Science.gov

Sample records for dehydration

  1. Dehydration

    MedlinePlus

    ... less often than usual Dark-colored urine Dry skin Feeling tired Dizziness and fainting Signs of dehydration in babies and young children include a dry mouth and tongue, crying without tears, no wet diapers for 3 hours or more, ...

  2. Onion dehydration

    SciTech Connect

    Lund, J.W.; Lienau, P.J.

    1994-07-01

    This article describes the onion dehydration process as generally practiced in the United States. The actual processing steps from harvest to final product, and geothermal applications for power production and energy requirements in the dehydration industry are discussed. A design of a dehydrator converted to geothermal energy usage is included.

  3. Onion dehydration

    SciTech Connect

    Lund, J.W.

    1995-12-31

    Onion dehydration consists of a continuous operation, belt conveyor using fairly low-temperature hot air from 38-104{degrees}C (100 to 200{degrees}F). Typical processing plants will handle 4500 kg (10,000 pounds) of raw product per hour (single line), reducing the moisture from around 83 % to 4 % (680 to 820 kg - 1,500 to 1,800 pounds finished product). An example of a geothermal processing plant is Integrate Ingredients at Empire, Nevada, in the San Emidio Desert. A total of 6.3 million kg (14 million pounds) of dry product are produced annually: 60% onion and 40% garlic. A 130{degrees}C (266{degrees}F) well provide the necessary heat for the plant.

  4. First Aid: Dehydration

    MedlinePlus

    ... Story" 5 Things to Know About Zika & Pregnancy First Aid: Dehydration KidsHealth > For Parents > First Aid: Dehydration Print A A A Text Size Dehydration ... MORE ON THIS TOPIC Summer Safety Heat Illness First Aid: Heat Illness Sun Safety Dehydration Diarrhea Vomiting Word! ...

  5. Hypernatraemic dehydration revisited.

    PubMed

    Stalder, G R; Wyler, F

    1984-01-01

    After discussing earlier concepts of hypernatraemic dehydration, experiments on infantile mini-pigs are reported. After giving osmolar NaCl and NH4Cl solution, dehydration with chloride acidosis was produced and then rehydration was started for 24 h. From the findings the conclusion was drawn that in hypernatraemic dehydration cerebral lesions are not primarily due to an overall impairment of brain blood flow and that blood pressure is a misguiding criterion of fluid loss and circulatory assessment.

  6. Sports Dehydration Safety Tips

    MedlinePlus

    ... drinking plenty of fluids. Dehydration occurs when a body loses more water than it takes in (such as through sweating). ... Move the athlete to shade and cool the body with cold water. Have the athlete drink cool water, remove any ...

  7. Dehydration (For Teens)

    MedlinePlus

    ... En Español Making a Change – Your Personal Plan Hot Topics Meningitis Choosing Your Mood Prescription Drug Abuse ... from lots of physical activity, especially on a hot day. Even mild dehydration can affect an athlete's ...

  8. Preventing and managing dehydration.

    PubMed

    Suhayda, Rosemarie; Walton, Jane C

    2002-12-01

    Sufficient body water and electrolyte homeostasis are essential for healthy physiologic functioning. Nurses are key to preventing, detecting early, and treating fluid and electrolyte imbalances. Dehydration significantly alters both physical and psychological functioning, and older adults are at increased risk. Identifying fluid disorders early can prevent complications and reduce hospital stays. Understanding the mechanisms of fluid homeostasis enables nurses to assess, prevent, and collaborate in managing isotonic, hypertonic, and hypotonic dehydration.

  9. Electrolyte Concentrates Treat Dehydration

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Wellness Brands Inc. of Boulder, Colorado, exclusively licensed a unique electrolyte concentrate formula developed by Ames Research Center to treat and prevent dehydration in astronauts returning to Earth. Marketed as The Right Stuff, the company's NASA-derived formula is an ideal measure for athletes looking to combat dehydration and boost performance. Wellness Brands also plans to expand with products that make use of the formula's effective hydration properties to help treat conditions including heat stroke, altitude sickness, jet lag, and disease.

  10. Cognitive performance and dehydration.

    PubMed

    Adan, Ana

    2012-04-01

    No matter how mild, dehydration is not a desirable condition because there is an imbalance in the homeostatic function of the internal environment. This can adversely affect cognitive performance, not only in groups more vulnerable to dehydration, such as children and the elderly, but also in young adults. However, few studies have examined the impact of mild or moderate dehydration on cognitive performance. This paper reviews the principal findings from studies published to date examining cognitive skills. Being dehydrated by just 2% impairs performance in tasks that require attention, psychomotor, and immediate memory skills, as well as assessment of the subjective state. In contrast, the performance of long-term and working memory tasks and executive functions is more preserved, especially if the cause of dehydration is moderate physical exercise. The lack of consistency in the evidence published to date is largely due to the different methodology applied, and an attempt should be made to standardize methods for future studies. These differences relate to the assessment of cognitive performance, the method used to cause dehydration, and the characteristics of the participants.

  11. Dehydration and cognitive performance.

    PubMed

    Grandjean, Ann C; Grandjean, Nicole R

    2007-10-01

    Human neuropsychology investigates brain-behavior relationships, using objective tools (neurological tests) to tie the biological and behavior aspects together. The use of neuropsychological assessment tools in assessing potential effects of dehydration is a natural progression of the scientific pursuit to understand the physical and mental ramifications of dehydration. It has long been known that dehydration negatively affects physical performance. Examining the effects of hydration status on cognitive function is a relatively new area of research, resulting in part from our increased understanding of hydration's impact on physical performance and advances in the discipline of cognitive neuropsychology. The available research in this area, albeit sparse, indicates that decrements in physical, visuomotor, psychomotor, and cognitive performance can occur when 2% or more of body weight is lost due to water restriction, heat, and/or physical exertion. Additional research is needed, especially studies designed to reduce, if not remove, the limitations of studies conducted to date.

  12. Dehydration of alcohols

    SciTech Connect

    Drake, C.A.

    1989-01-03

    A method is described for activating a dehydration catalyst consisting essentially of treating by (1) contacting alumina with an activating amount of organic carboxylic acid in liquid phase, (2) decanting the liquid phase and (3) drying the alumina at a temperature of about 100/sup 0/C until substantially constant weight is attained.

  13. Dehydration of the Stratosphere

    NASA Astrophysics Data System (ADS)

    Schoeberl, M. R.; Dessler, A. E.

    2011-12-01

    Domain filling, forward trajectory calculations are used to examine the global dehydration processes that control stratospheric water vapor. As with most Lagrangian models of this type, water vapor is instantaneously removed from the parcel to keep the relative humidity (RH) with respect to ice from exceeding saturation or a specified super-saturation value. We also test a simple parameterization of stratospheric convective moistening through ice lofting and the effect of gravity waves as a mechanism that can augment dehydration. Comparing diabatic and kinematic trajectories driven by the MERRA reanalysis, we find that the additional transport due to the vertical velocity "noise" in the kinematic calculation creates too dry a stratosphere and a too diffuse a water-vapor tape recorder signal compared observations. We also show that the kinematically driven parcels are more likely to encounter the coldest tropopause temperatures than the diabatic trajectories. The diabatic simulations produce stratospheric water vapor mixing ratios close to that observed by Aura's Microwave Limb Sounder and are consistent with the MERRA tropical tropopause temperature biases. Convective moistening increases stratospheric water vapor while our parameterized gravity waves does the opposite. We find that while the Tropical West Pacific is the dominant dehydration location, but dehydration over Tropical South America is also important. Antarctica makes a small contribution to the overall stratospheric water vapor budget as well by releasing very dry air into the Southern Hemisphere stratosphere following the break up of the winter vortex.

  14. Dehydration of the stratosphere

    NASA Astrophysics Data System (ADS)

    Schoeberl, M.; Dessler, A.

    2011-03-01

    Domain filling, forward trajectory calculations are used to examine the global dehydration processes that control stratospheric water vapor. As with most Lagrangian models of this type, water vapor is instantaneously removed from the parcel to keep the relative humidity with respect to ice from exceeding saturation or a specified super-saturation value. We also test a simple parameterization of stratospheric convective moistening through ice lofting and the effect of gravity waves as a mechanism that can augment dehydration. Comparing diabatic and kinematic trajectories, we find, in agreement with previous authors, that the additional transport due to the vertical velocity "noise" in the kinematic calculation creates too dry a stratosphere and a too diffuse a water-vapor tape recorder signal compared observations. The diabatic simulations, on the other hand, produce stratospheric water vapor mixing ratios very close to that observed by Aura's Microwave Limb Sounder. Convective moistening, which will increases stratospheric HDO, also increases stratospheric water vapor while gravity waves do the opposite. We find that while the Tropical West Pacific is the dominant dehydration location, dehydration over Tropical South America is also important. Antarctica also makes a contribution to the overall stratospheric water vapor budget by releasing very dry air into the Southern Hemisphere stratosphere following the break up of the winter vortex.

  15. Fruits and vegetables dehydration

    NASA Astrophysics Data System (ADS)

    de Ita, A.; Flores, G.; Franco, F.

    2015-01-01

    Dehydration diagrams were determined by means of Differential Thermal Analysis, DTA, and Thermo Gravimetric Analysis, TGA, curves of several simultaneous fruits and vegetables, all under the same conditions. The greater mass loss is associated with water containing in the structure of the investigated materials at low temperature. In poblano chile water is lost in a single step. The banana shows a very sharply two stages, while jicama can be observed although with a little difficulty three stages. The major mass loss occurs in the poblano chile and the lower in banana. The velocity and temperature of dehydration vary within a small range for most materials investigated, except for banana and cactus how are very different.

  16. Carbohydrate Dehydration Demonstrations

    NASA Astrophysics Data System (ADS)

    Dolson, David A.; Battino, Rubin; Letcher, Trevor M.; Pegel, K. H.; Revaprasadu, N.

    1995-10-01

    The "charring reaction" of a carbohydrate with concentrated H2SO4 is a demonstration of the dehydrating power of H2SO4. In this paper several sugars and supermarket carbohydrates are systematically studied with respect to size of particles, addition of water, and amount of H2SO4 added. The results are tabulated as to the amount of time to blackening and to the attainment of a particular volume of the charred material. Detailed safety precautions are included.

  17. Dehydration of the stratosphere

    NASA Astrophysics Data System (ADS)

    Schoeberl, M. R.; Dessler, A. E.

    2011-08-01

    Domain filling, forward trajectory calculations are used to examine the global dehydration processes that control stratospheric water vapor. As with most Lagrangian models of this type, water vapor is instantaneously removed from the parcel to keep the relative humidity (RH) with respect to ice from exceeding saturation or a specified super-saturation value. We also test a simple parameterization of stratospheric convective moistening through ice lofting and the effect of gravity waves as a mechanism that can augment dehydration. Comparing diabatic and kinematic trajectories driven by the MERRA reanalysis, we find that, unlike the results from Liu et al. (2010), the additional transport due to the vertical velocity "noise" in the kinematic calculation creates too dry a stratosphere and a too diffuse a water-vapor tape recorder signal compared observations. We also show that the kinematically driven parcels are more likely to encounter the coldest tropopause temperatures than the diabatic trajectories. The diabatic simulations produce stratospheric water vapor mixing ratios close to that observed by Aura's Microwave Limb Sounder and are consistent with the MERRA tropical tropopause temperature biases. Convective moistening, which will increase stratospheric HDO, also increases stratospheric water vapor while the addition of parameterized gravity waves does the opposite. We find that while the Tropical West Pacific is the dominant dehydration location, but dehydration over Tropical South America is also important. Antarctica makes a small contribution to the overall stratospheric water vapor budget as well by releasing very dry air into the Southern Hemisphere stratosphere following the break up of the winter vortex.

  18. [Pathophysiology of dehydration].

    PubMed

    Brunner, F P

    1993-07-20

    The pathophysiology of dehydration is reviewed. The normal response to dehydration, i.e. decreased effective arterial blood volume or effective circulating volume is described. Due to water retention and drinking following stimulation of ADH secretion and thirst, osmoregulation is overruled by volume conservatory mechanisms, which lead to hyponatremia. Only patients with impaired mental function or those who are unable to drink will develop a progressive water deficit--with or without salt depletion--recognizable by hypernatremia. Decreased effective arterial blood volume and hypernatremia affect cerebral function in a way that perception of external stimuli as well as perception of pain will be impaired. Alert dehydrated patients are disturbed mainly by thirst and dryness of the mouth. Both symptoms are perceived more intensely by young than by elderly persons. Dryness of the mouth increase thirst on its own. Distress by thirst and oral dryness increases as a function of the level and the rapidity of developing hypernatremia. The simple act of filling the oral cavity with fluid and swallowing alleviates thirst in the absence of any change in plasma sodium concentration. Thirst quenching efficacy is increased by administering chilled hypotonic fluid with lemon or other fruit acid added (for stimulation of salivation).

  19. Onion dehydration: a review.

    PubMed

    Mitra, Jayeeta; Shrivastava, S L; Rao, P S

    2012-06-01

    Onion (Allium cepa), a very commonly used vegetable, ranks third in the world production of major vegetables. Apart from imparting a delicious taste and flavour due to its pungency in many culinary preparations, it serves several medicinal purposes also. Processing and preservation of onion by suitable means is a major thrust area since a long time. The various kinds of treatments followed for dehydration of onion such as convective air drying, solar drying, fluidized bed drying, vacuum microwave drying, infrared drying and osmotic drying are reviewed here. These techniques are mainly used for preservation and value addition of onion. Several researchers have tried for decades to model the drying kinetics and quality parameters, which are also compiled here briefly.

  20. Onion dehydration: a review.

    PubMed

    Mitra, Jayeeta; Shrivastava, S L; Rao, P S

    2012-06-01

    Onion (Allium cepa), a very commonly used vegetable, ranks third in the world production of major vegetables. Apart from imparting a delicious taste and flavour due to its pungency in many culinary preparations, it serves several medicinal purposes also. Processing and preservation of onion by suitable means is a major thrust area since a long time. The various kinds of treatments followed for dehydration of onion such as convective air drying, solar drying, fluidized bed drying, vacuum microwave drying, infrared drying and osmotic drying are reviewed here. These techniques are mainly used for preservation and value addition of onion. Several researchers have tried for decades to model the drying kinetics and quality parameters, which are also compiled here briefly. PMID:23729847

  1. Physiologic basis for understanding quantitative dehydration assessment.

    PubMed

    Cheuvront, Samuel N; Kenefick, Robert W; Charkoudian, Nisha; Sawka, Michael N

    2013-03-01

    Dehydration (body water deficit) is a physiologic state that can have profound implications for human health and performance. Unfortunately, dehydration can be difficult to assess, and there is no single, universal gold standard for decision making. In this article, we review the physiologic basis for understanding quantitative dehydration assessment. We highlight how phenomenologic interpretations of dehydration depend critically on the type (dehydration compared with volume depletion) and magnitude (moderate compared with severe) of dehydration, which in turn influence the osmotic (plasma osmolality) and blood volume-dependent compensatory thresholds for antidiuretic and thirst responses. In particular, we review new findings regarding the biological variation in osmotic responses to dehydration and discuss how this variation can help provide a quantitative and clinically relevant link between the physiology and phenomenology of dehydration. Practical measures with empirical thresholds are provided as a starting point for improving the practice of dehydration assessment.

  2. Dehydration kinetics of shocked serpentine

    NASA Technical Reports Server (NTRS)

    Tyburczy, James A.; Ahrens, Thomas J.

    1988-01-01

    Experimental rates of dehydration of shocked and unshocked serpentine were determined using a differential scanning calorimetric technique. Dehydration rates in shocked serpentine are enhanced by orders of magnitude over corresponding rates in unshocked material, even though the impact experiments were carried out under conditions that inhibited direct impact-induced devolatilization. Extrapolation to temperatures of the Martian surface indicates that dehydration of shocked material would occur 20 to 30 orders of magnitude more rapidly than for unshocked serpentine. The results indicate that impacted planetary surfaces and associated atmospheres would reach chemical equilibrium much more quickly than calculations based on unshocked material would indicate, even during the earliest, coldest stages of accretion. Furthermore, it is suggested that chemical weathering of shocked planetary surfaces by solid-gas reactions would be sufficiently rapid that true equilibrium mineral assemblages should form.

  3. Dehydration: physiology, assessment, and performance effects.

    PubMed

    Cheuvront, Samuel N; Kenefick, Robert W

    2014-01-01

    This article provides a comprehensive review of dehydration assessment and presents a unique evaluation of the dehydration and performance literature. The importance of osmolality and volume are emphasized when discussing the physiology, assessment, and performance effects of dehydration. The underappreciated physiologic distinction between a loss of hypo-osmotic body water (intracellular dehydration) and an iso-osmotic loss of body water (extracellular dehydration) is presented and argued as the single most essential aspect of dehydration assessment. The importance of diagnostic and biological variation analyses to dehydration assessment methods is reviewed and their use in gauging the true potential of any dehydration assessment method highlighted. The necessity for establishing proper baselines is discussed, as is the magnitude of dehydration required to elicit reliable and detectable osmotic or volume-mediated compensatory physiologic responses. The discussion of physiologic responses further helps inform and explain our analysis of the literature suggesting a ≥ 2% dehydration threshold for impaired endurance exercise performance mediated by volume loss. In contrast, no clear threshold or plausible mechanism(s) support the marginal, but potentially important, impairment in strength, and power observed with dehydration. Similarly, the potential for dehydration to impair cognition appears small and related primarily to distraction or discomfort. The impact of dehydration on any particular sport skill or task is therefore likely dependent upon the makeup of the task itself (e.g., endurance, strength, cognitive, and motor skill).

  4. Hypernatraemic dehydration and necrotizing enterocolitis.

    PubMed

    Clarke, A J; Sibert, J R

    1985-01-01

    Severe hypernatraemic dehydration developed over the first twelve days of life in a breastfed infant girl. Upon oral rehydration with formula milk, no acute neurological problems arose, but she subsequently developed necrotizing enterocolitis. Intravenous rehydration may be preferred to the oral route in such infants.

  5. Effect of leaf dehydration duration and dehydration degree on PSII photochemical activity of papaya leaves.

    PubMed

    Liu, Meijun; Zhang, Zishan; Gao, Huiyuan; Yang, Cheng; Fan, Xingli; Cheng, Dandan

    2014-09-01

    Although the effect of dehydration on photosynthetic apparatus has been widely studied, the respective effect of dehydration duration and dehydration degree was neglected. This study showed that, when leaves dehydrated in air, the PSII activities of leaves decreased with the decline of leaf relative water content (RWC). Unexpectedly, when leaves dehydrated to same RWC, the decreases in Fv/Fm, Ψo and RC/CSm were lower in leaves dehydrating at 43 °C than those at 25 °C. However, to reach the same RWC, leaves dehydrating at 43 °C experienced 1/6 of the dehydration duration for leaves dehydrating at 25 °C. To distinguish the respective effect of dehydration degree and dehydration duration on photosynthetic apparatus, we studied the PSII activities of leaves treated with different concentration of PEG solutions. Increasing dehydration degree aggravated the decline of Fv/Fm, Ψo and RC/CSm in leaves with the same dehydration duration, while prolonging the dehydration duration also exacerbated the decline of Fv/Fm, Ψo and RC/CSm in leaves with identical dehydration degree. With the same dehydration degree and duration, high temperature enhanced the decrease of Fv/Fm, Ψo and RC/CSm in the leaves. When leaves dehydrated in air, the effect of high temperature was underestimated due to reduction of dehydration duration. The results demonstrated that, dehydration degree and duration both play important roles in damage to photosynthetic apparatus. We suggest that, under combined stresses, the effects of dehydration degree and duration on plants should be considered comprehensively, otherwise, partial or incorrect results may be obtained.

  6. METHOD OF DEHYDRATING URANIUM TETRAFLUORIDE

    DOEpatents

    Davis, J.O.; Fogel, C.C.; Palmer, W.E.

    1962-12-18

    Drying and dehydration of aqueous-precipitated uranium tetrafluoride are described. The UF/sub 4/ which normally contains 3 to 4% water, is dispersed into the reaction zone of an operating reactor wherein uranium hexafluoride is being reduced to UF/sub 4/ with hydrogen. The water-containing UF/sub 4/ is dried and blended with the UF/sub 4/ produced in the reactor without interfering with the reduction reaction. (AEC)

  7. Sulfide-mediated dehydrative glycosylation.

    PubMed

    Nguyen, H M; Chen, Y; Duron, S G; Gin, D Y

    2001-09-12

    The development of a new method for glycosylation with 1-hydroxy glycosyl donors employing dialkyl sulfonium reagents is described. The process employs the reagent combination of a dialkyl sulfide and triflic anhydride to effect anomeric bond constructions. This controlled dehydrative coupling of various C(1)-hemiacetal glycosyl donors and nucleophilic acceptors proceeds by way of a sulfide-to-sulfoxide oxidation process in which triflic anhydride serves as the oxidant.

  8. Dehydration

    MedlinePlus

    ... too much, for example, from exercising in hot weather Fever Vomiting or diarrhea Urinating too much (uncontrolled ... when you are well. Drink more when the weather is hot or you are exercising. If anyone ...

  9. Understanding clinical dehydration and its treatment.

    PubMed

    Thomas, David R; Cote, Todd R; Lawhorne, Larry; Levenson, Steven A; Rubenstein, Laurence Z; Smith, David A; Stefanacci, Richard G; Tangalos, Eric G; Morley, John E

    2008-06-01

    Dehydration in clinical practice, as opposed to a physiological definition, refers to the loss of body water, with or without salt, at a rate greater than the body can replace it. We argue that the clinical definition for dehydration, ie, loss of total body water, addresses the medical needs of the patient most effectively. There are 2 types of dehydration, namely water loss dehydration (hyperosmolar, due either to increased sodium or glucose) and salt and water loss dehydration (hyponatremia). The diagnosis requires an appraisal of the patient and laboratory testing, clinical assessment, and knowledge of the patient's history. Long-term care facilities are reluctant to have practitioners make a diagnosis, in part because dehydration is a sentinel event thought to reflect poor care. Facilities should have an interdisciplinary educational focus on the prevention of dehydration in view of the poor outcomes associated with its development. We also argue that dehydration is rarely due to neglect from formal or informal caregivers, but rather results from a combination of physiological and disease processes. With the availability of recombinant hyaluronidase, subcutaneous infusion of fluids (hypodermoclysis) provides a better opportunity to treat mild to moderate dehydration in the nursing home and at home. PMID:18519109

  10. Detecting dehydration in older people: useful tests.

    PubMed

    Hooper, Lee; Bunn, Diane

    Dehydration is common in older people, leading to longer hospital stays and increased disability and mortality. Health professionals can diagnose water-loss dehydration by taking a blood sample and measuring serum osmolality, but a less-invasive test would be useful. Evidence that tests, clinical signs or questions tested to date are useful when screening for dehydration in older people is limited. This article looks at known risk factors, signs and test for dehydration, and outlines evidence on how useful they have proven to be. Part 2 describes how a care home has used a multicomponent strategy to improve hydration. PMID:26455128

  11. 7 CFR 929.11 - To can, freeze, or dehydrate.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE CRANBERRIES GROWN IN STATES OF... dehydrate. To can, freeze, or dehydrate means to convert cranberries into canned, frozen, or dehydrated cranberries or other cranberry products by any commercial process....

  12. 7 CFR 929.11 - To can, freeze, or dehydrate.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE CRANBERRIES GROWN IN STATES OF... dehydrate. To can, freeze, or dehydrate means to convert cranberries into canned, frozen, or dehydrated cranberries or other cranberry products by any commercial process....

  13. 7 CFR 929.11 - To can, freeze, or dehydrate.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE CRANBERRIES GROWN IN STATES OF... dehydrate. To can, freeze, or dehydrate means to convert cranberries into canned, frozen, or dehydrated cranberries or other cranberry products by any commercial process....

  14. 7 CFR 929.11 - To can, freeze, or dehydrate.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE CRANBERRIES GROWN IN STATES OF... dehydrate. To can, freeze, or dehydrate means to convert cranberries into canned, frozen, or dehydrated cranberries or other cranberry products by any commercial process....

  15. 7 CFR 929.11 - To can, freeze, or dehydrate.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE CRANBERRIES GROWN IN STATES OF... dehydrate. To can, freeze, or dehydrate means to convert cranberries into canned, frozen, or dehydrated cranberries or other cranberry products by any commercial process....

  16. Method for dehydrating manganese dioxide

    SciTech Connect

    Marincic, N.; Fuksa, R.

    1987-05-05

    A method is described for preparing a water-free lithium-manganese dioxide battery comprising: assembling the battery comprising lithium anode, a cathode comprising carbon and manganese dioxide, and a cell container; adding to the cell container a fluid containing a dehydrating agent which reacts with water bound to the manganese dioxide to form a reaction product that is extractable from the manganese dioxide; removing the fluid from the cell container; hermetically sealing and connecting the container to a vacuum source; establishing a vacuum within the compartment to pull off any remaining amount of the fluid and any volatile reaction product from the manganese dioxide; releasing the vacuum; and adding anhydrous electrolyte and hermetically sealing the cell.

  17. Dehydration resistance of liposomes containing trehalose glycolipids

    NASA Astrophysics Data System (ADS)

    Nyberg, Kendra; Goulding, Morgan; Parthasarathy, Raghuveer

    2010-03-01

    The pathogen, Mycobacterium tuberculosis, has an unusual outer membrane containing trehalose glycolipids that may contribute to its ability to survive freezing and dehydration. Based on our recent discovery that trehalose glycolipids confer dehydration resistance to supported lipid monolayers (Biophys. J. 94: 4718-4724 (2008); Langmuir 25: 5193-5198, (2009)), we hypothesized that liposomes containing synthetic trehalose glycolipids may be dehydration-resistant as well. To test this, we measured the leakage of encapsulated fluorophores and larger macromolecular cargo from such liposomes subject to freeze drying. Both leakage assays and size measurements show that the liposomes are dehydration-resistant. In addition to demonstrating a possibly technologically useful encapsulation platform, our results corroborate the view that encapsulation in a trehalose-glycolipid-rich membrane is a biophysically viable route to protection of mycobacteria from environmental stresses.

  18. Problem: Thirst, Drinking Behavior, and Involuntary Dehydration

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.

    1992-01-01

    The phenomenon of involuntary dehydration, the delay in full restoration of a body water deficit by drinking, has been described extensively but relatively little is known about its physiological mechanism. It occurs primarily in humans when they are exposed to various stresses including exercise, environmental heat and cold, altitude, water immersion, dehydration, and perhaps microgravity, singly and in various combinations. The level of involuntary dehydration is approximately proportional to the degree of total stress imposed on the body. Involuntary dehydration appears to be controlled by more than one factor including social customs that influence what is consumed, the capacity and rate of fluid absorption from the gastrointestinal system, the level of cellular hydration involving the osmotic-vasopressin interaction with sensitive cells or structures in the central nervous system, and, to a lesser extent, hypovolemic-angiotensin II stimuli. Since humans drink when there is no apparent physiological stimulus, the psychological component should always be considered when investigating the total mechanisms for drinking.

  19. DEHYDRATION OF LOW WATER CONTENT ETHANOL

    EPA Science Inventory

    Pervaporation has emerged as an economically viable alternative technology for the dehydration of organic solvents, removal of organic compounds from water and organic/organic separations. Development of a membrane system with suitable flux and selectivity characteristics plays a...

  20. Crystal Dehydration in Membrane Protein Crystallography.

    PubMed

    Sanchez-Weatherby, Juan; Moraes, Isabel

    2016-01-01

    Crystal dehydration has been successfully implemented to facilitate the structural solution of a number of soluble and membrane protein structures over the years. This chapter will present the currently available tools to undertake controlled crystal dehydration, focusing on some successful membrane protein cases. Also discussed here will be some practical considerations regarding membrane protein crystals and the relationship between different techniques in order to help researchers to select the most suitable technique for their projects. PMID:27553236

  1. Dehydration processes using membranes with hydrophobic coating

    DOEpatents

    Huang, Yu; Baker, Richard W; Aldajani, Tiem; Ly, Jennifer

    2013-07-30

    Processes for removing water from organic compounds, especially polar compounds such as alcohols. The processes include a membrane-based dehydration step, using a membrane that has a dioxole-based polymer selective layer or the like and a hydrophilic selective layer, and can operate even when the stream to be treated has a high water content, such as 10 wt % or more. The processes are particularly useful for dehydrating ethanol.

  2. Rehydration with soft drink-like beverages exacerbates dehydration and worsens dehydration-associated renal injury.

    PubMed

    García-Arroyo, Fernando E; Cristóbal, Magdalena; Arellano-Buendía, Abraham S; Osorio, Horacio; Tapia, Edilia; Soto, Virgilia; Madero, Magdalena; Lanaspa, Miguel A; Roncal-Jiménez, Carlos; Bankir, Lise; Johnson, Richard J; Sánchez-Lozada, Laura-Gabriela

    2016-07-01

    Recurrent dehydration, such as commonly occurs with manual labor in tropical environments, has been recently shown to result in chronic kidney injury, likely through the effects of hyperosmolarity to activate both vasopressin and aldose reductase-fructokinase pathways. The observation that the latter pathway can be directly engaged by simple sugars (glucose and fructose) leads to the hypothesis that soft drinks (which contain these sugars) might worsen rather than benefit dehydration associated kidney disease. Recurrent dehydration was induced in rats by exposure to heat (36°C) for 1 h/24 h followed by access for 2 h to plain water (W), a 11% fructose-glucose solution (FG, same composition as typical soft drinks), or water sweetened with noncaloric stevia (ST). After 4 wk plasma and urine samples were collected, and kidneys were examined for oxidative stress, inflammation, and injury. Recurrent heat-induced dehydration with ad libitum water repletion resulted in plasma and urinary hyperosmolarity with stimulation of the vasopressin (copeptin) levels and resulted in mild tubular injury and renal oxidative stress. Rehydration with 11% FG solution, despite larger total fluid intake, resulted in greater dehydration (higher osmolarity and copeptin levels) and worse renal injury, with activation of aldose reductase and fructokinase, whereas rehydration with stevia water had opposite effects. In animals that are dehydrated, rehydration acutely with soft drinks worsens dehydration and exacerbates dehydration associated renal damage. These studies emphasize the danger of drinking soft drink-like beverages as an attempt to rehydrate following dehydration. PMID:27053647

  3. 21 CFR 73.40 - Dehydrated beets (beet powder).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Dehydrated beets (beet powder). 73.40 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.40 Dehydrated beets (beet powder). (a) Identity. (1) The color additive dehydrated beets is a dark red powder prepared by dehydrating...

  4. 21 CFR 73.40 - Dehydrated beets (beet powder).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Dehydrated beets (beet powder). 73.40 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.40 Dehydrated beets (beet powder). (a) Identity. (1) The color additive dehydrated beets is a dark red powder prepared by dehydrating...

  5. 21 CFR 73.40 - Dehydrated beets (beet powder).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Dehydrated beets (beet powder). 73.40 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.40 Dehydrated beets (beet powder). (a) Identity. (1) The color additive dehydrated beets is a dark red powder prepared by dehydrating...

  6. 21 CFR 73.40 - Dehydrated beets (beet powder).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Dehydrated beets (beet powder). 73.40 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.40 Dehydrated beets (beet powder). (a) Identity. (1) The color additive dehydrated beets is a dark red powder prepared by dehydrating...

  7. 21 CFR 73.40 - Dehydrated beets (beet powder).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Dehydrated beets (beet powder). 73.40 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.40 Dehydrated beets (beet powder). (a) Identity. (1) The color additive dehydrated beets is a dark red powder prepared by dehydrating...

  8. Dehydration behavior of eprosartan mesylate dihydrate.

    PubMed

    Sheng, J; Venkatesh, G M; Duddu, S P; Grant, D J

    1999-10-01

    Eprosartan mesylate (SKF 108566-J; EM) is an antihypertensive agent approved for marketing in the USA. EM dihydrate was prepared by three methods, one of which included suspending the anhydrous drug in an aqueous solution of 1.0 M methanesulfonic acid to form a slurry, followed by filtration. The dehydration kinetics of EM dihydrate were derived by analyzing the fit of the isothermal thermogravimetric analytical (TGA) data to numerous kinetic models. EM dihydrate undergoes dehydration in two distinct steps, each involving the loss of 1 mol of water at 25-70 degrees C and 70-120 degrees C, respectively. Recrystallization of EM occurs at approximately 120-140 degrees C after dehydration to the anhydrous phase. This explanation is supported by variable temperature powder X-ray diffractometry. The mechanism of the dehydration reaction is complex, the dependence of the reaction rate on temperature varying as a function of the particles size. For the dihydrate of sieve fraction <125 microm, the kinetics of the first and second dehydration steps are consistent with the Avrami-Erofeev equation (A3, n = 1/3) over the temperature range studied, corresponding to three-dimensional growth of nuclei. In contrast, for the 125-180-microm and 180-250-microm sieve fractions, the kinetics are best described by the two-dimensional phase boundary reaction (R2) at a lower dehydration temperature (i.e., 28.3 degrees C), and by the Avrami-Erofeev equation (A3, n = 1/3) at a higher dehydration temperature (i.e., 93.7 degrees C). The activation energies (15-40 kcal/mol) and frequency factors of the dehydration of EM dihydrate were determined both by Arrhenius plots of the isothermal rates determined by TGA and by Kissinger plots of the nonisothermal differential scanning calorimetric data. Hot stage microscopy of single crystals of EM dihydrate showed random nucleation at the surface and dehydration with the growth of microcrystals along the needle a axis. Cerius(2) molecular modeling

  9. Dehydration kinetics of talc at 1 bar

    NASA Technical Reports Server (NTRS)

    Ganguly, J.; Bose, K.

    1991-01-01

    Experimental results on the dehydration kinetics of talc, which is likely to be a major potential resource for water and hydrogen in carbonaceous chondrites, is presented. The rate of dehydration of an essentially pure Mg-end member natural talc, (Mg(.99)Fe(.01))3Si4O10(OH)2, was studied by measuring in situ weight change under isothermal condition at 1 bar as a function of time in the temperature range 775 to 985 C. The grain size of the starting material was 0.7 to 1 micron. It was found that the data up to 50 to 60 percent dehydration can be fitted by an equation of the form alpha = exp(-Kt(exp n)), where alpha is the weight fraction of talc remaining, K is a rate constant and n is a numerical constant for a given temperature. For any set of isothermal data, there is a major change in the value of n for larger dehydration. For up to approximately 50 percent dehydration, all rate constants can be described by an Arrheniun relation with an activation energy of 432 (+/- 30) kJ/mol; n has a nearly constant value of 0.54 between 775 and 875 C, but increases almost linearly according to n = -10.77 + 0.012T C at T greater than or equal to 875 C.

  10. Geothermal demonstration: Zunil food dehydration facility

    SciTech Connect

    Maldonado, O. ); Altseimer, J.; Thayer, G.R. ); Cooper, L. ); Caicedo, A. . Inst. Nacional de Electrificacion)

    1991-08-01

    A food dehydration facility was constructed near the town of Zunil, Guatemala, to demonstrate the use of geothermal energy for industrial applications. The facility, with some modifications to the design, was found to work quite satisfactorily. Tests using five different products were completed during the time geothermal energy was used in the plant. During the time the plant was not able to use geothermal energy, a temporary diesel-fueled boiler provided the energy to test dehydration on seven other crops available in this area. The system demonstrates that geothermal heat can be used successfully for dehydrating food products. Many other industrial applications of geothermal energy could be considered for Zunil since a considerable amount of moderate-temperature heat will become available when the planned geothermal electrical facility is constructed there. 6 refs., 15 figs., 7 tabs.

  11. Dexamethasone in the treatment of hypernatraemic dehydration.

    PubMed

    Haque, K N

    1981-03-01

    Ninety infants with severe hypernatraemic dehydration (plasma sodium greater than 150 mmol/l) were studied. Most had had a convulsion before admission. They were allocated to two treatment groups. Both groups received intravenous plasma followed by slow intravenous rehydration and correction of acidosis. In addition, one group received intramuscular phenobarbitone, the other group received dexamethasone 0.3 mg by intramuscular injection every 6 hours for 48 hours. Fewer infants receiving dexamethasone had convulsions during treatment (18% compared with 52%), and fewer (18%) of them died than in the group who did not receive dexamethasone (40%). Dexamethasone may have a role in the management of hypernatraemic dehydration in infants.

  12. FIVE YEAR NEURODEVELOPMENTAL OUTCOME OF NEONATAL DEHYDRATION

    PubMed Central

    Escobar, Gabriel J.; Liljestrand, Petra; Hudes, Esther S.; Ferriero, Donna M.; Wu, Yvonne W.; Jeremy, Rita J.; Newman, Thomas B.

    2007-01-01

    Objective To determine the long-term outcome of neonatal dehydration. Study design We identified 182 newborns rehospitalized with dehydration (weight loss ≥12% of birth weight and/or serum sodium ≥150 mEq/L) and 419 randomly selected controls from a cohort of 106,627 term and near-term infants ≥2000 g born from 1995 through 1998 in Northern California Kaiser Permanente hospitals. Outcomes data were obtained from electronic records, interviews, questionnaire responses, and neurodevelopmental evaluations performed in a masked fashion. Results Follow-up data to the age of at least two years were available for 173/182 children with a history of dehydration (95%) and 372/419 controls (89%) and included formal evaluation at a mean (±SD) age of 5.1±0.12 years for 106 children (58%) and 168 children (40%) respectively. None of the cases developed shock, gangrene, or respiratory failure. Neither crude nor adjusted scores on cognitive tests differed significantly between groups. There was no significant difference between groups in the proportion of children with abnormal neurologic examinations or neurologic diagnoses. Frequencies of parental concerns and reported behavior problems also were not significantly different in the two groups. Conclusions Neonatal dehydration in this managed care setting was not associated with adverse neurodevelopmental outcomes in infants born at or near term. PMID:17643761

  13. Sour gas dehydration in Mobile Bay

    SciTech Connect

    Betts, F.C. Jr.; Lay, A.G.

    1996-12-31

    An evaluation of Mobil`s different methods of sour gas development utilized offshore and processes selected are presented with the maintenance history. The conclusions are based on field data showing past performance with a correlation made for future development and the selection criteria for dehydration.

  14. Pelagic sea snakes dehydrate at sea

    PubMed Central

    Lillywhite, Harvey B.; Sheehy, Coleman M.; Brischoux, François; Grech, Alana

    2014-01-01

    Secondarily marine vertebrates are thought to live independently of fresh water. Here, we demonstrate a paradigm shift for the widely distributed pelagic sea snake, Hydrophis (Pelamis) platurus, which dehydrates at sea and spends a significant part of its life in a dehydrated state corresponding to seasonal drought. Snakes that are captured following prolonged periods without rainfall have lower body water content, lower body condition and increased tendencies to drink fresh water than do snakes that are captured following seasonal periods of high rainfall. These animals do not drink seawater and must rehydrate by drinking from a freshwater lens that forms on the ocean surface during heavy precipitation. The new data based on field studies indicate unequivocally that this marine vertebrate dehydrates at sea where individuals may live in a dehydrated state for possibly six to seven months at a time. This information provides new insights for understanding water requirements of sea snakes, reasons for recent declines and extinctions of sea snakes and more accurate prediction for how changing patterns of precipitation might affect these and other secondarily marine vertebrates living in tropical oceans. PMID:24648228

  15. Dehydration in the Winter Arctic Tropopause Region

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Jensen, Eric; Podolske, James; Selkirk, Henry; Anderson, Bruce; Avery, Melody; Diskin. Glenn

    2004-01-01

    Recent work has shown that limited amounts of tropospheric air can penetrate as much as 1 km into the middleworld stratosphere during the arctic winter. This, coupled with temperatures that are cold enough to produce saturation mixing ratios of less than 5 ppmv at the tropopause, results in stratospheric cloud formation and upper tropospheric dehydration. Even though these "cold outbreaks" occupy only a small portion of the area in the arctic (1-2%), their importance is magnified by an order of magnitude because of the air flow through them. This is reinforced by evidence of progressive drying through the winter measured during SOLVE-1. The significance of this process lies in its effect on the upper tropospheric water content of the middle and high latitude tropopause region, which plays an important role in regulating the earth's radiative balance. There appears to be significant year-to-year variability in the incidence of the cold outbreaks. This work has two parts. First, we describe case studies of dehydration taken from the SOLVE and SOLVE2 aircraft sampling missions during the Arctic winters of 2000 and 2003 respectively. Trajectory based microphysical modeling is employed to examine the sensitivity of the dehydration to microphysical parameters and the nature of sub-grid scale temperature fluctuations. We then examine the year-to-year variations in potential dehydration using a trajectory climatology.

  16. What's the Big Sweat about Dehydration? (For Kids)

    MedlinePlus

    ... Dictionary of Medical Words En Español What Other Kids Are Reading Back-to-School Butterflies? Read This ... What's the Big Sweat About Dehydration? KidsHealth > For Kids > What's the Big Sweat About Dehydration? Print A ...

  17. ADVANCED DEHYDRATOR DESIGN SAVES GAS AND REDUCES HAP EMISSIONS

    EPA Science Inventory

    Glycol dehydrators remove water from gas pipe lines. An advanced dehydrator by Engineered Concepts, Farmington, NM, saves a significant amount of gas, while reducing hazardous air pollutants, volatile organic compounds and CO2 air pollutants

  18. Hydration-dehydration, heat, humidity, and "cool, clear, water".

    PubMed

    Lockett, Lawrence J

    2012-12-01

    Personal recollections of dehydration meltdowns during the Kona Ironman Triathlon, reflections on their cause, and the author's experiential recommendations regarding hydration, prevention of dehydration, and "beat the heat and humidity" measures. PMID:23147099

  19. Peripheral gangrene in hypernatraemic dehydration of infancy.

    PubMed

    Comay, S C; Karabus, C D

    1975-08-01

    Gangrene of the extremities complicating diarrhoea and severe hypernatraemic dehydration occurred in 6 infants. This is a rare complication of gastroenteritis, and its association with hypernatraemia does not seem to have previously been emphasized. The increased blood viscosity resulting from serum hyperosmolarity may have been responsible for the gangrene, and studies in our patients suggested that disseminated intravascular coagulation was present. In addition to fluid and electrolyte replacement, the infants were treated with heparin with some recovery of the affected extremities.

  20. Dehydration-induced drinking in humans

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.

    1982-01-01

    The human tendency to experience a delay in rehydration (involuntary dehydration) after fluid loss is considered. The two primary factors contributing to involuntary dehydration are probably upright posture, and extracellular fluid and electrolyte loss by sweating from exercise and heat exposure. First, as the plasma sodium and osmotic concentrations remain virtually unchanged for supine to upright postural changes, the major stimuli for drinking appear to be associated with the hypovolemia and increase in the renin-angiotension system. Second, voluntary drinking during the heat experiments was 146% greater than in cool experiments; drinking increased by 109% with prior dehydration as opposed to normal hydration conditions; and drinking was increased by 41% after exercise as compared with the resting condition. Finally, it is concluded that the rate of sweating and the rate of voluntary fluid intake are highly correlated, and that the dispogenic factors of plasma volume, osmolality, and plasma renin activity are unrelated to sweat rate, but are likely to induce drinking in humans.

  1. Could Neonatal Hypernatremia Dehydration Influence Hearing Status?

    PubMed Central

    Boskabadi, Hassan; Anvarifar, Farnaz; Nourizadeh, Navid

    2014-01-01

    Introduction: Neonatal hypernatremia dehydration (NHD) is a dangerous condition in neonates, which is accompanied by acute complications (renal failure, cerebral edema, and cerebral hemorrhage) and chronic complications (developmental delay). Children begin learning language from birth, and hearing impairment interferes with this process. We assessed the hearing status of infants with hypernatremia dehydration. Materials and Methods: In a case-control study in 110 infants presenting at the Ghaem Hospital (Mashhad, Iran) between 2007 and 2011, we examined the incidence of hearing impairment in infants suffering from hypernatremia dehydration (serum sodium >150 mEq/L) in comparison with infants with normal sodium level (serum sodium ≤150 mEq/L). Results: Three of 110 cases examined in the study group showed a transient hearing impairment. A mean serum sodium level of 173mg/dl was reported among hearing-impaired infants. Conclusion: Transient hearing impairment was higher in infants with hypernatremia; although this difference was not significant (P>0.05). Hearing impairment was observed in cases of severe hypernatremia. PMID:24505569

  2. Dehydration and endurance performance in competitive athletes.

    PubMed

    Goulet, Eric D B

    2012-11-01

    The field of research examining the link between dehydration and endurance performance is at the dawn of a new era. This article reviews the latest findings describing the relationship between exercise-induced dehydration and endurance performance and provides the knowledge necessary for competitive, endurance-trained athletes to develop a winning hydration strategy. Acute, pre-exercise body weight loss at or above 3% may decrease subsequent endurance performance. Therefore, endurance athletes should strive to start exercise well hydrated, which can be achieved by keeping thirst sensation low and urine color pale and drinking approximately 5-10 mL/kg body weight of water 2 h before exercise. During exercise lasting 1 h or less, dehydration does not decrease endurance performance, but athletes are encouraged to mouth-rinse with sports drinks. During exercise lasting longer than 1 h, in which fluid is readily available, drinking according to the dictates of thirst maximizes endurance performance. In athletes whose thirst sensation is untrustworthy or when external factors such as psychological stress or repeated food intake may blunt thirst sensation, it is recommended to program fluid intake to maintain exercise-induced body weight loss around 2% to 3%.

  3. May eclogite dehydration cause slab fracturation ?

    NASA Astrophysics Data System (ADS)

    Loury, Chloé; Lanari, Pierre; Rolland, Yann; Guillot, Stéphane; Ganino, Clément

    2015-04-01

    Petrological and geophysical evidences strongly indicate that fluids releases play a fundamental role in subduction zones as in subduction-related seismicity and arc magmatism. It is thus important to assess quantitatively their origin and to try to quantify the amount of such fluids. In HP metamorphism, it is well known that pressure-dependent dehydration reactions occur during the prograde path. Many geophysical models show that the variations in slab physical properties along depth could be linked to these fluid occurrences. However it remains tricky to test such models on natural sample, as it is difficult to assess or model the water content evolution in HP metamorphic rocks. This difficulty is bound to the fact that these rocks are generally heterogeneous, with zoned minerals and preservation of different paragenesis reflecting changing P-T conditions. To decipher the P-T-X(H2O) path of such heterogeneous rocks the concept of local effective bulk (LEB) composition is essential. Here we show how standardized X-ray maps can be used to constrain the scale of the equilibration volume of a garnet porphyroblast and to measure its composition. The composition of this equilibrium volume may be seen as the proportion of the rock likely to react at a given time to reach a thermodynamic equilibrium with the growing garnet. The studied sample is an eclogite coming from the carboniferous South-Tianshan suture (Central Asia) (Loury et al. in press). Compositional maps of a garnet and its surrounding matrix were obtained from standardized X-ray maps processed with the program XMapTools (Lanari et al, 2014). The initial equilibration volume was modeled using LEB compositions combined together with Gibbs free energy minimization. P-T sections were calculated for the next stages of garnet growth taking into account the fractionation of the composition at each stage of garnet growth. The modeled P-T-X(H2O) path indicates that the rock progressively dehydrates during the

  4. Fluid replacement following dehydration reduces oxidative stress during recovery.

    PubMed

    Paik, Il-Young; Jeong, Myung-Hyun; Jin, Hwa-Eun; Kim, Young-Il; Suh, Ah-Ram; Cho, Su-Youn; Roh, Hee-Tae; Jin, Chan-Ho; Suh, Sang-Hoon

    2009-05-22

    To investigate the effects of hydration status on oxidative DNA damage and exercise performance, 10 subjects ran on a treadmill until exhaustion at 80% VO(2max) during four different trials [control (C), 3% dehydration (D), 3% dehydration+water (W) or 3% dehydration+sports drink (S)]. Dehydration significantly decreased exercise time to exhaustion (DDehydration significantly increased oxidative DNA damage during exercise, but fluid replacement with water or sports drink alleviated it equally. These results suggest that (1) dehydration impairs exercise performance and increases DNA damage during exercise to exhaustion; and (2) fluid replacement prolongs exercise endurance and attenuates DNA damage.

  5. Influence of Dehydration on Intermittent Sprint Performance.

    PubMed

    Davis, Jon-Kyle; Laurent, C Matt; Allen, Kimberly E; Green, J Matt; Stolworthy, Nicola I; Welch, Taylor R; Nevett, Michael E

    2015-09-01

    This study examined the effects of dehydration on intermittent sprint performance and perceptual responses. Eight male collegiate baseball players completed intermittent sprints either dehydrated (DEHY) by 3% body mass or euhydrated (EU). Body mass was reduced through exercise in the heat with controlled fluid restriction occurring 1 day before the trial. Participants completed twenty-four 30-m sprints divided into 3 bouts of 8 sprints with 45 seconds of rest between each sprint and 3 minutes between each bout. Perceived recovery status (PRS) scale was recorded before the start of each trial. Heart rate (HR), ratings of perceived exertion (RPE) (0-10 OMNI scale), and perceived readiness (PR) scale were recorded after every sprint, and session RPE (SRPE) was recorded 20 minutes after completing the entire session. A 2 (condition) × 3 (bout of sprints) repeated-measures ANOVA revealed a significant main effect of condition on mean sprint time (p = 0.03), HR (p < 0.01), RPE (p = 0.01), and PR (p = 0.02). Post hoc tests showed significantly faster mean sprint times for EU vs. DEHY during the second (4.87 ± 0.29 vs. 5.03 ± 0.33 seconds; p = 0.01) and third bouts of sprints (4.91 ± 0.29 vs. 5.12 ± 0.44 seconds; p = 0.02). Heart rate was also significantly lower (p ≤ 0.05) for EU during the second and third bouts. Post hoc measures also showed significantly impaired (p ≤ 0.05) feelings of recovery (PRS) before exercise and increased (p ≤ 0.05) perceptual strain before each bout (PR) during the second and third bouts of repeated sprint work (i.e., RPE and PR) and after the total session (SRPE) in the DEHY condition. Dehydration impaired sprint performance, negatively altered perception of recovery status before exercise, and increased RPE and HR response.

  6. Treatment of hypernatraemic dehydration in infancy.

    PubMed

    Banister, A; Matin-Siddiqi, S A; Hatcher, G W

    1975-03-01

    Thirty-eight infants with severe hyperosmolar dehydration and hypernatraemia were treated, using three regimens of intravenous fluids: A. 1/2 normal saline, given fast; B.1/2 normal saline given slowly; C. 1/5 normal saline. 28 of the infants were studied in a treatment trial, and it is concluded tha 0-18% saline in 4-3% dextrose, with the early addition of potassium given at a rate of 100 ml/kg estimated rehydrated weight per 24 hours gives satisfactory rehydration within 48 hours, with little risk of convulsions.

  7. [Severe hypernatraemic dehydration in collodion baby].

    PubMed

    Magid, Tobias; Fenger-Grøn, Jesper; Nymann, Peter; Hansen, Bo Mølholm

    2007-03-26

    Case report on severe hypernatraemic dehydration in a non-recognised collodion baby who also suffered from hydrops fetalis caused by supraventricular tachycardia. Excessive transcutaneous fluid loss caused s-Na+ reaching 182 mmol/l within 36 hours of birth. The infant was cautiously rehydrated during the following three days. No sign of neurologic impairment was observed. It is emphasized that early observation of the collodion baby must take place in a humidified incubator. Major weight changes in the newborn should always result in analysis of serum sodium.

  8. Intrastab Earthquakes: Dehydration of the Cascadia Slab

    USGS Publications Warehouse

    Preston, L.A.; Creager, K.C.; Crosson, R.S.; Brocher, T.M.; Trehu, A.M.

    2003-01-01

    We simultaneously invert travel times of refracted and wide-angle reflected waves for three-dimensional compressional-wave velocity structure, earthquake locations, and reflector geometry in northwest Washington state. The reflector, interpreted to be the crust-mantle boundary (Moho) of the subducting Juan de Fuca plate, separates intrastab earthquakes into two groups, permitting a new understanding of the origins of intrastab earthquakes in Cascadia. Earthquakes up-dip of the Moho's 45-kilometer depth contour occur below the reflector, in the subducted oceanic mantle, consistent with serpentinite dehydration; earthquakes located down-dip occur primarily within the subducted crust, consistent with the basalt-to-eclogite transformation.

  9. Intraslab earthquakes: dehydration of the Cascadia slab.

    PubMed

    Preston, Leiph A; Creager, Kenneth C; Crosson, Robert S; Brocher, Thomas M; Trehu, Anne M

    2003-11-14

    We simultaneously invert travel times of refracted and wide-angle reflected waves for three-dimensional compressional-wave velocity structure, earthquake locations, and reflector geometry in northwest Washington state. The reflector, interpreted to be the crust-mantle boundary (Moho) of the subducting Juan de Fuca plate, separates intraslab earthquakes into two groups, permitting a new understanding of the origins of intraslab earthquakes in Cascadia. Earthquakes up-dip of the Moho's 45-kilometer depth contour occur below the reflector, in the subducted oceanic mantle, consistent with serpentinite dehydration; earthquakes located down-dip occur primarily within the subducted crust, consistent with the basalt-to-eclogite transformation.

  10. Dehydration of plutonium or neptunium trichloride hydrate

    DOEpatents

    Foropoulos, Jr., Jerry; Avens, Larry R.; Trujillo, Eddie A.

    1992-01-01

    A process of preparing anhydrous actinide metal trichlorides of plutonium or neptunium by reacting an aqueous solution of an actinide metal trichloride selected from the group consisting of plutonium trichloride or neptunium trichloride with a reducing agent capable of converting the actinide metal from an oxidation state of +4 to +3 in a resultant solution, evaporating essentially all the solvent from the resultant solution to yield an actinide trichloride hydrate material, dehydrating the actinide trichloride hydrate material by heating the material in admixture with excess thionyl chloride, and recovering anhydrous actinide trichloride is provided.

  11. Dehydration of plutonium or neptunium trichloride hydrate

    DOEpatents

    Foropoulos, J. Jr.; Avens, L.R.; Trujillo, E.A.

    1992-03-24

    A process is described for preparing anhydrous actinide metal trichlorides of plutonium or neptunium by reacting an aqueous solution of an actinide metal trichloride selected from the group consisting of plutonium trichloride or neptunium trichloride with a reducing agent capable of converting the actinide metal from an oxidation state of +4 to +3 in a resultant solution, evaporating essentially all the solvent from the resultant solution to yield an actinide trichloride hydrate material, dehydrating the actinide trichloride hydrate material by heating the material in admixture with excess thionyl chloride, and recovering anhydrous actinide trichloride.

  12. Mild dehydration affects mood in healthy young women.

    PubMed

    Armstrong, Lawrence E; Ganio, Matthew S; Casa, Douglas J; Lee, Elaine C; McDermott, Brendon P; Klau, Jennifer F; Jimenez, Liliana; Le Bellego, Laurent; Chevillotte, Emmanuel; Lieberman, Harris R

    2012-02-01

    Limited information is available regarding the effects of mild dehydration on cognitive function. Therefore, mild dehydration was produced by intermittent moderate exercise without hyperthermia and its effects on cognitive function of women were investigated. Twenty-five females (age 23.0 ± 0.6 y) participated in three 8-h, placebo-controlled experiments involving a different hydration state each day: exercise-induced dehydration with no diuretic (DN), exercise-induced dehydration plus diuretic (DD; furosemide, 40 mg), and euhydration (EU). Cognitive performance, mood, and symptoms of dehydration were assessed during each experiment, 3 times at rest and during each of 3 exercise sessions. The DN and DD trials in which a volunteer attained a ≥1% level of dehydration were pooled and compared to that volunteer's equivalent EU trials. Mean dehydration achieved during these DN and DD trials was -1.36 ± 0.16% of body mass. Significant adverse effects of dehydration were present at rest and during exercise for vigor-activity, fatigue-inertia, and total mood disturbance scores of the Profile of Mood States and for task difficulty, concentration, and headache as assessed by questionnaire. Most aspects of cognitive performance were not affected by dehydration. Serum osmolality, a marker of hydration, was greater in the mean of the dehydrated trials in which a ≥1% level of dehydration was achieved (P = 0.006) compared to EU. In conclusion, degraded mood, increased perception of task difficulty, lower concentration, and headache symptoms resulted from 1.36% dehydration in females. Increased emphasis on optimal hydration is warranted, especially during and after moderate exercise.

  13. Dehydration-associated anorexia: development and rapid reversal.

    PubMed

    Watts, A G

    Dehydration in rats results in anorexia that is proportional to the degree of dehydration. The aims of this study were first, to determine when anorexia develops in response to drinking hypertonic (2.5%) saline for 4 days; and second, to determine the organization of ingestive behaviors after access to water is resumed. Body weights, food, and fluid intake were measured morning and evening before, during, and after a 4-day period of dehydration caused by drinking hypertonic saline. A profile of the behaviors expressed immediately after rehydration was determined. The data make three points. First, dehydration-associated anorexia does not emerge until the second night of dehydration when the composition of the fluid compartments can no longer be homeostatically buffered. Second, dehydration reduces the amount food eaten nocturnally, but leaves diurnal food consumption largely unaffected. Animals very rapidly return to predehydration nocturnal ingestion patterns, whereas the amounts of food and water ingested during the day are significantly increased. Increased diurnal food intake may play a significant role in normalizing metabolism after dehydration. Finally, anorexia is reversed within minutes of rehydration. The data suggest a model where dehydration simultaneously activates two sets of circuits within the brain that will independently stimulate or inhibit feeding. Eating is inhibited during dehydration through the action of a set of inhibitory circuits, which masks the output of circuits that stimulate eating. However, when drinking water resumes, sensory inputs to these circuits rapidly release the inhibition and allow eating to proceed freely.

  14. Cryoprotective dehydration is widespread in Arctic springtails.

    PubMed

    Sørensen, Jesper Givskov; Holmstrup, Martin

    2011-08-01

    Cryoprotective dehydration (CPD) is a cold tolerance strategy employed by small invertebrates that readily lose water by evaporation when subjected to sub-zero temperatures in the presence of ice. Until now, relatively few species have been investigated using methods by which CPD can be shown. In the present study we investigated the cold tolerance strategy of seven soil arthropod species from the high Arctic Spitzbergen, and compared water content and water loss, body fluid melting points (MP) and survival under cold and desiccating conditions. We tested the hypothesis that CPD is a commonly occurring cold hardiness strategy among soil arthropods. We found that four springtail species (Hypogastrura viatica, Folsomia quadrioculata, Oligaphorura groenlandica and Megaphorura arctica; Collembola) went through severe dehydration and MP equilibration with ambient temperature, and thus overwinter by employing CPD, whereas a beetle (Atheta graminicola) and one of the springtails (Isotoma anglicana) were typical freeze avoiding species over-wintering by supercooling. Desiccation tolerance of the red velvet mite (Neomolgus littoralis) was also investigated; very low water loss rates of this species indicated that it does not survive winter by use of CPD. All in all, the results of the present study confirm the hypothesis that CPD is an effective over-wintering strategy which is widespread within soil arthropods. PMID:21396373

  15. Dehydration-mediated cluster formation of nanoparticles

    PubMed Central

    Ahn, Sungsook; Joon Lee, Sang

    2015-01-01

    Drying procedure is a powerful method to modulate the bottom-up assembly of basic building component. The initially weak attraction between the components screened in a solution strengthens as the solvent evaporates, organizing the components into structures. Drying is process-dependent, irreversible, and nonequilibrated, thus the mechanism and the dynamics are influenced by many factors. Therefore, the interaction of the solvent and the elements during the drying procedure as well as the resulting pattern formations are strongly related. Nonetheless still many things are open in questions in terms of their dynamics. In this study, nanoscale dehydration procedure is experimentally investigated using a nanoparticle (NP) model system. The role of water is verified in a single NP scale and the patterns of collective NP clusters are determined. Stepwise drying procedures are proposed based on the location from which water is removed. Effective water exodus from a unit NP surface enhances the attractive interaction in nanoscale and induces heterogeneous distribution in microscale. This study provides fundamental proof of systematic relation between the dehydration process and the resultant cluster patterns in hierarchical multiscales. PMID:26077841

  16. Dehydration and rehydration in competative sport.

    PubMed

    Maughan, R J; Shirreffs, S M

    2010-10-01

    Dehydration, if sufficiently severe, impairs both physical and mental performance, and performance decrements are greater in hot environments and in long-lasting exercise. Athletes should begin exercise well hydrated and should drink during exercise to limit water and salt deficits. Many athletes are dehydrated to some degree when they begin exercise. During exercise, most drink less than their sweat losses, some drink too much and a few develop hyponatraemia. Athletes should learn to assess their hydration needs and develop a personalized hydration strategy that takes account of exercise, environment and individual needs. Pre-exercise hydration status can be assessed from urine frequency and volume, with additional information from urine color, specific gravity or osmolality. Changes in hydration status during exercise can be estimated from the change in body mass: sweat rate can be estimated if fluid intake and urinary losses are also measured. Sweat salt losses can be determined by collection and analysis of sweat samples. An appropriate, individualized drinking strategy will take account of pre-exercise hydration status and of fluid, electrolyte and substrate needs before, during and after a period of exercise.

  17. Dehydration-mediated cluster formation of nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahn, Sungsook; Joon Lee, Sang

    2015-06-01

    Drying procedure is a powerful method to modulate the bottom-up assembly of basic building component. The initially weak attraction between the components screened in a solution strengthens as the solvent evaporates, organizing the components into structures. Drying is process-dependent, irreversible, and nonequilibrated, thus the mechanism and the dynamics are influenced by many factors. Therefore, the interaction of the solvent and the elements during the drying procedure as well as the resulting pattern formations are strongly related. Nonetheless still many things are open in questions in terms of their dynamics. In this study, nanoscale dehydration procedure is experimentally investigated using a nanoparticle (NP) model system. The role of water is verified in a single NP scale and the patterns of collective NP clusters are determined. Stepwise drying procedures are proposed based on the location from which water is removed. Effective water exodus from a unit NP surface enhances the attractive interaction in nanoscale and induces heterogeneous distribution in microscale. This study provides fundamental proof of systematic relation between the dehydration process and the resultant cluster patterns in hierarchical multiscales.

  18. Intermediate magnetite formation during dehydration of goethite

    NASA Astrophysics Data System (ADS)

    Özdemir, Özden; Dunlop, David J.

    2000-04-01

    The dehydration of goethite has been studied by low-temperature induced magnetization (LTIM) and X-ray diffraction on well-characterized acicular crystals. Fresh samples were heated in air to temperatures between 155°C and 610°C. Goethite and hematite were the magnetically dominant phases after all runs except 500°C and 610°C, for which only hematite was found. However, partially dehydrated goethites after the 238-402°C runs had broad peaks or inflections in the LTIM curves around 120 K, suggesting the formation of an intermediate spinel phase. These samples were next given a saturation remanence in a field of 2 T at 10 K and the remanence was measured continuously during zero-field warming to 300 K. There was a decrease in remanence at the Verwey transition (120 K), diagnostic of magnetite. The possible formation of a small amount of magnetite is of serious concern in studies of goethite-bearing sediments and rocks. Chemical remanent magnetization (CRM) of this strongly magnetic spinel phase could significantly modify the direction as well as the intensity of the original goethite CRM. As well, it would be a new source of paleomagnetic noise as far as primary remanence carried by other mineral phases is concerned.

  19. Treatment of dredged sludge by mechanical dehydration

    SciTech Connect

    Maekawa, T.

    1992-03-01

    Sludge deposits in the water area damage the ecosystems and environments; their elimination has always been an urgent task for human communities. Generally, sludge deposits are dredged out of the bottom of the water area, transported to, and discharged at a large disposal area on land. Recently, however, it has become increasingly difficult to secure disposal areas and routes of speedy transportation for disposal of dredged sludge. Accordingly, there is an urgent need to reduce both the volume of dredged sludge and the size of the disposal area. This mechanical method is different from the conventional engineering dehydration by loading, consolidation, and drainage in that the dredged sludge is separated into sludge cakes and clean water that can be returned to the water area through mechanical centrifugal dehydration. Sludge deposits are distributed thin and wide on the bottom of the water area, and a pump dredge has been proved effective in many cases for dredging the upper layers of sludge deposits accurately and without creating turbidity in water. This mechanical sludge treatment technique can be most efficient when used in combination with a pump dredge. This method offers the following advantages: (a) It requires smaller space for treatment and disposal of dredged sludge than the conventional method. (b) Facilities and costs for transportation can be reduced. (c) Various systems can be adopted for transportation of sludge cakes. (d) This system is transportable and compact and can be constructed anywhere either on land or on water.

  20. Biomass energy analysis for crop dehydration

    SciTech Connect

    Whittier, J.P.; Haase, S.G.; Quinn, M.W.

    1994-12-31

    In 1994, an agricultural processing facility was constructed in southern New Mexico for spice and herb dehydration. Annual operational costs are dominated by energy costs, due primarily to the energy intensity of dehydration. A feasibility study was performed to determine whether the use of biomass resources as a feedstock for a cogeneration system would be an economical option. The project location allowed access to unusual biomass feedstocks including cotton gin trash, pecan shells and in-house residues. A resource assessment of the immediate project area determined that approximately 120,000 bone dry tons of biomass feedstocks are available annually. Technology characterization for the plant energy requirements indicated gasification systems offer fuel flexibility advantages over combustion systems although vendor support and commercial experience are limited. Regulatory siting considerations introduce a level of uncertainty because of a lack of a precedent in New Mexico for gasification technology and because vendors of commercial gasifiers have little experience operating such a facility nor gathering emission data. A public opinion survey indicated considerable support for renewable energy use and biomass energy utilization. However, the public opinion survey also revealed limited knowledge of biomass technologies and concerns regarding siting of a biomass facility within the geographic area. The economic analysis conducted for the study is based on equipment vendor quotations, and indicates there will be difficulty competing with current prices of natural gas.

  1. Observations on saliva osmolality during progressive dehydration and partial rehydration.

    PubMed

    Taylor, Nigel A S; van den Heuvel, Anne M J; Kerry, Pete; McGhee, Sheena; Peoples, Gregory E; Brown, Marc A; Patterson, Mark J

    2012-09-01

    A need exists to identify dehydrated individuals under stressful settings beyond the laboratory. A predictive index based on changes in saliva osmolality has been proposed, and its efficacy and sensitivity was appraised across mass (water) losses from 1 to 7%. Twelve euhydrated males [serum osmolality: 286.1 mOsm kg(-1) H(2)O (SD 4.3)] completed three exercise- and heat-induced dehydration trials (35.6°C, 56% relative humidity): 7% dehydration (6.15 h), 3% dehydration (with 60% fluid replacement: 2.37 h), repeat 7% dehydration (5.27 h). Expectorated saliva osmolality, measured at baseline and at each 1% mass change, was used to predict instantaneous hydration state relative to mass losses of 3 and 6%. Saliva osmolality increased linearly with dehydration, although its basal osmolality and its rate of change varied among and within subjects across trials. Receiver operating characteristic curves indicated a good predictive power for saliva osmolality when used with two, single-threshold cutoffs to differentiate between hydrated and dehydrated individuals (area under curve: 3% cutoff = 0.868, 6% cutoff = 0.831). However, when analysed using a double-threshold detection technique (3 and 6%), as might be used in a field-based monitor, <50% of the osmolality data could correctly identify individuals who exceeded 3% dehydration. Indeed, within the 3-6% dehydration range, its sensitivity was 64%, while beyond 6% dehydration, this fell to 42%. Therefore, while expectorated saliva osmolality tracked mass losses within individuals, its large intra- and inter-individual variability limited its predictive power and sensitivity, rendering its utility questionable within a universal dehydration monitor.

  2. Impaired cognitive function and mental performance in mild dehydration.

    PubMed

    Wilson, M-M G; Morley, J E

    2003-12-01

    Dehydration is a reliable predictor of impaired cognitive status. Objective data, using tests of cortical function, support the deterioration of mental performance in mildly dehydrated younger adults. Dehydration frequently results in delirium as a manifestation of cognitive dysfunction. Although, the occurrence of delirium suggests transient acute global cerebral dysfunction, cognitive impairment may not be completely reversible. Animal studies have identified neuronal mitochondrial damage and glutamate hypertransmission in dehydrated rats. Additional studies have identified an increase in cerebral nicotinamide adenine dinucleotide phosphate-diaphorase activity (nitric oxide synthase, NOS) with dehydration. Available evidence also implicates NOS as a neurotransmitter in long-term potentiation, rendering this a critical enzyme in facilitating learning and memory. With ageing, a reduction of NOS activity has been identified in the cortex and striatum of rats. The reduction of NOs synthase activity that occurs with ageing may blunt the rise that occurs with dehydration, and possibly interfere with memory processing and cognitive function. Dehydration has been shown to be a reliable predictor of increasing frailty, deteriorating mental performance and poor quality of life. Intervention models directed toward improving outcomes in dehydration must incorporate strategies to enhance prompt recognition of cognitive dysfunction.

  3. Smackerels of Somethings: Dehydrating Food and How to Use It.

    ERIC Educational Resources Information Center

    Ditzler, Carmen

    1994-01-01

    Provides ideas about how to add variety, flavor, texture, and nutrition to outdoor meals by dehydrating food and using it on camping trips. The goal is to prepare nutritious and appealing meals without spending a lot of money on commercially dehydrated or freeze-dried foods. Includes instructions for rehydrating foods. (LP)

  4. Four acid-catalysed dehydration reactions proceed without interference.

    PubMed

    Lirag, Rio Carlo; Miljanić, Ognjen Š

    2014-08-25

    Four acid-catalysed dehydration reactions can proceed in one pot, simultaneously and without interference, to yield one imine, one acetal (or boronic ester), one ester and one alkene, even though many other cross-products could be conceived. This advanced self-sorting behaviour is attributed to different dehydration rates, brought about by dissimilar electronic properties of starting materials.

  5. Two-stage dehydration of sugars

    DOEpatents

    Holladay, Johnathan E.; Hu, Jianli; Wang, Yong; Werpy, Todd A.

    2009-11-10

    The invention includes methods for producing dianhydrosugar alcohol by providing an acid catalyst within a reactor and passing a starting material through the reactor at a first temperature. At least a portion of the staring material is converted to a monoanhydrosugar isomer during the passing through the column. The monoanhydrosugar is subjected to a second temperature which is greater than the first to produce a dianhydrosugar. The invention includes a method of producing isosorbide. An initial feed stream containing sorbitol is fed into a continuous reactor containing an acid catalyst at a temperature of less than 120.degree. C. The residence time for the reactor is less than or equal to about 30 minutes. Sorbitol converted to 1,4-sorbitan in the continuous reactor is subsequently provided to a second reactor and is dehydrated at a temperature of at least 120.degree. C. to produce isosorbide.

  6. Dehydration History of Subducted Lithologies, Sifnos, Greece

    NASA Astrophysics Data System (ADS)

    Dragovic, B.; Baxter, E. F.; Caddick, M. J.

    2011-12-01

    Garnet-forming reactions in subduction zones may be linked directly to dehydration. When coupled with precise zoned garnet geochronology, this permits quantification of H2O release rates and evaluation of models for progressive metamorphism (and thus dehydration) in subduction zones. Here, an integrated geochronologic and thermodynamic analysis seeks to determine the devolatization history of subducted lithologies from Sifnos, Greece, in the Attic Cycladic Blueschist Belt. Based on major element zoning, microsampling and Sm-Nd dating of chemically zoned garnets (greater than 1cm in diameter) from various lithologies, we constrain the rates and duration of garnet growth. Combined with bulk garnet analyses on several other samples where crystals were not sufficiently large for age zoning work, a chronology of garnet growth across all lithologies was constructed. After the slow initiation of garnet growth recorded by one 5cm crystal from a quartzofeldspathic gneiss (the innermost 1cm, radially, grew from 52.7 ± 3.3Ma to 47.19 ± 0.21 Ma), relatively rapid growth prevailed from 45.92 ± 0.18 Ma to 45.63 ± 0.22 Ma for the outermost 0.9 cm of the crystal. This equates to acceleration in volumetric growth rate of two orders of magnitude. In addition, garnet ages from six intermediate to mafic garnet-bearing lithologies span 46.48 ± 0.82 Ma to 43.90 ± 1.92 Ma, at least one of which (a mafic blueschist) indicates growth spanning just hundreds of thousands of years. Analysis of the garnet-forming reaction(s) provides information on the stoichiometric ratio between garnet produced and water released. For a range of bulk rock compositions, we find that garnet:water molar production ratios vary from approximately 0.4:1 to 1.2:1, depending mostly on the portion of the P-T path over which reaction occurs, the bulk composition, and the hydrous phases from which garnet forms. Hydrous phases contributing to garnet growth and water release typically include chloritoid, lawsonite

  7. DMSO Induces Dehydration near Lipid Membrane Surfaces

    PubMed Central

    Cheng, Chi-Yuan; Song, Jinsuk; Pas, Jolien; Meijer, Lenny H.H.; Han, Songi

    2015-01-01

    Dimethyl sulfoxide (DMSO) has been broadly used in biology as a cosolvent, a cryoprotectant, and an enhancer of membrane permeability, leading to the general assumption that DMSO-induced structural changes in cell membranes and their hydration water play important functional roles. Although the effects of DMSO on the membrane structure and the headgroup dehydration have been extensively studied, the mechanism by which DMSO invokes its effect on lipid membranes and the direct role of water in this process are unresolved. By directly probing the translational water diffusivity near unconfined lipid vesicle surfaces, the lipid headgroup mobility, and the repeat distances in multilamellar vesicles, we found that DMSO exclusively weakens the surface water network near the lipid membrane at a bulk DMSO mole fraction (XDMSO) of <0.1, regardless of the lipid composition and the lipid phase. Specifically, DMSO was found to effectively destabilize the hydration water structure at the lipid membrane surface at XDMSO <0.1, lower the energetic barrier to dehydrate this surface water, whose displacement otherwise requires a higher activation energy, consequently yielding compressed interbilayer distances in multilamellar vesicles at equilibrium with unaltered bilayer thicknesses. At XDMSO >0.1, DMSO enters the lipid interface and restricts the lipid headgroup motion. We postulate that DMSO acts as an efficient cryoprotectant even at low concentrations by exclusively disrupting the water network near the lipid membrane surface, weakening the cohesion between water and adhesion of water to the lipid headgroups, and so mitigating the stress induced by the volume change of water during freeze-thaw. PMID:26200868

  8. Formation and dehydration enthalpy of potassium hexaniobate

    DOE PAGESBeta

    Sahu, Sulata K.; Boatner, Lynn A.; Navrotsky, Alexandra

    2016-09-15

    The formation energetics of hydrous and dehydrated potassium hexaniobates are investigated using high-temperature oxide melt solution calorimetry. The enthalpies of formation of K4Nb6O17 and K4Nb6O17•3H2O from oxides are (–864.42 ± 10.63) and (–899.32 ± 11.48) kJ/mol, respectively. The formation enthalpy of K4Nb6O17 from elements is (–7289.64 ± 12.50) kJ/mol, and of K4Nb6O17•3H2O is (–8181.94 ± 13.24) kJ/mol. The enthalpy of dehydration (ΔHdehy) for the reaction K4Nb6O173H2O (xl, 25 °C) = K4Nb6O17 (xl, 25 °C) + 3H2O (l, 25 °C) is endothermic and is 34.60 ± 7.56 kJ/mol. The ΔHdehy per mole of water, 11.53 ± 2.52 kJ/mol, indicates the watermore » molecules in K4Nb6O17•3H2O are not just physically adsorbed, but loosely bonded in the K4Nb6O17 phase, presumably in specific interlayer sites. As a result, the loss of this water near 100 °C on heating is consistent with the weak bonding of water.« less

  9. Metabolic effects of dehydration on an aquatic frog, Rana pipiens.

    PubMed

    Churchill, T A; Storey, K B

    1995-01-01

    Cellular responses to dehydration were analyzed in six organs of leopard frogs Rana pipiens. Frogs at 5 degrees C endured the loss of up to 50% of their total body water content but water contents of individual organs were strongly defended. Skeletal muscle water content was strongly affected by dehydration, dropping from 80.7% of wet mass in controls to 67.2% in frogs that had lost 50% of their total body water. However, water contents of internal organs dropped by only 3-8% of their wet masses. Water contents of all organs except skeletal muscle were fully restored by 24h of rehydration in water at 5 degrees C. Dehydration had no consistent effect on the protein content of five organs but in a sixth, the kidney, protein levels were elevated (by 60-72%) at the higher levels of dehydration and during rehydration. Dehydration led to a rapid increase in glucose concentration in the liver; compared with control values of 13 +/- 2 nmol mg-1 protein, levels were doubled by 12.2% dehydration and continued to increase to a maximum of 307 +/- 44 nmol mg-1 protein (20 mumol g-1 wet mass) in 50% dehydrated frogs. Glucose accumulation was supported by a decrease in liver glycogen content and a parallel rise in glucose 6-phosphate levels, but not in the levels of other glycolytic intermediates, confirming that glycogenolytic flux was being directed into glucose synthesis. Blood glucose levels also increased as a function of increasing dehydration, reaching values 13.8 times higher than controls, but only the kidney and brain showed a significant accumulation of glucose over the course of dehydration.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7891032

  10. Methods for assessing the effects of dehydration on cognitive function.

    PubMed

    Lieberman, Harris R

    2012-11-01

    Studying the effects of dehydration on cognitive function presents a variety of unique and difficult challenges to investigators. These challenges, which are addressed in this article, can be divided into three general categories: 1) choosing an appropriate method of generating a consistent level of dehydration; 2) determining and effectively employing appropriate and sensitive measures of cognitive state; and 3) adequately controlling the many confounding factors that interfere with assessment of cognitive function. The design and conduct of studies on the effects of dehydration on cognitive function should carefully consider various methodological issues, and investigators should carefully weigh the benefits and disadvantages of particular methods and procedures.

  11. Transient dehydration of lungs in tail-suspended rats

    NASA Technical Reports Server (NTRS)

    Hargens, A. R.; Steskal, J.; Morey-Holton, E. R.

    1985-01-01

    The fluid balance in the lungs of rats exposed to head-down tilt is examined. Six Munich-Wister rats were suspended for 7 days and 10 Sprague-Dawley rats for 14 days using the technique of Morey (1979). The water contents of the lungs of the suspended and a control group are calculated and compared. The data reveal that the two-days suspended rats had dehydrated lungs; however, the lungs of the 14-day suspended and control group rats were similar. It is noted that the dehydration in the 2-day suspended rats is caused by general dehydration not the head-tilt position.

  12. Effects of prior experience with dehydration and water on the time course of dehydration-induced drinking in weanling rats.

    PubMed

    Myers, K P; Hall, W G

    2001-04-01

    Although cellular dehydration increases oral responding and swallowing of orally infused water in rats as young as 2 days old, it is not until well after the time of weaning that dehydration stimulates immediate water-seeking and initiation of drinking in situations where the water source must be approached voluntarily. Recent work has shown that the goal-directed appetitive sequence for drinking-orienting, approaching, and initiating contact with water-matures much later than the more precocial oral licking and swallowing behaviors, and normally comes to be elicited by dehydration only after post-weaning experience with dry food. In the current experiments we evaluate some critical features of post-weaning experience with dehydration and drinking, and find that prior experience with initiating drinking while dehydrated, but not experience with dehydration nor water per se, alters the time course of water intake during a subsequent hydrational challenge. The effects of experience are manifested as an increased proportion of water consumed in the early portion of the test, rather than a general increase in total consumption. These findings are consistent with the interpretation that prior experience is necessary for the coordination of water-oriented appetitive behaviors that lead to the initiation and maintenance of drinking bouts, and provide further evidence for an associative learning account of the acquisition of dehydration-induced drinking.

  13. Renal tubular vasopressin receptors downregulated by dehydration

    SciTech Connect

    Steiner, M.; Phillips, M.I. )

    1988-03-01

    Receptors for arginine vasopressin (AVP) were characterized in tubular epithelial basolateral membranes (BL membranes) prepared from the kidneys of male Spraque-Dawley rats. Association of ({sup 3}H)AVP was rapid, reversible, and specific. Saturation studies revealed a single class of saturable binding sites with a maximal binding (B{sub max}) of 184 {plus minus} 15 fmol/mg protein. The V{sub 2} receptor antagonist was more than 3,700 times as effective in displacing ({sup 3}H)AVP than was the V{sub 1} antagonist. To investigate the physiological regulation of vasopressin receptors, the effects of elevated levels of circulating AVP on receptor characteristics were studied. Seventy-two-hour water deprivation significantly elevated plasma osmolality and caused an 11.5-fold increase in plasma (AVP). Scatchard analysis revealed a 38% decreased in the number of AVP receptors on the BL membranes from dehydrated animals. The high-affinity binding sites on the BL membranes fit the pharmacological profile for adenylate cyclase-linked vasopressin receptors (V{sub 2}), which mediate the antidiuretic action of the hormone. The authors conclude that physiologically elevated levels of AVP can downregulate vasopressin receptors in the kidney.

  14. Comparison of clinical and biochemical markers of dehydration with the clinical dehydration scale in children: a case comparison trial

    PubMed Central

    2014-01-01

    Background The clinical dehydration scale (CDS) is a quick, easy-to-use tool with 4 clinical items and a score of 1–8 that serves to classify dehydration in children with gastroenteritis as no, some or moderate/severe dehydration. Studies validating the CDS (Friedman JN) with a comparison group remain elusive. We hypothesized that the CDS correlates with a wide spectrum of established markers of dehydration, making it an appropriate and easy-to-use clinical tool. Methods This study was designed as a prospective double-cohort trial in a single tertiary care center. Children with diarrhea and vomiting, who clinically required intravenous fluids for rehydration, were compared with minor trauma patients who required intravenous needling for conscious sedation. We compared the CDS with clinical and urinary markers (urinary electrolytes, proteins, ratios and fractional excretions) for dehydration in both groups using receiver operating characteristic (ROC) curves to determine the area under the curve (AUC). Results We enrolled 73 children (male = 36) in the dehydration group and 143 (male = 105) in the comparison group. Median age was 32 months (range 3–214) in the dehydration and 96 months (range 2.6-214 months, p < 0.0001) in the trauma group. Median CDS was 3 (range 0–8) within the dehydration group and 0 in the comparison group (p < 0.0001). The following parameters were statistically significant (p < 0.05) between the comparison group and the dehydrated group: difference in heart rate, diastolic blood pressure, urine sodium/potassium ratio, urine sodium, fractional sodium excretion, serum bicarbonate, and creatinine measurements. The best markers for dehydration were urine Na and serum bicarbonate (ROC AUC = 0.798 and 0.821, respectively). CDS was most closely correlated with serum bicarbonate (Pearson r = -0.3696, p = 0.002). Conclusion Although serum bicarbonate is not the gold standard for dehydration, this study provides

  15. Life-threatening hypernatraemic dehydration in breastfed babies.

    PubMed

    Shroff, R; Hignett, R; Pierce, C; Marks, S; van't Hoff, W

    2006-12-01

    We describe five babies, who were exclusively breast fed, with life-threatening complications of hypernatraemic dehydration secondary to inadequate breast feeding. An increased awareness among health professionals is required so that this potentially devastating condition can be prevented.

  16. NOVEL POLYMERIC MEMBRANE FOR DEHYDRATION OF ORGANIC SOLVENTS

    EPA Science Inventory

    Pervaporation has emerged as an economically viable alternative technology for dehydration of organic solvents, removal of organic compounds and organic/organic separations. Development of a membrane system with suitable flux and selectivity characteristics plays a critical role...

  17. Nonchemical dehydration of fixed tissue combining microwaves and vacuum.

    PubMed

    Kok, L P; Boon, M E

    1994-03-01

    A novel histoprocessing method for paraffin and plastic sections is presented in which dehydration of fixed tissue blocks is achieved within 5 minutes by microwaving under vacuum. Exploiting the decrease in boiling temperature under vacuum, we succeed in evaporating liquid molecules in the tissues at physiological temperatures. In this microwave-vacuum dehydration method, the fixed tissue does not come in contact with ethyl alcohol. For the paraffin method, the nonchemically dehydrated tissue is directly placed in the intermedium isopropanol prior to embedding. For the resin method, it is directly placed in the monomer solution. With this method, microscopical imaging can be brought closer to the in-vivo situation as is illustrated in liver and kidney sections. In principle, this microwave-vacuum dehydration method can also be used for ultrastructural studies.

  18. Survey of quality indicators in commercial dehydrated fruits.

    PubMed

    Megías-Pérez, Roberto; Gamboa-Santos, Juliana; Soria, Ana Cristina; Villamiel, Mar; Montilla, Antonia

    2014-05-01

    Physical and chemical quality parameters (dry matter, aw, protein, carbohydrates, vitamin C, 2-furoylmethyl amino acids, rehydration ratio and leaching loss) have been determined in 30 commercial dehydrated fruits (strawberry, blueberry, raspberry, cranberry, cherry, apple, grapefruit, mango, kiwifruit, pineapple, melon, coconut, banana and papaya). For comparison purposes, strawberry samples processed in the laboratory by freeze-drying and by convective drying were used as control samples. Overall quality of dehydrated fruits seemed to be greatly dependent on processing conditions and, in a cluster analysis, samples which were presumably subjected to osmotic dehydration were separated from the rest of fruits. These samples presented the lowest concentration of vitamin C and the highest evolution of Maillard reaction, as evidenced by its high concentration of 2-furoylmethyl amino acids. This is the first study on the usefulness of this combination of chemical and physical indicators to assess the overall quality of commercial dehydrated fruits. PMID:24360417

  19. Effects of dehydration on performance in man: Annotated bibliography

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.

    1973-01-01

    A compilation of studies on the effect of dehydration on human performance and related physiological mechanisms. The annotations are listed in alphabetical order by first author and cover material through June 1973.

  20. Voluntary dehydration and cognitive performance in trained college athletes.

    PubMed

    D'anci, Kristen E; Vibhakar, Arjun; Kanter, Jordan H; Mahoney, Caroline R; Taylor, Holly A

    2009-08-01

    Cognitive and mood decrements resulting from mild dehydration and glucose consumption were studied. Men and women (total N = 54; M age = 19.8 yr., SD = 1.2) were recruited from college athletic teams. Euhydration or dehydration was achieved by athletes completing team practices with or without water replacement. Dehydration was associated with higher thirst and negative mood ratings as well as better Digit Span performance. Participants showed better Vigilance Attention with euhydration. Hydration status and athlete's sex interacted with performance on Choice Reaction Time and Vigilance Attention. In a second study, half of the athletes received glucose prior to cognitive testing. Results for negative mood and thirst ratings were similar, but for cognitive performance the results were mixed. Effects of glucose on cognition were independent of dehydration.

  1. 25. BUILDING NO. 527, DEHYDRATING HOUSE, DETAIL OF SOLVENT RECOVERY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. BUILDING NO. 527, DEHYDRATING HOUSE, DETAIL OF SOLVENT RECOVERY DUCTS. SOUTH SIDE OF BUILDING. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  2. Active dehydration impairs upper and lower body anaerobic muscular power.

    PubMed

    Jones, Leon C; Cleary, Michelle A; Lopez, Rebecca M; Zuri, Ron E; Lopez, Richard

    2008-03-01

    We examined the effects of active dehydration by exercise in a hot, humid environment on anaerobic muscular power using a test-retest (euhydrated and dehydrated) design. Seven subjects (age, 27.1 +/- 4.6 years; mass, 86.4 +/- 9.5 kg) performed upper and lower body Wingate anaerobic tests prior to and after a 1.5-hour recovery from a heat stress trial of treadmill exercise in a hot, humid environment (33.1 +/- 3.1C = 55.1 +/- 8.9% relative humidity) until a 3.1 +/- 0.3% body mass loss was achieved. Dehydration was confirmed by a significant body mass loss (P < 0.001), urine color increase (P = 0.004), and urine specific gravity increase (P = 0.041). Motivation ratings were not significantly different (P = 0.059), and fatigue severity was significantly (P = 0.009) increased 70% in the dehydrated compared to the euhydrated condition. Compared to the euhydrated condition, the dehydrated condition mean power was significantly (P = 0.014) decreased 7.17% in the upper body and 19.20% in the lower body. Compared to the euhydrated condition, the dehydrated condition peak power was significantly (P = 0.013) decreased 14.48% in the upper body and 18.36% in the lower body. No significant differences between the euhydrated and dehydrated conditions were found for decrease in power output (P = 0.219, power = 0.213). Our findings suggest that dehydration of 2.9% body mass decreases the ability to generate upper and lower body anaerobic power. Coaches and athletes must understand that sports performance requiring anaerobic strength and power can be impaired by inadequate hydration and may contribute to increased susceptibility to musculoskeletal injury.

  3. Kinetics of volatile extraction from carbonaceous chondrites: Dehydration of talc

    NASA Technical Reports Server (NTRS)

    Bose, Kunal; Ganguly, Jibamitra

    1991-01-01

    Carbonaceous chondrites are believed to be the primary constituents of near-Earth asteroids and Phobos and Deimos, and are potential resources of fuels that may be exploited for future planetary missions. Calculations of equilibrium phase relations suggest that talc (Ta) and antigorite (Ant) are likely to be the major hydrous phases in the C1 and C2 meteorites (Ganguly and Saxena, 1989), which constitute the most volatile rich classes of carbonaceous chondrites. The dehydration kinetics of talc are studied as a function of temperature, grain size, composition and fluid fugacity, as part of a systematic study of the reaction kinetics of the volatile bearing phases that are either known or likely to be present in carbonaceous chondrites. The dehydration kinetics were investigated at 1 bar, 775 to 875 C by monitoring the in-situ weight loss as a function of time of a natural talc. The talc platelets had a dimension of 0.8 to 1 micron. The run durations varied from 233.3 hours at 775 C (48 percent dehydration) to 20.8 hours at 875 C (80 pct. dehydration). The results can be adequately represented by a given rate equation. Theoretical analysis suggests that the reduction in the concentration of H2O in the environment of dehydrating talc, as would be encountered in processing chondritic materials, will have negligible effect on the rate of dehydration, unless there is a change of reaction mechanism owing to the presence of other volatile species.

  4. Whole transcriptome organisation in the dehydrated supraoptic nucleus.

    PubMed

    Hindmarch, C C T; Franses, P; Goodwin, B; Murphy, D

    2013-12-01

    The supraoptic nucleus (SON) is part of the central osmotic circuitry that synthesises the hormone vasopressin (Avp) and transports it to terminals in the posterior lobe of the pituitary. Following osmotic stress such as dehydration, this tissue undergoes morphological, electrical and transcriptional changes to facilitate the appropriate regulation and release of Avp into the circulation where it conserves water at the level of the kidney. Here, the organisation of the whole transcriptome following dehydration is modelled to fit Zipf's law, a natural power law that holds true for all natural languages, that states if the frequency of word usage is plotted against its rank, then the log linear regression of this is -1. We have applied this model to our previously published euhydrated and dehydrated SON data to observe this trend and how it changes following dehydration. In accordance with other studies, our whole transcriptome data fit well with this model in the euhydrated SON microarrays, but interestingly, fit better in the dehydrated arrays. This trend was observed in a subset of differentially regulated genes and also following network reconstruction using a third-party database that mines public data. We make use of language as a metaphor that helps us philosophise about the role of the whole transcriptome in providing a suitable environment for the delivery of Avp following a survival threat like dehydration. PMID:24345907

  5. Fructokinase activity mediates dehydration-induced renal injury

    PubMed Central

    Roncal Jimenez, Carlos A; Ishimoto, Takuji; Lanaspa, Miguel A; Rivard, Christopher J; Nakagawa, Takahiko; Ejaz, A. Ahsan; Cicerchi, Christina; Inaba, Shinichiro; Le, MyPhuong; Miyazaki, Makoto; Glaser, Jason; Correa-Rotter, Ricardo; González, Marvin A; Aragón, Aurora; Wesseling, Catharina; Sánchez-Lozada, Laura G; Johnson, Richard J

    2014-01-01

    The epidemic of chronic kidney disease in Nicaragua (Mesoamerican nephropathy) has been linked with recurrent dehydration. Here we tested whether recurrent dehydration may cause renal injury by activation of the polyol pathway, resulting in the generation of endogenous fructose in the kidney that might subsequently induce renal injury via metabolism by fructokinase. Wild-type and fructokinase-deficient mice were subjected to recurrent heat-induced dehydration. One group of each genotype was provided water throughout the day and the other group was hydrated at night, after the dehydration. Both groups received the same total hydration in 24 h. Wild-type mice that received delayed hydration developed renal injury, with elevated serum creatinine, increased urinary NGAL, proximal tubular injury, and renal inflammation and fibrosis. This was associated with activation of the polyol pathway, with increased renal cortical sorbitol and fructose levels. Fructokinase-knockout mice with delayed hydration were protected from renal injury. Thus, recurrent dehydration can induce renal injury via a fructokinase-dependent mechanism, likely from the generation of endogenous fructose via the polyol pathway. Access to sufficient water during the dehydration period can protect mice from developing renal injury. These studies provide a potential mechanism for Mesoamerican nephropathy. PMID:24336030

  6. Whole transcriptome organisation in the dehydrated supraoptic nucleus

    PubMed Central

    Hindmarch, C.C.T.; Franses, P.; Goodwin, B.; Murphy, D.

    2013-01-01

    The supraoptic nucleus (SON) is part of the central osmotic circuitry that synthesises the hormone vasopressin (Avp) and transports it to terminals in the posterior lobe of the pituitary. Following osmotic stress such as dehydration, this tissue undergoes morphological, electrical and transcriptional changes to facilitate the appropriate regulation and release of Avp into the circulation where it conserves water at the level of the kidney. Here, the organisation of the whole transcriptome following dehydration is modelled to fit Zipf's law, a natural power law that holds true for all natural languages, that states if the frequency of word usage is plotted against its rank, then the log linear regression of this is -1. We have applied this model to our previously published euhydrated and dehydrated SON data to observe this trend and how it changes following dehydration. In accordance with other studies, our whole transcriptome data fit well with this model in the euhydrated SON microarrays, but interestingly, fit better in the dehydrated arrays. This trend was observed in a subset of differentially regulated genes and also following network reconstruction using a third-party database that mines public data. We make use of language as a metaphor that helps us philosophise about the role of the whole transcriptome in providing a suitable environment for the delivery of Avp following a survival threat like dehydration. PMID:24345907

  7. A model of teneral dehydration in Glossina.

    PubMed

    Childs, S J

    2014-03-01

    The results of a long-established investigation into teneral transpiration are used as a rudimentary data set. These data are not complete in that all are at 25°C and the temperature-dependence cannot, therefore, be resolved. An allowance is, nonetheless, made for the outstanding temperature-dependent data. The data are generalised to all humidities, levels of activity and, in theory, temperatures, by invoking the property of multiplicative separability. In this way a formulation, which is a very simple, first order, ordinary differential equation, is devised. The model is extended to include a variety of Glossina species by resorting to their relative, resting water loss rates in dry air. The calculated, total water loss is converted to the relevant humidity, at 24°C, that which produced an equivalent water loss in the pupa, in order to exploit an adaption of an established survival relationship. The resulting computational model calculates total, teneral water loss, consequent mortality and adult recruitment. Surprisingly, the postulated race against time, to feed, applies more to the mesophilic and xerophilic species, in that increasing order. So much so that it is reasonable to conclude that, should Glossina brevipalpis survive the pupal phase, it will almost certainly survive to locate a host, without there being any significant prospect of death from dehydration. With the conclusion of this work comes the revelation that the classification of species as hygrophilic, mesophilic and xerophilic is largely true only in so much as their third and fourth instars are and, possibly, the hours shortly before eclosion. PMID:24333159

  8. Dehydration affects brain structure and function in healthy adolescents.

    PubMed

    Kempton, Matthew J; Ettinger, Ulrich; Foster, Russell; Williams, Steven C R; Calvert, Gemma A; Hampshire, Adam; Zelaya, Fernando O; O'Gorman, Ruth L; McMorris, Terry; Owen, Adrian M; Smith, Marcus S

    2011-01-01

    It was recently observed that dehydration causes shrinkage of brain tissue and an associated increase in ventricular volume. Negative effects of dehydration on cognitive performance have been shown in some but not all studies, and it has also been reported that an increased perceived effort may be required following dehydration. However, the effects of dehydration on brain function are unknown. We investigated this question using functional magnetic resonance imaging (fMRI) in 10 healthy adolescents (mean age = 16.8, five females). Each subject completed a thermal exercise protocol and nonthermal exercise control condition in a cross-over repeated measures design. Subjects lost more weight via perspiration in the thermal exercise versus the control condition (P < 0.0001), and lateral ventricle enlargement correlated with the reduction in body mass (r = 0.77, P = 0.01). Dehydration following the thermal exercise protocol led to a significantly stronger increase in fronto-parietal blood-oxygen-level-dependent (BOLD) response during an executive function task (Tower of London) than the control condition, whereas cerebral perfusion during rest was not affected. The increase in BOLD response after dehydration was not paralleled by a change in cognitive performance, suggesting an inefficient use of brain metabolic activity following dehydration. This pattern indicates that participants exerted a higher level of neuronal activity in order to achieve the same performance level. Given the limited availability of brain metabolic resources, these findings suggest that prolonged states of reduced water intake may adversely impact executive functions such as planning and visuo-spatial processing.

  9. Mild dehydration impairs cognitive performance and mood of men.

    PubMed

    Ganio, Matthew S; Armstrong, Lawrence E; Casa, Douglas J; McDermott, Brendon P; Lee, Elaine C; Yamamoto, Linda M; Marzano, Stefania; Lopez, Rebecca M; Jimenez, Liliana; Le Bellego, Laurent; Chevillotte, Emmanuel; Lieberman, Harris R

    2011-11-01

    The present study assessed the effects of mild dehydration on cognitive performance and mood of young males. A total of twenty-six men (age 20·0 (sd 0·3) years) participated in three randomised, single-blind, repeated-measures trials: exercise-induced dehydration plus a diuretic (DD; 40 mg furosemide); exercise-induced dehydration plus placebo containing no diuretic (DN); exercise while maintaining euhydration plus placebo (EU; control condition). Each trial included three 40 min treadmill walks at 5·6 km/h, 5 % grade in a 27·7°C environment. A comprehensive computerised six-task cognitive test battery, the profile of mood states questionnaire and the symptom questionnaire (headache, concentration and task difficulty) were administered during each trial. Paired t tests compared the DD and DN trials resulting in >1 % body mass loss (mean 1·59 (sd 0·42) %) with the volunteer's EU trial (0·01 (sd 0·03) %). Dehydration degraded specific aspects of cognitive performance: errors increased on visual vigilance (P = 0·048) and visual working memory response latency slowed (P = 0·021). Fatigue and tension/anxiety increased due to dehydration at rest (P = 0·040 and 0·029) and fatigue during exercise (P = 0·026). Plasma osmolality increased due to dehydration (P < 0·001) but resting gastrointestinal temperature was not altered (P = 0·238). In conclusion, mild dehydration without hyperthermia in men induced adverse changes in vigilance and working memory, and increased tension/anxiety and fatigue.

  10. Dehydration affects brain structure and function in healthy adolescents.

    PubMed

    Kempton, Matthew J; Ettinger, Ulrich; Foster, Russell; Williams, Steven C R; Calvert, Gemma A; Hampshire, Adam; Zelaya, Fernando O; O'Gorman, Ruth L; McMorris, Terry; Owen, Adrian M; Smith, Marcus S

    2011-01-01

    It was recently observed that dehydration causes shrinkage of brain tissue and an associated increase in ventricular volume. Negative effects of dehydration on cognitive performance have been shown in some but not all studies, and it has also been reported that an increased perceived effort may be required following dehydration. However, the effects of dehydration on brain function are unknown. We investigated this question using functional magnetic resonance imaging (fMRI) in 10 healthy adolescents (mean age = 16.8, five females). Each subject completed a thermal exercise protocol and nonthermal exercise control condition in a cross-over repeated measures design. Subjects lost more weight via perspiration in the thermal exercise versus the control condition (P < 0.0001), and lateral ventricle enlargement correlated with the reduction in body mass (r = 0.77, P = 0.01). Dehydration following the thermal exercise protocol led to a significantly stronger increase in fronto-parietal blood-oxygen-level-dependent (BOLD) response during an executive function task (Tower of London) than the control condition, whereas cerebral perfusion during rest was not affected. The increase in BOLD response after dehydration was not paralleled by a change in cognitive performance, suggesting an inefficient use of brain metabolic activity following dehydration. This pattern indicates that participants exerted a higher level of neuronal activity in order to achieve the same performance level. Given the limited availability of brain metabolic resources, these findings suggest that prolonged states of reduced water intake may adversely impact executive functions such as planning and visuo-spatial processing. PMID:20336685

  11. Ice Cloud Formation and Dehydration in the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Stratospheric water vapor is important not only for its greenhouse forcing, but also because it plays a significant role in stratospheric chemistry. Several recent studies have focused on the potential for dehydration due to ice cloud formation in air rising slowly through the tropical tropopause layer (TTL). Holton and Gettelman showed that temperature variations associated with horizontal transport of air in the TTL can drive ice cloud formation and dehydration, and Gettelman et al. recently examined the cloud formation and dehydration along kinematic trajectories using simple assumptions about the cloud properties. In this study, a Lagrangian, one-dimensional cloud model has been used to further investigate cloud formation and dehydration as air is transported horizontally and vertically through the TTL. Time-height curtains of temperature are extracted from meteorological analyses. The model tracks the growth, advection, and sedimentation of individual cloud particles. The regional distribution of clouds simulated in the model is comparable to the subvisible cirrus distribution indicated by SAGE II. The simulated cloud properties and cloud frequencies depend strongly on the assumed supersaturation threshold for ice nucleation. The clouds typically do not dehydrate the air along trajectories down to the temperature minimum saturation mixing ratio. Rather the water vapor mixing ratio crossing the tropopause along trajectories is 10-50% larger than the saturation mixing ratio. I will also discuss the impacts of Kelvin waves and gravity waves on cloud properties and dehydration efficiency. These simulations can be used to determine whether observed lower stratospheric water vapor mixing ratios can be explained by dehydration associated with in situ TTL cloud formation alone.

  12. Hypertension Despite Dehydration During Severe Pediatric Diabetic Ketoacidosis

    PubMed Central

    Deeter, Kristina H.; Roberts, Joan S.; Bradford, Heidi; Richards, Todd; Shaw, Dennis; Marro, Kenneth; Chiu, Harvey; Pihoker, Catherine; Lynn, Anne; Vavilala, Monica S.

    2010-01-01

    Objective Diabetic ketoacidosis (DKA) may result in both dehydration and cerebral edema but these processes may have opposing effects on blood pressure. We examined the relationship between dehydration and blood pressure in pediatric DKA. Design Retrospective review Setting Seattle Children's Hospital, Seattle, WA Participants Hospitalized children less than 18 years. Intervention(s) or Main Exposures DKA (venous pH < 7.3, glucose > 300 mg/dL, HCO3 < 15 meq/l and urinary ketosis). Outcome Measures Dehydration was calculated as percent body weight lost at admission compared to discharge. Hypertension (systolic and/or diastolic blood pressure percentile ≥ 95%ile) was defined based on 2004 National Heart, Lung, and Blood Institute nomograms and hypotension was defined as systolic blood pressure < 70 + 2 [age] Results Thirty-three patients (median 10.9 years; range 10 months - 17 years) were included. Fifty-eight percent of patients (19/33) had hypertension on admission prior to treatment and 82% had hypertension during the first 6 hours of admission. None had admission hypotension. Hypertension forty-eight hours after treatment and weeks after discharge was common (28% and 19%, respectively). Based on weight gained by discharge, 27% of patients had mild, 61% had moderate, and 12% presented with severe dehydration. Conclusion Despite dehydration, most children admitted with severe DKA had hypertension. PMID:21443581

  13. Dehydration and Cognition in Geriatrics: A Hydromolecular Hypothesis.

    PubMed

    Sfera, Adonis; Cummings, Michael; Osorio, Carolina

    2016-01-01

    Dehydration is one of the ten most frequent diagnoses responsible for the hospital admission of elderly in the United States. It is associated with increased mortality, morbidity and an estimated cost of 1.14 billion per year (Xiao et al., 2004; Schlanger et al., 2010; Pretorius et al., 2013; Frangeskou et al., 2015). Older individuals are predisposed to dehydration encephalopathy as a result of decreased total body water (TBW) and diminished sensation of thirst. We hypothesize that thirst blunting in older individuals is the result of a defective microRNA-6842-3p failing to silence the expression of the vesicular GABA transporters (VGAT) and alpha 7 cholinergic nicotinic receptors in the subfornical organ (SFO) of the hypothalamus. We hypothesize further that resultant dehydration facilitates protein misfolding and aggregation, predisposing to neurocognitive disorders. We completed a search of predicted microRNA targets, utilizing the public domain tool miRDB and found that microRNA-6842-3p modulates the SLC6A1 and CHRNA7 genes both of which were previously hypothesized to inhibit the thirst sensation by their action on SFO. The primary aim of this article is to answer two questions: Can prevention and correction of dehydration in elderly lower age-related cognitive deterioration? Can exosomal miR-6842 in the peripheral blood predict dehydration encephalopathy in elderly? PMID:27252943

  14. Dehydration and Cognition in Geriatrics: A Hydromolecular Hypothesis

    PubMed Central

    Sfera, Adonis; Cummings, Michael; Osorio, Carolina

    2016-01-01

    Dehydration is one of the ten most frequent diagnoses responsible for the hospital admission of elderly in the United States. It is associated with increased mortality, morbidity and an estimated cost of 1.14 billion per year (Xiao et al., 2004; Schlanger et al., 2010; Pretorius et al., 2013; Frangeskou et al., 2015). Older individuals are predisposed to dehydration encephalopathy as a result of decreased total body water (TBW) and diminished sensation of thirst. We hypothesize that thirst blunting in older individuals is the result of a defective microRNA-6842-3p failing to silence the expression of the vesicular GABA transporters (VGAT) and alpha 7 cholinergic nicotinic receptors in the subfornical organ (SFO) of the hypothalamus. We hypothesize further that resultant dehydration facilitates protein misfolding and aggregation, predisposing to neurocognitive disorders. We completed a search of predicted microRNA targets, utilizing the public domain tool miRDB and found that microRNA-6842-3p modulates the SLC6A1 and CHRNA7 genes both of which were previously hypothesized to inhibit the thirst sensation by their action on SFO. The primary aim of this article is to answer two questions: Can prevention and correction of dehydration in elderly lower age-related cognitive deterioration? Can exosomal miR-6842 in the peripheral blood predict dehydration encephalopathy in elderly? PMID:27252943

  15. The dehydration of potassium alum induced by shock loading

    NASA Astrophysics Data System (ADS)

    Kishimura, Hiroaki; Imasu, Yuhta; Matsumoto, Hitoshi

    2013-06-01

    Shock-induced dehydration and structural change on potassium alum, KAl(SO4)2 .12H2O, has been studied up to a peak pressure of 8 GPa. The shock-recovered samples have been characterized using Raman spectroscopy, x-ray diffraction (XRD), and a scanning electron microscopy (SEM). Although the sample shocked at 5 GPa are consolidated and recovered, no evidence for structural change or dehydration is obtained. However, prominent change of texture and color of the recovered sample shocked at 8 GPa is observed. The XRD results reveal that the recovered sample shocked at 8 GPa consists of anhydrous potassium alum crystals with amorphous. This structure differs from that of dehydrated alum caused by heat. The critical pressure for the shock-induced phase transition is close to the transition pressure from alum crystal to amorphous phase, which is obtained by static pressure loading.

  16. Effects of dehydration and fluid ingestion on cognition.

    PubMed

    Tomporowski, P D; Beasman, K; Ganio, M S; Cureton, K

    2007-10-01

    The effects of exercise-induced dehydration and fluid ingestion on men's cognitive performance were assessed. Eleven young men attended separate sessions in which each individual cycled in a controlled environment at 60 % of V.O (2max) for periods of 15, 60, or 120 min without fluid replacement or 120 min with fluid replacement. Immediately following the assigned submaximal exercise period, the participant completed a graded exercise test to voluntary exhaustion. An executive processing test and a short-term memory test were performed prior to and immediately following exercise. Choice-response times during the executive processing test decreased following exercise, regardless of the level of dehydration. Choice-response errors increased following exercise, but only on trials requiring set shifting. Short-term memory performance improved following exercise, regardless of the level of dehydration. Changes in cognitive performance following exercise are hypothesized to be related to metabolic arousal following strenuous physical activity.

  17. Isothermal dehydration of thin films of water and sugar solutions

    SciTech Connect

    Heyd, R.; Rampino, A.; Bellich, B.; Elisei, E.; Cesàro, A.; Saboungi, M.-L.

    2014-03-28

    The process of quasi-isothermal dehydration of thin films of pure water and aqueous sugar solutions is investigated with a dual experimental and theoretical approach. A nanoporous paper disk with a homogeneous internal structure was used as a substrate. This experimental set-up makes it possible to gather thermodynamic data under well-defined conditions, develop a numerical model, and extract needed information about the dehydration process, in particular the water activity. It is found that the temperature evolution of the pure water film is not strictly isothermal during the drying process, possibly due to the influence of water diffusion through the cellulose web of the substrate. The role of sugar is clearly detectable and its influence on the dehydration process can be identified. At the end of the drying process, trehalose molecules slow down the diffusion of water molecules through the substrate in a more pronounced way than do the glucose molecules.

  18. Geothermal vegetable dehydration at Brady`s Hot Springs, Nevada

    SciTech Connect

    Lund, J.W.

    1994-07-01

    This article describes the utilization of the Brady`s Springs geothermal resource for heat generation used in the food dehydration process. This geothermal system is located in the Forty-Mile Desert area of Nevada. Geothermal Food Processors, Inc. of Reno, Nevada started construction of the geothermal vegetable dehydration plant in 1978, and the plant started operations in 1979. The industrial process of vegetable dehydration at the plant is described. In July of 1992, the Brady`s Springs geothermal system began being used for power generation by the Brady`s Hot Springs geothermal power plant, operated by Oxbow Power Services, Inc. As a result, the water levels in the food processing plant wells have dropped below usable levels and the geothermal brine is now being supplied by the Oxbow power plant.

  19. Functional and technological potential of dehydrated Phaseolus vulgaris L. flours.

    PubMed

    Ramírez-Jiménez, A K; Reynoso-Camacho, R; Mendoza-Díaz, S; Loarca-Piña, G

    2014-10-15

    The effect of cooking followed by dehydration was evaluated on the bioactive composition, antioxidant activity and technological properties of two varieties (Negro 8025 and Bayo Madero) of common beans. Quercetin, rutin, and phenolic acids were the most abundant phenolics found. Cooking processes resulted in decreased values of some phenolic compounds and antioxidant capacity. A subsequent dehydration increased TEAC values, resistant starch content and decreased starch digestibility. Oligosaccharides and dietary fibre were preserved in both treatments. Variety had a strong impact on phytochemical profile, being Negro 8025 that exhibited the highest content of most of the compounds assessed. Water absorption index (WAI) and oil absorption capacity (OAC) were determined in order to measure technological suitability. Dehydration produced flours with stable WAI and low oil pick up. The results suggest that the flours of Negro 8025 beans have a good potential to be considered as functional ingredient for healthy food products.

  20. Isothermal dehydration of thin films of water and sugar solutions.

    PubMed

    Heyd, R; Rampino, A; Bellich, B; Elisei, E; Cesàro, A; Saboungi, M-L

    2014-03-28

    The process of quasi-isothermal dehydration of thin films of pure water and aqueous sugar solutions is investigated with a dual experimental and theoretical approach. A nanoporous paper disk with a homogeneous internal structure was used as a substrate. This experimental set-up makes it possible to gather thermodynamic data under well-defined conditions, develop a numerical model, and extract needed information about the dehydration process, in particular the water activity. It is found that the temperature evolution of the pure water film is not strictly isothermal during the drying process, possibly due to the influence of water diffusion through the cellulose web of the substrate. The role of sugar is clearly detectable and its influence on the dehydration process can be identified. At the end of the drying process, trehalose molecules slow down the diffusion of water molecules through the substrate in a more pronounced way than do the glucose molecules.

  1. Effect of experimental and sample factors on dehydration kinetics of mildronate dihydrate: mechanism of dehydration and determination of kinetic parameters.

    PubMed

    Bērziņš, Agris; Actiņš, Andris

    2014-06-01

    The dehydration kinetics of mildronate dihydrate [3-(1,1,1-trimethylhydrazin-1-ium-2-yl)propionate dihydrate] was analyzed in isothermal and nonisothermal modes. The particle size, sample preparation and storage, sample weight, nitrogen flow rate, relative humidity, and sample history were varied in order to evaluate the effect of these factors and to more accurately interpret the data obtained from such analysis. It was determined that comparable kinetic parameters can be obtained in both isothermal and nonisothermal mode. However, dehydration activation energy values obtained in nonisothermal mode showed variation with conversion degree because of different rate-limiting step energy at higher temperature. Moreover, carrying out experiments in this mode required consideration of additional experimental complications. Our study of the different sample and experimental factor effect revealed information about changes of the dehydration rate-limiting step energy, variable contribution from different rate limiting steps, as well as clarified the dehydration mechanism. Procedures for convenient and fast determination of dehydration kinetic parameters were offered.

  2. Ice Cloud Formation and Dehydration in the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Pfister, Leonhard; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Stratospheric water vapor is important not only for its greenhouse forcing, but also because it plays a significant role in stratospheric chemistry. several recent studies have focused on the potential for dehydration due to ice cloud formation in air rising slowly through the tropical tropopause layer. Holton and Gettelman showed that temperature variations associated with horizontal transport of air in the tropopause layer can drive ice cloud formation and dehydration, and Gettelman et al. recently examined the cloud formation and dehydration along kinematic trajectories using simple assumptions about the cloud properties. In this study, we use a Lagrangian, one-dimensional cloud model to further investigate cloud formation and dehydration as air is transported horizontally and vertically through the tropical tropopause layer. Time-height curtains of temperature are extracted from meteorological analyses. The model tracks the growth and sedimentation of individual cloud particles. The regional distribution of clouds simulated in the model is comparable to the subvisible cirrus distribution indicated by SAGE II. The simulated cloud properties depend strongly on the assumed ice supersaturation threshold for ice nucleation. with effective nuclei present (low supersaturation threshold), ice number densities are high (0.1--10 cm(circumflex)-3), and ice crystals do not grow large enough to fall very far, resulting in limited dehydration. With higher supersaturation thresholds, ice number densities are much lower (less than 0.01 cm(circumflex)-3), and ice crystals grow large enough to fall substantially; however, supersaturated air often crosses the tropopause without cloud formation. The clouds typically do not dehydrate the air along trajectories down to the temperature minimum saturation mixing ratio. Rather the water vapor mixing ratio crossing the tropopause along trajectories is typically 10-50% larger than the saturation mixing ratio.

  3. Dehydration decreases saliva antimicrobial proteins important for mucosal immunity.

    PubMed

    Fortes, Matthew B; Diment, Bethany C; Di Felice, Umberto; Walsh, Neil P

    2012-10-01

    The aim of the study was to investigate the effect of exercise-induced dehydration and subsequent overnight fluid restriction on saliva antimicrobial proteins important for host defence (secretory IgA (SIgA), α-amylase, and lysozyme). On two randomized occasions, 13 participants exercised in the heat, either without fluid intake to evoke progressive body mass losses (BML) of 1%, 2%, and 3% with subsequent overnight fluid restriction until 0800 h in the following morning (DEH) or with fluids to offset losses (CON). Participants in the DEH trial rehydrated from 0800 h until 1100 h on day 2. BML, plasma osmolality (Posm), and urine specific gravity (USG) were assessed as hydration indices. Unstimulated saliva samples were assessed for flow rate (SFR), SIgA, α-amylase, and lysozyme concentrations. Posm and USG increased during dehydration and remained elevated after overnight fluid restriction (BML = 3.5% ± 0.3%, Posm = 297 ± 6 mosmol·kg⁻¹, and USG = 1.026 ± 0.002; P < 0.001). Dehydration decreased SFR (67% at 3% BML, 70% at 0800 h; P < 0.01) and increased SIgA concentration, with no effect on SIgA secretion rate. SFR and SIgA responses remained unchanged in the CON trial. Dehydration did not affect α-amylase or lysozyme concentration but decreased secretion rates of α-amylase (44% at 3% BML, 78% at 0800 h; P < 0.01) and lysozyme (46% at 3% BML, 61% at 0800 h; P < 0.01), which were lower than in CON at these time points (P < 0.05). Rehydration returned all saliva variables to baseline. In conclusion, modest dehydration (~3% BML) decreased SFR, α-amylase, and lysozyme secretion rates. Whether the observed magnitude of decrease in saliva AMPs during dehydration compromises host defence remains to be shown.

  4. Hypernatraemic dehydration in a neonate: brain MRI findings.

    PubMed

    Musapasaoglu, H; Agildere, A Muhtesem; Teksam, M; Tarcan, A; Gurakan, B

    2008-02-01

    Severe hypernatremic dehydration can cause serious neurological complications in neonates. The most significant problems include brain oedema, intracranial haemorrhage, sinus thrombosis, haemorrhagic infarcts and permanent brain damage. The symptoms of many of these complications are similar. With respect to brain MRI findings in hypernatremic neonates, this is a report that describes linear lesions that represent intracranial haemorrhage at the grey-white matter junction. These MRI findings may be helpful for diagnosing hypernatremic dehydration, and for ruling out differential diagnoses for complications of this disorder.

  5. EPR study on gamma-irradiated fruits dehydrated via osmosis

    NASA Astrophysics Data System (ADS)

    Yordanov, N. D.; Aleksieva, K.

    2007-06-01

    The shape and time stability of the electron paramagnetic resonance (EPR) spectra of non- and γ-irradiated papaya, melon, cherry and fig samples dehydrated via osmosis are reported. It is shown that non-irradiated samples are generally EPR silent whereas γ-irradiated exhibit "sugar-like" EPR spectra. The recorded EPR spectra are monitored for a period of 7 months after irradiation (stored at low humidity and in the dark). The results suggest longer period of unambiguous identification of the radiation processing of osmose dehydrated fruits. Therefore, the Protocol EN 13708,2001 issued by CEN is fully applicable for the studied fruit samples.

  6. Ductile Deformation of Dehydrating Serpentinite Evidenced by Acoustic Signal Monitoring

    NASA Astrophysics Data System (ADS)

    Gasc, J.; Hilairet, N.; Wang, Y.; Schubnel, A. J.

    2012-12-01

    Serpentinite dehydration is believed to be responsible for triggering earthquakes at intermediate depths (i.e., 60-300 km) in subduction zones. Based on experimental results, some authors have proposed mechanisms that explain how brittle deformation can occur despite high pressure and temperature conditions [1]. However, reproducing microseismicity in the laboratory associated with the deformation of dehydrating serpentinite remains challenging. A recent study showed that, even for fast dehydration kinetics, ductile deformation could take place rather than brittle faulting in the sample [2]. This latter study was conducted in a multi-anvil apparatus without the ability to control differential stress during dehydration. We have since conducted controlled deformation experiments in the deformation-DIA (D-DIA) on natural serpentinite samples at sector 13 (GSECARS) of the APS. Monochromatic radiation was used with both a 2D MAR-CCD detector and a CCD camera to determine the stress and the strain of the sample during the deformation process [3]. In addition, an Acoustic Emission (AE) recording setup was used to monitor the microseismicity from the sample, using piezo-ceramic transducers glued on the basal truncation of the anvils. The use of six independent transducers allows locating the AEs and calculating the corresponding focal mechanisms. The samples were deformed at strain rates of 10-5-10-4 s-1 under confining pressures of 3-5 GPa. Dehydration was triggered during the deformation by heating the samples at rates ranging from 5 to 60 K/min. Before the onset of the dehydration, X-ray diffraction data showed that the serpentinite sustained ~1 GPa of stress which plummeted when dehydration occurred. Although AEs were recorded during the compression and decompression stages, no AEs ever accompanied this stress drop, suggesting ductile deformation of the samples. Hence, unlike many previous studies, no evidence for fluid embrittlement and anticrack generation was found

  7. A bulge-induced dehydration failure mode of nanocomposite hydrogel

    NASA Astrophysics Data System (ADS)

    Tang, Jingda; Yu, Zejun; Sun, Youyi; Pei, Yongmao; Fang, Daining

    2013-10-01

    Since hydrogels are very soft and usually weak in swollen state, they pose unique challenges to traditional mechanical experiments. The mechanical property of nanocomposite poly(N-isopropylacrylamide) hydrogel was characterized by the bulge test in this investigation. A dehydration failure phenomenon of the hydrogel was found and the failure mechanism was presented. A criterion is proposed that when strain reaches the threshold, water molecules migrate out of the polymer networks and the dehydration failure occurs. The critical strain keeps constant for orifices with different diameters. This failure mode can be applied in the controllable release of drugs.

  8. A fatal case of hypernatraemic dehydration in a neonate.

    PubMed

    Staub, Eveline; Wilkins, Barry

    2012-09-01

    Problems with lactation can result in hypernatraemic dehydration in the neonate, with potentially severe adverse consequences. This is illustrated in this fatal case of a 10 day old neonate who presented with excessive hypernatraemic dehydration due to insufficient breast milk intake, resulting in cerebral sinus vein thrombosis with cerebral haemorrhage and infarction. Differential diagnosis included excessive sodium intake (through inappropriately mixed formula or house remedies or through hyperaldosteronism) and high water deficit (renal or gastrointestinal losses, nephrogenic or central diabetes insipidus), all of which were ruled out by specific investigations or history. No evidence was found for inborn error of metabolism. The dehydration in this baby, however, was accentuated by trans-epidermal water loss due to an ichthyosiform skin condition. This first ever reported Australian fatality from neonatal hypernatraemic dehydration supports the concern of health care professionals over rising incidences of this entity in exclusively breastfed infants, and should encourage endorsement of improved monitoring of weight loss in newborns and breastfeeding support for their mothers.

  9. Life‐threatening hypernatraemic dehydration in breastfed babies

    PubMed Central

    Shroff, R; Hignett, R; Pierce, C; Marks, S; Hoff, W van't

    2006-01-01

    We describe five babies, who were exclusively breast fed, with life‐threatening complications of hypernatraemic dehydration secondary to inadequate breast feeding. An increased awareness among health professionals is required so that this potentially devastating condition can be prevented. PMID:16690697

  10. DEHYDRATION OF ALCOHOLS VIA PREVAPORATION USING A NOVEL HYDROPHILIC MEMBRANE

    EPA Science Inventory

    Pervaporation has emerged as an economically viable alternative technology for the dehydration of organic solvents, removal of organic compounds from water and organic/organic separations. Development of a suitable membrane system with high flux and high selectivity plays a criti...

  11. DEHYDRATION OF ALCOHOLS VIA PERVAPORATION USING A NOVEL HYDROHILIC MEMBRANE

    EPA Science Inventory

    Pervaporation has emerged as an economically viable alternative technology for the dehydration of organic solvents, removal of organic compounds from water and organic/organic separations. Development of a suitable membrane system with high flux and high selectivity plays a criti...

  12. Microfluidic Droplet Dehydration for Concentrating Processes in Biomolecules

    NASA Astrophysics Data System (ADS)

    Anna, Shelley

    2014-03-01

    Droplets in microfluidic devices have proven useful as picoliter reactors for biochemical processing operations such as polymerase chain reaction, protein crystallization, and the study of enzyme kinetics. Although droplets are typically considered to be self-contained, constant volume reactors, there can be significant transport between the dispersed and continuous phases depending on solubility and other factors. In the present talk, we show that water droplets trapped within a microfluidic device for tens of hours slowly dehydrate, concentrating the contents encapsulated within. We use this slow dehydration along with control of the initial droplet composition to influence gellation, crystallization, and phase separation processes. By examining these concentrating processes in many trapped drops at once we gain insight into the stochastic nature of the events. In one example, we show that dehydration rate impacts the probability of forming a specific crystal habit in a crystallizing amino acid. In another example, we phase separate a common aqueous two-phase system within droplets and use the ensuing two phases to separate DNA from an initial mixture. We further influence wetting conditions between the two aqueous polymer phases and the continuous oil, promoting complete de-wetting and physical separation of the polymer phases. Thus, controlled dehydration of droplets allows for concentration, separation, and purification of important biomolecules on a chip.

  13. Compositional Constraints on Dehydration Embrittlement in Serpentinized Peridotite

    NASA Astrophysics Data System (ADS)

    Xia, G.; Zhang, J.; Green, H. W.

    2012-12-01

    Double seismic zones (DSZ) which have two parallel planes of seismicity separated by 15-40 km are a global feature of subduction zones in the 70-250 km depth range (Brudzinski et al., 2007). While the physical mechanism of lower plane seismicity is still controversial, the leading hypotheses currently are associated with dehydration of antigorite serpentine within the subducting mantle plate (Peacock, 2001; Jung et al., 2004). In this study, we are conducting high-pressure (1-3GPa), high-temperature (720-750 Celsius), deformation experiments on specimens of varying compositions of serpentine plus peridotite in our 4GPa Modified Griggs apparatus. Using samples composed of interlayered thin discs of antigorite and harzburgite, we find that dehydration embrittlement occurs down to less than ~30 vol % antigorite. Interlayered mineralogy was impractical at lower antigorite fractions so we prepared homogeneous mixtures of powders of the two rock types (35-75 μm grain-size) and "warm" pressed them to a coherent solid with little porosity. Subsequent deformation of these specimens extended the faulting regime to as little as ~8 vol % antigorite. In summary, we find that faulting occurs during dehydration in a wide range of serpentinized peridotite compositions but not during dehydration of nearly pure serpentinite nor nearly pure peridotite. We suggest that the lack of faulting in nearly pure peridotite is a consequence of too little H2O production and the lack of faulting in nearly pure serpentine is due to extensive crystal plasticity.

  14. Science Study Aids 1: Dehydration for Food Preservation.

    ERIC Educational Resources Information Center

    Boeschen, John; And Others

    This publication is the first of a series of seven supplementary investigative materials for use in secondary science classes providing up-to-date research-related investigations. This unit is structured for grades 9 through 12. It is concerned with the osmatic dehydration of fruits. The guide provides students with information about food…

  15. Age, dehydration and fatigue crack growth in dentin.

    PubMed

    Bajaj, Devendra; Sundaram, Naryana; Nazari, Ahmad; Arola, D

    2006-04-01

    A preliminary study of the effects from age and dehydration on fatigue crack growth in human dentin was conducted. Compact tension (CT) fatigue specimens of coronal dentin were prepared from extracted molars and subjected to high cycle fatigue (10(5)dehydrated dentin (mean age=20+/-2 years) were examined. Fatigue crack growth rates were quantified according to the Paris Law in terms of the crack growth exponent (m) and coefficient (C). The average fatigue crack growth exponent for the young hydrated dentin (m=13.3+/-1.1) was significantly less than that for the hydrated old (m=21.6+/-5.2; p<0.003) and dehydrated young dentin (m=18.8+/-2.8; p<0.01). Fatigue cracks in the old dentin underwent initiation at a lower stress intensity range than in young dentin and propagated at as significantly faster rate (over 100x). Differences in the microscopic features of the fracture surfaces from the old and young dentin suggested that particular mechanisms contributing to energy dissipation and crack growth resistance in the young hydrated dentin were not present in the old dentin. Based on results of this study, the fatigue crack growth resistance of human dentin decreases with both age of the tissue and dehydration.

  16. [Oral rehydration in newborns with dehydration caused by diarrhea].

    PubMed

    Mota-Hernández, F; Rillman-Pinagel, M L; Velásquez-Jones, L

    1990-08-01

    The clinical experience obtained while treating 43 dehydrated newborns due to diarrhea with oral rehydration solution (ORS) using the formula recommended by the World Health Organization is reported. Of the 43 patients, 26 were severely dehydrated (greater than equal to 10% of weight recovery once rehydrated). The averaged time need to correct the dehydration was 4.7 +/- 2.7 hours, with a average intake of ORS of 26.5 +/- 7.5 mL/kg/hour. Children who were being breastfed continued so during the rehydration period. Two of the patients were hospitalized for intravenous treatment, one was due to persistent vomiting during rehydration and probably due to sepsis, and the other due to necrosing enterocolitis. The oral rehydration therapy was successful in 95% of the newborns included in the study, which proved the method to be safe and adequate for the correction of dehydration due to diarrhea among these patients. Similar experiences are reported in Mexico as well as from other countries, which also suggest the use of this therapeutic procedure in children of this age.

  17. Liquid-phase dehydration of aqueous ethanol-gasoline mixtures

    SciTech Connect

    Fanta, G.F.; Burr, R.C.; Orton, W.L.; Doane, W.M.

    1980-11-07

    Two-phase mixtures of gasoline, water, and ethanol were dehydrated with both starch and saponified starch-g-polyacrylonitrile (HSPAN). Whereas starch absorbed ethanol as well as water, HSPAN selectively absorbed the water component, allowing ethanol to dissolve in the gasoline phase.

  18. Early severe dehydration in young breast-fed newborn infants.

    PubMed

    Sofer, S; Ben-Ezer, D; Dagan, R

    1993-01-01

    Six breast-fed infants living in a dry desert climate area presented at ages 4-11 days with severe dehydration. In all cases, dehydration was associated with inadequate breast milk production by the mothers. In contrast to earlier reports on dehydration in breast-fed infants, five of the mothers were from a low socioeconomic background and three were multiparas, including two mothers who had previous experience with breast-feeding. In two infants severe bacterial infections were documented. Two mothers had small retracted nipples. As in earlier reported instances, sodium concentration in breast milk was elevated in all five mothers in whom it was measured, and three babies had severe hypernatremia. Successful relactation was achieved in three cases with a decrease in the milk sodium concentration. These data demonstrate that severe dehydration in breast-fed infants may occur as early as the first week of life and may affect even infants of experienced multiparous mothers who are well motivated for breast-feeding. It seems that hypernatremia in these infants is secondary to poor fluid intake and increased insensible water loss rather than to elevated milk sodium, since there was no direct correlation between milk sodium concentration and serum sodium levels. Following fluid resuscitation, relactation can be achieved in motivated mothers. PMID:8468176

  19. Diagnosis of Pneumonia in Children with Dehydrating Diarrhoea

    PubMed Central

    Ronan, Anne; Khan, Wasif Ali; Salam, Mohammed Abdus

    2014-01-01

    The World Health Organization (WHO) guidelines for diagnosis of pneumonia are based on the history of cough or difficult breathing and age-adjusted respiration rates. Metabolic acidosis associated with dehydrating diarrhoea also influences the respiration rate. Two hundred and four children, aged 2 to 59 months, with dehydrating diarrhoea and a history of cough and/or fast breathing, were enrolled in a prospective study. Pneumonia diagnoses were made on enrollment and again 6 hours post-enrollment (after initial rehydration), using the WHO guidelines. These were compared with investigators’ clinical diagnosis based on history and findings of physical examination and a chest x-ray at the same time points. Using the WHO guidelines, 149/152 (98%) infants in the 2-11 months age-group and 38/40 (95%) children in the 12-59 months age-group were diagnosed to have pneumonia on enrollment, which dropped to 107 (70%) and 30 (75%) respectively at 6 hours post-enrollment. The specificity of the WHO guidelines for diagnosis of pneumonia was very low (6.9%) at enrollment but increased to 65.5% at 6 hours post-enrollment, after initial rehydration. The specificity of the WHO guidelines for diagnosis of pneumonia in young children is significantly reduced in dehydrating diarrhoea. For young children with dehydrating diarrhoea, rehydration, clinical and radiological assessments are useful in identifying those with true pneumonia. PMID:24847588

  20. CDT retroelement: The stratagem to survive extreme vegetative dehydration.

    PubMed

    Furini, Antonella

    2008-12-01

    The resurrection plant Craterostigma plantagineum can tolerate up to 96% loss of its water content and recover from such extreme dehydration within several hours. This property is not shared by callus which has a strict requirement for exogenous abscissic acid (ABA) to survive severe water loss. ABA treatment and dehydration result in the induction of similar drought-responsive genes. Activation tagging led to the isolation of CDT-1 gene which renders callus desiccation tolerant bypassing the ABA requirement. This gene belongs to a retroelement family, members of which are induced by ABA and dehydration in callus, supporting its role in desiccation tolerance. Indeed, CDT genes have been detected in other desiccation tolerant Craterostigma species. CDT-1 RNA of both strands was identified by in situ hybridization and a CDT-1-derived short interfering RNA was detected in desiccation tolerant tissues and was able to induce dehydration genes in transfected protoplasts to the same extent as an ABA treatment. Thus, under environmental stress the induced transposition, over generations, directs the amplification of CDT-copy number in the genome and increases the desiccation tolerance phenomenon. PMID:19704456

  1. Spatiotemporal evolution of dehydration reactions in subduction zones (Invited)

    NASA Astrophysics Data System (ADS)

    Padron-Navarta, J.

    2013-12-01

    Large-scale deep water cycling takes place through subduction zones in the Earth, making our planet unique in the solar system. This idiosyncrasy is the result of a precise but unknown balance between in-gassing and out-gassing fluxes of volatiles. Water is incorporated into hydrous minerals during seafloor alteration of the oceanic lithosphere. The cycling of volatiles is triggered by dehydration of these minerals that release fluids from the subducting slab to the mantle wedge and eventually to the crust or to the deep mantle. Whereas the loci of such reactions are reasonably well established, the mechanisms of fluid migration during dehydration reactions are still barely known. One of the challenges is that dehydration reactions are dynamic features evolving in time and space. Experimental data on low-temperature dehydration reactions (i.e. gypsum) and numerical models applied to middle-crust conditions point to a complex spatiotemporal evolution of the dehydration process. The extrapolation of these inferences to subduction settings has not yet been explored but it is essential to understand the dynamism of these settings. Here I propose an alternative approach to tackle this problem through the textural study of high-pressure terrains that experienced dehydration reactions. Spatiotemporal evolution of dehydration reactions should be recorded during mineral nucleation and growth through variations in time and space of the reaction rate. Insights on the fluid migration mechanism could be inferred therefore by noting changes in the texture of prograde assemblages. The dehydration of antigorite in serpentinite is a perfect candidate to test this approach as it releases a significant amount of fluid and produces a concomitant porosity. Unusual alternation of equilibrium and disequilibrium textures observed in Cerro del Almirez (Betic Cordillera, S Spain)[1, 2] attest for a complex fluid migration pattern for one of the most relevant reactions in subduction zones

  2. Meat tenderization by proteolytic enzymes after osmotic dehydration.

    PubMed

    Gerelt, B; Ikeuchi, Y; Suzuki, A

    2000-11-01

    The treatment of proteolytic enzymes is one of the popular methods for meat tenderization. In this case, it is very important how to introduce the enzymes into the meat cut. This paper describes meat tenderization by dipping the meat cut in a solution containing proteolytic enzymes after contact-osmotic dehydration. After the dehydration of each piece of meat from culled cow for 18 h by contact-dehydration sheet, each sample was dipped for 3 h in a solution containing papain or proteinases from Aspergillus traditionally used for soysauce production in Japan. It was stored at 3∼4°C for 24, 48 and 168 h, and subjected to texture measurement, sensory evaluations, biochemical analysis and histological observations. The penetration efficiency of the enzyme solution (of around 80%) after the contact-osmotic dehydration seemed to be sufficient. A marked decrease in hardness by texture measurements was observed in the meats treated with proteolytic enzymes and higher sensory scores for tenderness were observed in the meats treated with enzymes as compared with the untreated meat. The papain-treated meat received the highest score in tenderness, but the scores given to juiciness and taste were lower than that of the control. The rapid increases of the fragmentation of myofibrils from the enzyme-treated meat were observed at first 24 h of storage as compared with that of the control. Remarkable degradation of myosin molecule in the myofibrils from the enzyme-treated meats was observed on SDS-PAGE profiles. Considerable degradation of myofibrilar structure especially due to proteolytic removal of Z-lines, was observed among the myofibrils from enzyme-treated meats by electronmicroscopy. The remarkable deformation and disruption of honeycomb-like structure of endomysium were also observed in the meats treated with enzymes. From these results, it was shown that treatment after osmotic dehydration, was effective in tenderizing. PMID:22062083

  3. 40 CFR 63.1275 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Glycol dehydration unit process vent... Facilities § 63.1275 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to...

  4. 40 CFR 63.765 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Glycol dehydration unit process vent... Facilities § 63.765 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to...

  5. 40 CFR 63.765 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Glycol dehydration unit process vent... Facilities § 63.765 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to...

  6. 40 CFR 63.765 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Glycol dehydration unit process vent... Facilities § 63.765 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart that must be controlled for air emissions as specified in...

  7. 40 CFR 63.1275 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Glycol dehydration unit process vent... Facilities § 63.1275 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to...

  8. 40 CFR 63.765 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Glycol dehydration unit process vent... Facilities § 63.765 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart that must be controlled for air emissions as specified in...

  9. 40 CFR 63.1275 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 12 2014-07-01 2014-07-01 false Glycol dehydration unit process vent... Storage Facilities § 63.1275 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart that must be controlled for air emissions...

  10. 40 CFR 63.1275 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 12 2012-07-01 2011-07-01 true Glycol dehydration unit process vent... Facilities § 63.1275 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart with an actual annual average natural gas flowrate equal to...

  11. 40 CFR 63.1275 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 12 2013-07-01 2013-07-01 false Glycol dehydration unit process vent... Storage Facilities § 63.1275 Glycol dehydration unit process vent standards. (a) This section applies to each glycol dehydration unit subject to this subpart that must be controlled for air emissions...

  12. 40 CFR 407.50 - Applicability; description of the dehydrated potato products subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... dehydrated potato products subcategory. 407.50 Section 407.50 Protection of Environment ENVIRONMENTAL... PROCESSING POINT SOURCE CATEGORY Dehydrated Potato Products Subcategory § 407.50 Applicability; description of the dehydrated potato products subcategory. The provisions of this subpart are applicable...

  13. 40 CFR 407.50 - Applicability; description of the dehydrated potato products subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... dehydrated potato products subcategory. 407.50 Section 407.50 Protection of Environment ENVIRONMENTAL... PROCESSING POINT SOURCE CATEGORY Dehydrated Potato Products Subcategory § 407.50 Applicability; description of the dehydrated potato products subcategory. The provisions of this subpart are applicable...

  14. 40 CFR 407.50 - Applicability; description of the dehydrated potato products subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... dehydrated potato products subcategory. 407.50 Section 407.50 Protection of Environment ENVIRONMENTAL... PROCESSING POINT SOURCE CATEGORY Dehydrated Potato Products Subcategory § 407.50 Applicability; description of the dehydrated potato products subcategory. The provisions of this subpart are applicable...

  15. 40 CFR 407.50 - Applicability; description of the dehydrated potato products subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... dehydrated potato products subcategory. 407.50 Section 407.50 Protection of Environment ENVIRONMENTAL... PROCESSING POINT SOURCE CATEGORY Dehydrated Potato Products Subcategory § 407.50 Applicability; description of the dehydrated potato products subcategory. The provisions of this subpart are applicable...

  16. 40 CFR 407.50 - Applicability; description of the dehydrated potato products subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... dehydrated potato products subcategory. 407.50 Section 407.50 Protection of Environment ENVIRONMENTAL... PROCESSING POINT SOURCE CATEGORY Dehydrated Potato Products Subcategory § 407.50 Applicability; description of the dehydrated potato products subcategory. The provisions of this subpart are applicable...

  17. Improvements in the order, isotropy and electron density of glypican-1 crystals by controlled dehydration

    SciTech Connect

    Awad, Wael; Svensson Birkedal, Gabriel; Thunnissen, Marjolein M. G. M.; Mani, Katrin; Logan, Derek T.

    2013-12-01

    The anisotropy of crystals of glypican-1 was significantly reduced by controlled dehydration using the HC1 device, allowing the building of previously disordered parts of the structure. The use of controlled dehydration for improvement of protein crystal diffraction quality is increasing in popularity, although there are still relatively few documented examples of success. A study has been carried out to establish whether controlled dehydration could be used to improve the anisotropy of crystals of the core protein of the human proteoglycan glypican-1. Crystals were subjected to controlled dehydration using the HC1 device. The optimal protocol for dehydration was developed by careful investigation of the following parameters: dehydration rate, final relative humidity and total incubation time T{sub inc}. Of these, the most important was shown to be T{sub inc}. After dehydration using the optimal protocol the crystals showed significantly reduced anisotropy and improved electron density, allowing the building of previously disordered parts of the structure.

  18. Nocturnal lagophthalmos: never seen before in hypernatraemic dehydration

    PubMed Central

    Rai, Birendra; Moka, Sudha; Sharif, Farhana

    2014-01-01

    We present two cases in which a 10-month-old male infant and another 15-month-old female child presented with symptoms of sleeping with their eyes wide open (lagophthalmos) with features of gastroenteritis (GE) and dehydration. The first child had been seen and discharged the previous day from the paediatric emergency department (ED) with a diagnosis of GE. He presented the following day with sleeping discomfort with his eyes wide open and ongoing symptoms of GE. The second child presented to the ED with features of GE. She was found to be sleeping in the ED with her eyes wide open. Investigations of both children revealed hypernatraemic dehydration. Correction of the electrolyte imbalance in both cases over a period of 48 h led to the resolution of symptoms. PMID:24728900

  19. Nocturnal lagophthalmos: never seen before in hypernatraemic dehydration.

    PubMed

    Rai, Birendra; Moka, Sudha; Sharif, Farhana

    2014-01-01

    We present two cases in which a 10-month-old male infant and another 15-month-old female child presented with symptoms of sleeping with their eyes wide open (lagophthalmos) with features of gastroenteritis (GE) and dehydration. The first child had been seen and discharged the previous day from the paediatric emergency department (ED) with a diagnosis of GE. He presented the following day with sleeping discomfort with his eyes wide open and ongoing symptoms of GE. The second child presented to the ED with features of GE. She was found to be sleeping in the ED with her eyes wide open. Investigations of both children revealed hypernatraemic dehydration. Correction of the electrolyte imbalance in both cases over a period of 48 h led to the resolution of symptoms.

  20. Methods for dehydration of sugars and sugar alcohols

    DOEpatents

    Holladay, Johnathan E [Kennewick, WA; Hu, Jianli [Kennewick, WA; Zhang, Xinjie [Burlington, MA; Wang, Yong [Richland, WA

    2010-08-10

    The invention includes a method of dehydration of a sugar using a dehydration catalyst and a co-catalyst within a reactor. A sugar is introduced and H.sub.2 is flowed through the reactor at a pressure of less than or equal to about 300 psig to convert at least some of the sugar into an anhydrosugar product. The invention includes a process for producing isosorbide. A starting material comprising sorbitol is flowed into a reactor. H.sub.2 is counter flowed through the reactor. The starting material is exposed to a catalyst in the presence of a co-catalyst which comprises at least one metal. The exposing is conducted at a hydrogen pressure of less than or equal to 300 psig within the reactor and the hydrogen removes at least some of any water present during the exposing and inhibits formation of colored byproducts.

  1. The hydration/dehydration behavior of aspartame revisited.

    PubMed

    Guguta, C; Meekes, H; de Gelder, R

    2008-03-13

    Aspartame, l-aspartyl-l-phenylalanine methyl ester, has two hydrates (IA and IB), a hemi-hydrate (IIA) and an anhydrate (IIB). The hydration/dehydration behavior of aspartame was investigated using hot-humidity stage X-ray powder diffraction (XRPD) and molecular mechanics modeling in combination with differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results of this study are compared to earlier studies on aspartame as described in literature. It is shown that earlier transition studies were hampered by incomplete conversions and wrong assignment of the forms. The combination of the techniques applied in this study now shows consistent results for aspartame and yields a clear conversion scheme for the hydration/dehydration behavior of the four forms.

  2. On Moffatt dehydration of glucose-derived nitro alcohols.

    PubMed

    Lugiņina, Jevgeņija; Rjabovs, Vitālijs; Belyakov, Sergey; Turks, Māris

    2012-03-01

    Moffatt dehydration of 1,2:5,6-di-O-isopropylidene-α-d-glucofuranose derived nitro alcohols with a mixture of Ac(2)O and DMSO was reinvestigated. It was discovered that, regardless of the absolute configuration at C(3) of the sugar moiety, the dehydration provided exclusively the (3Z)-nitromethylene derivative. Slight modification of the workup conditions (pH⩾8, temperature: 25-30°C) gave exclusively a novel product, (3S)-3-deoxy-3-methylthio-3-C-nitromethyl-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose. The latter was obtained by a Michael addition of thiomethylate anion to the previously reported nitromethylene derivative during the aqueous basic workup at ambient or slightly elevated temperature. The putative mechanism leading to the thiomethylate anion includes Pummerer rearrangement of DMSO and basic hydrolysis of thus formed methylsulfanylmethyl acetate.

  3. Rehydration characteristics of dehydrated West African pepper (Piper guineense) leaves.

    PubMed

    Okpala, Laura C; Ekechi, Constance A

    2014-11-01

    The rehydration characteristics of dehydrated West African pepper leaves were investigated at hydration temperatures of 28, 60, 70, and 80°C. Four treatments were given to the leaves: blanched and sun dried, unblanched and sun dried, blanched and shade dried, and unblanched and shade dried. The hydration process of the dehydrated leaves was adequately described by the Peleg's equation. As the hydration temperature increased from 28 to 70°C, there was a significant decrease in the Peleg's constant K 1, while for most of the leaves the Peleg's constant K 2 varied with temperature. Rehydration ratio values ranged from 3.75 in blanched shade dried leaves to 4.26 in unblanched sun dried leaves with the unblanched leaves generally exhibiting higher ratios than the blanched leaves.

  4. Dehydration of butanols on copper-containing zirconium orthophosphates

    NASA Astrophysics Data System (ADS)

    Pylinina, A. I.; Mikhalenko, I. I.; Ermilova, M. M.; Orekhova, N. V.; Pet'kov, V. I.

    2010-03-01

    The catalytic properties of ternary zirconium phosphates Na1-2x CuxZr2(Po4)3 in the transformations of butanols were been studied. It was found that the structure of alcohol and the copper content (x = 0, 0.15, 0.25, 0.35) affect the rate and selectivity of dehydration. The activity and selectivity changed as the content of copper that substitutes for sodium ions increased. The general conversion of alcohol and selectivity in dehydration decreased in the series butanol-2 →-isobutanol → butanol-1, due probably to the change in the apparent activation energy of the reaction, depending on the stability of alcohol binding to the surface.

  5. Hydrothermal Dehydration of Aqueous Fructose Solutions in a Closed System

    SciTech Connect

    Yao, Chunhua; Shin, Yongsoon; Wang, Li Q.; Windisch, Charles F.; Samuels, William D.; Arey, Bruce W.; Wang, Chong M.; Risen Jr., William M.; Exarhos, Gregory J.

    2007-10-25

    The synthesis of materials with targeted size and shape has attracted much attention. Specifically, colloidal spheres with targeted and uniform sizes have opened the door for a variety of applications associated with drug delivery, and manipulation of light (photonic band-gap crystals). Surface modification is a key to realizing many of these applications owing to the inherent inert surface.The remarkable transformation of carbohydrate molecules including sugars to homogeneous carbon spheres is found to readily occur by a dehydration mechanism and subsequent sequestering in aqueous solutions that are heated at 160-180oC in a pressurized vessel. Under such conditions, these molecules actually dehydrate even though they are dissolved in water. Size-tunable metal and metal oxides with uniform shells have also been prepared by using carbon spheres as templates.

  6. A prospective clinical study of patients with hypernatraemic dehydration.

    PubMed

    Eke, F; Nte, A

    1996-09-01

    In a clinical prospective 3-year study of 158 children aged 2 weeks to 14 years with hypernatraemic dehydration (serum sodium 150 mmol/l or more), infants predominated (61.4%). The 158 children with hypernatraemia accounted for 13.7% of all children admitted with gastroenteritis over the same period, and significant aetiological factors included the use of artificial feeds, differences between the children with hypernatraemia and those with normo- or hyponatraemia, P < 0.001, P < 0.001, respectively; the use of breast milk, P < 0.001, P < 0.001, respectively; nutritional status, P < 0.001, P < 0.001, respectively; and clinical state of mild to moderate dehydration P < 0.001; P < 0.001, respectively; but not with patients considered severely dehydrated. There was also a significant difference between the presence of neurological features in hyper- and normonatraemic patients P < 0.001; in hyper- and hyponatraemic patients P < 0.05, and in mortality rate between hyper- and normonatraemic patients, P < 0.05 but not between hyper- and hyponatraemic patients. A history of refusal to feed or vomiting was obtained in 41 children (25.9%). The mean serum sodium was 155.5 mmol/l (range 150-189 mmol/l); mean serum urea 7.7 mmol/l (range 1-18.9 mmol/l). Hypernatraemic dehydration remains an important and serious complication of childhood gastroenteritis in our area of study. The use of artificial milk feeds is contributory, and well-nourished babies appear more at risk. We recommend more liberal water intake during gastroenteritis and the public should also be educated on and made more aware of this condition.

  7. Hypernatraemic dehydration. A prospective study in children with diarrhoeal disease.

    PubMed

    Hill, I D; Mann, M D; Bowie, M D

    1981-03-28

    Hypernatraemia occurs in a significant number of infants with dehydrating diarrhoea. There are some diagnostic clinical features, but these are not specific, and without routine electrolyte estimations many with hypernatraemia would go undetected. The standard fluid therapy schedule used at the Red Cross War Memorial Children's Hospital gave satisfactory results in both hypernatraemic and non-hypernatraemic patients. It is suitable for use in situations when electrolyte estimations on all patients are not possible.

  8. Cerebral bleeding, infarcts, and presumed extrapontine myelinolysis in hypernatraemic dehydration.

    PubMed

    AlOrainy, I A; O'Gorman, A M; Decell, M K

    1999-02-01

    The neuroimaging findings in an infant with hypernatremic dehydration are presented. Brain parenchymal haemorrhage and extensive multiple infarcts were present in the acute stage. Follow-up CT showed bilateral, symmetrical changes presumed to indicate extrapontine myelinolysis in the thalamus and globus pallidus. MRI confirmed sparing of the pons. Only three previous cases of neuroimaging abnormalities due to hypernatraemia have been described in the radiological literature.

  9. Collodion baby dehydration: the danger of high transepidermal water loss.

    PubMed

    Buyse, L; Graves, C; Marks, R; Wijeyesekera, K; Alfaham, M; Finlay, A Y

    1993-07-01

    We describe transepidermal water loss (TEWL) measurements in a collodion baby suffering from severe hypernatraemic dehydration and hypothermia, who required intravenous fluid therapy in a special incubator. The TEWL values 4 days after birth were abnormally high compared with normal infants of the same age. The TEWL measurements returned towards normal within the first month, in parallel with the improvement of both the skin signs and the electrolyte and fluid balance.

  10. 30. BUILDING NO. 527, DEHYDRATING PRESSES, LOOKING SOUTH. ALUMINUM NARROWGUAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. BUILDING NO. 527, DEHYDRATING PRESSES, LOOKING SOUTH. ALUMINUM NARROW-GUAGE GONDOLA CAR IN LEFT BACKGROUND BROUGHT MOISTENED GUN COTTON FROM REST HOUSE (BUILDING NO. 320-B) IN CANS. (ONE OF THESE CANS IS ON UNLOADING PLATFORM RUNNING BESIDE PRESSES). CONTENTS OF CANS WERE UNLOADED INTO PRESSES BY HAND. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  11. 28. BUILDING NO. 527, DEHYDRATING HOUSE, LOOKING SOUTH AT NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. BUILDING NO. 527, DEHYDRATING HOUSE, LOOKING SOUTH AT NORTH (REAR) ELEVATION OF PRELIMINARY SOLVENT RECOVERY WING. RAILS LEADING FROM DOORS CARRIED STANDARD GUAGE R.R. CARTS ONTO SMALL FLATCARS RIDING IN TRACKS IN FOREGROUND. FROM HERE THE CARS WERE TAKEN TO BUILDING NO. 533, SOLVENT RECOVERY. BUILDING NO. 540, LOADING DOCK (STORAGE FOR POWDER BUGGIES) IN BACKGROUND LEFT. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  12. Skeletal muscle water and electrolytes following prolonged dehydrating exercise.

    PubMed

    Mora-Rodríguez, R; Fernández-Elías, V E; Hamouti, N; Ortega, J F

    2015-06-01

    We studied if dehydrating exercise would reduce muscle water (H2Omuscle ) and affect muscle electrolyte concentrations. Vastus lateralis muscle biopsies were collected prior, immediately after, and 1 and 4 h after prolonged dehydrating exercise (150 min at 33 ± 1 °C, 25% ± 2% humidity) on nine endurance-trained cyclists (VO2max  = 54.4 ± 1.05 mL/kg/min). Plasma volume (PV) changes and fluid shifts between compartments (Cl(-) method) were measured. Exercise dehydrated subjects 4.7% ± 0.3% of body mass by losing 2.75 ± 0.15 L of water and reducing PV 18.4% ± 1% below pre-exercise values (P < 0.05). Right after exercise H2Omuscle remained at pre-exercise values (i.e., 398 ± 6 mL/100 g dw muscle(-1)) but declined 13% ± 2% (342 ± 12 mL/100 g dw muscle(-1); P < 0.05) after 1 h of supine rest. At that time, PV recovered toward pre-exercise levels. The Cl(-) method corroborated the shift of fluid between extracellular and intracellular compartments. After 4 h of recovery, PV returned to pre-exercise values; however, H2Omuscle remained reduced at the same level. Muscle Na(+) and K(+) increased (P < 0.05) in response to the H2Omuscle reductions. Our findings suggest that active skeletal muscle does not show a net loss of H2O during prolonged dehydrating exercise. However, during the first hour of recovery H2Omuscle decreases seemly to restore PV and thus cardiovascular stability.

  13. Selective brain cooling in goats: effects of exercise and dehydration.

    PubMed Central

    Baker, M A; Nijland, M J

    1993-01-01

    1. Measurements of brain and central blood temperature (Tbr and Tbl), metabolic rate (MR) and respiratory evaporative heat loss (REHL) were made in trained goats walking on a treadmill at 4.8 km h-1 at treadmill inclines of 0, 5, 10, 15 and 20% when they were fully hydrated and at 0% when they had been deprived of water for 72 h. 2. In hydrated goats, exercise MR increased progressively with increasing treadmill incline. Both Tbl and Tbr rose during exercise, but Tbl always rose more than Tbr, and selective brain cooling (SBC = Tbl - Tbr) increased linearly with Tbl. Significant linear relationships were also present between REHL and Tbl and between SBC and REHL. Neither the slope of the regression relating SBC to Tbl nor the threshold Tbl for onset of SBC was affected by exercise intensity. Manual occlusion of the angularis oculi veins decreased SBC in a walking goat, while occlusion of the facial veins increased SBC. 3. Dehydrated goats had higher levels of Tbl, Tbr and SBC during exercise, but the relationship between SBC and Tbl was the same in hydrated and dehydrated animals. In dehydrated animals, REHL at a given Tbl was lower and SBC was thus maintained at reduced rates of REHL. 4. It is concluded that SBC is a linear function of body core temperature in exercising goats and REHL appears to be a major factor underlying SBC in exercise. The maintenance of SBC in spite of reduced REHL in dehydrated animals could be a consequence of increased vascular resistance in the facial vein and increased flow of cool nasal venous blood into the cranial cavity. PMID:8120829

  14. The physiological effects of dehydration caused by sweat loss. [athletes

    NASA Technical Reports Server (NTRS)

    Israel, S.

    1981-01-01

    The mechanisms of fluid loss in the human body while sweating due to physical exercise are discussed. Trained and untrained persons were examined and compared. Since sweat is hypotonous, a disruption in the hydrosalinic balance occurs; the consequences of this finding, also pertaining to the fluid and electrolytic substitution, are presented. Further explanations on the problem of dehydration refer to reactions of individual organ systems, to alterations in bodily capabilities as well as to questions relating to sex and age.

  15. Dehydration-induced porosity waves and episodic tremor and slip

    NASA Astrophysics Data System (ADS)

    Skarbek, Rob M.; Rempel, Alan W.

    2016-02-01

    Episodic tremor and slip (ETS) along the subduction interface takes place where there is abundant evidence for elevated, near-lithostatic pore pressures, at sufficiently great depths (30-45 km) that chemical dehydration reactions must act as their dominant source. We simulate fluid and heat flow while tracking the location of a vertically oriented, one-dimensional column of material as it subducts through the slow slip and tremor zone. The material in the column is transformed through a pressure-dependent and temperature-dependent dehydration reaction that we describe with a generalized nonlinear kinetic rate law. Column deformation is largely dominated by viscous creep, with a closure rate that depends linearly on porosity. This behavior causes the dehydration reaction to generate traveling porosity waves that transport increased fluid pressures within the slow slip region. To explore the possibility that the observed periodicity of slow slip and tremor in subduction zones can be explained by the migration of such porosity waves, we derive a dispersion relation that accurately describes our numerical results. We also obtain an expression for how the thickness of the dehydrating layer is expected to vary as a function of the parameters in the reaction rate law. Although the amplitudes of pore pressure perturbations rival those that are produced by known external forcings (e.g., tides or passing surface waves), our analysis suggests that given reasonable estimates of rock viscosity, permeabilities in the range 6.5×10-15 to 5×10-10 m2 are required for porosity wave trains to form at periods comparable to those of slow slip and tremor.

  16. Reference chart for relative weight change to detect hypernatraemic dehydration

    PubMed Central

    van Dommelen, Paula; van Wouwe, Jacobus P; Breuning‐Boers, Jacqueline M; van Buuren, Stef; Verkerk, Paul H

    2007-01-01

    Objective The validity of the rule of thumb that infants may have a weight loss of 10% in the first days after birth is unknown. We assessed the validity of this and other rules to detect breast‐fed infants with hypernatraemic dehydration. Design A reference chart for relative weight change was constructed by the LMS method. The reference group was obtained by a retrospective cohort study. Participants 1544 healthy, exclusively breast‐fed infants with 3075 weight measurements born in the Netherlands and 83 cases of breast‐fed infants with hypernatraemic dehydration obtained from literature. Results The rule of thumb had a sensitivity of 90.4%, a specificity of 98.3% and a positive predictive value of 3.7%. Referring infants if their weight change is below −2.5 SDS (0.6th centile) in the reference chart in the first week of life and using the rule of thumb in the second week had a sensitivity of 85.5%, a specificity of 99.4% and a positive predictive value of 9.2%. Conclusions The rule of thumb is likely to produce too many false positive results, assuming that for screening purposes the specificity needs to be high. A chart for relative weight change can be helpful to detect infants with hypernatraemic dehydration. PMID:16880225

  17. Hypernatraemic dehydration and acute gastro-enteritis in children.

    PubMed

    Abu-Ekteish, F; Zahraa, J

    2002-09-01

    A prospective study was conducted over a 2-year period to detect the effect of feeding practice, in particular the role of artificial milk formulae, in children admitted with hypernatraemic dehydration (serum sodium > or = 150 mmol/L) caused by acute gastro-enteritis, and to record morbidity and mortality in these patients. A control group was selected from infants and children admitted with gastro-enteritis but normal sodium levels. Sixty-seven children aged 18 days to 18 months (mean 6.9 months) were studied and represented 4.6% of all children admitted during the study with acute gastro-enteritis. Their mean serum sodium level was 161 mmol/L, the highest being 194 mmol/L. Twenty-four infants (36%) with hypernatraemic dehydration were on evaporated cow's milk powder compared with ten (15%) in the control group (p < 0.01). Five hypernatraemic infants (7.5%) were breastfed compared with 40 (60%) isonatraemic controls (p < 0.00001). Six children from the hypernatraemic group developed convulsions and two died. Hypernatraemic dehydration remains an important and serious complication in infants with gastro-enteritis in our area. Artificial milk feeding, particularly the use of evaporated cow's milk powder, is a predisposing factor for hypernatraemia in infantile gastro-enteritis. This study emphasises the importance of breast-feeding and the need to educate mothers to avoid giving evaporated cow's milk formulae to babies under 1 year of age if breast-feeding is not possible.

  18. Dehydration influences mood and cognition: a plausible hypothesis?

    PubMed

    Benton, David

    2011-05-01

    The hypothesis was considered that a low fluid intake disrupts cognition and mood. Most research has been carried out on young fit adults, who typically have exercised, often in heat. The results of these studies are inconsistent, preventing any conclusion. Even if the findings had been consistent, confounding variables such as fatigue and increased temperature make it unwise to extrapolate these findings. Thus in young adults there is little evidence that under normal living conditions dehydration disrupts cognition, although this may simply reflect a lack of relevant evidence. There remains the possibility that particular populations are at high risk of dehydration. It is known that renal function declines in many older individuals and thirst mechanisms become less effective. Although there are a few reports that more dehydrated older adults perform cognitive tasks less well, the body of information is limited and there have been little attempt to improve functioning by increasing hydration status. Although children are another potentially vulnerable group that have also been subject to little study, they are the group that has produced the only consistent findings in this area. Four intervention studies have found improved performance in children aged 7 to 9 years. In these studies children, eating and drinking as normal, have been tested on occasions when they have and not have consumed a drink. After a drink both memory and attention have been found to be improved.

  19. Mass transfer kinetics during osmotic dehydration of pomegranate arils.

    PubMed

    Mundada, Manoj; Hathan, Bahadur Singh; Maske, Swati

    2011-01-01

    The mass transfer kinetics during osmotic dehydration of pomegranate arils in osmotic solution of sucrose was studied to increase palatability and shelf life of arils. The freezing of the whole pomegranate at -18 °C was carried out prior to osmotic dehydration to increase the permeability of the outer cellular layer of the arils. The osmotic solution concentrations used were 40, 50, 60°Bx, osmotic solution temperatures were 35, 45, 55 °C. The fruit to solution ratio was kept 1:4 (w/w) during all the experiments and the process duration varied from 0 to 240 min. Azuara model and Peleg model were the best fitted as compared to other models for water loss and solute gain of pomegranate arils, respectively. Generalized Exponential Model had an excellent fit for water loss ratio and solute gain ratio of pomegranate arils. Effective moisture diffusivity of water as well as solute was estimated using the analytical solution of Fick's law of diffusion. For above conditions of osmotic dehydration, average effective diffusivity of water loss and solute gain varied from 2.718 × 10(-10) to 5.124 × 10(-10) m(2)/s and 1.471 × 10(-10) to 5.147 × 10(-10) m(2)/s, respectively. The final product was successfully utilized in some nutritional formulations such as ice cream and bakery products. PMID:21535673

  20. Dehydration of different ketoses and aldoses to 5-hydroxymethylfurfural.

    PubMed

    van Putten, Robert-Jan; Soetedjo, Jenny N M; Pidko, Evgeny A; van der Waal, Jan C; Hensen, Emiel J M; de Jong, Ed; Heeres, Hero J

    2013-09-01

    5-Hydroxymethylfurfural (HMF) is considered an important building block for future bio-based chemicals. Here, we present an experimental study using different ketoses (fructose, sorbose, tagatose) and aldoses (glucose, mannose, galactose) under aqueous acidic conditions (65 g L(-1) substrate, 100-160 °C, 33-300 mM H2 SO4 ) to gain insights into reaction pathways for hexose dehydration to HMF. Both reaction rates and HMF selectivities were significantly higher for ketoses than for aldoses, which is in line with literature. Screening and kinetic experiments showed that the reactivity of the different ketoses is a function of the hydroxyl group orientation at the C3 and C4 positions. These results, in combination with DFT calculations, point to a dehydration mechanism involving cyclic intermediates. For aldoses, no influence of the hydroxyl group orientation was observed, indicating a different rate-determining step. The combination of the knowledge from the literature and the findings in this work indicates that aldoses require an isomerization to ketose prior to dehydration to obtain high HMF yields. PMID:24039165

  1. Inhibition of plasma vasopressin after drinking in dehydrated humans

    NASA Technical Reports Server (NTRS)

    Geelen, G.; Keil, L. C.; Kravik, S. E.; Wade, C. E.; Thrasher, T. N.; Barnes, P. R.; Pyka, G.; Nesvig, C.; Greenleaf, J. E.

    1984-01-01

    The effects of nonosmotic and nonvolumetric factors on vasopressin secretion in dehydrated humans has been investigated experimentally, before and after drinking. The subjects of the experiment were five adult men and three adult women weighing 69-77 kg. In order to determine the influence of nonosmotic and nonvolumetric factors on vasopressin secretion, measurements were obtained of the following blood hematological indices: serum Na(+) content; serum K(+) content; osmolality; and hemoglobin. Measurements of hematocrit, plasma arginine vasopressin (AVP), aldosterone, and renin activity were also obtained. It is found that dehydration increased mean serum Na(+) content, osmolality,and AVP. No significant changes were observed in renin activity, hemoglobin, hematocrit, or plasma volume, while plasma aldosterone increased from 11.1 ng/dl after dehydration to 15.6 ng/dl between 30 and 60 min after drinking. A rapid fall of AVP content following rehydration occurred in the absence of changes in the primary regulators of AVP osmolality and plasma volume, with no change in blood pressure. On the basis of the experimental results, it is suggested that oropharyngeal factors may be the mechanism, for the observed decrease in AVP following rehydration.

  2. Inhibition of chloroplastic respiration by osmotic dehydration. [Spinacia oleracea L

    SciTech Connect

    Willeford, K.O.; Ahluwalia, K.J.K.; Gibbs, M. )

    1989-04-01

    The respiratory capacity of isolated spinach (Spinacia oleracea L.) chloroplasts, measured as the rate of {sup 14}CO{sub 2} evolved from the oxidative pentose phosphate cycle in darkened chloroplasts exogenously supplied with ({sup 14}C)glucose, was progressively diminished by escalating osmotic dehydration with betaine or sorbitol. Comparing the inhibitions of CO{sub 2} evolution generated by osmotic dehydration in chloroplasts given C-1 and C-6 labeled glucose, 54% and 84%, respectively, indicates that osmotic dehydration effects to a greater extent the recycling of the oxidative pentose phosphate intermediates, fructose-6P and glyceraldehyde-3P. Respiratory inhibition in the darkened chloroplast could be alleviated by addition of NH{sub 4}Cl (a stromal alkylating agent), iodoacetamide (an inhibitor of glyceraldehyde-3P dehydrogenase), or glycolate-2P (an inhibitor of phosphofructokinase). It is concluded that the site which primarily mediates respiratory inhibition in the darkened chloroplast occurs at the fructose 1,6-bisphosphatase/phosphofructokinase junction.

  3. Structural characterisation and dehydration behaviour of siramesine hydrochloride.

    PubMed

    Zimmermann, Anne; Tian, Fang; de Diego, Heidi Lopez; Frydenvang, Karla; Rantanen, Jukka; Elema, Michiel Ringkjøbing; Hovgaard, Lars

    2009-10-01

    In this study the crystal structures of siramesine hydrochloride anhydrate alpha-form and siramesine hydrochloride monohydrate were determined, and this structural information was used to explain the physicochemical properties of the two solid forms. In the crystal structure of the monohydrate, each water molecule is hydrogen bonded to two chloride ions, and thus the water is relatively strongly bound in the crystal. No apparent channels for dehydration were observed in the monohydrate structure, which could allow transmission of structural information during dehydration. Instead destructive dehydration occurred, where the elimination of water from the monohydrate resulted in the formation of an oily phase, which subsequently recrystallised into one or more crystalline forms. Solubility and intrinsic dissolution rate of the anhydrate alpha-form and the monohydrate in aqueous media were investigated and both were found to be lower for the monohydrate compared to the anhydrate alpha-form. Finally, the interactions between water molecules and chloride ions in the monohydrate as well as changes in packing induced by water incorporation could be detected by spectroscopic techniques.

  4. Modelling of mass transfer kinetic in osmotic dehydration of kiwifruit

    NASA Astrophysics Data System (ADS)

    Jabrayili, Sharokh; Farzaneh, Vahid; Zare, Zahra; Bakhshabadi, Hamid; Babazadeh, Zahra; Mokhtarian, Mohsen; Carvalho, Isabel S.

    2016-04-01

    Osmotic dehydration characteristics of kiwifruit were predicted by different activation functions of an artificial neural network. Osmotic solution concentration (y1), osmotic solution temperature (y2), and immersion time (y3) were considered as the input parameters and solid gain value (x1) and water loss value (x2) were selected as the outlet parameters of the network. The result showed that logarithm sigmoid activation function has greater performance than tangent hyperbolic activation function for the prediction of osmotic dehydration parameters of kiwifruit. The minimum mean relative error for the solid gain and water loss parameters with one hidden layer and 19 nods were 0.00574 and 0.0062% for logarithm sigmoid activation function, respectively, which introduced logarithm sigmoid function as a more appropriate tool in the prediction of the osmotic dehydration of kiwifruit slices. As a result, it is concluded that this network is capable in the prediction of solid gain and water loss parameters (responses) with the correlation coefficient values of 0.986 and 0.989, respectively.

  5. Gunion - Nevada`s most innovative geothermal food dehydration facility

    SciTech Connect

    Trexler, D.T.; Taylan, G.; Stewart, M.B.; Baker, S.

    1995-12-31

    The Gunion (garlic and onion) dehydration plant, owned and operated by Integrated Ingredients, a Division of Burns Philp Food, Incorporated, uses geothermal fluids at a temperature of 306{degrees}F to dehydrate 50 to 70-thousand pounds per day of garlic and onions. The geothermal fluids are provided by Empire Farms, who has the rights for development of the resource and is the lease holder of fee land known as the Kosmos Lease. The San Emidio KGRA is located in northern Washoe County, 90 miles north-northeast of Reno, Nevada and 20 miles south of Gerlach, Nevada. Geothermal fluids exit the plant at 242{degrees}F and are piped to an injection well located 3,000 feet south-southwest of the plant. The plant location was selected not only for the geothermal resource, but also for the area`s low relative humidity. Currently, 1100-1200 gpm of geothermal fluids, at an inlet temperature of 302{degrees}F, are sufficient to provide the dryer line with ample BTU`s. Three geothermal wells drilled to depths ranging from 493 to 1817 feet produce fluids ranging in temperature from 266 to 306{degrees}F. One well can easily provide the heat required by the dryer line and will be capable of providing heat for a planned three-fold expansion of the facility. The remaining two wells are used as backup, or may be used for other applications such as soil sterilization. The fluid exiting the plant at 242{degrees}F may be cascaded and used for greenhouses and soil warming in the future. Geothermal heat is also used to dehumidify onions placed in the cold storage facility. The dehydration process takes 5-6 hours to dry the product to a 4.5% moisture content. The dried product is then milled to various sizes from powder to granules. The dehydration plant operates 24 hours/day 7 days a week. Currently 80 people are employed full-time at the plant. The dehydrated onion and garlic are used in condiments, soups, sauces and salad dressing.

  6. Slab dehydration recorded in subducted serpentine sea-mount

    NASA Astrophysics Data System (ADS)

    Okamoto, K.; Fukumura, S.; Ishimori, C.; Jung, H.

    2014-12-01

    It has been considered that there is a correlation between the double seismic zones and metamorphic dehydration reaction in deep slab. The lower seismic plane of the double seismic zone is considered to be located on the 600 oC isotherm in the subducting lithosphere. Antigorite terminal reaction is highly temperature sensitive around 600 oC. Therefore it has been proposed that the oceanic lithosphere was hydrated forming serpentine prior to subduction, then serpentine was decomposed to release fluid causing dehydration embrittlement in the slab. In order to unravel relation between dehydration and seismic deformation, we have investigated dehydration process of natural metamorphic rocks recording very cold geothermal history in the crust and lithosphere in the slab. Metamorphic olivine after antigorite has been described in Italian Alps and also from the Mt. Shiraga, Japan [1]. However, the olivine was formed with talc and fluid by antigorite breakdown reaction in pressures lower than 1.5 GPa. Spinifex olivine with opx in the Cerro del Almirez [2], is the product at pressures (P > 1.5 GPa) relevant to the lower seismic plane beneath Northeast Japan. It clearly indicates the presence of large amount of water facilitate crystallization of elongated olivine with opx. It is also supported by LPO pattern of olivines determined by EBSD. Fine-grained olivine-rich samples shows that Type-C fabric pattern is dominant, suggesting deformation under water-rich condition [3]. With metamorphic olivines, chlorite was also recrystallized, suggesting that water would be transported farther down to deep. The estimated dehydration reaction has a negative P-T slope at pressures higher than 1.5 GPa. The reaction is volume reducing reaction and the olivine-opx spinifex texture was formed under volume reducing reaction. In the warm slab beneath SW Japan, the reaction has a positive slope in P-T space and forms olivine+talc+fluid. From microstrucral and petrological analysis of the

  7. Effects of dehydration and rehydration on thermoregulatory sweating in goats.

    PubMed Central

    Baker, M A

    1989-01-01

    1. Measurement of rectal temperature (Tr), sweat rate, respiratory frequency (f) and respiratory evaporation (Eresp) were made in one Nubian and four Alpine-Toggenberg goats while they stood for 90 min in a climate chamber at 40 degrees C ambient temperature (Ta). The animals were studied when they were hydrated, when they had been dehydrated by 48 h water deprivation, and when they were rehydrated by voluntary drinking of water or saline or by intraruminal water administration. Plasma osmolality (Posm), plasma protein concentration (PP) and haematocrit (Hct) were measured before every experiment and before and after voluntary drinking. 2. Hydrated animals increased evaporation by panting and sweating during heat exposure and Tr rose about 1 degree C. The rate of sweating was as high or higher than Eresp. Dehydrated animals had lower sweat rates and higher Tr than hydrated animals, but f and Eresp were the same in hydrated and dehydrated animals. 3. When dehydrated goats were allowed to drink after 60 min of heat exposure, sweating began abruptly within 3 min of the start of drinking in every animal whether water or saline was drunk. Sweat rate returned to hydrated levels or higher before any change occurred in Posm, PP or Hct. Respiratory frequency was higher after drinking than in dehydrated animals which were not allowed to drink. 4. When water was administered by rumen tube after 60 min of heat exposure, sweating in the Nubian occurred with a short latency, similar to the onset after drinking. In the other four animals, sweating onset occurred on average at 13 min 42 s after intraruminal water administration. 5. It is concluded that sweating is a significant avenue of evaporative heat loss in these goats when they are hydrated and exposed to high Ta. Sweat rate is markedly reduced after water deprivation but returns to hydrated levels within 3 min after the start of drinking. The rapid recovery of sweating after voluntary drinking is not initiated by changes in

  8. Analysis of Dehydration and Strength in Elite Badminton Players

    PubMed Central

    Abián-Vicén, Javier; Del Coso, Juan; González-Millán, Cristina; Salinero, Juan José; Abián, Pablo

    2012-01-01

    Background The negative effects of dehydration on aerobic activities are well established. However, it is unknown how dehydration affects intermittent sports performance. The purpose of this study was to identify the level of dehydration in elite badminton players and its relation to muscle strength and power production. Methodology Seventy matches from the National Spanish badminton championship were analyzed (46 men’s singles and 24 women’s singles). Before and after each match, jump height and power production were determined during a countermovement jump on a force platform. Participants’ body weight and a urine sample were also obtained before and after each match. The amount of liquid that the players drank during the match was also calculated by weighing their individual drinking bottles. Results and Discussion Sweat rate during the game was 1.14±0.46 l/h in men and 1.02±0.64 l/h in women. The players rehydrated at a rate of 1.10±0.55 l/h and 1.01±0.44 l/h in the male and female groups respectively. Thus, the dehydration attained during the game was only 0.37±0.50% in men and 0.32±0.83% in women. No differences were found in any of the parameters analyzed during the vertical jump (men: from 31.82±5.29 to 32.90±4.49 W/kg; p>0.05, women: from 26.36±4.73 to 27.25±4.44 W/kg; p>0.05). Post-exercise urine samples revealed proteinuria (60.9% of cases in men and 66.7% in women), leukocyturia (men = 43.5% and women = 50.0%) and erythrocyturia (men = 50.0% and women = 21.7%). Conclusions Despite a moderate sweat rate, badminton players adequately hydrated during a game and thus the dehydration attained was low. The badminton match did not cause muscle fatigue but it significantly increased the prevalence of proteinuria, leukocyturia and erythrocyturia. PMID:22666396

  9. [Preparation and analysis of dehydrated mixtures of vegetables and underutilized fish species flours: I. Dehydrated mixtures of cereal-fish].

    PubMed

    Luna, G; Rey, J L; Castro, L M; Corona, N; Ferreiros, E; Luzardo, M

    1990-09-01

    For the purpose of providing possible solutions to the malnutrition problems affecting those populations where cereals and tubers form an important portion of their daily intake, products were prepared from dehydrated mixtures of cereals and under-utilized fish, but which contain high-quality protein. Two cereals were selected for our experiments: rice and corn, and a marine under-utilized fish species (Macrodon ancyclodon). The minced fish muscle recovered by mechanical deboning was mixed with the cereal, obtaining mixtures with 5%, 10% and 15% fish on a dry basis. Feeding experiments using Wistar weaning rats were then carried out to evaluate the most important characteristics. An amino acid profile which reflected high-quality protein was obtained, as evidenced by the excellent PER, NPU, NPR and digestibility values determined. The dehydrated mixtures of fish/cereal flour prepared with 5% and up to 10% fish (dry basis), did not present any odour, but as of the 15% level, fish odour was perceived. Therefore, the use of dehydrated mixtures of fish/cereal flours with up to 10% fish in preparing food products, is recommended, since these would be of great help in solving the scarcity of good-quality protein, particularly in the developing countries. PMID:2134143

  10. Dehydration-induced vasopressin secretion in humans: involvement of the histaminergic system.

    PubMed

    Kjaer, A; Knigge, U; Jørgensen, H; Warberg, J

    2000-12-01

    In rats, the hypothalamic neurotransmitter histamine participates in regulation of vasopressin secretion and seems to be of physiological importance, because blockade of the histaminergic system reduces dehydration-induced vasopressin secretion. We investigated whether histamine is also involved in regulation of vasopressin secretion during dehydration in humans. We found that 40 h of dehydration gradually increased plasma osmolality by 10 mosmol/kg and induced a fourfold increase in vasopressin levels. Pretreatment with the H(2)-receptor antagonists cimetidine or ranitidine significantly reduced the dehydration-induced increase in vasopressin levels approximately 40% after 34 and 37 h of dehydration, whereas this was not the case with the H(1)-receptor antagonist mepyramine. Dehydration reduced aldosterone secretion by approximately 50%. This effect of dehydration was reduced by both H(1)- and H(2)-receptor blockade after 16 and/or 34 h of dehydration. We conclude that vasopressin secretion in response to dehydration in humans is under the regulatory influence of histamine and that the effect seems to be mediated via H(2)-receptors. In addition, the regulation of aldosterone secretion during dehydration also seems to involve the histaminergic system via H(1) and H(2) receptors.

  11. Effect of Dehydration Reaction on Serpentinite Deformation in Torsion

    NASA Astrophysics Data System (ADS)

    Vinciguerra, S.; Trovato, C.; Meredith, P. G.; Benson, P. M.; Hirose, T.; Bystricky, M.; Stünitz, H.; Kunze, K.

    2003-12-01

    Dehydration of serpentine to olivine, talc and water during deformation is critical for understanding the possible localization of deformation into shear zones and the generation of earthquakes along subduction zones. In order to investigate the effect of the dehydration reaction on the strength and ductility of serpentinite, torsion experiments were performed using a Paterson high PT torsion rig at constant shear strain rates of 10-4 to 10-5 s-1, temperatures of 550 to 750 ° C and a confining pressure of 300 MPa, to local shear strains up to γ = 3. We deformed two types of serpentinite: antigorite from Val Malenco, Italy, a high-temperature phase of serpentine (stable at T <500 ° C), and lizardite from Elba, Italy, a low-temperature phase of serpentine (stable at T <400 ° C). Most of the samples were shaped in dog-bone geometry with a central hole along their axial direction which acted as a fluid conduit, enabling an easy escape for any released fluid during the dehydration reaction. We also deformed solid bone-shaped specimens to compare the mechanical behavior of solid and hollow specimens. In both cases, porous alumina spacers were placed on both end sides of specimen and led to the atmosphere through the pore pressure line. Thus our experiments were performed under drained conditions. Antigorite deformed in the semi-brittle field at the run conditions. Visible faults formed probably due to reaction-induced fracturing, and the stress started to drop just after the initial peak stress ( ˜350 MPa at 650 to 700 ° C and ˜280 MPa at 750 ° C). Highly comminuted grains with various sizes along the faults were identified as partially dehydrated antigorite (H2O ˜6 wt%) at 650 ° C and olivine and talc at >700 ° C. Mechanical behavior after the peak stress is thought to occur by cataclastic flow, possibly assisted by diffusion mass transfer processes of these fine-grained reactant minerals. We have also investigated the effect of pre-heating on the strength of

  12. Improvements in the order, isotropy and electron density of glypican-1 crystals by controlled dehydration

    PubMed Central

    Awad, Wael; Svensson Birkedal, Gabriel; Thunnissen, Marjolein M. G. M.; Mani, Katrin; Logan, Derek T.

    2013-01-01

    The use of controlled dehydration for improvement of protein crystal diffraction quality is increasing in popularity, although there are still relatively few documented examples of success. A study has been carried out to establish whether controlled dehydration could be used to improve the anisotropy of crystals of the core protein of the human proteoglycan glypican-1. Crystals were subjected to controlled dehydration using the HC1 device. The optimal protocol for dehydration was developed by careful investigation of the following parameters: dehydration rate, final relative humidity and total incubation time T inc. Of these, the most important was shown to be T inc. After dehydration using the optimal protocol the crystals showed significantly reduced anisotropy and improved electron density, allowing the building of previously dis­ordered parts of the structure. PMID:24311593

  13. Improvements in the order, isotropy and electron density of glypican-1 crystals by controlled dehydration.

    PubMed

    Awad, Wael; Svensson Birkedal, Gabriel; Thunnissen, Marjolein M G M; Mani, Katrin; Logan, Derek T

    2013-12-01

    The use of controlled dehydration for improvement of protein crystal diffraction quality is increasing in popularity, although there are still relatively few documented examples of success. A study has been carried out to establish whether controlled dehydration could be used to improve the anisotropy of crystals of the core protein of the human proteoglycan glypican-1. Crystals were subjected to controlled dehydration using the HC1 device. The optimal protocol for dehydration was developed by careful investigation of the following parameters: dehydration rate, final relative humidity and total incubation time Tinc. Of these, the most important was shown to be Tinc. After dehydration using the optimal protocol the crystals showed significantly reduced anisotropy and improved electron density, allowing the building of previously disordered parts of the structure. PMID:24311593

  14. Mechanisms of aerobic performance impairment with heat stress and dehydration.

    PubMed

    Cheuvront, Samuel N; Kenefick, Robert W; Montain, Scott J; Sawka, Michael N

    2010-12-01

    Environmental heat stress can challenge the limits of human cardiovascular and temperature regulation, body fluid balance, and thus aerobic performance. This minireview proposes that the cardiovascular adjustments accompanying high skin temperatures (T(sk)), alone or in combination with high core body temperatures (T(c)), provide a primary explanation for impaired aerobic exercise performance in warm-hot environments. The independent (T(sk)) and combined (T(sk) + T(c)) effects of hyperthermia reduce maximal oxygen uptake (Vo(2max)), which leads to higher relative exercise intensity and an exponential decline in aerobic performance at any given exercise workload. Greater relative exercise intensity increases cardiovascular strain, which is a prominent mediator of rated perceived exertion. As a consequence, incremental or constant-rate exercise is more difficult to sustain (earlier fatigue) or requires a slowing of self-paced exercise to achieve a similar sensation of effort. It is proposed that high T(sk) and T(c) impair aerobic performance in tandem primarily through elevated cardiovascular strain, rather than a deterioration in central nervous system (CNS) function or skeletal muscle metabolism. Evaporative sweating is the principal means of heat loss in warm-hot environments where sweat losses frequently exceed fluid intakes. When dehydration exceeds 3% of total body water (2% of body mass) then aerobic performance is consistently impaired independent and additive to heat stress. Dehydration augments hyperthermia and plasma volume reductions, which combine to accentuate cardiovascular strain and reduce Vo(2max). Importantly, the negative performance consequences of dehydration worsen as T(sk) increases.

  15. Impact of dehydration on a full body resistance exercise protocol.

    PubMed

    Kraft, Justin A; Green, James M; Bishop, Phillip A; Richardson, Mark T; Neggers, Yasmin H; Leeper, James D

    2010-05-01

    This study examined effects of dehydration on a full body resistance exercise workout. Ten males completed two trials: heat exposed (with 100% fluid replacement) (HE) and dehydration (approximately 3% body mass loss with no fluid replacement) (DEHY) achieved via hot water bath (approximately 39 degrees C). Following HE and DEHY, participants performed three sets to failure (using predetermined 12 repetition maximum) of bench press, lat pull down, overhead press, barbell curl, triceps press, and leg press with a 2-min recovery between each set and 2 min between exercises. A paired t test showed total repetitions (all sets combined) were significantly lower for DEHY: (144.1 +/- 26.6 repetitions) versus HE: (169.4 +/- 29.1 repetitions). ANOVAs showed significantly lower repetitions (approximately 1-2 repetitions on average) per exercise for DEHY versus HE (all exercises). Pre-set rate of perceived exertion (RPE) and pre-set heart rate (HR) were significantly higher [approximately 0.6-1.1 units on average in triceps press, leg press, and approached significance in lat pull down (P = 0.14) and approximately 6-13 b min(-1) on average in bench press, lat pull down, triceps press, and approached significance for overhead press (P = 0.10)] in DEHY versus HE. Session RPE difference approached significance (DEHY: 8.6 +/- 1.9, HE: 7.4 +/- 2.3) (P = 0.12). Recovery HR was significantly higher for DEHY (116 +/- 15 b min(-1)) versus HE (105 +/- 13 b min(-1)). Dehydration (approximately 3%) impaired resistance exercise performance, decreased repetitions, increased perceived exertion, and hindered HR recovery. Results highlight the importance of adequate hydration during full body resistance exercise sessions.

  16. Thirst perception and drinking in euhydrate and dehydrate human subjects.

    PubMed

    Obika, L F O; Idu, F K; George, G O; Ajayi, O I; Mowoe, R S

    2009-06-01

    Studies on how the body senses the need to correct extracellular and intracellular volumes and ionic concentration changes is relatively scanty. The present studies were designed to determine the effect of oral distilled water (DW) and saline loads, gargling with DW and DW preload on thirst perception (TP) and drinking in euhydrate and dehydrated subjects. The subjects were healthy male volunteers between the ages of 17 and 35 years. Group A subjects were given DW or various concentrations of sodium chloride [NaCl] orally. Subjects in groups B, C and D were dehydrated for 18 hours before the experiment. Group B gargled 500 ml of DW in divided volume of 50 ml at five minutes interval over a period of 50 minutes. Group C gargled with DW and different concentrations of NaCl. Group D were preloaded with four volumes of DW before ad libitum DW intake. TP was rated using the Visual Analogue Scale. Results showed that in Group A, drinking DW reduced TP, suggesting that baseline TP in normal euhydrate subjects is slightly elevated. Drinking DW reduced TP more than drinking NaCl solutions. Gargling resulted in a gradual fall in TP. The decrease in TP was statistically significant after 30 minutes of gargling. Gargling with different concentrations of NaCl solutions resulted in significant reductions in TP in all the groups. There was a significant decrease in TP in the group preloaded with 1000 ml of distilled water at 5 minutes of rehydration. At 20 minutes TP was abolished suggesting that approximately 1000 ml of water was needed for the rehydration. These results show that baseline TP in euhydrates is elevated and that TP increases in dehydrated subjects. Gargling reduces TP, but did not abolish thirst. It is suggested that a fall in plasma osmolality due to drinking may be responsible for abolishing thirst. PMID:19826461

  17. Observations of denitrification and dehydration in the winter polar stratospheres

    NASA Technical Reports Server (NTRS)

    Fahey, D. W.; Kelly, K. K.; Kawa, S. R.; Tuck, A. F.; Loewenstein, M.

    1990-01-01

    It is argued that denitrification of the Arctic stratosphere can be explained by the selective growth and sedimentation of aerosol particles rich in nitric acid. Because reactive nitrogen species moderate the destruction of ozone by chlorine-catalyzed reactions by sequestering chlorine in reservoir species such as ClONO2, the possibility of the removal of reactive nitrogen without dehydration should be allowed for in attempts to model ozone depletion in the Arctic. Indeed, denitrification along with elevated concentrations of reactive chlorine observed in 1989 indicate that the Arctic was chemically primed for ozone destruction without an extended period of temperatures below the frost point, as is characteristic of the Antarctic.

  18. Dehydration of incoming sediments at the Japan Trench

    NASA Astrophysics Data System (ADS)

    Shimizu, M.; Kameda, J.; Hamada, Y.; Tanikawa, W.; Kimura, G.

    2014-12-01

    In the 2011 Tohoku-oki earthquake, the seismic fault slip propagated to the trench axis and caused an extremely large tsunami (Ide et al., 2011). Ductile deformation of unconsolidated sediments is commonly prominent in the aseismic shallow parts of the subduction zone. It is unknown how the seismic rupture reached the nearby trench axis. Based on the result of Deep Sea Drilling Project (DSDP) Leg 56 at site 436 (reference, 1977), it is expected that the subducting sediments at the Japan Trench mainly consist of vitric diatomaceous and radiolarian ooze with pelagic clay intervals. Opal and smectite in the pelagic sediments transform respectively into quartz and illite. Kinetic modeling demonstrated that these reactions will progress with active dehydration at 50-60 km horizontally away from the trench axis and with a temperature of 100-120°C. This region coincides with the plate-boundary marked by a prominent seismic reflector. It suggests that the main source of highly pressured fluids is the dehydration of pelagic sediments (Kimura et al., 2012). However, detailed dehydration processes are still unclear mainly due to lack of quantitative sediment composition data. Therefore, in this study, we examined whole rock composition including amorphous silica of the core samples recovered at site 436 as well as those from the Japan Trench by the IODP 343 Japan Trench Fast Drilling Project (JFAST). Analysis of amorphous silica at the drilling site of J-FAST documents that dehydration of the sediments is able to contribute to excess pressure at the shallow part of the megathrust if they underthrust as the same composition. At the drilling site of JFAST, a plate-boundary shear zone was identified around 820 mbsf (Chester et al., 2012). Our analysis showed that the shear zone is characterized by extremely high concentration of smectite (~70 wt%).These results suggest that the abundant smectite may have possibly fostered localized rupture and slip during the earthquake

  19. Dehydration of incoming sediments at the Japan Trench

    NASA Astrophysics Data System (ADS)

    Shimizu, M.; Kameda, J.; Hamada, Y.; Kimura, G.

    2013-12-01

    In the 2011 Tohoku-oki earthquake, the seismic fault slip propagated close to the axis of the Japan Trench and caused an extremely large tsunami (Ide et al., 2011). It is generally considered that ductile deformation of unconsolidated sediments is commonly prominent in the aseismic shallow parts of the subduction zone. Therefore, it is unknown how the seismic rupture reached the nearby trench axis. The plate-boundary megathrust of the Japan Trench is characterized by a prominent seismic reflector, suggesting that the megathrust may host highly pressurized fluids (Kimura et al., 2012). Based on the result of Deep Sea Drilling Project (DSDP) Leg 56 at site 436 (reference, 1977), it is expected that the subducting sediments at the Japan Trench mainly consist of vitric diatomaceous and radiolarian ooze with pelagic clay intervals. Opal-A in the pelagic sediments transforms into quartz, and smectite transforms into illite. Kinetic modeling demonstrated that these reactions will progress with active dehydration at 50-60 km horizontally away from the deformation front and with a temperature of 100-120°C. This region coincides with the plate-boundary marked by a prominent seismic reflector, and suggests that the main source of highly pressured fluids is the dehydration of pelagic sediments (Kimura et al., 2012). However, detailed dehydration processes are still unclear mainly due to lack of quantitative sediment composition data. Therefore, in this study, we examined whole rock composition including amorphous silica of the core samples recovered at site 436 as well as those from the Japan Trench by the IODP 343 Japan Trench Fast Drilling Project (JFAST). Analysis of amorphous silica at site 436 documents that dehydration of the sediments is able to contribute to excess pressure at the shallow part of the megathrust if they underthrust as the same composition. At the drilling site of JFAST, a plate-boundary shear zone was identified around 820 mbsf, which was supposed to

  20. Mechanistic insights into the rhenium-catalyzed alcohol-to-olefin dehydration reaction.

    PubMed

    Korstanje, Ties J; Jastrzebski, Johann T B H; Klein Gebbink, Robertus J M

    2013-09-23

    Rhenium-based complexes are powerful catalysts for the dehydration of various alcohols to the corresponding olefins. Here, we report on both experimental and theoretical (DFT) studies into the mechanism of the rhenium-catalyzed dehydration of alcohols to olefins in general, and the methyltrioxorhenium-catalyzed dehydration of 1-phenylethanol to styrene in particular. The experimental and theoretical studies are in good agreement, both showing the involvement of several proton transfers, and of a carbenium ion intermediate in the catalytic cycle.

  1. Nycthemeral variation in thermal dehydration-induced thirst.

    PubMed

    Barney, C C; Vergoth, C; Renkema, L A; Meeuwsen, K W

    1995-08-01

    Temporal variation in spontaneous water intake in rats is well established but little is known about temporal variation in water intake following dehydration. In the present study different male Sprague-Dawley strain rats were exposed without water for 3 h to either a 25 degrees C or a 40 degrees C environment every 4 h for 20 h. The rats were then allowed access to water in a 25 degrees C environment for 2 h. Rats exposed to 25 degrees C showed significant temporal variation in evaporative water loss, urine output, urine sodium and potassium excretion, water intake, and percent rehydration with higher values occurring during the night. Rats exposed to 40 degrees C had greater evaporative water loss, urine sodium excretion, feces output and water intake than the rats exposed to 25 degrees C and had temporal variations which were similar to those of the rats exposed to 25 degrees C. The robust effects of thermal-dehydration on water balance in rats are additive to rather than interactive with the effects of time of day.

  2. Hypernatraemic dehydration in the Hail region of Saudi Arabia.

    PubMed

    Mehasi, A I; Murthy, K

    1990-01-01

    Infants presenting with hypernatraemic dehydration were studied prospectively in order to describe its incidence and the predisposing factors. Five hundred and twenty children with gastroenteritis were admitted to the Paediatric Unit of Hail General Hospital over a 1-year period from 1 June 1985 to 1 June 1986. Twenty-five children (4.8%) had hypernatraemia (Na+ greater than 150 mmol/l) and all 25 were under 1 year of age, 23 (92%) being under 6 months. Twenty (80%) came from families living in the villages and had a poor educational background. All the babies were bottle-fed. The majority of the mothers did not know how to prepare food hygienically and with the appropriate water/milk proportions. Most of the infants presented with high fever (+39 degrees C) and the majority were underweight for their age. Two babies died and one had evidence of neurological damage. This study indicates that the incidence of hypernatraemic dehydration is significant in this region and causes serious morbidity and mortality. It confirms the importance of breast-feeding and the need to educate the public in the proper preparation of bottle feeds when breast-feeding is not possible.

  3. Calculation of dehydration absorbers based on improved phase equilibrium data

    SciTech Connect

    Oi, L.E.

    1999-07-01

    Dehydration using triethylene glycol (TEG) as an absorbent, is a standard process for natural gas treating. New and more accurate TEG/water equilibrium data have been measured between 1980 and 1990. However, this has not influenced much on the design methods of dehydration absorbers. Inaccurate equilibrium data have been extensively used in design calculations. When using data from a common source like Worley, an overall bubble cap tray efficiency between 25--40% has normally been recommended. This has resulted in a quite satisfactory and consistent design method. It is obvious that newer equilibrium data (Herskowitz, Parrish, Bestani) are more accurate. However, to achieve an improved design method, column efficiencies consistent with the new equilibrium data must be recommended. New equilibrium data have been correlated to an activity coefficient model for the liquid phase and combined with an equation of state for the gas phase. Performance data from the North Sea offshore platform Gullfaks C (drying 4--5 MMscmd) have been measured. The bubble cap column has been simulated, and the tray efficiency has been adjusted to fit the performance data. Tray efficiencies calculated with new equilibrium data are higher than 50%. Calculated tray efficiency values are dependent on the equilibrium data used. There are still uncertainties in equilibrium data for the TEC/water/natural gas system. When using accurate equilibrium data, an overall bubble cap tray efficiency of 40--50% and a Murphree efficiency of 55--70% can be expected at normal absorption conditions.

  4. Twin formation in hematite during dehydration of goethite

    NASA Astrophysics Data System (ADS)

    Saito, Genki; Kunisada, Yuji; Nomura, Takahiro; Sakaguchi, Norihito; Akiyama, Tomohiro

    2016-07-01

    Twin formation in hematite during dehydration was investigated using X-ray diffraction, electron diffraction, and high-resolution transmission electron microscopy (TEM). When synthetic goethite was heated at different temperatures between 100 and 800 °C, a phase transformation occurred at temperatures above 250 °C. The electron diffraction patterns showed that the single-crystalline goethite with a growth direction of [001]G was transformed into hematite with a growth direction of [100]H. Two non-equivalent structures emerged in hematite after dehydration, with twin boundaries at the interface between the two variants. As the temperature was increased, crystal growth occurred. At 800 °C, the majority of the twin boundaries disappeared; however, some hematite particles remained in the twinned variant. The electron diffraction patterns and high-resolution TEM observations indicated that the twin boundaries consisted of crystallographically equivalent prismatic (100) (010), and (1bar{1} 0) planes. According to the total energy calculations based on spin-polarized density functional theory, the twin boundary of prismatic (100) screw had small interfacial energy (0.24 J/m2). Owing to this low interfacial energy, the prismatic (100) screw interface remained after higher-temperature treatment at 800 °C.

  5. Osmotic dehydration of fruits and vegetables: a review.

    PubMed

    Yadav, Ashok Kumar; Singh, Satya Vir

    2014-09-01

    The main cause of perishability of fruits and vegetables are their high water content. To increase the shelf life of these fruits and vegetables many methods or combination of methods had been tried. Osmotic dehydration is one of the best and suitable method to increase the shelf life of fruits and vegetables. This process is preferred over others due to their vitamin and minerals, color, flavor and taste retention property. In this review different methods, treatments, optimization and effects of osmotic dehydration have been reviewed. Studied showed that combination of different osmotic agents were more effective than sucrose alone due to combination of properties of solutes. During the experiments it was found that optimum osmosis was found at approximately 40 °C, 40 °B of osmotic agent and in near about 132 min. Pretreatments also leads to increase the osmotic process in fruits and vegetables. Mass transfer kinetics study is an important parameter to study osmosis. Solids diffusivity were found in wide range (5.09-32.77 kl/mol) studied by Fick's laws of diffusion. These values vary depending upon types of fruits and vegetables and osmotic agents. PMID:25190823

  6. Enzyme dehydration using Microglassification™ preserves the protein's structure and function.

    PubMed

    Aniket; Gaul, David A; Bitterfield, Deborah L; Su, Jonathan T; Li, Victoria M; Singh, Ishita; Morton, Jackson; Needham, David

    2015-02-01

    Controlled enzyme dehydration using a new processing technique of Microglassification™ has been investigated. Aqueous solution microdroplets of lysozyme, α-chymotrypsin, catalase, and horseradish peroxidase were dehydrated in n-pentanol, n-octanol, n-decanol, triacetin, or butyl lactate, and changes in their structure and function were analyzed upon rehydration. Water solubility and microdroplet dissolution rate in each solvent decreased in the order: butyl lactate > n-pentanol > triacetin > n-octanol > n-decanol. Enzymes Microglassified™ in n-pentanol retained higher activity (93%-98%) than n-octanol (78%-85%) or n-decanol (75%-89%), whereas those Microglassified™ in triacetin (36%-75%) and butyl lactate (48%-79%) retained markedly lower activity. FTIR spectroscopy analyses showed α-helix to β-sheet transformation for all enzymes upon Microglassification™, reflecting a loss of bound water in the dried state; however, the enzymes reverted to native-like conformation upon rehydration. Accelerated stressed-storage tests using Microglassified™ lysozyme showed a significant (p < 0.01) decrease in enzymatic activity from 46,560 ± 2736 to 31,060 ± 4327 units/mg after 3 months of incubation; however, it was comparable to the activity of the lyophilized formulation throughout the test period. These results establish Microglassification™ as a viable technique for enzyme preservation without affecting its structure or function.

  7. Catalytic Ethanol Dehydration over Different Acid-activated Montmorillonite Clays.

    PubMed

    Krutpijit, Chadaporn; Jongsomjit, Bunjerd

    2016-01-01

    In the present study, the catalytic dehydration of ethanol to obtain ethylene over montmorillonite clays (MMT) with mineral acid activation including H2SO4 (SA-MMT), HCl (HA-MMT) and HNO3 (NA-MMT) was investigated at temperature range of 200 to 400°C. It revealed that HA-MMT exhibited the highest catalytic activity. Ethanol conversion and ethylene selectivity were found to increase with increased reaction temperature. At 400°C, the HA-MMT yielded 82% of ethanol conversion having 78% of ethylene yield. At lower temperature (i.e. 200 to 300°C), diethyl ether (DEE) was a major product. The highest activity obtained from HA-MMT can be attributed to an increase of weak acid sites and acid density by the activation of MMT with HCl. It can be also proven by various characterization techniques that in most case, the main structure of MMT did not alter by acid activation (excepted for NA-MMT). Upon the stability test for 72 h during the reaction, the MMT and HA-MMT showed only slight deactivation due to carbon deposition. Hence, the acid activation of MMT by HCl is promising to enhance the catalytic dehydration of ethanol. PMID:27041515

  8. Laboratory tests in the analysis of states of dehydration.

    PubMed

    Bruck, E

    1971-02-01

    In an otherwise healthy child with acute dehydration known to be due to diarrhea or vomiting, the amount of deficit can best be estimated by accurate weight. Total serum protein and hematocrit provide a rough estimate of reduction in circulating blood volume, but calculation from these data will usually underestimate the deficit. Determination of urea nitrogen concentration helps to detect reduced glomerular filtration rate. Acid-base disturbances, most commonly metabolic acidosis, are detected by measuring pH and CO2 content (or base excess). Blood glucose should be measured to rule out diabetes mellitus, even in the absence of a suggestive history. Determination of potassium in serum is most important in the diagnosis of adrenal or renal insufficiency and in the post-acidotic phase after dehydration. Osmolality of body fluids is estimated by measuring [Na+]. Since osmolality of body fluids is normally maintained at the expense of fluid volume by the kidney and the hormones governing renal excretion of water and sodium, abnormal osmolality indicates a serious condition which has to be interpreted with the help of clinical data. In cases of abnormal renal function or of abnormal losses, as with removal of gastrointestinal fluids by suction, or excessive and prolonged diarrhea, measuring volume and composition of excreta may be essential. Because of cumulative deficits, patients with prolonged losses or inability to regulate oral intake by thirst cannot be treated without continual careful interpretation of the reports from a good laboratory.

  9. TTL Dehydration Characterized by SOWER Observations over the Pacific

    NASA Astrophysics Data System (ADS)

    Hasebe, F.; Shiotani, M.; Fujiwara, M.; Shibata, T.; Inai, Y.

    2013-12-01

    The Soundings of Ozone and Water in the Equatorial Region (SOWER) has been accumulating observational evidences of atmospheric dehydration taking place for the air parcels advected horizontally in the Tropical Tropopause Layer (TTL). This paper discusses the nature of TTL dehydration using the dataset obtained since initiation in 1998. The cold-trap dehydration associated with the quasi-horizontal advection (Holton and Gettelman, 2001) effectively functions between 360 K and 380 K isentropes leading to the mean water mixing ratio of 1.9 × 0.6 ppmv on arrival at 380 K after slow diabatic assent, while some moistening takes place before the air parcel reaches 400 K. An example from individual soundings shows 80 % supersaturation in relative humidity with respect to ice (RHice) in subvisible cirrus clouds located near the cold point tropopause (CPT) at the temperature around 180 K (Hasebe et al., 2013). The water budget for individual air parcels has been estimated by searching for the opportunity of repeated sampling of the same air parcel (water vapor match) in the TTL (Inai et al., this meeting). Simultaneous observations by lidar and Optical Particle Counters near the CPT reveal cirrus clouds within the aerosol layer composed of liquid phase aqueous sulfuric acid particles. The characteristics of the TTL cirrus cloud particles are discussed by Sakurai et al. (this meeting). The differences in the observed water content are brought about by the temperature history of the air parcels described by the dynamical field as well as the climatological location of observation station. Inai et al. (2012) found that the difference of RHice inside TTL cirrus between the two stations strongly depend on the phase of MJO disturbances. Further analysis shows that the water mixing ratios on 355 K and 360 K are lower (higher) to the east (west) relative to the temperature maximum associated with TTL Kelvin waves. Back trajectory analyses suggest that the difference is brought

  10. The Usefulness of Clinical and Laboratory Parameters for Predicting Severity of Dehydration in Children with Acute Gastroenteritis

    PubMed Central

    Hoxha, Teuta Faik; Azemi, Mehmedali; Avdiu, Muharrem; Ismaili-jaha, Vlora; Grajqevci, Violeta; Petrela, Ela

    2014-01-01

    ABSTRACT Background: An accurate assessment of the degree of dehydration in infants and children is important for proper decision-making and treatment. This emphasizes the need for laboratory tests to improve the accuracy of clinical assessment of dehydration. The aim of this study was to assess the relationship between clinical and laboratory parameters in the assessment of dehydration. Methods: We evaluated prospectively 200 children aged 1 month to 5 years who presented with diarrhea, vomiting or both. Dehydration assessment was done following a known clinical scheme. Results: We enrolled in the study 200 children (57.5% were male). The mean age was 15.62±9.03 months, with more than half those studied being under 24 months old. Overall, 46.5% (93) had mild dehydration, 34% (68) had moderate dehydration, 5.5% (11) had severe dehydration whereas, 14% (28) had no dehydration. Patients historical clinical variables in all dehydration groups did not differ significantly regarding age, sex, fever, frequency of vomiting, duration of diarrhea and vomiting, while there was a trend toward severe dehydration in children with more frequent diarrhea (p=0.004). Serum urea and creatinine cannot discriminate between mild and moderate dehydration but they showed a good specificity for severe dehydration of 99% and 100% respectively. Serum bicarbonates and base excess decreased significantly with a degree of dehydration and can discriminate between all dehydration groups (P<0.001). Conclusion: Blood gases were useful to diagnose the degree of dehydration status among children presenting with acute gastroenteritis. Serum urea and creatinine were the most specific tests for severe dehydration diagnosis. Historical clinical patterns apart from frequency of diarrhea did not correlate with dehydration status. Further studies are needed to validate our results. PMID:25568559

  11. Quality of frozen fruit bars manufactured through infrared pre-dehydration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, frozen restructured whole apple and strawberry bars were manufactured by partial dehydration, using infrared (IR) heating, followed by restructuring and freezing. The objective of this investigation was to determine the effect of IR partial dehydration on the quality of restructured f...

  12. Dehydration of 2-Methyl-1-Cyclohexanol: New Findings from a Popular Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Friesen, J. Brent; Schretzman, Robert

    2011-01-01

    The mineral acid-catalyzed dehydration of 2-methyl-1-cyclohexanol has been a popular laboratory exercise in second-year organic chemistry for several decades. The dehydration experiment is often performed by organic chemistry students to illustrate Zaitsev's rule. However, sensitive analytical techniques reveal that the results do not entirely…

  13. 21 CFR 573.400 - Ethoxyquin in certain dehydrated forage crops.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... and vitamin E in the forage crops. (c) It is added to the dehydrated forage crops in an oil mixture containing only suitable animal or suitable vegetable oil, prior to grinding and mixing. (d) The maximum... vegetable oils are to be used in the oil mix. (f) The label of any dehydrated forage crops treated with...

  14. 21 CFR 573.400 - Ethoxyquin in certain dehydrated forage crops.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... and vitamin E in the forage crops. (c) It is added to the dehydrated forage crops in an oil mixture containing only suitable animal or suitable vegetable oil, prior to grinding and mixing. (d) The maximum... vegetable oils are to be used in the oil mix. (f) The label of any dehydrated forage crops treated with...

  15. 21 CFR 573.400 - Ethoxyquin in certain dehydrated forage crops.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and vitamin E in the forage crops. (c) It is added to the dehydrated forage crops in an oil mixture containing only suitable animal or suitable vegetable oil, prior to grinding and mixing. (d) The maximum... vegetable oils are to be used in the oil mix. (f) The label of any dehydrated forage crops treated with...

  16. 21 CFR 573.400 - Ethoxyquin in certain dehydrated forage crops.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... and vitamin E in the forage crops. (c) It is added to the dehydrated forage crops in an oil mixture containing only suitable animal or suitable vegetable oil, prior to grinding and mixing. (d) The maximum... vegetable oils are to be used in the oil mix. (f) The label of any dehydrated forage crops treated with...

  17. 21 CFR 573.400 - Ethoxyquin in certain dehydrated forage crops.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and vitamin E in the forage crops. (c) It is added to the dehydrated forage crops in an oil mixture containing only suitable animal or suitable vegetable oil, prior to grinding and mixing. (d) The maximum... vegetable oils are to be used in the oil mix. (f) The label of any dehydrated forage crops treated with...

  18. Simultaneous Infrared Dry-Blanching and Dehydration of apple slices Controlled by Intermittent Heating Mode

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Infrared heating controlled by intermittent heating mode was found to be able to achieve simultaneous dry-blanching and dehydration of apple slices with a desirable quality. In order to better understand the performance of intermittent heating for simultaneous dry-blanching and dehydration (SIDBD),...

  19. HIGH PERMEABILITY MEMBRANES FOR THE DEHYDRATION OF LOW WATER CONTENT ETHANOL BY PERVAPORATION

    EPA Science Inventory

    Energy efficient dehydration of low water content ethanol is a challenge for the sustainable production of fuel-grade ethanol. Pervaporative membrane dehydration using a recently developed hydrophilic polymer membrane formulation consisting of a cross-linked mixture of poly(allyl...

  20. Maternal understanding of diarrhoea-related dehydration and its influence on ORS use in Indonesia.

    PubMed

    MacDonald, S E; Moralejo, M N D G; Matthews, M K

    2007-01-01

    Dehydration resulting from diarrhoea remains a significant cause of death for young children in developing countries such as Indonesia. Although Oral Rehydration Solution (ORS) is effective in preventing and treating dehydration, its use in home treatment is not widespread. This study sought to assess whether mothers' understanding of diarrhoea-related dehydration influenced their use of ORS in home treatment. One hundred mothers of children under the age of five years in rural Indonesia were surveyed using a structured questionnaire, administered in an interview format in their homes. Only 38 (38%) of the mothers surveyed could identify two or more correct signs of dehydration. Significant relationship was found between maternal knowledge of correct signs of dehydration and the use of ORS in home treatment (OR 3.36, 95% CI 1.24, 10.63). Resulting recommendations include improved health education programming for mothers of young children, as well as future programme evaluation and intervention studies.

  1. ROLE OF PRESSURE IN SMECTITE DEHYDRATION - EFFECTS ON GEOPRESSURE AND SMECTITE-TO-ILLITE TRANSFORMATION.

    USGS Publications Warehouse

    Colten-Bradley, Virginia

    1987-01-01

    Evaluation of the effects of pressure on the temperature of interlayer water loss (dehydration) by smectites under diagenetic conditions indicates that smectites are stable as hydrated phases in the deep subsurface. Hydraulic and differential pressure conditions affect dehydration differently. The temperature of dehydration increase with pore fluid pressure and interlayer water density. The temperatures of dehydration increase with pore fluid pressure and interlayer water density. The temperatures of dehydration under differential-presssure conditions are inversely related to pressure and interlayer water density. The model presented assumes the effects of pore fluid composition and 2:1 layer reactivity to be negligible. Agreement between theoretical and experimental results validate this assumption. Additional aspects of the subject are discussed.

  2. A generic protocol for protein crystal dehydration using the HC1b humidity controller

    PubMed Central

    Lobley, Carina M. C.; Sandy, James; Sanchez-Weatherby, Juan; Mazzorana, Marco; Krojer, Tobias; Nowak, Radosław P.; Sorensen, Thomas L.

    2016-01-01

    Dehydration may change the crystal lattice and affect the mosaicity, resolution and quality of X-ray diffraction data. A dehydrating environment can be generated around a crystal in several ways with various degrees of precision and complexity. This study uses a high-precision crystal humidifier/dehumidifier to provide an airstream of known relative humidity in which the crystals are mounted: a precise yet hassle-free approach to altering crystal hydration. A protocol is introduced to assess the impact of crystal dehydration systematically applied to nine experimental crystal systems. In one case, that of glucose isomerase, dehydration triggering a change of space group from I222 to P21212 was observed. This observation is supported by an extended study of the behaviour of the glucose isomerase crystal structure during crystal dehydration. PMID:27139626

  3. Hypernatraemic dehydration in exclusively breastfed infants: a potentially fatal complication.

    PubMed

    Trotman, H; Antoine, M; Barton, M

    2006-09-01

    There have been several reports in the literature about hypernatraemic dehydration and severe malnutrition in exclusively breastfed infants. The authors report a series of four such cases admitted to the Newborn Special Care Unit of the University Hospital of the West Indies over a seven-year period. All four were term infants who had weight loss of greater than 20% of their birthweight, serum sodium levels greater than 175 mmol/L, metabolic acidosis and pre-renal failure at presentation. Three of the infants had seizures shortly after presentation. One of the infants died soon after admission to hospital, the three others had normal neurological development clinically at the time of last review.

  4. [Hypertonic dehydration in "silent" malnutrition of breast-fed infants].

    PubMed

    van der Heide, P A; Toet, M C; van Diemen-Steenvoorde, J A; Renardel de Lavalette, P A; de Jonge, G A

    1998-05-01

    Two firstborn, breast-fed infants (delivery at home) were admitted to the hospital in a critical state of hypernatraemic dehydration. Case 1, a boy aged 13 days, had suffered 1220 g loss of weight since birth (31%), his serum sodium concentration was 180 mmol/l. Case 2, a girl aged 7 days, had lost 610 g since birth (18%); her serum sodium level was 159 mmol/l. In both cases poor professional support of lactation and lack of weight control had resulted in unnoticed severe malnutrition. After slow rehydration recovery was uneventful. Closer monitoring of babies' weight, e.g. twice a week, is advocated especially for breast-fed firstborns in the early weeks of life.

  5. Hypernatraemic dehydration and breast feeding: a population study.

    PubMed

    Oddie, S; Richmond, S; Coulthard, M

    2001-10-01

    As part of a population based regional review of all neonatal readmissions, the incidence of dehydration with hypernatraemia in exclusively breast fed infants was estimated. All readmissions to hospital in the first month of life during 1998 from a population of 32 015 live births were reviewed. Eight of 907 readmissions met the case definition, giving an incidence of at least 2.5 per 10 000 live births. Serum sodium at readmission varied from 150 to 175 mmol/l. One infant had convulsions. The sole explanation for hypernatraemia was unsuccessful breast feeding in all cases. The eight cases are compared with the 65 cases published in the literature since 1979. Presentation, incidence, risk factors, pathophysiology, treatment, and prevention are discussed.

  6. Hypernatraemic dehydration and breast feeding: a population study

    PubMed Central

    Oddie, S; Richmond, S; Coulthard, M

    2001-01-01

    As part of a population based regional review of all neonatal readmissions, the incidence of dehydration with hypernatraemia in exclusively breast fed infants was estimated. All readmissions to hospital in the first month of life during 1998 from a population of 32 015 live births were reviewed. Eight of 907 readmissions met the case definition, giving an incidence of at least 2.5 per 10 000 live births. Serum sodium at readmission varied from 150to 175 mmol/l. One infant had convulsions. The sole explanation for hypernatraemia was unsuccessful breast feeding in all cases. The eight cases are compared with the 65 cases published in the literature since 1979. Presentation, incidence, risk factors, pathophysiology, treatment, and prevention are discussed.

 PMID:11567942

  7. Retinal vein occlusion in Saudi Arabia: possible role of dehydration.

    PubMed

    Alghadyan, A A

    1993-10-01

    The medical records of 90 patients with a clinical diagnosis of retinal vein occlusion (RVO) who were seen at two referral hospitals in Saudi Arabia were reviewed. Sixty-eight (75.6%) were men. Central RVO was present in 50 patients (55.6%); branch RVO, in 35 patients (38.9%); and hemiretinal occlusion, in five patients (5.6%). Arterial hypertension was present in 43 patients (47.8%); diabetes mellitus, in 28 patients (31%); and preexisting glaucoma, in 26 patients (28.9%). The date of onset of RVO was available in 61 patients. Eighteen attacks (29.5%) had occurred during the month of Ramadan. The Student's t test of paired samples indicated that the incidence of RVO during the month of Ramadan was significantly higher than that of the other months of the Gregorian year. These findings suggest that dehydration may play a role in the pathogenesis of RVO. PMID:8304694

  8. Benefits of tankage dehydration in the refinery process

    SciTech Connect

    Stewart, S.M. )

    1989-01-01

    The goal of every refinery is to produce marketable products to achieve profit objectives. In order to accomplish this goal contaminants or impurities found in hydrocarbon feedstocks must be removed prior to refinement. Efficient removal can produce finished products that meet quality specifications. The author discusses how crude oil desalting satisfies this requirement as the first step toward contaminant removal in the refining process. The purpose of desalting is to reduce the salt and water content of crude oil to the lowest level that is economically practical. The desalting process can be further enhanced by pre-treating crude in tankage to remove brine before the crude is desalted. Tankage dehydration is presented as a simple treatment process designed to reduce the brine content of crude feedstocks in storage.

  9. Electron at the Surface of Water: Dehydrated or Not?

    PubMed

    Uhlig, Frank; Marsalek, Ondrej; Jungwirth, Pavel

    2013-01-17

    The hydrated electron is a crucial species in radiative processes, and it has been speculated that its behavior at the water surface could lead to specific interfacial chemical properties. Here, we address fundamental questions concerning the structure and energetics of an electron at the surface of water. We use the method of ab initio molecular dynamics, which was shown to provide a faithful description of solvated electrons in large water clusters and in bulk water. The present results clearly demonstrate that the surface electron is mostly buried in the interfacial water layer, with only about 10 % of its density protruding into the vapor phase. Consequently, it has a structure that is very similar to that of an electron solvated in the aqueous bulk. This points to a general feature of charges at the surface of water, namely, that they do not behave as half-dehydrated but rather as almost fully hydrated species.

  10. Mild Dehydration and Cycling Performance During 5-Kilometer Hill Climbing

    PubMed Central

    Bardis, Costas N.; Kavouras, Stavros A.; Arnaoutis, Giannis; Panagiotakos, Demosthenes B.; Sidossis, Labros S.

    2013-01-01

    Context: Hydration has been shown to be an important factor in performance; however, the effects of mild dehydration during intense cycling are not clear. Objective: To determine the influence of mild dehydration on cycling performance during an outdoor climbing trial in the heat (ambient temperature = 29.0°C ± 2.2°C). Design: Crossover study. Setting: Outdoor. Patients or Other Participants: Ten well-trained, male endurance cyclists (age = 28 ± 5 years, height = 182 ± 0.4 cm, mass = 73 ± 4 kg, maximal oxygen uptake = 56 ± 9 mL·min−1·kg−1, body fat = 23% ± 2%, maximal power = 354 ± 48 W). Intervention(s): Participants completed 1 hour of steady-state cycling with or without drinking to achieve the desired pre-exercise hydration level before 5-km hill-climbing cycling. Participants started the 5-km ride either euhydrated (EUH) or dehydrated by −1% of body mass (DEH). Main Outcome Measure(s): Performance time, core temperature, sweat rate, sweat sensitivity, and rating of perceived exertion (RPE). Results: Participants completed the 5-km ride 5.8% faster in the EUH (16.6 ± 2.3 minutes) than DEH (17.6 ± 2.9 minutes) trial (t1 = 10.221, P = .001). Postexercise body mass was −1.4% ± 0.3% for the EUH trial and −2.2% ± 0.2% for the DEH trial (t1 = 191.384, P < .001). Core temperature after the climb was greater during the DEH (39.2°C ± 0.3°C) than EUH (38.8°C ± 0.2°C) trial (t1 = 8.04, P = .005). Sweat rate was lower during the DEH (0.44 ± 0.16 mg·m−2·s−1) than EUH (0.51 ± 0.16 mg·m−2·s−1) trial (t8 = 2.703, P = .03). Sweat sensitivity was lower during the DEH (72.6 ± 32 g·°C−1·min−1) than EUH (102.6 ± 54.2 g·°C−1·min−1) trial (t8 = 3.072, P = .02). Lastly, RPE after the exercise performance test was higher for the DEH (19.0 ± 1.0) than EUH (17.0 ± 1.0) participants (t9 = −3.36, P = .008). Conclusions: We found mild dehydration decreased cycling performance during a 5-km outdoor hill course, probably due to

  11. Dehydration of oil waste emulsions by means of flocculants

    SciTech Connect

    Gandurina, L.V.; Butseva, L.N.; Shtondina, V.S.

    1995-05-01

    Oil waste emulsions are formed in the course of pumping petroleum crudes and products and are collected from the surfaces of equipment in recirculating water systems and wastewater disposal facilities (oil separators, sand traps, oil traps, holding pits for accidental spills, settlers, ponds, sludge accumulators, and so on). Emulsions are also obtained in the course of cleaning equipment in crude oil desalting and dehydration units. Such emulsions are stable, structurized systems that are very resistant to dewatering by heating and settling in separator tanks. In order to break stabilized emulsions, i.e., in order to ensure complete coalescence of drops when they collide, it is not sufficient to increase the forces of mutual attraction of drops at the moment of collision; in addition, the protective shell must be either destroyed or weakened. Demulsifying agents, or surfactants, will displace the stabilizers. This report is concerned with demulsifier efficiency.

  12. Retinal vein occlusion in Saudi Arabia: possible role of dehydration.

    PubMed

    Alghadyan, A A

    1993-10-01

    The medical records of 90 patients with a clinical diagnosis of retinal vein occlusion (RVO) who were seen at two referral hospitals in Saudi Arabia were reviewed. Sixty-eight (75.6%) were men. Central RVO was present in 50 patients (55.6%); branch RVO, in 35 patients (38.9%); and hemiretinal occlusion, in five patients (5.6%). Arterial hypertension was present in 43 patients (47.8%); diabetes mellitus, in 28 patients (31%); and preexisting glaucoma, in 26 patients (28.9%). The date of onset of RVO was available in 61 patients. Eighteen attacks (29.5%) had occurred during the month of Ramadan. The Student's t test of paired samples indicated that the incidence of RVO during the month of Ramadan was significantly higher than that of the other months of the Gregorian year. These findings suggest that dehydration may play a role in the pathogenesis of RVO.

  13. Characterization of dehydration-induced luminescence of kaolinite

    NASA Technical Reports Server (NTRS)

    Lahav, N.; Coyne, L.; Lawless, J. G.

    1985-01-01

    The dehydration-induced luminescence of a colloidal kaolinite is investigated experimentally, with particular attention given to the effect of various treatments on the luminescence characteristics. It is found that the total photon count of the emitted light is linearly related to the film thickness up to a thickness of 30 microns; mechanical stress in the form of grinding increases the photon output and produces extensive changes in the emission kinetics. A direct check of the emission wavelength dependence (by using color filters) indicates that roughly 75 percent of the emission occurs in the wavelength range below 410 nm. It is also found that incorporation of fluorescent molecules into the kaolinite paste increases the photon output and may indicate the transfer of ultraviolet photons to the fluorescent probe.

  14. Dehydration of isobutanol to isobutene in a slurry reactor

    SciTech Connect

    Latshaw, B.E.

    1994-02-01

    The April 1990 Alternative Fuels Proposal to the Department of Energy involved the development of new technology, based on the liquid phase process, for conversion of coal-derived synthesis gas to oxygenated hydrocarbon fuels, fuel additives, and fuel intermediates. The objective of this work was to develop a slurry reactor based process for the dehydration of isobutanol to isobutene. The isobutene can serve as a feedstock for the high octane oxygenated fuel additive methyl tertiary-butyl either (MTBE). Alumina catalysts were investigated because of their wide use as a dehydration catalyst. Four commercially available alumina catalysts (Catapal B, Versal B, Versal GH, and Al-3996R) were evaluated for both activity and selectivity to the branched olefin. All four catalysts demonstrated conversions greater than 80% at 290 C, while conversions of near 100% could be obtained at 330 C. The reaction favors low pressures and moderate to low space velocities. A yield of 0.90 mole isobutene per mole reacted isobutanol or better was obtained at conversions of 60--70% and higher. From 75 to 98% conversion, the four catalysts all provide isobutene yields ranging from 0.92 to 0.94 with the maximum occurring around 90% conversion. At low conversions, the concentration of diisobutyl ether becomes significant while the concentration of linear butenes is essentially a linear function of isobutanol conversion. Doping the catalyst with up to 0.8 wt % potassium showed a modest increase in isobutene selectivity; however, this increase was more than offset by a reduction in activity. Investigations using a mixed alcohols feed (consistent with isobutanol synthesis from syngas) demonstrated a small increase in the C4 iso-olefin selectivity over that observed for a pure isobutanol feed. 55 refs.

  15. [Learning to prevent dehydration in distant Mexican communities and markets].

    PubMed

    Alvarez Larrauri, S; Alvarez Larrauri, C; Jufresa Carreras, J

    1994-06-01

    Child mortality due to diarrheal diseases is high in Mexico. Official records reported 14,000 children died in 1990 of this cause. Yet, we do not know the real extent of the problem since unregistered child deaths in our countryside seem to be far more frequent than acknowledged by government information. Most of these deaths occur among poor peasants and indigenous people living far from medical services. There are more than 100,000 communities with less than 500 inhabitants. This population does not benefit from medical services due to several problems, such as accessibility and linguistic and cultural gaps. In order to promote Oral Rehydration Therapy (ORT) within these communities, the authors implemented an education strategy, aimed at this specific population, to enhance their learning of prevention of diarrhea and dehydration, and thereby to increase their use of ORT. While rendering account of research devised to prove the extensibility to larger scales of methods formerly tried at an experimental (pilot) level, this paper further discusses and reinforces the contribution of the insights of a critical sociology epistemological framework in planning and conducting sociological interventions in the field of health as well as in any other field. The basic assumption of this point of view is that to adopt rationalized solutions to their problems (e.g. the prevention of dehydration of their children by means of the ORT) people should have the opportunity to deliberate rationally about them in order to be able to justify or validate their actions regarding the course of events and the opinions and norms of their closest community.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8036530

  16. Advancing microwave technology for dehydration processing of biologics.

    PubMed

    Cellemme, Stephanie L; Van Vorst, Matthew; Paramore, Elisha; Elliott, Gloria D

    2013-10-01

    Our prior work has shown that microwave processing can be effective as a method for dehydrating cell-based suspensions in preparation for anhydrous storage, yielding homogenous samples with predictable and reproducible drying times. In the current work an optimized microwave-based drying process was developed that expands upon this previous proof-of-concept. Utilization of a commercial microwave (CEM SAM 255, Matthews, NC) enabled continuous drying at variable low power settings. A new turntable was manufactured from Ultra High Molecular Weight Polyethylene (UHMW-PE; Grainger, Lake Forest, IL) to provide for drying of up to 12 samples at a time. The new process enabled rapid and simultaneous drying of multiple samples in containment devices suitable for long-term storage and aseptic rehydration of the sample. To determine sample repeatability and consistency of drying within the microwave cavity, a concentration series of aqueous trehalose solutions were dried for specific intervals and water content assessed using Karl Fischer Titration at the end of each processing period. Samples were dried on Whatman S-14 conjugate release filters (Whatman, Maidestone, UK), a glass fiber membrane used currently in clinical laboratories. The filters were cut to size for use in a 13 mm Swinnex(®) syringe filter holder (Millipore(™), Billerica, MA). Samples of 40 μL volume could be dehydrated to the equilibrium moisture content by continuous processing at 20% with excellent sample-to-sample repeatability. The microwave-assisted procedure enabled high throughput, repeatable drying of multiple samples, in a manner easily adaptable for drying a wide array of biological samples. Depending on the tolerance for sample heating, the drying time can be altered by changing the power level of the microwave unit. PMID:24835259

  17. Advancing Microwave Technology for Dehydration Processing of Biologics

    PubMed Central

    Cellemme, Stephanie L.; Van Vorst, Matthew; Paramore, Elisha

    2013-01-01

    Our prior work has shown that microwave processing can be effective as a method for dehydrating cell-based suspensions in preparation for anhydrous storage, yielding homogenous samples with predictable and reproducible drying times. In the current work an optimized microwave-based drying process was developed that expands upon this previous proof-of-concept. Utilization of a commercial microwave (CEM SAM 255, Matthews, NC) enabled continuous drying at variable low power settings. A new turntable was manufactured from Ultra High Molecular Weight Polyethylene (UHMW-PE; Grainger, Lake Forest, IL) to provide for drying of up to 12 samples at a time. The new process enabled rapid and simultaneous drying of multiple samples in containment devices suitable for long-term storage and aseptic rehydration of the sample. To determine sample repeatability and consistency of drying within the microwave cavity, a concentration series of aqueous trehalose solutions were dried for specific intervals and water content assessed using Karl Fischer Titration at the end of each processing period. Samples were dried on Whatman S-14 conjugate release filters (Whatman, Maidestone, UK), a glass fiber membrane used currently in clinical laboratories. The filters were cut to size for use in a 13 mm Swinnex® syringe filter holder (Millipore™, Billerica, MA). Samples of 40 μL volume could be dehydrated to the equilibrium moisture content by continuous processing at 20% with excellent sample-to-sample repeatability. The microwave-assisted procedure enabled high throughput, repeatable drying of multiple samples, in a manner easily adaptable for drying a wide array of biological samples. Depending on the tolerance for sample heating, the drying time can be altered by changing the power level of the microwave unit. PMID:24835259

  18. Effect of Dehydration Prior to Cryopreservation of Large Equine Embryos

    PubMed Central

    Barfield, JP; McCue, PM; Squires, EL; Seidel, GE

    2009-01-01

    Cryopreservation of equine embryos > 300 μm in diameter results in low survival rates using protocols that work well for smaller equine embryos. These experiments tested the potential benefit of incorporating a dehydration step prior to standard cryopreservation procedures. Forty-six, d 7–8, grade 1, equine embryos ≥ 400 μm in diameter were subjected to one of the following treatments: (A) 2-min in 0.6 M galactose, 10 min in 1.5 M glycerol, slow freeze (n=21); (B) 10 min in 1.5 M glycerol, slow freeze (n=15); (C) 2 min in 0.6 M galactose, 10 min in 1.5 M glycerol, followed by exposure to thaw solutions, then culture medium (n=5); (D) transferred directly to culture medium (n=5). Frozen embryos were thawed and subjected to a 3-step cryoprotectant removal. Five embryos from each treatment were evaluated morphologically after 24 and 48 h culture (1=excellent, 5=degenerate/dead). All treatments had at least 4/5 embryos with a quality score ≥ 3 at these time points except treatment B (2/5 at 24 h, 1/5 at 48 h). Subsequent embryos from treatment A (n=16) or B (n=10) were matched in sets of two for size and treatment, thawed, and immediately transferred in pairs to 13 recipients. Only two recipient mares were pregnant; one received two 400 μm embryos from treatment A, and the other one 400 μm and one 415 μm embryo from treatment B. There was no advantage of incorporating a 2 min dehydration step into the cryopreservation protocol for large equine embryos. PMID:19375416

  19. An organ-specific role for ethylene in rose petal expansion during dehydration and rehydration.

    PubMed

    Liu, Daofeng; Liu, Xiaojing; Meng, Yonglu; Sun, Cuihui; Tang, Hongshu; Jiang, Yudong; Khan, Muhammad Ali; Xue, Jingqi; Ma, Nan; Gao, Junping

    2013-05-01

    Dehydration is a major factor resulting in huge loss from cut flowers during transportation. In the present study, dehydration inhibited petal cell expansion and resulted in irregular flowers in cut roses, mimicking ethylene-treated flowers. Among the five floral organs, dehydration substantially elevated ethylene production in the sepals, whilst rehydration caused rapid and elevated ethylene levels in the gynoecia and sepals. Among the five ethylene biosynthetic enzyme genes (RhACS1-5), expression of RhACS1 and RhACS2 was induced by dehydration and rehydration in the two floral organs. Silencing both RhACS1 and RhACS2 significantly suppressed dehydration- and rehydration-induced ethylene in the sepals and gynoecia. This weakened the inhibitory effect of dehydration on petal cell expansion. β-glucuronidase activity driven by both the RhACS1 and RhACS2 promoters was dramatically induced in the sepals, pistil, and stamens, but not in the petals of transgenic Arabidopsis. This further supports the organ-specific induction of these two genes. Among the five rose ethylene receptor genes (RhETR1-5), expression of RhETR3 was predominantly induced by dehydration and rehydration in the petals. RhETR3 silencing clearly aggravated the inhibitory effect of dehydration on petal cell expansion. However, no significant difference in the effect between RhETR3-silenced flowers and RhETR-genes-silenced flowers was observed. Furthermore, RhETR-genes silencing extensively altered the expression of 21 cell expansion-related downstream genes in response to ethylene. These results suggest that induction of ethylene biosynthesis by dehydration proceeds in an organ-specific manner, indicating that ethylene can function as a mediator in dehydration-caused inhibition of cell expansion in rose petals.

  20. Ozone fumigation for safety and quality of wine grapes in postharvest dehydration.

    PubMed

    Botondi, Rinaldo; De Sanctis, Federica; Moscatelli, Niccolò; Vettraino, Anna Maria; Catelli, Cesare; Mencarelli, Fabio

    2015-12-01

    This paper proposes postharvest ozone fumigation (as a method) to control microorganisms and evaluate the effect on polyphenols, anthocyanins, carotenoids and cell wall enzymes during the grape dehydration for wine production. Pignola grapes were ozone-treated (1.5 g/h) for 18 h (A=shock treatment), then dehydrated or ozone-treated (1.5 g/h) for 18 h and at 0.5 g/h for 4 h each day (B=long-term treatment) during dehydration. Treatment and dehydration were performed at 10 °C. No significant difference was found for total carotenoid, total phenolic and total anthocyanin contents after 18 h of O3 treatment. A significant decrease in phenolic and anthocyanin contents occurred during treatment B. Also carotenoids were affected by B ozone treatment. Pectin methylesterase (PME) and polygalacturonase (PG) activities were higher in A-treated grapes during dehydration. Finally, ozone reduced fungi and yeasts by 50%. Shock ozone fumigation (A treatment) before dehydration can be used to reduce the microbial count during dehydration without affecting polyphenol and carotenoid contents.

  1. [The ecological-morphological aspects of adaptation and the role of the macrophages in body dehydration].

    PubMed

    Proshina, L G

    1995-01-01

    The morphological aspects of rearrangement of macrophages in white rats' subcutaneous areolar tissue during dehydration and their impact on the recovery of osmotic homeostasis were studied. A response of macrophages to dehydration with preliminary injection of antioxidant dibunol was revealed. Macrophages respond to dehydration by a rise in number, elevated cytoplasmic activity of lipolytic enzymes (beta-oxibutyrate dehydrogenase), and a peculiar ultrastructural rearrangement, i.e. a decrease of vacuoles, their sizes, an increase of the lipid volumetric fraction. However, the higher activity of macrophages in terms of production of metabolic water is concurrent to increased malonic dialdehyde production and inhibited activity of the cell antioxidant defense (superoxide dismutase). To correct the observed changes, dehydration was performed on the background of antioxidant dibunol injection. The antioxidant and subsequent dehydration did not annul the response of macrophages to increased intrabody osmolality although slightly masked the effect of dehydration. Survivability in this group of animals was by 22% higher than in the water-deprived group. Hence, the areolar macrophages can be considered the controllers of adaptive reactions of the body during dehydration, whereas antioxidants are the correction factor for these reactions.

  2. Unusual effect of water vapor pressure on dehydration of dibasic calcium phosphate dihydrate.

    PubMed

    Kaushal, Aditya M; Vangala, Venu R; Suryanarayanan, Raj

    2011-04-01

    Dibasic calcium phosphate occurs as an anhydrate (DCPA; CaHPO₄) and as a dihydrate (DCPD; CaHPO₄•2H₂O). Our objective was to investigate the unusual behavior of these phases. Dibasic calcium phosphate dihydrate was dehydrated in a (i) differential scanning calorimeter (DSC) in different pan configurations; (ii) variable-temperature X-ray diffractometer (XRD) at atmospheric and under reduced pressure, and in sealed capillaries; and (iii) water vapor sorption analyzer at varying temperature and humidity conditions. Dehydration was complete by 210°C in an open DSC pan and under atmospheric pressure in the XRD. Unlike "conventional" hydrates, the dehydration of DCPD was facilitated in the presence of water vapor. Variable-temperature XRD in a sealed capillary and DSC in a hermetic pan with pinhole caused complete dehydration by 100°C and 140°C, respectively. Under reduced pressure, conversion to the anhydrate was incomplete even at 300°C. The increase in dehydration rate with increase in water vapor pressure has been explained by the Smith-Topley effect. Under "dry" conditions, a coating of poorly crystalline product is believed to form on the surface of particles and act as a barrier to further dehydration. However, in the presence of water vapor, recrystallization occurs, creating cracks and channels and facilitating continued dehydration.

  3. Ozone fumigation for safety and quality of wine grapes in postharvest dehydration.

    PubMed

    Botondi, Rinaldo; De Sanctis, Federica; Moscatelli, Niccolò; Vettraino, Anna Maria; Catelli, Cesare; Mencarelli, Fabio

    2015-12-01

    This paper proposes postharvest ozone fumigation (as a method) to control microorganisms and evaluate the effect on polyphenols, anthocyanins, carotenoids and cell wall enzymes during the grape dehydration for wine production. Pignola grapes were ozone-treated (1.5 g/h) for 18 h (A=shock treatment), then dehydrated or ozone-treated (1.5 g/h) for 18 h and at 0.5 g/h for 4 h each day (B=long-term treatment) during dehydration. Treatment and dehydration were performed at 10 °C. No significant difference was found for total carotenoid, total phenolic and total anthocyanin contents after 18 h of O3 treatment. A significant decrease in phenolic and anthocyanin contents occurred during treatment B. Also carotenoids were affected by B ozone treatment. Pectin methylesterase (PME) and polygalacturonase (PG) activities were higher in A-treated grapes during dehydration. Finally, ozone reduced fungi and yeasts by 50%. Shock ozone fumigation (A treatment) before dehydration can be used to reduce the microbial count during dehydration without affecting polyphenol and carotenoid contents. PMID:26041242

  4. Thirst perception in dehydrated sickle cell disease patients in steady state.

    PubMed

    Ozoene, J O; Enosolease, M E; Ajayi, O I; Agoreyo, F O; Obika, L F O

    2009-12-01

    Liberal fluid intake is one of the key management strategies in sickle cell anaemia [SCA] patients in steady state, but less work has been done on the desire of patients to drink water. Using the Visual Analogue Scale we studied thirst perception [TP] in 20 euhydrated SCA patients and 28 control [HbA] subjects, as well as during dehydration in 13 SCA patients and 9 HbA subjects. Serum and urine samples were collected and analyzed for Na, K ions, creatinine concentrations and haematocrit and specific gravity of urine were determined. During euhydration, TP was significantly [P<0.05] higher in male SCA patients compared to the HbA subjects. In females, TP in SCA patient was not statistically significant compared with HbA subjects. After 13 hours of dehydration, TP was significantly [P<0.05] reduced in female. While dehydration increased TP in HbA subjects, it reduced TP in SCA patients. Fluid intakes after dehydration in SCA patients were not significantly different from the control HbA subjects in both male and female. It can be concluded that female SCA patients do not have normal response to dehydration with regards to TP after a period of dehydration. Since dehydration stimulates the release of vasoactive hormones like vasopressin, this may explain why female patients are less prone to crisis than their male counterparts.

  5. Exercise-induced dehydration with and without environmental heat stress results in increased oxidative stress.

    PubMed

    Hillman, Angela R; Vince, Rebecca V; Taylor, Lee; McNaughton, Lars; Mitchell, Nigel; Siegler, Jason

    2011-10-01

    While in vitro work has revealed that dehydration and hyperthermia can elicit increased cellular and oxidative stress, in vivo research linking dehydration, hyperthermia, and oxidative stress is limited. The purpose of this study was to investigate the effects of exercise-induced dehydration with and without hyperthermia on oxidative stress. Seven healthy male, trained cyclists (power output (W) at lactate threshold (LT): 199 ± 19 W) completed 90 min of cycling exercise at 95% LT followed by a 5-km time trial (TT) in 4 trials: (i) euhydration in a warm environment (EU-W, control), (ii) dehydration in a warm environment (DE-W), (iii) euhydration in a thermoneutral environment (EU-T), and (iv) dehydration in a thermoneutral environment (DE-T) (W: 33.9 ± 0.9 °C; T: 23.0 ± 1.0 °C). Oxidized glutathione (GSSG) increased significantly postexercise in dehydration trials only (DE-W: p < 0.01, DE-T: p = 0.03), and while not significant, total glutathione (TGSH) and thiobarbituric acid reactive substances (TBARS) tended to increase postexercise in dehydration trials (p = 0.08 for both). Monocyte heat shock protein 72 (HSP72) concentration was increased (p = 0.01) while lymphocyte HSP32 concentration was decreased for all trials (p = 0.02). Exercise-induced dehydration led to an increase in GSSG concentration while maintenance of euhydration attenuated these increases regardless of environmental condition. Additionally, we found evidence of increased cellular stress (measured via HSP) during all trials independent of hydration status and environment. Finally, both 90-min and 5-km TT performances were reduced during only the DE-W trial, likely a result of combined cellular stress, hyperthermia, and dehydration. These findings highlight the importance of fluid consumption during exercise to attenuate thermal and oxidative stress during prolonged exercise in the heat.

  6. Haemodynamic responses to dehydration in the resting and exercising human leg.

    PubMed

    Pearson, James; Kalsi, Kameljit K; Stöhr, Eric J; Low, David A; Barker, Horace; Ali, Leena; González-Alonso, José

    2013-06-01

    Dehydration and hyperthermia reduces leg blood flow (LBF), cardiac output ([Formula: see text]) and arterial pressure during whole-body exercise. It is unknown whether the reductions in blood flow are associated with dehydration-induced alterations in arterial blood oxygen content (C aO2) and O2-dependent signalling. This study investigated the impact of dehydration and concomitant alterations in C aO2 upon LBF and [Formula: see text]. Haemodynamics, arterial and femoral venous blood parameters and plasma [ATP] were measured at rest and during one-legged knee-extensor exercise in 7 males in four conditions: (1) control, (2) mild dehydration, (3) moderate dehydration, and (4) rehydration. Relative to control, C aO2 and LBF increased with dehydration at rest and during exercise (C aO2: from 199 ± 1 to 208 ± 2, and 202 ± 2 to 210 ± 2 ml L(-1) and LBF: from 0.38 ± 0.04 to 0.77 ± 0.09, and 1.64 ± 0.09 to 1.88 ± 0.1 L min(-1), respectively). Similarly, [Formula: see text] was unchanged or increased with dehydration at rest and during exercise, whereas arterial and leg perfusion pressures declined. Following rehydration, C aO2 declined (to 193 ± 2 mL L(-1)) but LBF remained elevated. Alterations in LBF were unrelated to C aO2 (r (2) = 0.13-0.27, P = 0.48-0.64) and plasma [ATP]. These findings suggest dehydration and concomitant alterations in C aO2 do not compromise LBF despite reductions in plasma [ATP]. While an additive or synergistic effect cannot be excluded, reductions in LBF during exercise with dehydration may not necessarily be associated with alterations in C aO2 and/or intravascular [ATP].

  7. Dehydration of corneal anterior donor tissue with polyethylene glycol (PEG)-enriched media.

    PubMed

    Lie, Jessica T; Monnereau, Claire; Groeneveld-van Beek, Esther A; van der Wees, Jacqueline; Frank, Johannes; Bruinsma, Marieke; Melles, Gerrit R J

    2015-09-01

    Anterior donor grafts (including scleral rim, without Descemet membrane) increase in thickness and become hazy upon storage in organ culture (OC) medium. Transfer of these grafts to standard dehydration media just before transplantation does not reduce their thickness to normal. Therefore, we assessed the efficacy of different media enriched with polyethylene glycol (PEG) as dehydrating agents for organ-cultured anterior donor grafts. Grafts were harvested and stored in the commercial OC medium 'Max' (without dextran) for 1 week, and subsequently dehydrated in the standard commercial dehydration medium 'Jet' (with dextran) supplemented with 4-20% PEG3350, or 'Max' supplemented with 20% PEG6000 and PEG20.000, or 5-20% PEG35.000. Central corneal thickness (CCT), as assessed by anterior segment-optical coherence tomography, and transparency were evaluated before, and at 1, 4 and 7 days of dehydration. Transfer of grafts after 1 week of OC (average 1,200 µm) to 'Jet' supplemented with PEG3350 revealed a concentration-dependent effect of dehydration; CCT was restored to normal (500-600 µm) when 10% PEG3350 was added. However, transparency was only temporarily restored; after 1 day, the grafts turned hazy. In contrast, grafts transferred to 'Max' supplemented with 20% PEG35.000 were transparent throughout the evaluation period, but were dehydrated to beyond normal levels (average 300 µm). 'Max' supplemented with 5% PEG35.000 dehydrated grafts to normal values and restored transparency throughout. Thus, dehydration of anterior donor grafts prior to surgery in dextran-free OC medium supplemented with 5% PEG35.000 reduces graft thickness to normal and may facilitate anterior keratoplasty procedures.

  8. Solid-vapor interactions: influence of environmental conditions on the dehydration of carbamazepine dihydrate.

    PubMed

    Surana, Rahul; Pyne, Abira; Suryanarayanan, Raj

    2003-12-31

    The goal of this research was a phenomenological study of the effect of environmental factors on the dehydration behavior of carbamazepine dihydrate. Dehydration experiments were performed in an automated vapor sorption apparatus under a variety of conditions, and weight loss was monitored as a function of time. In addition to lattice water, carbamazepine dihydrate contained a significant amount of physically bound water. Based on the kinetics of water loss, it was possible to differentiate between the removal of physically bound water and the lattice water. The activation energy for the 2 processes was 44 and 88 kJ/mol, respectively. As expected, the dehydration rate of carbamazepine dihydrate decreased with an increase in water vapor pressure. While dehydration at 0% relative humidity (RH) resulted in an amorphous anhydrate, the crystallinity of the anhydrate increased as a function of the RH of dehydration. A method was developed for in situ crystallinity determination of the anhydrate formed. Dehydration in the presence of the ethanol vapor was a 2-step process, and the fraction dehydrated at each step was a function of the ethanol vapor pressure. We hypothesize the formation of an intermediate lower hydrate phase with unknown water stoichiometry. An increase in the ethanol vapor pressure first led to a decrease in the dehydration rate followed by an increase. In summary, the dehydration behavior of carbamazepine dihydrate was evaluated at different vapor pressures of water and ethanol. Using the water sorption apparatus, it was possible to (1) differentiate between the removal of physically bound and lattice water, and (2) develop a method for quantifying, in situ, the crystallinity of the product (anhydrate) phase. PMID:15198563

  9. Dehydration at the Tropical Tropopause Over the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Rohs, S.; Beuermann, J.; Gensch, I.; Kraemer, M.; MacKenzie, R.; Schiller, C.; Yushkov, V. A.

    2004-05-01

    During the APE-THESEO campaign in February/March 1999 high-resolution in-situ measurements were carried out onboard the Russian M-55 Geophysica high altitude aircraft, based on the Seychelles (-4.7° N, 55.3° E) in the western Indian Ocean. In the potential temperature range from 340 - 430 K, 36 individual (quasi)-vertical profiles of temperature, the gas-phase and total water cloud particles, and ozone were obtained. The height of the tropopause and the hygropause were highly variable for the investigated period. We attribute this to short and local perturbations to the seasonal cycle. The cold point tropopause was located at a potential temperature range from 365 - 403 K. Minimum temperatures were very low (183 - 194 K), leading to saturation mixing ratios at the tropopause of 1.1 - 8.4 ppmv. The hygropause was located on average 4 K above the tropopause with water vapour mixing ratios of 1.2 - 4.1 ppmv. These very low mixing ratios are comparable to those found in previous studies in the 'fountain region' over Micronesia. For 70 % of the vertical profiles, ice saturation was found in a wide range around the tropopause. Predominantly the saturation was corroborated by concurrently detected clouds up to the altitude of the cold point, providing evidence of active dehydration. We identify three common types of vertical profiles: coincident hygropause and cold point at relatively low potential temperatures, associated with a cirrus deck; coincident hygropause and cold point at relatively high potential temperatures, associated with thin subvisible cirrus; and unsaturated, cloud-free, profiles without a pronounced relationship between hygropause and cold point. Characteristics such as extension, number density, frequency distribution of relative humidity over ice of the cirrus clouds were different for these categories which allows to infer their different origin. The low water vapour ratios and the existence of saturation support the hypothesis that the Tropical

  10. Bonding by Hydroxide-Catalyzed Hydration and Dehydration

    NASA Technical Reports Server (NTRS)

    Gwo, Dz-Hung

    2008-01-01

    A simple, inexpensive method for bonding solid objects exploits hydroxide-catalyzed hydration and dehydration to form silicate-like networks in thin surface and interfacial layers between the objects. The method can be practiced at room temperature or over a wide range of temperatures. The method was developed especially to enable the formation of precise, reliable bonds between precise optical components. The bonds thus formed exhibit the precision and transparency of bonds formed by the conventional optical-contact method and the strength and reliability of high-temperature frit bonds. The method also lends itself to numerous non-optical applications in which there are requirements for precise bonds and/or requirements for bonds, whether precise or imprecise, that can reliably withstand severe environmental conditions. Categories of such non-optical applications include forming composite materials, coating substrates, forming laminate structures, and preparing objects of defined geometry and composition. The method is applicable to materials that either (1) can form silicate-like networks in the sense that they have silicate-like molecular structures that are extensible into silicate-like networks or (2) can be chemically linked to silicate-like networks by means of hydroxide-catalyzed hydration and dehydration. When hydrated, a material of either type features surface hydroxyl (-OH) groups. In this method, a silicate-like network that bonds two substrates can be formed either by a bonding material alone or by the bonding material together with material from either or both of the substrates. Typically, an aqueous hydroxide bonding solution is dispensed and allowed to flow between the mating surfaces by capillary action. If the surface figures of the substrates do not match precisely, bonding could be improved by including a filling material in the bonding solution. Preferably, the filling material should include at least one ingredient that can be hydrated to

  11. Observational constraints on the efficiency of dehydration mechanisms in the tropical tropopause layer

    NASA Astrophysics Data System (ADS)

    Rollins, A. W.; Thornberry, T. D.; Gao, R. S.; Woods, S.; Lawson, R. P.; Bui, T. P.; Jensen, E. J.; Fahey, D. W.

    2016-03-01

    The efficiency of dehydration in the tropical tropopause layer (TTL) determines how closely water vapor will be reduced to the lowest saturation mixing ratio encountered along a trajectory to the stratosphere, thereby strongly influencing stratospheric humidity. The NASA Airborne Tropical Tropopause Experiment (ATTREX) provided an unprecedented number and quality of in situ observations to constrain the key mechanisms controlling this dehydration. Statistical analyses of the ATTREX data show that nucleation, growth, and sedimentation each result in TTL dehydration becoming increasingly inefficient at temperatures below 200 K. Because of these inefficiencies, models that ignore these mechanisms likely underestimate water vapor at the stratospheric entry point by ~10-20% at the lowest temperatures.

  12. Molecular and structural preservation of dehydrated bio-tissue for THz spectroscopy

    NASA Astrophysics Data System (ADS)

    Png, Gretel M.; Choi, Jin Wook; Guest, Ian; Ng, Brian W.-H.; Mickan, Samuel P.; Abbott, Derek; Zhang, Xi-Cheng

    2007-12-01

    Terahertz transmission through freshly excised biological tissue is limited by the tissue's high water content. Tissue fixation methods that remove water, such as fixation in Formalin, destroy the structural information of proteins hence are not suitable for THz applications. Dehydration is one possible method for revealing the tissue's underlying molecular structure and components. In this study, we measured the THz responses over time of dehydrating fresh, necrotic and lyophilized rat tissue. Our results show that as expected, THz absorption increases dramatically with drying and tissue freshness can be maintained through lyophilization. Dehydrated biological tissue with retained molecular structure can be useful for future laser-based THz wave molecular analysis.

  13. Iron-Catalyzed Dehydration of Aldoximes to Nitriles Requiring Neither Other Reagents Nor Nitrile Media.

    PubMed

    Hyodo, Kengo; Kitagawa, Saki; Yamazaki, Masayuki; Uchida, Kingo

    2016-05-01

    The dehydration of aldoximes is an environmentally benign reaction affording the desired nitrile and water as a by-product. However, most of the reported catalytic dehydration reactions of aldoximes require a solvent containing nitrile to synthesize the corresponding nitrile compounds. Inspired by recent reports on the enzymatic synthesis under nitrile-free conditions, we here describe that a simple iron salt catalyzes the dehydration of aldoximes requiring neither other reagents nor nitrile media. Our method can be applied to the one-pot synthesis of nitiriles from aldehydes. PMID:26910510

  14. On the dehydration mechanism of Mg(OH){sub 2} by a high-energy electron beam

    SciTech Connect

    Su Dong; Jiang, Nan; Spence, John C. H.; He Feng; Petuskey, William T.

    2008-09-15

    The dehydration process in Mg(OH){sub 2} induced by high-energy electron irradiation is studied by in situ electron energy loss spectroscopy. During dehydration, both the low energy-loss spectra and the Mg L{sub 23} edge show the existence of partially oxidized Mg- or O-deficient MgO in the dehydrated products, which is not seen in the thermally dehydrated MgO. This indicates that the dehydration mechanism under the electron beam may be different from the mechanism involved in a thermal process.

  15. Dehydrating and Sterilizing Wastes Using Supercritical CO2

    NASA Technical Reports Server (NTRS)

    Brown, Ian J.

    2006-01-01

    A relatively low-temperature process for dehydrating and sterilizing biohazardous wastes in an enclosed life-support system exploits (1) the superior mass-transport properties of supercritical fluids in general and (2) the demonstrated sterilizing property of supercritical CO2 in particular. The wastes to be treated are placed in a chamber. Liquid CO2, drawn from storage at a pressure of 850 psi (approx.=5.9 MPa) and temperature of 0 C, is compressed to pressure of 2 kpsi (approx.=14 MPa) and made to flow into the chamber. The compression raises the temperature to 10 C. The chamber and its contents are then further heated to 40 C, putting the CO2 into a supercritical state, in which it kills microorganisms in the chamber. Carrying dissolved water, the CO2 leaves the chamber through a back-pressure regulator, through which it is expanded back to the storage pressure. The expanded CO2 is refrigerated to extract the dissolved water as ice, and is then returned to the storage tank at 0 C

  16. Heat--sweat--dehydration--rehydration: a praxis oriented approach.

    PubMed

    Brouns, F

    1991-01-01

    In any situation where heat production as a result of physical exercise exceeds heat elimination from the body by radiation and convection, the body will depend on sweat secretion and evaporation for its thermoregulation. Sweat secretion will reach maximal levels at high energy expenditures in the heat but will be limited when exercising in the cold climate. Athletes and their coaches should understand some of the principles of thermoregulation in order to make an adequate decision about optimal fluid and carbohydrate replacement in a specific situation. In general it is advised that the carbohydrate content of rehydration drinks should be low (max 80 g l-1) when sweat loss is maximal, may be intermediate when both carbohydrate availability and moderate dehydration influence performance (up to 110 g l-1), and may be maximal (up to 160 g l-1) when the sweat loss is minimized and carbohydrate is the major determinant of the rate of fatigue development. Sodium should be added to rehydration drinks in order to maximize fluid and carbohydrate absorption. A range of electrolyte values for replacement of sweat induced losses, based on whole body wash down procedure is presented.

  17. Evaluation of biohazards in dehydrated biofilms on foodstuff packaging.

    PubMed

    Le Magrex-Debar, E; Lemoine, J; Gellé, M P; Jacquelin, L F; Choisy, C

    2000-04-10

    Plastic materials used for food packaging are clean but not sterile when the food is just packaged. Accidental wet contamination may occur at every moment between packaging and opening by the consumer: on polyethylene (PET), bacteria may adhere strongly and constitute a biofilm in less than 24 h. By rolling on themselves, PET sheets may contaminate food. We tried to show that contact with salted foodstuffs favoured microbial recovery. Four strains were chosen to perform biofilms on PET: Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa and Escherichia coli. Biofilms were dried up 24 h. Biofilm bacteria were stressed by adhesion, by starvation and by dehydration. However, they were capable of recovery in salted solutions or media, probably because one (or more) stress protected them against another stress. Stress was demonstrated by stress protein production, by mean of electrophoresis, and membrane lesions by mean of flow cytometry. Stress recovery was performed in aqueous salted solutions or salted brain-heart infusion with NaCl 9, 15, 20 and 30 g/l. Staphylococci were more sensitive to these stresses and recovery was a function of salt concentration. Gram-negative bacteria were little affected by stresses; salt effects were less important. If all these biofilms were capable of recovery from stresses in salted media, flexible PET could possibly lead to a health hazard when it is used for wet salt meats, e.g.

  18. The development of the predisposition to dehydration questionnaire.

    PubMed

    Benton, David; Young, Hayley; Jenkins, Kimberley

    2015-04-01

    The role played by hydration in general health and well-being is an emerging public health issue, yet there are few tools available to monitor its status in large populations. The aim was therefore to develop a questionnaire that assesses individual differences in the tendency to lose body fluid in a warm environment and hence become dehydrated. Fifty-three subjects sat in a room at 30°C for four hours and changes in mood and measures of hydration were monitored. There were marked individual differences in the loss of body mass that differed from 0.24% to 2.39%. Females who reported habitually drinking a lot had more water in their diet and at baseline the osmolality of urine was lower. After being subject to heat, those who reported habitually drinking more produced more urine, had a lower urine osmolality at the end of the study, and overall more body mass was lost. Females who reported that they responded badly to heat were more confused, unsure and depressed after four hours at 30°C. In males those reporting that they habitually drank to a greater extent had more water in the diet, and also those who dealt badly with heat habitually drank more. It was concluded that particularly in females, questionnaire measures were able to predict changes in hydration that result from a warm environment. PMID:25477317

  19. Dehydration of ethanol by facile synthesized glucose-based silica.

    PubMed

    Tang, Baokun; Bi, Wentao; Row, Kyung Ho

    2013-02-01

    Bioethanol is considered a potential liquid fuel that can be produced from biomass by fermentation and distillation. Although most of the water is removed by distillation, the purity of ethanol is limited to 95-96 % due to the formation of a low-boiling point, water-ethanol azeotrope. To improve the use of ethanol as a fuel, many methods, such as dehydration, have been proposed to avoid distillation and improve the energy efficiency of extraction. Glucose-based silica, as an adsorbent, was prepared using a simple method, and was proposed for the adsorption of water from water-ethanol mixtures. After adsorption using 0.4 g of adsorbent for 3 h, the initial water concentration of 20 % (water, v/v) was decreased to 10 % (water, v/v). For water concentrations less than 5 % (water, v/v), the adsorbent could concentrate ethanol to 99 % (ethanol, v/v). The Langmuir isotherms used to describe the adsorption of water on an adsorbent showed a correlation coefficient of 0.94. The separation factor of the adsorbent also decreased with decreasing concentration of water in solution. PMID:23299980

  20. Flexible Asymmetric Encapsulation for Dehydration-Responsive Hybrid Microfibers.

    PubMed

    Chaurasia, Ankur S; Sajjadi, Shahriar

    2016-08-01

    A new class of smart alginate microfibers with asymmetric oil encapsulates is introduced. These fibers are produced by injecting an aqueous alginate solution into an outer aqueous calcium chloride solution to form alginate fibers, which are asymmetrically loaded with oil entities through eccentrically aligned inner capillaries. The fiber morphology and its degree of asymmetry can be tuned via altering the size, location, and frequency of the oil encapsulates. These asymmetric fibers reveal significant potential for applications where conventional symmetric fibers fail to perform. It is shown how asymmetric oil-encapsulated fibers can become dehydration-sensitive, and trigger the release of encapsulates if their hydration level drops below a critical value. It is also shown how the triggered response could be switched off on demand by stabilizing the oil encapsulates. The capability of asymmetric fibers to carry and release multiple cargos in parallel is demonstrated. The fibers loaded with equal-sized spheres are more asymmetric than those containing unequal drops, have a higher tensile strength, and show better potential for a triggered response. PMID:27352241

  1. Onion and garlic dehydration in the San Emidio Desert, Nevada

    SciTech Connect

    Lund, J.W.; Lienau, P.J.

    1994-07-01

    Integrated Ingredients dedicated their new onion and garlic processing plant on May 25th. {open_quotes}Grunion{close_quotes} as the new community of 72 employees has been labeled, is located just south of Empire and Gerlach and about 100 miles north of Reno, Nevada. The plant, run by Integrated Ingredients (based in Alameda, CA), is a division of Burns Philp Food, Inc., which owns brands such as Spice Islands, Durkee-French and Fleischmann`s. This plant gives the company the ability to produce its own products for industrial and consumer markets instead of purchasing them. The plant was located in the San Emidio Desert at the edge of the vast Black Rock Desert and the Great Basin to take advantage of the high temperature geothermal resource (approximately 270{degrees}F). The resource is also used by the OESI/AMOR II 3.6 MW binary plant about a mile south of the dehydration plant and a gold heap leaching operation just to the north of the plant (Wind Mt. mine operated by AMAX). In addition to the geothermal energy, the high desert is an ideal location for onion and garlic processing because the cold winters kill damaging microbes. Dry winters and summers also help.

  2. Ethanol dehydration to ethylene in a stratified autothermal millisecond reactor.

    PubMed

    Skinner, Michael J; Michor, Edward L; Fan, Wei; Tsapatsis, Michael; Bhan, Aditya; Schmidt, Lanny D

    2011-08-22

    The concurrent decomposition and deoxygenation of ethanol was accomplished in a stratified reactor with 50-80 ms contact times. The stratified reactor comprised an upstream oxidation zone that contained Pt-coated Al(2)O(3) beads and a downstream dehydration zone consisting of H-ZSM-5 zeolite films deposited on Al(2)O(3) monoliths. Ethanol conversion, product selectivity, and reactor temperature profiles were measured for a range of fuel:oxygen ratios for two autothermal reactor configurations using two different sacrificial fuel mixtures: a parallel hydrogen-ethanol feed system and a series methane-ethanol feed system. Increasing the amount of oxygen relative to the fuel resulted in a monotonic increase in ethanol conversion in both reaction zones. The majority of the converted carbon was in the form of ethylene, where the ethanol carbon-carbon bonds stayed intact while the oxygen was removed. Over 90% yield of ethylene was achieved by using methane as a sacrificial fuel. These results demonstrate that noble metals can be successfully paired with zeolites to create a stratified autothermal reactor capable of removing oxygen from biomass model compounds in a compact, continuous flow system that can be configured to have multiple feed inputs, depending on process restrictions. PMID:21834091

  3. Dehydration of ethanol by facile synthesized glucose-based silica.

    PubMed

    Tang, Baokun; Bi, Wentao; Row, Kyung Ho

    2013-02-01

    Bioethanol is considered a potential liquid fuel that can be produced from biomass by fermentation and distillation. Although most of the water is removed by distillation, the purity of ethanol is limited to 95-96 % due to the formation of a low-boiling point, water-ethanol azeotrope. To improve the use of ethanol as a fuel, many methods, such as dehydration, have been proposed to avoid distillation and improve the energy efficiency of extraction. Glucose-based silica, as an adsorbent, was prepared using a simple method, and was proposed for the adsorption of water from water-ethanol mixtures. After adsorption using 0.4 g of adsorbent for 3 h, the initial water concentration of 20 % (water, v/v) was decreased to 10 % (water, v/v). For water concentrations less than 5 % (water, v/v), the adsorbent could concentrate ethanol to 99 % (ethanol, v/v). The Langmuir isotherms used to describe the adsorption of water on an adsorbent showed a correlation coefficient of 0.94. The separation factor of the adsorbent also decreased with decreasing concentration of water in solution.

  4. Evaluation of biohazards in dehydrated biofilms on foodstuff packaging.

    PubMed

    Le Magrex-Debar, E; Lemoine, J; Gellé, M P; Jacquelin, L F; Choisy, C

    2000-04-10

    Plastic materials used for food packaging are clean but not sterile when the food is just packaged. Accidental wet contamination may occur at every moment between packaging and opening by the consumer: on polyethylene (PET), bacteria may adhere strongly and constitute a biofilm in less than 24 h. By rolling on themselves, PET sheets may contaminate food. We tried to show that contact with salted foodstuffs favoured microbial recovery. Four strains were chosen to perform biofilms on PET: Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa and Escherichia coli. Biofilms were dried up 24 h. Biofilm bacteria were stressed by adhesion, by starvation and by dehydration. However, they were capable of recovery in salted solutions or media, probably because one (or more) stress protected them against another stress. Stress was demonstrated by stress protein production, by mean of electrophoresis, and membrane lesions by mean of flow cytometry. Stress recovery was performed in aqueous salted solutions or salted brain-heart infusion with NaCl 9, 15, 20 and 30 g/l. Staphylococci were more sensitive to these stresses and recovery was a function of salt concentration. Gram-negative bacteria were little affected by stresses; salt effects were less important. If all these biofilms were capable of recovery from stresses in salted media, flexible PET could possibly lead to a health hazard when it is used for wet salt meats, e.g. PMID:10791750

  5. Tropical Tropopause Layer Cloud Formation, Convection and Stratospheric Dehydration

    NASA Astrophysics Data System (ADS)

    Schoeberl, M. R.; Dessler, A. E.; Wang, T.; Avery, M. A.; Jensen, E. J.

    2014-12-01

    Using MERRA reanalysis winds, temperatures and anvil cloud ice, we use our domain-filling, forward trajectory model to study the impact that more realistic cloud formation and convective water injection has on stratospheric water vapor. Our model computed cloud fraction shows reasonable agreement with cloud frequency observed by HIRDLS and CALIOP in the tropical troposphere layer (TTL). Our results suggest that ~64% of the cirrus formed in the TTL are due convection. Overall we find that inclusion of cloud microphysical processes increases stratospheric water vapor by 0.5 ppmv. Adding anvil ice increases stratospheric water vapor by an additional 0.5-0.6 ppmv but has a bigger impact on cloud formation with an increase of ~20-30% in TTL cloud fraction. With convection and cloud dehydration global 18-30 km average water vapor is ~5-7% higher than MLS water vapor observations. Adding waves to the MERRA temperature fields reduces stratospheric water vapor bringing our estimates to within 3% of MLS.

  6. Experimental investigation of bioethanol liquid phase dehydration using natural clinoptilolite.

    PubMed

    Karimi, Samira; Ghobadian, Barat; Omidkhah, Mohammad-Reza; Towfighi, Jafar; Tavakkoli Yaraki, Mohammad

    2016-05-01

    An experimental study of bioethanol adsorption on natural Iranian clinoptilolite was carried out. Dynamic breakthrough curves were used to investigate the best adsorption conditions in bioethanol liquid phase. A laboratory setup was designed and fabricated for this purpose. In order to find the best operating conditions, the effect of liquid pressure, temperature and flow rate on breakthrough curves and consequently, maximum ethanol uptake by adsorbent were studied. The effects of different variables on final bioethanol concentration were investigated using Response Surface Methodology (RSM). The results showed that by working at optimum condition, feed with 96% (v/v) initial ethanol concentration could be purified up to 99.9% (v/v). In addition, the process was modeled using Box-Behnken model and optimum operational conditions to reach 99.9% for final ethanol concentration were found equal to 10.7 °C, 4.9 bar and 8 mL/min for liquid temperature, pressure and flow rate, respectively. Therefore, the selected natural Iranian clinoptilolite was found to be a promising adsorbent material for bioethanol dehydration process. PMID:27222748

  7. Experimental investigation of bioethanol liquid phase dehydration using natural clinoptilolite

    PubMed Central

    Karimi, Samira; Ghobadian, Barat; Omidkhah, Mohammad-Reza; Towfighi, Jafar; Tavakkoli Yaraki, Mohammad

    2016-01-01

    An experimental study of bioethanol adsorption on natural Iranian clinoptilolite was carried out. Dynamic breakthrough curves were used to investigate the best adsorption conditions in bioethanol liquid phase. A laboratory setup was designed and fabricated for this purpose. In order to find the best operating conditions, the effect of liquid pressure, temperature and flow rate on breakthrough curves and consequently, maximum ethanol uptake by adsorbent were studied. The effects of different variables on final bioethanol concentration were investigated using Response Surface Methodology (RSM). The results showed that by working at optimum condition, feed with 96% (v/v) initial ethanol concentration could be purified up to 99.9% (v/v). In addition, the process was modeled using Box–Behnken model and optimum operational conditions to reach 99.9% for final ethanol concentration were found equal to 10.7 °C, 4.9 bar and 8 mL/min for liquid temperature, pressure and flow rate, respectively. Therefore, the selected natural Iranian clinoptilolite was found to be a promising adsorbent material for bioethanol dehydration process. PMID:27222748

  8. Freeze avoidance: a dehydrating moss gathers no ice.

    PubMed

    Lenné, Thomas; Bryant, Gary; Hocart, Charles H; Huang, Cheng X; Ball, Marilyn C

    2010-10-01

    Using cryo-SEM with EDX fundamental structural and mechanical properties of the moss Ceratodon purpureus (Hedw.) Brid. were studied in relation to tolerance of freezing temperatures. In contrast to more complex plants, no ice accumulated within the moss during the freezing event. External ice induced desiccation with the response being a function of cell type; water-filled hydroid cells cavitated and were embolized at -4 °C while parenchyma cells of the inner cortex exhibited cytorrhysis, decreasing to ∼ 20% of their original volume at a nadir temperature of -20 °C. Chlorophyll fluorescence showed that these winter acclimated mosses displayed no evidence of damage after thawing from -20 °C while GCMS showed that sugar concentrations were not sufficient to confer this level of freezing tolerance. In addition, differential scanning calorimetry showed internal ice nucleation occurred in hydrated moss at ∼-12 °C while desiccated moss showed no evidence of freezing with lowering of nadir temperature to -20 °C. Therefore the rapid dehydration of the moss provides an elegantly simple solution to the problem of freezing; remove that which freezes. PMID:20525002

  9. Ethanol Dehydration to Ethylene in a Stratified Autothermal Millisecond Reactor

    SciTech Connect

    Skinner, MJ; Michor, EL; Fan, W; Tsapatsis, M; Bhan, A; Schmidt, LD

    2011-08-10

    The concurrent decomposition and deoxygenation of ethanol was accomplished in a stratified reactor with 50-80 ms contact times. The stratified reactor comprised an upstream oxidation zone that contained Pt-coated Al(2)O(3) beads and a downstream dehydration zone consisting of H-ZSM-5 zeolite films deposited on Al(2)O(3) monoliths. Ethanol conversion, product selectivity, and reactor temperature profiles were measured for a range of fuel:oxygen ratios for two autothermal reactor configurations using two different sacrificial fuel mixtures: a parallel hydrogen-ethanol feed system and a series methane-ethanol feed system. Increasing the amount of oxygen relative to the fuel resulted in a monotonic increase in ethanol conversion in both reaction zones. The majority of the converted carbon was in the form of ethylene, where the ethanol carbon-carbon bonds stayed intact while the oxygen was removed. Over 90% yield of ethylene was achieved by using methane as a sacrificial fuel. These results demonstrate that noble metals can be successfully paired with zeolites to create a stratified autothermal reactor capable of removing oxygen from biomass model compounds in a compact, continuous flow system that can be configured to have multiple feed inputs, depending on process restrictions.

  10. Basic Study on Sludge Concentration and Dehydration with Ultrasonic Exposure

    NASA Astrophysics Data System (ADS)

    Sawada, Yuta; Nagashima, Satoshi; Uchida, Takeyoshi; Kawashima, Norimichi; Takeuchi, Shinichi; Akita, Masashi; Nagaoka, Hiroshi

    2005-06-01

    We study the condensation of sludge and the improvement of the dehydration efficiency of sludge by acoustic cavitation for efficiency improvement and cost reduction in water treatment. An ultrasound wave was irradiated into activated sludge in the water tank of our ultrasound exposure system and a standing wave acoustic field was formed using a vibrating disk driven by a Langevin-type transducer. The vibrating disk was mounted on the bottom of the water tank. Acoustic cavitation was generated in the activated sludge suspension and the sludge was floated to the water surface by ultrasound exposure with this system. We observed B-mode ultrasound images of the activated sludge suspension before ultrasound exposure and that of the floated sludge and treated water after ultrasound exposure. The ultrasound diagnostic equipment was used for the observation of the B-mode ultrasound images of the sludge. It was found that the sludge floated to the water surface because of adhesion of microbubbles generated by acoustic cavitation to the sludge particles, which decreased the sludge density. It can be expected that the drifting sludge in water can be recovered by the flotation thickening method of sludge as an application of the results of this study. It is difficult to recover the drifting sludge in water by the conventional gravity thickening method.

  11. Liquid-phase and vapor-phase dehydration of organic/water solutions

    DOEpatents

    Huang, Yu; Ly, Jennifer; Aldajani, Tiem; Baker, Richard W.

    2011-08-23

    Processes for dehydrating an organic/water solution by pervaporation or vapor separation using fluorinated membranes. The processes are particularly useful for treating mixtures containing light organic components, such as ethanol, isopropanol or acetic acid.

  12. Membrane-based recovery and dehydration of alcohols from fermentation broths - of materials and modules

    EPA Science Inventory

    Distillation combined with molecular sieve dehydration is the current state of the art for fuel grade ethanol production from fermentation broths. As the liquid biofuels industry transitions to lignocellulosic feedstocks, expands the end product portfolio to include other alcoho...

  13. Energy efficient recovery and dehydration of ethanol from fermentation broths by Membrane Assisted Vapor Stripping technology

    EPA Science Inventory

    Distillation combined with molecular sieve dehydration is the current state of the art for fuel grade ethanol production from fermentation broths. To improve the sustainability of bioethanol production, energy efficient separation alternatives are needed, particularly for lower ...

  14. Energy Efficient Hybrid Vapor Stripping-Vapor Permeation Process for Ethanol Recovery ad Dehydration

    EPA Science Inventory

    Distillation combined with molecular sieve dehydration is the current state of the art for fuel grade ethanol production from fermentation broths. To improve the sustainability of bioethanol production, energy efficient separation alternatives are needed, particularly for lower f...

  15. Mixed Matrix Silicone and Fluorosilicone/Zeolite 4A Membranes for Ethanol Dehydration by Pervaporation

    EPA Science Inventory

    The ability of homogeneous and mixed matrix membranes prepared using standard silicone rubber, poly(dimethylsiloxane) (PDMS), and fluorosilicone rubber, poly(trifluoropropylmethylsiloxane) (PTFPMS), to dehydrate ethanol by pervaporation was evaluated. Although PDMS is generally c...

  16. Effect of pre-dehydration treatment on the in vitro digestibility of starch in cookie.

    PubMed

    Kawai, Kiyoshi; Kawai, Haruna; Tomoda, Yuka; Matsusaki, Keiko; Hagura, Yoshio

    2012-12-01

    In order to understand the effect of pre-dehydration on the in vitro digestibility of cookie starch, cookie dough samples were dehydrated by vacuum treatment, and melting temperature (T(m)) of the crystalline amylopectin in the dough, internal temperature and water content of the dough during baking, and non-hydrolysed starch content of the obtained cookies were investigated. The T(m) of crystalline amylopectin increased with decreased water content of the dough, and the result was described as a T(m)-curve. The internal temperature of non-dehydrated dough surpassed the T(m)-curve during baking. Pre-dehydrated dough, on the other hand, always indicated a lower internal temperature than the T(m)-curve. The non-hydrolysed starch content obtained under a given condition increased significantly with a decrease in the initial water content of cookies. This will be because the melting of crystalline amylopectin was prevented, at least partially, during baking.

  17. Dehydration and Denitrification in the Arctic Polar Vortex During the 1995-1996 Winter

    NASA Technical Reports Server (NTRS)

    Hintsa, E. J.; Newman, P. A.; Jonsson, H. H.; Webster, C. R.; May, R. D.; Herman, R. L.; Lait, L. R.; Schoeberl, M. R.; Elkins, J. W.; Wamsley, P. R.; Dutton, G. S.; Bui, T. P.; Kohn, D. W.; Anderson, J. G.

    1998-01-01

    Dehydration of more than 0.5 ppmv water was observed between 18 and 19 km (theta approximately 450-465 K) at the edge of the Arctic polar vortex on February 1, 1996. More than half the reactive nitrogen (NO(y)) had also been removed, with layers of enhanced NO(y) at lower altitudes. Back trajectory calculations show that air parcels sampled inside the vortex had experienced temperatures as low as 188 K within the previous 12 days, consistent with a small amount of dehydration. The depth of the dehydrated layer (approximately 1 km) and the fact that trajectories passed through the region of ice saturation in one day imply selective growth of a small fraction of particles to sizes large enough (>10 micrometers) to be irreversibly removed on this timescale. Over 25% of the Arctic vortex in a 20-30 K range Transport of theta is estimated to have been dehydrated in this event.

  18. Dehydration and Denitrification in the Arctic Polar Vortex During the 1995-1996 Winter

    NASA Technical Reports Server (NTRS)

    Hintsa, E. J.; Newman, P. A.; Jonsson, H. H.; Webster, C. R.; May, R. D.; Herman, R. L.; Lait, L. R.; Schoeberl, M. R.; Elkins, J. W.; Wamsley, P. R.; Dutton, G. S.; Bui, T. P.; Kohn, D. W.; Anderson, J. G.

    1998-01-01

    Dehydration of more than 0.5 ppmv water was observed between 18 and 19 km (0-450-465 K) at the edge of the Arctic polar vortex on February 1, 1996. More than half the reactive nitrogen (NO(y)) had also been removed, with layers of enhanced NO(y) at lower altitudes. Back trajectory calculations show that air parcels sampled inside the vortex had experienced temperatures as low as 188 K within the previous 12 days, consistent with a small amount of dehydration. The depth of the dehydrated layer (approximately 1 km) and the fact that trajectories passed through the region of ice saturation in one day imply selective growth of a small fraction of particles to sizes large enough (>10 microns) to be irreversibly removed on this timescale. Over 25% of the Arctic vortex in a 20-30 K range of 0 is estimated to have been dehydrated in this event.

  19. Dehydration and Denitrification in the Arctic Polar Vortex During the 1995-1996 Winter

    NASA Technical Reports Server (NTRS)

    Hintsa, E. J.; Newman, P. A.; Jonsson, H. H.; Webster, C. R.; May, R. D.; Herman, R. L.; Lait, L. R.; Schoerberl, M. R.; Elkins, J. W.; Wamsley, P. R.

    1998-01-01

    Dehydration of more than 0.5 ppmv water was observed between 18 and 19 km (theta = 450-465 K) at the edge of the Arctic polar vortex on February 1, 1996. More than half the reactive nitrogen (NOy) had also been removed, with layers of enhanced NOy at lower altitudes. Back trajectory calculations show that air parcels sampled inside the vortex had experienced temperatures as low as 188 K within the previous 12 days, consistent with a small amount of dehydration. The depth of the dehydrated layer (approx. 1 km) and the fact that trajectories passed through the region of ice saturation in one day imply selective growth of a small fraction of particles to sizes large enough (>10 micrometers) to be irreversibly removed on this timescale. Over 25% of the Arctic vortex in a 20-30 K range of theta is estimated to have been dehydrated in this event.

  20. Dehydration and Denitrification in the Arctic Polar Vortex During the 1995-1996 Winter

    NASA Technical Reports Server (NTRS)

    Hintsa, E. J.; Newman, P. A.; Jonsson, H. H.; Webster, C. R.; May, R. D.; Herman, R. L.; Lait, L. R.; Schoeberl, M. R.; Elkins, J. W.; Wamsley, P. R.; Dutton, G. S.; Bui, T. P.; Kohn, D. W.; Anderson, J. G.

    1998-01-01

    Dehydration of more than 0.5 ppmv water was observed between 18 and 19 km (theta about 450-465 K) at the edge of the Arctic polar vortex on February 1, 1996. More than half the reactive nitrogen (NO(sub y)) had also been removed, with layers of enhanced (sub y) at lower altitudes. Back trajectory calculations show that air parcels sampled inside the vortex had experienced temperatures as low as 188 K within the previous 12 days, consistent with a small amount of dehydration. The depth of the dehydrated layer (about 1 km) and the fact that trajectories passed through the region of ice saturation in one day imply selective growth of a small fraction of particles to sizes large enough (>10 micron) to be irreversibly removed on this timescale. Over 25% of the Arctic vortex in a 20-30 K range of theta is estimated to have been dehydrated in this event.

  1. Dehydration enthalpy of alkali-cations-exchanged montmorillonite from thermogravimetric analysis.

    PubMed

    Kharroubi, M; Balme, S; Henn, F; Giuntini, J C; Belarbi, H; Haouzi, A

    2009-01-15

    Dehydration of a series of homoionic alkali-exchanged montmorillonites is studied at different treatment temperatures by means of thermogravimetric analysis. More specifically, we investigate the last stages of dehydration when the number of adsorbed water molecules corresponds, at maximum, to a monolayer. Weight losses are measured at several constant temperatures as a function of time. Application of Van't Hoff's law yields the dehydration enthalpy. Trends and data similar to those reported from other experimental conditions are found. Comparison with X-ray data and with the dissociation enthalpy of alkali cation/water complexes shows that dehydration of weakly hydrated homoionic alkali montmorillonites results from the competition between opposite energy contributions due to (i) the cation solvation, (ii) the hydration of the silicate interlayer surface, and (iii) the structural swelling. So, depending on the balance between these various energy contributions, different behaviors are observed according to the nature of the alkali cations. PMID:18973904

  2. Dehydration of Methanediol in Aqueous Solution: An ONIOM(QM/MM) Study.

    PubMed

    Inaba, Satoshi; Sameera, W M C

    2016-08-25

    We used ONIOM(QM/MM) method to examine the dehydration of a methanediol in aqueous solution. A methanediol and a small number of water molecules in the proximity of the methanediol are calculated with quantum mechanics (QM), while a number of water molecules far from the methanediol are calculated with molecular mechanics (MM). A molecular dynamical simulation shows that 12 water molecules are located within the hydration shell of a methanediol. The energy barrier for the dehydration of a methanediol decreases when we increase the number of water molecules in the QM region and converges toward a finite value when 12 water molecules are included in the QM region. This indicates a significant effect of water molecules within the hydration shell on the dehydration process of a methanediol in aqueous solution. The dehydration rate calculated with the ONIOM(QM/MM) method agrees well with that obtained from a laboratory experiment. PMID:27490867

  3. Effect of simultaneous infrared dry-blanching and dehydration on quality characteristics of carrot slices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the effects of various processing parameters on carrot slices exposed to infrared (IR) radiation heating for achieving simultaneous infrared dry-blanching and dehydration (SIRDBD). The investigated parameters were product surface temperature, slice thickness and processing ti...

  4. A NOVEL HYDROPHILIC POLYMER MEMBRANE FOR THE DEHYDRATION OF ORGANIC SOLVENTS

    EPA Science Inventory

    Novel hydrophilic polymer membranes based on polyallylamine ydrochloride- polyvinylalcohol are developed. The high selectivity and flux characteristics of these membranes for the dehydration of organic solvents are evaluated using pervaporation technology and are found to be ver...

  5. Effective hepatitis A virus inactivation during low-heat dehydration of contaminated green onions.

    PubMed

    Laird, David T; Sun, Yan; Reineke, Karl F; Shieh, Y Carol

    2011-08-01

    Preserving fruits and vegetables by dehydration is common; however, information is limited concerning viral survival on the produce during the process. This work demonstrated the effects of low heat dehydration on inactivating hepatitis A virus (HAV) on contaminated green onions. Inoculated and uninoculated onion samples were dehydrated at target temperatures of 45-65 °C for 20 h. HAV from artificially contaminated onions (fresh or dehydrated) was eluted by shaking at 145 rpm at 20 °C for 20 min with 3% beef extract, pH 8, and followed by 0.2 μM-membrane filtration before plaque assay and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. Dilutions of the filtrates were made for obtaining countable plaques on FRhK-4 cell monolayers in 6-well plates, and also for eliminating inhibitors in qRT-PCR. Average water activity of the onions after 20 h-dehydration was 0.227, regardless of temperature used (47.9 °C or 65.1 °C). Eight dehydration trials resulted in a linear relationship between HAV inactivation and dehydration temperature, with HAV log reduction = 0.1372x(°C) - 5.5572, r(2) = 0.88. Therefore, the 20 h-heating at 47.8, 55.1, and 62.4 °C reduced infectious HAV in onions by 1, 2, and 3 logs respectively, the Z value being 7.3 °C. It was concluded that low heat dehydration using 62.5 °C or above could effectively inactivate HAV on contaminated onions by >3 logs. PMID:21569944

  6. Effective hepatitis A virus inactivation during low-heat dehydration of contaminated green onions.

    PubMed

    Laird, David T; Sun, Yan; Reineke, Karl F; Shieh, Y Carol

    2011-08-01

    Preserving fruits and vegetables by dehydration is common; however, information is limited concerning viral survival on the produce during the process. This work demonstrated the effects of low heat dehydration on inactivating hepatitis A virus (HAV) on contaminated green onions. Inoculated and uninoculated onion samples were dehydrated at target temperatures of 45-65 °C for 20 h. HAV from artificially contaminated onions (fresh or dehydrated) was eluted by shaking at 145 rpm at 20 °C for 20 min with 3% beef extract, pH 8, and followed by 0.2 μM-membrane filtration before plaque assay and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. Dilutions of the filtrates were made for obtaining countable plaques on FRhK-4 cell monolayers in 6-well plates, and also for eliminating inhibitors in qRT-PCR. Average water activity of the onions after 20 h-dehydration was 0.227, regardless of temperature used (47.9 °C or 65.1 °C). Eight dehydration trials resulted in a linear relationship between HAV inactivation and dehydration temperature, with HAV log reduction = 0.1372x(°C) - 5.5572, r(2) = 0.88. Therefore, the 20 h-heating at 47.8, 55.1, and 62.4 °C reduced infectious HAV in onions by 1, 2, and 3 logs respectively, the Z value being 7.3 °C. It was concluded that low heat dehydration using 62.5 °C or above could effectively inactivate HAV on contaminated onions by >3 logs.

  7. Formation of Linear Polyenes in Thermal Dehydration of Polyvinyl Alcohol, Catalyzed by Phosphotungstic Acid

    NASA Astrophysics Data System (ADS)

    Tretinnikov, O. N.; Sushko, N. I.

    2015-01-01

    In order to obtain linear polyenes in polyvinyl alcohol films via acid-catalyzed thermal dehydration of the polyvinyl alcohol, we used phosphotungstic acid as the catalyst: a safe and heat-stable solid chemical compound. We established that phosphotungstic acid, introduced as solid nanoparticles into polyvinyl alcohol films, is a more effective dehydration catalyst than hydrochloric acid, since in contrast to HCl it does not evaporate from the film during heat treatment.

  8. Exercise-induced dehydration does not alter time trial or neuromuscular performance.

    PubMed

    Stewart, C J; Whyte, D G; Cannon, J; Wickham, J; Marino, F E

    2014-08-01

    This study examined the effect of exercise-induced dehydration by ~4% body mass loss on 5-km cycling time trial (TT) performance and neuromuscular drive, independent of hyperthermia. 7 active males were dehydrated on 2 occasions, separated by 7 d. Participants remained dehydrated (DEH, -3.8±0.5%) or were rehydrated (REH, 0.2±0.6%) over 2 h before completing the TT at 18-25 °C, 20-30% relative humidity. Neuromuscular function was determined before dehydration and immediately prior the TT. The TT started at the same core temperature (DEH, 37.3±0.3°C; REH, 37.0±0.2 °C (P>0.05). Neither TT performance (DEH, 7.31±1.5 min; REH, 7.10±1.3 min (P>0.05)) or % voluntary activation were affected by dehydration (DEH, 88.7±6.4%; REH, 90.6±6.1% (P>0.05)). Quadriceps peak torque was significantly elevated in both trials prior to the TT (P<0.05), while a 19% increase in the rate of potentiated peak twitch torque development (P<0.05) was observed in the DEH trial only. All other neuromuscular measures were similar between trials. Short duration TT performance and neuromuscular function are not reduced by dehydration, independent of hyperthermia.

  9. Intermediate-depth earthquake faulting by dehydration embrittlement with negative volume change

    NASA Astrophysics Data System (ADS)

    Jung, Haemyeong; Green, Harry W., II; Dobrzhinetskaya, Larissa F.

    2004-04-01

    Earthquakes are observed to occur in subduction zones to depths of approximately 680km, even though unassisted brittle failure is inhibited at depths greater than about 50km, owing to the high pressures and temperatures. It is thought that such earthquakes (particularly those at intermediate depths of 50-300km) may instead be triggered by embrittlement accompanying dehydration of hydrous minerals, principally serpentine. A problem with failure by serpentine dehydration is that the volume change accompanying dehydration becomes negative at pressures of 2-4GPa (60-120km depth), above which brittle fracture mechanics predicts that the instability should be quenched. Here we show that dehydration of antigorite serpentinite under stress results in faults delineated by ultrafine-grained solid reaction products formed during dehydration. This phenomenon was observed under all conditions tested (pressures of 1-6GPa temperatures of 650-820°C), independent of the sign of the volume change of reaction. Although this result contradicts expectations from fracture mechanics, it can be explained by separation of fluid from solid residue before and during faulting, a hypothesis supported by our observations. These observations confirm that dehydration embrittlement is a viable mechanism for nucleating earthquakes independent of depth, as long as there are hydrous minerals breaking down under a differential stress.

  10. Effects of dehydration temperatures on moisture absorption and dissolution behavior of theophylline.

    PubMed

    Ono, M; Tozuka, Y; Oguchi, T; Yamamoto, K

    2001-12-01

    Anhydrous theophylline was prepared by heating theophylline monohydrate at temperatures between 60 degrees C and 140 degrees C. The effects of dehydration temperatures on the moisture absorption and dissolution behavior of anhydrous theophylline were investigated in this study. The hydration rate of anhydrous theophylline at 95% relative humidity and 25 degrees C decreased with increasing dehydration temperatures. From the fitting analysis of solid-state reaction models, the hydration reaction was found to be governed by the phase boundary reaction model for samples prepared at lower dehydration temperatures (<100 degrees C) but the reaction obeyed the growth of nuclei reaction model when samples were dehydrated at higher temperatures. The dissolution rates of various anhydrous theophylline samples were measured by the rotating disk method. The calculated solubility of anhydrous theophylline prepared by heating was about 2.5 times higher than that of theophylline monohydrate. The phase transformation rate from the anhydrous form to the monohydrate during dissolution tests decreased with higher dehydration temperatures. It was found that the anhydrous theophylline prepared at different dehydration temperatures transformed to the monohydrate by way of different growth of hydrate nuclei mechanism.

  11. Repeated bouts of dehydration deplete nutrient reserves and reduce egg production in the mosquito Culex pipiens

    PubMed Central

    Benoit, Joshua B.; Patrick, Kevin R.; Desai, Karina; Hardesty, Jeffrey J.; Krause, Tyler B.; Denlinger, David L.

    2010-01-01

    In this study of the mosquito, Culex pipiens, we examined the impact of multiple bouts of dehydration and rehydration on survival, depletion of metabolic reserves and egg production in both non-diapausing and diapausing females. Mosquitoes provided with access to sugar during rehydration survived longer than those allowed to rehydrate without sugar, and their survival was similar to that of mosquitoes of the same age that were not dehydrated. Among mosquitoes not provided with sugar, each dehydration bout reduced the mosquito's dry mass – an effect likely to be due to the utilization of carbohydrates and lipid reserves. The toll on glycogen and lipid reserves is likely to be especially costly for diapausing mosquitoes that are dependent on these stored reserves for winter survival. Egg production in both non-diapausing and post-diapausing C. pipiens was also reduced in response to multiple bouts of dehydration. Although egg quality was not compromised, the number of eggs produced was reduced. Both non-diapausing and diapausing females can compensate for the nutrient loss due to dehydration by sugar feeding but the opportunity to feed on sugar is likely to be rarely available in the overwintering habitat of diapausing females, thus the impact of dehydration may be especially pronounced in overwintering populations of C. pipiens. PMID:20675546

  12. Application of anhydrobiosis and dehydration of yeasts for non-conventional biotechnological goals.

    PubMed

    Rapoport, Alexander; Turchetti, Benedetta; Buzzini, Pietro

    2016-06-01

    Dehydration of yeast cells causes them to enter a state of anhydrobiosis in which their metabolism is temporarily and reversibly suspended. This unique state among organisms is currently used in the production of active dry yeasts, mainly used in baking and winemaking. In recent decades non-conventional applications of yeast dehydration have been proposed for various modern biotechnologies. This mini-review briefly summarises current information on the application of dry yeasts in traditional and innovative fields. It has been shown that dry yeast preparations can be used for the efficient protection, purification and bioremediation of the environment from heavy metals. The high sorption activity of dehydrated yeasts can be used as an interesting tool in winemaking due to their effects on quality and taste. Dry yeasts are also used in agricultural animal feed. Another interesting application of yeast dehydration is as an additional stage in new methods for the stable immobilisation of microorganisms, especially in cases when biotechnologically important strains have no affinity with the carrier. Such immobilisation methods also provide a new approach for the successful conservation of yeast strains that are very sensitive to dehydration. In addition, the application of dehydration procedures opens up new possibilities for the use of yeast as a model system. Separate sections of this review also discuss possible uses of dry yeasts in biocontrol, bioprotection and biotransformations, in analytical methods as well as in some other areas. PMID:27116970

  13. Organ Specific Proteomic Dissection of Selaginella bryopteris Undergoing Dehydration and Rehydration.

    PubMed

    Deeba, Farah; Pandey, Ashutosh K; Pandey, Vivek

    2016-01-01

    To explore molecular mechanisms underlying the physiological response of Selaginella bryopteris, a comprehensive proteome analysis was carried out in roots and fronds undergoing dehydration and rehydration. Plants were dehydrated for 7 days followed by 2 and 24 h of rehydration. In roots out of 59 identified spots, 58 protein spots were found to be up-regulated during dehydration stress. The identified proteins were related to signaling, stress and defense, protein and nucleotide metabolism, carbohydrate and energy metabolism, storage and epigenetic control. Most of these proteins remained up-regulated on first rehydration, suggesting their role in recovery phase also. Among the 90 identified proteins in fronds, about 49% proteins were up-regulated during dehydration stress. Large number of ROS scavenging proteins was enhanced on dehydration. Many other proteins involved in energy, protein turnover and nucleotide metabolism, epigenetic control were also highly upregulated. Many photosynthesis related proteins were upregulated during stress. This would have helped plant to recover rapidly on rehydration. This study provides a comprehensive picture of different cellular responses elucidated by the proteome changes during dehydration and rehydration in roots and fronds as expected from a well-choreographed response from a resurrection plant.

  14. Proteome analysis of Physcomitrella patens exposed to progressive dehydration and rehydration.

    PubMed

    Cui, Suxia; Hu, Jia; Guo, Shilei; Wang, Jie; Cheng, Yali; Dang, Xinxing; Wu, Lili; He, Yikun

    2012-01-01

    Physcomitrella patens is an extremely dehydration-tolerant moss. However, the molecular basis of its responses to loss of cellular water remains unclear. A comprehensive proteomic analysis of dehydration- and rehydration-responsive proteins has been conducted using quantitative two-dimensional difference in-gel electrophoresis (2D-DIGE), and traditional 2-D gel electrophoresis (2-DE) combined with MALDI TOF/TOF MS. Of the 216 differentially-expressed protein spots, 112 and 104 were dehydration- and rehydration-responsive proteins, respectively. The functional categories of the most differentially-expressed proteins were seed maturation, defence, protein synthesis and quality control, and energy production. Strikingly, most of the late embryogenesis abundant (LEA) proteins were expressed at a basal level under control conditions and their synthesis was strongly enhanced by dehydration, a pattern that was confirmed by RT-PCR. Actinoporins, phosphatidylethanolamine-binding protein, arabinogalactan protein, and phospholipase are the likely dominant players in the defence system. In addition, 24 proteins of unknown function were identified as novel dehydration- or rehydration-responsive proteins. Our data indicate that Physcomitrella adopts a rapid protein response mechanism to cope with dehydration in its leafy-shoot and basal expression levels of desiccation-tolerant proteins are rapidly upgraded at high levels under stress. This mechanism appears similar to that seen in angiosperm seeds.

  15. Organ Specific Proteomic Dissection of Selaginella bryopteris Undergoing Dehydration and Rehydration

    PubMed Central

    Deeba, Farah; Pandey, Ashutosh K.; Pandey, Vivek

    2016-01-01

    To explore molecular mechanisms underlying the physiological response of Selaginella bryopteris, a comprehensive proteome analysis was carried out in roots and fronds undergoing dehydration and rehydration. Plants were dehydrated for 7 days followed by 2 and 24 h of rehydration. In roots out of 59 identified spots, 58 protein spots were found to be up-regulated during dehydration stress. The identified proteins were related to signaling, stress and defense, protein and nucleotide metabolism, carbohydrate and energy metabolism, storage and epigenetic control. Most of these proteins remained up-regulated on first rehydration, suggesting their role in recovery phase also. Among the 90 identified proteins in fronds, about 49% proteins were up-regulated during dehydration stress. Large number of ROS scavenging proteins was enhanced on dehydration. Many other proteins involved in energy, protein turnover and nucleotide metabolism, epigenetic control were also highly upregulated. Many photosynthesis related proteins were upregulated during stress. This would have helped plant to recover rapidly on rehydration. This study provides a comprehensive picture of different cellular responses elucidated by the proteome changes during dehydration and rehydration in roots and fronds as expected from a well-choreographed response from a resurrection plant. PMID:27092152

  16. Intermediate-depth earthquake faulting by dehydration embrittlement with negative volume change.

    PubMed

    Jung, Haemyeong; Green II, Harry W; Dobrzhinetskaya, Larissa F

    2004-04-01

    Earthquakes are observed to occur in subduction zones to depths of approximately 680 km, even though unassisted brittle failure is inhibited at depths greater than about 50 km, owing to the high pressures and temperatures. It is thought that such earthquakes (particularly those at intermediate depths of 50-300 km) may instead be triggered by embrittlement accompanying dehydration of hydrous minerals, principally serpentine. A problem with failure by serpentine dehydration is that the volume change accompanying dehydration becomes negative at pressures of 2-4 GPa (60-120 km depth), above which brittle fracture mechanics predicts that the instability should be quenched. Here we show that dehydration of antigorite serpentinite under stress results in faults delineated by ultrafine-grained solid reaction products formed during dehydration. This phenomenon was observed under all conditions tested (pressures of 1-6 GPa; temperatures of 650-820 degrees C), independent of the sign of the volume change of reaction. Although this result contradicts expectations from fracture mechanics, it can be explained by separation of fluid from solid residue before and during faulting, a hypothesis supported by our observations. These observations confirm that dehydration embrittlement is a viable mechanism for nucleating earthquakes independent of depth, as long as there are hydrous minerals breaking down under a differential stress.

  17. Water incorporation in NAMs after antigorite and chlorite dehydration reactions

    NASA Astrophysics Data System (ADS)

    Padrón-Navarta, José Alberto; Hermann, Jörg

    2014-05-01

    Subduction zones play a fundamental role in the deep water cycle making the Earth unique among other terrestrial planets. Water is incorporated into hydrous minerals during seafloor alteration of the oceanic lithosphere. During subduction of the oceanic lithosphere, dehydration of these hydrous minerals produces a fluid phase. A part of this fluid phase will be recycled back to the Earth's surface through hydrothermal aqueous fluids or through hydrous arc magmas, whereas another part of the water will be transported to the deep mantle by Nominally Anhydrous Minerals (NAMs) such as olivine, pyroxene and garnet. The partitioning of water between these two processes is crucial for our understanding of the mantle-scale water recycling in the Earth. This can be investigated experimentally under water-saturated conditions because this situation is met during dehydration reactions. However relatively low temperature conditions for such reactions make challenging these experiments. An alternative can be found in the natural record. The Alpine Betic-Rif orogen together with Central and Western Alps offer an invaluable diversity of ultramafic lenses that record a significant range of pressure-temperature and cooling rates. Hence these samples portray an excellent data set of 24 samples to survey the transfer of fluids from hydrous phases (brucite, antigorite and chlorite) to NAMs (olivine, orthopyroxene, clinopyroxene and garnet). Well-studied samples from these localities have been selected for water measurement using FTIR spectroscopy. The selected suite comprises the following high-pressure peridotite outcrops: Malenco serpentinite, Cerro del Almirez (1.6-1.9 GPa and 680-710ºC), Alpe Arami (3.2 GPa and 840ºC), Cima di Gagnone (3.0 GPa and 750-800ºC) and Alpe Albion (0.6 GPa and 730ºC). The infrared signature of olivine in all localities contains water (hydroxyl groups) associated to intrinsic defects (mostly point defects related to Ti4+) and extrinsic submicroscopic

  18. Early Transcriptional Response of Soybean Contrasting Accessions to Root Dehydration

    PubMed Central

    Ferreira Neto, José Ribamar Costa; Pandolfi, Valesca; Guimaraes, Francismar Corrêa Marcelino; Benko-Iseppon, Ana Maria; Romero, Cynara; Silva, Roberta Lane de Oliveira; Rodrigues, Fabiana Aparecida; Abdelnoor, Ricardo Vilela; Nepomuceno, Alexandre Lima; Kido, Ederson Akio

    2013-01-01

    Drought is a significant constraint to yield increase in soybean. The early perception of water deprivation is critical for recruitment of genes that promote plant tolerance. DeepSuperSAGE libraries, including one control and a bulk of six stress times imposed (from 25 to 150 min of root dehydration) for drought-tolerant and sensitive soybean accessions, allowed to identify new molecular targets for drought tolerance. The survey uncovered 120,770 unique transcripts expressed by the contrasting accessions. Of these, 57,610 aligned with known cDNA sequences, allowing the annotation of 32,373 unitags. A total of 1,127 unitags were up-regulated only in the tolerant accession, whereas 1,557 were up-regulated in both as compared to their controls. An expression profile concerning the most representative Gene Ontology (GO) categories for the tolerant accession revealed the expression “protein binding” as the most represented for “Molecular Function”, whereas CDPK and CBL were the most up-regulated protein families in this category. Furthermore, particular genes expressed different isoforms according to the accession, showing the potential to operate in the distinction of physiological behaviors. Besides, heat maps comprising GO categories related to abiotic stress response and the unitags regulation observed in the expression contrasts covering tolerant and sensitive accessions, revealed the unitags potential for plant breeding. Candidate genes related to “hormone response” (LOX, ERF1b, XET), “water response” (PUB, BMY), “salt stress response” (WRKY, MYB) and “oxidative stress response” (PER) figured among the most promising molecular targets. Additionally, nine transcripts (HMGR, XET, WRKY20, RAP2-4, EREBP, NAC3, PER, GPX5 and BMY) validated by RT-qPCR (four different time points) confirmed their differential expression and pointed that already after 25 minutes a transcriptional reorganization started in response to the new condition, with

  19. Selective Brain Cooling Reduces Water Turnover in Dehydrated Sheep

    PubMed Central

    Strauss, W. Maartin; Hetem, Robyn S.; Mitchell, Duncan; Maloney, Shane K.; Meyer, Leith C. R.; Fuller, Andrea

    2015-01-01

    In artiodactyls, arterial blood destined for the brain can be cooled through counter-current heat exchange within the cavernous sinus via a process called selective brain cooling. We test the hypothesis that selective brain cooling, which results in lowered hypothalamic temperature, contributes to water conservation in sheep. Nine Dorper sheep, instrumented to provide measurements of carotid blood and brain temperature, were dosed with deuterium oxide (D2O), exposed to heat for 8 days (40◦C for 6-h per day) and deprived of water for the last five days (days 3 to 8). Plasma osmolality increased and the body water fraction decreased over the five days of water deprivation, with the sheep losing 16.7% of their body mass. Following water deprivation, both the mean 24h carotid blood temperature and the mean 24h brain temperature increased, but carotid blood temperature increased more than did brain temperature resulting in increased selective brain cooling. There was considerable inter-individual variation in the degree to which individual sheep used selective brain cooling. In general, sheep spent more time using selective brain cooling, and it was of greater magnitude, when dehydrated compared to when they were euhydrated. We found a significant positive correlation between selective brain cooling magnitude and osmolality (an index of hydration state). Both the magnitude of selective brain cooling and the proportion of time that sheep spent selective brain cooling were negatively correlated with water turnover. Sheep that used selective brain cooling more frequently, and with greater magnitude, lost less water than did conspecifics using selective brain cooling less efficiently. Our results show that a 50kg sheep can save 2.6L of water per day (~60% of daily water intake) when it employs selective brain cooling for 50% of the day during heat exposure. We conclude that selective brain cooling has a water conservation function in artiodactyls. PMID:25675092

  20. Thermogravimetric study of the dehydration and reduction of red mud

    NASA Astrophysics Data System (ADS)

    Teplov, O. A.; Korenovskii, N. L.; Lainer, Yu. A.

    2015-01-01

    The processes of drying and reduction of red mud in the pure state and with coal additions in vacuum or in gaseous media (helium, hydrogen) have been experimentally studied by thermogravimetry using a Setaram TAG24 thermogravimetric analyzer. The minimum total weight loss (˜20%) is observed for red mud samples without additives in forevacuum, and the maximum loss (˜38%) is detected in samples with coal. It is demonstrated that, for this type of red mud with iron oxide Fe2O3, water molecules are bonded in the form of iron hydroxide Fe2O3 · 3H2O rather than goethite FeOOH. The peak of magnetite formation is observed in differential thermogravimetry (DTG) curve in the range 270-400°C. The simulation of the magnetite dehydration and formation rates under experimental conditions in the relevant temperature ranges agrees with the experimental data. A peak of wustite formation in hydrogen above ˜600°C is recorded in a DTG curve, and the removal of one-third of sodium oxide, which is likely not to be fixed into strong sodium alumosilicate, is observed in the range 800-1000°C. The peak detected in the DTG curve of the mud with charcoal in helium in the range 350-450°C is similar to the peak of hematite reduction in magnetite in a hydrogen atmosphere. The most probable source of hydrogen-containing gases in this temperature range consists of the residual hydrocarbons of charcoal. The reduction reactions of disperse iron oxides with coal proceed only at temperatures above 600°C. These processes occur in the same temperature range (600-900°C) both in forevacuum and in a helium atmosphere. It is experimentally demonstrated that sintering process occurs in the mud in the temperature range 450-850°C.

  1. Alteration and Dehydration in the Parent Asteroid of Allende

    NASA Astrophysics Data System (ADS)

    Krot, A. N.; Scott, E. R. D.; Zolensky, M. E.

    1995-09-01

    CV3 chondrites experienced various degrees of late-stage modification, including: fayalitic rims around forsteritic grains, secondary mineralization (e.g., nepheline, sodalite, magnetite) in CAIs and chondrules, and formation of phyllosilicates [1]. Our literature survey show that these secondary features probably have a related origin [2]. Although an asteroidal origin is generally accepted for most phyllosilicates [3] and proposed for magnetite [4], the other secondary features have been attributed to reactions of CV3 components with a hot (> 1500 K) and oxidized (H2O/H2 about 1) nebular gas [5]. The Allende meteorite is considered to be a primitive CV3, because phyllosilicates are absent in the matrix and metamorphic effects are not apparent [6]. However, all other secondary features are well-developed. Studies of dark inclusions (DIs) in CV3s [7] provide a key to understanding the secondary features in Allende. Mineralogical, chemical and isotopic data indicate that DIs and CV3s have related origins. Matrices of the DIs resemble the Allende matrix, but the chondrules show a wider range of alteration textures. In some DIs, the chondrules have only fayalitic rims like those in Allende, but in others there are chondrule-shaped regions of porous fayalitic olivine. In DIs of intermediate type, the chondrules consist of forsteritic cores, which have fayalitic rims, surrounded by porous fayalitic olivine. We conclude that the sequence observed among DIs reflects various degrees of replacement of chondrules by fayalitic olivine. The presence of veins of fayalitic olivine, nepheline and Ca-pyroxene throughout DIs [7] which experienced the most pervasive alteration argues for asteroidal processing of DIs. Like Kojima and Tomeoka [7], we infer that porous fayalitic olivine formed by metamorphic dehydration of phyllosilicates on an asteroid. We suggest that the Allende host and Allende-like DIs represent the initial stages of the alteration sequence from material similar

  2. Permeability control on transient slip weakening during gypsum dehydration: Implications for earthquakes in subduction zones

    NASA Astrophysics Data System (ADS)

    Leclère, Henri; Faulkner, Daniel; Wheeler, John; Mariani, Elisabetta

    2016-05-01

    A conflict has emerged from recent laboratory experiments regarding the question of whether or not dehydration reactions can promote unstable slip in subduction zones leading to earthquakes. Although reactions produce mechanical weakening due to pore-fluid pressure increase, this weakening has been associated with both stable and unstable slip. Here, new results monitoring strength, permeability, pore-fluid pressure, reaction progress and microstructural evolution during dehydration reactions are presented to identify the conditions necessary for mechanical instability. Triaxial experiments are conducted using gypsum and a direct shear sample assembly with constant normal stress that allows the measurement of permeability during sliding. Tests are conducted with temperature ramp from 70 to 150 °C and with different effective confining pressures (50, 100 and 150 MPa) and velocities (0.1 and 0.4 μm s-1). Results show that gypsum dehydration to bassanite induces transient stable-slip weakening that is controlled by pore-fluid pressure and permeability evolution. At the onset of dehydration, the low permeability promoted by pore compaction induces pore-fluid pressure build-up and stable slip weakening. The increase of bassanite content during the reaction shows clear evidence of dehydration related with the development of R1 Riedel shears and P foliation planes where bassanite is preferentially localized along these structures. The continued production of bassanite, which is stronger than gypsum, provides a supporting framework for newly formed pores, thus resulting in permeability increase, pore-fluid pressure drop and fault strength increase. After dehydration reaction, deformation is characterized by unstable slip on the fully dehydrated reaction product, controlled by the transition from velocity-strengthening to velocity-weakening behaviour of bassanite at temperature above ∼140 °C and the localization of deformation along narrow Y-shear planes. This study

  3. In-situ Dehydration Studies of Fully K- Rb- and Cs-exchanged Natrolites

    SciTech Connect

    Y Lee; D Seoung; D Liu; M Park; S Hong; H Chen; J Bai; C Kao; T Vogt; Y Lee

    2011-12-31

    In-situ synchrotron X-ray powder diffraction studies of K-, Rb-, and Cs-exchanged natrolites between room temperature and 425 C revealed that the dehydrated phases with collapsed frameworks start to form at 175, 150, and 100 C, respectively. The degree of the framework collapse indicated by the unit-cell volume contraction depends on the size of the non-framework cation: K-exchanged natrolite undergoes an 18.8% unit-cell volume contraction when dehydrated at 175 C, whereas Rb- and Cs-exchanged natrolites show unit-cell volume contractions of 18.5 and 15.2% at 150 and 100 C, respectively. In the hydrated phases, the dehydration-induced unit-cell volume reduction diminishes as the cation size increases and reveals increasingly a negative slope as smaller cations are substituted into the pores of the natrolite structure. The thermal expansion of the unit-cell volumes of the dehydrated K-, Rb-, and Cs-phases have positive thermal expansion coefficients of 8.80 x 10{sup -5} K{sup -1}, 1.03 x 10{sup -4} K{sup 01}, and 5.06 x 10{sup -5} K{sup -1}, respectively. Rietveld structure refinements of the dehydrated phases at 400 C reveal that the framework collapses are due to an increase of the chain rotation angles, {Psi}, which narrow the channels to a more elliptical shape. Compared to their respective hydrated structures at ambient conditions, the dehydrated K-exchanged natrolite at 400 C shows a 2.2-fold increase in {Psi}, whereas the dehydrated Rb- and Cs-natrolites at 400 C reveal increases of {Psi} by ca. 3.7 and 7.3 times, respectively. The elliptical channel openings of the dehydrated K-, Rb-, to Cs-phases become larger as the cation size increases. The disordered non-framework cations in the hydrated K-, Rb-, and Cs-natrolite order during dehydration and the subsequent framework collapse. The dehydrated phases of Rb- and Cs-natrolite can be stabilized at ambient conditions.

  4. The diagnostic accuracy of multi-frequency bioelectrical impedance analysis in diagnosing dehydration after stroke

    PubMed Central

    Kafri, Mohannad W.; Myint, Phyo Kyaw; Doherty, Danielle; Wilson, Alexander Hugh; Potter, John F.; Hooper, Lee

    2013-01-01

    Background Non-invasive methods for detecting water-loss dehydration following acute stroke would be clinically useful. We evaluated the diagnostic accuracy of multi-frequency bioelectrical impedance analysis (MF-BIA) against reference standards serum osmolality and osmolarity. Material/Methods Patients admitted to an acute stroke unit were recruited. Blood samples for electrolytes and osmolality were taken within 20 minutes of MF-BIA. Total body water (TBW%), intracellular (ICW%) and extracellular water (ECW%), as percentages of total body weight, were calculated by MF-BIA equipment and from impedance measures using published equations for older people. These were compared to hydration status (based on serum osmolality and calculated osmolarity). The most promising Receiver Operating Characteristics curves were plotted. Results 27 stroke patients were recruited (mean age 71.3, SD10.7). Only a TBW% cut-off at 46% was consistent with current dehydration (serum osmolality >300 mOsm/kg) and TBW% at 47% impending dehydration (calculated osmolarity ≥295–300 mOsm/L) with sensitivity and specificity both >60%. Even here diagnostic accuracy of MF-BIA was poor, a third of those with dehydration were wrongly classified as hydrated and a third classified as dehydrated were well hydrated. Secondary analyses assessing diagnostic accuracy of TBW% for men and women separately, and using TBW as a percentage of lean body mass showed some promise, but did not provide diagnostically accurate measures across the population. Conclusions MF-BIA appears ineffective at diagnosing water-loss dehydration after stroke and cannot be recommended as a test for dehydration, but separating assessment by sex, and using TBW as a percentage of lean body weight may warrant further investigation. PMID:23839255

  5. Effect of acute mild dehydration on cognitive-motor performance in golf.

    PubMed

    Smith, Mark F; Newell, Alex J; Baker, Mistrelle R

    2012-11-01

    Whether mild dehydration (-1 to 3% body mass change [ΔBM]) impairs neurophysiological function during sport-specific cognitive-motor performance has yet to be fully elucidated. To investigate this within a golfing context, 7 low-handicap players (age: 21 ± 1.1 years; mass: 76.1 ± 11.8 kg; stature: 1.77 ± 0.07 m; handicap: 3.0 ± 1.2) completed a golf-specific motor and cognitive performance task in a euhydrated condition (EC) and dehydrated condition (DC) (randomized counterbalanced design; 7-day interval). Dehydration was controlled using a previously effective 12-hour fluid restriction, monitored through ΔBM and urine color assessment (UCOL). Mild dehydration reduced the mean BM by 1.5 ± 0.5% (p = 0.01), with UCOL increasing from 2 (EC) to 4 (DC) (p = 0.02). Mild dehydration significantly impaired motor performance, expressed as shot distance (114.6 vs. 128.6 m; p < 0.001) and off-target accuracy (7.9 vs. 4.1 m; p = 0.001). Cognitive performance, expressed as the mean error in distance judgment to target increased from 4.1 ± 3.0 m (EC) to 8.8 ± 4.7 m (DC) (p < 0.001). The findings support those of previous research that indicates mild dehydration (-1 to 2% ΔBM) significantly impairs cognitive-motor task performance. This study is the first to show that mild dehydration can impair distance, accuracy, and distance judgment during golf performance.

  6. Dehydration reduces left ventricular filling at rest and during exercise independent of twist mechanics.

    PubMed

    Stöhr, Eric J; González-Alonso, José; Pearson, James; Low, David A; Ali, Leena; Barker, Horace; Shave, Rob

    2011-09-01

    The purpose of this study was to determine whether the reduction in stroke volume (SV), previously shown to occur with dehydration and increases in internal body temperatures during prolonged exercise, is caused by a reduction in left ventricular (LV) function, as indicated by LV volumes, strain, and twist ("LV mechanics"). Eight healthy men [age: 20 ± 2, maximal oxygen uptake (VO₂max): 58 ± 7 ml·kg⁻¹·min⁻¹] completed two, 1-h bouts of cycling in the heat (35°C, 50% peak power) without fluid replacement, resulting in 2% and 3.5% dehydration, respectively. Conventional and two-dimensional speckle-tracking echocardiography was used to determine LV volumes, strain, and twist at rest and during one-legged knee-extensor exercise at baseline, both levels of dehydration, and following rehydration. Progressive dehydration caused a significant reduction in end-diastolic volume (EDV) and SV at rest and during one-legged knee-extensor exercise (rest: Δ-33 ± 14 and Δ-21 ± 14 ml, respectively; exercise: Δ-30 ± 10 and Δ-22 ± 9 ml, respectively, during 3.5% dehydration). In contrast to the marked decline in EDV and SV, systolic and diastolic LV mechanics were either maintained or even enhanced with dehydration at rest and during knee-extensor exercise. We conclude that dehydration-induced reductions in SV at rest and during exercise are the result of reduced LV filling, as reflected by the decline in EDV. The concomitant maintenance of LV mechanics suggests that the decrease in LV filling, and consequently ejection, is likely caused by the reduction in blood volume and/or diminished filling time rather than impaired LV function.

  7. Slow slip generated by dehydration reaction coupled with slip-induced dilatancy and thermal pressurization

    NASA Astrophysics Data System (ADS)

    Yamashita, Teruo; Schubnel, Alexandre

    2016-05-01

    Sustained slow slip, which is a distinctive feature of slow slip events (SSEs), is investigated theoretically, assuming a fault embedded within a fluid-saturated 1D thermo-poro-elastic medium. The object of study is specifically SSEs occurring at the down-dip edge of seismogenic zone in hot subduction zones, where mineral dehydrations (antigorite, lawsonite, chlorite, and glaucophane) are expected to occur near locations where deep slow slip events are observed. In the modeling, we introduce dehydration reactions, coupled with slip-induced dilatancy and thermal pressurization, and slip evolution is assumed to interact with fluid pressure change through Coulomb's frictional stress. Our calculations show that sustained slow slip events occur when the dehydration reaction is coupled with slip-induced dilatancy. Specifically, slow slip is favored by a low initial stress drop, an initial temperature of the medium close to that of the dehydration reaction equilibrium temperature, a low permeability, and overall negative volume change associated with the reaction (i.e., void space created by the reaction larger than the space occupied by the fluid released). Importantly, if we do not assume slip-induced dilatancy, slip is accelerated with time soon after the slip onset even if the dehydration reaction is assumed. This suggests that slow slip is sustained for a long time at hot subduction zones because dehydration reaction is coupled with slip-induced dilatancy. Such slip-induced dilatancy may occur at the down-dip edge of seismogenic zone at hot subduction zones because of repetitive occurrence of dehydration reaction there.

  8. Water Temperature, Voluntary Drinking and Fluid Balance in Dehydrated Taekwondo Athletes

    PubMed Central

    Khamnei, Saeed; Hosseinlou, Abdollah; Zamanlu, Masumeh

    2011-01-01

    Voluntary drinking is one of the major determiners of rehydration, especially as regards exercise or workout in the heat. The present study undertakes to search for the effect of voluntary intake of water with different temperatures on fluid balance in Taekwondo athletes. Six young healthy male Taekwondo athletes were dehydrated by moderate exercise in a chamber with ambient temperature at 38-40°C and relative humidity between 20-30%. On four separate days they were allowed to drink ad libitum plane water with the four temperatures of 5, 16, 26, and 58°C, after dehydration. The volume of voluntary drinking and weight change was measured; then the primary percentage of dehydration, sweat loss, fluid deficit and involuntary dehydration were calculated. Voluntary drinking of water proved to be statistically different in the presented temperatures. Water at 16°C involved the greatest intake, while fluid deficit and involuntary dehydration were the lowest. Intake of water in the 5°C trial significantly correlated with the subject’s plasma osmolality change after dehydration, yet it showed no significant correlation with weight loss. In conclusion, by way of achieving more voluntary intake of water and better fluid state, recommending cool water (~16°C) for athletes is in order. Unlike the publicly held view, drinking cold water (~5°C) does not improve voluntary drinking and hydration status. Key points For athletes dehydrated in hot environments, maximum voluntary drinking and best hydration state occurs with 16°C water. Provision of fluid needs and thermal needs could be balanced using 16°C water. Drinking 16°C water (nearly the temperature of cool tap water) could be recommended for exercise in the heat. PMID:24149564

  9. Dehydration and drinking behavior of the marine file snake Acrochordus granulatus.

    PubMed

    Lillywhite, Harvey B; Heatwole, Harold; Sheehy, Coleman M

    2014-01-01

    Dehydration and drinking behaviors were investigated in the little file snake (Acrochordus granulatus) collected from marine populations in the Philippines and in Australia. File snakes dehydrate in seawater and do not drink seawater when dehydrated in air and offered seawater to drink. Dehydrated file snakes drink freshwater, and the threshold of dehydration for first drinking response is a deficit of -7.4% ± 2.73% (mean ± SD) of original body mass. The thirst mechanism in this species is more sensitive than that recently studied in sea snakes. The volume of water ingested increases with increasing dehydration. Mean plasma osmolality was 278.89 ± 33.17 mMol/kg, mean hematocrit was 59% ± 5.45%, and both decreased in snakes that drank freshwater following acclimation in seawater. Snakes always drank freshwater at the water's surface, testing water with tongue flicks between each swallowing of water. Some snakes ingested large volumes of freshwater, approaching 50% of body mass. Visual observations and measurements of osmolality in plasma and stomach fluids suggest that water is taken up from the gut and dilutes body fluids slowly over the course of 48 h or longer. Eighty percent of snakes that were collected during the dry season (following >4 mo of drought) in Australia drank freshwater immediately following their capture, indicating that snakes were dehydrated in their marine environment even when known to have been feeding at the time. Snakes kept in seawater maintained a higher state of body condition when freshwater was periodically available. These results support a growing conclusion that diverse taxa of marine snakes require environmental sources of freshwater to maintain water balance, contrary to earlier belief. Identifying the freshwater requirements of secondarily marine vertebrates is important for better understanding how they maintain water balance in marine habitats, especially with respect to conservation in changing environments.

  10. Effects of fluid ingestion on cognitive function after heat stress or exercise-induced dehydration.

    PubMed

    Cian, C; Barraud, P A; Melin, B; Raphel, C

    2001-11-01

    This study investigated the effects of heat exposure, exercise-induced dehydration and fluid ingestion on cognitive performance. Seven healthy men, unacclimatized to heat, were kept euhydrated or were dehydrated by controlled passive exposure to heat (H, two sessions) or by treadmill exercise (E, two sessions) up to a weight loss of 2.8%. On completion of a 1-h recovery period, the subjects drank a solution containing 50 g l(-1) glucose and 1.34 g l(-1) NaCl in a volume of water corresponding to 100% of his body weight loss induced by dehydration. (H1 and E1) or levels of fluid deficit were maintained (H0, E0). In the E0, H0 and control conditions, the subject drank a solution containing the same quantity of glucose diluted in 100 ml of water. Psychological tests were administered 30 min after the dehydration phase and 2 h after fluid ingestion. Both dehydration conditions impaired cognitive abilities (i.e. perceptive discrimination, short-term memory), as well as subjective estimates of fatigue, without any relevant differences between the methods. By 3.5 h after fluid deficit, dehydration (H0 and E0) no longer had any adverse effect, although the subjects felt increasingly tired. Thus, there was no beneficial effect of fluid ingestion (H1 and E1) on the cognitive variables. However, long-term memory retrieval was impaired in both control and dehydration situations, whereas there was no decrement in performance in the fluid ingestion condition (H1, E1).

  11. Dehydration triggers differential microRNA expression in Xenopus laevis brain.

    PubMed

    Luu, Bryan E; Storey, Kenneth B

    2015-11-15

    African clawed frogs, Xenopus laevis, although primarily aquatic, have a high tolerance for dehydration, being capable of withstanding the loss of up to 32-35% of total water body water. Recent studies have shown that microRNAs play a role in the response to dehydration by the liver, kidney and ventral skin of X. laevis. MicroRNAs act by modulating the expression of mRNA transcripts, thereby affecting diverse biochemical pathways. In this study, 43 microRNAs were assessed in frog brains comparing control and dehydrated (31.2±0.83% of total body water lost) conditions. MicroRNAs of interest were measured using a modified protocol which employs polyadenylation of microRNAs prior to reverse transcription and qPCR. Twelve microRNAs that showed a significant decrease in expression (to 41-77% of control levels) in brains from dehydrated frogs (xla-miR-15a, -150, -181a, -191, -211, -218, -219b, -30c, -30e, -31, -34a, and -34b) were identified. Genomic analysis showed that the sequences of these dehydration-responsive microRNAs were highly conserved as compared with the comparable microRNAs of mice (91-100%). Suppression of these microRNAs implies that translation of the mRNA transcripts under their control could be enhanced in response to dehydration. Bioinformatic analysis using the DIANA miRPath program (v.2.0) predicted the top two KEGG pathways that these microRNAs collectively regulate: 1. Axon guidance, and 2. Long-term potentiation. Previous studies indicated that suppression of these microRNAs promotes neuroprotective pathways by increasing the expression of brain-derived neurotrophic factor and activating anti-apoptotic pathways. This suggests that similar actions may be triggered in X. laevis brains as a protective response to dehydration. PMID:26169019

  12. Serpentine Rheology and Dehydration at High-Pressure, Implications for Intermediate-depth Seismicity

    NASA Astrophysics Data System (ADS)

    Hilairet, N.; Reynard, B.; Wang, Y.; Daniel, I.

    2007-12-01

    Serpentinites have a lower viscosity than other mantle and slab materials within subduction zones. Serpentine dehydration is believed to play a major role in intermediate-depth seismicity, and several mechanisms have been proposed such as dehydration embrittlement and shear heating. However, quantifying the influence of serpentine rheology and its dehydration on strain rates and stress distribution within subduction zones has remained beyond reach, because of the lack of experimental data on deformation of the high-pressure variety antigorite, at relevant P and T conditions. Antigorite deformation experiments were carried out both within its stability field and during dehydration, over a pressure temperature (P-T) range of 1 - 4 GPa and 200-600 /deg C, at strain rates between ~10-4 and 10-6 s-1, in a D-DIA apparatus at GSE-CARS (Advanced Photo Source). Strain rates and stresses were obtained respectively from in-situ monitoring the sample length with X-ray radiographs, and azimuthal dependence of d- spacings on diffraction patterns. The determined stress-strain curves within antigorite stability field were fitted to a power-law equation including both temperature and pressure dependence. At the lowest strain rate investigated and nominal T within the antigorite stability field, localization occurred accompanied by local dehydration and a moderate increase in strain rate. Whatever the reaction and the sign of the volume change, dehydration induced an increase in strain rate. The present results show that antigorite rheology is likely to govern stress building-up and relaxation at the slab surface during interseismic time. We will discuss the implications of the results from the dehydration experiments for the role of serpentinites in intermediate-depth seismicity within subduction zones.

  13. Temperature dependent elasticity and damping in dehydrated sandstone

    NASA Astrophysics Data System (ADS)

    Darling, T. W.; Struble, W.

    2013-12-01

    Work reported previously at this conference, outlining our observation of anomalously large elastic softening and damping in dehydrated Berea sandstone at elevated temperatures, has been analysed to study shear and compressional effects separately. Modeling of the sample using COMSOL software was necessary to identify modes, as the vibration spectrum of the sample is poorly approximated by a uniform isotropic solid. The first torsional mode of our evacuated, dry, core softens at nearly twice the rate of Young's modulus modes (bending and compressional) and is also damped nearly twice as strongly as temperature increases. We consider two possible models for explaining this behavior, based on the assumption that the mechanical properties of the sandstone are dominated by the framework of quartz grains and polycrystalline cementation, neglecting initially the effects of clay and feldspar inclusions. The 20cm x 2.54cm diameter core is dry such that the pressure of water vapor in the experiment chamber is below 1e-6 Torr at 70C, suggesting that surface water beyond a small number of monolayers is negligible. Our models consider (1) enhanced sliding of grain boundaries in the cementation at elevated temperature and reduced internal water content, and (2) strain microcracking of the cementatioin at low water content due to anisotropic expansion in the quartz grains. In model (1) interfaces parallel to polyhedral grain surfaces were placed in the cement bonds and assigned frictional properties. Model (2) has not yet been implemented. The overall elasticity of a 3-D several-grain model network was determined by modeling quasistatic loading and measuring displacements. Initial results with a small number of grains/bonds suggests that only the first model provides softening and damping for all the modes, however the details of the effects of defect motioin at individual interfaces as the source for the frictional properties is still being evaluated. Nonlinear effects are

  14. Arctic stratospheric dehydration - Unprecedented observations and microphysical modeling study

    NASA Astrophysics Data System (ADS)

    Engel, Ines; Luo, Beiping P.; Khaykin, Sergey; Wienhold, Frank G.; Vömel, Holger; Kivi, Rigel; Pitts, Michael C.; Poole, Lamont R.; Santee, Michelle L.; Grooß, Jens-Uwe; Peter, Thomas

    2013-04-01

    Polar stratospheric clouds (PSCs) may form in the lower stratosphere above the winter poles at sufficiently low temperatures. Ice PSCs require the coldest conditions, with temperatures some degrees below the frost point to nucleate ice particles. When the particles grow to sizes large enough to sediment, they may result in dehydration, i.e. irreversible redistribution of water vapor, as it frequently occurs above the Antarctic. Conversely, there are no observations above the Arctic that would have provided clear evidence for vertical redistribution of water vapor. Here we report on unequivocal in situ observations in January 2010 above Sodankylä, Finland, which mesh with vortex-wide satellite measurements. Within the LABPIAT-II field campaign, a series of balloon-borne aerosol backscatter and water vapor measurements has been performed. The balloon payload comprised the backscatter sonde COBALD in combination with the cryogenic frost point hygrometer CFH and the fluorescent Lyman-Alpha stratospheric hygrometer FLASH-B. Together with satellite measurements from the Aura microwave limb sounder MLS and the cloud-aerosol lidar CALIOP, a unique and coherent picture of de- and rehydration in the Arctic vortex will be presented within this paper. An extensive coverage of synoptic scale ice PSCs has been observed by CALIOP and COBALD by mid-January due to exceptionally low temperatures in the Arctic vortex. This observation goes along with a simultaneously measured strong reduction in water vapor by 1.6 ppmv relative to background conditions. Subsequent sedimentation and sublimation of ice particles led to a vertical redistribution of water inside the vortex, which was tracked remotely and could be quantified again by in situ measurements some five days later. By means of a microphysical column model, we are able to connect the individual balloon soundings by trajectories and simulate the formation, evolution and sedimentation of the ice particles. Simulated water vapor

  15. Performance of Clinical Signs in the Diagnosis of Dehydration in Children with Acute Gastroenteritis

    PubMed Central

    Hoxha, Teuta; Xhelili, Luan; Azemi, Mehmedali; Avdiu, Muharrem; Ismaili-Jaha, Vlora; Efendija-Beqa, Urata; Grajcevci-Uka, Violeta

    2015-01-01

    Background: Acute evaluation and treatment of children presenting with dehydration represent one of the most common situation in the pediatric emergency department. To identify dehydration in infants and children before treatment, a number of symptoms and clinical signs have been evaluated. The aim of the study was to describe the performance of clinical signs in detecting dehydration in children. Methods: Two hundred children aged 1 month to 5 year were involved in our prospective study. The clinical assessment consisted of the ten clinical signs of dehydration, including those recommended by WHO (World Health Organization), heart rate, and capillary refill time. Results: Two hundred patients with diarrhea were enrolled in the study. The mean age was 15.62±9.03 months and 57.5% were male. Of these 121 had a fluid deficit of < 5%, 68 had a deficit of 5 to 9% and 11(5.5%) had a deficit of 10% or more. Patients classified as having no or mild, moderate, and severe dehydration were found to have the following respective gains in percent weight at the end of illness: 2.44±0.3, 6.05± 1.01 and, 10.66± 0.28, respectively. All clinical signs were found more frequently with increasing amounts of dehydration(p<0.001, One–way ANOVA). The median number of findings among subjects with no or mild dehydration (deficit <5%) was 3; among those with moderate dehydration (deficit 5% to 9%) was 6.5 and among those with severe dehydration (deficit >10%) the median was 9 (p<0.0001, Kruskal-Wallis test). Using stepwise linear regression and a p value of <0.05 for entry into the model, a four-variable model including sunken eyes, skin elasticity, week radial pulse, and general appearance was derived. Conclusion: None of the 10 findings studied, is sufficiently accurate to be used in isolation. When considered together, sunken eyes, decreased skin turgor, weak pulse and general appearance provide the best explanatory power of the physical signs considered. PMID:25870468

  16. The dehydration kinetics of gypsum at high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Liu, Chuanjiang; Zheng, Haifei; Wang, Duojun

    2015-07-01

    An in situ dehydration kinetics study of gypsum under water-saturated condition was performed in the temperature and pressure ranges of 383-423 K and 343-1085 MPa by using a hydrothermal diamond anvil cell and Raman spectroscopy. Kinetic analysis shows that the dehydration rate k increases with pressure, suggesting a negative pressure dependence on dehydration rate. The elevation of temperature can contribute to the dehydration. The n values increase with pressure, indicating that the nucleation process becomes slower relative to the growth process. According to the n values of ∼1.0, the dehydration of gypsum is dominated by an instantaneous nucleation and diffusion-controlled growth mechanism. The obtained average activation volume ▵V is equal to 5.69 cm3/mol and the calculated activation energy Ea and the pre-exponential factor A are 66.9 kJ/mol and 4.66 × 105 s-1. The activation energy may be dependent upon grain size, shape, temperature and pressure, and surrounding water.

  17. Quantitative analysis of dehydration in porcine skin for assessing mechanism of optical clearing

    NASA Astrophysics Data System (ADS)

    Yu, Tingting; Wen, Xiang; Tuchin, Valery V.; Luo, Qingming; Zhu, Dan

    2011-09-01

    Dehydration induced by optical clearing agents (OCAs) can improve tissue optical transmittance; however, current studies merely gave some qualitative descriptions. We develop a model to quantitatively evaluate water content with partial least-squares method based on the measurements of near-infrared reflectance spectroscopy and weight of porcine skin. Furthermore, a commercial spectrometer with an integrating sphere is used to measure the transmittance and reflectance of skin after treatment with different OCAs, and then the water content and optical properties of sample are calculated, respectively. The results show that both the reduced scattering coefficient and dehydration of skin decrease with prolongation of action of OCAs, but the relative change in former is larger than that in latter after a 60-min treatment. The absorption coefficient at 1450 nm decreases completely coincident with dehydration of skin. Further analysis illustrates that the correlation coefficient between the relative changes in the reduced scattering coefficient and dehydration is ~1 during the 60-min treatment of agents, but there is an extremely significant difference between the two parameters for some OCAs with more hydroxyl groups, especially, glycerol or D-sorbitol, which means that the dehydration is a main mechanism of skin optical clearing, but not the only mechanism.

  18. Pyropia yezoensis can utilize CO2 in the air during moderate dehydration

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; He, Linwen; Yang, Fang; Lin, Apeng; Zhang, Baoyu; Niu, Jianfeng; Wang, Guangce

    2014-03-01

    Pyropia yezoensis, an intertidal seaweed, experiences regular dehydration and rehydration with the tides. In this study, the responses of P. yezoensis to dehydration and rehydration under high and low CO2 concentrations ((600-700)×10-6 and (40-80)×10-6, named Group I and Group II respectively) were investigated. The thalli of Group I had a significantly higher effective photosystem II quantum yield than the thalli of Group II at 71% absolute water content (AWC). There was little difference between thalli morphology, total Rubisco activity and total protein content at 100% and 71% AWC, which might be the basis for the normal performance of photosynthesis during moderate dehydration. A higher effective photosystem I quantum yield was observed in the thalli subjected to a low CO2 concentration during moderate dehydration, which might be caused by the enhancement of cyclic electron flow. These results suggested that P. yezoensis can directly utilize CO2 in ambient air during moderate dehydration.

  19. Plant Organellar Proteomics in Response to Dehydration: Turning Protein Repertoire into Insights

    PubMed Central

    Gupta, Deepti B.; Rai, Yogita; Gayali, Saurabh; Chakraborty, Subhra; Chakraborty, Niranjan

    2016-01-01

    Stress adaptation or tolerance in plants is a complex phenomenon involving changes in physiological and metabolic processes. Plants must develop elaborate networks of defense mechanisms, and adapt to and survive for sustainable agriculture. Water-deficit or dehydration is the most critical environmental factor that plants are exposed to during their life cycle, which influences geographical distribution and productivity of many crop species. The cellular responses to dehydration are orchestrated by a series of multidirectional relays of biochemical events at organelle level. The new challenge is to dissect the underlying mechanisms controlling the perception of stress signals and their transmission to cellular machinery for activation of adaptive responses. The completeness of current descriptions of spatial distribution of proteins, the relevance of subcellular locations in diverse functional processes, and the changes of protein abundance in response to dehydration hold the key to understanding how plants cope with such stress conditions. During past decades, organellar proteomics has proved to be useful not only for deciphering reprograming of plant responses to dehydration, but also to dissect stress–responsive pathways. This review summarizes a range of organellar proteomics investigations under dehydration to gain a holistic view of plant responses to water-deficit conditions, which may facilitate future efforts to develop genetically engineered crops for better adaptation. PMID:27148291

  20. Influence of dehydration process in Castellano chickpea: changes in bioactive carbohydrates and functional properties.

    PubMed

    Aguilera, Yolanda; Benítez, Vanesa; Mollá, Esperanza; Esteban, Rosa M; Martín-Cabrejas, María A

    2011-11-01

    Changes in bioactive carbohydrates, functional, and microstructural characteristics that occurred in chickpea under soaking, cooking, and industrial dehydration processing were evaluated. Raw chickpea exhibited important levels of raffinose family of oligosaccharides (RFOs), resistant starch (RS) and total dietary fibre (TDF), being insoluble dietary fibre (IDF) the main fraction (94%). The dehydration process increased RFOs (43%), RS (47%) and soluble dietary fiber (SDF) (59%) levels significantly. In addition, a noticeable increase in both fibre fractions was observed, being higher in soluble fibre in (SDF) (59%). The minimum nitrogen solubility of raw flours was at pH 4, and a high degree of protein insolubilization (80%) was observed in dehydrated flours. The raw and processed flours exhibited low oil-holding capacities (1.10 mg/ml), and did not show any change by thermal processing, whereas water-holding capacities rose to 5.50 mg/ml of sample. Cooking and industrial dehydration process reduced emulsifying activity and foaming capacity of chickpea flour. The microstructural observations were consistent with the chemical results. Thus, the significant occurrence of these bioactive carbohydrate compounds along with the interesting functional properties of the dehydrated flours could be considered useful as functional ingredients for food formulation.

  1. Thermal dehydration of monohydrocalcite: overall kinetics and physico-geometrical mechanisms.

    PubMed

    Kimura, Tomoyasu; Koga, Nobuyoshi

    2011-09-29

    Monohydrocalcite (CaCO(3)·H(2)O: MHC) is similar in composition and synthetic conditions to hydrated amorphous calcium carbonate (ACC), which is focused recently as a key intermediate compound of biomineralization and biomimetic mineralization of calcium carbonate polymorphs. Detailed comparisons of the physicochemical property and reactivity of those hydrated calcium carbonates are required for obtaining fundamental information on the relevancy of those compounds in the mineralization processes. In the present study, kinetics of the thermal dehydration of spherical particles of crystalline MHC was investigated in view of physico-geometrical mechanism. The reaction process was traced systematically by means of thermogravimetry under three different modes of temperature program. A distinguished induction period for the thermal dehydration and cracking of the surface product layer on the way of the established reaction were identified as the characteristic events of the reaction. By interpreting the kinetic results in association with the morphological changes of the reactant particles during the course of reaction, it was revealed that nucleation and crystal growth of calcite regulate the overall kinetics of the thermal dehydration of MHC. In comparison with the thermal dehydration of hydrated ACC, which produces anhydrous ACC as the solid product, the kinetic characteristics of the thermal dehydration of MHC were discussed from the viewpoint of physico-geometry of the component processes.

  2. (100) facets of γ-Al2O3: the active surfaces for alcohol dehydration reactions

    SciTech Connect

    Kwak, Ja Hun; Mei, Donghai; Peden, Charles HF; Rousseau, Roger J.; Szanyi, Janos

    2011-05-01

    Temperature programmed desorption (TPD) of ethanol, and methanol dehydration reaction were studied on γ-Al2O3 in order to identify the catalytic active sites for alcohol dehydration reactions. Two high temperature (> 473 K) desorption features were observed following ethanol adsorption. Samples calcined at T≤473 K displayed a desorption feature in the 523-533 K temperature range, while those calcined at T ≥ 673 K showed a single desorption feature at 498 K. The switch from the high to low temperature ethanol desorption correlated well with the dehydroxylation of the (100) facets of γ-Al2O3 that was predicted at 550 K DFT calculations. Theoretical DFT simulations of the mechanism of dehydration. on clean and hydroxylated γ-Al2O3(100) surfaces, find that a concerted elimination of ethylene from an ethanol molecule chemisorbed at an Al3+ pentacoordinated site is the rate limiting step for catalytic cycle on both surfaces. Furthermore, titration of the pentacoordinate Al3+ sites on the (100) facets of γ-Al2O3 by BaO completely turned off the methanol dehydration reaction activity. These results unambiguously demonstrate that only the (100) facets on γ-Al2O3 are the catalytic active surfaces for alcohol dehydration.

  3. Transcriptional profiling of hexaploid wheat (Triticum aestivum L.) roots identifies novel, dehydration-responsive genes.

    PubMed

    Mohammadi, Mohsen; Kav, Nat N V; Deyholos, Michael K

    2007-05-01

    We used a long-oligonucleotide microarray to identify transcripts that increased or decreased in abundance in roots of dehydration-tolerant hexaploid bread wheat, in response to withholding of water. We observed that the major classes of dehydration-responsive genes (e.g. osmoprotectants, compatible solutes, proteases, glycosyltransferases/hydrolases, signal transducers components, ion transporters) were generally similar to those observed previously in other species and osmotic stresses. More specifically, we highlighted increases in transcript expression for specific genes including those putatively related to the synthesis of asparagine, trehalose, oligopeptide transporters, metal-binding proteins, the gamma-aminobutyric acid (GABA) shunt and transcription factors. Conversely, we noted a decrease in transcript abundance for diverse classes of glutathione and sulphur-related enzymes, specific amino acids, as well as MATE-efflux carrier proteins. From these data, we identified a novel, dehydration-induced putative AP2/ERF transcription factor, which we predict to function as a transcriptional repressor. We also identified a dehydration-induced 'little protein' (LitP; predicted mass: 8 kDa) that is highly conserved across spermatophytes. Using qRT-PCR, we compared the expression patterns of selected genes between two related wheat genotypes that differed in their susceptibility to dehydration, and confirmed that these novel genes were highly inducible by water limitation in both genotypes, although the magnitude of induction differed.

  4. Anomalous dehydration of the TTL during January 2013: evidence from balloon, aircraft and satellite observations

    NASA Astrophysics Data System (ADS)

    Khaykin, Sergey; Pommereau, Jean-Pierre; Hauchecorne, Alain; Rivière, Emmanuel; Amarouche, Nadir; Ghysel, Melanie; Wienhold, Frank; Held, Gerard; Evan, Stephanie; Thornberry, Troy; Rollins, Andrew; Fahey, David; Vömel, Holger; Fujiwara, Masatomo; Rosenlof, Karen

    2015-04-01

    The goal of this study is to comprehensively document an anomalous dehydration of the Tropical Tropopause Layer (TTL) related to a major Sudden Stratospheric Warming (SSW) in January 2013. The analysis involves the data of balloon soundings of water vapour at various tropical locations using FLASH-B, Pico-SDLA and CFH hygrometers as well as NOAA Water instrument flown onboard high-altitude Global Hawk aircraft. Simultaneous water vapour and backscatter measurements by FLASH-B and COBALD sondes provide information on tropopause clouds formation process. Satellite observations of water vapour by Aura MLS are used to derive the deviation from climatological values. Trajectory modeling is applied for locating the dehydration source spots. Spatiotemporal evolution of dehydration at different scales is characterized after combining the consistent in situ and satellite water vapour observations. All data sets provide evidence of rapid and severe dehydration of the TTL throughout the tropical belt shortly after the onset of SSW. In situ measurements around the Cold Point Tropopause (CPT) show up to 2 ppmv of negative deviation from MLS 10-year climatology with extreme water mixing ratios below 1 ppmv in the Western Pacific region. The TTL dehydration case of 2013 is compared with previous similar occurrences and the role of extra-tropical dynamics in setting the global stratospheric water budget through thermal response in the TTL is pointed out

  5. A study of chemical dehydration of coals and its effect on coal liquefaction yields

    SciTech Connect

    Netzel, D.A.; Miknis, F.P.; Wallace, J.C. Jr.

    1995-12-31

    Chemical dehydration of coals is a relatively unexplored technique for removing water at low temperature. 2,2-Dimethoxypropane was used as the dehydration agent to dry coal and in conjunction with {sup 1}H NMR to simultaneously determine the moisture content in coal. Coals of rank lignite to high volatile bituminous were studied. Analysis of the kinetic data suggested that chemical dehydration provides a method to discriminate quantitatively between surface and readily accessible water from tightly bound internal pore water in coals. The results indicate that high rank coals have proportionally less surface and easily accessible water than the lower rank coals. Solid-state {sup 13}C NMR CP/MAS was employed to measure the changes in coal structure caused by chemical dehydration and residue from the liquefaction of the dried coals. For the chemically dehydrated coals, the coal liquefaction conversions yields were generally greater than the premoisturized coals. This is attributed to retention of some of the solvent and reaction products by the coal, which would have the effect of preventing collapse of the pore structure enabling donor solvent penetration into the pores.

  6. ABI3 mediates dehydration stress recovery response in Arabidopsis thaliana by regulating expression of downstream genes.

    PubMed

    Bedi, Sonia; Sengupta, Sourabh; Ray, Anagh; Nag Chaudhuri, Ronita

    2016-09-01

    ABI3, originally discovered as a seed-specific transcription factor is now implicated to act beyond seed physiology, especially during abiotic stress. In non-seed plants, ABI3 is known to act in desiccation stress signaling. Here we show that ABI3 plays a role in dehydration stress response in Arabidopsis. ABI3 gene was upregulated during dehydration stress and its expression was maintained during subsequent stress recovery phases. Comparative gene expression studies in response to dehydration stress and stress recovery were done with genes which had potential ABI3 binding sites in their upstream regulatory regions. Such studies showed that several genes including known seed-specific factors like CRUCIFERIN1, CRUCIFERIN3 and LEA-group of genes like LEA76, LEA6, DEHYDRIN LEA and LEA-LIKE got upregulated in an ABI3-dependent manner, especially during the stress recovery phase. ABI3 got recruited to regions upstream to the transcription start site of these genes during dehydration stress response through direct or indirect DNA binding. Interestingly, ABI3 also binds to its own promoter region during such stress signaling. Nucleosomes covering potential ABI3 binding sites in the upstream sequences of the above-mentioned genes alter positions, and show increased H3 K9 acetylation during stress-induced transcription. ABI3 thus mediates dehydration stress signaling in Arabidopsis through regulation of a group of genes that play a role primarily during stress recovery phase. PMID:27457990

  7. Colour, phenolic content and antioxidant capacity of some fruits dehydrated by a combination of different methods.

    PubMed

    Chong, Chien Hwa; Law, Chung Lim; Figiel, Adam; Wojdyło, Aneta; Oziembłowski, Maciej

    2013-12-15

    The objective of this study was to improve product quality of dehydrated fruits (apple, pear, papaya, mango) using combined drying techniques. This involved investigation of bioactivity, colour, and sensory assessment on colour of the dried products as well as the retention of the bio-active ingredients. The attributes of quality were compared in regard to the quality of dehydrated samples obtained from continuous heat pump (HP) drying technique. It was found that for apple, pear and mango the total colour change (ΔE) of samples dried using continuous heat pump (HP) or heat pump vacuum-microwave (HP/VM) methods was lower than of samples dried by other combined methods. However, for papaya, the lowest colour change exhibited by samples dried using hot air-cold air (HHC) method and the highest colour change was found for heat pump (HP) dehydrated samples. Sensory evaluation revealed that dehydrated pear with higher total colour change (ΔE) is more desirable because of its golden yellow appearance. In most cases the highest phenol content was found from fruits dried by HP/VM method. Judging from the quality findings on two important areas namely colour and bioactivity, it was found that combined drying method consisted of HP pre-drying followed by VM finish drying gave the best results for most dehydrated fruits studied in this work as the fruits contain first group of polyphenol compounds, which preferably requires low temperature followed by rapid drying strategy.

  8. Differential proteomics of dehydration and rehydration in bryophytes: evidence towards a common desiccation tolerance mechanism.

    PubMed

    Cruz DE Carvalho, Ricardo; Bernardes DA Silva, Anabela; Soares, Renata; Almeida, André M; Coelho, Ana Varela; Marques DA Silva, Jorge; Branquinho, Cristina

    2014-07-01

    All bryophytes evolved desiccation tolerance (DT) mechanisms during the invasion of terrestrial habitats by early land plants. Are these DT mechanisms still present in bryophytes that colonize aquatic habitats? The aquatic bryophyte Fontinalis antipyretica Hedw. was subjected to two drying regimes and alterations in protein profiles and sucrose accumulation during dehydration and rehydration were investigated. Results show that during fast dehydration, there is very little variation in protein profiles, and upon rehydration proteins are leaked. On the other hand, slow dehydration induces changes in both dehydration and rehydration protein profiles, being similar to the protein profiles displayed by the terrestrial bryophytes Physcomitrella patens (Hedw.) Bruch and Schimp. and, to what is comparable with Syntrichia ruralis (Hedw.) F. Weber and D. Mohr. During dehydration there was a reduction in proteins associated with photosynthesis and the cytoskeleton, and an associated accumulation of proteins involved in sugar metabolism and plant defence mechanisms. Upon rehydration, protein accumulation patterns return to control values for both photosynthesis and cytoskeleton whereas proteins associated with sugar metabolism and defence proteins remain high. The current results suggest that bryophytes from different ecological adaptations may share common DT mechanisms.

  9. Dehydration of Glucose to 5-Hydroxymethylfurfural Using Nb-doped Tungstite.

    PubMed

    Yue, Chaochao; Li, Guanna; Pidko, Evgeny A; Wiesfeld, Jan J; Rigutto, Marcello; Hensen, Emiel J M

    2016-09-01

    Dehydration of glucose to 5-hydroxymethylfurfural (HMF) remains a significant problem in the context of the valorization of lignocellulosic biomass. Hydrolysis of WCl6 and NbCl5 leads to precipitation of Nb-containing tungstite (WO3 ⋅H2 O) at low Nb content and mixtures of tungstite and niobic acid at higher Nb content. Tungstite is a promising catalyst for the dehydration of glucose to HMF. Compared with Nb2 O5 , fewer by-products are formed because of the low Brønsted acidity of the (mixed) oxides. In water, an optimum yield of HMF was obtained for Nb-W oxides with low Nb content owing to balanced Lewis and Brønsted acidity. In THF/water, the strong Lewis acidity and weak Brønsted acidity caused the reaction to proceed through isomerization to fructose and dehydration of fructose to a partially dehydrated intermediate, which was identified by LC-ESI-MS. The addition of HCl to the reaction mixture resulted in rapid dehydration of this intermediate to HMF. The HMF yield obtained in this way was approximately 56 % for all tungstite catalysts. Density functional theory calculations show that the Lewis acid centers on the tungstite surface can isomerize glucose into fructose. Substitution of W by Nb lowers the overall activation barrier for glucose isomerization by stabilizing the deprotonated glucose adsorbate. PMID:27493127

  10. A New Freezing Method Using Pre-Dehydration by Microwave-Vacuum Drying

    NASA Astrophysics Data System (ADS)

    Tsuruta, Takaharu; Hamidi, Nurkholis

    Partial dehydration by microwave-vacuum drying has been applied to tuna and strawberry in order to reduce cell-damages caused by the formation of large ice-crystals during freezing. The samples were subjected to microwave vacuum drying at pressure of 5 kPa and temperature less than 27°C to remove small amount of water prior to freezing. The tuna were cooled by using the freezing chamber at temperature -50°C or -150°C, while the strawberries were frozen at temperature -30°C or -80°C, respectively. The temperature transients in tuna showed that removing some water before freezing made the freezing time shorter. The observations of ice crystal clearly indicated that rapid cooling and pre-dehydration prior to freezing were effective in minimizing the size of ice crystal. It is also understood that the formation of large ice crystals has a close relation to the cell damages. After thawing, the observation of microstructure was done on the tuna and strawberry halves. The pre-dehydrated samples showed a better structure than the un-dehydrated one. It is concluded that the pre-dehydration by microwave-vacuum drying is one promising method for the cryo-preservation of foods.

  11. Plant Organellar Proteomics in Response to Dehydration: Turning Protein Repertoire into Insights.

    PubMed

    Gupta, Deepti B; Rai, Yogita; Gayali, Saurabh; Chakraborty, Subhra; Chakraborty, Niranjan

    2016-01-01

    Stress adaptation or tolerance in plants is a complex phenomenon involving changes in physiological and metabolic processes. Plants must develop elaborate networks of defense mechanisms, and adapt to and survive for sustainable agriculture. Water-deficit or dehydration is the most critical environmental factor that plants are exposed to during their life cycle, which influences geographical distribution and productivity of many crop species. The cellular responses to dehydration are orchestrated by a series of multidirectional relays of biochemical events at organelle level. The new challenge is to dissect the underlying mechanisms controlling the perception of stress signals and their transmission to cellular machinery for activation of adaptive responses. The completeness of current descriptions of spatial distribution of proteins, the relevance of subcellular locations in diverse functional processes, and the changes of protein abundance in response to dehydration hold the key to understanding how plants cope with such stress conditions. During past decades, organellar proteomics has proved to be useful not only for deciphering reprograming of plant responses to dehydration, but also to dissect stress-responsive pathways. This review summarizes a range of organellar proteomics investigations under dehydration to gain a holistic view of plant responses to water-deficit conditions, which may facilitate future efforts to develop genetically engineered crops for better adaptation. PMID:27148291

  12. Impact of storage under ambient conditions on the vitamin content of dehydrated vegetables.

    PubMed

    Peñas, Elena; Sidro, Beatiz; Ullate, Mónica; Vidal-Valverde, Concepción; Frias, Juana

    2013-04-01

    The consumption of dehydrated vegetables, which provides an important source of vitamins, is increasing worldwide. Dehydrated vegetables are located on non-refrigerated shelves in food shops and, therefore, it is of utmost importance to understand the modifications that take place in the content of these labile micronutrients at the ambient conditions currently found in food shops. The present study discusses the effect of storage for 3, 6, 9 and 12 months on the content of thiamin and vitamin C in different commercial and pilot plant dehydrated garlic, onions, potatoes and carrots in darkness at room temperature under vacuum conditions. The content of β-carotene under these conditions was also studied in dehydrated carrots. Thiamin remained stable over the first 3 months of storage (∼90% retention), while long-term storage led to larger losses (retention of 85% in garlic and 45% in commercial carrots after 12 months of storage). The content of vitamin C drastically decreased during the storage period and even disappeared in some dried onions and carrots following 12 months of storage. Storage for 6 months at ambient conditions preserved 80-90% of the β-carotene content in dehydrated vegetables, while long-term storage led to significant β-carotene degradation (retentions between 43 and 81%). These results suggest that vitamins are gradually lost during storage at the practical conditions in food shops and will thus provide relevant information concerning dried vegetables, so manufacturers may calculate shelf life under established storage conditions.

  13. Trehalose and anhydrobiosis in tardigrades--evidence for divergence in responses to dehydration.

    PubMed

    Hengherr, Steffen; Heyer, Arnd G; Köhler, Heinz-R; Schill, Ralph O

    2008-01-01

    To withstand desiccation, many invertebrates such as rotifers, nematodes and tardigrades enter a state known as anhydrobiosis, which is thought to require accumulation of compatible osmolytes, such as the non-reducing disaccharide trehalose to protect against dehydration damage. The trehalose levels of eight tardigrade species comprising Heterotardigrada and Eutardigrada were observed in five different states of hydration and dehydration. Although many species accumulate trehalose during dehydration, the data revealed significant differences between the species. Although trehalose accumulation was found in species of the order Parachela (Eutardigrada), it was not possible to detect any trehalose in the species Milnesium tardigradum and no change in the trehalose level has been observed in any species of Heterotardigrada so far investigated. These results expand our current understanding of anhydrobiosis in tardigrades and, for the first time, demonstrate the accumulation of trehalose in developing tardigrade embryos, which have been shown to have a high level of desiccation tolerance.

  14. Early onset of hypernatraemic dehydration and fever in exclusively breast-fed infants.

    PubMed

    Ng, P C; Chan, H B; Fok, T F; Lee, C H; Chan, K M; Wong, W; Cheung, K L

    1999-12-01

    Five cases of moderately severe hypernatraemic dehydration were identified within a 5-month period between two regional hospitals in Hong Kong. Unlike previous reported cases, these exclusively breast-fed infants presented with the unusual triad of fever, absence of overt signs of dehydration and within the first week of life. Three of the cases also had high serum bilirubin concentrations at presentation. The fever subsided quickly and the serum bilirubin concentration fell rapidly within a few hours of rehydration. All infants made an uneventful recovery without permanent neurological sequelae. Fever, presumably secondary to dehydration, is an useful early warning sign. These cases emphasize the importance of early and regular measurement of bodyweight in exclusively breast-fed infants so that prompt identification of affected cases may prevent potentially detrimental complications.

  15. Synthesis of butenes through 2-butanol dehydration over mesoporous materials produced from ferrierite

    SciTech Connect

    Jeong, Soyeon; Kim, Hyeonjoo; Bae, Jung A.; Kim, Do Heui; Peden, Charles HF; Park, Young-Kwon; Jeon, Jong Ki

    2012-05-20

    Mesoporous materials synthesized from commercial ferrierite (MMZ-FER) were applied to butanol dehydration. The MMZ-FER was produced by disassembling ferrierite into unit structures in the presence of an alkali solution, adding a surfactant as a templating material, followed by hydrothermal treatment. The effect of the alkali/(Si+Al) ratio in the disassembling step on the characteristics of the catalyst and butanol dehydration performance were investigated. The MMZ-FER materials, synthesized in a condition in which the NaOH/(Si + Al) mole ratio in the disassembling step was 0.67 and 1.0, demonstrated similar textural properties to those of MCM-41. Many weak acid sites developed on the MMZ-FER(0.67) and MMZ-FER(1.0) samples, which is attributed to the creation of ferrierite-induced acid sites. The MMZ-FER materials showed excellent catalytic activity, selectivity, and stability during the dehydration of 2-butanol.

  16. Cryopreservation by encapsulation-dehydration of plumules of coconut (Cocos nucifera L.).

    PubMed

    N'Nan, Oulo; Hocher, Valérie; Verdeil, Jean-Luc; Konan, Jean-Louis; Ballo, Koffi; Mondeil, Fanja; Malaurie, Bernard

    2008-01-01

    This study describes the use of an encapsulation-dehydration cryopreservation technique on coconut plumules (apical dome with three or four leaf primordia) excised from embryos. In order to establish a reliable cryopreservation process for plumules, several different key factors were tested: pretreatment duration, sugar concentration, dehydration period and freezing. In parallel, histological studies were performed to describe the structural changes of tissues and plumule cells subjected to dehydration and freezing. A good survival level of around 60% was obtained. However, after 8 months culture regrowth, this level decreased to a maximum of 20 % which was achieved using sucrose treatment. In this paper we report for the first time the regeneration of leafy shoots from coconut plumules after cryopreservation.

  17. Study of the dehydration of Portland Cement by Mössbauer spectrometry

    NASA Astrophysics Data System (ADS)

    Hassaan, M. Y.; Salah, S. H.; Eissa, N. A.

    1989-03-01

    Egyptian Portland Cement in the form of one inch cube was hydrated at different times of hydration. Nine cubes of each period of hydration were heated for five minutes 200, 300, 400 up to 1000°C then were quenched in air. The compressive strength was measured for these samples and related to unheated ones. These cubes were ground and measured by Mössbauer spectrometry to correlate the effect of dehydration of cement pastes on the states of iron, with the decrease of compressive strength. It was observed that starting from 400°C the central doublet characteristic of the hydration process decreased as the dehydration temperature was increased. At 1000°C the dehydration process was complete, the central doublet disappeared and the compressive strength vanished. The hydration process was found to be reversible. The application of Mössbauer spectrometry to estimate the degree of fire in concrete building was demonstrated.

  18. Effect of temperature on the anthocyanin extraction and color evolution during controlled dehydration of Tempranillo grapes.

    PubMed

    Marquez, Ana; Perez-Serratosa, Maria; Varo, M Angeles; Merida, Julieta

    2014-08-01

    In this paper, the influence of temperature during the controlled dehydration of Tempranillo red grapes has been studied. Two experiments at fixed temperatures of 30 and 40 °C, and a third experiment alternating temperatures of 40 and 15 °C every 12 h were carried out. The must from grapes dried at 40 °C presented the reddest color, and the highest anthocyanin concentration and antioxidant activity. A possible hypothesis could be that the high temperature induced a continuous water evaporation from the grapes, preventing the oxygen entry. At the same time, the dehydration resulted in broken skins, which facilitated the transfer of colored compounds to the pulp, increasing the red color of the musts. However, when the temperature dropped, oxygen could penetrate through the skin and the browning reactions started. As a result, the must obtained from gra pes dehydrated by alternating high and low temperatures presented the least anthocyanin content and the least red color. PMID:25030077

  19. Apex cryopreservation of several strawberry genotypes by two encapsulation-dehydration methods.

    PubMed

    Clavero-Ramírez, I; Gálvez-Farfán, J; López-Aranda, J M; González-Benito, M E

    2005-01-01

    This paper presents results from a study to develop cryopreservation procedures for apices of several strawberry genotypes. Five Fragaria x ananassa Duch. cultivars and two wild species (F. chiloensis and F. virginiana) have been screened using the encapsulation-dehydration method and/or a protocol which compromises vitrification and encapsulation-dehydration. Apices were encapsulated in an alginate gel, precultured on media containing high levels of sucrose (0.8 M, conventional protocol), or a combination of 0.4 M sucrose and 2 M glycerol. Recovery rates varied among genotypes (23-63%). The latter method reduced considerably the time needed for the cryogenic procedure by eliminating the pre-treatment with 0.8 M sucrose for 19 h prior to dehydration, as required by the conventional procedure.

  20. Alkaloids of Vinca rosea L. (Catharanthus roseus G. Don). 38. 4'-Dehydrated derivatives.

    PubMed

    Miller, J C; Gutowski, G E; Poore, G A; Boder, G B

    1977-03-01

    A series of 4'-dehydrated derivatives of various dimeric Vinca alkaloids has been synthesized to further define the structure-activity relationships of Vinca alkaloids with onolytic potency. The concentrated sulfuric acid dehydration in most cases gave mixtures of the 3',4'-and two isomeric 4',20'-alkenes, which were isolated and characterized primarily by proton and 13C NMR. Compound tested for antitumor activity include the three dehydro isomers of 4'-deacetylvinblastine, 4-deacetylvincristine, and 4-deacetylvinblastine-23-amide and some4'-dehydrated derivatives epimeric at C-18'. Generally, the decrease in toxicity imparted by the new double bond was accompained by a decrease in potency. An exception was 3',4'-dehydro-4-deacetylvincristine, which showed a decrease in toxicity and increase in potency against at least one tumor in which vincristine itself has little effect.

  1. Effect of temperature on the anthocyanin extraction and color evolution during controlled dehydration of Tempranillo grapes.

    PubMed

    Marquez, Ana; Perez-Serratosa, Maria; Varo, M Angeles; Merida, Julieta

    2014-08-01

    In this paper, the influence of temperature during the controlled dehydration of Tempranillo red grapes has been studied. Two experiments at fixed temperatures of 30 and 40 °C, and a third experiment alternating temperatures of 40 and 15 °C every 12 h were carried out. The must from grapes dried at 40 °C presented the reddest color, and the highest anthocyanin concentration and antioxidant activity. A possible hypothesis could be that the high temperature induced a continuous water evaporation from the grapes, preventing the oxygen entry. At the same time, the dehydration resulted in broken skins, which facilitated the transfer of colored compounds to the pulp, increasing the red color of the musts. However, when the temperature dropped, oxygen could penetrate through the skin and the browning reactions started. As a result, the must obtained from gra pes dehydrated by alternating high and low temperatures presented the least anthocyanin content and the least red color.

  2. Bronsted Acid Catalyzed Dehydration of Neat Supercritical tert-Butanol in a Capillary Micro-Reactor

    SciTech Connect

    Henry, Matthew C.; Yonker, Clement R.

    2006-02-01

    Dehydration of supercritical t-butanol to yield 2-methyl-propene was observed to occur rapidly and in high yield at elevated pressures without addition of a catalyst. A capillary micro-reactor was used to carry out the reaction at pressures up to 3.1 kbar. The products were characterized in-situ using FTIR, GC-MS and NMR. The dehydration reaction is proposed to occur by a self-catalyzed Bronsted acid mechanism. An addition driving force for the reaction was the phase separation of the 2-methyl-propene product. Self-catalyzed dehydration of t-butanol is a limiting factor for operations in supercritical t-butanol, but it implies the t-butanol may be employed as a self-neutralizing catalyst under these conditions.

  3. Rumen volume, saliva flow rate, and systemic fluid homeostasis in dehydrated cattle.

    PubMed

    Silanikove, N; Tadmor, A

    1989-04-01

    This work was carried out to test the hypothesis that the high level of salivary secretion containing much Na+ and the volume of fluid sequestered in the foregut of ruminants play an important part in water and Na+ homeostasis. Saliva flow and composition and water and Na+ balance in the rumen have been measured in hydrated and dehydrated cows with esophageal fistulas. Reduction of voluntary feed intake in beef cattle during water deprivation was related to the stage of dehydration. Salivary secretion rate was linearly related to voluntary feed intake (r = 0.96) and inversely and linearly related to plasma osmolality (r = 0.88). The reduction in the volume of water stored in the rumen contributed to the major portion (55%) of the total water loss. Utilization of gut water attenuated the rise in blood plasma osmolality, and this may be connected with an animal's ability to continue eating despite dehydration.

  4. Crustal Recycling, Mantle Dehydration and the Thermal Evolution of Mars

    NASA Astrophysics Data System (ADS)

    Morschhauser, A.; Grott, M.; Breuer, D.

    2010-12-01

    We have reinvestigated the coupled thermal and crustal evolution of Mars using 1D parametrized thermal evolution models [1] and taking new data concerning the content and distribution of heat producing elements [2] as well as new laboratory data concerning the flow behavior of iron-rich olivine [3] into account. The high enrichment of radioactive elements in the crust leads to a less efficient heat transport from the lithospheric base, resulting in a thinning of the stagnant lid. If the stagnant lid becomes thinner than the crust, crustal material can be recycled back into the mantle by the vigourous convective motion. However, crustal recycling appears to be incompatible with an early separation of geochemical reservoirs [4] and valid models are required to show no episodes of crustal recycling. Furthermore, admissible models have to reproduce the Martian crust formation history and to allow the formation of partial melt under present-day mantle conditions. Taking dehydration stiffening of the mantle into account, we find that admissible models have low initial upper mantle temperatures between 1600 and 1700 K, a primordial crustal thickness of 30 km, and an initially wet mantle rheology. The crust formation process on Mars would then have been driven by the extraction of a primordial crust after core formation which was cooling the mantle to temperatures close to the peridotite solidus. The second stage of global crust formation took place over a more extended period of time, waning at around 1300-1700 Myr, and was driven by heat produced by the decay of radioactive elements. Finally, present-day volcanism is explained by convective mantle plumes and thermal insulation under regions of locally thickened crust. Water extraction from the mantle was found to be relatively efficient and close to 50 percent of the total inventory is lost from the mantle in most models. Assuming an initial mantle water content of 100 ppm and that 10% of the extracted water is supplied

  5. Dehydration and acute weight gain in mixed martial arts fighters before competition.

    PubMed

    Jetton, Adam M; Lawrence, Marcus M; Meucci, Marco; Haines, Tracie L; Collier, Scott R; Morris, David M; Utter, Alan C

    2013-05-01

    The purpose of this study was to characterize the magnitude of acute weight gain (AWG) and dehydration in mixed martial arts (MMA) fighters before competition. Urinary measures of hydration status and body mass were determined approximately 24 hours before and then again approximately 2 hours before competition in 40 MMA fighters (mean ± SE, age: 25.2 ± 0.65 years, height: 1.77 ± 0.01 m, body mass: 75.8 ± 1.5 kg). The AWG was defined as the amount of body weight the fighters gained in the approximately 22-hour period between the official weigh-in and the actual competition. On average, the MMA fighters gained 3.40 ± 2.2 kg or 4.4% of their body weight in the approximately 22-hour period before competition. Urine specific gravity significantly decreased (p < 0.001) from 1.028 ± 0.001 to 1.020 ± 0.001 during the approximately 22-hour rehydration period. Results demonstrated that 39% of the MMA fighters presented with a Usg of >1.021 immediately before competition indicating significant or serious dehydration. The MMA fighters undergo significant dehydration and fluctuations in body mass (4.4% avg.) in the 24-hour period before competition. Urinary measures of hydration status indicate that a significant proportion of MMA fighters are not successfully rehydrating before competition and subsequently are competing in a dehydrated state. Weight management guidelines to prevent acute dehydration in MMA fighters are warranted to prevent unnecessary adverse health events secondary to dehydration. PMID:23439336

  6. Molecular aspects of glucose dehydration by chromium chlorides in ionic liquids.

    PubMed

    Zhang, Yanmei; Pidko, Evgeny A; Hensen, Emiel J M

    2011-05-01

    A combined experimental and computational study of the ionic-liquid-mediated dehydration of glucose and fructose by Cr(II) and Cr(III) chlorides has been performed. The ability of chromium to selectively dehydrate glucose to 5-hydroxymethylfurfural (HMF) in the ionic liquid 1-ethyl-3-methyl imidazolium chloride does not depend on the oxidation state of chromium. Nevertheless, Cr(III) exhibits higher activity and selectivity to HMF than Cr(II) . Anhydrous CrCl(2) and CrCl(3)⋅6 H(2)O readily catalyze glucose dehydration with HMF yields of 60 and 72%, respectively, after 3 h. Anhydrous CrCl(3) has a lower activity, because it only slowly dissolves in the reaction mixture. The transformation of glucose to HMF involves the formation of fructose as an intermediate. The exceptional catalytic performance of the chromium catalysts is explained by their unique ability to catalyze glucose to fructose isomerization and fructose to HMF dehydration with high selectivity. Side reactions leading to humins by means of condensation reactions take predominantly place during fructose dehydration. The higher HMF selectivity for Cr(III) is tentatively explained by the higher activity in fructose dehydration compared to Cr(II) . This limits the concentration of intermediates that are involved in bimolecular condensation reactions. Model DFT calculations indicate a substantially lower activation barrier for glucose isomerization by Cr(III) compared to Cr(II) . Qualitatively, glucose isomerization follows a similar mechanism for Cr(II) and Cr(III) . The mechanism involves ring opening of D-glucopyranose coordinated to a single Cr ion, followed by a transient self-organization of catalytic chromium complexes that promotes the rate-determining hydrogen-shift step.

  7. Dehydration and acute weight gain in mixed martial arts fighters before competition.

    PubMed

    Jetton, Adam M; Lawrence, Marcus M; Meucci, Marco; Haines, Tracie L; Collier, Scott R; Morris, David M; Utter, Alan C

    2013-05-01

    The purpose of this study was to characterize the magnitude of acute weight gain (AWG) and dehydration in mixed martial arts (MMA) fighters before competition. Urinary measures of hydration status and body mass were determined approximately 24 hours before and then again approximately 2 hours before competition in 40 MMA fighters (mean ± SE, age: 25.2 ± 0.65 years, height: 1.77 ± 0.01 m, body mass: 75.8 ± 1.5 kg). The AWG was defined as the amount of body weight the fighters gained in the approximately 22-hour period between the official weigh-in and the actual competition. On average, the MMA fighters gained 3.40 ± 2.2 kg or 4.4% of their body weight in the approximately 22-hour period before competition. Urine specific gravity significantly decreased (p < 0.001) from 1.028 ± 0.001 to 1.020 ± 0.001 during the approximately 22-hour rehydration period. Results demonstrated that 39% of the MMA fighters presented with a Usg of >1.021 immediately before competition indicating significant or serious dehydration. The MMA fighters undergo significant dehydration and fluctuations in body mass (4.4% avg.) in the 24-hour period before competition. Urinary measures of hydration status indicate that a significant proportion of MMA fighters are not successfully rehydrating before competition and subsequently are competing in a dehydrated state. Weight management guidelines to prevent acute dehydration in MMA fighters are warranted to prevent unnecessary adverse health events secondary to dehydration.

  8. Dehydration kinetics and thermochemistry of selected hydrous phases, and simulated gas release pattern in carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Bose, Kunal; Ganguly, J.

    1992-01-01

    As part of our continued program of study on the volatile bearing phases and volatile resource potential of carbonaceous chondrite, results of our experimental studies on the dehydration kinetics of talc as a function of temperature and grain size (50 to 0.5 microns), equilibrium dehydration boundary of talc to 40 kbars, calorimetric study of enthalpy of formation of both natural and synthetic talc as a function of grain size, and preliminary results on the dehydration kinetics of epsomite are reported. In addition, theoretical calculations on the gas release pattern of Murchison meteorite, which is a C2(CM) carbonaceous chondrite, were performed. The kinetic study of talc leads to a dehydration rate constant for 40-50 microns size fraction of k = (3.23 x 10(exp 4))exp(-Q/RT)/min with the activation energy Q = 376 (plus or minus 20) kJ/mole. The dehydration rate was found to increase somewhat with decreasing grain size. The enthalpy of formation of talc from elements was measured to be -5896(10) kJ/mol. There was no measurable effect of grain size on the enthalpy beyond the limits of precision of the calorimetric studies. Also the calorimetric enthalpy of both synthetic and natural talc was found to be essentially the same, within the precision of measurements, although the natural talc had a slightly larger field of stability in our phase equilibrium studies. The high pressure experimental data the dehydration equilibrium of talc (talc = enstatite + coesite + H2O) is in strong disagreement with that calculated from the available thermochemical data, which were constrained to fit the low pressure experimental results. The calculated gas release pattern of Murchison meteorite were in reasonable agreement with that determined by stepwise heating in a gas chromatograph.

  9. Surviving the cold: molecular analyses of insect cryoprotective dehydration in the Arctic springtail Megaphorura arctica (Tullberg)

    PubMed Central

    Clark, Melody S; Thorne, Michael AS; Purać, Jelena; Burns, Gavin; Hillyard, Guy; Popović, Željko D; Grubor-Lajšić, Gordana; Worland, M Roger

    2009-01-01

    Background Insects provide tractable models for enhancing our understanding of the physiological and cellular processes that enable survival at extreme low temperatures. They possess three main strategies to survive the cold: freeze tolerance, freeze avoidance or cryoprotective dehydration, of which the latter method is exploited by our model species, the Arctic springtail Megaphorura arctica, formerly Onychiurus arcticus (Tullberg 1876). The physiological mechanisms underlying cryoprotective dehydration have been well characterised in M. arctica and to date this process has been described in only a few other species: the Antarctic nematode Panagrolaimus davidi, an enchytraied worm, the larvae of the Antarctic midge Belgica antarctica and the cocoons of the earthworm Dendrobaena octaedra. There are no in-depth molecular studies on the underlying cold survival mechanisms in any species. Results A cDNA microarray was generated using 6,912 M. arctica clones printed in duplicate. Analysis of clones up-regulated during dehydration procedures (using both cold- and salt-induced dehydration) has identified a number of significant cellular processes, namely the production and mobilisation of trehalose, protection of cellular systems via small heat shock proteins and tissue/cellular remodelling during the dehydration process. Energy production, initiation of protein translation and cell division, plus potential tissue repair processes dominate genes identified during recovery. Heat map analysis identified a duplication of the trehalose-6-phosphate synthase (TPS) gene in M. arctica and also 53 clones co-regulated with TPS, including a number of membrane associated and cell signalling proteins. Q-PCR on selected candidate genes has also contributed to our understanding with glutathione-S-transferase identified as the major antioxdidant enzyme protecting the cells during these stressful procedures, and a number of protein kinase signalling molecules involved in recovery

  10. Concentrated milk feeds and their relation to hypernatraemic dehydration in infants.

    PubMed

    Chambers, T L; Steel, A E

    1975-08-01

    The composition of milks usually fed to 25 infants admitted to hospital with a dehydrating illness was studied. 15 hypernatraemic babies had been given feeds of greater sodium concentration and osmolality than those fed to the 10 infants whose plasma sodium was below 150 mEq/l. Hypernatraemic dehydration may be followed by death or permanent brain damage. Most infants in the survey were receiving milk with a sodium content greater than that advised by the manufacturers. Suggestions are made for reducing the sources of error commonly made in the reconstitution of dried milk formulae.

  11. Changes in the Amino Acid Composition of Dehydrated Orange Juice during Accelerated Nonenzymatic Browning.

    PubMed

    del Castillo MD; Corzo; Polo; Pueyo; Olano

    1998-01-19

    Maillard reaction in dehydrated orange juice stored at 30 or 50 degrees C and a(w) = 0.44 was studied. The decreases of the total amino acids were 30 and 65% of initial concentration after 14 days of storage at 30 and 50 degrees C, respectively. Storage at 50 degrees C for 14 days caused a decrease of 11.8 g/L of carbohydrates, and glucose was more reactive than fructose. Loss of sucrose due to hydrolysis was also observed. Presence of 1-(N-substituted)amino-1-deoxy-D-fructose compounds in stored dehydrated orange juice was detected by thin-layer chromatography. PMID:10554232

  12. Nutrition for the marathon and other endurance sports: environmental stress and dehydration.

    PubMed

    Murray, R

    1992-09-01

    1) During exercise, the body's ability to safely regulate internal temperature is influenced by the environment, exercise intensity, clothing, and the athlete's level of fitness and acclimation. 2) Effective thermoregulation during exercise in the heat requires the evaporation of sweat. The onset of sweating during exercise is triggered by an increase in core body temperature. 3) Dehydration compromises cardiovascular and thermoregulatory function, limits physical work capacity, and increases the risk of heat-related health problems. 4) Physiological and behavioral adaptations help the body cope with the combined demands imposed by exercise and environment. 5) Ad libitum fluid intake is insufficient to protect against dehydration.

  13. Structural characterization and dehydration kinetics of Kirka inderite mineral: Application of non-isothermal models

    SciTech Connect

    Figen, Aysel Kantuerk; Yilmaz, Muege Sari; Piskin, Sabriye

    2010-06-15

    Coats-Redfern, Arrhenius, Ozawa, Kissinger, and Doyle non-isothermal kinetic models were used to calculate the dynamic kinetic parameters for dehydration reaction of Mg-borate mineral, inderite (Kirka - Turkey) based on thermogravimetric analysis, derivative thermogravimetric analysis and differential thermal analysis. Dehydration experiments were carried out at different heating rates of 2, 5, 10, 15, and 20 deg. C/min in a pure nitrogen atmosphere. Structural and morphological properties have been characterized by X-Ray diffraction, Fourier transform-infrared spectroscopy, Scanning electron microscopy-energy dispersive spectroscopy, and Inductively coupled plasma-optical emission spectroscopy techniques.

  14. Alcohol Dehydration on Monooxo W=O and Dioxo O=W=O Species

    SciTech Connect

    Li, Zhenjun; Smid, Bretislav; Kim, Yu Kwon; Matolin, Vladimir; Kay, Bruce D.; Rousseau, Roger J.; Dohnalek, Zdenek

    2012-08-16

    The dehydration of 1-propanol on nanoporous WO3 films prepared via ballistic deposition at ~20 K has been investigated using temperature programmed desorption, infrared reflection absorption spectroscopy and density functional theory. The as deposited films are extremely efficient in 1-propanol dehydration to propene. This activity is correlated with the presence of dioxo O=W=O groups while monooxo W=O species are shown to be inactive. Annealing of the film induces densification that results in the loss of catalytic activity due to annihilation O=W=O species.

  15. Associations Between Dehydration, Cognitive Impairment, and Frailty in Older Hospitalized Patients: An Exploratory Study.

    PubMed

    McCrow, Judy; Morton, Margaret; Travers, Catherine; Harvey, Keren; Eeles, Eamonn

    2016-05-01

    HOW TO OBTAIN CONTACT HOURS BY READING THIS ARTICLE INSTRUCTIONS 1.2 contact hours will be awarded by Villanova University College of Nursing upon successful completion of this activity. A contact hour is a unit of measurement that denotes 60 minutes of an organized learning activity. This is a learner-based activity. Villanova University College of Nursing does not require submission of your answers to the quiz. A contact hour certificate will be awarded once you register, pay the registration fee, and complete the evaluation form online at http://goo.gl/gMfXaf. To obtain contact hours you must: 1. Read the article, "Associations Between Dehydration, Cognitive Impairment, and Frailty in Older Hospitalized Patients: An Exploratory Study" found on pages 19-27, carefully noting any tables and other illustrative materials that are included to enhance your knowledge and understanding of the content. Be sure to keep track of the amount of time (number of minutes) you spend reading the article and completing the quiz. 2. Read and answer each question on the quiz. After completing all of the questions, compare your answers to those provided within this issue. If you have incorrect answers, return to the article for further study. 3. Go to the Villanova website listed above to register for contact hour credit. You will be asked to provide your name; contact information; and a VISA, MasterCard, or Discover card number for payment of the $20.00 fee. Once you complete the online evaluation, a certificate will be automatically generated. This activity is valid for continuing education credit until April 30, 2019. CONTACT HOURS This activity is co-provided by Villanova University College of Nursing and SLACK Incorporated. Villanova University College of Nursing is accredited as a provider of continuing nursing education by the American Nurses Credentialing Center's Commission on Accreditation. ACTIVITY OBJECTIVES 1. Describe the incidence of dehydration in older hospitalized

  16. Associations Between Dehydration, Cognitive Impairment, and Frailty in Older Hospitalized Patients: An Exploratory Study.

    PubMed

    McCrow, Judy; Morton, Margaret; Travers, Catherine; Harvey, Keren; Eeles, Eamonn

    2016-05-01

    HOW TO OBTAIN CONTACT HOURS BY READING THIS ARTICLE INSTRUCTIONS 1.2 contact hours will be awarded by Villanova University College of Nursing upon successful completion of this activity. A contact hour is a unit of measurement that denotes 60 minutes of an organized learning activity. This is a learner-based activity. Villanova University College of Nursing does not require submission of your answers to the quiz. A contact hour certificate will be awarded once you register, pay the registration fee, and complete the evaluation form online at http://goo.gl/gMfXaf. To obtain contact hours you must: 1. Read the article, "Associations Between Dehydration, Cognitive Impairment, and Frailty in Older Hospitalized Patients: An Exploratory Study" found on pages 19-27, carefully noting any tables and other illustrative materials that are included to enhance your knowledge and understanding of the content. Be sure to keep track of the amount of time (number of minutes) you spend reading the article and completing the quiz. 2. Read and answer each question on the quiz. After completing all of the questions, compare your answers to those provided within this issue. If you have incorrect answers, return to the article for further study. 3. Go to the Villanova website listed above to register for contact hour credit. You will be asked to provide your name; contact information; and a VISA, MasterCard, or Discover card number for payment of the $20.00 fee. Once you complete the online evaluation, a certificate will be automatically generated. This activity is valid for continuing education credit until April 30, 2019. CONTACT HOURS This activity is co-provided by Villanova University College of Nursing and SLACK Incorporated. Villanova University College of Nursing is accredited as a provider of continuing nursing education by the American Nurses Credentialing Center's Commission on Accreditation. ACTIVITY OBJECTIVES 1. Describe the incidence of dehydration in older hospitalized

  17. GLYCOL DEHYDRATOR BTEX AND VOC EMISSIONS TESTING RESULTS AT TWO UNITS IN TEXAS AND LOUISIANA VOL. II: APPENDICES

    EPA Science Inventory

    The report gives results of the collection of emissions test data st two triethylene glycol units to provide data for the comparison to GRI-GLYCalc, a computer program developed to estimate emissions from glycol dehydrators. [NOTE: Glycol dehydrators are used in the natural gas i...

  18. GLYCOL DEHYDRATOR BTEX AND VOC EMISSIONS TESTING RESULTS AT TWO UNITS IN TEXAS AND LOUISIANA VOL. I: TECHNICAL REPORT

    EPA Science Inventory

    The report gives results of the collection of emissions tests data at two triethylene glycol units to provide data for comparison to GRI-GLYCalc, a computer program developed to estimate emissions from glycol dehydrators. (NOTE: Glycol dehydrators are used in the natural gas indu...

  19. Heat and Mass Transfer Modeling of Apple Slice under Simultaneous Infrared Dry-Blanching and Dehydration Process

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To develop a new simultaneous infrared dry blanching and dehydration process for producing high-quality blanched and partially dehydrated products, apple slices with three different thicknesses, 5, 9, and 13 mm, were heated using infrared for up to 10 min at 4000W/m2 IR intensity. The surface and ce...

  20. Processing and Quality Characteristics of Apple Slices under Simultaneous Infrared Dry-blanching and Dehydration with Intermittent Heating

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated the effects of three processing parameters, e.g. product surface temperature, slice thickness and processing time, on blanching and dehydration characteristics of apple slices exposed to simultaneous infrared dry-blanching and dehydration (SIRDBD) with intermittent heating. A...

  1. Hypernatraemic dehydration in Jamaican breastfed neonates: a 12-year review in a baby-friendly hospital.

    PubMed

    Trotman, H; Lord, C; Barton, M; Antoine, M

    2004-12-01

    A 12-year retrospective review of neonates admitted with hypernatraemic dehydration to the neonatal unit of the University Hospital of the West Indies was conducted between 1 January 1990 and 31 December 2001. Twenty-four infants fulfilled the criteria for hypernatraemic dehydration. Nineteen (79%) women were either nulliparous or primiparous with a mean (SD) age of 26.9 (4.4) yrs. Modal length of hospital stay for mothers was 24 hrs. Twenty (83.3%) infants were exclusively breastfed. Mean (SD) age at presentation was 7.4 (3.8) days. Mean (SD) percentage weight loss between birth and presentation was 18.9% (6.3). Mean (SD) serum sodium at presentation was 164.8 (13.9) mmol/L. Babies visited at home by nurses had a lower mean serum sodium, were less dehydrated and were significantly less acidiotic. Their mean (SD) length of hospital stay was also significantly less [4.2 (1.4) days] than those who were not visited [7.9 (3.8) days] (p < 0.05). Complications occurred in 19 (79%) of infants and included renal failure (19, 79%), seizures (3, 13%) and intraventricular haemorrhage (1, 4%), and one died (4%). Hypernatraemic dehydration is an uncommon complication of failure to establish breastfeeding but is associated with severe morbidity and mortality. Education programmes are needed to increase awareness amongst health-care workers and mothers in order to prevent the problem.

  2. Light-induced fluorescence studies on dehydration of incipient enamel lesions.

    PubMed

    Al-Khateeb, S; Exterkate, R A M; de Josselin de Jong, E; Angmar-Månsson, B; ten Cate, J M

    2002-01-01

    Changes in the hydration state of enamel affect its optical qualities, such as light scattering and fluorescence. In this study, the rate of fluorescence loss was measured when incipient enamel lesions with different de-remineralization history were left to dehydrate. Four groups of lesions were studied. In groups A, B and C, the lesions were prepared in vitro in an acid-gel system. Group A was kept as control, and groups B and C were remineralized (4 weeks) without and with 1 ppm F in solution, respectively. Group D consisted of natural incipient lesions. Enamel fluorescence was measured for all lesions immediately after removal from water and subsequently at short intervals for 30 min. The change in fluorescence with dehydration varied between the groups. In lesions from groups A and B, it followed a double exponential decrease, while in lesions from groups C and D, it followed a mono-exponential decrease. In all groups, the fluorescence of sound surfaces declined mono-exponentially. The 'fractional fluorescence difference', defined as (L(sound) - L(carious) )/L(sound), became constant after periods of dehydration of about 5, 5, 20 and 5 min for groups A to D, respectively. The observation of the change of fluorescence with dehydration should be taken into consideration when planning studies that use fluorescence as an assessment method. However, it might also be used to gain insight into the properties for fluid transport inside the various lesions, relevant to de-remineralization or fluoride treatments.

  3. Overcoming recalcitrance in Porphyridium aerugineum Geitler employing encapsulation-dehydration cryopreservation methods.

    PubMed

    Amaral, R; Santos, M F; Santos, L M A

    2009-01-01

    Cultures of the recalcitrant microalga Porphyridium aerugineum were cryopreserved. A two-step, uncontrolled rapid freezing protocol, using methanol as cryoprotectant resulted in 23.8 percent viable cells. Cultures in the exponential growth phase, grown under low light intensity to prevent vacuole formation in cells, cryopreserved using a passive freezer, showed 22.4 percent viability. This value was enhanced to 31.5 percent when a controlled-rate freezer was employed. Optimized cultures in the exponential growth phase, cultivated in medium supplemented or not with vitamin B12, were then tested for freezing using the encapsulation-dehydration protocol. High cell loss was observed early during the sorbitol dehydration steps, but 63.6 percent of the remaining encapsulated cells were viable after thawing. This study confirmed the potential of encapsulation-dehydration as a method allowing to improve the low viability obtained with two-step freezing protocols. It also showed the importance of monitoring the response of algal cells to bead osmotic and evaporative dehydration pretreatments before freezing.

  4. Synthesis of mesoporous SAPO-34 molecular sieves and their applications in dehydration of butanols and ethanol.

    PubMed

    Jun, Jong Won; Jeon, Jaewoo; Kim, Chul-Ung; Jeong, Kwang-Eun; Jeong, Soon-Yong; Jhung, Sung Hwa

    2013-04-01

    Microporous SAPO-34 molecular sieves were hydrothermally synthesized with microwave irradiation in the presence of tetraethylammonium hydroxide (TEAOH) as a template. SAPO-34 molecular sieves with mesoporosity were also prepared in the presence of carbon black as a hard template. By increasing the content of the carbon black template in the synthesis, the mesopore volume increased. Dehydration of alcohols (butanols and ethanol) was carried out with the synthesized SAPO-34 molecular sieves, and the lifetime of the catalysts for the dehydration reaction increased as the mesoporosity increased. Moreover, the performance of the microporous catalyst synthesized with microwave was better than that of the catalyst obtained with conventional electric heating. The relative performance of the catalytic dehydration may be explained by the mesoporosity and the crystal size. Therefore, it may be concluded that small-sized SAPO-34 molecular sieves with high mesoporosity can be produced efficiently with microwave irradiation in the presence of carbon black template, and the molecular sieves are effective in the stable dehydration of alcohols.

  5. Hydrous mineral dehydration around heat-generating nuclear waste in bedded salt formations.

    PubMed

    Jordan, Amy B; Boukhalfa, Hakim; Caporuscio, Florie A; Robinson, Bruce A; Stauffer, Philip H

    2015-06-01

    Heat-generating nuclear waste disposal in bedded salt during the first two years after waste emplacement is explored using numerical simulations tied to experiments of hydrous mineral dehydration. Heating impure salt samples to temperatures of 265 °C can release over 20% by mass of hydrous minerals as water. Three steps in a series of dehydration reactions are measured (65, 110, and 265 °C), and water loss associated with each step is averaged from experimental data into a water source model. Simulations using this dehydration model are used to predict temperature, moisture, and porosity after heating by 750-W waste canisters, assuming hydrous mineral mass fractions from 0 to 10%. The formation of a three-phase heat pipe (with counter-circulation of vapor and brine) occurs as water vapor is driven away from the heat source, condenses, and flows back toward the heat source, leading to changes in porosity, permeability, temperature, saturation, and thermal conductivity of the backfill salt surrounding the waste canisters. Heat pipe formation depends on temperature, moisture availability, and mobility. In certain cases, dehydration of hydrous minerals provides sufficient extra moisture to push the system into a sustained heat pipe, where simulations neglecting this process do not.

  6. Dehydration and vernalization treatments identify overlapping molecular networks impacting endodormancy maintenance in leafy spurge crown buds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leafy spurge (Euphorbia esula L.) is an herbaceous perennial weed that reproduces vegetatively from an abundance of underground adventitious buds (UABs), which undergo well-defined phases of seasonal dormancy (para-, endo- and eco-dormancy). In this study, the effects of dehydration-stress on vegeta...

  7. Dehydration induced phase transitions in a microfluidic droplet array for the separation of biomolecules

    NASA Astrophysics Data System (ADS)

    Nelson, Chris; Anna, Shelley

    2013-11-01

    Droplet-based strategies for fluid manipulation have seen significant application in microfluidics due to their ability to compartmentalize solutions and facilitate highly parallelized reactions. Functioning as micro-scale reaction vessels, droplets have been used to study protein crystallization, enzyme kinetics, and to encapsulate whole cells. Recently, the mass transport out of droplets has been used to concentrate solutions and induce phase transitions. Here, we show that droplets trapped in a microfluidic array will spontaneously dehydrate over the course of several hours. By loading these devices with an initially dilute aqueous polymer solution, we use this slow dehydration to observe phase transitions and the evolution of droplet morphology in hundreds of droplets simultaneously. As an example, we trap and dehydrate droplets of a model aqueous two-phase system consisting of polyethylene glycol and dextran. Initially the drops are homogenous, then after some time the polymer concentration reaches a critical point and two phases form. As water continues to leave the system, the drops transition from a microemulsion of DEX in PEG to a core-shell configuration. Eventually, changes in interfacial tension, driven by dehydration, cause the DEX core to completely de-wet from the PEG shell. Since aqueous two phase systems are able to selectively separate a variety of biomolecules, this core shedding behavior has the potential to provide selective, on-chip separation and concentration.

  8. Pervaporation process and use in treating waste stream from glycol dehydrator

    DOEpatents

    Kaschemekat, Jurgen; Baker, Richard W.

    1994-01-01

    Pervaporation processes and apparatus with few moving parts. Ideally, only one pump is used to provide essentially all of the motive power and driving force needed. The process is particularly useful for handling small streams with flow rates less than about 700 gpd. Specifically, the process can be used to treat waste streams from glycol dehydrator regeneration units.

  9. Polymeric blend nanocomposite membranes for ethanol dehydration-effect of morphology and membrane-solvent interactions

    EPA Science Inventory

    Nanocomposite membranes (NCMs) of sodium alginate/poly(vinyl pyrrolidone) blend polymers incorporated with varying concentrations of phosphotungstic acid (H3PW12O40) (PWA) nanoparticles have been prepared and used in ethanol dehydration by the pervaporation (PV) technique. Effe...

  10. Anhydrobiosis in yeast: cell wall mannoproteins are important for yeast Saccharomyces cerevisiae resistance to dehydration.

    PubMed

    Borovikova, Diana; Teparić, Renata; Mrša, Vladimir; Rapoport, Alexander

    2016-08-01

    The state of anhydrobiosis is linked with the reversible delay of metabolism as a result of strong dehydration of cells, and is widely distributed in nature. A number of factors responsible for the maintenance of organisms' viability in these conditions have been revealed. This study was directed to understanding how changes in cell wall structure may influence the resistance of yeasts to dehydration-rehydration. Mutants lacking various cell wall mannoproteins were tested to address this issue. It was revealed that mutants lacking proteins belonging to two structurally and functionally unrelated groups (proteins non-covalently attached to the cell wall, and Pir proteins) possessed significantly lower cell resistance to dehydration-rehydration than the mother wild-type strain. At the same time, the absence of the GPI-anchored cell wall protein Ccw12 unexpectedly resulted in an increase of cell resistance to this treatment; this phenomenon is explained by the compensatory synthesis of chitin. The results clearly indicate that the cell wall structure/composition relates to parameters strongly influencing yeast viability during the processes of dehydration-rehydration, and that damage to cell wall proteins during yeast desiccation can be an important factor leading to cell death. Copyright © 2016 John Wiley & Sons, Ltd.

  11. A Triple Iron Triathlon Leads to a Decrease in Total Body Mass but Not to Dehydration

    ERIC Educational Resources Information Center

    Knechtle, Beat; Knechtle, Patrizia; Rosemann, Thomas; Oliver, Senn

    2010-01-01

    A loss in total body mass during an ultraendurance performance is usually attributed to dehydration. We identified the changes in total body mass, fat mass, skeletal muscle mass, and selected markers of hydration status in 31 male nonprofessional ultratriathletes participating in a Triple Iron triathlon involving 11.4 km swimming, 540 km cycling…

  12. Anhydrobiosis in yeast: cell wall mannoproteins are important for yeast Saccharomyces cerevisiae resistance to dehydration.

    PubMed

    Borovikova, Diana; Teparić, Renata; Mrša, Vladimir; Rapoport, Alexander

    2016-08-01

    The state of anhydrobiosis is linked with the reversible delay of metabolism as a result of strong dehydration of cells, and is widely distributed in nature. A number of factors responsible for the maintenance of organisms' viability in these conditions have been revealed. This study was directed to understanding how changes in cell wall structure may influence the resistance of yeasts to dehydration-rehydration. Mutants lacking various cell wall mannoproteins were tested to address this issue. It was revealed that mutants lacking proteins belonging to two structurally and functionally unrelated groups (proteins non-covalently attached to the cell wall, and Pir proteins) possessed significantly lower cell resistance to dehydration-rehydration than the mother wild-type strain. At the same time, the absence of the GPI-anchored cell wall protein Ccw12 unexpectedly resulted in an increase of cell resistance to this treatment; this phenomenon is explained by the compensatory synthesis of chitin. The results clearly indicate that the cell wall structure/composition relates to parameters strongly influencing yeast viability during the processes of dehydration-rehydration, and that damage to cell wall proteins during yeast desiccation can be an important factor leading to cell death. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27510749

  13. Recent development in osmotic dehydration of fruit and vegetables: a review.

    PubMed

    Chandra, Suresh; Kumari, Durvesh

    2015-01-01

    Osmotic dehydration of fruits and vegetables is achieved by placing the solid/semi solid, whole or in pieces, in a hypertonic solution (sugar and/or salt) with a simultaneous counter diffusion of solutes from the osmotic solution into the tissues. Osmotic dehydration is recommended as a processing method to obtain better quality of food products. Partial dehydration allows structural, nutritional, sensory, and other functional properties of the raw material to be modified. However, the food industry uptake of osmotic dehydration of foods has not been extensive as expected due to the poor understanding of the counter current flow phenomena associated with it. However, these flows are in a dynamic equilibrium with each other and significantly influence the final product in terms of preservation, nutrition, and organoleptic properties. The demand of healthy, natural, nutritious, and tasty processed food products continuously increases, not only for finished products, but also for ingredient to be included in complex foods such as ice cream, cereals, dairy, confectionaries, and bakery products. PMID:24915357

  14. Global Analysis of WRKY Genes and Their Response to Dehydration and Salt Stress in Soybean

    PubMed Central

    Song, Hui; Wang, Pengfei; Hou, Lei; Zhao, Shuzhen; Zhao, Chuanzhi; Xia, Han; Li, Pengcheng; Zhang, Ye; Bian, Xiaotong; Wang, Xingjun

    2016-01-01

    WRKY proteins are plant specific transcription factors involved in various developmental and physiological processes, especially in biotic and abiotic stress resistance. Although previous studies suggested that WRKY proteins in soybean (Glycine max var. Williams 82) involved in both abiotic and biotic stress responses, the global information of WRKY proteins in the latest version of soybean genome (Wm82.a2v1) and their response to dehydration and salt stress have not been reported. In this study, we identified 176 GmWRKY proteins from soybean Wm82.a2v1 genome. These proteins could be classified into three groups, namely group I (32 proteins), group II (120 proteins), and group III (24 proteins). Our results showed that most GmWRKY genes were located on Chromosome 6, while chromosome 11, 12, and 20 contained the least number of this gene family. More GmWRKY genes were distributed on the ends of chromosomes to compare with other regions. The cis-acting elements analysis suggested that GmWRKY genes were transcriptionally regulated upon dehydration and salt stress. RNA-seq data analysis indicated that three GmWRKY genes responded negatively to dehydration, and 12 genes positively responded to salt stress at 1, 6, and 12 h, respectively. We confirmed by qRT-PCR that the expression of GmWRKY47 and GmWRKY 58 genes was decreased upon dehydration, and the expression of GmWRKY92, 144 and 165 genes was increased under salt treatment. PMID:26870047

  15. Quantitative analysis of dehydration in porcine skin caused by optical clearing agents

    NASA Astrophysics Data System (ADS)

    Yu, Tingting; Wen, Xiang; Duan, Shu; Zhu, Dan

    2010-11-01

    Dehydration is supposed to be one of mechanisms of optical clearing, but current studies merely gave some qualitative descriptions. Here an analysis method was established to evaluate the water content of skin with PLS method based on the measurements of near-infrared reflectance spectroscopy and weight of porcine skin. Furthermore, a commercial spectrometer with integrating sphere was used to measure the reflectance and transmittance after treatment with different agents. Then the established method was used to evaluate the water content, while the Inverse Adding-Double algorithm was used to calculate the reduced scattering coefficients. The results show that both the water contents and reduced scattering coefficients decrease during the optical clearing process, and there is direct relationship between the optical clearing efficacy and dehydration. With the treating time last, the relative change in reduced scattering coefficient is larger than that in dehydration of skin, and the difference between the changes depends on the agents. Therefore, we conclude that dehydration is the main mechanism of skin optical clearing during the 60 min treatment of the agents, but for some OCAs, i.e., PEG400, glycerol, or D-sorbitol, there might be some other mechanisms contributing to the optical clearing efficacy.

  16. 40 CFR 63.765 - Glycol dehydration unit process vent standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... directly to the atmosphere may be used on the air emission control equipment installed to comply with... satisfaction, that the total HAP emissions to the atmosphere from the glycol dehydration unit process vent are... demonstrates, to the Administrator's satisfaction, that total emissions to the atmosphere from the...

  17. Freeze-substitution of dehydrated plant tissues: artefacts of aqueous fixation revisited.

    PubMed

    Wesley-Smith, J

    2001-01-01

    This investigation assessed the extent of rehydration of dehydrated plant tissues during aqueous fixation in comparison with the fine structure revealed by freeze-substitution. Radicles from desiccation-tolerant pea (Pisum sativum L.), desiccation-sensitive jackfruit seeds (Artocarpus heterophyllus Lamk.), and leaves of the resurrection plant Eragrostis nindensis Ficalho & Hiern. were selected for their developmentally diverse characteristics. Following freeze-substitution, electron microscopy of dehydrated cells revealed variable wall infolding. Plasmalemmas had a trilaminar appearance and were continuous and closely appressed to cell walls, while the cytoplasm was compacted but ordered. Following aqueous fixation, separation of the plasmalemma and the cell wall, membrane vesiculation and distortion of cellular substructure were evident in all material studied. The sectional area enclosed by the cell wall in cortical cells of dehydrated pea and jackfruit radicles and mesophyll of E. nindensis increased after aqueous fixation by 55, 20, and 30%, respectively. Separation of the plasmalemma and the cell wall was attributed to the characteristics of aqueous fixatives, which limited the expansion of the plasmalemma and cellular contents but not that of the cell wall. It is proposed that severed plasmodesmatal connections, plasmalemma discontinuities, and membrane vesiculation that frequently accompany separation of walls and protoplasm are artefacts of aqueous fixation and should not be interpreted as evidence of desiccation damage or membrane recycling. Evidence suggests that, unlike aqueous fixation, freeze-substitution facilitates reliable preservation of tissues in the dehydrated state and is therefore essential for ultrastructural studies of desiccation.

  18. Recent development in osmotic dehydration of fruit and vegetables: a review.

    PubMed

    Chandra, Suresh; Kumari, Durvesh

    2015-01-01

    Osmotic dehydration of fruits and vegetables is achieved by placing the solid/semi solid, whole or in pieces, in a hypertonic solution (sugar and/or salt) with a simultaneous counter diffusion of solutes from the osmotic solution into the tissues. Osmotic dehydration is recommended as a processing method to obtain better quality of food products. Partial dehydration allows structural, nutritional, sensory, and other functional properties of the raw material to be modified. However, the food industry uptake of osmotic dehydration of foods has not been extensive as expected due to the poor understanding of the counter current flow phenomena associated with it. However, these flows are in a dynamic equilibrium with each other and significantly influence the final product in terms of preservation, nutrition, and organoleptic properties. The demand of healthy, natural, nutritious, and tasty processed food products continuously increases, not only for finished products, but also for ingredient to be included in complex foods such as ice cream, cereals, dairy, confectionaries, and bakery products.

  19. Bismuth(III)-catalyzed dehydrative etherification and thioetherification of phenolic hydroxy groups.

    PubMed

    Murai, Masahito; Origuchi, Kazuki; Takai, Kazuhiko

    2014-07-18

    Use of a bismuth catalyst allowed efficient dehydrative substitution of phenolic hydroxy groups with alcohols and thiols to form C-O and C-S bonds. The reaction required equimolar amounts of two readily available substrates that generated H(2)O as the only byproduct. The relatively mild reaction conditions were compatible with the functional groups selected, and provided excellent chemoselectivity. PMID:25007290

  20. Effect of Pulsed Electric Field Pre-Treatment on Osmotic Dehydration of Strawberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to study the effect of pulsed electric fields (PEF) as a pre-treatment on osmotic dehydration characteristics and quality of strawberries. The studied PDF treatment conditions included three strengths of electric field (1.0, 2.0, 3.0 Kw/cm) and three numbers of pu...

  1. Multivariate analysis of the sensory changes in the dehydrated cowpea leaves.

    PubMed

    Nyambaka, Hudson; Ryley, Janice

    2004-09-01

    Processing of foods, especially dehydration is known to result in alteration of sensory and nutritional qualities. Cowpea leaves is one of the common leafy vegetables consumed in Kenya that contain high levels of pro-vitamin A compounds and has good carotene retention during processing. A tasting panel was trained using a quantitative descriptive analysis (QDA) test that was developed and used to characterize the sensory properties of dehydrated cowpea leaves. The panel identified sensory attributes in dehydrated cowpea leaves that were important in discriminating the dehydrated samples from the fresh material. Principal component analysis (PCA) was used to analyze the QDA scores. The first principal component (PC1) which accounted for 85% of the variance was an index of the interrelationship among variables in differentiating the samples while PC2, which accounted for the remaining variance measured the attributes influence in discriminating samples. The results of the sensory attributes mean scores showed that aroma, texture and appearance had high influence in discriminating between the fresh, the sun-dried and the solar-dried samples. The solar dried products were close to the fresh material, which was characterized, as soft and tender with an appealing dark green color, than the sun dried product. The sun dried products differed from the other products more on appearance. PMID:18969564

  2. Inactivation of Enterobacter sakazakii of dehydrated infant formula by gamma-irradiation

    NASA Astrophysics Data System (ADS)

    Lee, Ju-Woon; Oh, Sang-Hee; Byun, Eui-Baek; Kim, Jae-Hun; Kim, Jang-Ho; Woon, Jae-Ho; Byun, Myung-Woo

    2007-11-01

    Enterobacter sakazakii has been implicated as a causal organism in a severe form of neonatal meningitis, with reported mortality rates of 20%. The population at greatest risk is immunocompromised infants of any age. Dried infant formula has been identified as a potential source of the organism in both outbreaks and sporadic cases. The objective of this study was to investigate theirradiation effect of the inactivation on E. sakazakii (ATCC 29544) of a dehydrated infant formula. The D10-values were 0.22-0.27 and 0.76 kGy for broth and dehydrated infant formula, respectively. The irradiation at 5.0 kGy was able to completely eliminate the E. sakazakii inoculated at 8.0 to 9.0 log CFU g -1 onto a dehydrated infant formula. There was no regrowth for all samples during the time they were stored at 10 °C for 6 h after rehydration. The present results indicated that a gamma-irradiation could potentially be used to inactivate E. sakazakii in a dehydrated powdered infant formula.

  3. Neonatal hypernatremic dehydration associated with breast-feeding malnutrition: a retrospective survey

    PubMed Central

    Livingstone, V H; Willis, C E; Abdel-Wareth, L O; Thiessen, P; Lockitch, G

    2000-01-01

    BACKGROUND: Hypernatremic dehydration in neonates is a potentially devastating condition. Recent reports have identified breast-feeding malnutrition as a key factor in its pathophysiology. METHODS: Using a theoretical framework for breast-feeding kinetics, a retrospective chart review of all neonates less than 28 days of age who were seen at either British Columbia's Children's Hospital or the Vancouver Breastfeeding Centre between 1991-1994 was conducted to identify and classify possible causes of breast-feeding malnutrition among neonates who developed hypernatremic dehydration. RESULTS: Twenty-one cases hypernatremic dehydration were identified. Infant weight loss ranged from 8% to 30% of birth weight, and serum sodium levels ranged from 146 mmol/L to 207 mmol/L. In each case, maternal or infant factors (e.g., poor breast-feeding technique, lactation failure following postpartum hemorrhage and infant suckling disorders associated with cleft palate or ankyloglossia) that could interfere with either lactation or breast-feeding dynamics and account for insufficient breast milk intake were identified. INTERPRETATION: Prenatal and in-hospital screening for maternal and infant risk factors for breast-feeding malnutrition combined with early postpartum follow-up to detect excessive infant weight loss are important for the prevention of neonatal hypernatremic dehydration. PMID:10738450

  4. Comparing the Accuracy of the Three Dehydration Scales in Children with Acute Diarrhea in a Developing Country of Kosovo

    PubMed Central

    Hoxha, Teuta; Xhelili, Luan; Azemi, Mehmedali; Avdiu, Muharrem; Ismaili-Jaha, Vlora; Efendija-Beqa, Urata; Grajcevci-Uka, Violeta

    2015-01-01

    Background. Although diarrhea is a preventable disease, it remains the second leading cause of death (after pneumonia) among children aged under five years worldwide. The World Health Organization (WHO) scale, the Gorelick scale, and the Clinical Dehydration Scale (CDS) were created to estimate dehydration status using clinical signs. The purpose of this study is to determine whether these clinical scales can accurately assess dehydration status of children in a developing country of Kosovo. Methodology. Children aged 1 month to 5 years with a history of acute diarrhea were enrolled in the study. After recording the data about the patients historical features the treating physician recorded the physical examination findings consistent with each clinical score. Receiver operating characteristic (ROC) curves were constructed to evaluate the performance of the three scales, compared to the gold standard, percent weight change with rehydration. Sensitivity, specificity and likelihood ratios were calculated using the best cut-off points of the ROC curves. Results. We enrolled 230 children, and 200 children met eligibility criteria. The WHO scale for predicting significant dehydration (≥5 percent weight change) had an area under the curve (AUC) of 0.71 (95% : CI= 0.65-0.77). The Gorelick scales 4- and 10-point for predicting significant dehydration, had an area under the curve of 0.71 (95% : CI=0.63- 0.78) and 0.74 (95% : CI= 0.68-0.81) respectively. Only the CDS for predicting the significant dehydration above ≥6% percent weight change, did not have an area under the curve statistically different from the reference line with an AUC of 0.54 (95% CI = 0.45- 0.63). Conclusion. The WHO dehydration scale and Gorelick scales were fair predictors of dehydration in children with diarrhea. Only the Clinical Dehydration Scale was found not to be a helpful predictor of dehydration in our study cohort. PMID:26244042

  5. The value of body weight measurement to assess dehydration in children.

    PubMed

    Pruvost, Isabelle; Dubos, François; Chazard, Emmanuel; Hue, Valérie; Duhamel, Alain; Martinot, Alain

    2013-01-01

    Dehydration secondary to gastroenteritis is one of the most common reasons for office visits and hospital admissions. The indicator most commonly used to estimate dehydration status is acute weight loss. Post-illness weight gain is considered as the gold-standard to determine the true level of dehydration and is widely used to estimate weight loss in research. To determine the value of post-illness weight gain as a gold standard for acute dehydration, we conducted a prospective cohort study in which 293 children, aged 1 month to 2 years, with acute diarrhea were followed for 7 days during a 3-year period. The main outcome measures were an accurate pre-illness weight (if available within 8 days before the diarrhea), post-illness weight, and theoretical weight (predicted from the child's individual growth chart). Post-illness weight was measured for 231 (79%) and both theoretical and post-illness weights were obtained for 111 (39%). Only 62 (21%) had an accurate pre-illness weight. The correlation between post-illness and theoretical weight was excellent (0.978), but bootstrapped linear regression analysis showed that post-illness weight underestimated theoretical weight by 0.48 kg (95% CI: 0.06-0.79, p<0.02). The mean difference in the fluid deficit calculated was 4.0% of body weight (95% CI: 3.2-4.7, p<0.0001). Theoretical weight overestimated accurate pre-illness weight by 0.21 kg (95% CI: 0.08-0.34, p = 0.002). Post-illness weight underestimated pre-illness weight by 0.19 kg (95% CI: 0.03-0.36, p = 0.02). The prevalence of 5% dehydration according to post-illness weight (21%) was significantly lower than the prevalence estimated by either theoretical weight (60%) or clinical assessment (66%, p<0.0001).These data suggest that post-illness weight is of little value as a gold standard to determine the true level of dehydration. The performance of dehydration signs or scales determined by using post-illness weight as a gold standard has to be reconsidered.

  6. Dehydration stress memory genes of Zea mays; comparison with Arabidopsis thaliana

    PubMed Central

    2014-01-01

    Background Pre-exposing plants to diverse abiotic stresses may alter their physiological and transcriptional responses to a subsequent stress, suggesting a form of “stress memory”. Arabidopsis thaliana plants that have experienced multiple exposures to dehydration stress display transcriptional behavior suggesting “memory” from an earlier stress. Genes that respond to a first stress by up-regulating or down-regulating their transcription but in a subsequent stress provide a significantly different response define the ‘memory genes’ category. Genes responding similarly to each stress form the ‘non-memory’ category. It is unknown whether such memory responses exists in other Angiosperm lineages and whether memory is an evolutionarily conserved response to repeated dehydration stresses. Results Here, we determine the transcriptional responses of maize (Zea mays L.) plants that have experienced repeated exposures to dehydration stress in comparison with plants encountering the stress for the first time. Four distinct transcription memory response patterns similar to those displayed by A. thaliana were revealed. The most important contribution is the evidence that monocot and eudicot plants, two lineages that have diverged 140 to 200 M years ago, display similar abilities to ‘remember’ a dehydration stress and to modify their transcriptional responses, accordingly. The highly sensitive RNA-Seq analyses allowed to identify genes that function similarly in the two lineages, as well as genes that function in species-specific ways. Memory transcription patterns indicate that the transcriptional behavior of responding genes under repeated stresses is different from the behavior during an initial dehydration stress, suggesting that stress memory is a complex phenotype resulting from coordinated responses of multiple signaling pathways. Conclusions Structurally related genes displaying the same memory responses in the two species would suggest conservation

  7. Hydrogen peroxide and ecdysone in the cryoprotective dehydration strategy of Megaphorura arctica (Onychiuridae: Collembola).

    PubMed

    Grubor-Lajšić, Gordana; Petri, Edward T; Kojić, Danijela; Purać, Jelena; Popović, Zeljko D; Worland, Roger M; Clark, Melody S; Mojović, Miloš; Blagojević, Duško P

    2013-02-01

    The Arctic springtail, Megaphorura arctica, survives sub-zero temperatures in a dehydrated state via trehalose-dependent cryoprotective dehydration. Regulation of trehalose biosynthesis is complex; based in part on studies in yeast and fungi, its connection with oxidative stress caused by exposure of cells to oxidants, such as hydrogen peroxide (H₂O₂), or dehydration, is well documented. In this respect, we measured the amount of H₂O₂ and antioxidant enzyme activities (superoxide dismutases: copper, zinc--CuZnSOD and manganese containing--MnSOD, and catalase--CAT), as the regulatory components determining H₂O₂ concentrations, in Arctic springtails incubated at 5 °C (control) versus -2 °C (threshold temperature for trehalose biosynthesis). Because ecdysone also stimulates trehalose production in insects and regulates the expression of genes involved in redox homeostasis and antioxidant protection in Drosophila, we measured the levels of the active physiological form of ecdysone--20-hydroxyecdysone (20-HE). Significantly elevated H₂O₂ and 20-HE levels were observed in M. arctica incubated at -2 °C, supporting a link between ecdysone, H₂O₂, and trehalose levels during cryoprotective dehydration. CAT activity was found to be significantly lower in M. arctica incubated at -2 °C versus 5 °C, suggesting reduced H₂O₂ breakdown. Furthermore, measurement of the free radical composition in Arctic springtails incubated at 5 °C (controls) versus -2 °C by Electron Paramagnetic Resonance spectroscopy revealed melanin-derived free radicals at -2 °C, perhaps an additional source of H₂O₂. Our results suggest that H₂O₂ and ecdysone play important roles in the cryoprotective dehydration process in M. arctica, linked with the regulation of trehalose biosynthesis. PMID:23143920

  8. Effect of hydrothermal circulation on slab dehydration for the subduction zone of Costa Rica and Nicaragua

    NASA Astrophysics Data System (ADS)

    Rosas, Juan Carlos; Currie, Claire A.; Harris, Robert N.; He, Jiangheng

    2016-06-01

    Dehydration of subducting oceanic plates is associated with mantle wedge melting, arc volcanism, intraslab earthquakes through dehydration embrittlement, and the flux of water into the mantle. In this study, we present two-dimensional thermal models of the Costa Rica-Nicaragua subduction zone to investigate dehydration reactions within the subducting Cocos plate. Seismic and geochemical observations indicate that the mantle wedge below Nicaragua is more hydrated than that below Costa Rica. These trends have been hypothesized to be due to a variation in either the thermal state or the hydration state of the subducting slab. Despite only small variations in plate age along strike, heat flow measurements near the deformation front reveal significantly lower heat flow offshore Nicaragua than offshore Costa Rica. These measurements are interpreted to reflect an along-strike change in the efficiency of hydrothermal circulation in the oceanic crust. We parameterize thermal models in terms of efficient and inefficient hydrothermal circulation and explore their impact on slab temperature in the context of dehydration models. Relative to models without fluid flow, efficient hydrothermal circulation reduces slab temperature by as much at 60 °C to depths of ∼75 km and increases the predicted depth of eclogitization by ∼15 km. Inefficient hydrothermal circulation has a commensurately smaller influence on slab temperatures and the depth of eclogitization. For both regions, the change in eclogitization depth better fits the observed intraslab crustal seismicity, but there is not a strong contrast in the slab thermal structure or location of the main dehydration reactions. Consistent with other studies, these results suggest that observed along-strike differences in mantle wedge hydration may be better explained by a northwestward increase in the hydration state of the Cocos plate before it is subducted.

  9. Tracking the dehydration process of raw honey by synchronous two-dimensional near infrared correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Guiyun; Sun, Xin; Huang, Yuping; Chen, Kunjie

    2014-11-01

    Though much attention is paid to honey quality assessment, few reports on characteristic of manually dehydrated honey have been found. The aim of this investigation is to track the dehydration process of raw honey using synchronous two-dimensional (2D) near infrared correlation spectroscopy. To minimize the impact of dehydration to honey quality, seventy-two honey samples from six different dehydration stages were obtained using drum wind drying method with temperature controlled at 40 °C. Their dynamic short-wave NIR spectra from 600 to 1100 nm were collected in the transmission mode from 10 to 50 °C with an increment of 5 °C and were analyzed using synchronous two-dimensional correlation method. Short-wave NIR spectral data has been exploited less than other NIR region for its weaker signal especially for water absorption's interference with useful information. The investigation enlarged the signal at this band using synchronous 2D correlation analysis, revealing the fingerprinting feature of rape honey and chaste honey during the artificial dehydration process. The results have shown that, with the help of 2D correlation analysis, this band can detect the variation of the second overtone of O-H and N-H groups vibration upon their H-bonds forming or collapsing resulted from the interactions between water and solute. The results have also shown that 2D-NIRS method is able to convert the tiny changes in honey constituents into the detectable fingerprinting difference, which provides a new method for assessing honey quality.

  10. Acute Peritoneal Dialysis in Neonates with Acute Kidney Injury and Hypernatremic Dehydration

    PubMed Central

    Yildiz, Nurdan; Erguven, Müferet; Yildiz, Metin; Ozdogan, Tutku; Turhan, Pinar

    2013-01-01

    ♦ Objective: We aimed to evaluate the efficacy of acute peritoneal dialysis (PD) and clinical outcomes in neonates with acute kidney injury (AKI) and hypernatremic dehydration. ♦ Methods: The medical records of 15 neonates with AKI and hypernatremic dehydration who were treated with acute PD were reviewed. The diagnoses were AKI with hypernatremic dehydration with or without sepsis in 13 patients and AKI with hypernatremia and congenital nephropathy in 2 patients. The main indications for PD were AKI with some combination of oligoanuria, azotemia, hyperuricemia, and metabolic acidosis unresponsive to initial intensive medical treatment. ♦ Results: The mean age of the patients at dialysis initiation was 11.9 ± 9 days, and the mean duration of PD was 6.36 ± 4.8 days. In 7 patients (46.7%), hypotension required the use of vasopressors, and in 6 patients (40%), mechanical ventilation was required. Peritoneal dialysis-related complications occurred in 7 patients (46.7%), the most common being catheter malfunction (n = 6). Four episodes of peritonitis occurred in the 15 patients (26.7%), 2 episodes in patients with congenital renal disease and 2 episodes in patients with sepsis and multiorgan failure, who did not survive. Congenital renal disease, septicemia, and the need for mechanical ventilation were important factors influencing patient survival. All patients with no pre-existing renal disease or sepsis recovered their renal function and survived. ♦ Conclusions: In neonates with AKI and hypernatremic dehydration, PD is safe and successful, and in patients without congenital renal disease or sepsis, the prognosis is good. Peritoneal dialysis should be the treatment of choice in neonates with AKI and hypernatremic dehydration who do not respond to appropriate med ical treatment. PMID:23123669

  11. The effects of dehydration, moderate alcohol consumption, and rehydration on cognitive functions.

    PubMed

    Irwin, Christopher; Leveritt, Michael; Shum, David; Desbrow, Ben

    2013-05-01

    This study investigated the impact of mild-moderate dehydration on alcohol-induced deteriorations in cognitive functions. Sixteen healthy males participated in a single-blind, placebo-controlled cross-over design study involving 4 experimental trials (separated by ≥7 d). In each trial, participants were dehydrated by 2.5% body mass through exercise. After 1 h recovery in a thermo-neutral environment (22 ± 2 °C, 60-70% relative humidity) 4 tasks from the Cambridge Neuropsychological Test Automated Battery (CANTAB) were administered to the participants (test 1). In two of the trials, participants were provided with water equivalent to either 50% or 150% body mass loss and given salt (NaCl) capsules (50 mmol/L). A set volume of alcohol or placebo was then consumed in each trial, incorporating the conditions: dehydration-placebo (DP), dehydration-alcohol (DA), partial rehydration-alcohol (PA), and full rehydration-alcohol (FA). The same 4 CANTAB tasks were then re-administered (test 2). Subjective ratings of mood and estimates of alcohol intoxication and driving impairment were also recorded in each trial. Alcohol consumption caused deterioration on 3 of the 4 CANTAB measures (viz., choice reaction time, executive function and response inhibition). This reduction in performance was exacerbated when participants were dehydrated compared to trials where full rehydration occurred. Subjective ratings of impairment and intoxication were not significantly different between any of the trials where alcohol was consumed; however ratings for alcohol trials were significantly higher than in the placebo trial. These findings suggest that rehydration after exercise that causes fluid loss can attenuate alcohol-related deterioration of cognitive functions. This may pose implications for post match fluid replacement if a moderate amount of alcohol is also consumed.

  12. The effect of dehydration on muscle metabolism and time trial performance during prolonged cycling in males.

    PubMed

    Logan-Sprenger, Heather M; Heigenhauser, George J F; Jones, Graham L; Spriet, Lawrence L

    2015-08-01

    This study combined overnight fluid restriction with lack of fluid intake during prolonged cycling to determine the effects of dehydration on substrate oxidation, skeletal muscle metabolism, heat shock protein 72 (Hsp72) response, and time trial (TT) performance. Nine males cycled at ~65% VO2peak for 90 min followed by a TT (6 kJ/kg BM) either with fluid (HYD) or without fluid (DEH). Blood samples were taken every 20 min and muscle biopsies were taken at 0, 45, and 90 min of exercise and after the TT. DEH subjects started the trial with a -0.6% BM from overnight fluid restriction and were dehydrated by 1.4% after 45 min, 2.3% after 90 min of exercise, and 3.1% BM after the TT. There were no significant differences in oxygen uptake, carbon dioxide production, or total sweat loss between the trials. However, physiological parameters (heart rate [HR], rate of perceived exertion, core temperature [Tc], plasma osmolality [Posm], plasma volume [Pvol] loss, and Hsp72), and carbohydrate (CHO) oxidation and muscle glycogen use were greater during 90 min of moderate cycling when subjects progressed from 0.6% to 2.3% dehydration. TT performance was 13% slower when subjects began 2.3% and ended 3.1% dehydrated. Throughout the TT, Tc, Posm, blood and muscle lactate [La], and serum Hsp72 were higher, even while working at a lower power output (PO). The accelerated muscle glycogen use during 90 min of moderate intensity exercise with DEH did not affect subsequent TT performance, rather augmented Tc, RPE and the additional physiological factors were more important in slowing performance when dehydrated.

  13. Dehydration tolerance in wood frogs: a new perspective on development of amphibian freeze tolerance.

    PubMed

    Churchill, T A; Storey, K B

    1993-12-01

    Wood frogs, Rana sylvatica, tolerate the loss of 50-60% of total body water during experimental dehydration. The rate of water loss for unprotected frogs is the same whether animals are frozen (at -2 degrees C) or unfrozen (at 1 degrees C) but is greatly reduced when frogs are frozen under a protective layer of moss. Dehydrational death could occur in as little as 7-9 days for unprotected animals; this indicates the importance for winter survival of selecting well-protected and damp hibernation sites. Prior dehydration affected the cooling and freezing properties of frogs, reducing supercooling point and the amount of ice formed after 24 h at -2 degrees C and acting synergistically with freezing exposure in stimulating cryoprotectant synthesis. Analysis of the effects of controlled dehydration at 5 degrees C showed that changes in body water content alone (without freezing) stimulated liver glycogenolysis and the export of high concentrations of glucose into blood and other organs. Autumn-collected frogs dehydrated to 50% of total body water lost showed glucose levels of 165-1,409 nmol/mg protein in different organs, increases of 9- to 313-fold compared with control values and reaching final levels very similar to those induced by freezing exposure. The data support the proposal that various adaptations for natural freeze tolerance may have been derived from preexisting mechanisms for dealing with water stress in amphibians and that cell volume change may be one of the signals involved in triggering and sustaining molecular adaptations (e.g., cryoprotectant output) that support freezing survival.

  14. Regulation of plasma antidiuretic hormone in the dehydrated kangaroo rat (Dipodomys spectabilis M.).

    PubMed

    Stallone, J N; Braun, E J

    1988-01-01

    A sensitive and specific radioimmunoassay was used to measure plasma antidiuretic hormone (plasma arginine vasopressin, PAVP) concentrations in a conscious desert-adapted mammal, the banner-tailed kangaroo rat (Dipodomys spectabilis; 131 +/- 2.3 g body mass), during normal hydration and in response to progressive dehydration. Simultaneous measurements of PAVP and plasma osmolality (POSM) in these experiments permitted determination of the hypothalamo-neurohypophyseal system-osmoreceptor set point and sensitivity to extracellular hyperosmolality during dehydration. In normally hydrated kangaroo rats, acclimated to room temperature (20-24 degrees) and fed a dry grain diet, POSM and PAVP averaged 308.6 +/- 0.7 mosmol/kg H2O and 6.0 +/- 0.7 pg/ml (2.2 +/- 0.2 microU/ml), respectively (means +/- SE). In separate groups of animals subjected to 48, 96, 144, or 192 hr of dehydration, POSM and PAVP increased in a parallel linear manner with time to maxima of 329.7 +/- 2.4 mosmol/kg H2O and 68.8 +/- 4.4 pg/ml (24.9 +/- 1.6 microU/ml), respectively, at 192 hr of dehydration. Thus, a highly correlated and significant relationship between POSM and PAVP (r2 = 0.941, P less than 0.001) exists in dehydrated kangaroo rats, quantitatively defined by the linear regression equation PAVP (pg/ml) = 2.99 (POSM - 306.4), with an apparent osmotic threshold for AVP release at a POSM of 306.4 mosmol/kg H2O.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. The effect of dehydration on muscle metabolism and time trial performance during prolonged cycling in males

    PubMed Central

    Logan-Sprenger, Heather M; Heigenhauser, George JF; Jones, Graham L; Spriet, Lawrence L

    2015-01-01

    This study combined overnight fluid restriction with lack of fluid intake during prolonged cycling to determine the effects of dehydration on substrate oxidation, skeletal muscle metabolism, heat shock protein 72 (Hsp72) response, and time trial (TT) performance. Nine males cycled at ∼65% VO2peak for 90 min followed by a TT (6 kJ/kg BM) either with fluid (HYD) or without fluid (DEH). Blood samples were taken every 20 min and muscle biopsies were taken at 0, 45, and 90 min of exercise and after the TT. DEH subjects started the trial with a −0.6% BM from overnight fluid restriction and were dehydrated by 1.4% after 45 min, 2.3% after 90 min of exercise, and 3.1% BM after the TT. There were no significant differences in oxygen uptake, carbon dioxide production, or total sweat loss between the trials. However, physiological parameters (heart rate [HR], rate of perceived exertion, core temperature [Tc], plasma osmolality [Posm], plasma volume [Pvol] loss, and Hsp72), and carbohydrate (CHO) oxidation and muscle glycogen use were greater during 90 min of moderate cycling when subjects progressed from 0.6% to 2.3% dehydration. TT performance was 13% slower when subjects began 2.3% and ended 3.1% dehydrated. Throughout the TT, Tc, Posm, blood and muscle lactate [La], and serum Hsp72 were higher, even while working at a lower power output (PO). The accelerated muscle glycogen use during 90 min of moderate intensity exercise with DEH did not affect subsequent TT performance, rather augmented Tc, RPE and the additional physiological factors were more important in slowing performance when dehydrated. PMID:26296770

  16. Cigarette smoke exposure induces CFTR internalization and insolubility, leading to airway surface liquid dehydration

    PubMed Central

    Clunes, Lucy A.; Davies, Catrin M.; Coakley, Raymond D.; Aleksandrov, Andrei A.; Henderson, Ashley G.; Zeman, Kirby L.; Worthington, Erin N.; Gentzsch, Martina; Kreda, Silvia M.; Cholon, Deborah; Bennett, William D.; Riordan, John R.; Boucher, Richard C.; Tarran, Robert

    2012-01-01

    Cigarette smoke (CS) exposure induces mucus obstruction and the development of chronic bronchitis (CB). While many of these responses are determined genetically, little is known about the effects CS can exert on pulmonary epithelia at the protein level. We, therefore, tested the hypothesis that CS exerts direct effects on the CFTR protein, which could impair airway hydration, leading to the mucus stasis characteristic of both cystic fibrosis and CB. In vivo and in vitro studies demonstrated that CS rapidly decreased CFTR activity, leading to airway surface liquid (ASL) volume depletion (i.e., dehydration). Further studies revealed that CS induced internalization of CFTR. Surprisingly, CS-internalized CFTR did not colocalize with lysosomal proteins. Instead, the bulk of CFTR shifted to a detergent-resistant fraction within the cell and colocalized with the intermediate filament vimentin, suggesting that CS induced CFTR movement into an aggresome-like, perinuclear compartment. To test whether airway dehydration could be reversed, we used hypertonic saline (HS) as an osmolyte to rehydrate ASL. HS restored ASL height in CS-exposed, dehydrated airway cultures. Similarly, inhaled HS restored mucus transport and increased clearance in patients with CB. Thus, we propose that CS exposure rapidly impairs CFTR function by internalizing CFTR, leading to ASL dehydration, which promotes mucus stasis and a failure of mucus clearance, leaving smokers at risk for developing CB. Furthermore, our data suggest that strategies to rehydrate airway surfaces may provide a novel form of therapy for patients with CB.—Clunes, L. A., Davies, C. M., Coakley, R. D., Aleksandrov, A. A., Henderson, A. G., Zeman, K. L., Worthington, E. N., Gentzsch, M., Kreda, S. M., Cholon, D., Bennett, W. D., Riordan, J. R., Boucher, R. C., Tarran, R. Cigarette smoke exposure induces CFTR internalization and insolubility, leading to airway surface liquid dehydration. PMID:21990373

  17. Leaf Shrinkage with Dehydration: Coordination with Hydraulic Vulnerability and Drought Tolerance1[C][W][OPEN

    PubMed Central

    Scoffoni, Christine; Vuong, Christine; Diep, Steven; Cochard, Hervé; Sack, Lawren

    2014-01-01

    Leaf shrinkage with dehydration has attracted attention for over 100 years, especially as it becomes visibly extreme during drought. However, little has been known of its correlation with physiology. Computer simulations of the leaf hydraulic system showed that a reduction of hydraulic conductance of the mesophyll pathways outside the xylem would cause a strong decline of leaf hydraulic conductance (Kleaf). For 14 diverse species, we tested the hypothesis that shrinkage during dehydration (i.e. in whole leaf, cell and airspace thickness, and leaf area) is associated with reduction in Kleaf at declining leaf water potential (Ψleaf). We tested hypotheses for the linkage of leaf shrinkage with structural and physiological water relations parameters, including modulus of elasticity, osmotic pressure at full turgor, turgor loss point (TLP), and cuticular conductance. Species originating from moist habitats showed substantial shrinkage during dehydration before reaching TLP, in contrast with species originating from dry habitats. Across species, the decline of Kleaf with mild dehydration (i.e. the initial slope of the Kleaf versus Ψleaf curve) correlated with the decline of leaf thickness (the slope of the leaf thickness versus Ψleaf curve), as expected based on predictions from computer simulations. Leaf thickness shrinkage before TLP correlated across species with lower modulus of elasticity and with less negative osmotic pressure at full turgor, as did leaf area shrinkage between full turgor and oven desiccation. These findings point to a role for leaf shrinkage in hydraulic decline during mild dehydration, with potential impacts on drought adaptation for cells and leaves, influencing plant ecological distributions. PMID:24306532

  18. Leaf shrinkage with dehydration: coordination with hydraulic vulnerability and drought tolerance.

    PubMed

    Scoffoni, Christine; Vuong, Christine; Diep, Steven; Cochard, Hervé; Sack, Lawren

    2014-04-01

    Leaf shrinkage with dehydration has attracted attention for over 100 years, especially as it becomes visibly extreme during drought. However, little has been known of its correlation with physiology. Computer simulations of the leaf hydraulic system showed that a reduction of hydraulic conductance of the mesophyll pathways outside the xylem would cause a strong decline of leaf hydraulic conductance (K(leaf)). For 14 diverse species, we tested the hypothesis that shrinkage during dehydration (i.e. in whole leaf, cell and airspace thickness, and leaf area) is associated with reduction in K(leaf) at declining leaf water potential (Ψ(leaf)). We tested hypotheses for the linkage of leaf shrinkage with structural and physiological water relations parameters, including modulus of elasticity, osmotic pressure at full turgor, turgor loss point (TLP), and cuticular conductance. Species originating from moist habitats showed substantial shrinkage during dehydration before reaching TLP, in contrast with species originating from dry habitats. Across species, the decline of K(leaf) with mild dehydration (i.e. the initial slope of the K(leaf) versus Ψ(leaf) curve) correlated with the decline of leaf thickness (the slope of the leaf thickness versus Ψ(leaf) curve), as expected based on predictions from computer simulations. Leaf thickness shrinkage before TLP correlated across species with lower modulus of elasticity and with less negative osmotic pressure at full turgor, as did leaf area shrinkage between full turgor and oven desiccation. These findings point to a role for leaf shrinkage in hydraulic decline during mild dehydration, with potential impacts on drought adaptation for cells and leaves, influencing plant ecological distributions.

  19. Dehydration effects from contrails in a coupled contrail-climate model

    NASA Astrophysics Data System (ADS)

    Schumann, U.; Penner, J. E.; Chen, Yibin; Zhou, Cheng; Graf, K.

    2015-10-01

    The uptake of water by contrails in ice-supersaturated air and the release of water after ice particle advection and sedimentation dehydrates the atmosphere at flight levels and redistributes humidity mainly to lower levels. The dehydration is investigated by coupling a plume-scale contrail model with a global aerosol-climate model. The contrail model simulates all the individual contrails forming from global air traffic for meteorological conditions as defined by the climate model. The computed contrail cirrus properties compare reasonably with theoretical concepts and observations. The mass of water in aged contrails may exceed 106 times the mass of water emitted from aircraft. Many of the ice particles sediment and release water in the troposphere, on average 700 m below the mean flight levels. Simulations with and without coupling are compared. The drying at contrail levels causes thinner and longer-lived contrails with about 15 % reduced contrail radiative forcing (RF). The reduced RF from contrails is on the order of 0.06 W m-2, slightly larger than estimated earlier because of higher soot emissions. For normal traffic, the RF from dehydration is small compared to interannual variability. A case with emissions increased by 100 times is used to overcome statistical uncertainty. The contrails impact the entire hydrological cycle in the atmosphere by reducing the total water column and the cover by high- and low-level clouds. For normal traffic, the dehydration changes contrail RF by positive shortwave and negative longwave contributions on the order of 0.04 W m-2, with a small negative net RF. The total net RF from contrails and dehydration remains within the range of previous estimates.

  20. Dehydration effects from contrails in a coupled contrail-climate model

    NASA Astrophysics Data System (ADS)

    Schumann, U.; Penner, J. E.; Chen, Y.; Zhou, C.; Graf, K.

    2015-07-01

    Uptake of water by contrails in ice-supersaturated air and release of water after ice particle advection and sedimentation dehydrates the atmosphere at flight levels and redistributes humidity mainly to lower levels. The dehydration is investigated by coupling a plume-scale contrail model with a global aerosol-climate model. The contrail model simulates all the individual contrails forming from global air traffic for meteorological conditions as defined by the climate model. The computed contrail-cirrus properties compare reasonably with theoretical concepts and observations. The mass of water in aged contrails may exceed 106 times the mass of water emitted from aircraft. Many of the ice particles sediment and release water in the troposphere, on average 700 m below the mean flight levels. Simulations with and without coupling are compared. The drying at contrail levels causes thinner and longer lived contrails with about 15 % reduced contrail radiative forcing (RF). The reduced RF from contrails is of the order 0.06 W m-2, slightly larger than estimated earlier because of higher soot emissions. For normal traffic, the RF from dehydration is small compared to interannual variability. A case with 100 times increased emissions is used to overcome statistical uncertainty. The contrails impact the entire hydrological cycle in the atmosphere by reducing the total water column and the cover of high and low-level clouds. For normal traffic, the dehydration changes contrail RF by positive shortwave and negative longwave contributions of order 0.04 W m-2, with a small negative net RF. The total net RF from contrails and dehydration remains within the range of previous estimates.

  1. Point-of-Admission Serum Electrolyte Profile of Children less than Five Years Old with Dehydration due to Acute Diarrhoea

    PubMed Central

    Okposio, Matthias Mariere; Onyiriuka, Alphonsus Ndidi; Abhulimhen-Iyoha, Blessing Imuetiyan

    2015-01-01

    Background/Objective: Fluid, electrolytes and acid base disturbances are responsible for most deaths due to acute diarrhoea. The aim of this study is to describe the point-of-admission serum electrolyte profile of children with dehydration due to acute diarrhoea. Methods: In this cross-sectional study, the serum electrolyte levels of 185 children with dehydration due to acute diarrhoea were assessed at the point of admission at the Diarrhoea Treatment and Training Unit of the University of Benin Teaching Hospital. The age of the study population ranged from 29 days to 59 months. Results: Out of a total of 185 subjects, 30 (16.2%), 114 (61.6%), and 41 (22.2%) had severe, moderate and mild dehydration, respectively. In addition, hyponatraemic dehydration was the most common type of dehydration, accounting for 60.5% of cases. Metabolic acidosis and hypokalaemia occurred in 59.5% and 44.3% of cases, respectively. Only the serum bicarbonate level was significantly affected by degree of dehydration (p = 0.001). Age of more than 12 months and presence of vomiting were significantly associated with hyponatraemia (p = 0.005 & p = 0.02), while age of less than or equal 12 months and absence of vomiting were associated with metabolic acidosis (p = 0.04 & p = 0.03). Conclusion: The degree of dehydration appears to be a good predictor of the occurrence of metabolic acidosis while age is a risk factor for hyponatraemia and metabolic acidosis. PMID:26865828

  2. Detecting Acoustic Emissions With/Without Dehydration of Serpentine Outside P-T Field of Conventional Brittle Failure

    NASA Astrophysics Data System (ADS)

    Jung, H.; Fei, Y.; Silver, P. G.; Green, H. W.

    2005-12-01

    It is currently thought that earthquakes cannot be triggered at depths greater than ~60 km by unassisted brittle failure or frictional sliding, but could be triggered by dehydration embrittlement of hydrous minerals (Raleigh and Paterson, 1965; Green and Houston, 1995; Kirby, 1995; Jung et al., 2004). Using a new multianvil-based system for detecting acoustic emissions with four channels at high pressure and high temperature that was recently developed (Jung et al., 2005), we tested this hypothesis by deforming samples of serpentine. We found that acoustic emissions were detected not only during/after the dehydration of serpentine, but even in the absence of dehydration. These emissions occurred at high pressure and high temperature, and thus outside pressure-temperature field of conventional brittle failure. Backscattered-electron images of microstructures of the post-run specimen revealed fault slip at elevated pressure, with offsets of up to ~500 μm, even without dehydration. Analysis of P-wave travel times from the four sensors confirmed that the acoustic emissions originated from within the specimen during fault slip. These observations suggest that earthquakes can be triggered by slip along a fault containing serpentine at significantly higher pressure and temperature conditions than that previously thought, even without dehydration. They are thus consistent with faulting mechanisms that appeal to dehydration embrittlement, as well as those that rely solely on the rheology of non-dehydrated serpentine.

  3. Effect of cation on HTO / H{sub 2}O separation and dehydration characteristics of Y-type zeolite adsorbent

    SciTech Connect

    Iwai, Y.; Uzawa, M.; Yamanishi, T.

    2008-07-15

    Several types of adsorbers have been studied as they are considered for the first stage of water detritiation systems processing more than 100 kg/h of high-level tritiated water generated in a future fusion plant. Zeolite is a suitable adsorbent since it is an inorganic material having a large water capacity. Rapid dehydration characteristics as well as a large HTO/H{sub 2}O separation factor is necessary for the adsorber to minimize its size. Present experiments were focused on the effect of cations on HTO /H{sub 2}O separation and dehydration characteristics of Y-type zeolites. The selected cations are Na, K and Ca. The framework SiO{sub 2}/Al{sub 2}O{sub 3} ratio of the zeolites is fixed to 5.0 in the present experiments. It was found that the isotope separation factors are around 1.1-1.2 under static conditions. As for dehydration, operating temperature fixes the capacity of movable water from the zeolites. The capacity at room temperature is NaY > CaY > KY. HTO dehydration characteristics depend on the accumulated purge gas amount, while the purge gas rate is less influential. Effect of temperature on HTO dehydration is also less influential especially in the early stage of dehydration. Pressure swing is an effective method for HTO dehydration. (authors)

  4. Accuracy of Inferior Vena Cava Ultrasound for Predicting Dehydration in Children with Acute Diarrhea in Resource-Limited Settings

    PubMed Central

    Modi, Payal; Glavis-Bloom, Justin; Nasrin, Sabiha; Guy, Allysia; Rege, Soham; Noble, Vicki E.; Alam, Nur H.; Levine, Adam C.

    2016-01-01

    Introduction Although dehydration from diarrhea is a leading cause of morbidity and mortality in children under five, existing methods of assessing dehydration status in children have limited accuracy. Objective To assess the accuracy of point-of-care ultrasound measurement of the aorta-to-IVC ratio as a predictor of dehydration in children. Methods A prospective cohort study of children under five years with acute diarrhea was conducted in the rehydration unit of the International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b). Ultrasound measurements of aorta-to-IVC ratio and dehydrated weight were obtained on patient arrival. Percent weight change was monitored during rehydration to classify children as having “some dehydration” with weight change 3–9% or “severe dehydration” with weight change > 9%. Logistic regression analysis and Receiver-Operator Characteristic (ROC) curves were used to evaluate the accuracy of aorta-to-IVC ratio as a predictor of dehydration severity. Results 850 children were enrolled, of which 771 were included in the final analysis. Aorta to IVC ratio was a significant predictor of the percent dehydration in children with acute diarrhea, with each 1-point increase in the aorta to IVC ratio predicting a 1.1% increase in the percent dehydration of the child. However, the area under the ROC curve (0.60), sensitivity (67%), and specificity (49%), for predicting severe dehydration were all poor. Conclusions Point-of-care ultrasound of the aorta-to-IVC ratio was statistically associated with volume status, but was not accurate enough to be used as an independent screening tool for dehydration in children under five years presenting with acute diarrhea in a resource-limited setting. PMID:26766306

  5. Dehydration embrittlement of serpentine and its implications for earthquakes at depth

    NASA Astrophysics Data System (ADS)

    Jung, H.; Dobrzhinetskaya, L.; Green, H.

    2003-04-01

    Earthquakes at depths greater than ˜50 km cannot occur by unassisted brittle failure but could be triggered by embrittlement accompanying dehydration of hydrous minerals (e.g. Raleigh and Paterson, 1965). However, there is some question whether such embrittlement will occur if the ΔV of the dehydration reaction is negative, as occurs with increasing pressure for most low-pressure hydrous minerals. To test this hypothesis, we have chosen an extensively-serpentinized peridotite, in which the serpentine mineral present, antigorite, has a large stability field at elevated pressure and temperature. We conducted triaxial deformation experiments at constant strain rate using a Griggs-type apparatus at P = 1.0-3.4 GPa and T = 550-750 ^oC, and rapid-pumping experiments at comparable temperatures in a Walker-type multianvil apparatus, culminating at P = 6 GPa. Over this pressure range, the ΔV of reaction varies from highly positive to significantly negative. At the lowest temperatures, no reaction was observed. In deformation experiments at these conditions, faulting due to brittle failure was produced at low pressure but at high pressure deformation was ductile. At temperatures outside the stability field of antigorite, samples that were only pressurized and annealed did not show faulting. However, specimens subjected to a differential stress during dehydration displayed faults and localized zones of dehydration products consisting of very fine-grained new olivine or talc, +/- enstatite (grain size less than 200 nm). Deformed samples also showed Mode I cracks and fluid inclusions inside large crystals of relict olivine. Extensive fluid reactions were also observed along the grain boundaries between the relict olivine and antigorite. These observations indicate that antigorite dehydration under stress triggers faulting under conditions where the ΔV of reaction is negative as well as those where ΔV is positive. We do not yet know why this is so. We conclude that

  6. Proteome analysis of leaves of the desiccation-tolerant grass, Sporobolus stapfianus, in response to dehydration.

    PubMed

    Oliver, Melvin J; Jain, Renuka; Balbuena, Tiago S; Agrawal, Ganesh; Gasulla, Franscisco; Thelen, Jay J

    2011-07-01

    Drought and its affects on agricultural production is a serious issue facing global efforts to increase food supplies and ensure food security for the growing world population. Understanding how plants respond to dehydration is an important prerequisite for developing strategies for crop improvement in drought tolerance. This has proved to be a difficult task as all of the current research plant models do not tolerate cellular dehydration well and, like all crops, they succumb to the effects of a relatively small water deficit of -4MPa or less. For these reasons many researchers have started to investigate the usefulness of resurrection plants, plants that can survive extremes of dehydration to the point of desiccation, to provide answers as to how plants tolerate water loss. We have chosen to investigate the leaf proteome response of the desiccation-tolerant grass Sporobolus stapfianus Gandoger to dehydration to a water content that encompasses the initiation of the cellular protection response evident in these plants. We used a combination of two-dimensional Difference Gel Electrophoresis (2D-DIGE) and liquid chromatography-tandem-mass spectrometry to compare the proteomes of young leaves from hydrated plants to those dehydrated to approximately 30% relative water content. High-resolution 2D-DIGE revealed 96 significantly different proteins and 82 of these spots yielded high-quality protein assignments by tandem-mass spectrometry. Inferences from the bioinformatic annotations of these proteins revealed the possible involvement of protein kinase-based signaling cascades and brassinosteroid involvement in the regulation of the cellular protection response. Enzymes of glycolysis, both cytoplasmic and plastidic, as well as five enzymes of the Calvin cycle increased in abundance. However, the RuBisCO large subunit and associated proteins were reduced, indicating a loss of carbon fixation but a continued need to supply the necessary carbon skeletons for the

  7. Role of iron content on serpentinite dehydration depth in subduction zones: Experiments and thermodynamic modeling

    NASA Astrophysics Data System (ADS)

    Merkulova, Margarita; Muñoz, Manuel; Vidal, Olivier; Brunet, Fabrice

    2016-11-01

    A series of dehydration experiments in the piston-cylinder apparatus was carried out at 2 GPa and 550-850 °C on a natural antigorite sample mixed with 5 wt.% of magnetite. Chemical analyses of experimental products show a progressive decrease of the Mg# in antigorite and clinopyroxene between 550 and 675 °C, whereas the Mg# of olivine increases. The observed behavior of Mg# signifies Fe-Mg exchange between coexisting minerals. At higher temperatures, between 700 and 850 °C, compositions remain stable for all minerals in experimental assemblages. Thermodynamic parameters of the ferrous antigorite end-member were refined with the use of Holland and Powell (1998) data set and added to the antigorite solid solution. Good agreement between theoretical calculations performed for the studied bulk composition and experimental results confirms extrapolated thermodynamic data for Fe-antigorite. Constrained parameters allowed to calculate phase relationships for various serpentinite compositions. First, we assessed the effect of bulk iron content, from 0 to 10 wt.% FeO, on the stability field of antigorite. The results show significant decrease of the antigorite thermal stability with increasing bulk Fe content. Second, we demonstrated the influence of bulk iron content on dehydration reactions in subduction zones along typical thermal gradients. Dehydration observed in pure MSH (MgO-SiO2-H2O) systems comprised of antigorite appears as a univariant reaction, which happens at 710 °C/3.7 GPa and 640 °C/6 GPa in "hot" and "cold" subduction, respectively. In contrast, more complex in composition Fe-bearing serpentinites show spread dehydration profiles through divariant reactions from ~ 300 °C/0.8 GPa to 700 °C/3.6 GPa and from 450 °C/4 GPa to 650 °C/7.4 GPa for "hot" and "cold" thermal gradients respectively. A comparison between depths of "water-release events" and "earthquake occurrence" in the South Chile slab ("hot" subduction) highlights a clear correlation between

  8. The mechanism of dehydration in chromophore maturation of wild-type green fluorescent protein: A theoretical study

    NASA Astrophysics Data System (ADS)

    Ma, Yingying; Yu, Jian-Guo; Sun, Qiao; Li, Zhen; Smith, Sean C.

    2015-07-01

    An interesting aspect of the green fluorescent protein (GFP) is its autocatalytic chromophore maturation. Numerous experimental studies have indicated that dehydration is the last step in the chromophore maturation process of wild-type GFP. Based on the crystal structure of wild-type GFP, the mechanism of the reverse reaction of dehydration was investigated by using density functional theory (DFT) in this study. Our results proposed that the dehydration is exothermic. Moreover, the rate-limiting step of the mechanism is the proton on guanidinium of Arg96 transferring to the β-carbon anion of Tyr66, which is consistent with the experimental observation.

  9. Optimization of hydrous ferrous sulfate dehydration by microwave heating using response surface methodology.

    PubMed

    Yu, Yan-Tao; Liu, Bing-Guo; Chen, Guo; Peng, Jin-Hui; Srinivasakannan, C

    2012-01-01

    The work relates to assessing the ability of the microwave for dehydration of large amount of waste hydrous ferrous sulfate generated from the titanium pigment process industry. The popular process optimization tool of response surface methodology with central composite design was adopted to estimate the effect of dehydration. The process variables were chosen to be power input, duration of heating and the bed thickness, while the response variable being the weight loss. An increase in all the three process variables were found to significantly increase the weight loss, while the effect of interaction among the parameters were found to be insignificant. The optimized process conditions that contribute to the maximum weight loss were identified to be a power input of 960 W, duration of heating of 14 min and bed thickness of 5 cm, resulting in a weight loss of 31.44%. The validity of the optimization process was tested with the repeat runs at optimized conditions.

  10. Effect of Temperature, Time, and Material Thickness on the Dehydration Process of Tomato

    PubMed Central

    Correia, A. F. K.; Loro, A. C.; Zanatta, S.; Spoto, M. H. F.; Vieira, T. M. F. S.

    2015-01-01

    This study aimed to evaluate the effects of temperature, time, and thickness of tomatoes fruits during adiabatic drying process. Dehydration, a simple and inexpensive process compared to other conservation methods, is widely used in the food industry in order to ensure a long shelf life for the product due to the low water activity. This study aimed to obtain the best processing conditions to avoid losses and keep product quality. Factorial design and surface response methodology were applied to fit predictive mathematical models. In the dehydration of tomatoes through the adiabatic process, temperature, time, and sample thickness, which greatly contribute to the physicochemical and sensory characteristics of the final product, were evaluated. The optimum drying conditions were 60°C with the lowest thickness level and shorter time. PMID:26904666

  11. [Acceleration of osmotic dehydration process through ohmic heating of foods: raspberries (Rubus idaeus)].

    PubMed

    Simpson, Ricardo R; Jiménez, Maite P; Carevic, Erica G; Grancelli, Romina M

    2007-06-01

    Raspberries (Rubus idaeus) were osmotically dehydrated by applying a conventional method under the supposition of a homogeneous solution, all in a 62% glucose solution at 50 degrees C. Raspberries (Rubus idaeus) were also osmotically dehydrated by using ohmic heating in a 57% glucose solution at a variable voltage (to maintain temperature between 40 and 50 degrees C) and an electric field intensity <100 V/cm. When comparing the results from both experiments it was evident that processing time is reduced when ohmic heating technique was used. In some cases this reduction reached even 50%. This is explained by the additional effect to the thermal damage that is generated in an ohmic process, denominated electroporation.

  12. Use of aluminum phosphate as the dehydration catalyst in single step dimethyl ether process

    DOEpatents

    Peng, Xiang-Dong; Parris, Gene E.; Toseland, Bernard A.; Battavio, Paula J.

    1998-01-01

    The present invention pertains to a process for the coproduction of methanol and dimethyl ether (DME) directly from a synthesis gas in a single step (hereafter, the "single step DME process"). In this process, the synthesis gas comprising hydrogen and carbon oxides is contacted with a dual catalyst system comprising a physical mixture of a methanol synthesis catalyst and a methanol dehydration catalyst. The present invention is an improvement to this process for providing an active and stable catalyst system. The improvement comprises the use of an aluminum phosphate based catalyst as the methanol dehydration catalyst. Due to its moderate acidity, such a catalyst avoids the coke formation and catalyst interaction problems associated with the conventional dual catalyst systems taught for the single step DME process.

  13. Earth's interior. Dehydration melting at the top of the lower mantle.

    PubMed

    Schmandt, Brandon; Jacobsen, Steven D; Becker, Thorsten W; Liu, Zhenxian; Dueker, Kenneth G

    2014-06-13

    The high water storage capacity of minerals in Earth's mantle transition zone (410- to 660-kilometer depth) implies the possibility of a deep H2O reservoir, which could cause dehydration melting of vertically flowing mantle. We examined the effects of downwelling from the transition zone into the lower mantle with high-pressure laboratory experiments, numerical modeling, and seismic P-to-S conversions recorded by a dense seismic array in North America. In experiments, the transition of hydrous ringwoodite to perovskite and (Mg,Fe)O produces intergranular melt. Detections of abrupt decreases in seismic velocity where downwelling mantle is inferred are consistent with partial melt below 660 kilometers. These results suggest hydration of a large region of the transition zone and that dehydration melting may act to trap H2O in the transition zone.

  14. Effect of sucrose and binary solution on osmotic dehydration of bell pepper (chilli) (Capsicum spp.) varieties.

    PubMed

    Raji Abdul Ganiy, O; Falade Kolawole, O; Abimbolu Fadeke, W

    2010-06-01

    Pepper (chilli) (Capsicum annum) varieties, 'Tatase' and 'Rodo', (Capsicum frutescens) 'Sombo' and 'Bawa' were osmotically dehydrated in sucrose solutions of 40, 50 and 60o Brix and binary solutions of 50° sucrose with 5, 10 and 15% salt at 20, 30 and 40°C for 9 h. Samples osmosed at higher sugar concentrations (50° and 60°Brix) gave better results while improved solute gain were obtained using binary mixture with lower processing time, energy and cost. Effects of varietal differences on solid gain and water loss showed a descending in the order 'Sombo', 'Rodo', 'Bawa' and 'Tatase'. The colours were retained and stabilized after osmotic dehydration. Therefore, the solid gain and colour retention are indications of value addition.

  15. Relationship in humans between atrial natriuretic peptide and arginine vasopressin during dehydration

    SciTech Connect

    Burnett, J.C. Jr.; Wilson, D.M.; Kao, P.C.; Schwab, T.R.; Heublein, D.M.; Heser, D.W.

    1986-03-01

    The present study was designed to define in normal humans (n=6) the relationship between atrial natriuretic peptide (ANP) and arginine vasopressin (AVP) during thirty-six hours of dehydration. Atrial natriuretic peptide was measured from extracted plasma by radioimmunoassay to alpha-human atrial natriuretic peptide; arginine vasopressin was measured from platelet free plasma by specific radioimmunoassay to AVP. Determinations were obtained of ANP, AVP and plasma osmolality (Posm) prior to and following fluid deprivation for thirty-six hours. The present study demonstrates that dehydration in humans increases plasma osmolality and arginine vasopressin but does not increase atrial natriuretic peptide. These investigations importantly dissociate these two peptide hormonal systems during the physiologic adaptation to fluid deprivation.

  16. Dehydration polycondensation of dicarboxylic acids and diols using sublimating strong brønsted acids.

    PubMed

    Moyori, Takaya; Tang, Tang; Takasu, Akinori

    2012-05-14

    We investigated catalytic activities of strong brønsted acids for dehydration polycondensations of dicarboxylic acids and diols, which were carried out at low temperature (<100 °C) under reduced pressure (0.3-3 mmHg). Strong Brønsted acids, bis(perfluoroalkanesulfonyl)imide and perfluoroalkanesulfonic acid, showed higher activity than p-toluenesulfonic acid or rare-earth catalysts at 60 °C. In particular, bis(nonafluorobutanesulfonyl)imide (Nf(2)NH) showed the highest activity to synthesize not only aliphatic polyester (M(n) > 19000) but also aromatic polyester (M(n) > 7000). The used Nf(2)NH was sublimated from the reaction flask during polycondensation, and the sublimate, Nf(2)NH, was extra pure so that we can reuse the catalyst without loss of the activity in the dehydration polycondensations.

  17. Dehydration effect on the mechanical behaviour of biological soft tissues: observations on kidney tissues.

    PubMed

    Nicolle, S; Palierne, J-F

    2010-11-01

    This paper deals with the effects of dehydration on the mechanical properties of biological soft tissues and with the validity of methods used in previous works such as a coat of petroleum jelly or silicon oil to minimise the drying of the tissue during mechanical testing. We find that the samples get stiffer as they dry but that this phenomenon is wholly reversible upon re-hydrating the samples. A bath of saline solution is the best hydration method but a coat of low-viscosity silicon oil around the free edge of the sample also proves to be a good anti-drying method. However, using petroleum jelly to prevent tissue dehydration should be banned because the jelly largely contributes to the measured mechanical moduli.

  18. From dehydration to hyperhidration isotonic and diuretic drinks and hyperhydratant aids in sport.

    PubMed

    Urdampilleta, Aritz; Gómez-Zorita, Saioa

    2014-01-01

    The needs of water and electrolytes are quite variants, depending on age, physiological or environmental conditions. In most long-term sports, usual weight loss of 3-6%, affect in athletic performance. The effects of a 6% dehydration could be improved with individualized diet-specific nutritional strategies and allow only a 2-3% dehydration, which affect metabolic efficiency but will not risk the health. On the contrary, hyperhydration can be dangerous and is associated with hyponatremia that can cause cerebral edema or respiratory failure. Sports drinks should moisturize, providing minerals and carbohydrates and increase the absorption of water by an ideal combination of salts and sugars. Therefore, it is important to provide correct hydration -protocols before, during and after physical activity, as well as know possible limitations of the sport.

  19. Arctic stratospheric dehydration - Part 1: Unprecedented observation of vertical redistribution of water

    NASA Astrophysics Data System (ADS)

    Khaykin, S. M.; Engel, I.; Vömel, H.; Formanyuk, I. M.; Kivi, R.; Korshunov, L. I.; Krämer, M.; Lykov, A. D.; Meier, S.; Naebert, T.; Pitts, M. C.; Santee, M. L.; Spelten, N.; Wienhold, F. G.; Yushkov, V. A.; Peter, T.

    2013-11-01

    We present high-resolution measurements of water vapour, aerosols and clouds in the Arctic stratosphere in January and February 2010 carried out by in situ instrumentation on balloon sondes and high-altitude aircraft combined with satellite observations. The measurements provide unparalleled evidence of dehydration and rehydration due to gravitational settling of ice particles. An extreme cooling of the Arctic stratospheric vortex during the second half of January 2010 resulted in a rare synoptic-scale outbreak of ice polar stratospheric clouds (PSCs) remotely detected by the lidar aboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) satellite. The widespread occurrence of ice clouds was followed by sedimentation and consequent sublimation of ice particles, leading to vertical redistribution of water inside the vortex. A sequence of balloon and aircraft soundings with chilled mirror and Lyman- α hygrometers (Cryogenic Frostpoint Hygrometer, CFH; Fast In Situ Stratospheric Hygrometer, FISH; Fluorescent Airborne Stratospheric Hygrometer, FLASH) and backscatter sondes (Compact Optical Backscatter Aerosol Detector, COBALD) conducted in January 2010 within the LAPBIAT (Lapland Atmosphere-Biosphere Facility) and RECONCILE (Reconciliation of Essential Process Parameters for an Enhanced Predictability of Arctic Stratospheric Ozone Loss and its Climate Interactions) campaigns captured various phases of this phenomenon: ice formation, irreversible dehydration and rehydration. Consistent observations of water vapour by these independent measurement techniques show clear signatures of irreversible dehydration of the vortex air by up to 1.6 ppmv in the 20-24 km altitude range and rehydration by up to 0.9 ppmv in a 1 km thick layer below. Comparison with space-borne Aura MLS (Microwave Limb Sounder) water vapour observations allow the spatiotemporal evolution of dehydrated air masses within the Arctic vortex to be derived and upscaled.

  20. Unconventional application of the Mitsunobu reaction: Selective flavonolignan dehydration yielding hydnocarpins

    PubMed Central

    Huang, Guozheng; Schramm, Simon; Heilmann, Jörg; Biedermann, David; Křen, Vladimír

    2016-01-01

    Summary Various Mitsunobu conditions were investigated for a series of flavonolignans (silybin A, silybin B, isosilybin A, and silychristin A) to achieve either selective esterification in position C-23 or dehydration in a one-pot reaction yielding the biologically important enantiomers of hydnocarpin D, hydnocarpin and isohydnocarpin, respectively. This represents the only one-pot semi-synthetic method to access these flavonolignans in high yields. PMID:27340458

  1. Dehydration: cause of fatigue or sign of pacing in elite soccer?

    PubMed

    Edwards, Andrew M; Noakes, Timothy D

    2009-01-01

    Numerous studies have suggested that dehydration is a causal factor to fatigue across a range of sports such as soccer; however, empirical evidence is equivocal on this point. It is also possible that exercise-induced moderate dehydration is purely an outcome of significant metabolic activity during a game. The diverse yet sustained physical activities in soccer undoubtedly threaten homeostasis, but research suggests that under most environmental conditions, match-play fluid loss is minimal ( approximately 1-2% loss of body mass), metabolite accumulation remains fairly constant, and core temperatures do not reach levels considered sufficiently critical to require the immediate cessation of exercise. A complex (central) metabolic control system which ensures that no one (peripheral) physiological system is maximally utilized may explain the diversity of research findings concerning the impact of individual factors such as dehydration on elite soccer performance. In consideration of the existing literature, we propose a new interpretative pacing model to explain the self-regulation of elite soccer performance and, in which, players behaviourally modulate efforts according to a subconscious strategy. This strategy is based on both pre-match (intrinsic and extrinsic factors) and dynamic considerations during the game (such as skin temperature, thirst, accumulation of metabolites in the muscles, plasma osmolality and substrate availability), which enables players to avoid total failure of any single peripheral physiological system either prematurely or at the conclusion of a match. In summary, we suggest that dehydration is only an outcome of complex physiological control (operating a pacing plan) and no single metabolic factor is causal of fatigue in elite soccer.

  2. Subquality natural gas sweetening and dehydration potential of the physical solvent N-formyl-morpholine

    SciTech Connect

    Semrau, J.T.; Palla, N.; Lee, A.L.

    1995-03-01

    Almost all gas produced in the United States requires processing before it is placed in the transmission system. For approximately 50% of the gas, this is just dehydration. The remainder, however, requires processing that is more complex and costly. A report to the Gas Research Institute states that about 30% of the proven gas reserves contained sufficient nitrogen, carbon dioxide or hydrogen sulfide to be classified as a subquality.

  3. Physiological and Biochemical Responses of Yarrowia lipolytica to Dehydration Induced by Air-Drying and Freezing

    PubMed Central

    Pénicaud, Caroline; Landaud, Sophie; Jamme, Frédéric; Talbot, Pauline; Bouix, Marielle; Ghorbal, Sarrah; Fonseca, Fernanda

    2014-01-01

    Organisms that can withstand anhydrobiosis possess the unique ability to temporarily and reversibly suspend their metabolism for the periods when they live in a dehydrated state. However, the mechanisms underlying the cell’s ability to tolerate dehydration are far from being fully understood. The objective of this study was to highlight, for the first time, the cellular damage to Yarrowia lipolytica as a result of dehydration induced by drying/rehydration and freezing/thawing. Cellular response was evaluated through cell cultivability determined by plate counts, esterase activity and membrane integrity assessed by flow cytometry, and the biochemical composition of cells as determined by FT-IR spectroscopy. The effects of the harvesting time (in the log or stationary phase) and of the addition of a protective molecule, trehalose, were investigated. All freshly harvested cells exhibited esterase activity and no alteration of membrane integrity. Cells freshly harvested in the stationary phase presented spectral contributions suggesting lower nucleic acid content and thicker cell walls, as well as longer lipid chains than cells harvested in the log phase. Moreover, it was found that drying/rehydration induced cell plasma membrane permeabilization, loss of esterase activity with concomitant protein denaturation, wall damage and oxidation of nucleic acids. Plasma membrane permeabilization and loss of esterase activity could be reduced by harvesting in the stationary phase and/or with trehalose addition. Protein denaturation and wall damage could be reduced by harvesting in the stationary phase. In addition, it was shown that measurements of loss of membrane integrity and preservation of esterase activity were suitable indicators of loss and preservation of cultivability, respectively. Conversely, no clear effect of freezing/thawing could be observed, probably because of the favorable operating conditions applied. These results give insights into Y. lipolytica

  4. GRI`s R and D program on natural gas dehydration

    SciTech Connect

    Rueter, C.O.; Gamez, J.P.

    1995-11-01

    As a result of increasing regulatory pressure, emissions of benzene, toluene, ethylbenzene, and the xylene isomers (BTEX) and other volatile organic compounds (VOC) from the regenerator still vent of glycol dehydration units have become a major concern for the natural gas industry. The Clean Air Act Amendments of 1990 have provided an impetus for air toxics regulations, and several states are regulating or considering of these units. To support the natural gas industry in complying with these regulations, Gas Research Institute (GRI) has initiated a coordinated research and development program in several areas related to glycol dehydration. These areas include sampling and analytical methods development; development and distribution of a stand-alone computer program, GRI-GLYCalc{trademark}, for estimating emissions; development and deployment of an emission control technology, R-BTEX{trademark}; development of a new glycol reclaiming process; and research into novel contacting devices that dehydrate natural gas while creating fewer emissions. This paper focuses on the results of the sampling and analytical methods and GRI-GLYCalc development efforts as well as the R-BTEX development. Insights regarding the effect of various process parameters and process operations on BTEX and VOC emissions are discussed in the context of the sampling and analytical field measurement results and the computer program development. An update on the R-BTEX process, including field test results from the most recently installed units, are also given. In addition, the paper provides a status report of the glycol reclaiming and contractor research and includes an overview of other potential dehydrator research issues.

  5. Membrane permeation process for dehydration of organic liquid mixtures using sulfonated ion-exchange polyalkene membranes

    DOEpatents

    Cabasso, Israel; Korngold, Emmanuel

    1988-01-01

    A membrane permeation process for dehydrating a mixture of organic liquids, such as alcohols or close boiling, heat sensitive mixtures. The process comprises causing a component of the mixture to selectively sorb into one side of sulfonated ion-exchange polyalkene (e.g., polyethylene) membranes and selectively diffuse or flow therethrough, and then desorbing the component into a gas or liquid phase on the other side of the membranes.

  6. Improved demulsifier chemistry; A novel approach in the dehydration of crude oil

    SciTech Connect

    Staiss, F.; Boehm, R.; Kupfer, R. )

    1991-08-01

    With the ever-growing demand for more efficient dehydration and desalting of crude oil, classic demulsifiers no longer perform satisfactorily in most cases, and new chemical systems are required. This paper describes emulsion breakers, generally polyester amines, and gives detailed laboratory studies of their advantages over classic demulsifiers: more complete migration to the interface, improved emulsion breaking and coalescence, improved effluent water quality, and partial corrosion inhibition. These new demulsifiers combined with classic emulsion breakers have been successfully tested.

  7. Specimen size effect in the volumetric shrinkage of cancellous bone measured at two levels of dehydration.

    PubMed

    Lievers, W Brent; Lee, Victoria; Arsenault, Simon M; Waldman, Stephen D; Pilkey, A Keith

    2007-01-01

    Water is commonly removed from bone to study its effect on mechanical behaviour; however, dehydration also alters the bone structure. To make matters worse, measuring structural changes in cancellous bone is complicated by a number of factors. Therefore, the goals of this study were to address these issues by (1) comparing Archimedes' method and a helium pycnometer as methods for measuring cancellous bone volume; (2) measuring the apparent dimensional and volumetric tissue shrinkage of cancellous bone at two levels of dehydration; and, (3) identifying whether a size effect exists in cancellous bone shrinkage. Cylindrical specimens (3, 5 and 8.3 mm diameters) of cancellous bone were taken from the distal bovine femur. The apparent dimensions of each cylindrical specimen were measured in a fully hydrated state (HYD), after drying at room temperature (AIR), and after oven drying at 105 degrees C (OVEN). Tissue volume measurements for those three hydration states were obtained using both a helium pycnometer and Archimedes' method. Aluminium foams, which mimic the cancellous structure, were used as controls. The results suggest that the helium pycnometer and Archimedes' method yield identical results in the HYD and AIR states, but that Archimedes' method under-predicts the nominal OVEN volume by incorporating the collagen-apatite porosity. A distinct size effect on volumetric shrinkage is observed (p<0.025) using the pycnometer in both AIR and OVEN states. Apparent dimensional shrinkage (2% and 7%) at the two dehydration levels is much smaller than the measured volumetric tissue shrinkage (16% and 29%), which results in a reduced dehydrated bone volume fraction.

  8. Dehydration of cyclohexanol on aluminum-chromium and aluminum-molybdenum catalysts

    SciTech Connect

    Sibarov, D.A.; Dokuchaeva, T.G.; Lezdin, S.U.; Titova, A.V.; Karpenko, E.V.

    1988-09-20

    The purpose of this work was to investigate the activity of chromium and molybdenum oxides deposited on ..gamma..-Al/sub 2/O/sub 3/ in the conversion reaction of cyclohexanol. The authors established that chromium oxide deposited on aluminum oxide has a high activity in the dehydration reaction of cyclohexanol. The yield of ketone reached 95 mole %. They showed that Al-Mo catalysts possess emphasized acidic properties, and that the main reaction products with these catalysts are cyclohexene and cyclohexane.

  9. Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges.

    PubMed

    Manthilake, Geeth; Bolfan-Casanova, Nathalie; Novella, Davide; Mookherjee, Mainak; Andrault, Denis

    2016-05-01

    Mantle wedge regions in subduction zone settings show anomalously high electrical conductivity (~1 S/m) that has often been attributed to the presence of aqueous fluids released by slab dehydration. Laboratory-based measurements of the electrical conductivity of hydrous phases and aqueous fluids are significantly lower and cannot readily explain the geophysically observed anomalously high electrical conductivity. The released aqueous fluid also rehydrates the mantle wedge and stabilizes a suite of hydrous phases, including serpentine and chlorite. In this present study, we have measured the electrical conductivity of a natural chlorite at pressures and temperatures relevant for the subduction zone setting. In our experiment, we observe two distinct conductivity enhancements when chlorite is heated to temperatures beyond its thermodynamic stability field. The initial increase in electrical conductivity to ~3 × 10(-3) S/m can be attributed to chlorite dehydration and the release of aqueous fluids. This is followed by a unique, subsequent enhancement of electrical conductivity of up to 7 × 10(-1) S/m. This is related to the growth of an interconnected network of a highly conductive and chemically impure magnetite mineral phase. Thus, the dehydration of chlorite and associated processes are likely to be crucial in explaining the anomalously high electrical conductivity observed in mantle wedges. Chlorite dehydration in the mantle wedge provides an additional source of aqueous fluid above the slab and could also be responsible for the fixed depth (120 ± 40 km) of melting at the top of the subducting slab beneath the subduction-related volcanic arc front. PMID:27386526

  10. Localised slip controlled by dehydration embrittlement of partly serpentinised dunites, Leka Ophiolite Complex, Norway

    NASA Astrophysics Data System (ADS)

    Dunkel, Kristina G.; Austrheim, Håkon; Cordonnier, Benoit; Jamtveit, Bjørn

    2016-04-01

    Dehydration of serpentinised ultramafic rocks can increase the pore fluid pressure and induce brittle failure; however the extents of strain localisation and unstable frictional sliding are still under debate. Microstructural and mineralogical evidence from dunites of the Leka Ophiolite Complex in the Central Norwegian Caledonides demonstrates that prograde metamorphism of serpentinite veins led to local fluid production and to the growth of large-grained olivine rich in magnetite inclusions. The epitaxial growth of comparatively Fe-poor prograde olivine on Fe-richer relics of primary olivine caused a high variability in Fe-content, even within single crystals. On a larger scale, the average Fe-content of olivine rises towards the vein edges, which reflects a decrease in the degree of initial serpentinisation towards the host rock. The former distribution of serpentine strongly influenced the mechanical response of the rock to the fluid production during deserpentinisation: The faulting caused by the associated dehydration embrittlement occurred along highly localized slip planes in the centres of the meta-serpentinite veins. Around these slip planes, the prograde olivine experienced significant grain size reduction, but very limited shear strain. The strain concentration on narrow faults, also documented by a sharp offset of chromite layers, and the brittle deformation of the surrounding olivine suggest unstable frictional sliding rather than slower creep. This natural example of deserpentinisation-induced embrittlement illustrates that structural heterogeneities in the form of serpentinite veins have first-order controls on strain localisation and frictional sliding. While strain may be distributed during dehydration of a homogeneous serpentinite, as has been observed in recent experimental studies, it may become strongly localised in a heterogeneous rock volume where fluid pressure is locally increased along pre-existing veins. As most of the oceanic lithosphere

  11. [Aortic and cerebral trombosis caused by hypernatremic dehydration in an exclusively breast-fed infant].

    PubMed

    Iglesias Fernández, C; Chimenti Camacho, P; Vázquez López, P; Guerrero Soler, M; Blanco Bravo, D

    2006-10-01

    Complete aortic thrombosis is rare in neonates. Because it carries high morbidity and mortality, this entity requires aggressive and early treatment. This report describes an 8-day-old healthy and exclusively breast-fed infant, without specific coagulopathy, who developed complete aortic and cerebral venous thrombosis, which was attributed to inadequate breast-feeding and severe hypernatremic dehydration. Early systemic anticoagulation and thrombolytic therapy allowed complete resolution of the problem.

  12. Coping with dehydration: sympathetic activation and regulation of glutamatergic transmission in the hypothalamic PVN.

    PubMed

    Bardgett, Megan E; Chen, Qing-Hui; Guo, Qing; Calderon, Alfredo S; Andrade, Mary Ann; Toney, Glenn M

    2014-06-01

    Autonomic and endocrine profiles of chronic hypertension and heart failure resemble those of acute dehydration. Importantly, all of these conditions are associated with exaggerated sympathetic nerve activity (SNA) driven by glutamatergic activation of the hypothalamic paraventricular nucleus (PVN). Here, studies sought to gain insight into mechanisms of disease by determining the role of PVN ionotropic glutamate receptors in supporting SNA and mean arterial pressure (MAP) during dehydration and by elucidating mechanisms regulating receptor activity. Blockade of PVN N-methyl-D-aspartate (NMDA) receptors reduced (P < 0.01) renal SNA and MAP in urethane-chloralose-anesthetized dehydrated (DH) (48 h water deprivation) rats, but had no effect in euhydrated (EH) controls. Blockade of PVN α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors had no effect in either group. NMDA in PVN caused dose-dependent increases of renal SNA and MAP in both groups, but the maximum agonist evoked response (Emax) of the renal SNA response was greater (P < 0.05) in DH rats. The latter was not explained by increased PVN expression of NMDA receptor NR1 subunit protein, increased PVN neuronal excitability, or decreased brain water content. Interestingly, PVN injection of the pan-specific excitatory amino acid transporter (EAAT) inhibitor DL-threo-β-benzyloxyaspartic acid produced smaller sympathoexcitatory and pressor responses in DH rats, which was associated with reduced glial expression of EAAT2 in PVN. Like chronic hypertension and heart failure, dehydration increases excitatory NMDA receptor tone in PVN. Reduced glial-mediated glutamate uptake was identified as a key contributing factor. Defective glutamate uptake in PVN could therefore be an important, but as yet unexplored, mechanism driving sympathetic hyperactivity in chronic cardiovascular diseases. PMID:24671240

  13. Unconventional application of the Mitsunobu reaction: Selective flavonolignan dehydration yielding hydnocarpins.

    PubMed

    Huang, Guozheng; Schramm, Simon; Heilmann, Jörg; Biedermann, David; Křen, Vladimír; Decker, Michael

    2016-01-01

    Various Mitsunobu conditions were investigated for a series of flavonolignans (silybin A, silybin B, isosilybin A, and silychristin A) to achieve either selective esterification in position C-23 or dehydration in a one-pot reaction yielding the biologically important enantiomers of hydnocarpin D, hydnocarpin and isohydnocarpin, respectively. This represents the only one-pot semi-synthetic method to access these flavonolignans in high yields. PMID:27340458

  14. Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges.

    PubMed

    Manthilake, Geeth; Bolfan-Casanova, Nathalie; Novella, Davide; Mookherjee, Mainak; Andrault, Denis

    2016-05-01

    Mantle wedge regions in subduction zone settings show anomalously high electrical conductivity (~1 S/m) that has often been attributed to the presence of aqueous fluids released by slab dehydration. Laboratory-based measurements of the electrical conductivity of hydrous phases and aqueous fluids are significantly lower and cannot readily explain the geophysically observed anomalously high electrical conductivity. The released aqueous fluid also rehydrates the mantle wedge and stabilizes a suite of hydrous phases, including serpentine and chlorite. In this present study, we have measured the electrical conductivity of a natural chlorite at pressures and temperatures relevant for the subduction zone setting. In our experiment, we observe two distinct conductivity enhancements when chlorite is heated to temperatures beyond its thermodynamic stability field. The initial increase in electrical conductivity to ~3 × 10(-3) S/m can be attributed to chlorite dehydration and the release of aqueous fluids. This is followed by a unique, subsequent enhancement of electrical conductivity of up to 7 × 10(-1) S/m. This is related to the growth of an interconnected network of a highly conductive and chemically impure magnetite mineral phase. Thus, the dehydration of chlorite and associated processes are likely to be crucial in explaining the anomalously high electrical conductivity observed in mantle wedges. Chlorite dehydration in the mantle wedge provides an additional source of aqueous fluid above the slab and could also be responsible for the fixed depth (120 ± 40 km) of melting at the top of the subducting slab beneath the subduction-related volcanic arc front.

  15. Identification of a novel dehydration responsive gene, drp10, from the African clawed frog, Xenopus laevis.

    PubMed

    Biggar, Kyle K; Biggar, Yulia; Storey, Kenneth B

    2015-07-01

    During periods of environmental stress a number of different anuran species employ adaptive strategies to promote survival. Our study found that in response to dehydration (i.e., loss of total body water content), the African clawed frog (Xenopus laevis) increased the expression of a novel gene (drp10) that encodes a structural homolog of the freeze-responsive FR10 protein found in wood frogs. Similar to FR10, the DRP10 protein was found to also contain a highly conserved N-terminal cleavable signal peptide. Furthermore, DRP10 was found to have high structural homology to the available crystal structures of type A and E apolipoproteins in Homo sapiens, and a type IV LS-12 anti-freeze protein in the longhorn sculpin, Myoxocephalus octodecemspinosis. In response to dehydration, the transcript expression of drp10 was found to increase 1.52 ± 0.16-fold and 1.97 ± 0.11-fold in response to medium (15%) and high (30%) dehydration stresses in the liver tissue of X. laevis, respectively, while drp10 expression increased 2.12 ± 0.12-fold and 1.46 ± 0.16-fold in kidney tissue. Although the molecular function of both dehydration-responsive DRP10 and the freeze-responsive FR10 have just begun to be elucidated, it is likely that both are frog-specific proteins that likely share a similar purpose during water-related stresses. PMID:25866033

  16. Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges

    PubMed Central

    Manthilake, Geeth; Bolfan-Casanova, Nathalie; Novella, Davide; Mookherjee, Mainak; Andrault, Denis

    2016-01-01

    Mantle wedge regions in subduction zone settings show anomalously high electrical conductivity (~1 S/m) that has often been attributed to the presence of aqueous fluids released by slab dehydration. Laboratory-based measurements of the electrical conductivity of hydrous phases and aqueous fluids are significantly lower and cannot readily explain the geophysically observed anomalously high electrical conductivity. The released aqueous fluid also rehydrates the mantle wedge and stabilizes a suite of hydrous phases, including serpentine and chlorite. In this present study, we have measured the electrical conductivity of a natural chlorite at pressures and temperatures relevant for the subduction zone setting. In our experiment, we observe two distinct conductivity enhancements when chlorite is heated to temperatures beyond its thermodynamic stability field. The initial increase in electrical conductivity to ~3 × 10−3 S/m can be attributed to chlorite dehydration and the release of aqueous fluids. This is followed by a unique, subsequent enhancement of electrical conductivity of up to 7 × 10−1 S/m. This is related to the growth of an interconnected network of a highly conductive and chemically impure magnetite mineral phase. Thus, the dehydration of chlorite and associated processes are likely to be crucial in explaining the anomalously high electrical conductivity observed in mantle wedges. Chlorite dehydration in the mantle wedge provides an additional source of aqueous fluid above the slab and could also be responsible for the fixed depth (120 ± 40 km) of melting at the top of the subducting slab beneath the subduction-related volcanic arc front. PMID:27386526

  17. Dehydration of lawsonite could directly trigger earthquakes in subducting oceanic crust.

    PubMed

    Okazaki, Keishi; Hirth, Greg

    2016-02-01

    Intermediate-depth earthquakes in cold subduction zones are observed within the subducting oceanic crust, as well as the mantle. In contrast, intermediate-depth earthquakes in hot subduction zones predominantly occur just below the Mohorovičić discontinuity. These observations have stimulated interest in relationships between blueschist-facies metamorphism and seismicity, particularly through dehydration reactions involving the mineral lawsonite. Here we conducted deformation experiments on lawsonite, while monitoring acoustic emissions, in a Griggs-type deformation apparatus. The temperature was increased above the thermal stability of lawsonite, while the sample was deforming, to test whether the lawsonite dehydration reaction induces unstable fault slip. In contrast to similar tests on antigorite, unstable fault slip (that is, stick-slip) occurred during dehydration reactions in the lawsonite and acoustic emission signals were continuously observed. Microstructural observations indicate that strain is highly localized along the fault (R1 and B shears), and that the fault surface develops slickensides (very smooth fault surfaces polished by frictional sliding). The unloading slope during the unstable slip follows the stiffness of the apparatus at all experimental conditions, regardless of the strain rate and temperature ramping rate. A thermomechanical scaling factor for the experiments is within the range estimated for natural subduction zones, indicating the potential for unstable frictional sliding within natural lawsonite layers. PMID:26842057

  18. Blood volume responses in partially dehydrated subjects working in the cold.

    PubMed

    Tappan, D V; Jacey, M J; Heyder, E; Gray, P H

    1984-04-01

    The effects of high-salt diets, cold, and heavy exercise have been examined in 33 Marine Corps volunteers living and working in a cold chamber. Temperatures varied from -29 degrees C during working hours to -4 degrees C, simulating partly warmed shelters, at night. Dehydrated operational rations were eaten and fluid intakes were controlled. When quantities of water were consumed at or above the amounts determined in previous studies in this series to prevent symptoms of cold-induced dehydration with these diets, ie., 2.5-3.0 L/d with diets containing 24 g of NaCl/d or about 2.0 L/d with 8 g NaCl/d, blood volumes increased 5-10%, primarily as a result of plasma volume expansion. This finding apparently confirms the results of earlier workers who have noted plasma volume increases in subjects undergoing vigorous exercise training. In subjects receiving 0.5 L/d or more below recommended quantities of water, intravascular volume increases developed slowly and quite erratically during 5 d of exercise. Intravascular volume increases responded within 1-2 d when fluid levels became appropriate for either high- or low-salt intakes. Besides confirming recommendations concerning water needed with dehydrated diets under conditions of the experiment, the observation of intravascular fluid volume increases during exercise training--despite limiting fluid intakes--raises the question of whether there are any physiological advantages from this adaptive mechanism.

  19. Influence of converting enzyme inhibition on the hormonal and renal adaptation to hyper- and hyponatraemic dehydration.

    PubMed

    Gardes, J; Gonzalez, M F; Corvol, P; Ménard, J

    1986-04-01

    The present study was designed to investigate in rats the influence of converting enzyme inhibition with captopril on blood pressure, plasma urea, plasma renin concentration (PRC), plasma aldosterone and plasma vasopressin, and to define the interrelationships between PRC and these variables during equal degrees of either hyponatraemic (furosemide, 40 mg/kg for 2 days) or hypernatraemic (48-h water deprivation) dehydration. Chronic treatment with captopril (40 mg/kg daily) decreased blood pressure by 19% in normally hydrated treated rats, by 27% in water-deprived treated rats and by 40% in furosemide-treated rats. Plasma renin concentration, plasma aldosterone and plasma vasopressin were increased during both hypo- and hypernatraemic dehydration. Captopril decreased plasma aldosterone in water-deprived and furosemide-treated rats, whereas plasma vasopressin was unchanged. The significant correlation observed between plasma aldosterone and PRC in non-treated rats persisted in treated rats, the same level of plasma aldosterone being observed at values of PRC 10 times higher. On the other hand, the correlation between plasma vasopressin and PRC did not persist in captopril-treated rats. An increase in plasma urea was observed in both water-deprived treated rats and furosemide-treated rats. These data indicate that during hypo- and hypernatraemic dehydration, the renin-angiotensin system plays a role in regulating blood pressure, urea elimination and plasma aldosterone, but vasopressin regulation is not modified by its inhibition.

  20. Increased cave dwelling reduces the ability of cave crickets to resist dehydration.

    PubMed

    Yoder, Jay A; Benoit, Joshua B; LaCagnin, Michael J; Hobbs, Horton H

    2011-07-01

    Differential strategies for maintaining water balance are reported for female adults of three cave crickets Hadenoecus cumberlandicus, H. opilionoides and H. jonesi, a species replacement series along the Cumberland Plateau in the southeastern United States. The distribution of H. cumberlandicus is much broader than the range of H. opilionoides, which is much smaller in body size, and that of H. jonesi, which possesses enhanced troglomorphic (cave dwelling) characteristics. Due to high net transpiration (water loss) rates and increased activation energies, H. jonesi and H. opilionoides are more susceptible to dehydration than H. cumberlandicus. To avoid dehydration, H. opilionoides and H. jonesi require more moisture than H. cumberlandicus to counter their higher rates of water loss. The heightened reliance on moisture likely indicates that the more troglomorphic H. jonesi and smaller H. opilionoides are required to spend more time in the moist cave region. Reliance on the cave for H. cumberlandicus is presumably less, allowing them to function in epigean habitats for longer periods and disperse to nearby caves, likely accounting for the more expansive distribution of this cricket. While in the cave habitat, cave crickets are exposed to water-saturated conditions, reducing the pressure of dehydration stress the longer a species remains in this wet environment. This reduced pressure leads to higher water loss rates as cave confinement increases. We conclude that increasing water loss rates associated with increasing troglomorphic adaptation in cave crickets is a side effect of extended residence in stable moist cave environments. PMID:21327632

  1. Exercise and dehydration: A possible role of inner ear in balance control disorder.

    PubMed

    Lion, Alexis; Bosser, Gilles; Gauchard, Gérome C; Djaballah, Karim; Mallié, Jean-Pierre; Perrin, Philippe P

    2010-12-01

    To study the effect of exercise and dehydration on the postural sensory-motor strategies, 10 sportsmen performed a 45 min-exercise on a cycle ergometer at intensity just below the ventilatory threshold without fluid intake. They performed, before, immediately and 20 min after exercise, a sensory organization test to evaluate balance control in six different sensory situations, that combine three visual conditions (eyes open, eyes closed and sway-referenced visual surround motion) with two platform conditions (stable platform, sway-referenced platform motion). Blood samples were collected before and after exercise. Exercise induced a mild dehydration, characterized by body mass loss and increase in proteinemia. Postural performances decreased immediately after exercise, mainly in the standard situation (eyes open, stable visual surround and platform) and when only the vestibular cue was reliable (eyes closed and sway-referenced platform). Moreover, the decreased use of vestibular input was correlated with the dehydration level. Finally, postural performances normalized 20 min after exercise. Even though muscular fatigue could explain the decrease in postural performances, vestibular fluid modifications may also be involved by its influence on the intralabyrinthine homeostasis, lowering thus the contribution of vestibular information on balance control.

  2. Challenges of linking chronic dehydration and fluid consumption to health outcomes.

    PubMed

    Armstrong, Lawrence E

    2012-11-01

    The purpose of this article is to review the effects of chronic mild dehydration and fluid consumption on specific health outcomes including obesity. The electronic databases PubMed and Google Scholar were searched for relevant literature published from the time of their inception to 2011, with results restricted to studies performed on human subjects and reports in the English language. Key words included the following: dehydration, hypohydration, water intake, fluid intake, disease, and the names of specific disease states. Strength of evidence categories were described for 1) medical conditions associated with chronic dehydration or low daily water intake, and 2) randomized-controlled trials regarding the effects of increased water consumption on caloric intake, weight gain, and satiety. This process determined that urolithiasis is the only disorder that has been consistently associated (i.e., 11 of 13 publications) with chronic low daily water intake. Regarding obesity and type 2 diabetes, evidence suggests that increased water intake may reduce caloric intake for some individuals. Recommendations for future investigations include measuring total fluid intake (water + beverages + water in solid food), conducting randomized-controlled experiments, identifying novel hydration biomarkers, and delineating hydration categories.

  3. Implementation of a microfluidic conductivity sensor -- a potential sweat electrolyte sensing system for dehydration detection.

    PubMed

    Gengchen Liu; Smith, Kyle; Kaya, Tolga

    2014-01-01

    As dehydration continues to plague performance athletes and soldiers, the need for improved dehydration detection is clear. We propose the use of a conductometric sensor as the foundation of a sweat-sensing patch to address this need. The conductometric sensor evaluates the conductivity of solutions with varying sodium concentrations. A lithographic process was used to fabricate a Polydimethylsiloxane (PDMS) microfluidic channel through which solution was flowed. The ionization of the solution that occurs when a voltage is applied results in an effective resistance across the channel. The measured resistance therefore, reflects the ionization of the solution and the corresponding sodium concentration. The potential application of the conductometric sensor in a sweat-sensing patch requires compatibility with a microcontroller and Bluetooth module. Thus, a circuit interface was created. A voltage divider was utilized to convert the output resistance of the sensor to a voltage that could be input into a microcontroller. An AC voltage signal with a frequency of 10 kHz was used as the source voltage of the voltage divider to minimize the faradaic impedance and the double layer effect of the ionized solution. Tests have revealed that the conductometric is capable of precisely measuring the conductivity of a sodium solution. The conductometric sensor will be applied to a sweat sensing patch through future work involving studying the link between sodium concentration in sweat and an individual's dehydration level, developing a sweat-collection method, and developing a method of consideration for the other ions contained in sweat.

  4. In-vitro terahertz spectroscopy of rat skin under the action of dehydrating agents

    NASA Astrophysics Data System (ADS)

    Kolesnikov, Aleksandr S.; Kolesnikova, Ekaterina A.; Tuchina, Daria K.; Terentyuk, Artem G.; Nazarov, Maxim; Skaptsov, Alexander A.; Shkurinov, Alexander P.; Tuchin, Valery V.

    2014-01-01

    In the paper we present the results of study of rat skin and rat subcutaneous tumor under the action of dehydrating agents in terahertz (THz) range (15-30 THz). Frustrated Total Internal Reflection (FTIR) spectra were obtained with infrared Fourier spectrometer Nicolet 6700 and then they were recalculated in the transmittance spectra with Omnic software. Experiments were carried out with healthy and xenografted tumor in skin tissue in vitro. As the dehydrating agents 100% glycerol, 40%-water glucose solution, PEG-600, and propylene glycol were used. To determine the effect of the optical clearing agent (OCA), the alterations of terahertz transmittance for the samples were analyzed. The results have shown that PEG-600 and 40%-glucose water solution are the most effective dehydrating agent. The transmittance of healthy skin after PEG-600 application increased approximately by 6% and the transmittance of tumor tissue after PEG- 600 and 40%-glucose water solution application increased approximately by 8%. Obtained data can be useful for further application of terahertz radiation for tumor diagnostics.

  5. Exploring the connection between intermediate-depth seismicity, slab hydration, and dehydration

    NASA Astrophysics Data System (ADS)

    Syracuse, E. M.; Pesicek, J. D.; Zhang, H.; Thurber, C. H.

    2013-12-01

    The dehydration of hydrous minerals has commonly been cited as the cause of intermediate-depth seismicity in subducted crust and mantle, through the process known as dehydration embrittlement. However, recent laboratory and empirical studies have called both the mechanism and seismological observation of this phenomenon into question. In order to assess the global relationship between seismicity, the presence of hydrous and dehydrating minerals, and the thermal state of slabs, we perform double-difference earthquake relocation of earthquakes at the majority of Earth's subduction zones, which reduces the scatter and improves the accuracy of the distributions of slab seismicity. The double-difference relocations are systematically calculated for each subduction zone in a version of the algorithm tomoDD that has been modified to include absolute and differential catalog P, S, and depth phase arrival times from local and teleseismic stations, as well as a three-dimensional global velocity model. Preliminary relocations demonstrate shifts of up to 15 km due to the use of a three-dimensional global velocity model. These relocations also illuminate various types of slab structures, including a range of slab morphologies, potential double seismic zones, and evidence of fault zones within slabs. At each subduction zone, these distributions are compared to previously published two-dimensional thermal and mineralogical models that have been calculated for that particular slab. The findings of these comparisons will be used to develop a set of slab conditions that describe where intermediate-depth seismicity is possible (and observed) at subduction zones.

  6. Effects of cold and hot temperature on dehydration: a mechanism of cardiovascular burden.

    PubMed

    Lim, Youn-Hee; Park, Min-Seon; Kim, Yoonhee; Kim, Ho; Hong, Yun-Chul

    2015-08-01

    The association between temperature (cold or heat) and cardiovascular mortality has been well documented. However, few studies have investigated the underlying mechanism of the cold or heat effect. The main goal of this study was to examine the effect of temperature on dehydration markers and to explain the pathophysiological disturbances caused by changes of temperature. We investigated the relationship between outdoor temperature and dehydration markers (blood urea nitrogen (BUN)/creatinine ratio, urine specific gravity, plasma tonicity and haematocrit) in 43,549 adults from Seoul, South Korea, during 1995-2008. We used piece-wise linear regression to find the flexion point of apparent temperature and estimate the effects below or above the apparent temperature. Levels of dehydration markers decreased linearly with an increase in the apparent temperature until a point between 22 and 27 °C, which was regarded as the flexion point of apparent temperature, and then increased with apparent temperature. Because the associations between temperature and cardiovascular mortality are known to be U-shaped, our findings suggest that temperature-related changes in hydration status underlie the increased cardiovascular mortality and morbidity during high- or low-temperature conditions.

  7. Chemical Sensor Platform for Non-Invasive Monitoring of Activity and Dehydration

    PubMed Central

    Solovei, Dmitry; Žák, Jaromír; Majzlíková, Petra; Sedláček, Jiří; Hubálek, Jaromír

    2015-01-01

    A non-invasive solution for monitoring of the activity and dehydration of organisms is proposed in the work. For this purpose, a wireless standalone chemical sensor platform using two separate measurement techniques has been developed. The first approach for activity monitoring is based on humidity measurement. Our solution uses new humidity sensor based on a nanostructured TiO2 surface for sweat rate monitoring. The second technique is based on monitoring of potassium concentration in urine. High level of potassium concentration denotes clear occurrence of dehydration. Furthermore, a Wireless Body Area Network (WBAN) was developed for this sensor platform to manage data transfer among devices and the internet. The WBAN coordinator controls the sensor devices and collects and stores the measured data. The collected data is particular to individuals and can be shared with physicians, emergency systems or athletes' coaches. Long-time monitoring of activity and potassium concentration in urine can help maintain the appropriate water intake of elderly people or athletes and to send warning signals in the case of near dehydration. The created sensor system was calibrated and tested in laboratory and real conditions as well. The measurement results are discussed. PMID:25594591

  8. Aquaporins in the antarctic midge, an extremophile that relies on dehydration for cold survival.

    PubMed

    Goto, Shin G; Lee, Richard E; Denlinger, David L

    2015-08-01

    The terrestrial midge Belgica antarctica relies extensively on dehydration to survive the low temperatures and desiccation stress that prevail in its Antarctic habitat. The loss of body water is thus a critical adaptive mechanism employed at the onset of winter to prevent injury from internal ice formation; a rapid mechanism for rehydration is equally essential when summer returns and the larva resumes the brief active phase of its life. This important role for water movement suggests a critical role for aquaporins (AQPs). Recent completion of the genome project on this species revealed the presence of AQPs in B. antarctica representing the DRIP, PRIP, BIB, RPIP, and LHIP families. Treatment with mercuric chloride to block AQPs also blocks water loss, thereby decreasing cell survival at low temperatures. Antibodies directed against mammalian or Drosophila AQPs suggest a wide tissue distribution of AQPs in the midge and changes in protein abundance in response to dehydration, rehydration, and freezing. Thus far, functional studies have been completed only for PRIP1. It appears to be a water-specific AQP, but expression levels are not altered by dehydration or rehydration. Functional assays remain to be completed for the additional AQPs. PMID:26338869

  9. [THE MODES OF EVALUATION OF TYPE OF DEHYDRATION IN CHILDREN HOSPITALIZED BECAUSE OF ACUTE INTESTINAL INFECTION].

    PubMed

    Krieger, E A; Samodova, O V; Gulakova, N N; Aruiev, A B; Krylova, L A; Titova, L V

    2015-11-01

    Every year about 800,000 cases of intestinal infections end in lethal outcome due to dehydration. The different types of dehydration acquire differential approach to correction. Everywhere there is no application of routine detection of osmolarity of blood plasma under exicosis in children in view of absence of possibility of instrumental measurement. The search of techniques is needed to make it possible to indirectly detect types of dehydration in children hospitalized because of acute intestinal infection with purpose to apply rationale therapy of water-electrolyte disorders. The sampling of 32 patients with intestinal infections accompanied with signs of exicosis degree I-III was examined. The detection of osmolarity of blood was implemented by instrumental technique using gas analyzer ABL 800 Flex (Radiometer; Denmark) and five estimate techniques according to results of biochemical analysis of blood. The differences in precision of measurement of osmolarity of blood plasma by instrumental and estimate techniques were compared using Bland-Altman graphic technique. It is established that formula: 2x[Na+kp] + [glucosekp] (mmol/l) is the most recise. Its application provided results comparable with values detected by instrumental mode. PMID:26999860

  10. Dehydration, skeletal muscle damage and inflammation before the competitions among the elite wrestlers

    PubMed Central

    Ozkan, Isik; Ibrahim, Cicioglu H.

    2016-01-01

    [Purpose] The present study aimed to identify weight-loss and hydration levels before competitions among elite wrestlers and determine the skeletal muscle damage and inflammation levels after dehydration. [Subjects] Seventy-two elite wrestlers who participated in the Turkish Wrestling Championship. [Methods] With the help of specialists, 5 cc of blood were drawn from the forearm veins of the wrestlers. Laboratory analyses of Na+, BUN, Glucose, CK, LDH, AST, ALT, C-RP levels were performed. Using a mathematical formula for hydration the POsm levels of the athletes were calculated. [Results] The wrestlers were divided into two groups based on hydration status. There were significant correlations between hydration indicators of Na+, BUN and PBWL values. There were significant differences between AST, LDH, CK values and skeletal muscle damage indicators of the two groups, but there were no significant differences between the inflammation levels and C-RP values of the groups. [Conclusion] No differences existed in inflammation levels among the wrestlers, although dehydrated wrestlers suffered from higher level of skeletal muscle damage than wrestlers who were not dehydrated. PMID:26957750

  11. Protection of the photosynthetic apparatus against dehydration stress in the resurrection plant Craterostigma pumilum.

    PubMed

    Zia, Ahmad; Walker, Berkley J; Oung, Hui Min Olivia; Charuvi, Dana; Jahns, Peter; Cousins, Asaph B; Farrant, Jill M; Reich, Ziv; Kirchhoff, Helmut

    2016-09-01

    The group of homoiochlorophyllous resurrection plants evolved the unique capability to survive severe drought stress without dismantling the photosynthetic machinery. This implies that they developed efficient strategies to protect the leaves from reactive oxygen species (ROS) generated by photosynthetic side reactions. These strategies, however, are poorly understood. Here, we performed a detailed study of the photosynthetic machinery in the homoiochlorophyllous resurrection plant Craterostigma pumilum during dehydration and upon recovery from desiccation. During dehydration and rehydration, C. pumilum deactivates and activates partial components of the photosynthetic machinery in a specific order, allowing for coordinated shutdown and subsequent reinstatement of photosynthesis. Early responses to dehydration are the closure of stomata and activation of electron transfer to oxygen accompanied by inactivation of the cytochrome b6 f complex leading to attenuation of the photosynthetic linear electron flux (LEF). The decline in LEF is paralleled by a gradual increase in cyclic electron transport to maintain ATP production. At low water contents, inactivation and supramolecular reorganization of photosystem II becomes apparent, accompanied by functional detachment of light-harvesting complexes and interrupted access to plastoquinone. This well-ordered sequence of alterations in the photosynthetic thylakoid membranes helps prepare the plant for the desiccated state and minimize ROS production.

  12. Ingestive Behavior of Ovine Fed with Marandu Grass Silage Added with Naturally Dehydrated Brewery Residue.

    PubMed

    de Jesus Ferreira, Daniele; de Moura Zanine, Anderson; de Paula Lana, Rogério; Lima de Souza, Alexandre; Divino Ribeiro, Marinaldo; Mattos Negrão, Fagton; Castro, Wanderson José Rodrigues; Nunes Parente, Henrique; Valério Geron, Luiz Juliano; de Azevedo Câmara, Larissa Rodrigues

    2016-01-01

    The objective was to evaluate the ingestive behavior of ovine fed Marandu grass silage with dehydrated brewery residue added. The experiment had a completely randomized design with five treatments and four repetitions, with the treatments levels of inclusion being of 0, 10, 20, 30, and 40% natural matter of naturally dehydrated brewery residue for 36 hours to the marandu grass silage. 20 ovines were used and the experimental period was 21 days, 15 being for adaptation to diets. The use of brewery byproduct promoted quadratic effect (P < 0.05) for the consumption of dry matter with maximum point value estimated at adding 23.25% additive. Ingestion efficiency and rumination efficiency of dry matter (g DM/hour) were significant (P < 0.05), by quadratic behavior, and NDF ingestion and rumination efficiency showed crescent linear behavior. The DM and NDF consumption expressed in kg/meal and in minutes/kg were also significant (P < 0.05), showing quadratic behavior. Rumination activity expressed in g DM and NDF/piece was influenced (P < 0.05) by the adding of brewery residue in marandu grass silage in quadratic way, with maximum value estimated of 1.57 g DM/bolus chewed in inclusion of 24.72% additive in grass silage. The conclusion is that intermediary levels adding of 20 to 25% dehydrated brewery residue affects certain parameters of ingestive behavior.

  13. Effects of cold and hot temperature on dehydration: a mechanism of cardiovascular burden.

    PubMed

    Lim, Youn-Hee; Park, Min-Seon; Kim, Yoonhee; Kim, Ho; Hong, Yun-Chul

    2015-08-01

    The association between temperature (cold or heat) and cardiovascular mortality has been well documented. However, few studies have investigated the underlying mechanism of the cold or heat effect. The main goal of this study was to examine the effect of temperature on dehydration markers and to explain the pathophysiological disturbances caused by changes of temperature. We investigated the relationship between outdoor temperature and dehydration markers (blood urea nitrogen (BUN)/creatinine ratio, urine specific gravity, plasma tonicity and haematocrit) in 43,549 adults from Seoul, South Korea, during 1995-2008. We used piece-wise linear regression to find the flexion point of apparent temperature and estimate the effects below or above the apparent temperature. Levels of dehydration markers decreased linearly with an increase in the apparent temperature until a point between 22 and 27 °C, which was regarded as the flexion point of apparent temperature, and then increased with apparent temperature. Because the associations between temperature and cardiovascular mortality are known to be U-shaped, our findings suggest that temperature-related changes in hydration status underlie the increased cardiovascular mortality and morbidity during high- or low-temperature conditions. PMID:25344017

  14. Ingestive Behavior of Ovine Fed with Marandu Grass Silage Added with Naturally Dehydrated Brewery Residue

    PubMed Central

    Lima de Souza, Alexandre; Divino Ribeiro, Marinaldo; Mattos Negrão, Fagton; Castro, Wanderson José Rodrigues; Valério Geron, Luiz Juliano; de Azevedo Câmara, Larissa Rodrigues

    2016-01-01

    The objective was to evaluate the ingestive behavior of ovine fed Marandu grass silage with dehydrated brewery residue added. The experiment had a completely randomized design with five treatments and four repetitions, with the treatments levels of inclusion being of 0, 10, 20, 30, and 40% natural matter of naturally dehydrated brewery residue for 36 hours to the marandu grass silage. 20 ovines were used and the experimental period was 21 days, 15 being for adaptation to diets. The use of brewery byproduct promoted quadratic effect (P < 0.05) for the consumption of dry matter with maximum point value estimated at adding 23.25% additive. Ingestion efficiency and rumination efficiency of dry matter (g DM/hour) were significant (P < 0.05), by quadratic behavior, and NDF ingestion and rumination efficiency showed crescent linear behavior. The DM and NDF consumption expressed in kg/meal and in minutes/kg were also significant (P < 0.05), showing quadratic behavior. Rumination activity expressed in g DM and NDF/piece was influenced (P < 0.05) by the adding of brewery residue in marandu grass silage in quadratic way, with maximum value estimated of 1.57 g DM/bolus chewed in inclusion of 24.72% additive in grass silage. The conclusion is that intermediary levels adding of 20 to 25% dehydrated brewery residue affects certain parameters of ingestive behavior. PMID:27547811

  15. Crystallization, dehydration and preliminary X-ray analysis of excisionase (Xis) proteins cooperatively bound to DNA

    SciTech Connect

    Sam, My D.; Abbani, Mohamad A.; Cascio, Duilio; Johnson, Reid C.; Clubb, Robert T.

    2006-08-01

    This paper describes the crystallization, dehydration and preliminary X-ray data analysis of a complex containing several bacteriophage lambda excisionase (Xis) proteins cooperatively bound to a 33-mer DNA duplex (Xis–DNA{sup X1-X2}). This paper describes the crystallization, dehydration and preliminary X-ray data analysis of a complex containing several bacteriophage lambda excisionase (Xis) [Bushman et al. (1984 ▶). Cell, 39, 699–706] proteins cooperatively bound to a 33-mer DNA duplex (Xis–DNA{sup X1-X2}). Xis is expected to recognize this regulatory element in a novel manner by cooperatively binding and distorting multiple head-to-tail orientated DNA-binding sites. Crystals of this complex belonged to space group P3{sub 1}21 or P3{sub 2}21, with unit-cell parameters a = b = 107.7, c = 73.5 Å, α = β = 90, γ = 120°. Based on the unit-cell parameters for the asymmetric unit, V{sub M} is 3.0 Å{sup 3} Da{sup −1}, which corresponds to a solvent content of ∼59%. The approaches used to crystallize the unusually long DNA fragment in the complex and the dehydration technique applied that dramatically improved the diffraction of the crystals from 10 to 2.6 Å are discussed.

  16. Magnetic Resonance Imaging (MRI) of PEM Dehydration and Gas Manifold Flooding During Continuous Fuel Cell Operation

    SciTech Connect

    Minard, Kevin R.; Vishwanathan, Vilanyur V.; Majors, Paul D.; Wang, Li Q.; Rieke, Peter C.

    2006-10-27

    The methods, apparatus, and results are reported for in-situ, near real time, magnetic resonance imaging (MRI) of MEA dehydration and gas manifold flooding in an operating PEM fuel cell. To acquire high-resolution, artifact-free images for visualizing water distribution, acquisition parameters for a standard, two-dimensional (2D), spin-echo sequence were first optimized for the measured magnetic field heterogeneity induced by fuel cell components. 2D images of water inside the fuel cell were then acquired every 128 seconds during 11.4 hours of continuous operation under constant load. Collected images revealed that MEA dehydration proceeded non-uniformly across its plane, starting from gas inlets and ending at gas outlets, and that upon completion of this dehydration process manifold flooding began. To understand these observations, acquired images were correlated to the current output and operating characteristics of the fuel cell. Results demonstrate the power of MRI for in-situ, near real-time imaging of water distribution and non-uniformity in operating PEM fuel cells, and highlight its utility for understanding PEM fuel cell operation, the causes of cell failure, and for developing new strategies of water management.

  17. Process optimization for osmo-dehydrated carambola (Averrhoa carambola L) slices and its storage studies.

    PubMed

    Roopa, N; Chauhan, O P; Raju, P S; Das Gupta, D K; Singh, R K R; Bawa, A S

    2014-10-01

    An osmotic-dehydration process protocol for Carambola (Averrhoacarambola L.,), an exotic star shaped tropical fruit, was developed. The process was optimized using Response Surface Methodology (RSM) following Central Composite Rotatable Design (CCRD). The experimental variables selected for the optimization were soak solution concentration (°Brix), soaking temperature (°C) and soaking time (min) with 6 experiments at central point. The effect of process variables was studied on solid gain and water loss during osmotic dehydration process. The data obtained were analyzed employing multiple regression technique to generate suitable mathematical models. Quadratic models were found to fit well (R(2), 95.58 - 98.64 %) in describing the effect of variables on the responses studied. The optimized levels of the process variables were achieved at 70°Brix, 48 °C and 144 min for soak solution concentration, soaking temperature and soaking time, respectively. The predicted and experimental results at optimized levels of variables showed high correlation. The osmo-dehydrated product prepared at optimized conditions showed a shelf-life of 10, 8 and 6 months at 5 °C, ambient (30 ± 2 °C) and 37 °C, respectively. PMID:25328186

  18. Process optimization for osmo-dehydrated carambola (Averrhoa carambola L) slices and its storage studies.

    PubMed

    Roopa, N; Chauhan, O P; Raju, P S; Das Gupta, D K; Singh, R K R; Bawa, A S

    2014-10-01

    An osmotic-dehydration process protocol for Carambola (Averrhoacarambola L.,), an exotic star shaped tropical fruit, was developed. The process was optimized using Response Surface Methodology (RSM) following Central Composite Rotatable Design (CCRD). The experimental variables selected for the optimization were soak solution concentration (°Brix), soaking temperature (°C) and soaking time (min) with 6 experiments at central point. The effect of process variables was studied on solid gain and water loss during osmotic dehydration process. The data obtained were analyzed employing multiple regression technique to generate suitable mathematical models. Quadratic models were found to fit well (R(2), 95.58 - 98.64 %) in describing the effect of variables on the responses studied. The optimized levels of the process variables were achieved at 70°Brix, 48 °C and 144 min for soak solution concentration, soaking temperature and soaking time, respectively. The predicted and experimental results at optimized levels of variables showed high correlation. The osmo-dehydrated product prepared at optimized conditions showed a shelf-life of 10, 8 and 6 months at 5 °C, ambient (30 ± 2 °C) and 37 °C, respectively.

  19. Reversible Dehydration Behavior Reveals Coordinatively Unsaturated Metal Sites in Microporous Aluminum Phosphonates

    SciTech Connect

    Kinnibrugh, Tiffany L.; Bakhmutov, Vladimir I.; Clearfield, Abraham

    2014-10-01

    Incorporation of the same ligand into three different aluminum phenylenediphosphonates (Al(H2O)(O3PC6H4PO3H) (1), Al-4(H2O)(2)(O3PC6H4PO3)(3) (2), and Al-4(H2O)(4)(O3PC6H4PO3)(2.84)(OH)(0.64) (3)) was accomplished by varying the synthetic conditions. The compounds have different sorption properties; however, all exhibit reversible dehydration behavior. The structures of the hydrated and dehydrated phases were determined from powder X-ray diffraction data. Compounds 2 and 3 were found to be microporous, while compound 1 was found to be nonporous. The stability of the dehydrated phase and the resulting porosity was found to be influenced by the change in the structure upon loss of water.

  20. Enhancement of mass transfer by ultrasound: Application to adsorbent regeneration and food drying/dehydration.

    PubMed

    Yao, Ye

    2016-07-01

    The physical mechanisms of heat and mass transfer enhancement by ultrasound have been identified by people. Basically, the effect of 'cavitation' induced by ultrasound is the main reason for the enhancement of heat and mass transfer in a liquid environment, and the acoustic streaming and vibration are the main reasons for that in a gaseous environment. The adsorbent regeneration and food drying/dehydration are typical heat and mass transfer process, and the intensification of the two processes by ultrasound is of complete feasibility. This paper makes an overview on recent studies regarding applications of power ultrasound to adsorbent regeneration and food drying/dehydration. The concerned adsorbents include desiccant materials (typically like silica gel) for air dehumidification and other ones (typically active carbon and polymeric resin) for water treatment. The applications of ultrasound in the regeneration of these adsorbents have been proved to be energy saving. The concerned foods are mostly fruits and vegetables. Although the ultrasonic treatment may cause food degradation or nutrient loss, it can greatly reduce the food processing time and decrease drying temperature. From the literature, it can be seen that the ultrasonic conditions (i.e., acoustic frequency and power levels) are always focused on during the study of ultrasonic applications. The increasing number of relevant studies argues that ultrasound is a very promising technology applied to the adsorbent regeneration and food drying/dehydration.

  1. Reduction in plasma vasopressin levels of dehydrated rats following acute stress

    NASA Technical Reports Server (NTRS)

    Keil, L. C.; Severs, W. B.

    1977-01-01

    Results are presented for an investigation directed to substantiate and extend preliminary findings of stress-induced reduction in plasma arginine vasopressin (pAVP). Since normally hydrated rats have very low levels of pAVP, it is difficult to measure reliably any decrease in pAVP that may result from stress. To overcome this problem, the pAVP levels of the tested rats were raised by dehydration prior to application of stress. A radioimmunoassay for pAVP is described and used to determine the levels of vasopressin in the plasma of nondehydrated and dehydrated rats after exposure to ether or acceleration stress. Plasma pAVP is also determined in rats following nicotine administration. It is shown that exposure of nondehydrated rats to ether or acceleration stress does not elicit any significant alterations in circulating pAVP levels while nicotine injections stimulate a marked increase. In particular, ether and acceleration stress produce a rapid reduction in the pAVP level of dehydrated rats, the decrease being observed in both large and small animals. The mechanism for this reduction in pAVP level following stress is yet unknown.

  2. Hydration Forces Between Lipid Bilayers: A Theoretical Overview and a Look on Methods Exploring Dehydration.

    PubMed

    Pfeiffer, Helge

    2015-01-01

    Although, many biological systems fulfil their functions under the condition of excess hydration, the behaviour of bound water as well as the processes accompanying dehydration are nevertheless important to investigate. Dehydration can be a result of applied mechanical pressure, lowered humidity or cryogenic conditions. The effort required to dehydrate a lipid membrane at relatively low degree of hydration can be described by a disjoining pressure which is called hydration pressure or hydration force. This force is short-ranging (a few nm) and is usually considered to be independent of other surface forces, such as ionic or undulation forces. Different theories were developed to explain hydration forces that are usually not consistent with each other and which are also partially in conflict with experimental or numerical data.Over the last decades it has been more and more realised that one experimental method alone is not capable of providing much new insight into the world of such hydration forces. Therefore, research requires the comparison of results obtained from the different methods. This chapter thus deals with an overview on the theory of hydration forces, ranging from polarisation theory to protrusion forces, and presents a selection of experimental techniques appropriate for their characterisation, such as X-ray diffraction, atomic force microscopy and even calorimetry.

  3. Cation regulation by the terrestrial isopod Armadillidium vulgare (Crustacea: Isopoda: Oniscidea) during dehydration in air.

    PubMed

    Koh, Huishan; Wright, Jonathan

    2011-06-01

    Many terrestrial arthropods display tight osmotic and ionic regulation of the hemolymph during dehydration. In this study, we sought to quantify the level of regulation of the major hemolymph cations in the terrestrial isopod Armadillidium vulgare (Isopoda, Oniscidea). Inulin space measurements showed that the hemolymph comprises 52 ± 2.2% of the hydrated water content but contributes 71 ± 9.8% of water losses during desiccation. Hemolymph concentrations of Na+, K+ and Ca²+ were measured in variably dehydrated animals using ion-selective microelectrodes and compared with predicted concentrations assuming no regulation. Na+ and Ca²+ are quite tightly regulated, showing respective concentration increases of 20.8% and 7.1% following a 50% reduction in hemolymph volume, but K+ showed no measurable regulation. The excreted cation fraction during desiccation is negligible. Sites of ion sequestration were examined by injecting ²²Na and ⁴⁵Ca into the hemolymph of hydrated animals and assaying tissue-specific activities following dehydration. Na+ is apparently sequestered non-specifically by an unknown mechanism. Ca²+ accumulates in the dorsal somatic tissues, possibly in the calcium pool of the cuticle. How A. vulgare avoids significant disruptions of E(m) and neuromuscular function in the absence of K+ regulation, and how it sequesters Na+, both pose intriguing challenges for future work. PMID:21335098

  4. Validation analysis of a geriatric dehydration screening tool in community-dwelling and institutionalized elderly people.

    PubMed

    Rodrigues, Susana; Silva, Joana; Severo, Milton; Inácio, Cátia; Padrão, Patrícia; Lopes, Carla; Carvalho, Joana; do Carmo, Isabel; Moreira, Pedro

    2015-03-02

    Dehydration is common among elderly people. The aim of this study was to perform validation analysis of a geriatric dehydration-screening tool (DST) in the assessment of hydration status in elderly people. This tool was based on the DST proposed by Vivanti et al., which is composed by 11 items (four physical signs of dehydration and seven questions about thirst sensation, pain and mobility), with four questions extra about drinking habits. The resulting questionnaire was evaluated in a convenience sample comprising institutionalized (n=29) and community-dwelling (n=74) elderly people. Urinary parameters were assessed (24-h urine osmolality and volume) and free water reserve (FWR) was calculated. Exploratory factor analysis was used to evaluate the scale's dimensionality and Cronbach's alpha was used to measure the reliability of each subscale. Construct's validity was tested using linear regression to estimate the association between scores in each dimension and urinary parameters. Two factors emerged from factor analysis, which were named "Hydration Score" and "Pain Score", and both subscales showed acceptable reliabilities. The "Hydration Score" was negatively associated with 24-h urine osmolality in community-dwelling; and the "Pain Score" was negatively associated with 24-h urine osmolality, and positively associated with 24-h urine volume and FWR in institutionalized elderly people.

  5. A tailored catalyst for the sustainable conversion of glycerol to acrolein: mechanistic aspect of sequential dehydration.

    PubMed

    Yun, Danim; Kim, Tae Yong; Park, Dae Sung; Yun, Yang Sik; Han, Jeong Woo; Yi, Jongheop

    2014-08-01

    Developing a catalyst to resolve deactivation caused from coke is a primary challenge in the dehydration of glycerol to acrolein. An open-macropore-structured and Brønsted-acidic catalyst (Marigold-like silica functionalized with sulfonic acid groups, MS-FS) was synthesized for the stable and selective production of acrolein from glycerol. A high acrolein yield of 73% was achieved and maintained for 50 h in the presence of the MS-FS catalyst. The hierarchical structure of the catalyst with macropores was found to have an important effect on the stability of the catalyst because coke polymerization and pore blocking caused by coke deposition were inhibited. In addition, the behavior of 3-hydroxypropionaldehyde (3-HPA) during the sequential dehydration was studied using density functional theory (DFT) calculations because 3-HPA conversion is one of the main causes for coke formation. We found that the easily reproducible Brønsted acid sites in MS-FS permit the selective and stable production of acrolein. This is because the reactive intermediate (3-HPA) is readily adsorbed on the regenerated acid sites, which is essential for the selective production of acrolein during the sequential dehydration. The regeneration ability of the acid sites is related not only to the selective production of acrolein but also to the retardation of catalyst deactivation by suppressing the formation of coke precursors originating from 3-HPA degradation.

  6. Phosphoproteomic dynamics of chickpea (Cicer arietinum L.) reveals shared and distinct components of dehydration response.

    PubMed

    Subba, Pratigya; Barua, Pragya; Kumar, Rajiv; Datta, Asis; Soni, Kamlesh Kumar; Chakraborty, Subhra; Chakraborty, Niranjan

    2013-11-01

    Reversible protein phosphorylation is a ubiquitous regulatory mechanism that plays critical roles in transducing stress signals to bring about coordinated intracellular responses. To gain better understanding of dehydration response in plants, we have developed a differential phosphoproteome in a food legume, chickpea (Cicer arietinum L.). Three-week-old chickpea seedlings were subjected to progressive dehydration by withdrawing water, and the changes in the phosphorylation status of a large repertoire of proteins were monitored. The proteins were resolved by 2-DE and stained with phosphospecific fluorescent Pro-Q Diamond dye. Mass spectrometric analysis led to the identification of 91 putative phosphoproteins, presumably involved in a variety of functions including cell defense and rescue, photosynthesis and photorespiration, molecular chaperones, and ion transport, among others. Multiple sites of phosphorylation were predicted on several key elements, which include both the regulatory as well as the functional proteins. A critical survey of the phosphorylome revealed a DREPP (developmentally regulated plasma membrane protein) plasma membrane polypeptide family protein, henceforth designated CaDREPP1. The transcripts of CaDREPP1 were found to be differentially regulated under dehydration stress, further corroborating the proteomic results. This work provides new insights into the possible phosphorylation events triggered by the conditions of progressive water-deficit in plants.

  7. Aquaporins in the antarctic midge, an extremophile that relies on dehydration for cold survival.

    PubMed

    Goto, Shin G; Lee, Richard E; Denlinger, David L

    2015-08-01

    The terrestrial midge Belgica antarctica relies extensively on dehydration to survive the low temperatures and desiccation stress that prevail in its Antarctic habitat. The loss of body water is thus a critical adaptive mechanism employed at the onset of winter to prevent injury from internal ice formation; a rapid mechanism for rehydration is equally essential when summer returns and the larva resumes the brief active phase of its life. This important role for water movement suggests a critical role for aquaporins (AQPs). Recent completion of the genome project on this species revealed the presence of AQPs in B. antarctica representing the DRIP, PRIP, BIB, RPIP, and LHIP families. Treatment with mercuric chloride to block AQPs also blocks water loss, thereby decreasing cell survival at low temperatures. Antibodies directed against mammalian or Drosophila AQPs suggest a wide tissue distribution of AQPs in the midge and changes in protein abundance in response to dehydration, rehydration, and freezing. Thus far, functional studies have been completed only for PRIP1. It appears to be a water-specific AQP, but expression levels are not altered by dehydration or rehydration. Functional assays remain to be completed for the additional AQPs.

  8. Occurrence and Characterization of Cronobacter spp. in Dehydrated Rice Powder from Chinese Supermarket.

    PubMed

    Huang, Yan; Pang, Yiheng; Wang, Hong; Tang, Zhengzhu; Zhou, Yan; Zhang, Weiyu; Li, Xiugui; Tan, Dongmei; Li, Jian; Lin, Ying; Liu, Xiaoling; Huang, Weiyi; Shi, Yunliang

    2015-01-01

    Cronobacter spp. are emerging food-borne pathogens and have been identified as causative agents of meningitis and necrotizing enterocolitis in infants. Dehydrated rice is popular with a wide range of people and it is frequently used as a substitute for infant milk powder to baby older than four months. The occurrence of Cronobacter spp. was investigated in 1,012 samples of dehydrated rice powder collected from 14 manufacturers in China during 2010 to 2012. The isolates were identified using fusA allele sequencing and subtyped using pulsed-field gel electrophoresis. Seventy-six samples (7.5%) contained Cronobacter spp. The prevalence among manufacturers ranged from 0-28.8%. The 76 isolates included 4 species [Cronobacter sakazakii (52 isolates) Cronobacter malonaticus (14 isolates), Cronobacter dublinensis (7 isolates), and Cronobacter muytjensii (3 isolates)]. Twenty-three unique fusA alleles and sixty-six PFGE-patterns were detected. All isolated strains were observed to be sensitive or to show intermediate susceptibility to eight tested antimicrobial agents. The study revealed serious contamination of dehydrated rice powder by Cronobacter spp., with prevalence varying among manufacturers in China. Identified Cronobacter species, fusA alleles, and subtypes were diverse.

  9. The Effect of Drinking on Plasma Vasopressin and Renin in Dehydrated Human Subjects

    NASA Technical Reports Server (NTRS)

    Geelen, G.; Keil, L. C.; Kravik, S. E.; Wade, C. E.; Thrasher, T. N.; Barnes, P. R.; Pyka, G.; Nesvig, C.; Greenleaf, J. E.

    1996-01-01

    Oropharyngeal mechanisms activated by drinking have been shown to induce a rapid decline in plasma vasopressin which preceeds postabsorptive changes in plasma composition in the dehydrated dog. The present study was undertaken to determine what factor(s) inhibit(s) vasopressin secretion after rehydration in water deprived human subjects. Hematocrit (Hct) and hemoglobin (Hb) were determined on the day of the experiment, together with electrolytes and osmolalities which were measured on freshly separated serum. Plasma was immediately frozen and further analyzed by radioimmunoassay for renin activity (PRA), vasopressin (AVP), and aldosterone. The data were analyzed using an analysis of variance for repeated measurements and significant differences between the dehydrated control period and various time points after the start of rehydration were determined using a multiple-range test. began and reached water replete levels 15 minutes after drinking in the absence of any detectable decline in serum sodium or osmolality, we conclude that 427 oropharyngeal factors, alone or combined with gastric distension account for the extremely rapid inhibition of AVP secretion after drinking in the water-deprived human, as has been shown to be the case in dogs. Our findings are also in agreement wiht the recent demonstration that at the onset of drinking in the dehydrated monkey, there is an abrupt fall in plasma AVP concentration associated with a considerable decrease in the firing rate of the supraoptic neurosecretory neurons.

  10. Dehydration of lawsonite could directly trigger earthquakes in subducting oceanic crust.

    PubMed

    Okazaki, Keishi; Hirth, Greg

    2016-02-01

    Intermediate-depth earthquakes in cold subduction zones are observed within the subducting oceanic crust, as well as the mantle. In contrast, intermediate-depth earthquakes in hot subduction zones predominantly occur just below the Mohorovičić discontinuity. These observations have stimulated interest in relationships between blueschist-facies metamorphism and seismicity, particularly through dehydration reactions involving the mineral lawsonite. Here we conducted deformation experiments on lawsonite, while monitoring acoustic emissions, in a Griggs-type deformation apparatus. The temperature was increased above the thermal stability of lawsonite, while the sample was deforming, to test whether the lawsonite dehydration reaction induces unstable fault slip. In contrast to similar tests on antigorite, unstable fault slip (that is, stick-slip) occurred during dehydration reactions in the lawsonite and acoustic emission signals were continuously observed. Microstructural observations indicate that strain is highly localized along the fault (R1 and B shears), and that the fault surface develops slickensides (very smooth fault surfaces polished by frictional sliding). The unloading slope during the unstable slip follows the stiffness of the apparatus at all experimental conditions, regardless of the strain rate and temperature ramping rate. A thermomechanical scaling factor for the experiments is within the range estimated for natural subduction zones, indicating the potential for unstable frictional sliding within natural lawsonite layers.

  11. Occurrence and Characterization of Cronobacter spp. in Dehydrated Rice Powder from Chinese Supermarket

    PubMed Central

    Huang, Yan; Pang, Yiheng; Wang, Hong; Tang, Zhengzhu; Zhou, Yan; Zhang, Weiyu; Li, Xiugui; Tan, Dongmei; Li, Jian; Lin, Ying; Liu, Xiaoling; Huang, Weiyi; Shi, Yunliang

    2015-01-01

    Cronobacter spp. are emerging food-borne pathogens and have been identified as causative agents of meningitis and necrotizing enterocolitis in infants. Dehydrated rice is popular with a wide range of people and it is frequently used as a substitute for infant milk powder to baby older than four months. The occurrence of Cronobacter spp. was investigated in 1,012 samples of dehydrated rice powder collected from 14 manufacturers in China during 2010 to 2012. The isolates were identified using fusA allele sequencing and subtyped using pulsed-field gel electrophoresis. Seventy-six samples (7.5%) contained Cronobacter spp. The prevalence among manufacturers ranged from 0-28.8%. The 76 isolates included 4 species [Cronobacter sakazakii (52 isolates) Cronobacter malonaticus (14 isolates), Cronobacter dublinensis (7 isolates), and Cronobacter muytjensii (3 isolates)]. Twenty-three unique fusA alleles and sixty-six PFGE-patterns were detected. All isolated strains were observed to be sensitive or to show intermediate susceptibility to eight tested antimicrobial agents. The study revealed serious contamination of dehydrated rice powder by Cronobacter spp., with prevalence varying among manufacturers in China. Identified Cronobacter species, fusA alleles, and subtypes were diverse. PMID:26132635

  12. Response of Bacillus subtilis spores to dehydration and UV irradiation at extremely low temperatures.

    PubMed

    Dose, K; Klein, A

    1996-02-01

    Spores of Bacillus subtilis have been exposed to the conditions of extreme dehydration (argon/silica gel; simulated space vacuum) for up to 12 weeks at 298 K and 80 K in the dark. The inactivation has been correlated with the production of DNA-double strand-breaks. The temperature-dependence of the rate constants for inactivation or production of DNA-double strand-breaks is surprisingly low. Controls kept in the frozen state at 250 K for the same period of time showed no sign of deterioration. In another series of experiments the spores have been UV irradiated (253.7 nm) at 298 K, 200 K and 80 K after exposure to dehydrating conditions for 3 days. Fluence-effect relationships for inactivation, production of DNA-double strand-breaks and DNA-protein cross-links are presented. The corresponding F37-values for inactivation and production of DNA lesions are significantly increased only at 80 K (factor of 4 to 5). The data indicate that the low temperatures that prevail in the outer parts of the Solar System or at the nightside of Mars or the Moon are not sufficiently low to crucially inhibit inactivation by dehydration. Our data place further constraints on the panspermia hypothesis.

  13. Effects of cold and hot temperature on dehydration: a mechanism of cardiovascular burden

    NASA Astrophysics Data System (ADS)

    Lim, Youn-Hee; Park, Min-Seon; Kim, Yoonhee; Kim, Ho; Hong, Yun-Chul

    2015-08-01

    The association between temperature (cold or heat) and cardiovascular mortality has been well documented. However, few studies have investigated the underlying mechanism of the cold or heat effect. The main goal of this study was to examine the effect of temperature on dehydration markers and to explain the pathophysiological disturbances caused by changes of temperature. We investigated the relationship between outdoor temperature and dehydration markers (blood urea nitrogen (BUN)/creatinine ratio, urine specific gravity, plasma tonicity and haematocrit) in 43,549 adults from Seoul, South Korea, during 1995-2008. We used piece-wise linear regression to find the flexion point of apparent temperature and estimate the effects below or above the apparent temperature. Levels of dehydration markers decreased linearly with an increase in the apparent temperature until a point between 22 and 27 °C, which was regarded as the flexion point of apparent temperature, and then increased with apparent temperature. Because the associations between temperature and cardiovascular mortality are known to be U-shaped, our findings suggest that temperature-related changes in hydration status underlie the increased cardiovascular mortality and morbidity during high- or low-temperature conditions.

  14. Dehydration and Dehydrogenation of Ethylene Glycol on Rutile TiO2(110)

    SciTech Connect

    Li, Zhenjun; Kay, Bruce D.; Dohnalek, Zdenek

    2013-08-07

    The interactions of ethylene glycol (EG) with partially reduced rutile TiO2(110) surface have been studied using temperature programmed desorption (TPD). The saturation coverage on the surface Ti rows is determined to be 0.43 monolayer (ML), slightly less than one EG per two Ti sites. Most of the adsorbed ethanol (~80%) undergoes further reactions to other products. Two major channels are observed, dehydration yielding ethylene and water and dehydrogenation yielding acetaldehyde and hydrogen. Hydrogen formation is rather surprising as it has not been observed previously on TiO2(110) from simple organic molecules. The coverage dependent yields of ethylene and acetaldehyde correlate well with that of water and hydrogen, respectively. Dehydration dominates at lower EG coverages (< 0.2 ML) and plateaus as the coverage is increased to saturation. Dehydrogenation is observed primarily at higher EG coverages (>0.2 ML). Our results suggest that the observed dehydration and dehydrogenation reactions proceed via different surface intermediates.

  15. Study on ESR and inter-related properties of vacuum-dehydrated nanotubed titanic acid

    NASA Astrophysics Data System (ADS)

    Zhang, Shunli; Li, Wei; Jin, Zhensheng; Yang, Jianjun; Zhang, Jingwei; Du, Zuliang; Zhang, Zhijun

    2004-04-01

    Nanotubed titanic acid (H 2Ti 2O 4(OH) 2) is a novel kind of material. The electron spin resonance (ESR) and inter-related properties of its vacuum-dehydrated product were investigated by means of transmission electron microscopic, X-ray diffraction, ESR, diffuse reflectance spectra. The results showed that after treatment under vacuum (-0.1 MPa) at 100°C, single-electron-trapped oxygen vacancies (SETOV), characterized by a symmetrical ESR signal ( g=2.003), were generated in nanotubed H 2Ti 2O 4(OH) 2 crystal lattice. The g=2.003 ESR signal intensity ( IESR) increased with treatment time. SETOV played the role of F centers, the visible-light absorption power of vacuum-dehydrated H 2Ti 2O 4(OH) 2 was proportional to IESR. During vacuum dehydration at 100°C, the H 2Ti 2O 4(OH) 2 nanotubes shortened but its crystalline form kept unchanged. The formation mechanism of SETOV was discussed.

  16. Water management by dormant insects: comparisons between dehydration resistance during summer aestivation and winter diapause.

    PubMed

    Benoit, Joshua B

    2010-01-01

    During summer in temperate regions and tropical dry seasons insects are exposed to extended periods with little available water. To counter this dehydration stress, insects have two options. They can either remain active by utilizing mechanisms to function under severe water stress and high temperatures, or they can escape from the stressful environment by exploiting an aestivation mechanism. During aestivation, insects undergo a variety of molecular and biochemical changes to arrest development, reduce metabolism, tolerate high temperatures, and increase their ability to maintain water balance. In this review, I provide a synopsis of known and possible mechanisms utilized by insects to reduce the stress of dehydration during aestivation. Comparative observations of aestivating and diapausing insects are also discussed to assess similarities and differences in the methods used by insects to increase dehydration resistance between these two types of dormancies. Adaptations that alter moisture requirements during diapause (low metabolic rate, increases in osmolytes, shifts in cuticular hydrocarbons, cell membrane restructing) are likely similar to those utilized at the induction and during the maintenance phase of aestivation. Few studies have been conducted on the physiology, particularly the biochemistry and molecular regulation, of aestivating insects, indicating that much more research is needed to fully assess water balance characteristics of insects during aestivation. Whether an insect is in diapause or aestivation, behavioral, biochemical, and physiological adaptations are essential for suppressing water loss and enhancing survival in a desiccated state.

  17. Physiological and transcriptional memory in guard cells during repetitive dehydration stress.

    PubMed

    Virlouvet, Laetitia; Fromm, Michael

    2015-01-01

    Arabidopsis plants subjected to a daily dehydration stress and watered recovery cycle display physiological and transcriptional stress memory. Previously stressed plants have stomatal apertures that remain partially closed during a watered recovery period, facilitating reduced transpiration during a subsequent dehydration stress. Guard cells (GCs) display transcriptional memory that is similar to that in leaf tissues for some genes, but display GC-specific transcriptional memory for other genes. The rate-limiting abscisic acid (ABA) biosynthetic genes NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3) and ALDEHYDE OXIDASE 3 (AAO3) are expressed at much higher levels in GCs, particularly during the watered recovery interval, relative to their low levels in leaves. A genetic analysis using mutants in the ABA signaling pathway indicated that GC stomatal memory is ABA-dependent, and that ABA-dependent SNF1-RELATED PROTEIN KINASE 2.2 (SnRK2.2), SnRK2.3 and SnRK2.6 have distinguishable roles in the process. SnRK2.6 is more important for overall stomatal control, while SnRK2.2 and SnRK2.3 are more important for implementing GC stress memory in the subsequent dehydration response. Collectively, our results support a model of altered ABA production in GCs that maintains a partially closed stomatal aperture during an overnight watered recovery period.

  18. Enhancement of mass transfer by ultrasound: Application to adsorbent regeneration and food drying/dehydration.

    PubMed

    Yao, Ye

    2016-07-01

    The physical mechanisms of heat and mass transfer enhancement by ultrasound have been identified by people. Basically, the effect of 'cavitation' induced by ultrasound is the main reason for the enhancement of heat and mass transfer in a liquid environment, and the acoustic streaming and vibration are the main reasons for that in a gaseous environment. The adsorbent regeneration and food drying/dehydration are typical heat and mass transfer process, and the intensification of the two processes by ultrasound is of complete feasibility. This paper makes an overview on recent studies regarding applications of power ultrasound to adsorbent regeneration and food drying/dehydration. The concerned adsorbents include desiccant materials (typically like silica gel) for air dehumidification and other ones (typically active carbon and polymeric resin) for water treatment. The applications of ultrasound in the regeneration of these adsorbents have been proved to be energy saving. The concerned foods are mostly fruits and vegetables. Although the ultrasonic treatment may cause food degradation or nutrient loss, it can greatly reduce the food processing time and decrease drying temperature. From the literature, it can be seen that the ultrasonic conditions (i.e., acoustic frequency and power levels) are always focused on during the study of ultrasonic applications. The increasing number of relevant studies argues that ultrasound is a very promising technology applied to the adsorbent regeneration and food drying/dehydration. PMID:26964979

  19. Ingestive Behavior of Ovine Fed with Marandu Grass Silage Added with Naturally Dehydrated Brewery Residue.

    PubMed

    de Jesus Ferreira, Daniele; de Moura Zanine, Anderson; de Paula Lana, Rogério; Lima de Souza, Alexandre; Divino Ribeiro, Marinaldo; Mattos Negrão, Fagton; Castro, Wanderson José Rodrigues; Nunes Parente, Henrique; Valério Geron, Luiz Juliano; de Azevedo Câmara, Larissa Rodrigues

    2016-01-01

    The objective was to evaluate the ingestive behavior of ovine fed Marandu grass silage with dehydrated brewery residue added. The experiment had a completely randomized design with five treatments and four repetitions, with the treatments levels of inclusion being of 0, 10, 20, 30, and 40% natural matter of naturally dehydrated brewery residue for 36 hours to the marandu grass silage. 20 ovines were used and the experimental period was 21 days, 15 being for adaptation to diets. The use of brewery byproduct promoted quadratic effect (P < 0.05) for the consumption of dry matter with maximum point value estimated at adding 23.25% additive. Ingestion efficiency and rumination efficiency of dry matter (g DM/hour) were significant (P < 0.05), by quadratic behavior, and NDF ingestion and rumination efficiency showed crescent linear behavior. The DM and NDF consumption expressed in kg/meal and in minutes/kg were also significant (P < 0.05), showing quadratic behavior. Rumination activity expressed in g DM and NDF/piece was influenced (P < 0.05) by the adding of brewery residue in marandu grass silage in quadratic way, with maximum value estimated of 1.57 g DM/bolus chewed in inclusion of 24.72% additive in grass silage. The conclusion is that intermediary levels adding of 20 to 25% dehydrated brewery residue affects certain parameters of ingestive behavior. PMID:27547811

  20. Support Effects on Bronsted acid site densities and alcohol dehydration turnover rates on tungsten oxide domains

    SciTech Connect

    Macht, Josef; Baertsch, Chelsey D.; May-Lozano, Marcos; Soled, Stuart L.; Wang, Yong; Iglesia, Enrique

    2005-03-01

    Initial activity and acid site density of several WAl, WSi (MCM41) and one WSn sample were determined. Trans/cis 2-butene selectivity is dependent on the support. Presumably, these differences are due to subtle differences in base strengths. 2-Butanol dehydration rates (per W-atom) reached maximum values at intermediate WOx surface densities on WAl, as reported for 2-butanol dehydration reactions on WZr. Titration results indicate that Bronsted acid sites are required for 2-butanol dehydration on WAl, WSi and WSn. UV-visible studies suggest that WAl is much more difficult to reduce than WZr. The detection of reduced centers on WAl, the number of which correlates to Bronsted acid site density and catalyst activity, as well as the temperature dependence of Bronsted acid site density indicate the in-situ formation of these active sites. We infer that this mechanism is common among all supported WOx samples described in this study. Turnover rates are a function of Bronsted acid site density only. High acid site densities lead to high turnover rates. Higher active site densities may cause stronger conjugate bases, as a higher electron density has to be stabilized, and thus weaker acidity, enabling a faster rate of product desorption. The maximum achievable active site density is dependent on the support. WZr reaches a higher active site density than WAl.

  1. Cation regulation by the terrestrial isopod Armadillidium vulgare (Crustacea: Isopoda: Oniscidea) during dehydration in air.

    PubMed

    Koh, Huishan; Wright, Jonathan

    2011-06-01

    Many terrestrial arthropods display tight osmotic and ionic regulation of the hemolymph during dehydration. In this study, we sought to quantify the level of regulation of the major hemolymph cations in the terrestrial isopod Armadillidium vulgare (Isopoda, Oniscidea). Inulin space measurements showed that the hemolymph comprises 52 ± 2.2% of the hydrated water content but contributes 71 ± 9.8% of water losses during desiccation. Hemolymph concentrations of Na+, K+ and Ca²+ were measured in variably dehydrated animals using ion-selective microelectrodes and compared with predicted concentrations assuming no regulation. Na+ and Ca²+ are quite tightly regulated, showing respective concentration increases of 20.8% and 7.1% following a 50% reduction in hemolymph volume, but K+ showed no measurable regulation. The excreted cation fraction during desiccation is negligible. Sites of ion sequestration were examined by injecting ²²Na and ⁴⁵Ca into the hemolymph of hydrated animals and assaying tissue-specific activities following dehydration. Na+ is apparently sequestered non-specifically by an unknown mechanism. Ca²+ accumulates in the dorsal somatic tissues, possibly in the calcium pool of the cuticle. How A. vulgare avoids significant disruptions of E(m) and neuromuscular function in the absence of K+ regulation, and how it sequesters Na+, both pose intriguing challenges for future work.

  2. [Nutritional evaluation of green plantain flour dehydrated soups. Starch in vitro digestibility].

    PubMed

    Pacheco de Delahaye, E

    2001-01-01

    Previous works have shown that green plantain flour (GPF) contains a considerable amount of resistant with similar effects to dietary fiber. In order to diversify the use of this fruit the purpose of present study was to formulate and elaborate powered, dehydrated, cream type soups with green plantain flour flavored with vegetables (onion, coriander and leak) which increase the dietary fiber content of the preparation. Green plantain was peeled, cut in medium size pieces and submerged in 0.1% citric acid solution. The dehydration process was forced air-drying (80 degrees C), followed by milling. The same procedure was applied to the flavoring vegetables. To obtain the cream type soups various formulations were tried containing 50-63% resistant starch, 11.7-12% dietary fiber 6.5-6.9% protein. The mineral content of the preparations is reported. Viscosity of 1:10 (w/v) soups was 630-670 cps. In vitro starch digestibility after 6 hours was 38% with porcine amylase, increasing to 48% if the enzyme was from bacterial origin, supporting previous results that suggest resistance to hydrolysis of green plantain (GP) starch granules. In conclusion this study diversifies the use of GP and suggests that dehydrated GPF soups due to their high dietary fiber, resistant starch content and to the slow starch hydrolysis may be used in special nutrition regimes.

  3. Impact of solar dehydration on composition and antioxidant properties of acai (Euterpe oleracea Mart.).

    PubMed

    Sangronis, Elba; Sanabria, Neida

    2011-03-01

    Commercial products derived from the acai fruit (Euterpe oleracea Mart.) are available in Brazil, but in Venezuela, it is only known by ethnic indigenous groups of the Amazon. In this study, acai flour was made by solar dehydration and the effect of processing on the composition, microbiological quality, and antioxidant properties of such flour were evaluated. The fruit was purchased in Puerto Ayacucho, Venezuela, and a portion was manually pulped. Microbiological quality, proximal composition, minerals, polyphenols, tannins, anthocyanins, and antioxidant capacity were evaluated. The remaining portion of fruit was blanched in a solution of ascorbic acid and citric acid at 98 degrees C for 1 min in the same manner, manually pulped, dried by solar dehydration and the acai flour was also analysed. From the composition of the acai flour, its high content of fat (22.9%), protein (13.7%), dietary fibre (20.5%), total polyphenols (1.60 g/kg) and antioxidant capacity (79.97%) stood out. The blanching of the fruit and the solar dehydrating of the acai pulp did not modify the composition, but they improved its microbiological quality and reduced phenolic compounds and antioxidant capacity. The flour obtained is stable and innocuous and could be used to diversify the diet of the indigenous people of the Amazon region.

  4. A novel method for determination of inorganic oxyanions by electrospray ionization mass spectrometry using dehydration reactions.

    PubMed

    Kojima, Hirochika; Kurihara, Shota; Watanabe, Yoshito; Iwamaru, Koki; Sato, Kiichi; Tsunoda, Kin-Ichi; Hotta, Hiroki

    2016-02-01

    Novel methods for the determination of inorganic oxyanions by electrospray (ES) ionization mass spectrometry have been developed using dehydration reactions between oxyanions and carboxylic acids at the ES interface. Twelve oxyanions (VO3 (-) , CrO4 (2-) , MoO4 (2-) , WO4 (2-) , BO3 (3-) , SiO3 (2-) , SiO4 (4-) , AsO4 (4-) , AsO2 (-) , SeO4 (2-) , SeO3 (2-) and NO2 (-) ), out of 16 tested, reacted with at least one of four aminopolycarboxylic acids, i.e. iminodiacetic acid (IDA), nitrilotriacetic acid (NTA), trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid and triethylenetetramine-N,N,N',N″,N'″,N'″-hexaacetic acid, at the ES interface to produce the dehydration products that gave intense mass ion responses, sufficient for trace analysis. As examples, trace determinations of Cr(VI) and silica in water samples were achieved after online ion exchange chromatography, where the dehydration product of CrO4 (2-) and NTA (m/z 290) and that of SiO4 (4-) and IDA (m/z 192) were measured. The limits of detection of the respective methods were 17 nM (0.83 ng Cr/ml) for Cr(VI) and 0.17 μM (4.8 ng Si/mL) for SiO4 (4-) . PMID:26889928

  5. Protection of the photosynthetic apparatus against dehydration stress in the resurrection plant Craterostigma pumilum.

    PubMed

    Zia, Ahmad; Walker, Berkley J; Oung, Hui Min Olivia; Charuvi, Dana; Jahns, Peter; Cousins, Asaph B; Farrant, Jill M; Reich, Ziv; Kirchhoff, Helmut

    2016-09-01

    The group of homoiochlorophyllous resurrection plants evolved the unique capability to survive severe drought stress without dismantling the photosynthetic machinery. This implies that they developed efficient strategies to protect the leaves from reactive oxygen species (ROS) generated by photosynthetic side reactions. These strategies, however, are poorly understood. Here, we performed a detailed study of the photosynthetic machinery in the homoiochlorophyllous resurrection plant Craterostigma pumilum during dehydration and upon recovery from desiccation. During dehydration and rehydration, C. pumilum deactivates and activates partial components of the photosynthetic machinery in a specific order, allowing for coordinated shutdown and subsequent reinstatement of photosynthesis. Early responses to dehydration are the closure of stomata and activation of electron transfer to oxygen accompanied by inactivation of the cytochrome b6 f complex leading to attenuation of the photosynthetic linear electron flux (LEF). The decline in LEF is paralleled by a gradual increase in cyclic electron transport to maintain ATP production. At low water contents, inactivation and supramolecular reorganization of photosystem II becomes apparent, accompanied by functional detachment of light-harvesting complexes and interrupted access to plastoquinone. This well-ordered sequence of alterations in the photosynthetic thylakoid membranes helps prepare the plant for the desiccated state and minimize ROS production. PMID:27258321

  6. Decision tree and postpartum management for preventing dehydration in the "breastfed" baby.

    PubMed

    Newman, J

    1996-06-01

    Dehydration and poor weight gain in breastfed infants are common but potentially preventable problems. Serious consequences are severe hypernatremic dehydration, severe weight loss, and severe hyperbilirubinemia with possible irreversible damage to the baby's brain or other vital organs. The dangers of dehydration have been emphasized by recent media reports of severe cases. These reports have resulted in increased, but often inappropriate, intervention in breastfeeding. On the basis of our experience at the Hospital for Sick Children, and the Doctors Hospital (Toronto), we have developed a decision tree and management protocol to assess breastfeeding, intervene effectively, and prevent such problems. If all breastfeeding mothers and babies are evaluated by qualified staff before discharge using this tool, it is expected that the serious consequences associated with babies leaving hospital appearing to be breastfeeding, but in fact not breastfeeding at all, will be prevented. Application of this approach, however, will require considerable upgrading of nurses' and physicians' skills and knowledge with regard to breastfeeding. A case report is presented.

  7. Slab mantle dehydrates beneath Kamchatka—Yet recycles water into the deep mantle

    NASA Astrophysics Data System (ADS)

    Konrad-Schmolke, Matthias; Halama, Ralf; Manea, Vlad C.

    2016-08-01

    The subduction of hydrated slab mantle is the most important and yet weakly constrained factor in the quantification of the Earth's deep geologic water cycle. The most critical unknowns are the initial hydration state and the dehydration behavior of the subducted oceanic mantle. Here we present a combined thermomechanical, thermodynamic, and geochemical model of the Kamchatka subduction zone that indicates significant dehydration of subducted slab mantle beneath Kamchatka. Evidence for the subduction of hydrated oceanic mantle comes from across-arc trends of boron concentrations and isotopic compositions in arc volcanic rocks. Our thermodynamic-geochemical models successfully predict the complex geochemical patterns and the spatial distribution of arc volcanoes in Kamchatka assuming the subduction of hydrated oceanic mantle. Our results show that water content and dehydration behavior of the slab mantle beneath Kamchatka can be directly linked to compositional features in arc volcanic rocks. Depending on hydration depth of the slab mantle, our models yield water recycling rates between 1.1 × 103 and 7.4 × 103 Tg/Ma/km corresponding to values between 0.75 × 106 and 5.2 × 106 Tg/Ma for the entire Kamchatkan subduction zone. These values are up to one order of magnitude lower than previous estimates for Kamchatka, but clearly show that subducted hydrated slab mantle significantly contributes to the water budget in the Kamchatkan subduction zone.

  8. Phosphorylated mesoporous carbon as effective catalyst for the selective fructose dehydration to HMF

    SciTech Connect

    Villa, Alberto; Schiavoni, Marco; Fulvio, Pasquale F; Mahurin, Shannon Mark; Dai, Sheng; Mayes, Richard T; Veith, Gabriel M; Prati, Laura

    2013-01-01

    Phosphorylated mesoporous carbons (PMCs) have been synthesized using an already reported one pot methodology. These materials have been applied as acidic catalysts in the dehydration of fructose to hydroxymethylfurfural (HMF). PMCs showed better selectivity to HMF compared to sulfonated carbon catalyst (SC) despite lower activity. The concentration of P-O groups correlates to the activity/selectivity of the catalysts; the higher the P-O concentration the higher the activity. However, the higher the P-O content the lower the selectivity to HMF. Indeed a lower concentration of the P-O groups (and even the acidic groups) minimized the degradation of HMF to levulinic acid and the formation of by-products, such as humines. Stability tests showed that these systems deactivate due to the formation of humines, water insoluble by-products derived from the dehydration of fructose, blocking the active site of the catalyst. Increasing the amount of P-O groups, higher amount of humines are formed; therefore carbons containing lower amount of phosphorylated groups, such as P/N-0.25, are less prone to deactivation. Keywords: Phosphorylated mesoporous carbons; fructose dehydration; HMF

  9. Dehydration protection provided by a maternal cuticle improves offspring fitness in the moss Funaria hygrometrica

    PubMed Central

    Budke, Jessica M.; Goffinet, Bernard; Jones, Cynthia S.

    2013-01-01

    Background and Aims In bryophytes the sporophyte offspring are in contact with, nourished from, and partially surrounded by the maternal gametophyte throughout their lifespan. During early development, the moss sporophyte is covered by the calyptra, a cap of maternal gametophyte tissue that has a multilayered cuticle. In this study the effects on sporophyte offspring fitness of removing the maternal calyptra cuticle, in combination with dehydration stress, is experimentally determined. Methods Using the moss Funaria hygrometrica, calyptra cuticle waxes were removed by chemical extraction and individuals were exposed to a short-term dehydration event. Sporophytes were returned to high humidity to complete development and then aspects of sporophyte survival, development, functional morphology, and reproductive output were measured. Key Results It was found that removal of calyptra cuticle under low humidity results in significant negative impacts to moss sporophyte fitness, resulting in decreased survival, increased tissue damage, incomplete sporophyte development, more peristome malformations, and decreased reproductive output. Conclusions This study represents the strongest evidence to date that the structure of the calyptra cuticle functions in dehydration protection of the immature moss sporophyte. The investment in a maternal calyptra with a multilayered cuticle increases offspring fitness and provides a functional explanation for calyptra retention across mosses. The moss calyptra may represent the earliest occurance of maternal protection via structural provisioning of a cuticle in green plants. PMID:23471009

  10. Effects of Kraft lignin on hydrolysis/dehydration of sugars, cellulosic and lignocellulosic biomass under hot compressed water.

    PubMed

    Daorattanachai, Pornlada; Viriya-empikul, Nawin; Laosiripojana, Navadol; Faungnawakij, Kajornsak

    2013-09-01

    The effect of Kraft lignin presenting on the hydrolysis and dehydration of C5 and C6 sugars, cellulose, hemicelluloses and biomass under hot compressed water (HCW) in the presence of H3PO4 catalyst was intensively studied. The lignin strongly inhibited the acid hydrolysis of cellulose and hemicellulose to glucose and xylose, respectively. Interestingly, the admixed lignin markedly promoted the isomerization of glucose to fructose, and dehydration of fructose (except at the low catalyst loading), resulting in high 5-hydroxymethylfurfural yields. Nonetheless, lignin inhibited the hydrolysis of xylan to xylose and dehydration of xylose to furfural. Moreover, the acidity of the system significantly affects the hydrolysis/dehydration of biomass. It was revealed that the presence of lignin strongly interfered the yields of sugars and furans produced from raw corncob, while the delignified corncob provided significant improvement of product yields, confirming the observed role of lignin in the biomass conversion system via sugar platforms. PMID:23907066

  11. Comparison Between the Continuous and Intermittent Heating Methods for Simultaneous Infrared Dry-Blanching and Dehydration of Apple Slices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Simultaneous infrared dry-blanching and dehydration (SIRDBD) can be operated in two heating modes, continuous and intermittent heating. Under continuous heating, infrared radiation intensity was kept constant while the product temperature remained constant under intermittent heating in this study. ...

  12. Effect of hydration and dehydration on initiation and dynamics of some physiological reactions in desiccation tolerant cyanobacterium Scytonema geitleri.

    PubMed

    Tiwari, B S; Tripathi, S N

    1998-06-01

    The effect of hydration and dehydration has been studied on extent and recovery of some metabolic reactions in desiccation tolerant terrestrial cyanobacterium Scytonema geitleri. The results show that the energy transducing reactions like photochemical reactions of photosynthesis recover first, followed by increase in ATP pool size. During later phase of hydration, appearance of energy consuming processes such as CO2 fixation and nitrogen fixation have been observed. Sensitivity of reactions during dehydration followed the pattern reverse to recovery processes. PMID:9803667

  13. Dehydration accelerates reductions in cerebral blood flow during prolonged exercise in the heat without compromising brain metabolism

    PubMed Central

    Trangmar, Steven J.; Chiesa, Scott T.; Llodio, Iñaki; Garcia, Benjamin; Kalsi, Kameljit K.; Secher, Niels H.

    2015-01-01

    Dehydration hastens the decline in cerebral blood flow (CBF) during incremental exercise, whereas the cerebral metabolic rate for O2 (CMRO2) is preserved. It remains unknown whether CMRO2 is also maintained during prolonged exercise in the heat and whether an eventual decline in CBF is coupled to fatigue. Two studies were undertaken. In study 1, 10 male cyclists cycled in the heat for ∼2 h with (control) and without fluid replacement (dehydration) while internal and external carotid artery blood flow and core and blood temperature were obtained. Arterial and internal jugular venous blood samples were assessed with dehydration to evaluate CMRO2. In study 2, in 8 male subjects, middle cerebral artery blood velocity was measured during prolonged exercise to exhaustion in both dehydrated and euhydrated states. After a rise at the onset of exercise, internal carotid artery flow declined to baseline with progressive dehydration (P < 0.05). However, cerebral metabolism remained stable through enhanced O2 and glucose extraction (P < 0.05). External carotid artery flow increased for 1 h but declined before exhaustion. Fluid ingestion maintained cerebral and extracranial perfusion throughout nonfatiguing exercise. During exhaustive exercise, however, euhydration delayed but did not prevent the decline in cerebral perfusion. In conclusion, during prolonged exercise in the heat, dehydration accelerates the decline in CBF without affecting CMRO2 and also restricts extracranial perfusion. Thus, fatigue is related to a reduction in CBF and extracranial perfusion rather than CMRO2. PMID:26371170

  14. Dehydration accelerates reductions in cerebral blood flow during prolonged exercise in the heat without compromising brain metabolism.

    PubMed

    Trangmar, Steven J; Chiesa, Scott T; Llodio, Iñaki; Garcia, Benjamin; Kalsi, Kameljit K; Secher, Niels H; González-Alonso, José

    2015-11-01

    Dehydration hastens the decline in cerebral blood flow (CBF) during incremental exercise, whereas the cerebral metabolic rate for O2 (CMRO2 ) is preserved. It remains unknown whether CMRO2 is also maintained during prolonged exercise in the heat and whether an eventual decline in CBF is coupled to fatigue. Two studies were undertaken. In study 1, 10 male cyclists cycled in the heat for ∼2 h with (control) and without fluid replacement (dehydration) while internal and external carotid artery blood flow and core and blood temperature were obtained. Arterial and internal jugular venous blood samples were assessed with dehydration to evaluate CMRO2 . In study 2, in 8 male subjects, middle cerebral artery blood velocity was measured during prolonged exercise to exhaustion in both dehydrated and euhydrated states. After a rise at the onset of exercise, internal carotid artery flow declined to baseline with progressive dehydration (P < 0.05). However, cerebral metabolism remained stable through enhanced O2 and glucose extraction (P < 0.05). External carotid artery flow increased for 1 h but declined before exhaustion. Fluid ingestion maintained cerebral and extracranial perfusion throughout nonfatiguing exercise. During exhaustive exercise, however, euhydration delayed but did not prevent the decline in cerebral perfusion. In conclusion, during prolonged exercise in the heat, dehydration accelerates the decline in CBF without affecting CMRO2 and also restricts extracranial perfusion. Thus, fatigue is related to a reduction in CBF and extracranial perfusion rather than CMRO2 .

  15. Dehydration stress-induced oscillations in LEA protein transcripts involves abscisic acid in the moss, Physcomitrella patens.

    PubMed

    Shinde, Suhas; Nurul Islam, M; Ng, Carl K-Y

    2012-07-01

    • Physcomitrella patens is a bryophyte belonging to early diverging lineages of land plants following colonization of land in the Ordovician period. Mosses are typically found in refugial habitats and can experience rapidly fluctuating environmental conditions. The acquisition of dehydration tolerance by bryophytes is of fundamental importance as they lack water-conducting tissues and are generally one cell layer thick. • Here, we show that dehydration induced oscillations in the steady-state transcript abundances of two group 3 late embryogenesis abundant (LEA) protein genes in P. patens protonemata, and that the amplitudes of these oscillations are reflective of the severity of dehydration stress. • Dehydration stress also induced elevations in the concentrations of abscisic acid (ABA), and ABA alone can also induce dosage-dependent oscillatory increases in the steady-state abundance of LEA protein transcripts. Additionally, removal of ABA resulted in rapid attenuation of these oscillatory increases. • Our data demonstrate that dehydration stress-regulated expression of LEA protein genes is temporally dynamic and highlight the importance of oscillations as a robust mechanism for optimal responses. Our results suggest that dehydration stress-induced oscillations in the steady-state abundance of LEA protein transcripts may constitute an important cellular strategy for adaptation to life in a constantly changing environment. PMID:22591374

  16. Dehydration accelerates reductions in cerebral blood flow during prolonged exercise in the heat without compromising brain metabolism.

    PubMed

    Trangmar, Steven J; Chiesa, Scott T; Llodio, Iñaki; Garcia, Benjamin; Kalsi, Kameljit K; Secher, Niels H; González-Alonso, José

    2015-11-01

    Dehydration hastens the decline in cerebral blood flow (CBF) during incremental exercise, whereas the cerebral metabolic rate for O2 (CMRO2 ) is preserved. It remains unknown whether CMRO2 is also maintained during prolonged exercise in the heat and whether an eventual decline in CBF is coupled to fatigue. Two studies were undertaken. In study 1, 10 male cyclists cycled in the heat for ∼2 h with (control) and without fluid replacement (dehydration) while internal and external carotid artery blood flow and core and blood temperature were obtained. Arterial and internal jugular venous blood samples were assessed with dehydration to evaluate CMRO2 . In study 2, in 8 male subjects, middle cerebral artery blood velocity was measured during prolonged exercise to exhaustion in both dehydrated and euhydrated states. After a rise at the onset of exercise, internal carotid artery flow declined to baseline with progressive dehydration (P < 0.05). However, cerebral metabolism remained stable through enhanced O2 and glucose extraction (P < 0.05). External carotid artery flow increased for 1 h but declined before exhaustion. Fluid ingestion maintained cerebral and extracranial perfusion throughout nonfatiguing exercise. During exhaustive exercise, however, euhydration delayed but did not prevent the decline in cerebral perfusion. In conclusion, during prolonged exercise in the heat, dehydration accelerates the decline in CBF without affecting CMRO2 and also restricts extracranial perfusion. Thus, fatigue is related to a reduction in CBF and extracranial perfusion rather than CMRO2 . PMID:26371170

  17. Photosynthetic parameters of sexually different parts of Porphyra katadai var. hemiphylla (Bangiales, Rhodophyta) during dehydration and re-hydration.

    PubMed

    Lin, A-Peng; Wang, Guang-Ce; Yang, Fang; Pan, Guang-Hua

    2009-03-01

    Physiological data from extreme habitat organisms during stresses are vital information for comprehending their survival. The intertidal seaweeds are exposed to a combination of environmental stresses, the most influential one being regular dehydration and re-hydration. Porphyra katadai var. hemiphylla is a unique intertidal macroalga species with two longitudinally separated, color distinct, sexually different parts. In this study, the photosynthetic performance of both PSI and PSII of the two sexually different parts of P. katadai thalli during dehydration and re-hydration was investigated. Under low-grade dehydration the variation of photosystems of male and female parts of P. katadai were similar. However, after the absolute water content reached 42%, the PSI of the female parts was nearly shut down while that of the male parts still coordinated well and worked properly with PSII. Furthermore, after re-hydration with a better conditioned PSI, the dehydrated male parts were able to restore photosynthesis within 1 h, while the female parts did not. It is concluded that in P. katadai the susceptibility of photosynthesis to dehydration depends on the accommodative ability of PSI. The relatively lower content of phycobiliprotein in male parts may be the cause for a stronger PSI after severe dehydration.

  18. Dehydration stress-induced oscillations in LEA protein transcripts involves abscisic acid in the moss, Physcomitrella patens.

    PubMed

    Shinde, Suhas; Nurul Islam, M; Ng, Carl K-Y

    2012-07-01

    • Physcomitrella patens is a bryophyte belonging to early diverging lineages of land plants following colonization of land in the Ordovician period. Mosses are typically found in refugial habitats and can experience rapidly fluctuating environmental conditions. The acquisition of dehydration tolerance by bryophytes is of fundamental importance as they lack water-conducting tissues and are generally one cell layer thick. • Here, we show that dehydration induced oscillations in the steady-state transcript abundances of two group 3 late embryogenesis abundant (LEA) protein genes in P. patens protonemata, and that the amplitudes of these oscillations are reflective of the severity of dehydration stress. • Dehydration stress also induced elevations in the concentrations of abscisic acid (ABA), and ABA alone can also induce dosage-dependent oscillatory increases in the steady-state abundance of LEA protein transcripts. Additionally, removal of ABA resulted in rapid attenuation of these oscillatory increases. • Our data demonstrate that dehydration stress-regulated expression of LEA protein genes is temporally dynamic and highlight the importance of oscillations as a robust mechanism for optimal responses. Our results suggest that dehydration stress-induced oscillations in the steady-state abundance of LEA protein transcripts may constitute an important cellular strategy for adaptation to life in a constantly changing environment.

  19. Using Wind and Temperature Fields to Study Dehydration Mechanisms in the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Pittman, Jasna; Miller, Timothy; Robertson, Franklin

    2008-01-01

    The tropics are the main region for troposphere-to-stratosphere transport (TST) of air. One of the dominant mechanisms that control tropical TST of water vapor is freeze-drying by the cold tropical tropopause. This mechanism is supported by evidence from satellite observations of the "tape recorder", where seasonal changes in stratospheric water vapor are in phase with seasonal changes in tropopause temperatures in the tropics. Over the last few years, however, the concept of the tropical tropopause has evolved from a single material surface to a layer called the Tropical Tropopause Layer (TTL). A recent hypothesis on dehydration mechanisms suggests that dehydration and entry point into the stratosphere are not always co-located (Holton and Gettelman, 2001). Instead, dehydration can occur during horizontal advection through Lagrangian 'cold pools', or coldest regions along a parcel's trajectory, as air ascends within the TTL while the entry point into the stratosphere occurs at a different geographical location. In this study, we investigate the impact that these Lagrangian cold pools have on TTL moisture. For this purpose, we use in situ measurements of TTL water vapor obtained aboard NASA's WB-57 aircraft over the Eastern Tropical Pacific, and we compare these measurements to minimum saturation water vapor mixing ratios obtained from three-dimensional backward trajectory calculations. Aircraft measurements show frequent unsaturated conditions, which suggest that the entry value of stratospheric water vapor in this region was not set by local saturation conditions. Trajectory calculations, driven by both ECMWF operational analysis and reanalysis winds and temperature fields, are used to explore the impact (e.g., geographical location, timing, dehydration magnitude) of the Lagrangian cold pools intercepted by the parcels sampled by the aircraft. We find noteworthy differences in the location of the Lagrangian cold pools using the two ECMWF data sets, namely

  20. Luminescence induced by dehydration of kaolin - Association with electron-spin-active centers and with surface activity for dehydration-polymerization of glycine

    NASA Technical Reports Server (NTRS)

    Coyne, L.; Hovatter, W.; Sweeney, M.

    1983-01-01

    Experimental data concerning emission of light upon dehydration as a function of preheating and pre-gamma-irradiation are correlated with reported studies of electron-spin resonance (ESR) activity after similar pretreatments. The effect of these pretreatments on the kaolin-promoted incorporation of glycine into peptide oligomers in a wet/cold, hot/dry fluctuating environment is compared to their effect on the ESR and luminescent signals. The existence of spectroscopically active centers appears to be loosely anticorrelated with reaction yield; these yields are increased by increasing the overall energy content of the material. It is concluded that some part of the chemical yield is produced by a mechanism involving intrinsic, excited electronic states of the clay crystal lattice. These states may be derived from thermally, interfacially, and/or mechanically induced charge reorganization within interspersed energy levels in the band structure of the material.