Sample records for dehydration unit process

  1. 40 CFR 63.1275 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 12 2014-07-01 2014-07-01 false Glycol dehydration unit process vent... Storage Facilities § 63.1275 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart that must be controlled for air emissions as...

  2. 40 CFR 63.1275 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 12 2013-07-01 2013-07-01 false Glycol dehydration unit process vent... Storage Facilities § 63.1275 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart that must be controlled for air emissions as...

  3. 40 CFR 63.1275 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 12 2012-07-01 2011-07-01 true Glycol dehydration unit process vent... Facilities § 63.1275 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to or...

  4. 40 CFR 63.1275 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Glycol dehydration unit process vent... Facilities § 63.1275 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to or...

  5. 40 CFR 63.765 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Glycol dehydration unit process vent... Facilities § 63.765 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart that must be controlled for air emissions as specified in either...

  6. 40 CFR 63.765 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Glycol dehydration unit process vent... Facilities § 63.765 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to or...

  7. 40 CFR 63.765 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Glycol dehydration unit process vent... Facilities § 63.765 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart that must be controlled for air emissions as specified in either...

  8. 40 CFR 63.765 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Glycol dehydration unit process vent... Facilities § 63.765 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to or...

  9. 40 CFR 63.1275 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Glycol dehydration unit process vent... Facilities § 63.1275 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to or...

  10. 40 CFR 63.765 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Glycol dehydration unit process vent... Facilities § 63.765 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to or...

  11. 40 CFR 63.764 - General standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in paragraphs (c)(1) through (3) of this section. (1) For each glycol dehydration unit process vent... requirements for glycol dehydration unit process vents specified in § 63.765; (ii) The owner or operator shall... requirements for glycol dehydration unit process vents specified in § 63.765; (ii) The monitoring requirements...

  12. 40 CFR 63.764 - General standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in paragraphs (c)(1) through (3) of this section. (1) For each glycol dehydration unit process vent... requirements for glycol dehydration unit process vents specified in § 63.765; (ii) The owner or operator shall... requirements for glycol dehydration unit process vents specified in § 63.765; (ii) The monitoring requirements...

  13. 40 CFR 63.764 - General standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... in paragraphs (c)(1) through (3) of this section. (1) For each glycol dehydration unit process vent... requirements for glycol dehydration unit process vents specified in § 63.765; (ii) The owner or operator shall... requirements for glycol dehydration unit process vents specified in § 63.765; (ii) The monitoring requirements...

  14. 40 CFR 63.764 - General standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in paragraphs (c)(1) through (3) of this section. (1) For each glycol dehydration unit process vent... requirements for glycol dehydration unit process vents specified in § 63.765; (ii) The owner or operator shall... requirements for glycol dehydration unit process vents specified in § 63.765; (ii) The monitoring requirements...

  15. 40 CFR 63.764 - General standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... in paragraphs (c)(1) through (3) of this section. (1) For each glycol dehydration unit process vent... requirements for glycol dehydration unit process vents specified in § 63.765; (ii) The owner or operator shall... requirements for glycol dehydration unit process vents specified in § 63.765; (ii) The monitoring requirements...

  16. 40 CFR 63.1281 - Control equipment requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... dehydration unit baseline operations (as defined in § 63.1271). Records of glycol dehydration unit baseline... the Administrator's satisfaction, the conditions for which glycol dehydration unit baseline operations... emission reduction of 95.0 percent for the glycol dehydration unit process vent. Only modifications in...

  17. 40 CFR 63.1281 - Control equipment requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... dehydration unit baseline operations (as defined in § 63.1271). Records of glycol dehydration unit baseline... the Administrator's satisfaction, the conditions for which glycol dehydration unit baseline operations... emission reduction of 95.0 percent for the glycol dehydration unit process vent. Only modifications in...

  18. 40 CFR 63.775 - Reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operator of a glycol dehydration unit subject to this subpart that is exempt from the control requirements for glycol dehydration unit process vents in § 63.765, is exempt from all reporting requirements for....0 or higher and documentation stating why the TEG dehydration unit must operate using the alternate...

  19. 40 CFR 63.773 - Inspection and monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... devices: (i) Except for control devices for small glycol dehydration units, a boiler or process heater in...) Except for control devices for small glycol dehydration units, a boiler or process heater with a design...

  20. 40 CFR 63.773 - Inspection and monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... devices: (i) Except for control devices for small glycol dehydration units, a boiler or process heater in...) Except for control devices for small glycol dehydration units, a boiler or process heater with a design...

  1. 40 CFR 63.1274 - General standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) of this section, the owner or operator of an affected source (i.e., glycol dehydration unit) located... subpart as follows: (1) The control requirements for glycol dehydration unit process vents specified in... maintained as required in § 63.1284(d). (1) The actual annual average flow of gas to the glycol dehydration...

  2. 40 CFR 63.1274 - General standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) of this section, the owner or operator of an affected source (i.e., glycol dehydration unit) located... subpart as follows: (1) The control requirements for glycol dehydration unit process vents specified in... maintained as required in § 63.1284(d). (1) The actual annual average flow of gas to the glycol dehydration...

  3. 40 CFR 63.1274 - General standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) of this section, the owner or operator of an affected source (i.e., glycol dehydration unit) located... subpart as follows: (1) The control requirements for glycol dehydration unit process vents specified in... maintained as required in § 63.1284(d). (1) The actual annual average flow of gas to the glycol dehydration...

  4. 40 CFR 63.1274 - General standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of an affected source (i.e., glycol dehydration unit) located at an existing or new major source of... requirements for glycol dehydration unit process vents specified in § 63.1275; (2) The monitoring requirements...

  5. 40 CFR 63.1274 - General standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of an affected source (i.e., glycol dehydration unit) located at an existing or new major source of... requirements for glycol dehydration unit process vents specified in § 63.1275; (2) The monitoring requirements...

  6. Pervaporation process and use in treating waste stream from glycol dehydrator

    DOEpatents

    Kaschemekat, Jurgen; Baker, Richard W.

    1994-01-01

    Pervaporation processes and apparatus with few moving parts. Ideally, only one pump is used to provide essentially all of the motive power and driving force needed. The process is particularly useful for handling small streams with flow rates less than about 700 gpd. Specifically, the process can be used to treat waste streams from glycol dehydrator regeneration units.

  7. Field testing results for the R-BTEX{sup {trademark}} process for controlling glycol dehydrator emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamez, J.P.; Rueter, C.O.; Beitler, C.M.

    1995-12-01

    lncreasing regulatory pressure has made emissions of benzene, toluene, ethylbenzene, and xylenes (collectively known as BTEX) and total volatile organic compounds (VOC) from glycol dehydration units a major concern for the natural gas industry since there are over 40,000 of these units in operation. The Clean Air Act Amendments (CAAA) of 1990 have been the impetus for air toxics regulations, and the Maximum Achievable Control Technology (MACT) standards for the oil and gas industry will be proposed in June, 1995, and will include glycol dehydrators. In addition, several states are regulating or considering regulation of these units. The most commonmore » control systems that have been applied to glycol dehydrators are combustion or condensation systems. Combustion systems suffer from high operating costs since they do not recover the hydrocarbon for sale and require supplemental fuel. Many of the condensation systems may not achieve sufficiently low condenser temperatures to meet regulatory control limits. The R-BTEX{sup TM} process addresses this shortcoming by recovering the steam from the glycol dehydrator and converting it to cooling water; this allows R-BTEX to achieve the lowest condenser temperature possible without refrigeration. The Gas Research Institute (GRI) is conducting a field test program to demonstrate the process under a variety of conditions. Under this program, testing has been completed at one site in south Texas and at another site in western Colorado. Startup of a third unit at a Gulf Coast site in Texas should occur in late 1994. This paper presents the testing results for the first two sites and includes a side-by-side comparison of the R-BTEX process with other available control technologies.« less

  8. 40 CFR 63.1270 - Applicability and designation of affected source.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... value. For estimating maximum potential emissions from glycol dehydration units, the glycol circulation... existing glycol dehydration unit specified in paragraphs (b)(1) through (3) of this section. (1) Each large glycol dehydration unit; (2) Each small glycol dehydration unit for which construction commenced on or...

  9. 40 CFR 63.1270 - Applicability and designation of affected source.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... value. For estimating maximum potential emissions from glycol dehydration units, the glycol circulation... existing glycol dehydration unit specified in paragraphs (b)(1) through (3) of this section. (1) Each large glycol dehydration unit; (2) Each small glycol dehydration unit for which construction commenced on or...

  10. 40 CFR 63.760 - Applicability and designation of affected source.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... estimating maximum potential emissions from glycol dehydration units, the glycol circulation rate used in the...) Each glycol dehydration unit as specified in paragraphs (b)(1)(i)(A) through (C) of this section. (A) Each large glycol dehydration unit; (B) Each small glycol dehydration unit for which construction...

  11. 40 CFR 63.760 - Applicability and designation of affected source.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... estimating maximum potential emissions from glycol dehydration units, the glycol circulation rate used in the...) Each glycol dehydration unit as specified in paragraphs (b)(1)(i)(A) through (C) of this section. (A) Each large glycol dehydration unit; (B) Each small glycol dehydration unit for which construction...

  12. Joint Symposium on Compatibility of Plastics/Materials with Explosives Processing Explosives Held in Albuquerque, New Mexico on 15-17 May 1979.

    DTIC Science & Technology

    1979-05-01

    250 A. S. Tompa REAL-TIME LOW TEMPERATURE NC AND PBX 9404 DECOMPOSITION STUDIES ....................................... 276 ._- Dr. Hermann...the five major unit operations for multi-base cannon propellant; nitrocellulose dehydration , premixing, mixing, extruding and cutting. Throughout the...during facility design, a general process description is presented as follows: Thermal Dehydration Nitrocellulose (NC) slurry is fed to a continuous

  13. 40 CFR 63.1281 - Control equipment requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for sources except small glycol dehydration units. Owners and operators of small glycol dehydration units shall comply with the control requirements in paragraph (f) of this section. (1) The control... or operator shall determine glycol dehydration unit baseline operations (as defined in § 63.1271...

  14. 40 CFR 63.1281 - Control equipment requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for sources except small glycol dehydration units. Owners and operators of small glycol dehydration units shall comply with the control requirements in paragraph (f) of this section. (1) The control... or operator shall determine glycol dehydration unit baseline operations (as defined in § 63.1271...

  15. 40 CFR 63.1284 - Recordkeeping requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... glycol dehydration unit baseline operations calculated as required under § 63.1281(e)(1). (10) Records... appropriate, for each glycol dehydration unit that is not controlled according to the requirements of § 63... glycol dehydration unit per day), as determined in accordance with § 63.1282(a)(1); or (2) The actual...

  16. 40 CFR 63.774 - Recordkeeping requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... dehydration unit baseline operations calculated as required under § 63.771(e)(1). (11) Records required in... this section. (d)(1) An owner or operator of a glycol dehydration unit that meets the exemption...)(i) or paragraph (d)(1)(ii) of this section, as appropriate, for that glycol dehydration unit. (i...

  17. 40 CFR 63.1284 - Recordkeeping requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of glycol dehydration unit baseline operations calculated as required under § 63.1281(e)(1). (10... appropriate, for each glycol dehydration unit that is not controlled according to the requirements of § 63... glycol dehydration unit per day), as determined in accordance with § 63.1282(a)(1); or (2) The actual...

  18. 40 CFR 63.774 - Recordkeeping requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... dehydration unit baseline operations calculated as required under § 63.771(e)(1). (11) Records required in... this section. (d)(1) An owner or operator of a glycol dehydration unit that meets the exemption...)(i) or paragraph (d)(1)(ii) of this section, as appropriate, for that glycol dehydration unit. (i...

  19. 40 CFR 63.774 - Recordkeeping requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., subpart V; or 40 CFR part 63, subpart H. (10) Records of glycol dehydration unit baseline operations... or operator of a glycol dehydration unit that meets the exemption criteria in § 63.764(e)(1)(i) or...) of this section, as appropriate, for that glycol dehydration unit. (i) The actual annual average...

  20. 40 CFR 63.774 - Recordkeeping requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., subpart V; or 40 CFR part 63, subpart H. (10) Records of glycol dehydration unit baseline operations... or operator of a glycol dehydration unit that meets the exemption criteria in § 63.764(e)(1)(i) or...) of this section, as appropriate, for that glycol dehydration unit. (i) The actual annual average...

  1. 40 CFR 63.1284 - Recordkeeping requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of glycol dehydration unit baseline operations calculated as required under § 63.1281(e)(1). (10... appropriate, for each glycol dehydration unit that is not controlled according to the requirements of § 63... glycol dehydration unit per day), as determined in accordance with § 63.1282(a)(1); or (2) The actual...

  2. 40 CFR 63.1284 - Recordkeeping requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... glycol dehydration unit baseline operations calculated as required under § 63.1281(e)(1). (10) Records... appropriate, for each glycol dehydration unit that is not controlled according to the requirements of § 63... glycol dehydration unit per day), as determined in accordance with § 63.1282(a)(1); or (2) The actual...

  3. 40 CFR 63.1282 - Test methods, compliance procedures, and compliance demonstrations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... compliance demonstrations. (a) Determination of glycol dehydration unit flowrate, benzene emissions, or BTEX... dehydration unit natural gas flowrate, benzene emissions, or BTEX emissions. (1) The determination of actual flowrate of natural gas to a glycol dehydration unit shall be made using the procedures of either paragraph...

  4. 40 CFR 63.774 - Recordkeeping requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... dehydration unit baseline operations calculated as required under § 63.771(e)(1). (11) Records required in... this section. (d)(1) An owner or operator of a glycol dehydration unit that meets the exemption...)(i) or paragraph (d)(1)(ii) of this section, as appropriate, for that glycol dehydration unit. (i...

  5. 40 CFR 63.1282 - Test methods, compliance procedures, and compliance demonstrations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... compliance demonstrations. (a) Determination of glycol dehydration unit flowrate, benzene emissions, or BTEX... dehydration unit natural gas flowrate, benzene emissions, or BTEX emissions. (1) The determination of actual flowrate of natural gas to a glycol dehydration unit shall be made using the procedures of either paragraph...

  6. 40 CFR 63.1284 - Recordkeeping requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of glycol dehydration unit baseline operations calculated as required under § 63.1281(e)(1). (10... appropriate, for each glycol dehydration unit that is not controlled according to the requirements of § 63... glycol dehydration unit per day), as determined in accordance with § 63.1282(a)(1); or (2) The actual...

  7. 40 CFR 63.1282 - Test methods, compliance procedures, and compliance demonstrations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... demonstrations. (a) Determination of glycol dehydration unit flowrate or benzene emissions. The procedures of this paragraph shall be used by an owner or operator to determine glycol dehydration unit natural gas....1274(d). (1) The determination of actual flowrate of natural gas to a glycol dehydration unit shall be...

  8. 40 CFR 63.775 - Reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... documentation stating why the TEG dehydration unit must operate using the alternate glycol circulation rate. (iv... facility will always operate the glycol dehydration unit using the optimum circulation rate determined in... dehydration unit located at an area source that meets the criteria in § 63.764(e)(1)(i) or § 63.764(e)(1)(ii...

  9. 40 CFR 63.1282 - Test methods, compliance procedures, and compliance demonstrations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... demonstrations. (a) Determination of glycol dehydration unit flowrate or benzene emissions. The procedures of this paragraph shall be used by an owner or operator to determine glycol dehydration unit natural gas....1274(d). (1) The determination of actual flowrate of natural gas to a glycol dehydration unit shall be...

  10. GLYCOL DEHYDRATOR BTEX AND VOC EMISSIONS TESTING RESULTS AT TWO UNITS IN TEXAS AND LOUISIANA VOL. II: APPENDICES

    EPA Science Inventory

    The report gives results of the collection of emissions test data st two triethylene glycol units to provide data for the comparison to GRI-GLYCalc, a computer program developed to estimate emissions from glycol dehydrators. [NOTE: Glycol dehydrators are used in the natural gas i...

  11. GLYCOL DEHYDRATOR BTEX AND VOC EMISSIONS TESTING RESULTS AT TWO UNITS IN TEXAS AND LOUISIANA VOL. I: TECHNICAL REPORT

    EPA Science Inventory

    The report gives results of the collection of emissions tests data at two triethylene glycol units to provide data for comparison to GRI-GLYCalc, a computer program developed to estimate emissions from glycol dehydrators. (NOTE: Glycol dehydrators are used in the natural gas indu...

  12. A cost effective method of meeting emission requirements from a 50 MMscfd glycol dehydrator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gearhart, L.E.

    1998-12-31

    The removal of volatile organic compounds (VOC) and benzene, toluene, ethylbenzene, xylene (BTEX) from glycol dehydration systems does not require costly equipment or elaborate controls. This paper will describe the design and installation of a 10 equivalent try glycol dehydration unit for field gas dehydration. The absorber design minimizes the absorption of VOC and BTEX by requiring 1.0 to 1.5 gallons of glycol per pound of water removed. Glycol unit VOC emissions are effectively controlled without installing vent gas condensers which require disposal of the waste condensate. The emission control system on this unit is simple to operate, meets emissionmore » standards and the dehydrator design achieves pipeline sales gas specifications at a reasonable cost. The system reduces the VOC and BTEX by adding a stripper on the glycol going to the reboiler. A 50 MMscfd dehydrator was installed in December 1995 and the results of an emission test done in April 1997 are presented in this paper.« less

  13. Addition polymers from 1,4,5,8-tetrahydro-1,4;5,8-diepoxyanthracene and Bis-dienes. 2: Evidence for thermal dehydration occurring in the cure process

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.; Olshavsky, Michael A.; Meador, Michael A.; Ahn, Myong-Ku

    1988-01-01

    Diels-Alder cycloaddition copolymers from 1,4,5,8-tetrahydro-1,4;5,8-diepoxyanthracene and anthracene end-capped polyimide oligomers appear, by thermogravimetric analysis (TGA), to undergo dehydration at elevated temperatures. This would produce thermally stable pentiptycene units along the polymer backbone, and render the polymers incapable of unzipping through a retro-Diels-Alder pathway. High resolution solid 13C nuclear magnetic resonance (NMR) of one formulation of the polymer system before and after heating at elevated temperatures, shows this to indeed be the case. NMR spectra of solid samples of the polymer before and after heating correlated well with those of the parent pentiptycene model compound before and after acid-catalyzed dehydration. Isothermal gravimetric analyses and viscosities of the polymer before and after heat treatment support dehydration as a mechanism for the cure reaction.

  14. 40 CFR 63.761 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of hydrocarbon liquids or natural gas: after processing and/or treatment in the producing operations... point at which such liquids or natural gas enters a natural gas processing plant is a point of custody... dehydration unit is passed to remove entrained gas and hydrocarbon liquid. The GCG separator is commonly...

  15. 40 CFR 63.761 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of hydrocarbon liquids or natural gas: after processing and/or treatment in the producing operations... point at which such liquids or natural gas enters a natural gas processing plant is a point of custody... dehydration unit is passed to remove entrained gas and hydrocarbon liquid. The GCG separator is commonly...

  16. 40 CFR 63.761 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of hydrocarbon liquids or natural gas: after processing and/or treatment in the producing operations... point at which such liquids or natural gas enters a natural gas processing plant is a point of custody... dehydration unit is passed to remove entrained gas and hydrocarbon liquid. The GCG separator is commonly...

  17. 40 CFR 63.1285 - Reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Report specified in paragraph (e) of this section. (7) Each owner or operator of a glycol dehydration unit subject to this subpart that is exempt from the control requirements for glycol dehydration unit...

  18. 40 CFR 63.1285 - Reporting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Report specified in paragraph (e) of this section. (7) Each owner or operator of a glycol dehydration unit subject to this subpart that is exempt from the control requirements for glycol dehydration unit...

  19. 40 CFR 63.1285 - Reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Report specified in paragraph (e) of this section. (7) Each owner or operator of a glycol dehydration unit subject to this subpart that is exempt from the control requirements for glycol dehydration unit...

  20. 40 CFR 63.760 - Applicability and designation of affected source.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) of this section. (i) Each glycol dehydration unit; (ii) Each storage vessel with the potential for... affected source includes each triethylene glycol (TEG) dehydration unit located at a facility that meets...

  1. 40 CFR 63.760 - Applicability and designation of affected source.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) of this section. (i) Each glycol dehydration unit; (ii) Each storage vessel with the potential for... affected source includes each triethylene glycol (TEG) dehydration unit located at a facility that meets...

  2. 40 CFR 63.760 - Applicability and designation of affected source.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) of this section. (i) Each glycol dehydration unit; (ii) Each storage vessel with the potential for... affected source includes each triethylene glycol (TEG) dehydration unit located at a facility that meets...

  3. 40 CFR 63.1270 - Applicability and designation of affected source.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... is each glycol dehydration unit. (c) The owner or operator of a facility that does not contain an... meters per day, where glycol dehydration units are the only HAP emission source, is not subject to the...

  4. 40 CFR 63.1270 - Applicability and designation of affected source.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... is each glycol dehydration unit. (c) The owner or operator of a facility that does not contain an... meters per day, where glycol dehydration units are the only HAP emission source, is not subject to the...

  5. 40 CFR 63.1270 - Applicability and designation of affected source.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... is each glycol dehydration unit. (c) The owner or operator of a facility that does not contain an... meters per day, where glycol dehydration units are the only HAP emission source, is not subject to the...

  6. Evaluation and Management of Dehydration in Children.

    PubMed

    Santillanes, Genevieve; Rose, Emily

    2018-05-01

    The article discusses the evaluation of dehydration in children and reviews the literature on physical findings of dehydration. Pediatric dehydration is a common problem in emergency departments and wide practice variation in treatment exists. Dehydration can be treated with oral, nasogastric, subcutaneous, or intravenous fluids. Although oral rehydration is underutilized in the United States, most children with dehydration can be successfully rehydrated via the oral route. Selection of oral rehydration solution and techniques for successful oral rehydration are presented. Appropriate selection and rate of administration of intravenous fluids are also discussed for isonatremic, hyponatremic, and hypernatremic dehydration. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Improving gas dehydrator efficiency; Glycol losses from dehydrator solved by mist eliminator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franke, S.; Neal, R.; Patel, K.

    1989-07-01

    Triethylene glycol losses from a natural gas dehydrator unit were costing Winnie Pipeline Co. well over $100/day. Several possible causes had been investigated, and a second, smaller unit had been added because insufficient capacity was thought to cause glycol carryover from the contactor. Eventually, glycol losses were virtually eliminated by replacing the standard mist eliminator pad in the top of the contactor tower with a higher-efficiency type. Use of this type of pad is discussed in this paper.

  8. Flavonoid content in fresh, home-processed, and light-exposed onions and in dehydrated commercial onion products.

    PubMed

    Lee, Seung Un; Lee, Jong Ha; Choi, Suk Hyun; Lee, Jin Shik; Ohnisi-Kameyama, Mayumi; Kozukue, Nobuyuki; Levin, Carol E; Friedman, Mendel

    2008-09-24

    Onion plants synthesize flavonoids as protection against damage by UV radiation and by intracellular hydrogen peroxide. Because flavonoids also exhibit health-promoting effects in humans, a need exists to measure their content in onions and in processed onion products. To contribute to the knowledge about the levels of onion flavonoids, HPLC and LC-MS were used to measure levels of seven quercetin and isorhamnetin glucosides in four Korean commercial onion bulb varieties and their distribution within the onion, in scales of field-grown onions exposed to home processing or to fluorescent light and in 16 commercial dehydrated onion products sold in the United States. Small onions had higher flavonoid content per kilogram than large ones. There was a graduated decrease in the distribution of the flavonoids across an onion bulb from the first (outside) to the seventh (innermost) scale. Commercial, dehydrated onion products contained low amounts or no flavonoids. Losses of onion flavonoids subjected to "cooking" (in percent) ranged as follows: frying, 33; sauteing, 21; boiling, 14-20; steaming, 14; microwaving, 4; baking, 0. Exposure to fluorescent light for 24 and 48 h induced time-dependent increases in the flavonoid content. The results extend the knowledge about the distribution of flavonoids in fresh and processed onions.

  9. 40 CFR 63.1283 - Inspection and monitoring requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the following types of control devices: (i) Except for control devices for small glycol dehydration... used as the primary fuel; (ii) Except for control devices for small glycol dehydration units, a boiler...

  10. 40 CFR 63.1283 - Inspection and monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the following types of control devices: (i) Except for control devices for small glycol dehydration... used as the primary fuel; (ii) Except for control devices for small glycol dehydration units, a boiler...

  11. State transitions and physicochemical aspects of cryoprotection and stabilization in freeze-drying of Lactobacillus rhamnosus GG (LGG).

    PubMed

    Pehkonen, K S; Roos, Y H; Miao, S; Ross, R P; Stanton, C

    2008-06-01

    The frozen and dehydrated state transitions of lactose and trehalose were determined and studied as factors affecting the stability of probiotic bacteria to understand physicochemical aspects of protection against freezing and dehydration of probiotic cultures. Lactobacillus rhamnosus GG was frozen (-22 or -43 degrees C), freeze-dried and stored under controlled water vapour pressure (0%, 11%, 23% and 33% relative vapour pressure) conditions. Lactose, trehalose and their mixture (1 : 1) were used as protective media. These systems were confirmed to exhibit relatively similar state transition and water plasticization behaviour in freeze-concentrated and dehydrated states as determined by differential scanning calorimetry. Ice formation and dehydrated materials were studied using cold-stage microscopy and scanning electron microscopy. Trehalose and lactose-trehalose gave the most effective protection of cell viability as observed from colony forming units after freezing, dehydration and storage. Enhanced cell viability was observed when the freezing temperature was -43 degrees C. State transitions of protective media affect ice formation and cell viability in freeze-drying and storage. Formation of a maximally freeze-concentrated matrix with entrapped microbial cells is essential in freezing prior to freeze-drying. Freeze-drying must retain a solid amorphous state of protectant matrices. Freeze-dried matrices contain cells entrapped in the protective matrices in the freezing process. The retention of viability during storage seems to be controlled by water plasticization of the protectant matrix and possibly interactions of water with the dehydrated cells. Highest cell viability was obtained in glassy protective media. This study shows that physicochemical properties of protective media affect the stability of dehydrated cultures. Trehalose and lactose may be used in combination, which is particularly important for the stabilization of probiotic bacteria in dairy systems.

  12. Pectin-honey coating as novel dehydrating bioactive agent for cut fruit: Enhancement of the functional properties of coated dried fruits.

    PubMed

    Santagata, Gabriella; Mallardo, Salvatore; Fasulo, Gabriella; Lavermicocca, Paola; Valerio, Francesca; Di Biase, Mariaelena; Di Stasio, Michele; Malinconico, Mario; Volpe, Maria Grazia

    2018-08-30

    In this paper, a novel and sustainable process for the fruit dehydration was described. Specifically, edible coatings based on pectin and honey were prepared and used as dehydrating and antimicrobial agents of cut fruit samples, in this way promoting the fruit preservation from irreversible deteriorative processes. Pectin-honey coating was tested on apple, cantaloupe melon, mango and pineapple. The analysis were performed also on uncoated dehydrated fruits (control). The coated fruit evidenced enhanced dehydration percentage, enriched polyphenol and vitamin C contents, improved antioxidant activity and volatile molecules profile. Moreover, the antimicrobial activity against Pseudomonas and Escherichia coli was assessed. Finally, morphological analysis performed on fruit fractured surface, highlighted the formation of a non-sticky and homogeneous thin layer. These outcomes suggested that the novel fruit dehydration process, performed by using pectin-honey coating, was able to both preserve the safety and quality of dehydrated fruits, and enhance their authenticity and naturalness. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Papaya drying and waste conversion system. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-02-12

    This project, performed under United States Department of Energy Small-scale Appropriate Energy Technology Grant, involves demonstration of an integrated system using solar energy to process off-grade or reject fruit into marketable food products. The integrated system consists of three phases: (1) solar dehydration of usable fruit; (2) solar vacuum distillation of fermented wastes (peelings, rinds, skins, and seeds) to produce an ethanol fuel to use as a backup source of heat for dehydration; and (3) land reclamation by mixing stillage and compost with volcanic cinder and ash to produce on marginal land a rich soil suitable for growing more cropsmore » to dry. Although the system is not 100% complete the investigators have demonstrated that a small business can efficiently use solar energies in an integrated fashion to process waste into food, improve the quality of the land, and provide meaningful jobs in a region of very high unemployment.« less

  14. 7 CFR 929.11 - To can, freeze, or dehydrate.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE CRANBERRIES GROWN IN STATES OF... dehydrate. To can, freeze, or dehydrate means to convert cranberries into canned, frozen, or dehydrated cranberries or other cranberry products by any commercial process. ...

  15. 7 CFR 929.11 - To can, freeze, or dehydrate.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE CRANBERRIES GROWN IN STATES OF... dehydrate. To can, freeze, or dehydrate means to convert cranberries into canned, frozen, or dehydrated cranberries or other cranberry products by any commercial process. ...

  16. 7 CFR 929.11 - To can, freeze, or dehydrate.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE CRANBERRIES GROWN IN STATES OF... dehydrate. To can, freeze, or dehydrate means to convert cranberries into canned, frozen, or dehydrated cranberries or other cranberry products by any commercial process. ...

  17. 7 CFR 929.11 - To can, freeze, or dehydrate.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE CRANBERRIES GROWN IN STATES OF... dehydrate. To can, freeze, or dehydrate means to convert cranberries into canned, frozen, or dehydrated cranberries or other cranberry products by any commercial process. ...

  18. Dehydration processes using membranes with hydrophobic coating

    DOEpatents

    Huang, Yu; Baker, Richard W; Aldajani, Tiem; Ly, Jennifer

    2013-07-30

    Processes for removing water from organic compounds, especially polar compounds such as alcohols. The processes include a membrane-based dehydration step, using a membrane that has a dioxole-based polymer selective layer or the like and a hydrophilic selective layer, and can operate even when the stream to be treated has a high water content, such as 10 wt % or more. The processes are particularly useful for dehydrating ethanol.

  19. The Effect of Passive Heat Stress and Exercise-Induced Dehydration on the Compensatory Reserve During Simulated Hemorrhage.

    PubMed

    Gagnon, Daniel; Schlader, Zachary J; Adams, Amy; Rivas, Eric; Mulligan, Jane; Grudic, Gregory Z; Convertino, Victor A; Howard, Jeffrey T; Crandall, Craig G

    2016-09-01

    Compensatory reserve represents the proportion of physiological responses engaged to compensate for reductions in central blood volume before the onset of decompensation. We hypothesized that compensatory reserve would be reduced by hyperthermia and exercise-induced dehydration, conditions often encountered on the battlefield. Twenty healthy males volunteered for two separate protocols during which they underwent lower-body negative pressure (LBNP) to hemodynamic decompensation (systolic blood pressure <80 mm Hg). During protocol #1, LBNP was performed following a passive increase in core temperature of ∼1.2°C (HT) or a normothermic time-control period (NT). During protocol #2, LBNP was performed following exercise during which: fluid losses were replaced (hydrated), fluid intake was restricted and exercise ended at the same increase in core temperature as hydrated (isothermic dehydrated), or fluid intake was restricted and exercise duration was the same as hydrated (time-match dehydrated). Compensatory reserve was estimated with the compensatory reserve index (CRI), a machine-learning algorithm that extracts features from continuous photoplethysmograph signals. Prior to LBNP, CRI was reduced by passive heating [NT: 0.87 (SD 0.09) vs. HT: 0.42 (SD 0.19) units, P <0.01] and exercise-induced dehydration [hydrated: 0.67 (SD 0.19) vs. isothermic dehydrated: 0.52 (SD 0.21) vs. time-match dehydrated: 0.47 (SD 0.25) units; P <0.01 vs. hydrated]. During subsequent LBNP, CRI decreased further and its rate of change was similar between conditions. CRI values at decompensation did not differ between conditions. These results suggest that passive heating and exercise-induced dehydration limit the body's physiological reserve to compensate for further reductions in central blood volume.

  20. 40 CFR 407.50 - Applicability; description of the dehydrated potato products subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... dehydrated potato products subcategory. 407.50 Section 407.50 Protection of Environment ENVIRONMENTAL... PROCESSING POINT SOURCE CATEGORY Dehydrated Potato Products Subcategory § 407.50 Applicability; description of the dehydrated potato products subcategory. The provisions of this subpart are applicable to...

  1. 40 CFR 407.50 - Applicability; description of the dehydrated potato products subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... dehydrated potato products subcategory. 407.50 Section 407.50 Protection of Environment ENVIRONMENTAL... PROCESSING POINT SOURCE CATEGORY Dehydrated Potato Products Subcategory § 407.50 Applicability; description of the dehydrated potato products subcategory. The provisions of this subpart are applicable to...

  2. 40 CFR 407.50 - Applicability; description of the dehydrated potato products subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... dehydrated potato products subcategory. 407.50 Section 407.50 Protection of Environment ENVIRONMENTAL... PROCESSING POINT SOURCE CATEGORY Dehydrated Potato Products Subcategory § 407.50 Applicability; description of the dehydrated potato products subcategory. The provisions of this subpart are applicable to...

  3. 40 CFR 407.50 - Applicability; description of the dehydrated potato products subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... dehydrated potato products subcategory. 407.50 Section 407.50 Protection of Environment ENVIRONMENTAL... PROCESSING POINT SOURCE CATEGORY Dehydrated Potato Products Subcategory § 407.50 Applicability; description of the dehydrated potato products subcategory. The provisions of this subpart are applicable to...

  4. 40 CFR 407.50 - Applicability; description of the dehydrated potato products subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... dehydrated potato products subcategory. 407.50 Section 407.50 Protection of Environment ENVIRONMENTAL... PROCESSING POINT SOURCE CATEGORY Dehydrated Potato Products Subcategory § 407.50 Applicability; description of the dehydrated potato products subcategory. The provisions of this subpart are applicable to...

  5. Intramolecular dehydration of biomass-derived sugar alcohols in high-temperature water.

    PubMed

    Yamaguchi, Aritomo; Muramatsu, Natsumi; Mimura, Naoki; Shirai, Masayuki; Sato, Osamu

    2017-01-25

    The intramolecular dehydration of biomass-derived sugar alcohols d-sorbitol, d-mannitol, galactitol, xylitol, ribitol, l-arabitol, erythritol, l-threitol, and dl-threitol was investigated in high-temperature water at 523-573 K without the addition of any acid catalysts. d-Sorbitol and d-mannitol were dehydrated into isosorbide and isomannide, respectively, as dianhydrohexitol products. Galactitol was dehydrated into anhydrogalactitols; however, the anhydrogalactitols could not be dehydrated into dianhydrogalactitol products because of the orientation of the hydroxyl groups at the C-3 and C-6 positions. Pentitols such as xylitol, ribitol, and l-arabitol were dehydrated into anhydropentitols. The dehydration rates of the pentitols containing hydroxyl groups in the trans form, which remained as hydroxyl groups in the product tetrahydrofuran, were larger than those containing hydroxyl groups in the cis form because of the structural hindrance caused by the hydroxyl groups in the cis form during the dehydration process. In the case of the tetritols, the dehydration of erythritol was slower than that of threitol, which could also be explained by the structural hindrance of the hydroxyl groups. The dehydration of l-threitol was faster than that of dl-threitol, which implies that molecular clusters were formed by hydrogen bonding between the sugar alcohols in water, which could be an important factor that affects the dehydration process.

  6. Use of osmotic dehydration to improve fruits and vegetables quality during processing.

    PubMed

    Maftoonazad, Neda

    2010-11-01

    Osmotic treatment describes a preparation step to further processing of foods involving simultaneous transient moisture loss and solids gain when immersing in osmotic solutions, resulting in partial drying and improving the overall quality of food products. The different aspects of the osmotic dehydration (OD) technology namely the solutes employed, solutions characteristics used, process variables influence, as well as, the quality characteristics of the osmodehydrated products will be discussed in this review. As the process is carried out at mild temperatures and the moisture is removed by a liquid diffusion process, phase change that would be present in the other drying processes will be avoided, resulting in high quality products and may also lead to substantial energy savings. To optimize this process, modeling of the mass transfer phenomenon can improve high product quality. Several techniques such as microwave heating, vacuum, high pressure, pulsed electric field, etc. may be employed during or after osmotic treatment to enhance performance of the osmotic dehydration. Moreover new technologies used in osmotic dehydration will be discussed. Patents on osmotic dehydration of fruits and vegetables are also discussed in this article.

  7. The Influence of the Osmotic Dehydration Process on Physicochemical Properties of Osmotic Solution.

    PubMed

    Lech, Krzysztof; Michalska, Anna; Wojdyło, Aneta; Nowicka, Paulina; Figiel, Adam

    2017-12-16

    The osmotic dehydration (OD) process consists of the removal of water from a material during which the solids from the osmotic solution are transported to the material by osmosis. This process is commonly performed in sucrose and salt solutions. Taking into account that a relatively high consumption of those substances might have a negative effect on human health, attempts have been made to search for alternatives that can be used for osmotic dehydration. One of these is an application of chokeberry juice with proven beneficial properties to human health. This study aimed to evaluate the physicochemical properties of the OD solution (chokeberry juice concentrate) before and after the osmotic dehydration of carrot and zucchini. The total polyphenolics content, antioxidant capacity (ABTS, FRAP), dynamic viscosity, density, and water activity were examined in relation to the juice concentration used for the osmotic solution before and after the OD process. During the osmotic dehydration process, the concentration of the chokeberry juice decreased. Compounds with lower molecular weight and lower antioxidant capacity present in concentrated chokeberry juice had a stronger influence on the exchange of compounds during the OD process in carrot and zucchini. The water activity of the osmotic solution increased after the osmotic dehydration process. It was concluded that the osmotic solution after the OD process might be successfully re-used as a product with high quality for i.e. juice production.

  8. Effects of dehydration methods on quality characteristics of yellow passion fruit co-products.

    PubMed

    Silva, Neiton C; Duarte, Claudio R; Barrozo, Marcos As

    2017-11-01

    The production and processing of fruits generate a large amount of residues, which are usually disposed of or under-used, representing losses of raw material and energy. The present paper investigates the effect of four dehydration techniques (convective, infrared, microwave and freeze-drying) on yellow passion fruit (Passiflora edulis f. flavicarpa) co-products and the influence of the main variables on moisture removal and bioactive compounds. The compounds analyzed were total phenolics, total flavonoids, ascorbic acid and pectin. The content of phenolics and flavonoids increased after dehydration in all techniques investigated and the process temperatures directly affected the ascorbic acid content. Microwave dehydration showed the best results for most bioactive compounds analyzed, if performed in suitable process conditions. However, the highest levels of pectin content were obtained by freeze-drying and convective dehydration. This study reinforces the importance of the adequate use of passion fruit co-products due to the high levels of bioactive compounds in this material. Microwave dehydration presented the best results, which indicates the potential use of this technique for a better exploitation of fruit co-products. Larger quantities of pectin were extracted from samples dehydrated through methodologies with long-time process and low temperatures, such as convective drying and freeze-drying. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Linam Ranch cryogenic gas plant: A design and operating retrospective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harwell, L.J.; Kuscinski, J.

    1999-07-01

    GPM Gas Corporation's Linam Ranch Gas Plant is the processing hub of their southeastern New Mexico gathering system, producing a y-grade NGL product which is pipelined primarily to the Phillips petrochemical complex at Sweeney, Texas, GPM acquired the facility near Hobbs, N.M. late in 1994 when it was still operating as a refrigerated lean oil plant, renamed it, and commenced an upgrade project culminating in its conversion to a high recovery cryogenic facility in early 1996 with a processing capacity of 150 MMscfd. Facilities that were upgraded included inlet liquids receiving and handling, the amine system, mol sieve dehydration, themore » sulfur recovery unit, inlet compression, and the propane refrigeration system. A Foxboro I/A DCS was also placed into operation. The lean oil system was replaced with a high recovery turboexpander unit supplied by KTI Fish based on their Flash Vapor Reflux (FVR) process. Resulting ethane recovery was greater than 95% for the new facilities. New residue compression units were installed including steam generators on the turbine exhausts, which complemented the existing plant steam system. During the three years since conversion to cryogenic operation, GPM has steadily improved plant operations. Expansion of the mol sieve dehydration system and retrofit of evaporation combustion air cooling on gas turbines have expanded nameplate capacity to 170 MMscfd while maintaining ethane recovery at 95%. Future expansion to 200 MMscfd with high recovery is achievable. In addition, creative use of the Foxboro DCS has been employed to implement advanced control schemes for handling inlet liquid slugs, gas and amine balancing for parallel amine contactors, improved sulfur recovery unit (SRU) trim air control, and constraint-based process optimization to maximize horsepower utilization and ethane recovery. Some challenges remain, leaving room for additional improvements. However, GPM's progress so far has resulted in a current ethane recovery level in excess of 97% when processing gas at the original design throughput of 150 MMscfd.« less

  10. Methods to increase the rate of mass transfer during osmotic dehydration of foods.

    PubMed

    Chwastek, Anna

    2014-01-01

    Traditional methods of food preservation such as freezing, freeze drying (lyophilization), vacuum drying, convection drying are often supplemented by new technologies that enable obtaining of high quality products. Osmotic dehydration is more and more often used during processing of fruits and vegetables. This method allows maintaining good organoleptic and functional properties in the finished product. Obtaining the desired degree of dehydration or saturation of the material with an osmoactive substance often requires  elongation of time or use of high temperatures. In recent years much attention was devoted to techniques aimed at increasing the mass transfer between the dehydrated material and the hypertonic solution. The work reviews the literature focused on methods of streamlining the process of osmotic dehydration which include the use of: ultrasound, high hydrostatic pressure, vacuum osmotic dehydration and pulsed electric field.

  11. Research on terahertz properties of rat brain tissue sections during dehydration

    NASA Astrophysics Data System (ADS)

    Cui, Gangqiang; Liang, Jianfeng; Zhao, Hongwei; Zhao, Xianghui; Chang, Chao

    2018-01-01

    Biological tissue sections are always kept in a system purged with dry nitrogen for the measurement of terahertz spectrum. However, the injected nitrogen will cause dehydration of tissue sections, which will affect the accuracy of spectrum measurement. In this paper, terahertz time-domain spectrometer is used to measure the terahertz spectra of rat brain tissue sections during dehydration. The changes of terahertz properties, including terahertz transmittance, refractive index and extinction coefficient during dehydration are also analyzed. The amplitudes of terahertz time-domain spectra increase gradually during the dehydration process. Besides, the terahertz properties show obvious changes during the dehydration process. All the results indicate that the injected dry nitrogen has a significant effect on the terahertz spectra and properties of tissue sections. This study contributes to further research and application of terahertz technology in biomedical field.

  12. Prognostic value of amplitude-integrated electroencephalography in neonates with hypernatremic dehydration.

    PubMed

    Tekgunduz, Kadir Şerafettin; Caner, Ibrahim; Eras, Zeynep; Taştekin, Ayhan; Tan, Huseyin; Dinlen, Nurdan

    2014-05-01

    Hypernatremic dehydration in neonates is a condition that develops due to inadequate fluid intake and it may lead to cerebral damage. We aimed to determine whether there was an association between serum sodium levels on admission and aEEG patterns and prognosis, as well as any association between aEEG findings and survival rates and long-term prognosis. The present study included all term infants hospitalized for hypernatremic dehydration in between January 2010 and May 2011. Infants were monitored by aEEG. At 2 years of age, we performed a detailed evaluation to assess the impact of hypernatremic dehydration on the neurodevelopmental outcome. Twenty-one infants were admitted to the neonatal intensive care unit for hypernatremic dehydration. A correlation was found between increased serum sodium levels and aEEG abnormalities. Neurodevelopmental assessment was available for 17 of the 21 infants. The results revealed that hypernatremic dehydration did not adversely affect the long-term outcomes. The follow-up of newborns after discharge is key to determine the risks associated with hypernatremic dehydration. Our results suggest that hypernatremic dehydration had no impact on the long-term outcome. In addition, continuous aEEG monitoring could provide information regarding early prognosis and mortality.

  13. Impact of postharvest dehydration process of winegrapes on mechanical and acoustic properties of the seeds and their relationship with flavanol extraction during simulated maceration.

    PubMed

    Río Segade, Susana; Torchio, Fabrizio; Gerbi, Vincenzo; Quijada-Morín, Natalia; García-Estévez, Ignacio; Giacosa, Simone; Escribano-Bailón, M Teresa; Rolle, Luca

    2016-05-15

    This study represents the first time that the extraction of phenolic compounds from the seeds is assessed from instrumental texture properties for dehydrated grapes. Nebbiolo winegrapes were postharvest dehydrated at 20°C and 41% relative humidity. During the dehydration process, sampling was performed at 15%, 30%, 45% and 60% weight loss. The extractable fraction and extractability of phenolic compounds from the seeds were determined after simulated maceration. The evolution of mechanical and acoustic attributes of intact seeds was also determined during grape dehydration to evaluate how these changes affected the extraction of phenolic compounds. The extractable content and extractability of monomeric flavanols and proanthocyanidins, as well as the galloylation percentage of flavanols, might be predicted easily and quickly from the mechanical and acoustic properties of intact seeds. This would help in decision-making on the optimal dehydration level of winegrapes and the best management of winemaking of dehydrated grapes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Advancing microwave technology for dehydration processing of biologics.

    PubMed

    Cellemme, Stephanie L; Van Vorst, Matthew; Paramore, Elisha; Elliott, Gloria D

    2013-10-01

    Our prior work has shown that microwave processing can be effective as a method for dehydrating cell-based suspensions in preparation for anhydrous storage, yielding homogenous samples with predictable and reproducible drying times. In the current work an optimized microwave-based drying process was developed that expands upon this previous proof-of-concept. Utilization of a commercial microwave (CEM SAM 255, Matthews, NC) enabled continuous drying at variable low power settings. A new turntable was manufactured from Ultra High Molecular Weight Polyethylene (UHMW-PE; Grainger, Lake Forest, IL) to provide for drying of up to 12 samples at a time. The new process enabled rapid and simultaneous drying of multiple samples in containment devices suitable for long-term storage and aseptic rehydration of the sample. To determine sample repeatability and consistency of drying within the microwave cavity, a concentration series of aqueous trehalose solutions were dried for specific intervals and water content assessed using Karl Fischer Titration at the end of each processing period. Samples were dried on Whatman S-14 conjugate release filters (Whatman, Maidestone, UK), a glass fiber membrane used currently in clinical laboratories. The filters were cut to size for use in a 13 mm Swinnex(®) syringe filter holder (Millipore(™), Billerica, MA). Samples of 40 μL volume could be dehydrated to the equilibrium moisture content by continuous processing at 20% with excellent sample-to-sample repeatability. The microwave-assisted procedure enabled high throughput, repeatable drying of multiple samples, in a manner easily adaptable for drying a wide array of biological samples. Depending on the tolerance for sample heating, the drying time can be altered by changing the power level of the microwave unit.

  15. Science Study Aids 1: Dehydration for Food Preservation.

    ERIC Educational Resources Information Center

    Boeschen, John; And Others

    This publication is the first of a series of seven supplementary investigative materials for use in secondary science classes providing up-to-date research-related investigations. This unit is structured for grades 9 through 12. It is concerned with the osmatic dehydration of fruits. The guide provides students with information about food…

  16. Alkaline dehydration of anion-exchanged human urine: Volume reduction, nutrient recovery and process optimisation.

    PubMed

    Simha, Prithvi; Senecal, Jenna; Nordin, Annika; Lalander, Cecilia; Vinnerås, Björn

    2018-06-02

    In urine-separating sanitation systems, bacterial urease enzymes can hydrolyse urea to ammonia during the pipe transport and storage of urine. The present study investigated whether it was possible to reduce the urine volume without losing the nitrogen as ammonia. A method for stabilising the urine prior to dehydration was developed. Briefly, fresh human urine was stabilised by passage through an anion-exchanger, added to an alkaline media (wood ash or alkalised biochar), and dehydrated. Urine dehydration was investigated at three temperatures: 40, 45 and 50 °C. The influence of various factors affecting the dehydration process was modelled and the rate of urine dehydration was optimised. Results indicated that 75% (v/v) of the urine has to pass through the ion-exchanger for alkaline stabilisation of urine to occur. At all investigated temperatures, the dehydrator accomplished >90% volume reduction of ion-exchanged urine, > 70% N retention and 100% recovery of P and K. To realise high degree of nutrient valorisation, this study proposes combining source-separation of human urine with alkaline dehydration. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Modeling cation/anion-water interactions in functional aluminosilicate structures.

    PubMed

    Richards, A J; Barnes, P; Collins, D R; Christodoulos, F; Clark, S M

    1995-02-01

    A need for the computer simulation of hydration/dehydration processes in functional aluminosilicate structures has been noted. Full and realistic simulations of these systems can be somewhat ambitious and require the aid of interactive computer graphics to identify key structural/chemical units, both in the devising of suitable water-ion simulation potentials and in the analysis of hydrogen-bonding schemes in the subsequent simulation studies. In this article, the former is demonstrated by the assembling of a range of essential water-ion potentials. These span the range of formal charges from +4e to -2e, and are evaluated in the context of three types of structure: a porous zeolite, calcium silicate cement, and layered clay. As an example of the latter, the computer graphics output from Monte Carlo computer simulation studies of hydration/dehydration in calcium-zeolite A is presented.

  18. Isothermal dehydration of thin films of water and sugar solutions

    NASA Astrophysics Data System (ADS)

    Heyd, R.; Rampino, A.; Bellich, B.; Elisei, E.; Cesàro, A.; Saboungi, M.-L.

    2014-03-01

    The process of quasi-isothermal dehydration of thin films of pure water and aqueous sugar solutions is investigated with a dual experimental and theoretical approach. A nanoporous paper disk with a homogeneous internal structure was used as a substrate. This experimental set-up makes it possible to gather thermodynamic data under well-defined conditions, develop a numerical model, and extract needed information about the dehydration process, in particular the water activity. It is found that the temperature evolution of the pure water film is not strictly isothermal during the drying process, possibly due to the influence of water diffusion through the cellulose web of the substrate. The role of sugar is clearly detectable and its influence on the dehydration process can be identified. At the end of the drying process, trehalose molecules slow down the diffusion of water molecules through the substrate in a more pronounced way than do the glucose molecules.

  19. Isothermal dehydration of thin films of water and sugar solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heyd, R.; Rampino, A.; Laboratory of Physical and Macromolecular Chemistry, University of Trieste, Via Giorgieri 1, 34127 Trieste

    The process of quasi-isothermal dehydration of thin films of pure water and aqueous sugar solutions is investigated with a dual experimental and theoretical approach. A nanoporous paper disk with a homogeneous internal structure was used as a substrate. This experimental set-up makes it possible to gather thermodynamic data under well-defined conditions, develop a numerical model, and extract needed information about the dehydration process, in particular the water activity. It is found that the temperature evolution of the pure water film is not strictly isothermal during the drying process, possibly due to the influence of water diffusion through the cellulose webmore » of the substrate. The role of sugar is clearly detectable and its influence on the dehydration process can be identified. At the end of the drying process, trehalose molecules slow down the diffusion of water molecules through the substrate in a more pronounced way than do the glucose molecules.« less

  20. Accuracy of Inferior Vena Cava Ultrasound for Predicting Dehydration in Children with Acute Diarrhea in Resource-Limited Settings.

    PubMed

    Modi, Payal; Glavis-Bloom, Justin; Nasrin, Sabiha; Guy, Allysia; Chowa, Erika P; Dvor, Nathan; Dworkis, Daniel A; Oh, Michael; Silvestri, David M; Strasberg, Stephen; Rege, Soham; Noble, Vicki E; Alam, Nur H; Levine, Adam C

    2016-01-01

    Although dehydration from diarrhea is a leading cause of morbidity and mortality in children under five, existing methods of assessing dehydration status in children have limited accuracy. To assess the accuracy of point-of-care ultrasound measurement of the aorta-to-IVC ratio as a predictor of dehydration in children. A prospective cohort study of children under five years with acute diarrhea was conducted in the rehydration unit of the International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b). Ultrasound measurements of aorta-to-IVC ratio and dehydrated weight were obtained on patient arrival. Percent weight change was monitored during rehydration to classify children as having "some dehydration" with weight change 3-9% or "severe dehydration" with weight change > 9%. Logistic regression analysis and Receiver-Operator Characteristic (ROC) curves were used to evaluate the accuracy of aorta-to-IVC ratio as a predictor of dehydration severity. 850 children were enrolled, of which 771 were included in the final analysis. Aorta to IVC ratio was a significant predictor of the percent dehydration in children with acute diarrhea, with each 1-point increase in the aorta to IVC ratio predicting a 1.1% increase in the percent dehydration of the child. However, the area under the ROC curve (0.60), sensitivity (67%), and specificity (49%), for predicting severe dehydration were all poor. Point-of-care ultrasound of the aorta-to-IVC ratio was statistically associated with volume status, but was not accurate enough to be used as an independent screening tool for dehydration in children under five years presenting with acute diarrhea in a resource-limited setting.

  1. Complex of technologies and prototype systems for eco-friendly shutdown of the power-generating, process, capacitive, and transport equipment

    NASA Astrophysics Data System (ADS)

    Smorodin, A. I.; Red'kin, V. V.; Frolov, Y. D.; Korobkov, A. A.; Kemaev, O. V.; Kulik, M. V.; Shabalin, O. V.

    2015-07-01

    A set of technologies and prototype systems for eco-friendly shutdown of the power-generating, process, capacitive, and transport equipment is offered. The following technologies are regarded as core technologies for the complex: cryogenic technology nitrogen for displacement of hydrogen from the cooling circuit of turbine generators, cryo blasting of the power units by dioxide granules, preservation of the shutdown power units by dehydrated air, and dismantling and severing of equipment and structural materials of power units. Four prototype systems for eco-friendly shutdown of the power units may be built on the basis of selected technologies: Multimode nitrogen cryogenic system with four subsystems, cryo blasting system with CO2 granules for thermal-mechanical and electrical equipment of power units, and compressionless air-drainage systems for drying and storage of the shutdown power units and cryo-gas system for general severing of the steam-turbine power units. Results of the research and pilot and demonstration tests of the operational units of the considered technological systems allow applying the proposed technologies and systems in the prototype systems for shutdown of the power-generating, process, capacitive, and transport equipment.

  2. Surviving the cold: molecular analyses of insect cryoprotective dehydration in the Arctic springtail Megaphorura arctica (Tullberg)

    PubMed Central

    Clark, Melody S; Thorne, Michael AS; Purać, Jelena; Burns, Gavin; Hillyard, Guy; Popović, Željko D; Grubor-Lajšić, Gordana; Worland, M Roger

    2009-01-01

    Background Insects provide tractable models for enhancing our understanding of the physiological and cellular processes that enable survival at extreme low temperatures. They possess three main strategies to survive the cold: freeze tolerance, freeze avoidance or cryoprotective dehydration, of which the latter method is exploited by our model species, the Arctic springtail Megaphorura arctica, formerly Onychiurus arcticus (Tullberg 1876). The physiological mechanisms underlying cryoprotective dehydration have been well characterised in M. arctica and to date this process has been described in only a few other species: the Antarctic nematode Panagrolaimus davidi, an enchytraied worm, the larvae of the Antarctic midge Belgica antarctica and the cocoons of the earthworm Dendrobaena octaedra. There are no in-depth molecular studies on the underlying cold survival mechanisms in any species. Results A cDNA microarray was generated using 6,912 M. arctica clones printed in duplicate. Analysis of clones up-regulated during dehydration procedures (using both cold- and salt-induced dehydration) has identified a number of significant cellular processes, namely the production and mobilisation of trehalose, protection of cellular systems via small heat shock proteins and tissue/cellular remodelling during the dehydration process. Energy production, initiation of protein translation and cell division, plus potential tissue repair processes dominate genes identified during recovery. Heat map analysis identified a duplication of the trehalose-6-phosphate synthase (TPS) gene in M. arctica and also 53 clones co-regulated with TPS, including a number of membrane associated and cell signalling proteins. Q-PCR on selected candidate genes has also contributed to our understanding with glutathione-S-transferase identified as the major antioxdidant enzyme protecting the cells during these stressful procedures, and a number of protein kinase signalling molecules involved in recovery. Conclusion Microarray analysis has proved to be a powerful technique for understanding the processes and genes involved in cryoprotective dehydration, beyond the few candidate genes identified in the current literature. Dehydration is associated with the mobilisation of trehalose, cell protection and tissue remodelling. Energy production, leading to protein production, and cell division characterise the recovery process. Novel membrane proteins, along with aquaporins and desaturases, have been identified as promising candidates for future functional analyses to better understand membrane remodelling during cellular dehydration. PMID:19622137

  3. Reversible hydration and aqueous exfoliation of the acetate-intercalated layered double hydroxide of Ni and Al: Observation of an ordered interstratified phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manohara, G.V.; Vishnu Kamath, P., E-mail: vishnukamath8@hotmail.com; Milius, Wolfgang

    2012-12-15

    Acetate-intercalated layered double hydroxides (LDHs) of Ni and Al undergo reversible hydration in the solid state in response to the ambient humidity. The LDH with a high layer charge (0.33/formula unit) undergoes facile hydration in a single step, whereas the LDH with a lower layer charge (0.24/formula unit) exhibits an ordered interstratified intermediate, comprising the hydrated and dehydrated layers stacked alternatively. This phase, also known as the staged S-2 phase, coexists with the end members suggesting the existence of a solution-type equilibrium between the S-2 phase and the end members of the hydration cycle. These LDHs also undergo facile aqueousmore » exfoliation into 2-5 nm-thick tactoids with a radial dimension of 0.2-0.5 {mu}m. - Graphical abstract: Schematic of the hydrated, dehydrated and interstratified phases observed during the hydration-dehydration of Ni/Al-CH{sub 3}COO LDH. Highlights: Black-Right-Pointing-Pointer Ni/Al-acetate LDHs were synthesized by HPFS method by hydrolysis of acetamide. Black-Right-Pointing-Pointer Intercalated acetate ion shows reversible hydration with variation in humidity. Black-Right-Pointing-Pointer An ordered interstratified phase was observed during hydration/dehydration cycle. Black-Right-Pointing-Pointer A solution type equilibrium is observed between hydration-dehydration phases. Black-Right-Pointing-Pointer These LDHs undergo facile aqueous exfoliation.« less

  4. Dehydration and crystallization kinetics of zirconia-yttria gels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramanathan, S.; Muraleedharan, R.V.; Roy, S.K.

    1995-02-01

    Zirconia and zirconia-yttria gels containing 4 and 8 mol% yttria were obtained by coprecipitation and drying at 373 K. The dehydration and crystallization behavior of the dried gels was studied by DSC, TG, and XRD. The gels undergo elimination of water over a wide temperature range of 373--673 K. The peak temperature of the endotherm corresponding to dehydration and the kinetic constants for the process were not influenced by the yttria content of the gel. The enthalpy of dehydration observed was in good agreement with the heat of vaporization data. The dehydration was followed by a sharp exothermic crystallization process.more » The peak temperature of the exotherm and the activation energy of the process increased with an increase in yttria content, while the enthalpy of crystallization showed a decrease. The ``glow effect`` reduced with increasing yttria content. Pure zirconia crystallizes in the tetragonal form while the zirconia containing 4 and 8 mol% yttria appears to crystallize in the cubic form.« less

  5. Salmonella survival during thermal dehydration of fresh garlic and storage of dehydrated garlic products.

    PubMed

    Zhang, Hongmei; Qi, Yan; Wang, Lei; Zhang, Shaokang; Deng, Xiangyu

    2017-12-18

    Salmonella survival was characterized and modeled during thermal dehydration of fresh garlic and storage of dehydrated garlic products. In our experiments that simulated commercial dehydration processing at 80±5°C, moderate level of Salmonella contamination (4-5logCFU/g) on fresh garlic was reduced below the enumeration limit (1.7logCFU/g) after 4.5h of dehydration and not detectable by culture enrichment after 7h. With high level of contamination (7-8logCFU/g), the Salmonella population persisted at 3.6logCFU/g after 8h of processing. By increasing the dehydration temperature to 90±5°C, the moderate and high levels of initial Salmonella load on fresh garlic dropped below the enumeration limit after 1.5 and 3.75h of processing and became undetectable by culture enrichment after 2.5 and 6h, respectively. During the storage of dried garlic products, Salmonella was not able to grow under all tested combinations of temperature (25 and 35°C) and water activity (0.56-0.98) levels, suggesting active inhibition. Storage temperature played a primary role in determining Salmonella survival on dehydrated garlic flakes. Under a typical storage condition at 25°C and ambient relative humidity, Salmonella could persist over months with the population gradually declining (4.3 log reduction over 88days). Granular size of dehydrated garlic had an impact on Salmonella survival, with better survival of the pathogen observed in bigger granules. At the early stage of dehydrated garlic storage (until 7days), rising water activity appeared to initially promote but then inhibited Salmonella survival, resulting in a water activity threshold at 0.73 where Salmonella displayed strongest persistence. However, this phenomenon was less apparent during extended storage (after 14days). Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Liquid-phase and vapor-phase dehydration of organic/water solutions

    DOEpatents

    Huang, Yu [Palo Alto, CA; Ly, Jennifer [San Jose, CA; Aldajani, Tiem [San Jose, CA; Baker, Richard W [Palo Alto, CA

    2011-08-23

    Processes for dehydrating an organic/water solution by pervaporation or vapor separation using fluorinated membranes. The processes are particularly useful for treating mixtures containing light organic components, such as ethanol, isopropanol or acetic acid.

  7. Dehydration Accelerates Respiration in Postharvest Sugarbeet Roots

    USDA-ARS?s Scientific Manuscript database

    Sugarbeet (Beta vulgaris L.) roots lose water during storage and often become severely dehydrated after prolonged storage and at the outer regions of storage piles which have greater wind and sun exposure. Sucrose loss is known to be elevated in dehydrated roots, although the metabolic processes re...

  8. Unravelling molecular responses to moderate dehydration in harvested fruit of sweet orange (Citrus sinensis L. Osbeck) using a fruit-specific ABA-deficient mutant.

    PubMed

    Romero, Paco; Rodrigo, María J; Alférez, Fernando; Ballester, Ana-Rosa; González-Candelas, Luis; Zacarías, Lorenzo; Lafuente, María T

    2012-04-01

    Water stress affects many agronomic traits that may be regulated by the phytohormone abscisic acid (ABA). Within these traits, loss of fruit quality becomes important in many citrus cultivars that develop peel damage in response to dehydration. To study peel dehydration transcriptional responsiveness in harvested citrus fruit and the putative role of ABA in this process, this study performed a comparative large-scale transcriptional analysis of water-stressed fruits of the wild-type Navelate orange (Citrus sinesis L. Osbeck) and its spontaneous ABA-deficient mutant Pinalate, which is more prone to dehydration and to developing peel damage. Major changes in gene expression occurring in the wild-type line were impaired in the mutant fruit. Gene ontology analysis revealed the ability of Navelate fruits to induce the response to water deprivation and di-, tri-valent inorganic cation transport biological processes, as well as repression of the carbohydrate biosynthesis process in the mutant. Exogenous ABA triggered relevant transcriptional changes and repressed the protein ubiquitination process, although it could not fully rescue the physiological behaviour of the mutant. Overall, the results indicated that dehydration responsiveness requires ABA-dependent and -independent signals, and highlight that the ability of citrus fruits to trigger molecular responses against dehydration is an important factor in reducing their susceptibility to developing peel damage.

  9. Unravelling molecular responses to moderate dehydration in harvested fruit of sweet orange (Citrus sinensis L. Osbeck) using a fruit-specific ABA-deficient mutant

    PubMed Central

    Romero, Paco; Rodrigo, María J.; Alférez, Fernando; Ballester, Ana-Rosa; González-Candelas, Luis; Zacarías, Lorenzo; Lafuente, María T.

    2012-01-01

    Water stress affects many agronomic traits that may be regulated by the phytohormone abscisic acid (ABA). Within these traits, loss of fruit quality becomes important in many citrus cultivars that develop peel damage in response to dehydration. To study peel dehydration transcriptional responsiveness in harvested citrus fruit and the putative role of ABA in this process, this study performed a comparative large-scale transcriptional analysis of water-stressed fruits of the wild-type Navelate orange (Citrus sinesis L. Osbeck) and its spontaneous ABA-deficient mutant Pinalate, which is more prone to dehydration and to developing peel damage. Major changes in gene expression occurring in the wild-type line were impaired in the mutant fruit. Gene ontology analysis revealed the ability of Navelate fruits to induce the response to water deprivation and di-, tri-valent inorganic cation transport biological processes, as well as repression of the carbohydrate biosynthesis process in the mutant. Exogenous ABA triggered relevant transcriptional changes and repressed the protein ubiquitination process, although it could not fully rescue the physiological behaviour of the mutant. Overall, the results indicated that dehydration responsiveness requires ABA-dependent and -independent signals, and highlight that the ability of citrus fruits to trigger molecular responses against dehydration is an important factor in reducing their susceptibility to developing peel damage. PMID:22315241

  10. Dehydration accelerates root respiration and impacts sugarbeet raffinose metabolism

    USDA-ARS?s Scientific Manuscript database

    Sugarbeet roots lose water during storage and often become severely dehydrated after prolonged storage and at the outer portions of piles which have greater wind and sun exposure. Sucrose loss is known to be elevated in dehydrated roots, although the metabolic processes responsible for this loss ar...

  11. 7 CFR 993.149 - Receiving of prunes by handlers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... certifies that the dehydration process of the prunes being certified resulted in prunes eligible to be... conditioning by further drying or dehydration: Provided, That such prunes shall be identified and kept separate... with such drying or dehydration, notify an inspector of the inspection service of his election, and the...

  12. 7 CFR 993.149 - Receiving of prunes by handlers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... certifies that the dehydration process of the prunes being certified resulted in prunes eligible to be... conditioning by further drying or dehydration: Provided, That such prunes shall be identified and kept separate... with such drying or dehydration, notify an inspector of the inspection service of his election, and the...

  13. 7 CFR 993.149 - Receiving of prunes by handlers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... certifies that the dehydration process of the prunes being certified resulted in prunes eligible to be... conditioning by further drying or dehydration: Provided, That such prunes shall be identified and kept separate... with such drying or dehydration, notify an inspector of the inspection service of his election, and the...

  14. 7 CFR 993.149 - Receiving of prunes by handlers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... certifies that the dehydration process of the prunes being certified resulted in prunes eligible to be... conditioning by further drying or dehydration: Provided, That such prunes shall be identified and kept separate... with such drying or dehydration, notify an inspector of the inspection service of his election, and the...

  15. Photoacoustic Monitoring of Absorption Spectrum During the Dehydration Process of pasilla Chili Pepper

    NASA Astrophysics Data System (ADS)

    Zendejas-Leal, Blanca Estela; Barrientos-Sotelo, Víctor Rodrigo; Cano-Casas, Rogelio; Alvarado-Noguez, Margarita Lizeth; Hernández-Rosas, Juan; Cruz-Orea, Alfredo

    2018-07-01

    In this work, the optical absorption spectrum of peppers was monitored by phase-resolved photoacoustic spectroscopy during a dehydration process based on hot-air drying, yielding simultaneous information about changes in the exocarp and mesocarp. Our results show that between all of the dehydration processes of green Capsicum annuum L. variety pasilla peppers, only very small changes occur in the different phase angles, which has been correlated with the small changes in the exocarp thickness. The phase-resolved spectra of mesocarp show more clearly the evolution of the carotenoid compounds with respect to the optical absorption spectrum without phase resolving, due to the last spectrum having a band broadening in that region with more signals convolved. We have shown that not only do the ripened chili peppers produce new carotenoid compounds, but also we are probing that the dehydration process, beginning with the green stage, preserves the nutrimental content, similar to changes that occur in the natural ripening process.

  16. Investigation into structure and dehydration dynamic of gallic acid monohydrate: A Raman spectroscopic study.

    PubMed

    Cai, Qiang; Xue, Jiadan; Wang, Qiqi; Du, Yong

    2018-05-02

    The dehydration process of gallic acid monohydrate was carried out by heating method and characterized using Raman spectroscopic technique. Density functional theory calculation with B3LYP function is applied to simulate optimized structures and vibrational frequencies of anhydrous gallic acid and its corresponding monohydrated form. Different vibrational modes are assigned by comparison between experimental and theoretical Raman spectra of above two polymorphs. Raman spectra show that vibrational modes of the monohydrate are distinctively different from those of anhydrous one. Meanwhile, the dynamic information about dehydration process of gallic acid monohydrate could also be observed and monitored directly with the help of Raman spectral analysis. The decay rate of the characteristic band from gallic acid monohydrate and the growth rate of anhydrous one are pretty consistent with each other. It indicates that there is no intermediate present during the dehydration process of gallic acid monohydrate. The results could offer us benchmark works for identifying both anhydrous and hydrated pharmaceutical compounds, characterizing their corresponding molecular conformation within various crystalline forms, and also providing useful information about the process of dehydration dynamic at the microscopic molecular level. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Survey of quality indicators in commercial dehydrated fruits.

    PubMed

    Megías-Pérez, Roberto; Gamboa-Santos, Juliana; Soria, Ana Cristina; Villamiel, Mar; Montilla, Antonia

    2014-05-01

    Physical and chemical quality parameters (dry matter, aw, protein, carbohydrates, vitamin C, 2-furoylmethyl amino acids, rehydration ratio and leaching loss) have been determined in 30 commercial dehydrated fruits (strawberry, blueberry, raspberry, cranberry, cherry, apple, grapefruit, mango, kiwifruit, pineapple, melon, coconut, banana and papaya). For comparison purposes, strawberry samples processed in the laboratory by freeze-drying and by convective drying were used as control samples. Overall quality of dehydrated fruits seemed to be greatly dependent on processing conditions and, in a cluster analysis, samples which were presumably subjected to osmotic dehydration were separated from the rest of fruits. These samples presented the lowest concentration of vitamin C and the highest evolution of Maillard reaction, as evidenced by its high concentration of 2-furoylmethyl amino acids. This is the first study on the usefulness of this combination of chemical and physical indicators to assess the overall quality of commercial dehydrated fruits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. PARAMETERS OF TEXTURE CHANGE IN PROCESSED FISH: MYOSIN DENATURATION.

    PubMed

    Chu, George Hao; Sterling, Clarence

    1970-03-01

    The white muscle of the Sacramento blackfish (Orthodon microlepidotus) was processed by freezing, dehydration, and cooking. Myosin was extracted immediately afterwards or following a period of storage in order to examine evidence for denaturation. The tests used were the solubility of whole muscle protein and the intrinsic viscosity, isoelectric point, ATPase activity, ultra-violet absorption spectrum, and optical rotatory dispersion of purified myosin extract. Almost all measures used showed that denaturation increased in the order: fresh < frozen < frozen-stored < dehydrated < dehydrated-stored < cooked.

  19. Hybrid Drying of Carrot Preliminary Processed with Ultrasonically Assisted Osmotic Dehydration

    PubMed Central

    2017-01-01

    Summary In this paper the kinetics of osmotic dehydration of carrot and the influence of this pretreatment on the post-drying processes and the quality of obtained products are analysed. Osmotic dehydration was carried out in the aqueous fructose solution in two different ways: with and without ultrasound assistance. In the first part of the research, the kinetics of osmotic dehydration was analysed on the basis of osmotic dewatering rate, water loss and solid gain. Next, the effective time of dehydration was determined and in the second part of research samples were initially dehydrated for 30 min and dried. Five different procedures of drying were established on the grounds of convective method enhanced with microwave and infrared radiation. The influence of osmotic dehydration on the drying kinetics and final product quality was analysed. It was found that it did not influence the drying kinetics significantly but positively affected the final product quality. Negligible influence on the drying kinetics was attributed to solid uptake, which may block the pores, hindering heat and mass transfer. It was also concluded that the application of microwave and/or infrared radiation during convective drying significantly influenced the kinetics of the final stage of drying. A proper combination of aforementioned techniques of hybrid drying allows reducing the drying time. Differences between the particular dehydration methods and drying schedules were discussed. PMID:28867949

  20. Accuracy of Inferior Vena Cava Ultrasound for Predicting Dehydration in Children with Acute Diarrhea in Resource-Limited Settings

    PubMed Central

    Modi, Payal; Glavis-Bloom, Justin; Nasrin, Sabiha; Guy, Allysia; Rege, Soham; Noble, Vicki E.; Alam, Nur H.; Levine, Adam C.

    2016-01-01

    Introduction Although dehydration from diarrhea is a leading cause of morbidity and mortality in children under five, existing methods of assessing dehydration status in children have limited accuracy. Objective To assess the accuracy of point-of-care ultrasound measurement of the aorta-to-IVC ratio as a predictor of dehydration in children. Methods A prospective cohort study of children under five years with acute diarrhea was conducted in the rehydration unit of the International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b). Ultrasound measurements of aorta-to-IVC ratio and dehydrated weight were obtained on patient arrival. Percent weight change was monitored during rehydration to classify children as having “some dehydration” with weight change 3–9% or “severe dehydration” with weight change > 9%. Logistic regression analysis and Receiver-Operator Characteristic (ROC) curves were used to evaluate the accuracy of aorta-to-IVC ratio as a predictor of dehydration severity. Results 850 children were enrolled, of which 771 were included in the final analysis. Aorta to IVC ratio was a significant predictor of the percent dehydration in children with acute diarrhea, with each 1-point increase in the aorta to IVC ratio predicting a 1.1% increase in the percent dehydration of the child. However, the area under the ROC curve (0.60), sensitivity (67%), and specificity (49%), for predicting severe dehydration were all poor. Conclusions Point-of-care ultrasound of the aorta-to-IVC ratio was statistically associated with volume status, but was not accurate enough to be used as an independent screening tool for dehydration in children under five years presenting with acute diarrhea in a resource-limited setting. PMID:26766306

  1. Dehydration and Rehydration

    DTIC Science & Technology

    2012-01-01

    ELEMENT NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 6. AUTHOR(S) 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ...ability to perform .84 This chapter presents an overview of topics surrounding hydration, dehydration, and rehydration. The terms euhydration, hypohydration...environments, or illness, inability to maintain fluid balance can seriously jeopardize health and the ability to perform .84 This chapter presents an overview

  2. Solid-vapor interactions: influence of environmental conditions on the dehydration of carbamazepine dihydrate.

    PubMed

    Surana, Rahul; Pyne, Abira; Suryanarayanan, Raj

    2004-12-31

    The goal of this research was a phenomenological study of the effect of environmental factors on the dehydration behavior of carbamazepine dihydrate. Dehydration experiments were performed in an automated vapor sorption apparatus under a variety of conditions, and weight loss was monitored as a function of time. In addition to lattice water, carbamazepine dihydrate contained a significant amount of physically bound water. Based on the kinetics of water loss, it was possible to differentiate between the removal of physically bound water and the lattice water. The activation energy for the 2 processes was 44 and 88 kJ/mol, respectively. As expected, the dehydration rate of carbamazepine dihydrate decreased with an increase in water vapor pressure. While dehydration at 0% relative humidity (RH) resulted in an amorphous anhydrate, the crystallinity of the anhydrate increased as a function of the RH of dehydration. A method was developed for in situ crystallinity determination of the anhydrate formed. Dehydration in the presence of the ethanol vapor was a 2-step process, and the fraction dehydrated at each step was a function of the ethanol vapor pressure. We hypothesize the formation of an intermediate lower hydrate phase with unknown water stoichiometry. An increase in the ethanol vapor pressure first led to a decrease in the dehydration rate followed by an increase. In summary, the dehydration behavior of carbamazepine dihydrate was evaluated at different vapor pressures of water and ethanol. Using the water sorption apparatus, it was possible to (1) differentiate between the removal of physically bound and lattice water, and (2) develop a method for quantifying, in situ, the crystallinity of the product (anhydrate) phase.

  3. Research on Treatment Technology and Device of Oily Sludge

    NASA Astrophysics Data System (ADS)

    Wang, J. Q.; Shui, F. S.; Li, Q. F.

    2017-12-01

    Oily sludge is a solid oily waste, which is produced during the process of oil exploitation, transportation, refining and treatment of oily sewage. It contains a great number of hazardous substance, and is difficult to handle with. To solve the problem of waste resources of oil sludge with high oil content and usually not easy to aggregate during the preparation of profile control agent, a new oily sludge treatment device was developed. This device consists of heat supply unit, flush and filter unit, oil removal unit and dehydration unit. It can effectively clean and filter out the waste from oily sludge, recycle the oil resources and reduce the water content of the residue. In the process of operation, the water and chemical agent are recycled in the device, eventually producing little sewage. The device is small, easy to move and has high degree of automation control. The experimental application shows that the oil removal rate of the oily sludge is up to 70%, and the higher the oil content rate the better the treatment.

  4. Effect of simultaneous infrared dry-blanching and dehydration on quality characteristics of carrot slices

    USDA-ARS?s Scientific Manuscript database

    This study investigated the effects of various processing parameters on carrot slices exposed to infrared (IR) radiation heating for achieving simultaneous infrared dry-blanching and dehydration (SIRDBD). The investigated parameters were product surface temperature, slice thickness and processing ti...

  5. Use of aluminum phosphate as the dehydration catalyst in single step dimethyl ether process

    DOEpatents

    Peng, Xiang-Dong; Parris, Gene E.; Toseland, Bernard A.; Battavio, Paula J.

    1998-01-01

    The present invention pertains to a process for the coproduction of methanol and dimethyl ether (DME) directly from a synthesis gas in a single step (hereafter, the "single step DME process"). In this process, the synthesis gas comprising hydrogen and carbon oxides is contacted with a dual catalyst system comprising a physical mixture of a methanol synthesis catalyst and a methanol dehydration catalyst. The present invention is an improvement to this process for providing an active and stable catalyst system. The improvement comprises the use of an aluminum phosphate based catalyst as the methanol dehydration catalyst. Due to its moderate acidity, such a catalyst avoids the coke formation and catalyst interaction problems associated with the conventional dual catalyst systems taught for the single step DME process.

  6. Point-of-Admission Serum Electrolyte Profile of Children less than Five Years Old with Dehydration due to Acute Diarrhoea.

    PubMed

    Okposio, Matthias Mariere; Onyiriuka, Alphonsus Ndidi; Abhulimhen-Iyoha, Blessing Imuetiyan

    2015-12-01

    Fluid, electrolytes and acid base disturbances are responsible for most deaths due to acute diarrhoea. The aim of this study is to describe the point-of-admission serum electrolyte profile of children with dehydration due to acute diarrhoea. In this cross-sectional study, the serum electrolyte levels of 185 children with dehydration due to acute diarrhoea were assessed at the point of admission at the Diarrhoea Treatment and Training Unit of the University of Benin Teaching Hospital. The age of the study population ranged from 29 days to 59 months. Out of a total of 185 subjects, 30 (16.2%), 114 (61.6%), and 41 (22.2%) had severe, moderate and mild dehydration, respectively. In addition, hyponatraemic dehydration was the most common type of dehydration, accounting for 60.5% of cases. Metabolic acidosis and hypokalaemia occurred in 59.5% and 44.3% of cases, respectively. Only the serum bicarbonate level was significantly affected by degree of dehydration (p = 0.001). Age of more than 12 months and presence of vomiting were significantly associated with hyponatraemia (p = 0.005 & p = 0.02), while age of less than or equal 12 months and absence of vomiting were associated with metabolic acidosis (p = 0.04 & p = 0.03). The degree of dehydration appears to be a good predictor of the occurrence of metabolic acidosis while age is a risk factor for hyponatraemia and metabolic acidosis.

  7. Methods for Converter Sludge Dehydration Intensification

    NASA Astrophysics Data System (ADS)

    Vakhromeev, M. I.; Moreva, Y. A.; Starkova, L. G.

    2017-11-01

    The article considers the intensification methods for converter sludge dehydration exemplified by the sludges of the Oxygen Converter Workshop (OCW) of the Open Joint-Stock Company “Magnitogorsk Iron and Steel Works” (MMK, OJSC), one of the largest metallurgical companies in the Southern Urals. Converter sludges can contain up to 45-70% of ferrum [21] which is interesting in terms of their use as an addition to a sinter-feed mixture. Sludge intensifies the sintering process. It positively influences pelletizing and fusion mixture melting dynamics at sintering. Over the period of the converter sludge dehydration complex operation at the OCW, MMK, OJSC, it was revealed that processing results in obtaining of high humidity sludge. It causes sludge freezing during the winter period, thus, its transportation involves extra costs for sludge warming up. To resolve the above-mentioned problem, the following works were performed in 2016: - experimental studies of how the application of the low-molecular anionic flocculate “SEURVEY” FL-3 influences sludge humidity reduction. - experimental studies of how the filtering press process operation parameters influence sludge humidity reduction. The new flocculate application didn't lower the dehydrated sludge humidity (the objective was the humidity of not more than 15%). Basing upon the conducted research results, we can make a conclusion that putting into operation the sewage water reactant treatment technology with the use of “SEURVEY”, FL-3 (H-10) is not recommended. The research of the influence the filtering press process parameters have on the dehydration process intensification demonstrated that reaching of the obtained residue humidity value lower than 15% is possible under the reduction of the filtering press chamber depths to 30 mm and with the application of additional operation “Residue drying” with compressed air. This way of the sludge dehydration problem resolving at filtering presses of the converter sludge dehydration complex of the OCW, MMK, OJSC, can be recommended for application.

  8. Microfluidic Droplet Dehydration for Concentrating Processes in Biomolecules

    NASA Astrophysics Data System (ADS)

    Anna, Shelley

    2014-03-01

    Droplets in microfluidic devices have proven useful as picoliter reactors for biochemical processing operations such as polymerase chain reaction, protein crystallization, and the study of enzyme kinetics. Although droplets are typically considered to be self-contained, constant volume reactors, there can be significant transport between the dispersed and continuous phases depending on solubility and other factors. In the present talk, we show that water droplets trapped within a microfluidic device for tens of hours slowly dehydrate, concentrating the contents encapsulated within. We use this slow dehydration along with control of the initial droplet composition to influence gellation, crystallization, and phase separation processes. By examining these concentrating processes in many trapped drops at once we gain insight into the stochastic nature of the events. In one example, we show that dehydration rate impacts the probability of forming a specific crystal habit in a crystallizing amino acid. In another example, we phase separate a common aqueous two-phase system within droplets and use the ensuing two phases to separate DNA from an initial mixture. We further influence wetting conditions between the two aqueous polymer phases and the continuous oil, promoting complete de-wetting and physical separation of the polymer phases. Thus, controlled dehydration of droplets allows for concentration, separation, and purification of important biomolecules on a chip.

  9. Structure and physical stability of hydrates and thermotropic mesophase of calcium benzoate.

    PubMed

    Terakita, Akira; Byrn, Stephen R

    2006-05-01

    The aim of this study is to investigate the hydration and the dehydration processes of calcium benzoate hydrates (trihydrate and monohydrate), thermotropic mesophases (dehydrated mesophase and lyophilized mesophase) and amorphous state, and the influence of their molecular order on those processes. X-ray analysis revealed that trihydrate has a planar structure composed of two types of planes-one from benzoic acid, water, and calcium ion and another from benzoic acid and water-and that both planes are linked by three water molecules. It was found that calcium benzoate was able to exist as thermotropic mesophases by dehydration of trihydrate and lyophilization. These mesophases were characterized by polarizing-light microscopy (PLM), X-ray powder diffraction (XRPD), differential thermal analysis (DTA), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Both mesophases prepared by two procedures showed some similar physical properties, but lyophilized mesophase seemed to have molecular structure with higher order than dehydrated mesophase. The mesophases exhibited different hydration behavior. The dehydrated mesophase showed a stepwise rehydration process where it became monohydrate first and then trihydrate. The lyophilized mesophase became trihydrate without appearance of monohydrate. An amorphous form could also be prepared and it rehydrated first to the monohydrate and then trihydrate. The results suggest that the more disordered dehydrated mesophase and amorphous state change to monohydrate whereas the more ordered lyophilized mesophase cannot change to monohydrate but only to trihydrate.

  10. Enzyme dehydration using Microglassification™ preserves the protein's structure and function.

    PubMed

    Aniket; Gaul, David A; Bitterfield, Deborah L; Su, Jonathan T; Li, Victoria M; Singh, Ishita; Morton, Jackson; Needham, David

    2015-02-01

    Controlled enzyme dehydration using a new processing technique of Microglassification™ has been investigated. Aqueous solution microdroplets of lysozyme, α-chymotrypsin, catalase, and horseradish peroxidase were dehydrated in n-pentanol, n-octanol, n-decanol, triacetin, or butyl lactate, and changes in their structure and function were analyzed upon rehydration. Water solubility and microdroplet dissolution rate in each solvent decreased in the order: butyl lactate > n-pentanol > triacetin > n-octanol > n-decanol. Enzymes Microglassified™ in n-pentanol retained higher activity (93%-98%) than n-octanol (78%-85%) or n-decanol (75%-89%), whereas those Microglassified™ in triacetin (36%-75%) and butyl lactate (48%-79%) retained markedly lower activity. FTIR spectroscopy analyses showed α-helix to β-sheet transformation for all enzymes upon Microglassification™, reflecting a loss of bound water in the dried state; however, the enzymes reverted to native-like conformation upon rehydration. Accelerated stressed-storage tests using Microglassified™ lysozyme showed a significant (p < 0.01) decrease in enzymatic activity from 46,560 ± 2736 to 31,060 ± 4327 units/mg after 3 months of incubation; however, it was comparable to the activity of the lyophilized formulation throughout the test period. These results establish Microglassification™ as a viable technique for enzyme preservation without affecting its structure or function. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  11. Effect of Temperature, Time, and Material Thickness on the Dehydration Process of Tomato

    PubMed Central

    Correia, A. F. K.; Loro, A. C.; Zanatta, S.; Spoto, M. H. F.; Vieira, T. M. F. S.

    2015-01-01

    This study aimed to evaluate the effects of temperature, time, and thickness of tomatoes fruits during adiabatic drying process. Dehydration, a simple and inexpensive process compared to other conservation methods, is widely used in the food industry in order to ensure a long shelf life for the product due to the low water activity. This study aimed to obtain the best processing conditions to avoid losses and keep product quality. Factorial design and surface response methodology were applied to fit predictive mathematical models. In the dehydration of tomatoes through the adiabatic process, temperature, time, and sample thickness, which greatly contribute to the physicochemical and sensory characteristics of the final product, were evaluated. The optimum drying conditions were 60°C with the lowest thickness level and shorter time. PMID:26904666

  12. Synthesis of butenes through 2-butanol dehydration over mesoporous materials produced from ferrierite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Soyeon; Kim, Hyeonjoo; Bae, Jung A.

    2012-05-20

    Mesoporous materials synthesized from commercial ferrierite (MMZ-FER) were applied to butanol dehydration. The MMZ-FER was produced by disassembling ferrierite into unit structures in the presence of an alkali solution, adding a surfactant as a templating material, followed by hydrothermal treatment. The effect of the alkali/(Si+Al) ratio in the disassembling step on the characteristics of the catalyst and butanol dehydration performance were investigated. The MMZ-FER materials, synthesized in a condition in which the NaOH/(Si + Al) mole ratio in the disassembling step was 0.67 and 1.0, demonstrated similar textural properties to those of MCM-41. Many weak acid sites developed on themore » MMZ-FER(0.67) and MMZ-FER(1.0) samples, which is attributed to the creation of ferrierite-induced acid sites. The MMZ-FER materials showed excellent catalytic activity, selectivity, and stability during the dehydration of 2-butanol.« less

  13. Recent development in osmotic dehydration of fruit and vegetables: a review.

    PubMed

    Chandra, Suresh; Kumari, Durvesh

    2015-01-01

    Osmotic dehydration of fruits and vegetables is achieved by placing the solid/semi solid, whole or in pieces, in a hypertonic solution (sugar and/or salt) with a simultaneous counter diffusion of solutes from the osmotic solution into the tissues. Osmotic dehydration is recommended as a processing method to obtain better quality of food products. Partial dehydration allows structural, nutritional, sensory, and other functional properties of the raw material to be modified. However, the food industry uptake of osmotic dehydration of foods has not been extensive as expected due to the poor understanding of the counter current flow phenomena associated with it. However, these flows are in a dynamic equilibrium with each other and significantly influence the final product in terms of preservation, nutrition, and organoleptic properties. The demand of healthy, natural, nutritious, and tasty processed food products continuously increases, not only for finished products, but also for ingredient to be included in complex foods such as ice cream, cereals, dairy, confectionaries, and bakery products.

  14. Process optimization for osmo-dehydrated carambola (Averrhoa carambola L) slices and its storage studies.

    PubMed

    Roopa, N; Chauhan, O P; Raju, P S; Das Gupta, D K; Singh, R K R; Bawa, A S

    2014-10-01

    An osmotic-dehydration process protocol for Carambola (Averrhoacarambola L.,), an exotic star shaped tropical fruit, was developed. The process was optimized using Response Surface Methodology (RSM) following Central Composite Rotatable Design (CCRD). The experimental variables selected for the optimization were soak solution concentration (°Brix), soaking temperature (°C) and soaking time (min) with 6 experiments at central point. The effect of process variables was studied on solid gain and water loss during osmotic dehydration process. The data obtained were analyzed employing multiple regression technique to generate suitable mathematical models. Quadratic models were found to fit well (R(2), 95.58 - 98.64 %) in describing the effect of variables on the responses studied. The optimized levels of the process variables were achieved at 70°Brix, 48 °C and 144 min for soak solution concentration, soaking temperature and soaking time, respectively. The predicted and experimental results at optimized levels of variables showed high correlation. The osmo-dehydrated product prepared at optimized conditions showed a shelf-life of 10, 8 and 6 months at 5 °C, ambient (30 ± 2 °C) and 37 °C, respectively.

  15. Mechanistic insights into aqueous phase propanol dehydration in H-ZSM-5 zeolite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Donghai; Lercher, Johannes A.

    Aqueous phase dehydration of 1-propanol over H-ZSM-5 zeolite was investigated using density functional theory (DFT) calculations. The water molecules in the zeolite pores prefer to aggregate via the hydrogen bonding network and be protonated at the Brønsted acidic sites (BAS). Two typical configurations, i.e., dispersed and clustered, of water molecules were identified by ab initio molecular dynamics simulation of the mimicking aqueous phase H-ZSM-5 zeolite unit cell with 20 water molecules per unit cell. DFT calculated Gibbs free energies suggest that the dimeric propanol-propanol, the propanol-water complex, and the trimeric propanol-propanol-water are formed at high propanol concentrations, which provide amore » kinetically feasible dehydration reaction channel of 1-propanol to propene. However, calculation results also indicate that the propanol dehydration via the unimolecular mechanism becomes kinetically discouraged due to the enhanced stability of the protonated dimeric propanol and the protonated water cluster acting as the BAS site for alcohol dehydration reaction. This work was supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.« less

  16. The diagnostic accuracy of multi-frequency bioelectrical impedance analysis in diagnosing dehydration after stroke.

    PubMed

    Kafri, Mohannad W; Myint, Phyo Kway; Doherty, Danielle; Wilson, Alexander Hugh; Potter, John F; Hooper, Lee

    2013-07-10

    Non-invasive methods for detecting water-loss dehydration following acute stroke would be clinically useful. We evaluated the diagnostic accuracy of multi-frequency bioelectrical impedance analysis (MF-BIA) against reference standards serum osmolality and osmolarity. Patients admitted to an acute stroke unit were recruited. Blood samples for electrolytes and osmolality were taken within 20 minutes of MF-BIA. Total body water (TBW%), intracellular (ICW%) and extracellular water (ECW%), as percentages of total body weight, were calculated by MF-BIA equipment and from impedance measures using published equations for older people. These were compared to hydration status (based on serum osmolality and calculated osmolarity). The most promising Receiver Operating Characteristics curves were plotted. 27 stroke patients were recruited (mean age 71.3, SD10.7). Only a TBW% cut-off at 46% was consistent with current dehydration (serum osmolality >300 mOsm/kg) and TBW% at 47% impending dehydration (calculated osmolarity ≥295-300 mOsm/L) with sensitivity and specificity both >60%. Even here diagnostic accuracy of MF-BIA was poor, a third of those with dehydration were wrongly classified as hydrated and a third classified as dehydrated were well hydrated. Secondary analyses assessing diagnostic accuracy of TBW% for men and women separately, and using TBW as a percentage of lean body mass showed some promise, but did not provide diagnostically accurate measures across the population. MF-BIA appears ineffective at diagnosing water-loss dehydration after stroke and cannot be recommended as a test for dehydration, but separating assessment by sex, and using TBW as a percentage of lean body weight may warrant further investigation.

  17. [Acceleration of osmotic dehydration process through ohmic heating of foods: raspberries (Rubus idaeus)].

    PubMed

    Simpson, Ricardo R; Jiménez, Maite P; Carevic, Erica G; Grancelli, Romina M

    2007-06-01

    Raspberries (Rubus idaeus) were osmotically dehydrated by applying a conventional method under the supposition of a homogeneous solution, all in a 62% glucose solution at 50 degrees C. Raspberries (Rubus idaeus) were also osmotically dehydrated by using ohmic heating in a 57% glucose solution at a variable voltage (to maintain temperature between 40 and 50 degrees C) and an electric field intensity <100 V/cm. When comparing the results from both experiments it was evident that processing time is reduced when ohmic heating technique was used. In some cases this reduction reached even 50%. This is explained by the additional effect to the thermal damage that is generated in an ohmic process, denominated electroporation.

  18. Water-network percolation transitions in hydrated yeast

    NASA Astrophysics Data System (ADS)

    Sokołowska, Dagmara; Król-Otwinowska, Agnieszka; Mościcki, Józef K.

    2004-11-01

    We discovered two percolation processes in succession in dc conductivity of bulk baker’s yeast in the course of dehydration. Critical exponents characteristic for the three-dimensional network for heavily hydrated system, and two dimensions in the light hydration limit, evidenced a dramatic change of the water network dimensionality in the dehydration process.

  19. 30 CFR 1206.51 - What definitions apply to this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... dehydration, marketing, measurement, or gathering that the lessee must perform at no cost to the lessor in..., mechanical separation, heating, cooling, dehydration, and compression, are not considered processing. The...

  20. 30 CFR 1206.51 - What definitions apply to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... dehydration, marketing, measurement, or gathering that the lessee must perform at no cost to the lessor in..., mechanical separation, heating, cooling, dehydration, and compression, are not considered processing. The...

  1. 30 CFR 1206.51 - What definitions apply to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... dehydration, marketing, measurement, or gathering that the lessee must perform at no cost to the lessor in..., mechanical separation, heating, cooling, dehydration, and compression, are not considered processing. The...

  2. 30 CFR 1206.51 - What definitions apply to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... dehydration, marketing, measurement, or gathering that the lessee must perform at no cost to the lessor in..., mechanical separation, heating, cooling, dehydration, and compression, are not considered processing. The...

  3. Efficiency of Osmotic Dehydration of Apples in Polyols Solutions.

    PubMed

    Cichowska, Joanna; Żubernik, Joanna; Czyżewski, Jakub; Kowalska, Hanna; Witrowa-Rajchert, Dorota

    2018-02-17

    The present study aimed to evaluate the influence of selected compounds from the polyol group, as well as other saccharides, on the osmotic dehydration process of apples. The following alternative solutions were examined: erythritol, xylitol, maltitol, inulin and oligofructose. Efficiency of the osmotic dehydration process was evaluated based on the kinetics of the process, and through comparison of the results obtained during the application of a sucrose solution. This innovative research utilizes alternative solutions in osmotic pretreatment, which until now, have not been commonly used in fruit processing by researchers worldwide. Results indicate that erythritol and xylitol show stronger or similar efficiency to sucrose; however, the use of inulin, as well as oligofructose, was not satisfactory due to the insufficient, small osmotic driving forces of the process, and the low values of mass transfer parameters.

  4. 27 CFR 4.10 - Meaning of terms.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... must. The dehydrated juice or must of sound, ripe grapes, or other fruit or agricultual products... exceeding the amount removed in the dehydration process. Sugar. Pure cane, beet, or dextrose sugar in dry...

  5. Dehydration-driven evolution of topological complexity in ethylamonium uranyl selenates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurzhiy, Vladislav V., E-mail: vladgeo17@mail.ru; Krivovichev, Sergey V.; Tananaev, Ivan G.

    Single crystals of four novel uranyl selenate and selenite-selenate oxysalts with protonated ethylamine molecules, (C{sub 2}H{sub 8}N){sub 2}[(UO{sub 2})(SeO{sub 4}){sub 2}(H{sub 2}O)](H{sub 2}O) (I), (C{sub 2}H{sub 8}N){sub 3}[(UO{sub 2})(SeO{sub 4}){sub 2}(HSeO{sub 4})] (II), (C{sub 2}H{sub 8}N)[(UO{sub 2})(SeO{sub 4})(HSeO{sub 3})] (III), and (C{sub 2}H{sub 8}N)(H{sub 3}O)[(UO{sub 2})(SeO{sub 4}){sub 2}(H{sub 2}O)] (IV) have been prepared by isothermal evaporation from aqueous solutions. Uranyl-containing 1D and 2D units have been investigated using topological approach and information-based complexity measurements that demonstrate the evolution of structural units and the increase of topological complexity with the decrease of H{sub 2}O content. - Graphical abstract: Single crystals ofmore » four novel uranyl selenate and selenite-selenate oxysalts with protonated ethylamine molecules have been prepared by isothermal evaporation from aqueous solutions. Structural analysis and information-based topological complexity calculations points to the possible sequence of crystalline phases formation, showing both topological and structural branches of evolution. - Highlights: • Single crystals of four novel uranyl oxysalts were prepared by evaporation method. • The graph theory was used for investigation of topologies of structural units. • Dehydration processes drives the evolution of topological complexity of 1D and 2D structural units.« less

  6. Comparison of SEM and VPSEM imaging techniques with respect to Streptococcus mutans biofilm topography.

    PubMed

    Weber, Kathryn; Delben, Juliana; Bromage, Timothy G; Duarte, Simone

    2014-01-01

    The study compared images of mature Streptococcus mutans biofilms captured at increasing magnification to determine which microscopy method is most acceptable for imaging the biofilm topography and the extracellular polymeric substance (EPS). In vitro S. mutans biofilms were imaged using (1) scanning electron microscopy (SEM), which requires a dehydration process; (2) SEM and ruthenium red (SEM-RR), which has been shown to support the EPS of biofilms during the SEM dehydration; and (3) variable pressure scanning electron microscopy (VPSEM), which does not require the intensive dehydration process of SEM. The dehydration process and high chamber vacuum of both SEM techniques devastated the biofilm EPS, removed supporting structures, and caused cracking on the biofilm surface. The VPSEM offered the most comprehensive representation of the S. mutans biofilm morphology. VPSEM provides similar contrast and focus as the SEM, but the procedure is far less time-consuming, and the use of hazardous chemicals associated with SEM dehydration protocol is avoided with the VPSEM. The inaccurate representations of the biofilm EPS in SEM experimentation is a possible source of inaccurate data and impediments in the study of S. mutans biofilms. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  7. Combined different dehydration pretreatments and torrefaction to upgrade fuel properties of hybrid pennisetum (Pennisetum americanum ×P. purpureum).

    PubMed

    Yu, Yan; Wang, Guanghui; Bai, Xiaopeng; Liu, Jude; Wang, Decheng; Wang, Zhiqin

    2018-05-16

    Different dehydrating methods combined with torrefaction were investigated to find the underlying mechanism that how dehydration process influence the degree of hornification. Hybrid pennisetum was selected as the experiment material. Oven-dried sample (ODS), crushed dried sample (CDS), and sun-cured dried sample (SDS) were torrefied under the temperature of 275 °C and 300 °C with the duration time of 60 min. The results showed that, changes in elevated carbon content and higher heating value (HHV) and reduced oxygen content of SDS were the most obvious under identical torrefaction conditions. Fuel ratio of SDS was enhanced most under 300 °C. It also had the highest devolatilization index (D i ). The combination of sun-cured dried with torrefaction under 300 °C caused lowest degree of irreversible hornification happened during dehydrating process, and different hornification degrees caused by different dehydrating methods effect the enhancement of fuel properties of lignocellulosic biomass material. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Cholera in pregnancy: outcomes from a specialized cholera treatment unit for pregnant women in Léogâne, Haiti.

    PubMed

    Ciglenecki, Iza; Bichet, Mathieu; Tena, Javier; Mondesir, Erneau; Bastard, Mathieu; Tran, Nguyen-Toan; Antierens, Annick; Staderini, Nelly

    2013-01-01

    The association between cholera in pregnancy and negative fetal outcome has been described since the 19(th) century. However, there is limited published literature on the subject. We describe pregnancy outcomes from a specialized multidisciplinary hospital unit at the onset of a large cholera outbreak in Haiti in 2010 and 2011. Pregnant women with cholera were hospitalized in a specialized unit within the MSF hospital compound in Léogâne and treated using standard cholera treatment guidelines but with earlier, more intense fluid replacement. All women had intravenous access established at admission regardless of their hydration status, and all received antibiotic treatment. Data were collected on patient demographics, pregnancy and cholera status, and pregnancy outcome. In this analysis we calculated risk ratios for fetal death and performed logistic regression analysis to control for confounding factors. 263 pregnant women with cholera were hospitalized between December 2010 and July 2011. None died during hospitalization, 226 (86%) were discharged with a preserved pregnancy and 16 (6%) had live fullterm singleton births, of whom 2 died within the first 5 days postpartum. The remaining 21 pregnancies (8%) resulted in intrauterine fetal death. The risk of fetal death was associated with factors reflecting severity of the cholera episode: after adjusting for confounding factors, the strongest risk factor for fetal death was severe maternal dehydration (adjusted risk ratio for severe vs. mild dehydration was 9.4, 95% CI 2.5-35.3, p = 0.005), followed by severe vomiting (adjusted risk ratio 5.1, 95% 1.1-23.8, p = 0.041). This is the largest cohort of pregnant women with cholera described to date. The main risk factor identified for fetal death was severity of dehydration. Our experience suggests that establishing specialized multidisciplinary units which facilitate close follow-up of both pregnancy and dehydration status due to cholera could be beneficial for patients, especially in large epidemics.

  9. Dehydration-induced modulation of κ-opioid inhibition of vasopressin neurone activity

    PubMed Central

    Scott, Victoria; Bishop, Valerie R; Leng, Gareth; Brown, Colin H

    2009-01-01

    Dehydration increases vasopressin (antidiuretic hormone) secretion from the posterior pituitary gland to reduce water loss in the urine. Vasopressin secretion is determined by action potential firing in vasopressin neurones, which can exhibit continuous, phasic (alternating periods of activity and silence), or irregular activity. Autocrine κ-opioid inhibition contributes to the generation of activity patterning of vasopressin neurones under basal conditions and so we used in vivo extracellular single unit recording to test the hypothesis that changes in autocrine κ-opioid inhibition drive changes in activity patterning of vasopressin neurones during dehydration. Dehydration increased the firing rate of rat vasopressin neurones displaying continuous activity (from 7.1 ± 0.5 to 9.0 ± 0.6 spikes s−1) and phasic activity (from 4.2 ± 0.7 to 7.8 ± 0.9 spikes s−1), but not those displaying irregular activity. The dehydration-induced increase in phasic activity was via an increase in intraburst firing rate. The selective κ-opioid receptor antagonist nor-binaltorphimine increased the firing rate of phasic neurones in non-dehydrated rats (from 3.4 ± 0.8 to 5.3 ± 0.6 spikes s−1) and dehydrated rats (from 6.4 ± 0.5 to 9.1 ± 1.2 spikes s−1), indicating that κ-opioid feedback inhibition of phasic bursts is maintained during dehydration. In a separate series of experiments, prodynorphin mRNA expression was increased in vasopressin neurones of hyperosmotic rats, compared to hypo-osmotic rats. Hence, it appears that dynorphin expression in vasopressin neurones undergoes dynamic changes in proportion to the required secretion of vasopressin so that, even under stimulated conditions, autocrine feedback inhibition of vasopressin neurones prevents over-excitation. PMID:19822541

  10. The diagnostic accuracy of multi-frequency bioelectrical impedance analysis in diagnosing dehydration after stroke

    PubMed Central

    Kafri, Mohannad W.; Myint, Phyo Kyaw; Doherty, Danielle; Wilson, Alexander Hugh; Potter, John F.; Hooper, Lee

    2013-01-01

    Background Non-invasive methods for detecting water-loss dehydration following acute stroke would be clinically useful. We evaluated the diagnostic accuracy of multi-frequency bioelectrical impedance analysis (MF-BIA) against reference standards serum osmolality and osmolarity. Material/Methods Patients admitted to an acute stroke unit were recruited. Blood samples for electrolytes and osmolality were taken within 20 minutes of MF-BIA. Total body water (TBW%), intracellular (ICW%) and extracellular water (ECW%), as percentages of total body weight, were calculated by MF-BIA equipment and from impedance measures using published equations for older people. These were compared to hydration status (based on serum osmolality and calculated osmolarity). The most promising Receiver Operating Characteristics curves were plotted. Results 27 stroke patients were recruited (mean age 71.3, SD10.7). Only a TBW% cut-off at 46% was consistent with current dehydration (serum osmolality >300 mOsm/kg) and TBW% at 47% impending dehydration (calculated osmolarity ≥295–300 mOsm/L) with sensitivity and specificity both >60%. Even here diagnostic accuracy of MF-BIA was poor, a third of those with dehydration were wrongly classified as hydrated and a third classified as dehydrated were well hydrated. Secondary analyses assessing diagnostic accuracy of TBW% for men and women separately, and using TBW as a percentage of lean body mass showed some promise, but did not provide diagnostically accurate measures across the population. Conclusions MF-BIA appears ineffective at diagnosing water-loss dehydration after stroke and cannot be recommended as a test for dehydration, but separating assessment by sex, and using TBW as a percentage of lean body weight may warrant further investigation. PMID:23839255

  11. Changes in apple liquid phase concentration throughout equilibrium in osmotic dehydration.

    PubMed

    Barat, J M; Barrera, C; Frías, J M; Fito, P

    2007-03-01

    Previous results on apple tissue equilibration during osmotic dehydration showed that, at very long processing times, the solute concentrations of the fruit liquid phase and the osmotic solution were the same. In the present study, changes in apple liquid phase composition throughout equilibrium in osmotic dehydration were analyzed and modeled. Results showed that, by the time osmosed samples reached the maximum weight and volume loss, solute concentration of the fruit liquid phase was higher than that of the osmotic solution. The reported overconcentration could be explained in terms of the apple structure shrinkage that occurred during the osmotic dehydration with highly concentrated osmotic solutions due to the elastic response of the food structure to the loss of water and intake of solutes. The fruit liquid phase overconcentration rate was observed to depend on the concentration of the osmotic solution, the processing temperature, the sample size, and shape of the cellular tissue.

  12. Osmotic dehydration of Braeburn variety apples in the production of sustainable food products

    NASA Astrophysics Data System (ADS)

    Ciurzyńska, Agnieszka; Cichowska, Joanna; Kowalska, Hanna; Czajkowska, Kinga; Lenart, Andrzej

    2018-01-01

    The aim of this work was to investigate the effects of osmotic dehydration conditions on the properties of osmotically pre-treated dried apples. The scope of research included analysing the most important mass exchange coefficients, i.e. water loss, solid gain, reduced water content and water activity, as well as colour changes of the obtained dried product. In the study, apples were osmotically dehydrated in one of two 60% solutions: sucrose or sucrose with an addition of chokeberry juice concentrate, for 30 and 120 min, in temperatures of 40 and 60°C. Ultrasound was also used during the first 30 min of the dehydration process. After osmotic pre-treatment, apples were subjected to innovative convective drying with the puffing effect, and to freeze-drying. Temperature and dehydration time increased the effectiveness of mass exchange during osmotic dehydration. The addition of chokeberry juice concentrate to standard sucrose solution and the use of ultrasound did not change the value of solid gain and reduced water content. Water activity of the dried apple tissue was not significantly changed after osmotic dehydration, while changes in colour were significant.

  13. Tracking the dehydration process of raw honey by synchronous two-dimensional near infrared correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Guiyun; Sun, Xin; Huang, Yuping; Chen, Kunjie

    2014-11-01

    Though much attention is paid to honey quality assessment, few reports on characteristic of manually dehydrated honey have been found. The aim of this investigation is to track the dehydration process of raw honey using synchronous two-dimensional (2D) near infrared correlation spectroscopy. To minimize the impact of dehydration to honey quality, seventy-two honey samples from six different dehydration stages were obtained using drum wind drying method with temperature controlled at 40 °C. Their dynamic short-wave NIR spectra from 600 to 1100 nm were collected in the transmission mode from 10 to 50 °C with an increment of 5 °C and were analyzed using synchronous two-dimensional correlation method. Short-wave NIR spectral data has been exploited less than other NIR region for its weaker signal especially for water absorption's interference with useful information. The investigation enlarged the signal at this band using synchronous 2D correlation analysis, revealing the fingerprinting feature of rape honey and chaste honey during the artificial dehydration process. The results have shown that, with the help of 2D correlation analysis, this band can detect the variation of the second overtone of O-H and N-H groups vibration upon their H-bonds forming or collapsing resulted from the interactions between water and solute. The results have also shown that 2D-NIRS method is able to convert the tiny changes in honey constituents into the detectable fingerprinting difference, which provides a new method for assessing honey quality.

  14. Membrane permeation process for dehydration of organic liquid mixtures using sulfonated ion-exchange polyalkene membranes

    DOEpatents

    Cabasso, Israel; Korngold, Emmanuel

    1988-01-01

    A membrane permeation process for dehydrating a mixture of organic liquids, such as alcohols or close boiling, heat sensitive mixtures. The process comprises causing a component of the mixture to selectively sorb into one side of sulfonated ion-exchange polyalkene (e.g., polyethylene) membranes and selectively diffuse or flow therethrough, and then desorbing the component into a gas or liquid phase on the other side of the membranes.

  15. Is this elderly patient dehydrated? Diagnostic accuracy of hydration assessment using physical signs, urine, and saliva markers.

    PubMed

    Fortes, Matthew B; Owen, Julian A; Raymond-Barker, Philippa; Bishop, Claire; Elghenzai, Salah; Oliver, Samuel J; Walsh, Neil P

    2015-03-01

    Dehydration in older adults contributes to increased morbidity and mortality during hospitalization. As such, early diagnosis of dehydration may improve patient outcome and reduce the burden on healthcare. This prospective study investigated the diagnostic accuracy of routinely used physical signs, and noninvasive markers of hydration in urine and saliva. Prospective diagnostic accuracy study. Hospital acute medical care unit and emergency department. One hundred thirty older adults [59 males, 71 females, mean (standard deviation) age = 78 (9) years]. Participants with any primary diagnosis underwent a hydration assessment within 30 minutes of admittance to hospital. Hydration assessment comprised 7 physical signs of dehydration [tachycardia (>100 bpm), low systolic blood pressure (<100 mm Hg), dry mucous membrane, dry axilla, poor skin turgor, sunken eyes, and long capillary refill time (>2 seconds)], urine color, urine specific gravity, saliva flow rate, and saliva osmolality. Plasma osmolality and the blood urea nitrogen to creatinine ratio were assessed as reference standards of hydration with 21% of participants classified with water-loss dehydration (plasma osmolality >295 mOsm/kg), 19% classified with water-and-solute-loss dehydration (blood urea nitrogen to creatinine ratio >20), and 60% classified as euhydrated. All physical signs showed poor sensitivity (0%-44%) for detecting either form of dehydration, with only low systolic blood pressure demonstrating potential utility for aiding the diagnosis of water-and-solute-loss dehydration [diagnostic odds ratio (OR) = 14.7]. Neither urine color, urine specific gravity, nor saliva flow rate could discriminate hydration status (area under the receiver operating characteristic curve = 0.49-0.57, P > .05). In contrast, saliva osmolality demonstrated moderate diagnostic accuracy (area under the receiver operating characteristic curve = 0.76, P < .001) to distinguish both dehydration types (70% sensitivity, 68% specificity, OR = 5.0 (95% confidence interval 1.7-15.1) for water-loss dehydration, and 78% sensitivity, 72% specificity, OR = 8.9 (95% confidence interval 2.5-30.7) for water-and-solute-loss dehydration). With the exception of low systolic blood pressure, which could aid in the specific diagnosis of water-and-solute-loss dehydration, physical signs and urine markers show little utility to determine if an elderly patient is dehydrated. Saliva osmolality demonstrated superior diagnostic accuracy compared with physical signs and urine markers, and may have utility for the assessment of both water-loss and water-and-solute-loss dehydration in older individuals. It is particularly noteworthy that saliva osmolality was able to detect water-and-solute-loss dehydration, for which a measurement of plasma osmolality would have no diagnostic utility. Copyright © 2015 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  16. PARAMETERS OF TEXTURE CHANGE IN PROCESSED FISH: CROSS-LINKAGE OF PROTEINS.

    PubMed

    Mao, Wei-Wen; Sterling, Clarence

    1970-11-01

    Soluble myosin and insoluble protein (i. e., soluble only in 5 % sodium dodecyl sulfate) were obtained from fresh and processed Sacramento blackfish and analyzed for the existence of possible cross-links. Free sulfhydryl groups decreased somewhat in freezing and more in frozen storage. None were present after dehydration or cooking nor in any insoluble fractions, so that presumably these were oxidized in the formation of cross-links. Ester bonds were much more numerous in insoluble protein than in soluble myosin, but their relative content was not clearly related to processing. Aldehyde groups decreased in myosin after cooking and dehydration, and were absent from insoluble protein. The presumptive Schiff base content was somewhat greater in soluble protein than in myosin and appeared to increase upon freezing and dehydration.

  17. Combined analysis of mRNA and miRNA identifies dehydration and salinity responsive key molecular players in citrus roots.

    PubMed

    Xie, Rangjin; Zhang, Jin; Ma, Yanyan; Pan, Xiaoting; Dong, Cuicui; Pang, Shaoping; He, Shaolan; Deng, Lie; Yi, Shilai; Zheng, Yongqiang; Lv, Qiang

    2017-02-06

    Citrus is one of the most economically important fruit crops around world. Drought and salinity stresses adversely affected its productivity and fruit quality. However, the genetic regulatory networks and signaling pathways involved in drought and salinity remain to be elucidated. With RNA-seq and sRNA-seq, an integrative analysis of miRNA and mRNA expression profiling and their regulatory networks were conducted using citrus roots subjected to dehydration and salt treatment. Differentially expressed (DE) mRNA and miRNA profiles were obtained according to fold change analysis and the relationships between miRNAs and target mRNAs were found to be coherent and incoherent in the regulatory networks. GO enrichment analysis revealed that some crucial biological processes related to signal transduction (e.g. 'MAPK cascade'), hormone-mediated signaling pathways (e.g. abscisic acid- activated signaling pathway'), reactive oxygen species (ROS) metabolic process (e.g. 'hydrogen peroxide catabolic process') and transcription factors (e.g., 'MYB, ZFP and bZIP') were involved in dehydration and/or salt treatment. The molecular players in response to dehydration and salt treatment were partially overlapping. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis further confirmed the results from RNA-seq and sRNA-seq analysis. This study provides new insights into the molecular mechanisms how citrus roots respond to dehydration and salt treatment.

  18. Characterization of the Promoter Region of an Arabidopsis Gene for 9-cis-Epoxycarotenoid Dioxygenase Involved in Dehydration-Inducible Transcription

    PubMed Central

    Behnam, Babak; Iuchi, Satoshi; Fujita, Miki; Fujita, Yasunari; Takasaki, Hironori; Osakabe, Yuriko; Yamaguchi-Shinozaki, Kazuko; Kobayashi, Masatomo; Shinozaki, Kazuo

    2013-01-01

    Plants respond to dehydration stress and tolerate water-deficit status through complex physiological and cellular processes. Many genes are induced by water deficit. Abscisic acid (ABA) plays important roles in tolerance to dehydration stress by inducing many stress genes. ABA is synthesized de novo in response to dehydration. Most of the genes involved in ABA biosynthesis have been identified, and they are expressed mainly in leaf vascular tissues. Of the products of such genes, 9-cis-epoxycarotenoid dioxygenase (NCED) is a key enzyme in ABA biosynthesis. One of the five NCED genes in Arabidopsis, AtNCED3, is significantly induced by dehydration. To understand the regulatory mechanism of the early stages of the dehydration stress response, it is important to analyse the transcriptional regulatory systems of AtNCED3. In the present study, we found that an overlapping G-box recognition sequence (5′-CACGTG-3′) at −2248 bp from the transcriptional start site of AtNCED3 is an important cis-acting element in the induction of the dehydration response. We discuss the possible transcriptional regulatory system of dehydration-responsive AtNCED3 expression, and how this may control the level of ABA under water-deficit conditions. PMID:23604098

  19. Transcriptional and physiological data reveal the dehydration memory behavior in switchgrass (Panicum virgatum L.).

    PubMed

    Zhang, Chao; Peng, Xi; Guo, Xiaofeng; Tang, Gaijuan; Sun, Fengli; Liu, Shudong; Xi, Yajun

    2018-01-01

    Switchgrass ( Panicum virgatum L.) is a model biofuel plant because of its high biomass, cellulose-richness, easy degradation to ethanol, and the availability of extensive genomic information. However, a little is currently known about the molecular responses of switchgrass plants to dehydration stress, especially multiple dehydration stresses. Studies on the transcriptional profiles of 35-day-old tissue culture plants revealed 741 dehydration memory genes. Gene Ontology and pathway analysis showed that these genes were enriched in phenylpropanoid biosynthesis, starch and sucrose metabolism, and plant hormone signal transduction. Further analysis of specific pathways combined with physiological data suggested that switchgrass improved its dehydration resistance by changing various aspects of its responses to secondary dehydration stress (D2), including the regulation of abscisic acid (ABA) and jasmonic acid (JA) biosynthesis and signal transduction, the biosynthesis of osmolytes (l-proline, stachyose and trehalose), energy metabolism (i.e., metabolic process relating to photosynthetic systems, glycolysis, and the TCA cycle), and lignin biosynthesis. The transcriptional data and chemical substance assays showed that ABA was significantly accumulated during both primary (D1) and secondary (D2) dehydration stresses, whereas JA accumulated during D1 but became significantly less abundant during D2. This suggests the existence of a complicated signaling network of plant hormones in response to repeated dehydration stresses. A homology analysis focusing on switchgrass, maize, and Arabidopsis revealed the conservation and species-specific distribution of dehydration memory genes. The molecular responses of switchgrass plants to successive dehydration stresses have been systematically characterized, revealing a previously unknown transcriptional memory behavior. These results provide new insights into the mechanisms of dehydration stress responses in plants. The genes and pathways identified in this study will be useful for the genetic improvement of switchgrass and other crops.

  20. Energy Efficient Hybrid Vapor Stripping-Vapor Permeation Process for Ethanol Recovery ad Dehydration

    EPA Science Inventory

    Distillation combined with molecular sieve dehydration is the current state of the art for fuel grade ethanol production from fermentation broths. To improve the sustainability of bioethanol production, energy efficient separation alternatives are needed, particularly for lower f...

  1. Evaluation of high-efficiency gas-liquid contactors for natural gas processing. Second semiannual technical progress report, April 1, 1993--September 30, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-12-01

    The objective of this proposed program is to evaluate the potential of rotating gas-liquid contactors for natural gas processing by expanding the currently available database. This expansion will focus on application of this technology to environments representative of those typically encountered in natural gas processing plants. Operational and reliability concerns will be addressed while generating pertinent engineering data relating to the mass-transfer process. Work to be performed this reporting period are: complete all negotiations and processing of agreements; complete assembly, modifications, shakedown, and conduct fluid dynamic studies using the plastic rotary contactor unit; confirmation of project test matrix; and locate,more » and transport an amine plant and dehydration plant. Accomplishment for this period are presented.« less

  2. Learning Activity Package, Physical Science. LAP Numbers 5, 6, and 7.

    ERIC Educational Resources Information Center

    Williams, G. J.

    These three units of the Learning Activity Packages (LAPs) for individualized instruction in physical science cover the physical and chemical properties of water, dehydration of crystals, solutions, acidity, strong and weak bases, neutral properties of salts, amorphous forms of carbon, hydrocarbons, and petroleum products. Each unit contains a…

  3. Improving the diffraction of apoA-IV crystals through extreme dehydration.

    PubMed

    Deng, Xiaodi; Davidson, W Sean; Thompson, Thomas B

    2012-01-01

    Apolipoproteins are the protein component of high-density lipoproteins (HDL), which are necessary for mobilizing lipid-like molecules throughout the body. Apolipoproteins undergo self-association, especially at higher concentrations, making them difficult to crystallize. Here, the crystallization and diffraction of the core fragment of apolipoprotein A-IV (apoA-IV), consisting of residues 64-335, is presented. ApoA-IV(64-335) crystallized readily in a variety of hexagonal (P6) morphologies with similar unit-cell parameters, all containing a long axis of nearly 550 Å in length. Preliminary diffraction experiments with the different crystal morphologies all resulted in limited streaky diffraction to 3.5 Å resolution. Crystal dehydration was applied to the different morphologies with variable success and was also used as a quality indicator of crystal-growth conditions. The results show that the morphologies that withstood the most extreme dehydration conditions showed the greatest improvement in diffraction. One morphology in particular was able to withstand dehydration in 60% PEG 3350 for over 12 h, which resulted in well defined intensities to 2.7 Å resolution. These results suggest that the approach of integrating dehydration with variation in crystal-growth conditions might be a general technique to optimize diffraction. © 2012 International Union of Crystallography. All rights reserved.

  4. PARAMETERS OF TEXTURE CHANGE IN PROCESSED FISH: PROTEIN CRYSTALLIZATION.

    PubMed

    Mao, Wei-Wen; Sterling, Clarence

    1970-07-01

    Processed muscle of the Sacramento blackfish (Orthodon microlepidotus) was examined for changes in crystallinity by X-ray diffraction and relative water vapor uptake, the specimens having been prepared by the freeze-substitution procedure. Although only a slight increase in crystallinity occurred on processing, both methods agreed in showing a small increase in crystallinity on freezing, a somewhat greater increase on cooking, and a still greater increase on dehydrating. Further increases in crystallinity occurred during storage of frozen and dehydrated muscles.

  5. 7 CFR 993.149 - Receiving of prunes by handlers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE DRIED... certifies that the dehydration process of the prunes being certified resulted in prunes eligible to be... conditioning by further drying or dehydration: Provided, That such prunes shall be identified and kept separate...

  6. Recent Advances on Bioethanol Dehydration using Zeolite Membrane

    NASA Astrophysics Data System (ADS)

    Makertihartha, I. G. B. N.; Dharmawijaya, P. T.; Wenten, I. G.

    2017-07-01

    Renewable energy has gained increasing attention throughout the world. Bioethanol has the potential to replace existing fossil fuel usage without much modification in existing facilities. Bioethanol which generally produced from fermentation route produces low ethanol concentration. However, fuel grade ethanol requires low water content to avoid engine stall. Dehydration process has been increasingly important in fuel grade ethanol production. Among all dehydration processes, pervaporation is considered as the most promising technology. Zeolite possesses high potential in pervaporation of bioethanol into fuel grade ethanol. Zeolite membrane can either remove organic (ethanol) from aqueous mixture or water from the mixture, depending on the framework used. Hydrophilic zeolite membrane, e.g. LTA, can easily remove water from the mixture leaving high ethanol concentration. On the other hand, hydrophobic zeolite membrane, e.g. silicate-1, can remove ethanol from aqueous solution. This review presents the concept of bioethanol dehydration using zeolite membrane. Special attention is given to the performance of selected pathway related to framework selection.

  7. Influence of dehydration on the electrical conductivity of epidote and implications for high-conductivity anomalies in subduction zones

    NASA Astrophysics Data System (ADS)

    Hu, Haiying; Dai, Lidong; Li, Heping; Hui, Keshi; Sun, Wenqing

    2017-04-01

    The anomalously high electrical conductivities ( 0.1 to 1 S/m) in deep mantle wedge regions extensively detected by magnetotelluric studies are often associated with the presence of fluids released from the progressive dehydration of subducting slabs. Epidote minerals are the Ca-Al-rich hydrous silicates with huge stability fields exceeding those of amphibole (>70-80 km) in subducting oceanic crust, and they may therefore be transported to greater depth than amphibole and release water to the mantle wedge. In this study, the electrical conductivities of epidote were measured at 0.5-1.5 GPa and 573-1273 K by using a Solartron-1260 Impedance/Gain-Phase Analyzer in a YJ-3000t multianvil pressure within the frequency range of 0.1-106 Hz. The results demonstrate that the influence of pressure on electrical conductivity of epidote is relatively small compared to that of temperature. The dehydration reaction of epidote is observed through the variation of electrical conductivity around 1073 K, and electrical conductivity reaches up to 1 S/m at 1273 K, which can be attributed to aqueous fluid released from epidote dehydration. After sample dehydration, electrical conductivity noticeably decreases by as much as nearly a log unit compared with that before dehydration, presumably due to a combination of the presence of coexisting mineral phases and aqueous fluid derived from the residual epidote. Taking into account the petrological and geothermal structures of subduction zones, it is suggested that the aqueous fluid produced by epidote dehydration could be responsible for the anomalously high conductivities in deep mantle wedges at depths of 70-120 km, particularly in hot subduction zones.

  8. Coupled Phases and Combinatorial Selection in Fluctuating Hydrothermal Pools: A Scenario to Guide Experimental Approaches to the Origin of Cellular Life

    PubMed Central

    Damer, Bruce; Deamer, David

    2015-01-01

    Hydrothermal fields on the prebiotic Earth are candidate environments for biogenesis. We propose a model in which molecular systems driven by cycles of hydration and dehydration in such sites undergo chemical evolution in dehydrated films on mineral surfaces followed by encapsulation and combinatorial selection in a hydrated bulk phase. The dehydrated phase can consist of concentrated eutectic mixtures or multilamellar liquid crystalline matrices. Both conditions organize and concentrate potential monomers and thereby promote polymerization reactions that are driven by reduced water activity in the dehydrated phase. In the case of multilamellar lipid matrices, polymers that have been synthesized are captured in lipid vesicles upon rehydration to produce a variety of molecular systems. Each vesicle represents a protocell, an “experiment” in a natural version of combinatorial chemistry. Two kinds of selective processes can then occur. The first is a physical process in which relatively stable molecular systems will be preferentially selected. The second is a chemical process in which rare combinations of encapsulated polymers form systems capable of capturing energy and nutrients to undergo growth by catalyzed polymerization. Given continued cycling over extended time spans, such combinatorial processes will give rise to molecular systems having the fundamental properties of life. PMID:25780958

  9. Dehydration-responsive miRNAs in foxtail millet: genome-wide identification, characterization and expression profiling.

    PubMed

    Yadav, Amita; Khan, Yusuf; Prasad, Manoj

    2016-03-01

    A set of novel and known dehydration-responsive miRNAs have been identified in foxtail millet. These findings provide new insights into understanding the functional role of miRNAs and their respective targets in regulating plant response to dehydration stress. MicroRNAs perform significant regulatory roles in growth, development and stress response of plants. Though the miRNA-mediated gene regulatory networks under dehydration stress remain largely unexplored in plant including foxtail millet (Setaria italica), which is a natural abiotic stress tolerant crop. To find out the dehydration-responsive miRNAs at the global level, four small RNA libraries were constructed from control and dehydration stress treated seedlings of two foxtail millet cultivars showing contrasting tolerance behavior towards dehydration stress. Using Illumina sequencing technology, 55 known and 136 novel miRNAs were identified, representing 22 and 48 miRNA families, respectively. Eighteen known and 33 novel miRNAs were differentially expressed during dehydration stress. After the stress treatment, 32 dehydration-responsive miRNAs were up-regulated in tolerant cultivar and 22 miRNAs were down-regulated in sensitive cultivar, suggesting that miRNA-mediated molecular regulation might play important roles in providing contrasting characteristics to these cultivars. Predicted targets of identified miRNAs were found to encode various transcription factors and functional enzymes, indicating their involvement in broad spectrum regulatory functions and biological processes. Further, differential expression patterns of seven known miRNAs were validated by northern blot and expression of ten novel dehydration-responsive miRNAs were confirmed by SL-qRT PCR. Differential expression behavior of five miRNA-target genes was verified under dehydration stress treatment and two of them also validated by RLM RACE. Overall, the present study highlights the importance of dehydration stress-associated post-transcriptional regulation governed by miRNAs and their targets in a naturally stress-tolerant model crop.

  10. Estimating the Aqueous Solubility of Pharmaceutical Hydrates

    PubMed Central

    Franklin, Stephen J.; Younis, Usir S.; Myrdal, Paul B.

    2016-01-01

    Estimation of crystalline solute solubility is well documented throughout the literature. However, the anhydrous crystal form is typically considered with these models, which is not always the most stable crystal form in water. In this study an equation which predicts the aqueous solubility of a hydrate is presented. This research attempts to extend the utility of the ideal solubility equation by incorporating desolvation energetics of the hydrated crystal. Similar to the ideal solubility equation, which accounts for the energetics of melting, this model approximates the energy of dehydration to the entropy of vaporization for water. Aqueous solubilities, dehydration and melting temperatures, and log P values were collected experimentally and from the literature. The data set includes different hydrate types and a range of log P values. Three models are evaluated, the most accurate model approximates the entropy of dehydration (ΔSd) by the entropy of vaporization (ΔSvap) for water, and utilizes onset dehydration and melting temperatures in combination with log P. With this model, the average absolute error for the prediction of solubility of 14 compounds was 0.32 log units. PMID:27238488

  11. Conservation of coconut (Cocos nucifera L.) germplasm at sub-zero temperature.

    PubMed

    Sisunandar; Sopade, Peter A; Samosir, Yohannes M S; Rival, Alain; Adkins, Steve W

    2012-01-01

    Protocols are proposed for the low (-20 degree C) and ultra-low (-80 degree C) temperature storage of coconut (Cocos nucifera L.) embryos. A tissue dehydration step prior to storage, and a rapid warming step upon recovery optimized the protocol. The thermal properties of water located within embryos were monitored using differential scanning calorimetry (DSC). In the most efficient version of the protocol, embryos were dehydrated under a sterile air flow in a dehydration solution containing glucose (3.33 M) and glycerol (15 percent) for 16 hours. This protocol decreased the embryo water content from 77 to 29 percent FW and at the same time reduced the amount of freezable water down to 0.03 percent. The dehydrated embryos could be stored for up to 3 weeks at -20 degree C (12 percent producing normal plants upon recovery) or 26 weeks at -80 degree C (28 percent producing normal plants upon recovery). These results indicate that it is possible to store coconut germplasm on a medium term basis using an ultra-deep freezer unit. However for more efficient, long term storage, cryopreservation remains the preferred option.

  12. Ethanol dehydration in HZSM-5 studied by density functional theory: evidence for a concerted process.

    PubMed

    Kim, Seonah; Robichaud, David J; Beckham, Gregg T; Paton, Robert S; Nimlos, Mark R

    2015-04-16

    Dehydration over acidic zeolites is an important reaction class for the upgrading of biomass pyrolysis vapors to hydrocarbon fuels or to precursors for myriad chemical products. Here, we examine the dehydration of ethanol at a Brønsted acid site, T12, found in HZSM-5 using density functional theory (DFT). The geometries of both cluster and mixed quantum mechanics/molecular mechanics (QM:MM) models are prepared from the ZSM-5 crystal structure. Comparisons between these models and different DFT methods are conducted to show similar results among the models and methods used. Inclusion of the full catalyst cavity through a QM:MM approach is found to be important, since activation barriers are computed on average as 7 kcal mol(-1) lower than those obtained with a smaller cluster model. Two different pathways, concerted and stepwise, have been considered when examining dehydration and deprotonation steps. The current study shows that a concerted dehydration process is possible with a lower (4-5 kcal mol(-1)) activation barrier while previous literature studies have focused on a stepwise mechanism. Overall, this work demonstrates that fairly high activation energies (∼50 kcal mol(-1)) are required for ethanol dehydration. A concerted mechanism is favored over a stepwise mechanism because charge separation in the transition state is minimized. QM:MM approaches appear to provide superior results to cluster calculations due to a more accurate representation of charges on framework oxygen atoms.

  13. Modelling technological process of ion-exchange filtration of fluids in porous media

    NASA Astrophysics Data System (ADS)

    Ravshanov, N.; Saidov, U. M.

    2018-05-01

    Solution of an actual problem related to the process of filtration and dehydration of liquid and ionic solutions from gel particles and heavy ionic compounds is considered in the paper. This technological process is realized during the preparation and cleaning of chemical solutions, drinking water, pharmaceuticals, liquid fuels, products for public use, etc. For the analysis, research, determination of the main parameters of the technological process and operating modes of filter units and for support in managerial decision-making, a mathematical model is developed. Using the developed model, a series of computational experiments on a computer is carried out. The results of numerical calculations are illustrated in the form of graphs. Based on the analysis of numerical experiments, the conclusions are formulated that serve as the basis for making appropriate managerial decisions.

  14. Cryopreservation by encapsulation-dehydration of plumules of coconut (Cocos nucifera L.).

    PubMed

    N'Nan, Oulo; Hocher, Valérie; Verdeil, Jean-Luc; Konan, Jean-Louis; Ballo, Koffi; Mondeil, Fanja; Malaurie, Bernard

    2008-01-01

    This study describes the use of an encapsulation-dehydration cryopreservation technique on coconut plumules (apical dome with three or four leaf primordia) excised from embryos. In order to establish a reliable cryopreservation process for plumules, several different key factors were tested: pretreatment duration, sugar concentration, dehydration period and freezing. In parallel, histological studies were performed to describe the structural changes of tissues and plumule cells subjected to dehydration and freezing. A good survival level of around 60% was obtained. However, after 8 months culture regrowth, this level decreased to a maximum of 20 % which was achieved using sucrose treatment. In this paper we report for the first time the regeneration of leafy shoots from coconut plumules after cryopreservation.

  15. Optimisation of ultrasound-assisted osmotic dehydration of sweet potato (Ipomea batatas) using response surface methodology.

    PubMed

    Oladejo, Ayobami Olayemi; Ma, Haile

    2016-08-01

    Sweet potato is a highly nutritious tuber crop that is rich in β-carotene. Osmotic dehydration is a pretreatment method for drying of fruit and vegetables. Recently, ultrasound technology has been applied in food processing because of its numerous advantages which include time saving, little damage to the quality of the food. Thus, there is need to investigate and optimise the process parameters [frequency (20-50 kHz), time (10-30 min) and sucrose concentration (20-60% w/v)] for ultrasound-assisted osmotic dehydration of sweet potato using response surface methodology. The optimised values obtained were frequency of 33.93 kHz, time of 30 min and sucrose concentration of 35.69% (w/v) to give predicted values of 21.62, 4.40 and 17.23% for water loss, solid gain and weight reduction, respectively. The water loss and weight reduction increased when the ultrasound frequency increased from 20 to 35 kHz and then decreased as the frequency increased from 35 to 50 kHz. The results from this work show that low ultrasound frequency favours the osmotic dehydration of sweet potato and also reduces the use of raw material (sucrose) needed for the osmotic dehydration of sweet potato. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  16. Processing for maximizing the level of crystallinity in linear aromatic polyimides

    NASA Technical Reports Server (NTRS)

    St.clair, Terry L. (Inventor)

    1991-01-01

    The process of the present invention includes first treating a polyamide acid (such as LARC-TPI polyamide acid) in an amide-containing solvent (such as N-methyl pyrrolidone) with an aprotic organic base (such as triethylamine), followed by dehydrating with an organic dehydrating agent (such as acetic anhydride). The level of crystallinity in the linear aromatic polyimide so produced is maximized without any degradation in the molecular weight thereof.

  17. Improved reproducibility of unit-cell parameters in macromolecular cryocrystallography by limiting dehydration during crystal mounting.

    PubMed

    Farley, Christopher; Burks, Geoffry; Siegert, Thomas; Juers, Douglas H

    2014-08-01

    In macromolecular cryocrystallography unit-cell parameters can have low reproducibility, limiting the effectiveness of combining data sets from multiple crystals and inhibiting the development of defined repeatable cooling protocols. Here, potential sources of unit-cell variation are investigated and crystal dehydration during loop-mounting is found to be an important factor. The amount of water lost by the unit cell depends on the crystal size, the loop size, the ambient relative humidity and the transfer distance to the cooling medium. To limit water loss during crystal mounting, a threefold strategy has been implemented. Firstly, crystal manipulations are performed in a humid environment similar to the humidity of the crystal-growth or soaking solution. Secondly, the looped crystal is transferred to a vial containing a small amount of the crystal soaking solution. Upon loop transfer, the vial is sealed, which allows transport of the crystal at its equilibrated humidity. Thirdly, the crystal loop is directly mounted from the vial into the cold gas stream. This strategy minimizes the exposure of the crystal to relatively low humidity ambient air, improves the reproducibility of low-temperature unit-cell parameters and offers some new approaches to crystal handling and cryoprotection.

  18. Improved reproducibility of unit-cell parameters in macromolecular cryocrystallography by limiting dehydration during crystal mounting

    PubMed Central

    Farley, Christopher; Burks, Geoffry; Siegert, Thomas; Juers, Douglas H.

    2014-01-01

    In macromolecular cryocrystallography unit-cell parameters can have low reproducibility, limiting the effectiveness of combining data sets from multiple crystals and inhibiting the development of defined repeatable cooling protocols. Here, potential sources of unit-cell variation are investigated and crystal dehydration during loop-mounting is found to be an important factor. The amount of water lost by the unit cell depends on the crystal size, the loop size, the ambient relative humidity and the transfer distance to the cooling medium. To limit water loss during crystal mounting, a threefold strategy has been implemented. Firstly, crystal manipulations are performed in a humid environment similar to the humidity of the crystal-growth or soaking solution. Secondly, the looped crystal is transferred to a vial containing a small amount of the crystal soaking solution. Upon loop transfer, the vial is sealed, which allows transport of the crystal at its equilibrated humidity. Thirdly, the crystal loop is directly mounted from the vial into the cold gas stream. This strategy minimizes the exposure of the crystal to relatively low humidity ambient air, improves the reproducibility of low-temperature unit-cell parameters and offers some new approaches to crystal handling and cryoprotection. PMID:25084331

  19. Production of furfural from pentosan-rich biomass: analysis of process parameters during simultaneous furfural stripping.

    PubMed

    Agirrezabal-Telleria, I; Gandarias, I; Arias, P L

    2013-09-01

    Among the furan-based compounds, furfural (FUR) shows interesting properties as building-block or industrial solvent. It is produced from pentosan-rich biomass via xylose cyclodehydration. The current FUR production makes use of homogeneous catalysts and excessive amounts of steam. The development of greener furfural production and separation techniques implies the use of heterogeneous catalysts and innovative separation processes. This work deals with the conversion of corncobs as xylose source to be dehydrated to furfural. The results reveal differences between the use of direct corncob hydrolysis and dehydration to furfural and the prehydrolysis and dehydration procedures. Moreover, this work focuses on an economical analysis of the main process parameters during N2-stripping and its economical comparison to the current steam-stripping process. The results show a considerable reduction of the annual utility costs due to use of recyclable nitrogen and the reduction of the furfural purification stages. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Effective hepatitis A virus inactivation during low-heat dehydration of contaminated green onions.

    PubMed

    Laird, David T; Sun, Yan; Reineke, Karl F; Shieh, Y Carol

    2011-08-01

    Preserving fruits and vegetables by dehydration is common; however, information is limited concerning viral survival on the produce during the process. This work demonstrated the effects of low heat dehydration on inactivating hepatitis A virus (HAV) on contaminated green onions. Inoculated and uninoculated onion samples were dehydrated at target temperatures of 45-65 °C for 20 h. HAV from artificially contaminated onions (fresh or dehydrated) was eluted by shaking at 145 rpm at 20 °C for 20 min with 3% beef extract, pH 8, and followed by 0.2 μM-membrane filtration before plaque assay and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. Dilutions of the filtrates were made for obtaining countable plaques on FRhK-4 cell monolayers in 6-well plates, and also for eliminating inhibitors in qRT-PCR. Average water activity of the onions after 20 h-dehydration was 0.227, regardless of temperature used (47.9 °C or 65.1 °C). Eight dehydration trials resulted in a linear relationship between HAV inactivation and dehydration temperature, with HAV log reduction = 0.1372x(°C) - 5.5572, r(2) = 0.88. Therefore, the 20 h-heating at 47.8, 55.1, and 62.4 °C reduced infectious HAV in onions by 1, 2, and 3 logs respectively, the Z value being 7.3 °C. It was concluded that low heat dehydration using 62.5 °C or above could effectively inactivate HAV on contaminated onions by >3 logs. Published by Elsevier Ltd.

  1. A RhABF2/Ferritin module affects rose (Rosa hybrida) petal dehydration tolerance and senescence by modulating iron levels.

    PubMed

    Liu, Jitao; Fan, Youwei; Zou, Jing; Fang, Yiqun; Wang, Linghao; Wang, Meng; Jiang, Xinqiang; Liu, Yiqing; Gao, Junping; Zhang, Changqing

    2017-12-01

    Plants often develop the capacity to tolerate moderate and reversible environmental stresses, such as drought, and to re-establish normal development once the stress has been removed. An example of this phenomenon is provided by cut rose (Rosa hybrida) flowers, which experience typical reversible dehydration stresses during post-harvest handling after harvesting at the bud stages. The molecular mechanisms involved in rose flower dehydration tolerance are not known, however. Here, we characterized a dehydration- and abscisic acid (ABA)-induced ferritin gene (RhFer1). Dehydration-induced free ferrous iron (Fe 2+ ) is preferentially sequestered by RhFer1 and not transported outside of the petal cells, to restrict oxidative stresses during dehydration. Free Fe 2+ accumulation resulted in more serious oxidative stresses and the induction of genes encoding antioxidant enzyme in RhFer1-silenced petals, and poorer dehydration tolerance was observed compared with tobacco rattle virus (TRV) controls. We also determined that RhABF2, an AREB/ABF transcription factor involved in the ABA signaling pathway, can activate RhFer1 expression by directly binding to its promoter. The silencing of RhABF2 decreased dehydration tolerance and disrupted Fe homeostasis in rose petals during dehydration, as did the silencing of RhFer1. Although both RhFer1 and Fe transporter genes are induced during flower natural senescence in plants, the silencing of RhABF2 or RhFer1 accelerates the petal senescence processes. These results suggest that the regulatory module RhABF2/RhFer1 contributes to the maintenance of Fe levels and enhances dehydration tolerance through the action of RhFer1 locally sequestering free Fe 2+ under dehydration conditions, and plays synergistic roles with transporter genes during flower senescence. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  2. Proposal for the testing of a tool for assessing the risk of dehydration in the elderly patient.

    PubMed

    Bulgarelli, Ketty

    2015-09-09

    Dehydration is now the most common fluid and electrolyte disorder in older people. Because it is often associated with high rates of morbidity and mortality, it requires careful control and prevention in the context of a thorough primary care. The main risk factor for dehydration was the low intake of water by mouth for several reasons, such as lack of autonomy, altered mental status, decreased sensation of thirst, social and environmental problems. To this may be added an increase in fluid loss caused by fever, vomiting, diarrhoea, bleeding etc., the use of diuretics or laxatives and the onset of diseases that induce an increase in the loss of urine (e.g. diabetes). This paper aims to locate a tool for assessing the risk among those reported in the literature that is easy to use for the nurse and to experiment with it on a sample of patients. An analysis of the literature showed the reliability of an instrument for assessing the risk of dehydration by the name of "Dehydration Risk Appraisal Checklist." In order to verify its usefulness in identifying the risk of dehydration, 2 groups of elderly persons at the OU Geriatrics and long-term care unit of the Azienda USL of Piacenza and the OU complex Geriatric Clinic of the University Hospital of Parma were investigated. Patients in both groups were assessed on admission by the assessment scale MNA (Mini Nutritional Assessment) and by the sheet of quantitative evaluation of the meal consumed. One group was considered as the "control group". Patients belonging to the other group, which was regarded as the "experimental group", in addition to the two above-mentioned instruments, were also assessed by the "Dehydration risk appraisal checklist". In both groups, the presence or absence of four indicators of dehydration measured at the time of and immediately before discharge was then detected. In the presence of each indicator of dehydration one point was awarded for a comprehensive evaluation. The data collected were analyzed using a statistical method. The results showed no statistically significant differences in the identification of the risk of dehydration in the two groups. It is believed, however, that the data will guide checklists to consider the above-mentioned instrument valid and useful in nursing practice in order to assess the risk of dehydration in older people and early detection of its onset and thus enable prompt and effective management. It will take more extensive studies of case studies to test this hypothesis.

  3. Unexpected Preferential Dehydration of Artemisinin in Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Sanders, Marc W.; Wright, Lawrence; Tate, Lauren; Fairless, Gayle; Crowhurst, Lorna; Bruce, Neil C.; Walker, Adam J.; Hembury, Guy A.; Shimizu, Seishi

    2009-09-01

    Thermodynamic measurements (at 298 K) reveal that a crucial step in the extraction process of the key antimalarial drug artemisinin by ionic liquids (ILs), namely, precipitation through the addition of water, is driven by artemisinin dehydration due to the differences in the water's interaction with the bulk ILs, rather than with the artemisinin itself.

  4. Kinetics of lithium peroxide monohydrate thermal decomposition

    NASA Astrophysics Data System (ADS)

    Nefedov, Roman; Posternak, Nikolay; Ferapontov, Yuriy

    2017-11-01

    Topochemical dehydration of lithium peroxide was studied to determine kinetic parameters at the range of temperatures from 90°C to 147°C in non-isothermal conditions by derivatographic method. The study was conducted to select optimal conditions of lithium peroxide synthesis in dehydration reaction of triple LiOH-H2O2-H2O system in ultra-high frequency radiation field. Conditions of dehydration reaction were caused by the thermal conductivity of LiOH -H2O2-H2O system. It is determined that dehydration process runs close to the first order reaction (n=0.85±0.03). The activation energy and pre-exponential factor values were found as Eak = 86.0 ± 0.8 kJ/mol, k0 = (2.19 ± 0.16) .1011 min-1, correspondingly. It is supposed that there is a similarity between the dehydration mechanism of lithium peroxide monohydrate and peroxide hydrates of alkaline-earth metals (calcium, barium and strontium).

  5. Dehydration of jambolan [Syzygium cumini (L.)] juice during foam mat drying: Quantitative and qualitative changes of the phenolic compounds.

    PubMed

    Iasnaia Maria de Carvalho, Tavares; Nogueira, Tuany Yuri Kuboyama; Mauro, Maria Aparecida; Gómez-Alonso, Sergio; Gomes, Eleni; Da-Silva, Roberto; Hermosín-Gutiérrez, Isidro; Lago-Vanzela, Ellen Silva

    2017-12-01

    Jambolan [Syzygium cumini (L.)] berries are a popular fruit in Brazil, renowned for their high phenolic compound (PC) content. These PCs have antioxidant, antibacterial, and other characteristics that may be beneficial to human health. The objective of the study was to evaluate the quantitative and qualitative changes of the main phenolic compounds (PCs) (anthocyanins, flavonols, and hydrolysable tannins) in the jambolan fruit, the produced fruit juice, and in the corresponding dehydrated powders obtained by foam mat drying (60, 70, and 80°C) and lyophilization (control). The PCs were analyzed using high-performance liquid chromatography with a diode array detection coupled with an electrospray ionization mass spectrometry (HPLC-DAD-ESI-MS n ). Juice production resulted in a more pronounced degradation of anthocyanins than flavonols, and facilitated the extraction of hydrolysable tannins. Elevation of the dehydration temperature negatively impacted the anthocyanin content of the products; on the other hand, the flavonols and hydrolysable tannins were more sensitive to oxidation and heating time during dehydration, respectively, than dehydration temperature. In summary, it can be concluded that processing at 70°C is most suitable, in light of the least loss of nutritional quality of the product with processing time. This study directly informs further investigations into preparation of high-quality jambolan fruit products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Combined analysis of mRNA and miRNA identifies dehydration and salinity responsive key molecular players in citrus roots

    PubMed Central

    Xie, Rangjin; Zhang, Jin; Ma, Yanyan; Pan, Xiaoting; Dong, Cuicui; Pang, Shaoping; He, Shaolan; Deng, Lie; Yi, Shilai; Zheng, Yongqiang; Lv, Qiang

    2017-01-01

    Citrus is one of the most economically important fruit crops around world. Drought and salinity stresses adversely affected its productivity and fruit quality. However, the genetic regulatory networks and signaling pathways involved in drought and salinity remain to be elucidated. With RNA-seq and sRNA-seq, an integrative analysis of miRNA and mRNA expression profiling and their regulatory networks were conducted using citrus roots subjected to dehydration and salt treatment. Differentially expressed (DE) mRNA and miRNA profiles were obtained according to fold change analysis and the relationships between miRNAs and target mRNAs were found to be coherent and incoherent in the regulatory networks. GO enrichment analysis revealed that some crucial biological processes related to signal transduction (e.g. ‘MAPK cascade’), hormone-mediated signaling pathways (e.g. abscisic acid- activated signaling pathway’), reactive oxygen species (ROS) metabolic process (e.g. ‘hydrogen peroxide catabolic process’) and transcription factors (e.g., ‘MYB, ZFP and bZIP’) were involved in dehydration and/or salt treatment. The molecular players in response to dehydration and salt treatment were partially overlapping. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis further confirmed the results from RNA-seq and sRNA-seq analysis. This study provides new insights into the molecular mechanisms how citrus roots respond to dehydration and salt treatment. PMID:28165059

  7. Dehydration-responsive nuclear proteome landscape of chickpea (Cicer arietinum L.) reveals phosphorylation-mediated regulation of stress response.

    PubMed

    Barua, Pragya; Lande, Nilesh Vikram; Subba, Pratigya; Gayen, Dipak; Pinto, Sneha; Prasad, T S Keshav; Chakraborty, Subhra; Chakraborty, Niranjan

    2018-05-10

    Non-availability of water or dehydration remains recurring climatic disorder affecting yield of major food crops, legumes in particular. Nuclear proteins (NP) and phosphoproteins (NPPs) execute crucial cellular functions that form the regulatory hub for coordinated stress response. Phosphoproteins hold enormous influence over cellular signalling. Four-week-old seedlings of a grain legume, chickpea, were subjected to gradual dehydration and nuclear proteins were extracted from unstressed control as well as from 72 and 144 h stressed tissues. We identified 4832 NPs and 478 phosphosites, corresponding to 299 unique NPPs involved in multivariate cellular processes including protein modification and gene expression regulation, among others. The identified proteins included several novel kinases, phosphatases and transcription factors, besides 660 uncharacterised proteins. Spliceosome complex and splicing related proteins were dominant among differentially regulated NPPs, indicating their dehydration modulated regulation. Phospho-motif analysis revealed stress-induced enrichment of proline-directed serine phosphorylation. Association mapping of NPPs revealed predominance of differential phosphorylation of spliceosome and splicing associated proteins. Also, regulatory proteins of key processes viz., protein degradation, regulation of flowering time and circadian clock were observed to undergo dehydration-induced dephosphorylation. The characterization of novel regulatory proteins would provide new insights into stress adaptation and enable directed genetic manipulations for developing climate-resilient crops. This article is protected by copyright. All rights reserved.

  8. Influence of thermal treatment on the stability of phenolic compounds and the microbiological quality of sucrose solution following osmotic dehydration of highbush blueberry fruits.

    PubMed

    Kucner, Anna; Papiewska, Agnieszka; Klewicki, Robert; Sójka, Michał; Klewicka, Elżbieta

    2014-01-01

    Osmotic dehydration is a process of the partial removal of water which is based on immersion of material having cellular structure in a hypertonic solution. Osmotic dehydration is used as a pretreatment for the dehydration of foods before they are subjected to further processing such as freezing, freeze drying, vacuum drying. Management of spent syrup is one of the most important problems related to osmotic dewatering. Osmotic solutions are heavily polluted with of carbohydrates, remains of the dehydrated material and microorganisms. The aim of this study was to determine the effect of thermal treatment on the content of phenolic compounds and the microbiological quality of sucrose solution used in 15 cycles of osmotic dehydration of highbush blueberry (Vaccinium corymbosum L.) fruits. The tested material was 65.0 ±0.5°Brix sucrose solution used for 15 cycles of osmotic dehydration of highbush blueberry (Vaccinium corymbosum L.). Osmotic dehydration was conducted at 40°C for 120 min using fruits previously subjected to enzymatic pretreatment. The thermal treatment of sucrose solution was conducted at 70, 80, 90, 100 and 115°C for 20, 40 and 60 s. The sucrose solution was analysed in terms of total polyphenols, particular polyphenols using high performance liquid chromatography and microbiological analysis was subjected. Thermal treatment at 70-115°C for 20 s caused degradation of 8.5% to 12.7% of polyphenols, while as much as 23.1% of polyphenols were degraded at 115°C after 60 s. The present paper proposes heating parameters that are optimal from the point of view of phenolic compound retention and microbiological quality: thermal treatment of syrup at 100°C for 40 s. Under these conditions, total polyphenols retention was 94.5%, while the retention of individual phenolic compounds varied from 89.2% to 37.2%, and that of flavan-3-ols amounted to 89.5%. The studied manner of syrup treatment eliminated the problem of syrup contamination with yeasts and molds (reducing their levels to less than 1 CFU/mL).

  9. EPR study on gamma-irradiated fruits dehydrated via osmosis

    NASA Astrophysics Data System (ADS)

    Yordanov, N. D.; Aleksieva, K.

    2007-06-01

    The shape and time stability of the electron paramagnetic resonance (EPR) spectra of non- and γ-irradiated papaya, melon, cherry and fig samples dehydrated via osmosis are reported. It is shown that non-irradiated samples are generally EPR silent whereas γ-irradiated exhibit "sugar-like" EPR spectra. The recorded EPR spectra are monitored for a period of 7 months after irradiation (stored at low humidity and in the dark). The results suggest longer period of unambiguous identification of the radiation processing of osmose dehydrated fruits. Therefore, the Protocol EN 13708,2001 issued by CEN is fully applicable for the studied fruit samples.

  10. Estimating the Aqueous Solubility of Pharmaceutical Hydrates.

    PubMed

    Franklin, Stephen J; Younis, Usir S; Myrdal, Paul B

    2016-06-01

    Estimation of crystalline solute solubility is well documented throughout the literature. However, the anhydrous crystal form is typically considered with these models, which is not always the most stable crystal form in water. In this study, an equation which predicts the aqueous solubility of a hydrate is presented. This research attempts to extend the utility of the ideal solubility equation by incorporating desolvation energetics of the hydrated crystal. Similar to the ideal solubility equation, which accounts for the energetics of melting, this model approximates the energy of dehydration to the entropy of vaporization for water. Aqueous solubilities, dehydration and melting temperatures, and log P values were collected experimentally and from the literature. The data set includes different hydrate types and a range of log P values. Three models are evaluated, the most accurate model approximates the entropy of dehydration (ΔSd) by the entropy of vaporization (ΔSvap) for water, and utilizes onset dehydration and melting temperatures in combination with log P. With this model, the average absolute error for the prediction of solubility of 14 compounds was 0.32 log units. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  11. Structural Studies of NH4-exchanged Natrolites at Ambient Conditions and High Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y Lee; D Seoung; Y Jang

    2011-12-31

    We report here for the first time that fully and partially NH{sub 4}-exchanged natrolites can be prepared in hydrated states using the solution exchange method with potassium-natrolite. The structural models of the as-prepared hydrated phases and their dehydrated forms at elevated temperature were refined in space group Fdd2 using in situ synchrotron X-ray powder diffraction data and Rietveld methods. The unit-cell volumes of the hydrated NH{sub 4}-exchanged natrolites at ambient conditions, (NH{sub 4}){sub 16(2)}Al{sub 16}Si{sub 24}O{sub 80}{center_dot}14.1(9)H{sub 2}O and (NH{sub 4}){sub 5.1(1)}K{sub 10.9(1)}Al{sub 16}Si{sub 24}O{sub 80}{center_dot}15.7(3)H{sub 2}O, are found to be larger than that the original sodium-natrolite by ca. 15.6%more » and 12.8%, respectively. Upon temperature increase, the fully NH{sub 4}-exchanged natrolite undergoes dehydration at ca. 150 C with ca. 16.4% contraction in the unit-cell volume. The dehydrated phase of the fully NH{sub 4}-exchanged natrolite exhibits marginal volume expansion up to 425 C and then becomes amorphized during temperature decrease and exposure to atmospheric condition. In the case of the partially NH{sub 4}-exchanged natrolite, the dehydration starts from ca. 175 C with {approx}15.1% volume contraction and leads to a partial phase separation to show a phase related to the dehydrated K-natrolite. The degree of the phase separation decreases with temperature increase up to 475 C, concomitant to the gradual volume contraction occurring in the partially NH{sub 4}-exchanged natrolite in the dehydrared state. Upon temperature decrease and exposure to atmospheric condition, only the dehydrated K-natrolite is recovered as a crystalline phase from the partially NH{sub 4}-exchanged natrolite. In the hydrated model of the fully NH{sub 4}-exchanged natrolite, the ammonium cations and water molecules are statistically distributed along the elliptical channels, similar to the disordered pattern observed in natrolites exchanged with larger alkali metal cations such as the K-, Rb-, and Cs-forms. The dehydrated model of the fully NH{sub 4}-exchanged natrolite at 400 C is essentially same as the one reported previously from the sample prepared by direct melt exchange method using sodium-natrolite. Both the hydrated and dehydrated structures of the partially NH{sub 4}-exchanged natrolite at RT and at 400 C, respectively, are characterized by having two separate sites for the ammonium and potassium cations. Comparing the structural models of the monovalent cation forms studied so far, we find that the rotation angle of the natrolite chain is inversely proportional to the cation radius both in the hydrated and dehydrated phases. The distribution pattern of the non-framework species along the natrolite channel also seems to be related to the non-framework cation radius and hence to the chain rotation angle.« less

  12. Insights on the stilbenes in Raboso Piave grape (Vitis vinifera L.) as a consequence of postharvest vs on-vine dehydration.

    PubMed

    Brillante, Luca; De Rosso, Mirko; Dalla Vedova, Antonio; Maoz, Itay; Flamini, Riccardo; Tomasi, Diego

    2018-03-01

    Grape withering is a process used to produce reinforced wines and raisins. Dehydration is usually carried out postharvest by keeping ripe grapes in special warehouses in controlled conditions of temperature, relative humidity (RH) and air flow. Alternatively, grape clusters can be left on the vines after the canes have been pruned. In general, dehydration increases stilbenes in grape, but there are few studies on the effects of on-vine withering. The stilbene profiles of Raboso Piave grape during postharvest and on-vine dehydration were studied here. High-resolution mass spectrometry (MS) was used to identify 19 stilbenes, including resveratrol monomers, dimers (viniferins), oligomers and glucoside derivatives. The two dehydration methods generally had different effects on the above nutraceuticals in grape. The samples kept in warehouses revealed significant increases in Z-ω-viniferin, E-ϵ-viniferin, δ-viniferin and another resveratrol dimer which were not observed in the plants. Trans-Resveratrol increased significantly only in samples dehydrated in the warehouse at 21 °C and 60-70% RH. The findings increase knowledge of stilbene composition in grapes subjected to withering on-vine. The choice of dehydration method affects the contents of these nutraceuticals in the grape and consequently in wines. Reasonably, it could also affect other secondary metabolites important for wine quality. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Determination of the Ability to Measure Traces of Water in Dehydrated Residues of Waste Water by IR Diffuse Reflectance Spectra

    NASA Astrophysics Data System (ADS)

    Pratsenka, S. V.; Voropai, E. S.; Belkin, V. G.

    2018-01-01

    Rapid measurement of the moisture content of dehydrated residues is a critical problem, the solution of which will increase the efficiency of treatment facilities and optimize the process of applying flocculants. The ability to determine the moisture content of dehydrated residues using a meter operating on the IR reflectance principle was confirmed experimentally. The most suitable interference filters were selected based on an analysis of the obtained diffuse reflectance spectrum of the dehydrated residue in the range 1.0-2.7 μm. Calibration curves were constructed and compared for each filter set. A measuring filter with a transmittance maximum at 1.19 μm and a reference filter with a maximum at 1.3 μm gave the best agreement with the laboratory measurements.

  14. Calculation and affection of pH value of different desulfurization and dehydration rates in the filling station based on Aspen Plus

    NASA Astrophysics Data System (ADS)

    Lv, J. X.; Wang, B. F.; Nie, L. H.; Xu, R. R.; Zhou, J. Y.; Hao, Y. J.

    2018-01-01

    The simulation process of the whole CNG filling station are established using Aspen Plus V7.2. The separator (Sep) was used to simulate the desulfurization and dehydration equipment in the gas station, and the flash module separator Flash 2 was used to simulate the gas storage well with proper temperature and environmental pressure. Furthermore, the sensitivity module was used to analyse the behaviour of the dehydration and desulfurization rate, and the residual pH value of the gas storage wells was between 2.2 and 3.3. The results indicated that the effect of water content on pH value is higher than that of hydrogen sulphide in the environment of gas storage wells, and the calculation process of the pH value is feasible. Additionally, the simulation process provides basic data for the subsequent anticorrosive mechanism and work of gas storage well and has great potential for practical applications.

  15. Terahertz spectroscopic investigation of gallic acid and its monohydrate

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Li, Shaoping; Wang, Chenyang; Zou, Tao; Pan, Tingting; Zhang, Jianbing; Xu, Zhou; Ren, Guanhua; Zhao, Hongwei

    2018-02-01

    The low-frequency spectra of gallic acid (GA) and its monohydrate were investigated by terahertz time-domain spectroscopy (THz-TDS) in the range of 0.5 to 4.5 THz. The dehydration process of GA monohydrate was monitored on-line. The kinetic mechanism of the dehydration process was analyzed depending on the THz spectral change at different temperatures. The results indicate that the diffusion of water molecule dominates the speed of the entire dehydration process. Solid-state density functional theory (DFT) calculations of the vibrational modes of both GA and its monohydrate were performed based on their crystalline structures for better interpreting the experimental THz spectra. The results demonstrate that the characterized features of GA mainly originate from the collective vibrations of molecules. And the interactions between GA and water molecules are responsible for THz fingerprint of GA monohydrate. Multi-techniques including differential scanning calorimetry and thermogravimetry (DSC-TG) and powder X-ray diffraction (PXRD) were also carried out to further investigate GA and its monohydrate.

  16. Spectroscopic Analysis of Desiccation-Induced Alterations of the Chlorophyllide Transformation Pathway in Etiolated Barley Leaves1

    PubMed Central

    Le Lay, Pascaline; Böddi, Béla; Kovacevic, Dragan; Juneau, Philippe; Dewez, David; Popovic, Radovan

    2001-01-01

    Effects of water deficit on the chlorophyllide (Chlide) transformation pathway were studied in etiolated barley (Hordeum vulgare) leaves by analyzing absorption spectra and 77-K fluorescence spectra deconvoluted in components. Chlide transformations were examined in dehydrated leaves exposed to a 35-ms saturating flash triggering protochlorophyllide (Pchlide) and Chlide transformation processes. During the 90 min following the flash, we found that dehydration induced modifications of Chlide transformations, but no effect on Pchlide phototransformation into Chlide was observed. During this time, content of NADPH-Pchlide oxydoreductase in leaves did not change. Chlide transformation process in dehydrated leaves was characterized by the alteration of the Shibata shift process, by the appearance of a new Chlide species emitting at 692 nm, and by the favored formation of Chl(ide) A668F676. The formation of Chl(ide) A668F676, so-called “free Chlide,” was probably induced by disaggregation of highly aggregated Chlide complexes. Here, we offer evidence for the alteration of photoactive Pchlide regeneration process, which may be caused by the desiccation-induced inhibition of Pchlide synthesis. PMID:11553748

  17. Dehydration-induced endodormancy in crown buds of leafy spurge highlights involvement of MAF3- and RVE1-like homologs, and hormone signaling cross-talk.

    PubMed

    Doğramacı, Münevver; Horvath, David P; Anderson, James V

    2014-11-01

    Vegetative shoot growth from underground adventitious buds of leafy spurge is critical for survival of this invasive perennial weed after episodes of severe abiotic stress. To determine the impact that dehydration-stress has on molecular mechanisms associated with vegetative reproduction of leafy spurge, greenhouse plants were exposed to mild- (3-day), intermediate- (7-day), severe- (14-day) and extended- (21-day) dehydration treatments. Aerial tissues of treated plants were then decapitated and soil was rehydrated to determine the growth potential of underground adventitious buds. Compared to well-watered plants, mild-dehydration accelerated new vegetative shoot growth, whereas intermediate- through extended-dehydration treatments both delayed and reduced shoot growth. Results of vegetative regrowth further confirmed that 14 days of dehydration induced a full-state of endodormancy in crown buds, which was correlated with a significant (P < 0.05) change in abundance of 2,124 transcripts. Sub-network enrichment analyses of transcriptome data obtained from the various levels of dehydration treatment also identified central hubs of over-represented genes involved in processes such as hormone signaling (i.e., ABA, auxin, ethylene, GA, and JA), response to abiotic stress (DREB1A/2A, RD22) and light (PIF3), phosphorylation (MPK4/6), circadian regulation (CRY2, PHYA), and flowering (AGL20, AP2, FLC). Further, results from this and previous studies highlight homologs most similar to Arabidopsis HY5, MAF3, RVE1 and RD22 as potential molecular markers for endodormancy in crown buds of leafy spurge. Early response to mild dehydration also highlighted involvement of upstream ethylene and JA-signaling, whereas severe dehydration impacted ABA-signaling. The identification of conserved ABRE- and MYC-consensus, cis-acting elements in the promoter of leafy spurge genomic clones similar to Arabidopsis RVE1 (AT5G17300) implicates a potential role for ABA-signaling in its dehydration-induced expression. Response of these molecular mechanisms to dehydration-stress provides insights on the ability of invasive perennial weeds to adapt and survive under harsh environments, which will be beneficial for addressing future management practices.

  18. Linking Serpentinite Geochemistry with Possible Alteration and Evolution of Supra-Subduction Wedge Mantle

    NASA Astrophysics Data System (ADS)

    Scambelluri, M.; Cannaò, E.; Agostini, S.; Gilio, M.

    2016-12-01

    Serpentinites are able to transport and release volatiles and fluid-mobile elements (FME) found in arc magmas. Constraining the trace element compositions of these rocks and of fluids released by de-serpentinization improves our knowledge of mass transfer from subduction zones to volcanic arcs, and of the role of slab and wedge mantle in this global process. Studies of high-pressure ultramafic rocks exhumed from plate interface settings reveal the fluid/rock interactions atop the slab and the processes that can affect the mantle wedge. Alpine eclogite-facies antigorite serpentinite (Voltri Massif) and fully de-serpentinized meta-peridotite (Cima di Gagnone) are enriched in sediment-derived As, Sb, U, Pb before peak dehydration. Their Sr, Pb and B isotopic compositions are reset during prograde (forearc) interaction with slab fluids. The eclogitic garnet and olivine from the Cima di Gagnone metaperidotite trap primary inclusions of the fluid released during breakdown of antigorite and chlorite. The inclusions display FME enrichments (high Cl, S; variable Cs, Rb, Ba, B, Pb, As, Sb) indicating element release from rocks to fluids during dehydration under subarc conditions. Our studies show that serpentinized mantle rocks from subduction zones sequester FME from slab fluids and convey these components and radiogenic isotopes into the mantle wedge upon dehydration. The geochemical processes revealed by such plate-interface rocks can apply to the supra-subduction mantle. Shallow element release from slabs to mantle wedge, downdrag of this altered mantle and its subsequent (subarc) dehydration transfers crust-derived FMEs to the arc magma sources without the need of concomitant subarc dehydration/melting of metasedimentary slab components. The slab signature detected in arc lavas can thus result from geochemical mixing of sediment, oceanic crust and ultramafic reservoirs into altered wedge-mantle rocks, rather than being attributed to multiple fluids.

  19. Addition polymers from 1,4,5,8-tetrahydro-1,4;5,8-diepoxyanthracene and Bis-dienes: Processable resins for high temperature application

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B.

    1987-01-01

    1,4,5,8-Tetrahydro-1,4;5,8-diepoxyanthracene reacts with various anthracene endcapped polyimide oligomers to form Diels-Alder cycloaddition copolymers. The polymers are soluble in common organic solvents, and have molecular weights of approximately 21,000 to 32,000. Interestingly, these resins appear to be more stable in air then in nitrogen. This is shown to be due to a unique dehydration (loss of water ranges from 2 to 5 percent) at temperatures of 390 to 400 C to give thermo-oxidatively stable pentiptycene units along the polymer backbone. Because of their high softening points and good thermo-oxidative stability, the polymers have potential as processible, matrix resins for high temperature composite applications.

  20. Fluid Bed Dehydration of Magnesium Chloride

    NASA Astrophysics Data System (ADS)

    Adham, K.; Lee, C.; O'Keefe, K.

    Molten salt electrolysis of MgCl2 is commonly used for the production of magnesium metal. However, the electrolysis feed must be completely dry with minimum oxygen content. Therefore, complete dehydration of the MgCl2 brine or the hydrated prill is a required process, which is very challenging because of the ease of thermal degradation due to hydrolysis of magnesium chloride.

  1. Exploring the role of genome and structural ions in preventing viral capsid collapse during dehydration

    NASA Astrophysics Data System (ADS)

    Martín-González, Natalia; Guérin Darvas, Sofía M.; Durana, Aritz; Marti, Gerardo A.; Guérin, Diego M. A.; de Pablo, Pedro J.

    2018-03-01

    Even though viruses evolve mainly in liquid milieu, their horizontal transmission routes often include episodes of dry environment. Along their life cycle, some insect viruses, such as viruses from the Dicistroviridae family, withstand dehydrated conditions with presently unknown consequences to their structural stability. Here, we use atomic force microscopy to monitor the structural changes of viral particles of Triatoma virus (TrV) after desiccation. Our results demonstrate that TrV capsids preserve their genome inside, conserving their height after exposure to dehydrating conditions, which is in stark contrast with other viruses that expel their genome when desiccated. Moreover, empty capsids (without genome) resulted in collapsed particles after desiccation. We also explored the role of structural ions in the dehydration process of the virions (capsid containing genome) by chelating the accessible cations from the external solvent milieu. We observed that ion suppression helps to keep the virus height upon desiccation. Our results show that under drying conditions, the genome of TrV prevents the capsid from collapsing during dehydration, while the structural ions are responsible for promoting solvent exchange through the virion wall.

  2. Water circulation and global mantle dynamics: Insight from numerical modeling

    NASA Astrophysics Data System (ADS)

    Nakagawa, Takashi; Nakakuki, Tomoeki; Iwamori, Hikaru

    2015-05-01

    We investigate water circulation and its dynamical effects on global-scale mantle dynamics in numerical thermochemical mantle convection simulations. Both dehydration-hydration processes and dehydration melting are included. We also assume the rheological properties of hydrous minerals and density reduction caused by hydrous minerals. Heat transfer due to mantle convection seems to be enhanced more effectively than water cycling in the mantle convection system when reasonable water dependence of viscosity is assumed, due to effective slab dehydration at shallow depths. Water still affects significantly the global dynamics by weakening the near-surface oceanic crust and lithosphere, enhancing the activity of surface plate motion compared to dry mantle case. As a result, including hydrous minerals, the more viscous mantle is expected with several orders of magnitude compared to the dry mantle. The average water content in the whole mantle is regulated by the dehydration-hydration process. The large-scale thermochemical anomalies, as is observed in the deep mantle, is found when a large density contrast between basaltic material and ambient mantle is assumed (4-5%), comparable to mineral physics measurements. Through this study, the effects of hydrous minerals in mantle dynamics are very important for interpreting the observational constraints on mantle convection.

  3. Esterification of fermentation-derived acids via pervaporation

    DOEpatents

    Datta, R.; Tsai, S.P.

    1998-03-03

    A low temperature method for esterifying ammonium- and amine-containing salts is provided whereby the salt is reacted with an alcohol in the presence of heat and a catalyst and then subjected to a dehydration and deamination process using pervaporation. The invention also provides for a method for producing esters of fermentation derived, organic acid salt comprising first cleaving the salt into its cationic part and anionic part, mixing the anionic part with an alcohol to create a mixture; heating the mixture in the presence of a catalyst to create an ester; dehydrating the now heated mixture; and separating the ester from the now-dehydrated mixture. 2 figs.

  4. Esterification of fermentation-derived acids via pervaporation

    DOEpatents

    Datta, Rathin; Tsai, Shih-Perng

    1998-01-01

    A low temperature method for esterifying ammonium- and amine-containing salts is provided whereby the salt is reacted with an alcohol in the presence of heat and a catalyst and then subjected to a dehydration and deamination process using pervaporation. The invention also provides for a method for producing esters of fermentation derived, organic acid salt comprising first cleaving the salt into its cationic part and anionic part, mixing the anionic part with an alcohol to create a mixture; heating the mixture in the presence of a catalyst to create an ester; dehydrating the now heated mixture; and separating the ester from the now-dehydrated mixture.

  5. Kinetics of volatile extraction from carbonaceous chondrites: Dehydration of talc

    NASA Technical Reports Server (NTRS)

    Bose, Kunal; Ganguly, Jibamitra

    1991-01-01

    Carbonaceous chondrites are believed to be the primary constituents of near-Earth asteroids and Phobos and Deimos, and are potential resources of fuels that may be exploited for future planetary missions. Calculations of equilibrium phase relations suggest that talc (Ta) and antigorite (Ant) are likely to be the major hydrous phases in the C1 and C2 meteorites (Ganguly and Saxena, 1989), which constitute the most volatile rich classes of carbonaceous chondrites. The dehydration kinetics of talc are studied as a function of temperature, grain size, composition and fluid fugacity, as part of a systematic study of the reaction kinetics of the volatile bearing phases that are either known or likely to be present in carbonaceous chondrites. The dehydration kinetics were investigated at 1 bar, 775 to 875 C by monitoring the in-situ weight loss as a function of time of a natural talc. The talc platelets had a dimension of 0.8 to 1 micron. The run durations varied from 233.3 hours at 775 C (48 percent dehydration) to 20.8 hours at 875 C (80 pct. dehydration). The results can be adequately represented by a given rate equation. Theoretical analysis suggests that the reduction in the concentration of H2O in the environment of dehydrating talc, as would be encountered in processing chondritic materials, will have negligible effect on the rate of dehydration, unless there is a change of reaction mechanism owing to the presence of other volatile species.

  6. Dehydration kinetics of talc and 10 Å phase: Consequences for subduction zone seismicity

    NASA Astrophysics Data System (ADS)

    Chollet, Mélanie; Daniel, Isabelle; Koga, Kenneth T.; Petitgirard, Sylvain; Morard, Guillaume

    2009-06-01

    The process of dehydration embrittlement is usually proposed as an explanation for the presence of intermediate-depth earthquakes in subduction zones. It assumes that the release of water by hydrous mineral breakdown is fast enough to provoke brittle failure. We performed high-pressure, high-temperature, dehydration experiments of talc and 10 Å phase coupled with in situ measurement of reaction kinetics using synchrotron X-ray diffraction. Newly developed, X-ray transparent, pressure-sealed, titanium capsule ensured a closed thermochemical environment. From isothermal kinetics data fitted to the Avrami's equation and from the texture of reaction products, we conclude that dehydration rates of these minerals are limited by diffusion. Predicted minimum rates of fluid release range from 10 - 4 to 9 × 10 - 6 m 3fluid m - 3 rock s - 1 , and are fast enough to provoke hydraulic rupture since Maxwell relaxation rate of rocks relevant of subduction zones are slower than the rate of fluid release. These rates are comparable between talc, 10 Å phase and antigorite also [Perrillat, J.-P., Daniel, I., Koga, K.T., Reynard, B., Cardon, H., Crichton, W.A., 2005. Kinetics of antigorite dehydration: a real-time X-ray diffraction study. Earth Planet. Sci. Lett. 236, 899-913]. Consequently, we suggest that the dehydration of hydrous minerals may eventually be fast enough to trigger the intermediate-depth earthquakes, and that the deepest among intermediate-depth earthquakes may actually locate the limits for dehydration of hydrous minerals in the downgoing lithosphere.

  7. Functional and technological potential of dehydrated Phaseolus vulgaris L. flours.

    PubMed

    Ramírez-Jiménez, A K; Reynoso-Camacho, R; Mendoza-Díaz, S; Loarca-Piña, G

    2014-10-15

    The effect of cooking followed by dehydration was evaluated on the bioactive composition, antioxidant activity and technological properties of two varieties (Negro 8025 and Bayo Madero) of common beans. Quercetin, rutin, and phenolic acids were the most abundant phenolics found. Cooking processes resulted in decreased values of some phenolic compounds and antioxidant capacity. A subsequent dehydration increased TEAC values, resistant starch content and decreased starch digestibility. Oligosaccharides and dietary fibre were preserved in both treatments. Variety had a strong impact on phytochemical profile, being Negro 8025 that exhibited the highest content of most of the compounds assessed. Water absorption index (WAI) and oil absorption capacity (OAC) were determined in order to measure technological suitability. Dehydration produced flours with stable WAI and low oil pick up. The results suggest that the flours of Negro 8025 beans have a good potential to be considered as functional ingredient for healthy food products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Presence and dehydration of ikaite, calcium carbonate hexahydrate, in frozen shrimp shell.

    PubMed

    Mikkelsen, A; Andersen, A B; Engelsen, S B; Hansen, H C; Larsen, O; Skibsted, L H

    1999-03-01

    Ikaite, calcium carbonate hexahydrate, has by means of X-ray diffraction analyses of frozen samples been identified as the mineral component of the white spots formed in the shell of frozen shrimp during storage. When the shrimp thaw and the shell material is dried and kept at room temperature, ikaite rapidly transforms into a mixture of anhydrous calcium carbonate forms. X-ray diffraction analyses and Raman spectra of synthetic ikaite as well as the dehydration product confirm the assignments, and the rate constant for dehydration is approximately 7 x 10(-)(4) s(-)(1) at ambient temperature. Differential scanning calorimetry showed that dehydration of synthetic ikaite is an entropy-driven, athermal process and confirms that a single first-order reaction is rate-determining. Ikaite is found to be stable in aqueous solution at temperatures below 5 degrees C and in the shell of frozen shrimps but decomposes on thawing to form anhydrous calcium carbonates.

  9. Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate. Chapter 4 - Water

    DTIC Science & Technology

    2005-01-01

    Effects on Maximal Aerobic Power and Physical Work Capacity Study Subjects Environmenta Dehydration Process Buskirk et al., 1958 13 men 83°C (115°F) Heat...Subjects Dehydration Process Tuttle, 1943 13 Exercise and heat Ahlman and Karvonen, 1961 32 men Sauna or exercise Saltin, 1964 10 men Heat and... decaffeinated (16 oz) 5 472 Total for meal 539 662 Snack Almonds, dry roasted, unsalted 206 1 (1⁄4 cup) Raisins (1⁄4 cup) 108 6 Milk, 1% (8 oz) 102 219 Water

  10. Stability of Mg-sulfates at-10C and the rates of dehydration/rehydration processes under conditions relevant to Mars

    USGS Publications Warehouse

    Wang, A.; Freeman, J.J.; Chou, I.-Ming; Jolliff, B.L.

    2011-01-01

    We report the results of low temperature (-10??C) experiments on the stability fields and phase transition pathways of five hydrous Mg-sulfates. A low temperature form of MgSO 47H 2O (LT-7w) was found to have a wide stability field that extends to low relative humidity (???13% RH at-10??C). Using information on the timing of phase transitions, we extracted information on the reaction rates of five important dehydration and rehydration processes. We found that the temperature dependencies of rate constants for dehydration processes differ from those of rehydration, which reflect differences in reaction mechanisms. By extrapolating these rate constants versus T correlations into the T range relevant to Mars, we can evaluate the possibility of occurrence of specific processes and the presence of common Mg-sulfate species present on Mars in different periods and locations. We anticipate in a moderate obliquity period, starkeyite and LH-MgSO 4H 2O should be two common Mg-sulfates at the surface, another polymorph MH-MgSO 4H 2O can exist at the locations where hydrothermal processes may have occurred. In polar regions or within the subsurface of other regions, meridianiite (coexisting with water ice, near 100% RH) and LT-7w (over a large RH range) are the stable phases. During a high obliquity period, meridianiite and LT-7w should exhibit widespread occurrence. The correlations of reaction rates versus temperature found in this study imply that dehydration and rehydration of hydrous Mg-sulfates would always be slower than the sublimation and crystallization of water ice, which would be supported by mission observations from Odyssey and by Mars Exploration Rovers. Copyright 2011 by the American Geophysical Union.

  11. Prevention of hypernatraemic dehydration in breastfed newborn infants by daily weighing.

    PubMed

    Konetzny, Gabriel; Bucher, Hans Ulrich; Arlettaz, Romaine

    2009-07-01

    Hypernatraemic dehydration, which predominantly appears in breastfed neonates, can cause serious complications, such as convulsions, permanent brain damage and death, if recognised late. Weight loss > or = 10% of birth weight could be an early indicator for this condition. In this prospective cohort study from October 2003 to June 2005 in the postnatal ward of the University Hospital Zurich, Switzerland, all term newborns with birth weight > or = 2,500 g were weighed daily until discharge. When the weight loss was > or = 10% of birth weight, serum sodium was measured from a heel prick. Infants with moderate hypernatraemia (serum sodium = 146-149 mmol/l) were fed supplementary formula milk or maltodextrose 10%. Infants with severe hypernatraemia (serum sodium > or = 150 mmol/l) were admitted to the neonatal unit and treated in the same way, with or without intravenous fluids, depending on the severity of the clinical signs of dehydration. A total of 2,788 breastfed healthy term newborns were enrolled. Sixty-seven (2.4%) newborns had a weight loss > or = 10% of birth weight; 24 (36%) of these had moderate and 18 (27%) severe hypernatraemia. Infants born by caesarean section had a 3.4 times higher risk for hypernatraemia than those born vaginally. All newborns regained weight 24 h after additional fluids. In our study, one out of 66 healthy exclusively breastfed term neonates developed hypernatraemic dehydration. Daily weight monitoring and supplemental fluids in the presence of weight loss > or = 10% of birth weight allows early detection and intervention, thereby preventing the severe sequellae of hypernatraemic dehydration.

  12. Dehydration treatment practices among pediatrics-trained and non-pediatrics trained emergency physicians.

    PubMed

    Nunez, Jeranil; Liu, Deborah R; Nager, Alan L

    2012-04-01

    We sought to survey emergency physicians in the United States regarding the management of pediatric dehydration secondary to acute gastroenteritis. We hypothesized that responses from physicians with dedicated pediatric training (PT), that is, board certification in pediatrics or pediatric emergency medicine, would differ from responses of physicians with no dedicated pediatric training (non-PT). An anonymous survey was mailed to randomly selected members of the American College of Emergency Physicians and sent electronically to enrollees of Brown University pediatric emergency medicine listserv. The survey consisted of 17 multiple-choice questions based on a clinical scenario depicting a 2-year-old with acute gastroenteritis and moderate dehydration. Questions asked related to treatment preferences, practice setting, and training information. One thousand sixty-nine surveys were received: 997 surveys were used for data analysis, including 269 PT physicians and 721 non-PT physicians. Seventy-nine percent of PT physicians correctly classified the scenario patient as moderately dehydrated versus 71% of non-PT physicians (P = 0.063). Among those who correctly classified the patient, 121 PT physicians (58%) and 350 non-PT physicians (68%) would initially hydrate the patient with intravenous fluids. Pediatrics-trained physicians were more likely to initially choose oral or nasogastric hydration compared with non-PT physicians (P = 0.0127). Pediatrics-trained physicians were less likely to perform laboratory testing compared with the non-PT group (n = 92, 45%, vs n = 337, 66%; P < 0.0001). Contrary to established recommendations for the management of moderately dehydrated children, significantly more PT physicians, compared with non-PT physicians, follow established guidelines.

  13. Selective dehydration of bio-ethanol to ethylene catalyzed by lanthanum-phosphorous-modified HZSM-5: influence of the fusel.

    PubMed

    Hu, Yaochi; Zhan, Nina; Dou, Chang; Huang, He; Han, Yuwang; Yu, Dinghua; Hu, Yi

    2010-11-01

    Bio-ethanol dehydration to ethylene is an attractive alternative to oil-based ethylene. The influence of fusel, main byproducts in the fermentation process of bio-ethanol production, on the bio-ethanol dehydration should not be ignored. We studied the catalytic dehydration of bio-ethanol to ethylene over parent and modified HZSM-5 at 250°C, with weight hourly space velocity (WHSV) equal to 2.0/h. The influences of a series of fusel, such as isopropanol, isobutanol and isopentanol, on the ethanol dehydration over the catalysts were investigated. The 0.5%La-2%PHZSM-5 catalyst exhibited higher ethanol conversion (100%), ethylene selectivity (99%), and especially enhanced stability (more than 70 h) than the parent and other modified HZSM-5. We demonstrated that the introduction of lanthanum and phosphorous to HZSM-5 could weaken the negative influence of fusel on the formation of ethylene. The physicochemical properties of the catalysts were characterized by ammonia temperature-programmed desorption (NH(3)-TPD), nitrogen adsorption and thermogravimetry (TG)/differential thermogravimetry (DTG)/differential thermal analysis (DTA) (TG/DTG/DTA) techniques. The results indicated that the introduction of lanthanum and phosphorous to HZSM-5 could inhibit the formation of coking during the ethanol dehydration to ethylene in the presence of fusel. The development of an efficient catalyst is one of the key technologies for the industrialization of bio-ethylene.

  14. Age Decline in the Activity of the Ca2+-sensitive K+ Channel of Human Red Blood Cells

    PubMed Central

    Tiffert, Teresa; Daw, Nuala; Etzion, Zipora; Bookchin, Robert M.; Lew, Virgilio L.

    2007-01-01

    The Ca2+-sensitive K+ channel of human red blood cells (RBCs) (Gardos channel, hIK1, hSK4) was implicated in the progressive densification of RBCs during normal senescence and in the mechanism of sickle cell dehydration. Saturating RBC Ca2+ loads were shown before to induce rapid and homogeneous dehydration, suggesting that Gardos channel capacity was uniform among the RBCs, regardless of age. Using glycated hemoglobin as a reliable RBC age marker, we investigated the age–activity relation of Gardos channels by measuring the mean age of RBC subpopulations exceeding a set high density boundary during dehydration. When K+ permeabilization was induced with valinomycin, the oldest and densest cells, which started nearest to the set density boundary, crossed it first, reflecting conservation of the normal age–density distribution pattern during dehydration. However, when Ca2+ loads were used to induce maximal K+ fluxes via Gardos channels in all RBCs (F max), the youngest RBCs passed the boundary first, ahead of the older RBCs, indicating that Gardos channel F max was highest in those young RBCs, and that the previously observed appearance of uniform dehydration concealed a substantial degree of age scrambling during the dehydration process. Further analysis of the Gardos channel age–activity relation revealed a monotonic decline in F max with cell age, with a broad quasi-Gaussian F max distribution among the RBCs. PMID:17470662

  15. Age decline in the activity of the Ca2+-sensitive K+ channel of human red blood cells.

    PubMed

    Tiffert, Teresa; Daw, Nuala; Etzion, Zipora; Bookchin, Robert M; Lew, Virgilio L

    2007-05-01

    The Ca(2+)-sensitive K(+) channel of human red blood cells (RBCs) (Gardos channel, hIK1, hSK4) was implicated in the progressive densification of RBCs during normal senescence and in the mechanism of sickle cell dehydration. Saturating RBC Ca(2+) loads were shown before to induce rapid and homogeneous dehydration, suggesting that Gardos channel capacity was uniform among the RBCs, regardless of age. Using glycated hemoglobin as a reliable RBC age marker, we investigated the age-activity relation of Gardos channels by measuring the mean age of RBC subpopulations exceeding a set high density boundary during dehydration. When K(+) permeabilization was induced with valinomycin, the oldest and densest cells, which started nearest to the set density boundary, crossed it first, reflecting conservation of the normal age-density distribution pattern during dehydration. However, when Ca(2+) loads were used to induce maximal K(+) fluxes via Gardos channels in all RBCs (F(max)), the youngest RBCs passed the boundary first, ahead of the older RBCs, indicating that Gardos channel F(max) was highest in those young RBCs, and that the previously observed appearance of uniform dehydration concealed a substantial degree of age scrambling during the dehydration process. Further analysis of the Gardos channel age-activity relation revealed a monotonic decline in F(max) with cell age, with a broad quasi-Gaussian F(max) distribution among the RBCs.

  16. Hypertension despite dehydration during severe pediatric diabetic ketoacidosis.

    PubMed

    Deeter, Kristina H; Roberts, Joan S; Bradford, Heidi; Richards, Todd; Shaw, Dennis; Marro, Kenneth; Chiu, Harvey; Pihoker, Catherine; Lynn, Anne; Vavilala, Monica S

    2011-06-01

    Diabetic ketoacidosis (DKA) may result in both dehydration and cerebral edema but these processes may have opposing effects on blood pressure. We examined the relationship between dehydration and blood pressure in pediatric DKA. A retrospective review was performed at Seattle Children's Hospital, Seattle, WA. Participants were hospitalized children less than 18 yr. Intervention(s) or main exposure was to patients with DKA (venous pH < 7.3, glucose > 300 mg/dL, HCO(3) < 15 mEq/L, and urinary ketosis). Dehydration was calculated as percent body weight lost at admission compared to discharge. Hypertension (systolic and/or diastolic blood pressure (DBP) percentile > 95%) was defined based on National Heart, Lung, and Blood Institute (NHLBI, 2004) nomograms and hypotension was defined as systolic blood pressure (SBP) <70 + 2 [age]. Thirty-three patients (median 10.9 yr; range 10 months to 17 yr) were included. Fifty-eight percent of patients (19/33) had hypertension on admission before treatment and 82% had hypertension during the first 6 h of admission. None had admission hypotension. Hypertension 48 h after treatment and weeks after discharge was common (28 and 19%, respectively). Based on weight gained by discharge, 27% of patients had mild, 61% had moderate, and 12% presented with severe dehydration. Despite dehydration, most children admitted with severe DKA had hypertension. © 2011 John Wiley & Sons A/S.

  17. Heat stress and dehydration in adapting for performance: Good, bad, both, or neither?

    PubMed Central

    Akerman, Ashley Paul; Tipton, Michael; Minson, Christopher T.; Cotter, James David

    2016-01-01

    ABSTRACT Physiological systems respond acutely to stress to minimize homeostatic disturbance, and typically adapt to chronic stress to enhance tolerance to that or a related stressor. It is legitimate to ask whether dehydration is a valuable stressor in stimulating adaptation per se. While hypoxia has had long-standing interest by athletes and researchers as an ergogenic aid, heat and nutritional stressors have had little interest until the past decade. Heat and dehydration are highly interlinked in their causation and the physiological strain they induce, so their individual roles in adaptation are difficult to delineate. The effectiveness of heat acclimation as an ergogenic aid remains unclear for team sport and endurance athletes despite several recent studies on this topic. Very few studies have examined the potential ergogenic (or ergolytic) adaptations to ecologically-valid dehydration as a stressor in its own right, despite longstanding evidence of relevant fluid-regulatory adaptations from short-term hypohydration. Transient and self-limiting dehydration (e.g., as constrained by thirst), as with most forms of stress, might have a time and a place in physiological or behavioral adaptations independently or by exacerbating other stressors (esp. heat); it cannot be dismissed without the appropriate evidence. The present review did not identify such evidence. Future research should identify how the magnitude and timing of dehydration might augment or interfere with the adaptive processes in behaviorally constrained versus unconstrained humans. PMID:28349082

  18. Heat stress and dehydration in adapting for performance: Good, bad, both, or neither?

    PubMed

    Akerman, Ashley Paul; Tipton, Michael; Minson, Christopher T; Cotter, James David

    2016-01-01

    Physiological systems respond acutely to stress to minimize homeostatic disturbance, and typically adapt to chronic stress to enhance tolerance to that or a related stressor. It is legitimate to ask whether dehydration is a valuable stressor in stimulating adaptation per se . While hypoxia has had long-standing interest by athletes and researchers as an ergogenic aid, heat and nutritional stressors have had little interest until the past decade. Heat and dehydration are highly interlinked in their causation and the physiological strain they induce, so their individual roles in adaptation are difficult to delineate. The effectiveness of heat acclimation as an ergogenic aid remains unclear for team sport and endurance athletes despite several recent studies on this topic. Very few studies have examined the potential ergogenic (or ergolytic) adaptations to ecologically-valid dehydration as a stressor in its own right, despite longstanding evidence of relevant fluid-regulatory adaptations from short-term hypohydration. Transient and self-limiting dehydration (e.g., as constrained by thirst), as with most forms of stress, might have a time and a place in physiological or behavioral adaptations independently or by exacerbating other stressors (esp. heat); it cannot be dismissed without the appropriate evidence. The present review did not identify such evidence. Future research should identify how the magnitude and timing of dehydration might augment or interfere with the adaptive processes in behaviorally constrained versus unconstrained humans.

  19. Associations Between Dehydration, Cognitive Impairment, and Frailty in Older Hospitalized Patients: An Exploratory Study.

    PubMed

    McCrow, Judy; Morton, Margaret; Travers, Catherine; Harvey, Keren; Eeles, Eamonn

    2016-05-01

    HOW TO OBTAIN CONTACT HOURS BY READING THIS ARTICLE INSTRUCTIONS 1.2 contact hours will be awarded by Villanova University College of Nursing upon successful completion of this activity. A contact hour is a unit of measurement that denotes 60 minutes of an organized learning activity. This is a learner-based activity. Villanova University College of Nursing does not require submission of your answers to the quiz. A contact hour certificate will be awarded once you register, pay the registration fee, and complete the evaluation form online at http://goo.gl/gMfXaf. To obtain contact hours you must: 1. Read the article, "Associations Between Dehydration, Cognitive Impairment, and Frailty in Older Hospitalized Patients: An Exploratory Study" found on pages 19-27, carefully noting any tables and other illustrative materials that are included to enhance your knowledge and understanding of the content. Be sure to keep track of the amount of time (number of minutes) you spend reading the article and completing the quiz. 2. Read and answer each question on the quiz. After completing all of the questions, compare your answers to those provided within this issue. If you have incorrect answers, return to the article for further study. 3. Go to the Villanova website listed above to register for contact hour credit. You will be asked to provide your name; contact information; and a VISA, MasterCard, or Discover card number for payment of the $20.00 fee. Once you complete the online evaluation, a certificate will be automatically generated. This activity is valid for continuing education credit until April 30, 2019. CONTACT HOURS This activity is co-provided by Villanova University College of Nursing and SLACK Incorporated. Villanova University College of Nursing is accredited as a provider of continuing nursing education by the American Nurses Credentialing Center's Commission on Accreditation. ACTIVITY OBJECTIVES 1. Describe the incidence of dehydration in older hospitalized patients. 2. Identify risk and management strategies related to dehydration in older hospitalized patients. DISCLOSURE STATEMENT Neither the planners nor the author have any conflicts of interest to disclose. The current exploratory study (a) assessed the prevalence of dehydration in older adults (age ≤60 years) with and without cognitive impairment (CI) admitted to the hospital; and (b) examined associations between dehydration, CI, and frailty. Forty-four patients participated and dehydration was assessed within 24 hours of admission and at Day 4 or discharge (whichever occurred first). Patients' cognitive function and frailty statuses were assessed using validated instruments. Twenty-seven (61%) patients had CI and 61% were frail. Prevalence of dehydration at admission was 29% (n = 12) and 19% (n = 6) at study exit, and dehydration status did not differ according to CI or frailty status. However, within the non-CI group, significantly more frail than fit patients were dehydrated at admission (p = 0.03). Findings indicate dehydration is common among older hospitalized patients and that frailty may increase the risk for dehydration in cognitively intact older adults. [Journal of Gerontological Nursing, 42(5), 19-27.]. Copyright 2016, SLACK Incorporated.

  20. Spectral and stratigraphic mapping of hydrated minerals associated with interior layered deposits near the southern wall of Melas Chasma, Mars

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Goudge, Timothy A.; Catalano, Jeffrey G.; Wang, Alian

    2018-03-01

    Orbital remote sensing data acquired from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) onboard Mars Reconnaissance Orbiter (MRO), in conjunction with other datasets, are used to perform detailed spectral and stratigraphic analyses over a portion of south Melas Chasma, Mars. The Discrete Ordinate Radiative Transfer (DISORT) model is used to retrieve atmospherically corrected single scattering albedos from CRISM I/F data for mineral identification. A sequence of interbedded poly- and monohydrated sulfates associated with interior layered deposits (ILDs) is identified and mapped. Analyses from laboratory experiments and spectral unmixing of CRISM hyperspectral data support the hypothesis of precipitation and dehydration of multiple inputs of complex Mg-Ca-Fe-SO4-Cl brines. In this scenario, the early precipitated Mg sulfates could dehydrate into monohydrated sulfate due to catalytic effects, and the later-precipitated Mg sulfates from the late-stage "clean" brine could terminate their dehydration at mid-degree of hydration to form a polyhydrated sulfate layer due to depletion of the catalytic species (e.g., Ca, Fe, and Cl). Distinct jarosite-bearing units are identified stratigraphically above the hydrated sulfate deposits. These are hypothesized to have formed either by oxidation of a fluid containing Fe(II) and SO4, or by leaching of soluble phases from precursor intermixed jarosite-Mg sulfate units that may have formed during the later stages of deposition of the hydrated sulfate sequence. Results from stratigraphic analysis of the ILDs show that the layers have a consistent northward dip towards the interior of the Melas Chasma basin, a mean dip angle of ∼6°, and neighboring strata that are approximately parallel. These strata are interpreted as initially sub-horizontal layers of a subaqueous, sedimentary evaporite deposits that underwent post-depositional tilting from slumping into the Melas Chasma basin. The interbedded hydrated sulfate units and jarosite-bearing units, which have distinct stratigraphic relationships, are indicative of a complex sedimentary and aqueous history in south Melas Chasma.

  1. Disclosing the Molecular Basis of the Postharvest Life of Berry in Different Grapevine Genotypes1

    PubMed Central

    Fasoli, Marianna; Amato, Alessandra; Anesi, Andrea; Ceoldo, Stefania; Avesani, Linda; Pezzotti, Mario

    2016-01-01

    The molecular events that characterize postripening grapevine berries have rarely been investigated and are poorly defined. In particular, a detailed definition of changes occurring during the postharvest dehydration, a process undertaken to make some particularly special wine styles, would be of great interest for both winemakers and plant biologists. We report an exhaustive survey of transcriptomic and metabolomic responses in berries representing six grapevine genotypes subjected to postharvest dehydration under identical controlled conditions. The modulation of phenylpropanoid metabolism clearly distinguished the behavior of genotypes, with stilbene accumulation as the major metabolic event, although the transient accumulation/depletion of anthocyanins and flavonols was the prevalent variation in genotypes that do not accumulate stilbenes. The modulation of genes related to phenylpropanoid/stilbene metabolism highlighted the distinct metabolomic plasticity of genotypes, allowing for the identification of candidate structural and regulatory genes. In addition to genotype-specific responses, a core set of genes was consistently modulated in all genotypes, representing the common features of berries undergoing dehydration and/or commencing senescence. This included genes controlling ethylene and auxin metabolism as well as genes involved in oxidative and osmotic stress, defense responses, anaerobic respiration, and cell wall and carbohydrate metabolism. Several transcription factors were identified that may control these shared processes in the postharvest berry. Changes representing both common and genotype-specific responses to postharvest conditions shed light on the cellular processes taking place in harvested berries stored under dehydrating conditions for several months. PMID:27670818

  2. Enhancement of mass transfer by ultrasound: Application to adsorbent regeneration and food drying/dehydration.

    PubMed

    Yao, Ye

    2016-07-01

    The physical mechanisms of heat and mass transfer enhancement by ultrasound have been identified by people. Basically, the effect of 'cavitation' induced by ultrasound is the main reason for the enhancement of heat and mass transfer in a liquid environment, and the acoustic streaming and vibration are the main reasons for that in a gaseous environment. The adsorbent regeneration and food drying/dehydration are typical heat and mass transfer process, and the intensification of the two processes by ultrasound is of complete feasibility. This paper makes an overview on recent studies regarding applications of power ultrasound to adsorbent regeneration and food drying/dehydration. The concerned adsorbents include desiccant materials (typically like silica gel) for air dehumidification and other ones (typically active carbon and polymeric resin) for water treatment. The applications of ultrasound in the regeneration of these adsorbents have been proved to be energy saving. The concerned foods are mostly fruits and vegetables. Although the ultrasonic treatment may cause food degradation or nutrient loss, it can greatly reduce the food processing time and decrease drying temperature. From the literature, it can be seen that the ultrasonic conditions (i.e., acoustic frequency and power levels) are always focused on during the study of ultrasonic applications. The increasing number of relevant studies argues that ultrasound is a very promising technology applied to the adsorbent regeneration and food drying/dehydration. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. LASER BIOLOGY: Optomechanical tests of hydrated biological tissues subjected to laser shaping

    NASA Astrophysics Data System (ADS)

    Omel'chenko, A. I.; Sobol', E. N.

    2008-03-01

    The mechanical properties of a matrix are studied upon changing the size and shape of biological tissues during dehydration caused by weak laser-induced heating. The cartilage deformation, dehydration dynamics, and hydraulic conductivity are measured upon laser heating. The hydrated state and the shape of samples of separated fascias and cartilaginous tissues were controlled by using computer-aided processing of tissue images in polarised light.

  4. An Evaluation of Foods Processed in Tray Pack Versus Two Standard Food Service Containers. Part 2. Nutritional Analyses

    DTIC Science & Technology

    1986-02-01

    glumate Salt Tomatoes, whole Tomato paste, 26% solids Starch* Flour Dehydrated onion pieces, rehydrated Sugar , white Cinnamon Stock...Margarine Hydrolyzed vegetable protein, Nestles 4BE Starch* Vinegar, cider, 40 grain Salt Monosodium glutamate Sugar , white Celery seed, ground...peppers Tomato paste, 26% solids Brown sugar Starch* Dehydrated onion pieces, rehydrated Cider vinegar, 40 grain Salt Monosodium glutamate Liquid

  5. "My child can't keep anything down!" Interviewing parents who bring their preschoolers to the emergency department for diarrhea, vomiting, and dehydration.

    PubMed

    Graham, Jennifer M; Fitzpatrick, Eleanor A; Black, Karen J L

    2010-04-01

    Viral gastroenteritis with dehydration is one of the most frequent reasons for visits to pediatric emergency departments (ED). Parental intervention before presentation to the ED can make a significant difference in the course of a child's illness. There is a discrepancy between medical knowledge of dehydration and parental fears and understanding. This project is part of a larger program of research developing an educational tool for parents of preschoolers with diarrhea, vomiting, and dehydration. The primary objective was to develop an interview guide. From initial data, the researchers explored parental motivations for bringing their children to the ED. Ten families were recruited after their visit to a pediatric ED in the fall of 2007. Included were families of children younger than 4 years who experienced vomiting, diarrhea, and dehydration. Interviews were conducted over the telephone and were transcribed. The interview guide was edited in an iterative process. Thematic analysis focused on parents' decision to take their child to the ED. Making the decision to take a child to the ED is a complex process for parents. This decision involves expectations developed from community-level, family-level, and child factors. Issues of access to care affect parents' decision, including perceived level of urgency, travel time, and modes of transport available. A framework is proposed, which outlines the most important factors our sample of parents reported when deciding whether to take their ill child to the ED. The interview guide developed will facilitate collection of further information.

  6. An Efficient, Solvent-Free Process for Synthesizing Anhydrous MgCl 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motkuri, Radha K.; Vemuri, Venkata Rama S.; Barpaga, Dushyant

    A new efficient and solvent-free method for the synthesis of anhydrous MgCl2 from its hexahydrate is proposed. Fluidized dehydration of MgCl 2·6H 2O feedstock at 200 °C in a porous bed reactor yields MgCl2·nH2O (0 < n < 1), which has a similar diffraction pattern as activated MgCl2. The MgCl 2·nH 2O is then ammoniated directly using liquefied NH 3 in the absence of solvent to form MgCl 2·6NH 3. Calcination of the hexammoniate complex at 300 °C then yields anhydrous MgCl 2. Both dehydration and deammoniation were thoroughly studied using in situ as well as ex situ characterization techniques.more » Specifically, a detailed understanding of the dehydration process was monitored by in situ PXRD and in situ FTIR techniques where formation of salt with nH 2O (n = 4, 2, 1, <1) was characterized. Given the reduction in thermal energy required to produce dehydrated feedstock with this method compared with current strategies, significant cost benefits are expected. Overall, the combined effect of activation, macroporosity, and coordinated water depletion allows the formation of hexammoniate without using solvent, thus minimizing waste formation.« less

  7. Determination of outer layer and bulk dehydration kinetics of trehalose dihydrate using atomic force microscopy, gravimetric vapour sorption and near infrared spectroscopy.

    PubMed

    Jones, Matthew D; Beezer, Anthony E; Buckton, Graham

    2008-10-01

    Knowledge of the kinetics of solid state reactions is important when considering the stability of many medicines. Potentially, such reactions could follow different kinetics on the surface of particles when compared with their interior, yet solid state processes are routinely followed using only bulk characterisation techniques. Atomic force microscopy (AFM) has previously been shown to be a suitable technique for the investigation of surface processes, but has not been combined with bulk techniques in order to analyse surface and bulk kinetics separately. This report therefore describes the investigation of the outer layer and bulk kinetics of the dehydration of trehalose dihydrate at ambient temperature and low humidity, using AFM, dynamic vapour sorption (DVS) and near infrared spectroscopy (NIR). The use of AFM enabled the dehydration kinetics of the outer layers to be determined both directly and from bulk data. There were no significant differences between the outer layer dehydration kinetics determined using these methods. AFM also enabled the bulk-only kinetics to be analysed from the DVS and NIR data. These results suggest that the combination of AFM and bulk characterisation techniques should enable a more complete understanding of the kinetics of certain solid state reactions to be achieved. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  8. Survival and genetic stability of Dendranthema grandiflora Tzvelev shoot apices after cryopreservation by vitrification and encapsulation-dehydration.

    PubMed

    Martín, Carmen; González-Benito, M Elena

    2005-12-01

    The aim of this study was to compare the genetic stability of chrysanthemum (cv. Pasodoble) apices cryopreserved using two different methods: encapsulation-dehydration and vitrification. The assessment of the genetic stability was developed using RAPDs markers. Assessment of stability was evaluated in pot-cultivated mother plants (from which buds were excised for micropropagation), in shoots (leave tissue) from which apices were extracted for cryopreservation, and in shoots regenerated from cryopreserved apices 30 days after recovery and after further 3 months in culture. Throughout the process the origin of the apices (in vitro-shoot from which they were excised) was recorded. Twenty one regenerants cryopreserved by vitrification and 25 by encapsulation-dehydration were assessed. Only one cryopreserved regenerant from the encapsulation-dehydration method showed a different band pattern. These results support the necessity of monitoring the genetic stability of the regenerants obtained after cryopreservation, as this is a very useful technique for the conservation of plant genetic resources.

  9. Effect of leaf dehydration duration and dehydration degree on PSII photochemical activity of papaya leaves.

    PubMed

    Liu, Meijun; Zhang, Zishan; Gao, Huiyuan; Yang, Cheng; Fan, Xingli; Cheng, Dandan

    2014-09-01

    Although the effect of dehydration on photosynthetic apparatus has been widely studied, the respective effect of dehydration duration and dehydration degree was neglected. This study showed that, when leaves dehydrated in air, the PSII activities of leaves decreased with the decline of leaf relative water content (RWC). Unexpectedly, when leaves dehydrated to same RWC, the decreases in Fv/Fm, Ψo and RC/CSm were lower in leaves dehydrating at 43 °C than those at 25 °C. However, to reach the same RWC, leaves dehydrating at 43 °C experienced 1/6 of the dehydration duration for leaves dehydrating at 25 °C. To distinguish the respective effect of dehydration degree and dehydration duration on photosynthetic apparatus, we studied the PSII activities of leaves treated with different concentration of PEG solutions. Increasing dehydration degree aggravated the decline of Fv/Fm, Ψo and RC/CSm in leaves with the same dehydration duration, while prolonging the dehydration duration also exacerbated the decline of Fv/Fm, Ψo and RC/CSm in leaves with identical dehydration degree. With the same dehydration degree and duration, high temperature enhanced the decrease of Fv/Fm, Ψo and RC/CSm in the leaves. When leaves dehydrated in air, the effect of high temperature was underestimated due to reduction of dehydration duration. The results demonstrated that, dehydration degree and duration both play important roles in damage to photosynthetic apparatus. We suggest that, under combined stresses, the effects of dehydration degree and duration on plants should be considered comprehensively, otherwise, partial or incorrect results may be obtained. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. 7 CFR 989.129 - Voting at nomination meetings.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE RAISINS PRODUCED FROM GRAPES..., association, or any other business unit) who is engaged, in a proprietary capacity, in the production of grapes which are sun-dried or dehydrated by artificial means to produce raisins and who qualifies under...

  11. 7 CFR 989.129 - Voting at nomination meetings.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE RAISINS PRODUCED FROM GRAPES..., association, or any other business unit) who is engaged, in a proprietary capacity, in the production of grapes which are sun-dried or dehydrated by artificial means to produce raisins and who qualifies under...

  12. 7 CFR 989.129 - Voting at nomination meetings.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE RAISINS PRODUCED FROM GRAPES..., association, or any other business unit) who is engaged, in a proprietary capacity, in the production of grapes which are sun-dried or dehydrated by artificial means to produce raisins and who qualifies under...

  13. 7 CFR 989.129 - Voting at nomination meetings.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE RAISINS PRODUCED FROM GRAPES..., association, or any other business unit) who is engaged, in a proprietary capacity, in the production of grapes which are sun-dried or dehydrated by artificial means to produce raisins and who qualifies under...

  14. Kinetic studies of adsorption in the bioethanol dehydration using polyvinyl alcohol, zeolite and activated carbon as adsorbent

    NASA Astrophysics Data System (ADS)

    Laksmono, J. A.; Pratiwi, I. M.; Sudibandriyo, M.; Haryono, A.; Saputra, A. H.

    2017-11-01

    Bioethanol is considered as the most promising alternative fuel in the future due to its abundant renewable sources. However, the result of bioethanol production process using fermentation contains 70% v/v, and it still needs simultaneous purification process. One of the most energy-efficient purification methods is adsorption. Specifically, the rate of adsorption is an important factor for evaluating adsorption performance. In this work, we have conducted an adsorption using polyvinyl alcohol (PVA), zeolite and activated carbon as promising adsorbents in the bioethanol dehydration. This research aims to prove that PVA, zeolite, activated carbon is suitable to be used as adsorbent in bioethanol dehydration process through kinetics study and water adsorption selectivity performance. According to the results, PVA, zeolite and activated carbon are the potential materials as adsorbents in the bioethanol dehydration process. The kinetics study shows that 30°C temperature gave the optimum adsorption kinetics rate for PVA, zeolite, and activated carbon adsorbents which were 0.4911 min-1; 0.5 min-1; and 1.1272 min-1 respectively. In addition, it also shows that the activated carbon performed as a more potential adsorbent due to its higher pore volume and specific surface area properties. Based on the Arrhenius equation, the PVA works in the chemisorption mechanism, meanwhile zeolite and activated carbon work in the physisorption system as shown in the value of the activation energy which are 51.43 kJ/mole; 8.16 kJ/mole; and 20.30 kJ/mole. Whereas the water to ethanol selectivity study, we discover that zeolite is an impressive adsorbent compared to the others due to the molecular sieving characteristic of the material.

  15. Effect of osmotic dehydration of olives as pre-fermentation treatment and partial substitution of sodium chloride by monosodium glutamate in the fermentation profile of Kalamata natural black olives.

    PubMed

    Bonatsou, Stamatoula; Iliopoulos, Vasilis; Mallouchos, Athanasios; Gogou, Eleni; Oikonomopoulou, Vasiliki; Krokida, Magdalini; Taoukis, Petros; Panagou, Efstathios Z

    2017-05-01

    This study examined the effect of osmotic dehydration of Kalamata natural black olives as pre-fermentation treatment in combination with partial substitution of NaCl by monosodium glutamate (MSG) on the fermentation profile of olives. Osmotic dehydration was undertaken by immersing the olives in 70% (w/w) glucose syrup overnight at room temperature. Further on, three different mixtures of NaCl and MSG with/without prior osmotic dehydration of olives were investigated, namely (i) 6.65% NaCl - 0.35% MSG (5% substitution), (ii) 6.30% NaCl - 0.70% MSG (10% substitution), (iii) 5.95% NaCl - 1.05% MSG (15% substitution), and (iv) 7% NaCl without osmotic dehydration (control treatment). Changes in the microbial association (lactic acid bacteria [LAB], yeasts, Enterobacteriaceae), pH, titratable acidity, organic acids, sugars, and volatile compounds in the brine were analyzed for a period of 4 months. The final product was subjected to sensory analysis and the content of MSG in olives was determined. Results demonstrated that osmotic dehydration of olives prior to brining led to vigorous lactic acid processes as indicated by the obtained values of pH (3.7-4.1) and acidity (0.7-0.8%) regardless of the amount of MSG used. However, in non-osmotically dehydrated olives, the highest substitution level of MSG resulted in a final pH (4.5) that was beyond specification for this type of olives. MSG was degraded in the brines being almost completely converted to γ-aminobutyric acid (GABA) at the end of fermentation. Finally, the sensory assessment of fermented olives with/without osmotic dehydration and at all levels of MSG did not show any deviation compared to the control treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated β-sheet structure for amyloid

    PubMed Central

    Balbirnie, Melinda; Grothe, Robert; Eisenberg, David S.

    2001-01-01

    X-ray diffraction and other biophysical tools reveal features of the atomic structure of an amyloid-like crystal. Sup35, a prion-like protein in yeast, forms fibrillar amyloid assemblies intrinsic to its prion function. We have identified a polar peptide from the N-terminal prion-determining domain of Sup35 that exhibits the amyloid properties of full-length Sup35, including cooperative kinetics of aggregation, fibril formation, binding of the dye Congo red, and the characteristic cross-β x-ray diffraction pattern. Microcrystals of this peptide also share the principal properties of the fibrillar amyloid, including a highly stable, β-sheet-rich structure and the binding of Congo red. The x-ray powder pattern of the microcrystals, extending to 0.9-Å resolution, yields the unit cell dimensions of the well-ordered structure. These dimensions restrict possible atomic models of this amyloid-like structure and demonstrate that it forms packed, parallel-stranded β-sheets. The unusually high density of the crystals shows that the packed β-sheets are dehydrated, despite the polar character of the side chains. These results suggest that amyloid is a highly intermolecularly bonded, dehydrated array of densely packed β-sheets. This dry β-sheet could form as Sup35 partially unfolds to expose the peptide, permitting it to hydrogen-bond to the same peptide of other Sup35 molecules. The implication is that amyloid-forming units may be short segments of proteins, exposed for interactions by partial unfolding. PMID:11226247

  17. Pilot clinical study to assess caries lesion activity using quantitative light-induced fluorescence during dehydration

    NASA Astrophysics Data System (ADS)

    Ando, Masatoshi; Ferreira-Zandoná, Andrea G.; Eckert, George J.; Zero, Domenick T.; Stookey, George K.

    2017-03-01

    This study aimed to evaluate the ability of quantitative light-induced fluorescence (QLF) to assess caries lesion activity using visual examination (VE) as the gold standard. Twenty-four visible white spot lesions on buccal surfaces were examined from 23 children, ages 9 to 14 years. At baseline, the surface was hydrated with water, and thereafter, it was dehydrated with continuous compressed air during image acquisition. QLF images were acquired at 0 (baseline), 5, and 15 s. QLF variables [QLFV: fluorescence loss (ΔF), lesion size (S), ΔQ: ΔF×S] was recorded. Changes-in-QLFV per second (ΔQLFV) were determined: ΔQLFV=(QLFVN-QLF/N), where N indicates dehydration time. One experienced dentist conducted VE independently using a dental unit's light, compressed air, and explorer. QLFV and ΔQLFV of the active group (n=11) were compared with those of the inactive group (n=13) using two-sample t-tests. As the surface was dehydrated, S and ΔQ values of the active group increased, whereas QLFV of the inactive group showed only a small change. ΔQLFV of the active group were larger than those of the inactive group; however, the difference did not reach statistical significance (p>0.11). Within the limitations of this study, QLF data indicated increments for lesions designated as active and minimal change for lesions defined as inactive.

  18. A Self-Assembled Trigonal Prismatic Molecular Vessel for Catalytic Dehydration Reactions in Water.

    PubMed

    Das, Paramita; Kumar, Atul; Howlader, Prodip; Mukherjee, Partha Sarathi

    2017-09-12

    A water-soluble Pd 6 trigonal prism (A) was synthesized by two-component coordination-driven self-assembly of a Pd II 90° acceptor with a tetraimidazole donor. The walls of the prism are constructed by three conjugated aromatic building blocks, which means that the confined pocket of the prism is hydrophobic. In addition to the hydrophobic cavity, large product egress windows make A an ideal molecular vessel to catalyze otherwise challenging pseudo-multicomponent dehydration reactions in its confined nanospace in aqueous medium. This study is an attempt at selective generation of the intermediate tetraketones and xanthenes by fine-tuning the reaction conditions employing a supramolecular molecular vessel. Moreover, either poor or no yield of the dehydrated products in the absence of A under similar reaction conditions supports the ability of the confined space of the barrel to promote such reactions in water. Furthermore, we focused on the rigidification of the tetraphenylethylene-based tetraimidazole unit anchored within the Pd II coordination architecture; enabling counter-anion dependent aggregation induced emission in the presence of water. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. 7 CFR 906.120 - Fruit exempt from regulations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... juice, or preserved by any commercial process, including canning, freezing, dehydrating, drying, and the addition of chemical substances, or by fermentation. Fruit so processed, if handled in accordance with...

  20. Anhydrobiosis in yeast: cell wall mannoproteins are important for yeast Saccharomyces cerevisiae resistance to dehydration.

    PubMed

    Borovikova, Diana; Teparić, Renata; Mrša, Vladimir; Rapoport, Alexander

    2016-08-01

    The state of anhydrobiosis is linked with the reversible delay of metabolism as a result of strong dehydration of cells, and is widely distributed in nature. A number of factors responsible for the maintenance of organisms' viability in these conditions have been revealed. This study was directed to understanding how changes in cell wall structure may influence the resistance of yeasts to dehydration-rehydration. Mutants lacking various cell wall mannoproteins were tested to address this issue. It was revealed that mutants lacking proteins belonging to two structurally and functionally unrelated groups (proteins non-covalently attached to the cell wall, and Pir proteins) possessed significantly lower cell resistance to dehydration-rehydration than the mother wild-type strain. At the same time, the absence of the GPI-anchored cell wall protein Ccw12 unexpectedly resulted in an increase of cell resistance to this treatment; this phenomenon is explained by the compensatory synthesis of chitin. The results clearly indicate that the cell wall structure/composition relates to parameters strongly influencing yeast viability during the processes of dehydration-rehydration, and that damage to cell wall proteins during yeast desiccation can be an important factor leading to cell death. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Efficient dehydration and recovery of ionic liquid after lignocellulosic processing using pervaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jian; Shi, Jian; Murthy Konda, N. V. S. N.

    Background Biomass pretreatment using certain ionic liquids (ILs) is very efficient, generally producing a substrate that is amenable to saccharification with fermentable sugar yields approaching theoretical limits. Although promising, several challenges must be addressed before an IL pretreatment technology can become commercially viable. One of the most significant challenges is the affordable and scalable recovery and recycle of the IL itself. Pervaporation (PV) is a highly selective and scalable membrane separation process for quantitatively recovering volatile solutes or solvents directly from non-volatile solvents that could prove more versatile for IL dehydration. Results We evaluated a commercially available PV system formore » IL dehydration and recycling as part of an integrated IL pretreatment process using 1-ethyl-3-methylimidazolium acetate ([C 2 C 1 Im][OAc] ) that has been proven to be very effective as a biomass pretreatment solvent. Separation factors as high as 1500 were observed. We demonstrate that > 99.9 wt% [C 2 C 1 Im][OAc] can be recovered from aqueous solution (≤20 wt% IL) and recycled five times. A preliminary technoeconomic analysis validated the promising role of PV in improving overall biorefinery process economics, especially in the case where other IL recovery technologies might lead to significant losses. Conclusions These findings establish the foundation for further development of PV as an effective method of recovering and recycling ILs using a commercially viable process technology.« less

  2. Efficient dehydration and recovery of ionic liquid after lignocellulosic processing using pervaporation

    DOE PAGES

    Sun, Jian; Shi, Jian; Murthy Konda, N. V. S. N.; ...

    2017-06-15

    Background Biomass pretreatment using certain ionic liquids (ILs) is very efficient, generally producing a substrate that is amenable to saccharification with fermentable sugar yields approaching theoretical limits. Although promising, several challenges must be addressed before an IL pretreatment technology can become commercially viable. One of the most significant challenges is the affordable and scalable recovery and recycle of the IL itself. Pervaporation (PV) is a highly selective and scalable membrane separation process for quantitatively recovering volatile solutes or solvents directly from non-volatile solvents that could prove more versatile for IL dehydration. Results We evaluated a commercially available PV system formore » IL dehydration and recycling as part of an integrated IL pretreatment process using 1-ethyl-3-methylimidazolium acetate ([C 2 C 1 Im][OAc] ) that has been proven to be very effective as a biomass pretreatment solvent. Separation factors as high as 1500 were observed. We demonstrate that > 99.9 wt% [C 2 C 1 Im][OAc] can be recovered from aqueous solution (≤20 wt% IL) and recycled five times. A preliminary technoeconomic analysis validated the promising role of PV in improving overall biorefinery process economics, especially in the case where other IL recovery technologies might lead to significant losses. Conclusions These findings establish the foundation for further development of PV as an effective method of recovering and recycling ILs using a commercially viable process technology.« less

  3. An Assessment of Hydrazine, Hydrazine Hydrate and Liquid Ammonia as Fuels for Rocket Propulsion

    DTIC Science & Technology

    1949-08-01

    oxide, hyponitrites, or potassium nitrososulphite; decomposition of aminogunnidine; hydrolysis of bis-dinzo acetic acid; and nlso n cyclic process due to... Dehydration of hydrnzinc hydrnte. This may be carried out with caustic alknli, quick- lime or baryto. The method is probably suitable for laboratory scale...certaini that it can be opernted under safe conditions. These disadvontages should not be so formidable if only a partial dehydration were desired. In this

  4. Intermediate-depth earthquakes within young Cocos plate beneath Central Mexico: A hypothesis test for dehydration embrittlement and shear instability

    NASA Astrophysics Data System (ADS)

    Song, T.

    2010-12-01

    Subducting slab undergoes a series of dehydration reactions on their ways into the mantle and these processes are responsible for transporting water, recycling volatiles and chemical elements in arc magmas. It is generally accepted that the SOC is hydrated. However, it is not clear if subducting oceanic mantle (SOM) is hydrated and how deep the hydration is. Seismic refraction studies found that normal-fault type faulting can extend 12-20 km deep into the interior of the slab off Nicaragua, suggesting deep hydration of the SOM. Seismic refraction studies also found that the uppermost SOM is seismically slow and is partially serpentinized. The fluids released from dehydration inside the SOM can reduce the normal stress locally and facilitate the occurrences of intra-slab events through dehydration embrittlement and hydraulic fracture. It has been suggested that the dehydration of antigorite at about 600C is particularly important in facilitating the lower plane of the double seismic zone. To link the dehydration process to the occurrences of intra-slab events, it is critical to clarify where these events are located, either located at the dehydration boundary or in the neighborhood rocks. However, if the SOM is anhydrous, other mechanism, such as shear instabilities, has to be invoked to explain the occurrences of intermediate-depth intraslab earthquakes. Here I discuss locations of intermediate-depth intraslab earthquakes in Central Mexico subduction zone, where young Cocos plate subducts beneath North America plate. Recent studies involving local converted wave modeling and receiver function analysis indicate the presence of an ultra-slow velocity layer (USL) of about 3 km thick, likely an over-pressured upper oceanic crust. Most events display anomalously large converted SP waves that are 2-2.5 secs after direct P waves and finite difference modeling converge the location of these events about 9 km below the lower boundary USL. With a lower oceanic crust of about 3-5 km estimated from receiver function, these intermediate-depth earthquakes are about 6 km inside the SOM. There is no clear evidence yet indicating the presence of a partially serpentinized layer in such a young plate (10-15 Ma). Further waveform modeling is undertaken to explore the presence of such a partially serpentinized layer.

  5. Dual Role of Water in Heterogeneous Catalytic Hydrolysis of Sarin by Zirconium-Based Metal-Organic Frameworks.

    PubMed

    Momeni, Mohammad R; Cramer, Christopher J

    2018-05-22

    Recent experimental studies on Zr IV -based metal-organic frameworks (MOFs) have shown the extraordinary effectiveness of these porous materials for the detoxification of phosphorus-based chemical warfare agents (CWAs). However, pressing challenges remain with respect to characterizing these catalytic processes both at the molecular and crystalline levels. We here use theory to compare the reactivity of different zirconium-based MOFs for the catalytic hydrolysis of the CWA sarin, using both periodic and cluster modeling. We consider both hydrated and dehydrated secondary building units, as well as linker functionalized MOFs, to more fully understand and rationalize available experimental findings as well as to enable concrete predictions for achieving higher activities for the decomposition of CWAs.

  6. Ladder polymers for use as high temperature stable resins or coatings

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann (Inventor)

    1990-01-01

    An object of the invention is to synthesize a new class of ladder and partial ladder polymers. In accordance with the invention, the new class of ladder and partial ladder polymers are synthesized by polymerizing a bis-dienophile with a bis-diene. Another object of the invention is to provide a fabricated, electrically conducting, void free composite comprising the new class of the ladder and partial ladder polymers described above. The novelty of the invention relates to a new class of ladder and partial ladder polymers and a process for synthesizing these polymers. These polymers are soluble in common organic solvents and are characterized with a unique dehydration property at temperatures of 300 to 400 C to provide thermo-oxidatively stable pentiptycene units along the polymeric backbone. These polymers are further characterized with high softening points and good thermo-oxidative stability properties. Thus these polymers have potential as processable, matrix resins for high temperature composite applications.

  7. 7 CFR 956.163 - Handling for specified purposes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... for all processing uses including, pickling, peeling, dehydration, juicing, or other processing; (6) Shipments of Walla Walla Sweet Onions for disposal; (7) Shipments of Walla Walla Sweet Onions for seed. (b...

  8. 7 CFR 956.163 - Handling for specified purposes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... for all processing uses including, pickling, peeling, dehydration, juicing, or other processing; (6) Shipments of Walla Walla Sweet Onions for disposal; (7) Shipments of Walla Walla Sweet Onions for seed. (b...

  9. 7 CFR 956.163 - Handling for specified purposes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... for all processing uses including, pickling, peeling, dehydration, juicing, or other processing; (6) Shipments of Walla Walla Sweet Onions for disposal; (7) Shipments of Walla Walla Sweet Onions for seed. (b...

  10. 7 CFR 956.163 - Handling for specified purposes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... for all processing uses including, pickling, peeling, dehydration, juicing, or other processing; (6) Shipments of Walla Walla Sweet Onions for disposal; (7) Shipments of Walla Walla Sweet Onions for seed. (b...

  11. 7 CFR 956.163 - Handling for specified purposes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... for all processing uses including, pickling, peeling, dehydration, juicing, or other processing; (6) Shipments of Walla Walla Sweet Onions for disposal; (7) Shipments of Walla Walla Sweet Onions for seed. (b...

  12. Dehydration

    MedlinePlus

    ... Diabetes - dehydration; Stomach flu - dehydration; Gastroenteritis - dehydration; Excessive sweating - dehydration ... body may lose a lot of fluid from: Sweating too much, for example, from exercising in hot ...

  13. Insights on TTL Dehydration Mechanisms from Microphysical Modelling of Aircraft Observations

    NASA Technical Reports Server (NTRS)

    Ueyama, R.; Pfister, L.; Jensen, E.

    2014-01-01

    The Tropical Tropopause Layer (TTL), a transition layer between the upper troposphere and lower stratosphere in the tropics, serves as the entryway of various trace gases into the stratosphere. Of particular interest is the transport of water vapor through the TTL, as WV is an important greenhouse gas and also plays a significant role in stratospheric chemistry by affecting polar stratospheric cloud formation and the ozone budget. While the dominant control of stratospheric water vapor by tropical cold point temperatures via the "freeze-drying" process is generally well understood, the details of the TTL dehydration mechanisms, including the relative roles of deep convection, atmospheric waves and cloud microphysical processes, remain an active area of research. The dynamical and microphysical processes that influence TTL water vapor concentrations are investigated in simulations of cloud formation and dehydration along air parcel trajectories. We first confirm the validity of our Lagrangian models in a case study involving measurements from the Airborne Tropical TRopopause EXperiment (ATTREX) flights over the central and eastern tropical Pacific in Oct-Nov 2011 and Jan-Feb 2013. ERA-Interim winds and seasonal mean heating rates from Yang et al. (2010) are used to advance parcels back in time from the flight tracks, and time-varying vertical profiles of water vapor along the diabatic trajectories are calculated in a one-dimensional cloud model as in Jensen and Pfister (2004) but with more reliable temperature field, wave and convection schemes. The simulated water vapor profiles demonstrate a significant improvement over estimates based on the Lagrangian Dry Point, agreeing well with aircraft observations when the effects of cloud microphysics, subgrid-scale gravity waves and convection are included. Following this approach, we examine the dynamical and microphysical control of TTL water vapor in the 30ºS-30ºN latitudinal belt and elucidate the dominant processes in the winter and summer seasons. Implications of the TTL dehydration processes for the regulation of global stratospheric humidity will be discussed.

  14. Synthesis of silyl iron hydride via Si-H activation and its dual catalytic application in the hydrosilylation of carbonyl compounds and dehydration of benzamides.

    PubMed

    Ren, Shishuai; Xie, Shangqing; Zheng, Tingting; Wang, Yangyang; Xu, Shilu; Xue, Benjing; Li, Xiaoyan; Sun, Hongjian; Fuhr, Olaf; Fenske, Dieter

    2018-03-28

    The hydrido silyl iron complex (o-Ph 2 PC 6 H 4 SiMe 2 )Fe(PMe 3 ) 3 H (2) was obtained via the activation of the Si-H bond of the bidentate silyl ligand o-Ph 2 P(C 6 H 4 )SiMe 2 H (1) by Fe(PMe 3 ) 4 . 2 showed good to excellent catalytic activity in both the reduction of aldehydes/ketones and the dehydration of benzamide. In addition, with complex 2 as a catalyst, α,β-unsaturated carbonyls could be selectively reduced to the corresponding α,β-unsaturated alcohols. The mechanisms of the formation of 2 and the catalytic dehydration process are proposed and partly experimentally verified.

  15. Recent advances in drying and dehydration of fruits and vegetables: a review.

    PubMed

    Sagar, V R; Suresh Kumar, P

    2010-01-01

    Fruits and vegetables are dried to enhance storage stability, minimize packaging requirement and reduce transport weight. Preservation of fruits and vegetables through drying based on sun and solar drying techniques which cause poor quality and product contamination. Energy consumption and quality of dried products are critical parameters in the selection of drying process. An optimum drying system for the preparation of quality dehydrated products is cost effective as it shortens the drying time and cause minimum damage to the product. To reduce the energy utilization and operational cost new dimensions came up in drying techniques. Among the technologies osmotic dehydration, vacuum drying, freeze drying, superheated steam drying, heat pump drying and spray drying have great scope for the production of quality dried products and powders.

  16. The usefulness of clinical and laboratory parameters for predicting severity of dehydration in children with acute gastroenteritis.

    PubMed

    Hoxha, Teuta Faik; Azemi, Mehmedali; Avdiu, Muharrem; Ismaili-Jaha, Vlora; Grajqevci, Violeta; Petrela, Ela

    2014-10-01

    An accurate assessment of the degree of dehydration in infants and children is important for proper decision-making and treatment. This emphasizes the need for laboratory tests to improve the accuracy of clinical assessment of dehydration. The aim of this study was to assess the relationship between clinical and laboratory parameters in the assessment of dehydration. We evaluated prospectively 200 children aged 1 month to 5 years who presented with diarrhea, vomiting or both. Dehydration assessment was done following a known clinical scheme. We enrolled in the study 200 children (57.5% were male). The mean age was 15.62±9.03 months, with more than half those studied being under 24 months old. Overall, 46.5% (93) had mild dehydration, 34% (68) had moderate dehydration, 5.5% (11) had severe dehydration whereas, 14% (28) had no dehydration. Patients historical clinical variables in all dehydration groups did not differ significantly regarding age, sex, fever, frequency of vomiting, duration of diarrhea and vomiting, while there was a trend toward severe dehydration in children with more frequent diarrhea (p=0.004). Serum urea and creatinine cannot discriminate between mild and moderate dehydration but they showed a good specificity for severe dehydration of 99% and 100% respectively. Serum bicarbonates and base excess decreased significantly with a degree of dehydration and can discriminate between all dehydration groups (P<0.001). Blood gases were useful to diagnose the degree of dehydration status among children presenting with acute gastroenteritis. Serum urea and creatinine were the most specific tests for severe dehydration diagnosis. Historical clinical patterns apart from frequency of diarrhea did not correlate with dehydration status. Further studies are needed to validate our results.

  17. INTEGRATION OF SYSTEMS ENGINEERING AND PROCESS INTENSIFICATION IN THE DESIGN OF PROCESSES FOR UTILIZING BIOBASED GLYCEROL

    EPA Science Inventory

    The expected results include an integrated process and mechanical design including a fabrication plan for the glycerol dehydration reactor, comprehensive heat and material balance, environmental impact assessment and comprehensive safety review. The resulting process design w...

  18. Dehydration induced transcriptomic responses in two Tibetan hulless barley (Hordeum vulgare var. nudum) accessions distinguished by drought tolerance.

    PubMed

    Liang, Junjun; Chen, Xin; Deng, Guangbing; Pan, Zhifen; Zhang, Haili; Li, Qiao; Yang, Kaijun; Long, Hai; Yu, Maoqun

    2017-10-11

    The harsh environment on the Qinghai-Tibetan Plateau gives Tibetan hulless barley (Hordeum vulgare var. nudum) great ability to resist adversities such as drought, salinity, and low temperature, and makes it a good subject for the analysis of drought tolerance mechanism. To elucidate the specific gene networks and pathways that contribute to its drought tolerance, and for identifying new candidate genes for breeding purposes, we performed a transcriptomic analysis using two accessions of Tibetan hulless barley, namely Z772 (drought-tolerant) and Z013 (drought-sensitive). There were more up-regulated genes of Z772 than Z013 under both mild (5439-VS-2604) and severe (7203-VS-3359) dehydration treatments. Under mild dehydration stress, the pathways exclusively enriched in drought-tolerance genotype Z772 included Protein processing in endoplasmic reticulum, tricarboxylic acid (TCA) cycle, Wax biosynthesis, and Spliceosome. Under severe dehydration stress, the pathways that were mainly enriched in Z772 included Carbon fixation in photosynthetic organisms, Pyruvate metabolism, Porphyrin and chlorophyll metabolism. The main differentially expressed genes (DEGs) in response to dehydration stress and genes whose expression was different between tolerant and sensitive genotypes were presented in this study, respectively. The candidate genes for drought tolerance were selected based on their expression patterns. The RNA-Seq data obtained in this study provided an initial overview on global gene expression patterns and networks that related to dehydration shock in Tibetan hulless barley. Furthermore, these data provided pathways and a targeted set of candidate genes that might be essential for deep analyzing the molecular mechanisms of plant tolerance to drought stress.

  19. Aqueous phase hydrodeoxygenation of polyols over Pd/WO3-ZrO2: Role of Pd-WO3 interaction and hydrodeoxygenation pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Changjun; Sun, Junming; Brown, Heather M.

    Aqueous-phase hydrodeoxygenation of sugar and sugar-derived molecules can be used to produce a range of alkanes and oxygenates. In this paper, we have identified the reaction intermediates and reaction chemistry for the aqueous-phase hydrodeoxygenation of sorbitol over a bifunctional catalyst (Pt/SiO2–Al2O3) that contains both metal (Pt) and acid (SiO2–Al2O3) sites. A wide variety of reactions occur in this process including Csingle bondC bond cleavage, Csingle bondO bond cleavage, and hydrogenation reactions. The key Csingle bondC bond cleavage reactions include: retro-aldol condensation and decarbonylation, which both occur on metal catalytic sites. Dehydration is the key Csingle bondO bond cleavage reaction andmore » occurs on acid catalytic sites. Sorbitol initially undergoes dehydration and ring closure to produce cyclic C6 molecules or retro-aldol condensation reactions to produce primarily C3 polyols. Isosorbide is the major final product from sorbitol dehydration. Isosorbide then undergoes ring opening hydrogenation reactions and a dehydration/hydrogenation step to form 1,2,6-hexanetriol. The hexanetriol is then converted into hexanol and hexane by dehydration/hydrogenation. Smaller oxygenates are produced by Csingle bondC bond cleavage. These smaller oxygenates undergo dehydration/hydrogenation reactions to produce alkanes from C1–C5. The results from this paper suggest that hydrodeoxygenation chemistry can be tuned to make a wide variety of products from biomass-derived oxygenates.« less

  20. Membrane-associated proteomics of chickpea identifies Sad1/UNC-84 protein (CaSUN1), a novel component of dehydration signaling

    NASA Astrophysics Data System (ADS)

    Jaiswal, Dinesh Kumar; Mishra, Poonam; Subba, Pratigya; Rathi, Divya; Chakraborty, Subhra; Chakraborty, Niranjan

    2014-02-01

    Dehydration affects almost all the physiological processes including those that result in the accumulation of misfolded proteins in the endoplasmic reticulum (ER), which in turn elicits a highly conserved signaling, the unfolded protein response (UPR). We investigated the dehydration-responsive membrane-associated proteome of a legume, chickpea, by 2-DE coupled with mass spectrometry. A total of 184 protein spots were significantly altered over a dehydration treatment of 120 h. Among the differentially expressed proteins, a non-canonical SUN domain protein, designated CaSUN1 (Cicer arietinum Sad1/UNC-84), was identified. CaSUN1 localized to the nuclear membrane and ER, besides small vacuolar vesicles. The transcripts were downregulated by both abiotic and biotic stresses, but not by abscisic acid treatment. Overexpression of CaSUN1 conferred stress tolerance in transgenic Arabidopsis. Furthermore, functional complementation of the yeast mutant, slp1, could rescue its growth defects. We propose that the function of CaSUN1 in stress response might be regulated via UPR signaling.

  1. Development and characterisation of hybrid polysaccharide membranes for dehydration processes.

    PubMed

    Meireles, Inês T; Huertas, Rosa M; Torres, Cristiana A V; Coelhoso, Isabel M; Crespo, João G

    2018-07-01

    The purpose of this work is the development and characterisation of new hybrid polysaccharide (FucoPol) membranes. These membranes were prepared by incorporation of a SiO 2 network homogeneously dispersed by using a sol-gel method with GPTMS as a crosslinker silica precursor. They were further crosslinked with CaCl 2 for reinforcement of mechanical properties and improvement of their permeation performance. They were characterised in terms of their structural, mechanical and thermal properties. They presented a dense and homogeneous structure, resistant to deformation, with a Tg of 43 °C and a thermal decomposition between 240 and 251 °C. The hybrid FucoPol membranes were tested for ethanol dehydration by pervaporation and also for nitrogen dehydration. They exhibited high water selectivity values, similar to PERVAP ® 4101, however they lost their stability when exposed to solutions of 10.0 wt.% water in ethanol. In contrast, these membranes were stable when applied in N 2 dehydration, leading to reproducible performance and very high water selectivities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Proceedings of Symposium on Energy Engineering in the 21st Century (SEE 2000). Volume Three

    DTIC Science & Technology

    2000-01-13

    osmotic agents for dehydration of vegetables and fruits are table salt, sucrose, glucose, fructose , starch, corn syrup , glycerol, and plant... High Intense Drying Process of Wet Porous Materials 905 X. Wang, M. H. Shi and W. P. Yu N2. Osmotic Dehydration Pretreatment in Drying of...Steady State Model for the High -Pressure Side of Unitary Air-Conditioners 1076 P. J. Petit andJ P. Meyer P9. Development and Experimental Testing of an

  3. Chemical and Nutritional Characteristics of long nose skate (Raja rhina) byproducts from Alaska

    USDA-ARS?s Scientific Manuscript database

    Skates have recently become a small commercial fishery in Alaska and along the western United States coast, but have long been associated with bycatch. The fins are marketed as "skate wings" and mainly sold fresh, frozen, and dried or salted and dehydrated for Asian markets. Byproducts generated inc...

  4. Effect of the crystal chemistry on the hydration mechanism of swelling micas

    NASA Astrophysics Data System (ADS)

    Pavón, Esperanza; Alba, María D.; Castro, Miguel A.; Cota, A.; Osuna, Francisco J.; Pazos, M. Carolina

    2017-11-01

    Swelling and dehydration under minor changes in temperature and water vapor pressure is an important property that clays and clay minerals exhibit. In particular, their interlayer space, the solid-water interface and the layers' collapse and re-expansion have received much attention because it affects to the dynamical properties of interlayer cations and thus the transfer and fate of water and pollutants. In this contribution, the dehydration and rehydration mechanism of a swelling high-charge mica family is examined by in situ X-ray Diffraction. The effect of the aluminosilicate layer charge and the physicochemical properties of the interlayer cations on these processes are analyzed. The results showed that the dehydration temperature and the number of steps involved in this process are related to the layer charge of the silicate and the physicochemical properties of the interlayer cations. Moreover, the ability to adsorb water molecules in a confined space with high electric field by the interlayer cations does not only depend on their hydration enthalpy but also on the electrostatic parameters of these cations.

  5. Conversions of formaldehyde-modified 2'-deoxyadenosine 5'-monophosphate in conditions modeling formalin-fixed tissue dehydration.

    PubMed

    Rait, Vladimir K; Zhang, Qingrong; Fabris, Daniele; Mason, Jeffrey T; O'Leary, Timothy J

    2006-03-01

    Formalin-fixed, paraffin-embedded specimens typically provide molecular biologists with low yields of extractable nucleic acids that exhibit extensive strand cleavage and covalent modification of nucleic acid bases. This study supports the idea that these deleterious effects are promoted by the first step in formalin-fixed tissue processing--i.e., tissue dehydration with a graded series of alcohols. We analyzed the conversions of formaldehyde-modified 2'-deoxyadenosine 5'-monophosphate (dAMP) by reverse-phase ion-pair, high-performance liquid chromatography and found that dehydration does not stabilize N-methylol groups in the modified nucleotide. Furthermore, spontaneous demodification in a dry state or in anhydrous ethanol can be as fast as it is in aqueous solutions if the preparation is contaminated with salts of orthophosphoric acid. In ethanol, orthophosphates also catalyze formation of abundant N6-ethoxymethyl-dAMP, as well as cross-linking and depurination of nucleotides present in the mixture. Identification of the products was performed using ultraviolet absorbance spectroscopy and electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry. Alternatives to the traditional processing of formalin-fixed tissues are discussed.

  6. Controlled Gelation of Particle Suspensions Using Controlled Solvent Removal in Picoliter Droplets

    NASA Astrophysics Data System (ADS)

    Vuong, Sharon; Walker, Lynn; Anna, Shelley

    2013-11-01

    Droplets in microfluidic devices have proven useful as uniform picoliter reactors for nanoparticle synthesis and as components in tunable emulsions. However, there can be significant transport between the component phases depending on solubility and other factors. In the present talk, we show that water droplets trapped within a microfluidic device for tens of hours slowly dehydrate, concentrating the contents encapsulated within. We use this slow dehydration along with control of the initial droplet composition to monitor gelation of aqueous suspensions of spherical silica particles (Ludox) and disk-shaped clay particles (Laponite). Droplets are generated in a microfluidic device containing small wells that trap the droplets. We monitor the concentration process through size and shape changes of these droplets as a function of time in tens of droplets and use the large number of individual reactors to generate statistics regarding the gelation process. We also examine changes in suspension viscosity through fluorescent particle tracking as a function of dehydration rate, initial suspension concentration and initial droplet volume, and added salt, and compare the results with the Krieger-Dougherty model in which viscosity increases dramatically with particle volume fraction.

  7. Petrogenesis of mesozoic, peraluminous granites in the Lamoille canyon area, Ruby mountains, Nevada, USA

    USGS Publications Warehouse

    Lee, S.-Y.; Barnes, C.G.; Snoke, A.W.; Howard, K.A.; Frost, C.D.

    2003-01-01

    Two groups of closely associated, peraluminous, two-mica granitic gneiss were identified in the area. The older, sparsely distributed unit is equigranular (EG) with initial ??Nd ??? -8??8 and initial 87Sr/86Sr ???0??7098. Its age is uncertain. The younger unit is Late Cretaceous (???80 Ma), pegmatitic, and sillimanite-bearing (KPG), with ??Nd from -15??8 to -17??3 and initial 87Sr/86Sr from 0??7157 to 0??7198. The concentrations of Fe, Mg, Na, Ca, Sr, V, Zr, Zn and Hf are higher, and K, Rb and Th are lower in the EG. Major- and trace-element models indicate that the KPG was derived by muscovite dehydration melting (<35 km depth) of Neoproterozoic metapelitic rocks that are widespread in the eastern Great Basin. The models are broadly consistent with anatexis of crust tectonically thickened during the Sevier orogeny; no mantle mass or heat contribution was necessary. As such, this unit represents one crustal end-member of regional Late Cretaceous peraluminous granites. The EG was produced by biotite dehydration melting at greater depths, with garnet stable in the residue. The source of the EG was probably Paleoproterozoic metagraywacke. Because EG magmatism probably pre-dated Late Cretaceous crustal thickening, it required heat input from the mantle or from mantle-derived magma.

  8. Spatiotemporal evolution of dehydration reactions in subduction zones (Invited)

    NASA Astrophysics Data System (ADS)

    Padron-Navarta, J.

    2013-12-01

    Large-scale deep water cycling takes place through subduction zones in the Earth, making our planet unique in the solar system. This idiosyncrasy is the result of a precise but unknown balance between in-gassing and out-gassing fluxes of volatiles. Water is incorporated into hydrous minerals during seafloor alteration of the oceanic lithosphere. The cycling of volatiles is triggered by dehydration of these minerals that release fluids from the subducting slab to the mantle wedge and eventually to the crust or to the deep mantle. Whereas the loci of such reactions are reasonably well established, the mechanisms of fluid migration during dehydration reactions are still barely known. One of the challenges is that dehydration reactions are dynamic features evolving in time and space. Experimental data on low-temperature dehydration reactions (i.e. gypsum) and numerical models applied to middle-crust conditions point to a complex spatiotemporal evolution of the dehydration process. The extrapolation of these inferences to subduction settings has not yet been explored but it is essential to understand the dynamism of these settings. Here I propose an alternative approach to tackle this problem through the textural study of high-pressure terrains that experienced dehydration reactions. Spatiotemporal evolution of dehydration reactions should be recorded during mineral nucleation and growth through variations in time and space of the reaction rate. Insights on the fluid migration mechanism could be inferred therefore by noting changes in the texture of prograde assemblages. The dehydration of antigorite in serpentinite is a perfect candidate to test this approach as it releases a significant amount of fluid and produces a concomitant porosity. Unusual alternation of equilibrium and disequilibrium textures observed in Cerro del Almirez (Betic Cordillera, S Spain)[1, 2] attest for a complex fluid migration pattern for one of the most relevant reactions in subduction zones. This opens the possibility to correlate textural features recorded in high-pressure terrains with the physical fingerprint of dehydration reactions such as fluid flow rates and eventually seismicity or tremor. References [1] Padrón-Navarta, J. A., Tommasi, A., Garrido, C. J., López Sánchez-Vizcaíno, V., Gómez-Pugnaire, M. T., Jabaloy, A. & Vauchez, A. (2010). Fluid transfer into the wedge controlled by high-pressure hydrofracturing in the cold top-slab mantle. Earth and Planetary Science Letters 297, 271-286. [2] Padrón-Navarta, J. A., López Sánchez-Vizcaíno, V., Garrido, C. J. & Gómez-Pugnaire, M. T. (2011). Metamorphic Record of High-pressure Dehydration of Antigorite Serpentinite to Chlorite Harzburgite in a Subduction Setting (Cerro del Almirez, Nevado-Filábride Complex, Southern Spain). Journal of Petrology 52, 2047-2078.

  9. Low-temperature and conventional scanning electron microscopy of human urothelial neoplasms.

    PubMed

    Hopkins, D M; Morris, J A; Oates, K; Huddart, H; Staff, W G

    1989-05-01

    The appearance of neoplastic human urothelium viewed by low-temperature scanning electron microscopy (LTSEM) and conventional scanning electron microscopy (CSEM) was compared. Fixed, dehydrated neoplastic cells viewed by CSEM had well-defined, often raised cell junctions; no intercellular gaps; and varying degrees of pleomorphic surface microvilli. The frozen hydrated material viewed by LTSEM, however, was quite different. The cells had a flat or dimpled surface, but no microvilli. There were labyrinthine lateral processes which interdigitated with those of adjacent cells and outlined large intercellular gaps. The process of fixation and dehydration will inevitably distort cell contours and on theoretical grounds, the images of frozen hydrated material should more closely resemble the in vivo appearance.

  10. Onion dehydration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lund, J.W.

    1995-12-31

    Onion dehydration consists of a continuous operation, belt conveyor using fairly low-temperature hot air from 38-104{degrees}C (100 to 200{degrees}F). Typical processing plants will handle 4500 kg (10,000 pounds) of raw product per hour (single line), reducing the moisture from around 83 % to 4 % (680 to 820 kg - 1,500 to 1,800 pounds finished product). An example of a geothermal processing plant is Integrate Ingredients at Empire, Nevada, in the San Emidio Desert. A total of 6.3 million kg (14 million pounds) of dry product are produced annually: 60% onion and 40% garlic. A 130{degrees}C (266{degrees}F) well provide themore » necessary heat for the plant.« less

  11. The Scales Of Chemical Transport During Dehydration Reactions: The Roles Of Diffusion And Fluid Expulsion

    NASA Astrophysics Data System (ADS)

    Bedford, J. D.; Wheeler, J.; Fusseis, F.; Leclere, H.; Faulkner, D.

    2016-12-01

    The growth of new minerals in response to disequilibrium is the most fundamental metamorphic process. However, the kinetics controls on metamorphic reactions, including the transport of chemical components to growing minerals, are poorly understood as direct observation has been impossible both in nature and experiments. Dehydration reactions are common during prograde metamorphism and require both the expulsion of H2O and the transport of solid chemical components to the product mineral(s) in order for reaction to proceed. The expulsion of H2O is particularly important in understanding when fluid overpressures might develop, which can in turn lead to sudden failure (earthquakes) if the fluid is unable to drain. Using time-resolved (4D) synchrotron X-ray microtomography we have imaged a complete dehydration reaction and show how chemical transport of both the solid and fluid phases evolves during reaction. The reaction analysed is the dehydration of gypsum to form bassanite and H2O - an analogue for silicate dehydration but with much faster and controllable reaction rate. Like most dehydration reactions, the breakdown of gypsum is associated with a solid volume reduction which generates pore space. This new porosity wraps around growing bassanite grains, producing fluid-filled moats, across which transport of dissolved solutes to the growing grains occurs via diffusion. As moats grow in width, diffusion and hence reaction rate slow down. Each new grain-moat pair evolves in relative isolation from each other indicating that the chemical transport of solid components occurs over relatively short distances. This is despite the overall pore network becoming connected during the early stages of reaction, thus allowing efficient expulsion of excess H2O. A dehydrating system can therefore act as an open system with respect to the fluid phase and in contrast be restricted to the grain-scale with respect to the dissolved chemicals. This is in accord with observations that many rocks appear to have preserved their chemistry during dehydration (apart from the loss of H2O).

  12. Production of Furfural from Process-Relevant Biomass-Derived Pentoses in a Biphasic Reaction System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Ashutosh; Black, Stuart K.; Vinzant, Todd B.

    Furfural is an important fuel precursor which can be converted to hydrocarbon fuels and fuel intermediates. In this work, the production of furfural by dehydration of process-relevant pentose rich corn stover hydrolyzate using a biphasic batch reaction system has been investigated. Methyl isobutyl ketone (MIBK) and toluene have been used to extract furfural and enhance overall furfural yield by limiting its degradation to humins. The effects of reaction time, temperature, and acid concentration (H 2SO 4) on pentose conversion and furfural yield were investigated. For the dehydration of 8 wt % pentose-rich corn stover hydrolyzate under optimum reaction conditions, 0.05more » M H 2SO 4, 170 degrees C for 20 min with MIBK as the solvent, complete conversion of xylose (98-100%) and a furfural yield of 80% were obtained. Under these same conditions, except with toluene as the solvent, the furfural yield was 77%. Additionally, dehydration of process-relevant pentose rich corn stover hydrolyzate using solid acid ion-exchange resins under optimum reaction conditions has shown that Purolite CT275 is as effective as H 2SO 4 for obtaining furfural yields approaching 80% using a biphasic batch reaction system. In conclusion, this work has demonstrated that a biphasic reaction system can be used to process biomass-derived pentose rich sugar hydrolyzates to furfural in yields approaching 80%.« less

  13. Production of Furfural from Process-Relevant Biomass-Derived Pentoses in a Biphasic Reaction System

    DOE PAGES

    Mittal, Ashutosh; Black, Stuart K.; Vinzant, Todd B.; ...

    2017-05-16

    Furfural is an important fuel precursor which can be converted to hydrocarbon fuels and fuel intermediates. In this work, the production of furfural by dehydration of process-relevant pentose rich corn stover hydrolyzate using a biphasic batch reaction system has been investigated. Methyl isobutyl ketone (MIBK) and toluene have been used to extract furfural and enhance overall furfural yield by limiting its degradation to humins. The effects of reaction time, temperature, and acid concentration (H 2SO 4) on pentose conversion and furfural yield were investigated. For the dehydration of 8 wt % pentose-rich corn stover hydrolyzate under optimum reaction conditions, 0.05more » M H 2SO 4, 170 degrees C for 20 min with MIBK as the solvent, complete conversion of xylose (98-100%) and a furfural yield of 80% were obtained. Under these same conditions, except with toluene as the solvent, the furfural yield was 77%. Additionally, dehydration of process-relevant pentose rich corn stover hydrolyzate using solid acid ion-exchange resins under optimum reaction conditions has shown that Purolite CT275 is as effective as H 2SO 4 for obtaining furfural yields approaching 80% using a biphasic batch reaction system. In conclusion, this work has demonstrated that a biphasic reaction system can be used to process biomass-derived pentose rich sugar hydrolyzates to furfural in yields approaching 80%.« less

  14. Dehydration in the Winter Arctic Tropopause Region

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Jensen, Eric; Podolske, James; Selkirk, Henry; Anderson, Bruce; Avery, Melody; Diskin. Glenn

    2004-01-01

    Recent work has shown that limited amounts of tropospheric air can penetrate as much as 1 km into the middleworld stratosphere during the arctic winter. This, coupled with temperatures that are cold enough to produce saturation mixing ratios of less than 5 ppmv at the tropopause, results in stratospheric cloud formation and upper tropospheric dehydration. Even though these "cold outbreaks" occupy only a small portion of the area in the arctic (1-2%), their importance is magnified by an order of magnitude because of the air flow through them. This is reinforced by evidence of progressive drying through the winter measured during SOLVE-1. The significance of this process lies in its effect on the upper tropospheric water content of the middle and high latitude tropopause region, which plays an important role in regulating the earth's radiative balance. There appears to be significant year-to-year variability in the incidence of the cold outbreaks. This work has two parts. First, we describe case studies of dehydration taken from the SOLVE and SOLVE2 aircraft sampling missions during the Arctic winters of 2000 and 2003 respectively. Trajectory based microphysical modeling is employed to examine the sensitivity of the dehydration to microphysical parameters and the nature of sub-grid scale temperature fluctuations. We then examine the year-to-year variations in potential dehydration using a trajectory climatology.

  15. Dehydration: physiology, assessment, and performance effects.

    PubMed

    Cheuvront, Samuel N; Kenefick, Robert W

    2014-01-01

    This article provides a comprehensive review of dehydration assessment and presents a unique evaluation of the dehydration and performance literature. The importance of osmolality and volume are emphasized when discussing the physiology, assessment, and performance effects of dehydration. The underappreciated physiologic distinction between a loss of hypo-osmotic body water (intracellular dehydration) and an iso-osmotic loss of body water (extracellular dehydration) is presented and argued as the single most essential aspect of dehydration assessment. The importance of diagnostic and biological variation analyses to dehydration assessment methods is reviewed and their use in gauging the true potential of any dehydration assessment method highlighted. The necessity for establishing proper baselines is discussed, as is the magnitude of dehydration required to elicit reliable and detectable osmotic or volume-mediated compensatory physiologic responses. The discussion of physiologic responses further helps inform and explain our analysis of the literature suggesting a ≥ 2% dehydration threshold for impaired endurance exercise performance mediated by volume loss. In contrast, no clear threshold or plausible mechanism(s) support the marginal, but potentially important, impairment in strength, and power observed with dehydration. Similarly, the potential for dehydration to impair cognition appears small and related primarily to distraction or discomfort. The impact of dehydration on any particular sport skill or task is therefore likely dependent upon the makeup of the task itself (e.g., endurance, strength, cognitive, and motor skill). © 2014 American Physiological Society.

  16. Antioxidant defense parameters as predictive biomarkers for fermentative capacity of active dried wine yeast.

    PubMed

    Gamero-Sandemetrio, Esther; Gómez-Pastor, Rocío; Matallana, Emilia

    2014-08-01

    The production of active dried yeast (ADY) is a common practice in industry for the maintenance of yeast starters and as a means of long term storage. The process, however, causes multiple cell injuries, with oxidative damage being one of the most important stresses. Consequentially, dehydration tolerance is a highly appreciated property in yeast for ADY production. In this study we analyzed the cellular redox environment in three Saccharomyces cerevisiae wine strains, which show markedly different fermentative capacities after dehydration. To measure/quantify the effect of dehydration on the S. cerevisiae strains, we used: (i) fluorescent probes; (ii) antioxidant enzyme activities; (ii) intracellular damage; (iii) antioxidant metabolites; and (iv) gene expression, to select a minimal set of biochemical parameters capable of predicting desiccation tolerance in wine yeasts. Our results show that naturally enhanced antioxidant defenses prevent oxidative damage after wine yeast biomass dehydration and improve fermentative capacity. Based on these results we chose four easily assayable parameters/biomarkers for the selection of industrial yeast strains of interest for ADY production: trehalose and glutathione levels, and glutathione reductase and catalase enzymatic activities. Yeast strains selected in accordance with this process display high levels of trehalose, low levels of oxidized glutathione, a high induction of glutathione reductase activity, as well as a high basal level and sufficient induction of catalase activity, which are properties inherent in superior ADY strains. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Daily regulation of body temperature rhythm in the camel (Camelus dromedarius) exposed to experimental desert conditions

    PubMed Central

    Bouâouda, Hanan; Achâaban, Mohamed R.; Ouassat, Mohammed; Oukassou, Mohammed; Piro, Mohamed; Challet, Etienne; El Allali, Khalid; Pévet, Paul

    2014-01-01

    Abstract In the present work, we have studied daily rhythmicity of body temperature (Tb) in Arabian camels challenged with daily heat, combined or not with dehydration. We confirm that Arabian camels use heterothermy to reduce heat gain coupled with evaporative heat loss during the day. Here, we also demonstrate that this mechanism is more complex than previously reported, because it is characterized by a daily alternation (probably of circadian origin) of two periods of poikilothermy and homeothermy. We also show that dehydration induced a decrease in food intake plays a role in this process. Together, these findings highlight that adaptive heterothermy in the Arabian camel varies across the diurnal light–dark cycle and is modulated by timing of daily heat and degrees of water restriction and associated reduction of food intake. The changed phase relationship between the light–dark cycle and the Tb rhythm observed during the dehydration process points to a possible mechanism of internal desynchronization during the process of adaptation to desert environment. During these experimental conditions mimicking the desert environment, it will be possible in the future to determine if induced high‐amplitude ambient temperature (Ta) rhythms are able to compete with the zeitgeber effect of the light–dark cycle. PMID:25263204

  18. Optimal Electrocatalytic Pd/MWNTs Nanocatalysts toward Formic Acid Oxidation

    PubMed Central

    Wang, Yiran; He, Qingliang; Wei, Huige; Guo, Jiang; Ding, Keqiang; Wang, Qiang; Wang, Zhe; Wei, Suying; Guo, Zhanhu

    2017-01-01

    The operating conditions such as composition of electrolyte and temperature can greatly influence the formic acid (HCOOH) oxidation reaction (FAOR). Palladium decorated multi-walled carbon nanotubes (Pd/MWNTs) were successfully synthesized and employed as nanocatalysts to explore the effects of formic acid, sulfuric acid (H2SO4) concentration and temperature on FAOR. Both the hydrogen adsorption in low potential range and the oxidation of poisoning species during the high potential range in cyclic voltammetry were demonstrated to contribute to the enhanced electroactivity of Pd/MWNTs. The as-synthesized Pd/MWNTs gave the best performance under a condition with balanced adsorptions of HCOOH and H2SO4 molecules. The dominant dehydrogenation pathway on Pd/MWNTs can be largely depressed by the increased dehydration pathway, leading to an increased charge transfer resistance (Rct). Increasing HCOOH concentration could directly increase the dehydration process proportion and cause the production of COads species. H2SO4 as donor of H+ greatly facilitated the onset oxidation of HCOOH in the beginning process but it largely depressed the HCOOH oxidation with excess amount of H+. Enhanced ion mobility with increasing the temperature was mainly responsible for the increased current densities, improved tolerance stabilities and reduced Rct values, while dehydration process was also increased simultaneously. PMID:29622817

  19. Low Cost Chemical Feedstocks Using an Improved and Energy Efficient Natural Gas Liquid (NGL) Removal Process, Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Howard, S.; Lu, Yingzhong

    The overall objective of this project is to develop a new low-cost and energy efficient Natural Gas Liquid (NGL) recovery process - through a combination of theoretical, bench-scale and pilot-scale testing - so that it could be offered to the natural gas industry for commercialization. The new process, known as the IROA process, is based on U.S. patent No. 6,553,784, which if commercialized, has the potential of achieving substantial energy savings compared to currently used cryogenic technology. When successfully developed, this technology will benefit the petrochemical industry, which uses NGL as feedstocks, and will also benefit other chemical industries thatmore » utilize gas-liquid separation and distillation under similar operating conditions. Specific goals and objectives of the overall program include: (i) collecting relevant physical property and Vapor Liquid Equilibrium (VLE) data for the design and evaluation of the new technology, (ii) solving critical R&D issues including the identification of suitable dehydration and NGL absorbing solvents, inhibiting corrosion, and specifying proper packing structure and materials, (iii) designing, construction and operation of bench and pilot-scale units to verify design performance, (iv) computer simulation of the process using commercial software simulation platforms such as Aspen-Plus and HYSYS, and (v) preparation of a commercialization plan and identification of industrial partners that are interested in utilizing the new technology. NGL is a collective term for C2+ hydrocarbons present in the natural gas. Historically, the commercial value of the separated NGL components has been greater than the thermal value of these liquids in the gas. The revenue derived from extracting NGLs is crucial to ensuring the overall profitability of the domestic natural gas production industry and therefore of ensuring a secure and reliable supply in the 48 contiguous states. However, rising natural gas prices have dramatically reduced the economic incentive to extract NGLs from domestically produced natural gas. Successful gas processors will be those who adopt technologies that are less energy intensive, have lower capital and operating costs and offer the flexibility to tailor the plant performance to maximize product revenue as market conditions change, while maintaining overall system efficiency. Presently, cryogenic turbo-expander technology is the dominant NGL recovery process and it is used throughout the world. This process is known to be highly energy intensive, as substantial energy is required to recompress the processed gas back to pipeline pressure. The purpose of this project is to develop a new NGL separation process that is flexible in terms of ethane rejection and can reduce energy consumption by 20-30% from current levels, particularly for ethane recoveries of less than 70%. The new process integrates the dehydration of the raw natural gas stream and the removal of NGLs in such a way that heat recovery is maximized and pressure losses are minimized so that high-value equipment such as the compressor, turbo-expander, and a separate dehydration unit are not required. GTI completed a techno-economic evaluation of the new process based on an Aspen-HYSYS simulation model. The evaluation incorporated purchased equipment cost estimates obtained from equipment suppliers and two different commercial software packages; namely, Aspen-Icarus and Preliminary Design and Quoting Service (PDQ$). For a 100 MMscfd gas processing plant, the annualized capital cost for the new technology was found to be about 10% lower than that of conventional technology for C2 recovery above 70% and about 40% lower than that of conventional technology for C2 recovery below 50%. It was also found that at around 40-50% C2 recovery (which is economically justifiable at the current natural gas prices), the energy cost to recover NGL using the new technology is about 50% of that of conventional cryogenic technology.« less

  20. Dehydration (For Teens)

    MedlinePlus

    ... Staying Safe Videos for Educators Search English Español Dehydration KidsHealth / For Teens / Dehydration What's in this article? ... the Doctor? Print en español Deshidratación What Is Dehydration? Dehydration is when someone loses more fluids than ...

  1. Physiologic basis for understanding quantitative dehydration assessment.

    PubMed

    Cheuvront, Samuel N; Kenefick, Robert W; Charkoudian, Nisha; Sawka, Michael N

    2013-03-01

    Dehydration (body water deficit) is a physiologic state that can have profound implications for human health and performance. Unfortunately, dehydration can be difficult to assess, and there is no single, universal gold standard for decision making. In this article, we review the physiologic basis for understanding quantitative dehydration assessment. We highlight how phenomenologic interpretations of dehydration depend critically on the type (dehydration compared with volume depletion) and magnitude (moderate compared with severe) of dehydration, which in turn influence the osmotic (plasma osmolality) and blood volume-dependent compensatory thresholds for antidiuretic and thirst responses. In particular, we review new findings regarding the biological variation in osmotic responses to dehydration and discuss how this variation can help provide a quantitative and clinically relevant link between the physiology and phenomenology of dehydration. Practical measures with empirical thresholds are provided as a starting point for improving the practice of dehydration assessment.

  2. Process for Encapsulating Protein Crystals

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R.; Mosier, Benjamin

    2003-01-01

    A process for growing protein crystals encapsulated within membranes has been invented. This process begins with the encapsulation of a nearly saturated aqueous protein solution inside semipermeable membranes to form microcapsules. The encapsulation is effected by use of special formulations of a dissolved protein and a surfactant in an aqueous first liquid phase, which is placed into contact with a second, immiscible liquid phase that contains one or more polymers that are insoluble in the first phase. The second phase becomes formed into the semipermeable membranes that surround microglobules of the first phase, thereby forming the microcapsules. Once formed, the microcapsules are then dehydrated osmotically by exposure to a concentrated salt or polymer solution. The dehydration forms supersaturated solutions inside the microcapsules, thereby enabling nucleation and growth of protein crystals inside the microcapsules. By suitable formulation of the polymer or salt solution and of other physical and chemical parameters, one can control the rate of transport of water out of the microcapsules through the membranes and thereby create physicochemical conditions that favor the growth, within each microcapsule, of one or a few large crystals suitable for analysis by x-ray diffraction. The membrane polymer can be formulated to consist of low-molecular-weight molecules that do not interfere with the x-ray diffraction analysis of the encapsulated crystals. During dehydration, an electrostatic field can be applied to exert additional control over the rate of dehydration. This protein-crystal-encapsulation process is expected to constitute the basis of protein-growth experiments to be performed on the space shuttle and the International Space Station. As envisioned, the experiments would involve the exposure of immiscible liquids to each other in sequences of steps under microgravitational conditions. The experiments are expected to contribute to knowledge of the precise conditions under which protein crystals form. By enhancing the ability to grow crystals suitable for x-ray diffraction analysis, this knowledge can be expected to benefit not only the space program but also medicine and the pharmaceutical industry.

  3. Empirically Derived Dehydration Scoring and Decision Tree Models for Children With Diarrhea: Assessment and Internal Validation in a Prospective Cohort Study in Dhaka, Bangladesh

    PubMed Central

    Glavis-Bloom, Justin; Modi, Payal; Nasrin, Sabiha; Rege, Soham; Chu, Chieh; Schmid, Christopher H; Alam, Nur H

    2015-01-01

    Introduction: Diarrhea remains one of the most common and most deadly conditions affecting children worldwide. Accurately assessing dehydration status is critical to determining treatment course, yet no clinical diagnostic models for dehydration have been empirically derived and validated for use in resource-limited settings. Methods: In the Dehydration: Assessing Kids Accurately (DHAKA) prospective cohort study, a random sample of children under 5 with acute diarrhea was enrolled between February and June 2014 in Bangladesh. Local nurses assessed children for clinical signs of dehydration on arrival, and then serial weights were obtained as subjects were rehydrated. For each child, the percent weight change with rehydration was used to classify subjects with severe dehydration (>9% weight change), some dehydration (3–9%), or no dehydration (<3%). Clinical variables were then entered into logistic regression and recursive partitioning models to develop the DHAKA Dehydration Score and DHAKA Dehydration Tree, respectively. Models were assessed for their accuracy using the area under their receiver operating characteristic curve (AUC) and for their reliability through repeat clinical exams. Bootstrapping was used to internally validate the models. Results: A total of 850 children were enrolled, with 771 included in the final analysis. Of the 771 children included in the analysis, 11% were classified with severe dehydration, 45% with some dehydration, and 44% with no dehydration. Both the DHAKA Dehydration Score and DHAKA Dehydration Tree had significant AUCs of 0.79 (95% CI = 0.74, 0.84) and 0.76 (95% CI = 0.71, 0.80), respectively, for the diagnosis of severe dehydration. Additionally, the DHAKA Dehydration Score and DHAKA Dehydration Tree had significant positive likelihood ratios of 2.0 (95% CI = 1.8, 2.3) and 2.5 (95% CI = 2.1, 2.8), respectively, and significant negative likelihood ratios of 0.23 (95% CI = 0.13, 0.40) and 0.28 (95% CI = 0.18, 0.44), respectively, for the diagnosis of severe dehydration. Both models demonstrated 90% agreement between independent raters and good reproducibility using bootstrapping. Conclusion: This study is the first to empirically derive and internally validate accurate and reliable clinical diagnostic models for dehydration in a resource-limited setting. After external validation, frontline providers may use these new tools to better manage acute diarrhea in children. PMID:26374802

  4. Empirically Derived Dehydration Scoring and Decision Tree Models for Children With Diarrhea: Assessment and Internal Validation in a Prospective Cohort Study in Dhaka, Bangladesh.

    PubMed

    Levine, Adam C; Glavis-Bloom, Justin; Modi, Payal; Nasrin, Sabiha; Rege, Soham; Chu, Chieh; Schmid, Christopher H; Alam, Nur H

    2015-08-18

    Diarrhea remains one of the most common and most deadly conditions affecting children worldwide. Accurately assessing dehydration status is critical to determining treatment course, yet no clinical diagnostic models for dehydration have been empirically derived and validated for use in resource-limited settings. In the Dehydration: Assessing Kids Accurately (DHAKA) prospective cohort study, a random sample of children under 5 with acute diarrhea was enrolled between February and June 2014 in Bangladesh. Local nurses assessed children for clinical signs of dehydration on arrival, and then serial weights were obtained as subjects were rehydrated. For each child, the percent weight change with rehydration was used to classify subjects with severe dehydration (>9% weight change), some dehydration (3-9%), or no dehydration (<3%). Clinical variables were then entered into logistic regression and recursive partitioning models to develop the DHAKA Dehydration Score and DHAKA Dehydration Tree, respectively. Models were assessed for their accuracy using the area under their receiver operating characteristic curve (AUC) and for their reliability through repeat clinical exams. Bootstrapping was used to internally validate the models. A total of 850 children were enrolled, with 771 included in the final analysis. Of the 771 children included in the analysis, 11% were classified with severe dehydration, 45% with some dehydration, and 44% with no dehydration. Both the DHAKA Dehydration Score and DHAKA Dehydration Tree had significant AUCs of 0.79 (95% CI = 0.74, 0.84) and 0.76 (95% CI = 0.71, 0.80), respectively, for the diagnosis of severe dehydration. Additionally, the DHAKA Dehydration Score and DHAKA Dehydration Tree had significant positive likelihood ratios of 2.0 (95% CI = 1.8, 2.3) and 2.5 (95% CI = 2.1, 2.8), respectively, and significant negative likelihood ratios of 0.23 (95% CI = 0.13, 0.40) and 0.28 (95% CI = 0.18, 0.44), respectively, for the diagnosis of severe dehydration. Both models demonstrated 90% agreement between independent raters and good reproducibility using bootstrapping. This study is the first to empirically derive and internally validate accurate and reliable clinical diagnostic models for dehydration in a resource-limited setting. After external validation, frontline providers may use these new tools to better manage acute diarrhea in children. © Levine et al.

  5. Comparison of fortified, sfursat, and passito wines produced from fresh and dehydrated grapes of aromatic black cv. Moscato nero (Vitis vinifera L.).

    PubMed

    Ossola, Carolina; Giacosa, Simone; Torchio, Fabrizio; Río Segade, Susana; Caudana, Alberto; Cagnasso, Enzo; Gerbi, Vincenzo; Rolle, Luca

    2017-08-01

    Moscato nero d'Acqui is an Italian aromatic black winegrape variety characterized by a low content of anthocyanins (mostly tri-substituted), a satisfactory content of high molecular mass tannins, and a fair amount of terpenes. The grapes were subjected to a postharvest dehydration process under controlled thermohygrometric conditions (16-18°C, 55-70 RH%, 0.6m/s air speed) with the aim to produce three different special wine types (fortified, sfursat, and passito) from fresh, partially dehydrated (27°Brix), and withered (36°Brix) grapes, respectively. Chemical traits of produced grapes and wines were then evaluated through spectrophotometric, HPLC, and GC-MS methods. Increased contents of skin phenolic compounds and reduced extractable contents of seed phenolic compounds were observed as dehydration progressed. Few significant differences were found in the anthocyanin profile of grapes, although the relative abundance of coumaroylated anthocyanins was higher in dehydrated grapes. The predominant free volatile compound found in grapes was geraniol, which decreased with increasing water loss, whereas the contents of major glycosylated volatile compounds increased even above the concentration effect. The changes in the phenolic composition among wines agreed with those among grape skins. Fortified wines were chromatically unsatisfactory probably due to the low content of total anthocyanins, whereas sfursat and passito wines meet good chromatic characteristics as a result of the concentration effect during grape dehydration. Fortified and sfursat wines had free aroma profiles richer in 2-phenylethanol and citronellol, whereas passito wines were mainly composed of 2-phenylethanol and 2-phenylethyl acetate, citronellol being the predominant terpenol in all the wine types studied. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Sonographic aorta/IVC cross-sectional area index for evaluation of dehydration in children.

    PubMed

    Kwon, Hyuksool; Jung, Jae Yun; Lee, Jin Hee; Kwak, Young Ho; Kim, Do Kyun; Jung, Jin Hee; Chang, Ik Wan; Kim, Kyuseok

    2016-09-01

    Current studies have not found sufficient evidence to encourage the use of ultrasound for assessing dehydration in children. We introduce a new sonographic parameter, the "aorta/inferior vena cava (IVC) cross-sectional area index" (Ao/IVCA) measured just inferior to the xiphoid process, for the effective evaluation of dehydration in children. This is a prospective, observational study. We enrolled children who presented to the pediatric emergency department (PED) between May 2014 and January 2015. We measured the maximum diameter of the aorta from inner wall to inner wall, and the long and short axis diameters of IVC using a convex array transducer. Ao/IVCA was calculated and compared with aorta/IVC maximal diameter index (Ao/IVCD) and the clinical dehydration scale (CDS). A total of 34 children were enrolled. We found a statistically significant correlation between Ao/IVCA and CDS (R(2) = 0.30; P <.001). Ao/IVCD did not correlate significantly with CDS (R(2) = 0.08; P =.11). The ability of Ao/IVCA and Ao/IVCD to predict CDS ≥1 was assessed using the receiver operating characteristic analysis. The area under the receiver operating characteristic curve for Ao/IVCA was larger than that for Ao/IVCD (0.87 vs 0.75, P= .04). The cut-off value of Ao/IVCA that yielded the maximum value of Youden index was 1.81 (sensitivity: 72%, specificity: 89%). Ao/IVCA might be a promising index for the assessment of dehydration. The diagnostic performance of Ao/IVCA for dehydration might be higher than that of the method that uses the maximum diameter of IVC and the aorta. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The State of the World's Children 1985: A Report by United Nations Children's Fund (UNICEF).

    ERIC Educational Resources Information Center

    Early Child Development and Care, 1985

    1985-01-01

    Reports four basic strategies of the current child survival revolution in the world: use of oral rehydration therapy (ORT) for preventing and treating diarrheal dehydration (the biggest single killer of children in the modern world), growth monitoring to prevent child malnutrition, breast-feeding, and immunization to provide protection against six…

  8. PROCESS OF RECOVERING ALKALI METALS

    DOEpatents

    Wolkoff, J.

    1961-08-15

    A process is described of recovering alkali metal vapor by sorption on activated alumina, activated carbon, dehydrated zeolite, activated magnesia, or Fuller's earth preheated above the vaporization temperature of the alkali metal and subsequent desorption by heating the solvent under vacuum. (AEC)

  9. 40 CFR 407.20 - Applicability; description of the apple products subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... apple products subcategory. 407.20 Section 407.20 Protection of Environment ENVIRONMENTAL PROTECTION... PROCESSING POINT SOURCE CATEGORY Apple Products Subcategory § 407.20 Applicability; description of the apple... processing of apples into apple products. The processing of apples into caustic peeled or dehydrated products...

  10. Mechanistic Insight Facilitates Discovery of a Mild and Efficient Copper-Catalyzed Dehydration of Primary Amides to Nitriles Using Hydrosilanes.

    PubMed

    Liu, Richard Y; Bae, Minwoo; Buchwald, Stephen L

    2018-02-07

    Metal-catalyzed silylative dehydration of primary amides is an economical approach to the synthesis of nitriles. We report a copper-hydride(CuH)-catalyzed process that avoids a typically challenging 1,2-siloxane elimination step, thereby dramatically increasing the rate of the overall transformation relative to alternative metal-catalyzed systems. This new reaction proceeds at ambient temperature, tolerates a variety of metal-, acid-, or base-sensitive functional groups, and can be performed using a simple ligand, inexpensive siloxanes, and low catalyst loading.

  11. Catalyst-free dehydrative α-alkylation of ketones with alcohols: green and selective autocatalyzed synthesis of alcohols and ketones.

    PubMed

    Xu, Qing; Chen, Jianhui; Tian, Haiwen; Yuan, Xueqin; Li, Shuangyan; Zhou, Chongkuan; Liu, Jianping

    2014-01-03

    Direct dehydrative α-alkylation reactions of ketones with alcohols are now realized under simple, practical, and green conditions without using external catalysts. These catalyst-free autocatalyzed alkylation methods can efficiently afford useful alkylated ketone or alcohol products in a one-pot manner and on a large scale by CC bond formation of the in situ generated intermediates with subsequent controllable and selective Meerwein-Pondorf-Verley-Oppenauer-type redox processes. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Dehydration of plutonium or neptunium trichloride hydrate

    DOEpatents

    Foropoulos, Jr., Jerry; Avens, Larry R.; Trujillo, Eddie A.

    1992-01-01

    A process of preparing anhydrous actinide metal trichlorides of plutonium or neptunium by reacting an aqueous solution of an actinide metal trichloride selected from the group consisting of plutonium trichloride or neptunium trichloride with a reducing agent capable of converting the actinide metal from an oxidation state of +4 to +3 in a resultant solution, evaporating essentially all the solvent from the resultant solution to yield an actinide trichloride hydrate material, dehydrating the actinide trichloride hydrate material by heating the material in admixture with excess thionyl chloride, and recovering anhydrous actinide trichloride is provided.

  13. Dehydration of plutonium or neptunium trichloride hydrate

    DOEpatents

    Foropoulos, J. Jr.; Avens, L.R.; Trujillo, E.A.

    1992-03-24

    A process is described for preparing anhydrous actinide metal trichlorides of plutonium or neptunium by reacting an aqueous solution of an actinide metal trichloride selected from the group consisting of plutonium trichloride or neptunium trichloride with a reducing agent capable of converting the actinide metal from an oxidation state of +4 to +3 in a resultant solution, evaporating essentially all the solvent from the resultant solution to yield an actinide trichloride hydrate material, dehydrating the actinide trichloride hydrate material by heating the material in admixture with excess thionyl chloride, and recovering anhydrous actinide trichloride.

  14. Destruction of Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Staphylococcus aureus achieved during manufacture of whole-muscle beef Jerkyin home-style dehydrators.

    PubMed

    Dierschke, Sarah; Ingham, Steven C; Ingham, Barbara H

    2010-11-01

    Adequate lethality in jerky manufacture destroys appropriate levels of Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Staphylococcus aureus. Our goal was to evaluate the lethality of four home-style dehydrator processes against these pathogens. Whole-muscle beef strips were inoculated with L. monocytogenes (five strains), S. aureus (five strains), or a mixed inoculum of E. coli O157:H7 (five strains) and Salmonella (eight strains). After allowing for attachment, strips were marinated in Colorado-, Original-, or Teriyaki-seasoned marinade for 22 to 24 h and dried in three home-style dehydrators (Garden Master, Excalibur, and Jerky Xpress) at 57.2 to 68.3°C. Samples were taken postmarination; after 4, 6, and 8 h of drying; and after drying, followed by heating for 10 min in a 135°C oven. Surviving inocula were enumerated. With a criterion of ≥ 5.0-log CFU/cm² reduction as the standard for adequate process lethality, none of the samples achieved the target lethality for any pathogen after 4 h of drying, even though all samples appeared "done" (water activity of less than 0.85). A postdehydration oven-heating step increased the proportion of samples meeting the target lethality after 4 h of drying to 71.9, 88.9, 55.6, and 77.8% for L. monocytogenes-, S. aureus-, E. coli O157:H7-, and Salmonella-inoculated samples, respectively, and after an 8-h drying to 90.6, 94.4, 83.3, and 91.7% of samples, respectively. Significantly greater lethality was seen with higher dehydrator temperature and significantly lower with Teriyaki-marinated samples. Heating jerky dried in a home-style dehydrator for 10 min in a 135°C oven would be an effective way to help ensure safety of this product.

  15. A mechanical model for complex fault patterns induced by fluid overpressures due to dehydration reaction within evaporitic rocks

    NASA Astrophysics Data System (ADS)

    de Paola, N.; Collettini, C.; Trippetta, F.; Barchi, M. R.; Minelli, G.

    2006-12-01

    Complex fault patterns, i.e. faults which exhibit a diverse range of strikes, may develop under a weak/absent regional tectonic field (e.g. polygonal faults). We studied a complex synsedimentary fault pattern, geometrically similar to polygonal fault systems, developed during an early Jurassic faulting episode and exposed in the Umbria-Marche Apennines (Italy). Along the passive margin of the African plate, these faults disrupt the Early Jurassic platform overlying the Triassic Evaporites, and bound the subsiding basins where a pelagic succession was successively deposited. We digitised the fault pattern at the regional scale on the grounds of the available geological maps, characterising each fault in terms of attitude, length and throw (i.e. vertical displacement). Fault statistical analysis shows a largely scattered orientation, a high grade of fragmentation, an average length of about 10 km and a constant length/displacement ratio. The measured stratigraphic throw ranges from 300 m to 700 m leading to very low long-term fault slip rates (less than 0.1 mm/yr). We propose a mechanical model where Jurassic faulting has been strongly influenced by the onset of dehydration of the Triassic Evaporites, made of interbedded gypsum layers and dolostones. Dehydration, i.e. anhydritization of the gypsum rich layers, initiated during burial at 1000 m of depth. During initial phases of dehydration increasing fluid pressures trapped at the gypsum-dolostones interface, promote hydrofracturing and faulting within the dolostone layers and subsequent fluid release. Fluid expulsion produces volume contraction of the dehydrating rocks causing vertical thinning and horizontal isotropic extension. This state of non-plane strain is accommodated within the composite gypsum-dolostones sequence by a mix of ductile (flowage and boudinage) and brittle (hydrofracturing and faulting) deformation processes. The stress field caused by the former processes, consistent with an almost isotropic stress distribution within the horizontal plane, explains well the studied complex fault pattern and seems to be dominant over the far-field regional extensional tectonics.

  16. Mitochondria inheritance is a key factor for tolerance to dehydration in wine yeast production.

    PubMed

    Picazo, C; Gamero-Sandemetrio, E; Orozco, H; Albertin, W; Marullo, P; Matallana, E; Aranda, A

    2015-03-01

    Mitochondria are the cell's powerhouse when organisms are grown in the presence of oxygen. They are also the source of reactive oxygen species that cause damage to the biochemical components of the cell and lead to cellular ageing and death. Under winemaking conditions, Saccharomyces yeasts exclusively have a fermentative metabolism due to the high sugar content of grape must. However, their production as an active dry yeast (ADY) form required aerobic propagation and a dehydration process. In these industrial steps, oxidative stress is particularly harmful for the cell. In this work, we analysed the impact of the mitochondrial genome on oxidative stress response, longevity and dehydration tolerance using the synthetic interspecific hybrids obtained between two S. cerevisiae and S. uvarum strains. The isogenic nature of nuclear DNA of such hybrids allowed us to analyse the impact of mitochondrial DNA for fermentative and oxidative stress conditions. Under grape must conditions, the inheritance of mitochondrial DNA poorly impacted the fermentative performance of interspecific hybrids, unlike the hybrids with S. cerevisiae mitochondrial inheritance, which displayed increased tolerance to oxidative stress and dehydration, and showed an extended chronological longevity when cells were grown with aeration. In modern oenology, yeast starters are employed to inoculate grape juice, usually in the form of active dry yeast (ADY). The dehydration process implies stressful conditions that lead to oxidative damage. Other yeast species and interspecific hybrids other than Saccharomyces cerevisiae may be used to confer novel properties to the final product. However, these yeasts are usually more sensitive to drying. Understanding the causes of oxidative stress tolerance is therefore necessary for developing the use of these organisms in industry. This study indicates the impact of mitochondrial DNA inheritance for oxidative stress resistance in an interspecific context using isogenic Saccharomyces cerevisiae × Saccharomyces uvarum hybrids. © 2014 The Society for Applied Microbiology.

  17. Physical signs of dehydration in the elderly.

    PubMed

    Shimizu, Miyuki; Kinoshita, Kensuke; Hattori, Kazuya; Ota, Yoshio; Kanai, Takao; Kobayashi, Hiroyuki; Tokuda, Yasuharu

    2012-01-01

    Dehydration is a common condition and frequent cause of hospitalization in older people, despite the caregiver's high attention in attempt to avoid its occurrence. In this study, various physical signs were examined as clinical signs of dehydration in elderly. A prospective observational study was conducted in an acute care teaching hospital. Consecutive elderly patients who were admitted to the Department of Medicine were evaluated. Dehydration was defined as a calculated serum osmolality above 295 mOsm/L. The patients diagnosed as dehydrated or not dehydrated were observed for physical signs of dehydration. Data of blood and urine chemistry analysis were also compared between the two groups. A total of 27 elderly patients admitted with acute medical conditions were included in this study. For the physical signs, dry axilla had moderate sensitivity (44%) and excellent specificity (89%) to detect dehydration. Sunken eyes and delayed capillary refill time also showed relatively good specificity (83%). For laboratory data, the mean concentrations of serum sodium of the dehydrated group (146 mEq/L) was significantly higher (p<0.01) than those of the non-dehydrated group (134 mEq/L). Physical signs of dehydration in elderly showed relatively good specificity but poor sensitivity. The evaluation of the axillary moisture could help assess dehydration as well as laboratory data analysis such as serum sodium concentration.

  18. Energetic consequences of repeated and prolonged dehydration in the Antarctic midge, Belgica antarctica.

    PubMed

    Teets, Nicholas M; Kawarasaki, Yuta; Lee, Richard E; Denlinger, David L

    2012-04-01

    Larvae of the Antarctic midge, Belgica antarctica, routinely face periods of limited water availability in their natural environments on the Antarctic Peninsula. As a result, B. antarctica is one of the most dehydration-tolerant insects studied, surviving up to 70% loss of its body water. While previous studies have characterized the physiological effects of a single bout of dehydration, in nature larvae are likely to experience multiple bouts of dehydration throughout their lifetime. Thus, we examined the physiological consequences of repeated dehydration and compared results to larvae exposed to a single, prolonged period of dehydration. For the repeated dehydration experiment, larvae were exposed to 1-5 cycles of 24 h dehydration at 75% RH followed by 24 h rehydration. Each bout of dehydration resulted in 30-40% loss of body water, with a concomitant 2- to 3-fold increase in body fluid osmolality. While nearly 100% of larvae survived a single bout of dehydration, <65% of larvae survived five such cycles. Larvae subjected to multiple bouts of dehydration also experienced severe depletion of carbohydrate energy reserves; glycogen and trehalose content decreased with each successive cycle, with larvae losing 89% and 48% of their glycogen and trehalose, respectively, after five cycles of dehydration/rehydration. Larvae exposed to prolonged dehydration (99% RH for 10d) had 26% less water, 43% less glycogen, and 27% less lipid content than controls, but did not experience any mortality. Thus, both repeated and prolonged dehydration results in substantial energetic costs that are likely to negatively impact fitness. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Combined effect of short-term dehydration and sublethal acute oral dicrotophos exposure confounds the diagnosis of anticholinesterase exposure in common quail (Coturnix coturnix) using plasma cholinesterase activity.

    PubMed

    Heffernan, James; Mineau, Pierre; Falk, Ramona; Wickstrom, Mark

    2012-07-01

    Common Quail (Coturnix coturnix) were subjected to controlled and replicated experiments in the summer of 2008 to investigate the effects of short-term dehydration on cholinesterase activity in brain and plasma and the interaction between dehydration and exposure to the organophosphorus pesticide dicrotophos in these same tissues. Our objective was to determine if dehydration could confound the diagnosis of anticholinesterase exposure using inhibition of cholinesterase activity in quail tissues. The effect of dehydration was quantified using measures of plasma osmolality and hematocrit. Dicrotophos exposure caused significant inhibition of cholinesterase activity in brain, while the effects of dehydration and interaction were not significant. Dehydration caused significant duration-dependent increases in plasma osmolality and hematocrit. Dehydration also caused a significant increase in plasma cholinesterase activity. Variation in the change in plasma cholinesterase activity in response to dehydration was significantly and positively correlated with dehydration-induced variation in both the change in plasma osmolality and the change in hematocrit. These correlations suggest that plasma cholinesterase activity in quail is not limited to plasma but occupies some larger pool of the extracellular fluid volume, and we suggest lymph is part of that pool. The effects of dehydration on plasma cholinesterase activity masked the inhibitory effects of dicrotophos. Here, the combination of dehydration and dicrotophos exposure produced plasma cholinesterase activity that was not significantly different from reference and pre-exposure values, confounding the diagnosis of anticholinesterase exposure in dehydrated, dicrotophos-exposed quail. A method to adjust plasma cholinesterase activities for the confounding effects of dehydration and enable the diagnosis of anticholinesterase exposure in dehydrated, dicrotophos-exposed quail was developed. Clinicians and practitioners responsible for the diagnosis of anticholinesterase exposure in birds are cautioned that dehydration, commonly observed in sick wildlife, may mask the effect of anticholinesterases on plasma cholinesterase activity.

  20. Midupper Arm Circumference Outperforms Weight-Based Measures of Nutritional Status in Children with Diarrhea12

    PubMed Central

    Modi, Payal; Nasrin, Sabiha; Hawes, Meagan; Glavis-Bloom, Justin; Alam, Nur H; Hossain, M Iqbal; Levine, Adam C

    2015-01-01

    Background: Undernutrition contributes to 45% of all deaths in children <5 y of age worldwide, with a large proportion of those deaths caused by diarrhea. However, no validated tools exist for assessing undernutrition in children with diarrhea and possible dehydration. Objective: This study assessed the validity of different measures of undernutrition in children with diarrhea. Methods: A prospective cohort study was conducted at an urban hospital in Bangladesh. Children <60 mo of age presenting to the hospital rehydration unit with acute diarrhea were eligible for enrollment. Study staff randomly selected 1196 children for screening, of which 1025 were eligible, 850 were enrolled, and 721 had complete data for analysis. Anthropometric measurements, including weight-for-age z score (WAZ), weight-for-length z score (WLZ), midupper arm circumference (MUAC), and midupper arm circumference z score (MUACZ), were calculated pre- and posthydration in all patients. Measurements were evaluated for their ability to correctly identify undernutrition in children with varying degrees of dehydration. Results: Of the 721 patients with full data for analysis, the median percent dehydration was 4%. Of the 4 measures evaluated, MUAC and MUACZ demonstrated 92–94% agreement pre- and posthydration compared with 69–76% for WAZ and WLZ. Although each 1% change in hydration status was found to change weight-for-age by 0.0895 z scores and weight-for-length by 0.1304 z scores, MUAC and MUACZ were not significantly affected by dehydration status. Weight-based measures misclassified 12% of children with severe underweight and 14% with severe acute malnutrition (SAM) compared with only 1–2% for MUAC and MUACZ. Conclusions: MUAC and MUACZ were the most accurate predictors of undernutrition in children with diarrhea. WAZ and WLZ were significantly affected by dehydration status, leading to the misdiagnosis of many patients on arrival with severe underweight and SAM. This trial was registered at clinicaltrials.gov as NCT02007733. PMID:25972523

  1. Midupper Arm Circumference Outperforms Weight-Based Measures of Nutritional Status in Children with Diarrhea.

    PubMed

    Modi, Payal; Nasrin, Sabiha; Hawes, Meagan; Glavis-Bloom, Justin; Alam, Nur H; Hossain, M Iqbal; Levine, Adam C

    2015-07-01

    Undernutrition contributes to 45% of all deaths in children <5 y of age worldwide, with a large proportion of those deaths caused by diarrhea. However, no validated tools exist for assessing undernutrition in children with diarrhea and possible dehydration. This study assessed the validity of different measures of undernutrition in children with diarrhea. A prospective cohort study was conducted at an urban hospital in Bangladesh. Children <60 mo of age presenting to the hospital rehydration unit with acute diarrhea were eligible for enrollment. Study staff randomly selected 1196 children for screening, of which 1025 were eligible, 850 were enrolled, and 721 had complete data for analysis. Anthropometric measurements, including weight-for-age z score (WAZ), weight-for-length z score (WLZ), midupper arm circumference (MUAC), and midupper arm circumference z score (MUACZ), were calculated pre- and posthydration in all patients. Measurements were evaluated for their ability to correctly identify undernutrition in children with varying degrees of dehydration. Of the 721 patients with full data for analysis, the median percent dehydration was 4%. Of the 4 measures evaluated, MUAC and MUACZ demonstrated 92-94% agreement pre- and posthydration compared with 69-76% for WAZ and WLZ. Although each 1% change in hydration status was found to change weight-for-age by 0.0895 z scores and weight-for-length by 0.1304 z scores, MUAC and MUACZ were not significantly affected by dehydration status. Weight-based measures misclassified 12% of children with severe underweight and 14% with severe acute malnutrition (SAM) compared with only 1-2% for MUAC and MUACZ. MUAC and MUACZ were the most accurate predictors of undernutrition in children with diarrhea. WAZ and WLZ were significantly affected by dehydration status, leading to the misdiagnosis of many patients on arrival with severe underweight and SAM. This trial was registered at clinicaltrials.gov as NCT02007733. © 2015 American Society for Nutrition.

  2. Methods for dehydration of sugars and sugar alcohols

    DOEpatents

    Holladay, Johnathan E [Kennewick, WA; Hu, Jianli [Kennewick, WA; Zhang, Xinjie [Burlington, MA; Wang, Yong [Richland, WA

    2010-08-10

    The invention includes a method of dehydration of a sugar using a dehydration catalyst and a co-catalyst within a reactor. A sugar is introduced and H.sub.2 is flowed through the reactor at a pressure of less than or equal to about 300 psig to convert at least some of the sugar into an anhydrosugar product. The invention includes a process for producing isosorbide. A starting material comprising sorbitol is flowed into a reactor. H.sub.2 is counter flowed through the reactor. The starting material is exposed to a catalyst in the presence of a co-catalyst which comprises at least one metal. The exposing is conducted at a hydrogen pressure of less than or equal to 300 psig within the reactor and the hydrogen removes at least some of any water present during the exposing and inhibits formation of colored byproducts.

  3. 21 CFR 73.40 - Dehydrated beets (beet powder).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.40 Dehydrated beets (beet powder). (a) Identity. (1) The color additive dehydrated beets is a dark red powder prepared by dehydrating sound, mature, good quality, edible beets. (2) Color additive mixtures made with dehydrated beets may contain as...

  4. Efficient ethanol recovery from yeast fermentation broth with integrated distillation-membrane process

    EPA Science Inventory

    A hybrid process integrating vapor stripping with vapor compression and vapor permeation membrane separation, termed Membrane Assisted Vapor Stripping (MAVS), was evaluated for recovery and dehydration of ethanol from aqueous solution as an alternative to conventional distillatio...

  5. Efficient ethanol recovery from fermentation broths with integrated distillation-membrane process

    EPA Science Inventory

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane separati...

  6. Global Analysis of WRKY Genes and Their Response to Dehydration and Salt Stress in Soybean.

    PubMed

    Song, Hui; Wang, Pengfei; Hou, Lei; Zhao, Shuzhen; Zhao, Chuanzhi; Xia, Han; Li, Pengcheng; Zhang, Ye; Bian, Xiaotong; Wang, Xingjun

    2016-01-01

    WRKY proteins are plant specific transcription factors involved in various developmental and physiological processes, especially in biotic and abiotic stress resistance. Although previous studies suggested that WRKY proteins in soybean (Glycine max var. Williams 82) involved in both abiotic and biotic stress responses, the global information of WRKY proteins in the latest version of soybean genome (Wm82.a2v1) and their response to dehydration and salt stress have not been reported. In this study, we identified 176 GmWRKY proteins from soybean Wm82.a2v1 genome. These proteins could be classified into three groups, namely group I (32 proteins), group II (120 proteins), and group III (24 proteins). Our results showed that most GmWRKY genes were located on Chromosome 6, while chromosome 11, 12, and 20 contained the least number of this gene family. More GmWRKY genes were distributed on the ends of chromosomes to compare with other regions. The cis-acting elements analysis suggested that GmWRKY genes were transcriptionally regulated upon dehydration and salt stress. RNA-seq data analysis indicated that three GmWRKY genes responded negatively to dehydration, and 12 genes positively responded to salt stress at 1, 6, and 12 h, respectively. We confirmed by qRT-PCR that the expression of GmWRKY47 and GmWRKY 58 genes was decreased upon dehydration, and the expression of GmWRKY92, 144 and 165 genes was increased under salt treatment.

  7. Dehydration and Stabilization of a Reactive Tertiary Hydroxyl Group in Solid Oral Dosage Forms of BMS-779788.

    PubMed

    Adams, Monica L; Sharma, Vijayata; Gokhale, Madhushree; Huang, Yande; Stefanski, Kevin; Su, Ching; Hussain, Munir A

    2016-04-01

    BMS-779788 contains a reactive tertiary hydroxyl attached to a weakly basic imidazole ring. Propensity of the carbinol toward dehydration to yield the corresponding alkene, BMS-779788-ALK, was evaluated. Elevated levels of BMS-779788-ALK were observed in excipient compatibility samples. Stability studies revealed that BMS-779788 degrades to BMS-779788-ALK in capsules and tablets prepared by both dry and wet granulation processes. An acid-catalyzed dehydration mechanism, in which the heterocyclic core contributes resonance stability to the cationic intermediate via charge transfer to the imidazole ring, was proposed. Therefore, neutralization via a buffered (pH 7.0) granulating solution was used to mitigate dehydration. Solution studies revealed degradation of BMS-779788 to BMS-779788-ALK over the pH range of 1-7.5. Reversibility was confirmed by initiating reactions with BMS-779788-ALK over the same pH range. Accordingly, a simple reversible scheme can be used to describe reactions initiated with either BMS-779788 or BMS-779788-ALK. To eliminate potential for charge delocalization across the heterocycle and probe the degradation mechanism, the imidazole ring of BMS-779788 was methylated (BMS-779788-Me). The propensity for acid-catalyzed dehydration was then evaluated. The acid stability of BMS-779788-Me confirmed that the heterocyclic core contributes to reactivity liability of the tertiary hydroxyl. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  8. Osmotic dehydration of fruits and vegetables: a review.

    PubMed

    Yadav, Ashok Kumar; Singh, Satya Vir

    2014-09-01

    The main cause of perishability of fruits and vegetables are their high water content. To increase the shelf life of these fruits and vegetables many methods or combination of methods had been tried. Osmotic dehydration is one of the best and suitable method to increase the shelf life of fruits and vegetables. This process is preferred over others due to their vitamin and minerals, color, flavor and taste retention property. In this review different methods, treatments, optimization and effects of osmotic dehydration have been reviewed. Studied showed that combination of different osmotic agents were more effective than sucrose alone due to combination of properties of solutes. During the experiments it was found that optimum osmosis was found at approximately 40 °C, 40 °B of osmotic agent and in near about 132 min. Pretreatments also leads to increase the osmotic process in fruits and vegetables. Mass transfer kinetics study is an important parameter to study osmosis. Solids diffusivity were found in wide range (5.09-32.77 kl/mol) studied by Fick's laws of diffusion. These values vary depending upon types of fruits and vegetables and osmotic agents.

  9. Can Total Body Resistance Measured Using Bioelectrical Impedance Analysis Be the Index of Dehydration in Older Japanese Patients?

    PubMed

    Shimizu, Miyuki; Kinoshita, Kensuke; Maeno, Takami; Kobayashi, Hiroyuki; Maeno, Tetsuhiro

    2017-11-01

    Dehydration in older patients has long been considered a significant health problem because it implies increased morbidity and mortality. However, dehydration is detected by a combination of physical signs and blood tests. For older people dwelling at home and in nursing homes, a simple and non-invasive method for detecting dehydration by caregivers is needed. The total body resistance is measured using bioelectrical impedance analysis and is known as an indicator of dehydration. There are no data from older Japanese patients on this issue. We performed this study to examine the relationship between dehydration and total body resistance in Japan. We performed blood tests and measured bioelectrical impedance in older outpatients aged ≥ 65 years from the Internal Medicine Department at Mito Kyodo General Hospital. Patients were classified as dehydrated and non-dehydrated using the dehydration index with a blood urea nitrogen/creatinine ratio > 20, and the mean total body resistance was compared between the two groups. Eighty-one patients were recruited in the study. In the dehydrated group, the mean total body resistance was 439 Ω at 50 kHz, which was significantly higher than that in the non-dehydrated group (408 Ω, P = 0.038). The total body resistance measurements can be used for simple assessment of dehydration among older Japanese patients.

  10. 7 CFR 929.11 - To can, freeze, or dehydrate.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false To can, freeze, or dehydrate. 929.11 Section 929.11... LONG ISLAND IN THE STATE OF NEW YORK Order Regulating Handling Definitions § 929.11 To can, freeze, or dehydrate. To can, freeze, or dehydrate means to convert cranberries into canned, frozen, or dehydrated...

  11. Lethality of home-style dehydrator processes against Escherichia coli O157:H7 and salmonella serovars in the manufacture of ground-and-formed beef jerky and the potential for using a pathogen surrogate in process validation.

    PubMed

    Borowski, A G; Ingham, S C; Ingham, B H

    2009-10-01

    Ground-and-formed beef jerky can be made easily at home with ground beef and kits that include spice, cure, and jerky-forming equipment. Ground beef poses inherent risks of illness due to Escherichia coli O157:H7 and Salmonella contamination, making adequate pathogen lethality important in jerky manufacturing. We evaluated the effectiveness of drying regimes at eliminating E. coli O157:H7 and Salmonella in seasoned ground-and-formed beef jerky manufactured with three home-style dehydrators and one small commercial unit. Inoculated jerky strips were dried for up to 12 or 24 h in a home-style or the commercial unit, respectively, with target drying temperatures ranging from 51.7 degrees C (125 degrees F) to 71.1 degrees C (160 degrees F). Pathogen lethality varied with seasoning, temperature, and drying time (n = 288 samples). Lethality against E. coli O157:H7 ranged from 1.5 log CFU (Jerky Xpress, 57.2 degrees C [135 degrees F], 4 h) to 6.4 log CFU (Gardenmaster, 68.3 degrees C [155 degrees F], 12 h), and varied with seasoning. Lethality against Salmonella ranged from 1.7 log CFU (Jerky Xpress, 57.2 degrees C [135 degrees F], 4 h) to 6.0 log CFU (Gardenmaster, 68.3 degrees C [155 degrees F], 12 h), and also varied with seasoning. There was a > or =5-log CFU reduction in both pathogens in 0, 10, and 27 % of samples at 4, 8, and 12 h, respectively. Heating jerky for 10 min at 135 degrees C (275 degrees F) 4 or 6 h postdrying increased lethality, on average, 2.99 log CFU for Salmonella and 3.02 log CFU for E. coli O157:H7. The use of a lactic acid bacterium culture (Pediococcus spp.) as a pathogen surrogate accurately predicted safety in 28 % of samples containing E. coli O157:H7 and 78% of Salmonella-inoculated samples.

  12. Not Good, but Not All Bad: Dehydration Effects on Body Fluids, Organ Masses, and Water Flux through the Skin of Rhinella schneideri (Amphibia, Bufonidae).

    PubMed

    Anderson, Rodolfo C O; Bovo, Rafael P; Eismann, Carlos E; Menegario, Amauri A; Andrade, Denis V

    Because of their permeable skin, terrestrial amphibians are constantly challenged by the potential risk of dehydration. However, some of the physiological consequences associated with dehydration may affect aspects that are themselves relevant to the regulation of water balance. Accordingly, we examined the effects of graded levels of dehydration on the rates of evaporative water loss and water absorption through the skin in the terrestrial Neotropical toad, Rhinella schneideri. Concomitantly, we monitored the effects of dehydration on the mass of visceral organs; hematocrit and hemoglobin content; plasma osmolality; and plasma concentration of urea, sodium, chloride, and potassium. We found that dehydration caused an increase in the concentration of body fluids, as indicated by virtually all the parameters examined. There was a proportional change in the relative masses of visceral organs, except for the liver and kidneys, which exhibited a decrease in their relative masses greater than the whole-body level of dehydration. Changes-or the preservation-of relative organ masses during dehydration may be explained by organ-specific physiological adjustments in response to the functional stress introduced by the dehydration itself. As dehydration progressed, evaporative water loss diminished and water reabsorption increased. In both cases, the increase in body fluid concentration associated with the dehydration provided the osmotic driver for these changes in water flux. Additionally, dehydration-induced alterations on the cutaneous barrier may also have contributed to the decrease in water flux. Dehydration, therefore, while posing a considerable challenge on the water balance regulation of anurans, paradoxically facilitates water conservation and absorption.

  13. Mild dehydration affects mood in healthy young women.

    PubMed

    Armstrong, Lawrence E; Ganio, Matthew S; Casa, Douglas J; Lee, Elaine C; McDermott, Brendon P; Klau, Jennifer F; Jimenez, Liliana; Le Bellego, Laurent; Chevillotte, Emmanuel; Lieberman, Harris R

    2012-02-01

    Limited information is available regarding the effects of mild dehydration on cognitive function. Therefore, mild dehydration was produced by intermittent moderate exercise without hyperthermia and its effects on cognitive function of women were investigated. Twenty-five females (age 23.0 ± 0.6 y) participated in three 8-h, placebo-controlled experiments involving a different hydration state each day: exercise-induced dehydration with no diuretic (DN), exercise-induced dehydration plus diuretic (DD; furosemide, 40 mg), and euhydration (EU). Cognitive performance, mood, and symptoms of dehydration were assessed during each experiment, 3 times at rest and during each of 3 exercise sessions. The DN and DD trials in which a volunteer attained a ≥1% level of dehydration were pooled and compared to that volunteer's equivalent EU trials. Mean dehydration achieved during these DN and DD trials was -1.36 ± 0.16% of body mass. Significant adverse effects of dehydration were present at rest and during exercise for vigor-activity, fatigue-inertia, and total mood disturbance scores of the Profile of Mood States and for task difficulty, concentration, and headache as assessed by questionnaire. Most aspects of cognitive performance were not affected by dehydration. Serum osmolality, a marker of hydration, was greater in the mean of the dehydrated trials in which a ≥1% level of dehydration was achieved (P = 0.006) compared to EU. In conclusion, degraded mood, increased perception of task difficulty, lower concentration, and headache symptoms resulted from 1.36% dehydration in females. Increased emphasis on optimal hydration is warranted, especially during and after moderate exercise.

  14. USAF Dehumidification Efforts for Corrosion Control

    DTIC Science & Technology

    2011-08-16

    Stored AGE Renewable energy powers dehumidification equipment (DH) DH maintains dry air in storage booths, protecting AGE equipment from...lighting also powered by renewable energy 11 CHP Shelters • Used to prevent corrosion on outer skin • Being developed for the F-22 at...DH can be Sheltered or Unsheltered • Air Dehydration Units - Uses a self rejuvenating desiccant wheel dehumidifier - Closed or open loop

  15. Pervaporation and Vapor Permeation Tutorial: Membrane Processes for the Selective Separation of Liquid and Vapor Mixtures

    EPA Science Inventory

    Pervaporation and vapor permeation are membrane-based processes proposed as alternatives to conventional separation technologies. Applications range from organic solvent removal from water, ethanol or butanol recovery from fermentation broths, solvent/biofuel dehydration to meet ...

  16. Low temperature hot air drying of potato cubes subjected to osmotic dehydration and intermittent microwave: drying kinetics, energy consumption and product quality indexes

    NASA Astrophysics Data System (ADS)

    Dehghannya, Jalal; Bozorghi, Somayyeh; Heshmati, Maryam Khakbaz

    2018-04-01

    Hot-air drying is a slow energy-extensive process. Use of intermittent microwave (IM) in hot-air (HA) drying of food products is characterized with advantages including reduced process time, energy saving, and improved final quality. In this study, the effect of IM-HA drying following an osmotic dehydration (OD) pretreatment was analyzed on qualitative and quantitative properties of the output (i.e. effective moisture diffusion coefficient (Deff), shrinkage, bulk density, rehydration and energy consumption). Temperature and airflow velocity were fixed at 40°C and 1 m/s, respectively. The process variables included sucrose solution concentration at five levels (0 or control, 10, 30, 50 and 70 w/w%), microwave output power at four levels (0 or control, 360, 600 and 900 W), and pulse ratio at four levels (1, 2, 3 and 4). Use of osmotic dehydration in combination with IM-HA drying reduced the drying time by up to about 54%. Increasing the osmotic solution concentration to 30% and using higher pulse ratios increased the Deff. The lowest shrinkage and bulk density as well as the highest rehydration belonged to the 900 W microwave power and pulse ratio of 4. The lowest energy consumption was observed when using the 900 W power level, showing 63.27% less consumption than the HA drying method.

  17. Processing of converter sludges on the basis of thermal-oxidative coking with coals

    NASA Astrophysics Data System (ADS)

    Kuznetsov, S. N.; Shkoller, M. B.; Protopopov, E. V.; Kazimirov, S. A.; Temlyantsev, M. V.

    2017-09-01

    The paper deals with the solution of an important problem related to the recycling of converter sludge. High moisture and fine fractional composition of waste causes the application of their deep dehydration and lumping. To reduce environmental emissions the non-thermal method of dehydration is considered - adsorption-contact drying. As a sorbent, the pyrolysis product of coals from the Kansko-Achinsky basin - brown coal semi-coke (BSC) obtained by the technology “Thermokoks”. Experimental data on the dehydration of high-moisture wastes with the help of BSC showed high efficiency of the selected material. The lumping of the dried converter dust was carried out by thermo-chemical coking with coals of grades GZh (gas fat coal) and Zh (fat coal). As a result, an iron-containing product was obtained - ferrocoke, which is characterized by almost complete reduction of iron oxides, as well as zinc transition into a vapor state, and is removed with gaseous process products. Based on the results of the experimental data a process basic diagram of the utilization of converter sludge to produce ferrocoke was, which can be effectively used in various metallurgical aggregates, for example, blast furnaces, converters and electric arc furnaces. In the basic technological scheme heat generated by ferrocoke cooling and the energy of the combustion products after the separation of zinc in the gas turbine plant will be used.

  18. Real-time discrete suboptimal control for systems with input and state delays: Experimental tests on a dehydration process.

    PubMed

    Rodríguez-Guerrero, Liliam; Santos-Sánchez, Omar-Jacobo; Cervantes-Escorcia, Nicolás; Romero, Hugo

    2017-11-01

    This article presents a suboptimal control strategy with finite horizon for affine nonlinear discrete systems with both state and input delays. The Dynamic Programming Approach is used to obtain the suboptimal control sequence, but in order to avoid the computation of the Bellman functional, a numerical approximation of this function is proposed in every step. The feasibility of our proposal is demonstrated via an experimental test on a dehydration process and the obtained results show a good performance and behavior of this process. Then in order to demonstrate the benefits of using this kind of control strategy, the results are compared with a non optimal control strategy, particularly with respect to results produced by an industrial Proportional Integral Derivative (PID) Honeywell controller, which is tuned using the Ziegler-Nichols method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Gas processing developments. Why not use methanol for hydrate control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, R.B.; Bucklin, R.W.

    1983-04-01

    Hydrate formation in turboexpander plants can be avoided more economically by using methanol than by using solid bed dehydration. Although the first turboexpander plant used methanol, most expander installations now have used solid bed dehydration. The reasons are obscure, since methanol often grants greater ease of operation as well as lower capital and operating costs, especially when the water in the feed gas is low or when recompression is required. Natural gas generally contains water before processing. High pressure, low temperature, or both favor the combination of water with light gases to form hydrates. Free water always must be presentmore » for hydrates to form. Hydrates cause problems by plugging pipelines, valves, and other process equipment. Therefore, proper equipment design requires accurate prediction of the limiting conditions at which hydrates are formed anytime a gas stream containing hydrate formers and free water is cooled below 80 F. (16 refs.)« less

  20. 'Fortified' wines volatile composition: Effect of different postharvest dehydration conditions of wine grapes cv. Malvasia moscata (Vitis vinifera L.).

    PubMed

    Urcan, Delia Elena; Giacosa, Simone; Torchio, Fabrizio; Río Segade, Susana; Raimondi, Stefano; Bertolino, Marta; Gerbi, Vincenzo; Pop, Nastasia; Rolle, Luca

    2017-03-15

    The impact of postharvest dehydration on the volatile composition of Malvasia moscata grapes and fortified wines produced from them was assessed. The ripeness effect of fresh grapes on volatile compounds of dehydrated grapes was evaluated for the first time in this study. Fresh grape berries were densimetrically sorted, and more represented density classes were selected. Dehydration of riper berries (20.5 °Brix) led to volatile profiles richer in terpenes, particularly linalool and geraniol. The effect of dehydration rate on the volatile composition of dehydrated grapes and fortified wines was also evaluated. Fast dehydration grapes were richer in total free terpenes, and the resulting wines contained greater amounts of volatile compounds. The predominant compounds were free esters, but linalool, rose oxide, citronellol and geraniol can also contribute to wine aroma, particularly for fast dehydration. β-Damascenone can be an active odorant, although its contribution was greater in wines made from slow dehydrated grapes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Dehydration mediated microRNA response in the African clawed frog Xenopus laevis.

    PubMed

    Wu, Cheng-Wei; Biggar, Kyle K; Storey, Kenneth B

    2013-10-25

    Exposure to various environmental stresses induces metabolic rate depression in many animal species, an adaptation that conserves energy until the environment is again conducive to normal life. The African clawed frog, Xenopus laevis, is periodically subjected to arid summers in South Africa, and utilizes entry into the hypometabolic state of estivation as a mechanism of long term survival. During estivation, frogs must typically deal with substantial dehydration as their ponds dry out and X. laevis can endure >30% loss of its body water. We hypothesize that microRNAs play a vital role in establishing a reversible hypometabolic state and responding to dehydration stress that is associated with amphibian estivation. The present study analyzes the effects of whole body dehydration on microRNA expression in three tissues of X. laevis. Compared to controls, levels of miR-1, miR-125b, and miR-16-1 decreased to 37±6, 64±8, and 80±4% of control levels during dehydration in liver. By contrast, miR-210, miR-34a and miR-21 were significantly elevated by 3.05±0.45, 2.11±0.08, and 1.36±0.05-fold, respectively, in the liver. In kidney tissue, miR-29b, miR-21, and miR-203 were elevated by 1.40±0.09, 1.31±0.05, and 2.17±0.31-fold, respectively, in response to dehydration whereas miR-203 and miR-34a were elevated in ventral skin by 1.35±0.05 and 1.74±0.12-fold, respectively. Bioinformatic analysis of the differentially expressed microRNAs suggests that these are mainly involved in two processes: (1) expression of solute carrier proteins, and (2) regulation of mitogen-activated protein kinase signaling. This study is the first report that shows a tissue specific mode of microRNA expression during amphibian dehydration, providing evidence for microRNAs as crucial regulators of metabolic depression. © 2013 Elsevier B.V. All rights reserved.

  2. Observational estimation of the 'cold trap' dehydration in the tropical tropopause layer: The water vapor match

    NASA Astrophysics Data System (ADS)

    Inai, Y.; Hasebe, F.; Fujiwara, M.; Shiotani, M.; Nishi, N.; Ogino, S.; Voemel, H.

    2008-12-01

    Stratospheric water vapor is controlled by the degree of dehydration the air parcels experienced on their entry into the stratosphere. The dehydration takes place in the tropical tropopause layer (TTL) over the western Pacific, where the air parcels are exposed to the lowest temperature during horizontal advection (cold trap hypothesis (Holton and Gettelman, 2001; Hatsushika and Yamazaki, 2003)). While, simplified treatment of the dehydration processes combined with trajectories reproduce water vapor variations reasonably well (Fueglistaler et al., 2005), extreme super saturation has been often observed in the TTL (Peter et al., 2006). Thus observational data are needed to quantify the efficiency of dehydration. We have been conducting the project Soundings of Ozone and Water in the Equatorial Region (SOWER) using chilled-mirror hygrometers in the western Pacific. Hasebe et al. (2007) suggested that the water content in the observed air parcels on many occasions was about twice as much as that expected from the minimum saturation mixing ratio during horizontal advection prior to sonde observation. To make this argument more quantitative, however, it is necessary to estimate the changed amount of water vapor by repeated observation of the same air parcel, the water vapor match. The match pairs are sought from the SOWER campaign network observations with the use of isentropic trajectories. For those pairs identified, extensive screening procedures are performed to verify the representativeness of the air parcel and to check possible water injection by deep convection. The match pairs are rejected when the sonde-observed temperature does not agree with spatio-temporary interpolated temperature of the ECMWF analysis field within a reasonable range, or the ozone mixing ratio is not conserved between the paired observations. Among those survived, we sought the cases which showed statistically significant dehydration. We estimated the ratios of the water mixing ratio observed by the first and the second sondes and the minimum saturation mixing ratio during advection. This gives the range of the maximum value of relative humidity with respect to ice. The range of 1.5 - 2.6 was found for the match pair on 362 K that showed a dehydration from 6.0 to 3.5 ppmv.

  3. Effects of dehydration on immune functions after a judo practice session.

    PubMed

    Chishaki, Takeharu; Umeda, Takashi; Takahashi, Ippei; Matsuzaka, Masashi; Iwane, Kaori; Matsumoto, Hidehiko; Ishibashi, Goshi; Ueno, Yuichi; Kashiwa, Naohiro; Nakaji, Shigeyuki

    2013-01-01

    We investigated the effects of dehydration after a judo practice session on player muscle and immune functions. Subjects included 25 female university judoists. Investigations were performed before and after 2.5 h of regular judo practice. Body composition, serum enzymes (myogenic enzymes, immunoglobulins and complements), neutrophils counts, reactive oxygen species (ROS) production capability, and phagocytic activity (PA) were measured. Subjects were divided into two groups according to level of dehydration after practice (mild dehydration and severe dehydration groups) and results were compared. Creatine kinase was found to increase significantly after practice. In addition, neutrophil count also increased significantly after practice in both groups. The changing ratios of IgA, IgG and C3 observed in the mild dehydration group were significantly higher than those in the severe dehydration group. In the severe dehydration group, post-practice PA/neutrophil had decreased significantly. Significant positive correlations were found between severity of dehydration and changing ratios of IgA, IgG, IgM, C3, C4 and ROS production capabilities, whereas no significant association was seen with PA and/or serum SOD activity. These results suggest that dehydration resulted in immunosuppression, including decreased neutrophil function. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Readmission for dehydration or renal failure after ileostomy creation.

    PubMed

    Paquette, Ian M; Solan, Patrick; Rafferty, Janice F; Ferguson, Martha A; Davis, Bradley R

    2013-08-01

    Ileostomy creation is a commonly performed operation in colorectal surgery; however, many patients develop complications such as dehydration postoperatively. Dehydration is often severe enough to warrant hospital readmission and may result in renal failure. The true incidence of this complication has not been well described. The aim of this study was to identify the rate of hospital readmission secondary to dehydration or renal failure within 30 days of ileostomy creation. Retrospective review of all patients undergoing ileostomy creation from 2007 to 2011 in a single colorectal practice of 4 surgeons was performed. Charts were reviewed to identify patients readmitted for dehydration or renal failure within 30 days of operation. Data were then analyzed to identify predictors of readmission, dehydration, and renal failure. Subset analysis compared patients readmitted with simple dehydration versus patients with renal failure. Two hundred one patients undergoing colorectal operations that included ileostomy creation within a 4-year period at a single institution for a variety of indications were included. The primary outcome measured was readmission for dehydration or renal failure. We observed a 17% 30-day readmission rate for dehydration or renal failure following ileostomy creation. Age greater than 50 was identified as an independent predictor of readmission with renal failure, whereas IPAA was predictive of readmission for simple dehydration, but not renal failure. Patients admitted with renal failure had significantly longer hospital stays and median hospital charges after readmission in comparison with patients admitted with simple dehydration. This study was limited by its retrospective nature and its limited sample size. Hospital readmission due to dehydration or renal failure following ileostomy creation is common, with age >50 being the strongest predictor for renal failure. Appropriate strategies to decrease dehydration and renal failure following ileostomy creation need to be investigated.

  5. Use of a hand-held bladder ultrasound scanner in the assessment of dehydration and monitoring response to treatment in a paediatric emergency department.

    PubMed

    Enright, Kevin; Beattie, Tom; Taheri, Sepideh

    2010-10-01

    Dehydration is a common concern in paediatric emergency care. Limited tools are available to assess reduced urine production, which is commonly cited as a reliable marker of dehydration. To evaluate the utility of a hand-held bladder ultrasound scanner in monitoring urine production in children attending the emergency department with suspected dehydration. A prospective pilot study was undertaken on a convenience sample of patients presenting with suspected dehydration. Serial bladder ultrasound scanning was performed to monitor urine output. Dehydration was assessed clinically using the WHO guide to dehydration assessment. Decisions about treatment and admission were made independently of the urine output measurements obtained using the bladder scanner. 45 children were studied. Using the WHO guide, 33 (73%) had mild dehydration, 8 (18%) had moderate dehydration and 4 (9%) had severe dehydration. There was a significant difference in estimated urine production between those admitted and those discharged (0.9±1.2 ml/kg/h vs 1.8±1.5 ml/kg/h, p=0.01) and between those with mild dehydration versus moderate/severe dehydration (2.3±1.5 ml/kg/h vs 0.6±0.7 ml/kg/h, p=0.0011). Urine output had been significantly reduced in those who had received an intravenous fluid bolus compared with those who had not (0.4±0.46 ml/kg/h vs 1.9±1.6 ml/kg/h, p=0.001). The hand-held bladder scanner is a convenient, non-invasive and objective adjunct in the assessment and management of children attending the emergency department with suspected dehydration.

  6. Value of point-of-care ketones in assessing dehydration and acidosis in children with gastroenteritis.

    PubMed

    Levy, Jason A; Waltzman, Mark; Monuteaux, Michael C; Bachur, Richard G

    2013-11-01

    Children with gastroenteritis often develop dehydration with metabolic acidosis. Serum ketones are frequently elevated in this population. The goal was to determine the relationship between initial serum ketone concentration and both the degree of dehydration and the magnitude of acidosis. This was a secondary analysis of a prospective trial of crystalloid administration for rapid rehydration. Children 6 months to 6 years of age with gastroenteritis and dehydration were enrolled. A point-of-care serum ketone (beta-hydroxybutyrate) concentration was obtained at the time of study enrollment. The relationship between initial serum ketone concentration and a prospectively assigned and previously validated clinical dehydration score, and serum bicarbonate concentration, was analyzed. A total of 188 patients were enrolled. The median serum ketone concentration was elevated at 3.1 mmol/L (interquartile range [IQR] = 1.2 to 4.6 mmol/L), and the median dehydration score was consistent with moderate dehydration. A significant positive relationship was found between serum ketone concentration and the clinical dehydration score (Spearman's rho = 0.22, p = 0.003). Patients with moderate dehydration had a higher median serum ketone concentration than those with mild dehydration (3.6 mmol/L vs. 1.4 mmol/L, p = 0.007). Additionally, the serum ketone concentration was inversely correlated with serum bicarbonate concentration (ρ = -0.26, p < 0.001). Children with gastroenteritis and dehydration have elevated serum ketone concentrations that correlate with both degree of dehydration and magnitude of metabolic acidosis. Point-of-care serum ketone measurement may be a useful tool to inform management decisions at the point of triage or in the initial evaluation of children with gastroenteritis and dehydration. © 2013 by the Society for Academic Emergency Medicine.

  7. Thirst, Drinking Behavior, And Dehydration

    NASA Technical Reports Server (NTRS)

    Greenleaf, John

    1996-01-01

    Report describes review of physiological mechanisms of involuntary dehydration. Researchers considered cellular dehydration and effects of sodium on thirst, as well as extracellular dehydration and restoration of vascular volume, effects of renin on thirst, and effects of heat.

  8. 7 CFR 944.312 - Orange import regulation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... preserved by any commercial process, including canning, freezing, dehydrating, drying, and the addition of chemical substances, or by fermentation. (d) Terms and tolerances pertaining to grade and size requirements...

  9. Denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter

    NASA Astrophysics Data System (ADS)

    Khosrawi, Farahnaz; Kirner, Oliver; Sinnhuber, Björn-Martin; Johansson, Sören; Höpfner, Michael; Santee, Michelle L.; Froidevaux, Lucien; Ungermann, Jörn; Ruhnke, Roland; Woiwode, Wolfgang; Oelhaf, Hermann; Braesicke, Peter

    2017-11-01

    The 2015/2016 Arctic winter was one of the coldest stratospheric winters in recent years. A stable vortex formed by early December and the early winter was exceptionally cold. Cold pool temperatures dropped below the nitric acid trihydrate (NAT) existence temperature of about 195 K, thus allowing polar stratospheric clouds (PSCs) to form. The low temperatures in the polar stratosphere persisted until early March, allowing chlorine activation and catalytic ozone destruction. Satellite observations indicate that sedimentation of PSC particles led to denitrification as well as dehydration of stratospheric layers. Model simulations of the 2015/2016 Arctic winter nudged toward European Centre for Medium-Range Weather Forecasts (ECMWF) analysis data were performed with the atmospheric chemistry-climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) for the Polar Stratosphere in a Changing Climate (POLSTRACC) campaign. POLSTRACC is a High Altitude and Long Range Research Aircraft (HALO) mission aimed at the investigation of the structure, composition and evolution of the Arctic upper troposphere and lower stratosphere (UTLS). The chemical and physical processes involved in Arctic stratospheric ozone depletion, transport and mixing processes in the UTLS at high latitudes, PSCs and cirrus clouds are investigated. In this study, an overview of the chemistry and dynamics of the 2015/2016 Arctic winter as simulated with EMAC is given. Further, chemical-dynamical processes such as denitrification, dehydration and ozone loss during the 2015/2016 Arctic winter are investigated. Comparisons to satellite observations by the Aura Microwave Limb Sounder (Aura/MLS) as well as to airborne measurements with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) performed aboard HALO during the POLSTRACC campaign show that the EMAC simulations nudged toward ECMWF analysis generally agree well with observations. We derive a maximum polar stratospheric O3 loss of ˜ 2 ppmv or 117 DU in terms of column ozone in mid-March. The stratosphere was denitrified by about 4-8 ppbv HNO3 and dehydrated by about 0.6-1 ppmv H2O from the middle to the end of February. While ozone loss was quite strong, but not as strong as in 2010/2011, denitrification and dehydration were so far the strongest observed in the Arctic stratosphere in at least the past 10 years.

  10. Investigation of polymer membranes modified by fullerenol for dehydration of organic mixtures

    NASA Astrophysics Data System (ADS)

    Dmitrenko, Mariia E.; Penkova, Anastasia V.; Kuzminova, Anna I.; Ermakov, Sergey S.; Roizard, Denis

    2017-07-01

    This study focuses on the development of novel dense and supported mixed-matrix membranes based on chitosan and poly(2,6-dimethyl-1,4-phenylenoxide) (PPO) with low-hydroxylated fullerenol C60(OH)12. These novel membranes containing nano-carbon particles were prepared to reach high membrane performances for further integration in a dehydration process like distillation coupled with pervaporation. SEM microscopy was used to visualize the internal morphology of the membrane. It was found that all membranes were well stable and highly water-selective in spite of the different nature of polymers.

  11. Experimental Validation of Hybrid Distillation-Vapor Permeation Process for Energy Efficient Ethanol-Water Separation

    EPA Science Inventory

    The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation step...

  12. Experimental Validation of Hybrid Distillation-Vapor Permeation Process for Energy Efficient Ethanol-Water Separation

    EPA Science Inventory

    The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation step,...

  13. Efficient ethanol recovery from fermentation broths with integrated distillation-vapor permeation hybrid process

    EPA Science Inventory

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative hybrid process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane s...

  14. Utilization of geothermal heat in tropical fruit-drying process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, B.H.; Lopez, L.P.; King, R.

    1982-10-01

    The power plant utilizes only the steam portion of the HGP-A well production. There are approximately 50,000 pounds per hour of 360/sup 0/F water produced (approximately 10 million Btu per hour) and the water is currently not used and is considered a waste. This tremendous resource could very well be used in applications such as food processing, food dehydration and other industrial processing that requires low-grade heat. One of the applications is examined, namely the drying of tropical fruits particularly the papaya. The papaya was chosen for the obvious reason that it is the biggest crop of all fruits producedmore » on the Big Island. A conceptual design of a pilot plant facility capable of processing 1000 pounds of raw papaya per day is included. This facility is designed to provide a geothermally heated dryer to dehydrate papayas or other tropical fruits available on an experimental basis to obtain data such as drying time, optimum drying temperature, etc.« less

  15. [Severe rhabdomyolysis secondary to severe hypernatraemic dehydration].

    PubMed

    Mastro-Martínez, Ignacio; Montes-Arjona, Ana María; Escudero-Lirio, Margarita; Hernández-García, Bárbara; Fernández-Cantalejo Padial, José

    2015-01-01

    Rhabdomyolysis is a rare paediatric condition. The case is presented of a patient in whom this developed secondary to severe hypernatraemic dehydration following acute diarrhoea. Infant 11 months of age who presented with vomiting, fever, diarrhoea and anuria for 15 hours. Parents reported adequate preparation of artificial formula and oral rehydration solution. He was admitted with malaise, severe dehydration signs and symptoms, cyanosis, and low reactivity. The laboratory tests highlighted severe metabolic acidosis, hypernatraemia and pre-renal kidney failure (Sodium [Na] plasma 181 mEq/L, urine density> 1030). He was managed in Intensive Care Unit with gradual clinical and renal function improvement. On the third day, slight axial hypotonia and elevated cell lysis enzymes (creatine phosphokinase 75,076 IU/L) were observed, interpreted as rhabdomyolysis. He was treated with intravenous rehydration up to 1.5 times the basal requirements, and he showed a good clinical and biochemical response, being discharged 12 days after admission without motor sequelae. Severe hypernatraemia is described as a rare cause of rhabdomyolysis and renal failure. In critically ill patients, it is important to have a high index of suspicion for rhabdomyolysis and performing serial determinations of creatine phosphokinase for early detection and treatment. Copyright © 2015 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Measured degree of dehydration in children and adolescents with type 1 diabetic ketoacidosis.

    PubMed

    Ugale, Judith; Mata, Angela; Meert, Kathleen L; Sarnaik, Ashok P

    2012-03-01

    Successful management of diabetic ketoacidosis depends on adequate rehydration while avoiding cerebral edema. Our objectives are to 1) measure the degree of dehydration in children with type 1 diabetes mellitus and diabetic ketoacidosis based on change in body weight; and 2) investigate the relationships between measured degree of dehydration and clinically assessed degree of dehydration, severity of diabetic ketoacidosis, and routine serum laboratory values. Prospective observational study. University-affiliated tertiary care children's hospital. Sixty-six patients <18 yrs of age with type 1 diabetic ketoacidosis. Patients were weighed using a portable scale at admission; 8, 16, and 24 hrs; and daily until discharge. Measured degree of dehydration was based on the difference between admission and plateau weights. Clinical degree of dehydration was assessed by physical examination and severity of diabetic ketoacidosis was assessed by blood gas values as defined by international guidelines. Laboratory values obtained on admission included serum glucose, urea nitrogen, sodium, and osmolality. Median measured degree of dehydration was 5.2% (interquartile range, 3.1% to 7.8%). Fourteen (21%) patients were clinically assessed as mild dehydration, 49 (74%) as moderate, and three (5%) as severe. Patients clinically assessed as moderately dehydrated had a greater measured degree of dehydration (5.8%; interquartile range, 3.6% to 9.6%) than those assessed as mildly dehydrated (3.7%; interquartile range, 2.3% to 6.4%) or severely dehydrated (2.5%; interquartile range, 2.3% to 2.6%). Nine (14%) patients were assessed as mild diabetic ketoacidosis, 18 (27%) as moderate, and 39 (59%) as severe. Diabetic ketoacidosis severity groups did not differ in measured degree of dehydration. Variables independently associated with measured degree of dehydration included serum urea nitrogen and sodium concentration on admission. Hydration status in children with diabetic ketoacidosis cannot be accurately assessed by physical examination or blood gas values. Fluid therapy based on maintenance plus 6% deficit replacement is reasonable for most patients.

  17. The measurement of axillary moisture for the assessment of dehydration among older patients: a pilot study.

    PubMed

    Kinoshita, Kensuke; Hattori, Kazuya; Ota, Yoshio; Kanai, Takao; Shimizu, Miyuki; Kobayashi, Hiroyuki; Tokuda, Yasuharu

    2013-02-01

    Dry axilla can sometimes be found among dehydrated older patients. In this study, we measured the axillary moisture and assessed it as possible marker for dehydration. Twenty-nine older patients admitted with acute medical conditions participated in this study. Dehydration was diagnosed by the calculated serum osmolality of greater than 295 mOsm/L. The moisture of axilla was measured by a skin moisture impedance meter which was applied at the center of axilla of patients. 11 patients (7 males and 4 females) were diagnosed as dehydrated and 18 patients (10 males and 8 females) were diagnosed as non-dehydrated. The mean axillary moisture (33%) in the dehydrated group was significantly lower than that (42%) in the non-dehydrated group (p<0.05). The axillary moisture ≥50% showed the sensitivity of 88%. The axillary moisture <30% showed the specificity of 91%. Use of a single cutoff value of 40% moisture produced the sensitivity of 59% and the specificity of 9%. As for the physical signs, dry axilla had also moderate sensitivity and excellent specificity to detect dehydration. The measurement of the axillary moisture could help assess dehydration. Dehydration could be ruled out when the axillary moisture ≥50%, while it could be ruled-in when the axillary moisture is <30%. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Sports Dehydration Safety Tips

    MedlinePlus

    Sports Dehydration Safety Tips Everything you need to know to keep your kids safe from dehydration when playing sports. To keep kids in top ... to stay hydrated by drinking plenty of fluids. Dehydration occurs when a body loses more water than ...

  19. The isoflavone content of two new alfalfa-derived products for instant beverage preparation.

    PubMed

    Soto-Zarazúa, M Guadalupe; Rodrigues, Francisca; Pimentel, Filipa B; Bah, M M; Oliveira, M Beatriz P P

    2016-01-01

    The frequent use of plant-based products to promote health leads to the search for scientific information related to efficacy and safety of those products for human consumption. Two alfalfa-derived products (ADP), freeze-dried juice (FDJ) and dehydrated powder (DP), from alfalfa harvested in Mexico, are being developed as new possible nutraceuticals. To the best of our knowledge, any study reports the real composition of such products used to prepare instant beverages in what concerns isoflavone contents. Seven isoflavones (glycitein, formononetin, biochanin A, daidzein, genistein, daidzin and genistin) were assessed by HPLC-DAD analysis as well as its variation in five different batches of these products. Different solvents were tested in order to choose the best one to extract isoflavones. The results showed the presence of daidzein, genistein, genistin and daidzin in most samples while glycitein, formononetin and biochanin A were not detected. Significant differences between isoflavone contents were found with different solvent systems. Water was the best option to extract daidzein (0.40-1.08 mg per unit and 1.30-4.90 mg per unit for DP and FDJ, respectively) whereas the water-methanol-formic acid mixture was efficient to extract genistein (0.19-0.43 mg per unit and 0.15-0.72 mg per unit for DP and FDJ, respectively). In all cases, the total isoflavone content was higher in freeze-dried juices than in dehydrated powders. Genistein and daidzein were the more abundant isoflavones quantified. Further physiological and nutritional studies are needed to complete the validation of effectiveness and safety of these products.

  20. 27 CFR 21.59 - Formula No. 32.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....Collodion, U.S.P. 311.Ethyl cellulose compounds (dehydration). 332.Processing miscellaneous food products... solutions. 481.Photoengraving and rotogravure solutions and dyes. (2) As a raw material: 522.Ethyl chloride...

  1. 27 CFR 21.59 - Formula No. 32.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ....Collodion, U.S.P. 311.Ethyl cellulose compounds (dehydration). 332.Processing miscellaneous food products... solutions. 481.Photoengraving and rotogravure solutions and dyes. (2) As a raw material: 522.Ethyl chloride...

  2. 27 CFR 21.59 - Formula No. 32.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ....Collodion, U.S.P. 311.Ethyl cellulose compounds (dehydration). 332.Processing miscellaneous food products... solutions. 481.Photoengraving and rotogravure solutions and dyes. (2) As a raw material: 522.Ethyl chloride...

  3. Observations on saliva osmolality during progressive dehydration and partial rehydration.

    PubMed

    Taylor, Nigel A S; van den Heuvel, Anne M J; Kerry, Pete; McGhee, Sheena; Peoples, Gregory E; Brown, Marc A; Patterson, Mark J

    2012-09-01

    A need exists to identify dehydrated individuals under stressful settings beyond the laboratory. A predictive index based on changes in saliva osmolality has been proposed, and its efficacy and sensitivity was appraised across mass (water) losses from 1 to 7%. Twelve euhydrated males [serum osmolality: 286.1 mOsm kg(-1) H(2)O (SD 4.3)] completed three exercise- and heat-induced dehydration trials (35.6°C, 56% relative humidity): 7% dehydration (6.15 h), 3% dehydration (with 60% fluid replacement: 2.37 h), repeat 7% dehydration (5.27 h). Expectorated saliva osmolality, measured at baseline and at each 1% mass change, was used to predict instantaneous hydration state relative to mass losses of 3 and 6%. Saliva osmolality increased linearly with dehydration, although its basal osmolality and its rate of change varied among and within subjects across trials. Receiver operating characteristic curves indicated a good predictive power for saliva osmolality when used with two, single-threshold cutoffs to differentiate between hydrated and dehydrated individuals (area under curve: 3% cutoff = 0.868, 6% cutoff = 0.831). However, when analysed using a double-threshold detection technique (3 and 6%), as might be used in a field-based monitor, <50% of the osmolality data could correctly identify individuals who exceeded 3% dehydration. Indeed, within the 3-6% dehydration range, its sensitivity was 64%, while beyond 6% dehydration, this fell to 42%. Therefore, while expectorated saliva osmolality tracked mass losses within individuals, its large intra- and inter-individual variability limited its predictive power and sensitivity, rendering its utility questionable within a universal dehydration monitor.

  4. [Multicenter validation of the clinical dehydration scale for children].

    PubMed

    Gravel, J; Manzano, S; Guimont, C; Lacroix, L; Gervaix, A; Bailey, B

    2010-12-01

    Dehydration is an important complication for sick children. The Clinical Dehydration Scale for children (CDS) measures dehydration based on 4 clinical signs: general appearance, eyes, saliva, and tears. To validate the association between the CDS and markers of dehydration in children aged 1 month to 5 years visiting emergency departments (EDs) for vomiting and/or diarrhea. An international prospective cohort study conducted in 3 university-affiliated EDs in 2009. Participants were a convenience sample of children aged 1-60 months presenting to the ED for acute vomiting and/or diarrhea. Following triage, a research nurse obtained informed consent and evaluated dehydration using the CDS. A few days after recovery, another research assistant weighed participants at home. The primary outcome was the percentage of dehydration calculated by the difference in weight at first evaluation and after recovery. Secondary outcomes included proportion of blood test measurements, intravenous use, hospitalization, and inter-rater agreement. During the study period, 264 children were recruited and data regarding weight and dehydration scores were complete for 219 (83%). According to the CDS, 88 had no dehydration, 159 some dehydration, and 15 moderate or severe dehydration. A Chi-square test showed a statistical association between CDS and weight gain, the occurrence of blood tests, intravenous rehydration, hospitalization, and abnormal plasmatic bicarbonate. Good inter-rater correlation was found among participants (linear weighted Kappa score of 0.65; (95% CI, 0.43-0.87). CDS categories correlate with markers of dehydration for young children complaining of vomiting and/or diarrhea in the ED. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  5. The diagnostic accuracy of Clinical Dehydration Scale in identifying dehydration in children with acute gastroenteritis: a systematic review.

    PubMed

    Falszewska, Anna; Dziechciarz, Piotr; Szajewska, Hania

    2014-10-01

    To systematically update diagnostic accuracy of the Clinical Dehydration Scale (CDS) in clinical recognition of dehydration in children with acute gastroenteritis. Six databases were searched for diagnostic accuracy studies in which population were children aged 1 to 36 months with acute gastroenteritis; index test was the CDS; and reference test was post-illness weight gain. Three studies involving 360 children were included. Limited evidence showed that in high-income countries the CDS provides strong diagnostic accuracy for ruling in moderate and severe (>6%) dehydration (positive likelihood ratio 5.2-6.6), but has limited value for ruling it out (negative likelihood ratio 0.4-0.55). In low-income countries, the CDS has limited value either for ruling moderate or severe dehydration in or out. In both settings, the CDS had limited value for ruling in or out dehydration <3% or dehydration 3% to 6%. The CDS can help assess moderate to severe dehydration in high-income settings. Given the limited data, the evidence should be viewed with caution. © The Author(s) 2014.

  6. Responses to dehydration in the one-humped camel and effects of blocking the renin-angiotensin system.

    PubMed

    Ali, Mahmoud Alhaj; Adem, Abdu; Chandranath, Irwin S; Benedict, Sheela; Pathan, Javed Y; Nagelkerke, Nicolas; Nyberg, Fred; Lewis, Lynley K; Yandle, Tim G; Nicholls, Gary M; Frampton, Chris M; Kazzam, Elsadig

    2012-01-01

    Our objectives were to compare the levels of circulating electrolytes, hormones, and renal function during 20 days of dehydration in camels versus the level in non-dehydrated camels and to record the effect of blocking angiotensin II AT1 receptors with losartan during dehydration. Dehydration induced significant increments in serum sodium, creatinine, urea, a substantial fall in body weight, and a doubling in plasma arginine vasopressin (AVP) levels. Plasma aldosterone, however, was unaltered compared with time-matched controls. Losartan significantly enhanced the effect of dehydration to reduce body weight and increase serum levels of creatinine and urea, whilst also impairing the rise in plasma AVP and reducing aldosterone levels. We conclude that dehydration in the camel induces substantial increments in serum sodium, creatinine, urea and AVP levels; that aldosterone levels are altered little by dehydration; that blockade of angiotensin II type 1 receptors enhances the dehydration-induced fall in body weight and increase in serum creatinine and urea levels whilst reducing aldosterone and attenuating the rise in plasma AVP.

  7. Responses to Dehydration in the One-Humped Camel and Effects of Blocking the Renin-Angiotensin System

    PubMed Central

    Ali, Mahmoud Alhaj; Adem, Abdu; Chandranath, Irwin S.; Benedict, Sheela; Pathan, Javed Y.; Nagelkerke, Nicolas; Nyberg, Fred; Lewis, Lynley K.; Yandle, Tim G.; Nicholls, Gary M.; Frampton, Chris M.; Kazzam, Elsadig

    2012-01-01

    Our objectives were to compare the levels of circulating electrolytes, hormones, and renal function during 20 days of dehydration in camels versus the level in non-dehydrated camels and to record the effect of blocking angiotensin II AT1 receptors with losartan during dehydration. Dehydration induced significant increments in serum sodium, creatinine, urea, a substantial fall in body weight, and a doubling in plasma arginine vasopressin (AVP) levels. Plasma aldosterone, however, was unaltered compared with time-matched controls. Losartan significantly enhanced the effect of dehydration to reduce body weight and increase serum levels of creatinine and urea, whilst also impairing the rise in plasma AVP and reducing aldosterone levels. We conclude that dehydration in the camel induces substantial increments in serum sodium, creatinine, urea and AVP levels; that aldosterone levels are altered little by dehydration; that blockade of angiotensin II type 1 receptors enhances the dehydration-induced fall in body weight and increase in serum creatinine and urea levels whilst reducing aldosterone and attenuating the rise in plasma AVP. PMID:22624009

  8. Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges.

    PubMed

    Manthilake, Geeth; Bolfan-Casanova, Nathalie; Novella, Davide; Mookherjee, Mainak; Andrault, Denis

    2016-05-01

    Mantle wedge regions in subduction zone settings show anomalously high electrical conductivity (~1 S/m) that has often been attributed to the presence of aqueous fluids released by slab dehydration. Laboratory-based measurements of the electrical conductivity of hydrous phases and aqueous fluids are significantly lower and cannot readily explain the geophysically observed anomalously high electrical conductivity. The released aqueous fluid also rehydrates the mantle wedge and stabilizes a suite of hydrous phases, including serpentine and chlorite. In this present study, we have measured the electrical conductivity of a natural chlorite at pressures and temperatures relevant for the subduction zone setting. In our experiment, we observe two distinct conductivity enhancements when chlorite is heated to temperatures beyond its thermodynamic stability field. The initial increase in electrical conductivity to ~3 × 10(-3) S/m can be attributed to chlorite dehydration and the release of aqueous fluids. This is followed by a unique, subsequent enhancement of electrical conductivity of up to 7 × 10(-1) S/m. This is related to the growth of an interconnected network of a highly conductive and chemically impure magnetite mineral phase. Thus, the dehydration of chlorite and associated processes are likely to be crucial in explaining the anomalously high electrical conductivity observed in mantle wedges. Chlorite dehydration in the mantle wedge provides an additional source of aqueous fluid above the slab and could also be responsible for the fixed depth (120 ± 40 km) of melting at the top of the subducting slab beneath the subduction-related volcanic arc front.

  9. An imbalance in the deep water cycle at subduction zones: The potential importance of the fore-arc mantle

    NASA Astrophysics Data System (ADS)

    Ribeiro, Julia M.; Lee, Cin-Ty A.

    2017-12-01

    The depth of slab dehydration is thought to be controlled by the thermal state of the downgoing slab: cold slabs are thought to mostly dehydrate beneath the arc front while warmer slabs should mostly dehydrate beneath the fore-arc. Cold subduction zone lavas are thus predicted to have interacted with greater extent of water-rich fluids released from the downgoing slab, and should thus display higher water content and be elevated in slab-fluid proxies (i.e., high Ba/Th, H2O/Ce, Rb/Th, etc.) compared to hot subduction zone lavas. Arc lavas, however, display similar slab-fluid signatures regardless of the thermal state of the slab, suggesting more complexity to volatile cycling in subduction zones. Here, we explore whether the serpentinized fore-arc mantle may be an important fluid reservoir in subduction zones and whether it can contribute to arc magma generation by being dragged down with the slab. Using simple mass balance and fluid dynamics calculations, we show that the dragged-down fore-arc mantle could provide enough water (∼7-78% of the total water injected at the trenches) to account for the water outfluxes released beneath the volcanic arc. Hence, we propose that the water captured by arc magmas may not all derive directly from the slab, but a significant component may be indirectly slab-derived via dehydration of dragged-down fore-arc serpentinites. Fore-arc serpentinite dehydration, if universal, could be a process that explains the similar geochemical fingerprint (i.e., in slab fluid proxies) of arc magmas.

  10. Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges

    PubMed Central

    Manthilake, Geeth; Bolfan-Casanova, Nathalie; Novella, Davide; Mookherjee, Mainak; Andrault, Denis

    2016-01-01

    Mantle wedge regions in subduction zone settings show anomalously high electrical conductivity (~1 S/m) that has often been attributed to the presence of aqueous fluids released by slab dehydration. Laboratory-based measurements of the electrical conductivity of hydrous phases and aqueous fluids are significantly lower and cannot readily explain the geophysically observed anomalously high electrical conductivity. The released aqueous fluid also rehydrates the mantle wedge and stabilizes a suite of hydrous phases, including serpentine and chlorite. In this present study, we have measured the electrical conductivity of a natural chlorite at pressures and temperatures relevant for the subduction zone setting. In our experiment, we observe two distinct conductivity enhancements when chlorite is heated to temperatures beyond its thermodynamic stability field. The initial increase in electrical conductivity to ~3 × 10−3 S/m can be attributed to chlorite dehydration and the release of aqueous fluids. This is followed by a unique, subsequent enhancement of electrical conductivity of up to 7 × 10−1 S/m. This is related to the growth of an interconnected network of a highly conductive and chemically impure magnetite mineral phase. Thus, the dehydration of chlorite and associated processes are likely to be crucial in explaining the anomalously high electrical conductivity observed in mantle wedges. Chlorite dehydration in the mantle wedge provides an additional source of aqueous fluid above the slab and could also be responsible for the fixed depth (120 ± 40 km) of melting at the top of the subducting slab beneath the subduction-related volcanic arc front. PMID:27386526

  11. Hydration and dehydration cycles in polymer electrolyte fuel cells operated with wet anode and dry cathode feed: A neutron imaging and modeling study

    NASA Astrophysics Data System (ADS)

    García-Salaberri, P. A.; Sánchez, D. G.; Boillat, P.; Vera, M.; Friedrich, K. A.

    2017-08-01

    Proper water management plays an essential role in the performance and durability of Polymer Electrolyte Fuel Cells (PEFCs), but it is challenged by the variety of water transport phenomena that take place in these devices. Previous experimental work has shown the existence of fluctuations between low and high current density levels in PEFCs operated with wet hydrogen and dry air feed. The alternation between both performance states is accompanied by strong changes in the high frequency resistance, suggesting a cyclic hydration and dehydration of the membrane. This peculiar scenario is examined here considering liquid water distributions from neutron imaging and predictions from a 3D two-phase non-isothermal model. The results show that the hydration-dehydration cycles are triggered by the periodic condensation and shedding of liquid water at the anode inlet. The input of liquid water humidifies the anode channel and offsets the membrane dry-out induced by the dry air stream, thus leading to the high-performance state. When liquid water is flushed out of the anode channel, the dehydration process takes over, and the cell comes back to the low-performance state. The predicted amplitude of the current oscillations grows with decreasing hydrogen and increasing air flow rates, in agreement with previous experimental data.

  12. Rehydration properties of hybrid method dried fruit enriched by natural components

    NASA Astrophysics Data System (ADS)

    Kowalska, Hanna; Marzec, Agata; Kowalska, Jolanta; Ciurzyńska, Agnieszka; Samborska, Kinga; Bialik, Michał; Lenart, Andrzej

    2018-04-01

    The aim of the study was to determine the impact of osmotic pre-dehydration and drying of fruit on the rehydration properties of dried fruit. Herein, the effect of fruit juice, applied as a natural enriching substance was very important. In addition, the properties of dried fruits obtained through combined air-drying and subsequent microwave-vacuum drying with `puffing' effect were similar to the freeze-dried fruits, but showed other rehydration properties. As raw material, frozen strawberry (Honeoye variety) and fresh apples (Idared variety) were used in the study. The apples and partially defrosted strawberries were prior dehydrated in solutions of sucrose and a mixture of sucrose with chokeberry juice concentrate at 50°C for 2 h. Next, the fruit samples were dried by one of two ways: air-drying (50°C, 5 h) and microwavevacuum drying for about 360 s; and freeze-drying (30°C, 63 Pa, 24 h). The rehydration was carried out in distilled water (20°C, 5 h). The osmotic pre-dehydration hindered fruit drying process. The impact of drying method became particularly evident while examining the kinetics of rehydration. During the rehydration of the pre-dehydrated dried fruit a slower hydration could be observed. Freeze-dried strawberries absorbed 2-3 times more water than those dried by the `puffing' effect.

  13. Experimental Evaluation of Hybrid Distillation-Vapor Permeation Process for Efficient Ethanol Recovery from Ethanol-Water Mixtures

    EPA Science Inventory

    The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions [1]. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation ...

  14. Modification of physical properties of freeze-dried rice

    NASA Technical Reports Server (NTRS)

    Huber, C. S.

    1971-01-01

    Freeze cycling process consists of alternately freezing and thawing precooked rice for two cycles, rice is then frozen and freeze-dehydrated in vacuum sufficient to remove water from rice by sublimitation. Process modifies rice grain structure and porosity, enabling complete rehydration in one minute in hot water.

  15. The Use of Protein-DNA, Chromatin Immunoprecipitation, and Transcriptome Arrays to Describe Transcriptional Circuits in the Dehydrated Male Rat Hypothalamus

    PubMed Central

    Qiu, Jing; Kleineidam, Anna; Gouraud, Sabine; Yao, Song Tieng; Greenwood, Mingkwan; Hoe, See Ziau; Hindmarch, Charles

    2014-01-01

    The supraoptic nucleus (SON) of the hypothalamus is responsible for maintaining osmotic stability in mammals through its elaboration of the antidiuretic hormone arginine vasopressin. Upon dehydration, the SON undergoes a function-related plasticity, which includes remodeling of morphology, electrical properties, and biosynthetic activity. This process occurs alongside alterations in steady state transcript levels, which might be mediated by changes in the activity of transcription factors. In order to identify which transcription factors might be involved in changing patterns of gene expression, an Affymetrix protein-DNA array analysis was carried out. Nuclear extracts of SON from dehydrated and control male rats were analyzed for binding to the 345 consensus DNA transcription factor binding sequences of the array. Statistical analysis revealed significant changes in binding to 26 consensus elements, of which EMSA confirmed increased binding to signal transducer and activator of transcription (Stat) 1/Stat3, cellular Myelocytomatosis virus-like cellular proto-oncogene (c-Myc)-Myc-associated factor X (Max), and pre-B cell leukemia transcription factor 1 sequences after dehydration. Focusing on c-Myc and Max, we used quantitative PCR to confirm previous transcriptomic analysis that had suggested an increase in c-Myc, but not Max, mRNA levels in the SON after dehydration, and we demonstrated c-Myc- and Max-like immunoreactivities in SON arginine vasopressin-expressing cells. Finally, by comparing new data obtained from Roche-NimbleGen chromatin immunoprecipitation arrays with previously published transcriptomic data, we have identified putative c-Myc target genes whose expression changes in the SON after dehydration. These include known c-Myc targets, such as the Slc7a5 gene, which encodes the L-type amino acid transporter 1, ribosomal protein L24, histone deactylase 2, and the Rat sarcoma proto-oncogene (Ras)-related nuclear GTPase. PMID:25144923

  16. Impact of dehydration on a full body resistance exercise protocol.

    PubMed

    Kraft, Justin A; Green, James M; Bishop, Phillip A; Richardson, Mark T; Neggers, Yasmin H; Leeper, James D

    2010-05-01

    This study examined effects of dehydration on a full body resistance exercise workout. Ten males completed two trials: heat exposed (with 100% fluid replacement) (HE) and dehydration (approximately 3% body mass loss with no fluid replacement) (DEHY) achieved via hot water bath (approximately 39 degrees C). Following HE and DEHY, participants performed three sets to failure (using predetermined 12 repetition maximum) of bench press, lat pull down, overhead press, barbell curl, triceps press, and leg press with a 2-min recovery between each set and 2 min between exercises. A paired t test showed total repetitions (all sets combined) were significantly lower for DEHY: (144.1 +/- 26.6 repetitions) versus HE: (169.4 +/- 29.1 repetitions). ANOVAs showed significantly lower repetitions (approximately 1-2 repetitions on average) per exercise for DEHY versus HE (all exercises). Pre-set rate of perceived exertion (RPE) and pre-set heart rate (HR) were significantly higher [approximately 0.6-1.1 units on average in triceps press, leg press, and approached significance in lat pull down (P = 0.14) and approximately 6-13 b min(-1) on average in bench press, lat pull down, triceps press, and approached significance for overhead press (P = 0.10)] in DEHY versus HE. Session RPE difference approached significance (DEHY: 8.6 +/- 1.9, HE: 7.4 +/- 2.3) (P = 0.12). Recovery HR was significantly higher for DEHY (116 +/- 15 b min(-1)) versus HE (105 +/- 13 b min(-1)). Dehydration (approximately 3%) impaired resistance exercise performance, decreased repetitions, increased perceived exertion, and hindered HR recovery. Results highlight the importance of adequate hydration during full body resistance exercise sessions.

  17. Survival and growth of epidemically successful and nonsuccessful Salmonella enterica clones after freezing and dehydration.

    PubMed

    Müller, Karoline; Aabo, Søren; Birk, Tina; Mordhorst, Hanne; Bjarnadóttir, Björg; Agersø, Yvonne

    2012-03-01

    The spread of epidemically successful nontyphoidal Salmonella clones has been suggested as the most important cause of salmonellosis in industrialized countries. Factors leading to the emergence of success clones are largely unknown, but their ability to survive and grow after physical stress may contribute. During epidemiological studies, a mathematical model was developed that allowed estimation of a factor (q) accounting for the relative ability of Salmonella serovars with different antimicrobial resistances to survive in the food chain and cause human disease. Based on this q-factor, 26 Salmonella isolates were characterized as successful or nonsuccessful. We studied the survival and growth of stationary- and exponential-phase cells of these isolates after freezing for up to 336 days in minced meat. We also investigated survival and growth after dehydration at 10°C and 82% relative humidity (RH) and 25°C and 49% RH for 112 days. Stationary-phase cells were reduced by less than 1 log unit during 1 year of freezing, and growth was initiated with an average lag phase of 1.7 h. Survival was lower in exponentialphase cells, but lag phases tended to be shorter. High humidity and low temperature were less harmful to Salmonella than were low humidity and high temperature. Tolerance to adverse conditions was highest for Salmonella Infantis and one Salmonella Typhimurium U292 isolate and lowest for Salmonella Derby and one Salmonella Typhimurium DT170 isolate. Dehydration, in contrast to freezing, was differently tolerated by the Salmonella strains in this study, but tolerance to freezing and dehydration does not appear to contribute to the emergence of successful Salmonella clones.

  18. Fluid management in children with diarrhea-related hyponatremic-hypernatremic dehydration: a retrospective study of 83 children.

    PubMed

    Kocaoglu, Celebi; Selma Solak, Ece; Kilicarslan, Cengizhan; Arslan, Sukru

    2014-02-01

    To investigate serum creatinine and electrolyte status of children with diarrhea-related hyponatremic or hypernatremic dehydration. Medical history of 83 patients admitted to the Pediatric Intensive Care Unit of the Konya Education and Research Hospital, Konya, Turkey with diarrhea, dehydration and electrolyte imbalance was retrospectively evaluated according to the degree of dehydration, serum creatinine, electrolytes, blood gas, approaches to the treatment such as content of given fluid, HCO3- and acute periotenal dialysis. Of 65 patients with hyponatremia, 44 (67.7%) were given fluids at appropriate concentration according to their age, and 21 (32.3%) were given fluids at higher concentration. Of 18 hypernatremic patients, 11 (61.1%) were given fluids at appropriate concentration for age, and seven (38.9%) were given fluids at higher concentration. Mean duration of amelioration of serum sodium levels for those admitted with hyponatremia and given fluids at appropriate concentration for age and at higher concentration were 33.9 ± 28.3 h and 53.7 ± 31.6 h, respectively. Mean duration of amelioration of serum sodium levels for hypernatremics and given fluids at appropriate concentration for age and at higher concentration were 34.7 ± 22.1 h and 46.3 ± 32 h, respectively. Four (4.8%) hyponatremic patients and three (3.6%) with hypernatremia were treated with acute peritoneal dialysis. Mortality rate was 6% (five of all patients). The children with severe diarrhea should be closely followed-up as to clinical examination, serum electrolytes, creatinine and blood gases, and because no single intravenous fluid management is optimal for all children, intravenous fluid therapy should be individualized for each patient.

  19. Relationship of Renal Function Tests and Electrolyte Levels with Severity of Dehydration in Acute Diarrhea.

    PubMed

    Gauchan, E; Malla, K K

    2015-01-01

    Acute diarrheal illness constitutes a major cause of morbidity and mortality in children in developing countries. Most of the complications of diarrhea occur due to excessive fluid and electrolyte loss; adverse complications are seen more with increasing severity of dehydration. This study was conducted to identify the relation of renal function and electrolyte abnormalities in children with varying severity of dehydration. This study was carried out in Manipal Teaching Hospital, Pokhara, Nepal over duration of one year. The aims were to find out the association of renal function and electrolyte disturbances with type of diarrhea, severity of dehydration and their relation to outcome. All children more than one month and less than 15 years with acute diarrhea were included in the study. Data were entered and analyzed by SPSS version 19. Statistical analysis applied was Chi-square test. A p-value of <0.05 was taken as significant. Acute watery diarrhea was the commonest type of diarrhea in children. Dehydration was associated more with Acute Watery Diarrhea than with Invasive Diarrhea. Renal function and electrolyte abnormalities were seen more in Acute Watery Diarrhea with increasing levels of blood urea, serum creatinine and abnormal levels of serum sodium seen with increased severity of dehydration. Abnormalities in renal function and electrolytes correlated significantly with severity of dehydration. The outcome of patients correlated with severity of dehydration with mortality occurring in 18.1% of patients with Severe dehydration, 0.8% of Some dehydration with no mortality in the No dehydration group.

  20. Biological mechanisms underlying voice changes due to dehydration.

    PubMed

    Verdolini, Katherine; Min, Young; Titze, Ingo R; Lemke, Jon; Brown, Kice; van Mersbergen, Miriam; Jiang, Jack; Fisher, Kim

    2002-04-01

    Four vocally untrained healthy adults, 2 men and 2 women, completed the study. A double-blind placebo-controlled approach was used to administer three treatments to each participant on separate days. Drugs treatments involved a single 60-mg dose of a diuretic, Lasix (LA), on one day, and a single 50-mg dose of an oral antihistamine, diphenhydramine hydrochloride (DH), on another day. A third day involved the administration of a placebo, sugar pills (SP). Critical posttreatment measures were weight (kg), which estimated systemic dehydration, saliva viscosity (centipoise), which estimated secretion dehydration, and phonation threshold pressure (PTP, in cm H2O), at high pitches, which indicated pulmonary drive for phonation. The central experimental question was: Does systemic dehydration, or secretory dehydration, or both, mediate increases in PTP that are known to occur following dehydration treatments? The results showed that LA induced systemic dehydration, as shown by a decrease in total body mass of about 1%. Weight losses were seen during a 1- to 4-hour block following drug administration and persisted for at least 8 hours thereafter. PTPs also increased in that condition, about 23% relative to baseline, but only several hours after whole-body dehydration was initially seen (5-12 hours after drug administration). In contrast, no evidence was seen that DH accomplished either secretory dehydration or PTP shifts. The results indicate that systemic dehydration can mediate PTP increases. The influence of secretory dehydration on PTP is unclear.

  1. Assessment of the Dehydration-Greenhouse Feedback Over the Arctic During Winter

    NASA Astrophysics Data System (ADS)

    Girard, E.; Stefanof, A.; Peltier-Champigny, M.; Munoz-Alpizar, R.; Dueymes, G.; Jean-Pierre, B.

    2007-12-01

    The effect of pollution-derived sulphuric acid aerosols on the aerosol-cloud-radiation interactions is investigated over the Arctic for February 1990. Observations suggest that acidic aerosols can decrease the heterogeneous nucleation rate of ice crystals and lower the homogeneous freezing temperature of haze droplets. Based on these observations, we hypothesize that the cloud thermodynamic phase is modified in polluted air mass (Arctic haze). Cloud ice number concentration is reduced, thus promoting further ice crystal growth by the Bergeron-Findeisen process. Hence, ice crystals reach larger sizes and low-level ice crystal precipitation from mixed-phase clouds increases. Enhanced dehydration of the lower troposphere contributes to decrease the water vapour greenhouse effect and cool the surface. A positive feedback is created between surface cooling and air dehydration, accelerating the cold air production. This process is referred to as the dehydration-greenhouse feedback (DGF). Simulations performed using an arctic regional climate model for February 1990, February and March 1985 and 1995 are used to assess the potential effect of the DGF on the Arctic climate. Results show that the DGF has an important effect over the Central and Eurasian Arctic, which is the coldest part of the Arctic with a surface cooling ranging between 0 and -3K. Moreover, the lower tropospheric cooling over the Eurasian and Central Arctic strengthens the atmospheric circulation at upper level, thus increasing the aerosol transport from the mid-latitudes and enhancing the DGF. Over warmer areas, the increased aerosol concentration (caused by the DGF) leads to longer cloud lifetime, which contributes to warm these areas. It is also shown that the maximum ice nuclei reduction must be of the order of 100 to get a significant effect.

  2. Ab initio simulation of changes in geometry, electronic structure, and Gibbs free energy caused by dehydration of hydrotalcites containing Cl⁻ and CO₃²⁻ counteranions.

    PubMed

    Costa, Deyse G; Rocha, Alexandre B; Souza, Wladmir F; Chiaro, Sandra Shirley X; Leitão, Alexandre A

    2011-04-07

    This ab initio study was performed to better understand the correlation between intercalated water molecules and layered double hydroxides (LDH), as well as the changes that occur by the dehydration process of Zn-Al hydrotalcite-like compounds containing Cl⁻ and CO₃²⁻ counterions. We have verified that the strong interaction among intercalated water molecules, cointercalated anions, and OH groups from hydroxyl layers is reflected in the thermal stability of these compounds. The Zn(2/3)Al(1/3)(OH)₂Cl(1/3)·2/3H₂O hydrotalcite loses all the intercalated water molecules around 125 °C, while the Zn(2/3)Al(1/3)(OH)₂(CO₃)(1/6)·4/6H₂O compound dehydrates at about 175 °C. These values are in good agreement with experimental data. The interlayer interactions were discussed on the basis of electron density difference analyses. Our calculation shows that the electron density in the interlayer region decreases during the dehydration process, inducing the migration of the Cl⁻ anion and the displacement of the hydroxyl layer from adjacent layers. Changes in these compound structures occur to recover part of the hydrogen bonds broken due to the removal of water molecules. It was observed that the chloride ion had initially a lower Löwdin charge (Cl(-0.43)), which has increased its absolute value (Cl(-0.58)) after the water molecules removal, while the charges on carbonate ions remain invariant, leading to the conclusion that the Cl⁻ anion can be more influenced by the amount of water molecules in the interlayer space than the CO₃²⁻ anion in hydrotalcite-like compounds.

  3. Improvements in the order, isotropy and electron density of glypican-1 crystals by controlled dehydration.

    PubMed

    Awad, Wael; Svensson Birkedal, Gabriel; Thunnissen, Marjolein M G M; Mani, Katrin; Logan, Derek T

    2013-12-01

    The use of controlled dehydration for improvement of protein crystal diffraction quality is increasing in popularity, although there are still relatively few documented examples of success. A study has been carried out to establish whether controlled dehydration could be used to improve the anisotropy of crystals of the core protein of the human proteoglycan glypican-1. Crystals were subjected to controlled dehydration using the HC1 device. The optimal protocol for dehydration was developed by careful investigation of the following parameters: dehydration rate, final relative humidity and total incubation time Tinc. Of these, the most important was shown to be Tinc. After dehydration using the optimal protocol the crystals showed significantly reduced anisotropy and improved electron density, allowing the building of previously disordered parts of the structure.

  4. Quantitative Study for the Surface Dehydration of Vocal Folds Based on High-Speed Imaging.

    PubMed

    Li, Lin; Zhang, Yu; Maytag, Allison L; Jiang, Jack J

    2015-07-01

    From the perspective of the glottal area and mucosal wave, quantitatively estimate the differences of vocal fold on laryngeal activity during phonation at three different dehydration levels. Controlled three sets of tests. A dehydration experiment for 10 excised canine larynges was conducted at 16 cm H2O. According to the dehydration cycle time (H), dehydration levels were divided into three degrees (0% H, 50% H, 75% H). The glottal area and mucosal wave under three dehydration levels were extracted from high-speed images and digital videokymography (DKG) image sequences. Direct and non-direct amplitude components were derived from glottal areas. The amplitude and frequency of mucosal wave were calculated from DKG image sequences. These parameters in condition of three dehydration levels were compared for statistical analysis. The results showed a significant difference in direct (P = 0.001; P = 0.005) and non-direct (P = 0.005; P = 0.016) components of glottal areas between every two different dehydration levels. Considering the right-upper, right-lower, left-upper, and left-lower of vocal fold, the amplitudes of mucosal waves consistently decreased with increasing of dehydration levels. But, there was no significant difference in frequency. Surface dehydration could give rise to complex variation of vocal fold on tissues and vibratory mechanism, which should need analyzing from multiple perspectives. The results suggested that the combination of glottal area and mucosal wave could be better to research the change of vocal fold at different dehydrations. It would become a better crucial research tool for the clinical treatment of dehydration-induced laryngeal pathologies. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  5. Overexpression of LOV KELCH protein 2 confers dehydration tolerance and is associated with enhanced expression of dehydration-inducible genes in Arabidopsis thaliana.

    PubMed

    Miyazaki, Yuji; Abe, Hiroshi; Takase, Tomoyuki; Kobayashi, Masatomo; Kiyosue, Tomohiro

    2015-05-01

    The overexpression of LKP2 confers dehydration tolerance in Arabidopsis thaliana ; this is likely due to enhanced expression of dehydration-inducible genes and reduced stomatal opening. LOV KELCH protein 2 (LKP2) modulates the circadian rhythm and flowering time in plants. In this study, we observed that LKP2 overexpression enhanced dehydration tolerance in Arabidopsis. Microarray analysis demonstrated that expression of water deprivation-responsive genes was higher in the absence of dehydration stress in transgenic Arabidopsis plants expressing green fluorescent protein-tagged LKP2 (GFP-LKP2) than in control transgenic plants expressing GFP. After dehydration followed by rehydration, GFP-LKP2 plants developed more leaves and roots and exhibited higher survival rates than control plants. In the absence of dehydration stress, four dehydration-inducible genes, namely DREB1A, DREB1B, DREB1C, and RD29A, were expressed in GFP-LKP2 plants, whereas they were not expressed or were expressed at low levels in control plants. Under dehydration stress, the expression of DREB2B and RD29A peaked faster in the GFP-LKP2 plants than in control plants. The stomatal aperture of GFP-LKP2 plants was smaller than that of control plants. These results suggest that the dehydration tolerance of GFP-LKP2 plants is caused by upregulation of DREB1A-C/CBF1-3 and their downstream targets; restricted stomatal opening in the absence of dehydration stress also appears to contribute to the phenotype. The rapid and high expression of DREB2B and its downstream target genes also likely accounts for some features of the GFP-LKP2 phenotype. Our results suggest that LKP2 can be used for biotechnological applications not only to adjust the flowering time control but also to enhance dehydration tolerance.

  6. Diagnostic accuracy of clinical dehydration scales in children.

    PubMed

    Falszewska, Anna; Dziechciarz, Piotr; Szajewska, Hania

    2017-08-01

    The aim of this study was to evaluate the diagnostic accuracy of the Clinical Dehydration Scale (CDS), the World Health Organization (WHO) scale, and the Gorelick scale for dehydration assessment in children. A prospective, observational study was carried out between October 2014 and December 2016. Eligible participants were children aged 1 month to 5 years with acute diarrhea. After hospital admission, each patient's weight was recorded and the degree of dehydration based on three scales was assessed. The reference standard was the percentage weight change between the discharge and admission weights. The main outcomes were the sensitivity, specificity, positive likelihood ratio (LR), and negative LR. Of 128 children enrolled in the study, complete data were available from 118 patients for analysis. Most of children presented with no or mild dehydration. Only the CDS showed limited value in confirming a diagnosis of dehydration ≥6% (positive LR 3.9, 95% CI 1.1 to 9.1), with no value in ruling it out (negative LR 0.6, 95% CI 0.2 to 0.99). In our cohort, the CDS was of limited diagnostic value in ruling in severe dehydration in children with acute gastroenteritis. The WHO and Gorelick scales were not helpful in the assessment of dehydration. What is Known : • Treatment of acute gastroenteritis (AGE) is based on assessing and correcting the degree of dehydration. • Several scales combining various signs and symptoms have been developed, including the Clinical Dehydration Scale (CDS), and the World Health Organization (WHO) scale, and the Gorelick scale. None of these scales is internationally accepted for best accuracy in diagnosing dehydration in children. What is New: • The CDS was of limited diagnostic value in ruling in severe dehydration in children with AGE. • The WHO and Gorelick scales were not helpful in the assessment of dehydration.

  7. A novel cold-inducible gene from Pak-choi (Brassica campestris ssp. chinensis), BcWRKY46, enhances the cold, salt and dehydration stress tolerance in transgenic tobacco.

    PubMed

    Wang, Feng; Hou, Xilin; Tang, Jun; Wang, Zhen; Wang, Shuming; Jiang, Fangling; Li, Ying

    2012-04-01

    WRKY TFs belong to one of the largest families of transcriptional regulators in plants and form integral parts of signaling webs that modulate many plant processes. BcWRKY46, a cDNA clone encoding a polypeptide of 284 amino acids and exhibited the structural features of group III of WRKY protein family, was isolated from the cold-treated leaves of Pak-choi (Brassica campestris ssp. chinensis Makino, syn. B. rapa ssp. chinensis) using the cDNA-AFLP technique. Expression of this gene was induced quickly and strongly in response to various environmental stresses, including low temperatures, ABA, salt and dehydration. Constitutive expression of BcWRKY46 in tobacco under the control of the CaMV35S promoter reduced the susceptibility of transgenic tobacco to freezing, ABA, salt and dehydration stresses. Our studies suggest that BcWRKY46 plays an important role in responding to ABA and abiotic stress.

  8. In situ bioventing at a natural gas dehydrator site: Field demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, A.W.; Miller, D.L.; Miller, J.A.

    1995-12-31

    This paper describes a bioventing/biosparging field demonstration that was conducted over a 10-month period at a former glycol dehydrator site located near Traverse City, Michigan. The goal of the project was to determine the feasibility of this technology for dehydrator site remediation and to develop engineering design concepts for applying bioventing/biosparging at similar sites. The chemicals of interest are benzene, toluene, ethylbenzene, and xylenes (BTEX) and alkanes. Soil sampling indicated that the capillary fringe and saturated zones were heavily contaminated, but that the unsaturated zone was relatively free of the contaminants. A pump-and-treat system has operated since 1991 to treatmore » the groundwater BTEX plume. Bioventing/biosparging was installed in September 1993 to treat the contaminant source area. Three different air sparging operating modes were tested to determine an optimal process configuration for site remediation. These operational modes were compared through in situ respirometry studies. Respirometry measurements were used to estimate biodegradation rates. Dissolved oxygen and carbon dioxide were monitored in the groundwater.« less

  9. Dehydration of trehalose dihydrate at low relative humidity and ambient temperature.

    PubMed

    Jones, Matthew D; Hooton, Jennifer C; Dawson, Michelle L; Ferrie, Alan R; Price, Robert

    2006-04-26

    The physico-chemical behaviour of trehalose dihydrate during storage at low relative humidity and ambient temperature was investigated, using a combination of techniques commonly employed in pharmaceutical research. Weight loss, water content determinations, differential scanning calorimetry and X-ray powder diffraction showed that at low relative humidity (0.1% RH) and ambient temperature (25 degrees C) trehalose dihydrate dehydrates forming the alpha-polymorph. Physical examination of trehalose particles by scanning electron microscopy and of the dominant growth faces of trehalose crystals by environmentally controlled atomic force microscopy revealed significant changes in surface morphology upon partial dehydration, in particular the formation of cracks. These changes were not fully reversible upon complete rehydration at 50% RH. These findings should be considered when trehalose dihydrate is used as a pharmaceutical excipient in situations where surface properties are key to behaviour, for example as a carrier in a dry powder inhalation formulations, as morphological changes under common processing or storage conditions may lead to variations in formulation performance.

  10. Free energy landscape for glucose condensation and dehydration reactions in dimethyl sulfoxide and the effects of solvent.

    PubMed

    Qian, Xianghong; Liu, Dajiang

    2014-03-31

    The mechanisms and free energy surfaces (FES) for the initial critical steps during proton-catalyzed glucose condensation and dehydration reactions were elucidated in dimethyl sulfoxide (DMSO) using Car-Parrinello molecular dynamics (CPMD) coupled with metadynamics (MTD) simulations. Glucose condensation reaction is initiated by protonation of C1--OH whereas dehydration reaction is initiated by protonation of C2--OH. The mechanisms in DMSO are similar to those in aqueous solution. The DMSO molecules closest to the C1--OH or C2--OH on glucose are directly involved in the reactions and act as proton acceptors during the process. However, the energy barriers are strongly solvent dependent. Moreover, polarization from the long-range electrostatic interaction affects the mechanisms and energetics of glucose reactions. Experimental measurements conducted in various DMSO/Water mixtures also show that energy barriers are solvent dependent in agreement with our theoretical results. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Evidence for midwinter chemical ozone destruction over Antartica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voemel, H.; Hoffmann, D.J.; Oltmans, S.J.

    1995-09-01

    Two ozone profiles on June 15 and June 19, obtained over McMurdo, Antartica, showed a strong depletion in stratospheric ozone, and a simultaneous profile of water vapor on June 19 showed the first clear signs of dehydration. The observation of Polar Stratospheric Clouds (PSCs) beginning with the first sounding showing ozone depletion, the indication of rehydration layers, which could be a sign for recent dehydration, and trajectory calculations indicate that the observed low ozone was not the result of transport from lower latitudes. during this time the vortex was strongly distorted, transporting PSC processed air well into sunlit latitudes wheremore » photochemical ozone destruction may have occurred. The correlation of ozone depletion and dehydration indicates that water ice PSCs provided the dominant surface for chlorine activation. An analysis of the time when the observed air masses could have formed type II PSCs for the first time limits the time scale for the observed ozone destruction to about 4 days.« less

  12. Unexpected regioselective carbon-hydrogen bond activation/cyclization of indolyl aldehydes or ketones with alkynes to benzo-fused oxindoles.

    PubMed

    Liu, Xingyan; Li, Gaocan; Song, Feijie; You, Jingsong

    2014-09-25

    Rhodium-catalyzed carbon-hydrogen bond activation has attracted great interest in the construction of carbon-carbon and carbon-heteroatom bonds. In recent years, transition metal-mediated oxygen transposition through a 'dehydration-rehydration' process has been considered as a promising strategy towards oxygen-functionalized compounds. Here we describe an unexpected rhodium-catalyzed regioselective carbon-hydrogen bond activation/cyclization of easily available indolyl aldehydes or ketones with alkynes to afford benzo-fused oxindoles, involving the sequential carbonyl-assisted carbon-hydrogen activation of the indole ring at the 4-position, [4+2] cyclization, aromatization via dehydration, nucleophilic addition of water to iminium and oxidation. Isotopic labelling experiments disclose the occurrence of apparent oxygen transposition via dehydration-rehydration from the indolyl-3-carbonyl group to the 2-position of pyrrole to forge a new carbonyl bond. The tandem reaction has been used as the key step for the concise synthesis of priolines, a type of alkaloid isolated from the roots of Salvia prionitis.

  13. Biochemical degradation and physical migration of polyphenolic compounds in osmotic dehydrated blueberries with pulsed electric field and thermal pretreatments.

    PubMed

    Yu, Yuanshan; Jin, Tony Z; Fan, Xuetong; Wu, Jijun

    2018-01-15

    Fresh blueberries were pretreated by pulsed electric fields (PEF) or thermal pretreatment and then were subject to osmotic dehydration. The changes in contents of anthocyanins, predominantly phenolic acids and flavonols, total phenolics, polyphenol oxidase (PPO) activity and antioxidant activity in the blueberry samples during pretreatment and osmotic dehydration were investigated. Biochemical degradation and physical migration of these nutritive compounds from fruits to osmotic solutions were observed during the pretreatments and osmotic dehydration. PEF pretreated samples had the least degradation loss but the most migration loss of these compounds compared to thermally pretreated and control samples. Higher rates of water loss and solid gain during osmotic dehydration were also obtained by PEF pretreatment, reducing the dehydration time from 130 to 48h. PEF pretreated and dehydrated fruits showed superior appearance to thermally pretreated and control samples. Therefore, PEF pretreatment is a preferred technology that balances nutritive quality, appearance, and dehydration rate. Published by Elsevier Ltd.

  14. Improvements in the order, isotropy and electron density of glypican-1 crystals by controlled dehydration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awad, Wael; Cairo University, Cairo; Svensson Birkedal, Gabriel

    The anisotropy of crystals of glypican-1 was significantly reduced by controlled dehydration using the HC1 device, allowing the building of previously disordered parts of the structure. The use of controlled dehydration for improvement of protein crystal diffraction quality is increasing in popularity, although there are still relatively few documented examples of success. A study has been carried out to establish whether controlled dehydration could be used to improve the anisotropy of crystals of the core protein of the human proteoglycan glypican-1. Crystals were subjected to controlled dehydration using the HC1 device. The optimal protocol for dehydration was developed by carefulmore » investigation of the following parameters: dehydration rate, final relative humidity and total incubation time T{sub inc}. Of these, the most important was shown to be T{sub inc}. After dehydration using the optimal protocol the crystals showed significantly reduced anisotropy and improved electron density, allowing the building of previously disordered parts of the structure.« less

  15. Comparison of clinical and biochemical markers of dehydration with the clinical dehydration scale in children: a case comparison trial

    PubMed Central

    2014-01-01

    Background The clinical dehydration scale (CDS) is a quick, easy-to-use tool with 4 clinical items and a score of 1–8 that serves to classify dehydration in children with gastroenteritis as no, some or moderate/severe dehydration. Studies validating the CDS (Friedman JN) with a comparison group remain elusive. We hypothesized that the CDS correlates with a wide spectrum of established markers of dehydration, making it an appropriate and easy-to-use clinical tool. Methods This study was designed as a prospective double-cohort trial in a single tertiary care center. Children with diarrhea and vomiting, who clinically required intravenous fluids for rehydration, were compared with minor trauma patients who required intravenous needling for conscious sedation. We compared the CDS with clinical and urinary markers (urinary electrolytes, proteins, ratios and fractional excretions) for dehydration in both groups using receiver operating characteristic (ROC) curves to determine the area under the curve (AUC). Results We enrolled 73 children (male = 36) in the dehydration group and 143 (male = 105) in the comparison group. Median age was 32 months (range 3–214) in the dehydration and 96 months (range 2.6-214 months, p < 0.0001) in the trauma group. Median CDS was 3 (range 0–8) within the dehydration group and 0 in the comparison group (p < 0.0001). The following parameters were statistically significant (p < 0.05) between the comparison group and the dehydrated group: difference in heart rate, diastolic blood pressure, urine sodium/potassium ratio, urine sodium, fractional sodium excretion, serum bicarbonate, and creatinine measurements. The best markers for dehydration were urine Na and serum bicarbonate (ROC AUC = 0.798 and 0.821, respectively). CDS was most closely correlated with serum bicarbonate (Pearson r = -0.3696, p = 0.002). Conclusion Although serum bicarbonate is not the gold standard for dehydration, this study provides further evidence for the usefulness of the CDS as a dehydration marker in children. Trial registration Registered at ClinicalTrials.gov (NCT00462527) on April 18, 2007. PMID:24935348

  16. Comparison of clinical and biochemical markers of dehydration with the clinical dehydration scale in children: a case comparison trial.

    PubMed

    Tam, Ron K; Wong, Hubert; Plint, Amy; Lepage, Nathalie; Filler, Guido

    2014-06-16

    The clinical dehydration scale (CDS) is a quick, easy-to-use tool with 4 clinical items and a score of 1-8 that serves to classify dehydration in children with gastroenteritis as no, some or moderate/severe dehydration. Studies validating the CDS (Friedman JN) with a comparison group remain elusive. We hypothesized that the CDS correlates with a wide spectrum of established markers of dehydration, making it an appropriate and easy-to-use clinical tool. This study was designed as a prospective double-cohort trial in a single tertiary care center. Children with diarrhea and vomiting, who clinically required intravenous fluids for rehydration, were compared with minor trauma patients who required intravenous needling for conscious sedation. We compared the CDS with clinical and urinary markers (urinary electrolytes, proteins, ratios and fractional excretions) for dehydration in both groups using receiver operating characteristic (ROC) curves to determine the area under the curve (AUC). We enrolled 73 children (male = 36) in the dehydration group and 143 (male = 105) in the comparison group. Median age was 32 months (range 3-214) in the dehydration and 96 months (range 2.6-214 months, p < 0.0001) in the trauma group. Median CDS was 3 (range 0-8) within the dehydration group and 0 in the comparison group (p < 0.0001). The following parameters were statistically significant (p < 0.05) between the comparison group and the dehydrated group: difference in heart rate, diastolic blood pressure, urine sodium/potassium ratio, urine sodium, fractional sodium excretion, serum bicarbonate, and creatinine measurements. The best markers for dehydration were urine Na and serum bicarbonate (ROC AUC = 0.798 and 0.821, respectively). CDS was most closely correlated with serum bicarbonate (Pearson r = -0.3696, p = 0.002). Although serum bicarbonate is not the gold standard for dehydration, this study provides further evidence for the usefulness of the CDS as a dehydration marker in children. Registered at ClinicalTrials.gov (NCT00462527) on April 18, 2007.

  17. 7 CFR 956.63 - Handling for specified purposes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... onions; (e) Shipments of Walla Walla Sweet Onions for all processing uses including, pickling, peeling, dehydration, juicing, or other processing; (f) Shipments of Walla Walla Sweet Onions for disposal; (g) Shipments of Walla Walla Sweet Onions for seed; (h) Shipments of Walla Walla Sweet Onions for packing or...

  18. 7 CFR 956.63 - Handling for specified purposes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... onions; (e) Shipments of Walla Walla Sweet Onions for all processing uses including, pickling, peeling, dehydration, juicing, or other processing; (f) Shipments of Walla Walla Sweet Onions for disposal; (g) Shipments of Walla Walla Sweet Onions for seed; (h) Shipments of Walla Walla Sweet Onions for packing or...

  19. 7 CFR 956.63 - Handling for specified purposes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... onions; (e) Shipments of Walla Walla Sweet Onions for all processing uses including, pickling, peeling, dehydration, juicing, or other processing; (f) Shipments of Walla Walla Sweet Onions for disposal; (g) Shipments of Walla Walla Sweet Onions for seed; (h) Shipments of Walla Walla Sweet Onions for packing or...

  20. 7 CFR 956.63 - Handling for specified purposes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... onions; (e) Shipments of Walla Walla Sweet Onions for all processing uses including, pickling, peeling, dehydration, juicing, or other processing; (f) Shipments of Walla Walla Sweet Onions for disposal; (g) Shipments of Walla Walla Sweet Onions for seed; (h) Shipments of Walla Walla Sweet Onions for packing or...

  1. 7 CFR 956.63 - Handling for specified purposes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... onions; (e) Shipments of Walla Walla Sweet Onions for all processing uses including, pickling, peeling, dehydration, juicing, or other processing; (f) Shipments of Walla Walla Sweet Onions for disposal; (g) Shipments of Walla Walla Sweet Onions for seed; (h) Shipments of Walla Walla Sweet Onions for packing or...

  2. Dehydration of pollock skin prior to gelatin production

    USDA-ARS?s Scientific Manuscript database

    Alaska pollock (Theragra chalcogramma) is the U.S.A.'s largest commercial fishery, with an annual catch of over 1 million tons. During pollock processing, the skins are discarded or made into fish meal, despite their value for gelatin production. The absence of gelatin-processing facilities in Alask...

  3. Improved shelf life of dried Beauveria bassiana blastospores using convective drying and active packaging processes

    USDA-ARS?s Scientific Manuscript database

    The yeast form (blastospore) of the dimorphic insect-pathogenic fungus Beauveria bassiana can be rapidly produced using liquid fermentation methods but is generally unable to survive rapid dehydration processes or storage under non-refrigerated conditions. In this study, we evaluated the influence o...

  4. Low-Pressure Alcohol Distillation

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Zur Burg, F. W.; Cody, J. C.

    1984-01-01

    Heat requirements lowered for process. Temperature requirements lowered enough to make solar heat absorbed by flat-plate collectors feasible energy source. Alcohol produced without adding other solvents, eliminating need for dehydration or hydrocarbon stripping as final step.

  5. JP-8 and Other Military Fuels

    DTIC Science & Technology

    2011-12-01

    Fermentation Jet Fuel-Like Product sugarcane Alcohol Oligomerization Conventional Refinery ProcessesSugar switchgrass Dehydration Pyrolysis Fermentation...PolymerizationOlefins Lignocellulose corn stover forest waste Jet Fuel-Like ProductBio-CrudePyrolysis Hydroprocessing Unclassified Back Up Slides

  6. Comparison of three dehydration scales showed that they were of limited or no value for assessing small children with acute diarrhoea.

    PubMed

    Pomorska, Dominika; Dziechciarz, Piotr; Mduma, Esto; Gidion, Joshua; Falszewska, Anna; Szajewska, Hania

    2018-02-20

    We explored the diagnostic accuracy of the clinical dehydration scale (CDS), the World Health Organization (WHO) scale and the Gorelick scale for assessing dehydration in children admitted to a Tanzanian referral hospital. This was a prospective, observational study, carried out from April 2015 to January 2017 on children aged one month to five years admitted to the hospital with acute diarrhoea lasting less than five days. Before rehydration therapy, each patient's weight was recorded and the degree of dehydration was assessed based on the three scales. The reference standard was the percentage weight change between admission and discharge. The main outcomes were the sensitivity, specificity and positive and negative likelihood ratios (LRs) of the scales. Data from 124 eligible patients were available. The CDS showed limited value for ruling in cases with some dehydration (LR 1.9, 95% confidence interval 1.1-2.8), but was of no value in assessing no and moderate to severe dehydration. The WHO and Gorelick scales were of no value in evaluating any degree of dehydration. The WHO and Gorelick dehydration scales were no use for assessing dehydration in small children, and the CDS was of limited use for predicting cases with some dehydration. ©2018 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  7. Decorin content and near infrared spectroscopy analysis of dried collagenous biomaterial samples.

    PubMed

    Aldema-Ramos, Mila L; Castell, Joan Carles; Muir, Zerlina E; Adzet, Jose Maria; Sabe, Rosa; Schreyer, Suzanne

    2012-12-14

    The efficient removal of proteoglycans, such as decorin, from the hide when processing it to leather by traditional means is generally acceptable and beneficial for leather quality, especially for softness and flexibility. A patented waterless or acetone dehydration method that can generate a product similar to leather called Dried Collagenous Biomaterial (known as BCD) was developed but has no effect on decorin removal efficiency. The Alcian Blue colorimetric technique was used to assay the sulfated glycosaminoglycan (sGAG) portion of decorin. The corresponding residual decorin content was correlated to the mechanical properties of the BCD samples and was comparable to the control leather made traditionally. The waterless dehydration and instantaneous chrome tanning process is a good eco-friendly alternative to transforming hides to leather because no additional effects were observed after examination using NIR spectroscopy and additional chemometric analysis.

  8. Dehydration in the Older Adult.

    PubMed

    Miller, Hayley J

    2015-09-01

    Dehydration affects 20% to 30% of older adults. It has a greater negative outcome in this population than in younger adults and increases mortality, morbidity, and disability. Dehydration is often caused by water deprivation in older adults, although excess water loss may also be a cause. Traditional markers for dehydration do not take into consideration many of the physiological differences present in older adults. Clinical assessment of dehydration in older adults poses different findings, yet is not always diagnostic. Treatment of dehydration should focus on prevention and early diagnosis before it negatively effects health and gives rise to comorbidities. The current article discusses what has most thoroughly been studied; the best strategies and assessment tools for evaluation, diagnosis, and treatment of dehydration in older adults; and what needs to be researched further. [Journal of Gerontological Nursing, 41(9), 8-13.]. Copyright 2015, SLACK Incorporated.

  9. A Computational Study of Vocal Fold Dehydration During Phonation.

    PubMed

    Wu, Liang; Zhang, Zhaoyan

    2017-12-01

    While vocal fold dehydration is often considered an important factor contributing to vocal fatigue, it still remains unclear whether vocal fold vibration alone is able to induce severe dehydration that has a noticeable effect on phonation and perceived vocal effort. A three-dimensional model was developed to investigate vocal fold systemic dehydration and surface dehydration during phonation. Based on the linear poroelastic theory, the model considered water resupply from blood vessels through the lateral boundary, water movement within the vocal folds, water exchange between the vocal folds and the surface liquid layer through the epithelium, and surface fluid accumulation and discharge to the glottal airway. Parametric studies were conducted to investigate water loss within the vocal folds and from the surface after a 5-min sustained phonation under different permeability and vibration conditions. The results showed that the dehydration generally increased with increasing vibration amplitude, increasing epithelial permeability, and reduced water resupply. With adequate water resupply, a large-amplitude vibration can induce an overall systemic dehydration as high as 3%. The distribution of water loss within the vocal folds was non-uniform, and a local dehydration higher than 5% was observed even under conditions of a low overall systemic dehydration (<1%). Such high level of water loss may severely affect tissue properties, muscular functions, and phonations characteristics. In contrast, water loss of the surface liquid layer was generally an order of magnitude higher than water loss inside the vocal folds, indicating that the surface dehydration level is likely not a good indicator of the systemic dehydration.

  10. Rehydration with soft drink-like beverages exacerbates dehydration and worsens dehydration-associated renal injury.

    PubMed

    García-Arroyo, Fernando E; Cristóbal, Magdalena; Arellano-Buendía, Abraham S; Osorio, Horacio; Tapia, Edilia; Soto, Virgilia; Madero, Magdalena; Lanaspa, Miguel A; Roncal-Jiménez, Carlos; Bankir, Lise; Johnson, Richard J; Sánchez-Lozada, Laura-Gabriela

    2016-07-01

    Recurrent dehydration, such as commonly occurs with manual labor in tropical environments, has been recently shown to result in chronic kidney injury, likely through the effects of hyperosmolarity to activate both vasopressin and aldose reductase-fructokinase pathways. The observation that the latter pathway can be directly engaged by simple sugars (glucose and fructose) leads to the hypothesis that soft drinks (which contain these sugars) might worsen rather than benefit dehydration associated kidney disease. Recurrent dehydration was induced in rats by exposure to heat (36°C) for 1 h/24 h followed by access for 2 h to plain water (W), a 11% fructose-glucose solution (FG, same composition as typical soft drinks), or water sweetened with noncaloric stevia (ST). After 4 wk plasma and urine samples were collected, and kidneys were examined for oxidative stress, inflammation, and injury. Recurrent heat-induced dehydration with ad libitum water repletion resulted in plasma and urinary hyperosmolarity with stimulation of the vasopressin (copeptin) levels and resulted in mild tubular injury and renal oxidative stress. Rehydration with 11% FG solution, despite larger total fluid intake, resulted in greater dehydration (higher osmolarity and copeptin levels) and worse renal injury, with activation of aldose reductase and fructokinase, whereas rehydration with stevia water had opposite effects. In animals that are dehydrated, rehydration acutely with soft drinks worsens dehydration and exacerbates dehydration associated renal damage. These studies emphasize the danger of drinking soft drink-like beverages as an attempt to rehydrate following dehydration. Copyright © 2016 the American Physiological Society.

  11. Effects of Dehydration on Brain Functioning: A Life-Span Perspective.

    PubMed

    Pross, Nathalie

    2017-01-01

    In the last 10 years, there has been an increase in the publication of literature dealing with the effects of mild dehydration on cognition in healthy adults. Fewer studies, leading to less consistent data, involved other age groups. In healthy young adults refraining from drinking or participating in dehydration protocols, it was found that mild dehydration had no impact on performance, whereas the mood was widely impaired. Several studies have also been conducted in young children either as observational studies or as interventional studies. Nevertheless, methodological differences in (de)hydration monitoring, in cognitive assessments, and in the age/brain maturation of study participants, often resulted in contradictory findings regarding the cognitive functions impacted by (de)hydration. Although not consistent, these data showed that not only mood but also performance tend to be impaired by dehydration in children. Even if older adults are likely to be more vulnerable to dehydration than younger adults, very few studies have been conducted in this regard in this population. The results show that, like it is in children, cognition tends to be impaired when the elderly are dehydrated. Taken together, these studies suggest that dehydration has greater detrimental effects in vulnerable populations. Recent imaging data suggest that the brain of children and elderly adults may have fewer resources to manage the effects of dehydration. Consequently, cognitive tasks may be more demanding for younger and older brains and performance more likely to be impaired in these populations, in comparison to young healthy subjects who have greater and more efficient resources. © 2017 The Author(s) Published by S. Karger AG, Basel.

  12. Closing data gaps for LCA of food products: estimating the energy demand of food processing.

    PubMed

    Sanjuán, Neus; Stoessel, Franziska; Hellweg, Stefanie

    2014-01-21

    Food is one of the most energy and CO2-intensive consumer goods. While environmental data on primary agricultural products are increasingly becoming available, there are large data gaps concerning food processing. Bridging these gaps is important; for example, the food industry can use such data to optimize processes from an environmental perspective, and retailers may use this information for purchasing decisions. Producers and retailers can then market sustainable products and deliver the information demanded by governments and consumers. Finally, consumers are increasingly interested in the environmental information of foods in order to lower their consumption impacts. This study provides estimation tools for the energy demand of a representative set of food process unit operations such as dehydration, evaporation, or pasteurization. These operations are used to manufacture a variety of foods and can be combined, according to the product recipe, to quantify the heat and electricity demand during processing. In combination with inventory data on the production of the primary ingredients, this toolbox will be a basis to perform life cycle assessment studies of a large number of processed food products and to provide decision support to the stakeholders. Furthermore, a case study is performed to illustrate the application of the tools.

  13. Dehydration of detomidine hydrochloride monohydrate.

    PubMed

    Veldre, K; Actiņš, A; Jaunbergs, J

    2011-10-09

    The thermodynamic stability of detomidine hydrochloride monohydrate has been evaluated on the basis of phase transition kinetics in solid state. A method free of empirical models was used for the treatment of kinetic data, and compared to several known solid state kinetic data processing methods. Phase transitions were monitored by powder X-ray diffraction (PXRD) and thermal analysis. Full PXRD profiles were used for determining the phase content instead of single reflex intensity measurements, in order to minimize the influence of particle texture. We compared the applicability of isothermal and nonisothermal methods to our investigation of detomidine hydrochlorine monohydrate dehydration. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. A Review of the Literature and of Work Done in A.R.D and C.R.D.D. on Picrite and its Intermediates with a View to Finding a Cheap and Economical Process

    DTIC Science & Technology

    1947-05-01

    dehydrating agents are finely divided nickel aluminium or phosphorous pentoxide. AI2O? or MCO2 Bay be present, ^°°) (c) By the hydrolysis of cyanurea...to form guanidino nitrate which is then dehydrated to nitroguanidine, the equation being as follows:- " CaO + C02 CaC2 + CO CaCN2 + C (4...cyanamide. The presence of water increases the yield of cyanamide. Iron is avoided as it I; causes decomposition but hydrogen sulphide or carbon

  15. Conversion of Weinreb amides into benzene rings incorporating the amide carbonyl carbon.

    PubMed

    Clive, Derrick L J; Pham, Mai P

    2009-02-20

    Esters, acids and acid chlorides can be converted via the intermediacy of their corresponding Weinreb amides into benzene derivatives that incorporate the original carbonyl carbon as part of the benzene ring. The process involves treatment of the derived Weinreb amides with 3-butenylmagnesium bromide and an allylic Grignard reagent, followed by ring-closing metathesis, dehydration and dehydrogenation. The dehydration-dehydrogenation can be done under acidic conditions with a mixture of TsOH x H(2)O and DDQ or in two steps with SOCl(2)/pyridine, followed by treatment with DDQ. Application of the method to carbohydrates provides a convenient route to C-5 aryl pyranosides.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Drew T.; Zeng, Jia; Bailey, Constance B.

    In an effort to uncover the structural motifs and biosynthetic logic of the relatively uncharacterized trans-acyltransferase polyketide synthases, we have begun the dissection of the enigmatic dehydrating bimodules common in these enzymatic assembly lines. We report the 1.98 Å resolution structure of a ketoreductase (KR) from the first half of a type A dehydrating bimodule and the 2.22 Å resolution structure of a dehydratase (DH) from the second half of a type B dehydrating bimodule. The KR, from the third module of the bacillaene synthase, and the DH, from the tenth module of the difficidin synthase, possess features not observedmore » in structurally characterized homologs. The DH architecture provides clues for how it catalyzes a unique double dehydration. Correlations between the chemistries proposed for dehydrating bimodules and bioinformatic analysis indicate that type A dehydrating bimodules generally produce an α/β-cis alkene moiety, while type B dehydrating bimodules generally produce an α/β-trans, γ/δ-cis diene moiety.« less

  17. Dehydration-driven stress transfer triggers intermediate-depth earthquakes

    NASA Astrophysics Data System (ADS)

    Ferrand, Thomas P.; Hilairet, Nadège; Incel, Sarah; Deldicque, Damien; Labrousse, Loïc; Gasc, Julien; Renner, Joerg; Wang, Yanbin; Green, Harry W., II; Schubnel, Alexandre

    2017-05-01

    Intermediate-depth earthquakes (30-300 km) have been extensively documented within subducting oceanic slabs, but their mechanics remains enigmatic. Here we decipher the mechanism of these earthquakes by performing deformation experiments on dehydrating serpentinized peridotites (synthetic antigorite-olivine aggregates, minerals representative of subduction zones lithologies) at upper mantle conditions. At a pressure of 1.1 gigapascals, dehydration of deforming samples containing only 5 vol% of antigorite suffices to trigger acoustic emissions, a laboratory-scale analogue of earthquakes. At 3.5 gigapascals, acoustic emissions are recorded from samples with up to 50 vol% of antigorite. Experimentally produced faults, observed post-mortem, are sealed by fluid-bearing micro-pseudotachylytes. Microstructural observations demonstrate that antigorite dehydration triggered dynamic shear failure of the olivine load-bearing network. These laboratory analogues of intermediate-depth earthquakes demonstrate that little dehydration is required to trigger embrittlement. We propose an alternative model to dehydration-embrittlement in which dehydration-driven stress transfer, rather than fluid overpressure, causes embrittlement.

  18. Kinetics and selectivity of 2-propanol conversion on oxidized anatase TiO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rekoske, J.E.; Barteau, M.A.

    1997-01-01

    The steady-state kinetics of 2-propanol decomposition on oxidized anatase TiO{sub 2} have been determined at temperatures ranging from 448 to 598 K and 2-propanol partial pressures from 8.9 to 102.7 Torr. The effects of the addition of O{sub 2} and water to the carrier gas were also investigated. The steady-state reaction results primarily in the formation of a dehydration product, propylene, and a dehydrogenation product, acetone, with small amounts of carbon oxides also being observed. Depending on the reaction conditions, the selectivity to either propylene or acetone can range between 5 and 95%. The rate of dehydrogenation increases dramatically withmore » the addition of both O{sub 2} and water, while the dehydration rate is unaffected by their presence. Accordingly, the kinetics of 2-propanol decomposition were investigated using both air and an inert carrier. Using air as the carrier gas, the dehydration and dehydrogenation reactions were determined to be approximately one-half order with respect to 2-propanol partial pressure. The activation energies determined for the two processes are substantially different, 68 kJ mol{sup -1} for dehydrogenation and 130 kJ mol{sup -1} for dehydration, as evidenced by the strong temperature dependence of the decomposition selectivity. Using an inert carrier, the reaction kinetics depend in a complex fashion on the conversion of 2-propanol. The dependence on conversion was found to arise from the influence of water on the dehydrogenation kinetics. The presence of water, whether produced by 2-propanol dehydration or added independently, was found to increase the rate of 2-propanol dehydrogenation. 48 refs., 9 figs., 6 tabs.« less

  19. Arctic stratospheric dehydration - Part 1: Unprecedented observation of vertical redistribution of water

    NASA Astrophysics Data System (ADS)

    Khaykin, S. M.; Engel, I.; Vömel, H.; Formanyuk, I. M.; Kivi, R.; Korshunov, L. I.; Krämer, M.; Lykov, A. D.; Meier, S.; Naebert, T.; Pitts, M. C.; Santee, M. L.; Spelten, N.; Wienhold, F. G.; Yushkov, V. A.; Peter, T.

    2013-11-01

    We present high-resolution measurements of water vapour, aerosols and clouds in the Arctic stratosphere in January and February 2010 carried out by in situ instrumentation on balloon sondes and high-altitude aircraft combined with satellite observations. The measurements provide unparalleled evidence of dehydration and rehydration due to gravitational settling of ice particles. An extreme cooling of the Arctic stratospheric vortex during the second half of January 2010 resulted in a rare synoptic-scale outbreak of ice polar stratospheric clouds (PSCs) remotely detected by the lidar aboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) satellite. The widespread occurrence of ice clouds was followed by sedimentation and consequent sublimation of ice particles, leading to vertical redistribution of water inside the vortex. A sequence of balloon and aircraft soundings with chilled mirror and Lyman- α hygrometers (Cryogenic Frostpoint Hygrometer, CFH; Fast In Situ Stratospheric Hygrometer, FISH; Fluorescent Airborne Stratospheric Hygrometer, FLASH) and backscatter sondes (Compact Optical Backscatter Aerosol Detector, COBALD) conducted in January 2010 within the LAPBIAT (Lapland Atmosphere-Biosphere Facility) and RECONCILE (Reconciliation of Essential Process Parameters for an Enhanced Predictability of Arctic Stratospheric Ozone Loss and its Climate Interactions) campaigns captured various phases of this phenomenon: ice formation, irreversible dehydration and rehydration. Consistent observations of water vapour by these independent measurement techniques show clear signatures of irreversible dehydration of the vortex air by up to 1.6 ppmv in the 20-24 km altitude range and rehydration by up to 0.9 ppmv in a 1 km thick layer below. Comparison with space-borne Aura MLS (Microwave Limb Sounder) water vapour observations allow the spatiotemporal evolution of dehydrated air masses within the Arctic vortex to be derived and upscaled.

  20. On the nature of the reversibility of hydration-dehydration on the crystal structure and magnetism of the ferrimagnet [MnII(enH)(H2O)][CrIII(CN)6].H2O.

    PubMed

    Yoshida, Yusuke; Inoue, Katsuya; Kurmoo, Mohamedally

    2009-01-05

    We report the synthesis, crystal structure, and thermal and magnetic properties of the two-dimensional achiral soft ferrimagnet [Mn(II)(enH)(H(2)O)][Cr(III)(CN)(6)].H(2)O (1), en = 1,2-diaminoethane, as well as the recyclability of the dehydration and rehydration and their influence on the crystal structure and its magnetic properties. Unlike [Mn(S-pnH)(H(2)O)][Cr(CN)(6)].H(2)O (2S, pn = 1,2-diaminopropane), which is a chiral (P2(1)2(1)2(1)) enantiopure ferrimagnet (T(C) = 38 K), 1 crystallizes in the achiral orthorhombic Pcmn space group, having a similar two-dimensional square network of Mn-Cr with bridging cyanide, and 1 behaves also as a soft ferrimagnet (T(C) = 42 K). X-ray diffraction experiments on a single crystal of 1 indicate a transformation from a single crystal to an amorphous phase upon dehydrataion and partial recovery of its crystallinity upon rehydration. The dehydrated phase 1-DP exhibits long-range ordering at 75 K to a ferrimagnetic state and coercive field at 2 K of 100 Oe, which are a higher critical temperature and coercive field than for the virgin sample (H(C) = 60 Oe). Thermogravimetric analyses indicate that the crystallinity deteriorates upon hydration-dehydration cycling, with persistence toward the amorphous phase, as also seen by magnetization measurements. This effect is associated with an increase of statistical disorder inherent in the dehydration-rehydration process. X-ray powder diffraction suggests that 1-DP may retain order within the layers but loses coherence in the stacking of the layers.

  1. Quaternary Sediment Accumulation in the Aleutian Trench: Implications for Dehydration Reaction Progress and Pore Pressure Development Offshore Alaska

    NASA Astrophysics Data System (ADS)

    Meridth, L. N.; Screaton, E.; Jaeger, J. M.; James, S. R.; Villaseñor, T. G.

    2015-12-01

    Sediment inputs to subduction zones impart a significant control on diagenetic reaction progress, fluid production and pore pressure development and thus affect hydrologic and tectonic behavior during subduction. Intensified glaciation following the mid-Pleistocene transition increased sediment flux to the Gulf of Alaska. Rapid sediment accumulation (>1 km/my) in the Aleutian Trench increases overburden and should accelerate dehydration of hydrous sedimentary components by elevating temperatures in the incoming sediment column. These processes have the potential to generate fluid overpressures in the mud-dominated, low permeability sediments deposited on the incoming plate, offshore SE Alaska. Mineralogical analyses on incoming sediments from Deep Sea Drilling Project Leg 18 and Integrated Ocean Drilling Program Expedition 341 show that both smectite and Opal-A are present as hydrous mineral phases. A 1-D numerical model was developed to track dehydration reaction progress and pore pressures in the incoming sediment column from the abyssal plain to the Aleutian Trench. Simulated temperatures in the incoming column increase due to the insulating effect of trench sediments. As a result, trench sedimentation causes smectite dehydration to begin and Opal-A dehydration to nearly reach completion at the deformation front. Simulated excess pore pressures in the proto-decollement zone increase from nearly hydrostatic to almost half of lithostatic due to the rapid deposition of trench sediments. The 1-D modeling results were incorporated into a 2-D model that follows the underthrust column at the deformation front into the subduction zone. Simulated results of the 2-D flow model illustrate the effects of lateral flow on pore pressure distribution following subduction.

  2. Synchrotron Powder X-ray Diffraction Study of the Structure and Dehydration Behavior of Sepiolite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Post,J.; Bish, D.; Heaney, P.

    2007-01-01

    Rietveld refinements using synchrotron powder X-ray diffraction data were used to study the crystal structure and dehydration behavior of sepiolite from Durango, Mexico. The room-temperature (RT) sepiolite structure in air compares well with previous models but reveals an additional zeolitic H{sub 2}O site. The RT structure under vacuum retained only {approx}1/8 of the zeolitic H{sub 2}O and the volume decreased by 1.3%. Real-time, temperature-resolved synchrotron powder X-ray diffraction data and Rietveld refinements were used to investigate the behavior of the sepiolite structure from 300 to 925 K. Rietveld refinements revealed that most of the zeolitic H{sub 2}O is lost bymore » {approx}390 K, accompanied by a decrease in the a and c unit-cell parameters. Above {approx}600 K the sepiolite structure folds as one-half of the crystallographically bound H{sub 2}O is lost. Rietveld refinements of the 'anhydrous' sepiolite structure reveal that, in general, unit-cell parameters a and b and volume steadily decrease with increasing temperature; there is an obvious change in slope at {approx}820 K suggesting a phase transformation coinciding with the loss of the remaining bound H{sub 2}O molecule.« less

  3. Ozone fumigation for safety and quality of wine grapes in postharvest dehydration.

    PubMed

    Botondi, Rinaldo; De Sanctis, Federica; Moscatelli, Niccolò; Vettraino, Anna Maria; Catelli, Cesare; Mencarelli, Fabio

    2015-12-01

    This paper proposes postharvest ozone fumigation (as a method) to control microorganisms and evaluate the effect on polyphenols, anthocyanins, carotenoids and cell wall enzymes during the grape dehydration for wine production. Pignola grapes were ozone-treated (1.5 g/h) for 18 h (A=shock treatment), then dehydrated or ozone-treated (1.5 g/h) for 18 h and at 0.5 g/h for 4 h each day (B=long-term treatment) during dehydration. Treatment and dehydration were performed at 10 °C. No significant difference was found for total carotenoid, total phenolic and total anthocyanin contents after 18 h of O3 treatment. A significant decrease in phenolic and anthocyanin contents occurred during treatment B. Also carotenoids were affected by B ozone treatment. Pectin methylesterase (PME) and polygalacturonase (PG) activities were higher in A-treated grapes during dehydration. Finally, ozone reduced fungi and yeasts by 50%. Shock ozone fumigation (A treatment) before dehydration can be used to reduce the microbial count during dehydration without affecting polyphenol and carotenoid contents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. The response difference of mitochondria in recalcitrant Antiaris toxicaria axes and orthodox Zea mays embryos to dehydration injury.

    PubMed

    Song, Song-Quan; Tian, Mei-Hua; Kan, Jing; Cheng, Hong-Yan

    2009-07-01

    Long-term preservation of recalcitrant seeds is very difficult because the physiological basis on their desiccation sensitivity is poorly understood. Survival of Antiaris toxicaria axes rapidly decreased and that of immature maize embryos very slowly decreased with dehydration. To understand their different responses to dehydration, we examined the changes in mitochondria activity during dehydration. Although activities of cytochrome (Cyt) c oxidase and malate dehydrogenase of the A. toxicaria axis and maize embryo mitochondria decreased with dehydration, the parameters of maize embryo mitochondria were much higher than those of A. toxicaria, showing that the damage was more severe for the A. toxicaria axis mitochondria than for those of maize embryo. The state I and III respiration of the A. toxicaria axis mitochondria were higher than those of maize embryo, the former rapidly decreased, and the latter slowly decreased with dehydration. The proportion of Cyt c pathway to state III respiration for the A. toxicaria axis mitochondria was low and rapidly decreased with dehydration, and the proportion of alternative oxidase pathway was high and slightly increased with dehydration. In contrast, the proportion of Cyt c pathway for maize embryo mitochondria was high, and that of alternative oxidase pathway was low. Both pathways decreased slowly with dehydration.

  5. Skeletal muscle strength and endurance are maintained during moderate dehydration.

    PubMed

    Périard, J D; Tammam, A H; Thompson, M W

    2012-08-01

    This study investigated the effects of moderate dehydration (~2.5% body weight) on muscle strength and endurance using percutaneous electrical stimulation to quantify central and peripheral fatigue, and isolate the combined effects of exercise-heat stress and dehydration, vs. the effect of dehydration alone. Force production and voluntary activation were calculated in 10 males during 1 brief and 15 repeated maximal voluntary isometric contractions performed prior to (control) walking in the heat (35°C), immediately following exercise, and the next morning (dehydration). The protocol was also performed in a euhydrated state. During the brief contractions, force production and voluntary activation were maintained in all trials. In contrast, force production decreased throughout the repeated contractions, regardless of hydration status (P<0.001). The decline in force was greater immediately following exercise-heat stress dehydration compared with control and euhydration (P<0.001). When dehydration was isolated from acute post-exercise dehydration, force production was maintained similarly to control and euhydration. Despite the progressive decline in force production and the increased fatigability observed during the repeated contractions, voluntary activation remained elevated throughout each muscle function test. Therefore, moderate dehydration, isolated from acute exercise-heat stress, does not appear to influence strength during a single contraction or enhance fatigability. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Contact lens material characteristics associated with hydrogel lens dehydration.

    PubMed

    Ramamoorthy, Padmapriya; Sinnott, Loraine T; Nichols, Jason J

    2010-03-01

    To determine the association between material dehydration and hydrogel contact lens material characteristics, including water content and ionicity. Water content and refractive index data were derived from automated refractometry measurements of worn hydrogel contact lenses of 318 participants in the Contact Lens and Dry Eye Study (CLADES). Dehydration was determined in two ways; as the difference between nominal and measured (1) water content and (2) refractive index. Multiple regression models were used to examine the relation between dehydration and material characteristics, controlling for tear osmolality. The overall measured and nominal water content values were 52.58 +/- 7.49% and 56.88 +/- 7.81% respectively, while the measured and nominal refractive indices were 1.429 +/- 0.015 and 1.410 +/- 0.017. High water content and ionic hydrogel lens materials were associated with greater dehydration (p < 0.0001 for both) than low water content and non-ionic materials. When dehydration was assessed as the difference in refractive index, only high water content was associated with dehydration (p < 0.0001). High water content and ionic characteristics of hydrogel lens materials are associated with hydrogel lens dehydration, with the former being more strongly associated. Such dehydration changes could in turn lead to important clinical ramifications such as reduced oxygen transmissibility, greater lens adherence and reduced tear exchange.

  7. An aggregate urine analysis tool to detect acute dehydration.

    PubMed

    Hahn, Robert G; Waldréus, Nana

    2013-08-01

    Urine sampling has previously been evaluated for detecting dehydration in young male athletes. The present study investigated whether urine analysis can serve as a measure of dehydration in men and women of a wide age span. Urine sampling and body weight measurement were undertaken before and after recreational physical exercise (median time: 90 min) in 57 volunteers age 17-69 years (mean age: 42). Urine analysis included urine color, osmolality, specific gravity, and creatinine. The volunteers' body weight decreased 1.1% (mean) while they exercised. There were strong correlations between all 4 urinary markers of dehydration (r = .73-.84, p < .001). Researchers constructed a composite dehydration index graded from 1 to 6 based on these markers. This index changed from 2.70 before exercising to 3.55 after exercising, which corresponded to dehydration of 1.0% as given by a preliminary reference curve based on seven previous studies in athletes. Men were slightly dehydrated at baseline (mean: 1.9%) compared with women (mean: 0.7%; p < .001), though age had no influence on the results. A final reference curve that considered both the present results and the 7 previous studies was constructed in which exercise-induced weight loss (x) was predicted by the exponential equation x = 0.20 dehydration index1.86. Urine sampling can be used to estimate weight loss due to dehydration in adults up to age 70. A robust dehydration index based on four indicators reduces the influence of confounders.

  8. Dehydration in children with diabetic ketoacidosis: a prospective study.

    PubMed

    Sottosanti, Maria; Morrison, Gavin C; Singh, Ram N; Sharma, Ajay P; Fraser, Douglas D; Alawi, Khalid; Seabrook, Jamie A; Kornecki, Alik

    2012-02-01

    To investigate the association between the degree of patient dehydration on presentation with diabetic ketoacidosis (DKA) and clinical and laboratory parameters obtained on admission. Prospective descriptive study. A tertiary care children's hospital. Thirty-nine paediatric patients (1 month-16 years) presenting with 42 episodes of DKA. Clinical and biochemical variables were collected on admission. Dehydration was calculated by measuring acute changes in body weight during the period of illness. All patients were treated according to a previously established protocol. Magnitude of dehydration, defined as % loss of body weight (LBW), was determined by the difference in body weight obtained at presentation and at discharge. The relationship between the magnitude of dehydration and the clinical assessment and biochemical parameters was examined. The median (25th-75th centiles) magnitude of dehydration at presentation was 5.7% (3.8-8.3%) (mean ± SD 6.8 ± 5%). Neither the initial clinical assessment nor the comprehensive biochemical profile at admission correlated with the magnitude of dehydration. Despite considerable variation in the degree of dehydration and biochemical disequilibrium, all patients recovered from DKA within 24 h with a standardised therapeutic approach. Furthermore, the rapidity of patient recovery did not correlate with the magnitude of dehydration on presentation or the amount of fluid administered (median (25th-75th centiles) 48.8 ml/kg (38.5-60.3)) in the first 12 h. The magnitude of dehydration in DKA is not reflected by either clinical or biochemical parameters. These findings need confirmation in larger studies.

  9. Mixed Alcohol Dehydration over Bronsted and Lewis Acidic Catalysts

    DOE PAGES

    Nash, Connor P.; Ramanathan, Anand; Ruddy, Daniel A.; ...

    2015-12-01

    Mixed alcohols are attractive oxygenated products of biomass-derived syngas because they may be catalytically converted to a range of hydrocarbon products, including liquid hydrocarbon fuels. Catalytic dehydration to form olefins is a potential first step in the conversion of C 2–C 4 alcohols into longer-chain hydrocarbons. Here, we describe the physical and chemical characterization along with catalytic activity and selectivity of 4 Brønsted and Lewis acidic catalysts for the dehydration of two mixed alcohol feed streams that are representative of products from syngas conversion over K-CoMoS type catalysts (i.e., ethanol, 1-propanol, 1-butanol and 2-methyl-1-propanol). Specifically, a Lewis acidic Zr-incorporated mesoporousmore » silicate (Zr-KIT-6), a commercial Al-containing mesoporous silicate (Al-MCM-41), a commercial microporous aluminosilicate (HZSM-5), and a commercial microporous silicoaluminophosphate (SAPO-34) were tested for mixed alcohol dehydration at 250, 300 and 350 °C. The zeolite materials exhibited high activity (>98% ethanol conversion) at all temperatures while the mesoporous materials only displayed significant activity (>10% ethanol conversion) at or above 300 °C. The turnover frequencies for ethanol dehydration at 300 °C decreased in the following order: HZSM-5 > SAPO-34 > Al-MCM-41 > Zr-KIT-6, suggesting that Brønsted acidic sites are more active than Lewis acidic sites for alcohol dehydration. At 300 °C, SAPO-34 produced the highest yield of olefin products from both a water-free ethanol rich feed stream and a C 3+-alcohol rich feed stream containing water. Post-reaction characterization indicated changes in the Brønsted-to-Lewis acidic site ratios for Zr-KIT-6, Al-MCM-41 and HZSM-5. Ammonia temperature programmed desorption indicated that the acid sites of post-reaction samples could be regenerated following treatment in air. The post-reaction SAPO-34 catalyst contained more aromatic, methylated aromatic and polyaromatic compounds than its zeolite counterpart HZSM-5, while no aromatic compounds were observed on post-reaction Al-MCM-41 or Zr-KIT-6 catalysts. Olefin yield at 300 °C over SAPO-34 (>95%) was comparable to published values for the methanol-to-olefins process, indicating the potential industrial application of mixed alcohol dehydration. Furthermore, the olefin product distribution over SAPO-34 was tunable by the composition of the alcohol feed mixture.« less

  10. Mixed Alcohol Dehydration over Bronsted and Lewis Acidic Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, Connor P.; Ramanathan, Anand; Ruddy, Daniel A.

    Mixed alcohols are attractive oxygenated products of biomass-derived syngas because they may be catalytically converted to a range of hydrocarbon products, including liquid hydrocarbon fuels. Catalytic dehydration to form olefins is a potential first step in the conversion of C 2–C 4 alcohols into longer-chain hydrocarbons. Here, we describe the physical and chemical characterization along with catalytic activity and selectivity of 4 Brønsted and Lewis acidic catalysts for the dehydration of two mixed alcohol feed streams that are representative of products from syngas conversion over K-CoMoS type catalysts (i.e., ethanol, 1-propanol, 1-butanol and 2-methyl-1-propanol). Specifically, a Lewis acidic Zr-incorporated mesoporousmore » silicate (Zr-KIT-6), a commercial Al-containing mesoporous silicate (Al-MCM-41), a commercial microporous aluminosilicate (HZSM-5), and a commercial microporous silicoaluminophosphate (SAPO-34) were tested for mixed alcohol dehydration at 250, 300 and 350 °C. The zeolite materials exhibited high activity (>98% ethanol conversion) at all temperatures while the mesoporous materials only displayed significant activity (>10% ethanol conversion) at or above 300 °C. The turnover frequencies for ethanol dehydration at 300 °C decreased in the following order: HZSM-5 > SAPO-34 > Al-MCM-41 > Zr-KIT-6, suggesting that Brønsted acidic sites are more active than Lewis acidic sites for alcohol dehydration. At 300 °C, SAPO-34 produced the highest yield of olefin products from both a water-free ethanol rich feed stream and a C 3+-alcohol rich feed stream containing water. Post-reaction characterization indicated changes in the Brønsted-to-Lewis acidic site ratios for Zr-KIT-6, Al-MCM-41 and HZSM-5. Ammonia temperature programmed desorption indicated that the acid sites of post-reaction samples could be regenerated following treatment in air. The post-reaction SAPO-34 catalyst contained more aromatic, methylated aromatic and polyaromatic compounds than its zeolite counterpart HZSM-5, while no aromatic compounds were observed on post-reaction Al-MCM-41 or Zr-KIT-6 catalysts. Olefin yield at 300 °C over SAPO-34 (>95%) was comparable to published values for the methanol-to-olefins process, indicating the potential industrial application of mixed alcohol dehydration. Furthermore, the olefin product distribution over SAPO-34 was tunable by the composition of the alcohol feed mixture.« less

  11. Proton density-weighted laryngeal magnetic resonance imaging in systemically dehydrated rats.

    PubMed

    Oleson, Steven; Lu, Kun-Han; Liu, Zhongming; Durkes, Abigail C; Sivasankar, M Preeti

    2018-06-01

    Dehydrated vocal folds are inefficient sound generators. Although systemic dehydration of the body is believed to induce vocal fold dehydration, this causative relationship has not been demonstrated in vivo. Here we investigate the feasibility of using in vivo proton density (PD)-weighted magnetic resonance imaging (MRI) to demonstrate hydration changes in vocal fold tissue following systemic dehydration in rats. Animal study. Sprague-Dawley rats (n = 10) were imaged at baseline and following a 10% reduction in body weight secondary to withholding water. In vivo, high-field (7 T), PD-weighted MRI was used to successfully resolve vocal fold and salivary gland tissue structures. Normalized signal intensities within the vocal fold decreased postdehydration by an average of 11.38% ± 3.95% (mean ± standard error of the mean [SEM], P = .0098) as compared to predehydration levels. The salivary glands experienced a similar decrease in normalized signal intensity by an average of 10.74% ± 4.14% (mean ± SEM, P = .0195) following dehydration. The correlation coefficient (percent change from dehydration) between vocal folds and salivary glands was 0.7145 (P = .0202). Ten percent systemic dehydration induced vocal fold dehydration as assessed by PD-weighted MRI. Changes in the hydration state of vocal fold tissue were highly correlated with that of the salivary glands in dehydrated rats in vivo. These preliminary findings demonstrate the feasibility of using PD-weighted MRI to quantify hydration states of the vocal folds and lay the foundation for further studies that explore more routine and realistic magnitudes of systemic dehydration and rehydration. NA. Laryngoscope, 128:E222-E227, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  12. An organ-specific role for ethylene in rose petal expansion during dehydration and rehydration

    PubMed Central

    Liu, Daofeng; Liu, Xiaojing; Meng, Yonglu; Sun, Cuihui; Tang, Hongshu; Jiang, Yudong; Khan, Muhammad Ali; Xue, Jingqi; Ma, Nan; Gao, Junping

    2013-01-01

    Dehydration is a major factor resulting in huge loss from cut flowers during transportation. In the present study, dehydration inhibited petal cell expansion and resulted in irregular flowers in cut roses, mimicking ethylene-treated flowers. Among the five floral organs, dehydration substantially elevated ethylene production in the sepals, whilst rehydration caused rapid and elevated ethylene levels in the gynoecia and sepals. Among the five ethylene biosynthetic enzyme genes (RhACS1–5), expression of RhACS1 and RhACS2 was induced by dehydration and rehydration in the two floral organs. Silencing both RhACS1 and RhACS2 significantly suppressed dehydration- and rehydration-induced ethylene in the sepals and gynoecia. This weakened the inhibitory effect of dehydration on petal cell expansion. β-glucuronidase activity driven by both the RhACS1 and RhACS2 promoters was dramatically induced in the sepals, pistil, and stamens, but not in the petals of transgenic Arabidopsis. This further supports the organ-specific induction of these two genes. Among the five rose ethylene receptor genes (RhETR1–5), expression of RhETR3 was predominantly induced by dehydration and rehydration in the petals. RhETR3 silencing clearly aggravated the inhibitory effect of dehydration on petal cell expansion. However, no significant difference in the effect between RhETR3-silenced flowers and RhETR-genes-silenced flowers was observed. Furthermore, RhETR-genes silencing extensively altered the expression of 21 cell expansion-related downstream genes in response to ethylene. These results suggest that induction of ethylene biosynthesis by dehydration proceeds in an organ-specific manner, indicating that ethylene can function as a mediator in dehydration-caused inhibition of cell expansion in rose petals. PMID:23599274

  13. Effects of dehydration on plasma osmolality, thirst-related behavior, and plasma and brain angiotensin concentrations in Couch's spadefoot toad, Scaphiopus couchii.

    PubMed

    Johnson, W E; Propper, C R

    2000-05-01

    Under dehydrating conditions, many terrestrial vertebrates species exhibit increases in plasma osmolality and their drinking behavior. Under some circumstances, this behavioral change is accompanied by changes in plasma and central angiotensin concentrations, and it has been proposed that these changes in angiotensin levels induce the thirst-related behaviors. In response to dehydration, the spadefoot toad, Scaphiopus couchii, exhibits thirst-related behavior in the form of cutaneous drinking. This behavior has been termed water absorption response (WR) behavior. Spadefoot toads live in harsh desert environments and are subject annually to dehydrating conditions that may induce thirst-related behavior. We tested the hypothesis that an increase in WR behavior is associated with both an increase in plasma osmolality and an increase in plasma and brain angiotensin concentrations. First, we determined the degree of dehydration that was necessary to initiate WR behavior. Animals dehydrated to 85% of their standard bladder-empty weight via deprivation of water exhibited WR behavior more frequently than control toads left in home containers with water available. Next, using the same dehydration methods, we determined the plasma osmolality and sodium concentrations of dehydrated toads. Toads dehydrated to 85% standard weight also had a significant increase in plasma osmolality, but exhibited no overall change in plasma sodium concentrations, indicating that while an overall increase in plasma osmolality appears to be associated with WR behavior in S. couchii, changes in sodium concentrations alone are not sufficient to induce the behavior. Finally, plasma and brain angiotensin concentrations were measured in control toads and toads dehydrated to 85% standard weight. Plasma and brain angiotensin concentrations did not increase in dehydrated toads, indicating that dehydration-induced WR behavior that is associated with changes in plasma osmolality may not be induced by changes in endogenous angiotensin concentrations in S. couchii.

  14. Mass transfer kinetics during osmotic dehydration of pomegranate arils.

    PubMed

    Mundada, Manoj; Hathan, Bahadur Singh; Maske, Swati

    2011-01-01

    The mass transfer kinetics during osmotic dehydration of pomegranate arils in osmotic solution of sucrose was studied to increase palatability and shelf life of arils. The freezing of the whole pomegranate at -18 °C was carried out prior to osmotic dehydration to increase the permeability of the outer cellular layer of the arils. The osmotic solution concentrations used were 40, 50, 60°Bx, osmotic solution temperatures were 35, 45, 55 °C. The fruit to solution ratio was kept 1:4 (w/w) during all the experiments and the process duration varied from 0 to 240 min. Azuara model and Peleg model were the best fitted as compared to other models for water loss and solute gain of pomegranate arils, respectively. Generalized Exponential Model had an excellent fit for water loss ratio and solute gain ratio of pomegranate arils. Effective moisture diffusivity of water as well as solute was estimated using the analytical solution of Fick's law of diffusion. For above conditions of osmotic dehydration, average effective diffusivity of water loss and solute gain varied from 2.718 × 10(-10) to 5.124 × 10(-10) m(2)/s and 1.471 × 10(-10) to 5.147 × 10(-10) m(2)/s, respectively. The final product was successfully utilized in some nutritional formulations such as ice cream and bakery products.

  15. Comparison of Environmental Scanning Electron Microscopy in Low Vacuum or wet mode for the investigation of cell biomaterial interactions.

    PubMed

    Mattarozzi, Monica; Manfredi, Edoardo; Lorenzi, Andrea; Smerieri, Arianna; Di Blasio, Alberto; Macaluso, Guido; Lumetti, Simone; Galli, Carlo

    2016-05-06

    The aim of the present study was to investigate the efficacy of environmental scanning electron microscopy (ESEM), in low vacuum mode (LV-ESEM) and in wet mode (wet-ESEM) in the assessment of cell-material interactions. Mouse calvaria MC3T3 cells (ATCC) were seeded on commercially pure machined titanium discs of 10 mm diameter in Dulbecco modified MEM, 10% Fetal Bovine Serum, 1% Penicillin and Streptomycin and 1% Glutamine. Samples were then processed for microscope observation by rinse in Phosphate Buffer saline and fixation in 4.5% Glutaraldehyde. Samples were then rinsed in Sodium Cacodylate buffer and observed or dehydrated in alcohol prior to LV-ESEM observation. Fresh samples in 0.9% NaCl solution were observed in wet- ESEM. No significant loss of detail was observed when dehydrated or non dehydrated samples were analysed at LV-ESEM.The observation of fresh samples in wet-ESEM however proved difficult for the need to eliminate water which forms a layer covering the sample, thus hiding cell surface details. When reducing the vapor pressure in the chamber, the layer evaporated and NaCl immediately started to precipitate and cells collapsed, thus no further investigation was possible. The use of low vacuum-ESEM after cell fixation, but without dehydration or gold sputter coating proved a viable alternative to traditional high vacuum SEM observation.

  16. [Continuous oral hydration or with fractionated doses in acute diarrhea-induced dehydration in children].

    PubMed

    Mota-Hernández, Felipe; Gutiérrez-Camacho, Claudia; Cabrales-Martínez, Rosa Georgina; Villa-Contreras, Sofía

    2002-01-01

    To evaluate the safety and effectiveness of two oral rehydration techniques. A randomized clinical trial was conducted at the oral rehydration unit of Hospital Infantil de Mexico "Federico Gomez", between September 1998 and June 1999. Forty patients five-year old and younger children, dehydrated due to acute diarrhea, were given oral rehydration solution (ORS) ad libitum (AL group); another forty patients received ORS in fractionated doses (FD group). Clinical characteristics were similar in both groups. Results are presented as means, standard deviations and medians, according the distribution of simple and relative frequencies. The mean stool output in the AL group was 11.0 +/- 7.5 g/kg/h; as compared to 7.1 +/- 7.4 in the FD group (p = 0.03). ORS intake, rehydration time, and mean diuresis values were similar in both groups (p > 0.05). Six patients in the AL group and five in the FD group had high stool output (> 10 g/kg/h), that improved after administration of rice starch solution. One patient in the AL group and two in the FD group had persistent vomiting that improved with gastroclisis. No patient required intravenous rehydration. These results suggest that ORS administration ad libitum under supervision, is a technique as safe and effective as the fractionated doses technique, for the treatment of dehydrated children due to acute diarrhea.

  17. 40 CFR 98.426 - Data reporting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... flow meter in your process chain in relation to the points of CO2 stream capture, dehydration... measure CO2 concentration. (7) The location of the flow meter in your process chain in relation to the... through subsequent flow meter(s) in metric tons. (iii) The total annual CO2 mass supplied in metric tons...

  18. Energy densification of biomass-derived organic acids

    DOEpatents

    Wheeler, M. Clayton; van Walsum, G. Peter; Schwartz, Thomas J.; van Heiningen, Adriaan

    2013-01-29

    A process for upgrading an organic acid includes neutralizing the organic acid to form a salt and thermally decomposing the resulting salt to form an energy densified product. In certain embodiments, the organic acid is levulinic acid. The process may further include upgrading the energy densified product by conversion to alcohol and subsequent dehydration.

  19. Hybrid Vapor Stripping-Vapor Permeation Process for Recovery and Dehydration of 1-Butanol and Acetone/Butanol/Ethanol from Dilute Aqueous Solutions. Part 1. Process Simulations

    EPA Science Inventory

    BACKGROUND: Fermentative production of butanol is limited to low concentrations, typically less than 2 wt% solvent, due to product inhibition. The result is high separation energy demand by conventional distillation approaches, despite favorable vapor-liquid equilibrium and parti...

  20. Dehydration of Traditional Dried Instant Noodle (Mee Siput) Using Controlled Temperature & Humidity Dryer

    NASA Astrophysics Data System (ADS)

    Mamat, K. A.; Yusof, M. S.; Yusoff, Wan Fauziah Wan; Zulafif Rahim, M.; Hassan, S.; Rahman, M. Qusyairi. A.; Karim, M. A. Abd

    2017-05-01

    Drying process is an essential step to produce instant noodles. Yet, the industries especially Small and Medium Enterprises (SMEs), is seeking for an efficient method to dry the noodles. This paper discusses the performance of an invented drying system which employed heating and humidifying process. The drying system was tested using 30 kilogram of the raw noodle known as “Mee Siput”. Temperature controlled system were used in the study to control the temperature of the drying process and prevent the dried noodles from damage by maintaining the temperature of lower than 80°C. The analysis shows that the system was drastically decreased the humidity from 80% to 40% just after 200 minutes of the drying process. The complete dehydration time of noodle has also decreased to only 4 hours from 16 hours when using traditional drying system without sacrificed the good quality of the dried noodle. In overall, the invented system believed to increase the production capacity of the noodle, reduce cost of production which would highly beneficial for Small Medium Industries (SMEs) in Malaysia.

  1. Physiologic Basis for Understanding Quantitative Dehydration Assessment

    DTIC Science & Technology

    2012-01-01

    Perspective Physiologic basis for understanding quantitative dehydration assessment1–4 Samuel N Cheuvront, Robert W Kenefick, Nisha Charkoudian, and...Michael N Sawka ABSTRACT Dehydration (body water deficit) is a physiologic state that can have profound implications for human health and performance...review the physiologic basis for understanding quantitative dehydration as- sessment. We highlight how phenomenologic interpretations of de- hydration

  2. ROLE OF PRESSURE IN SMECTITE DEHYDRATION - EFFECTS ON GEOPRESSURE AND SMECTITE-TO-ILLITE TRANSFORMATION.

    USGS Publications Warehouse

    Colten-Bradley, Virginia

    1987-01-01

    Evaluation of the effects of pressure on the temperature of interlayer water loss (dehydration) by smectites under diagenetic conditions indicates that smectites are stable as hydrated phases in the deep subsurface. Hydraulic and differential pressure conditions affect dehydration differently. The temperature of dehydration increase with pore fluid pressure and interlayer water density. The temperatures of dehydration increase with pore fluid pressure and interlayer water density. The temperatures of dehydration under differential-presssure conditions are inversely related to pressure and interlayer water density. The model presented assumes the effects of pore fluid composition and 2:1 layer reactivity to be negligible. Agreement between theoretical and experimental results validate this assumption. Additional aspects of the subject are discussed.

  3. Dehydrofreezing of Fish I

    NASA Astrophysics Data System (ADS)

    Kozima, Tsuneo

    Recently, new method of removing water from perishable food were developed using dehydration sheet with material having high osmotic pressure and absorbent polymer. Dehydration sheet consist of mixture of sugar dehydrolysate and absorbent polymer covered with sem-permeable membrane, and can remove water in liquid state by contact with perishable food. Dehydration rate of fish using with dehydration sheet varied depending on species, their shape, and ambient temperature etc. Fish were dehydrated with dehydration sheet at low temperature as 0 - 5 C and frozen in cold storage room. Dehydrofrozen fish were kept it's high quality and freshness after thawing, ATPase activity of fish muscle was kept at high level after dehydrofreezing in the case of cod and alaska pollack, and flesh color of farming salmon was kept after thawing.

  4. Experimental Deformation of Dehydrating Antigorite: Challenging Models of Dehydration Embrittlement

    NASA Astrophysics Data System (ADS)

    Chernak, L. J.; Hirth, G.

    2010-12-01

    To test the hypothesis that intermediate depth earthquakes in subduction zones are caused by the dehydration of hydrous phases, we conducted temperature-ramping experiments on antigorite serpentinite. Drilled cylinders and cold-pressed powders of antigorite were deformed to a high differential stress at 400 °C and 1.0 GPa, within the antigorite stability field, where we have shown that deformation localizes. Temperature was then increased at different rates, 1800 °C/hr and 180 °C/hr, to cross the reaction boundary while samples continued to deform at strain rates of 10-4 s-1, 10-5 s-1 and 10-6 s-1. Our results show that although the decrease in stress during temperature ramping is large, stress relaxes stably, even after dehydration. In addition, we find that stress relaxes over several minutes, which is not characteristic of an earthquake. We find that the slopes of the unloading curves are approximately the same for constant values of the ratio (ramp rate/strain rate) and that the unloading slope is greater for higher values of this ratio. In addition, we find that the unloading curves with the greatest slopes are similar to the apparatus compliance, suggesting that we are generating “slow earthquakes” in our experiments over the course 5 to 10s of minutes. Strain rate stepping experiments indicate that antigorite has velocity strengthening behavior at 700 °C and pressures of 1.0 and 1.5 GPa providing an explanation for why unstable slip does not occur. Our results thus suggest that antigorite dehydration does not result in “dehydration embrittlement” but that it may promote slow earthquakes and/or slow slip events. In contrast to antigorite, an experiment using a Balsam Gap dunite core demonstrates stick-slip behavior at 400 °C, 1.0 GPa and a strain rate of 1.5 x 10-5 s-1. Sample strength increased to a maximum at 5% strain when a fault developed. Subsequent deformation to 12% strain was accompanied by small stick slip events, accompanied by audible “tinking” noises. This result indicates that lab earthquakes can be generated in the Griggs rig and strengthens our assertion that antigorite dehydration does not directly produce seismicity. We have also studied the role of effective pressure on deformation behavior after dehydration. A sample composed of 75% cold-pressed antigorite powder and 25% coarse-grained olivine powder at the top was deformed at 700 °C, 1.5 GPa and a strain rate of 1.5 x 10-5 s-1. The sample with the reservoir was significantly stronger than samples deformed at the same conditions without the porous olivine reservoir even though all samples deformed by macroscopically ductile processes. We hypothesize that the highly porous and permeable olivine layer provided a reservoir for the water released by the dehydration reaction and suggests that the strength of antigorite depends on the effective normal stress.

  5. Application of SEM and EDX in studying biomineralization in plant tissues.

    PubMed

    He, Honghua; Kirilak, Yaowanuj

    2014-01-01

    This chapter describes protocols using formalin-acetic acid-alcohol (FAA) to fix plant tissues for studying biomineralization by means of scanning electron microscopy (SEM) and qualitative energy-dispersive X-ray microanalysis (EDX). Specimen preparation protocols for SEM and EDX mainly include fixation, dehydration, critical point drying (CPD), mounting, and coating. Gold-coated specimens are used for SEM imaging, while gold- and carbon-coated specimens are prepared for qualitative X-ray microanalyses separately to obtain complementary information on the elemental compositions of biominerals. During the specimen preparation procedure for SEM, some biominerals may be dislodged or scattered, making it difficult to determine their accurate locations, and light microscopy is used to complement SEM studies. Specimen preparation protocols for light microscopy generally include fixation, dehydration, infiltration and embedding with resin, microtome sectioning, and staining. In addition, microwave processing methods are adopted here to speed up the specimen preparation process for both SEM and light microscopy.

  6. The evolution of an impact-generated atmosphere

    NASA Technical Reports Server (NTRS)

    Lange, M. A.; Ahrens, T. J.

    1982-01-01

    The minimum impact velocities and pressures required to form a primary H2O atmosphere during planetary accretion from chondritelike planetessimals are determined by means of shock wave and thermodynamic data for rock-forming and volatile-bearing minerals. Attenuation of impact-induced shock pressure is modelled to the extent that the amount of released water can be estimated as a function of projectile radius, impact velocity, weight fraction of target water, target porosity, and dehydration efficiency. The two primary processes considered are the impact release of water bound in such hydrous minerals as serpentine, and the subsequent reincorporation of free water by hydration of forsterite and enstatite. These processes are described in terms of model calculations for the accretion of the earth. It is concluded that the concept of dehydration efficiency is of dominant importance in determining the degree to which an accreting planet acquires an atmosphere during its formation.

  7. Decorin Content and Near Infrared Spectroscopy Analysis of Dried Collagenous Biomaterial Samples

    PubMed Central

    Aldema-Ramos, Mila L.; Castell, Joan Carles; Muir, Zerlina E.; Adzet, Jose Maria; Sabe, Rosa; Schreyer, Suzanne

    2012-01-01

    The efficient removal of proteoglycans, such as decorin, from the hide when processing it to leather by traditional means is generally acceptable and beneficial for leather quality, especially for softness and flexibility. A patented waterless or acetone dehydration method that can generate a product similar to leather called Dried Collagenous Biomaterial (known as BCD) was developed but has no effect on decorin removal efficiency. The Alcian Blue colorimetric technique was used to assay the sulfated glycosaminoglycan (sGAG) portion of decorin. The corresponding residual decorin content was correlated to the mechanical properties of the BCD samples and was comparable to the control leather made traditionally. The waterless dehydration and instantaneous chrome tanning process is a good eco-friendly alternative to transforming hides to leather because no additional effects were observed after examination using NIR spectroscopy and additional chemometric analysis. PMID:24970152

  8. Rehydration Capacities and Rates for Various Porcine Tissues after Dehydration

    PubMed Central

    Meyer, Jacob P.; McAvoy, Kieran E.; Jiang, Jack

    2013-01-01

    The biphasic effects of liquid on tissue biomechanics are well known in cartilage and vocal folds, yet not extensively in other tissue types. Past studies have shown that tissue dehydration significantly impacts biomechanical properties and that rehydration can restore these properties in certain tissue types. However, these studies failed to consider how temporal exposure to dehydrating or rehydrating agents may alter tissue rehydration capacity, as overexposure to dehydration may permanently prevent rehydration to the initial liquid volume. Select porcine tissues were dehydrated until they reached between 100% and 40% of their initial mass. Each sample was allowed to rehydrate for 5 hours in a 0.9% saline solution, and the percent change between the initial and rehydrated mass values was calculated. Spearman correlation tests indicated a greater loss in mass despite rehydration when tissues were previously exposed to greater levels of dehydration. Additionally, Pearson correlation tests indicated the total liquid mass of samples after complete rehydration decreased when previously exposed to higher levels of dehydration. Rehydration rates were found by dehydrating tissues to 40% of their initial mass followed by rehydration in a 0.9% saline solution for 60 minutes, with mass measurements occurring in 15 minute intervals. All tissues rehydrated nonlinearly, most increasing significantly in mass up to 30 minutes after initial soaking. This study suggests the ability for tissues to rehydrate is dependent on the level of initial dehydration exposure. In vitro rehydration experiments therefore require controlled dosage and temporal exposure to dehydrating and rehydrating agents to avoid incomplete rehydration, and caution should be taken when combining different tissue types in models of hydration. PMID:24023753

  9. Quantitative Study of the Effects of Dehydration on the Viscoelastic Parameters in the Vocal Fold Mucosa.

    PubMed

    Yang, Shuai; Zhang, Yu; Mills, Randal D; Jiang, Jack J

    2017-05-01

    The goal of this study was to quantify the viscoelastic parameters of the vocal fold mucosa at varying dehydration levels. Healthy canine larynges were obtained postmortem, and the samples were separated from the subglottal wall. The samples were dehydrated in a vacuum dryer. According to the total dehydration time per sample, dehydration levels were divided into four degrees: 0%, 40%, 60%, and 80%. The stepper was set to stretch the sample to a level of 35% strain at the same rate (0.5 mm/s). Data collection was repeated five times under each dehydration condition. The compression resilience, RC% = S'/S*100%, and the hysteresis area were measured according to the stress-strain curves. The varying properties of the samples under different dehydration levels were investigated by fitting the curves. The area of the hysteresis loops observed in the stress-strain curves increased exponentially with dehydration levels, whereas the RC% decreased linearly. For all curves, low-strain stages can be explained by Hooke's law (σ = E 0 *ε). With increasing levels of dehydration, E 0 was shown to increase, whereas the linear range was shortened. High-strain stages resembled exponential rather than the linear curves. And the nonlinear stage of the curve became increasingly apparent in the stress-strain curves of increased dehydration levels. The quantitative results in this study not only provide a numerical reference for future experimental measurements, but also can be used to verify the biphasic model in future studies. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  10. Analysis of plant hormone profiles in response to moderate dehydration stress.

    PubMed

    Urano, Kaoru; Maruyama, Kyonoshin; Jikumaru, Yusuke; Kamiya, Yuji; Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo

    2017-04-01

    Plant responses to dehydration stress are mediated by highly complex molecular systems involving hormone signaling and metabolism, particularly the major stress hormone abscisic acid (ABA) and ABA-dependent gene expression. To understand the roles of plant hormones and their interactions during dehydration, we analyzed the plant hormone profiles with respect to dehydration responses in Arabidopsis thaliana wild-type (WT) plants and ABA biosynthesis mutants (nced3-2). We developed a procedure for moderate dehydration stress, and then investigated temporal changes in the profiles of ABA, jasmonic acid isoleucine (JA-Ile), salicylic acid (SA), cytokinin (trans-zeatin, tZ), auxin (indole-acetic acid, IAA), and gibberellin (GA 4 ), along with temporal changes in the expression of key genes involved in hormone biosynthesis. ABA levels increased in a bi-phasic pattern (at the early and late phases) in response to moderate dehydration stress. JA-Ile levels increased slightly in WT plants and strongly increased in nced3-2 mutant plants at 72 h after the onset of dehydration. The expression profiles of dehydration-inducible genes displayed temporal responses in an ABA-dependent manner. The early phase of ABA accumulation correlated with the expression of touch-inducible genes and was independent of factors involved in the major ABA regulatory pathway, including the ABA-responsive element-binding (AREB/ABF) transcription factor. JA-Ile, SA, and tZ were negatively regulated during the late dehydration response phase. Transcriptome analysis revealed important roles for hormone-related genes in metabolism and signaling during dehydration-induced plant responses. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  11. Preoperative dehydration increases risk of postoperative acute renal failure in colon and rectal surgery.

    PubMed

    Moghadamyeghaneh, Zhobin; Phelan, Michael J; Carmichael, Joseph C; Mills, Steven D; Pigazzi, Alessio; Nguyen, Ninh T; Stamos, Michael J

    2014-12-01

    There is limited data regarding the effects of preoperative dehydration on postoperative renal function. We sought to identify associations between hydration status before operation and postoperative acute renal failure (ARF) in patients undergoing colorectal resection. The NSQIP database was used to examine the data of patients undergoing colorectal resection from 2005 to 2011. We used preoperative blood urea nitrogen (BUN)/creatinine ratio >20 as a marker of relative dehydration. Multivariate analysis using logistic regression was performed to quantify the association of BUN/Cr ratio with ARF. We sampled 27,860 patients who underwent colorectal resection. Patients with dehydration had higher risk of ARF compared to patients with BUN/Cr <10 (AOR, 1.23; P = 0.04). Dehydration was associated with an increase in mortality of the affected patients (AOR, 2.19; P < 0.01). Postoperative complication of myocardial infarction (MI) (AOR, 1.46; P < 0.01) and cardiac arrest (AOR, 1.39; P < 0.01) was higher in dehydrated patients. Open colorectal procedures (AOR, 2.67; P = 0.01) and total colectomy procedure (AOR, 1.62; P < 0.01) had associations with ARF. Dehydration before operation is a common condition in colorectal surgery (incidence of 27.7 %). Preoperative dehydration is associated with increased rates of postoperative ARF, MI, and cardiac arrest. Hydrotherapy of patients with dehydration may decrease postoperative complications in colorectal surgery.

  12. Retention of nutrients in green leafy vegetables on dehydration.

    PubMed

    Gupta, Sheetal; Gowri, B S; Lakshmi, A Jyothi; Prakash, Jamuna

    2013-10-01

    The objective of the study was to investigate the influence of dehydration on nutrient composition of Amaranthus gangeticus, Chenopodium album, Centella asiatica, Amaranthus tricolor and Trigonella foenum graecum. The green leafy vegetables (GLV) were steam blanched for 5 min after pretreatment and dried in an oven at 60 °C for 10-12 h. The fresh and dehydrated samples were analyzed for selected proximate constituents, vitamins, minerals, antinutrients and dialyzable minerals. Dehydration seems to have little effect on the proximate, mineral and antinutrient content of the GLV. Among the vitamins, retention of ascorbic acid was 1-14%, thiamine 22-71%, total carotene 49-73% and β-carotene 20-69% respectively, of their initial content. Dialyzable iron and calcium in the fresh vegetables ranged between 0.21-3.5 mg and 15.36-81.33 mg/100 g respectively, which reduced to 0.05-0.53 mg and 6.94-58.15 mg/100 g on dehydration. Dehydration seems to be the simplest convenient technology for preserving these sources of micronutrients, especially when they are abundantly available. Irrespective of the losses of vitamins that take place during dehydration, dehydrated GLV are a concentrated natural source of micronutrients and they can be used in product formulations. Value addition of traditional products with dehydrated GLV can be advocated as a feasible food-based approach to combat micronutrient malnutrition.

  13. Rates of Hospitalization for Dehydration Following Hurricane Sandy in New Jersey.

    PubMed

    Swerdel, Joel N; Rhoads, George G; Cosgrove, Nora M; Kostis, John B

    2016-04-01

    Hurricane Sandy, one of the most destructive natural disasters in New Jersey history, made landfall on October 29, 2012. Prolonged loss of electrical power and extensive infrastructure damage restricted access for many to food and water. We examined the rate of dehydration in New Jersey residents after Hurricane Sandy. We obtained data from 2008 to 2012 from the Myocardial Infarction Data Acquisition System (MIDAS), a repository of in-patient records from nonfederal New Jersey hospitals (N=517,355). Patients with dehydration had ICD-9-CM discharge diagnosis codes for dehydration, volume depletion, and/or hypovolemia. We used log-linear modeling to estimate the change in in-patient hospitalizations for dehydration comparing 2 weeks after Sandy with the same period in the previous 4 years (2008-2011). In-patient hospitalizations for dehydration were 66% higher after Sandy than in 2008-2011 (rate ratio [RR]: 1.66; 95% confidence interval [CI]: 1.50, 1.84). Hospitalizations for dehydration in patients over 65 years of age increased by nearly 80% after Sandy compared with 2008-2011 (RR: 1.79; 95% CI: 1.58, 2.02). Sandy was associated with a marked increase in hospitalizations for dehydration. Reducing the rate of dehydration following extreme weather events is an important public health concern that needs to be addressed, especially in those over 65 years of age.

  14. Dehydration

    MedlinePlus

    ... chronic illness have a greater risk. Signs of dehydration in adults include Being thirsty Urinating less often ... skin Feeling tired Dizziness and fainting Signs of dehydration in babies and young children include a dry ...

  15. Severe Hypernatremic Dehydration and Lower Limb Gangrene in an Infant Exposed to Lamotrigine, Aripiprazole, and Sertraline in Breast Milk.

    PubMed

    Morin, Caroline; Chevalier, Isabelle

    Hypernatremic dehydration is well described in exclusively breastfed neonates, although life-threatening complications are rarely reported. The present article describes a case of severe hypernatremic dehydration in a previously healthy term neonate. Other published cases of severe complications of hypernatremic dehydration are discussed. The exclusively breastfed neonate described had severe hypernatremic dehydration because of inadequate milk intake, with disseminated intravascular coagulation and right lower limb gangrene that required amputation of all five toes and surgical debridement of the metatarsals. The usual etiology of hypernatremic dehydration in this age group is insufficient breast milk intake. Here, the infant's mother was treated for bipolar disorder with lamotrigine 250 mg orally once daily, aripiprazole 15 mg orally once daily, and sertraline 100 mg orally once daily. Awareness of these complications should prompt close follow-up of the infant with poor weight gain. The role of maternal medication as a risk factor for hypernatremic dehydration among exclusively breastfed infants needs to be further explored.

  16. Dehydration-driven stress transfer triggers intermediate-depth earthquakes

    PubMed Central

    Ferrand, Thomas P.; Hilairet, Nadège; Incel, Sarah; Deldicque, Damien; Labrousse, Loïc; Gasc, Julien; Renner, Joerg; Wang, Yanbin; Green II, Harry W.; Schubnel, Alexandre

    2017-01-01

    Intermediate-depth earthquakes (30–300 km) have been extensively documented within subducting oceanic slabs, but their mechanics remains enigmatic. Here we decipher the mechanism of these earthquakes by performing deformation experiments on dehydrating serpentinized peridotites (synthetic antigorite-olivine aggregates, minerals representative of subduction zones lithologies) at upper mantle conditions. At a pressure of 1.1 gigapascals, dehydration of deforming samples containing only 5 vol% of antigorite suffices to trigger acoustic emissions, a laboratory-scale analogue of earthquakes. At 3.5 gigapascals, acoustic emissions are recorded from samples with up to 50 vol% of antigorite. Experimentally produced faults, observed post-mortem, are sealed by fluid-bearing micro-pseudotachylytes. Microstructural observations demonstrate that antigorite dehydration triggered dynamic shear failure of the olivine load-bearing network. These laboratory analogues of intermediate-depth earthquakes demonstrate that little dehydration is required to trigger embrittlement. We propose an alternative model to dehydration-embrittlement in which dehydration-driven stress transfer, rather than fluid overpressure, causes embrittlement. PMID:28504263

  17. Dehydration-driven stress transfer triggers intermediate-depth earthquakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrand, Thomas P.; Hilairet, Nadège; Incel, Sarah

    Intermediate-depth earthquakes (30–300 km) have been extensively documented within subducting oceanic slabs, but their mechanics remains enigmatic. Here in this paper we decipher the mechanism of these earthquakes by performing deformation experiments on dehydrating serpentinized peridotites (synthetic antigorite-olivine aggregates, minerals representative of subduction zones lithologies) at upper mantle conditions. At a pressure of 1.1 gigapascals, dehydration of deforming samples containing only 5 vol% of antigorite suffices to trigger acoustic emissions, a laboratory-scale analogue of earthquakes. At 3.5 gigapascals, acoustic emissions are recorded from samples with up to 50 vol% of antigorite. Experimentally produced faults, observed post-mortem, are sealed by fluid-bearingmore » micro-pseudotachylytes. Microstructural observations demonstrate that antigorite dehydration triggered dynamic shear failure of the olivine load-bearing network. These laboratory analogues of intermediatedepth earthquakes demonstrate that little dehydration is required to trigger embrittlement. We propose an alternative model to dehydration-embrittlement in which dehydration-driven stress transfer, rather than fluid overpressure, causes embrittlement.« less

  18. Effect of friction on vibrotactile sensation of normal and dehydrated skin.

    PubMed

    Chen, S; Ge, S; Tang, W; Zhang, J

    2016-02-01

    Vibrotactile sensation mediated is highly dependent on surface mechanical and frictional properties. Dehydration of skin could change these properties. To investigate the relationship between friction and vibrotactile sensation of normal and dehydrated skin. Vibrations were firstly measured during surface exploration using a biomimetic sensor. Piglet skin was used as human skin model to study frictional properties for both normal and dehydrated skin using an atomic force microscope on nanoscale and a pin-on-disk tribometer on macroscale. Effect of vibrational frequency on friction and vibrotactile perception was also observed on nano and macro scale for normal and dehydrated skin. The result indicated that dehydrated skin was less sensitive than normal skin. The coefficient of friction of dehydrated skin is smaller than that of normal skin on both nano and macro scale. The coefficient of friction increases as increasing scanning frequencies. There is a positive correlation between coefficient of friction and vibrotactile sensation on nanoscale and macroscale. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Dehydration-driven stress transfer triggers intermediate-depth earthquakes

    DOE PAGES

    Ferrand, Thomas P.; Hilairet, Nadège; Incel, Sarah; ...

    2017-05-15

    Intermediate-depth earthquakes (30–300 km) have been extensively documented within subducting oceanic slabs, but their mechanics remains enigmatic. Here in this paper we decipher the mechanism of these earthquakes by performing deformation experiments on dehydrating serpentinized peridotites (synthetic antigorite-olivine aggregates, minerals representative of subduction zones lithologies) at upper mantle conditions. At a pressure of 1.1 gigapascals, dehydration of deforming samples containing only 5 vol% of antigorite suffices to trigger acoustic emissions, a laboratory-scale analogue of earthquakes. At 3.5 gigapascals, acoustic emissions are recorded from samples with up to 50 vol% of antigorite. Experimentally produced faults, observed post-mortem, are sealed by fluid-bearingmore » micro-pseudotachylytes. Microstructural observations demonstrate that antigorite dehydration triggered dynamic shear failure of the olivine load-bearing network. These laboratory analogues of intermediatedepth earthquakes demonstrate that little dehydration is required to trigger embrittlement. We propose an alternative model to dehydration-embrittlement in which dehydration-driven stress transfer, rather than fluid overpressure, causes embrittlement.« less

  20. Advances in pediatric dehydration therapy.

    PubMed

    Niescierenko, Michelle; Bachur, Richard

    2013-06-01

    To review the advances in the assessment, treatment, and evaluation of care for pediatric dehydration. Recent studies have added new information across the spectrum of care for dehydration. Advances in the assessment of dehydration allow more accurate clinical evaluation, but do not help predict the treatment outcomes. Antiemetics as an adjunct to oral rehydration therapy have been proven well tolerated, efficacious, and cost-effective. Rapid, large-volume intravenous rehydration for outpatients with dehydration did not show any benefit over more standard regimens. Clinical guidelines incorporate all these aspects of care; however, physicians show poor adherence to the guidelines despite the evidence that guidelines improve outcomes and reduce cost. Dehydration burdens the healthcare system worldwide. Through advances in its assessment, treatment with antiemetics and intravenous fluids, and standardization of practice with clinical guidelines, this burden could be reduced.

  1. Microemulsion and Sol-Gel Synthesized ZrO₂-MgO Catalysts for the Liquid-Phase Dehydration of Xylose to Furfural.

    PubMed

    Parejas, Almudena; Montes, Vicente; Hidalgo-Carrillo, Jesús; Sánchez-López, Elena; Marinas, Alberto; Urbano, Francisco J

    2017-12-18

    Two series of catalysts were prepared by sol-gel and microemulsion synthetic procedure (SG and ME, respectively). Each series includes both pure Mg and Zr solids as well as Mg-Zr mixed solids with 25%, 50% and 75% nominal Zr content. The whole set of catalysts was characterized from thermal, structural and surface chemical points of view and subsequently applied to the liquid-phase xylose dehydration to furfural. Reactions were carried out in either a high-pressure autoclave or in an atmospheric pressure multi-reactor under a biphasic (organic/water) reaction mixture. Butan-2-ol and toluene were essayed as organic solvents. Catalysts prepared by microemulsion retained part of the surfactant used in the synthetic procedure, mainly associated with the Zr part of the solid. The MgZr-SG solid presented the highest surface acidity while the Mg3Zr-SG one exhibited the highest surface basicity among mixed systems. Xylose dehydration in the high-pressure system and with toluene/water solvent mixture led to the highest furfural yield. Moreover, the yield of furfural increases with the Zr content of the catalyst. Therefore, the catalysts constituted of pure ZrO₂ (especially Zr-SG) are the most suitable to carry out the process under study although MgZr mixed solids could be also suitable for overall processes with additional reaction steps.

  2. Valorization of postharvest sweet cherry discard for the development of dehydrated fruit ingredients: compositional, physical, and mechanical properties.

    PubMed

    Franceschinis, Lorena; Sette, Paula; Salvatori, Daniela; Schebor, Carolina

    2018-04-20

    Sweet cherries are an excellent source of phenolic compounds, which may contribute to a healthy diet. The objective of this work was to generate dehydrated ingredients from postharvest discard of sweet cherries. Four dried ingredients were obtained from fresh sweet cherry discard (Lapins var.) using an osmotic dehydration pretreatment and freeze drying or air drying. The ingredients showed an important phenolic contribution (2.8-6.6 g gallic acid kg -1 of product) and preserved the natural color of the fruit to a great extent. Freeze-dried ingredients were less hygroscopic than air-dried ones, and presented with a softer texture. All the ingredients were in a supercooled state at room temperature (T g range: -23.0 to -18.8 °C). Sugar infusion pretreatment caused a decrease in water sorption capacity and molecular mobility; it also reduced the initial rehydration rate. Relevant differences in nutritional and structural characteristics of the ingredients were observed depending on the processing method used. These ingredients could be incorporated into different processed foods, such as snacks, cereal mixtures, cereal bars, and bakery and confectionery products. Air-dried control ingredients presented better nutritional qualities and air-dried sweet cherries with sugar infusion pretreatment could be appropriate ingredients for applications where sweet flavor and slow rehydration rate are required. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  3. Speciation of Mercury in Selected Areas of the Petroleum Value Chain.

    PubMed

    Avellan, Astrid; Stegemeier, John P; Gai, Ke; Dale, James; Hsu-Kim, Heileen; Levard, Clément; O'Rear, Dennis; Hoelen, Thomas P; Lowry, Gregory V

    2018-02-06

    Petroleum, natural gas, and natural gas condensate can contain low levels of mercury (Hg). The speciation of Hg can affect its behavior during processing, transport, and storage so efficient and safe management of Hg requires an understanding of its chemical form in oil, gas and byproducts. Here, X-ray absorption spectroscopy was used to determine the Hg speciation in samples of solid residues collected throughout the petroleum value chain including stabilized crude oil residues, sediments from separation tanks and condensate glycol dehydrators, distillation column pipe scale, and biosludge from wastewater treatment. In all samples except glycol dehydrators, metacinnabar (β-HgS) was the primary form of Hg. Electron microscopy on particles from a crude sediment showed nanosized (<100 nm) particles forming larger aggregates, and confirmed the colocalization of Hg and sulfur. In sediments from glycol dehydrators, organic Hg(SR) 2 accounted for ∼60% of the Hg, with ∼20% present as β-HgS and/or Hg(SR) 4 species. β-HgS was the predominant Hg species in refinery biosludge and pipe scale samples. However, the balance of Hg species present in these samples depended on the nature of the crude oil being processed, i.e. sweet (low sulfur crudes) vs sour (higher sulfur crudes). This information on Hg speciation in the petroleum value chain will inform development of better engineering controls and management practices for Hg.

  4. A dehydration mechanism for the stratosphere

    NASA Technical Reports Server (NTRS)

    Danielsen, E. F.

    1982-01-01

    Although mean circulations are generally credited with dehydration of the earth's stratosphere, convective instability in the tropics converts mean circulations to small residuals of local convective circulations. The effects of large cumulonimbus which penetrate the stratosphere and form huge anvils in the lower stratosphere are discussed with respect to hydration and dehydration of the stratosphere. Radiative heating at anvil base combined with cooling at anvil top drives a dehydration engine considered essential to explain the dry stratosphere. Seasonal and longitudinal variations in dehydration potentials are examined with maximum potential attributed to Micronesian area during winter and early spring.

  5. Dehydration, denitrification and ozone loss during the Arctic winter 2015/2016: Simulations with the Chemistry-Climate Model EMAC and comparison to Aura/MLS and GLORIA observations

    NASA Astrophysics Data System (ADS)

    Khosrawi, Farahnaz; Kirner, Oliver; Sinnhuber, Bjoern-Martin; Johansson, Sören; Höpfner, Michael; Santee, Michelle L.; Manney, Gloria; Froidevaux, Lucien; Ungermann, Jörn; Preusse, Peter; Friedl-Vallon, Felix; Ruhnke, Roland; Woiwode, Wolfgang; Oelhaf, Hermann; Braesicke, Peter

    2017-04-01

    The Arctic winter 2015/2016 has been one of the coldest stratospheric winters in recent years. A stable vortex formed already in early December and the early winter has been exceptionally cold. Cold pool temperatures dropped below the Nitric Acid Trihydrate (NAT) existence temperature, thus allowing Polar Stratospheric Clouds (PSCs) to form. The low temperatures in the polar stratosphere persisted until early March allowing chlorine activation and catalytic ozone destruction. Satellite observations indicate that sedimentation of PSC particles have led to denitrification as well as dehydration of stratospheric layers. Nudged model simulations of the Arctic winter 2015/2016 were performed with the atmospheric chemistry-climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) for the POLSTRACC (Polar Stratosphere in a Changing Climate) campaign. POLSTRACC was a HALO mission (High Altitude and LOng Range Research Aircraft) aiming on the investigation of the structure, composition and evolution of the Arctic Upper Troposphere Lower Stratosphere (UTLS). The chemical and physical processes involved in Arctic stratospheric ozone depletion, transport and mixing processes in the UTLS at high latitudes, polar stratospheric clouds as well as cirrus clouds were investigated. In this presentation, an overview of the chemistry and dynamics of the Arctic winter 2015/2016 as simulated with EMAC will be given. Chemical-dynamical processes such as denitrification, dehydration and ozone loss will be investigated. Comparisons to satellite observations by the Aura Microwave Limb Sounder (Aura/MLS) as well as to airborne measurements with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) performed onboard of HALO during the POLSTRACC campaign show that the EMAC simulations are in good agreement with observations (differences generally within ±20%). However, larger differences between model and simulations are found e.g. in the areas of denitrification. Both, model simulations and observation show that in 2015/2016 ozone loss was quite strong, but not as strong as in 2010/2011 while denitrification and dehydration were so far the strongest in the Arctic stratosphere.

  6. Pore formation during dehydration of polycrystalline gypsum observed and quantified in a time-series synchrotron radiation based X-ray micro-tomography experiment

    NASA Astrophysics Data System (ADS)

    Fusseis, F.; Schrank, C.; Liu, J.; Karrech, A.; Llana-Fúnez, S.; Xiao, X.; Regenauer-Lieb, K.

    2011-10-01

    We conducted an in-situ X-ray micro-computed tomography heating experiment at the Advanced Photon Source (USA) to dehydrate an unconfined 2.3 mm diameter cylinder of Volterra Gypsum. We used a purpose-built X-ray transparent furnace to heat the sample to 388 K for a total of 310 min to acquire a three-dimensional time-series tomography dataset comprising nine time steps. The voxel size of 2.2 μm3 proved sufficient to pinpoint reaction initiation and the organization of drainage architecture in space and time. We observed that dehydration commences across a narrow front, which propagates from the margins to the centre of the sample in more than four hours. The advance of this front can be fitted with a square-root function, implying that the initiation of the reaction in the sample can be described as a diffusion process. Novel parallelized computer codes allow quantifying the geometry of the porosity and the drainage architecture from the very large tomographic datasets (6.4 × 109 voxel each) in unprecedented detail. We determined position, volume, shape and orientation of each resolvable pore and tracked these properties over the duration of the experiment. We found that the pore-size distribution follows a power law. Pores tend to be anisotropic but rarely crack-shaped and have a preferred orientation, likely controlled by a pre-existing fabric in the sample. With on-going dehydration, pores coalesce into a single interconnected pore cluster that is connected to the surface of the sample cylinder and provides an effective drainage pathway. Our observations can be summarized in a model in which gypsum is stabilized by thermal expansion stresses and locally increased pore fluid pressures until the dehydration front approaches to within about 100 μm. Then, the internal stresses are released and dehydration happens efficiently, resulting in new pore space. Pressure release, the production of pores and the advance of the front are coupled in a feedback loop. We discuss our findings in the context of previous studies.

  7. Pore formation during dehydration of a polycrystalline gypsum sample observed and quantified in a time-series synchrotron X-ray micro-tomography experiment

    NASA Astrophysics Data System (ADS)

    Fusseis, F.; Schrank, C.; Liu, J.; Karrech, A.; Llana-Fúnez, S.; Xiao, X.; Regenauer-Lieb, K.

    2012-03-01

    We conducted an in-situ X-ray micro-computed tomography heating experiment at the Advanced Photon Source (USA) to dehydrate an unconfined 2.3 mm diameter cylinder of Volterra Gypsum. We used a purpose-built X-ray transparent furnace to heat the sample to 388 K for a total of 310 min to acquire a three-dimensional time-series tomography dataset comprising nine time steps. The voxel size of 2.2 μm3 proved sufficient to pinpoint reaction initiation and the organization of drainage architecture in space and time. We observed that dehydration commences across a narrow front, which propagates from the margins to the centre of the sample in more than four hours. The advance of this front can be fitted with a square-root function, implying that the initiation of the reaction in the sample can be described as a diffusion process. Novel parallelized computer codes allow quantifying the geometry of the porosity and the drainage architecture from the very large tomographic datasets (20483 voxels) in unprecedented detail. We determined position, volume, shape and orientation of each resolvable pore and tracked these properties over the duration of the experiment. We found that the pore-size distribution follows a power law. Pores tend to be anisotropic but rarely crack-shaped and have a preferred orientation, likely controlled by a pre-existing fabric in the sample. With on-going dehydration, pores coalesce into a single interconnected pore cluster that is connected to the surface of the sample cylinder and provides an effective drainage pathway. Our observations can be summarized in a model in which gypsum is stabilized by thermal expansion stresses and locally increased pore fluid pressures until the dehydration front approaches to within about 100 μm. Then, the internal stresses are released and dehydration happens efficiently, resulting in new pore space. Pressure release, the production of pores and the advance of the front are coupled in a feedback loop.

  8. Dehydration induced loss of photosynthesis in Arabidopsis leaves during senescence is accompanied by the reversible enhancement in the activity of cell wall β-glucosidase.

    PubMed

    Patro, Lichita; Mohapatra, Pranab Kishor; Biswal, Udaya Chand; Biswal, Basanti

    2014-08-01

    The physiology of loss of photosynthetic production of sugar and the consequent cellular sugar reprogramming during senescence of leaves experiencing environmental stress largely remains unclear. We have shown that leaf senescence in Arabidopsis thaliana causes a significant reduction in the rate of oxygen evolution and net photosynthetic rate (Pn). The decline in photosynthesis is further aggravated by dehydration. During dehydration, primary photochemical reaction of thylakoids and net photosynthesis decrease in parallel with the increase in water deficit. Senescence induced loss in photosynthesis is accompanied by a significant increase in the activity of cell wall hydrolyzing enzyme such as β-glucosidase associated with cell wall catabolism. The activity of this enzyme is further enhanced when the senescing leaves experience dehydration stress. It is possible that both senescence and stress separately or in combination result in the loss in photosynthesis which could be a signal for an enhancement in the activity of β-glucosidase that breaks down cell wall polysaccharides to sugar to sustain respiration for metabolic activities of plants experiencing stress. Thus dehydration response of cell wall hydrolases of senescing leaves is considered as plants' strategy to have cell wall polysaccharides as an alternative energy source for completion of energy requiring senescence process, stress survival and maintenance of recovery potential of energy deficit cells in the background of loss in photosynthesis. Withdrawal of stress (rehydration) distinctly exhibits recovery of photosynthesis and suppression of enzyme activity. Retention of the signaling for sugar reprogramming through breakdown of cell wall polysaccharides in the senescing leaves exposed to severe drought stress suggests that senescing leaves like mature ones possess potential for stress recovery. The precise mechanism of stress adaptation of senescing leaves is yet to be known. A significant accumulation of anthocyanin and flavonoids may be an indicator of stress adaptation of senescing leaves. In addition, stress induced enhancement of nonphotochemical quenching (NPQ), a stress protection provision in green plants, also suggests the potential of the leaves to develop adaptational mechanism to counter the dehydration stress. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Simultaneous observations of reaction kinetics, creep behavior, and AE activities during syndeformational antigorite dehydration at high pressures

    NASA Astrophysics Data System (ADS)

    Kubo, T.; Iwasato, T.; Higo, Y.; Kato, T.; Kaneshima, S.; Uehara, S.; Koizumi, S.; Imamura, M.; Tange, Y.

    2015-12-01

    Intermediate-depth earthquakes are seismic activities in Wadati-Benioff zone at depths from 60 km to 300 km, where subducting plates deform plastically rather than brittle failure. Although it has been reported that unstable faulting occurred during antigorite dehydration even at higher pressures than ~2 GPa (e.g., Jung et al., 2009), the recent study by Chernak and Hirth (2011) revealed that the syndefromational antigorite dehydration does not produces stick-slip instabilities but stable fault slip. In the present study, we newly developed an AE monitoring system for high-pressure reaction-deformation processes combined with D-DIA and synchrotron monochromatic X-ray to observe reaction kinetics, creep behaviors, and AE activities simultaneously. We applied this technique to investigate shear instability during syndeformational antigorite dehydration. High-pressure deformation experiments were conducted up to ~8 GPa, ~1050 K, and strain rates of 3.4-9.2 x 10-5 s-1 in compression using a D-DIA type apparatus installed at BL-04B1, SPring-8. 50 keV mono X-ray were used to measure reaction kinetics and stress-strain data. To monitor shear instabilities by detecting AEs, six piezoelectric devices were positioned between first and second stage anvils of MA 6-6 type system. We used three kinds of starting materials of polycrystalline antigorite, fine-grained forsterite polycrystal, and two-phase mixtures of antigorite and San Carlos olivine (10%, 30%, and 50%atg). Clear contrasts were observed in AE activities between forsterite and antigorite samples. AE activities detected within the forsterite polycrystal suggested (semi) brittle behaviors at low pressures during the cold compression stage.
Almost no AEs were detected within the antigorite samples during any stages of cold compression, ramping, deformation, and syndeformational dehydration although localized deformation textures were observed in recovered samples. Instead, we detected some AEs outside the sample, indicating the stick slipping at the boundaries of cylindrical parts. Our results suggest that localized deformation and dehydration of antigorite do not enhance shear instability at high pressures at least in compression under drained condition.

  10. Gunion - Nevada`s most innovative geothermal food dehydration facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trexler, D.T.; Taylan, G.; Stewart, M.B.

    1995-12-31

    The Gunion (garlic and onion) dehydration plant, owned and operated by Integrated Ingredients, a Division of Burns Philp Food, Incorporated, uses geothermal fluids at a temperature of 306{degrees}F to dehydrate 50 to 70-thousand pounds per day of garlic and onions. The geothermal fluids are provided by Empire Farms, who has the rights for development of the resource and is the lease holder of fee land known as the Kosmos Lease. The San Emidio KGRA is located in northern Washoe County, 90 miles north-northeast of Reno, Nevada and 20 miles south of Gerlach, Nevada. Geothermal fluids exit the plant at 242{degrees}Fmore » and are piped to an injection well located 3,000 feet south-southwest of the plant. The plant location was selected not only for the geothermal resource, but also for the area`s low relative humidity. Currently, 1100-1200 gpm of geothermal fluids, at an inlet temperature of 302{degrees}F, are sufficient to provide the dryer line with ample BTU`s. Three geothermal wells drilled to depths ranging from 493 to 1817 feet produce fluids ranging in temperature from 266 to 306{degrees}F. One well can easily provide the heat required by the dryer line and will be capable of providing heat for a planned three-fold expansion of the facility. The remaining two wells are used as backup, or may be used for other applications such as soil sterilization. The fluid exiting the plant at 242{degrees}F may be cascaded and used for greenhouses and soil warming in the future. Geothermal heat is also used to dehumidify onions placed in the cold storage facility. The dehydration process takes 5-6 hours to dry the product to a 4.5% moisture content. The dried product is then milled to various sizes from powder to granules. The dehydration plant operates 24 hours/day 7 days a week. Currently 80 people are employed full-time at the plant. The dehydrated onion and garlic are used in condiments, soups, sauces and salad dressing.« less

  11. Friction behavior for clay minerals during dehydration process: implication for unstable friction at shallow portion along subducting plate

    NASA Astrophysics Data System (ADS)

    Kubo, T.; Katayama, I.

    2016-12-01

    Along plate boundary subduction thrusts, the transformation of smectite to illite within fault gouge at temperatures around 100 - 200 °C is one of the key mineralogical changes thought to control the updip limit of seismicity (Hyndman et al., 1997). Since hydration state of clay minerals is possible to vary from moment to moment in nature, it is important to investigate the effect of dehydration and hydrate state on frictional properties with progression of a removal of water is rare. In this study, we focus on the effect of dehydration of water on the frictional properties of clay minerals by temperature-rising test. For the friction experiments, starting materials we used are Ca-montmorillonite, which were placed on the simulated fault surface and two side blocks were placed together to produce a double-direct shear configuration. The sample assembly was heated by an external furnace up to 400 °C that is monitored by thermocouples located in the central part of sample assembly. After steady-state friction at room temperature we started to elevate the temperature around the specimen at a constant heating rate of 1, 3, and 10 °C/min. Ca-montmorillonite gouge showed unique friction behavior development as elevated temperature, which is divided into three stages; (1) friction coefficient decreased at relative low temperature, (2) friction coefficient increased at middle temperature, and (3) stick-slip behavior occurred at high temperature. Stick-slip behavior as elevated temperature implies to have a potential of velocity weakening behavior. Observed stick-slip behavior occurs at a temperature of 320 °C, which is extremely higher from a temperature range of occurring dehydration for Ca-montmorillonite (100 - 200 °C). However, at low heating rate the temperature that stick-slip behavior occurs shifted to lower temperature. Our preliminary results suggest that the observed systematical shift suggest that these frictional behavior is likely to be controlled by dehydration reaction kinetics. Dehydration of clay minerals change friction behavior, and play a key role for the occurrence of earthquakes along subducting plate.

  12. External validation of the DHAKA score and comparison with the current IMCI algorithm for the assessment of dehydration in children with diarrhoea: a prospective cohort study.

    PubMed

    Levine, Adam C; Glavis-Bloom, Justin; Modi, Payal; Nasrin, Sabiha; Atika, Bita; Rege, Soham; Robertson, Sarah; Schmid, Christopher H; Alam, Nur H

    2016-10-01

    Dehydration due to diarrhoea is a leading cause of child death worldwide, yet no clinical tools for assessing dehydration have been validated in resource-limited settings. The Dehydration: Assessing Kids Accurately (DHAKA) score was derived for assessing dehydration in children with diarrhoea in a low-income country setting. In this study, we aimed to externally validate the DHAKA score in a new population of children and compare its accuracy and reliability to the current Integrated Management of Childhood Illness (IMCI) algorithm. DHAKA was a prospective cohort study done in children younger than 60 months presenting to the International Centre for Diarrhoeal Disease Research, Bangladesh, with acute diarrhoea (defined by WHO as three or more loose stools per day for less than 14 days). Local nurses assessed children and classified their dehydration status using both the DHAKA score and the IMCI algorithm. Serial weights were obtained and dehydration status was established by percentage weight change with rehydration. We did regression analyses to validate the DHAKA score and compared the accuracy and reliability of the DHAKA score and IMCI algorithm with receiver operator characteristic (ROC) curves and the weighted κ statistic. This study was registered with ClinicalTrials.gov, number NCT02007733. Between March 22, 2015, and May 15, 2015, 496 patients were included in our primary analyses. On the basis of our criterion standard, 242 (49%) of 496 children had no dehydration, 184 (37%) of 496 had some dehydration, and 70 (14%) of 496 had severe dehydration. In multivariable regression analyses, each 1-point increase in the DHAKA score predicted an increase of 0·6% in the percentage dehydration of the child and increased the odds of both some and severe dehydration by a factor of 1·4. Both the accuracy and reliability of the DHAKA score were significantly greater than those of the IMCI algorithm. The DHAKA score is the first clinical tool for assessing dehydration in children with acute diarrhoea to be externally validated in a low-income country. Further validation studies in a diverse range of settings and paediatric populations are warranted. National Institutes of Health Fogarty International Center. Copyright © 2016 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY license. Published by Elsevier Ltd.. All rights reserved.

  13. External validation of the DHAKA score and comparison with the current IMCI algorithm for the assessment of dehydration in children with diarrhoea: a prospective cohort study

    PubMed Central

    Levine, Adam C; Glavis-Bloom, Justin; Modi, Payal; Nasrin, Sabiha; Atika, Bita; Rege, Soham; Robertson, Sarah; Schmid, Christopher H; Alam, Nur H

    2016-01-01

    Summary Background Dehydration due to diarrhoea is a leading cause of child death worldwide, yet no clinical tools for assessing dehydration have been validated in resource-limited settings. The Dehydration: Assessing Kids Accurately (DHAKA) score was derived for assessing dehydration in children with diarrhoea in a low-income country setting. In this study, we aimed to externally validate the DHAKA score in a new population of children and compare its accuracy and reliability to the current Integrated Management of Childhood Illness (IMCI) algorithm. Methods DHAKA was a prospective cohort study done in children younger than 60 months presenting to the International Centre for Diarrhoeal Disease Research, Bangladesh, with acute diarrhoea (defined by WHO as three or more loose stools per day for less than 14 days). Local nurses assessed children and classified their dehydration status using both the DHAKA score and the IMCI algorithm. Serial weights were obtained and dehydration status was established by percentage weight change with rehydration. We did regression analyses to validate the DHAKA score and compared the accuracy and reliability of the DHAKA score and IMCI algorithm with receiver operator characteristic (ROC) curves and the weighted κ statistic. This study was registered with ClinicalTrials.gov, number NCT02007733. Findings Between March 22, 2015, and May 15, 2015, 496 patients were included in our primary analyses. On the basis of our criterion standard, 242 (49%) of 496 children had no dehydration, 184 (37%) of 496 had some dehydration, and 70 (14%) of 496 had severe dehydration. In multivariable regression analyses, each 1-point increase in the DHAKA score predicted an increase of 0·6% in the percentage dehydration of the child and increased the odds of both some and severe dehydration by a factor of 1·4. Both the accuracy and reliability of the DHAKA score were significantly greater than those of the IMCI algorithm. Interpretation The DHAKA score is the first clinical tool for assessing dehydration in children with acute diarrhoea to be externally validated in a low-income country. Further validation studies in a diverse range of settings and paediatric populations are warranted. Funding National Institutes of Health Fogarty International Center. PMID:27567350

  14. Serpentinites and Boron Isotope Evidence for Shallow Fluid Transfer Across Subduction Zones

    NASA Astrophysics Data System (ADS)

    Scambelluri, M.; Tonarini, S.

    2012-04-01

    In subduction zones, fluid-mediated chemical exchanges between subducting plates and overlying mantle dictate volatile and incompatible element cycles in earth and influence arc magmatism. One of the outstanding issues is concerned with the sources of water for arc magmas and mechanisms for its slab-to-mantle wedge transport. Does it occur by slab dehydration at depths directly beneath arc front, or by hydration of fore-arc mantle and subsequent subduction of the hydrated mantle? Historically, the deep slab dehydration hypothesis had strong support, but it appears that the hydrated mantle wedge hypothesis is gaining ground. At the center of this hypothesis are studies of fluid-mobile element tracers in volatile-rich mantle wedge peridotites (serpentinites) and their subducted high-pressure equivalents. Serpentinites are key players in volatile and fluid-mobile element cycles in subduction zones. Their dehydration represents the main event for fluid and element flux from slabs to mantle, though direct evidence for this process and identification of dehydration environments have been elusive. Boron isotopes are known markers of fluid-assisted element transfer during subduction and can be the tracers of these processes. Until recently, the altered oceanic crust has been considered the main 11B reservoir for arc magmas, which largely display positive delta11B. However, slab dehydration below fore-arcs transfers 11B to the overlying hydrated mantle and leaves the residual mafic crust very depleted in 11B below sub-arcs. The 11B-rich composition of serpentinites candidate them as the heavy B carriers for subduction. Here we present high positive delta11B of Alpine high-pressure (HP) serpentinites recording subduction metamorphism from hydration at low gades to eclogite-facies dehydration: we show a connection among serpentinite dehydration, release of 11B-rich fluids and arc magmatism. In general, the delta11B of these rocks is heavy (16‰ to + 24‰ delta11B). No B loss and no 11B fractionation occurs in these rocks with progressive burial: their high B and 11B compositions demonstrate that initially high budgets acquired during shallow hydration are transferred and released to fluids at arc magma depths, providing the high-boron component requested for arcs. Interaction of depleted mantle-wedge with de-serpentinization fluids and/or serpentinite diapirs uprising from the slab-mantle interface thus provide an efficient self-consistent mechanism for water and B transfer to many arcs. The boron compositions documented here for Erro-Tobbio serpentinites are unexpected for slabs, deputed to loose much B and 11B during subduction dehydration. Their isotopic compositions can be achieved diluting through the mantle the subduction-fluids released during shallow dehydration (30 km) of a model slab. Moreover their delta11B is close to values measured in Syros eclogite blocks, hosted in mélanges atop of the slab and metasomatized by uprising subduction-fluids. The nature of serpentinizing fluids and the fluid-transfer mechanism in Erro-Tobbio is further clarified integrating B isotopes with O-H and Sr isotopic systems. Low deltaD (-102‰), high delta18O (8‰) of early serpentinites suggest low-temperature hydration by metamorphic fluids. 87Sr/86Sr ranges from 0.7044 to 0.7065 and is lower than oceanic serpentinites formed from seawater. Our data indicate that alteration occurred distant from mid-ocean ridges: we propose metamorphic environments like the slab-mantle interface or the fore-arc mantle fed by B- and 11B-rich slab fluids. We therefore provide field-based evidence for delivery of water and 11B at sub-arcs by serpentinites formed by subduction-fluid infiltration in mantle rocks atop of the slab since the early stages of burial, witnessing shallow fluid transfer across the subduction zone.

  15. Vomiting (For Parents)

    MedlinePlus

    ... Kids Teens First Aid: Dehydration First Aid: Vomiting E. Coli Dehydration Influenza (Flu) "Stomach Flu" What's Puke? Food Poisoning A Kid's Guide to Fever Dehydration E. Coli Gastrointestinal Infections and Diarrhea View more About Us ...

  16. Phthalic anhydride production from hemicellulose solutions: Technoeconomic analysis and life cycle assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Zhaojia; Ierapetritou, Marianthi; Nikolakis, Vladimiros

    2015-07-14

    The process synthesis, technoeconomic analysis, and life cycle assessment (LCA) of a novel route for phthalic anhydride (PAN) production from hemicellulose solutions are presented. The production contains six steps including dehydration of xylose to furfural, reductive decarbonylation of furfural to furan, oxidation of furfural to maleic anhydride (MA), Diels-Alder cycloaddition of furan, and MA to exo-4,10-dioxa-tricyclo[5.2.1.0]dec-8-ene-3,5-dione followed by dehydration to PAN in the presence of mixture of methanesulfonic acid and acetic anhydride (AAN) which is converted to acetyl methanesulfonate and acetic acid (AAD), and dehydration of AAD to AAN. The minimum selling price of PAN is determined to be $810/metricmore » ton about half of oil-based PAN. The coproduction of high-value products is essential to improve the economics. Biomass feedstock contributes to the majority of cost. LCA results shows that biomass-based PAN has advantages over oil-based PAN to reduce climate change and fossil depletion however requires more water usage.« less

  17. Physiological and biochemical changes associated with acute experimental dehydration in the desert adapted mouse, Peromyscus eremicus.

    PubMed

    Kordonowy, Lauren; Lombardo, Kaelina D; Green, Hannah L; Dawson, Molly D; Bolton, Evice A; LaCourse, Sarah; MacManes, Matthew D

    2017-03-01

    Characterizing traits critical for adaptation to a given environment is an important first step in understanding how phenotypes evolve. How animals adapt to the extreme heat and aridity commonplace to deserts is an exceptionally interesting example of these processes, and has been the focus of study for decades. In contrast to those studies, where experiments are conducted on either wild animals or captive animals held in non-desert conditions, the study described here leverages a unique environmental chamber that replicates desert conditions for captive Peromyscus eremicus (cactus mouse). Here, we establish baseline values for daily water intake and for serum electrolytes, as well as the response of these variables to acute experimental dehydration. In brief, P   eremicus daily water intake is very low. Its serum electrolytes are distinct from many previously studied animals, and its response to acute dehydration is profound, though not suggestive of renal impairment, which is atypical of mammals. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  18. Radon measurements in the lower tropical stratosphere - Evidence for rapid vertical transport and dehydration of tropospheric air

    NASA Technical Reports Server (NTRS)

    Kritz, Mark A.; Rosner, Stefan W.; Kelly, Kenneth K.; Loewenstein, Max; Chan, K. R.

    1993-01-01

    During the tropical experiment of NASA's Stratosphere-Troposphere Exchange Program (STEP), in situ radon and other trace constituent measurements were made aboard a NASA ER-2 high-altitude research aircraft to investigate the mechanisms of irreversible transfers from the troposphere into the tropical stratosphere. Observations made in and downwind of the cirrus shields of three large tropical cyclones and downwind of the cirrus anvil of a large cumulonimbus cloud cluster showed several clear instances of elevated radon activity occurring simultaneously with low total water mixing ratios. These observations are unambiguous evidence of an effective dehydration process, capable of reducing total water vapor mixing ratios to less than 2.5 ppmv, occurring in conjunction with troposphere-to-stratosphere transport and indicate that rapid localized convection, rather than slow regional mean motions, was responsible for the observed transports and associated with the accompanying dehydration. Radon activities measured in regions of active or recent troposphere-to-stratosphere transport were consistent with the 17 pCi/scm mean value needed to support the observed abundance of stratospheric 210 Pb.

  19. Towards Acid-Tolerated Ethanol Dehydration: Chitosan-Based Mixed Matrix Membranes Containing Cyano-Bridged Coordination Polymer Nanoparticles.

    PubMed

    Wu, C-W; Kang, Chao-Hsiang; Lin, Yi-Feng; Tung, Kuo-Lun; Deng, Yu-Heng; Ahamad, Tansir; Alshehri, Saad M; Suzuki, Norihiro; Yamauchi, Yusuke

    2016-04-01

    Prussian blue (PB) nanoparticles, one of many cyano-bridged coordination polymers, are successfully incorporated into chitosan (CS) polymer to prepare PB/CS mixed matrix membranes (MMMs). The PB nanoparticles are uniformly distributed in the MMMs without the collapse of the original PB structure. As-prepared PB/CS MMMs are used for ethanol dehydration at 25 °C in the pervaporation process. The effect of loading PB in CS matrix on pervaporation performance is carefully investigated. The PB/CS membrane with 30 wt% PB loading shows the best performance with a permeate flux of 614 g. m-2 . h-1 and a separation factor of 1472. The pervaporation using our PB/CS membranes exhibits outstanding performance in comparison with the previously reported CS-based membranes and MMMs. Furthermore, the addition of PB allows PB/CS MMMs to be tolerant of acidic environment. The present work demonstrates good pervaporation performance of PB/CS MMMs for the separation of an ethanol/water (90:10 in wt%) solution. Our new system provides an opportunity for dehydration of bioethanol in the future.

  20. Effect of osmotic dehydration and vacuum-frying parameters to produce high-quality mango chips.

    PubMed

    Nunes, Yolanda; Moreira, Rosana G

    2009-09-01

    Mango (Mangifera indica L.) is a fruit rich in flavor and nutritional values, which is an excellent candidate for producing chips. The objective of this study was to develop high-quality mango chips using vacuum frying. Mango ("Tommy Atkins") slices were pretreated with different maltodextrin concentrations (40, 50, and 65, w/v), osmotic dehydration times (45, 60, and 70 min), and solution temperatures (22 and 40 degrees C). Pretreated slices were vacuum fried at 120, 130, and 138 degrees C and product quality attributes (oil content, texture, color, carotenoid content) determined. The effect of frying temperatures at optimum osmotic dehydration times (65 [w/v] at 40 degrees C) was assessed. All samples were acceptable (scores > 5) to consumer panelists. The best mango chips were those pretreated with 65 (w/v) concentration for 60 min and vacuum fried at 120 degrees C. Mango chips under atmospheric frying had less carotenoid retention (32%) than those under vacuum frying (up to 65%). These results may help further optimize vacuum-frying processing of high-quality fruit-based snacks.

  1. Powder formation of {gamma} uranium-molybdenum alloys via hydration-dehydration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaz de Oliveira, Fabio Branco; Durazzo, Michelangelo; Fontenele Urano de Carvalho, Elita

    2008-07-15

    Gamma uranium-molybdenum alloys has been considered as fuel phase in plate type fuel elements for MTR reactors, mainly due to their acceptable performance under irradiation and metallurgical processing. To its use as a dispersion phase in aluminum matrix, a necessary step is the conversion of the as cast structure into powder, and one of the techniques considered at IPEN / CNEN - Brazil is HDH (hydration-dehydration). The alloys were produced by the induction melting technique, and samples were obtained from the alloys for the thermal treatments, under constant flow of hydrogen, for temperatures varying from 400 deg C to 600more » deg C and times from 1 to 4 hours, followed by dehydration. A preliminary characterization of the powders was made and the curves of mass variation versus time were obtained and related to the powder characteristics. This paper describes the first results on the development of the technology to the powder formation of the (5 to 10) % weight molybdenum {gamma}-UMo alloys, and discusses some of its aspects, mainly those related to the {gamma} {yields} {alpha} equilibrium data. (author)« less

  2. Phthalic anhydride production from hemicellulose solutions: Technoeconomic analysis and life cycle assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Zhaojia; Ierapetritou, Marianthi; Nikolakis, Vladimiros

    The process synthesis, technoeconomic analysis, and life cycle assessment (LCA) of a novel route for phthalic anhydride (PAN) production from hemicellulose solutions are presented. The production contains six steps including dehydration of xylose to furfural, reductive decarbonylation of furfural to furan, oxidation of furfural to maleic anhydride (MA), Diels-Alder cycloaddition of furan, and MA to exo-4,10-dioxa-tricyclo[5.2.1.0]dec-8-ene-3,5-dione followed by dehydration to PAN in the presence of mixture of methanesulfonic acid and acetic anhydride (AAN) which is converted to acetyl methanesulfonate and acetic acid (AAD), and dehydration of AAD to AAN. The minimum selling price of PAN is determined to be $810/metricmore » ton about half of oil-based PAN. The coproduction of high-value products is essential to improve the economics. Biomass feedstock contributes to the majority of cost. LCA results shows that biomass-based PAN has advantages over oil-based PAN to reduce climate change and fossil depletion however requires more water usage.« less

  3. In Situ Raman Spectroscopic Study of Gypsum (CaSO4·2H2O) and Epsomite (MgSO4·7H2O) Dehydration Utilizing an Ultrasonic Levitator.

    PubMed

    Brotton, Stephen J; Kaiser, Ralf I

    2013-02-21

    We present an original apparatus combining an acoustic levitator and a pressure-compatible process chamber. To characterize in situ the chemical and physical modifications of a levitated, single particle while heated to well-defined temperatures using a carbon dioxide laser, the chamber is interfaced to a Raman spectroscopic probe. As a proof-of-concept study, by gradually increasing the heating temperature, we observed the variations in the Raman spectra as 150 μg of crystals of gypsum and epsomite were dehydrated in anhydrous nitrogen gas. We display spectra showing the decreasing intensities of the ν1 symmetric and ν3 asymmetric stretching modes of water with time and the simultaneous shift of the ν1(SO4(2-)) symmetric stretch mode to higher wavenumbers. Our results demonstrate that the new apparatus is well suited to study the dehydration of levitated species such as minerals and offers potential advantages compared with previous experiments on bulk samples.

  4. A critical evaluation of crustal dehydration as the cause of an overpressured and weak San Andreas Fault

    USGS Publications Warehouse

    Fulton, P.M.; Saffer, D.M.; Bekins, B.A.

    2009-01-01

    Many plate boundary faults, including the San Andreas Fault, appear to slip at unexpectedly low shear stress. One long-standing explanation for a "weak" San Andreas Fault is that fluid release by dehydration reactions during regional metamorphism generates elevated fluid pressures that are localized within the fault, reducing the effective normal stress. We evaluate this hypothesis by calculating realistic fluid production rates for the San Andreas Fault system, and incorporating them into 2-D fluid flow models. Our results show that for a wide range of permeability distributions, fluid sources from crustal dehydration are too small and short-lived to generate, sustain, or localize fluid pressures in the fault sufficient to explain its apparent mechanical weakness. This suggests that alternative mechanisms, possibly acting locally within the fault zone, such as shear compaction or thermal pressurization, may be necessary to explain a weak San Andreas Fault. More generally, our results demonstrate the difficulty of localizing large fluid pressures generated by regional processes within near-vertical fault zones. ?? 2009 Elsevier B.V.

  5. Effect of temperature and cultivar on polyphenol retention and mass transfer during osmotic dehydration of apples.

    PubMed

    Devic, Emilie; Guyot, Sylvain; Daudin, Jean-Dominique; Bonazzi, Catherine

    2010-01-13

    Several cultivars of apples (Malus domestica) were chosen for their variable concentrations and compositions in phenolic compounds. Cubed samples (1 cm3) were subjected to osmotic dehydration, and the effect of temperature was studied at 45 and 60 degrees C. Water loss, sucrose impregnation, and the evolution of some natural components of the product were followed to quantify mass transfer. Ascorbic acid and polyphenols were quantified by HPLC for several osmotic dehydration times and regardless of the quantity of impregnated sugar. Changes in antioxidant components differed as a function of the nature of molecules. Their concentrations decreased in line with temperature, and few differences were observed between cultivars. Processing at a lower temperature (45 degrees C) caused a total loss in ascorbic acid but allowed the retention of between 74 and 85% of initial polyphenols, depending on the cultivar. Cultivars containing highly polymerized procyanidins (such as Guillevic) experienced less loss. Hydroxycinnamic acids and monomeric catechins displayed the most marked changes. Leaching with water into the soaking solution was the principal mechanism retained to explain these losses.

  6. 40 CFR 407.53 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true [Reserved] 407.53 Section 407.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CANNED AND PRESERVED FRUITS AND VEGETABLES PROCESSING POINT SOURCE CATEGORY Dehydrated Potato Products...

  7. 7 CFR 1207.500 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE POTATO RESEARCH AND PROMOTION PLAN... appear in Subpart—Potato Research and Promotion Plan. (b) Processor. Processor means any person who commercially processes potatoes into potato products, including, but not restricted to, frozen, dehydrated, or...

  8. Dichromated-gelatin hologram process for improved optical quality

    NASA Technical Reports Server (NTRS)

    Stewart, W. C.

    1975-01-01

    Optical distortions are eliminated by use of wetting agency followed by sequential immersion in several alcohol-water baths of increasing alcohol concentration. Dehydration proceeds uniformly over surface of gelatin. Dried plate is free of optically-distorting thickness variations.

  9. 40 CFR 407.53 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false [Reserved] 407.53 Section 407.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CANNED AND PRESERVED FRUITS AND VEGETABLES PROCESSING POINT SOURCE CATEGORY Dehydrated Potato Products...

  10. 7 CFR 1207.500 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE POTATO RESEARCH AND PROMOTION PLAN... appear in Subpart—Potato Research and Promotion Plan. (b) Processor. Processor means any person who commercially processes potatoes into potato products, including, but not restricted to, frozen, dehydrated, or...

  11. 40 CFR 407.53 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true [Reserved] 407.53 Section 407.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CANNED AND PRESERVED FRUITS AND VEGETABLES PROCESSING POINT SOURCE CATEGORY Dehydrated Potato Products...

  12. 40 CFR 407.53 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true [Reserved] 407.53 Section 407.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CANNED AND PRESERVED FRUITS AND VEGETABLES PROCESSING POINT SOURCE CATEGORY Dehydrated Potato Products...

  13. 40 CFR 407.53 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true [Reserved] 407.53 Section 407.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CANNED AND PRESERVED FRUITS AND VEGETABLES PROCESSING POINT SOURCE CATEGORY Dehydrated Potato Products...

  14. 7 CFR 1207.500 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE POTATO RESEARCH AND PROMOTION PLAN... appear in Subpart—Potato Research and Promotion Plan. (b) Processor. Processor means any person who commercially processes potatoes into potato products, including, but not restricted to, frozen, dehydrated, or...

  15. Comparing the Accuracy of the Three Dehydration Scales in Children with Acute Diarrhea in a Developing Country of Kosovo.

    PubMed

    Hoxha, Teuta; Xhelili, Luan; Azemi, Mehmedali; Avdiu, Muharrem; Ismaili-Jaha, Vlora; Efendija-Beqa, Urata; Grajcevci-Uka, Violeta

    2015-06-01

    Although diarrhea is a preventable disease, it remains the second leading cause of death (after pneumonia) among children aged under five years worldwide. The World Health Organization (WHO) scale, the Gorelick scale, and the Clinical Dehydration Scale (CDS) were created to estimate dehydration status using clinical signs. The purpose of this study is to determine whether these clinical scales can accurately assess dehydration status of children in a developing country of Kosovo. Children aged 1 month to 5 years with a history of acute diarrhea were enrolled in the study. After recording the data about the patients historical features the treating physician recorded the physical examination findings consistent with each clinical score. Receiver operating characteristic (ROC) curves were constructed to evaluate the performance of the three scales, compared to the gold standard, percent weight change with rehydration. Sensitivity, specificity and likelihood ratios were calculated using the best cut-off points of the ROC curves. We enrolled 230 children, and 200 children met eligibility criteria. The WHO scale for predicting significant dehydration (≥5 percent weight change) had an area under the curve (AUC) of 0.71 (95% : CI= 0.65-0.77). The Gorelick scales 4- and 10-point for predicting significant dehydration, had an area under the curve of 0.71 (95% : CI=0.63- 0.78) and 0.74 (95% : CI= 0.68-0.81) respectively. Only the CDS for predicting the significant dehydration above ≥6% percent weight change, did not have an area under the curve statistically different from the reference line with an AUC of 0.54 (95% CI = 0.45- 0.63). The WHO dehydration scale and Gorelick scales were fair predictors of dehydration in children with diarrhea. Only the Clinical Dehydration Scale was found not to be a helpful predictor of dehydration in our study cohort.

  16. (1)H nuclear magnetic resonance (NMR) as a tool to measure dehydration in mice.

    PubMed

    Li, Matthew; Vassiliou, Christophoros C; Colucci, Lina A; Cima, Michael J

    2015-08-01

    Dehydration is a prevalent pathology, where loss of bodily water can result in variable symptoms. Symptoms can range from simple thirst to dire scenarios involving loss of consciousness. Clinical methods exist that assess dehydration from qualitative weight changes to more quantitative osmolality measurements. These methods are imprecise, invasive, and/or easily confounded, despite being practiced clinically. We investigate a non-invasive, non-imaging (1)H NMR method of assessing dehydration that attempts to address issues with existing clinical methods. Dehydration was achieved by exposing mice (n = 16) to a thermally elevated environment (37 °C) for up to 7.5 h (0.11-13% weight loss). Whole body NMR measurements were made using a Bruker LF50 BCA-Analyzer before and after dehydration. Physical lean tissue, adipose, and free water compartment approximations had NMR values extracted from relaxation data through a multi-exponential fitting method. Changes in before/after NMR values were compared with clinically practiced metrics of weight loss (percent dehydration) as well as blood and urine osmolality. A linear correlation between tissue relaxometry and both animal percent dehydration and urine osmolality was observed in lean tissue, but not adipose or free fluids. Calculated R(2) values for percent dehydration were 0.8619 (lean, P < 0.0001), 0.5609 (adipose, P = 0.0008), and 0.0644 (free fluids, P = 0.3445). R(2) values for urine osmolality were 0.7760 (lean, P < 0.0001), 0.5005 (adipose, P = 0.0022), and 0.0568 (free fluids, P = 0.3739). These results suggest that non-imaging (1)H NMR methods are capable of non-invasively assessing dehydration in live animals. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Haemodynamic responses to dehydration in the resting and exercising human leg.

    PubMed

    Pearson, James; Kalsi, Kameljit K; Stöhr, Eric J; Low, David A; Barker, Horace; Ali, Leena; González-Alonso, José

    2013-06-01

    Dehydration and hyperthermia reduces leg blood flow (LBF), cardiac output ([Formula: see text]) and arterial pressure during whole-body exercise. It is unknown whether the reductions in blood flow are associated with dehydration-induced alterations in arterial blood oxygen content (C aO2) and O2-dependent signalling. This study investigated the impact of dehydration and concomitant alterations in C aO2 upon LBF and [Formula: see text]. Haemodynamics, arterial and femoral venous blood parameters and plasma [ATP] were measured at rest and during one-legged knee-extensor exercise in 7 males in four conditions: (1) control, (2) mild dehydration, (3) moderate dehydration, and (4) rehydration. Relative to control, C aO2 and LBF increased with dehydration at rest and during exercise (C aO2: from 199 ± 1 to 208 ± 2, and 202 ± 2 to 210 ± 2 ml L(-1) and LBF: from 0.38 ± 0.04 to 0.77 ± 0.09, and 1.64 ± 0.09 to 1.88 ± 0.1 L min(-1), respectively). Similarly, [Formula: see text] was unchanged or increased with dehydration at rest and during exercise, whereas arterial and leg perfusion pressures declined. Following rehydration, C aO2 declined (to 193 ± 2 mL L(-1)) but LBF remained elevated. Alterations in LBF were unrelated to C aO2 (r (2) = 0.13-0.27, P = 0.48-0.64) and plasma [ATP]. These findings suggest dehydration and concomitant alterations in C aO2 do not compromise LBF despite reductions in plasma [ATP]. While an additive or synergistic effect cannot be excluded, reductions in LBF during exercise with dehydration may not necessarily be associated with alterations in C aO2 and/or intravascular [ATP].

  18. Detection of QTLs controlling fast kernel dehydration in maize (Zea mays L.).

    PubMed

    Qian, Y L; Zhang, X Q; Wang, L F; Chen, J; Chen, B R; Lv, G H; Wu, Z C; Guo, J; Wang, J; Qi, Y C; Li, T C; Zhang, W; Ruan, L; Zuo, X L

    2016-08-19

    In order to understand the effect of grain moisture of inbred lines at the silking and physiological maturity stages on kernel dehydration rate, 59 maize inbred lines from six subgroups were selected. Grain moisture was measured and QTLs associated with kernel dehydration were mapped. A rapid dehydration evaluation and association analysis revealed eight inbred lines with faster dehydration rate, including Yuanwu 02, K36, Zhonger/O2, Lo1125, Han 49, Qi 319, Hua 160, and PH4CV. A single sequence repeat analysis using 85 pairs detected five QTLs with phenotypic variation contribution ≥10% in the permanent F2 generation populations Zheng 58 x S1776 and Chang 7-2 x K1131, which had LOD threshold values ≥ 3 in both 2013 and 2014. The chromosome region of qFkdr7b had not previously been reported and is preliminarily identified as a new major QTL. A false positive field verification of grain dehydration rate of 53 inbred lines indicated that the screening result of the rapid dehydration inbred lines by specific amplification with marker Phi114 was most similar to the field assessment result, followed by markers Phi127 and Phi029. The rapid dehydration lines selected based on primer Phi114 amplification were also similar to the field dehydration rate and can thus be used for molecular marker-assisted selection. A significant effort is needed to improve stress resistance and shorten the growth period via fast kernel dehydration in intermediate materials of the inbred lines K36, Zhonger/ O2, Lo1125, Han 49, Hua 160, and PH4CV, and further using the selected lines for new combinations.

  19. [Value of history and clinical and laboratory data for the diagnosis of dehydration due to acute diarrhea in children younger than 5 years].

    PubMed

    Pruvost, Isabelle; Dubos, François; Aurel, Marie; Hue, Valérie; Martinot, Alain

    2008-04-01

    Acute diarrhea is frequent, costly because of the number of hospital admissions required, and sometimes serious, even fatal to children in France. The clinical diagnosis of dehydration is difficult, but essential to determine management. To summarize the published data on the value of clinical history, clinical signs and laboratory results for diagnosing dehydration during acute diarrhea in young (1 month-5 years) non-malnourished children. Four databases (Medline, INIST, Ovid, and Cochrane) were searched through November 2006, with the key words "dehydration" subcategories "diagnosis, or etiology, or history", "diarrhea" subcategory "diagnosis", and age limits "infant or preschool child". We selected the articles and reviews that included as an endpoint for dehydration "weight gain > 5% after recovery" (the gold standard). Thirteen studies were selected. No single clinical history item, clinical sign or laboratory value was sufficient to discriminate between children with and without dehydration. The reproducibility of clinical signs varied substantially between studies. Persistent skin folds and signs of vasoconstriction contributed the most information, with good specificity but sensitivity < 50%. The combination of at least 3 clinical signs was most discriminative for dehydration. No dehydration scale has been validated. None of the studies selected had a very high level of proof (level 1 and 2); neither signs nor scores have been validated internally or externally because of the low number of subjects. The diagnosis of dehydration due to acute diarrhea in young children depends on the number of signs present, since no individual element of clinical history, clinical picture or laboratory tests distinguished dehydration. Other studies are necessary.

  20. 40 CFR 98.426 - Data reporting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... flow meter in your process chain in relation to the points of CO2 stream capture, dehydration... concentration. (7) The location of the flow meter in your process chain in relation to the points of CO2 stream... meter(s) in metric tons. (iii) The total annual CO2 mass supplied in metric tons. (iv) The location of...

  1. 40 CFR 98.426 - Data reporting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... flow meter in your process chain in relation to the points of CO2 stream capture, dehydration... concentration. (7) The location of the flow meter in your process chain in relation to the points of CO2 stream... meter(s) in metric tons. (iii) The total annual CO2 mass supplied in metric tons. (iv) The location of...

  2. 40 CFR 98.426 - Data reporting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... flow meter in your process chain in relation to the points of CO2 stream capture, dehydration... concentration. (7) The location of the flow meter in your process chain in relation to the points of CO2 stream... meter(s) in metric tons. (iii) The total annual CO2 mass supplied in metric tons. (iv) The location of...

  3. Integrated distillation-membrane process for bio-ethanol and bio-butanol recovery from actual fermentation broths: Separation energy efficiency and fate of secondary fermentation products

    EPA Science Inventory

    A hybrid process integrating vapor stripping with vapor compression and vapor permeation membrane separation, termed Membrane Assisted Vapor Stripping (MAVS), was evaluated for recovery and dehydration of ethanol and/or 1-butanol from aqueous solution as an alternative to convent...

  4. Environmental impact evaluation of feeds prepared from food residues using life cycle assessment.

    PubMed

    Ogino, Akifumi; Hirooka, Hiroyuki; Ikeguchi, Atsuo; Tanaka, Yasuo; Waki, Miyoko; Yokoyama, Hiroshi; Kawashima, Tomoyuki

    2007-01-01

    There is increasing concern about feeds prepared from food residues (FFR) from an environmental viewpoint; however, various forms of energy are consumed in the production of FFR. Environmental impacts of three scenarios were therefore investigated and compared using life cycle assessment (LCA): production of liquid FFR by sterilization with heat (LQ), production of dehydrated FFR by dehydration (DH), and disposal of food residues by incineration (IC). The functional unit was defined as 1 kg dry matter of produced feed standardized to a fixed energy content. The system boundaries included collection of food residues and production of feed from food residues. In IC, food residues are incinerated as waste, and thus the impacts of production and transportation of commercial concentrate feeds equivalent to the FFR in the other scenarios are included in the analysis. Our results suggested that the average amounts of greenhouse gas (GHG) emissions from LQ, DH, and IC were 268, 1073, and 1066 g of CO(2) equivalent, respectively. The amount of GHG emissions from LQ was remarkably small, indicating that LQ was effective for reducing the environmental impact of animal production. Although the average amount of GHG emissions from DH was nearly equal to that from IC, a large variation of GHG emissions was observed among the DH units. The energy consumption of the three scenarios followed a pattern similar to that of GHG emissions. The water consumption of the FFR-producing units was remarkably smaller than that of IC due to the large volumes of water consumed in forage crop production.

  5. Recipe Development and Evaluation of the 1983 Revision of the Standard B Ration

    DTIC Science & Technology

    1983-04-01

    Soup and gravy base, instant , beef flavored Soup, dehydrated, beef flavored w/ noodles and vegetables Soup, dehydrated, chicken flavored w/ noodles ...Soup, dehydrated, onion Soup, dehydrated, tomato-vegetable, w/ noodles Soup and gravy base, instant , beef flavored Soup and gravy base, instant ...Strawberry Jam Peanut Butter Coffee (A-2) Cocoa Lunch Chicken Noodle Soup (1-2) w/Cr ackers Luncheon Meat Sandwich (G-38) Mustard Baked

  6. Water-loss dehydration and aging.

    PubMed

    Hooper, Lee; Bunn, Diane; Jimoh, Florence O; Fairweather-Tait, Susan J

    2014-01-01

    This review defines water-loss and salt-loss dehydration. For older people serum osmolality appears the most appropriate gold standard for diagnosis of water-loss dehydration, but clear signs of early dehydration have not been developed. In older adults, lower muscle mass, reduced kidney function, physical and cognitive disabilities, blunted thirst, and polypharmacy all increase dehydration risk. Cross-sectional studies suggest a water-loss dehydration prevalence of 20-30% in this population. Water-loss dehydration is associated with higher mortality, morbidity and disability in older people, but evidence is still needed that this relationship is causal. There are a variety of ways we may be able to help older people reduce their risk of dehydration by recognising that they are not drinking enough, and being helped to drink more. Strategies to increase fluid intake in residential care homes include identifying and overcoming individual and institutional barriers to drinking, such as being worried about not reaching the toilet in time, physical inability to make or to reach drinks, and reduced social drinking and drinking pleasure. Research needs are discussed, some of which will be addressed by the FP7-funded NU-AGE (New dietary strategies addressing the specific needs of elderly population for a healthy ageing in Europe) trial. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Immobilisation increases yeast cells' resistance to dehydration-rehydration treatment.

    PubMed

    Borovikova, Diana; Rozenfelde, Linda; Pavlovska, Ilona; Rapoport, Alexander

    2014-08-20

    This study was performed with the goal of revealing if the dehydration procedure used in our new immobilisation method noticeably decreases the viability of yeast cells in immobilised preparations. Various yeasts were used in this research: Saccharomyces cerevisiae cells that were rather sensitive to dehydration and had been aerobically grown in an ethanol-containing medium, a recombinant strain of S. cerevisiae grown in aerobic conditions which were completely non-resistant to dehydration and an anaerobically grown bakers' yeast strain S. cerevisiae, as well as a fairly resistant Pichia pastoris strain. Experiments performed showed that immobilisation of all these strains essentially increased their resistance to a dehydration-rehydration treatment. The increase of cells' viability (compared with control cells dehydrated in similar conditions) was from 30 to 60%. It is concluded that a new immobilisation method, which includes a dehydration stage, does not lead to an essential loss of yeast cell viability. Correspondingly, there is no risk of losing the biotechnological activities of immobilised preparations. The possibility of producing dry, active yeast preparations is shown, for those strains that are very sensitive to dehydration and which can be used in biotechnology in an immobilised form. Finally, the immobilisation approach can be used for the development of efficient methods for the storage of recombinant yeast strains. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Intra- and extracellular dehydration-induced thirst-related behavior in an amphibian.

    PubMed

    Taylor, K; Mayer, L P; Propper, C R

    The behavioral response to dehydration is critical to an animal's survival. Because of their permeable skin, amphibians are particularly sensitive to dehydrating conditions. We tested the hypothesis that different forms of dehydration induce water absorption response (WR) behavior in the desert spadefoot toad, Scaphiopus couchii. First, we determined the behavioral response to intracellular dehydration by treating fully hydrated toads with increasing concentrations of hypertonic solutions of NaCl or sucrose via intraperitoneal injection (i.p.). Animals that were treated to induce intracellular dehydration with either solute exhibited a significant increase in WR behavior compared to vehicle-treated controls. To distinguish that the response was a result of an increased osmotic gradient between the intra- and extracellular compartments, we treated fully hydrated animals i.p. with urea, which freely passes into the intracellular compartment and increases overall animal osmolarity. Urea treatment did not induce WR behavior. To determine the response to extracellular dehydration, the blood volume of fully hydrated toads was reduced via cardiac puncture, and the WR behavior was measured. Animals who had a reduction in blood volume exhibited a significant increase in WR behavior compared to sham-punctured controls. Our results are the first to demonstrate that multiple forms of dehydration can induce thirst-related behavior in amphibians.

  9. Effects of Dehydration on Fish Muscles at Chilled Temperature

    NASA Astrophysics Data System (ADS)

    Miki, Hidemasa; Seto, Fuminori; Nishimoto, Motomi; Nishimoto, Junichi

    Recently,new method of removing water from fish fillet at low temperature using dehydration sheet have been reported. The present study is concerned with the factors to affect the quality during dehydration of horse mackerel muscle at low temperature. The rate of dehydration at -3 °C was about two times faster than that at 0 °C. The rate of denaturation of fish muscle protein was kept less than about 10 % (ATPase activity) of the undenaturated initial values after removing free water content. Present results suggest the practical possibility of the dehydration at -3 °C for keeping quality of fish flesh.

  10. 40 CFR 52.876 - Compliance schedules.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Western Alfalfa Corp., alfalfa dehydrator Deerfield 28-19-20 Do. Do Tice 28-19-20 Do. Pence Food Center... exhaust Coffeyville 28-19-50A Do. Kaw Dehydrating Co., alfalfa dehydrator Lawrence 28-19-20 Do. Empire...

  11. Dehydration Comes on Fast and Can Be Fatal

    MedlinePlus

    ... can be fatal Dehydration comes on fast and can be fatal During the hot summer months,the ... and keeping hydrated. “Dehydration is very dangerous. It can lead to an emergency visit, and it can ...

  12. In pursuit of the rhabdophane crystal structure: from the hydrated monoclinic LnPO{sub 4}.0.667H{sub 2}O to the hexagonal LnPO{sub 4} (Ln = Nd, Sm, Gd, Eu and Dy)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mesbah, Adel, E-mail: adel.mesbah@cea.fr; Clavier, Nicolas; Elkaim, Erik

    The dehydration process of the hydrated rhabdophane LnPO{sub 4}.0.667H{sub 2}O (Ln = La to Dy) was thoroughly studied over the combination of in situ high resolution synchrotron powder diffraction and TGA experiments. In the case of SmPO{sub 4}.0.667H{sub 2}O (monoclinic, C2), a first dehydration step was identified around 80 °C leading to the formation of SmPO{sub 4}.0.5H{sub 2}O (Monoclinic, C2) with Z =12 and a =17.6264(1) Å, b =6.9704(1) Å, c =12.1141(1) Å, β=133.74(1) °, V =1075.33(1) Å{sup 3}. In agreement with the TGA and dilatometry experiments, all the water molecules were evacuated above 220 °C yielding to the anhydrousmore » form, which crystallizes in the hexagonal P3{sub 1}21 space group with a =7.0389(1) Å, c =6.3702(1) Å and V =273.34(1) Å{sup 3}. This study was extended to selected LnPO{sub 4}.0.667H{sub 2}O samples (Ln= Nd, Gd, Eu, Dy) and the obtained results confirmed the existence of two dehydration steps before the stabilization of the anhydrous form, with the transitory formation of LnPO{sub 4}.0.5H{sub 2}O. - Graphical abstract: The dehydration process of the rhabdophane SmPO{sub 4}.0.667H{sub 2}O was studied over combination of in situ high resolution synchrotron powder diffraction and TGA techniques, a first dehydration was identified around 80 °C leading to the formation of SmPO{sub 4}.0.5H{sub 2}O (Monoclinic, C2). Then above 220 °C, the anhydrous form of the rhabdophane SmPO{sub 4} was stabilized and crystallizes in the hexagonal P3{sub 1}21 space group. - Highlights: • In situ synchrotron powder diffraction was carried out during the dehydration of the rhabdopahe LnPO{sub 4}.0.667H{sub 2}O. • The heat of the rhabdophane LnPO{sub 4}.0.667H{sub 2}O leads to LnPO{sub 4}.0.5H{sub 2}O then to anhydrous rhabdophane LnPO{sub 4}. • LnPO{sub 4}.0.5H{sub 2}O (monoclinic, C2) and LnPO{sub 4} (Hexagonal, P3{sub 1}21) were solved over the use of direct methods.« less

  13. Genome-wide transcriptional analysis of two soybean genotypes under dehydration and rehydration conditions

    PubMed Central

    2013-01-01

    Background Soybean is an important crop that provides valuable proteins and oils for human use. Because soybean growth and development is extremely sensitive to water deficit, quality and crop yields are severely impacted by drought stress. In the face of limited water resources, drought-responsive genes are therefore of interest. Identification and analysis of dehydration- and rehydration-inducible differentially expressed genes (DEGs) would not only aid elucidation of molecular mechanisms of stress response, but also enable improvement of crop stress tolerance via gene transfer. Using Digital Gene Expression Tag profiling (DGE), a new technique based on Illumina sequencing, we analyzed expression profiles between two soybean genotypes to identify drought-responsive genes. Results Two soybean genotypes—drought-tolerant Jindou21 and drought-sensitive Zhongdou33—were subjected to dehydration and rehydration conditions. For analysis of DEGs under dehydration conditions, 20 cDNA libraries were generated from roots and leaves at two different time points under well-watered and dehydration conditions. We also generated eight libraries for analysis under rehydration conditions. Sequencing of the 28 libraries produced 25,000–33,000 unambiguous tags, which were mapped to reference sequences for annotation of expressed genes. Many genes exhibited significant expression differences among the libraries. DEGs in the drought-tolerant genotype were identified by comparison of DEGs among treatments and genotypes. In Jindou21, 518 and 614 genes were differentially expressed under dehydration in leaves and roots, respectively, with 24 identified both in leaves and roots. The main functional categories enriched in these DEGs were metabolic process, response to stresses, plant hormone signal transduction, protein processing, and plant-pathogen interaction pathway; the associated genes primarily encoded transcription factors, protein kinases, and other regulatory proteins. The seven most significantly expressed (|log2 ratio| ≥ 8) genes— Glyma15g03920, Glyma05g02470, Glyma15g15010, Glyma05g09070, Glyma06g35630, Glyma08g12590, and Glyma11g16000—are more likely to determine drought stress tolerance. The expression patterns of eight randomly-selected genes were confirmed by quantitative RT-PCR; the results of QRT-PCR analysis agreed with transcriptional profile data for 96 out of 128 (75%) data points. Conclusions Many soybean genes were differentially expressed between drought-tolerant and drought-sensitive genotypes. Based on GO functional annotation and pathway enrichment analysis, some of these genes encoded transcription factors, protein kinases, and other regulatory proteins. The seven most significant DEGs are candidates for improving soybean drought tolerance. These findings will be helpful for analysis and elucidation of molecular mechanisms of drought tolerance; they also provide a basis for cultivating new varieties of drought-tolerant soybean. PMID:24093224

  14. Dehydration in the Elderly: A Review Focused on Economic Burden.

    PubMed

    Frangeskou, M; Lopez-Valcarcel, B; Serra-Majem, L

    2015-06-01

    Dehydration is the most common fluid and electrolyte problem among elderly patients. It is reported to be widely prevalent and costly to individuals and to the health care system. The purpose of this review is to summarize the literature on the economic burden of dehydration in the elderly. A comprehensive search of several databases from database inception to November 2013, only in English language, was conducted. The databases included Pubmed and ISI Web of Science. The search terms «dehydration» / "hyponaremia" / "hypernatremia" AND «cost» AND «elderly» were used to search for comparative studies of the economic burden of dehydration. A total of 15 papers were identified. Dehydration in the elderly is an independent factor of higher health care expenditures. It is directly associated with an increase in hospital mortality, as well as with an increase in the utilization of ICU, short and long term care facilities, readmission rates and hospital resources, especially among those with moderate to severe hyponatremia. Dehydration represents a potential target for intervention to reduce healthcare expenditures and improve patients' quality of life.

  15. Effect of experimental and sample factors on dehydration kinetics of mildronate dihydrate: mechanism of dehydration and determination of kinetic parameters.

    PubMed

    Bērziņš, Agris; Actiņš, Andris

    2014-06-01

    The dehydration kinetics of mildronate dihydrate [3-(1,1,1-trimethylhydrazin-1-ium-2-yl)propionate dihydrate] was analyzed in isothermal and nonisothermal modes. The particle size, sample preparation and storage, sample weight, nitrogen flow rate, relative humidity, and sample history were varied in order to evaluate the effect of these factors and to more accurately interpret the data obtained from such analysis. It was determined that comparable kinetic parameters can be obtained in both isothermal and nonisothermal mode. However, dehydration activation energy values obtained in nonisothermal mode showed variation with conversion degree because of different rate-limiting step energy at higher temperature. Moreover, carrying out experiments in this mode required consideration of additional experimental complications. Our study of the different sample and experimental factor effect revealed information about changes of the dehydration rate-limiting step energy, variable contribution from different rate limiting steps, as well as clarified the dehydration mechanism. Procedures for convenient and fast determination of dehydration kinetic parameters were offered. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. In situ bioremediation of a former natural gas dehydrator site using bioventing/biosparging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shamory, B.D.; Lawrence, A.W.; Miller, D.L.

    1995-12-01

    The Gas Research Institute (GRI) is conducting a research program on site remediation and residuals management for natural gas exploration and production (E&P) activities. Biological processes are considered to be a key component of the GRI remedial strategy since most of the chemicals-of-interest in soils and groundwater at E&P sites have been reported to be biodegradable. A bioventing/biosparging field demonstration was conducted over a ten month period at a former glycol dehydrator site, located near Traverse City, Michigan. The chemicals-of-interest at this site were benzene, toluene, ethylbenzene, and xylenes; and alkanes (primarily C{sub 4} through C{sub 10}). The goal ofmore » the project was to determine the feasibility of using this technology for dehydrator site remediation and to develop engineering basis of design concepts for applying bioventing/biosparging at other similar sites. Three different air sparging operational modes (pulsed, continuous, and offgas recycle) were tested to determine the optimum process configuration for site remediation. Biodegradation was also evaluated. Operational mode performance was evaluated by situ conducting in situ respirometry studies. Depletion of oxygen and hydrocarbons and production of carbon dioxide were used to calculated biodegradation rates in the vadose and saturated zones. The mass of hydrocarbons biologically degraded was estimated based on these biokinetic rates. In addition, biodegradation was also estimated based on contaminant removal shown by analytical sampling of soil and groundwater and based on other losses attributed to pump and treat and soil vapor extraction systems. In addition, an engineering evaluation of the operating modes is presented. The results of this study suggest that bioventing/biosparging is a feasible technology for in situ remediation of soil and groundwater at gas industry glycol dehydrator sites and that the pulsed operating mode may have an advantage over the other modes.« less

  17. Coatings for minimally processed fruits and vegetables

    USDA-ARS?s Scientific Manuscript database

    Fresh-cut fruit and vegetables are gaining increasing popularity and market share. Techniques to enhance stability of fresh cut produce are reviewed. Among these techniques, edibles coatings can provide protection against dehydration, microbial decay and decrease events related to physiological sene...

  18. 40 CFR 407.51 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Specialized definitions. 407.51 Section 407.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CANNED AND PRESERVED FRUITS AND VEGETABLES PROCESSING POINT SOURCE CATEGORY Dehydrated Potato...

  19. 40 CFR 407.51 - Specialized definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Specialized definitions. 407.51 Section 407.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CANNED AND PRESERVED FRUITS AND VEGETABLES PROCESSING POINT SOURCE CATEGORY Dehydrated Potato...

  20. 40 CFR 407.51 - Specialized definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Specialized definitions. 407.51 Section 407.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CANNED AND PRESERVED FRUITS AND VEGETABLES PROCESSING POINT SOURCE CATEGORY Dehydrated Potato...

Top