Sample records for dehydridation

  1. Dehydriding properties of Ti or/and Zr-doped sodium aluminum hydride prepared by ball-milling

    NASA Astrophysics Data System (ADS)

    Xiao, Xue-Zhang; Chen, Li-Xin; Wang, Xin-Hua; Li, Shou-Quan; Hang, Zhou-Ming; Chen, Chang-Pin; Wang, Qi-Dong

    2007-12-01

    The NaAlH4 complex is attracting great attention for its potential applications in hydrogen-powered fuel-cell vehicles due to its high hydrogen storage capacity and suitable thermodynamic properties. However, its practicable hydrogen storage capacity presently obtained is less than the theoretical capacity (5.6 wt.%). To improve the hydrogen capacity, we chose metallic Ti or/and Zr powder as catalyst dopants, and prepared the sodium aluminum hydride by hydrogenation of ball-milled NaH/Al mixture containing 10 mol% dopants with different proportions of Ti and Zr, and then investigated the effects on their hydrogen storage (dehydriding) properties. The results showed that different catalyst dopants affected the dehydriding properties greatly. The catalysis of metal Ti as a catalyst dopant alone on dehydriding kinetics for the entire dehydrogenation process of ball-milled (NaH/Al) composite was higher than that of adopting Zr alone. The synergistic catalytic effect of Ti and Zr together as co-dopants on the dehydrogenation process of (NaH/Al) composite was higher than that using only Ti or Zr as dopant individually. The composite doped with proper proportion of Ti and Zr together (8 mol% Ti+ 2 mol% Zr) as co-dopants exhibited the highest dehydriding kinetic property and desorption capacity.

  2. Method for producing electrodes using microscale or nanoscale materials obtained from hydrogendriven metallurgical reactions

    DOEpatents

    Reilly, James J.; Adzic, Gordana D.; Johnson, John R.; Vogt, Thomas; McBreen, James

    2003-09-02

    A method is provided for producing electrodes using microscale and nanoscale metal materials formed from hydrogen driven metallurgical processes; such a the HD (hydriding, dehydriding) process, the HDDR (hydriding, dehydriding, disproportionation, and recombination) process, and variants thereof.

  3. Titanium compacts produced by the pulvimetallurgical hydride-dehydride method for biomedical applications.

    PubMed

    Barreiro, M M; Grana, D R; Kokubu, G A; Luppo, M I; Mintzer, S; Vigna, G

    2010-04-01

    Titanium powder production by the hydride-dehydride method has been developed as a non-expensive process. In this work, commercially pure grade two Ti specimens were hydrogenated. The hydrided material was milled in a planetary mill. The hydrided titanium powder was dehydrided and then sieved to obtain a particle size between 37 and 125 microm in order to compare it with a commercial powder produced by chemical reduction with a particle size lower than 150 microm. Cylindrical green compacts were obtained by uniaxial pressing of the powders at 343 MPa and sintering in vacuum. The powders and the density of sintered compacts were characterized, the oxygen content was measured and in vivo tests were performed in the tibia bones of Wistar rats in order to evaluate their biocompatibility. No differences were observed between the materials which were produced either with powders obtained by the hydride-dehydride method or with commercial powders produced by chemical reduction regarding modifications in compactation, sintering and biological behaviour.

  4. Hydriding and dehydriding rates of Mg, Mg-10TaF5, and Mg-10NbF5 prepared via reactive mechanical grinding

    NASA Astrophysics Data System (ADS)

    Song, Myoung Youp; Kwak, Young Jun; Lee, Seong Ho; Park, Hye Ryoung

    2015-01-01

    In this work, TaF5 and NbF5 were chosen as additives to enhance the hydriding and dehydriding rates of Mg. Mg, Mg-10TaF5, and Mg-10NbF5 samples were prepared by reactive mechanical grinding. The hydriding and dehydriding properties of the samples were then examined. Mg-10TaF5 had the largest amount of hydrogen absorbed for 30 min and the highest initial dehydriding rate after incubation period, followed in order by Mg-10NbF5, and Mg. At 593 K under 12 bar H2 at the first cycle, Mg-10TaF5 absorbed 3.63 wt% H for 5 min and 4.53 wt% H for 30 min. At 593 K under 1.0 bar H2 at the first cycle, Mg-10TaF5 desorbed 0 wt% H for 2.5 min, 0.59 wt% H for 5 min, 3.42 wt% H for 30 min, and 4.24 wt% H for 60 min. The reactive mechanical grinding of Mg with TaF5 or NbF5 is believed to have facilitated the nucleation and to have decreased the diffusion distances of hydrogen atoms. These two effects are believed to have increased the hydriding and dehydriding rates of Mg. The MgF2 and Ta2H formed in Mg-10TaF5, and the MgF2, NbH2, and NbF3 formed in Mg-10NbF5 are considered to have enhanced both of these effects.

  5. Method for preparing porous metal hydride compacts

    DOEpatents

    Ron, M.; Gruen, D.M.; Mendelsohn, M.H.; Sheft, I.

    1980-01-21

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  6. Method for preparing porous metal hydride compacts

    DOEpatents

    Ron, Moshe; Gruen, Dieter M.; Mendelsohn, Marshall H.; Sheft, Irving

    1981-01-01

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  7. Low-Pressure and Low-Temperature Hydriding-Pulverization-Dehydriding Method for Producing Shape Memory Alloy Powders

    NASA Astrophysics Data System (ADS)

    Murguia, Silvia Briseño; Clauser, Arielle; Dunn, Heather; Fisher, Wendy; Snir, Yoav; Brennan, Raymond E.; Young, Marcus L.

    2018-04-01

    Shape memory alloys (SMAs) are of high interest as active, adaptive "smart" materials for applications such as sensors and actuators due to their unique properties, including the shape memory effect and pseudoelasticity. Binary NiTi SMAs have shown the most desirable properties, and consequently have generated the most commercial success. A major challenge for SMAs, in particular, is their well-known compositional sensitivity. Therefore, it is critical to control the powder composition and morphology. In this study, a low-pressure, low-temperature hydriding-pulverization-dehydriding method for preparing well-controlled compositions, size, and size distributions of SMA powders from wires is presented. Starting with three different diameters of as-drawn martensitic NiTi SMA wires, pre-alloyed NiTi powders of various well-controlled sizes are produced by hydrogen charging the wires in a heated H3PO4 solution. After hydrogen charging for different charging times, the wires are pulverized and subsequently dehydrided. The wires and the resulting powders are characterized using scanning electron microscopy, differential scanning calorimetry, and X-ray diffraction. The relationship between the wire diameter and powder size is investigated as a function of hydrogen charging time. The rate of diameter reduction after hydrogen charging of wire is also examined. Finally, the recovery behavior due to the shape memory effect is investigated after dehydriding.

  8. Development of an Mg-Based Alloy with High Hydriding and Dehydriding Rates and Large Hydrogen Storage Capacity by Adding TaF5.

    PubMed

    Kwak, Young Jun; Lee, Seong Ho; Song, Myoung Youp

    2018-09-01

    A sample with a composition of 95 wt% Mg + 5 wt% TaF5 (named Mg-5TaF5) was prepared by reactive mechanical grinding. The activation of Mg-5TaF5 was not necessary, and Mg-5TaF5 had an effective hydrogen storage capacity (the quantity of hydrogen absorbed for 60 min) larger than 5 wt%. At the first cycle (n = 1), the sample absorbed 4.50 wt% H for 10 min and 5.06 wt% H for 60 min at 593 K under 12 bar H2. At n = 1, the sample desorbed 1.58 wt% H for 10 min and 4.93 wt% H for 60 min at 593 K under 1.0 bar H2. The Mg-5TaF5 sample dehydrided at n = 3 contained MgF2 and Ta2H. The hydriding-dehydriding cycling of the sample, which forms MgF2 and Ta2H by reaction with hydrogen, is considered to produce defects on the surface of and inside the Mg particles, to create clean surfaces, and to reduce the particle size of Mg, due to the repetition of expansion with hydrogen absorption and contraction with hydrogen release. Mg-5TaF5 had a higher hydriding rate and a higher dehydriding rate after an incubation period and greater quantities of hydrogen absorbed and desorbed for 60 min than Mg-10TaF5, Mg-10MnO, or Mg-10Fe2O3.

  9. Porous metal hydride composite and preparation and uses thereof

    DOEpatents

    Steyert, W.A.; Olsen, C.E.

    1980-03-12

    A composite formed from large pieces of aggregate formed from (1) metal hydride (or hydride-former) powder and (2) either metal powder or plastic powder or both is prepared. The composite has large macroscopic interconnected pores (much larger than the sizes of the powders which are used) and will have a very fast heat transfer rate and low windage loss. It will be useful, for example, in heat engines, hydrogen storage devices, and refrigerator components which depend for their utility upon both a fast rate of hydriding and dehydriding. Additionally, a method of preparing the composite and a method of increasing the rates of hydriding and dehydriding of metal hydrides are also given.

  10. Porous metal hydride composite and preparation and uses thereof

    DOEpatents

    Steyert, William A.; Olsen, Clayton E.

    1982-01-01

    A composite formed from large pieces of aggregate formed from (1) metal hydride (or hydride-former) powder and (2) either metal powder or plastic powder or both is prepared. The composite has large macroscopic interconnected pores (much larger than the sizes of the powders which are used) and will have a very fast heat transfer rate and low windage loss. It will be useful, for example, in heat engines, hydrogen storage devices, and refrigerator components which depend for their utility upon both a fast rate of hydriding and dehydriding. Additionally, a method of preparing the composite and a method of increasing the rates of hydriding and dehydriding of metal hydrides are also given.

  11. Effect of amorphous Mg{sub 50}Ni{sub 50} on hydriding and dehydriding behavior of Mg{sub 2}Ni alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guzman, D., E-mail: danny.guzman@uda.cl; Ordonez, S.; Fernandez, J.F.

    Composite Mg{sub 2}Ni (25 wt.%) amorphous Mg{sub 50}Ni{sub 50} was prepared by mechanical milling starting with nanocrystalline Mg{sub 2}Ni and amorphous Mg{sub 50}Ni{sub 50} powders, by using a SPEX 8000 D mill. The morphological and microstructural characterization of the powders was performed via scanning electron microscopy and X-ray diffraction. The hydriding characterization of the composite was performed via a solid gas reaction method in a Sievert's-type apparatus at 363 K under an initial hydrogen pressure of 2 MPa. The dehydriding behavior was studied by differential thermogravimetry. On the basis of the results, it is possible to conclude that amorphous Mg{submore » 50}Ni{sub 50} improved the hydriding and dehydriding kinetics of Mg{sub 2}Ni alloy upon cycling. A tentative rationalization of experimental observations is proposed. - Research Highlights: {yields} First study of the hydriding behavior of composite Mg{sub 2}Ni (25 wt.%) amorphous Mg{sub 50}Ni{sub 50}. {yields} Microstructural characterization of composite material using XRD and SEM was obtained. {yields} An improved effect of Mg{sub 50}Ni{sub 50} on the Mg{sub 2}Ni hydriding behavior was verified. {yields} The apparent activation energy for the hydrogen desorption of composite was obtained.« less

  12. Alloys for hydrogen storage in nickel/hydrogen and nickel/metal hydride batteries

    NASA Technical Reports Server (NTRS)

    Anani, Anaba; Visintin, Arnaldo; Petrov, Konstantin; Srinivasan, Supramaniam; Reilly, James J.; Johnson, John R.; Schwarz, Ricardo B.; Desch, Paul B.

    1993-01-01

    Since 1990, there has been an ongoing collaboration among the authors in the three laboratories to (1) prepare alloys of the AB(sub 5) and AB(sub 2) types, using arc-melting/annealing and mechanical alloying/annealing techniques; (2) examine their physico-chemical characteristics (morphology, composition); (3) determine the hydrogen absorption/desorption behavior (pressure-composition isotherms as a function of temperature); and (4) evaluate their performance characteristics as hydride electrodes (charge/discharge, capacity retention, cycle life, high rate capability). The work carried out on representative AB(sub 5) and AB(sub 2) type modified alloys (by partial substitution or with small additives of other elements) is presented. The purpose of the modification was to optimize the thermodynamics and kinetics of the hydriding/dehydriding reactions and enhance the stabilities of the alloys for the desired battery applications. The results of our collaboration, to date, demonstrate that (1) alloys prepared by arc melting/annealing and mechanical alloying/annealing techniques exhibit similar morphology, composition and hydriding/dehydriding characteristics; (2) alloys with the appropriate small amounts of substituent or additive elements: (1) retain the single phase structure, (2) improve the hydriding/dehydriding reactions for the battery applications, and (3) enhance the stability in the battery environment; and (3) the AB(sub 2) type alloys exhibit higher energy densities than the AB(sub 5) type alloys but the state-of-the-art, commercialized batteries are predominantly manufactured using Ab(sub 5) type alloys.

  13. Evidence of the hydrogen release mechanism in bulk MgH2

    PubMed Central

    Nogita, Kazuhiro; Tran, Xuan Q.; Yamamoto, Tomokazu; Tanaka, Eishi; McDonald, Stuart D.; Gourlay, Christopher M.; Yasuda, Kazuhiro; Matsumura, Syo

    2015-01-01

    Hydrogen has the potential to power much of the modern world with only water as a by-product, but storing hydrogen safely and efficiently in solid form such as magnesium hydride remains a major obstacle. A significant challenge has been the difficulty of proving the hydriding/dehydriding mechanisms and, therefore, the mechanisms have long been the subject of debate. Here we use in situ ultra-high voltage transmission electron microscopy (TEM) to directly verify the mechanisms of the hydride decomposition of bulk MgH2 in Mg-Ni alloys. We find that the hydrogen release mechanism from bulk (2 μm) MgH2 particles is based on the growth of multiple pre-existing Mg crystallites within the MgH2 matrix, present due to the difficulty of fully transforming all Mg during a hydrogenation cycle whereas, in thin samples analogous to nano-powders, dehydriding occurs by a ‘shrinking core' mechanism. PMID:25677421

  14. Phase Equilibria, Crystal Structure and Hydriding/Dehydriding Mechanism of Nd4Mg80Ni8 Compound

    PubMed Central

    Luo, Qun; Gu, Qin-Fen; Zhang, Jie-Yu; Chen, Shuang-Lin; Chou, Kuo-Chih; Li, Qian

    2015-01-01

    In order to find out the optimal composition of novel Nd-Mg-Ni alloys for hydrogen storage, the isothermal section of Nd-Mg-Ni system at 400 °C is established by examining the equilibrated alloys. A new ternary compound Nd4Mg80Ni8 is discovered in the Mg-rich corner. It has the crystal structure of space group I41/amd with lattice parameters of a = b = 11.2743(1) Å and c = 15.9170(2) Å, characterized by the synchrotron powder X-ray diffraction (SR-PXRD). High-resolution transmission electron microscopy (HR-TEM) is used to investigate the microstructure of Nd4Mg80Ni8 and its hydrogen-induced microstructure evolution. The hydrogenation leads to Nd4Mg80Ni8 decomposing into NdH2.61-MgH2-Mg2NiH0.3 nanocomposites, where the high density phase boundaries provide a great deal of hydrogen atoms diffusion channels and nucleation sites of hydrides, which greatly enhances the hydriding/dehydriding (H/D) properties. The Nd4Mg80Ni8 exhibits a good cycle ability. The kinetic mechanisms of H/D reactions are studied by Real Physical Picture (RPP) model. The rate controlling steps are diffusion for hydriding reaction in the temperature range of 100 ~ 350 °C and surface penetration for dehydriding reaction at 291 ~ 347 °C. In-situ SR-PXRD results reveal the phase transformations of Mg to MgH2 and Mg2Ni to Mg2NiH4 as functions of hydrogen pressure and hydriding time. PMID:26471964

  15. Thermophysicochemical Reaction of ZrCo-Hydrogen-Helium System

    NASA Astrophysics Data System (ADS)

    Jung, Kwangjin; Kang, Hee-Seok; Yun, Sei-Hun; Chung, Hongsuk

    2017-11-01

    Nuclear fusion energy, which is clean and infinite, has been studied for more than half a century. Efforts are in progress worldwide for the demonstration and validation of nuclear fusion energy. Korea has been developing hydrogen isotope storage and delivery system (SDS) technologies including a basic scientific study on a hydrogen storage medium. An SDS bed, which is a key component of the SDS, is used for storing hydrogen isotopes in a metal hydride form and supplying them to a tokamak. Thermophysicochemical properties of the ZrCo-H2-He system are investigated for the practical utilization of a hydriding alloy system. The hydriding reaction, in which ZrCoHx is composed as ZrCo absorbing hydrogen, is exothermic. The dehydriding reaction, in which ZrCoHx decomposes into ZrCo and hydrogen, is endothermic. The heat generated through the hydriding reaction interrupts the hydriding progress. The heat loss by a dehydriding reaction impedes the dehydriding progress. The tritium decay product, helium-3, covers the ZrCo and keeps the hydrogen from contact with ZrCo in the SDS bed. In this study, we designed and fabricated a ZrCo bed and its performance test rig. The helium blanketing effect on a ZrCo hydrogen reaction with 0 % to 20 % helium content in a gaseous phase and a helium blanket removal method were studied experimentally. In addition, the volumetric flow rates and temperature at the beginning of a ZrCo hydrogen reaction in a hydrogen or helium atmosphere, and the cooling of the SDS bed by radiation only and by both radiation and natural convection related to the reuse cycle, were obtained.

  16. Ionization Capabilities of Hydronium Ions and High Electric Fields Produced by Atmospheric Pressure Corona Discharge.

    PubMed

    Sato, Natsuhiko; Sekimoto, Kanako; Takayama, Mitsuo

    2016-01-01

    Atmospheric pressure corona discharge (APCD) was applied to the ionization of volatile organic compounds. The mass spectra of analytes having aromatic, phenolic, anilinic, basic and aliphatic in nature were obtained by using vapor supply and liquid smear supply methods. The vapor supply method mainly gave protonated analytes [A+H] + caused by proton transfer from hydronium ion H 3 O + , except for benzene, toluene and n -hexane that have lower proton affinity. The use of the liquid smear supply method resulted in the formation of molecular ion A ·+ and/or dehydride analyte [A-H] + , according to the nature of analytes used. The formation of A ·+ without fragment ions could be explained by the electron tunneling via high electric fields 10 8  V/m at the tip of the corona needle. The dehydride analytes [A-H] + observed in the mass spectra of n -hexane, di- and tributylamines may be explained by the hydride abstraction from the alkyl chains by the hydronium ion. The hydronium ion can play the two-roles for analytes, i.e. , the proton donor to form [A+H] + and the hydride acceptor to form [A-H] + .

  17. Ionization Capabilities of Hydronium Ions and High Electric Fields Produced by Atmospheric Pressure Corona Discharge

    PubMed Central

    Sato, Natsuhiko; Sekimoto, Kanako; Takayama, Mitsuo

    2016-01-01

    Atmospheric pressure corona discharge (APCD) was applied to the ionization of volatile organic compounds. The mass spectra of analytes having aromatic, phenolic, anilinic, basic and aliphatic in nature were obtained by using vapor supply and liquid smear supply methods. The vapor supply method mainly gave protonated analytes [A+H]+ caused by proton transfer from hydronium ion H3O+, except for benzene, toluene and n-hexane that have lower proton affinity. The use of the liquid smear supply method resulted in the formation of molecular ion A·+ and/or dehydride analyte [A−H]+, according to the nature of analytes used. The formation of A·+ without fragment ions could be explained by the electron tunneling via high electric fields 108 V/m at the tip of the corona needle. The dehydride analytes [A−H]+ observed in the mass spectra of n-hexane, di- and tributylamines may be explained by the hydride abstraction from the alkyl chains by the hydronium ion. The hydronium ion can play the two-roles for analytes, i.e., the proton donor to form [A+H]+ and the hydride acceptor to form [A−H]+. PMID:28616372

  18. Functional anion concept: effect of fluorine anion on hydrogen storage of sodium alanate.

    PubMed

    Yin, Li-Chang; Wang, Ping; Kang, Xiang-Dong; Sun, Cheng-Hua; Cheng, Hui-Ming

    2007-03-28

    Doping NaAlH(4) with Ti-catalyst has produced a promising hydrogen storage system that can be reversibly operated at moderate temperature conditions. Of the various dopant precursors, TiCl(3) was well recognized due to its pronounced catalytic effect on the reversible dehydrogenation processes of sodium aluminium hydrides. Quite recently we experimentally found that TiF(3) was even better than TiCl(3) in terms of the critical hydrogen storage properties of the doped hydrides, in particular the dehydriding performance at Na(3)AlH(6)/NaH + Al step at moderate temperature. We present here the DFT calculation results of the TiF(3) or TiCl(3) doped Na(3)AlH(6). Our computational studies have demonstrated that F(-) and Cl(-) anions differ substantially from each other with regard to the state and function in the doped sodium aluminium hydride. In great contrast to the case of chloride doping where Cl(-) anion constitutes the "dead weight" NaCl, the fluoride doping results in a substitution of H(-) by F(-) anion in the hydride lattice and accordingly, a favorable thermodynamics adjustment. These results well explain the observed dehydriding performance associated with TiF(3)/TiCl(3)-doping. More significantly, the coupled computational and experimental efforts allow us to put forward a "functional anion" concept. This renews the current mechanism understanding in the catalytically enhanced sodium alanate.

  19. Reaction Rate of Ti0.18Zr0.84Cr1.0Fe0.7Mn0.3Cu0.057 to Use for the Heat Driven Type Compact Metal Hydride Refrigerator

    NASA Astrophysics Data System (ADS)

    Bae, Sang-Chul; Katsuta, Masafumi

    Our final goal of this study is to develop the heat driven type compact metal hydride (MH) refrigeration system for the vending machine and the show case, and to attain a refrigeration temperature of 243 K by using a heat source of about 423K. The reaction rate of the MH to use for the heat source, MH used for heat source is studied firstly because the MH refrigeration system consists of two MHs, one is used for the heat source and the other is used for the cooling load extracting. As for the reaction rate in the hydriding process, initially, a rapid surface reaction, governed by the relation 1-(1-F )1/3=kht . After the MH surface has been covered by hydride, the reaction becomes diffusion controlled with the relation 1-3(1-F ' )2/3+2(1-F ' )=k'ht . The reaction rates, kh and k'h , are exponentially proportional to the pressure difference and increase with temperature. And, as for the dehydriding process, it is found out that the rate-controlling step is uniquely diffusion reaction. The dehydriding reaction rate is exponentially proportional to the pressure difference and the initial reacted fraction, and increases with temperature. Finally, on the basis of these experimental results, the brand new rate correlations are reasonably derived. The predicted results for this correlation are in successfully agreement with the experimental ones.

  20. Argon-shielded hot pressing of titanium alloy (Ti6Al4V) powders.

    PubMed

    Gronostajski, Zbigniew; Bandoła, P; Skubiszewski, T

    2010-01-01

    The paper presents the method of the argon - shielded hot pressing of titanium alloy (Ti6A14V) powder (used in medical industry). The powders produced in the GA (gas atomization) process and in the HDH (hydride - dehydride) process were used in the experiments. A pressing process was conducted at a temperature of 800-850 degrees C for different lengths of time. An unoxidized sintered material, nearly as dense as a solid material and having a lamellar structure (alpha+beta), was obtained from the titanium alloy powder produced in the HDH process.

  1. Kinetics of Hydrogen Diffusion in LaNi(sub 5-x)Sn(sub x) Alloys

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Hightower, A.; Witham, C.; Bowman, R. C.; Fultz, B.

    1996-01-01

    Solid-state diffusion of hydrogen in metal hydride (MH) alloys is recognized as the rate determining step in the discharge of MH alloys in alkaline Ni-MH rechargeable cells. In our pursuit of new ternary solutes in LaNi(sub 5) for extended cycle lifetimes, we have observed noticeable improvement in the cycle life with small substitutions of Sn and Ge for Ni. Furthermore, these substituents also facilitate enhanced charge transfer kinetics for hydriding-dehydriding process. In this paper, we report our studies on the kinetics of hydrogen diffusion in LaNi(sub 5-x) Sn(sub x) alloys by electrochemical pulse techniques, chronoamperometry and chronocoulometry.

  2. Adsorption Characteristics of LaNi 5Particles

    NASA Astrophysics Data System (ADS)

    Song, M. Y.; Park, H. R.

    1997-11-01

    Nitrogen adsorption on an intermetallic compound, LaNi 5, was studied before and after activation and after hydriding-dehydriding cycling. The specific surface area of activated LaNi 5was 0.271±0.004 m 2g -1. Adsorption and desorption isotherms of activated LaNi 5were obtained. The adsorption isotherm was similar to type II among the five types of isotherms classified by S. Brunauer, L. S. Deming, W S. Deming, and E. Teller ( J. Am. Chem. Soc.62, 1723, 1940). Its hysteresis curve had the type B form among de Boer's five types of hysteresis. Desorption pore-size analyses showed that the activated LaNi 5had only a few mesopores, the diameters of which were around 20-110 Å. The average adsorption rate of the activated LaNi 5showed a first-order dependence on nitrogen pressure at 77 K.

  3. Synthesis and hydriding properties of Li 2Mg(NH) 2

    NASA Astrophysics Data System (ADS)

    Markmaitree, Tippawan; Shaw, Leon L.

    The phase pure Li 2Mg(NH) 2 has been synthesized via a dehydriding treatment of a ball milled 2LiNH 2 + MgH 2 mixture. This phase pure Li 2Mg(NH) 2 has been utilized to investigate its hydriding kinetics at the temperature range 180-220 °C. It is found that the hydriding process of Li 2Mg(NH) 2 is very sluggish even though it has favorable thermodynamic properties for near the ambient temperature operation. Holding at 200 °C for 10 h only results in 3.75 wt.% H 2 uptake. The detailed kinetic analysis reveals that the hydriding process of Li 2Mg(NH) 2 is diffusion-controlled. Thus, this study unambiguously indicates that the future direction to enhance the hydriding kinetics of this promising hydrogen storage material system should be to minimize the diffusion distance and increase the diffusion rate.

  4. Formation and mechanism of nanocrystalline AZ91 powders during HDDR processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yafen; Fan, Jianfeng, E-mail: fanjianfeng@tyu

    2017-03-15

    Grain sizes of AZ91 alloy powders were markedly refined to about 15 nm from 100 to 160 μm by an optimized hydrogenation-disproportionation-desorption-recombination (HDDR) process. The effect of temperature, hydrogen pressure and processing time on phase and microstructure evolution of AZ91 alloy powders during HDDR process was investigated systematically by X-ray diffraction, optical microscopy, scanning electron microscopy and transmission electron microscopy, respectively. The optimal HDDR process for preparing nanocrystalline Mg alloy powders is hydriding at temperature of 350 °C under 4 MPa hydrogen pressure for 12 h and dehydriding at 350 °C for 3 h in vacuum. A modified unreacted coremore » model was introduced to describe the mechanism of grain refinement of during HDDR process. - Highlights: • Grain size of the AZ91 alloy powders was significantly refined from 100 μm to 15 nm. • The optimal HDDR technology for nano Mg alloy powders is obtained. • A modified unreacted core model of grain refinement mechanism was proposed.« less

  5. Improved hydrogen storage properties of MgH2 catalyzed with TiO2

    NASA Astrophysics Data System (ADS)

    Jangir, Mukesh; Meena, Priyanka; Jain, I. P.

    2018-05-01

    In order to improve the hydrogenation properties of the MgH2, various concentration of rutile Titanium Oxide (TiO2) (X wt%= 5, 10, 15 wt %) is added to MgH2 by ball milling and the catalytic effect of TiO2 on hydriding/dehydriding properties of MgH2 has been investigated. Result shows that the TiO2 significantly reduced onset temperature of desorption. Onset temperature as low as 190 °C were observed for the MgH2-15 wt% TiO2 sample which is 60 °C and 160 °C lower than the as-milled and as-received MgH2. Fromm the Kissinger plot the activation energy of 15 wt% TiO2 added sample is calculated to be -75.48 KJ/mol. These results indicate that the hydrogenation properties of MgH2-TiO2 have been improved compared to the as-milled and as-received MgH2. Furthermore, XRD and XPS were performed to characterize the structural evolution upon milling and dehydrogenation.

  6. KH+Ti co-doped NaAlH4 for high-capacity hydrogen storage

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Kang, Xiang-Dong; Cheng, Hui-Ming

    2005-10-01

    A method for preparation of Ti-doped NaAlH4 with high hydrogen capacity was developed, in which the NaH/Al mixture was mechanically milled with a catalytic amount of KH together with metallic Ti. The addition of KH was found to result in a pronounced improvement in the dehydriding performance of the Na3AlH6/NaH+Al step. As a result, the practical cycling hydrogen capacity has been markedly enhanced from 3.3 wt % for the Ti-doped hydride to 4.7 wt % for KH+Ti co-doped material. Moreover, the pronounced enhancement on hydrogen capacity arising upon adding KH was observed to persist in the following dehydrogenation/hydrogenation cycles. Structural investigation shows that the addition of KH has led to a lattice expansion. Moreover, it was found that the enthalpy change of the Na3AlH6/NaH+Al decomposition step underwent a considerable decrease upon adding KH. Therefore, the observed property improvement may be ascribed to a favorable thermodynamic adjustment arising upon the addition of KH.

  7. Synthesis and sintering of UN-UO2 fuel composites

    NASA Astrophysics Data System (ADS)

    Jaques, Brian J.; Watkins, Jennifer; Croteau, Joseph R.; Alanko, Gordon A.; Tyburska-Püschel, Beata; Meyer, Mitch; Xu, Peng; Lahoda, Edward J.; Butt, Darryl P.

    2015-11-01

    The design and development of an economical, accident tolerant fuel (ATF) for use in the current light water reactor (LWR) fleet is highly desirable for the future of nuclear power. Uranium mononitride has been identified as an alternative fuel with higher uranium density and thermal conductivity when compared to the benchmark, UO2, which could also provide significant economic benefits. However, UN by itself reacts with water at reactor operating temperatures. In order to reduce its reactivity, the addition of UO2 to UN has been suggested. In order to avoid carbon impurities, UN was synthesized from elemental uranium using a hydride-dehydride-nitride thermal synthesis route prior to mixing with up to 10 wt% UO2 in a planetary ball mill. UN and UN - UO2 composite pellets were sintered in Ar - (0-1 at%) N2 to study the effects of nitrogen concentration on the evolved phases and microstructure. UN and UN-UO2 composite pellets were also sintered in Ar - 100 ppm N2 to assess the effects of temperature (1700-2000 °C) on the final grain morphology and phase concentration.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaques, Brian J.; Watkins, Jennifer; Croteau, Joseph R.

    In this study, the design and development of an economical, accident tolerant fuel (ATF) for use in the current light water reactor (LWR) fleet is highly desirable for the future of nuclear power. Uranium mononitride has been identified as an alternative fuel with higher uranium density and thermal conductivity when compared to the benchmark, UO 2, which could also provide significant economic benefits. However, UN by itself reacts with water at reactor operating temperatures. In order to reduce its reactivity, the addition of UO 2 to UN has been suggested. In order to avoid carbon impurities, UN was synthesized frommore » elemental uranium using a hydride-dehydride-nitride thermal synthesis route prior to mixing with up to 10 wt% UO 2 in a planetary ball mill. UN and UN – UO 2 composite pellets were sintered in Ar – (0–1 at%) N 2 to study the effects of nitrogen concentration on the evolved phases and microstructure. UN and UN-UO 2 composite pellets were also sintered in Ar – 100 ppm N 2 to assess the effects of temperature (1700–2000 °C) on the final grain morphology and phase concentration.« less

  9. Synthesis and sintering of UN-UO 2 fuel composites

    DOE PAGES

    Jaques, Brian J.; Watkins, Jennifer; Croteau, Joseph R.; ...

    2015-06-17

    In this study, the design and development of an economical, accident tolerant fuel (ATF) for use in the current light water reactor (LWR) fleet is highly desirable for the future of nuclear power. Uranium mononitride has been identified as an alternative fuel with higher uranium density and thermal conductivity when compared to the benchmark, UO 2, which could also provide significant economic benefits. However, UN by itself reacts with water at reactor operating temperatures. In order to reduce its reactivity, the addition of UO 2 to UN has been suggested. In order to avoid carbon impurities, UN was synthesized frommore » elemental uranium using a hydride-dehydride-nitride thermal synthesis route prior to mixing with up to 10 wt% UO 2 in a planetary ball mill. UN and UN – UO 2 composite pellets were sintered in Ar – (0–1 at%) N 2 to study the effects of nitrogen concentration on the evolved phases and microstructure. UN and UN-UO 2 composite pellets were also sintered in Ar – 100 ppm N 2 to assess the effects of temperature (1700–2000 °C) on the final grain morphology and phase concentration.« less

  10. Enhanced hydrogen sorption kinetics of Mg 50Ni-LiBH 4 composite by CeCl 3 addition

    NASA Astrophysics Data System (ADS)

    Gennari, F. C.; Puszkiel, J. A.

    Mg 50Ni-LiBH 4 and Mg 50Ni-LiBH 4-CeCl 3 composites have been prepared by short times of ball milling under argon atmosphere. Combination of HP-DSC and volumetric techniques show that Mg 50Ni-LiBH 4-CeCl 3 composite not only uptakes hydrogen faster than Mg 50Ni-LiBH 4, but also releases hydrogen at a lower temperature (225 °C). The presence of CeCl 3 has a catalytic role, but it does not modify the thermodynamic properties of the composite which corresponds to MgH 2. Experimental studies on the hydriding/dehydriding mechanisms demonstrate that LiBH 4 and Ni lead to the formation of MgNi 3B 2 in both composites. In addition, XRD/DSC analysis and thermodynamic calculations demonstrate that the addition of CeCl 3 accounts for the enhancement of the hydrogen absorption/desorption kinetics through the interaction with LiBH 4. The in situ formation and subsequent decomposition of Ce(BH 4) 3 provides a uniform distribution of nanosize CeB 4 compound, which plays an important role in improving the kinetic properties of MgH 2.

  11. Investigation of long term stability in metal hydrides

    NASA Technical Reports Server (NTRS)

    Marmaro, Roger W.; Lynch, Franklin E.; Chandra, Dhanesh; Lambert, Steve; Sharma, Archana

    1991-01-01

    It is apparent from the literature and the results of this study that cyclic degradation of AB(5) type metal hydrides varies widely according to the details of how the specimens are cycled. The Rapid Cycle Apparatus (RCA) used produced less degradation in 5000 to 10000 cycles than earlier work with a Slow Cycle Apparatus (SCA) produced in 1500 cycles. Evidence is presented that the 453 K (356 F) Thermal Aging (TA) time spent in the saturated condition causes hydride degradation. But increasing the cooling (saturation) period in the RCA did not greatly increase the rate of degradation. It appears that TA type degradation is secondary at low temperatures to another degradation mechanism. If rapid cycles are less damaging than slow cycles when the saturation time is equal, the rate of hydriding/dehydriding may be an important factor. The peak temperatures in the RCA were about 30 C lower than the SCA. The difference in peak cycle temperatures (125 C in the SCA, 95 C in RCA) cannot explain the differences in degradation. TA type degradation is similar to cyclic degradation in that nickel peaks and line broadening are observed in X ray diffraction patterns after either form of degradation.

  12. Study on the hydrogenation of Zircaloy-4

    NASA Astrophysics Data System (ADS)

    da Silva Dupim, Ivaldete; Moreira, João M. L.; Silva, Selma Luiza; Silva, Cecilia Chaves Guedes e.; Nunes, Oswaldo; Gomide, Ricardo Gonçalves

    2012-08-01

    In this article we investigate producing Zirconium powder from discarded Zircaloy-4 material through the hydride-dehydride method. We restrict our study to the first part of the method, namely the hydrogenation process. Differential thermal analyses of the hydrogenation process of the Zircaloy-4 show that no hydrogen absorption occurs at temperatures below 573 K and hydrogen gas pressure of 25 kPa. When the system temperature is raised to around 770 K, with the same gas pressure, the protecting oxide layer of the specimens can be overcome and they are quickly hydrogenated. The bulk of the reaction occurs in about 5 min with the precipitation of Zirconium hydrides in the Zr-δ and Zr-ɛ phases. Once the temperature passes 573 K, the incubation time to initiate the reaction is short (about 5 min). Tests in a tube furnace system with larger samples, hydrogen pressure varying from 30 to 180 kPa, and temperature from 700 to 833.15 K, show that the specimens are fully hydrogenated and can be easily pulverized. The results indicate that the hydrogenation of the Zircaloy-4 chips can be successfully undertaken at temperatures around 770 K and hydrogen gas pressure as low as 30 kPa.

  13. Hydrogen storage via polyhydride complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, C.M.; Zidan, R.A.

    1998-08-01

    The reversible dehydrogenation of NaAlH{sub 4} is catalyzed in toluene slurries of the NaAlH{sub 4} containing the pincer complex, IrH{sub 4} {l_brace}C{sub 6}H{sub 3}-2,6-(CH{sub 2}PBu{sup t}{sub 2}){sub 2}{r_brace}. The rates of the pincer complex catalyzed dehydrogenation are about five times greater those previously found for NaAlH{sub 4} that was doped with titanium through a wet chemistry method. Homogenization of NaAlH{sub 4} with 2 mole % Ti(OBu{sup n}){sub 4} under an atmosphere of argon produces a novel titanium containing material. TPD measurements show that the dehydrogenation of this material occurs about 30 C lower than that previously found for wet titaniummore » doped NaAlH{sub 4}. In further contrast to wet doped NaAlH{sub 4}, the dehydrogenation kinetics and hydrogen capacity of the novel material are undiminished over several dehydriding/hydriding cycles. Rehydrogenation of the titanium doped material occurs readily at 170 C under 150 atm of hydrogen. TPD measurements show that about 80% of the original hydrogen content (4.2 wt%) can be restored under these conditions.« less

  14. Improved hydrogen absorption and desorption kinetics of magnesium-based alloy via addition of yttrium

    NASA Astrophysics Data System (ADS)

    Yang, Tai; Li, Qiang; Liu, Ning; Liang, Chunyong; Yin, Fuxing; Zhang, Yanghuan

    2018-02-01

    Yttrium (Y) is selected to modify the microstructure of magnesium (Mg) to improve the hydrogen storage performance. Thereby, binary alloys with the nominal compositions of Mg24Yx (x = 1-5) are fabricated by inexpensive casting technique. Their microstructure and phase transformation during hydriding and dehydriding process are characterized by using X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy analysis. The isothermal hydrogen absorption and desorption kinetics are also measured by a Sievert's-type apparatus at various temperatures. Typical multiphase structures of binary alloy can be clearly observed. All of these alloys can reversibly absorb and desorb large amount of hydrogen at proper temperatures. The addition of Y markedly promotes the hydrogen absorption kinetics. However, it results in a reduction of reversible hydrogen storage capacity. A maximum value of dehydrogenation rate is observed with the increase of Y content. The Mg24Y3 alloy has the optimal desorption kinetic performance, and it can desorb about 5.4 wt% of hydrogen at 380 °C within 12 min. Combining Johnson-Mehl-Avrami kinetic model and Arrhenius equation, the dehydrogenation activation energy of the alloys are evaluated. The Mg24Y3 alloy also has the lowest dehydrogenation activation energy (119 kJ mol-1).

  15. Effect of stoichiometry and Cu-substitution on the phase structure and hydrogen storage properties of Ml-Mg-Ni-based alloys

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Tao, Yang; Huo, Quan

    2015-01-01

    To improve the electrochemical properties of rare-earth-Mg-Ni-based hydrogen storage alloys, the effects of stoichiometry and Cu-substitution on the phase structure and thermodynamic properties of the alloys were studied. Nonsubstituted Ml0.80Mg0.20(Ni2.90Co0.50-Mn0.30Al0.30) x ( x = 0.68, 0.70, 0.72, 0.74, 0.76) alloys and Cu-substituted Ml0.80Mg0.20(Ni2.90Co0.50- y Cu y Mn0.30Al0.30)0.70 ( y = 0, 0.10, 0.30, 0.50) alloys were prepared by induction melting. Phase structure analysis shows that the nonsubstituted alloys consist of a LaNi5 phase, a LaNi3 phase, and a minor La2Ni7 phase; in addition, in the case of Cu-substitution, the Nd2Ni7 phase appears and the LaNi3 phase vanishes. Thermodynamic tests show that the enthalpy change in the dehydriding process decreases, indicating that hydride stability decreases with increasing stoichiometry and increasing Cu content. The maximum discharge capacity, kinetic properties, and cycling stability of the alloy electrodes all increase and then decrease with increasing stoichiometry or increasing Cu content. Furthermore, Cu substitution for Co ameliorates the discharge capacity, kinetics, and cycling stability of the alloy electrodes.

  16. Heat pump apparatus

    DOEpatents

    Nelson, Paul A.; Horowitz, Jeffrey S.

    1983-01-01

    A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

  17. The Development of a Compact Refrigeration System using Metal Hydrides

    NASA Astrophysics Data System (ADS)

    Bae, Sang-Chul; Ogawa, Masahito; Katsuta, Masafumi

    The MH refrigeration systems are regarded as important and compact ones for solving energy and environmental issues. Our purposes are to develop the compact refrigeration system for the vending machine and the show case using MH, and to attain a refrigeration temperature of 243K by using a heat source of 403∼423K. The kinetics of MH hydriding and dehydriding reactions is of importance relative to their practical use as a refrigerator system. The kinetics of the reaction between hydrogen and MHHigh (Ti0.18Zr0.84Cr1.0FeO.7Mn0.3CuO.057)has been followed in this paper. A relatively rapid absorption of hydrogen takes place for values of relative composition to about 0.3∼0.4. It is evident that a hydrogen diffusion plays a minor role during this stage, as that part of the metal not covered by hydride is always in contact with hydrogen. The direct chemical reaction between the hydrogen and the exposed metal surface is therefore postulated as the rate-controlling process. The rate of the reaction then decreases, and for values of relative composition above about 0.8, the reaction becomes slow. After the metal particles have been completely covered by a hydride layer, the transport of materials through the layer by diffusion becomes rate controlling process

  18. Thermal to Electric Energy Conversion for Cyclic Heat Loads

    NASA Astrophysics Data System (ADS)

    Whitehead, Benjamin E.

    Today, we find cyclic heat loads almost everywhere. When we drive our cars, the engines heat up while we are driving and cool while parked. Processors heat while the computer is in use at the office and cool when idle at night. The sun heats the earth during the day and the earth radiates that heat into space at night. With modern technology, we have access to a number of methods to take that heat and convert it into electricity, but, before selecting one, we need to identify the parameters that inform decision making. The majority of the parameters for most systems include duty cycle, total cost, weight, size, thermal efficiency, and electrical efficiency. However, the importance of each of these will depend on the application. Size and weight take priority in a handheld device, while efficiency dominates in a power plant, and duty cycle is likely to dominate in highly demanding heat pump applications. Over the past decade, developments in semiconductor technology has led to the creation of the thermoelectric generator. With no moving parts and a nearly endlessly scalable nature, these generators present interesting opportunities for taking advantage of any source of waste heat. However, these generators are typically only capable of 5-8% efficiency from conversion of thermal to electric energy. [1]. Similarly, advancements in photovoltaic cells has led to the development of thermophotovoltaics. By heating an emitter to a temperature so it radiates light, a thermophotovoltaic cell then converts that light into electricity. By selecting materials that emit light in the optimal ranges of the appropriate photovoltaic cells, thermophotovoltaic systems can potentially exceed the current maximum of 10% efficiency. [2]. By pressurizing certain metal powders with hydrogen, hydrogen can be bound to the metal, creating a metal hydride, from which hydrogen can be later re-extracted under the correct pressure and temperature conditions. Since this hydriding reaction is exothermic, and dehydriding is endothermic, we can use the reaction to control temperature and store or release energy as desired. Connecting the liberated hydrogen gas to a hydrogen/air or hydrogen/oxygen fuel cell can then generate useful electrical power. A fuel cell operates by flowing hydrogen and oxygen over a membrane that only allows protons through. This process creates a voltage through the separation of the negatively charged electrons and positively charged water. Typical fuel cells operate at 30-40% efficiency with research aiming to increase that number to 65% with solid oxide fuel cells. [3]. In this thesis, I develop several models to size metal hydride systems, identify the critical design parameters of a metal hydride system, and predict hydrogen production for a given heat source. The first model consists of a lumped parameter treatment that analyzes how the effects of varying metal hydrides and heat source values change the dehydriding process. The second model uses COMSOLRTM Multiphysics to create a higher fidelity simulation of the heat transfer within a metal hydride bed by calculating the spatial heat transfer as well as the porous nature of the system. The Comsol model shows that thermal conductivity is the highest sensitivity parameter of those studied, and therefore should be the primary focus for system design. The model also shows that the efficiency of the system is relatively independent of the duty cycle of the heat source.

  19. Experimental and theoretical screening of nanoscale oxide reactivity with LiBH4

    NASA Astrophysics Data System (ADS)

    Opalka, S. M.; Tang, X.; Laube, B. L.; Vanderspurt, T. H.

    2009-05-01

    Experimentation, thermodynamic modeling, and atomic modeling were combined to screen the reactivity of SiO2, Al2O3, and ZrO2 nanoscale oxides with LiBH4. Equilibrium thermodynamic modeling showed that the reactions of oxides with LiBH4 could lead to formation of stable Li-bearing oxide and metal boride phases. Experimentation was conducted to evaluate the discharge/recharge reaction products of nanoscale oxide-LiBH4 mixtures. Thermal gravimetric analyses-mass spectroscopy and x-ray diffraction revealed significant SiO2 destabilization of LiBH4 dehydrogenation, resulting in the formation of lithium silicate and boric acid. A smaller amount of lithium metaborate and boric acid was formed with Al2O3. No destabilization products were observed with ZrO2. Density functional theory atomic modeling predicted much stronger LiBH4 interfacial adsorption on the SiO2 and Al2O3 surfaces than on the ZrO2 surface, which was consistent with the experimental findings. Following dehydrogenation, interfacial Li atoms were predicted to strongly adsorb on the oxide surfaces effectively competing with LiH formation. The interfacial Li interactions with Al2O3 and ZrO2 were equal in strength in the fully hydrided and dehydrided states, so that their predicted net effect on LiBH4 dehydrogenation was insignificant. Zirconia was selected for nanoframework development based on the combined observations of compatibility and weaker associative interactions with LiBH4.

  20. Enhanced Hydrogen Storage Kinetics of Nanocrystalline and Amorphous Mg₂Ni-type Alloy by Melt Spinning.

    PubMed

    Zhang, Yang-Huan; Li, Bao-Wei; Ren, Hui-Ping; Li, Xia; Qi, Yan; Zhao, Dong-Liang

    2011-01-18

    Mg₂Ni-type Mg₂Ni 1-x Co x (x = 0, 0.1, 0.2, 0.3, 0.4) alloys were fabricated by melt spinning technique. The structures of the as-spun alloys were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The hydrogen absorption and desorption kinetics of the alloys were measured by an automatically controlled Sieverts apparatus. The electrochemical hydrogen storage kinetics of the as-spun alloys was tested by an automatic galvanostatic system. The results show that the as-spun (x = 0.1) alloy exhibits a typical nanocrystalline structure, while the as-spun (x = 0.4) alloy displays a nanocrystalline and amorphous structure, confirming that the substitution of Co for Ni notably intensifies the glass forming ability of the Mg₂Ni-type alloy. The melt spinning treatment notably improves the hydriding and dehydriding kinetics as well as the high rate discharge ability (HRD) of the alloys. With an increase in the spinning rate from 0 (as-cast is defined as spinning rate of 0 m/s) to 30 m/s, the hydrogen absorption saturation ratio () of the (x = 0.4) alloy increases from 77.1 to 93.5%, the hydrogen desorption ratio () from 54.5 to 70.2%, the hydrogen diffusion coefficient (D) from 0.75 × 10 - 11 to 3.88 × 10 - 11 cm²/s and the limiting current density I L from 150.9 to 887.4 mA/g.

  1. Investigation on hydrogenation performance of Mg{sub 2}Ni+10 wt.% NbN composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xin; Han, Shumin; State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004

    2015-01-15

    The Mg{sub 2}Ni+10 wt.% NbN composite was prepared by mechanical milling and its hydrogen absorption/desorption properties and microstructure were systematically investigated. XRD results indicated that NbN was stable during ball milling process while partly decomposed into NbN{sub 0.95} and NbH during hydriding/dehydriding cycles irreversibly. The composite exhibited excellent hydrogenation/dehydrogenation kinetics performance with 2.71 wt.% hydrogen absorbed in 60 s at 423 K and 0.81 wt.% hydrogen released in 2 h at 523 K, respectively. The H diffusion constant of the composite reached 14.98×10{sup −5} s{sup −1} which was more than twice increased than that of pure Mg{sub 2}Ni powder. Themore » superior hydrogen storage properties of the composite were ascribed to the refined grain size and abundant N-defect points provided by NbN and NbN{sub 0.95} in the composite. - Graphical abstract: The Mg{sub 2}Ni+10 wt.% NbN composite displays improvements on particle size distribution as well as hydrogen storage properties compared with that of pure Mg{sub 2}Ni. - Highlights: • NbN is introduced into Mg{sub 2}Ni hydride by Ar protected ball-milling. • Surfaces of the additive NbN particle are reduced by Mg{sub 2}NiH{sub 4}. • Hydrogenation kinetic property at 423 K is double improved. • Dehydrogenation capacity at 523 K of composites is beyond double improved.« less

  2. Influences on the H2-sorption properties of Mg of Co (with various sizes) and CoO addition by reactive grinding and their thermodynamic stabilities

    NASA Astrophysics Data System (ADS)

    Song, Myoung Youp; Lee, DongSub; Kwon, IkHyun

    2004-02-01

    We attempted to improve the H2-sorption properties of Mg by mechanical grinding under H2 (reactive grinding) with Co (with various particle sizes) and with CoO. The thermodynamic stabilities of the added Co and CoO were also investigated. CoO addition has the best influence and addition of smaller particles of Co (0.5-1.5 μm) has a better effect than the addition of larger particles of Co on the H2-sorption properties of Mg. The activated Mg+10 wt.% CoO sample has about 5.54 wt% hydrogen-storage capacity at 598 K and the highest hydriding rate, showing an Ha value of 2.39 wt.% after 60 min at 598 K, 11.2 bar H2. The order of the hydriding rates after activation is the same as that of the specific surface areas of the samples. The reactive grinding of Mg with Co or CoO and hydriding-dehydriding cycling increase the H2-sorption rates by facilitating nucleation of magnesium hydride or α solid solution of Mg and H (by creating defects on the surface of the Mg particles and by the additive), and by making cracks on the surface of Mg particles and reducing the particle size of Mg, thus shortening the diffusion distances of hydrogen atoms. The cobalt oxide is stable even after 14 hydriding cycles at 598 K under 11.2 bar H2. Discharge capacities are measured for the sampple Mg+10 wt.%CoO and Mg+10wt.%Co (0.5-1.5 μm) with good hydrogen-storage properties.

  3. DFT investigations of hydrogen storage materials

    NASA Astrophysics Data System (ADS)

    Wang, Gang

    Hydrogen serves as a promising new energy source having no pollution and abundant on earth. However the most difficult problem of applying hydrogen is to store it effectively and safely, which is smartly resolved by attempting to keep hydrogen in some metal hydrides to reach a high hydrogen density in a safe way. There are several promising metal hydrides, the thermodynamic and chemical properties of which are to be investigated in this dissertation. Sodium alanate (NaAlH4) is one of the promising metal hydrides with high hydrogen storage capacity around 7.4 wt. % and relatively low decomposition temperature of around 100 °C with proper catalyst. Sodium hydride is a product of the decomposition of NaAlH4 that may affect the dynamics of NaAlH4. The two materials with oxygen contamination such as OH- may influence the kinetics of the dehydriding/rehydriding processes. Thus the solid solubility of OH - groups (NaOH) in NaAlH4 and NaH is studied theoretically by DFT calculations. Magnesium boride [Mg(BH4)2] is has higher hydrogen capacity about 14.9 wt. % and the decomposition temparture of around 250 °C. However one flaw restraining its application is that some polyboron compounds like MgB12H12 preventing from further release of hydrogen. Adding some transition metals that form magnesium transition metal ternary borohydride [MgaTMb(BH4)c] may simply the decomposition process to release hydrogen with ternary borides (MgaTMbBc). The search for the probable ternary borides and the corresponding pseudo phase diagrams as well as the decomposition thermodynamics are performed using DFT calculations and GCLP method to present some possible candidates.

  4. Powder Metallurgy of Uranium Alloy Fuels for TRU-Burning Reactors Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDeavitt, Sean M

    2011-04-29

    Overview Fast reactors were evaluated to enable the transmutation of transuranic isotopes generated by nuclear energy systems. The motivation for this was that TRU isotopes have high radiotoxicity and relatively long half-lives, making them unattractive for disposal in a long-term geologic repository. Fast reactors provide an efficient means to utilize the energy content of the TRUs while destroying them. An enabling technology that requires research and development is the fabrication metallic fuel containing TRU isotopes using powder metallurgy methods. This project focused upon developing a powder metallurgical fabrication method to produce U-Zr-transuranic (TRU) alloys at relatively low processing temperatures (500ºCmore » to 600ºC) using either hot extrusion or alpha-phase sintering for charecterization. Researchers quantified the fundamental aspects of both processing methods using surrogate metals to simulate the TRU elements. The process produced novel solutions to some of the issues relating to metallic fuels, such as fuel-cladding chemical interactions, fuel swelling, volatility losses during casting, and casting mold material losses. Workscope There were two primary tasks associated with this project: 1. Hot working fabrication using mechanical alloying and extrusion • Design, fabricate, and assemble extrusion equipment • Extrusion database on DU metal • Extrusion database on U-10Zr alloys • Extrusion database on U-20xx-10Zr alloys • Evaluation and testing of tube sheath metals 2. Low-temperature sintering of U alloys • Design, fabricate, and assemble equipment • Sintering database on DU metal • Sintering database on U-10Zr alloys • Liquid assisted phase sintering on U-20xx-10Zr alloys Appendices Outline Appendix A contains a Fuel Cycle Research & Development (FCR&D) poster and contact presentation where TAMU made primary contributions. Appendix B contains MSNE theses and final defense presentations by David Garnetti and Grant Helmreich outlining the beginning of the materials processing setup. Also included within this section is a thesis proposal by Jeff Hausaman. Appendix C contains the public papers and presentations introduced at the 2010 American Nuclear Society Winter Meeting. Appendix A—MSNE theses of David Garnetti and Grant Helmreich and proposal by Jeff Hausaman A.1 December 2009 Thesis by David Garnetti entitled “Uranium Powder Production Via Hydride Formation and Alpha Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications” A.2 September 2009 Presentation by David Garnetti (same title as document in Appendix B.1) A.3 December 2010 Thesis by Grant Helmreich entitled “Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys for Advanced Nuclear Fuel Applications” A.4 October 2010 Presentation by Grant Helmreich (same title as document in Appendix B.3) A.5 Thesis Proposal by Jeffrey Hausaman entitled “Hot Extrusion of Alpha Phase Uranium-Zirconium Alloys for TRU Burning Fast Reactors” Appendix B—External presentations introduced at the 2010 ANS Winter Meeting B.1 J.S. Hausaman, D.J. Garnetti, and S.M. McDeavitt, “Powder Metallurgy of Alpha Phase Uranium Alloys for TRU Burning Fast Reactors,” Proceedings of 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 7-10, 2010 B.2 PowerPoint Presentation Slides from C.1 B.3 G.W. Helmreich, W.J. Sames, D.J. Garnetti, and S.M. McDeavitt, “Uranium Powder Production Using a Hydride-Dehydride Process,” Proceedings of 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 7-10, 2010 B.4. PowerPoint Presentation Slides from C.3 B.5 Poster Presentation from C.3 Appendix C—Fuel cycle research and development undergraduate materials and poster presentation C.1 Poster entitled “Characterization of Alpha-Phase Sintering of Uranium and Uranium-Zirconium Alloys” presented at the Fuel Cycle Technologies Program Annual Meeting C.2 April 2011 Honors Undergraduate Thesis by William Sames, Research Fellow, entitled “Uranium Metal Powder Production, Particle Distribution Analysis, and Reaction Rate Studies of a Hydride-Dehydride Process"« less

  5. Energy-conscious production of titania and titanium powders from slag

    NASA Astrophysics Data System (ADS)

    Middlemas, Scott C.

    Titanium dioxide (TiO2) is used as a whitening agent in numerous domestic and technological applications and is mainly produced by the high temperature chloride process. A new hydrometallurgical process for making commercially pure TiO2 pigment is described with the goal of reducing the necessary energy consumption and CO2 emissions. The process includes alkaline roasting of titania slag with subsequent washing, HCl leaching, solvent extraction, hydrolysis, and calcination stages. The thermodynamics of the roasting reaction were analyzed, and the experimental parameters for each step in the new process were optimized with respect to TiO 2 recovery, final product purity, and total energy requirements. Contacting the leach solution with a tertiary amine extractant resulted in complete Fe extraction in a single stage and proved effective in reducing the concentration of discoloring impurities in the final pigment to commercially acceptable levels. Additionally, a new method of producing Ti powders from titania slag is proposed as a potentially more energy efficient and lower cost alternative to the traditional Kroll process. Thermodynamic analysis and initial experimental results validate the concept of reducing titanium slag with a metal hydride to produce titanium hydride (TiH2) powders, which are subsequently purified by leaching and dehydrided to form Ti powders. The effects of reducing agent type, heating time and temperature, ball milling, powder compaction, and eutectic chloride salts on the conversion of slag to TiH2 powders were determined. The purification of reduced powders through NH4Cl, NaOH, and HCl leaching stages was investigated, and reagent concentration, leaching temperature, and time were varied in order to determine the best conditions for maximum impurity removal and recovery of TiH2. A model plant producing 100,000 tons TiO2 per year was designed that would employ the new method of pigment manufacture. A comparison of the new process and the chloride process indicated a 25% decrease in energy consumption and CO2 emissions. For the Ti powder making process, a 10,000 tons per year model plant employing the metal hydride reduction was designed and a comparison with the Kroll process indicated potential for over 60% less energy consumption and 50% less CO2 emission.

  6. Reducing metal alloy powder costs for use in powder bed fusion additive manufacturing: Improving the economics for production

    NASA Astrophysics Data System (ADS)

    Medina, Fransisco

    Titanium and its associated alloys have been used in industry for over 50 years and have become more popular in the recent decades. Titanium has been most successful in areas where the high strength to weight ratio provides an advantage over aluminum and steels. Other advantages of titanium include biocompatibility and corrosion resistance. Electron Beam Melting (EBM) is an additive manufacturing (AM) technology that has been successfully applied in the manufacturing of titanium components for the aerospace and medical industry with equivalent or better mechanical properties as parts fabricated via more traditional casting and machining methods. As the demand for titanium powder continues to increase, the price also increases. Titanium spheroidized powder from different vendors has a price range from 260/kg-450/kg, other spheroidized alloys such as Niobium can cost as high as $1,200/kg. Alternative titanium powders produced from methods such as the Titanium Hydride-Dehydride (HDH) process and the Armstrong Commercially Pure Titanium (CPTi) process can be fabricated at a fraction of the cost of powders fabricated via gas atomization. The alternative powders can be spheroidized and blended. Current sectors in additive manufacturing such as the medical industry are concerned that there will not be enough spherical powder for production and are seeking other powder options. It is believed the EBM technology can use a blend of spherical and angular powder to build fully dense parts with equal mechanical properties to those produced using traditional powders. Some of the challenges with angular and irregular powders are overcoming the poor flow characteristics and the attainment of the same or better packing densities as spherical powders. The goal of this research is to demonstrate the feasibility of utilizing alternative and lower cost powders in the EBM process. As a result, reducing the cost of the raw material to reduce the overall cost of the product produced with AM. Alternative powders can be made by blending or re-spheroidizing HDH and CPTi powders. Machine modifications were performed to allow the testing and manufacturing with these low cost alternative powders. A comparison was made between alternative powders and gas atomized powders. Powders were compared in terms of morphology and at the microstructural level. Flowability of different powder blends was also measured. Finally, a comparison of parts fabricated from the multiple powder blends and gas atomized powder was made. It has been demonstrated that powder blending can produce fully dense parts in the Arcam system by utilizing the double melt technique or HIPing the built pars. The double melt technique increased the density of the sample part and modified the microstructure into finer martensitic grains. The HIP process can make a part fully dense regardless of what percentage of HDH powder blending is used. The HIP process yielded the same microstructure, regardless of the grain structure it started with. This research allows for the reduction of costs using titanium powders in the EBM system, but can also be implemented with more costly elements and alloys using other metal AM technologies. This includes niobium, tantalum, and nickel-based superalloys for use in various industries.

  7. Part I: Structural Characterization of Doped Nanostructured Magnesium: Understanding Disorder for Enhanced Hydrogen Absorption Kinetics Part II: Synthesis, Film Deposition, and Characterization of Quaternary Metal Chalcogenide Nanocrystals for Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Braun, Max B.

    The production, storage, and subsequent consumption of energy are at the foundation of all human activity and livelihood. The theme of this dissertation is the pursuit of fundamental understanding of the chemistry of materials that are used for energy production and storage. A strong emphasis is placed on a synthetic foundation that allows for systematic investigation into the fundamental chemistry that controls the applicable properties of the materials of interest. This dissertation is written in the "journals format" style--which is accepted by the Graduate School at Colorado State University--and is based on one peer-reviewed publication that has appeared in Chemistry of Materials as well as two manuscripts to be submitted, one to The Journal of Physical Chemistry C, and one to ACS Applied Materials and Interfaces. In order to create a context for these publications, Chapters 1 and 3 provide an overview of the motivations for the projects, and then continue to detail the initial synthetic investigations and considerations for the two projects. In addition to recounting Mg nanocrystals synthetic refinement that was necessary for reproducible hydride kinetic analysis, Chapter 1 also briefly introduces some of the conventional models used for fitting of the hydriding kinetics data. Furthermore, initial investigations into the use of these models for our system are presented. Chapter 2 is a paper to be submitted to The Journal of Physical Chemistry C that describes the local and extended structure characterization of Mg nanocrystals (NCs) with a small amount of nickel added during synthesis. Ni has a dramatic effect on the de/hydriding kinetics of Mg NCs, and this chapter describes the use of a combination of multiple state-of-the-art characterization techniques to gain insight into the structural perturbations due to Ni inclusion in the Mg NCs. This insight is then used to establish the characteristics of Ni inclusion that results in the enhanced hydrogen absorption processes. Chapter 3 introduces the many considerations needed to be taken into account during the development of a novel synthesis for copper zinc tin chalcogenide colloidal nanocrystals. In addition to introducing synthetic approaches to achieve this goal, Chapter 3 also describes essential characteristics that need to be considered for further investigation into the properties of films made from the nanocrystals. Chapter 4 is a publication that appeared in Chemistry of Materials, that describes an approach to tuning the surface and ligand chemistry of Cu2ZnSnS4 nanocrystals for use as an absorber layer in next generation photovoltaic devices. The publication describes ligand exchange chemistry achieved via layer-by-layer dip-casting of nanocrystal thin films, and the effects that this exchange chemistry has on the resulting films. It also details the fabrication of full photovoltaic (PV) devices to characterize the benefits of controlling the surface chemistry can have on PV performance. Chapter 5 is a paper--to be submitted to ACS Applied Materials and Interfaces--that describes the investigations into how varying the chalcogen ratio (i.e., S:Se) leads to changes in the physical and electrical properties of thin films made from Cu2ZnSn(S1-xSex)4 (where 0 < x < 1) NCs. It highlights the novel synthetic procedure (detailed in chapter 3) that was required for a systematic, deconvoluted evaluation of S:Se composition on the materials optical and electronic properties. Moreover, the characteristics of full PV devices based on thin films of each stoichiometry (x=0 to x=1) are assessed to establish a relationship between composition and the materials performance.

Top