmetric gene flow, and individual-based genetic graphs can characterize source–sink dynamics in continuously distributed species in the absence of discrete habitat patches. Our findings warrant consideration of undetected source–sink dynamics and their implications on harvest management of game species. PMID:27440668

  12. Graph Representations of Flow and Transport in Fracture Networks using Machine Learning

    NASA Astrophysics Data System (ADS)

    Srinivasan, G.; Viswanathan, H. S.; Karra, S.; O'Malley, D.; Godinez, H. C.; Hagberg, A.; Osthus, D.; Mohd-Yusof, J.

    2017-12-01

    Flow and transport of fluids through fractured systems is governed by the properties and interactions at the micro-scale. Retaining information about the micro-structure such as fracture length, orientation, aperture and connectivity in mesh-based computational models results in solving for millions to billions of degrees of freedom and quickly renders the problem computationally intractable. Our approach depicts fracture networks graphically, by mapping fractures to nodes and intersections to edges, thereby greatly reducing computational burden. Additionally, we use machine learning techniques to build simulators on the graph representation, trained on data from the mesh-based high fidelity simulations to speed up computation by orders of magnitude. We demonstrate our methodology on ensembles of discrete fracture networks, dividing up the data into training and validation sets. Our machine learned graph-based solvers result in over 3 orders of magnitude speedup without any significant sacrifice in accuracy.

  13. Superpixel-based graph cuts for accurate stereo matching

    NASA Astrophysics Data System (ADS)

    Feng, Liting; Qin, Kaihuai

    2017-06-01

    Estimating the surface normal vector and disparity of a pixel simultaneously, also known as three-dimensional label method, has been widely used in recent continuous stereo matching problem to achieve sub-pixel accuracy. However, due to the infinite label space, it’s extremely hard to assign each pixel an appropriate label. In this paper, we present an accurate and efficient algorithm, integrating patchmatch with graph cuts, to approach this critical computational problem. Besides, to get robust and precise matching cost, we use a convolutional neural network to learn a similarity measure on small image patches. Compared with other MRF related methods, our method has several advantages: its sub-modular property ensures a sub-problem optimality which is easy to perform in parallel; graph cuts can simultaneously update multiple pixels, avoiding local minima caused by sequential optimizers like belief propagation; it uses segmentation results for better local expansion move; local propagation and randomization can easily generate the initial solution without using external methods. Middlebury experiments show that our method can get higher accuracy than other MRF-based algorithms.

  14. Obstructions to the realization of distance graphs with large chromatic numbers on spheres of small radii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kupavskii, A B; Raigorodskii, A M

    2013-10-31

    We investigate in detail some properties of distance graphs constructed on the integer lattice. Such graphs find wide applications in problems of combinatorial geometry, in particular, such graphs were employed to answer Borsuk's question in the negative and to obtain exponential estimates for the chromatic number of the space. This work is devoted to the study of the number of cliques and the chromatic number of such graphs under certain conditions. Constructions of sequences of distance graphs are given, in which the graphs have unit length edges and contain a large number of triangles that lie on a sphere of radius 1/√3more » (which is the minimum possible). At the same time, the chromatic numbers of the graphs depend exponentially on their dimension. The results of this work strengthen and generalize some of the results obtained in a series of papers devoted to related issues. Bibliography: 29 titles.« less

  15. New method of computing the contributions of graphs without lepton loops to the electron anomalous magnetic moment in QED

    NASA Astrophysics Data System (ADS)

    Volkov, Sergey

    2017-11-01

    This paper presents a new method of numerical computation of the mass-independent QED contributions to the electron anomalous magnetic moment which arise from Feynman graphs without closed electron loops. The method is based on a forestlike subtraction formula that removes all ultraviolet and infrared divergences in each Feynman graph before integration in Feynman-parametric space. The integration is performed by an importance sampling Monte-Carlo algorithm with the probability density function that is constructed for each Feynman graph individually. The method is fully automated at any order of the perturbation series. The results of applying the method to 2-loop, 3-loop, 4-loop Feynman graphs, and to some individual 5-loop graphs are presented, as well as the comparison of this method with other ones with respect to Monte Carlo convergence speed.

  16. Network-based Arbitrated Quantum Signature Scheme with Graph State

    NASA Astrophysics Data System (ADS)

    Ma, Hongling; Li, Fei; Mao, Ningyi; Wang, Yijun; Guo, Ying

    2017-08-01

    Implementing an arbitrated quantum signature(QAS) through complex networks is an interesting cryptography technology in the literature. In this paper, we propose an arbitrated quantum signature for the multi-user-involved networks, whose topological structures are established by the encoded graph state. The determinative transmission of the shared keys, is enabled by the appropriate stabilizers performed on the graph state. The implementation of this scheme depends on the deterministic distribution of the multi-user-shared graph state on which the encoded message can be processed in signing and verifying phases. There are four parties involved, the signatory Alice, the verifier Bob, the arbitrator Trent and Dealer who assists the legal participants in the signature generation and verification. The security is guaranteed by the entanglement of the encoded graph state which is cooperatively prepared by legal participants in complex quantum networks.

  17. A system for routing arbitrary directed graphs on SIMD architectures

    NASA Technical Reports Server (NTRS)

    Tomboulian, Sherryl

    1987-01-01

    There are many problems which can be described in terms of directed graphs that contain a large number of vertices where simple computations occur using data from connecting vertices. A method is given for parallelizing such problems on an SIMD machine model that is bit-serial and uses only nearest neighbor connections for communication. Each vertex of the graph will be assigned to a processor in the machine. Algorithms are given that will be used to implement movement of data along the arcs of the graph. This architecture and algorithms define a system that is relatively simple to build and can do graph processing. All arcs can be transversed in parallel in time O(T), where T is empirically proportional to the diameter of the interconnection network times the average degree of the graph. Modifying or adding a new arc takes the same time as parallel traversal.

  18. Approximate ground states of the random-field Potts model from graph cuts

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Kumar, Ravinder; Weigel, Martin; Banerjee, Varsha; Janke, Wolfhard; Puri, Sanjay

    2018-05-01

    While the ground-state problem for the random-field Ising model is polynomial, and can be solved using a number of well-known algorithms for maximum flow or graph cut, the analog random-field Potts model corresponds to a multiterminal flow problem that is known to be NP-hard. Hence an efficient exact algorithm is very unlikely to exist. As we show here, it is nevertheless possible to use an embedding of binary degrees of freedom into the Potts spins in combination with graph-cut methods to solve the corresponding ground-state problem approximately in polynomial time. We benchmark this heuristic algorithm using a set of quasiexact ground states found for small systems from long parallel tempering runs. For a not-too-large number q of Potts states, the method based on graph cuts finds the same solutions in a fraction of the time. We employ the new technique to analyze the breakup length of the random-field Potts model in two dimensions.

  19. A path following algorithm for the graph matching problem.

    PubMed

    Zaslavskiy, Mikhail; Bach, Francis; Vert, Jean-Philippe

    2009-12-01

    We propose a convex-concave programming approach for the labeled weighted graph matching problem. The convex-concave programming formulation is obtained by rewriting the weighted graph matching problem as a least-square problem on the set of permutation matrices and relaxing it to two different optimization problems: a quadratic convex and a quadratic concave optimization problem on the set of doubly stochastic matrices. The concave relaxation has the same global minimum as the initial graph matching problem, but the search for its global minimum is also a hard combinatorial problem. We, therefore, construct an approximation of the concave problem solution by following a solution path of a convex-concave problem obtained by linear interpolation of the convex and concave formulations, starting from the convex relaxation. This method allows to easily integrate the information on graph label similarities into the optimization problem, and therefore, perform labeled weighted graph matching. The algorithm is compared with some of the best performing graph matching methods on four data sets: simulated graphs, QAPLib, retina vessel images, and handwritten Chinese characters. In all cases, the results are competitive with the state of the art.

  20. Multi-View Budgeted Learning under Label and Feature Constraints Using Label-Guided Graph-Based Regularization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Symons, Christopher T; Arel, Itamar

    2011-01-01

    Budgeted learning under constraints on both the amount of labeled information and the availability of features at test time pertains to a large number of real world problems. Ideas from multi-view learning, semi-supervised learning, and even active learning have applicability, but a common framework whose assumptions fit these problem spaces is non-trivial to construct. We leverage ideas from these fields based on graph regularizers to construct a robust framework for learning from labeled and unlabeled samples in multiple views that are non-independent and include features that are inaccessible at the time the model would need to be applied. We describemore » examples of applications that fit this scenario, and we provide experimental results to demonstrate the effectiveness of knowledge carryover from training-only views. As learning algorithms are applied to more complex applications, relevant information can be found in a wider variety of forms, and the relationships between these information sources are often quite complex. The assumptions that underlie most learning algorithms do not readily or realistically permit the incorporation of many of the data sources that are available, despite an implicit understanding that useful information exists in these sources. When multiple information sources are available, they are often partially redundant, highly interdependent, and contain noise as well as other information that is irrelevant to the problem under study. In this paper, we are focused on a framework whose assumptions match this reality, as well as the reality that labeled information is usually sparse. Most significantly, we are interested in a framework that can also leverage information in scenarios where many features that would be useful for learning a model are not available when the resulting model will be applied. As with constraints on labels, there are many practical limitations on the acquisition of potentially useful features. A key

  1. GrouseFlocks: steerable exploration of graph hierarchy space.

    PubMed

    Archambault, Daniel; Munzner, Tamara; Auber, David

    2008-01-01

    Several previous systems allow users to interactively explore a large input graph through cuts of a superimposed hierarchy. This hierarchy is often created using clustering algorithms or topological features present in the graph. However, many graphs have domain-specific attributes associated with the nodes and edges, which could be used to create many possible hierarchies providing unique views of the input graph. GrouseFlocks is a system for the exploration of this graph hierarchy space. By allowing users to see several different possible hierarchies on the same graph, the system helps users investigate graph hierarchy space instead of a single fixed hierarchy. GrouseFlocks provides a simple set of operations so that users can create and modify their graph hierarchies based on selections. These selections can be made manually or based on patterns in the attribute data provided with the graph. It provides feedback to the user within seconds, allowing interactive exploration of this space.

  2. graphkernels: R and Python packages for graph comparison

    PubMed Central

    Ghisu, M Elisabetta; Llinares-López, Felipe; Borgwardt, Karsten

    2018-01-01

    Abstract Summary Measuring the similarity of graphs is a fundamental step in the analysis of graph-structured data, which is omnipresent in computational biology. Graph kernels have been proposed as a powerful and efficient approach to this problem of graph comparison. Here we provide graphkernels, the first R and Python graph kernel libraries including baseline kernels such as label histogram based kernels, classic graph kernels such as random walk based kernels, and the state-of-the-art Weisfeiler-Lehman graph kernel. The core of all graph kernels is implemented in C ++ for efficiency. Using the kernel matrices computed by the package, we can easily perform tasks such as classification, regression and clustering on graph-structured samples. Availability and implementation The R and Python packages including source code are available at https://CRAN.R-project.org/package=graphkernels and https://pypi.python.org/pypi/graphkernels. Contact mahito@nii.ac.jp or elisabetta.ghisu@bsse.ethz.ch Supplementary information Supplementary data are available online at Bioinformatics. PMID:29028902

  3. graphkernels: R and Python packages for graph comparison.

    PubMed

    Sugiyama, Mahito; Ghisu, M Elisabetta; Llinares-López, Felipe; Borgwardt, Karsten

    2018-02-01

    Measuring the similarity of graphs is a fundamental step in the analysis of graph-structured data, which is omnipresent in computational biology. Graph kernels have been proposed as a powerful and efficient approach to this problem of graph comparison. Here we provide graphkernels, the first R and Python graph kernel libraries including baseline kernels such as label histogram based kernels, classic graph kernels such as random walk based kernels, and the state-of-the-art Weisfeiler-Lehman graph kernel. The core of all graph kernels is implemented in C ++ for efficiency. Using the kernel matrices computed by the package, we can easily perform tasks such as classification, regression and clustering on graph-structured samples. The R and Python packages including source code are available at https://CRAN.R-project.org/package=graphkernels and https://pypi.python.org/pypi/graphkernels. mahito@nii.ac.jp or elisabetta.ghisu@bsse.ethz.ch. Supplementary data are available online at Bioinformatics. © The Author(s) 2017. Published by Oxford University Press.

  4. GraphBench

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sukumar, Sreenivas R.; Hong, Seokyong; Lee, Sangkeun

    2016-06-01

    GraphBench is a benchmark suite for graph pattern mining and graph analysis systems. The benchmark suite is a significant addition to conducting apples-apples comparison of graph analysis software (databases, in-memory tools, triple stores, etc.)

  5. Graph-based urban scene analysis using symbolic data

    NASA Astrophysics Data System (ADS)

    Moissinac, Henri; Maitre, Henri; Bloch, Isabelle

    1995-07-01

    A framework is presented for the interpretation of a urban landscape based on the analysis of aerial pictures. This method has been designed for the use of a priori knowledge provided by a geographic map in order to improve the image analysis stage. A coherent final interpretation of the studied area is proposed. It relies on a graph based data structure to modelize the urban landscape, and on a global uncertainty management to evaluate the final confidence we can have in the results presented. This structure and uncertainty management tend to reflect the hierarchy of the available data and the interpretation levels.

  6. Compacting de Bruijn graphs from sequencing data quickly and in low memory.

    PubMed

    Chikhi, Rayan; Limasset, Antoine; Medvedev, Paul

    2016-06-15

    As the quantity of data per sequencing experiment increases, the challenges of fragment assembly are becoming increasingly computational. The de Bruijn graph is a widely used data structure in fragment assembly algorithms, used to represent the information from a set of reads. Compaction is an important data reduction step in most de Bruijn graph based algorithms where long simple paths are compacted into single vertices. Compaction has recently become the bottleneck in assembly pipelines, and improving its running time and memory usage is an important problem. We present an algorithm and a tool bcalm 2 for the compaction of de Bruijn graphs. bcalm 2 is a parallel algorithm that distributes the input based on a minimizer hashing technique, allowing for good balance of memory usage throughout its execution. For human sequencing data, bcalm 2 reduces the computational burden of compacting the de Bruijn graph to roughly an hour and 3 GB of memory. We also applied bcalm 2 to the 22 Gbp loblolly pine and 20 Gbp white spruce sequencing datasets. Compacted graphs were constructed from raw reads in less than 2 days and 40 GB of memory on a single machine. Hence, bcalm 2 is at least an order of magnitude more efficient than other available methods. Source code of bcalm 2 is freely available at: https://github.com/GATB/bcalm rayan.chikhi@univ-lille1.fr. © The Author 2016. Published by Oxford University Press.

  7. EIT Imaging Regularization Based on Spectral Graph Wavelets.

    PubMed

    Gong, Bo; Schullcke, Benjamin; Krueger-Ziolek, Sabine; Vauhkonen, Marko; Wolf, Gerhard; Mueller-Lisse, Ullrich; Moeller, Knut

    2017-09-01

    The objective of electrical impedance tomographic reconstruction is to identify the distribution of tissue conductivity from electrical boundary conditions. This is an ill-posed inverse problem usually solved under the finite-element method framework. In previous studies, standard sparse regularization was used for difference electrical impedance tomography to achieve a sparse solution. However, regarding elementwise sparsity, standard sparse regularization interferes with the smoothness of conductivity distribution between neighboring elements and is sensitive to noise. As an effect, the reconstructed images are spiky and depict a lack of smoothness. Such unexpected artifacts are not realistic and may lead to misinterpretation in clinical applications. To eliminate such artifacts, we present a novel sparse regularization method that uses spectral graph wavelet transforms. Single-scale or multiscale graph wavelet transforms are employed to introduce local smoothness on different scales into the reconstructed images. The proposed approach relies on viewing finite-element meshes as undirected graphs and applying wavelet transforms derived from spectral graph theory. Reconstruction results from simulations, a phantom experiment, and patient data suggest that our algorithm is more robust to noise and produces more reliable images.

  8. Aligning Biomolecular Networks Using Modular Graph Kernels

    NASA Astrophysics Data System (ADS)

    Towfic, Fadi; Greenlee, M. Heather West; Honavar, Vasant

    Comparative analysis of biomolecular networks constructed using measurements from different conditions, tissues, and organisms offer a powerful approach to understanding the structure, function, dynamics, and evolution of complex biological systems. We explore a class of algorithms for aligning large biomolecular networks by breaking down such networks into subgraphs and computing the alignment of the networks based on the alignment of their subgraphs. The resulting subnetworks are compared using graph kernels as scoring functions. We provide implementations of the resulting algorithms as part of BiNA, an open source biomolecular network alignment toolkit. Our experiments using Drosophila melanogaster, Saccharomyces cerevisiae, Mus musculus and Homo sapiens protein-protein interaction networks extracted from the DIP repository of protein-protein interaction data demonstrate that the performance of the proposed algorithms (as measured by % GO term enrichment of subnetworks identified by the alignment) is competitive with some of the state-of-the-art algorithms for pair-wise alignment of large protein-protein interaction networks. Our results also show that the inter-species similarity scores computed based on graph kernels can be used to cluster the species into a species tree that is consistent with the known phylogenetic relationships among the species.

  9. Application of graph-based semi-supervised learning for development of cyber COP and network intrusion detection

    NASA Astrophysics Data System (ADS)

    Levchuk, Georgiy; Colonna-Romano, John; Eslami, Mohammed

    2017-05-01

    The United States increasingly relies on cyber-physical systems to conduct military and commercial operations. Attacks on these systems have increased dramatically around the globe. The attackers constantly change their methods, making state-of-the-art commercial and military intrusion detection systems ineffective. In this paper, we present a model to identify functional behavior of network devices from netflow traces. Our model includes two innovations. First, we define novel features for a host IP using detection of application graph patterns in IP's host graph constructed from 5-min aggregated packet flows. Second, we present the first application, to the best of our knowledge, of Graph Semi-Supervised Learning (GSSL) to the space of IP behavior classification. Using a cyber-attack dataset collected from NetFlow packet traces, we show that GSSL trained with only 20% of the data achieves higher attack detection rates than Support Vector Machines (SVM) and Naïve Bayes (NB) classifiers trained with 80% of data points. We also show how to improve detection quality by filtering out web browsing data, and conclude with discussion of future research directions.

  10. Multiple graph regularized protein domain ranking.

    PubMed

    Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin

    2012-11-19

    Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.

  11. Unsupervised active learning based on hierarchical graph-theoretic clustering.

    PubMed

    Hu, Weiming; Hu, Wei; Xie, Nianhua; Maybank, Steve

    2009-10-01

    Most existing active learning approaches are supervised. Supervised active learning has the following problems: inefficiency in dealing with the semantic gap between the distribution of samples in the feature space and their labels, lack of ability in selecting new samples that belong to new categories that have not yet appeared in the training samples, and lack of adaptability to changes in the semantic interpretation of sample categories. To tackle these problems, we propose an unsupervised active learning framework based on hierarchical graph-theoretic clustering. In the framework, two promising graph-theoretic clustering algorithms, namely, dominant-set clustering and spectral clustering, are combined in a hierarchical fashion. Our framework has some advantages, such as ease of implementation, flexibility in architecture, and adaptability to changes in the labeling. Evaluations on data sets for network intrusion detection, image classification, and video classification have demonstrated that our active learning framework can effectively reduce the workload of manual classification while maintaining a high accuracy of automatic classification. It is shown that, overall, our framework outperforms the support-vector-machine-based supervised active learning, particularly in terms of dealing much more efficiently with new samples whose categories have not yet appeared in the training samples.

  12. Local Higher-Order Graph Clustering

    PubMed Central

    Yin, Hao; Benson, Austin R.; Leskovec, Jure; Gleich, David F.

    2018-01-01

    Local graph clustering methods aim to find a cluster of nodes by exploring a small region of the graph. These methods are attractive because they enable targeted clustering around a given seed node and are faster than traditional global graph clustering methods because their runtime does not depend on the size of the input graph. However, current local graph partitioning methods are not designed to account for the higher-order structures crucial to the network, nor can they effectively handle directed networks. Here we introduce a new class of local graph clustering methods that address these issues by incorporating higher-order network information captured by small subgraphs, also called network motifs. We develop the Motif-based Approximate Personalized PageRank (MAPPR) algorithm that finds clusters containing a seed node with minimal motif conductance, a generalization of the conductance metric for network motifs. We generalize existing theory to prove the fast running time (independent of the size of the graph) and obtain theoretical guarantees on the cluster quality (in terms of motif conductance). We also develop a theory of node neighborhoods for finding sets that have small motif conductance, and apply these results to the case of finding good seed nodes to use as input to the MAPPR algorithm. Experimental validation on community detection tasks in both synthetic and real-world networks, shows that our new framework MAPPR outperforms the current edge-based personalized PageRank methodology. PMID:29770258

  13. A fuzzy pattern matching method based on graph kernel for lithography hotspot detection

    NASA Astrophysics Data System (ADS)

    Nitta, Izumi; Kanazawa, Yuzi; Ishida, Tsutomu; Banno, Koji

    2017-03-01

    In advanced technology nodes, lithography hotspot detection has become one of the most significant issues in design for manufacturability. Recently, machine learning based lithography hotspot detection has been widely investigated, but it has trade-off between detection accuracy and false alarm. To apply machine learning based technique to the physical verification phase, designers require minimizing undetected hotspots to avoid yield degradation. They also need a ranking of similar known patterns with a detected hotspot to prioritize layout pattern to be corrected. To achieve high detection accuracy and to prioritize detected hotspots, we propose a novel lithography hotspot detection method using Delaunay triangulation and graph kernel based machine learning. Delaunay triangulation extracts features of hotspot patterns where polygons locate irregularly and closely one another, and graph kernel expresses inner structure of graphs. Additionally, our method provides similarity between two patterns and creates a list of similar training patterns with a detected hotspot. Experiments results on ICCAD 2012 benchmarks show that our method achieves high accuracy with allowable range of false alarm. We also show the ranking of the similar known patterns with a detected hotspot.

  14. Quantitative evaluation of simulated functional brain networks in graph theoretical analysis.

    PubMed

    Lee, Won Hee; Bullmore, Ed; Frangou, Sophia

    2017-02-01

    There is increasing interest in the potential of whole-brain computational models to provide mechanistic insights into resting-state brain networks. It is therefore important to determine the degree to which computational models reproduce the topological features of empirical functional brain networks. We used empirical connectivity data derived from diffusion spectrum and resting-state functional magnetic resonance imaging data from healthy individuals. Empirical and simulated functional networks, constrained by structural connectivity, were defined based on 66 brain anatomical regions (nodes). Simulated functional data were generated using the Kuramoto model in which each anatomical region acts as a phase oscillator. Network topology was studied using graph theory in the empirical and simulated data. The difference (relative error) between graph theory measures derived from empirical and simulated data was then estimated. We found that simulated data can be used with confidence to model graph measures of global network organization at different dynamic states and highlight the sensitive dependence of the solutions obtained in simulated data on the specified connection densities. This study provides a method for the quantitative evaluation and external validation of graph theory metrics derived from simulated data that can be used to inform future study designs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Path similarity skeleton graph matching.

    PubMed

    Bai, Xiang; Latecki, Longin Jan

    2008-07-01

    This paper presents a novel framework to for shape recognition based on object silhouettes. The main idea is to match skeleton graphs by comparing the shortest paths between skeleton endpoints. In contrast to typical tree or graph matching methods, we completely ignore the topological graph structure. Our approach is motivated by the fact that visually similar skeleton graphs may have completely different topological structures. The proposed comparison of shortest paths between endpoints of skeleton graphs yields correct matching results in such cases. The skeletons are pruned by contour partitioning with Discrete Curve Evolution, which implies that the endpoints of skeleton branches correspond to visual parts of the objects. The experimental results demonstrate that our method is able to produce correct results in the presence of articulations, stretching, and occlusion.

  16. GraphCrunch 2: Software tool for network modeling, alignment and clustering.

    PubMed

    Kuchaiev, Oleksii; Stevanović, Aleksandar; Hayes, Wayne; Pržulj, Nataša

    2011-01-19

    Recent advancements in experimental biotechnology have produced large amounts of protein-protein interaction (PPI) data. The topology of PPI networks is believed to have a strong link to their function. Hence, the abundance of PPI data for many organisms stimulates the development of computational techniques for the modeling, comparison, alignment, and clustering of networks. In addition, finding representative models for PPI networks will improve our understanding of the cell just as a model of gravity has helped us understand planetary motion. To decide if a model is representative, we need quantitative comparisons of model networks to real ones. However, exact network comparison is computationally intractable and therefore several heuristics have been used instead. Some of these heuristics are easily computable "network properties," such as the degree distribution, or the clustering coefficient. An important special case of network comparison is the network alignment problem. Analogous to sequence alignment, this problem asks to find the "best" mapping between regions in two networks. It is expected that network alignment might have as strong an impact on our understanding of biology as sequence alignment has had. Topology-based clustering of nodes in PPI networks is another example of an important network analysis problem that can uncover relationships between interaction patterns and phenotype. We introduce the GraphCrunch 2 software tool, which addresses these problems. It is a significant extension of GraphCrunch which implements the most popular random network models and compares them with the data networks with respect to many network properties. Also, GraphCrunch 2 implements the GRAph ALigner algorithm ("GRAAL") for purely topological network alignment. GRAAL can align any pair of networks and exposes large, dense, contiguous regions of topological and functional similarities far larger than any other existing tool. Finally, GraphCruch 2 implements an

  17. Corona graphs as a model of small-world networks

    NASA Astrophysics Data System (ADS)

    Lv, Qian; Yi, Yuhao; Zhang, Zhongzhi

    2015-11-01

    We introduce recursive corona graphs as a model of small-world networks. We investigate analytically the critical characteristics of the model, including order and size, degree distribution, average path length, clustering coefficient, and the number of spanning trees, as well as Kirchhoff index. Furthermore, we study the spectra for the adjacency matrix and the Laplacian matrix for the model. We obtain explicit results for all the quantities of the recursive corona graphs, which are similar to those observed in real-life networks.

  18. Predictions of first passage times in sparse discrete fracture networks using graph-based reductions

    NASA Astrophysics Data System (ADS)

    Hyman, J.; Hagberg, A.; Srinivasan, G.; Mohd-Yusof, J.; Viswanathan, H. S.

    2017-12-01

    We present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths. First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. Accurate estimates of first passage times are obtained with an order of magnitude reduction of CPU time and mesh size using the proposed method.

  19. Predictions of first passage times in sparse discrete fracture networks using graph-based reductions

    NASA Astrophysics Data System (ADS)

    Hyman, Jeffrey D.; Hagberg, Aric; Srinivasan, Gowri; Mohd-Yusof, Jamaludin; Viswanathan, Hari

    2017-07-01

    We present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths. First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. Accurate estimates of first passage times are obtained with an order of magnitude reduction of CPU time and mesh size using the proposed method.

  20. Interactive Web Graphs for Economic Principles.

    ERIC Educational Resources Information Center

    Kaufman, Dennis A.; Kaufman, Rebecca S.

    2002-01-01

    Describes a Web site with animation and interactive activities containing graphs and basic economics concepts. Features changes in supply and market equilibrium, the construction of the long-run average cost curve, short-run profit maximization, long-run market equilibrium, and changes in aggregate demand and aggregate supply. States the…

  1. Quantum secret sharing with qudit graph states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keet, Adrian; Fortescue, Ben; Sanders, Barry C.

    We present a unified formalism for threshold quantum secret sharing using graph states of systems with prime dimension. We construct protocols for three varieties of secret sharing: with classical and quantum secrets shared between parties over both classical and quantum channels.

  2. Diagnostic and Remedial Learning Strategy Based on Conceptual Graphs

    ERIC Educational Resources Information Center

    Jong, BinShyan; Lin, TsongWuu; Wu, YuLung; Chan, Teyi

    2004-01-01

    Numerous scholars have applied conceptual graphs for explanatory purposes. This study devised the Remedial-Instruction Decisive path (RID path) algorithm for diagnosing individual student learning situation. This study focuses on conceptual graphs. According to the concepts learned by students and the weight values of relations among these…

  3. Detecting black bear source-sink dynamics using individual-based genetic graphs.

    PubMed

    Draheim, Hope M; Moore, Jennifer A; Etter, Dwayne; Winterstein, Scott R; Scribner, Kim T

    2016-07-27

    Source-sink dynamics affects population connectivity, spatial genetic structure and population viability for many species. We introduce a novel approach that uses individual-based genetic graphs to identify source-sink areas within a continuously distributed population of black bears (Ursus americanus) in the northern lower peninsula (NLP) of Michigan, USA. Black bear harvest samples (n = 569, from 2002, 2006 and 2010) were genotyped at 12 microsatellite loci and locations were compared across years to identify areas of consistent occupancy over time. We compared graph metrics estimated for a genetic model with metrics from 10 ecological models to identify ecological factors that were associated with sources and sinks. We identified 62 source nodes, 16 of which represent important source areas (net flux > 0.7) and 79 sink nodes. Source strength was significantly correlated with bear local harvest density (a proxy for bear density) and habitat suitability. Additionally, resampling simulations showed our approach is robust to potential sampling bias from uneven sample dispersion. Findings demonstrate black bears in the NLP exhibit asymmetric gene flow, and individual-based genetic graphs can characterize source-sink dynamics in continuously distributed species in the absence of discrete habitat patches. Our findings warrant consideration of undetected source-sink dynamics and their implications on harvest management of game species. © 2016 The Author(s).

  4. A graph signal filtering-based approach for detection of different edge types on airborne lidar data

    NASA Astrophysics Data System (ADS)

    Bayram, Eda; Vural, Elif; Alatan, Aydin

    2017-10-01

    Airborne Laser Scanning is a well-known remote sensing technology, which provides a dense and highly accurate, yet unorganized point cloud of earth surface. During the last decade, extracting information from the data generated by airborne LiDAR systems has been addressed by many studies in geo-spatial analysis and urban monitoring applications. However, the processing of LiDAR point clouds is challenging due to their irregular structure and 3D geometry. In this study, we propose a novel framework for the detection of the boundaries of an object or scene captured by LiDAR. Our approach is motivated by edge detection techniques in vision research and it is established on graph signal filtering which is an exciting and promising field of signal processing for irregular data types. Due to the convenient applicability of graph signal processing tools on unstructured point clouds, we achieve the detection of the edge points directly on 3D data by using a graph representation that is constructed exclusively to answer the requirements of the application. Moreover, considering the elevation data as the (graph) signal, we leverage aerial characteristic of the airborne LiDAR data. The proposed method can be employed both for discovering the jump edges on a segmentation problem and for exploring the crease edges on a LiDAR object on a reconstruction/modeling problem, by only adjusting the filter characteristics.

  5. Multiple graph regularized protein domain ranking

    PubMed Central

    2012-01-01

    Background Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. Results To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. Conclusion The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. PMID:23157331

  6. A strand graph semantics for DNA-based computation

    PubMed Central

    Petersen, Rasmus L.; Lakin, Matthew R.; Phillips, Andrew

    2015-01-01

    DNA nanotechnology is a promising approach for engineering computation at the nanoscale, with potential applications in biofabrication and intelligent nanomedicine. DNA strand displacement is a general strategy for implementing a broad range of nanoscale computations, including any computation that can be expressed as a chemical reaction network. Modelling and analysis of DNA strand displacement systems is an important part of the design process, prior to experimental realisation. As experimental techniques improve, it is important for modelling languages to keep pace with the complexity of structures that can be realised experimentally. In this paper we present a process calculus for modelling DNA strand displacement computations involving rich secondary structures, including DNA branches and loops. We prove that our calculus is also sufficiently expressive to model previous work on non-branching structures, and propose a mapping from our calculus to a canonical strand graph representation, in which vertices represent DNA strands, ordered sites represent domains, and edges between sites represent bonds between domains. We define interactions between strands by means of strand graph rewriting, and prove the correspondence between the process calculus and strand graph behaviours. Finally, we propose a mapping from strand graphs to an efficient implementation, which we use to perform modelling and simulation of DNA strand displacement systems with rich secondary structure. PMID:27293306

  7. A graph theoretic approach to scene matching

    NASA Technical Reports Server (NTRS)

    Ranganath, Heggere S.; Chipman, Laure J.

    1991-01-01

    The ability to match two scenes is a fundamental requirement in a variety of computer vision tasks. A graph theoretic approach to inexact scene matching is presented which is useful in dealing with problems due to imperfect image segmentation. A scene is described by a set of graphs, with nodes representing objects and arcs representing relationships between objects. Each node has a set of values representing the relations between pairs of objects, such as angle, adjacency, or distance. With this method of scene representation, the task in scene matching is to match two sets of graphs. Because of segmentation errors, variations in camera angle, illumination, and other conditions, an exact match between the sets of observed and stored graphs is usually not possible. In the developed approach, the problem is represented as an association graph, in which each node represents a possible mapping of an observed region to a stored object, and each arc represents the compatibility of two mappings. Nodes and arcs have weights indicating the merit or a region-object mapping and the degree of compatibility between two mappings. A match between the two graphs corresponds to a clique, or fully connected subgraph, in the association graph. The task is to find the clique that represents the best match. Fuzzy relaxation is used to update the node weights using the contextual information contained in the arcs and neighboring nodes. This simplifies the evaluation of cliques. A method of handling oversegmentation and undersegmentation problems is also presented. The approach is tested with a set of realistic images which exhibit many types of sementation errors.

  8. Discrete bacteria foraging optimization algorithm for graph based problems - a transition from continuous to discrete

    NASA Astrophysics Data System (ADS)

    Sur, Chiranjib; Shukla, Anupam

    2018-03-01

    Bacteria Foraging Optimisation Algorithm is a collective behaviour-based meta-heuristics searching depending on the social influence of the bacteria co-agents in the search space of the problem. The algorithm faces tremendous hindrance in terms of its application for discrete problems and graph-based problems due to biased mathematical modelling and dynamic structure of the algorithm. This had been the key factor to revive and introduce the discrete form called Discrete Bacteria Foraging Optimisation (DBFO) Algorithm for discrete problems which exceeds the number of continuous domain problems represented by mathematical and numerical equations in real life. In this work, we have mainly simulated a graph-based road multi-objective optimisation problem and have discussed the prospect of its utilisation in other similar optimisation problems and graph-based problems. The various solution representations that can be handled by this DBFO has also been discussed. The implications and dynamics of the various parameters used in the DBFO are illustrated from the point view of the problems and has been a combination of both exploration and exploitation. The result of DBFO has been compared with Ant Colony Optimisation and Intelligent Water Drops Algorithms. Important features of DBFO are that the bacteria agents do not depend on the local heuristic information but estimates new exploration schemes depending upon the previous experience and covered path analysis. This makes the algorithm better in combination generation for graph-based problems and combination generation for NP hard problems.

  9. Lunar-base construction equipment and methods evaluation

    NASA Technical Reports Server (NTRS)

    Boles, Walter W.; Ashley, David B.; Tucker, Richard L.

    1993-01-01

    A process for evaluating lunar-base construction equipment and methods concepts is presented. The process is driven by the need for more quantitative, systematic, and logical methods for assessing further research and development requirements in an area where uncertainties are high, dependence upon terrestrial heuristics is questionable, and quantitative methods are seldom applied. Decision theory concepts are used in determining the value of accurate information and the process is structured as a construction-equipment-and-methods selection methodology. Total construction-related, earth-launch mass is the measure of merit chosen for mathematical modeling purposes. The work is based upon the scope of the lunar base as described in the National Aeronautics and Space Administration's Office of Exploration's 'Exploration Studies Technical Report, FY 1989 Status'. Nine sets of conceptually designed construction equipment are selected as alternative concepts. It is concluded that the evaluation process is well suited for assisting in the establishment of research agendas in an approach that is first broad, with a low level of detail, followed by more-detailed investigations into areas that are identified as critical due to high degrees of uncertainty and sensitivity.

  10. Fractal analysis of the short time series in a visibility graph method

    NASA Astrophysics Data System (ADS)

    Li, Ruixue; Wang, Jiang; Yu, Haitao; Deng, Bin; Wei, Xile; Chen, Yingyuan

    2016-05-01

    The aim of this study is to evaluate the performance of the visibility graph (VG) method on short fractal time series. In this paper, the time series of Fractional Brownian motions (fBm), characterized by different Hurst exponent H, are simulated and then mapped into a scale-free visibility graph, of which the degree distributions show the power-law form. The maximum likelihood estimation (MLE) is applied to estimate power-law indexes of degree distribution, and in this progress, the Kolmogorov-Smirnov (KS) statistic is used to test the performance of estimation of power-law index, aiming to avoid the influence of droop head and heavy tail in degree distribution. As a result, we find that the MLE gives an optimal estimation of power-law index when KS statistic reaches its first local minimum. Based on the results from KS statistic, the relationship between the power-law index and the Hurst exponent is reexamined and then amended to meet short time series. Thus, a method combining VG, MLE and KS statistics is proposed to estimate Hurst exponents from short time series. Lastly, this paper also offers an exemplification to verify the effectiveness of the combined method. In addition, the corresponding results show that the VG can provide a reliable estimation of Hurst exponents.

  11. Graph-based word sense disambiguation of biomedical documents.

    PubMed

    Agirre, Eneko; Soroa, Aitor; Stevenson, Mark

    2010-11-15

    Word Sense Disambiguation (WSD), automatically identifying the meaning of ambiguous words in context, is an important stage of text processing. This article presents a graph-based approach to WSD in the biomedical domain. The method is unsupervised and does not require any labeled training data. It makes use of knowledge from the Unified Medical Language System (UMLS) Metathesaurus which is represented as a graph. A state-of-the-art algorithm, Personalized PageRank, is used to perform WSD. When evaluated on the NLM-WSD dataset, the algorithm outperforms other methods that rely on the UMLS Metathesaurus alone. The WSD system is open source licensed and available from http://ixa2.si.ehu.es/ukb/. The UMLS, MetaMap program and NLM-WSD corpus are available from the National Library of Medicine https://www.nlm.nih.gov/research/umls/, http://mmtx.nlm.nih.gov and http://wsd.nlm.nih.gov. Software to convert the NLM-WSD corpus into a format that can be used by our WSD system is available from http://www.dcs.shef.ac.uk/∼marks/biomedical_wsd under open source license.

  12. Comparison of Student Understanding of Line Graph Slope in Physics and Mathematics

    ERIC Educational Resources Information Center

    Planinic, Maja; Milin-Sipus, Zeljka; Katic, Helena; Susac, Ana; Ivanjek, Lana

    2012-01-01

    This study gives an insight into the differences between student understanding of line graph slope in the context of physics (kinematics) and mathematics. Two pairs of parallel physics and mathematics questions that involved estimation and interpretation of line graph slope were constructed and administered to 114 Croatian second year high school…

  13. Attributed relational graphs for cell nucleus segmentation in fluorescence microscopy images.

    PubMed

    Arslan, Salim; Ersahin, Tulin; Cetin-Atalay, Rengul; Gunduz-Demir, Cigdem

    2013-06-01

    More rapid and accurate high-throughput screening in molecular cellular biology research has become possible with the development of automated microscopy imaging, for which cell nucleus segmentation commonly constitutes the core step. Although several promising methods exist for segmenting the nuclei of monolayer isolated and less-confluent cells, it still remains an open problem to segment the nuclei of more-confluent cells, which tend to grow in overlayers. To address this problem, we propose a new model-based nucleus segmentation algorithm. This algorithm models how a human locates a nucleus by identifying the nucleus boundaries and piecing them together. In this algorithm, we define four types of primitives to represent nucleus boundaries at different orientations and construct an attributed relational graph on the primitives to represent their spatial relations. Then, we reduce the nucleus identification problem to finding predefined structural patterns in the constructed graph and also use the primitives in region growing to delineate the nucleus borders. Working with fluorescence microscopy images, our experiments demonstrate that the proposed algorithm identifies nuclei better than previous nucleus segmentation algorithms.

  14. Using Graph Components Derived from an Associative Concept Dictionary to Predict fMRI Neural Activation Patterns that Represent the Meaning of Nouns.

    PubMed

    Akama, Hiroyuki; Miyake, Maki; Jung, Jaeyoung; Murphy, Brian

    2015-01-01

    In this study, we introduce an original distance definition for graphs, called the Markov-inverse-F measure (MiF). This measure enables the integration of classical graph theory indices with new knowledge pertaining to structural feature extraction from semantic networks. MiF improves the conventional Jaccard and/or Simpson indices, and reconciles both the geodesic information (random walk) and co-occurrence adjustment (degree balance and distribution). We measure the effectiveness of graph-based coefficients through the application of linguistic graph information for a neural activity recorded during conceptual processing in the human brain. Specifically, the MiF distance is computed between each of the nouns used in a previous neural experiment and each of the in-between words in a subgraph derived from the Edinburgh Word Association Thesaurus of English. From the MiF-based information matrix, a machine learning model can accurately obtain a scalar parameter that specifies the degree to which each voxel in (the MRI image of) the brain is activated by each word or each principal component of the intermediate semantic features. Furthermore, correlating the voxel information with the MiF-based principal components, a new computational neurolinguistics model with a network connectivity paradigm is created. This allows two dimensions of context space to be incorporated with both semantic and neural distributional representations.

  15. Predictions of first passage times in sparse discrete fracture networks using graph-based reductions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyman, Jeffrey De'Haven; Hagberg, Aric Arild; Mohd-Yusof, Jamaludin

    Here, we present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We also derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths.more » First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. We obtain accurate estimates of first passage times with an order of magnitude reduction of CPU time and mesh size using the proposed method.« less

  16. Predictions of first passage times in sparse discrete fracture networks using graph-based reductions

    DOE PAGES

    Hyman, Jeffrey De'Haven; Hagberg, Aric Arild; Mohd-Yusof, Jamaludin; ...

    2017-07-10

    Here, we present a graph-based methodology to reduce the computational cost of obtaining first passage times through sparse fracture networks. We also derive graph representations of generic three-dimensional discrete fracture networks (DFNs) using the DFN topology and flow boundary conditions. Subgraphs corresponding to the union of the k shortest paths between the inflow and outflow boundaries are identified and transport on their equivalent subnetworks is compared to transport through the full network. The number of paths included in the subgraphs is based on the scaling behavior of the number of edges in the graph with the number of shortest paths.more » First passage times through the subnetworks are in good agreement with those obtained in the full network, both for individual realizations and in distribution. We obtain accurate estimates of first passage times with an order of magnitude reduction of CPU time and mesh size using the proposed method.« less

  17. Evolution of worldwide stock markets, correlation structure, and correlation-based graphs

    NASA Astrophysics Data System (ADS)

    Song, Dong-Ming; Tumminello, Michele; Zhou, Wei-Xing; Mantegna, Rosario N.

    2011-08-01

    We investigate the daily correlation present among market indices of stock exchanges located all over the world in the time period January 1996 to July 2009. We discover that the correlation among market indices presents both a fast and a slow dynamics. The slow dynamics reflects the development and consolidation of globalization. The fast dynamics is associated with critical events that originate in a specific country or region of the world and rapidly affect the global system. We provide evidence that the short term time scale of correlation among market indices is less than 3 trading months (about 60 trading days). The average values of the nondiagonal elements of the correlation matrix, correlation-based graphs, and the spectral properties of the largest eigenvalues and eigenvectors of the correlation matrix are carrying information about the fast and slow dynamics of the correlation of market indices. We introduce a measure of mutual information based on link co-occurrence in networks in order to detect the fast dynamics of successive changes of correlation-based graphs in a quantitative way.

  18. On the Primitive Ideal spaces of the C(*) -algebras of graphs

    NASA Astrophysics Data System (ADS)

    Bates, Teresa

    2005-11-01

    We characterise the topological spaces which arise as the primitive ideal spaces of the Cuntz-Krieger algebras of graphs satisfying condition (K): directed graphs in which every vertex lying on a loop lies on at least two loops. We deduce that the spaces which arise as Prim;C(*(E)) are precisely the spaces which arise as the primitive ideal spaces of AF-algebras. Finally, we construct a graph wt{E} from E such that C(*(wt{E})) is an AF-algebra and Prim;C(*(E)) and Prim;C(*(wt{E})) are homeomorphic.

  19. A Comparison of Video Modeling, Text-Based Instruction, and No Instruction for Creating Multiple Baseline Graphs in Microsoft Excel

    ERIC Educational Resources Information Center

    Tyner, Bryan C.; Fienup, Daniel M.

    2015-01-01

    Graphing is socially significant for behavior analysts; however, graphing can be difficult to learn. Video modeling (VM) may be a useful instructional method but lacks evidence for effective teaching of computer skills. A between-groups design compared the effects of VM, text-based instruction, and no instruction on graphing performance.…

  20. What Would a Graph Look Like in this Layout? A Machine Learning Approach to Large Graph Visualization.

    PubMed

    Kwon, Oh-Hyun; Crnovrsanin, Tarik; Ma, Kwan-Liu

    2018-01-01

    Using different methods for laying out a graph can lead to very different visual appearances, with which the viewer perceives different information. Selecting a "good" layout method is thus important for visualizing a graph. The selection can be highly subjective and dependent on the given task. A common approach to selecting a good layout is to use aesthetic criteria and visual inspection. However, fully calculating various layouts and their associated aesthetic metrics is computationally expensive. In this paper, we present a machine learning approach to large graph visualization based on computing the topological similarity of graphs using graph kernels. For a given graph, our approach can show what the graph would look like in different layouts and estimate their corresponding aesthetic metrics. An important contribution of our work is the development of a new framework to design graph kernels. Our experimental study shows that our estimation calculation is considerably faster than computing the actual layouts and their aesthetic metrics. Also, our graph kernels outperform the state-of-the-art ones in both time and accuracy. In addition, we conducted a user study to demonstrate that the topological similarity computed with our graph kernel matches perceptual similarity assessed by human users.

  1. Persuasion Model and Its Evaluation Based on Positive Change Degree of Agent Emotion

    NASA Astrophysics Data System (ADS)

    Jinghua, Wu; Wenguang, Lu; Hailiang, Meng

    For it can meet needs of negotiation among organizations take place in different time and place, and for it can make its course more rationality and result more ideal, persuasion based on agent can improve cooperation among organizations well. Integrated emotion change in agent persuasion can further bring agent advantage of artificial intelligence into play. Emotion of agent persuasion is classified, and the concept of positive change degree is given. Based on this, persuasion model based on positive change degree of agent emotion is constructed, which is explained clearly through an example. Finally, the method of relative evaluation is given, which is also verified through a calculation example.

  2. Graph Drawing Aesthetics-Created by Users, Not Algorithms.

    PubMed

    Purchase, H C; Pilcher, C; Plimmer, B

    2012-01-01

    Prior empirical work on layout aesthetics for graph drawing algorithms has concentrated on the interpretation of existing graph drawings. We report on experiments which focus on the creation and layout of graph drawings: participants were asked to draw graphs based on adjacency lists, and to lay them out "nicely." Two interaction methods were used for creating the drawings: a sketch interface which allows for easy, natural hand movements, and a formal point-and-click interface similar to a typical graph editing system. We find, in common with many other studies, that removing edge crossings is the most significant aesthetic, but also discover that aligning nodes and edges to an underlying grid is important. We observe that the aesthetics favored by participants during creation of a graph drawing are often not evident in the final product and that the participants did not make a clear distinction between the processes of creation and layout. Our results suggest that graph drawing systems should integrate automatic layout with the user's manual editing process, and provide facilities to support grid-based graph creation.

  3. Model validation of simple-graph representations of metabolism

    PubMed Central

    Holme, Petter

    2009-01-01

    The large-scale properties of chemical reaction systems, such as metabolism, can be studied with graph-based methods. To do this, one needs to reduce the information, lists of chemical reactions, available in databases. Even for the simplest type of graph representation, this reduction can be done in several ways. We investigate different simple network representations by testing how well they encode information about one biologically important network structure—network modularity (the propensity for edges to be clustered into dense groups that are sparsely connected between each other). To achieve this goal, we design a model of reaction systems where network modularity can be controlled and measure how well the reduction to simple graphs captures the modular structure of the model reaction system. We find that the network types that best capture the modular structure of the reaction system are substrate–product networks (where substrates are linked to products of a reaction) and substance networks (with edges between all substances participating in a reaction). Furthermore, we argue that the proposed model for reaction systems with tunable clustering is a general framework for studies of how reaction systems are affected by modularity. To this end, we investigate statistical properties of the model and find, among other things, that it recreates correlations between degree and mass of the molecules. PMID:19158012

  4. A lymphocyte spatial distribution graph-based method for automated classification of recurrence risk on lung cancer images

    NASA Astrophysics Data System (ADS)

    Garciá-Arteaga, Juan D.; Corredor, Germán.; Wang, Xiangxue; Velcheti, Vamsidhar; Madabhushi, Anant; Romero, Eduardo

    2017-11-01

    Tumor-infiltrating lymphocytes occurs when various classes of white blood cells migrate from the blood stream towards the tumor, infiltrating it. The presence of TIL is predictive of the response of the patient to therapy. In this paper, we show how the automatic detection of lymphocytes in digital H and E histopathological images and the quantitative evaluation of the global lymphocyte configuration, evaluated through global features extracted from non-parametric graphs, constructed from the lymphocytes' detected positions, can be correlated to the patient's outcome in early-stage non-small cell lung cancer (NSCLC). The method was assessed on a tissue microarray cohort composed of 63 NSCLC cases. From the evaluated graphs, minimum spanning trees and K-nn showed the highest predictive ability, yielding F1 Scores of 0.75 and 0.72 and accuracies of 0.67 and 0.69, respectively. The predictive power of the proposed methodology indicates that graphs may be used to develop objective measures of the infiltration grade of tumors, which can, in turn, be used by pathologists to improve the decision making and treatment planning processes.

  5. Classification of forensic autopsy reports through conceptual graph-based document representation model.

    PubMed

    Mujtaba, Ghulam; Shuib, Liyana; Raj, Ram Gopal; Rajandram, Retnagowri; Shaikh, Khairunisa; Al-Garadi, Mohammed Ali

    2018-06-01

    Text categorization has been used extensively in recent years to classify plain-text clinical reports. This study employs text categorization techniques for the classification of open narrative forensic autopsy reports. One of the key steps in text classification is document representation. In document representation, a clinical report is transformed into a format that is suitable for classification. The traditional document representation technique for text categorization is the bag-of-words (BoW) technique. In this study, the traditional BoW technique is ineffective in classifying forensic autopsy reports because it merely extracts frequent but discriminative features from clinical reports. Moreover, this technique fails to capture word inversion, as well as word-level synonymy and polysemy, when classifying autopsy reports. Hence, the BoW technique suffers from low accuracy and low robustness unless it is improved with contextual and application-specific information. To overcome the aforementioned limitations of the BoW technique, this research aims to develop an effective conceptual graph-based document representation (CGDR) technique to classify 1500 forensic autopsy reports from four (4) manners of death (MoD) and sixteen (16) causes of death (CoD). Term-based and Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT) based conceptual features were extracted and represented through graphs. These features were then used to train a two-level text classifier. The first level classifier was responsible for predicting MoD. In addition, the second level classifier was responsible for predicting CoD using the proposed conceptual graph-based document representation technique. To demonstrate the significance of the proposed technique, its results were compared with those of six (6) state-of-the-art document representation techniques. Lastly, this study compared the effects of one-level classification and two-level classification on the experimental results

  6. Artificial Neural Network with Regular Graph for Maximum Air Temperature Forecasting:. the Effect of Decrease in Nodes Degree on Learning

    NASA Astrophysics Data System (ADS)

    Ghaderi, A. H.; Darooneh, A. H.

    The behavior of nonlinear systems can be analyzed by artificial neural networks. Air temperature change is one example of the nonlinear systems. In this work, a new neural network method is proposed for forecasting maximum air temperature in two cities. In this method, the regular graph concept is used to construct some partially connected neural networks that have regular structures. The learning results of fully connected ANN and networks with proposed method are compared. In some case, the proposed method has the better result than conventional ANN. After specifying the best network, the effect of input pattern numbers on the prediction is studied and the results show that the increase of input patterns has a direct effect on the prediction accuracy.

  7. Navigability of Random Geometric Graphs in the Universe and Other Spacetimes.

    PubMed

    Cunningham, William; Zuev, Konstantin; Krioukov, Dmitri

    2017-08-18

    Random geometric graphs in hyperbolic spaces explain many common structural and dynamical properties of real networks, yet they fail to predict the correct values of the exponents of power-law degree distributions observed in real networks. In that respect, random geometric graphs in asymptotically de Sitter spacetimes, such as the Lorentzian spacetime of our accelerating universe, are more attractive as their predictions are more consistent with observations in real networks. Yet another important property of hyperbolic graphs is their navigability, and it remains unclear if de Sitter graphs are as navigable as hyperbolic ones. Here we study the navigability of random geometric graphs in three Lorentzian manifolds corresponding to universes filled only with dark energy (de Sitter spacetime), only with matter, and with a mixture of dark energy and matter. We find these graphs are navigable only in the manifolds with dark energy. This result implies that, in terms of navigability, random geometric graphs in asymptotically de Sitter spacetimes are as good as random hyperbolic graphs. It also establishes a connection between the presence of dark energy and navigability of the discretized causal structure of spacetime, which provides a basis for a different approach to the dark energy problem in cosmology.

  8. Identifying patients with Alzheimer's disease using resting-state fMRI and graph theory.

    PubMed

    Khazaee, Ali; Ebrahimzadeh, Ata; Babajani-Feremi, Abbas

    2015-11-01

    Study of brain network on the basis of resting-state functional magnetic resonance imaging (fMRI) has provided promising results to investigate changes in connectivity among different brain regions because of diseases. Graph theory can efficiently characterize different aspects of the brain network by calculating measures of integration and segregation. In this study, we combine graph theoretical approaches with advanced machine learning methods to study functional brain network alteration in patients with Alzheimer's disease (AD). Support vector machine (SVM) was used to explore the ability of graph measures in diagnosis of AD. We applied our method on the resting-state fMRI data of twenty patients with AD and twenty age and gender matched healthy subjects. The data were preprocessed and each subject's graph was constructed by parcellation of the whole brain into 90 distinct regions using the automated anatomical labeling (AAL) atlas. The graph measures were then calculated and used as the discriminating features. Extracted network-based features were fed to different feature selection algorithms to choose most significant features. In addition to the machine learning approach, statistical analysis was performed on connectivity matrices to find altered connectivity patterns in patients with AD. Using the selected features, we were able to accurately classify patients with AD from healthy subjects with accuracy of 100%. Results of this study show that pattern recognition and graph of brain network, on the basis of the resting state fMRI data, can efficiently assist in the diagnosis of AD. Classification based on the resting-state fMRI can be used as a non-invasive and automatic tool to diagnosis of Alzheimer's disease. Copyright © 2015 International Federation of Clinical Neurophysiology. All rights reserved.

  9. Graph-based Data Modeling and Analysis for Data Fusion in Remote Sensing

    NASA Astrophysics Data System (ADS)

    Fan, Lei

    ., fusion of multi-source data can in principal produce more detailed information than each single source. On the other hand, besides the abundant spectral information contained in HSI data, features such as texture and shape may be employed to represent data points from a spatial perspective. Furthermore, feature fusion also includes the strategy of removing redundant and noisy features in the dataset. One of the major problems in machine learning and pattern recognition is to develop appropriate representations for complex nonlinear data. In HSI processing, a particular data point is usually described as a vector with coordinates corresponding to the intensities measured in the spectral bands. This vector representation permits the application of linear and nonlinear transformations with linear algebra to find an alternative representation of the data. More generally, HSI is multi-dimensional in nature and the vector representation may lose the contextual correlations. Tensor representation provides a more sophisticated modeling technique and a higher-order generalization to linear subspace analysis. In graph theory, data points can be generalized as nodes with connectivities measured from the proximity of a local neighborhood. The graph-based framework efficiently characterizes the relationships among the data and allows for convenient mathematical manipulation in many applications, such as data clustering, feature extraction, feature selection and data alignment. In this thesis, graph-based approaches applied in the field of multi-source feature and data fusion in remote sensing area are explored. We will mainly investigate the fusion of spatial, spectral and LiDAR information with linear and multilinear algebra under graph-based framework for data clustering and classification problems.

  10. Determining similarity in histological images using graph-theoretic description and matching methods for content-based image retrieval in medical diagnostics.

    PubMed

    Sharma, Harshita; Alekseychuk, Alexander; Leskovsky, Peter; Hellwich, Olaf; Anand, R S; Zerbe, Norman; Hufnagl, Peter

    2012-10-04

    Computer-based analysis of digitalized histological images has been gaining increasing attention, due to their extensive use in research and routine practice. The article aims to contribute towards the description and retrieval of histological images by employing a structural method using graphs. Due to their expressive ability, graphs are considered as a powerful and versatile representation formalism and have obtained a growing consideration especially by the image processing and computer vision community. The article describes a novel method for determining similarity between histological images through graph-theoretic description and matching, for the purpose of content-based retrieval. A higher order (region-based) graph-based representation of breast biopsy images has been attained and a tree-search based inexact graph matching technique has been employed that facilitates the automatic retrieval of images structurally similar to a given image from large databases. The results obtained and evaluation performed demonstrate the effectiveness and superiority of graph-based image retrieval over a common histogram-based technique. The employed graph matching complexity has been reduced compared to the state-of-the-art optimal inexact matching methods by applying a pre-requisite criterion for matching of nodes and a sophisticated design of the estimation function, especially the prognosis function. The proposed method is suitable for the retrieval of similar histological images, as suggested by the experimental and evaluation results obtained in the study. It is intended for the use in Content Based Image Retrieval (CBIR)-requiring applications in the areas of medical diagnostics and research, and can also be generalized for retrieval of different types of complex images. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1224798882787923.

  11. Determining similarity in histological images using graph-theoretic description and matching methods for content-based image retrieval in medical diagnostics

    PubMed Central

    2012-01-01

    Background Computer-based analysis of digitalized histological images has been gaining increasing attention, due to their extensive use in research and routine practice. The article aims to contribute towards the description and retrieval of histological images by employing a structural method using graphs. Due to their expressive ability, graphs are considered as a powerful and versatile representation formalism and have obtained a growing consideration especially by the image processing and computer vision community. Methods The article describes a novel method for determining similarity between histological images through graph-theoretic description and matching, for the purpose of content-based retrieval. A higher order (region-based) graph-based representation of breast biopsy images has been attained and a tree-search based inexact graph matching technique has been employed that facilitates the automatic retrieval of images structurally similar to a given image from large databases. Results The results obtained and evaluation performed demonstrate the effectiveness and superiority of graph-based image retrieval over a common histogram-based technique. The employed graph matching complexity has been reduced compared to the state-of-the-art optimal inexact matching methods by applying a pre-requisite criterion for matching of nodes and a sophisticated design of the estimation function, especially the prognosis function. Conclusion The proposed method is suitable for the retrieval of similar histological images, as suggested by the experimental and evaluation results obtained in the study. It is intended for the use in Content Based Image Retrieval (CBIR)-requiring applications in the areas of medical diagnostics and research, and can also be generalized for retrieval of different types of complex images. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1224798882787923. PMID:23035717

  12. A statistical analysis of UK financial networks

    NASA Astrophysics Data System (ADS)

    Chu, J.; Nadarajah, S.

    2017-04-01

    In recent years, with a growing interest in big or large datasets, there has been a rise in the application of large graphs and networks to financial big data. Much of this research has focused on the construction and analysis of the network structure of stock markets, based on the relationships between stock prices. Motivated by Boginski et al. (2005), who studied the characteristics of a network structure of the US stock market, we construct network graphs of the UK stock market using same method. We fit four distributions to the degree density of the vertices from these graphs, the Pareto I, Fréchet, lognormal, and generalised Pareto distributions, and assess the goodness of fit. Our results show that the degree density of the complements of the market graphs, constructed using a negative threshold value close to zero, can be fitted well with the Fréchet and lognormal distributions.

  13. Non-Weyl asymptotics for quantum graphs with general coupling conditions

    NASA Astrophysics Data System (ADS)

    Davies, E. Brian; Exner, Pavel; Lipovský, Jiří

    2010-11-01

    Inspired by a recent result of Davies and Pushnitski, we study resonance asymptotics of quantum graphs with general coupling conditions at the vertices. We derive a criterion for the asymptotics to be of a non-Weyl character. We show that for balanced vertices with permutation-invariant couplings the asymptotics is non-Weyl only in the case of Kirchhoff or anti-Kirchhoff conditions. While for graphs without permutation symmetry numerous examples of non-Weyl behaviour can be constructed. Furthermore, we present an insight into what makes the Kirchhoff/anti-Kirchhoff coupling particular from the resonance point of view. Finally, we demonstrate a generalization to quantum graphs with unequal edge weights.

  14. Classification of pregnancy and labor contractions using a graph theory based analysis.

    PubMed

    Nader, N; Hassan, M; Falou, W; Diab, A; Al-Omar, S; Khalil, M; Marque, C

    2015-08-01

    In this paper, we propose a new framework to characterize the electrohysterographic (EHG) signals recorded during pregnancy and labor. The approach is based on the analysis of the propagation of the uterine electrical activity. The processing pipeline includes i) the estimation of the statistical dependencies between the different recorded EHG signals, ii) the characterization of the obtained connectivity matrices using network measures and iii) the use of these measures in clinical application: the classification between pregnancy and labor. Due to its robustness to volume conductor, we used the imaginary part of coherence in order to produce the connectivity matrix which is then transformed into a graph. We evaluate the performance of several graph measures. We also compare the results with the parameter mostly used in the literature: the peak frequency combined with the propagation velocity (PV +PF). Our results show that the use of the network measures is a promising tool to classify labor and pregnancy contractions with a small superiority of the graph strength over PV+PF.

  15. An Improved Multi-Sensor Fusion Navigation Algorithm Based on the Factor Graph.

    PubMed

    Zeng, Qinghua; Chen, Weina; Liu, Jianye; Wang, Huizhe

    2017-03-21

    An integrated navigation system coupled with additional sensors can be used in the Micro Unmanned Aerial Vehicle (MUAV) applications because the multi-sensor information is redundant and complementary, which can markedly improve the system accuracy. How to deal with the information gathered from different sensors efficiently is an important problem. The fact that different sensors provide measurements asynchronously may complicate the processing of these measurements. In addition, the output signals of some sensors appear to have a non-linear character. In order to incorporate these measurements and calculate a navigation solution in real time, the multi-sensor fusion algorithm based on factor graph is proposed. The global optimum solution is factorized according to the chain structure of the factor graph, which allows for a more general form of the conditional probability density. It can convert the fusion matter into connecting factors defined by these measurements to the graph without considering the relationship between the sensor update frequency and the fusion period. An experimental MUAV system has been built and some experiments have been performed to prove the effectiveness of the proposed method.

  16. A graph-Laplacian-based feature extraction algorithm for neural spike sorting.

    PubMed

    Ghanbari, Yasser; Spence, Larry; Papamichalis, Panos

    2009-01-01

    Analysis of extracellular neural spike recordings is highly dependent upon the accuracy of neural waveform classification, commonly referred to as spike sorting. Feature extraction is an important stage of this process because it can limit the quality of clustering which is performed in the feature space. This paper proposes a new feature extraction method (which we call Graph Laplacian Features, GLF) based on minimizing the graph Laplacian and maximizing the weighted variance. The algorithm is compared with Principal Components Analysis (PCA, the most commonly-used feature extraction method) using simulated neural data. The results show that the proposed algorithm produces more compact and well-separated clusters compared to PCA. As an added benefit, tentative cluster centers are output which can be used to initialize a subsequent clustering stage.

  17. A cultural study of a science classroom and graphing calculator-based technology

    NASA Astrophysics Data System (ADS)

    Casey, Dennis Alan

    Social, political, and technological events of the past two decades have had considerable bearing on science education. While sociological studies of scientists at work have seriously questioned traditional histories of science, national and state educational systemic reform initiatives have been enacted, stressing standards and accountability. Recently, powerful instructional technologies have become part of the landscape of the classroom. One example, graphing calculator-based technology, has found its way from commercial and domestic applications into the pedagogy of science and math education. The purpose of this study was to investigate the culture of an "alternative" science classroom and how it functions with graphing calculator-based technology. Using ethnographic methods, a case study of one secondary, team-taught, Environmental/Physical Science (EPS) classroom was conducted. Nearly half of the 23 students were identified as students with special education needs. Over a four-month period, field data was gathered from written observations, videotaped interactions, audio taped interviews, and document analyses to determine how technology was used and what meaning it had for the participants. Analysis indicated that the technology helped to keep students from getting frustrated with handling data and graphs. In a relatively short period of time, students were able to gather data, produce graphs, and to use inscriptions in meaningful classroom discussions. In addition, teachers used the technology as a means to involve and motivate students to want to learn science. By employing pedagogical skills and by utilizing a technology that might not otherwise be readily available to these students, an environment of appreciation, trust, and respect was fostered. Further, the use of technology by these teachers served to expand students' social capital---the benefits that come from an individual's social contacts, social skills, and social resources.

  18. Asymptote Misconception on Graphing Functions: Does Graphing Software Resolve It?

    ERIC Educational Resources Information Center

    Öçal, Mehmet Fatih

    2017-01-01

    Graphing function is an important issue in mathematics education due to its use in various areas of mathematics and its potential roles for students to enhance learning mathematics. The use of some graphing software assists students' learning during graphing functions. However, the display of graphs of functions that students sketched by hand may…

  19. Neurally and ocularly informed graph-based models for searching 3D environments.

    PubMed

    Jangraw, David C; Wang, Jun; Lance, Brent J; Chang, Shih-Fu; Sajda, Paul

    2014-08-01

    As we move through an environment, we are constantly making assessments, judgments and decisions about the things we encounter. Some are acted upon immediately, but many more become mental notes or fleeting impressions-our implicit 'labeling' of the world. In this paper, we use physiological correlates of this labeling to construct a hybrid brain-computer interface (hBCI) system for efficient navigation of a 3D environment. First, we record electroencephalographic (EEG), saccadic and pupillary data from subjects as they move through a small part of a 3D virtual city under free-viewing conditions. Using machine learning, we integrate the neural and ocular signals evoked by the objects they encounter to infer which ones are of subjective interest to them. These inferred labels are propagated through a large computer vision graph of objects in the city, using semi-supervised learning to identify other, unseen objects that are visually similar to the labeled ones. Finally, the system plots an efficient route to help the subjects visit the 'similar' objects it identifies. We show that by exploiting the subjects' implicit labeling to find objects of interest instead of exploring naively, the median search precision is increased from 25% to 97%, and the median subject need only travel 40% of the distance to see 84% of the objects of interest. We also find that the neural and ocular signals contribute in a complementary fashion to the classifiers' inference of subjects' implicit labeling. In summary, we show that neural and ocular signals reflecting subjective assessment of objects in a 3D environment can be used to inform a graph-based learning model of that environment, resulting in an hBCI system that improves navigation and information delivery specific to the user's interests.

  20. Neurally and ocularly informed graph-based models for searching 3D environments

    NASA Astrophysics Data System (ADS)

    Jangraw, David C.; Wang, Jun; Lance, Brent J.; Chang, Shih-Fu; Sajda, Paul

    2014-08-01

    Objective. As we move through an environment, we are constantly making assessments, judgments and decisions about the things we encounter. Some are acted upon immediately, but many more become mental notes or fleeting impressions—our implicit ‘labeling’ of the world. In this paper, we use physiological correlates of this labeling to construct a hybrid brain-computer interface (hBCI) system for efficient navigation of a 3D environment. Approach. First, we record electroencephalographic (EEG), saccadic and pupillary data from subjects as they move through a small part of a 3D virtual city under free-viewing conditions. Using machine learning, we integrate the neural and ocular signals evoked by the objects they encounter to infer which ones are of subjective interest to them. These inferred labels are propagated through a large computer vision graph of objects in the city, using semi-supervised learning to identify other, unseen objects that are visually similar to the labeled ones. Finally, the system plots an efficient route to help the subjects visit the ‘similar’ objects it identifies. Main results. We show that by exploiting the subjects’ implicit labeling to find objects of interest instead of exploring naively, the median search precision is increased from 25% to 97%, and the median subject need only travel 40% of the distance to see 84% of the objects of interest. We also find that the neural and ocular signals contribute in a complementary fashion to the classifiers’ inference of subjects’ implicit labeling. Significance. In summary, we show that neural and ocular signals reflecting subjective assessment of objects in a 3D environment can be used to inform a graph-based learning model of that environment, resulting in an hBCI system that improves navigation and information delivery specific to the user’s interests.

  1. Test-Retest Reliability of Graph Metrics in Functional Brain Networks: A Resting-State fNIRS Study

    PubMed Central

    Niu, Haijing; Li, Zhen; Liao, Xuhong; Wang, Jinhui; Zhao, Tengda; Shu, Ni; Zhao, Xiaohu; He, Yong

    2013-01-01

    Recent research has demonstrated the feasibility of combining functional near-infrared spectroscopy (fNIRS) and graph theory approaches to explore the topological attributes of human brain networks. However, the test-retest (TRT) reliability of the application of graph metrics to these networks remains to be elucidated. Here, we used resting-state fNIRS and a graph-theoretical approach to systematically address TRT reliability as it applies to various features of human brain networks, including functional connectivity, global network metrics and regional nodal centrality metrics. Eighteen subjects participated in two resting-state fNIRS scan sessions held ∼20 min apart. Functional brain networks were constructed for each subject by computing temporal correlations on three types of hemoglobin concentration information (HbO, HbR, and HbT). This was followed by a graph-theoretical analysis, and then an intraclass correlation coefficient (ICC) was further applied to quantify the TRT reliability of each network metric. We observed that a large proportion of resting-state functional connections (∼90%) exhibited good reliability (0.6< ICC <0.74). For global and nodal measures, reliability was generally threshold-sensitive and varied among both network metrics and hemoglobin concentration signals. Specifically, the majority of global metrics exhibited fair to excellent reliability, with notably higher ICC values for the clustering coefficient (HbO: 0.76; HbR: 0.78; HbT: 0.53) and global efficiency (HbO: 0.76; HbR: 0.70; HbT: 0.78). Similarly, both nodal degree and efficiency measures also showed fair to excellent reliability across nodes (degree: 0.52∼0.84; efficiency: 0.50∼0.84); reliability was concordant across HbO, HbR and HbT and was significantly higher than that of nodal betweenness (0.28∼0.68). Together, our results suggest that most graph-theoretical network metrics derived from fNIRS are TRT reliable and can be used effectively for brain network

  2. Information Retrieval and Graph Analysis Approaches for Book Recommendation.

    PubMed

    Benkoussas, Chahinez; Bellot, Patrice

    2015-01-01

    A combination of multiple information retrieval approaches is proposed for the purpose of book recommendation. In this paper, book recommendation is based on complex user's query. We used different theoretical retrieval models: probabilistic as InL2 (Divergence from Randomness model) and language model and tested their interpolated combination. Graph analysis algorithms such as PageRank have been successful in Web environments. We consider the application of this algorithm in a new retrieval approach to related document network comprised of social links. We called Directed Graph of Documents (DGD) a network constructed with documents and social information provided from each one of them. Specifically, this work tackles the problem of book recommendation in the context of INEX (Initiative for the Evaluation of XML retrieval) Social Book Search track. A series of reranking experiments demonstrate that combining retrieval models yields significant improvements in terms of standard ranked retrieval metrics. These results extend the applicability of link analysis algorithms to different environments.

  3. Information Retrieval and Graph Analysis Approaches for Book Recommendation

    PubMed Central

    Benkoussas, Chahinez; Bellot, Patrice

    2015-01-01

    A combination of multiple information retrieval approaches is proposed for the purpose of book recommendation. In this paper, book recommendation is based on complex user's query. We used different theoretical retrieval models: probabilistic as InL2 (Divergence from Randomness model) and language model and tested their interpolated combination. Graph analysis algorithms such as PageRank have been successful in Web environments. We consider the application of this algorithm in a new retrieval approach to related document network comprised of social links. We called Directed Graph of Documents (DGD) a network constructed with documents and social information provided from each one of them. Specifically, this work tackles the problem of book recommendation in the context of INEX (Initiative for the Evaluation of XML retrieval) Social Book Search track. A series of reranking experiments demonstrate that combining retrieval models yields significant improvements in terms of standard ranked retrieval metrics. These results extend the applicability of link analysis algorithms to different environments. PMID:26504899

  4. Constructing Graphical Representations: Middle Schoolers' Intuitions and Developing Knowledge about Slope and Y-Intercept

    ERIC Educational Resources Information Center

    Hattikudur, Shanta; Prather, Richard W.; Asquith, Pamela; Alibali, Martha W.; Knuth, Eric J.; Nathan, Mitchell

    2012-01-01

    Middle-school students are expected to understand key components of graphs, such as slope and y-intercept. However, constructing graphs is a skill that has received relatively little research attention. This study examined students' construction of graphs of linear functions, focusing specifically on the relative difficulties of graphing slope and…

  5. Label-based routing for a family of small-world Farey graphs

    NASA Astrophysics Data System (ADS)

    Zhai, Yinhu; Wang, Yinhe

    2016-05-01

    We introduce an informative labelling method for vertices in a family of Farey graphs, and deduce a routing algorithm on all the shortest paths between any two vertices in Farey graphs. The label of a vertex is composed of the precise locating position in graphs and the exact time linking to graphs. All the shortest paths routing between any pair of vertices, which number is exactly the product of two Fibonacci numbers, are determined only by their labels, and the time complexity of the algorithm is O(n). It is the first algorithm to figure out all the shortest paths between any pair of vertices in a kind of deterministic graphs. For Farey networks, the existence of an efficient routing protocol is of interest to design practical communication algorithms in relation to dynamical processes (including synchronization and structural controllability) and also to understand the underlying mechanisms that have shaped their particular structure.

  6. Label-based routing for a family of small-world Farey graphs.

    PubMed

    Zhai, Yinhu; Wang, Yinhe

    2016-05-11

    We introduce an informative labelling method for vertices in a family of Farey graphs, and deduce a routing algorithm on all the shortest paths between any two vertices in Farey graphs. The label of a vertex is composed of the precise locating position in graphs and the exact time linking to graphs. All the shortest paths routing between any pair of vertices, which number is exactly the product of two Fibonacci numbers, are determined only by their labels, and the time complexity of the algorithm is O(n). It is the first algorithm to figure out all the shortest paths between any pair of vertices in a kind of deterministic graphs. For Farey networks, the existence of an efficient routing protocol is of interest to design practical communication algorithms in relation to dynamical processes (including synchronization and structural controllability) and also to understand the underlying mechanisms that have shaped their particular structure.

  7. Building Specialized Multilingual Lexical Graphs Using Community Resources

    NASA Astrophysics Data System (ADS)

    Daoud, Mohammad; Boitet, Christian; Kageura, Kyo; Kitamoto, Asanobu; Mangeot, Mathieu; Daoud, Daoud

    We are describing methods for compiling domain-dedicated multilingual terminological data from various resources. We focus on collecting data from online community users as a main source, therefore, our approach depends on acquiring contributions from volunteers (explicit approach), and it depends on analyzing users' behaviors to extract interesting patterns and facts (implicit approach). As a generic repository that can handle the collected multilingual terminological data, we are describing the concept of dedicated Multilingual Preterminological Graphs MPGs, and some automatic approaches for constructing them by analyzing the behavior of online community users. A Multilingual Preterminological Graph is a special lexical resource that contains massive amount of terms related to a special domain. We call it preterminological, because it is a raw material that can be used to build a standardized terminological repository. Building such a graph is difficult using traditional approaches, as it needs huge efforts by domain specialists and terminologists. In our approach, we build such a graph by analyzing the access log files of the website of the community, and by finding the important terms that have been used to search in that website, and their association with each other. We aim at making this graph as a seed repository so multilingual volunteers can contribute. We are experimenting this approach with the Digital Silk Road Project. We have used its access log files since its beginning in 2003, and obtained an initial graph of around 116000 terms. As an application, we used this graph to obtain a preterminological multilingual database that is serving a CLIR system for the DSR project.

  8. A greedy, graph-based algorithm for the alignment of multiple homologous gene lists.

    PubMed

    Fostier, Jan; Proost, Sebastian; Dhoedt, Bart; Saeys, Yvan; Demeester, Piet; Van de Peer, Yves; Vandepoele, Klaas

    2011-03-15

    Many comparative genomics studies rely on the correct identification of homologous genomic regions using accurate alignment tools. In such case, the alphabet of the input sequences consists of complete genes, rather than nucleotides or amino acids. As optimal multiple sequence alignment is computationally impractical, a progressive alignment strategy is often employed. However, such an approach is susceptible to the propagation of alignment errors in early pairwise alignment steps, especially when dealing with strongly diverged genomic regions. In this article, we present a novel accurate and efficient greedy, graph-based algorithm for the alignment of multiple homologous genomic segments, represented as ordered gene lists. Based on provable properties of the graph structure, several heuristics are developed to resolve local alignment conflicts that occur due to gene duplication and/or rearrangement events on the different genomic segments. The performance of the algorithm is assessed by comparing the alignment results of homologous genomic segments in Arabidopsis thaliana to those obtained by using both a progressive alignment method and an earlier graph-based implementation. Especially for datasets that contain strongly diverged segments, the proposed method achieves a substantially higher alignment accuracy, and proves to be sufficiently fast for large datasets including a few dozens of eukaryotic genomes. http://bioinformatics.psb.ugent.be/software. The algorithm is implemented as a part of the i-ADHoRe 3.0 package.

  9. Evaluation of Graph Pattern Matching Workloads in Graph Analysis Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Seokyong; Lee, Sangkeun; Lim, Seung-Hwan

    2016-01-01

    Graph analysis has emerged as a powerful method for data scientists to represent, integrate, query, and explore heterogeneous data sources. As a result, graph data management and mining became a popular area of research, and led to the development of plethora of systems in recent years. Unfortunately, the number of emerging graph analysis systems and the wide range of applications, coupled with a lack of apples-to-apples comparisons, make it difficult to understand the trade-offs between different systems and the graph operations for which they are designed. A fair comparison of these systems is a challenging task for the following reasons:more » multiple data models, non-standardized serialization formats, various query interfaces to users, and diverse environments they operate in. To address these key challenges, in this paper we present a new benchmark suite by extending the Lehigh University Benchmark (LUBM) to cover the most common capabilities of various graph analysis systems. We provide the design process of the benchmark, which generalizes the workflow for data scientists to conduct the desired graph analysis on different graph analysis systems. Equipped with this extended benchmark suite, we present performance comparison for nine subgraph pattern retrieval operations over six graph analysis systems, namely NetworkX, Neo4j, Jena, Titan, GraphX, and uRiKA. Through the proposed benchmark suite, this study reveals both quantitative and qualitative findings in (1) implications in loading data into each system; (2) challenges in describing graph patterns for each query interface; and (3) different sensitivity of each system to query selectivity. We envision that this study will pave the road for: (i) data scientists to select the suitable graph analysis systems, and (ii) data management system designers to advance graph analysis systems.« less

  10. Triadic Closure in Configuration Models with Unbounded Degree Fluctuations

    NASA Astrophysics Data System (ADS)

    van der Hofstad, Remco; van Leeuwaarden, Johan S. H.; Stegehuis, Clara

    2018-01-01

    The configuration model generates random graphs with any given degree distribution, and thus serves as a null model for scale-free networks with power-law degrees and unbounded degree fluctuations. For this setting, we study the local clustering c(k), i.e., the probability that two neighbors of a degree-k node are neighbors themselves. We show that c(k) progressively falls off with k and the graph size n and eventually for k=Ω (√{n}) settles on a power law c(k)˜ n^{5-2τ }k^{-2(3-τ )} with τ \\in (2,3) the power-law exponent of the degree distribution. This fall-off has been observed in the majority of real-world networks and signals the presence of modular or hierarchical structure. Our results agree with recent results for the hidden-variable model and also give the expected number of triangles in the configuration model when counting triangles only once despite the presence of multi-edges. We show that only triangles consisting of triplets with uniquely specified degrees contribute to the triangle counting.

  11. A graph-based evolutionary algorithm: Genetic Network Programming (GNP) and its extension using reinforcement learning.

    PubMed

    Mabu, Shingo; Hirasawa, Kotaro; Hu, Jinglu

    2007-01-01

    This paper proposes a graph-based evolutionary algorithm called Genetic Network Programming (GNP). Our goal is to develop GNP, which can deal with dynamic environments efficiently and effectively, based on the distinguished expression ability of the graph (network) structure. The characteristics of GNP are as follows. 1) GNP programs are composed of a number of nodes which execute simple judgment/processing, and these nodes are connected by directed links to each other. 2) The graph structure enables GNP to re-use nodes, thus the structure can be very compact. 3) The node transition of GNP is executed according to its node connections without any terminal nodes, thus the past history of the node transition affects the current node to be used and this characteristic works as an implicit memory function. These structural characteristics are useful for dealing with dynamic environments. Furthermore, we propose an extended algorithm, "GNP with Reinforcement Learning (GNPRL)" which combines evolution and reinforcement learning in order to create effective graph structures and obtain better results in dynamic environments. In this paper, we applied GNP to the problem of determining agents' behavior to evaluate its effectiveness. Tileworld was used as the simulation environment. The results show some advantages for GNP over conventional methods.

  12. Review on Graph Clustering and Subgraph Similarity Based Analysis of Neurological Disorders

    PubMed Central

    Thomas, Jaya; Seo, Dongmin; Sael, Lee

    2016-01-01

    How can complex relationships among molecular or clinico-pathological entities of neurological disorders be represented and analyzed? Graphs seem to be the current answer to the question no matter the type of information: molecular data, brain images or neural signals. We review a wide spectrum of graph representation and graph analysis methods and their application in the study of both the genomic level and the phenotypic level of the neurological disorder. We find numerous research works that create, process and analyze graphs formed from one or a few data types to gain an understanding of specific aspects of the neurological disorders. Furthermore, with the increasing number of data of various types becoming available for neurological disorders, we find that integrative analysis approaches that combine several types of data are being recognized as a way to gain a global understanding of the diseases. Although there are still not many integrative analyses of graphs due to the complexity in analysis, multi-layer graph analysis is a promising framework that can incorporate various data types. We describe and discuss the benefits of the multi-layer graph framework for studies of neurological disease. PMID:27258269

  13. Review on Graph Clustering and Subgraph Similarity Based Analysis of Neurological Disorders.

    PubMed

    Thomas, Jaya; Seo, Dongmin; Sael, Lee

    2016-06-01

    How can complex relationships among molecular or clinico-pathological entities of neurological disorders be represented and analyzed? Graphs seem to be the current answer to the question no matter the type of information: molecular data, brain images or neural signals. We review a wide spectrum of graph representation and graph analysis methods and their application in the study of both the genomic level and the phenotypic level of the neurological disorder. We find numerous research works that create, process and analyze graphs formed from one or a few data types to gain an understanding of specific aspects of the neurological disorders. Furthermore, with the increasing number of data of various types becoming available for neurological disorders, we find that integrative analysis approaches that combine several types of data are being recognized as a way to gain a global understanding of the diseases. Although there are still not many integrative analyses of graphs due to the complexity in analysis, multi-layer graph analysis is a promising framework that can incorporate various data types. We describe and discuss the benefits of the multi-layer graph framework for studies of neurological disease.

  14. Assessing the efficiency of different CSO positions based on network graph characteristics.

    PubMed

    Sitzenfrei, R; Urich, C; Möderl, M; Rauch, W

    2013-01-01

    The technical design of urban drainage systems comprises two major aspects: first, the spatial layout of the sewer system and second, the pipe-sizing process. Usually, engineers determine the spatial layout of the sewer network manually, taking into account physical features and future planning scenarios. Before the pipe-sizing process starts, it is important to determine locations of possible weirs and combined sewer overflows (CSOs) based on, e.g. distance to receiving water bodies or to a wastewater treatment plant and available space for storage units. However, positions of CSOs are also determined by topological characteristics of the sewer networks. In order to better understand the impact of placement choices for CSOs and storage units in new systems, this work aims to determine case unspecific, general rules. Therefore, based on numerous, stochastically generated virtual alpine sewer systems of different sizes it is investigated how choices for placement of CSOs and storage units have an impact on the pipe-sizing process (hence, also on investment costs) and on technical performance (CSO efficiency and flooding). To describe the impact of the topological positions of these elements in the sewer networks, graph characteristics are used. With an evaluation of 2,000 different alpine combined sewer systems, it was found that, as expected, with CSOs at more downstream positions in the network, greater construction costs and better performance regarding CSO efficiency result. At a specific point (i.e. topological network position), no significant difference (further increase) in construction costs can be identified. Contrarily, the flooding efficiency increases with more upstream positions of the CSOs. Therefore, CSO and flooding efficiency are in a trade-off conflict and a compromise is required.

  15. Graph-Based Norm Explanation

    NASA Astrophysics Data System (ADS)

    Croitoru, Madalina; Oren, Nir; Miles, Simon; Luck, Michael

    Norms impose obligations, permissions and prohibitions on individual agents operating as part of an organisation. Typically, the purpose of such norms is to ensure that an organisation acts in some socially (or mutually) beneficial manner, possibly at the expense of individual agent utility. In this context, agents are normaware if they are able to reason about which norms are applicable to them, and to decide whether to comply with or ignore them. While much work has focused on the creation of norm-aware agents, much less has been concerned with aiding system designers in understanding the effects of norms on a system. The ability to understand such norm effects can aid the designer in avoiding incorrect norm specification, eliminating redundant norms and reducing normative conflict. In this paper, we address the problem of norm understanding by providing explanations as to why a norm is applicable, violated, or in some other state. We make use of conceptual graph based semantics to provide a graphical representation of the norms within a system. Given knowledge of the current and historical state of the system, such a representation allows for explanation of the state of norms, showing for example why they may have been activated or violated.

  16. Study of Chromatic parameters of Line, Total, Middle graphs and Graph operators of Bipartite graph

    NASA Astrophysics Data System (ADS)

    Nagarathinam, R.; Parvathi, N.

    2018-04-01

    Chromatic parameters have been explored on the basis of graph coloring process in which a couple of adjacent nodes receives different colors. But the Grundy and b-coloring executes maximum colors under certain restrictions. In this paper, Chromatic, b-chromatic and Grundy number of some graph operators of bipartite graph has been investigat

  17. Constructing Ecological Networks Based on Habitat Quality Assessment: A Case Study of Changzhou, China

    NASA Astrophysics Data System (ADS)

    Gao, Yu; Ma, Lei; Liu, Jiaxun; Zhuang, Zhuzhou; Huang, Qiuhao; Li, Manchun

    2017-04-01

    Fragmentation and reduced continuity of habitat patches threaten the environment and biodiversity. Recently, ecological networks are increasingly attracting the attention of researchers as they provide fundamental frameworks for environmental protection. This study suggests a set of procedures to construct an ecological network. First, we proposed a method to construct a landscape resistance surface based on the assessment of habitat quality. Second, to analyze the effect of the resistance surface on corridor simulations, we used three methods to construct resistance surfaces: (1) the method proposed in this paper, (2) the entropy coefficient method, and (3) the expert scoring method. Then, we integrated habitat patches and resistance surfaces to identify potential corridors using graph theory. These procedures were tested in Changzhou, China. Comparing the outputs of using different resistance surfaces demonstrated that: (1) different landscape resistance surfaces contribute to how corridors are identified, but only slightly affect the assessment of the importance of habitat patches and potential corridors; (2) the resistance surface, which is constructed based on habitat quality, is more applicable to corridor simulations; and (3) the assessment of the importance of habitat patches is fundamental for ecological network optimization in the conservation of critical habitat patches and corridors.

  18. FPFH-based graph matching for 3D point cloud registration

    NASA Astrophysics Data System (ADS)

    Zhao, Jiapeng; Li, Chen; Tian, Lihua; Zhu, Jihua

    2018-04-01

    Correspondence detection is a vital step in point cloud registration and it can help getting a reliable initial alignment. In this paper, we put forward an advanced point feature-based graph matching algorithm to solve the initial alignment problem of rigid 3D point cloud registration with partial overlap. Specifically, Fast Point Feature Histograms are used to determine the initial possible correspondences firstly. Next, a new objective function is provided to make the graph matching more suitable for partially overlapping point cloud. The objective function is optimized by the simulated annealing algorithm for final group of correct correspondences. Finally, we present a novel set partitioning method which can transform the NP-hard optimization problem into a O(n3)-solvable one. Experiments on the Stanford and UWA public data sets indicates that our method can obtain better result in terms of both accuracy and time cost compared with other point cloud registration methods.

  19. Fiber tracking of brain white matter based on graph theory.

    PubMed

    Lu, Meng

    2015-01-01

    Brain white matter tractography is reconstructed via diffusion-weighted magnetic resonance images. Due to the complex structure of brain white matter fiber bundles, fiber crossing and fiber branching are abundant in human brain. And regular methods with diffusion tensor imaging (DTI) can't accurately handle this problem. the biggest problems of the brain tractography. Therefore, this paper presented a novel brain white matter tractography method based on graph theory, so the fiber tracking between two voxels is transformed into locating the shortest path in a graph. Besides, the presented method uses Q-ball imaging (QBI) as the source data instead of DTI, because QBI can provide accurate information about multiple fiber crossing and branching in one voxel using orientation distribution function (ODF). Experiments showed that the presented method can accurately handle the problem of brain white matter fiber crossing and branching, and reconstruct brain tractograhpy both in phantom data and real brain data.

  20. High-order graph matching based feature selection for Alzheimer's disease identification.

    PubMed

    Liu, Feng; Suk, Heung-Il; Wee, Chong-Yaw; Chen, Huafu; Shen, Dinggang

    2013-01-01

    One of the main limitations of l1-norm feature selection is that it focuses on estimating the target vector for each sample individually without considering relations with other samples. However, it's believed that the geometrical relation among target vectors in the training set may provide useful information, and it would be natural to expect that the predicted vectors have similar geometric relations as the target vectors. To overcome these limitations, we formulate this as a graph-matching feature selection problem between a predicted graph and a target graph. In the predicted graph a node is represented by predicted vector that may describe regional gray matter volume or cortical thickness features, and in the target graph a node is represented by target vector that include class label and clinical scores. In particular, we devise new regularization terms in sparse representation to impose high-order graph matching between the target vectors and the predicted ones. Finally, the selected regional gray matter volume and cortical thickness features are fused in kernel space for classification. Using the ADNI dataset, we evaluate the effectiveness of the proposed method and obtain the accuracies of 92.17% and 81.57% in AD and MCI classification, respectively.