Science.gov

Sample records for dehumidifiers

  1. Water-heating dehumidifier

    DOEpatents

    Tomlinson, John J.

    2006-04-18

    A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

  2. Dehumidifying Heat Pipe

    NASA Technical Reports Server (NTRS)

    Khattar, Mukesh K.

    1993-01-01

    U-shaped heat pipe partly dehumidifies air leaving air conditioner. Fits readily in air-handling unit of conditioner. Evaporator and condenser sections of heat pipe consist of finned tubes in comb pattern. Each tube sealed at one end and joined to manifold at other. Sections connected by single pipe carrying vapor to condenser manifold and liquid to evaporator manifold. Simple on/off or proportional valve used to control flow of working fluid. Valve actuated by temperature/humidity sensor.

  3. Solar powered dehumidifier apparatus

    DOEpatents

    Jebens, Robert W.

    1980-12-30

    A thermally insulated light transmitting housing forms a chamber containing a desiccant and having a first gas port open to the ambient and a second gas port connected by a two way valve to a volume to be dried. Solar energy transmitted through the housing heats and dries the desiccant. The increased air pressure due to the heating of the volume to be dried causes the air from the volume to be expelled through the valve into the chamber. The desiccant is then cooled by shielding it from solar energy before the volume cools thereby increasing its moisture absorbing capacity. Then the volume is allowed to cool drawing dehumidified air through the desiccant and the valve into the volume to be dried. This cycle is then repeated.

  4. Don`t sweat it, dehumidify

    SciTech Connect

    Harriman, L.; Simkins, D.

    Beads of perspiration dripping from pipes and valves are a nuisance to mop up, but they are a telltale sign of the problems that excess humidity can cause. Fluctuations in the delicate balance of temperature and moisture in process environments are often the culprit for the corrosion, condensation, and clogging and sticking that bottlenecks plant operations and slows down production. Dehumidification is used to prevent moisture regain, condensation and corrosion, and to promote the drying of heat-sensitive products. There are three methods for removing moisture from air: Squeeze out water by increasing the pressure; though commonly used for compressed airmore » and other applications at elevated pressures, it is virtually never used to remove moisture in atmospheric pressure applications. Compressor equipment and operating costs are prohibitive, compared with those for conventional methods for dehumidifying air at ambient pressures; Condense water by chilling the surrounding air; and Pull out water by passing air across the surface of a desiccant. The paper discusses desiccation versus cooling, system design, and project management.« less

  5. 78 FR 62488 - Energy Conservation Program: Compliance Date for the Dehumidifier Test Procedure

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... Conservation Program: Compliance Date for the Dehumidifier Test Procedure AGENCY: Office of Energy Efficiency.... Department of Energy (DOE) proposes to revise the compliance date for the dehumidifier test procedures... manufacturers to test using only the active mode provisions in the test procedure for dehumidifiers currently...

  6. 77 FR 70105 - Energy Conservation Program: Test Procedures for Residential Dishwashers, Dehumidifiers, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-23

    ... Conservation Program: Test Procedures for Residential Dishwashers, Dehumidifiers, and Conventional Cooking... conventional cooking products under the Energy Policy and Conservation Act. DATES: The effective date of this...

  7. 10 CFR Appendix X1 to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Dehumidifiers

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... 2.4 Energy factor for dehumidifiers means a measure of energy efficiency of a dehumidifier... batteries and the determination, classification, and testing of relevant modes. 3.2.2 Electrical energy...

  8. 10 CFR Appendix X1 to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Dehumidifiers

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    .... 2.4Energy factor for dehumidifiers means a measure of energy efficiency of a dehumidifier calculated... batteries and the determination, classification, and testing of relevant modes. 3.2.2Electrical energy...

  9. Characterization of a starch based desiccant wheel dehumidifier

    NASA Astrophysics Data System (ADS)

    Beery, Kyle Edward

    Starch, cellulose, and hemicellulose have an affinity for water, and adsorb water vapor from air. Materials made from combinations of these biobased sugar polymers also have been found to possess adsorptive properties. An interesting possible application of these starch-based adsorbents is the desiccant wheel dehumidifier. The desiccant wheel dehumidifier is used in conjunction with a standard air conditioning system. In this process, ambient air is passed through a stationary section while a wheel packed with desiccant rotates through that section. The desiccant adsorbs humidity (latent load) from the air, and the air conditioning system then cools the air (sensible load). Several starch based adsorbents were developed and tested for adsorptive capacity in a new high throughput screening system. The best formulations from the high throughput screening system, also taking into account economic considerations and structural integrity, were considered for use in the desiccant wheel dehumidifier. A suitable adsorbent was chosen and formulated into a matrix structure for the desiccant wheel system. A prototype desiccant wheel system was constructed and the performance was investigated under varying regeneration temperatures and rotation speeds. The results from the experiments showed that the starch based desiccant wheel dehumidification system does transfer moisture from the inlet process stream to the outlet regeneration stream. The DESSIM model was modified for the starch based adsorbent and compared to the experimental results. Also, the results when the wheel parameters were varied were compared to the predicted results from the model. The results given by the starch based desiccant wheel system show the desired proof of concept.

  10. LiCl Dehumidifier LiBr absorption chiller hybrid air conditioning system with energy recovery

    DOEpatents

    Ko, Suk M.

    1980-01-01

    This invention relates to a hybrid air conditioning system that combines a solar powered LiCl dehumidifier with a LiBr absorption chiller. The desiccant dehumidifier removes the latent load by absorbing moisture from the air, and the sensible load is removed by the absorption chiller. The desiccant dehumidifier is coupled to a regenerator and the desiccant in the regenerator is heated by solar heated hot water to drive the moisture therefrom before being fed back to the dehumidifier. The heat of vaporization expended in the desiccant regenerator is recovered and used to partially preheat the driving fluid of the absorption chiller, thus substantially improving the overall COP of the hybrid system.

  11. Whole-Home Dehumidifiers: Field-Monitoring Study

    SciTech Connect

    Burke, Tom; Willem, Henry; Ni, Chun Chun

    2014-09-23

    Lawrence Berkeley National Laboratory (LBNL) initiated a WHD field-metering study to expand current knowledge of and obtain data on WHD operation and energy consumption in real-world applications. The field study collected real-time data on WHD energy consumption, along with information regarding housing characteristics, consumer behavior, and various outdoor conditions expected to affect WHD performance and efficiency. Although the metering study collected similar data regarding air conditioner operation, this report discusses only WHDs. The primary objectives of the LBNL field-metering study are to (1) expand knowledge of the configurations, energy consumption profiles, consumer patterns of use (e.g., relative humidity [RH] settings),more » and environmental parameters of whole-home dehumidification systems; and (2) develop distributions of hours of dehumidifier operation in four operating modes: off, standby, fan-only, and compressor (also called dehumidification mode). Profiling energy consumption entails documenting the power consumption, duration of power consumption in different modes, condensate generation, and properties of output air of an installed system under field conditions of varying inlet air temperature and RH, as well as system configuration. This profiling provides a more detailed and deeper understanding of WHD operation and its complexities. This report describes LBNL’s whole-home dehumidification field-metering study conducted at four homes in Wisconsin and Florida. The initial phase of the WHD field-metering study was conducted on one home in Madison, Wisconsin, from June to December of 2013. During a second phase, three Florida homes were metered from June to October of 2014. This report presents and examines data from the Wisconsin site and from the three Florida sites.« less

  12. 77 FR 49739 - Energy Conservation Standards for Residential Dehumidifiers: Public Meeting and Availability of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-17

    ... dehumidifiers. DOE also encourages written comments on potential amended standards, including comments on the... INFORMATION: I. Introduction and Legal Authority II. Test Procedures III. Energy Conservation Standards I... standard on the manufacturers and consumers of the affected products; (2) The savings in operating costs...

  13. 58. View of high pressure IngersollRand dehumidifier/dessicator and compressor system ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. View of high pressure Ingersoll-Rand dehumidifier/dessicator and compressor system to supply dry pressurized air to waveguides. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  14. Theoretical modelling and optimization of bubble column dehumidifier for a solar driven humidification-dehumidification system

    NASA Astrophysics Data System (ADS)

    Ranjitha, P. Raj; Ratheesh, R.; Jayakumar, J. S.; Balakrishnan, Shankar

    2018-02-01

    Availability and utilization of energy and water are the top most global challenges being faced by the new millennium. At the present state water scarcity has become a global as well as a regional challenge. 40 % of world population faces water shortage. Challenge of water scarcity can be tackled only with increase in water supply beyond what is obtained from hydrological cycle. This can be achieved either by desalinating the sea water or by reusing the waste water. High energy requirement need to be overcome for either of the two processes. Of many desalination technologies, humidification dehumidification (HDH) technology powered by solar energy is widely accepted for small scale production. Detailed optimization studies on system have the potential to effectively utilize the solar energy for brackish water desalination. Dehumidification technology, specifically, require further study because the dehumidifier effectiveness control the energetic performance of the entire HDH system. The reason attributes to the high resistance involved to diffuse dilute vapor through air in a dehumidifier. The present work intends to optimize the design of a bubble column dehumidifier for a solar energy driven desalination process. Optimization is carried out using Matlab simulation. Design process will identify the unique needs of a bubble column dehumidifier in HDH system.

  15. A simple analytical method to estimate all exit parameters of a cross-flow air dehumidifier using liquid desiccant

    PubMed Central

    Bassuoni, M.M.

    2013-01-01

    The dehumidifier is a key component in liquid desiccant air-conditioning systems. Analytical solutions have more advantages than numerical solutions in studying the dehumidifier performance parameters. This paper presents the performance results of exit parameters from an analytical model of an adiabatic cross-flow liquid desiccant air dehumidifier. Calcium chloride is used as desiccant material in this investigation. A program performing the analytical solution is developed using the engineering equation solver software. Good accuracy has been found between analytical solution and reliable experimental results with a maximum deviation of +6.63% and −5.65% in the moisture removal rate. The method developed here can be used in the quick prediction of the dehumidifier performance. The exit parameters from the dehumidifier are evaluated under the effects of variables such as air temperature and humidity, desiccant temperature and concentration, and air to desiccant flow rates. The results show that hot humid air and desiccant concentration have the greatest impact on the performance of the dehumidifier. The moisture removal rate is decreased with increasing both air inlet temperature and desiccant temperature while increases with increasing air to solution mass ratio, inlet desiccant concentration, and inlet air humidity ratio. PMID:25685485

  16. A simple analytical method to estimate all exit parameters of a cross-flow air dehumidifier using liquid desiccant.

    PubMed

    Bassuoni, M M

    2014-03-01

    The dehumidifier is a key component in liquid desiccant air-conditioning systems. Analytical solutions have more advantages than numerical solutions in studying the dehumidifier performance parameters. This paper presents the performance results of exit parameters from an analytical model of an adiabatic cross-flow liquid desiccant air dehumidifier. Calcium chloride is used as desiccant material in this investigation. A program performing the analytical solution is developed using the engineering equation solver software. Good accuracy has been found between analytical solution and reliable experimental results with a maximum deviation of +6.63% and -5.65% in the moisture removal rate. The method developed here can be used in the quick prediction of the dehumidifier performance. The exit parameters from the dehumidifier are evaluated under the effects of variables such as air temperature and humidity, desiccant temperature and concentration, and air to desiccant flow rates. The results show that hot humid air and desiccant concentration have the greatest impact on the performance of the dehumidifier. The moisture removal rate is decreased with increasing both air inlet temperature and desiccant temperature while increases with increasing air to solution mass ratio, inlet desiccant concentration, and inlet air humidity ratio.

  17. 77 FR 65941 - Energy Conservation Program: Test Procedures for Residential Dishwashers, Dehumidifiers, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ...The U.S. Department of Energy (DOE) establishes new test procedures for residential dishwashers and dehumidifiers, and amends the currently applicable test procedure for conventional cooking products under the Energy Policy and Conservation Act. The new test procedures include provisions for measuring standby mode and off mode energy consumption, and update the provisions for measuring active mode energy consumption and, for dishwashers, water consumption. This final rule also amends the certification, compliance, and enforcement requirements for dishwashers, dehumidifiers and conventional cooking products, amends certain provisions in the currently applicable dishwasher test procedure, and eliminates an obsolete energy efficiency metric in the dishwasher test procedure and provisions in the cooking products test procedure that have become obsolete due to the elimination of standing pilot lights.

  18. Transient performance and temperature field of a natural convection air dehumidifier loop

    NASA Astrophysics Data System (ADS)

    Fazilati, Mohammad Ali; Sedaghat, Ahmad; Alemrajabi, Ali-Akbar

    2017-07-01

    In this paper, transient performance of the previously introduced natural convection heat and mass transfer loop is investigated for an air dehumidifier system. The performance of the loop is studied in different conditions of heat source/heat sink temperature and different startup desiccant concentrations. Unlike conventional loops, it is observed that natural convection of the fluid originates from the heat sink towards the heat source. The proper operation of the cycle is highly dependent on the heat sink/heat source temperatures. To reduce the time constant of the system, a proper desiccant concentration should be adopted for charge of the loop.

  19. Performance analysis of an air drier for a liquid dehumidifier solar air conditioning system

    SciTech Connect

    Queiroz, A.G.; Orlando, A.F.; Saboya, F.E.M.

    1988-05-01

    A model was developed for calculating the operating conditions of a non-adiabatic liquid dehumidifier used in solar air conditioning systems. In the experimental facility used for obtaining the data, air and triethylene glycol circulate countercurrently outside staggered copper tubes which are the filling of an absorption tower. Water flows inside the copper tubes, thus cooling the whole system and increasing the mass transfer potential for drying air. The methodology for calculating the mass transfer coefficient is based on the Merkel integral approach, taking into account the lowering of the water vapor pressure in equilibrium with the water glycol solution.

  20. 10 CFR Appendix X to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Dehumidifiers

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of Dehumidifiers X Appendix X to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. X Appendix X to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of...

  1. 10 CFR Appendix X to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Dehumidifiers

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of Dehumidifiers X Appendix X to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. X Appendix X to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of...

  2. 10 CFR Appendix X to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Dehumidifiers

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of Dehumidifiers X Appendix X to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. X Appendix X to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of...

  3. 10 CFR Appendix X to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Dehumidifiers

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of Dehumidifiers X Appendix X to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. X Appendix X to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of...

  4. 10 CFR Appendix X to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Dehumidifiers

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of Dehumidifiers X Appendix X to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CONSERVATION PROGRAM FOR CONSUMER PRODUCTS Test Procedures Pt. 430, Subpt. B, App. X Appendix X to Subpart B of Part 430—Uniform Test Method for Measuring the Energy Consumption of...

  5. 76 FR 58345 - Energy Conservation Program: Test Procedures for Residential Dishwashers, Dehumidifiers, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-20

    ...Where appropriate, the U.S. Department of Energy (DOE) has proposed to amend its test procedures for residential dishwashers, dehumidifiers, and conventional cooking products (which includes cooktops, ovens, and ranges) to include provisions for measuring standby mode and off mode energy consumption, as required by the Energy Independence and Security Act of 2007 (EISA 2007). These test procedure amendments would incorporate by reference certain provisions of the International Electrotechnical Commission (IEC) Standard 62301, ``Household electrical appliances--Measurement of standby power.'' Since publication of DOE's initial proposal in December 2010, the IEC has replaced the First Edition of this standard with the current Second Edition. This supplemental notice of proposed rulemaking proposes to incorporate the latest edition of IEC Standard 62301.

  6. Dehumidifier assisted drying of a model fruit pulp-based gel and sensory attributes.

    PubMed

    Tiwari, Shipra; Ravi, Ramasamy; Bhattacharya, Suvendu

    2012-07-01

    Model fruit pulp-based gels were prepared by varying mango pulp (0% to 50%), sucrose (0% to 20%), and agar (1% to 3%) and according to a response surface experimental design followed by drying at a low temperature of 40 °C upto 15 h in a tray dryer assisted by a dehumidifier. The moisture content, shrinkage (SHR), and rheological parameters (failure strain, failure stress (FS), firmness, and energy for compression) were determined as a function of drying time. The composition of gel, particularly the agar content had a prominent effect on the characteristics of the dried gel. Detailed descriptive sensory analysis employing principle component analysis (PCA) biplot indicated two distinct groups of attributes; the first group comprised initial and final moisture contents, extent of moisture removal (EMR), and shrinkage. The fracture stress and energy formed the second group. The analysis of variance for failure stress showed that it depended only on the positive linear and quadratic effects of agar (significant at P ≤ 0.01 and 0.05, respectively). The theoretically predicted extent of moisture removal at 95.6% could be achieved when the level of agar was 1.2%; pulp and sucrose levels were also close to their lowest levels of 3.6% and 0.04%, respectively. Scope exists to develop gel-based fruit analogues wherein an appropriate hydrocolloid can be employed along with fruit juice/pulp. To provide a reasonable shelf-life of the developed intermediate moisture containing product, dehumidifier assisted drying is a pragmatic approach that affects sensory and rheological attributes of the dried fruit analogue. © 2012 Institute of Food Technologists®

  7. Microwave blanching and drying characteristics of Centella asiatica (L.) urban leaves using tray and heat pump-assisted dehumidified drying.

    PubMed

    Trirattanapikul, W; Phoungchandang, S

    2014-12-01

    The appropriate stage of maturity of Centella asiatica (L.) Urban leaves was investigated. Mature leaves with large diameter contained high total phenolics and % inhibition. Microwave blanching for 30 s retained the highest total phenolics and the microwave blanching for 30 s and 45 s retained the highest % inhibition. Modified Henderson and Modified Chung-Pfost models showed the best fit to both fresh and blanched leaves for equilibrium moisture content, Xe = f(RHe, T) and equilibrium relative humidity, RHe = f(Xe, T), respectively. The Modified Page model was the most effective model in describing the leaf drying. All drying was in the falling rate period. The drying constant was related to drying air temperature using the Arrhenius model. Effective moisture diffusivities increased with increasing temperature and blanching treatments as well as dehumidification by heat pump-assisted dehumidified dryer. The heat pump-assited dehumidified drying incorporated by the microwave blanching could reduce the drying time at 40 °C by 31.2 % and increase % inhibition by 6.1 %. Quality evaluation by total phenolics, % inhibition and rehydration ratio showed the best quality for C. asiatica leaves pretreated by microwave blanching and dried at 40 °C in heat pump-assisted dehumidified dryer.

  8. Technology Solutions Case Study: Improving Comfort in Hot-Humid Climates with a Whole-House Dehumidifier

    SciTech Connect

    None

    2013-11-01

    In order to quantify the performance of a combined whole-house dehumidifier (WHD) AC system, researchers from the Consortium of Advanced Residential Buildings (CARB) team monitored the operation of two Lennox AC systems coupled with a Honeywell DH150 TrueDRY whole-house dehumidifier for a six-month period. By using a WHD to control moisture levels (latent cooling) and optimizing a central AC to control temperature (sensible cooling), improvements in comfort can be achieved while reducing utility costs. Indoor comfort for this study was defined as maintaining indoor conditions at below 60% RH and a humidity ratio of 0.012 lbm/lbm while at common drymore » bulb set point temperatures of 74°-80°F. In addition to enhanced comfort, controlling moisture to these levels can reduce the risk of other potential issues such as mold growth, pests, and building component degradation. Because a standard AC must also reduce dry bulb air temperature in order to remove moisture, a WHD is typically needed to support these latent loads when sensible heat removal is not desired.« less

  9. On the importance of the heat and mass transfer resistances in internally-cooled liquid desiccant dehumidifiers and regenerators

    DOE PAGES

    Woods, Jason; Kozubal, Eric

    2018-02-06

    Liquid desiccant heat and mass exchangers are a promising technology for efficient humidity control in buildings. Many researchers have investigated these exchangers, often using numerical models to predict their performance. However, there is a lack of information in the literature on the magnitude of the heat and mass transfer resistances, both for the dehumidifier (which absorbs moisture from the air) and the regenerator (which heats the liquid desiccant to re-concentrate it). This article focuses on internally-cooled, 3-fluid exchangers in a parallel plate geometry. Water heats or cools a desiccant across a plate, and the desiccant absorbs or releases water intomore » an airstream through a membrane. A sensitivity analysis was used to estimate the importance of each of the heat and mass transfer resistances (air, membrane, desiccant, plate, water), and how it changes with different design geometries. The results show that, for most designs, the latent and sensible heat transfer of the dehumidifier is dominated by the air mass transfer resistance and air heat transfer resistance, respectively. The air mass transfer resistance is also important for the regenerator, but much less so; the change in the desiccant equilibrium humidity ratio due to a change in either temperature or desiccant mass fraction is much higher at the regenerator's higher temperatures. This increases the importance of (1) getting heat from the water to the desiccant/membrane interface, and (2) diffusing salt ions quickly away from the desiccant/membrane interface. The membrane heat transfer and water heat transfer resistances were found to be the least important. These results can help inform decisions about what simplifying assumptions to make in numerical models, and can also help in designing these exchangers by understanding which resistances are most important.« less

  10. On the importance of the heat and mass transfer resistances in internally-cooled liquid desiccant dehumidifiers and regenerators

    SciTech Connect

    Woods, Jason; Kozubal, Eric

    Liquid desiccant heat and mass exchangers are a promising technology for efficient humidity control in buildings. Many researchers have investigated these exchangers, often using numerical models to predict their performance. However, there is a lack of information in the literature on the magnitude of the heat and mass transfer resistances, both for the dehumidifier (which absorbs moisture from the air) and the regenerator (which heats the liquid desiccant to re-concentrate it). This article focuses on internally-cooled, 3-fluid exchangers in a parallel plate geometry. Water heats or cools a desiccant across a plate, and the desiccant absorbs or releases water intomore » an airstream through a membrane. A sensitivity analysis was used to estimate the importance of each of the heat and mass transfer resistances (air, membrane, desiccant, plate, water), and how it changes with different design geometries. The results show that, for most designs, the latent and sensible heat transfer of the dehumidifier is dominated by the air mass transfer resistance and air heat transfer resistance, respectively. The air mass transfer resistance is also important for the regenerator, but much less so; the change in the desiccant equilibrium humidity ratio due to a change in either temperature or desiccant mass fraction is much higher at the regenerator's higher temperatures. This increases the importance of (1) getting heat from the water to the desiccant/membrane interface, and (2) diffusing salt ions quickly away from the desiccant/membrane interface. The membrane heat transfer and water heat transfer resistances were found to be the least important. These results can help inform decisions about what simplifying assumptions to make in numerical models, and can also help in designing these exchangers by understanding which resistances are most important.« less

  11. Improving Comfort in Hot-Humid Climates with a Whole-House Dehumidifier, Windermere, Florida (Fact Sheet)

    SciTech Connect

    Not Available

    2013-11-01

    Maintaining comfort in a home can be challenging in hot-humid climates. At the common summer temperature set point of 75 degrees F, the perceived air temperature can vary by 11 degrees F because higher indoor humidity reduces comfort. Often the air conditioner (AC) thermostat set point is lower than the desirable cooling level to try to increase moisture removal so that the interior air is not humid or "muggy." However, this method is not always effective in maintaining indoor relative humidity (RH) or comfort. In order to quantify the performance of a combined whole-house dehumidifier (WHD) AC system, researchers frommore » the U.S. Department of Energy's Building America team Consortium of Advanced Residential Buildings (CARB) monitored the operation of two Lennox AC systems coupled with a Honeywell DH150 TrueDRY whole-house dehumidifier for a six-month period. By using a WHD to control moisture levels (latent cooling) and optimizing a central AC to control temperature (sensible cooling), improvements in comfort can be achieved while reducing utility costs. Indoor comfort for this study was defined as maintaining indoor conditions at below 60% RH and a humidity ratio of 0.012 lbm/lbm while at common dry bulb set point temperatures of 74 degrees -80 degrees F. In addition to enhanced comfort, controlling moisture to these levels can reduce the risk of other potential issues such as mold growth, pests, and building component degradation. Because a standard AC must also reduce dry bulb air temperature in order to remove moisture, a WHD is typically needed to support these latent loads when sensible heat removal is not desired.« less

  12. Optimization of heat and mass transfers in counterflow corrugated-plate liquid-gas exchangers used in a greenhouse dehumidifier

    NASA Astrophysics Data System (ADS)

    Bentounes, N.; Jaffrin, A.

    1998-09-01

    Heat and mass transfers occuring in a counterflow direct contact liquid-gas exchanger determine the performance of a new greenhouse air dehumidifier designed at INRA. This prototype uses triethylene glycol (TEG) as the desiccant fluid which extracts water vapor from the air. The regeneration of the TEG desiccant fluid is then performed by direct contact with combustion gas from a high efficiency boiler equipped with a condensor. The heat and mass transfers between the thin film of diluted TEG and the hot gas were simulated by a model which uses correlation formula from the literature specifically relevant to the present cross-corrugated plates geometry. A simple set of analytical solutions is first derived, which explains why some possible processes can clearly be far from optimal. Then, more exact numerical calculations confirm that some undesirable water recondensations on the upper part of the exchanger were limiting the performance of this prototype. More suitable conditions were defined for the process, which lead to a new design of the apparatus. In this second prototype, a gas-gas exchanger provides dryer and cooler gas to the basis of the regenerators, while a warmer TEG is fed on the top. A whole range of operating conditions was experimented and measured parameters were compared with numerical simulations of this new configuration: recondensation did not occur any more. As a consequence, this second prototype was able to concentrate the desiccant fluid at the desired rate of 20 kg H_{2O}/hour, under temperature and humidity conditions which correspond to the dehumidification of a 1000 m2 greenhouse heated at night during the winter season.

  13. Air Conditioner/Dehumidifier

    NASA Technical Reports Server (NTRS)

    1986-01-01

    An ordinary air conditioner in a very humid environment must overcool the room air, then reheat it. Mr. Dinh, a former STAC associate, devised a heat pipe based humidifier under a NASA Contract. The system used heat pipes to precool the air; the air conditioner's cooling coil removes heat and humidity, then the heat pipes restore the overcooled air to a comfortable temperature. The heat pipes use no energy, and typical savings are from 15-20%. The Dinh Company also manufactures a "Z" coil, a retrofit cooling coil which may be installed on an existing heater/air conditioner. It will also provide free hot water. The company has also developed a photovoltaic air conditioner and solar powered water pump.

  14. Use of a double condenser in a dehumidifier with a spray dryer for vitamin A extraction in tomato as a heat-sensitive material

    NASA Astrophysics Data System (ADS)

    Kosasih, E. A.; Warjito, H., Imansyah I.; Ruhyat, N.

    2017-06-01

    Spray dryers are commonly operated at a high temperature (>100 °C), which becomes an obstacle for heat-sensitive materials. In this study, a refrigeration system that uses evaporator as dehumidifier and that recovers the heat released from the first condenser to preheat the drying air was utilised to reduce the drying temperature. Results showed that the degradation of vitamin A (measured with the high performance liquid chromatography method) in tomato increased significantly when the drying air temperature increased from 90 °C to 120 °C, and it cannot be controlled at a temperature higher than 120 °C. At an air flow rate of 450 lpm, the drying capacity at a drying air temperature of 60 °C (with refrigeration, humidity ratio of 0.005 [kg H2O / kg dry air]) is equal to the drying capacity at a drying air temperature of 120 °C (without refrigeration, humidity ratio of 0.021 [kg H2O / kg dry air]). The drying capacity at a drying air temperature of 90 °C (with refrigeration) even becomes 1.5 times the drying capacity at a drying air temperature of 120 °C (without refrigeration). The combination of a spray dryer system with a refrigeration system (double condenser) is therefore beneficial for drying heat-sensitive materials, such as vitamin A.

  15. Software for the Design of Swimming Pool Dehumidifiers Units

    NASA Astrophysics Data System (ADS)

    Rubina, Aleš; Blasinski, Petr; Tesař, Zdeněk

    2013-06-01

    The article deals with the description and solution of physical phenomena taking place during evaporation of water. The topicality of the theme is given a number of built indoor swimming pool and wellness centers at present. In addressing HVAC systems serving these areas, it is necessary to know the various design parameters in the interior including the water temperature as the pool temperature and humidity. Following is a description of the calculation module, air handling units, including optimizing the settings of the physical changes in order to ensure the lowest energy consumption for air treatment and required maintaining internal microclimate parameters.

  16. 77 FR 51943 - Energy Conservation Standards for Residential Dehumidifiers: Public Meeting and Availability of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-28

    ...) 586-2945. Please submit one signed original paper copy. Hand Delivery/Courier: Ms. Brenda Edwards, U.S.... Please submit one signed original paper copy. Docket: For access to the docket to read background... the comment period should extend past the public meeting date. DOE has determined that an extension of...

  17. Improving Malaysian cocoa quality through the use of dehumidified air under mild drying conditions.

    PubMed

    Hii, Ching L; Law, Chung L; Cloke, Michael; Sharif, Suzannah

    2011-01-30

    Various studies have been conducted in the past to improve the quality of Malaysian cocoa beans. However, the processing methods still remain crude and lack technological advancement. In terms of drying, no previous study has attempted to apply advanced drying technology to improve bean quality. This paper presents the first attempt to improve the quality of cocoa beans through heat pump drying using constant air (28.6 and 40.4 °C) and stepwise (step-up 30.7-43.6-56.9 °C and step-down 54.9-43.9 °C) drying profiles. Comparison was made against hot air drying at 55.9 °C. Product quality assessment showed significant improvement in the quality of Malaysian cocoa beans. Quality was found to be better in terms of lower acidity (higher pH) and higher degree of browning (cut test) for cocoa beans dried using the step-up profile. All heat pump-dried samples showed flavour quality comparable to that of Ghanaian and better than that of Malaysian and Indonesian commercial samples. Step-up-dried samples showed the best flavour profile with high level of cocoa flavour, low in sourness and not excessive in bitterness and astringency. Dried cocoa samples from the step-up drying profile showed the best overall quality as compared with commercial samples from Malaysia, Indonesia and Ghana. The improvement of Malaysian cocoa bean quality is thus achievable through heat pump drying. 2010 Society of Chemical Industry.

  18. 77 FR 31443 - Energy Conservation Program: Test Procedures for Residential Dishwashers, Dehumidifiers, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... dishwashers with a separate soil- sensing cycle, and the normal cycle definition, power supply and detergent... Soiling Requirements 5. Detergent Dosing Specifications E. Incorporation by Reference of an Updated AHAM...: (1) The addition of a method to rate the efficiency of soil-sensing products; (2) the addition of a...

  19. 78 FR 21215 - Energy Conservation Program for Consumer Products: Association of Home Appliance Manufacturers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... to amend the test procedures for residential dishwashers, dehumidifiers, and conventional cooking... procedures for residential dishwashers, dehumidifiers, and conventional cooking products, go to the Federal e..., dehumidifiers, and conventional cooking products (77 FR 65942, Oct. 31, 2012) and its direct final rule to amend...

  20. 49 CFR 173.307 - Exceptions for compressed gases.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... subchapter. (3) Balls used for sports. (4) Refrigerating machines, including dehumidifiers and air... of a flammable, non-toxic liquefied gas. (5) Manufactured articles or apparatuses, each containing...

  1. Control methods and systems for indirect evaporative coolers

    DOEpatents

    Woods, Jason; Kozubal, Erik

    2015-09-22

    A control method for operating an indirect evaporative cooler to control temperature and humidity. The method includes operating an airflow control device to provide supply air at a flow rate to a liquid desiccant dehumidifier. The supply air flows through the dehumidifier and an indirect evaporative cooler prior to exiting an outlet into a space. The method includes operating a pump to provide liquid desiccant to the liquid desiccant dehumidifier and sensing a temperature of an airstream at the outlet of the indirect evaporative cooler. The method includes comparing the temperature of the airstream at the outlet to a setpoint temperature at the outlet and controlling the pump to set the flow rate of the liquid desiccant. The method includes sensing space temperature, comparing the space temperature with a setpoint temperature, and controlling the airflow control device to set the flow rate of the supply air based on the comparison.

  2. Desiccant-based dehumidification system and method

    DOEpatents

    Fischer, John C.

    2004-06-22

    The present invention provides an apparatus for dehumidifying air supplied to an enclosed space by an air conditioning unit. The apparatus includes a partition separating the interior of the housing into a supply portion and a regeneration portion. The supply portion has an inlet for receiving supply air from the air conditioning unit and an outlet for supplying air to the enclosed space. A regeneration fan creates the regeneration air stream. The apparatus includes an active desiccant wheel positioned such that a portion of the wheel extends into the supply portion and a portion of the wheel extends into the regeneration portion, so that the wheel can rotate through the supply air stream and the regeneration air stream to dehumidify the supply air stream. A heater warms the regeneration air stream as necessary to regenerate the desiccant wheel. The invention also comprises a hybrid system that combines air conditioning and dehumidifying components into a single integrated unit.

  3. Study of the application of solar chemical dehumidification system to wind tunnel facilities of NASA Lewis Research Center at Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Energy utilization and cost payback analyses were prepared for proposed modifications. A 50,000 CFM standard compact packaged solid desiccant dehumidifier utilizing high temperature hot water (HTHW) for desiccant regeneration was added. The HTHW is generated by utilizing solar energy and is stored in a storage tank. A steam boiler is provided as a back-up for the solar system. A 50,000 CFM standard compact package solid desiccant dehumidifier utilizing high temperature hot water (HTHW) for desiccant regeneration was added. The HTHW is generated by utilizing a steam boiler and a heat exchanger and is stored in a storage tank.

  4. Membrane humidity control investigation

    NASA Technical Reports Server (NTRS)

    Elam, J.; Ruder, J.; Strumpf, H.

    1974-01-01

    The basic performance data on a hollow fiber membrane unit that removes water from a breathing gas loop by diffusion is presented. Using available permeability data for cellulose acetate, a preliminary design was made of a dehumidifier unit that would meet the problem statement.

  5. Liquid Desiccant Regenerable Filters For Indoor Environmental Quality and Security

    DTIC Science & Technology

    2003-11-19

    Blake, C. Eddy, K. Evans, and Huang, J., “Deactivation of Bacillus Spores in Liquid Desiccant Media”, Unpublished Results, NREL, 2003. 10...Activated Technology RD&D over the past several years. This research develops heating, ventilation, and air-conditioning ( HVAC ) equipment whose...without expensive overcool and reheat. Packaged, solid desiccant dehumidifiers are used extensively in commercial HVAC applications where humidity

  6. 77 FR 76952 - Energy Conservation Program for Consumer Products: Association of Home Appliance Manufacturers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-31

    ... conventional cooking products, published on October 31, 2012, and DOE's direct final rule to amend energy... cooking products (77 FR 65942 (Oct. 31, 2012)) and its direct final rule to amend the energy conservation... Residential Dishwashers, Dehumidifiers, and Conventional Cooking Products and Docket No. EERE-2011-BT-STD-0060...

  7. 49 CFR 173.307 - Exceptions for compressed gases.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... For transportation by air, tires and tire assemblies must meet the conditions in § 175.8(b)(4) of this subchapter. (3) Balls used for sports. (4) Refrigerating machines, including dehumidifiers and air conditioners, and components thereof, such as precharged tubing containing: (i) 12 kg (25 pounds) or less of a...

  8. Performance of the SERI parallel-passage dehumidifer

    SciTech Connect

    Schlepp, D.; Barlow, R.

    1984-09-01

    The key component in improving the performance of solar desiccant cooling systems is the dehumidifier. A parallel-passage geometry for the desiccant dehumidifier has been identified as meeting key criteria of low pressure drop, high mass transfer efficiency, and compact size. An experimental program to build and test a small-scale prototype of this design was undertaken in FY 1982, and the results are presented in this report. Computer models to predict the adsorption/desorption behavior of desiccant dehumidifiers were updated to take into account the geometry of the bed and predict potential system performance using the new component design. The parallel-passage designmore » proved to have high mass transfer effectiveness and low pressure drop over a wide range of test conditions typical of desiccant cooling system operation. The prototype dehumidifier averaged 93% effectiveness at pressure drops of less than 50 Pa at design point conditions. Predictions of system performance using models validated with the experimental data indicate that system thermal coefficients of performance (COPs) of 1.0 to 1.2 and electrical COPs above 8.5 are possible using this design.« less

  9. 49 CFR 571.103 - Standard No. 103; Windshield defrosting and defogging systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... concrete pavement (or other surface with equivalent coefficient of surface friction) at a specified speed... defogging system which operates either by applying heat to the windshield or by dehumidifying the air inside... equipped with a heating system other than a heat exchanger type that uses the engine's coolant as a means...

  10. 49 CFR 571.103 - Standard No. 103; Windshield defrosting and defogging systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... concrete pavement (or other surface with equivalent coefficient of surface friction) at a specified speed... defogging system which operates either by applying heat to the windshield or by dehumidifying the air inside... equipped with a heating system other than a heat exchanger type that uses the engine's coolant as a means...

  11. 49 CFR 571.103 - Standard No. 103; Windshield defrosting and defogging systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... concrete pavement (or other surface with equivalent coefficient of surface friction) at a specified speed... defogging system which operates either by applying heat to the windshield or by dehumidifying the air inside... equipped with a heating system other than a heat exchanger type that uses the engine's coolant as a means...

  12. 49 CFR 571.103 - Standard No. 103; Windshield defrosting and defogging systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... concrete pavement (or other surface with equivalent coefficient of surface friction) at a specified speed... defogging system which operates either by applying heat to the windshield or by dehumidifying the air inside... system other than a heat exchanger type that uses the engine's coolant as a means to supply the heat to...

  13. 49 CFR 571.103 - Standard No. 103; Windshield defrosting and defogging systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... concrete pavement (or other surface with equivalent coefficient of surface friction) at a specified speed... defogging system which operates either by applying heat to the windshield or by dehumidifying the air inside... system other than a heat exchanger type that uses the engine's coolant as a means to supply the heat to...

  14. 78 FR 31517 - Notification of Proposed Production Activity; Vestas Nacelles America, Inc.; Subzone 123E (Wind...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-24

    ... Activity; Vestas Nacelles America, Inc.; Subzone 123E (Wind Turbines); Brighton, Denver, Pueblo, and... during customs entry procedures that apply to wind turbines, nacelles, hubs, blades, and towers (free, 2...; dehumidifiers; cooling units; condensate heaters; heat exchangers; slip rings; filters; kabi sprayers; bearings...

  15. 40 CFR 82.152 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...: compressor, condenser, evaporator, or auxiliary heat exchange coil; or any maintenance, service, or repair... in part or whole of a class I or class II ozone-depleting substance that is used for heat transfer... window air conditioners and packaged terminal air heat pumps), dehumidifiers, under-the-counter ice...

  16. A Mold by Any Other Name: One Librarian's Battle Against a Mold Bloom.

    ERIC Educational Resources Information Center

    Smith, Laura Katz

    1997-01-01

    Describes how library staff at Virginia Polytechnic Institute and State University cleaned up materials after a mold bloom in the rare book room. Includes advice for controlling mold: set up a hygrothermograph, clean dust from books, set up fans, do a "skin" test at regular intervals, keep windows closed, have dehumidifiers available.…

  17. Water vapor mass balance method for determining air infiltration rates in houses

    Treesearch

    David R. DeWalle; Gordon M. Heisler

    1980-01-01

    A water vapor mass balance technique that includes the use of common humidity-control equipment can be used to determine average air infiltration rates in buildings. Only measurements of the humidity inside and outside the home, the mass of vapor exchanged by a humidifier/dehumidifier, and the volume of interior air space are needed. This method gives results that...

  18. Handbook of dehumidification technology

    SciTech Connect

    Brundrett, G.W.

    1987-01-01

    This book shows how dehumidification can alleviate environmental problems in human and industrial spheres which carry major cost implications. The applications of dehumidification, sorbent, air cycle and refrigerant are outlined but the main emphasis is placed on the refrigerant cycle because its applications and product range are the most extensive. A more detailed review of the main applications and opportunities such as housing condensation problems, protection and control in industry and energy saving for swimming pools then follows. Specialist sections on food and flowers and the drying of pressurized gases precede chapters on future developments, economic aspects and a usefulmore » list of further information sources including active research centres. The Contents discussed are: Introduction . Principles . Design considerations for refrigerant dehumidifiers . Domestic applications and dehumidifiers . Swimming pools . Industrial dehumidification . Food and flowers . Drying high pressure gases . Future trends . Economics . Further sources of information.« less

  19. The influence of temperature on fatigue-crack growth in a mill annealed Ti-6Al-4V alloy

    NASA Technical Reports Server (NTRS)

    Wei, R. P.; Ritter, D. L.

    1972-01-01

    To understand the influence temperature on the rate of fatigue crack growth in high strength metal alloys, constant load amplitude, fatigue crack growth experiments were carried out using a 1/4-inch-thick (6.35 mm) mill annealed Ti-6Al-4V alloy plate as a model material. The rates of fatigue crack growth were determined as a function of temperature, ranging from room temperature to about 290 C (or, about 550 F/563K) and as a function of the crack tip stress intensity factor in a dehumidified high purity argon environment. Limited correlative experiments indicate that dehumidified oxygen and hydrogen have no effect on the rate of fatigue crack growth in this alloy, while distilled water increased the rate of crack growth slightly in the range tested. Companion fractographic examinations suggest that the mechanisms for fatigue crack growth in the various environments are essentially the same.

  20. USAF Dehumidification Efforts for Corrosion Control

    DTIC Science & Technology

    2011-08-16

    Stored AGE Renewable energy powers dehumidification equipment (DH) DH maintains dry air in storage booths, protecting AGE equipment from...lighting also powered by renewable energy 11 CHP Shelters • Used to prevent corrosion on outer skin • Being developed for the F-22 at...DH can be Sheltered or Unsheltered • Air Dehydration Units - Uses a self rejuvenating desiccant wheel dehumidifier - Closed or open loop

  1. Reliability-Centered Maintenance

    DTIC Science & Technology

    1978-12-29

    the pack through a flow-control valve and is cooled and dehumidified by a heat exchanger and the turbine of an air-cycle refrigeration ma- chine. The...dirt, moisture, and heat are the most susceptible to corrosion, and properly applied and maintained protective coatings are necessary to prevent...LFM’TNT i RCJL, ’A~r I ARLCA & WORK JNI- N UMUL R, United Airlines San Francisco International Airport San Francisco, Ca 94128 Office of Assistant

  2. 47. View of "dry air inlets" to waveguides entering scanner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. View of "dry air inlets" to waveguides entering scanner building 105. Dried air is generated under pressure by Ingersoll-Rand dehumidified/dessicator and compressor system. View is at entrance from passageway that links into corner of scanner building. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  3. The simulation of temperature distribution and relative humidity with liquid concentration of 50% using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Yohana, Eflita; Yulianto, Mohamad Endy; Kwang-Hwang, Choi; Putro, Bondantio; Yohanes Aditya W., A.

    2015-12-01

    The study of humidity distribution simulation inside a room has been widely conducted by using computational fluid dynamics (CFD). Here, the simulation was done by employing inputs in the experiment of air humidity reduction in a sample house. Liquid dessicant CaCl2was used in this study to absorb humidity in the air, so that the enormity of humidity reduction occured during the experiment could be obtained.The experiment was conducted in the morning at 8 with liquid desiccant concentration of 50%, nozzle dimension of 0.2 mms attached in dehumidifier, and the debit of air which entered the sample house was 2.35 m3/min. Both in inlet and outlet sides of the room, a DHT 11 censor was installed and used to note changes in humidity and temperature during the experiment. In normal condition without turning on the dehumidifier, the censor noted that the average temperature inside the room was 28°C and RH of 65%.The experiment result showed that the relative humidity inside a sample house was decreasing up to 52% in inlet position. Further, through the results obtained from CFD simulation, the temperature distribution and relative humidity inside the sample house could be seen. It showed that the concentration of liquid desiccant of 50% experienced a decrease while the relative humidity distribution was considerably good since the average RH was 55% followed by the increase in air temperature of 29.2° C inside the sample house.

  4. Performance assessment of radiant cooling system integrated with desiccant assisted DOAS with solar regeneration

    SciTech Connect

    Khan, Yasin; Singh, Gaurav; Mathur, Jyotirmay

    The Radiant cooling system integrated with Dedicated Outdoor Air System (DOAS) is a viable substitution for conventional all air system in order to reduce primary energy consumption, as it decouples the cooling and ventilation task. In DOAS major portion of energy is consumed in cooling coil where it dehumidifies the process supply air. This study describes an alternate solution for dehumidification, with the substitution of the desiccant wheel with solar regeneration in place of a chilled water coil based dehumidifier. In this paper, simulations were carried out using EnergyPlus on a reference medium office building to investigate the contribution ofmore » solar energy towards the total energy consumption of desiccant assisted DOAS with radiant cooling system. To evaluate the system performance and energy saving potential, desiccant based DOAS is compared with cooling coil assisted DOAS integrated with Radiant cooling system. Simulations were carried out for different solar collector area to evaluate primary energy savings. Results indicate that from 7.4 % to 28.6 % energy saving (according to different collector area) can be achieved due to the solar regeneration in desiccant assisted DOAS, the impact of different solar collector area on potential of energy savings is also described.« less

  5. Performance assessment of radiant cooling system integrated with desiccant assisted DOAS with solar regeneration

    DOE PAGES

    Khan, Yasin; Singh, Gaurav; Mathur, Jyotirmay; ...

    2017-06-13

    The Radiant cooling system integrated with Dedicated Outdoor Air System (DOAS) is a viable substitution for conventional all air system in order to reduce primary energy consumption, as it decouples the cooling and ventilation task. In DOAS major portion of energy is consumed in cooling coil where it dehumidifies the process supply air. This study describes an alternate solution for dehumidification, with the substitution of the desiccant wheel with solar regeneration in place of a chilled water coil based dehumidifier. In this paper, simulations were carried out using EnergyPlus on a reference medium office building to investigate the contribution ofmore » solar energy towards the total energy consumption of desiccant assisted DOAS with radiant cooling system. To evaluate the system performance and energy saving potential, desiccant based DOAS is compared with cooling coil assisted DOAS integrated with Radiant cooling system. Simulations were carried out for different solar collector area to evaluate primary energy savings. Results indicate that from 7.4 % to 28.6 % energy saving (according to different collector area) can be achieved due to the solar regeneration in desiccant assisted DOAS, the impact of different solar collector area on potential of energy savings is also described.« less

  6. Effects of steam-microwave blanching and different drying processes on drying characteristics and quality attributes of Thunbergia laurifolia Linn. leaves.

    PubMed

    Phahom, Traiphop; Phoungchandang, Singhanat; Kerr, William L

    2017-08-01

    Dried Thunbergia laurifolia leaves are usually prepared using tray drying, resulting in products that have lost substantial amounts of bioactive compounds and antioxidant activity. The maturity of the raw material, blanching techniques and drying methods were investigated in order to select the best condition to produce high qualities of dried T. laurifolia leaves. The 1st stage of maturity was selected and steam-microwave blanching (SMB) for 4 min was adequate for blanching leading to the maximum recovery of bioactive compounds. The modified Halsey model was the best desorption isotherm model. A new drying model proposed in this study was the best to fit the drying curves as compared to five common drying models. Moisture diffusivities were increased with the increase of drying temperature when combining SMB and heat pump-dehumidified drying. Microwave heat pump-dehumidified drying (MHPD) provided the shortest drying time, high specific moisture extraction rate (SMER) and could reduce drying time by 67.5% and increase caffeic acid and quercetin by 51.24% and 60.89%, respectively. MHPD was found to be the best drying method and provided the highest antioxidant activity and bioactive compounds content, high SMER and short drying time. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Small Changes Yield Large Results at NIST's Net-Zero Energy Residential Test Facility.

    PubMed

    Fanney, A Hunter; Healy, William; Payne, Vance; Kneifel, Joshua; Ng, Lisa; Dougherty, Brian; Ullah, Tania; Omar, Farhad

    2017-12-01

    The Net-Zero Energy Residential Test Facility (NZERTF) was designed to be approximately 60 % more energy efficient than homes meeting the 2012 International Energy Conservation Code (IECC) requirements. The thermal envelope minimizes heat loss/gain through the use of advanced framing and enhanced insulation. A continuous air/moisture barrier resulted in an air exchange rate of 0.6 air changes per hour at 50 Pa. The home incorporates a vast array of extensively monitored renewable and energy efficient technologies including an air-to-air heat pump system with a dedicated dehumidification cycle; a ducted heat-recovery ventilation system; a whole house dehumidifier; a photovoltaic system; and a solar domestic hot water system. During its first year of operation the NZERTF produced an energy surplus of 1023 kWh. Based on observations during the first year, changes were made to determine if further improvements in energy performance could be obtained. The changes consisted of installing a thermostat that incorporated control logic to minimize the use of auxiliary heat, using a whole house dehumidifier in lieu of the heat pump's dedicated dehumidification cycle, and reducing the ventilation rate to a value that met but did not exceed code requirements. During the second year of operation the NZERTF produced an energy surplus of 2241 kWh. This paper describes the facility, compares the performance data for the two years, and quantifies the energy impact of the weather conditions and operational changes.

  8. Evaluation of Humidity Control Options in Hot-Humid Climate Homes (Fact Sheet)

    SciTech Connect

    Not Available

    2011-12-01

    This technical highlight describes NREL research to analyze the indoor relative humidity in three home types in the hot-humid climate zone, and examine the impacts of various dehumidification equipment and controls. As the Building America program researches construction of homes that achieve greater source energy savings over typical mid-1990s construction, proper modeling of whole-house latent loads and operation of humidity control equipment has become a high priority. Long-term high relative humidity can cause health and durability problems in homes, particularly in a hot-humid climate. In this study, researchers at the National Renewable Energy Laboratory (NREL) used the latest EnergyPlus toolmore » equipped with the moisture capacitance model to analyze the indoor relative humidity in three home types: a Building America high-performance home; a mid-1990s reference home; and a 2006 International Energy Conservation Code (IECC)-compliant home in hot-humid climate zones. They examined the impacts of various dehumidification equipment and controls on the high-performance home where the dehumidification equipment energy use can become a much larger portion of whole-house energy consumption. The research included a number of simulated cases: thermostat reset, A/C with energy recovery ventilator, heat exchanger assisted A/C, A/C with condenser reheat, A/C with desiccant wheel dehumidifier, A/C with DX dehumidifier, A/C with energy recovery ventilator, and DX dehumidifier. Space relative humidity, thermal comfort, and whole-house source energy consumption were compared for indoor relative humidity set points of 50%, 55%, and 60%. The study revealed why similar trends of high humidity were observed in all three homes regardless of energy efficiency, and why humidity problems are not necessarily unique in the high-performance home. Thermal comfort analysis indicated that occupants are unlikely to notice indoor humidity problems. The study confirmed that supplemental

  9. Technology advancement of the static feed water electrolysis process

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Wynveen, R. A.

    1977-01-01

    A program to advance the technology of oxygen- and hydrogen-generating subsystems based on water electrolysis was studied. Major emphasis was placed on static feed water electrolysis, a concept characterized by low power consumption and high intrinsic reliability. The static feed based oxygen generation subsystem consists basically of three subassemblies: (1) a combined water electrolysis and product gas dehumidifier module; (2) a product gas pressure controller and; (3) a cyclically filled water feed tank. Development activities were completed at the subsystem as well as at the component level. An extensive test program including single cell, subsystem and integrated system testing was completed with the required test support accessories designed, fabricated, and assembled. Mini-product assurance activities were included throughout all phases of program activities. An extensive number of supporting technology studies were conducted to advance the technology base of the static feed water electrolysis process and to resolve problems.

  10. Analysis of a membrane-based condesate recovery heat exchanger (CRX)

    NASA Technical Reports Server (NTRS)

    Newbold, D.D.

    1993-01-01

    The development of a temperature and humidity control system that can remove heat and recover water vapor is key to the development of an Environmental Control and Life Support System (ECLSS). Large quantities of water vapor must be removed from air, and this operation has proven difficult in the absense of gravity. This paper presents the modeling results from a program to develop a novel membrane-based heat exchanger known as the condensate recovery heat exchanger (CRX). This device cools and dehumidifies humid air and simultaneously recovers water-vapor condensate. In this paper, the CRX is described and the results of an analysis of the heat- and mass-transfer characteristics of the device are given.

  11. Energy-Efficient Management of Mechanical Ventilation and Relative Humidity in Hot-Humid Climates

    SciTech Connect

    Withers, Jr., Charles R.

    2016-12-01

    In hot and humid climates, it is challenging to energy-efficiently maintain indoor RH at acceptable levels while simultaneously providing required ventilation, particularly in high performance low cooling load homes. The fundamental problem with solely relying on fixed capacity central cooling systems to manage moisture during low sensible load periods is that they are oversized for cooler periods of the year despite being 'properly sized' for a very hot design cooling day. The primary goals of this project were to determine the impact of supplementing a central space conditioning system with 1) a supplemental dehumidifier and 2) a ductless mini-split onmore » seasonal energy use and summer peak power use as well as the impact on thermal distribution and humidity control inside a completely furnished lab home that was continuously ventilated in accordance with ASHRAE 62.2-2013.« less

  12. Building America Case Study: Energy Efficient Management of Mechanical Ventilation and Relative Humidity in Hot-Humid Climates, Cocoa, Florida

    SciTech Connect

    2017-01-01

    In hot and humid climates, it is challenging to energy-efficiently maintain indoor RH at acceptable levels while simultaneously providing required ventilation, particularly in high performance low cooling load homes. The fundamental problem with solely relying on fixed capacity central cooling systems to manage moisture during low sensible load periods is that they are oversized for cooler periods of the year despite being 'properly sized' for a very hot design cooling day. The primary goals of this project were to determine the impact of supplementing a central space conditioning system with 1) a supplemental dehumidifier and 2) a ductless mini-split onmore » seasonal energy use and summer peak power use as well as the impact on thermal distribution and humidity control inside a completely furnished lab home that was continuously ventilated in accordance with ASHRAE 62.2-2013.« less

  13. Breast Cancer Research at NASA

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cells (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunourous tissues. Here, two High-Aspect Ratio Vessels turn at about 12 rmp to keep breast tissue constructs suspended inside the culture media. Syringes allow scientists to pull for analysis during growth sequences. The tube in the center is a water bubbler that dehumidifies the air to prevent evaporation of the media and thus the appearance of destructive bubbles in the bioreactor.

  14. An experimental aluminum-fueled power plant

    NASA Astrophysics Data System (ADS)

    Vlaskin, M. S.; Shkolnikov, E. I.; Bersh, A. V.; Zhuk, A. Z.; Lisicyn, A. V.; Sorokovikov, A. I.; Pankina, Yu. V.

    2011-10-01

    An experimental co-generation power plant (CGPP-10) using aluminum micron powder (with average particle size up to 70 μm) as primary fuel and water as primary oxidant was developed and tested. Power plant can work in autonomous (unconnected from industrial network) nonstop regime producing hydrogen, electrical energy and heat. One of the key components of experimental plant is aluminum-water high-pressure reactor projected for hydrogen production rate of ∼10 nm3 h-1. Hydrogen from the reactor goes through condenser and dehumidifier and with -25 °C dew-point temperature enters into the air-hydrogen fuel cell 16 kW-battery. From 1 kg of aluminum the experimental plant produces 1 kWh of electrical energy and 5-7 kWh of heat. Power consumer gets about 10 kW of electrical power. Plant electrical and total efficiencies are 12% and 72%, respectively.

  15. The influence of temperature on fatigue-crack growth in a mill-annealed Ti-6Al-4V alloy

    NASA Technical Reports Server (NTRS)

    Wei, R. P.; Ritter, D. L.

    1971-01-01

    To understand the influence of temperature on the rate of fatigue crack growth in high strength metal alloys, constant load amplitude fatigue crack growth experiments were carried out using a 1/4 inch thick (6.35 mm) mill-annealed Ti-6Al-4V alloy plate as a model material. The rates of fatigue crack growth were determined as a function of temperature, ranging from room temperature to about 290 C and as a function of the crack tip, stress intensity factor K, in dehumidified high purity argon environment. The dependence of the rate of fatigue crack growth on K appears to be separable into two regions. The transition correlates with changes in both the microscopic and macroscopic appearances of the fracture surfaces, and suggests a change in the mechanism and the influence of microstructure on fatigue crack growth.

  16. Modelling and experimental verification of a water alleviation system for the NASP. [National Aerospace Plane

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. James

    1992-01-01

    One possible low speed propulsion system for the National Aerospace Plane is a liquid air cycle engine (LACE). The LACE system uses the heat sink in the liquid hydrogen propellant to liquefy air in a heat exchanger which is then pumped up to high pressure and used as the oxidizer in a hydrogen liquid air rocket. The inlet airstream must be dehumidified or moisture could freeze on the cryogenic heat exchangers and block them. The main objective of this research has been to develop a computer simulation of the cold tube/antifreeze-spray water alleviation system and to verify the model with experimental data. An experimental facility has been built and humid air tests were conducted on a generic heat exchanger to obtain condensing data for code development. The paper describes the experimental setup, outlines the method of calculation used in the code, and presents comparisons of the calculations and measurements. Cause of discrepancies between the model and data are explained.

  17. Experimental study of hybrid interface cooling system using air ventilation and nanofluid

    NASA Astrophysics Data System (ADS)

    Rani, M. F. H.; Razlan, Z. M.; Bakar, S. A.; Desa, H.; Wan, W. K.; Ibrahim, I.; Kamarrudin, N. S.; Bin-Abdun, Nazih A.

    2017-09-01

    The hybrid interface cooling system needs to be established to chill the battery compartment of electric car and maintained its ambient temperature inside the compartment between 25°C to 35°C. The air cooling experiment has been conducted to verify the cooling capacity, compressor displacement volume, dehumidifying value and mass flow rate of refrigerant (R-410A). At the same time, liquid cooling system is analysed theoretically by comparing the performance of two types of nanofluid, i.e., CuO + Water and Al2O3 + Water, based on the heat load generated inside the compartment. In order for the result obtained to be valid and reliable, several assumptions are considered during the experimental and theoretical analysis. Results show that the efficiency of the hybrid interface cooling system is improved as compared to the individual cooling system.

  18. Evaluation of food drying with air dehumidification system: a short review

    NASA Astrophysics Data System (ADS)

    Djaeni, M.; Utari, F. D.; Sasongko, S. B.; Kumoro, A. C.

    2018-01-01

    Energy efficient drying for food and agriculture products resulting high quality products has been an important issue. Currently, about 50% of total energy for postharvest treatment was used for drying. This paper presents the evaluation of new approach namely air dehumidification system with zeolite for food drying. Zeolite is a material having affinity to water in which reduced the moisture in air. With low moisture content and relative humidity, the air can improve driving force for drying even at low temperature. Thus, the energy efficiency can be potentially enhanced and the product quality can be well retained. For proving the hypothesis, the paddy and onion have been dried using dehumidified air. As performance indicators, the drying time, product quality, and heat efficiency were evaluated. Results indicated that the drying with zeolite improved the performances significantly. At operating temperature ranging 50 - 60°C, the efficiency of drying system can reach 75% with reasonable product quality.

  19. Gas chromatographic determination of 1,4-dioxane at low parts-per-million levels in glycols.

    PubMed

    Pundlik, M D; Sitharaman, B; Kaur, I

    2001-02-01

    1,4-Dioxane is a flammable liquid and tends to form explosive peroxides. Its formation in glycols (low parts-per-million levels), which are used as dehumidifying agents in refineries, may take place by condensation. 1,4-Dioxane thus formed gets distilled over with benzene in the refinery process. Therefore, it is necessary to identify and determine the levels of 1,4-dioxane in glycols as well as benzene. Gas chromatography (GC) is probably the best technique for this purpose. GC analysis may be carried out using a flame ionization detector. Results show that 1,4-dioxane can be comfortably determined down to 2 ppm in glycols and benzene.

  20. Discussion on fresh air volume in Temperature and Humidity Independent Control of Air-conditioning System

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaolong; Liu, Jinxiang; Wang, Yu; Yuan, Xiaolei; Jin, Hui

    2018-05-01

    The fresh air volume in Temperature and Humidity Independent Control of Air-conditioning System(THIC) of a typical office was comfirmed, under the premise of adopting the refrigeration dehumidifying fresh air unit(7°C/12°C). By detailed calculating the space moisture load and the fresh air volume required for dehumidification in 120 selected major cities in China, it can be inferred that the minimum fresh air volume required for dehumidification in THIC is mainly determined by the local outdoor air moisture and the outdoor wind speed; Then the mathematical fitting software Matlab was used to fit the three parameters, and a simplified formula for calculating the minimum per capita fresh air volume required for dehumidification was obtained; And the indoor relative humidity was simulated by the numerical software Airpak and the results by using the formula data and the data for hygiene were compared to verify the relibility of the simplified formula.

  1. Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations

    SciTech Connect

    Kozubal, E.; Herrmann, L.; Deru, M.

    2014-09-01

    Dehumidification or latent cooling in buildings is an area of growing interest that has been identified as needing more research and improved technologies for higher performance. Heating, ventilating, and air-conditioning (HVAC) systems typically expend excessive energy by using overcool-and-reheat strategies to dehumidify buildings. These systems first overcool ventilation air to remove moisture and then reheat the air to meet comfort requirements. Another common strategy incorporates solid desiccant rotors that remove moisture from the air more efficiently; however, these systems increase fan energy consumption because of the high airside pressure drop of solid desiccant rotors and can add heat of absorptionmore » to the ventilation air. Alternatively, liquid desiccant air-conditioning (LDAC) technology provides an innovative dehumidification solution that: (1) eliminates the need for overcooling and reheating from traditional cooling systems; and (2) avoids the increased fan energy and air heating from solid desiccant rotor systems.« less

  2. An innovative permanent total enclosure for blast cleaning and painting ships in drydock

    SciTech Connect

    Garland, C.; Lukey, M.

    1997-12-31

    This paper describes a new innovative Permanent Total Enclosure, or CAPE system, which encloses and captures emissions from blast cleaning and painting ship hulls in drydock. A description of the modular enclosure towers with unique seals is shown with several figures. The support barge with its environmental control equipment which includes a dust collector, VOC thermal oxidizer, dehumidifier, boiler, heating coils, air flow fans and, system controls is also described. Data measurements from the first two applications rate this system at 100 percent capture efficiency, 99 percent VOC destruction efficiency and 99.9 percent dust collection efficiency. Ships can be blastmore » cleaned and painted using noncompliant paints and meet all state and federal standards for air emissions.« less

  3. Vacuum FTIR observation on hygroscopic properties and phase transition of malonic acid aerosols

    NASA Astrophysics Data System (ADS)

    Shao, Xu; Zhang, Yun; Pang, Shu-Feng; Zhang, Yun-Hong

    2017-02-01

    A novel approach based on a combination of a pulse relative humidity (RH) controlling system and a rapid scan vacuum FTIR spectrometer was utilized to investigate the hygroscopic property and phase transition of malonic acid (MA) aerosols. By using this approach, both water vapor amount around the aerosols and water content within aerosols with sub-second time resolution were obtained. Based on the features of FTIR absorbing bands, it can be known that the evolution of hydrogen-bonding structures of malonic acid aerosols took place from (H2O)n-MA to MA-MA accompanying with phase transition in the dehumidifying process. And in present paper, the stepwise efflorescence of MA aerosols and nucleation rates at different RHs are first reported. Our observation has shown that the efflorescence of MA started at ∼17% RH and the nucleation rates increased with decreasing RH.

  4. SciTech Connect

    Kerrigan, P.

    This report describes a research study that was conducted by the Building Science Corporation (BSC) Building America Research Team. BSC seeks to research and report on the field monitoring of the performance of in-situ supplemental dehumidification systems in low energy, high performance homes in a hot-humid climate. The purpose of this research project was to observe and compare the humidity control performance. Specifically, the study sought to compare the interior conditions and mechanical systems operation between two distinct groups of houses; homes with a supplemental dehumidifier installed in addition to HVAC system, and homes without any supplemental dehumidification. The subjectsmore » of the study were 10 single-family, new construction homes in New Orleans, LA.« less

  5. Using liquid desiccant as a regenerable filter for capturing and deactivating contaminants

    DOEpatents

    Slayzak, Steven J.; Anderson, Ren S.; Judkoff, Ronald D.; Blake, Daniel M.; Vinzant, Todd B.; Ryan, Joseph P.

    2007-12-11

    A method, and systems for implementing such method, for purifying and conditioning air of weaponized contaminants. The method includes wetting a filter packing media with a salt-based liquid desiccant, such as water with a high concentration of lithium chloride. Air is passed through the wetted filter packing media and the contaminants in are captured with the liquid desiccant while the liquid desiccant dehumidifies the air. The captured contaminants are then deactivated in the liquid desiccant, which may include heating the liquid desiccant. The liquid desiccant is regenerated by applying heat to the liquid desiccant and then removing moisture. The method includes repeating the wetting with the regenerated liquid desiccant which provides a regenerable filtering process that captures and deactivates contaminants on an ongoing basis while also conditioning the air. The method may include filtration effectiveness enhancement by electrostatic or inertial means.

  6. Water-vapor effects on friction of magnetic tape in contact with nickel-zinc ferrite

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1984-01-01

    The effects of humidity of moist nitrogen on the friction and deformation behavior of magnetic tape in contact with a nickel-zinc ferrite spherical pin were studied. The results indicate that the coefficient of friction is markedly dependent on the ambient relative humidity. Although the coefficient of friction remains low below 40-percent relative humidity, it increases rapidly with increasing relative humidity above 40 percent. The general ambient environment of the tape does not have any effect on the friction behavior if the area where the tape is in sliding contact with the ferrite pin is flooded with controlled nitrogen. The response time for the friction of the tape to humidity changes is about 10 sec. The effect of friction as a function of relative humidity on dehumidifying is very similar to that on humidifying. A surface softening of the tape due to water vapor increases the friction of the tape.

  7. SciTech Connect

    Gao, Zhiming; Abdelaziz, Omar; Qu, Ming

    This paper introduces a first-order physics-based model that accounts for the fundamental heat and mass transfer between a humid-air vapor stream on feed side to another flow stream on permeate side. The model comprises a few optional submodels for membrane mass transport; and it adopts a segment-by-segment method for discretizing heat and mass transfer governing equations for flow streams on feed and permeate sides. The model is able to simulate both dehumidifiers and energy recovery ventilators in parallel-flow, cross-flow, and counter-flow configurations. The predicted tresults are compared reasonably well with the measurements. The open-source codes are written in C++. Themore » model and open-source codes are expected to become a fundament tool for the analysis of membrane-based dehumidification in the future.« less

  8. Microgravity

    NASA Image and Video Library

    1998-10-10

    NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cells (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunourous tissues. Here, two High-Aspect Ratio Vessels turn at about 12 rmp to keep breast tissue constructs suspended inside the culture media. Syringes allow scientists to pull for analysis during growth sequences. The tube in the center is a water bubbler that dehumidifies the air to prevent evaporation of the media and thus the appearance of destructive bubbles in the bioreactor.

  9. SciTech Connect

    Not Available

    This report, Evaluation of the Performance of Houses with and without Supplemental Dehumidification in a Hot-Humid Climate, describes a research study that that was conducted by the Building Science Corporation (BSC) Building America Research Team. BSC seeks to research and report on the field monitoring of the performance of in-situ supplemental dehumidification systems in low energy, high performance, homes in a Hot-Humid climate. The purpose of this research project was to observe and compare the humidity control performance of new, single family, low energy, and high performance, homes. Specifically, the study sought to compare the interior conditions and mechanical systemsmore » operation between two distinct groups of houses, homes with a supplemental dehumidifier installed in addition to HVAC system, and homes without any supplemental dehumidification. The subjects of the study were ten single-family new construction homes in New Orleans, LA. Data logging equipment was installed at each home in 2012. Interior conditions and various end-use loads were monitored for one year. In terms of averages, the homes with dehumidifiers are limiting elevated levels of humidity in the living space. However, there was significant variation in humidity control between individual houses. An analysis of the equipment operation did not show a clear correlation between energy use and humidity levels. In general, no single explanatory variable appears to provide a consistent understanding of the humidity control in each house. Indoor humidity is likely due to all of the factors we have examined, and the specifics of how they are used by each occupant.« less

  10. SciTech Connect

    Kerrigan, P.; Norton, P.

    This report, Evaluation of the Performance of Houses with and without Supplemental Dehumidification in a Hot-Humid Climate, describes a research study that that was conducted by the Building Science Corporation (BSC) Building America Research Team. BSC seeks to research and report on the field monitoring of the performance of in-situ supplemental dehumidification systems in low energy, high performance, homes in a Hot-Humid climate. The purpose of this research project was to observe and compare the humidity control performance of new, single family, low energy, and high performance, homes. Specifically, the study sought to compare the interior conditions and mechanical systemsmore » operation between two distinct groups of houses, homes with a supplemental dehumidifier installed in addition to HVAC system, and homes without any supplemental dehumidification. The subjects of the study were ten single-family new construction homes in New Orleans, LA.Data logging equipment was installed at each home in 2012. Interior conditions and various end-use loads were monitored for one year. In terms of averages, the homes with dehumidifiers are limiting elevated levels of humidity in the living space. However, there was significant variation in humidity control between individual houses. An analysis of the equipment operation did not show a clear correlation between energy use and humidity levels. In general, no single explanatory variable appears to provide a consistent understanding of the humidity control in each house. Indoor humidity is likely due to all of the factors we have examined, and the specifics of how they are used by each occupant.« less

  11. Hygroscopic properties of oxalic acid and atmospherically relevant oxalates

    NASA Astrophysics Data System (ADS)

    Ma, Qingxin; He, Hong; Liu, Chang

    2013-04-01

    Oxalic acid and oxalates represent an important fraction of atmospheric organic aerosols, however, little knowledge about the hygroscopic behavior of these particles is known. In this study, the hygroscopic behavior of oxalic acid and atmospherically relevant oxalates (H2C2O4, (NH4)2C2O4, CaC2O4, and FeC2O4) were studied by Raman spectrometry and vapor sorption analyzer. Under ambient relative humidity (RH) of 10-90%, oxalic acid and these oxalates hardly deliquesce and exhibit low hygroscopicity, however, transformation between anhydrous and hydrated particles was observed during the humidifying and dehumidifying processes. During the water adsorption process, conversion of anhydrous H2C2O4, (NH4)2C2O4, CaC2O4, and FeC2O4 to their hydrated particles (i.e., H2C2O4·2H2O, (NH4)2C2O4·H2O, CaC2O4·H2O, and FeC2O4·2H2O) occurred at about 20% RH, 55% RH, 10% RH, and 75% RH, respectively. Uptake of water on hydrated Ca-oxalate and Fe-oxalate particles can be described by a multilayer adsorption isotherm. During the dehumidifying process, dehydration of H2C2O4·2H2O and (NH4)2C2O4·H2O occurred at 5% RH while CaC2O4·H2O and FeC2O4·2H2O did not undergo dehydration. These results implied that hydrated particles represent the most stable state of oxalic acid and oxalates in the atmosphere. In addition, the assignments of Raman shift bands in the range of 1610-1650 cm-1 were discussed according to the hygroscopic behavior measurement results.

  12. SciTech Connect

    Baxter, Van D.; Rice, C. Keith; Munk, Jeffrey D.

    Between October 2007 and September 2017, Oak Ridge National Laboratory (ORNL) and Lennox Industries, Inc. (Lennox) engaged in a Cooperative Research and Development Agreement (CRADA) to develop an air-source integrated heat pump (AS-IHP) system for the US residential market. The Lennox AS-IHP concept consisted of a high-efficiency air-source heat pump (ASHP) for space heating and cooling services and a separate heat pump water heater/dehumidifier (WH/DH) module for domestic water heating and dehumidification (DH) services. A key feature of this system approach with the separate WH/DH is capability to pretreat (i.e., dehumidify) ventilation air and dedicated whole-house DH independent of themore » ASHP. Two generations of laboratory prototype WH/DH units were designed, fabricated, and lab tested. Performance maps for the system were developed using the latest research version of the US Department of Energy/ORNL heat pump design model (Rice 1992; Rice and Jackson 2005; Shen et al. 2012) as calibrated against the lab test data. These maps served as the input to TRNSYS (Solar Energy Laboratory et al. 2010) to predict annual performance relative to a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (i.e., a combination of an ASHP with a seasonal energy efficiency ratio (SEER) of 13 and resistance water heater with an energy factor (EF) of 0.9). Predicted total annual energy savings (based on use of a two-speed ASHP and the second-generation WH/DH prototype for the AS-IHP), while providing space conditioning, water heating, and dehumidification for a tight, well-insulated 2600 ft2 (242 m2) house at three US locations, ranged from 33 to 36%, averaging 35%, relative to the baseline system. The lowest savings were seen at the cold-climate Chicago location. Predicted energy use for water heating was reduced by about 50 to 60% relative to a resistance WH.« less

  13. SciTech Connect

    CHUGH, Devesh; Gluesenkamp, Kyle R; Abdelaziz, Omar

    In this study, development of a novel system for combined water heating, dehumidification, and space evaporative cooling is discussed. Ambient water vapor is used as a working fluid in an open system. First, water vapor is absorbed from an air stream into an absorbent solution. The latent heat of absorption is transferred into the process water that cools the absorber. The solution is then regenerated in the desorber, where it is heated by a heating fluid. The water vapor generated in the desorber is condensed and its heat of phase change is transferred to the process water in the condenser.more » The condensed water can then be used in an evaporative cooling process to cool the dehumidified air exiting the absorber, or it can be drained if primarily dehumidification is desired. Essentially, this open absorption cycle collects space heat and transfers it to process water. This technology is enabled by a membrane-based absorption/desorption process in which the absorbent is constrained by hydrophobic vapor-permeable membranes. Constraining the absorbent film has enabled fabrication of the absorber and desorber in a plate-and-frame configuration. An air stream can flow against the membrane at high speed without entraining the absorbent, which is a challenge in conventional dehumidifiers. Furthermore, the absorption and desorption rates of an absorbent constrained by a membrane are greatly enhanced. Isfahani and Moghaddam (Int. J. Heat Mass Transfer, 2013) demonstrated absorption rates of up to 0.008 kg/m2s in a membrane-based absorber and Isfahani et al. (Int. J. Multiphase Flow, 2013) have reported a desorption rate of 0.01 kg/m2s in a membrane-based desorber. The membrane-based architecture also enables economical small-scale systems, novel cycle configurations, and high efficiencies. The absorber, solution heat exchanger, and desorber are fabricated on a single metal sheet. In addition to the open arrangement and membrane-based architecture, another novel

  14. Numerical Simulation of Thin Film Breakup on Nonwettable Surfaces

    NASA Astrophysics Data System (ADS)

    Suzzi, N.; Croce, G.

    2017-01-01

    When a continuous film flows on a nonwettable substrate surface, it may break up, with the consequent formation of a dry-patch. The actual shape of the resulting water layer is of great interest in several engineering applications, from in-flight icing simulation to finned dehumidifier behavior modeling. Here, a 2D numerical solver for the prediction of film flow behavior is presented. The effect of the contact line is introduced via the disjoining pressure terms, and both gravity and shear are included in the formulation. The code is validated with literature experimental data for the case of a stationary dry-patch on an inclined plane. Detailed numerical results are compared with literature simplified model prediction. Numerical simulation are then performed in order to predict the threshold value of the film thickness allowing for film breakup and to analyze the dependence of the dynamic contact angle on film velocity and position along the contact line. Those informations will be useful in order to efficiently predict more complex configuration involving multiple breakups on arbitrarily curved substrate surfaces (as those involved in in-flight icing phenomena on aircraft).

  15. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System

    PubMed Central

    Zhao, Baiwang; Peng, Na; Liang, Canzeng; Yong, Wai Fen; Chung, Tai-Shung

    2015-01-01

    In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18–22 g/m3 to a range of 13.5–18.3 g/m3. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process. PMID:26580660

  16. Building America Case Study: Heat Pump Water Heater Ducting Strategies with Encapsulated Attics in Climate Zones 2 and 4, LaFayette, Georgia (CZ4), and Savannah, Georgia (CZ2)

    SciTech Connect

    2017-02-01

    The focus of this study is on the performance of HPWHs with several different duct configurations and their effects on whole building heating, cooling, and moisture loads. A.O. Smith 60 gallon Voltex (PHPT-60) heat pump water heaters (HPWHs) were included at two project sites and ducted to or located within spray foamed encapsulated attics. The effect of ducting a HPWH's air stream does not diminish its efficiency if the ducting does not reduce intake air temperature, which expands HPWH application to confined areas. Exhaust ducts should be insulated to avoid condensation on the exterior, however this imposes a risk ofmore » condensation occurring in the duct's interior near the HPWH due to large variation of temperatures between the compressor and the duct and the presence of bulk moisture around the condenser. The HPWH's air conditioning impact on HVAC equipment loads is minimal when the intake and exhaust air streams are connected to a sealed attic and not the living space. A HPWH is not suitable as a replacement dehumidifier in sealed attics as peak moisture loads were observed to only be reduced if the heat pump operated during the morning. It appears that the intake air temperature and humidity was the most dominant variable affecting HPWH performance. Different ducting strategies such as exhaust duct only, intake duct only, and exhaust and intake ducting did not have any effect on HPWH performance.« less

  17. Modelling heat and mass transfer in a membrane-based air-to-air enthalpy exchanger

    NASA Astrophysics Data System (ADS)

    Dugaria, S.; Moro, L.; Del, D., Col

    2015-11-01

    The diffusion of total energy recovery systems could lead to a significant reduction in the energy demand for building air-conditioning. With these devices, sensible heat and humidity can be recovered in winter from the exhaust airstream, while, in summer, the incoming air stream can be cooled and dehumidified by transferring the excess heat and moisture to the exhaust air stream. Membrane based enthalpy exchangers are composed by different channels separated by semi-permeable membranes. The membrane allows moisture transfer under vapour pressure difference, or water concentration difference, between the two sides and, at the same time, it is ideally impermeable to air and other contaminants present in exhaust air. Heat transfer between the airstreams occurs through the membrane due to the temperature gradient. The aim of this work is to develop a detailed model of the coupled heat and mass transfer mechanisms through the membrane between the two airstreams. After a review of the most relevant models published in the scientific literature, the governing equations are presented and some simplifying assumptions are analysed and discussed. As a result, a steady-state, two-dimensional finite difference numerical model is setup. The developed model is able to predict temperature and humidity evolution inside the channels. Sensible and latent heat transfer rate, as well as moisture transfer rate, are determined. A sensitive analysis is conducted in order to determine the more influential parameters on the thermal and vapour transfer.

  18. Interface problems between material recycling systems and plants

    NASA Astrophysics Data System (ADS)

    Nitta, Keiji; Oguchi, Mitsuo; Otsubo, Koji

    A most important problem to creating a CELSS system to be used in space, for example, for a Lunar Base or Manned Mars mission, seems to be how to design and operate the various material recycling system to be used on the missions. Recent studies of a Lunar Base habitat have identified examples of CELSS configurations to be used for the Plant Cultivation Module. Material recycling subsystems to be installed in the Plant Cultivation Modules are proposed to consist of various sub-systems, such as dehumidifier, oxygen separation systems, catalytic wet oxidation systems, nitrogen adjusting systems, including tanks, and so on. The required performances of such various material recycling subsystems are determined based on precise metabolic data of derived from the various species of plants to be selected and investigated. The plant metabolic data, except that for wheat and potato, has not been fully collected at the present time. Therefore, much additional plant cultivation data is required to determine the performances of each material recycling subsystems introduced in Plant Cultivation Modules.

  19. Development of Algorithms for Control of Humidity in Plant Growth Chambers

    NASA Technical Reports Server (NTRS)

    Costello, Thomas A.

    2003-01-01

    Algorithms were developed to control humidity in plant growth chambers used for research on bioregenerative life support at Kennedy Space Center. The algorithms used the computed water vapor pressure (based on measured air temperature and relative humidity) as the process variable, with time-proportioned outputs to operate the humidifier and de-humidifier. Algorithms were based upon proportional-integral-differential (PID) and Fuzzy Logic schemes and were implemented using I/O Control software (OPTO-22) to define and download the control logic to an autonomous programmable logic controller (PLC, ultimate ethernet brain and assorted input-output modules, OPTO-22), which performed the monitoring and control logic processing, as well the physical control of the devices that effected the targeted environment in the chamber. During limited testing, the PLC's successfully implemented the intended control schemes and attained a control resolution for humidity of less than 1%. The algorithms have potential to be used not only with autonomous PLC's but could also be implemented within network-based supervisory control programs. This report documents unique control features that were implemented within the OPTO-22 framework and makes recommendations regarding future uses of the hardware and software for biological research by NASA.

  20. Health-hazard evaluation report HETA 86-372-1796, National Marine Fisheries Service, US Department of Commerce, Pascagoula, Mississippi

    SciTech Connect

    Boiano, J.M.; Cantor, F.L.; Burr, G.A.

    In response to a request from the U.S. Department of Commerce, an evaluation was made of an ongoing mold and mildew problem at the Southeastern Regional Office of the National Marine Fisheries Service located in Pascagoula, Mississippi. Office workers indicated they were suffering from throat irritation, itchy eyes, sneezing, and coughing symptoms. The problem was traced to an improperly installed all-water heating, ventilating, and air-conditioning system. Deficiencies in the system resulted in water damage, high humidity, and the growth of mold and mildew on all surfaces. Dehumidifiers were useful in reducing the humidity level, and therefore the growth of mildewmore » and mold, but there was still some visible contamination on room surfaces. Airborne levels of total viable microorganisms averaged 1,236 colony-forming units per cubic meter of air. The most-abundant fungal species isolated was Acremonium species. When the results of a medical questionnaire were compared to levels of fungal contamination there was no statistically significant association between the occurrence of illness and exposure to microorganisms. The authors recommend that insulation on the pipes and condenser drain lines be replaced to eliminate the moisture-incursion problems, that all nonporous surfaces be disinfected, and that all nondisposable building contents be cleaned with a vacuum incorporating a high-efficiency particulate air filter. Materials which could not be adequately cleaned were to be discarded.« less

  1. The seasonal performance of a liquid-desiccant air conditioner

    SciTech Connect

    Lowenstein, A.; Novosel, D.

    1995-08-01

    Prior reports on liquid-desiccant systems have focused on their steady-state operation at ARI design conditions. By studying their performance during an entire cooling season, the computer modeling presented here shows that liquid-desiccant systems can have a very high seasonal coefficient of performance (COP). For a liquid-desiccant system that uses a double-effect boiler, COPs ranging from 1.44 in a humid location (Houston) to 2.24 in a dry location (Phoenix) are achieved by fully exploiting indirect evaporative cooling and providing only the minimum latent cooling needed to meet the loads on the building. This minimizes the amount of water absorbed by themore » desiccant and, hence, the amount of thermal energy needed to regenerate it. In applications where latent loads are very high, such as processing the high volumes of ventilation air required to maintain good indoor air quality, the liquid-desiccant air conditioner again has an advantage over vapor-compression equipment. In this study, a liquid-desiccant system is modeled that cools and dehumidifies only the ventilation air of an office building in Atlanta. Although processing an airstream that is only 25% of the total air delivered to the building, the liquid-desiccant system is able to meet 52% of the building`s seasonal cooling requirements and reduce the building`s peak electrical demand by about 47%.« less

  2. Preheater in the 10-by 10-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1958-04-21

    The 10- by 10-Foot Supersonic Wind Tunnel at the NACA Lewis Flight Propulsion Laboratory was built under the Congressional Unitary Plan Act which coordinated wind tunnel construction at the NACA, Air Force, industry, and universities. The 10- by 10, which began operation in 1956, was the largest of the three NACA tunnels built under the act. Researchers could test engines up to five feet in diameter in the 10- by 10-foot test section. A 250,000-horsepower axial-flow compressor fan can generate airflows up to Mach 3.5 through the test section. The incoming air must be dehumidified and cooled so that the proper conditions are present for the test. A large air dryer with 1,890 tons of activated alumina soaks up 1.5 tons of water per minute from the airflow. A cooling apparatus equivalent to 250,000 household air conditioners is used to cool the air. The air heater is located just upstream from the test section. Natural gas is combusted in the tunnel to increase the air temperature. The system could only be employed when the tunnel was run in its closed-circuit propulsion mode.

  3. SciTech Connect

    None

    The purpose of this project by Building Science Corporation was to evaluate the humidity control performance of new single family high performance homes, and compare the interior conditions and mechanical systems operation between two distinct groups of houses: homes with a supplemental dehumidifier installed in addition to HVAC system, and homes without any supplemental dehumidification. The subjects of the study were 10 single-family new construction homes in New Orleans, LA. Data logging equipment was installed at each home in 2012, and interior conditions and various end-use loads were monitored for one year. In terms of averages, the homes with dehumidifiersmore » are limiting elevated levels of humidity in the living space; however, there was significant variation in humidity control between individual houses. An analysis of the equipment operation did not show a clear correlation between energy use and humidity levels. In general, no single explanatory variable appears to provide a consistent understanding of the humidity control in each house. Indoor humidity is likely due to all of the factors we have examined, and the specifics of how they are used by each occupant.« less

  4. Water Collection from Air Humidity in Bahrain

    NASA Astrophysics Data System (ADS)

    Dahman, Nidal A.; Al Juboori, Khalil J.; BuKamal, Eman A.; Ali, Fatima M.; AlSharooqi, Khadija K.; Al-Banna, Shaima A.

    2017-11-01

    The Kingdom of Bahrain falls geographically in one of the driest regions in the world. Conventional fresh surface water bodies, such as rivers and lakes, are nonexistent and for water consumption, Bahrain prominently relies on the desalination of sea water. This paper presents an ongoing project that is being pursued by a group of student and their advising professors to investigate the viability of extracting water from air humidity. Dehumidifiers have been utilized as water extraction devices. Those devices have been distributed on six areas that were selected based on a rigorous geospatial modeling of historical meteorological data. The areas fall in residential and industrial neighborhoods that are located in the main island and the island of Muharraq. Water samples have been collected three times every week since May of 2016 and the collection process will continue until May of 2017. The collected water samples have been analyzed against numerous variables individually and in combinations including: amount of water collected per hour versus geographical location, amount of water collected per hour versus meteorological factors, suitability of collected water for potable human consumption, detection of air pollution in the areas of collection and the economy of this method of water collection in comparison to other nonconventional methods. An overview of the completed analysis results is presented in this paper.

  5. Dew point fast measurement in organic vapor mixtures using quartz resonant sensor

    NASA Astrophysics Data System (ADS)

    Nie, Jing; Liu, Jia; Meng, Xiaofeng

    2017-01-01

    A fast dew point sensor has been developed for organic vapor mixtures by using the quartz crystal with sensitive circuits. The sensor consists of the quartz crystal and a cooler device. Proactive approach is taken to produce condensation on the surface of the quartz crystal, and it will lead to a change in electrical features of the quartz crystal. The cessation of oscillation was measured because this phenomenon is caused by dew condensation. Such a phenomenon can be used to detect the dew point. This method exploits the high sensitivity of the quartz crystal but without frequency measurement and also retains the stability of the resonant circuit. It is strongly anti-interfered. Its performance was evaluated with acetone-methanol mixtures under different pressures. The results were compared with the dew points predicted from the universal quasi-chemical equation to evaluate the performance of the proposed sensor. Though the maximum deviations of the sensor are less than 1.1 °C, it still has a fast response time with a recovery time of less than 10 s, providing an excellent dehumidifying performance.

  6. Evaporative Cooling and Dehumidification Garment for Portable Life Support Systems

    NASA Technical Reports Server (NTRS)

    Izenson, Michael; Chen, Weibo; Bue, Grant

    2013-01-01

    This paper describes the design and development of an innovative thermal and humidity control system for future space suits. The system comprises an evaporation cooling and dehumidification garment (ECDG) and a lithium chloride absorber radiator (LCAR). The ECDG absorbs heat and water vapor from inside the suit pressure garment, while the LCAR rejects heat to space without venting water vapor. The ECDG is built from thin, flexible patches with coversheets made of non-porous, water-permeable membranes that -enclose arrays of vapor flow passages. Water vapor from inside the spacesuit diffuses across the water permeable membranes, enters the vapor flow channels, and then flows to the LCAR, thus dehumidifying the internal volume of the space suit pressure garment. Additional water evaporation inside the ECDG provides cooling for sensible heat loads. -The heat released from condensation and absorption in the LCAR is rejected to the environment by thermal radiation. We have assembled lightweight and flexible ECDG pouches from prototypical materials and measured their performance in a series of separate effects tests under well-controlled, prototypical conditions. Sweating hot plate tests at typical space suit pressures show that ECDG pouches can absorb over 60 W/ft of latent heat and 20 W/ft of sensible heat from the pressure garment environment. These results are in good agreement with the predictions of our analysis models.

  7. [Thermal energy utilization analysis and energy conservation measures of fluidized bed dryer].

    PubMed

    Xing, Liming; Zhao, Zhengsheng

    2012-07-01

    To propose measures for enhancing thermal energy utilization by analyzing drying process and operation principle of fluidized bed dryers,in order to guide optimization and upgrade of fluidized bed drying equipment. Through a systematic analysis on drying process and operation principle of fluidized beds,the energy conservation law was adopted to calculate thermal energy of dryers. The thermal energy of fluidized bed dryers is mainly used to make up for thermal consumption of water evaporation (Qw), hot air from outlet equipment (Qe), thermal consumption for heating and drying wet materials (Qm) and heat dissipation to surroundings through hot air pipelines and cyclone separators. Effective measures and major approaches to enhance thermal energy utilization of fluidized bed dryers were to reduce exhaust gas out by the loss of heat Qe, recycle dryer export air quantity of heat, preserve heat for dry towers, hot air pipes and cyclone separators, dehumidify clean air in inlets and reasonably control drying time and air temperature. Such technical parameters such air supply rate, air inlet temperature and humidity, material temperature and outlet temperature and humidity are set and controlled to effectively save energy during the drying process and reduce the production cost.

  8. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System.

    PubMed

    Zhao, Baiwang; Peng, Na; Liang, Canzeng; Yong, Wai Fen; Chung, Tai-Shung

    2015-11-16

    In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18-22 g/m³ to a range of 13.5-18.3 g/m³. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process.

  9. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    SciTech Connect

    Kozubal, E.; Herrmann, L.; Deru, M.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by firstmore » overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.« less

  10. Energy and cost associated with ventilating office buildings in a tropical climate.

    PubMed

    Rim, Donghyun; Schiavon, Stefano; Nazaroff, William W

    2015-01-01

    Providing sufficient amounts of outdoor air to occupants is a critical building function for supporting occupant health, well-being and productivity. In tropical climates, high ventilation rates require substantial amounts of energy to cool and dehumidify supply air. This study evaluates the energy consumption and associated cost for thermally conditioning outdoor air provided for building ventilation in tropical climates, considering Singapore as an example locale. We investigated the influence on energy consumption and cost of the following factors: outdoor air temperature and humidity, ventilation rate (L/s per person), indoor air temperature and humidity, air conditioning system coefficient of performance (COP), and cost of electricity. Results show that dehumidification of outdoor air accounts for more than 80% of the energy needed for building ventilation in Singapore's tropical climate. Improved system performance and/or a small increase in the indoor temperature set point would permit relatively large ventilation rates (such as 25 L/s per person) at modest or no cost increment. Overall, even in a thermally demanding tropical climate, the energy cost associated with increasing ventilation rate up to 25 L/s per person is less than 1% of the wages of an office worker in an advanced economy like Singapore's. This result implies that the benefits of increasing outdoor air ventilation rate up to 25 L/s per person--which is suggested to provide for productivity increases, lower sick building syndrome symptom prevalence, and reduced sick leave--can be much larger than the incremental cost of ventilation.

  11. Energy saving effect of desiccant ventilation system using Wakkanai siliceous shale

    NASA Astrophysics Data System (ADS)

    Nabeshima, Yuki; Togawa, Jun-ya; Nagano, Katsunori; Kazuyo, Tsuzuki

    2017-10-01

    The nuclear power station accident resulting from the Great East Japan Earthquake disaster has resulted in a constrained electricity supply. However, in this Asian region there is high temperature and high humidity and consequently dehumidification process requires a huge amount of energy. This is the reason for the increasing energy consumption in the residential and commercial sectors. Accordingly, a high efficiency air-conditioning system is needed to be developed. The desiccant ventilation system is effective to reduce energy consumption for the dehumidification process. This system is capable of dehumidifying without dew condensing unlike a conventional air-conditioning system. Then we focused on Wakkanai Siliceous Shale (WSS) as a desiccant material to develop a new desiccant ventilation system. This is low priced, high performance, new type of thing. The aim of this study is to develop a desiccant ventilation unit using the WSS rotor which can be regenerated with low-temperature by numerical calculation. The results of performance prediction of the desiccant unit, indicate that it is possible to regenerate the WSS rotor at low-temperature of between 35 - 45 °C. In addition, we produced an actual measurement for the desiccant unit and air-conditioning unit. This air-conditioning system was capable to reduce roughly 40 % of input energy consumption.

  12. SciTech Connect

    Pesaran, A.A.; Penney, T.R.; Czanderna, A.W.

    The objectives of this document are to present an overview of the work accomplished to date on desiccant cooling to provide assessment of the state of the art of desiccant cooling technology in the field of desiccant material dehumidifier components, desiccant systems, and models. The report also discusses the factors that affect the widespread acceptance of desiccant cooling technology. This report is organized as follows. First, a basic description and historical overview of desiccant cooling technology is provided. Then, the recent research and development (R&D) program history (focusing on DOE`s funded efforts) is discussed. The status of the technology elementsmore » (materials, components, systems) is discussed in detail and a preliminary study on the energy impact of desiccant technology is presented. R&D needs for advancing the technology in the market are identified. The National Renewable Energy Laboratory`s unique desiccant test facilities and their typical outputs are described briefly. Finally, the results of a comprehensive literature search on desiccant cooling are presented in a bibliography. The bibliography contains approximately 900 citations on desiccant cooling.« less

  13. SciTech Connect

    Pesaran, A.A.; Penney, T.R.; Czanderna, A.W.

    The objectives of this document are to present an overview of the work accomplished to date on desiccant cooling to provide assessment of the state of the art of desiccant cooling technology in the field of desiccant material dehumidifier components, desiccant systems, and models. The report also discusses the factors that affect the widespread acceptance of desiccant cooling technology. This report is organized as follows. First, a basic description and historical overview of desiccant cooling technology is provided. Then, the recent research and development (R D) program history (focusing on DOE's funded efforts) is discussed. The status of the technologymore » elements (materials, components, systems) is discussed in detail and a preliminary study on the energy impact of desiccant technology is presented. R D needs for advancing the technology in the market are identified. The National Renewable Energy Laboratory's unique desiccant test facilities and their typical outputs are described briefly. Finally, the results of a comprehensive literature search on desiccant cooling are presented in a bibliography. The bibliography contains approximately 900 citations on desiccant cooling.« less

  14. Humidity effects on adhesion of nickel-zinc ferrite in elastic contact with magnetic tape and itself

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Kusaka, T.; Maeda, C.

    1985-01-01

    The effects of humidity on the adhesion of Ni-Zn ferrite and magnetic tape in elastic contact with a Ni-Zn ferrite hemispherical pin in moist nitrogen were studied. Adhesion was independent of normal load in dry, humid, and saturated nitrogen. Ferrites adhere to ferrites in a saturated atmosphere primarily from the surface tension effects of a thin film of water adsorbed on the ferrite surfaces. The surface tension of the water film calculated from the adhesion results was 48 times 0.00001 to 56 times 0.00001 N/cm; the accepted value for water is 72.7 x 0.00001 N/cm. The adhesion of ferrite-ferrite contacts increased gradually with increases in relative humidity to 80 percent, but rose rapidly above 80 percent. The adhesion at saturation was 30 times or more greater than that below 80 percent relative humidity. Although the adhesion of magnetic tape - ferrite contacts remained low below 40 percent relative humidity and the effect of humidity was small, the adhesion increased considerably with increasing relative humidity above 40 percent. The changes in adhesion of elastic contacts were reversible on humidifying and dehumidifying.

  15. Multi-objective Optimization of a Solar Humidification Dehumidification Desalination Unit

    NASA Astrophysics Data System (ADS)

    Rafigh, M.; Mirzaeian, M.; Najafi, B.; Rinaldi, F.; Marchesi, R.

    2017-11-01

    In the present paper, a humidification-dehumidification desalination unit integrated with solar system is considered. In the first step mathematical model of the whole plant is represented. Next, taking into account the logical constraints, the performance of the system is optimized. On one hand it is desired to have higher energetic efficiency, while on the other hand, higher efficiency results in an increment in the required area for each subsystem which consequently leads to an increase in the total cost of the plant. In the present work, the optimum solution is achieved when the specific energy of the solar heater and also the areas of humidifier and dehumidifier are minimized. Due to the fact that considered objective functions are in conflict, conventional optimization methods are not applicable. Hence, multi objective optimization using genetic algorithm which is an efficient tool for dealing with problems with conflicting objectives has been utilized and a set of optimal solutions called Pareto front each of which is a tradeoff between the mentioned objectives is generated.

  16. Mathematical Modeling of Dual Layer Shell Type Recuperation System for Biogas Dehumidification

    NASA Astrophysics Data System (ADS)

    Gendelis, S.; Timuhins, A.; Laizans, A.; Bandeniece, L.

    2015-12-01

    The main aim of the current paper is to create a mathematical model for dual layer shell type recuperation system, which allows reducing the heat losses from the biomass digester and water amount in the biogas without any additional mechanical or chemical components. The idea of this system is to reduce the temperature of the outflowing gas by creating two-layered counter-flow heat exchanger around the walls of biogas digester, thus increasing a thermal resistance and the gas temperature, resulting in a condensation on a colder surface. Complex mathematical model, including surface condensation, is developed for this type of biogas dehumidifier and the parameter study is carried out for a wide range of parameters. The model is reduced to 1D case to make numerical calculations faster. It is shown that latent heat of condensation is very important for the total heat balance and the condensation rate is highly dependent on insulation between layers and outside temperature. Modelling results allow finding optimal geometrical parameters for the known gas flow and predicting the condensation rate for different system setups and seasons.

  17. Some considerations about the use of different sensors, in coordinate measuring of the small parts

    NASA Astrophysics Data System (ADS)

    Drăgan, L.

    2017-05-01

    The paper presents some particular aspects associated with measuring of the small-size parts with high precision, manufactured by injection procedures. The coordinate measuring machine (CMM) are very used in process of measuring parts with different shapes, dimensions and materials of the most varied. It is studied by experiments, the influence of hygroscopicity on the geometrical properties of polyamide parts, using different types of measuring sensors. We selected a few pieces- cover type, with precision features dimensions and shape tolerances. To measure them was used some sensors which is equipped CMM ScopeCheck S 400 and equipment for dehumidifying. Starting from the need for high precision measurement of geometric characteristics of the parts obtained by injection of plastic, it has been found that the hygroscopicity has a significant influence. To achieve the purpose were used three types of measuring sensors under different conditions of keeping after manufacture. It was observed that the influence of humidity is significantly reduced if the parts are kept in exikator or vacuum dryer.

  18. Apparatus and methods for humidity control

    NASA Technical Reports Server (NTRS)

    Dinauer, William R. (Inventor); Otis, David R. (Inventor); El-Wakil, Mohamed M. (Inventor); Vignali, John C. (Inventor); Macaulay, Philip D. (Inventor)

    1994-01-01

    Apparatus is provided which controls humidity in a gas. The apparatus employs a porous interface that is preferably a manifolded array of stainless steel tubes through whose porous surface water vapor can pass. One side of the porous interface is in contact with water and the opposing side is in contact with gas whose humidity is being controlled. Water vapor is emitted from the porous surface of the tubing into the gas when the gas is being humidified, and water vapor is removed from the gas through the porous surfaces when the gas is being dehumidified. The temperature of the porous interface relative to the gas temperature determines whether humidification or dehumidification is being carried out. The humidity in the gas is sensed and compared to the set point humidity. The water temperature, and consequently the porous interface temperature, are automatically controlled in response to changes in the gas humidity level above or below the set point. Any deviation from the set point humidity is thus corrected.

  19. Numerical Simulation of rivulet build up via lubrication equations

    NASA Astrophysics Data System (ADS)

    Suzzi, N.; Croce, G.

    2017-11-01

    A number of engineering problems involve the evolution of a thin layer of liquid over a non-wettable substrate. For example, CO2 chemical absorption is carried out in packed columns, where post-combustion CO2 flows up while liquid solvent falls down through a collection of corrugated sheets. Further application include, among others, in-flight icing simulations, moisture condensation on de-humidifier fins, fogging build up and removal. Here, we present a development of an in-house code solving numerically the 2D lubrication equation for a film flowing down an inclined plate. The disjoining pressure approach is followed, in order to model both the contact line discontinuity and the surface wettability. With respect to the original implementation, the full modeling of capillary pressure terms according to Young- Laplace relation allows to investigate contact angles close to π/2. The code is thus validated with literature numerical results, obtained by a fully 3D approach (VOF), showing satisfying agreement despite a strong reduction in terms of computational cost. Steady and unsteady wetting dynamics of a developing rivulet are investigated (and validated) under different load conditions and for different values of the contact angles.

  20. Dew point fast measurement in organic vapor mixtures using quartz resonant sensor.

    PubMed

    Nie, Jing; Liu, Jia; Meng, Xiaofeng

    2017-01-01

    A fast dew point sensor has been developed for organic vapor mixtures by using the quartz crystal with sensitive circuits. The sensor consists of the quartz crystal and a cooler device. Proactive approach is taken to produce condensation on the surface of the quartz crystal, and it will lead to a change in electrical features of the quartz crystal. The cessation of oscillation was measured because this phenomenon is caused by dew condensation. Such a phenomenon can be used to detect the dew point. This method exploits the high sensitivity of the quartz crystal but without frequency measurement and also retains the stability of the resonant circuit. It is strongly anti-interfered. Its performance was evaluated with acetone-methanol mixtures under different pressures. The results were compared with the dew points predicted from the universal quasi-chemical equation to evaluate the performance of the proposed sensor. Though the maximum deviations of the sensor are less than 1.1 °C, it still has a fast response time with a recovery time of less than 10 s, providing an excellent dehumidifying performance.

  1. Heat Pump Water Heater Ducting Strategies with Encapsulated Attics in Climate Zones 2 and 4

    SciTech Connect

    Sweet, M. L.; Francisco, A.; Roberts, S. G.

    The focus of this study is on the performance of HPWHs with several different duct configurations and their effects on whole building heating, cooling, and moisture loads. A.O. Smith 60 gallon Voltex (PHPT-60) heat pump water heaters (HPWHs) were included at two project sites and ducted to or located within spray foamed encapsulated attics. The effect of ducting a HPWH's air stream does not diminish its efficiency if the ducting does not reduce intake air temperature, which expands HPWH application to confined areas. Exhaust ducts should be insulated to avoid condensation on the exterior, however this imposes a risk ofmore » condensation occurring in the duct's interior near the HPWH due to large variation of temperatures between the compressor and the duct and the presence of bulk moisture around the condenser. The HPWH's air conditioning impact on HVAC equipment loads is minimal when the intake and exhaust air streams are connected to a sealed attic and not the living space. A HPWH is not suitable as a replacement dehumidifier in sealed attics as peak moisture loads were observed to only be reduced if the heat pump operated during the morning. It appears that the intake air temperature and humidity was the most dominant variable affecting HPWH performance. Different ducting strategies such as exhaust duct only, intake duct only, and exhaust and intake ducting did not have any effect on HPWH performance.« less

  2. Building America Case Study: Heat Pump Water Heater Ducting Strategies with Encapsulated Attics in Climate Zones 2 and 4, LaFayette, Georgia (CZ4), and Savannah, Georgia (CZ2)

    SciTech Connect

    V. Kochkin, M. Sweet

    The focus of this study is on the performance of HPWHs with several different duct configurations and their effects on whole building heating, cooling, and moisture loads. A.O. Smith 60 gallon Voltex (PHPT-60) heat pump water heaters (HPWHs) were included at two project sites and ducted to or located within spray foamed encapsulated attics. The effect of ducting a HPWH's air stream does not diminish its efficiency if the ducting does not reduce intake air temperature, which expands HPWH application to confined areas. Exhaust ducts should be insulated to avoid condensation on the exterior, however this imposes a risk ofmore » condensation occurring in the duct's interior near the HPWH due to large variation of temperatures between the compressor and the duct and the presence of bulk moisture around the condenser. The HPWH's air conditioning impact on HVAC equipment loads is minimal when the intake and exhaust air streams are connected to a sealed attic and not the living space. A HPWH is not suitable as a replacement dehumidifier in sealed attics as peak moisture loads were observed to only be reduced if the heat pump operated during the morning. It appears that the intake air temperature and humidity was the most dominant variable affecting HPWH performance. Different ducting strategies such as exhaust duct only, intake duct only, and exhaust and intake ducting did not have any effect on HPWH performance.« less

  3. Recent advances of rearing cabinet instrumentation and control system for insect stock culture

    NASA Astrophysics Data System (ADS)

    Hermawan, Wawan; Kasmara, Hikmat; Melanie, Panatarani, Camellia; Joni, I. Made

    2017-01-01

    Helicoverpa armigera (Hubner) is one of a serious pest of horticulture in Indonesia. Helicoverpa armigera Nuclear Polyhedrovirus (HaNPV) has attracted interest for many researchers as a pest control for larvae of this species. Currently, we investigating the agrochemical formulations of HaNPV by introducing nanotechnology. Thus it is required an acceptable efficiency of insect stock cultures equipped with advance instruments to resolve the difficulties on insect stock seasons dependency. In addition, it is important to improve the insect survival with the aid of artificial natural environment and gain high insect production. This paper reports the rearing cabinet used as preparation of stock culture includes air-conditioning system, lighting, i.e. day and night control, and the main principles on recent technical and procedural advances apparatus of the system. The rearing system was moveable, designed and build by allowing air-conditioned cabinet for rearing insects, air motion and distribution as well as temperature and humidity being precisely controlled. The air was heated, humidified, and dehumidified respectively using a heater and ultrasonic nebulizer as actuators. Temperature and humidity can be controlled at any desired levels from room temperature (20°C) to 40 ± 1°C and from 0 to 80% RH with an accuracy of ±3% R.H. It is concluded that the recent design has acceptable performance based on the defined requirement for insect rearing and storage.

  4. Déshumidification de l'air d'une serre par contact direct à courants croisés avec une solution hygroscopique organique

    NASA Astrophysics Data System (ADS)

    Chraibi, A.; Jaffrin, A.; Makhlouf, S.; Bentounes, N.

    1995-07-01

    Greenhouse air can be dehumidified by direct contact with a desicant fluid on a trickle exchanger. The water vapour extraction rate depends on the hygroscopicity of the fluid and on the exchanger efficiency. An organic fluid, the triethylene glycol (TEG) at 90% concentration, has been tested. Cross corrugated cellulosic pads, of the type used in cooling, irrigated with TEG, were placed in a wind channel to dehumidify air at various speeds and temperatures. A semi-analytical model, based on energy and mass conservation, correctly reproduces the water vapor extraction rate and the enthalpy change of both fluids. It is shown that TEG trickling through a ventilated pad of 1 m^2 area and 0.1 m thickness can be used to extract 3 to 5 kg of water vapor per hour in greenhouse climate control applications. Several pads arranged in series can be used to decrease more efficiently the absolute humidity of the air, for other applications like food drying or industrial compressed air. Une technique de déshumidification de l'air des serres consiste à le soumettre au contact d'une solution hygroscopique au sein d'un échangeur ruisselant. Le taux d'extraction de vapeur d'eau dépend à la fois du pouvoir hygroscopique de la solution et de l'efficacité de l'échangeur. Une solution hygroscopique organique, le triéthylène glycol à 90% de concentration, a été expérimentée. Un échangeur ruisselant constitué de parois de cellulose ondulées à corrugations croisées, du type “cooling pad” pour serres agricoles, a été testé pour déshumidifier de l'air dans une soufflerie expérimentale. Un modèle semi-analytique, basé sur les équations de conservation de l'énergie et de masse, permet de rendre compte des échanges et de déduire les paramètres de sortie des deux fluides en contact, à partir des caractéristiques d'entrée. Cette étude permet de chiffrer à environ 3 à 5kg/h la capacité de déshumidification d'un panneau d'un mètre carré et de 10cm d

  5. Development of Smart Ventilation Control Algorithms for Humidity Control in High-Performance Homes in Humid U.S. Climates

    SciTech Connect

    Less, Brennan; Walker, Iain; Ticci, Sara

    Past field research and simulation studies have shown that high performance homes experience elevated indoor humidity levels for substantial portions of the year in humid climates. This is largely the result of lower sensible cooling loads, which reduces the moisture removed by the cooling system. These elevated humidity levels lead to concerns about occupant comfort, health and building durability. Use of mechanical ventilation at rates specified in ASHRAE Standard 62.2-2013 are often cited as an additional contributor to humidity problems in these homes. Past research has explored solutions, including supplemental dehumidification, cooling system operational enhancements and ventilation system design (e.g.,more » ERV, supply, exhaust, etc.). This project’s goal is to develop and demonstrate (through simulations) smart ventilation strategies that can contribute to humidity control in high performance homes. These strategies must maintain IAQ via equivalence with ASHRAE Standard 62.2-2013. To be acceptable they must not result in excessive energy use. Smart controls will be compared with dehumidifier energy and moisture performance. This work explores the development and performance of smart algorithms for control of mechanical ventilation systems, with the objective of reducing high humidity in modern high performance residences. Simulations of DOE Zero-Energy Ready homes were performed using the REGCAP simulation tool. Control strategies were developed and tested using the Residential Integrated Ventilation (RIVEC) controller, which tracks pollutant exposure in real-time and controls ventilation to provide an equivalent exposure on an annual basis to homes meeting ASHRAE 62.2-2013. RIVEC is used to increase or decrease the real-time ventilation rate to reduce moisture transport into the home or increase moisture removal. This approach was implemented for no-, one- and two-sensor strategies, paired with a variety of control approaches in six humid climates

  6. Natural convection liquid desiccant loop as an auxiliary air conditioning system: investigating the operational parameters

    NASA Astrophysics Data System (ADS)

    Fazilati, Mohammad Ali; Alemrajabi, Ali Akbar; Sedaghat, Ahmad

    2018-03-01

    Liquid desiccant air conditioning system with natural convection was presented previously as a new generation of AC systems. The system consists of two three-fluid energy exchangers namely absorber and regenerator in which the action of air dehumidifying and desiccant regeneration is done, respectively. The influence of working parameters on system performance including the heat source and heat sink temperature, concentration of desiccant solution fills the system initially and humidity content of inlet air to regenerator is investigated experimentally. The heat source temperatures of 50 °C and 60 °C, heat sink temperatures of 15 °C and 20 °C and desiccant concentrations of 30% and 34%, are examined here. The inlet air to regenerator has temperature of 38.5 °C and three relative humidity of 14%, 38% and 44%. In all experiments, the inlet air to absorber has temperature of 31 °C and relative humidity of 75%. By inspecting evaluation indexes of system, it is revealed that higher startup desiccant concentration solution is more beneficial for all study cases. It is also observed although the highest/lowest temperature heat source/heat sink is most suitable for best system operation, increasing the heat source temperature should be accompanied with decreasing heat sink temperature. Using drier air stream for regenerator inlet does not necessarily improve system performance; and the air stream with proper value of humidity content should be employed. Finally after running the system in its best working condition, the coefficient of performance (COP) reached 4.66 which verified to be higher than when the same air conditioning task done by a conventional vapor compression system, in which case the COP was 3.38.

  7. Perception of cabin air quality in airline crew related to air humidification, on intercontinental flights.

    PubMed

    Lindgren, T; Norbäck, D; Wieslander, G

    2007-06-01

    The influence of air humidification in aircraft, on perception of cabin air quality among airline crew (N = 71) was investigated. In-flight investigations were performed in the forward part and in the aft part on eight intercontinental flights with one Boeing 767 individually, equipped with an evaporation humidifier combined with a dehumidifying unit, to reduce accumulation of condensed water in the wall construction. Four flights had the air humidification active when going out, and turned off on the return flight. The four others had the inverse humidification sequence. The sequences were randomized, and double blind. Air humidification increased relative air humidity (RH) by 10% in forward part, and by 3% in aft part of the cabin and in the cockpit. When the humidification device was active, the cabin air was perceived as being less dry (P = 0.008), and fresher (P = 0.002). The mean concentration of viable bacteria (77-108 cfu/m(3)), viable molds (74-84 cfu/m(3)), and respirable particles (1-8 microg/m3) was low, both during humidified and non-humidified flights. On flights with air humidification, there were less particles in the forward part of the aircraft (P = 0.01). In conclusion, RH can be slightly increased by using ceramic evaporation humidifier, without any measurable increase of microorganisms in cabin air. The cabin air quality was perceived as being better with air humidification. PRACTICAL IMPLICATION: Relative air humidity is low (10-20%) during intercontinental flights, and can be increased by using ceramic evaporation humidifier, without any measurable increase of microorganism in cabin air. Air humidification could increase the sensation of better cabin air quality.

  8. Water cycles in closed ecological systems: effects of atmospheric pressure.

    PubMed

    Rygalov, Vadim Y; Fowler, Philip A; Metz, Joannah M; Wheeler, Raymond M; Bucklin, Ray A

    2002-01-01

    In bioregenerative life support systems that use plants to generate food and oxygen, the largest mass flux between the plants and their surrounding environment will be water. This water cycle is a consequence of the continuous change of state (evaporation-condensation) from liquid to gas through the process of transpiration and the need to transfer heat (cool) and dehumidify the plant growth chamber. Evapotranspiration rates for full plant canopies can range from ~1 to 10 L m-2 d-1 (~1 to 10 mm m-2 d-1), with the rates depending primarily on the vapor pressure deficit (VPD) between the leaves and the air inside the plant growth chamber. VPD in turn is dependent on the air temperature, leaf temperature, and current value of relative humidity (RH). Concepts for developing closed plant growth systems, such as greenhouses for Mars, have been discussed for many years and the feasibility of such systems will depend on the overall system costs and reliability. One approach for reducing system costs would be to reduce the operating pressure within the greenhouse to reduce structural mass and gas leakage. But managing plant growth environments at low pressures (e.g., controlling humidity and heat exchange) may be difficult, and the effects of low-pressure environments on plant growth and system water cycling need further study. We present experimental evidence to show that water saturation pressures in air under isothermal conditions are only slightly affected by total pressure, but the overall water flux from evaporating surfaces can increase as pressure decreases. Mathematical models describing these observations are presented, along with discussion of the importance for considering "water cycles" in closed bioregenerative life support systems.

  9. Biomass Production System (BPS) plant growth unit.

    PubMed

    Morrow, R C; Crabb, T M

    2000-01-01

    The Biomass Production System (BPS) was developed under the Small Business Innovative Research (SBIR) program to meet science, biotechnology and commercial plant growth needs in the Space Station era. The BPS is equivalent in size to a double middeck locker, but uses its own custom enclosure with a slide out structure to which internal components mount. The BPS contains four internal growth chambers, each with a growing volume of more than 4 liters. Each of the growth chambers has active nutrient delivery, and independent control of temperature, humidity, lighting, and CO2 set-points. Temperature control is achieved using a thermoelectric heat exchanger system. Humidity control is achieved using a heat exchanger with a porous interface which can both humidify and dehumidify. The control software utilizes fuzzy logic for nonlinear, coupled temperature and humidity control. The fluorescent lighting system can be dimmed to provide a range of light levels. CO2 levels are controlled by injecting pure CO2 to the system based on input from an infrared gas analyzer. The unit currently does not scrub CO2, but has been designed to accept scrubber cartridges. In addition to providing environmental control, a number of features are included to facilitate science. The BPS chambers are sealed to allow CO2 and water vapor exchange measurements. The plant chambers can be removed to allow manipulation or sampling of specimens, and each chamber has gas/fluid sample ports. A video camera is provided for each chamber, and frame-grabs and complete environmental data for all science and hardware system sensors are stored on an internal hard drive. Data files can also be transferred to 3.5-inch disks using the front panel disk drive.

  10. A Study of Mars Dust Environment Simulation at NASA Johnson Space Center Energy Systems Test Area Resource Conversion Test Facility

    NASA Technical Reports Server (NTRS)

    Chen, Yuan-Liang Albert

    1999-01-01

    The dust environment on Mars is planned to be simulated in a 20 foot thermal-vacuum chamber at the Johnson Space Center, Energy Systems Test Area Resource Conversion Test Facility in Houston, Texas. This vacuum chamber will be used to perform tests and study the interactions between the dust in Martian air and ISPP hardware. This project is to research, theorize, quantify, and document the Mars dust/wind environment needed for the 20 foot simulation chamber. This simulation work is to support the safety, endurance, and cost reduction of the hardware for the future missions. The Martian dust environment conditions is discussed. Two issues of Martian dust, (1) Dust Contamination related hazards, and (2) Dust Charging caused electrical hazards, are of our interest. The different methods of dust particles measurement are given. The design trade off and feasibility were studied. A glass bell jar system is used to evaluate various concepts for the Mars dust/wind environment simulation. It was observed that the external dust source injection is the best method to introduce the dust into the simulation system. The dust concentration of 30 Mg/M3 should be employed for preparing for the worst possible Martian atmosphere condition in the future. Two approaches thermal-panel shroud for the hardware conditioning are discussed. It is suggested the wind tunnel approach be used to study the dust charging characteristics then to be apply to the close-system cyclone approach. For the operation cost reduction purpose, a dehumidified ambient air could be used to replace the expensive CO2 mixture for some tests.

  11. The National Asthma Survey--New York State: association of the home environment with current asthma status.

    PubMed

    Nguyen, Trang; Lurie, Melissa; Gomez, Marta; Reddy, Amanda; Pandya, Kruti; Medvesky, Michael

    2010-01-01

    The National Asthma Survey--New York State (NYS), a telephone survey of NYS residents, was conducted in 2002-2003 to further understand the burden of asthma among adults and children and to identify health, socioeconomic, behavioral, and environmental factors associated with asthma. A total of 1,412 households with at least one member with current asthma and 2,290 control households answered questions about their home environment (e.g., presence of asthma triggers and practices that promote or reduce common asthma triggers). RESULTS; For children younger than 18 years of age, we found statistically significant positive associations between current asthma and the presence of mold (adjusted odds ratio [AOR] = 2.1, 95% confidence interval [CI] 1.3, 3.3), air cleaners (AOR = 1.5, 95% CI 1.1, 2.1), dehumidifiers (AOR = 2.0, 95% CI 1.4, 2.7), and humidifiers (AOR = 1.6, 95% CI 1.1, 2.3). For adults, there were statistically significant positive associations with the presence of mold (AOR = 2.5, 95% CI 1.8, 3.4), air cleaners (AOR = 2.2, 95% CI 1.7, 2.8), and humidifiers (AOR = 1.4, 95% CI 1.1, 1.8). There were no statistically significant associations with the presence of cockroaches, pets, or tobacco smoke, while use of a wood-burning stove or fireplace was significantly more prevalent in control homes. Asthma guidelines emphasize the importance of reducing triggers in the home as part of a multifaceted approach to asthma control. Despite these guidelines, many asthma triggers (specifically, mold) were as prevalent or more so in the homes of New Yorkers with asthma as compared with control households. Public health interventions in NYS should focus on educating households about potential asthma triggers and their sources and teach methods to prevent, reduce, or eliminate them.

  12. SciTech Connect

    Rudd, A.

    This document covers a description of the need and applied solutions for supplemental dehumidification in warm-humid climates, especially for energy efficient homes where the sensible cooling load has been dramatically reduced. In older homes in warm-humid climates, cooling loads are typically high and cooling equipment runs a lot to cool the air. The cooling process also removes indoor moisture, reducing indoor relative humidity. However, at current residential code levels, and especially for above-code programs, sensible cooling loads have been so dramatically reduced that the cooling system does not run a lot to cool the air, resulting in much less moisturemore » being removed. In these new homes, cooling equipment is off for much longer periods of time especially during spring/fall seasons, summer shoulder months, rainy periods, some summer nights, and some winter days. In warm-humid climates, those long off periods allow indoor humidity to become elevated due to internally generated moisture and ventilation air change. Elevated indoor relative humidity impacts comfort, indoor air quality, and building material durability. Industry is responding with supplemental dehumidification options, but that effort is really in its infancy regarding year-round humidity control in low-energy homes. Available supplemental humidity control options are discussed. Some options are less expensive but may not control indoor humidity as well as more expensive and comprehensive options. The best performing option is one that avoids overcooling and avoids adding unnecessary heat to the space by using waste heat from the cooling system to reheat the cooled and dehumidified air to room-neutral temperature.« less

  13. Large Swing Valve in the 10- by 10-Foot Supersonic Wind Tunnel

    NASA Image and Video Library

    1956-05-21

    A 24-foot diameter swing valve is seen in an open position inside the new 10- by 10-Foot Supersonic Wind Tunnel at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. The 10- by 10 was the most powerful propulsion wind tunnel in the nation. After over three years of construction the tunnel was ready to conduct its first tests in early 1956. The 10- by 10-foot tunnel was part of Congress’ Unitary Plan Act which coordinated wind tunnel construction at the NACA, Air Force, industry, and universities. The 10- by 10 was the largest of the three NACA tunnels built under the act. This large swinging valve is critical to the operation of the facility. In one position the valve seals off the tunnel exhaust, making the tunnel a closed circuit, which is used for aerodynamic testing of models. In its other position, the valve acts as a seal across the tunnel and leaves the tunnel exhaust open. This arrangement is used when engines are fired. The air going through the tunnel is taken from the atmosphere and returned to the atmosphere after one pass through the tunnel. Engines up to five feet in diameter can be tested in the 10- by 10-foot test section. Air flows up to Mach 3.5 can be fed through the test section by a 250,000-horsepower axial-flow compressor fan. The incoming air must be dehumidified and cooled so that the proper conditions are present for the test. A large air dryer with 1,890 tons of activated alumina soaks up 1.5 tons of water per minute from the air flow. A cooling apparatus equivalent to 250,000 household air conditioners is used to cool the air.

  14. Dustborne Alternaria alternata antigens in U.S. homes: Results from the National Survey of Lead and Allergens in Housing

    PubMed Central

    Salo, Päivi M.; Yin, Ming; Arbes, Samuel J.; Cohn, Richard D.; Sever, Michelle; Muilenberg, Michael; Burge, Harriet A.; London, Stephanie J.; Zeldin, Darryl C.

    2005-01-01

    Background: Alternaria alternata is one of the most common fungi associated with allergic disease. However, Alternaria exposure in indoor environments is not well characterized. Objective: The primary goals of this study were to examine the prevalence of Alternaria exposure and identify independent predictors of Alternaria antigen concentrations in U.S. homes. Methods: Data for this cross-sectional study were obtained from the National Survey of Lead and Allergens in Housing. A nationally representative sample of 831 housing units in 75 different locations throughout the U.S. completed the survey. Information on housing and household characteristics was obtained by questionnaire and environmental assessments. Concentrations of Alternaria antigens in dust collected from various indoor sites were assessed with a polyclonal anti-Alternaria antibody assay. Results: Alternaria antigens were detected in most (95-99%) of the dust samples. The geometric mean concentration, reflecting the average Alternaria concentration in homes, was 4.88 μg/g (SE=0.13 μg/g). In the multivariable linear regression analysis, the age of the housing unit, geographic region, urbanization, poverty, family race, observed mold and moisture problems, use of dehumidifier, and presence of cats and dogs were independent predictors of Alternaria antigen concentrations. Less frequent cleaning and smoking indoors also contributed to higher Alternaria antigen levels in homes. Conclusion: Exposure to Alternaria alternata antigens in U.S. homes is common. Antigen levels in homes are not only influenced by regional factors but also by residential characteristics. Preventing mold and moisture problems, avoiding smoking indoors, and regular household cleaning may help reduce exposure to Alternaria antigens indoors. PMID:16159634

  15. Energy and Cost Associated with Ventilating Office Buildings in a Tropical Climate

    PubMed Central

    Rim, Donghyun; Schiavon, Stefano; Nazaroff, William W.

    2015-01-01

    Providing sufficient amounts of outdoor air to occupants is a critical building function for supporting occupant health, well-being and productivity. In tropical climates, high ventilation rates require substantial amounts of energy to cool and dehumidify supply air. This study evaluates the energy consumption and associated cost for thermally conditioning outdoor air provided for building ventilation in tropical climates, considering Singapore as an example locale. We investigated the influence on energy consumption and cost of the following factors: outdoor air temperature and humidity, ventilation rate (L/s per person), indoor air temperature and humidity, air conditioning system coefficient of performance (COP), and cost of electricity. Results show that dehumidification of outdoor air accounts for more than 80% of the energy needed for building ventilation in Singapore’s tropical climate. Improved system performance and/or a small increase in the indoor temperature set point would permit relatively large ventilation rates (such as 25 L/s per person) at modest or no cost increment. Overall, even in a thermally demanding tropical climate, the energy cost associated with increasing ventilation rate up to 25 L/s per person is less than 1% of the wages of an office worker in an advanced economy like Singapore’s. This result implies that the benefits of increasing outdoor air ventilation rate up to 25 L/s per person — which is suggested to provide for productivity increases, lower sick building syndrome symptom prevalence, and reduced sick leave — can be much larger than the incremental cost of ventilation. PMID:25822504

  16. Family and home characteristics correlate with mold in homes.

    PubMed

    Reponen, Tiina; Levin, Linda; Zheng, Shu; Vesper, Stephen; Ryan, Patrick; Grinshpun, Sergey A; LeMasters, Grace

    2013-07-01

    Previously, we demonstrated that infants residing in homes with higher Environmental Relative Moldiness Index were at greater risk for developing asthma by age seven. The purpose of this analysis was to identify the family and home characteristics associated with higher moldiness index values in infants' homes at age one. Univariate linear regression of each characteristic determined that family factors associated with moldiness index were race and income. Home characteristics associated with the moldiness index values were: air conditioning, carpet, age of the home, season of home assessment, and house dust mite allergen. Parental history of asthma, use of dehumidifier, visible mold, dog and cat allergen levels were not associated with moldiness index. Results of multiple linear regression showed that older homes had 2.9 units higher moldiness index (95% confidence interval [CI]=0.4, 5.4), whereas homes with central air conditioning had 2.5 units lower moldiness index (95% CI=-4.7, -0.4). In addition, higher dust mite allergen levels and carpeting were positively and negatively associated with higher moldiness index, respectively. Because older homes and lack of air conditioning were also correlated with race and lower income, whereas carpeting was associated with newer homes, the multivariate analyses suggests that lower overall socioeconomic position is associated with higher moldiness index values. This may lead to increased asthma risk in homes inhabited by susceptible, vulnerable population subgroups. Further, age of the home was a surrogate of income, race and carpeting in our population; thus the use of these factors should carefully be evaluated in future studies. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Infant origins of childhood asthma associated with specific molds.

    PubMed

    Reponen, Tiina; Lockey, James; Bernstein, David I; Vesper, Stephen J; Levin, Linda; Khurana Hershey, Gurjit K; Zheng, Shu; Ryan, Patrick; Grinshpun, Sergey A; Villareal, Manuel; Lemasters, Grace

    2012-09-01

    The specific cause or causes of asthma development must be identified to prevent this disease. Our hypothesis was that specific mold exposures are associated with childhood asthma development. Infants were identified from birth certificates. Dust samples were collected from 289 homes when the infants were 8 months of age. Samples were analyzed for concentrations of 36 molds that comprise the Environmental Relative Moldiness Index (ERMI) and endotoxin, house dust mite, cat, dog, and cockroach allergens. Children were evaluated at age 7 years for asthma based on reported symptoms and objective measures of lung function. Host, environmental exposure, and home characteristics evaluated included a history of parental asthma, race, sex, upper and lower respiratory tract symptoms, season of birth, family income, cigarette smoke exposure, air conditioning, use of a dehumidifier, presence of carpeting, age of home, and visible mold at age 1 year and child's positive skin prick test response to aeroallergens and molds at age 7 years. Asthma was diagnosed in 24% of the children at age 7 years. A statistically significant increase in asthma risk at age 7 years was associated with high ERMI values in the child's home in infancy (adjusted relative risk for a 10-unit increase in ERMI value, 1.8; 95% CI, 1.5-2.2). The summation of levels of 3 mold species, Aspergillus ochraceus, Aspergillus unguis, and Penicillium variabile, was significantly associated with asthma (adjusted relative risk, 2.2; 95% CI, 1.8-2.7). In this birth cohort study exposure during infancy to 3 mold species common to water-damaged buildings was associated with childhood asthma at age 7 years. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  18. Biomass Production System (BPS) Plant Growth Unit

    NASA Astrophysics Data System (ADS)

    Morrow, R. C.; Crabb, T. M.

    The Biomass Production System (BPS) was developed under the Small Business Innovative Research (SBIR) program to meet science, biotechnology and commercial plant growth needs in the Space Station era. The BPS is equivalent in size to a double middeck locker, but uses it's own custom enclosure with a slide out structure to which internal components mount. The BPS contains four internal growth chambers, each with a growing volume of more than 4 liters. Each of the growth chambers has active nutrient delivery, and independent control of temperature, humidity, lighting, and CO2 set-points. Temperature control is achieved using a thermoelectric heat exchanger system. Humidity control is achieved using a heat exchanger with a porous interface which can both humidify and dehumidify. The control software utilizes fuzzy logic for nonlinear, coupled temperature and humidity control. The fluorescent lighting system can be dimmed to provide a range of light levels. CO2 levels are controlled by injecting pure CO2 to the system based on input from an infrared gas analyzer. The unit currently does not scrub CO2, but has been designed to accept scrubber cartridges. In addition to providing environmental control, a number of features are included to facilitate science. The BPS chambers are sealed to allow CO2 and water vapor exchange measurements. The plant chambers can be removed to allow manipulation or sampling of specimens, and each chamber has gas/fluid sample ports. A video camera is provided for each chamber, and frame-grabs and complete environmental data for all science and hardware system sensors are stored on an internal hard drive. Data files can also be transferred to 3.5-inch disks using the front panel disk drive

  19. Solid oxide fuel cell/gas turbine trigeneration system for marine applications

    NASA Astrophysics Data System (ADS)

    Tse, Lawrence Kar Chung; Wilkins, Steven; McGlashan, Niall; Urban, Bernhard; Martinez-Botas, Ricardo

    2011-03-01

    Shipping contributes 4.5% to global CO2 emissions and is not covered by the Kyoto Agreement. One method of reducing CO2 emissions on land is combined cooling heating and power (CCHP) or trigeneration, with typical combined thermal efficiencies of over 80%. Large luxury yachts are seen as an ideal entry point to the off-shore market for this developing technology considering its current high cost. This paper investigates the feasibility of combining a SOFC-GT system and an absorption heat pump (AHP) in a trigeneration system to drive the heating ventilation and air conditioning (HVAC) and electrical base-load systems. A thermodynamic model is used to simulate the system, with various configurations and cooling loads. Measurement of actual yacht performance data forms the basis of this system simulation. It is found that for the optimum configuration using a double effect absorption chiller in Ship 1, the net electric power increases by 47% relative to the electrical power available for a conventional SOFC-GT-HVAC system. This is due to more air cooled to a lower temperature by absorption cooling; hence less electrical cooling by the conventional HVAC unit is required. The overall efficiency is 12.1% for the conventional system, 34.9% for the system with BROAD single effect absorption chiller, 43.2% for the system with double effect absorption chiller. This shows that the overall efficiency of a trigeneration system is far higher when waste heat recovery happens. The desiccant wheel hardly reduces moisture from the outdoor air due to a relative low mass flow rate of fuel cell exhaust available to dehumidify a very large mass flow rate of HVAC air, Hence, desiccant wheel is not recommended for this application.

  20. Fracture mechanics and surface chemistry studies of fatigue crack growth in an aluminum alloy

    NASA Astrophysics Data System (ADS)

    Wei, R. P.; Pao, P. S.; Hart, R. G.; Weir, T. W.; Simmons, G. W.

    1980-12-01

    Fracture mechanics and surface chemistry studies were carried out to develop further understanding of the influence of water vapor on fatigue crack growth in aluminum alloys. The room temperature fatigue crack growth response was determined for 2219-T851 aluminum alloy exposed to water vapor at pressures from 1 to 30 Pa over a range of stress intensity factors ( K). Data were also obtained in vacuum (at < 0.50 μPa), and dehumidified argon. The test results showed that, at a frequency of 5 Hz, the rate of crack growth is essentially unaffected by water vapor until a threshold pressure is reached. Above this threshold, the rates increased, reaching a maximum within one order of magnitude increase in vapor pressure. This maximum crack growth rate is equal to that obtained in air (40 to 60 pct relative humidity), distilled water and 3.5 pct NaCl solution on the same material. Parallel studies of the reactions of water vapor with fresh alloy surfaces (produced either by in situ impact fracture or by ion etching) were made by Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). The extent of surface reaction was monitored by changes in the oxygen AES and XPS signals. Correlation between the fatigue crack growth response and the surface reaction kinetics has been made, and is consistent with a transport-limited model for crack growth. The results also suggest that enhancement of fatigue crack growth by water vapor in the aluminum alloys occurs through a “hydrogen embrittle ment” mechanism.

  1. Selecting HVAC Systems to Achieve Comfortable and Cost-effective Residential Net-Zero Energy Buildings.

    PubMed

    Wu, Wei; Skye, Harrison M; Domanski, Piotr A

    2018-02-15

    HVAC is responsible for the largest share of energy use in residential buildings and plays an important role in broader implementation of net-zero energy building (NZEB). This study investigated the energy, comfort and economic performance of commercially-available HVAC technologies for a residential NZEB. An experimentally-validated model was used to evaluate ventilation, dehumidification, and heat pump options for the NZEB in the mixed-humid climate zone. Ventilation options were compared to mechanical ventilation without recovery; a heat recovery ventilator (HRV) and energy recovery ventilator (ERV) respectively reduced the HVAC energy by 13.5 % and 17.4 % and reduced the building energy by 7.5 % and 9.7 %. There was no significant difference in thermal comfort between the ventilation options. Dehumidification options were compared to an air-source heat pump (ASHP) with a separate dehumidifier; the ASHP with dedicated dehumidification reduced the HVAC energy by 7.3 % and the building energy by 3.9 %. The ASHP-only option (without dedicated dehumidification) reduced the initial investment but provided the worst comfort due to high humidity levels. Finally, ground-source heat pump (GSHP) alternatives were compared to the ASHP; the GSHP with two and three boreholes reduced the HVAC energy by 26.0 % and 29.2 % and the building energy by 13.1 % and 14.7 %. The economics of each HVAC configuration was analyzed using installation cost data and two electricity price structures. The GSHPs with the ERV and dedicated dehumidification provided the highest energy savings and good comfort, but were the most expensive. The ASHP with dedicated dehumidification and the ERV (or HRV) provided reasonable payback periods.

  2. SciTech Connect

    Rudd, Armin

    This document covers a description of the need and applied solutions for supplemental dehumidification in warm-humid climates, especially for energy efficient homes where the sensible cooling load has been dramatically reduced. Cooling loads are typically high and cooling equipment runs a lot to cool the air in older homes in warm-humid climates. The cooling process also removes indoor moisture, reducing indoor relative humidity. However, at current residential code levels, and especially for above-code programs, sensible cooling loads have been so dramatically reduced that the cooling system does not run a lot to cool the air, resulting in much less moisturemore » being removed. In these new homes, cooling equipment is off for much longer periods of time especially during spring/fall seasons, summer shoulder months, rainy periods, some summer nights, and winter days. In warm-humid climates, those long-off periods allow indoor humidity to become elevated due to internally generated moisture and ventilation air change. Elevated indoor relative humidity impacts comfort, indoor air quality, and building material durability. Industry is responding with supplemental dehumidification options, but that effort is really in its infancy regarding year-round humidity control in low-energy homes. Available supplemental humidity control options are discussed. Some options are less expensive but may not control indoor humidity as well as more expensive and comprehensive options. The best performing option is one that avoids overcooling and adding unnecessary heat to the space by using waste heat from the cooling system to reheat the cooled and dehumidified air to room-neutral temperature.« less

  3. Prevention of food and airway allergy: consensus of the Italian Society of Preventive and Social Paediatrics, the Italian Society of Paediatric Allergy and Immunology, and Italian Society of Pediatrics.

    PubMed

    di Mauro, Giuseppe; Bernardini, Roberto; Barberi, Salvatore; Capuano, Annalisa; Correra, Antonio; De' Angelis, Gian Luigi; Iacono, Iride Dello; de Martino, Maurizio; Ghiglioni, Daniele; Di Mauro, Dora; Giovannini, Marcello; Landi, Massimo; Marseglia, Gian Luigi; Martelli, Alberto; Miniello, Vito Leonardo; Peroni, Diego; Sullo, Lucilla Ricottini Maria Giuseppa; Terracciano, Luigi; Vascone, Cristina; Verduci, Elvira; Verga, Maria Carmen; Chiappini, Elena

    2016-01-01

    Allergic sensitization in children and allergic diseases arising therefrom are increasing for decades. Several interventions, functional foods, pro- and prebiotics, vitamins are proposed for the prevention of allergies and they can't be uncritically adopted. This Consensus document was developed by the Italian Society of Preventive and Social Paediatrics and the Italian Society of Paediatric Allergy and Immunology. The aim is to provide updated recommendations regarding allergy prevention in children. The document has been issued by a multidisciplinary expert panel and it is intended to be mainly directed to primary care paediatricians. It includes 19 questions which have been preliminarily considered relevant by the panel. Relatively to each question, a literature search has been performed, according to the Italian National Guideline Program. Methodology, and a brief summary of the available literature data, has been provided. Many topics have been analyzed including the role of mother's diet restriction, use of breast/formula/hydrolyzed milk; timing of introduction of complementary foods, role (if any) of probiotics, prebiotics, vitamins, exposure to dust mites, animals and to tobacco smoke. Some preventive interventions have a strong level of recommendation. (e.g., the dehumidifier to reduce exposure to mite allergens). With regard to other types of intervention, such as the use of partially and extensively hydrolyzed formulas, the document underlines the lack of evidence of effectiveness. No preventive effect of dietary supplementation with polyunsaturated fatty acids, vitamins or minerals has been demonstrated. There is no preventive effect of probiotics on asthma, rhinitis and allergic diseases. It has demonstrated a modest effect, but steady, in the prevention of atopic dermatitis. The recommendations of the Consensus are based on a careful analysis of the evidence available. The lack of evidence of efficacy does not necessarily imply that some interventions

  4. Water cycles in closed ecological systems: effects of atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Rygalov, Vadim Y.; Fowler, Philip A.; Metz, Joannah M.; Wheeler, Raymond M.; Bucklin, Ray A.; Sager, J. C. (Principal Investigator)

    2002-01-01

    In bioregenerative life support systems that use plants to generate food and oxygen, the largest mass flux between the plants and their surrounding environment will be water. This water cycle is a consequence of the continuous change of state (evaporation-condensation) from liquid to gas through the process of transpiration and the need to transfer heat (cool) and dehumidify the plant growth chamber. Evapotranspiration rates for full plant canopies can range from 1 to 10 L m-2 d-1 (1 to 10 mm m-2 d-1), with the rates depending primarily on the vapor pressure deficit (VPD) between the leaves and the air inside the plant growth chamber. VPD in turn is dependent on the air temperature, leaf temperature, and current value of relative humidity (RH). Concepts for developing closed plant growth systems, such as greenhouses for Mars, have been discussed for many years and the feasibility of such systems will depend on the overall system costs and reliability. One approach for reducing system costs would be to reduce the operating pressure within the greenhouse to reduce structural mass and gas leakage. But managing plant growth environments at low pressures (e.g., controlling humidity and heat exchange) may be difficult, and the effects of low-pressure environments on plant growth and system water cycling need further study. We present experimental evidence to show that water saturation pressures in air under isothermal conditions are only slightly affected by total pressure, but the overall water flux from evaporating surfaces can increase as pressure decreases. Mathematical models describing these observations are presented, along with discussion of the importance for considering "water cycles" in closed bioregenerative life support systems.

  5. Improvements in and actual performance of the Plant Experiment Unit onboard Kibo, the Japanese experiment module on the international space station

    NASA Astrophysics Data System (ADS)

    Yano, Sachiko; Kasahara, Haruo; Masuda, Daisuke; Tanigaki, Fumiaki; Shimazu, Toru; Suzuki, Hiromi; Karahara, Ichirou; Soga, Kouichi; Hoson, Takayuki; Tayama, Ichiro; Tsuchiya, Yoshikazu; Kamisaka, Seiichiro

    2013-03-01

    In 2004, Japan Aerospace Exploration Agency developed the engineered model of the Plant Experiment Unit and the Cell Biology Experiment Facility. The Plant Experiment Unit was designed to be installed in the Cell Biology Experiment Facility and to support the seed-to-seed life cycle experiment of Arabidopsis plants in space in the project named Space Seed. Ground-based experiments to test the Plant Experiment Unit showed that the unit needed further improvement of a system to control the water content of a seedbed using an infrared moisture analyzer and that it was difficult to keep the relative humidity inside the Plant Experiment Unit between 70 and 80% because the Cell Biology Experiment Facility had neither a ventilation system nor a dehumidifying system. Therefore, excess moisture inside the Cell Biology Experiment Facility was removed with desiccant bags containing calcium chloride. Eight flight models of the Plant Experiment Unit in which dry Arabidopsis seeds were fixed to the seedbed with gum arabic were launched to the International Space Station in the space shuttle STS-128 (17A) on August 28, 2009. Plant Experiment Unit were installed in the Cell Biology Experiment Facility with desiccant boxes, and then the Space Seed experiment was started in the Japanese Experiment Module, named Kibo, which was part of the International Space Station, on September 10, 2009 by watering the seedbed and terminated 2 months later on November 11, 2009. On April 19, 2010, the Arabidopsis plants harvested in Kibo were retrieved and brought back to Earth by the space shuttle mission STS-131 (19A). The present paper describes the Space Seed experiment with particular reference to the development of the Plant Experiment Unit and its actual performance in Kibo onboard the International Space Station. Downlinked images from Kibo showed that the seeds had started germinating 3 days after the initial watering. The plants continued growing, producing rosette leaves, inflorescence

  6. Gunion - Nevada`s most innovative geothermal food dehydration facility

    SciTech Connect

    Trexler, D.T.; Taylan, G.; Stewart, M.B.

    1995-12-31

    The Gunion (garlic and onion) dehydration plant, owned and operated by Integrated Ingredients, a Division of Burns Philp Food, Incorporated, uses geothermal fluids at a temperature of 306{degrees}F to dehydrate 50 to 70-thousand pounds per day of garlic and onions. The geothermal fluids are provided by Empire Farms, who has the rights for development of the resource and is the lease holder of fee land known as the Kosmos Lease. The San Emidio KGRA is located in northern Washoe County, 90 miles north-northeast of Reno, Nevada and 20 miles south of Gerlach, Nevada. Geothermal fluids exit the plant at 242{degrees}Fmore » and are piped to an injection well located 3,000 feet south-southwest of the plant. The plant location was selected not only for the geothermal resource, but also for the area`s low relative humidity. Currently, 1100-1200 gpm of geothermal fluids, at an inlet temperature of 302{degrees}F, are sufficient to provide the dryer line with ample BTU`s. Three geothermal wells drilled to depths ranging from 493 to 1817 feet produce fluids ranging in temperature from 266 to 306{degrees}F. One well can easily provide the heat required by the dryer line and will be capable of providing heat for a planned three-fold expansion of the facility. The remaining two wells are used as backup, or may be used for other applications such as soil sterilization. The fluid exiting the plant at 242{degrees}F may be cascaded and used for greenhouses and soil warming in the future. Geothermal heat is also used to dehumidify onions placed in the cold storage facility. The dehydration process takes 5-6 hours to dry the product to a 4.5% moisture content. The dried product is then milled to various sizes from powder to granules. The dehydration plant operates 24 hours/day 7 days a week. Currently 80 people are employed full-time at the plant. The dehydrated onion and garlic are used in condiments, soups, sauces and salad dressing.« less

  7. Integrated energy system for a high performance building

    NASA Astrophysics Data System (ADS)

    Jaczko, Kristen

    Integrated energy systems have the potential to reduce of the energy consumption of residential buildings in Canada. These systems incorporate components to meet the building heating, cooling and domestic hot water load into a single system in order to reduce energy losses. An integrated energy system, consisting of a variable speed heat pump, cold and hot thermal storage tanks, a photovoltaic/thermal (PV/T) collector array and a battery bank, was designed for the Queen's Solar Design Team's (QSDT) test house. The system uses a radiant floor to provide space- heating and sensible cooling and a dedicated outdoor air system provides ventilation and dehumidifies the incoming fresh air. The test house, the Queen's Solar Education Centre (QSEC), and the integrated energy system were both modelled in TRNSYS. Additionally, a new TRNSYS Type was developed to model the PV/T collectors, enabling the modeling of the collection of energy from the ambient air. A parametric study was carried out in TRNSYS to investigate the effect of various parameters on the overall energy performance of the system. These parameters included the PV/T array size and the slope of the collectors, the heat pump source and load-side inlet temperature setpoints, the compressor speed control and the size of the thermal storage tanks and the battery bank. The controls of the heat pump were found to have a large impact on the performance of the integrated energy system. For example, a low evaporator setpoint improved the overall free energy ratio (FER) of the system but the heat pump performance was lowered. Reducing the heat loss of the PV/T panels was not found to have a large effect on the system performance however, as the heat pump is able to lower the inlet collector fluid temperature, thus reducing thermal losses. From the results of the sensitivity study, a recommended system model was created and this system had a predicted FER of 77.9% in Kingston, Ontario, neglecting the energy consumption of

  8. Indoor climate and moisture durability performances of houses with unvented attic roof constructions in a mixed-humid climate.

    SciTech Connect

    Pallin, Simon B.; Boudreaux, Philip R.; Jackson, Roderick K.

    2014-10-01

    A sealed or unvented attic is an energy-efficient envelope component that can reduce the amount of energy a house consumes for space conditioning if the air handler and/or ducts are located in the attic. The attic is typically sealed by using spray foam on the underside of the roof deck and covering the soffit, ridge and gable vents to minimize air leakage from the attic to the outside. This approach can save up to 10% in space-conditioning energy when ducts are located in the attic (DOE 2013). Past research done by ORNL and Florida Solar Energy Center suggests that inmore » more hot, humid climates, an unvented attic could potentially create a more humid, uncomfortable living environment than a vented attic (Colon 2011, Boudreaux, Pallin et al. 2013). Research showed that controlling the higher indoor humidity could reduce the energy savings from the sealed, unvented attic, which in turn would decrease the energy savings payback. Research also showed that the roof assembly (5.5 inches of open-cell foam, 1inch of closed-cell foam, OSB, felt paper, and asphalt shingles) stored moisture, thus acting as a moisture buffer. During the fall and winter, the roof assembly stored moisture and during the spring and summer it released moisture. This phenomenon is not seen in a vented attic, in which the air exchange rate to the outside is greater and, in the winter, helps to dehumidify the attic air. It was also seen that in a vented attic, the direction of water vapor diffusion is on average from the attic to the interior of the house. Air leakage from the attic to the interior also occurs during more of the year in a house with an unvented attic than in one with a vented attic. These discoveries show that the moisture dynamics in a house with an unvented attic are much different from those in a house with a vented attic. This study reports on a series of computer model investigations completed to determine the key variables impacting indoor comfort and the durability of

  9. SciTech Connect

    Blair, Jeff L.; Glenn, Lee J.

    -smart appliance; and (4) remove power for a period of time from the appliance (such as a dehumidifier, portable heater, or pool pump) in response to both time-pricing schedule and critical peak-load information from the utility, or inform the user of a batch-type appliance (such as a clothes dryer or dishwasher) regarding the current cost associated with using the appliance. The new products that could be developed as a result of this research into new consumer-centric features and characteristics includes smart wall outlets, smart outlet power-monitoring adapters, smart load switches and smart remote electric rate indicators associated with the non-smart appliances. Our Phase I goal of determining the feasibility of the above technologies was successful. The objectives were also met of developing concepts for a family of microprocessor-based control/indicator devices that can provide the above capabilities while connected in series between an appliance and its electrical power source and/or while indicating cost-of-use status to the appliance user.« less

  10. Inorganic membranes for carbon capture and power generation

    NASA Astrophysics Data System (ADS)

    Snider, Matthew T.

    of the templating agent. This meant that small restrictions in the micropores were beneficial to the transport of molecules with some attraction to the micropore walls. Further evidence of this effect were discovered in transport studies on Zeolite Y membranes, in which small amounts of residual water were observed to enhance the CO2 permeance in a similar way as the templating agent in the powder. However, the effect was only observed for dry CO 2 streams and previously humidified membranes. H2O affinity for the zeolite framework was so high and mobility in the micropores was so low that even 0.8 mol% H2O included in the gas stream was enough to reduce CO2 transport by 100x. This poses a serious concern for carbon capture by zeolite Y membrane in coal-fired power plants: the waste stream must be dehumidified first. In the long-term, raising the efficiencies of fossil-fuel power plants is preferable to post-combustion capture for cost- and resource-effective carbon emissions reduction. Supplementing combustion of the fuel with electrochemical conversion by solid oxide fuel cell (SOFC) shows promise in this effort. Thin-film (<1microm thick) SOFCs have recently exhibited power densities at low temperature (LT) that rival those of thick-film, high-temperature designs, with improved stability and quick ramp times. Low operating temperatures also provide the potential for fast, high-volume production, but so far high-performing LT-SOFCs have all been made by micro-fabrication methods. In this work, thin-film LT-SOFC modules were fabricated by colloidal processing and their performance was demonstrated. Nano-particulate colloid syntheses, dip-coating, and rapid thermal processing methods yielded fine-particle membrane microstructures, with high porosity and conductivity in the platinum/gadolinium-doped ceria (GDC) composite electrodes and density in the yttria-stabilized zirconia (YSZ) electrolytes. Power densities of >1000 W/m2 at 450°C and ˜5000 W/m2 at 600°C were

  11. Heat Pump Water Heater Technology: Experiences of Residential Consumers and Utilities

    SciTech Connect

    Ashdown, BG

    . Because it produces hot water by extracting heat from the air it tends to dehumidify and cool the room in which it is placed. Moreover, it tends to spread the water heating load across utility non-peak periods. Thus, electric utilities with peak load issues could justify internal programs to promote this technology to residential and commercial customers. For practical purposes, consumers are indifferent to the manner in which water is heated but are very interested in product attributes such as initial first cost, operating cost, performance, serviceability, product size, and installation costs. Thus, the principal drivers for penetrating markets are demonstrating reliability, leveraging the dehumidification attributes of the HPWH, and creating programs that embrace life-cycle cost principles. To supplement this, a product warranty with scrupulous quality control should be implemented; first-price reduction through engineering, perhaps by reducing level of energy efficiency, should be pursued; and niche markets should be courted. The first step toward market penetration is to address the HPWH's performance reliability. Next, the manufacturers could engage select utilities to aggressively market the HPWH. A good approach would be to target distinct segments of the market with the potential for the highest benefits from the technology. Communications media that address performance issues should be developed. When marketing to new home builders, the HPWH could be introduced as part of an energy-efficient package offered as a standard feature by builders of new homes within a community. Conducting focus groups across the United States to gather input on HPWH consumer values will feed useful data back to the manufacturers. ''Renaming'' and ''repackaging'' the HPWH to improve consumer perception, appliance aesthetics, and name recognition should be considered. Once an increased sales volume is achieved, the manufacturers should reinvest in R&D to lower the price of the units