Cermáková, Petra; Verner, Zdenek; Man, Petr; Lukes, Julius; Horváth, Anton
2007-06-01
NADH dehydrogenase activity was characterized in the mitochondrial lysates of Phytomonas serpens, a trypanosomatid flagellate parasitizing plants. Two different high molecular weight NADH dehydrogenases were characterized by native PAGE and detected by direct in-gel activity staining. The association of NADH dehydrogenase activities with two distinct multisubunit complexes was revealed in the second dimension performed under denaturing conditions. One subunit present in both complexes cross-reacted with the antibody against the 39 kDa subunit of bovine complex I. Out of several subunits analyzed by MS, one contained a domain characteristic for the LYR family subunit of the NADH:ubiquinone oxidoreductases. Spectrophotometric measurement of the NADH:ubiquinone 10 and NADH:ferricyanide dehydrogenase activities revealed their different sensitivities to rotenone, piericidin, and diphenyl iodonium.
Reconstitution of the Escherichia coli pyruvate dehydrogenase complex.
Reed, L J; Pettit, F H; Eley, M H; Hamilton, L; Collins, J H; Oliver, R M
1975-01-01
The binding of pyruvate dehydrogenase and dihydrolipoyl dehydrogenase (flavoprotein) to dihydrolipoyl transacetylase, the core enzyme of the E. coli pyruvate dehydrogenase complex [EC 1.2.4.1:pyruvate:lipoate oxidoreductase (decaryboxylating and acceptor-acetylating)], has been studied using sedimentation equilibrium analysis and radioactive enzymes in conjunction with gel filtration chromatography. The results show that the transacetylase, which consists of 24 apparently identical polypeptide chains organized into a cube-like structure, has the potential to bind 24 pyruvate dehydrogenase dimers in the absence of flavoprotein and 24 flavoprotein dimers in the absence of pyruvate dehydrogenase. The results of reconstitution experiments, utilizing binding and activity measurements, indicate that the transacetylase can accommodate a total of only about 12 pyruvate dehydrogenase dimers and six flavoprotein dimers and that this stoichiometry, which is the same as that of the native pyruvate dehydrogenase complex, produces maximum activity. It appears that steric hindrance between the relatively bulky pyruvate dehydrogenase and flavoprotein molecules prevents the transacetylase from binding 24 molecules of each ligand. A structural model for the native and reconstituted pyruvate dehydrogenase complexes is proposed in which the 12 pyruvate dehydrogenase dimers are distributed symmetrically on the 12 edges of the transacetylase cube and the six flavoprotein dimers are distributed in the six faces of the cube. Images PMID:1103138
Sudheesh, N P; Ajith, T A; Janardhanan, K K; Krishnan, C V
2009-08-01
Age-related decline in the capacity to withstand stress, such as ischemia and reperfusion, results in congestive heart failure. Though the mechanisms underlying cardiac decay are not clear, age dependent somatic damages to mitochondrial DNA (mtDNA), loss of mitochondrial function, and a resultant increase in oxidative stress in heart muscle cells may be responsible for the increased risk for cardiovascular diseases. The effect of a safe nutritional supplement, POLY-MVA, containing the active ingredient palladium alpha-lipoic acid complex, was evaluated on the activities of the Krebs cycle enzymes such as isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, and malate dehydrogenase as well as mitochondrial complexes I, II, III, and IV in heart mitochondria of aged male albino rats of Wistar strain. Administration of 0.05 ml/kg of POLY-MVA (which is equivalent to 0.38 mg complexed alpha-lipoic acid/kg, p.o), once daily for 30 days, was significantly (p<0.05) effective to enhance the Krebs cycle dehydrogenases, and mitochondrial electron transport chain complexes. The unique electronic and redox properties of palladium alpha-lipoic acid complex appear to be a key to this physiological effectiveness. The results strongly suggest that this formulation might be effective to protect the aging associated risk of cardiovascular and neurodegenerative diseases.
Suppression of BRCA2 by Mutant Mitochondrial DNA in Prostate Cancer
2011-05-01
Briefly, the electron transfer activities of complex I/III (NADH dehydrogenase/cytochrome bc1 complex: catalyzes the electron transfer from NADH to...ferricytochrome c) and complex II/III (succinate dehydrogenase/cytochrome bc1 complex: catalyzes the electron transfer from succinate to ferricytochrome...The electron transfer activity of complex IV (cytochrome c oxidase: catalyzes the final step of the respiratory chain by transferring electrons from
Lipoic acid metabolism and mitochondrial redox regulation.
Solmonson, Ashley D; DeBerardinis, Ralph J
2017-11-30
Lipoic acid is an essential cofactor for mitochondrial metabolism and is synthesized de novo using intermediates from mitochondrial fatty acid synthesis type II, S-adenosylmethionine and iron-sulfur clusters. This cofactor is required for catalysis by multiple mitochondrial 2-ketoacid dehydrogenase complexes, including pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase, and branched-chain ketoacid dehydrogenase. Lipoic acid also plays a critical role in stabilizing and regulating these multi-enzyme complexes. Many of these dehydrogenases are regulated by reactive oxygen species, mediated through the disulfide bond of the prosthetic lipoyl moiety. Collectively, its functions explain why lipoic acid is required for cell growth, mitochondrial activity and coordination of fuel metabolism. Lipoic acid is an essential cofactor for mitochondrial metabolism and is synthesized de novo using intermediates from mitochondrial fatty acid synthesis type II, S-adenosylmethionine and iron-sulfur clusters. This cofactor is required for catalysis by multiple mitochondrial 2-ketoacid dehydrogenase complexes, including pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase, and branched-chain ketoacid dehydrogenase. Lipoic acid also plays a critical role in stabilizing and regulating these multi-enzyme complexes. Many of these dehydrogenases are regulated by reactive oxygen species, mediated through the disulfide bond of the prosthetic lipoyl moiety. Collectively, its functions explain why lipoic acid is required for cell growth, mitochondrial activity and coordination of fuel metabolism. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.
STUDIES ON MAMMALIAN AND HUMAN PYRUVATE AND ALPHA-KETOGLUTARATE DEHYDROGENATION COMPLEXES
bound lipoic acid and 17 moles of bound FAD. Alpha -ketoglutarate dehydrogenase complex contains approximately 10 moles of protein-bound lipoic acid , 9...typical metal activators of oxidative decarboxylation reaction of alpha -keto acid . These activating effects were in good agreement with the results of...A coenzyme A- and NAD-linked pyruvate and alpha -ketoglutarate dehydrogenase complexes have been isolated from pig heart muscle as multienzyme units
Bessam, H; Mareck, A M; Foucher, B
1989-01-27
A method is proposed for the purification of the Neurospora crassa alpha-ketoglutarate dehydrogenase complex, and the main points for preserving its activity, which seems to be particularly fragile in fungus, are discussed. Resolution of the constitutive enzymes was attempted and permitted the identification of the three protein bands resolved on SDS-polyacrylamide gel electrophoresis as E3, E1 and E2 with respective Mr values of 54,000, 53,000 and 49,000. Catalytic properties of the purified complex were established showing the importance of divalent cations in regulating the activity level. The role of Ca2+ in particular was investigated. It was shown that Ca2+ diminishes the Km value of the N. crassa alpha-ketoglutarate dehydrogenase complex for alpha-ketoglutarate in the physiological concentration range, as previously observed for the mammalian complexes.
Parkhomenko, Yulia M; Kudryavtsev, Pavel A; Pylypchuk, Svetlana Yu; Chekhivska, Lilia I; Stepanenko, Svetlana P; Sergiichuk, Andrej A; Bunik, Victoria I
2011-06-01
Thiamine-dependent changes in alcoholic brain were studied using a rat model. Brain thiamine and its mono- and diphosphates were not reduced after 20 weeks of alcohol exposure. However, alcoholism increased both synaptosomal thiamine uptake and thiamine diphosphate synthesis in brain, pointing to mechanisms preserving thiamine diphosphate in the alcoholic brain. In spite of the unchanged level of the coenzyme thiamine diphosphate, activities of the mitochondrial 2-oxoglutarate and pyruvate dehydrogenase complexes decreased in alcoholic brain. The inactivation of pyruvate dehydrogenase complex was caused by its increased phosphorylation. The inactivation of 2-oxoglutarate dehydrogenase complex (OGDHC) correlated with a decrease in free thiols resulting from an elevation of reactive oxygen species. Abstinence from alcohol following exposure to alcohol reactivated OGDHC along with restoration of the free thiol content. However, restoration of enzyme activity occurred before normalization of reactive oxygen species levels. Hence, the redox status of cellular thiols mediates the action of oxidative stress on OGDHC in alcoholic brain. As a result, upon chronic alcohol consumption, physiological mechanisms to counteract the thiamine deficiency and silence pyruvate dehydrogenase are activated in rat brain, whereas OGDHC is inactivated due to impaired antioxidant ability. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.
USDA-ARS?s Scientific Manuscript database
Objective: Branched-chain alpha-keto acid dehydrogenase complex (BCKDC) regulates branched-chain amino acid (BCAA) metabolism at the level of branched chain alpha-ketoacid (BCKA) catabolism. It has been demonstrated that the activity of hepatic BCKDC is markedly decreased in type 2 diabetic animal...
Latha, Raja; Shanthi, Palanivelu; Sachdanandam, Panchanadham
2014-12-01
Efficacy of Kalpaamruthaa on the activities of lipid and carbohydrate metabolic enzymes, electron transport chain complexes and mitochondrial ATPases were studied in heart and liver of experimental rats. Cardiovascular damage (CVD) was developed in 8 weeks after type 2 diabetes mellitus induction with high fat diet (2 weeks) and low dose of streptozotocin (2 × 35 mg/kg b.w. i.p. in 24 hr interval). In CVD-induced rats, the activities of total lipase, cholesterol ester hydrolase and cholesterol ester synthetase were increased, while lipoprotein lipase and lecithin-cholesterol acyltransferase activities were decreased. The activities of lipid-metabolizing enzymes were altered by Kalpaamruthaa in CVD-induced rats towards normal. Kalpaamruthaa modulated the activities of glycolytic enzymes (hexokinase, phosphogluco-isomerase, aldolase and glucose-6-phosphate dehydrogenase), gluconeogenic enzymes (glucose-6-phosphatase and fructose-1, 6-bisphosphatase) and glycogenolytic enzyme (glycogen phosphorylase) along with increased glycogen content in the liver of CVD-induced rats. The activities of isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase, α-ketoglutarate dehydrogenase, Complexes and ATPases (Na(+)/K(+)-ATPase, Ca(2+)-ATPase and Mg(2+)-ATPase) were decreased in CVD-induced rats, which were ameliorated by the treatment with Kalpaamruthaa. This study ascertained the efficacy of Kalpaamruthaa for the treatment of CVD in diabetes through the modulation of metabolizing enzymes and mitochondrial dysfunction.
Millar, A H; Knorpp, C; Leaver, C J; Hill, S A
1998-01-01
The pyruvate dehydrogenase complex (mPDC) from potato (Solanum tuberosum cv. Romano) tuber mitochondria was purified 40-fold to a specific activity of 5.60 micromol/min per mg of protein. The activity of the complex depended on pyruvate, divalent cations, NAD+ and CoA and was competitively inhibited by both NADH and acetyl-CoA. SDS/PAGE revealed the complex consisted of seven polypeptide bands with apparent molecular masses of 78, 60, 58, 55, 43, 41 and 37 kDa. N-terminal sequencing revealed that the 78 kDa protein was dihydrolipoamide transacetylase (E2), the 58 kDa protein was dihydrolipoamide dehydrogenase (E3), the 43 and 41 kDa proteins were alpha subunits of pyruvate dehydrogenase, and the 37 kDa protein was the beta subunit of pyruvate dehydrogenase. N-terminal sequencing of the 55 kDa protein band yielded two protein sequences: one was another E3; the other was similar to the sequence of E2 from plant and yeast sources but was distinctly different from the sequence of the 78 kDa protein. Incubation of the mPDC with [2-14C]pyruvate resulted in the acetylation of both the 78 and 55 kDa proteins. PMID:9729464
Lawlis, V B; Roche, T E
1980-11-20
NADH inhibition of bovine kidney alpha-ketoglutarate dehydrogenase complex was compared at 10 microM free Ca2+ or in the absence of Ca2+ (i.e., less than 1.0 nM free Ca2+). In the presence of Ca2+, NADH inhibition was appreciably decreased for a wide range of NADH:NAD+ ratios. A half-maximal decrease in NADH inhibition occurred at slightly less than 1 microM free Ca/+ (as determined with EGTA-Ca buffers). Of necessity this was observed on top of an effect of Ca2+ on the S0.5 for alpha-ketoglutarate which was decreased by Ca2+ with a half-maximal effect at a similar concentration. The effect of Ca2+ on NADH inhibition was not observed in assays of the dihydrolipoyl dehydrogenase component (using dihydrolipoamide as a substrate) or in assays of bovine kidney pyruvate dehydrogenase complex. This indicates that the overall reaction catalyzed by the alpha-ketoglutarate dehydrogenase complex is required to elicit the effect of Ca2+ on NADH inhibition. At a fixed alpha-ketoglutarate concentration (50 microM), removal of Ca2+ reduced the activity of the alpha-ketoglutarate dehydrogenase complex by 8.5-fold (due to an increase in S0.5 for alpha-ketoglutarate) and, in the presence of different NADH:NAD+ ratios, decreased the activity of the complex by 50 to 100-fold. Effects of the phosphate potential (ATP/ADPxPi) or a combination of the phosphate potential and NADH:NAD+ ratio are also described. The possibility that the level of intramitochondrial free Ca/+ serves as a signal amplifier normally coupled to the energy state of mitochondria is discussed.
Often Ignored Facts about the Control of the 2-Oxoglutarate Dehydrogenase Complex
ERIC Educational Resources Information Center
Strumilo, Slawomir
2005-01-01
Information about the control of the activity of the 2-oxoglutarate dehydrogenase complex (OGDHC), a key enzyme in the citric acid cycle, is not well covered in the biochemical education literature, especially as it concerns the allosteric regulation of OGDHC by adenine nucleotide and ortophosphate. From experimental work published during the last…
Heath, Caroline; Posner, Mareike G; Aass, Hans C; Upadhyay, Abhishek; Scott, David J; Hough, David W; Danson, Michael J
2007-10-01
The aerobic archaea possess four closely spaced, adjacent genes that encode proteins showing significant sequence identities with the bacterial and eukaryal components comprising the 2-oxoacid dehydrogenase multi-enzyme complexes. However, catalytic activities of such complexes have never been detected in the archaea, although 2-oxoacid ferredoxin oxidoreductases that catalyze the equivalent metabolic reactions are present. In the current paper, we clone and express the four genes from the thermophilic archaeon, Thermoplasma acidophilum, and demonstrate that the recombinant enzymes are active and assemble into a large (M(r) = 5 x 10(6)) multi-enzyme complex. The post-translational incorporation of lipoic acid into the transacylase component of the complex is demonstrated, as is the assembly of this enzyme into a 24-mer core to which the other components bind to give the functional multi-enzyme system. This assembled complex is shown to catalyze the oxidative decarboxylation of branched-chain 2-oxoacids and pyruvate to their corresponding acyl-CoA derivatives. Our data constitute the first proof that the archaea possess a functional 2-oxoacid dehydrogenase complex.
Shiota, Masaki; Yamazaki, Tomohiko; Yoshimatsu, Keiichi; Kojima, Katsuhiro; Tsugawa, Wakako; Ferri, Stefano; Sode, Koji
2016-12-01
Several bacterial flavin adenine dinucleotide (FAD)-harboring dehydrogenase complexes comprise three distinct subunits: a catalytic subunit with FAD, a cytochrome c subunit containing three hemes, and a small subunit. Owing to the cytochrome c subunit, these dehydrogenase complexes have the potential to transfer electrons directly to an electrode. Despite various electrochemical applications and engineering studies of FAD-dependent dehydrogenase complexes, the intra/inter-molecular electron transfer pathway has not yet been revealed. In this study, we focused on the conserved Cys-rich region in the catalytic subunits using the catalytic subunit of FAD dependent glucose dehydrogenase complex (FADGDH) as a model, and site-directed mutagenesis and electron paramagnetic resonance (EPR) were performed. By co-expressing a hitch-hiker protein (γ-subunit) and a catalytic subunit (α-subunit), FADGDH γα complexes were prepared, and the properties of the catalytic subunit of both wild type and mutant FADGDHs were investigated. Substitution of the conserved Cys residues with Ser resulted in the loss of dye-mediated glucose dehydrogenase activity. ICP-AEM and EPR analyses of the wild-type FADGDH catalytic subunit revealed the presence of a 3Fe-4S-type iron-sulfur cluster, whereas none of the Ser-substituted mutants showed the EPR spectrum characteristic for this cluster. The results suggested that three Cys residues in the Cys-rich region constitute an iron-sulfur cluster that may play an important role in the electron transfer from FAD (intra-molecular) to the multi-heme cytochrome c subunit (inter-molecular) electron transfer pathway. These features appear to be conserved in the other three-subunit dehydrogenases having an FAD cofactor. Copyright © 2016 Elsevier B.V. All rights reserved.
Quinlan, Casey L.; Goncalves, Renata L. S.; Hey-Mogensen, Martin; Yadava, Nagendra; Bunik, Victoria I.; Brand, Martin D.
2014-01-01
Several flavin-dependent enzymes of the mitochondrial matrix utilize NAD+ or NADH at about the same operating redox potential as the NADH/NAD+ pool and comprise the NADH/NAD+ isopotential enzyme group. Complex I (specifically the flavin, site IF) is often regarded as the major source of matrix superoxide/H2O2 production at this redox potential. However, the 2-oxoglutarate dehydrogenase (OGDH), branched-chain 2-oxoacid dehydrogenase (BCKDH), and pyruvate dehydrogenase (PDH) complexes are also capable of considerable superoxide/H2O2 production. To differentiate the superoxide/H2O2-producing capacities of these different mitochondrial sites in situ, we compared the observed rates of H2O2 production over a range of different NAD(P)H reduction levels in isolated skeletal muscle mitochondria under conditions that favored superoxide/H2O2 production from complex I, the OGDH complex, the BCKDH complex, or the PDH complex. The rates from all four complexes increased at higher NAD(P)H/NAD(P)+ ratios, although the 2-oxoacid dehydrogenase complexes produced superoxide/H2O2 at high rates only when oxidizing their specific 2-oxoacid substrates and not in the reverse reaction from NADH. At optimal conditions for each system, superoxide/H2O2 was produced by the OGDH complex at about twice the rate from the PDH complex, four times the rate from the BCKDH complex, and eight times the rate from site IF of complex I. Depending on the substrates present, the dominant sites of superoxide/H2O2 production at the level of NADH may be the OGDH and PDH complexes, but these activities may often be misattributed to complex I. PMID:24515115
Biochemical and structural characterization of Cryptosporidium parvum Lactate dehydrogenase.
Cook, William J; Senkovich, Olga; Hernandez, Agustin; Speed, Haley; Chattopadhyay, Debasish
2015-03-01
The protozoan parasite Cryptosporidium parvum causes waterborne diseases worldwide. There is no effective therapy for C. parvum infection. The parasite depends mainly on glycolysis for energy production. Lactate dehydrogenase is a major regulator of glycolysis. This paper describes the biochemical characterization of C. parvum lactate dehydrogenase and high resolution crystal structures of the apo-enzyme and four ternary complexes. The ternary complexes capture the enzyme bound to NAD/NADH or its 3-acetylpyridine analog in the cofactor binding pocket, while the substrate binding site is occupied by one of the following ligands: lactate, pyruvate or oxamate. The results reveal distinctive features of the parasitic enzyme. For example, C. parvum lactate dehydrogenase prefers the acetylpyridine analog of NADH as a cofactor. Moreover, it is slightly less sensitive to gossypol inhibition compared with mammalian lactate dehydrogenases and not inhibited by excess pyruvate. The active site loop and the antigenic loop in C. parvum lactate dehydrogenase are considerably different from those in the human counterpart. Structural features and enzymatic properties of C. parvum lactate dehydrogenase are similar to enzymes from related parasites. Structural comparison with malate dehydrogenase supports a common ancestry for the two genes. Copyright © 2014 Elsevier B.V. All rights reserved.
Strumilo, S
2005-07-01
The question of regulation of alpha-ketoglutarate dehydrogenase complex (KGDHC) has been considered in the biochemical literature very rarely. Moreover, such information is not usually accurate, especially in biochemical textbooks. From the mini-review of research works published during the last 25 years, the following basic view is clear: a) animal KGDHC is very sensitive to ADP, P(i), and Ca2+; b) these positive effectors increase manifold the affinity of KGDHC to alpha-ketoglutarate; c) KGDHC is inhibited by ATP, NADH, and succinyl-CoA; d) the ATP effect is realized in several ways, probably mainly via opposition versus ADP activation; e) NADH, besides inhibiting dihydrolipoamide dehydrogenase component competitively versus NAD+, decreases the affinity of alpha-ketoglutarate dehydrogenase to substrate and inactivates it; f) thioredoxin protects KGDHC from self-inactivation during catalysis; g) bacterial and plant KGDHC is activated by AMP instead of ADP. These main effects form the basis of short-term regulation of KGDHC.
Rony, K A; Ajith, T A; Kuttikadan, Tony A; Blaze, R; Janardhanan, K K
2017-09-26
Mitochondrial dysfunction and increase in reactive oxygen species during diabetes can lead to pathological consequences in kidneys. The present study was aimed to investigate the effect of Phellinus rimosus in the streptozotocin (STZ)-induced diabetic rat renal mitochondria and the possible mechanism of protection. Phellinus rimosus (50 and 250 mg/kg, p.o) was treated after inducing diabetes by STZ (45 mg/kg, i.p) in rats. The serum samples were subjected to creatinine and urea estimation. Mitochondrial antioxidant status such as mitochondrial superoxide dismutase, glutathione peroxidase, and reduced glutathione; adenosine triphosphate level; and lipid peroxidation were measured. The activities of Krebs cycle enzymes such as isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, succinate dehydrogenase, and malate dehydrogenase as well as mitochondrial complexes I, III, and IV in kidney mitochondria were also determined. Administration of P. rimosus (250 mg/kg b.wt) once daily for 30 days, significantly (p<0.05) enhanced the activities of Krebs cycle dehydrogenases, mitochondrial electron transport chain complexes, and ATP level. Further, P. rimosus had significantly protected the renal mitochondrial antioxidant status and lipid peroxidation. The results of the study concluded that by limiting the extent of renal mitochondrial damage in the hyperglycemic state, P. rimosus alleviated nephrotoxicity.
Molecular structure of the pyruvate dehydrogenase complex from Escherichia coli K-12.
Vogel, O; Hoehn, B; Henning, U
1972-06-01
The pyruvate dehydrogenase core complex from E. coli K-12, defined as the multienzyme complex that can be obtained with a unique polypeptide chain composition, has a molecular weight of 3.75 x 10(6). All results obtained agree with the following numerology. The core complex consists of 48 polypeptide chains. There are 16 chains (molecular weight = 100,000) of the pyruvate dehydrogenase component, 16 chains (molecular weight = 80,000) of the dihydrolipoamide dehydrogenase component, and 16 chains (molecular weight = 56,000) of the dihydrolipoamide dehydrogenase component. Usually, but not always, pyruvate dehydrogenase complex is produced in vivo containing at least 2-3 mol more of dimers of the pyruvate dehydrogenase component than the stoichiometric ratio with respect to the core complex. This "excess" component is bound differently than are the eight dimers in the core complex.
Molecular Structure of the Pyruvate Dehydrogenase Complex from Escherichia coli K-12
Vogel, Otto; Hoehn, Barbara; Henning, Ulf
1972-01-01
The pyruvate dehydrogenase core complex from E. coli K-12, defined as the multienzyme complex that can be obtained with a unique polypeptide chain composition, has a molecular weight of 3.75 × 106. All results obtained agree with the following numerology. The core complex consists of 48 polypeptide chains. There are 16 chains (molecular weight = 100,000) of the pyruvate dehydrogenase component, 16 chains (molecular weight = 80,000) of the dihydrolipoamide dehydrogenase component, and 16 chains (molecular weight = 56,000) of the dihydrolipoamide dehydrogenase component. Usually, but not always, pyruvate dehydrogenase complex is produced in vivo containing at least 2-3 mol more of dimers of the pyruvate dehydrogenase component than the stoichiometric ratio with respect to the core complex. This “excess” component is bound differently than are the eight dimers in the core complex. Images PMID:4556465
Sanz, Alberto; Soikkeli, Mikko; Portero-Otín, Manuel; Wilson, Angela; Kemppainen, Esko; McIlroy, George; Ellilä, Simo; Kemppainen, Kia K.; Tuomela, Tea; Lakanmaa, Matti; Kiviranta, Essi; Stefanatos, Rhoda; Dufour, Eric; Hutz, Bettina; Naudí, Alba; Jové, Mariona; Zeb, Akbar; Vartiainen, Suvi; Matsuno-Yagi, Akemi; Yagi, Takao; Rustin, Pierre; Pamplona, Reinald; Jacobs, Howard T.
2010-01-01
Mutations in mitochondrial oxidative phosphorylation complex I are associated with multiple pathologies, and complex I has been proposed as a crucial regulator of animal longevity. In yeast, the single-subunit NADH dehydrogenase Ndi1 serves as a non-proton-translocating alternative enzyme that replaces complex I, bringing about the reoxidation of intramitochondrial NADH. We have created transgenic strains of Drosophila that express yeast NDI1 ubiquitously. Mitochondrial extracts from NDI1-expressing flies displayed a rotenone-insensitive NADH dehydrogenase activity, and functionality of the enzyme in vivo was confirmed by the rescue of lethality resulting from RNAi knockdown of complex I. NDI1 expression increased median, mean, and maximum lifespan independently of dietary restriction, and with no change in sirtuin activity. NDI1 expression mitigated the aging associated decline in respiratory capacity and the accompanying increase in mitochondrial reactive oxygen species production, and resulted in decreased accumulation of markers of oxidative damage in aged flies. Our results support a central role of mitochondrial oxidative phosphorylation complex I in influencing longevity via oxidative stress, independently of pathways connected to nutrition and growth signaling. PMID:20435911
Bomati, Erin K.; Noel, Joseph P.
2005-01-01
We describe the three-dimensional structure of sinapyl alcohol dehydrogenase (SAD) from Populus tremuloides (aspen), a member of the NADP(H)-dependent dehydrogenase family that catalyzes the last reductive step in the formation of monolignols. The active site topology revealed by the crystal structure substantiates kinetic results indicating that SAD maintains highest specificity for the substrate sinapaldehyde. We also report substantial substrate inhibition kinetics for the SAD-catalyzed reduction of hydroxycinnamaldehydes. Although SAD and classical cinnamyl alcohol dehydrogenases (CADs) catalyze the same reaction and share some sequence identity, the active site topology of SAD is strikingly different from that predicted for classical CADs. Kinetic analyses of wild-type SAD and several active site mutants demonstrate the complexity of defining determinants of substrate specificity in these enzymes. These results, along with a phylogenetic analysis, support the inclusion of SAD in a plant alcohol dehydrogenase subfamily that includes cinnamaldehyde and benzaldehyde dehydrogenases. We used the SAD three-dimensional structure to model several of these SAD-like enzymes, and although their active site topologies largely mirror that of SAD, we describe a correlation between substrate specificity and amino acid substitution patterns in their active sites. The SAD structure thus provides a framework for understanding substrate specificity in this family of enzymes and for engineering new enzyme specificities. PMID:15829607
Bomati, Erin K; Noel, Joseph P
2005-05-01
We describe the three-dimensional structure of sinapyl alcohol dehydrogenase (SAD) from Populus tremuloides (aspen), a member of the NADP(H)-dependent dehydrogenase family that catalyzes the last reductive step in the formation of monolignols. The active site topology revealed by the crystal structure substantiates kinetic results indicating that SAD maintains highest specificity for the substrate sinapaldehyde. We also report substantial substrate inhibition kinetics for the SAD-catalyzed reduction of hydroxycinnamaldehydes. Although SAD and classical cinnamyl alcohol dehydrogenases (CADs) catalyze the same reaction and share some sequence identity, the active site topology of SAD is strikingly different from that predicted for classical CADs. Kinetic analyses of wild-type SAD and several active site mutants demonstrate the complexity of defining determinants of substrate specificity in these enzymes. These results, along with a phylogenetic analysis, support the inclusion of SAD in a plant alcohol dehydrogenase subfamily that includes cinnamaldehyde and benzaldehyde dehydrogenases. We used the SAD three-dimensional structure to model several of these SAD-like enzymes, and although their active site topologies largely mirror that of SAD, we describe a correlation between substrate specificity and amino acid substitution patterns in their active sites. The SAD structure thus provides a framework for understanding substrate specificity in this family of enzymes and for engineering new enzyme specificities.
Palaniappan, C; Taber, H; Meganathan, R
1994-01-01
The biosynthesis of o-succinylbenzoic acid (OSB), the first aromatic intermediate involved in the biosynthesis of menaquinone (vitamin K2) is demonstrated for the first time in the gram-positive bacterium Bacillus subtilis. Cell extracts were found to contain isochorismate synthase, 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylic acid (SHCHC) synthase-alpha-ketoglutarate decarboxylase and o-succinylbenzoic acid synthase activities. An odhA mutant which lacks the decarboxylase component (usually termed E1, EC 1.2.4.2, oxoglutarate dehydrogenase [lipoamide]) of the alpha-ketoglutarate dehydrogenase complex was found to synthesize SHCHC and form succinic semialdehyde-thiamine pyrophosphate. Thus, the presence of an alternate alpha-ketoglutarate decarboxylase activity specifically involved in menaquinone biosynthesis is established for B. subtilis. A number of OSB-requiring mutants were also assayed for the presence of the various enzymes involved in the biosynthesis of OSB. All mutants were found to lack only the SHCHC synthase activity. PMID:8169214
Murakami, Taro; Matsuo, Masayuki; Shimizu, Ayako; Shimomura, Yoshiharu
2005-02-01
Branched-chain alpha-keto acid dehydrogenase kinase (BDK) phosphorylates and inactivates the branched-chain alpha-keto acid dehydrogenase complex (BCKDC), which is the rate-limiting enzyme in the branched-chain amino acid catabolism. BDK has been believed to be bound to the BCKDC. However, recent our studies demonstrated that protein-protein interaction between BDK and BCKDC is one of the factors to regulate BDK activity. Furthermore, only the bound form of BDK appears to have its activity. In the present study, we examined effects of BDK inhibitors on the amount of BDK bound to the BCKDC using rat liver extracts. The bound form of BDK in the extracts of liver from low protein diet-fed rats was measured by an immunoprecipitation pull down assay with or without BDK inhibitors. Among the BDK inhibitors. alpha-ketoisocaproate, alpha-chloroisocaproate, and a-ketoisovalerate released the BDK from the complex. Furthermore, the releasing effect of these inhibitors on the BDK appeared to depend on their inhibition constants. On the other hand, clofibric acid and thiamine pyrophosphate had no effect on the protein-protein interaction between two enzymes. These results suggest that the dissociation of the BDK from the BCKDC is one of the mechanisms responsible for the action of some inhibitors to BDK.
Verner, Zdeněk; Cermáková, Petra; Skodová, Ingrid; Kováčová, Bianka; Lukeš, Julius; Horváth, Anton
2014-01-01
Trypanosomatids are unicellular parasites living in a wide range of host environments, which to large extent shaped their mitochondrial energy metabolism, resulting in quite large differences even among closely related flagellates. In a comparative manner, we analyzed the activities and composition of mitochondrial respiratory complexes in four species (Leishmania tarentolae, Crithidia fasciculata, Phytomonas serpens and Trypanosoma brucei), which represent the main model trypanosomatids. Moreover, we measured the activity of mitochondrial glycerol-3-phosphate dehydrogenase, the overall oxygen consumption and the mitochondrial membrane potential in each species. The comparative analysis suggests an inverse relationship between the activities of respiratory complexes I and II, as well as the overall activity of the canonical complexes and glycerol-3-phosphate dehydrogenase. Our comparative analysis shows that mitochondrial functions are highly variable in these versatile parasites. Copyright © 2014 Elsevier B.V. All rights reserved.
Wuxiuer, Yimingjiang; Morgunova, Ekaterina; Cols, Neus; Popov, Alexander; Karshikoff, Andrey; Sylte, Ingebrigt; Gonzàlez-Duarte, Roser; Ladenstein, Rudolf; Winberg, Jan-Olof
2012-08-01
All drosophilid alcohol dehydrogenases contain an eight-member water chain connecting the active site with the solvent at the dimer interface. A similar water chain has also been shown to exist in other short-chain dehydrogenase/reductase (SDR) enzymes, including therapeutically important SDRs. The role of this water chain in the enzymatic reaction is unknown, but it has been proposed to be involved in a proton relay system. In the present study, a connecting link in the water chain was removed by mutating Thr114 to Val114 in Scaptodrosophila lebanonensis alcohol dehydrogenase (SlADH). This threonine is conserved in all drosophilid alcohol dehydrogenases but not in other SDRs. X-ray crystallography of the SlADH(T114V) mutant revealed a broken water chain, the overall 3D structure of the binary enzyme-NAD(+) complex was almost identical to the wild-type enzyme (SlADH(wt) ). As for the SlADH(wt) , steady-state kinetic studies revealed that catalysis by the SlADH(T114V) mutant was consistent with a compulsory ordered reaction mechanism where the co-enzyme binds to the free enzyme. The mutation caused a reduction of the k(on) velocity for NAD(+) and its binding strength to the enzyme, as well as the rate of hydride transfer (k) in the ternary enzyme-NAD(+) -alcohol complex. Furthermore, it increased the pK(a) value of the group in the binary enzyme-NAD(+) complex that regulates the k(on) velocity of alcohol and alcohol-competitive inhibitors. Overall, the results indicate that an intact water chain is essential for optimal enzyme activity and participates in a proton relay system during catalysis. © 2012 The Authors Journal compilation © 2012 FEBS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aliyu, S.U.; Upahi, L.
The role of acute ethanol and phenylethylamine on the brain and platelet monoamine oxidase activities, hepatic cytosolic alcohol dehydrogenase, redox state and motor behavior were studied in male rats. Ethanol on its own decreased the redox couple ratio, as well as, alcohol dehydrogenase activity in the liver while at the same time it increased brain and platelet monoamine oxidase activity due to lower Km with no change in Vmax. The elevation in both brain and platelet MAO activity was associated with ethanol-induced hypomotility in the rats. Co-administration of phenylethylamine and ethanol to the animals, caused antagonism of the ethanol-induced effectsmore » described above. The effects of phenylethylamine alone, on the above mentioned biochemical and behavioral indices, are more complex. Phenylethylamine on its own, like ethanol, caused reduction of the cytosolic redox, ratio and elevation of monoamine oxidase activity in the brain and platelets. However, in contrast to ethanol, this monoamine produced hypermotility and activation of the hepatic cytosolic alcohol dehydrogenase activity in the animals.« less
STUDIES ON MAMMALIAN AND HUMAN PYRUVATE AND ALPHA-KETOGLUTARATE DEHYDROGENATION COMPLEXES.
The pig heart pyruvate and alpha - ketoglutarate dehydrogenase complex were isolated in highly purified state as multienzyme units with molecular...weights of approximately 9 million and 2.8 million, respectively. The aims were to resolve the pig heart pyruvate and alpha - ketoglutarate dehydrogenase...complexes was isolated from three sources; (1) pyruvate dehydrogenase complex, (2) alpha - ketoglutarate dehydrogenase, and (3) amber-color extract free
Shrivastav, Shashi; Zhang, Liyan; Okamoto, Koji; Lee, Hewang; Lagranha, Claudia; Abe, Yoshifusa; Balasubramanyam, Ashok; Lopaschuk, Gary D.; Kino, Tomoshige
2013-01-01
HIV infection and its therapy are associated with disorders of lipid metabolism and bioenergetics. Previous work has suggested that viral protein R (Vpr) may contribute to the development of lipodystrophy and insulin resistance observed in HIV-1–infected patients. In adipocytes, Vpr suppresses mRNA expression of peroxisomal proliferator-activating receptor-γ (PPARγ)-responsive genes and inhibits differentiation. We investigated whether Vpr might interact with PPARβ/δ and influence its transcriptional activity. In the presence of PPARβ/δ, Vpr induced a 3.3-fold increase in PPAR response element-driven transcriptional activity, a 1.9-fold increase in pyruvate dehydrogenase kinase 4 (PDK4) protein expression, and a 1.6-fold increase in the phosphorylated pyruvate dehydrogenase subunit E1α leading to a 47% decrease in the activity of the pyruvate dehydrogenase complex in HepG2 cells. PPARβ/δ knockdown attenuated Vpr-induced enhancement of endogenous PPARβ/δ-responsive PDK4 mRNA expression. Vpr induced a 1.3-fold increase in mRNA expression of both carnitine palmitoyltransferase I (CPT1) and acetyl-coenzyme A acyltransferase 2 (ACAA2) and doubled the activity of β-hydroxylacyl coenzyme A dehydrogenase (HADH). Vpr physically interacted with the ligand-binding domain of PPARβ/δ in vitro and in vivo. Consistent with a role in energy expenditure, Vpr increased state-3 respiration in isolated mitochondria (1.16-fold) and basal oxygen consumption rate in intact HepG2 cells (1.2-fold) in an etomoxir-sensitive manner, indicating that the oxygen consumption rate increase is β-oxidation–dependent. The effects of Vpr on PPAR response element activation, pyruvate dehydrogenase complex activity, and β-oxidation were reversed by specific PPARβ/δ antagonists. These results support the hypothesis that Vpr contributes to impaired energy metabolism and increased energy expenditure in HIV patients. PMID:23842279
Gupta, S C; Dekker, E E
1980-02-10
Enzyme preparations of pig heart and Escherichia coli are shown to catalyze a NAD+- and CoASH-dependent oxidation of 2-keto-4-hydroxyglutarate. Several independent lines of evidence support the conclusion that this hydroxyketo acid is a substrate for the well known alpha-ketoglutarate dehydrogenase complex of the citric acid cycle. The evidence includes (a) a constant ratio of specific activity values for the two substrates through several steps of purification, (b) identical elution profiles from a calcium phosphate gel-cellulose column and a constant ratio of specific activity toward the two substrates throughout the activity peak, (c) identical inactivation curves in controlled heat denaturation studies, (d) the same pH activity curves, (e) no effect on the oxidation of either keto acid by repeated freezing and thawing of dehydrogenase preparations, and (f) the same activity pattern when the E. coli complex is distributed into several fractions by sucrose density gradient centrifugation. Additionally, the same cofactors are required for maximal activity and glyoxylate inhibits the oxidation of either substrate noncompetitively. Ferricyanide-linked oxidation of 2-keto-4-hydroxyglutarate yields malate as the product and a 1:2:1 stoichiometric relationship is obtained between the amount of hydroxyketo acid oxidized, ferricyanide reduced, and malate formed.
Activation of mitochondrial calpain and increased cardiac injury: beyond AIF release
Thompson, Jeremy; Hu, Ying; Lesnefsky, Edward J.
2015-01-01
Calpain 1 (CPN1) is a ubiquitous cysteine protease that exists in both cytosol and cardiac mitochondria. Mitochondrial CPN1 (mit-CPN1) is located in the intermembrane space and matrix. Activation of mit-CPN1 within the intermembrane space increases cardiac injury by releasing apoptosis-inducing factor from mitochondria during ischemia-reperfusion (IR). We asked if activation of mit-CPN1 is involved in mitochondrial injury during IR. MDL-28170 (MDL) was used to inhibit CPN1 in buffer-perfused hearts following 25-min ischemia and 30-min reperfusion. MDL treatment decreased the release of lactate dehydrogenase into coronary effluent compared with untreated hearts, indicating that inhibition of CPN1 decreases cardiac injury. MDL also prevented the cleavage of spectrin (a substrate of CPN1) in cytosol during IR, supporting that MDL treatment decreased cytosolic calpain activation. In addition, MDL markedly improved calcium retention capacity compared with untreated heart, suggesting that MDL treatment decreases mitochondrial permeability transition pore opening. In addition, we found that IR led to decreased complex I activity, whereas inhibition of mit-CPN1 using MDL protected complex I. Pyruvate dehydrogenase content was decreased following IR. However, pyruvate dehydrogenase content was preserved in MDL-treated mitochondria. Taken together, MDL treatment decreased cardiac injury during IR by inhibiting both cytosolic and mit-CPN1. Activation of mit-CPN1 increases cardiac injury during IR by sensitizing mitochondrial permeability transition pore opening and impairing mitochondrial metabolism through damage of complex I. PMID:26637561
Steele, R D; Weber, H; Patterson, J I
1984-04-01
The oxidative decarboxylation of alpha-ketobutyrate was studied in rat tissue preparations. Decarboxylation was confined to the mitochondrial fraction and required coenzyme A, NAD, TPP and FAD for optimal activity in solubilized preparations. The pH optimum for this reaction in liver was 7.8, somewhat higher than that reported for other alpha-keto acid dehydrogenases. An apparent Km of 0.63 mM for alpha-ketobutyrate was determined for the rat liver system. Competition by other alpha-keto acids at 10 mM concentrations inhibited enzyme activity up to 75%. Tissue distribution of alpha-ketobutyrate dehydrogenase activity relative to liver activity was (in percent): liver, 100; heart, 127; brain, 63; kidney, 57; skeletal muscle, 38; and small intestine, 7. Total liver alpha-ketobutyrate dehydrogenase was decreased by 40% after a 24-hour fast. Similar results were found for kidney and heart activity. alpha-Aminobutyrate-pyruvate aminotransferase activity in liver or kidney was not affected by fasting; however, it was induced in liver by 50% after feeding a 40% casein diet for 10 days compared to rats fed a 20% casein diet. Increasing the dietary casein content from 6 through 40% of the diet resulted in about a fivefold increase in liver alpha-ketobutyrate dehydrogenase activity. The substantial extrahepatic capacity for alpha-ketobutyrate metabolism makes it unlikely that a loss of liver function results in an inability to metabolize alpha-ketobutyrate. Whether alpha-ketobutyrate is decarboxylated by a specific enzyme or by an already characterized complex such as pyruvate dehydrogenase or the branched-chain keto acid dehydrogenase remains to be established.
Panov, A; Scarpa, A
1996-01-16
The activity of alpha-ketoglutarate dehydrogenase complex (KGDHC), an important enzyme regulating several metabolic pathways, could be regulated by changes in the environment within the mitochondrial matrix. It has been postulated that the activity of this and other dehydrogenases in vivo could be modulated by changes in the intramitochondrial concentrations of Ca2+ or Mg2+. Using a purified alpha-ketoglutarate dehydrogenase from pig hearts, the effect of Ca2+ and/or Mg2+ on the enzyme activity was investigated. Either Ca2+ or Mg2+ increased enzyme activity, and the effects were additive if the concentrations of free divalent cations were below 0.1 and 1 mM for Ca2+ and Mg2+, respectively. In the presence of 1 mM alpha-ketoglutarate and other cofactors, the KM for Mg2+ was 25 microM and less than 1 microM for Ca2+. The KM for alpha-ketoglutarate was a function of the divalent cation(s) present: 4 +/- 1.1 mM in the absence of Ca2+, with or without Mg2+; 2.2 mM in the presence of 1.8 microM Ca2+ alone; and 0.3 mM in the presence of both Ca2+ and Mg2+. Mg2+ increased KGDHC activity only in the presence of thiamine pyrophosphate (TPP) indicating that KGDHC requires both TPP and Mg2+ for enzyme's maximal activity. The affinity of KGDHC for NAD+ is significantly changed by either Mg2+ or Ca2+. The conclusions are that changes in both Ca2+ and Mg2+, in concentrations possibly occurring within mitochondria, could control KGDHC activity and that thiamine pyrophosphate is required for maximal enzyme activity.
Xiao, Wusheng; Sarsour, Ehab H; Wagner, Brett A; Doskey, Claire M; Buettner, Garry R; Domann, Frederick E; Goswami, Prabhat C
2016-02-01
Polychlorinated biphenyls (PCBs) and their metabolites are environmental pollutants that are known to have adverse health effects. 1-(4-Chlorophenyl)-benzo-2,5-quinone (4-ClBQ), a quinone metabolite of 4-monochlorobiphenyl (PCB3, present in the environment and human blood) is toxic to human skin keratinocytes, and breast and prostate epithelial cells. This study investigates the hypothesis that 4-ClBQ-induced metabolic oxidative stress regulates toxicity in human keratinocytes. Results from Seahorse XF96 Analyzer showed that the 4-ClBQ treatment increased extracellular acidification rate, proton production rate, oxygen consumption rate and ATP content, indicative of metabolic oxidative stress. Results from a q-RT-PCR assay showed significant increases in the mRNA levels of hexokinase 2 (hk2), pyruvate kinase M2 (pkm2) and glucose-6-phosphate dehydrogenase (g6pd), and decreases in the mRNA levels of succinate dehydrogenase (complex II) subunit C and D (sdhc and sdhd). Pharmacological inhibition of G6PD-activity enhanced the toxicity of 4-ClBQ, suggesting that the protective function of the pentose phosphate pathway is functional in 4-ClBQ-treated cells. The decrease in sdhc and sdhd expression was associated with a significant decrease in complex II activity and increase in mitochondrial levels of ROS. Overexpression of sdhc and sdhd suppressed 4-ClBQ-induced inhibition of complex II activity, increase in mitochondrial levels of ROS, and toxicity. These results suggest that the 4-ClBQ treatment induces metabolic oxidative stress in HaCaT cells, and while the protective function of the pentose phosphate pathway is active, inhibition of complex II activity sensitizes HaCaT cells to 4-ClBQ-induced toxicity.
NASA Technical Reports Server (NTRS)
Ciszak, Ewa; Korotchkina, Lioubov G.; Dominiak, Paulina M.; Sidhu, Sukdeep; Patel, Mulchand S.
2003-01-01
The biologically active derivative of vitamin B1; thiamin pyrophosphate; is used as cofactor by many enzymes that perform a wide range of catalytic functions in the pathways of energy production. In alpha2beta2-heterotetrameric human pyruvate dehydrogenase, the first catalytic component enzyme of human pyruvate dehydrogenase complex, this cofactor is used to cleave the C(sup alpha)-C(=0) bond of pyruvate followed by reductive acetyl transfer to lipoyl-dihydrolipoamide acetyltransferase, the second catalytic component of the complex. The dynamic nonequivalence of two, otherwise chemically equivalent, catalytic sites have puzzled researchers from earlier functional studies of this enzyme. In order to gain insight into the mechanism of action of this enzyme, we determined the crystal structure of the holoform of human pyruvate dehydrogenase at 1.958, resolution. We propose a kinetic model for the flip-flop action of this enzyme through the concerted approx. 2A, shuttle-like motion of the heterodimers. The similarity of thiamin pyrophosphate binding in human pyruvate dehydrogenase and other functionally related enzymes suggests this newly defined mechanism of shuttle-like motion of domains to be common for the family of thiamin pyrophosphate-dependent enzymes.
Wagenmakers, A J; Schepens, J T; Veerkamp, J H
1984-01-01
Starvation does not change the actual activity per g of tissue of the branched-chain 2-oxo acid dehydrogenase in skeletal muscles, but affects the total activity to a different extent, depending on the muscle type. The activity state (proportion of the enzyme present in the active state) does not change in diaphragm and decreases in quadriceps muscle. Liver and kidney show an increase of both activities, without a change of the activity state. In heart and brain no changes were observed. Related to organ wet weights, the actual activity present in the whole-body muscle mass decreases on starvation, whereas the activities present in liver and kidney do not change, or increase slightly. Exercise (treadmill-running) of untrained rats for 15 and 60 min causes a small increase of the actual activity and the activity state of the branched-chain 2-oxo acid dehydrogenase complex in heart and skeletal muscle. Exercise for 1 h, furthermore, increased the actual and the total activity in liver and kidney, without a change of the activity state. In brain no changes were observed. The actual activity per g of tissue in skeletal muscle was less than 2% of that in liver and kidney, both before and after exercise and starvation. Our data indicate that the degradation of branched-chain 2-oxo acids predominantly occurs in liver and to a smaller extent in kidney and skeletal muscle in fed, starved and exercised rats. PMID:6508743
Doisaki, Masao; Katano, Yoshiaki; Nakano, Isao; Hirooka, Yoshiki; Itoh, Akihiro; Ishigami, Masatoshi; Hayashi, Kazuhiko; Goto, Hidemi; Fujita, Yuko; Kadota, Yoshihiro; Kitaura, Yasuyuki; Bajotto, Gustavo; Kazama, Shunsuke; Tamura, Tomohiro; Tamura, Noriko; Feng, Guo-Gang; Ishikawa, Naohisa; Shimomura, Yoshiharu
2010-03-05
Branched-chain alpha-keto acid dehydrogenase (BCKDH) kinase (BDK) is responsible for the regulation of BCKDH complex, which is the rate-limiting enzyme in the catabolism of branched-chain amino acids (BCAAs). In the present study, we investigated the expression and activity of hepatic BDK in spontaneous type 2 diabetes using hyperinsulinemic Zucker diabetic fatty rats aged 9weeks and hyperglycemic, but not hyperinsulinemic rats aged 18weeks. The abundance of hepatic BDK mRNA and total BDK protein did not correlate with changes in serum insulin concentrations. On the other hand, the amount of BDK bound to the complex and its kinase activity were correlated with alterations in serum insulin levels, suggesting that hyperinsulinemia upregulates hepatic BDK. The activity of BDK inversely corresponded with the BCKDH complex activity, which was suppressed in hyperinsulinemic rats. These results suggest that insulin regulates BCAA catabolism in type 2 diabetic rats by modulating the hepatic BDK activity. 2010 Elsevier Inc. All rights reserved.
Klimaszewska-Łata, Joanna; Gul-Hinc, Sylwia; Bielarczyk, Hanna; Ronowska, Anna; Zyśk, Marlena; Grużewska, Katarzyna; Pawełczyk, Tadeusz; Szutowicz, Andrzej
2015-04-01
There are significant differences between acetyl-CoA and ATP levels, enzymes of acetyl-CoA metabolism, and toll-like receptor 4 contents in non-activated microglial N9 and non-differentiated cholinergic SN56 neuroblastoma cells. Exposition of N9 cells to lipopolysaccharide caused concentration-dependent several-fold increases of nitrogen oxide synthesis, accompanied by inhibition of pyruvate dehydrogenase complex, aconitase, and α-ketoglutarate dehydrogenase complex activities, and by nearly proportional depletion of acetyl-CoA, but by relatively smaller losses in ATP content and cell viability (about 5%). On the contrary, SN56 cells appeared to be insensitive to direct exposition to high concentration of lipopolysaccharide. However, exogenous nitric oxide resulted in marked inhibition pyruvate dehydrogenase and aconitase activities, depletion of acetyl-CoA, along with respective loss of SN56 cells viability. These data indicate that these two common neurodegenerative signals may differentially affect energy-acetyl-CoA metabolism in microglial and cholinergic neuronal cell compartments in the brain. Moreover, microglial cells appeared to be more resistant than neuronal cells to acetyl-CoA and ATP depletion evoked by these neurodegenerative conditions. Together, these data indicate that differential susceptibility of microglia and cholinergic neuronal cells to neurotoxic signals may result from differences in densities of toll-like receptors and degree of disequilibrium between acetyl-CoA provision in mitochondria and its utilization for energy production and acetylation reactions in each particular group of cells. There are significant differences between acetyl-CoA and ATP levels and enzymes of acetyl-CoA metabolism in non-activated microglial N9 and non-differentiated cholinergic SN56 neuroblastoma cells. Pathological stimulation of microglial toll-like receptors (TLRs) triggered excessive synthesis of microglia-derived nitric oxide (NO)/NOO radicals that endogenously inhibited pyruvate dehydrogenase complex (PDHC), aconitase, and α-ketoglutarate dehydrogenase complex. However, it caused none or small suppressions of acetyl-CoA and microglial viability, respectively. Microglia-derived NO inhibited same enzymes in cholinergic neuronal cells causing marked viability loss because of acetyl-CoA deficits evoked by its competitive consumption by energy producing and acetylcholine/N-acetyl-l-aspartate (NAA) synthesizing pathways. © 2014 International Society for Neurochemistry.
Lawlis, V B; Roche, T E
1981-04-28
Regulation of bovine kidney alpha-ketoglutarate dehydrogenase complex by energy-linked metabolites was investigated. Ca2+, ADP, or inorganic phosphate markedly enhanced the activity of the complex, and ATP or, to a lesser extent, GTP decreased the activity of the complex. Initial velocity studies with alpha-ketoglutarate as the varied substrate demonstrated that these modulators induced large changes in S0.5 for alpha-ketoglutarate (based on analysis in Hill plots) with no change in the maximum velocity (as determined by double-reciprocal plots). For all conditions studied, the Hill coefficients were significantly less than 1.0 with slopes that were linear over wide ranges of alpha-ketoglutarate concentrations, indicating negative cooperativity that probably resulted from multiple site-site interactions. Ca2+ (maintained at 10 muM by a Ca2+ buffer) decreased the S0.5 for alpha-ketoglutarate 63-fold (from 25 to 0.40 mM); even in the presence of a positive effector, ADP or phosphate, Ca2+ decreased the S0.5 for alpha-ketoglutarate 7.8- or 28-fold, respectively. Consistent with a mechanism of action dependent of Ca2+, ADP (1.60 mM) or phosphate (20 mM) reduced the S0.5 for alpha-ketoglutarate in the presence of Ca2+ (i.e., 4.5- or 1.67-fold, respectively); however, these effectors elicited larger decreases in S0.5 in the absence of Ca2+ (i.e., 37- or 3.7-fold, respectively). ATP (1.6 mM) increased the S0.5 for alpha-ketoglutarate, and Ca2+ appreciably reduced the effect, lowering the S0.5 98-fold from 66 to 0.67 mM. Thus the activity of the kidney alpha-ketoglutarate dehydrogenase complex is poised to increase as the energy potential in mitochondria declines, and Ca2+ has a pronounced modulatory effect. Comparative studies on bovine heart alpha-ketoglutarate dehydrogenase complex and the effects of varying the ADP/ATP ratio in the presence or absence of Ca2+ or phosphate are also described.
Chemically engineered papain as artificial formate dehydrogenase for NAD(P)H regeneration.
Haquette, Pierre; Talbi, Barisa; Barilleau, Laure; Madern, Nathalie; Fosse, Céline; Salmain, Michèle
2011-08-21
Organometallic complexes of the general formula [(η(6)-arene)Ru(N⁁N)Cl](+) and [(η(5)-Cp*)Rh(N⁁N)Cl](+) where N⁁N is a 2,2'-dipyridylamine (DPA) derivative carrying a thiol-targeted maleimide group, 2,2'-bispyridyl (bpy), 1,10-phenanthroline (phen) or ethylenediamine (en) and arene is benzene, 2-chloro-N-[2-(phenyl)ethyl]acetamide or p-cymene were identified as catalysts for the stereoselective reduction of the enzyme cofactors NAD(P)(+) into NAD(P)H with formate as a hydride donor. A thorough comparison of their effectiveness towards NAD(+) (expressed as TOF) revealed that the Rh(III) complexes were much more potent catalysts than the Ru(II) complexes. Within the Ru(II) complex series, both the N⁁N and arene ligands forming the coordination sphere had a noticeable influence on the activity of the complexes. Covalent anchoring of the maleimide-functionalized Ru(II) and Rh(III) complexes to the cysteine endoproteinase papain yielded hybrid metalloproteins, some of them displaying formate dehydrogenase activity with potentially interesting kinetic parameters.
In female rat heart mitochondria, oophorectomy results in loss of oxidative phosphorylation.
Pavón, Natalia; Cabrera-Orefice, Alfredo; Gallardo-Pérez, Juan Carlos; Uribe-Alvarez, Cristina; Rivero-Segura, Nadia A; Vazquez-Martínez, Edgar Ricardo; Cerbón, Marco; Martínez-Abundis, Eduardo; Torres-Narvaez, Juan Carlos; Martínez-Memije, Raúl; Roldán-Gómez, Francisco-Javier; Uribe-Carvajal, Salvador
2017-02-01
Oophorectomy in adult rats affected cardiac mitochondrial function. Progression of mitochondrial alterations was assessed at one, two and three months after surgery: at one month, very slight changes were observed, which increased at two and three months. Gradual effects included decrease in the rates of oxygen consumption and in respiratory uncoupling in the presence of complex I substrates, as well as compromised Ca 2+ buffering ability. Malondialdehyde concentration increased, whereas the ROS-detoxifying enzyme Mn 2+ superoxide dismutase (MnSOD) and aconitase lost activity. In the mitochondrial respiratory chain, the concentration and activity of complex I and complex IV decreased. Among other mitochondrial enzymes and transporters, adenine nucleotide carrier and glutaminase decreased. 2-Oxoglutarate dehydrogenase and pyruvate dehydrogenase also decreased. Data strongly suggest that in the female rat heart, estrogen depletion leads to progressive, severe mitochondrial dysfunction. © 2017 Society for Endocrinology.
The crystallogenesis of a human estradiol dehydrogenase-substrate complex
NASA Astrophysics Data System (ADS)
Zhu, Dao-Wei; Azzi, Arezki; Rehse, Peter; Lin, Sheng-Xiang
1996-10-01
Human 17β-hydroxysteroid dehydrogenase type 1 is an important steroidogenic enzyme catalyzing the synthesis of the most active estrogen: estradiol. The enzyme is formed by two identical subunits (34.5 kDa). In this paper, we report the preparation of a stoichiometric 17β-HSD1-estradiol complex sample at a much higher concentration than the solubility of the free substrate, using a gradual concentration of the enzyme-substrate mixture starting at low concentration. The complex is successfully crystallized by vapor diffusion at pH 7.5 with polyethyleneglycol 4000 as the precipitating agent. The space group is C2 with a = 123.56 Å, b = 45.21 Å, c = 61.30 Å and β = 99.06°. There is one monomer in the asymmetric unit and two molecules of the enzyme in a unit cell. A diffraction data set to 2.5 Å has been collected to 86% completeness on native crystals. The high quality of the electronic density map of estradiol supports the full occupancy of the binding site, thus confirming the efficiency of the complex preparation. This method will also be useful in crystallizing other steroid-dehydrogenase complexes.
Kiss, Gergely; Konrad, Csaba; Doczi, Judit; Starkov, Anatoly A.; Kawamata, Hibiki; Manfredi, Giovanni; Zhang, Steven F.; Gibson, Gary E.; Beal, M. Flint; Adam-Vizi, Vera; Chinopoulos, Christos
2013-01-01
A decline in α-ketoglutarate dehydrogenase complex (KGDHC) activity has been associated with neurodegeneration. Provision of succinyl-CoA by KGDHC is essential for generation of matrix ATP (or GTP) by substrate-level phosphorylation catalyzed by succinyl-CoA ligase. Here, we demonstrate ATP consumption in respiration-impaired isolated and in situ neuronal somal mitochondria from transgenic mice with a deficiency of either dihydrolipoyl succinyltransferase (DLST) or dihydrolipoyl dehydrogenase (DLD) that exhibit a 20–48% decrease in KGDHC activity. Import of ATP into the mitochondrial matrix of transgenic mice was attributed to a shift in the reversal potential of the adenine nucleotide translocase toward more negative values due to diminished matrix substrate-level phosphorylation, which causes the translocase to reverse prematurely. Immunoreactivity of all three subunits of succinyl-CoA ligase and maximal enzymatic activity were unaffected in transgenic mice as compared to wild-type littermates. Therefore, decreased matrix substrate-level phosphorylation was due to diminished provision of succinyl-CoA. These results were corroborated further by the finding that mitochondria from wild-type mice respiring on substrates supporting substrate-level phosphorylation exhibited ∼30% higher ADP-ATP exchange rates compared to those obtained from DLST+/− or DLD+/− littermates. We propose that KGDHC-associated pathologies are a consequence of the inability of respiration-impaired mitochondria to rely on “in-house” mitochondrial ATP reserves.—Kiss, G., Konrad, C., Doczi, J., Starkov, A. A., Kawamata, H., Manfredi, G., Zhang, S. F., Gibson, G. E., Beal, M. F., Adam-Vizi, V., Chinopoulos, C. The negative impact of α-ketoglutarate dehydrogenase complex deficiency on matrix substrate-level phosphorylation. PMID:23475850
Brand, Martin D
2016-11-01
This review examines the generation of reactive oxygen species by mammalian mitochondria, and the status of different sites of production in redox signaling and pathology. Eleven distinct mitochondrial sites associated with substrate oxidation and oxidative phosphorylation leak electrons to oxygen to produce superoxide or hydrogen peroxide: oxoacid dehydrogenase complexes that feed electrons to NAD + ; respiratory complexes I and III, and dehydrogenases, including complex II, that use ubiquinone as acceptor. The topologies, capacities, and substrate dependences of each site have recently clarified. Complex III and mitochondrial glycerol 3-phosphate dehydrogenase generate superoxide to the external side of the mitochondrial inner membrane as well as the matrix, the other sites generate superoxide and/or hydrogen peroxide exclusively in the matrix. These different site-specific topologies are important for redox signaling. The net rate of superoxide or hydrogen peroxide generation depends on the substrates present and the antioxidant systems active in the matrix and cytosol. The rate at each site can now be measured in complex substrate mixtures. In skeletal muscle mitochondria in media mimicking muscle cytosol at rest, four sites dominate, two in complex I and one each in complexes II and III. Specific suppressors of two sites have been identified, the outer ubiquinone-binding site in complex III (site III Qo ) and the site in complex I active during reverse electron transport (site I Q ). These suppressors prevent superoxide/hydrogen peroxide production from a specific site without affecting oxidative phosphorylation, making them excellent tools to investigate the status of the sites in redox signaling, and to suppress the sites to prevent pathologies. They allow the cellular roles of mitochondrial superoxide/hydrogen peroxide production to be investigated without catastrophic confounding bioenergetic effects. They show that sites III Qo and I Q are active in cells and have important roles in redox signaling (e.g. hypoxic signaling and ER-stress) and in causing oxidative damage in a variety of biological contexts. Copyright © 2016 Elsevier Inc. All rights reserved.
Structural Biology of Proteins of the Multi-enzyme Assembly Human Pyruvate Dehydrogenase Complex
NASA Technical Reports Server (NTRS)
2003-01-01
Objectives and research challenges of this effort include: 1. Need to establish Human Pyruvate Dehydrogenase Complex protein crystals; 2. Need to test value of microgravity for improving crystal quality of Human Pyruvate Dehydrogenase Complex protein crystals; 3. Need to improve flight hardware in order to control and understand the effects of microgravity on crystallization of Human Pyruvate Dehydrogenase Complex proteins; 4. Need to integrate sets of national collaborations with the restricted and specific requirements of flight experiments; 5. Need to establish a highly controlled experiment in microgravity with a rigor not yet obtained; 6. Need to communicate both the rigor of microgravity experiments and the scientific value of results obtained from microgravity experiments to the national community; and 7. Need to advance the understanding of Human Pyruvate Dehydrogenase Complex structures so that scientific and commercial advance is identified for these proteins.
Tuck, Laura R.; Altenbach, Kirsten; Ang, Thiau Fu; Crawshaw, Adam D.; Campopiano, Dominic J.; Clarke, David J.; Marles-Wright, Jon
2016-01-01
The breakdown of fucose and rhamnose released from plant cell walls by the cellulolytic soil bacterium Clostridium phytofermentans produces toxic aldehyde intermediates. To enable growth on these carbon sources, the pathway for the breakdown of fucose and rhamnose is encapsulated within a bacterial microcompartment (BMC). These proteinaceous organelles sequester the toxic aldehyde intermediates and allow the efficient action of acylating aldehyde dehydrogenase enzymes to produce an acyl-CoA that is ultimately used in substrate-level phosphorylation to produce ATP. Here we analyse the kinetics of the aldehyde dehydrogenase enzyme from the fucose/rhamnose utilisation BMC with different short-chain fatty aldehydes and show that it has activity against substrates with up to six carbon atoms, with optimal activity against propionaldehyde. We have also determined the X-ray crystal structure of this enzyme in complex with CoA and show that the adenine nucleotide of this cofactor is bound in a distinct pocket to the same group in NAD+. This work is the first report of the structure of CoA bound to an aldehyde dehydrogenase enzyme and our crystallographic model provides important insight into the differences within the active site that distinguish the acylating from non-acylating aldehyde dehydrogenase enzymes. PMID:26899032
Tuck, Laura R; Altenbach, Kirsten; Ang, Thiau Fu; Crawshaw, Adam D; Campopiano, Dominic J; Clarke, David J; Marles-Wright, Jon
2016-02-22
The breakdown of fucose and rhamnose released from plant cell walls by the cellulolytic soil bacterium Clostridium phytofermentans produces toxic aldehyde intermediates. To enable growth on these carbon sources, the pathway for the breakdown of fucose and rhamnose is encapsulated within a bacterial microcompartment (BMC). These proteinaceous organelles sequester the toxic aldehyde intermediates and allow the efficient action of acylating aldehyde dehydrogenase enzymes to produce an acyl-CoA that is ultimately used in substrate-level phosphorylation to produce ATP. Here we analyse the kinetics of the aldehyde dehydrogenase enzyme from the fucose/rhamnose utilisation BMC with different short-chain fatty aldehydes and show that it has activity against substrates with up to six carbon atoms, with optimal activity against propionaldehyde. We have also determined the X-ray crystal structure of this enzyme in complex with CoA and show that the adenine nucleotide of this cofactor is bound in a distinct pocket to the same group in NAD(+). This work is the first report of the structure of CoA bound to an aldehyde dehydrogenase enzyme and our crystallographic model provides important insight into the differences within the active site that distinguish the acylating from non-acylating aldehyde dehydrogenase enzymes.
Bogart, Justin A; Lewis, Andrew J; Schelter, Eric J
2015-01-19
Rare-earth metal cations have recently been demonstrated to be essential co-factors for the growth of the methanotrophic bacterium Methylacidiphilum fumariolicum SolV. A crystal structure of the rare-earth-dependent methanol dehydrogenase (MDH) includes a cerium cation in the active site. Herein, the Ce-MDH active site has been analyzed through DFT calculations. The results show the stability of the Ce(III)-pyrroloquinoline quinone (PQQ) semiquinone configuration. Calculations on the active oxidized form of this complex indicate a 0.81 eV stabilization of the PQQ(0) LUMO at cerium versus calcium, supporting the observation that the cerium cation in the active site confers a competitive advantage to Methylacidiphilum fumariolicum SolV. Using reported aqueous electrochemical data, a semi-empirical correlation was established based on cerium(IV/III) redox potentials. The correlation allowed estimation of the cerium oxidation potential of +1.35 V versus saturated calomel electrode (SCE) in the active site. The results are expected to guide the design of functional model complexes and alcohol-oxidation catalysts based on lanthanide complexes of biologically relevant quinones. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Structure and regulation of KGD1, the structural gene for yeast alpha-ketoglutarate dehydrogenase.
Repetto, B; Tzagoloff, A
1989-06-01
Nuclear respiratory-defective mutants of Saccharomyces cerevisiae have been screened for lesions in the mitochondrial alpha-ketoglutarate dehydrogenase complex. Strains assigned to complementation group G70 were ascertained to be deficient in enzyme activity due to mutations in the KGD1 gene coding for the alpha-ketoglutarate dehydrogenase component of the complex. The KGD1 gene has been cloned by transformation of a representative kgd1 mutant, C225/U1, with a recombinant plasmid library of wild-type yeast nuclear DNA. Transformants containing the gene on a multicopy plasmid had three- to four-times-higher alpha-ketoglutarate dehydrogenase activity than did wild-type S. cerevisiae. Substitution of the chromosomal copy of KGD1 with a disrupted allele (kgd1::URA3) induced a deficiency in alpha-ketoglutarate dehydrogenase. The sequence of the cloned region of DNA which complements kgd1 mutants was found to have an open reading frame of 3,042 nucleotides capable of coding for a protein of Mw 114,470. The encoded protein had 38% identical residues with the reported sequence of alpha-ketoglutarate dehydrogenase from Escherichia coli. Two lines of evidence indicated that transcription of KGD1 is catabolite repressed. Higher steady-state levels of KGD1 mRNA were detected in wild-type yeast grown on the nonrepressible sugar galactose than in yeast grown on high glucose. Regulation of KGD1 was also studied by fusing different 5'-flanking regions of KGD1 to the lacZ gene of E. coli and measuring the expression of beta-galactosidase in yeast. Transformants harboring a fusion of 693 nucleotides of the 5'-flanking sequence expressed 10 times more beta-galactosidase activity when grown under derepressed conditions. The response to the carbon source was reduced dramatically when the same lacZ fusion was present in a hap2 or hap3 mutant. The promoter element(s) responsible for the regulated expression of KGD1 has been mapped to the -354 to -143 region. This region contained several putative activation sites with sequences matching the core element proposed to be essential for binding of the HAP2 and HAP3 regulatory proteins.
Structural analysis of fungus-derived FAD glucose dehydrogenase
Yoshida, Hiromi; Sakai, Genki; Mori, Kazushige; Kojima, Katsuhiro; Kamitori, Shigehiro; Sode, Koji
2015-01-01
We report the first three-dimensional structure of fungus-derived glucose dehydrogenase using flavin adenine dinucleotide (FAD) as the cofactor. This is currently the most advanced and popular enzyme used in glucose sensor strips manufactured for glycemic control by diabetic patients. We prepared recombinant nonglycosylated FAD-dependent glucose dehydrogenase (FADGDH) derived from Aspergillus flavus (AfGDH) and obtained the X-ray structures of the binary complex of enzyme and reduced FAD at a resolution of 1.78 Å and the ternary complex with reduced FAD and D-glucono-1,5-lactone (LGC) at a resolution of 1.57 Å. The overall structure is similar to that of fungal glucose oxidases (GOxs) reported till date. The ternary complex with reduced FAD and LGC revealed the residues recognizing the substrate. His505 and His548 were subjected for site-directed mutagenesis studies, and these two residues were revealed to form the catalytic pair, as those conserved in GOxs. The absence of residues that recognize the sixth hydroxyl group of the glucose of AfGDH, and the presence of significant cavity around the active site may account for this enzyme activity toward xylose. The structural information will contribute to the further engineering of FADGDH for use in more reliable and economical biosensing technology for diabetes management. PMID:26311535
Novembri, R; Voltolini, C; Torricelli, M; Severi, F M; Marcolongo, P; Benedetti, A; Challis, J R; Petraglia, F
2013-11-01
11β-Hydroxysteroid dehydrogenase 1 and 2 (11β-HSD1 and 11β-HSD2) are involved in the complex mechanism of human parturition. The present study examined mRNA expression and activity of membrane 11β-HSD1 and placental 11β-HSD2 in postdate pregnancies according to response of labor induction. In comparison to postdate women who had spontaneous delivery or after induction the non-responders showed significantly low c and high 11β-HSD2 expression and activity These data suggest that disrupted expression and activity of 11β-HSDs may occur in some postdate pregnancies. Copyright © 2013 Elsevier Ltd. All rights reserved.
Molenaar, Remco J; Khurshed, Mohammed; Hira, Vashendriya V V; Van Noorden, Cornelis J F
2018-05-26
Altered cellular metabolism is a hallmark of many diseases, including cancer, cardiovascular diseases and infection. The metabolic motor units of cells are enzymes and their activity is heavily regulated at many levels, including the transcriptional, mRNA stability, translational, post-translational and functional level. This complex regulation means that conventional quantitative or imaging assays, such as quantitative mRNA experiments, Western Blots and immunohistochemistry, yield incomplete information regarding the ultimate activity of enzymes, their function and/or their subcellular localization. Quantitative enzyme cytochemistry and histochemistry (i.e., metabolic mapping) show in-depth information on in situ enzymatic activity and its kinetics, function and subcellular localization in an almost true-to-nature situation. We describe a protocol to detect the activity of dehydrogenases, which are enzymes that perform redox reactions to reduce cofactors such as NAD(P) + and FAD. Cells and tissue sections are incubated in a medium that is specific for the enzymatic activity of one dehydrogenase. Subsequently, the dehydrogenase that is the subject of investigation performs its enzymatic activity in its subcellular site. In a chemical reaction with the reaction medium, this ultimately generates blue-colored formazan at the site of the dehydrogenase's activity. The formazan's absorbance is therefore a direct measure of the dehydrogenase's activity and can be quantified using monochromatic light microscopy and image analysis. The quantitative aspect of this protocol enables researchers to draw statistical conclusions from these assays. Besides observational studies, this technique can be used for inhibition studies of specific enzymes. In this context, studies benefit from the true-to-nature advantages of metabolic mapping, giving in situ results that may be physiologically more relevant than in vitro enzyme inhibition studies. In all, metabolic mapping is an indispensable technique to study metabolism at the cellular or tissue level. The technique is easy to adopt, provides in-depth, comprehensive and integrated metabolic information and enables rapid quantitative analysis.
Moore, A. L.; Gemel, J.; Randall, D. D.
1993-12-01
The regulation of the pea (Pisum sativum) leaf mitochondrial pyruvate dehydrogenase complex by respiratory rate and oxidative phosphorylation has been investigated by measuring the respiratory activity, the redox poise of the quinone pool (Q-pool), and mitochondrial pyruvate dehydrogenase (mtPDC) activity under various metabolic conditions. It was found that, under state 4 conditions, mtPDC activity was unaffected by either the addition of succinate, 2-oxoglutarate, or glycine or the overall respiratory rate and redox poise of the Q-pool but was partially inhibited by NADH due to product inhibition. In the presence of ADP significant inactivation of PDC, which was sensitive to oligomycin, was observed with all substrates, apart from pyruvate, suggesting that inactivation was due to ATP formation. Inactivation of PDC by ADP addition was observed even in the presence of carboxyatractyloside, an inhibitor of the ATP/ADP translocator, suggesting that other mechanisms to facilitate the entry of adenylates, in addition to the adenylate carrier, must exist in plant mitochondria.
Modig, Tobias; Lidén, Gunnar; Taherzadeh, Mohammad J
2002-01-01
The kinetics of furfural inhibition of the enzymes alcohol dehydrogenase (ADH; EC 1.1.1.1), aldehyde dehydrogenase (AlDH; EC 1.2.1.5) and the pyruvate dehydrogenase (PDH) complex were studied in vitro. At a concentration of less than 2 mM furfural was found to decrease the activity of both PDH and AlDH by more than 90%, whereas the ADH activity decreased by less than 20% at the same concentration. Furfural inhibition of ADH and AlDH activities could be described well by a competitive inhibition model, whereas the inhibition of PDH was best described as non-competitive. The estimated K(m) value of AlDH for furfural was found to be about 5 microM, which was lower than that for acetaldehyde (10 microM). For ADH, however, the estimated K(m) value for furfural (1.2 mM) was higher than that for acetaldehyde (0.4 mM). The inhibition of the three enzymes by 5-hydroxymethylfurfural (HMF) was also measured. The inhibition caused by HMF of ADH was very similar to that caused by furfural. However, HMF did not inhibit either AlDH or PDH as severely as furfural. The inhibition effects on the three enzymes could well explain previously reported in vivo effects caused by furfural and HMF on the overall metabolism of Saccharomyces cerevisiae, suggesting a critical role of these enzymes in the observed inhibition. PMID:11964178
Stacpoole, Peter W
2017-11-01
The mitochondrial pyruvate dehydrogenase complex (PDC) irreversibly decarboxylates pyruvate to acetyl coenzyme A, thereby linking glycolysis to the tricarboxylic acid cycle and defining a critical step in cellular bioenergetics. Inhibition of PDC activity by pyruvate dehydrogenase kinase (PDK)-mediated phosphorylation has been associated with the pathobiology of many disorders of metabolic integration, including cancer. Consequently, the PDC/PDK axis has long been a therapeutic target. The most common underlying mechanism accounting for PDC inhibition in these conditions is post-transcriptional upregulation of one or more PDK isoforms, leading to phosphorylation of the E1α subunit of PDC. Such perturbations of the PDC/PDK axis induce a "glycolytic shift," whereby affected cells favor adenosine triphosphate production by glycolysis over mitochondrial oxidative phosphorylation and cellular proliferation over cellular quiescence. Dichloroacetate is the prototypic xenobiotic inhibitor of PDK, thereby maintaining PDC in its unphosphorylated, catalytically active form. However, recent interest in the therapeutic targeting of the PDC/PDK axis for the treatment of cancer has yielded a new generation of small molecule PDK inhibitors. Ongoing investigations of the central role of PDC in cellular energy metabolism and its regulation by pharmacological effectors of PDKs promise to open multiple exciting vistas into the biochemical understanding and treatment of cancer and other diseases. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Baker, Perrin; Hillis, Colleen; Carere, Jason; Seah, Stephen Y K
2012-03-06
Bacterial aldolase-dehydrogenase complexes catalyze the last steps in the meta cleavage pathway of aromatic hydrocarbon degradation. The aldolase (TTHB246) and dehydrogenase (TTHB247) from Thermus thermophilus were separately expressed and purified from recombinant Escherichia coli. The aldolase forms a dimer, while the dehydrogenase is a monomer; these enzymes can form a stable tetrameric complex in vitro, consisting of two aldolase and two dehydrogenase subunits. Upon complex formation, the K(m) value of 4-hydroxy-2-oxopentanoate, the substrate of TTHB246, is decreased 4-fold while the K(m) of acetaldehyde, the substrate of TTHB247, is increased 3-fold. The k(cat) values of each enzyme were reduced by ~2-fold when they were in a complex. The half-life of TTHB247 at 50 °C increased by ~4-fold when it was in a complex with TTHB246. The acetaldehyde product from TTHB246 could be efficiently channelled directly to TTHB247, but the channeling efficiency for the larger propionaldehyde was ~40% lower. A single A324G substitution in TTHB246 increased the channeling efficiency of propionaldehyde to a value comparable to that of acetaldehyde. Stable and catalytically competent chimeric complexes could be formed between the T. thermophilus enzymes and the orthologous aldolase (BphI) and dehydrogenase (BphJ) from the biphenyl degradation pathway of Burkholderia xenovorans LB400. However, channeling efficiencies for acetaldehyde in these chimeric complexes were ~10%. Structural and sequence analysis suggests that interacting residues in the interface of the aldolase-dehydrogenase complex are highly conserved among homologues, but coevolution of partner enzymes is required to fine-tune this interaction to allow for efficient substrate channeling.
Deyashiki, Y; Tamada, Y; Miyabe, Y; Nakanishi, M; Matsuura, K; Hara, A
1995-08-01
Human liver cytosol contains multiple forms of 3 alpha-hydroxysteroid dehydrogenase and dihydrodiol dehydrogenase with hydroxysteroid dehydrogenase activity, and multiple cDNAs for the enzymes have been cloned from human liver cDNA libraries. To understand the relationship of the multiple enzyme froms to the genes, a cDNA, which has been reported to code for an isoenzyme of human liver 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase, was expressed in Escherichia coli. The recombinant enzyme showed structural and functional properties almost identical to those of the isoenzyme purified from human liver. In addition, the recombinant isoenzyme efficiently reduced 5 alpha-dihydrotestosterone and 5 beta-dihydrocortisone, the known substrates of human liver 3 alpha-hydroxysteroid dehydrogenase and chlordecone reductase previously purified, which suggests that these human liver enzymes are identical. Furthermore, the steady-state kinetic data for NADP(+)-linked (S)-1-indanol oxidation by the recombinant isoenzyme were consistent with a sequential ordered mechanism in which NADP+ binds first. Phenolphthalein inhibited this isoenzyme much more potently than it did the other human liver dihydrodiol dehydrogenases, and was a competitive inhibitor (Ki = 20 nM) that bound to the enzyme-NADP+ complex.
Guo, Kunde; Lukacik, Petra; Papagrigoriou, Evangelos; Meier, Marc; Lee, Wen Hwa; Adamski, Jerzy; Oppermann, Udo
2006-04-14
Human DHRS6 is a previously uncharacterized member of the short chain dehydrogenases/reductase family and displays significant homologies to bacterial hydroxybutyrate dehydrogenases. Substrate screening reveals sole NAD(+)-dependent conversion of (R)-hydroxybutyrate to acetoacetate with K(m) values of about 10 mm, consistent with plasma levels of circulating ketone bodies in situations of starvation or ketoacidosis. The structure of human DHRS6 was determined at a resolution of 1.8 A in complex with NAD(H) and reveals a tetrameric organization with a short chain dehydrogenases/reductase-typical folding pattern. A highly conserved triad of Arg residues ("triple R" motif consisting of Arg(144), Arg(188), and Arg(205)) was found to bind a sulfate molecule at the active site. Docking analysis of R-beta-hydroxybutyrate into the active site reveals an experimentally consistent model of substrate carboxylate binding and catalytically competent orientation. GFP reporter gene analysis reveals a cytosolic localization upon transfection into mammalian cells. These data establish DHRS6 as a novel, cytosolic type 2 (R)-hydroxybutyrate dehydrogenase, distinct from its well characterized mitochondrial type 1 counterpart. The properties determined for DHRS6 suggest a possible physiological role in cytosolic ketone body utilization, either as a secondary system for energy supply in starvation or to generate precursors for lipid and sterol synthesis.
2009-05-21
pyruvate dehydrogenase complex (PDC) and 2-oxo- glutarate dehydrogenase complex. These dehydrogenase complexes share the same basic structure, perform the...Science 312 (2006) 927-930. [20] J. Dancis, M. Levitz, R.G. Westall, Maple syrup urine disease: branched- chain keto- aciduria , Pediatrics 25 (1960...2127 2128 Dancis J, Levitz M, Westall RG. 1960. Maple syrup urine disease: branched-chain keto- aciduria . Pediatrics 25:72-9. Danner DJ, Lemmon
The molecular origins of specificity in the assembly of a multienzyme complex.
Frank, René A W; Pratap, J Venkatesh; Pei, Xue Y; Perham, Richard N; Luisi, Ben F
2005-08-01
The pyruvate dehydrogenase (PDH) multienzyme complex is central to oxidative metabolism. We present the first crystal structure of a complex between pyruvate decarboxylase (E1) and the peripheral subunit binding domain (PSBD) of the dihydrolipoyl acetyltransferase (E2). The interface is dominated by a "charge zipper" of networked salt bridges. Remarkably, the PSBD uses essentially the same zipper to alternately recognize the dihydrolipoyl dehydrogenase (E3) component of the PDH assembly. The PSBD achieves this dual recognition largely through the addition of a network of interfacial water molecules unique to the E1-PSBD complex. These structural comparisons illuminate our observations that the formation of this water-rich E1-E2 interface is largely enthalpy driven, whereas that of the E3-PSBD complex (from which water is excluded) is entropy driven. Interfacial water molecules thus diversify surface complementarity and contribute to avidity, enthalpically. Additionally, the E1-PSBD structure provides insight into the organization and active site coupling within the approximately 9 MDa PDH complex.
Araújo, Wagner L.; Ishizaki, Kimitsune; Nunes-Nesi, Adriano; Larson, Tony R.; Tohge, Takayuki; Krahnert, Ina; Witt, Sandra; Obata, Toshihiro; Schauer, Nicolas; Graham, Ian A.; Leaver, Christopher J.; Fernie, Alisdair R.
2010-01-01
The process of dark-induced senescence in plants is relatively poorly understood, but a functional electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO) complex, which supports respiration during carbon starvation, has recently been identified. Here, we studied the responses of Arabidopsis thaliana mutants deficient in the expression of isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase to extended darkness and other environmental stresses. Evaluations of the mutant phenotypes following carbon starvation induced by extended darkness identify similarities to those exhibited by mutants of the ETF/ETFQO complex. Metabolic profiling and isotope tracer experimentation revealed that isovaleryl-CoA dehydrogenase is involved in degradation of the branched-chain amino acids, phytol, and Lys, while 2-hydroxyglutarate dehydrogenase is involved exclusively in Lys degradation. These results suggest that isovaleryl-CoA dehydrogenase is the more critical for alternative respiration and that a series of enzymes, including 2-hydroxyglutarate dehydrogenase, plays a role in Lys degradation. Both physiological and metabolic phenotypes of the isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase mutants were not as severe as those observed for mutants of the ETF/ETFQO complex, indicating some functional redundancy of the enzymes within the process. Our results aid in the elucidation of the pathway of plant Lys catabolism and demonstrate that both isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase act as electron donors to the ubiquinol pool via an ETF/ETFQO-mediated route. PMID:20501910
Araújo, Wagner L; Ishizaki, Kimitsune; Nunes-Nesi, Adriano; Larson, Tony R; Tohge, Takayuki; Krahnert, Ina; Witt, Sandra; Obata, Toshihiro; Schauer, Nicolas; Graham, Ian A; Leaver, Christopher J; Fernie, Alisdair R
2010-05-01
The process of dark-induced senescence in plants is relatively poorly understood, but a functional electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO) complex, which supports respiration during carbon starvation, has recently been identified. Here, we studied the responses of Arabidopsis thaliana mutants deficient in the expression of isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase to extended darkness and other environmental stresses. Evaluations of the mutant phenotypes following carbon starvation induced by extended darkness identify similarities to those exhibited by mutants of the ETF/ETFQO complex. Metabolic profiling and isotope tracer experimentation revealed that isovaleryl-CoA dehydrogenase is involved in degradation of the branched-chain amino acids, phytol, and Lys, while 2-hydroxyglutarate dehydrogenase is involved exclusively in Lys degradation. These results suggest that isovaleryl-CoA dehydrogenase is the more critical for alternative respiration and that a series of enzymes, including 2-hydroxyglutarate dehydrogenase, plays a role in Lys degradation. Both physiological and metabolic phenotypes of the isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase mutants were not as severe as those observed for mutants of the ETF/ETFQO complex, indicating some functional redundancy of the enzymes within the process. Our results aid in the elucidation of the pathway of plant Lys catabolism and demonstrate that both isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase act as electron donors to the ubiquinol pool via an ETF/ETFQO-mediated route.
Bagramyan, K; Trchounian, A
2003-11-01
Formate hydrogen lyase from Escherichia coli is a membrane-bound complex that oxidizes formic acid to carbon dioxide and molecular hydrogen. Under anaerobic growth conditions and fermentation of sugars (glucose), it exists in two forms. One form is constituted by formate dehydrogenase H and hydrogenase 3, and the other one is the same formate dehydrogenase and hydrogenase 4; the presence of small protein subunits, carriers of electrons, is also probable. Other proteins may also be involved in formation of the enzyme complex, which requires the presence of metal (nickel-cobalt). Its formation also depends on the external pH and the presence of formate. Activity of both forms requires F(0)F(1)-ATPase; this explains dependence of the complex functioning on proton-motive force. It is also possible that the formate hydrogen lyase complex will exhibit its own proton-translocating function.
Signals of monocyte activation in patients with SLE.
Kávai, M; Zsindely, A; Sonkoly, I; Major, M; Demján, I; Szegedi, G
1983-01-01
The Fc receptor mediated reaction, the beta-glucuronidase and the lactic dehydrogenase activities of monocytes and the serum lysozyme level were tested together with the circulating immune complex content of patients with systemic lupus erythematosus. Simultaneously with the increasing FC receptor-mediated reaction and the elevated enzyme activities of patient monocytes, the secretion of lysozyme and the immune complex content of the sera were higher than those of the controls. A positive correlation was demonstrated between the Fc receptor-mediated reaction, the beta-glucuronidase activity, the lysozyme secretion and the immune complex content of the sera. Thus, the monocytes of patients appeared to be activated by the circulating immune complexes. PMID:6839541
Zhang, Huili; Zhu, Jianzhong; Zhu, Xiangcheng; Cai, Jin; Zhang, Anyi; Hong, Yizhi; Huang, Jin; Huang, Lei; Xu, Zhinan
2012-07-01
A new exogenous glutamic acid-independent γ-PGA producing strain was isolated and characterized as Bacillus subtilis C10. The factors influencing the endogenous glutamic acid supply and the biosynthesis of γ-PGA in this strain were investigated. The results indicated that citric acid and oxalic acid showed the significant capability to support the overproduction of γ-PGA. This stimulated increase of γ-PGA biosynthesis by citric acid or oxalic acid was further proved in the 10 L fermentor. To understand the possible mechanism contributing to the improved γ-PGA production, the activities of four key intracellular enzymes were measured, and the possible carbon fluxes were proposed. The result indicated that the enhanced level of pyruvate dehydrogenase (PDH) activity caused by oxalic acid was important for glutamic acid synthesized de novo from glucose. Moreover, isocitrate dehydrogenase (ICDH) and glutamate dehydrogenase (GDH) were the positive regulators of glutamic acid biosynthesis, while 2-oxoglutarate dehydrogenase complex (ODHC) was the negative one. Copyright © 2012 Elsevier Ltd. All rights reserved.
Glasser, Nathaniel R.; Wang, Benjamin X.; Hoy, Julie A.; Newman, Dianne K.
2017-01-01
Phenazines are a class of redox-active molecules produced by diverse bacteria and archaea. Many of the biological functions of phenazines, such as mediating signaling, iron acquisition, and redox homeostasis, derive from their redox activity. Although prior studies have focused on extracellular phenazine oxidation by oxygen and iron, here we report a search for reductants and catalysts of intracellular phenazine reduction in Pseudomonas aeruginosa. Enzymatic assays in cell-free lysate, together with crude fractionation and chemical inhibition, indicate that P. aeruginosa contains multiple enzymes that catalyze the reduction of the endogenous phenazines pyocyanin and phenazine-1-carboxylic acid in both cytosolic and membrane fractions. We used chemical inhibitors to target general enzyme classes and found that an inhibitor of flavoproteins and heme-containing proteins, diphenyleneiodonium, effectively inhibited phenazine reduction in vitro, suggesting that most phenazine reduction derives from these enzymes. Using natively purified proteins, we demonstrate that the pyruvate and α-ketoglutarate dehydrogenase complexes directly catalyze phenazine reduction with pyruvate or α-ketoglutarate as electron donors. Both complexes transfer electrons to phenazines through the common subunit dihydrolipoamide dehydrogenase, a flavoprotein encoded by the gene lpdG. Although we were unable to co-crystallize LpdG with an endogenous phenazine, we report its X-ray crystal structure in the apo-form (refined to 1.35 Å), bound to NAD+ (1.45 Å), and bound to NADH (1.79 Å). In contrast to the notion that phenazines support intracellular redox homeostasis by oxidizing NADH, our work suggests that phenazines may substitute for NAD+ in LpdG and other enzymes, achieving the same end by a different mechanism. PMID:28174304
Glasser, Nathaniel R; Wang, Benjamin X; Hoy, Julie A; Newman, Dianne K
2017-03-31
Phenazines are a class of redox-active molecules produced by diverse bacteria and archaea. Many of the biological functions of phenazines, such as mediating signaling, iron acquisition, and redox homeostasis, derive from their redox activity. Although prior studies have focused on extracellular phenazine oxidation by oxygen and iron, here we report a search for reductants and catalysts of intracellular phenazine reduction in Pseudomonas aeruginosa Enzymatic assays in cell-free lysate, together with crude fractionation and chemical inhibition, indicate that P. aeruginosa contains multiple enzymes that catalyze the reduction of the endogenous phenazines pyocyanin and phenazine-1-carboxylic acid in both cytosolic and membrane fractions. We used chemical inhibitors to target general enzyme classes and found that an inhibitor of flavoproteins and heme-containing proteins, diphenyleneiodonium, effectively inhibited phenazine reduction in vitro , suggesting that most phenazine reduction derives from these enzymes. Using natively purified proteins, we demonstrate that the pyruvate and α-ketoglutarate dehydrogenase complexes directly catalyze phenazine reduction with pyruvate or α-ketoglutarate as electron donors. Both complexes transfer electrons to phenazines through the common subunit dihydrolipoamide dehydrogenase, a flavoprotein encoded by the gene lpdG Although we were unable to co-crystallize LpdG with an endogenous phenazine, we report its X-ray crystal structure in the apo-form (refined to 1.35 Å), bound to NAD + (1.45 Å), and bound to NADH (1.79 Å). In contrast to the notion that phenazines support intracellular redox homeostasis by oxidizing NADH, our work suggests that phenazines may substitute for NAD + in LpdG and other enzymes, achieving the same end by a different mechanism. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Keohane, Colleen E; Steele, Andrew D; Fetzer, Christian; Khowsathit, Jittasak; Van Tyne, Daria; Moynié, Lucile; Gilmore, Michael S; Karanicolas, John; Sieber, Stephan A; Wuest, William M
2018-02-07
Natural products have served as an inspiration to scientists both for their complex three-dimensional architecture and exquisite biological activity. Promysalin is one such Pseudomonad secondary metabolite that exhibits narrow-spectrum antibacterial activity, originally isolated from the rhizosphere. We herein utilize affinity-based protein profiling (AfBPP) to identify succinate dehydrogenase (Sdh) as the biological target of the natural product. The target was further validated in silico, in vitro, in vivo, and through the selection, and sequencing, of a resistant mutant. Succinate dehydrogenase plays an essential role in primary metabolism of Pseudomonas aeruginosa as the only enzyme that is involved both in the tricarboxylic acid cycle (TCA) and in respiration via the electron transport chain. These findings add credence to other studies that suggest that the TCA cycle is an understudied target in the development of novel therapeutics to combat P. aeruginosa, a significant pathogen in clinical settings.
Mkrtchyan, Garik V; Üçal, Muammer; Müllebner, Andrea; Dumitrescu, Sergiu; Kames, Martina; Moldzio, Rudolf; Molcanyi, Marek; Schaefer, Samuel; Weidinger, Adelheid; Schaefer, Ute; Hescheler, Juergen; Duvigneau, Johanna Catharina; Redl, Heinz; Bunik, Victoria I; Kozlov, Andrey V
2018-05-16
Based on the fact that traumatic brain injury is associated with mitochondrial dysfunction we aimed at localization of mitochondrial defect and attempted to correct it by thiamine. Interventional controlled experimental animal study was used. Adult male Sprague-Dawley rats were subjected to lateral fluid percussion traumatic brain injury. Thiamine was administered 1 h prior to trauma; cortex was extracted for analysis 4 h and 3 d after trauma. Increased expression of inducible nitric oxide synthase (iNOS) and tumor necrosis factor receptor 1 (TNF-R1) by 4 h was accompanied by a decrease in mitochondrial respiration with glutamate but neither with pyruvate nor succinate. Assays of TCA cycle flux-limiting 2-oxoglutarate dehydrogenase complex (OGDHC) and functionally linked enzymes (glutamate dehydrogenase, glutamine synthetase, pyruvate dehydrogenase, malate dehydrogenase and malic enzyme) indicated that only OGDHC activity was decreased. Application of the OGDHC coenzyme precursor thiamine rescued the activity of OGDHC and restored mitochondrial respiration. These effects were not mediated by changes in the expression of the OGDHC sub-units (E1k and E3), suggesting post-translational mechanism of thiamine effects. By the third day after TBI, thiamine treatment also decreased expression of TNF-R1. Specific markers of unfolded protein response did not change in response to thiamine. Our data point to OGDHC as a major site of damage in mitochondria upon traumatic brain injury, which is associated with neuroinflammation and can be corrected by thiamine. Further studies are required to evaluate the pathological impact of these findings in clinical settings. Copyright © 2018. Published by Elsevier B.V.
Lipoic acid metabolism in Trypanosoma cruzi as putative target for chemotherapy.
Vacchina, Paola; Lambruschi, Daniel A; Uttaro, Antonio D
2018-03-01
Lipoic acid (LA) is a cofactor of relevant enzymatic complexes including the glycine cleave system and 2-ketoacid dehydrogenases. Intervention on LA de novo synthesis or salvage could have pleiotropic deleterious effect in cells, making both pathways attractive for chemotherapy. We show that Trypanosoma cruzi was susceptible to treatment with LA analogues. 8-Bromo-octanic acid (BrO) inhibited the growth of epimastigote forms of both Dm28c and CL Brener strains, although only at high (chemotherapeutically irrelevant) concentrations. The methyl ester derivative MBrO, was much more effective, with EC 50 values one order of magnitude lower (62-66 μM). LA did not bypass the toxic effect of its analogues. Small monocarboxylic acids appear to be poorly internalized by T. cruzi: [ 14 C]-octanoic acid was taken up 12 fold less efficiently than [ 14 C]-palmitic acid. Western blot analysis of lipoylated proteins allowed the detection of the E2 subunits of pyruvate dehydrogenase (PDH), branched chain 2-ketoacid dehydrogenase and 2-ketoglutarate dehydrogenase complexes. Growth of parasites in medium with 10 fold lower glucose content, notably increased PDH activity and the level of its lipoylated E2 subunit. Treatment with BrO (1 mM) and MBrO (0.1 mM) completely inhibited E2 lipoylation and all three dehydrogenases activities. These observations indicate the lack of specific transporters for octanoic acid and most probably also for BrO and LA, which is in agreement with the lack of a LA salvage pathway, as previously suggested for T. brucei. They also indicate that the LA synthesis/protein lipoylation pathway could be a valid target for drug intervention. Moreover, the free LA available in the host would not interfere with such chemotherapeutic treatments. Copyright © 2018 Elsevier Inc. All rights reserved.
Kuzuya, Teiji; Katano, Yoshiaki; Nakano, Isao; Hirooka, Yoshiki; Itoh, Akihiro; Ishigami, Masatoshi; Hayashi, Kazuhiko; Honda, Takashi; Goto, Hidemi; Fujita, Yuko; Shikano, Rie; Muramatsu, Yuji; Bajotto, Gustavo; Tamura, Tomohiro; Tamura, Noriko; Shimomura, Yoshiharu
2008-08-15
The branched-chain alpha-keto acid dehydrogenase (BCKDH) complex is the most important regulatory enzyme in branched-chain amino acid (BCAA) catabolism. We examined the regulation of hepatic BCKDH complex activity in spontaneous type 2 diabetes Otsuka Long-Evans Tokushima Fatty (OLETF) rats and Zucker diabetic fatty rats. Hepatic BCKDH complex activity in these rats was significantly lower than in corresponding control rats. The amount of BCKDH complex in OLETF rats corresponded to the total activity of the complex. Activity and abundance of the bound form of BCKDH kinase, which is responsible for inactivation of the complex, showed an inverse correlation to BCKDH complex activity in OLETF rats. Dietary supplementation of 5% BCAAs for 10 weeks markedly increased BCKDH complex activity, and decreased the activity and bound form of BCKDH kinase in the rats. These results suggest that BCAA catabolism in type 2 diabetes is downregulated and enhanced by BCAA supplementation.
Phenylbutyrate Therapy for Pyruvate Dehydrogenase Complex Deficiency and Lactic Acidosis
Ferriero, Rosa; Manco, Giuseppe; Lamantea, Eleonora; Nusco, Edoardo; Ferrante, Mariella I.; Sordino, Paolo; Stacpoole, Peter W.; Lee, Brendan; Zeviani, Massimo; Brunetti-Pierri, Nicola
2014-01-01
Lactic acidosis is a build-up of lactic acid in the blood and tissues, which can be due to several inborn errors of metabolism as well as nongenetic conditions. Deficiency of pyruvate dehydrogenase complex (PDHC) is the most common genetic disorder leading to lactic acidosis. Phosphorylation of specific serine residues of the E1α subunit of PDHC by pyruvate dehydrogenase kinase (PDK) inactivates the enzyme, whereas dephosphorylation restores PDHC activity. We found that phenylbutyrate enhances PDHC enzymatic activity in vitro and in vivo by increasing the proportion of unphosphorylated enzyme through inhibition of PDK. Phenylbutyrate given to C57B6/L wild-type mice results in a significant increase in PDHC enzyme activity and a reduction of phosphorylated E1α in brain, muscle, and liver compared to saline-treated mice. By means of recombinant enzymes, we showed that phenylbutyrate prevents phosphorylation of E1α through binding and inhibition of PDK, providing a molecular explanation for the effect of phenylbutyrate on PDHC activity. Phenylbutyrate increases PDHC activity in fibroblasts from PDHC-deficient patients harboring various molecular defects and corrects the morphological, locomotor, and biochemical abnormalities in the noam631 zebrafish model of PDHC deficiency. In mice, phenylbutyrate prevents systemic lactic acidosis induced by partial hepatectomy. Because phenylbutyrate is already approved for human use in other diseases, the findings of this study have the potential to be rapidly translated for treatment of patients with PDHC deficiency and other forms of primary and secondary lactic acidosis. PMID:23467562
USDA-ARS?s Scientific Manuscript database
Background: The catalytic enhancement achieved by the pyruvate dehydrogenase complex (PDC) results from a combination of substrate channeling plus active-site coupling. The mechanism for active-site coupling involves lipoic acid prosthetic groups covalently attached to Lys residues in the primary ...
Protti, Alessandro; Fortunato, Francesco; Caspani, Maria L.; Pluderi, Mauro; Lucchini, Valeria; Grimoldi, Nadia; Solimeno, Luigi P.; Fagiolari, Gigliola; Ciscato, Patrizia; Zella, Samis M. A.; Moggio, Maurizio; Comi, Giacomo P.; Gattinoni, Luciano
2014-01-01
Platelets can serve as general markers of mitochondrial (dys)function during several human diseases. Whether this holds true even during sepsis is unknown. Using spectrophotometry, we measured mitochondrial respiratory chain biochemistry in platelets and triceps brachii muscle of thirty patients with septic shock (within 24 hours from admission to Intensive Care) and ten surgical controls (during surgery). Results were expressed relative to citrate synthase (CS) activity, a marker of mitochondrial density. Patients with septic shock had lower nicotinamide adenine dinucleotide dehydrogenase (NADH)/CS (p = 0.015), complex I/CS (p = 0.018), complex I and III/CS (p<0.001) and complex IV/CS (p = 0.012) activities in platelets but higher complex I/CS activity (p = 0.021) in triceps brachii muscle than controls. Overall, NADH/CS (r2 = 0.00; p = 0.683) complex I/CS (r2 = 0.05; p = 0.173), complex I and III/CS (r2 = 0.01; p = 0.485), succinate dehydrogenase (SDH)/CS (r2 = 0.00; p = 0.884), complex II and III/CS (r2 = 0.00; p = 0.927) and complex IV/CS (r2 = 0.00; p = 0.906) activities in platelets were not associated with those in triceps brachii muscle. In conclusion, several respiratory chain enzymes were variably inhibited in platelets, but not in triceps brachii muscle, of patients with septic shock. Sepsis-induced mitochondrial changes in platelets do not reflect those in other organs. PMID:24787741
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehrlich, R.S.; Colman, R.F.
1987-06-16
Isocitrate and ..cap alpha..-ketoglutarate have been synthesized with carbon-13 enrichment at specific positions. The /sup 13/C NMR spectra of these derivatives were measured as a function of pH. The magnitudes of the changes in chemical shifts with pH for free isocitrate and the magnesium-isocitrate complex suggest that the primary site of ionization at the ..beta..-carboxyl. In the presence of the enzyme NADP/sup +/-dependent isocitrate dehydrogenase and the activating metal magnesium, the carbon-13 resonances of all three carboxyls remain constant from pH 5.5 to pH 7.5. Thus, the carboxyls remain in the ionized form in the enzyme-isocitrate complex. The ..cap alpha..-hydroxylmore » carbon resonance could not be located in the enzyme-isocitrate complex, suggesting immobilization of this group. Magnesium produces a 2 ppm downfield shift of the ..beta..-carboxyl but does not change the resonances of the ..cap alpha..- and ..gamma..-carboxyls. This result is consistent with metal activation of both the dehydrogenation and decarboxylation reactions. The /sup 13/C NMR spectrum of ..cap alpha..-ketoglutarate remains unchanged in the presence of isocitrate dehydrogenase, implying the absence of alterations in geometry in the enzyme-bound form. Formation of the quaternary complex with Mg/sup 2 +/ and NADPH leads to loss of the ..cap alpha..-ketoglutarate resonances and the appearance of new resonances characteristic of ..cap alpha..-hydroxyglutarate. In addition, a broad peak ascribed to the enol form of ..cap alpha..-ketoglutarate is observed. The substantial change in the shift of the ..beta..-carboxyl of isocitrate and the lack of significant shifts in the other carboxyls of isocitrate or ..cap alpha..-ketoglutarate suggest that interaction of the ..beta..-carboxyl with the enzyme contributes to the tighter binding of isocitrate and may be significant for the oxidative decarboxylation function of isocitrate dehydrogenase.« less
The activity state of the branched-chain 2-oxo acid dehydrogenase complex in rat tissues.
Wagenmakers, A J; Schepens, J T; Veldhuizen, J A; Veerkamp, J H
1984-01-01
An assay is described to define the proportion of the branched-chain 2-oxo acid dehydrogenase complex that is present in the active state in rat tissues. Activities are measured in homogenates in two ways: actual activities, present in tissues, by blocking both the kinase and phosphatase of the enzyme complex during homogenization, preincubation, and incubation with 1-14C-labelled branched-chain 2-oxo acid, and total activities by blocking only the kinase during the 5 min preincubation (necessary for activation). The kinase is blocked by 5 mM-ADP and absence of Mg2+ and the phosphatase by the simultaneous presence of 50 mM-NaF. About 6% of the enzyme is active in skeletal muscle of fed rats, 7% in heart, 20% in diaphragm, 47% in kidney, 60% in brain and 98% in liver. An entirely different assay, which measures activities in crude tissue extracts before and after treatment with a broad-specificity protein phosphatase, gave similar results for heart, liver and kidney. Advantages of our assay with homogenates are the presence of intact mitochondria, the simplicity, the short duration and the high sensitivity. The actual activities measured indicate that the degradation of branched-chain 2-oxo acids predominantly occurs in liver and kidney and is limited in skeletal muscle in the fed state. PMID:6430280
The activity state of the branched-chain 2-oxo acid dehydrogenase complex in rat tissues.
Wagenmakers, A J; Schepens, J T; Veldhuizen, J A; Veerkamp, J H
1984-05-15
An assay is described to define the proportion of the branched-chain 2-oxo acid dehydrogenase complex that is present in the active state in rat tissues. Activities are measured in homogenates in two ways: actual activities, present in tissues, by blocking both the kinase and phosphatase of the enzyme complex during homogenization, preincubation, and incubation with 1-14C-labelled branched-chain 2-oxo acid, and total activities by blocking only the kinase during the 5 min preincubation (necessary for activation). The kinase is blocked by 5 mM-ADP and absence of Mg2+ and the phosphatase by the simultaneous presence of 50 mM-NaF. About 6% of the enzyme is active in skeletal muscle of fed rats, 7% in heart, 20% in diaphragm, 47% in kidney, 60% in brain and 98% in liver. An entirely different assay, which measures activities in crude tissue extracts before and after treatment with a broad-specificity protein phosphatase, gave similar results for heart, liver and kidney. Advantages of our assay with homogenates are the presence of intact mitochondria, the simplicity, the short duration and the high sensitivity. The actual activities measured indicate that the degradation of branched-chain 2-oxo acids predominantly occurs in liver and kidney and is limited in skeletal muscle in the fed state.
Thillainayagam, Mahalakshmi; Malathi, Kullappan; Ramaiah, Sudha
2017-11-27
The structural motifs of chalcones, flavones, and triazoles with varied substitutions have been studied for the antimalarial activity. In this study, 25 novel derivatives of chalcone and flavone hybrid derivatives with 1, 2, 3-triazole linkage are docked with Plasmodium falciparum dihydroorotate dehydrogenase to establish their inhibitory activity against Plasmodium falciparum. The best binding conformation of the ligands at the catalytic site of dihydroorotate dehydrogenase are selected to characterize the best bound ligand using the best consensus score and the number of hydrogen bond interactions. The ligand namely (2E)-3-(4-{[1-(3-chloro-4-fluorophenyl)-1H-1, 2, 3-triazol-4-yl]methoxy}-3-methoxyphenyl-1-(2-hydroxy-4,6-dimethoxyphenyl)prop-2-en-1-one, is one the among the five best docked ligands, which interacts with the protein through nine hydrogen bonds and with a consensus score of five. To refine and confirm the docking study results, the stability of complexes is verified using Molecular Dynamics Simulations, Molecular Mechanics /Poisson-Boltzmann Surface Area free binding energy analysis, and per residue contribution for the binding energy. The study implies that the best docked Plasmodium falciparum dihydroorotate dehydrogenase-ligand complex is having high negative binding energy, most stable, compact, and rigid with nine hydrogen bonds. The study provides insight for the optimization of chalcone and flavone hybrids with 1, 2, 3-triazole linkage as potent inhibitors.
Lucas, James E; Siegel, Justin B
2015-01-01
Enzyme active site residues are often highly conserved, indicating a significant role in function. In this study we quantitate the functional contribution for all conserved molecular interactions occurring within a Michaelis complex for mannitol 2-dehydrogenase derived from Pseudomonas fluorescens (pfMDH). Through systematic mutagenesis of active site residues, we reveal that the molecular interactions in pfMDH mediated by highly conserved residues not directly involved in reaction chemistry can be as important to catalysis as those directly involved in the reaction chemistry. This quantitative analysis of the molecular interactions within the pfMDH active site provides direct insight into the functional role of each molecular interaction, several of which were unexpected based on canonical sequence conservation and structural analyses. PMID:25752240
Gibson, Gary E.; Xu, Hui; Chen, Huan-Lian; Chen, Wei; Denton, Travis; Zhang, Sheng
2015-01-01
Reversible post-translation modifications of proteins are common in all cells and appear to regulate many processes. Nevertheless, the enzyme(s) responsible for the alterations and the significance of the modification are largely unknown. Succinylation of proteins occurs and causes large changes in the structure of proteins; however, the source of the succinyl groups, the targets, and the consequences of these modifications on other proteins are unknown. These studies focused on succinylation of mitochondrial proteins. The results demonstrate that the α-ketoglutarate dehydrogenase complex (KGDHC) can serve as a trans-succinylase that mediates succinylation in an α-ketoglutarate-dependent manner. Inhibition of KGDHC reduced suc-cinylation of both cytosolic and mitochondrial proteins in cultured neurons and in a neuronal cell line. Purified KGDHC can succinylate multiple proteins including other enzymes of the tricarboxylic acid (TCA) cycle leading to modification of their activity. Inhibition of KGDHC also modifies acetylation by modifying the pyruvate dehydrogenase complex. The much greater effectiveness of KGDHC than succinyl CoA suggests that the catalysis due to the E2k suc-cinyltransferase is important. Succinylation appears to be a major signaling system and it can be mediated by KGDHC. PMID:25772995
Müller, Jonas E. N.; Kupper, Christiane E.; Schneider, Olha; Vorholt, Julia A.; Ellingsen, Trond E.; Brautaset, Trygve
2013-01-01
Bacillus methanolicus can utilize methanol as the sole carbon source for growth and it encodes an NAD+-dependent methanol dehydrogenase (Mdh), catalyzing the oxidation of methanol to formaldehyde. Recently, the genomes of the B. methanolicus strains MGA3 (ATCC53907) and PB1 (NCIMB13113) were sequenced and found to harbor three different putative Mdh encoding genes, each belonging to the type III Fe-NAD+-dependent alcohol dehydrogenases. In each strain, two of these genes are encoded on the chromosome and one on a plasmid; only one chromosomal act gene encoding the previously described activator protein ACT was found. The six Mdhs and the ACT proteins were produced recombinantly in Escherichia coli, purified, and characterized. All Mdhs required NAD+ as cosubstrate, were catalytically stimulated by ACT, exhibited a broad and different substrate specificity range and displayed both dehydrogenase and reductase activities. All Mdhs catalyzed the oxidation of methanol; however the catalytic activity for methanol was considerably lower than for most other alcohols tested, suggesting that these enzymes represent a novel class of alcohol dehydrogenases. The kinetic constants for the Mdhs were comparable when acting as pure enzymes, but together with ACT the differences were more pronounced. Quantitative PCR experiments revealed major differences with respect to transcriptional regulation of the paralogous genes. Taken together our data indicate that the repertoire of methanol oxidizing enzymes in thermotolerant bacilli is larger than expected with complex mechanisms involved in their regulation. PMID:23527128
Krog, Anne; Heggeset, Tonje M B; Müller, Jonas E N; Kupper, Christiane E; Schneider, Olha; Vorholt, Julia A; Ellingsen, Trond E; Brautaset, Trygve
2013-01-01
Bacillus methanolicus can utilize methanol as the sole carbon source for growth and it encodes an NAD(+)-dependent methanol dehydrogenase (Mdh), catalyzing the oxidation of methanol to formaldehyde. Recently, the genomes of the B. methanolicus strains MGA3 (ATCC53907) and PB1 (NCIMB13113) were sequenced and found to harbor three different putative Mdh encoding genes, each belonging to the type III Fe-NAD(+)-dependent alcohol dehydrogenases. In each strain, two of these genes are encoded on the chromosome and one on a plasmid; only one chromosomal act gene encoding the previously described activator protein ACT was found. The six Mdhs and the ACT proteins were produced recombinantly in Escherichia coli, purified, and characterized. All Mdhs required NAD(+) as cosubstrate, were catalytically stimulated by ACT, exhibited a broad and different substrate specificity range and displayed both dehydrogenase and reductase activities. All Mdhs catalyzed the oxidation of methanol; however the catalytic activity for methanol was considerably lower than for most other alcohols tested, suggesting that these enzymes represent a novel class of alcohol dehydrogenases. The kinetic constants for the Mdhs were comparable when acting as pure enzymes, but together with ACT the differences were more pronounced. Quantitative PCR experiments revealed major differences with respect to transcriptional regulation of the paralogous genes. Taken together our data indicate that the repertoire of methanol oxidizing enzymes in thermotolerant bacilli is larger than expected with complex mechanisms involved in their regulation.
Gu, F; Chauhan, V; Kaur, K; Brown, W T; LaFauci, G; Wegiel, J; Chauhan, A
2013-01-01
Autism is a neurodevelopmental disorder associated with social deficits and behavioral abnormalities. Recent evidence suggests that mitochondrial dysfunction and oxidative stress may contribute to the etiology of autism. This is the first study to compare the activities of mitochondrial electron transport chain (ETC) complexes (I–V) and pyruvate dehydrogenase (PDH), as well as mitochondrial DNA (mtDNA) copy number in the frontal cortex tissues from autistic and age-matched control subjects. The activities of complexes I, V and PDH were most affected in autism (n=14) being significantly reduced by 31%, 36% and 35%, respectively. When 99% confidence interval (CI) of control group was taken as a reference range, impaired activities of complexes I, III and V were observed in 43%, 29% and 43% of autistic subjects, respectively. Reduced activities of all five ETC complexes were observed in 14% of autistic cases, and the activities of multiple complexes were decreased in 29% of autistic subjects. These results suggest that defects in complexes I and III (sites of mitochondrial free radical generation) and complex V (adenosine triphosphate synthase) are more prevalent in autism. PDH activity was also reduced in 57% of autistic subjects. The ratios of mtDNA of three mitochondrial genes ND1, ND4 and Cyt B (that encode for subunits of complexes I and III) to nuclear DNA were significantly increased in autism, suggesting a higher mtDNA copy number in autism. Compared with the 95% CI of the control group, 44% of autistic children showed higher copy numbers of all three mitochondrial genes examined. Furthermore, ND4 and Cyt B deletions were observed in 44% and 33% of autistic children, respectively. This study indicates that autism is associated with mitochondrial dysfunction in the brain. PMID:24002085
Peralta, Diego A; Araya, Alejandro; Busi, Maria V; Gomez-Casati, Diego F
2016-01-01
The E3 ubiquitin-protein ligases are associated to various processes such as cell cycle control and diverse developmental pathways. Arabidopsis thaliana SEVEN IN ABSENTIA like 7, which has ubiquitin ligase activity, is located in the nucleus and cytosol and is expressed at several stages in almost all plant tissues suggesting an important role in plant functions. However, the mechanism underlying the regulation of this protein is unknown. Since we found that the SEVEN IN ABSENTIA like 7 gene expression is altered in plants with impaired mitochondria, and in plants deficient in the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase 1, we decided to study the possible interactions between both proteins as potential partners in plant signaling functions. We found that SEVEN IN ABSENTIA like 7 is able to interact in vitro with glyceraldehyde-3-phosphate dehydrogenase and that the Lys231 residue of the last is essential for this function. Following the interaction, a concomitant increase in the glyceraldehyde-3-phosphate dehydrogenase catalytic activity was observed. However, when SEVEN IN ABSENTIA like 7 was supplemented with E1 and E2 proteins to form a complete E1-E2-E3 modifier complex, we observed the mono-ubiquitination of glyceraldehyde-3-phosphate dehydrogenase 1 at the Lys76 residue and a dramatic decrease of its catalytic activity. Moreover, we found that localization of glyceraldehyde-3-phosphate dehydrogenase 1 in the nucleus is dependent on the expression SEVEN IN ABSENTIA like 7. These observations suggest that the association of both proteins might result in different biological consequences in plants either through affecting the glycolytic flux or via cytoplasm-nucleus relocation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Studies on associations of glycolytic and glutaminolytic enzymes in MCF-7 cells: role of P36.
Mazurek, S; Hugo, F; Failing, K; Eigenbrodt, E
1996-05-01
Isoelectric focusing of MCF-7 cell extracts revealed an association of the glycolytic enzymes glyceraldehyde 3-phosphate-dehydrogenase, phosphoglycerate kinase, enolase, and pyruvate kinase. This complex between the glycolytic enzymes is sensitive to RNase. p36 could not be detected within this association of glycolytic enzymes; however an association of p36 with a specific form of malate dehydrogenase was found. In MCF-7 cells three forms of malate dehydrogenase can be detected by isoelectric focusing: the mitochondrial form with an isoelectric point between 8.9 and 9.5, the cytosolic form with pl 5.0, and a p36-associated form with pl 7.8. The mitochondrial form comprises the mature mitochondrial isoenzyme (pl 9.5) and its precursor form (pl 8.9). Refocusing of the pl 7.8 form of malate dehydrogenase also gave rise to the mitochondrial isoenzyme. Thus, the pl 7.8 form of malate dehydrogenase is actually the mitochondrial isoenzyme retained in the cytosol by the association with p36. Addition of fructose 1,6-bisphosphate to the initial focusing column induced a quantitative shift of the pl 7.8 form of malate dehydrogenase to the mitochondrial forms (pl 8.9 and 9.5). In MCF-7 cells p36 is not phosphorylated in tyrosine. Kinetic measurements revealed that the pl 7.8 form of malate dehydrogenase has the lowest affinity for NADH. Compared to both mitochondrial forms the cytosolic isoenzyme has a high capacity when measured in the NAD --> NADH direction (malate --> oxaloacetate direction). The association of p36 with the mitochondrial isoenzyme may favor the flow of hydrogen from the cytosol into the mitochondria. Inhibition of cell proliferation by AMP which leads to an inhibition of glycolysis has no effect on complex formation by glycolytic and glutaminolytic enzymes in MCF-7 cells. AMP treatment leads to an activation of malate dehydrogenase, which correlates with the increase of pyruvate and the decrease of lactate levels, but has no effect on the distribution of the various malate dehydrogenase forms.
Oyarzabal, Alfonso; Martínez-Pardo, Mercedes; Merinero, Begoña; Navarrete, Rosa; Desviat, Lourdes R; Ugarte, Magdalena; Rodríguez-Pombo, Pilar
2013-02-01
This article describes a hitherto unreported involvement of the phosphatase PP2Cm, a recently described member of the branched-chain α-keto acid dehydrogenase (BCKDH) complex, in maple syrup urine disease (MSUD). The disease-causing mutation was identified in a patient with a mild variant phenotype, involving a gene not previously associated with MSUD. SNP array-based genotyping showed a copy-neutral homozygous pattern for chromosome 4 compatible with uniparental isodisomy. Mutation analysis of the candidate gene, PPM1K, revealed a homozygous c.417_418delTA change predicted to result in a truncated, unstable protein. No PP2Cm mutant protein was detected in immunocytochemical or Western blot expression analyses. The transient expression of wild-type PPM1K in PP2Cm-deficient fibroblasts recovered 35% of normal BCKDH activity. As PP2Cm has been described essential for cell survival, apoptosis and metabolism, the impact of its deficiency on specific metabolic stress variables was evaluated in PP2Cm-deficient fibroblasts. Increases were seen in ROS levels along with the activation of specific stress-signaling MAP kinases. Similar to that described for the pyruvate dehydrogenase complex, a defect in the regulation of BCKDH caused the aberrant metabolism of its substrate, contributing to the patient's MSUD phenotype--and perhaps others. © 2012 WILEY PERIODICALS, INC.
Pohl, Thomas; Uhlmann, Mareike; Kaufenstein, Miriam; Friedrich, Thorsten
2007-09-18
The proton-pumping NADH:ubiquinone oxidoreductase, the respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. The Escherichia coli complex I consists of 13 different subunits named NuoA-N (from NADH:ubiquinone oxidoreductase), that are coded by the genes of the nuo-operon. Genetic manipulation of the operon is difficult due to its enormous size. The enzymatic activity of variants is obscured by an alternative NADH dehydrogenase, and purification of the variants is hampered by their instability. To overcome these problems the entire E. coli nuo-operon was cloned and placed under control of the l-arabinose inducible promoter ParaBAD. The exposed N-terminus of subunit NuoF was chosen for engineering the complex with a hexahistidine-tag by lambda-Red-mediated recombineering. Overproduction of the complex from this construct in a strain which is devoid of any membrane-bound NADH dehydrogenase led to the assembly of a catalytically active complex causing the entire NADH oxidase activity of the cytoplasmic membranes. After solubilization with dodecyl maltoside the engineered complex binds to a Ni2+-iminodiacetic acid matrix allowing the purification of approximately 11 mg of complex I from 25 g of cells. The preparation is pure and monodisperse and comprises all known subunits and cofactors. It contains more lipids than earlier preparations due to the gentle and fast purification procedure. After reconstitution in proteoliposomes it couples the electron transfer with proton translocation in an inhibitor sensitive manner, thus meeting all prerequisites for structural and functional studies.
SIRT3 deacetylates and increases pyruvate dehydrogenase activity in cancer cells.
Ozden, Ozkan; Park, Seong-Hoon; Wagner, Brett A; Song, Ha Yong; Zhu, Yueming; Vassilopoulos, Athanassios; Jung, Barbara; Buettner, Garry R; Gius, David
2014-11-01
Pyruvate dehydrogenase E1α (PDHA1) is the first component enzyme of the pyruvate dehydrogenase (PDH) complex that transforms pyruvate, via pyruvate decarboxylation, into acetyl-CoA that is subsequently used by both the citric acid cycle and oxidative phosphorylation to generate ATP. As such, PDH links glycolysis and oxidative phosphorylation in normal as well as cancer cells. Herein we report that SIRT3 interacts with PDHA1 and directs its enzymatic activity via changes in protein acetylation. SIRT3 deacetylates PDHA1 lysine 321 (K321), and a PDHA1 mutant mimicking a deacetylated lysine (PDHA1(K321R)) increases PDH activity, compared to the K321 acetylation mimic (PDHA1(K321Q)) or wild-type PDHA1. Finally, PDHA1(K321Q) exhibited a more transformed in vitro cellular phenotype compared to PDHA1(K321R). These results suggest that the acetylation of PDHA1 provides another layer of enzymatic regulation, in addition to phosphorylation, involving a reversible acetyllysine, suggesting that the acetylome, as well as the kinome, links glycolysis to respiration. Copyright © 2014 Elsevier Inc. All rights reserved.
Ambrus, Attila; Mizsei, Reka; Adam-Vizi, Vera
2015-07-01
Human dihydrolipoamide dehydrogenase (hLADH) is a flavoenzyme component (E3) of the human alpha-ketoglutarate dehydrogenase complex (α-KGDHc) and few other dehydrogenase complexes. Pathogenic mutations of hLADH cause severe metabolic diseases (atypical forms of E3 deficiency) that often escalate to cardiological or neurological presentations and even premature death; the pathologies are generally accompanied by lactic acidosis. hLADH presents a distinct conformation under acidosis (pH 5.5-6.8) with lower physiological activity and the capacity of generating reactive oxygen species (ROS). It has been shown by our laboratory that selected pathogenic mutations, besides lowering the physiological activity of hLADH, significantly stimulate ROS generation by hLADH, especially at lower pH, which might play a role in the pathogenesis of E3-deficiency in respective cases. Previously, we generated by molecular dynamics (MD) simulation the low-pH hLADH structure and analyzed the structural changes induced in this structure by eight of the pathogenic mutations of hLADH. In the absence of high resolution mutant structures these pieces of information are crucial for the mechanistic investigation of the molecular pathogeneses of the hLADH protein. In the present work we analyzed by molecular dynamics simulation the structural changes induced in the low-pH conformation of hLADH by five pathogenic mutations of hLADH; the structures of these disease-causing mutants of hLADH have never been examined before.
USDA-ARS?s Scientific Manuscript database
The mitochondrial pyruvate dehydrogenase complex is regulated by reversible seryl-phosphorylation of the E1alpha subunit by a dedicated, intrinsic kinase. The phospho-complex is reactivated when dephosphorylated by an intrinsic PP2C-type protein phosphatase. Both the position of the phosphorylated...
Toogood, Helen S; van Thiel, Adam; Basran, Jaswir; Sutcliffe, Mike J; Scrutton, Nigel S; Leys, David
2004-07-30
The crystal structure of the human electron transferring flavoprotein (ETF).medium chain acyl-CoA dehydrogenase (MCAD) complex reveals a dual mode of protein-protein interaction, imparting both specificity and promiscuity in the interaction of ETF with a range of structurally distinct primary dehydrogenases. ETF partitions the functions of partner binding and electron transfer between (i) the recognition loop, which acts as a static anchor at the ETF.MCAD interface, and (ii) the highly mobile redox active FAD domain. Together, these enable the FAD domain of ETF to sample a range of conformations, some compatible with fast interprotein electron transfer. Disorders in amino acid or fatty acid catabolism can be attributed to mutations at the protein-protein interface. Crucially, complex formation triggers mobility of the FAD domain, an induced disorder that contrasts with general models of protein-protein interaction by induced fit mechanisms. The subsequent interfacial motion in the MCAD.ETF complex is the basis for the interaction of ETF with structurally diverse protein partners. Solution studies using ETF and MCAD with mutations at the protein-protein interface support this dynamic model and indicate ionic interactions between MCAD Glu(212) and ETF Arg alpha(249) are likely to transiently stabilize productive conformations of the FAD domain leading to enhanced electron transfer rates between both partners.
Nemeria, Natalia S.; Ambrus, Attila; Patel, Hetalben; Gerfen, Gary; Adam-Vizi, Vera; Tretter, Laszlo; Zhou, Jieyu; Wang, Junjie; Jordan, Frank
2014-01-01
Herein are reported unique properties of the human 2-oxoglutarate dehydrogenase multienzyme complex (OGDHc), a rate-limiting enzyme in the Krebs (citric acid) cycle. (a) Functionally competent 2-oxoglutarate dehydrogenase (E1o-h) and dihydrolipoyl succinyltransferase components have been expressed according to kinetic and spectroscopic evidence. (b) A stable free radical, consistent with the C2-(C2α-hydroxy)-γ-carboxypropylidene thiamin diphosphate (ThDP) cation radical was detected by electron spin resonance upon reaction of the E1o-h with 2-oxoglutarate (OG) by itself or when assembled from individual components into OGDHc. (c) An unusual stability of the E1o-h-bound C2-(2α-hydroxy)-γ-carboxypropylidene thiamin diphosphate (the “ThDP-enamine”/C2α-carbanion, the first postdecarboxylation intermediate) was observed, probably stabilized by the 5-carboxyl group of OG, not reported before. (d) The reaction of OG with the E1o-h gave rise to superoxide anion and hydrogen peroxide (reactive oxygen species (ROS)). (e) The relatively stable enzyme-bound enamine is the likely substrate for oxidation by O2, leading to the superoxide anion radical (in d) and the radical (in b). (f) The specific activity assessed for ROS formation compared with the NADH (overall complex) activity, as well as the fraction of radical intermediate occupying active centers of E1o-h are consistent with each other and indicate that radical/ROS formation is an “off-pathway” side reaction comprising less than 1% of the “on-pathway” reactivity. However, the nearly ubiquitous presence of OGDHc in human tissues, including the brain, makes these findings of considerable importance in human metabolism and perhaps disease. PMID:25210035
Voloshchuk, O N; Kopylchuk, G P
2016-01-01
Activity of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, malate dehydrogenase, and the NAD(+)/NADН ratio were studied in the liver mitochondrial fraction of rats with toxic hepatitis induced by acetaminophen under conditions of alimentary protein deprivation. Acetaminophen-induced hepatitis was characterized by a decrease of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase and malate dehydrogenase activities, while the mitochondrial NAD(+)/NADН ratio remained at the control level. Modeling of acetaminophen-induced hepatitis in rats with alimentary protein caused a more pronounced decrease in the activity of NAD(+)-dependent dehydrogenases studied and a 2.2-fold increase of the mitochondrial NAD(+)/NADН ratio. This suggests that alimentary protein deprivation potentiated drug-induced liver damage.
Go, Younghoon; Jeong, Ji Yun; Jeoung, Nam Ho; Jeon, Jae-Han; Park, Bo-Yoon; Kang, Hyeon-Ji; Ha, Chae-Myeong; Choi, Young-Keun; Lee, Sun Joo; Ham, Hye Jin; Kim, Byung-Gyu; Park, Keun-Gyu; Park, So Young; Lee, Chul-Ho; Choi, Cheol Soo; Park, Tae-Sik; Lee, W N Paul; Harris, Robert A; Lee, In-Kyu
2016-10-01
Hepatic steatosis is associated with increased insulin resistance and tricarboxylic acid (TCA) cycle flux, but decreased ketogenesis and pyruvate dehydrogenase complex (PDC) flux. This study examined whether hepatic PDC activation by inhibition of pyruvate dehydrogenase kinase 2 (PDK2) ameliorates these metabolic abnormalities. Wild-type mice fed a high-fat diet exhibited hepatic steatosis, insulin resistance, and increased levels of pyruvate, TCA cycle intermediates, and malonyl-CoA but reduced ketogenesis and PDC activity due to PDK2 induction. Hepatic PDC activation by PDK2 inhibition attenuated hepatic steatosis, improved hepatic insulin sensitivity, reduced hepatic glucose production, increased capacity for β-oxidation and ketogenesis, and decreased the capacity for lipogenesis. These results were attributed to altered enzymatic capacities and a reduction in TCA anaplerosis that limited the availability of oxaloacetate for the TCA cycle, which promoted ketogenesis. The current study reports that increasing hepatic PDC activity by inhibition of PDK2 ameliorates hepatic steatosis and insulin sensitivity by regulating TCA cycle anaplerosis and ketogenesis. The findings suggest PDK2 is a potential therapeutic target for nonalcoholic fatty liver disease. © 2016 by the American Diabetes Association.
Bedoyan, Jirair K; Yang, Samuel P; Ferdinandusse, Sacha; Jack, Rhona M; Miron, Alexander; Grahame, George; DeBrosse, Suzanne D; Hoppel, Charles L; Kerr, Douglas S; Wanders, Ronald J A
2017-04-01
Mutations in ECHS1 result in short-chain enoyl-CoA hydratase (SCEH) deficiency which mainly affects the catabolism of various amino acids, particularly valine. We describe a case compound heterozygous for ECHS1 mutations c.836T>C (novel) and c.8C>A identified by whole exome sequencing of proband and parents. SCEH deficiency was confirmed with very low SCEH activity in fibroblasts and nearly absent immunoreactivity of SCEH. The patient had a severe neonatal course with elevated blood and cerebrospinal fluid lactate and pyruvate concentrations, high plasma alanine and slightly low plasma cystine. 2-Methyl-2,3-dihydroxybutyric acid was markedly elevated as were metabolites of the three branched-chain α-ketoacids on urine organic acids analysis. These urine metabolites notably decreased when lactic acidosis decreased in blood. Lymphocyte pyruvate dehydrogenase complex (PDC) activity was deficient, but PDC and α-ketoglutarate dehydrogenase complex activities in cultured fibroblasts were normal. Oxidative phosphorylation analysis on intact digitonin-permeabilized fibroblasts was suggestive of slightly reduced PDC activity relative to control range in mitochondria. We reviewed 16 other cases with mutations in ECHS1 where PDC activity was also assayed in order to determine how common and generalized secondary PDC deficiency is associated with primary SCEH deficiency. For reasons that remain unexplained, we find that about half of cases with primary SCEH deficiency also exhibit secondary PDC deficiency. The patient died on day-of-life 39, prior to establishing his diagnosis, highlighting the importance of early and rapid neonatal diagnosis because of possible adverse effects of certain therapeutic interventions, such as administration of ketogenic diet, in this disorder. There is a need for better understanding of the pathogenic mechanisms and phenotypic variability in this relatively recently discovered disorder. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esclapez, Julia; Britton, K. Linda; Baker, Patrick J.
2005-08-01
Single crystals of binary and ternary complexes of wild-type and D38C mutant H. mediterranei glucose dehydrogenase have been obtained by the hanging-drop vapour-diffusion method. Haloferax mediterranei glucose dehydrogenase (EC 1.1.1.47) belongs to the medium-chain alcohol dehydrogenase superfamily and requires zinc for catalysis. In the majority of these family members, the catalytic zinc is tetrahedrally coordinated by the side chains of a cysteine, a histidine, a cysteine or glutamate and a water molecule. In H. mediterranei glucose dehydrogenase, sequence analysis indicates that the zinc coordination is different, with the invariant cysteine replaced by an aspartate residue. In order to analyse themore » significance of this replacement and to contribute to an understanding of the role of the metal ion in catalysis, a range of binary and ternary complexes of the wild-type and a D38C mutant protein have been crystallized. For most of the complexes, crystals belonging to space group I222 were obtained using sodium/potassium citrate as a precipitant. However, for the binary and non-productive ternary complexes with NADPH/Zn, it was necessary to replace the citrate with 2-methyl-2,4-pentanediol. Despite the radical change in conditions, the crystals thus formed were isomorphous.« less
Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Steven D; Guss, Adam M; Karpinets, Tatiana V
2011-01-01
Clostridium thermocellum is a thermophilic, obligately anaerobic, Gram-positive bacterium that is a candidate microorganism for converting cellulosic biomass into ethanol through consolidated bioprocessing. Ethanol intolerance is an important metric in terms of process economics, and tolerance has often been described as a complex and likely multigenic trait for which complex gene interactions come into play. Here, we resequence the genome of an ethanol-tolerant mutant, show that the tolerant phenotype is primarily due to a mutated bifunctional acetaldehyde-CoA/alcohol dehydrogenase gene (adhE), hypothesize based on structural analysis that cofactor specificity may be affected, and confirm this hypothesis using enzyme assays. Biochemical assaysmore » confirm a complete loss of NADH-dependent activity with concomitant acquisition of NADPH-dependent activity, which likely affects electron flow in the mutant. The simplicity of the genetic basis for the ethanol-tolerant phenotype observed here informs rational engineering of mutant microbial strains for cellulosic ethanol production.« less
Qi, Xiangbing; Gui, Wen-Jun; Morlock, Lorraine K.; Wallace, Amy L.; Ahmed, Kamran; Laxman, Sunil; Campeau, Philippe M.; Lee, Brendan H.; Hutson, Susan M.; Tu, Benjamin P.; Williams, Noelle S.; Tambar, Uttam K.; Wynn, R. Max; Chuang, David T.
2013-01-01
The branched-chain amino acids (BCAAs) leucine, isoleucine, and valine are elevated in maple syrup urine disease, heart failure, obesity, and type 2 diabetes. BCAA homeostasis is controlled by the mitochondrial branched-chain α-ketoacid dehydrogenase complex (BCKDC), which is negatively regulated by the specific BCKD kinase (BDK). Here, we used structure-based design to develop a BDK inhibitor, (S)-α-chloro-phenylpropionic acid [(S)-CPP]. Crystal structures of the BDK-(S)-CPP complex show that (S)-CPP binds to a unique allosteric site in the N-terminal domain, triggering helix movements in BDK. These conformational changes are communicated to the lipoyl-binding pocket, which nullifies BDK activity by blocking its binding to the BCKDC core. Administration of (S)-CPP to mice leads to the full activation and dephosphorylation of BCKDC with significant reduction in plasma BCAA concentrations. The results buttress the concept of targeting mitochondrial BDK as a pharmacological approach to mitigate BCAA accumulation in metabolic diseases and heart failure. PMID:23716694
Crystallographic and spectroscopic snapshots reveal a dehydrogenase in action
Huo, Lu; Davis, Ian; Liu, Fange; ...
2015-01-07
Aldehydes are ubiquitous intermediates in metabolic pathways and their innate reactivity can often make them quite unstable. There are several aldehydic intermediates in the metabolic pathway for tryptophan degradation that can decay into neuroactive compounds that have been associated with numerous neurological diseases. An enzyme of this pathway, 2-aminomuconate-6-semialdehyde dehydrogenase, is responsible for ‘disarming’ the final aldehydic intermediate. Here we show the crystal structures of a bacterial analogue enzyme in five catalytically relevant forms: resting state, one binary and two ternary complexes, and a covalent, thioacyl intermediate. We also report the crystal structures of a tetrahedral, thiohemiacetal intermediate, a thioacylmore » intermediate and an NAD +-bound complex from an active site mutant. These covalent intermediates are characterized by single-crystal and solution-state electronic absorption spectroscopy. The crystal structures reveal that the substrate undergoes an E/Z isomerization at the enzyme active site before an sp 3-to-sp 2 transition during enzyme-mediated oxidation.« less
Substrate specificity of sheep liver sorbitol dehydrogenase.
Lindstad, R I; Köll, P; McKinley-McKee, J S
1998-01-01
The substrate specificity of sheep liver sorbitol dehydrogenase has been studied by steady-state kinetics over the range pH 7-10. Sorbitol dehydrogenase stereo-selectively catalyses the reversible NAD-linked oxidation of various polyols and other secondary alcohols into their corresponding ketones. The kinetic constants are given for various novel polyol substrates, including L-glucitol, L-mannitol, L-altritol, D-altritol, D-iditol and eight heptitols, as well as for many aliphatic and aromatic alcohols. The maximum velocities (kcat) and the substrate specificity-constants (kcat/Km) are positively correlated with increasing pH. The enzyme-catalysed reactions occur by a compulsory ordered kinetic mechanism with the coenzyme as the first, or leading, substrate. With many substrates, the rate-limiting step for the overall reaction is the enzyme-NADH product dissociation. However, with several substrates there is a transition to a mechanism with partial rate-limitation at the ternary complex level, especially at low pH. The kinetic data enable the elucidation of new empirical rules for the substrate specificity of sorbitol dehydrogenase. The specificity-constants for polyol oxidation vary as a function of substrate configuration with D-xylo> D-ribo > L-xylo > D-lyxo approximately L-arabino > D-arabino > L-lyxo. Catalytic activity with a polyol or an aromatic substrate and various 1-deoxy derivatives thereof varies with -CH2OH > -CH2NH2 > -CH2OCH3 approximately -CH3. The presence of a hydroxyl group at each of the remaining chiral centres of a polyol, apart from the reactive C2, is also nonessential for productive ternary complex formation and catalysis. A predominantly nonpolar enzymic epitope appears to constitute an important structural determinant for the substrate specificity of sorbitol dehydrogenase. The existence of two distinct substrate binding regions in the enzyme active site, along with that of the catalytic zinc, is suggested to account for the lack of stereospecificity at C2 in some polyols. PMID:9461546
Microorganisms and methods for producing pyruvate, ethanol, and other compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, Jennifer L.; Zhang, Xiaolin
Microorganisms comprising modifications for producing pyruvate, ethanol, and other compounds. The microorganisms comprise modifications that reduce or ablate activity of one or more of pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase, phosphate acetyltransferase, acetate kinase, pyruvate oxidase, lactate dehydrogenase, cytochrome terminal oxidase, succinate dehydrogenase, 6-phosphogluconate dehydrogenase, glutamate dehydrogenase, pyruvate formate lyase, pyruvate formate lyase activating enzyme, and isocitrate lyase. The microorganisms optionally comprise modifications that enhance expression or activity of pyruvate decarboxylase and alcohol dehydrogenase. The microorganisms are optionally evolved in defined media to enhance specific production of one or more compounds. Methods of producing compounds with the microorganisms are provided.
Palamuru, Shannu; Dellas, Nikki; Pearce, Stephen L.; Warden, Andrew C.; Oakeshott, John G.
2015-01-01
Lignin is a complex aromatic polymer found in plant cell walls that makes up 15 to 40% of plant biomass. The degradation of lignin substructures by bacteria is of emerging interest because it could provide renewable alternative feedstocks and intermediates for chemical manufacturing industries. We have isolated a bacterium, strain SG61-1L, that rapidly degrades all of the stereoisomers of one lignin substructure, guaiacylglycerol-β-guaiacyl ether (GGE), which contains a key β-O-4 linkage found in most intermonomer linkages in lignin. In an effort to understand the rapid degradation of GGE by this bacterium, we heterologously expressed and kinetically characterized a suite of dehydrogenase candidates for the first known step of GGE degradation. We identified a clade of active GGE dehydrogenases and also several other dehydrogenases outside this clade that were all able to oxidize GGE. Several candidates exhibited stereoselectivity toward the GGE stereoisomers, while others had higher levels of catalytic performance than previously described GGE dehydrogenases for all four stereoisomers, indicating a variety of potential applications for these enzymes in the manufacture of lignin-derived commodities. PMID:26386069
Dad, Azra; Jeong, Clara H; Wagner, Elizabeth D; Plewa, Michael J
2018-02-06
The disinfection of drinking water has been a major public health achievement. However, haloacetic acids (HAAs), generated as byproducts of water disinfection, are cytotoxic, genotoxic, mutagenic, carcinogenic, and teratogenic. Previous studies of monoHAA-induced genotoxicity and cell stress demonstrated that the toxicity was due to inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), leading to disruption of cellular metabolism and energy homeostasis. DiHAAs and triHAAs are also produced during water disinfection, and whether they share mechanisms of action with monoHAAs is unknown. In this study, we evaluated the effects of mono-, di-, and tri-HAAs on cellular GAPDH enzyme kinetics, cellular ATP levels, and pyruvate dehydrogenase complex (PDC) activity. Here, treatments conducted in Chinese hamster ovary (CHO) cells revealed differences among mono-, di-, and triHAAs in their molecular targets. The monoHAAs, iodoacetic acid and bromoacetic acid, were the strongest inhibitors of GAPDH and greatly reduced cellular ATP levels. Chloroacetic acid, diHAAs, and triHAAs were weaker inhibitors of GAPDH and some increased the levels of cellular ATP. HAAs also affected PDC activity, with most HAAs activating PDC. The primary finding of this work is that mono- versus multi-HAAs address different molecular targets, and the results are generally consistent with a model in which monoHAAs activate the PDC through GAPDH inhibition-mediated disruption in cellular metabolites, including altering ATP-to-ADP and NADH-to-NAD ratios. The monoHAA-mediated reduction in cellular metabolites results in accelerated PDC activity by way of metabolite-ratio-dependent PDC regulation. DiHAAs and triHAAs are weaker inhibitors of GAPDH, but many also increase cellular ATP levels, and we suggest that they increase PDC activity by inhibiting pyruvate dehydrogenase kinase.
Toogood, Helen S; van Thiel, Adam; Scrutton, Nigel S; Leys, David
2005-08-26
Crystal structures of protein complexes with electron-transferring flavoprotein (ETF) have revealed a dual protein-protein interface with one region serving as anchor while the ETF FAD domain samples available space within the complex. We show that mutation of the conserved Glu-165beta in human ETF leads to drastically modulated rates of interprotein electron transfer with both medium chain acyl-CoA dehydrogenase and dimethylglycine dehydrogenase. The crystal structure of free E165betaA ETF is essentially identical to that of wild-type ETF, but the crystal structure of the E165betaA ETF.medium chain acyl-CoA dehydrogenase complex reveals clear electron density for the FAD domain in a position optimal for fast interprotein electron transfer. Based on our observations, we present a dynamic multistate model for conformational sampling that for the wild-type ETF. medium chain acyl-CoA dehydrogenase complex involves random motion between three distinct positions for the ETF FAD domain. ETF Glu-165beta plays a key role in stabilizing positions incompatible with fast interprotein electron transfer, thus ensuring high rates of complex dissociation.
Stoddard, B L; Koshland, D E
1993-09-14
The structure of the isocitrate dehydrogenase (IDH) complex with bound alpha-ketoglutarate, Ca2+, and NADPH was solved at 2.7-A resolution. The alpha-ketoglutarate binds in the active site at the same position and orientation as isocitrate, with a difference between the two bound molecules of about 0.8 A. The Ca2+ metal is coordinated by alpha-ketoglutarate, three conserved aspartate residues, and a pair of water molecules. The largest motion in the active site relative to the isocitrate enzyme complex is observed for tyrosine 160, which originally forms a hydrogen bond to the labile carboxyl group of isocitrate and moves to form a new hydrogen bond to Asp 307 in the complex with alpha-ketoglutarate. This triggers a number of significant movements among several short loops and adjoining secondary structural elements in the enzyme, most of which participate in dimer stabilization and formation of the active-site cleft. These rearrangements are similar to the ligand-binding-induced movements observed in globins and insulin and serve as a model for an enzymatic mechanism which involves local shifts of secondary structural elements during turnover, rather than large-scale domain closures or loop transitions induced by substrate binding such as those observed in hexokinase or triosephosphate isomerase.
USDA-ARS?s Scientific Manuscript database
Background. Elevations of plasma concentrations of branched-chain amino acids (BCAA) are correlated with insulin resistance. Reduction in the activity of branched-chain ketoacid dehydrogenase complex (BCKDC) activity and impaired complete mitochondrial BCAA catabolism may contribute to this phenoty...
Vasilchenko, Liliya G; Karapetyan, Karen N; Yershevich, Olga P; Ludwig, Roland; Zamocky, Marcel; Peterbauer, Clemens K; Haltrich, Dietmar; Rabinovich, Mikhail L
2011-05-01
Cellobiose dehydrogenase (CDH) is an extracellular fungal flavocytochrome specifically oxidizing cellooligosaccharides and lactose to corresponding (-lactones by a variety of electron acceptors. In contrast to basidiomycetous CDHs, CDHs of ascomycetes also display certain activity toward glucose. The objective of this study was to establish the structural reasons of such an activity of CDH from mesophilic ascomycete Chaetomium sp. INBI 2-26 (ChCDH). The complete amino acid sequence of ChCDH displayed high levels of similarity with the amino acid sequences of CDHs from the thermophilic fungi Thielavia heterotallica and Myriococcum thermophilum. Peptide mass fingerprinting of purified ChCDH provided evidence for the oxidation of methionine residues in the FAD-domain. Comparative homology modeling of the structure of the ChCDH FAD-domain in complex with the transition state analog based on the structure of the same complex of basidiomycetous CDH (1NAA) as template indicated possible structural reasons for the enhanced activity of ascomycetous CDHs toward glucose at neutral pH, which is a prerequisite for application of CDH in a variety of biocompatible biosensors and biofuel cells. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Carlson, Ellinor D.
2017-01-01
ABSTRACT With recent advances in synthetic biology, CO2 could be utilized as a carbon feedstock by native or engineered organisms, assuming the availability of electrons. Two key enzymes used in autotrophic CO2 fixation are the CO dehydrogenase (CODH) and acetyl coenzyme A (acetyl-CoA) synthase (ACS), which form a bifunctional heterotetrameric complex. The CODH/ACS complex can reversibly catalyze CO2 to CO, effectively enabling a biological water-gas shift reaction at ambient temperatures and pressures. The CODH/ACS complex is part of the Wood-Ljungdahl pathway (WLP) used by acetogens to fix CO2, and it has been well characterized in native hosts. So far, only a few recombinant CODH/ACS complexes have been expressed in heterologous hosts, none of which demonstrated in vivo CO2 reduction. Here, functional expression of the Clostridium carboxidivorans CODH/ACS complex is demonstrated in the solventogen Clostridium acetobutylicum, which was engineered to express CODH alone or together with the ACS. Both strains exhibited CO2 reduction and CO oxidation activities. The CODH reactions were interrogated using isotopic labeling, thus verifying that CO was a direct product of CO2 reduction, and vice versa. CODH apparently uses a native C. acetobutylicum ferredoxin as an electron carrier for CO2 reduction. Heterologous CODH activity depended on actively growing cells and required the addition of nickel, which is inserted into CODH without the need to express the native Ni insertase protein. Increasing CO concentrations in the gas phase inhibited CODH activity and altered the metabolite profile of the CODH-expressing cells. This work provides the foundation for engineering a complete and functional WLP in nonnative host organisms. IMPORTANCE Functional expression of CO dehydrogenase (CODH) from Clostridium carboxidivorans was demonstrated in C. acetobutylicum, which is natively incapable of CO2 fixation. The expression of CODH, alone or together with the C. carboxidivorans acetyl-CoA synthase (ACS), enabled C. acetobutylicum to catalyze both CO2 reduction and CO oxidation. Importantly, CODH exhibited activity in both the presence and absence of ACS. 13C-tracer studies confirmed that the engineered C. acetobutylicum strains can reduce CO2 to CO and oxidize CO during growth on glucose. PMID:28625981
Carlson, Ellinor D; Papoutsakis, Eleftherios T
2017-08-15
With recent advances in synthetic biology, CO 2 could be utilized as a carbon feedstock by native or engineered organisms, assuming the availability of electrons. Two key enzymes used in autotrophic CO 2 fixation are the CO dehydrogenase (CODH) and acetyl coenzyme A (acetyl-CoA) synthase (ACS), which form a bifunctional heterotetrameric complex. The CODH/ACS complex can reversibly catalyze CO 2 to CO, effectively enabling a biological water-gas shift reaction at ambient temperatures and pressures. The CODH/ACS complex is part of the Wood-Ljungdahl pathway (WLP) used by acetogens to fix CO 2 , and it has been well characterized in native hosts. So far, only a few recombinant CODH/ACS complexes have been expressed in heterologous hosts, none of which demonstrated in vivo CO 2 reduction. Here, functional expression of the Clostridium carboxidivorans CODH/ACS complex is demonstrated in the solventogen Clostridium acetobutylicum , which was engineered to express CODH alone or together with the ACS. Both strains exhibited CO 2 reduction and CO oxidation activities. The CODH reactions were interrogated using isotopic labeling, thus verifying that CO was a direct product of CO 2 reduction, and vice versa. CODH apparently uses a native C. acetobutylicum ferredoxin as an electron carrier for CO 2 reduction. Heterologous CODH activity depended on actively growing cells and required the addition of nickel, which is inserted into CODH without the need to express the native Ni insertase protein. Increasing CO concentrations in the gas phase inhibited CODH activity and altered the metabolite profile of the CODH-expressing cells. This work provides the foundation for engineering a complete and functional WLP in nonnative host organisms. IMPORTANCE Functional expression of CO dehydrogenase (CODH) from Clostridium carboxidivorans was demonstrated in C. acetobutylicum , which is natively incapable of CO 2 fixation. The expression of CODH, alone or together with the C. carboxidivorans acetyl-CoA synthase (ACS), enabled C. acetobutylicum to catalyze both CO 2 reduction and CO oxidation. Importantly, CODH exhibited activity in both the presence and absence of ACS. 13 C-tracer studies confirmed that the engineered C. acetobutylicum strains can reduce CO 2 to CO and oxidize CO during growth on glucose. Copyright © 2017 American Society for Microbiology.
Hu, Xiao-Qian; Guo, Peng-Chao; Ma, Jin-Di; Li, Wei-Fang
2013-11-01
The primary role of yeast Ara1, previously mis-annotated as a D-arabinose dehydrogenase, is to catalyze the reduction of a variety of toxic α,β-dicarbonyl compounds using NADPH as a cofactor at physiological pH levels. Here, crystal structures of Ara1 in apo and NADPH-complexed forms are presented at 2.10 and 2.00 Å resolution, respectively. Ara1 exists as a homodimer, each subunit of which adopts an (α/β)8-barrel structure and has a highly conserved cofactor-binding pocket. Structural comparison revealed that induced fit upon NADPH binding yielded an intact active-site pocket that recognizes the substrate. Moreover, the crystal structures combined with computational simulation defined an open substrate-binding site to accommodate various substrates that possess a dicarbonyl group.
Distribution of the Pyruvate Dehydrogenase Complex in Developing Soybean Cotyledons
USDA-ARS?s Scientific Manuscript database
The somewhat surprising report that storage proteins and oil are non-uniformly distributed in the cotyledons of developing soybeans prompted us to determine the spatial distribution of the mitochondrial and plastidial forms of the pyruvate dehydrogenase complex (PDC). It has been proposed that pla...
Activity of select dehydrogenases with sepharose-immobilized N(6)-carboxymethyl-NAD.
Beauchamp, Justin; Vieille, Claire
2015-01-01
N(6)-carboxymethyl-NAD (N(6)-CM-NAD) can be used to immobilize NAD onto a substrate containing terminal primary amines. We previously immobilized N(6)-CM-NAD onto sepharose beads and showed that Thermotoga maritima glycerol dehydrogenase could use the immobilized cofactor with cofactor recycling. We now show that Saccharomyces cerevisiae alcohol dehydrogenase, rabbit muscle L-lactate dehydrogenase (type XI), bovine liver L-glutamic dehydrogenase (type III), Leuconostoc mesenteroides glucose-6-phosphate dehydro-genase, and Thermotoga maritima mannitol dehydrogenase are active with soluble N(6)-CM-NAD. The products of all enzymes but 6-phospho-D-glucono-1,5-lactone were formed when sepharose-immobilized N(6)-CM-NAD was recycled by T. maritima glycerol dehydrogenase, indicating that N(6)-immobilized NAD is suitable for use by a variety of different dehydrogenases. Observations of the enzyme active sites suggest that steric hindrance plays a greater role in limiting or allowing activity with the modified cofactor than do polarity and charge of the residues surrounding the N(6)-amine group on NAD.
Araújo, Wagner L.; Ishizaki, Kimitsune; Nunes-Nesi, Adriano; Tohge, Takayuki; Larson, Tony R.; Krahnert, Ina; Balbo, Ilse; Witt, Sandra; Dörmann, Peter; Graham, Ian A.; Leaver, Christopher J.; Fernie, Alisdair R.
2011-01-01
The process of dark-induced senescence in plants is not fully understood, however, the functional involvement of an electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO), has been demonstrated. Recent studies have revealed that the enzymes isovaleryl-coenzyme A (CoA) dehydrogenase and 2-hydroxyglutarate dehydrogenase act as important electron donors to this complex. In addition both enzymes play a role in the breakdown of cellular carbon storage reserves with isovaleryl-CoA dehydrogenase being involved in degradation of the branched-chain amino acids, phytol, and lysine while 2-hydroxyglutarate dehydrogenase is exclusively involved in lysine degradation. Given that the chlorophyll breakdown intermediate phytanoyl-CoA accumulates dramatically both in knockout mutants of the ETF/ETFQO complex and of isovaleryl-CoA dehydrogenase following growth in extended dark periods we have investigated the direct importance of chlorophyll breakdown for the supply of carbon and electrons during this process. For this purpose we isolated three independent Arabidopsis (Arabidopsis thaliana) knockout mutants of phytanoyl-CoA 2-hydroxylase and grew them under the same extended darkness regime as previously used. Despite the fact that these mutants accumulated phytanoyl-CoA and also 2-hydroxyglutarate they exhibited no morphological changes in comparison to the other mutants previously characterized. These results are consistent with a single entry point of phytol breakdown into the ETF/ETFQO system and furthermore suggest that phytol is not primarily metabolized by this pathway. Furthermore analysis of isovaleryl-CoA dehydrogenase/2-hydroxyglutarate dehydrogenase double mutants generated here suggest that these two enzymes essentially account for the entire electron input via the ETF complex. PMID:21788362
Asciak, C P; Domazet, Z
1975-02-20
1. Catabolism of prostaglandin F2alpha in the adult rat kidney takes place by the following sequence of enzymatic steps: (1) 15-hydroxyprostaglandin dehydrogenase; (2) prostaglandin delta13-reductase; and (3) 9-hydroxyprostaglandin dehydrogenase. 2. 9-Hydroxyprostaglandin dehydrogenase activity was highest in the cortex with lesser amounts in the medulla and negligible activity detected in the papilla. A similar distribution was observed for 15-hydroxyprostaglandin dehydrogenase and prostaglandin delta13-reductase. 3. Most of the 9-hydroxyprostaglandin dehydrogenase activity in the homogenate was found in the high-speed supernatant as also observed for 15-hydroxyprostaglandin dehydrogenase and prostaglandin delta13-reductase. 4. These observations indicate that the rat kidney contains an abundance of prostaglandin-catabolising enzymes which favour formation of metabolites of the E-type.
Proteomic changes in Corbicula fluminea exposed to wastewater from a psychiatric hospital.
Bebianno, M J; Sroda, S; Gomes, T; Chan, P; Bonnafe, E; Budzinski, H; Geret, F
2016-03-01
The increase use of pharmaceutical compounds in veterinary practice and human population results in the ubiquitous presence of these compounds in aquatic ecosystems. Because pharmaceuticals are highly bioactive, there is concern about their toxicological effects in aquatic organisms. Therefore, the aim of this study was to assess the effects of an effluent from a psychiatric hospital (containing a complex mixture of 25 pharmaceutical compounds from eleven therapeutic classes) on the freshwater clam Corbicula fluminea using a proteomic approach. The exposure of C. fluminea to this complex effluent containing anxiolytics, analgesics, lipid regulators, beta blockers, antidepressants, antiepileptics, antihistamines, antihypertensives, antiplatelets and antiarrhythmics induced protein changes after 1 day of exposure in clam gills and digestive gland more evident in the digestive gland. These changes included increase in the abundance of proteins associated with structural (actin and tubulin), cellular functions (calreticulin, proliferating cell nuclear antigen (PCNA), T complex protein 1 (TCP1)) and metabolism (aldehyde dehydrogenase (ALDH), alcohol dehydrogenase, 6 phosphogluconate dehydrogenase). Results from this study indicate that calreticulin, PCNA, ALDH and alcohol dehydrogenase in the digestive gland and T complex protein 1 (TCP1)) and 6 phosphogluconate dehydrogenase in the gills represent useful biomarkers for the ecotoxicological characterization of psychiatric hospital effluents in this species.
Shin, W; Lindahl, P A
1992-12-29
Adding 1,10-phenanthroline to carbon monoxide dehydrogenase from Clostridium thermoaceticum results in the complete loss of the NiFeC EPR signal and the CO/acetyl-CoA exchange activity. Other EPR signals characteristic of the enzyme (the gav = 1.94 and gav = 1.86 signals) and the CO oxidation activity are completely unaffected by the 1,10-phenanthroline treatment. This indicates that there are two catalytic sites on the enzyme; the NiFe complex is required for catalyzing the exchange and acetyl-CoA synthase reactions, while some other site is responsible for CO oxidation. The strength of CO binding to the NiFe complex was examined by titrating dithionite-reduced enzyme with CO. During the titration, the NiFeC EPR signal developed to a final spin intensity of 0.23 spin/alpha beta. The resulting CO titration curve (NiFeC spins/alpha beta vs CO pha beta) was fitted using two reactions: binding of CO to the oxidized NiFe complex, and reduction of the CO-bound species to a form that exhibits the NiFeC signal. Best fits yielded apparent binding constants between 6000 and 14,000 M-1 (Kd = 70-165 microM). This sizable range is due to uncertainty whether CO binds to all or only a small fraction (approximately 23%) of the NiFe complexes. Reduction of the CO-bound NiFe complex is apparently required to activate it for catalysis. The electron used for this reduction originates from the CO oxidation site, suggesting that delivery of a low-potential electron to the CO-bound NiFe complex is the physiological function of the CO oxidation reaction catalyzed by this enzyme.
Kim, Youngchang; Makowska-Grzyska, Magdalena; Gorla, Suresh Kumar; ...
2015-04-21
Inosine 5´-monophosphate dehydrogenase (IMPDH) is a promising target for the treatment of Cryptosporidium infections. Here, the structure of C. parvum IMPDH ( CpIMPDH) in complex with inosine 5´-monophosphate (IMP) and P131, an inhibitor with in vivo anticryptosporidial activity, is reported. P131 contains two aromatic groups, one of which interacts with the hypoxanthine ring of IMP, while the second interacts with the aromatic ring of a tyrosine in the adjacent subunit. In addition, the amine and NO 2 moieties bind in hydrated cavities, forming water-mediated hydrogen bonds to the protein. The design of compounds to replace these water molecules is amore » new strategy for the further optimization of C. parvum inhibitors for both antiparasitic and antibacterial applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Youngchang; Makowska-Grzyska, Magdalena; Gorla, Suresh Kumar
2015-04-21
Inosine 5'-monophosphate dehydrogenase (IMPDH) is a promising target for the treatment ofCryptosporidiuminfections. Here, the structure ofC. parvumIMPDH (CpIMPDH) in complex with inosine 5'-monophosphate (IMP) and P131, an inhibitor within vivoanticryptosporidial activity, is reported. P131 contains two aromatic groups, one of which interacts with the hypoxanthine ring of IMP, while the second interacts with the aromatic ring of a tyrosine in the adjacent subunit. In addition, the amine and NO 2moieties bind in hydrated cavities, forming water-mediated hydrogen bonds to the protein. The design of compounds to replace these water molecules is a new strategy for the further optimization ofC. parvuminhibitorsmore » for both antiparasitic and antibacterial applications.« less
Kloosterman, Harm; Vrijbloed, Jan W; Dijkhuizen, Lubbert
2002-09-20
The cytoplasmic coenzyme NAD(+)-dependent alcohol (methanol) dehydrogenase (MDH) employed by Bacillus methanolicus during growth on C(1)-C(4) primary alcohols is a decameric protein with 1 Zn(2+)-ion and 1-2 Mg(2+)-ions plus a tightly bound NAD(H) cofactor per subunit (a nicotinoprotein). Mg(2+)-ions are essential for binding of NAD(H) cofactor in MDH protein expressed in Escherichia coli. The low coenzyme NAD(+)-dependent activity of MDH with C(1)-C(4) primary alcohols is strongly stimulated by a second B. methanolicus protein (ACT), provided that MDH contains NAD(H) cofactor and Mg(2+)-ions are present in the assay mixture. Characterization of the act gene revealed the presence of the highly conserved amino acid sequence motif typical of Nudix hydrolase proteins in the deduced ACT amino acid sequence. The act gene was successfully expressed in E. coli allowing purification and characterization of active ACT protein. MDH activation by ACT involved hydrolytic removal of the nicotinamide mononucleotide NMN(H) moiety of the NAD(H) cofactor of MDH, changing its Ping-Pong type of reaction mechanism into a ternary complex reaction mechanism. Increased cellular NADH/NAD(+) ratios may reduce the ACT-mediated activation of MDH, thus preventing accumulation of toxic aldehydes. This represents a novel mechanism for alcohol dehydrogenase activity regulation.
USDA-ARS?s Scientific Manuscript database
NADH dehydrogenase, the largest of the respiratory complexes, is the first enzyme of the mitochondrial electron transport chain. We have cloned and sequenced cDNA of NADH dehydrogenase gene from Ochlerotatus (Ochlerotatus) taeniorhynchus (Wiedemann) adult (GeneBank Accession number: FJ458415). The ...
Bajotto, Gustavo; Murakami, Taro; Nagasaki, Masaru; Sato, Yuzo; Shimomura, Yoshiharu
2009-10-01
The mitochondrial branched-chain alpha-keto acid dehydrogenase complex (BCKDC) is responsible for the committed step in branched-chain amino acid catabolism. In the present study, we examined BCKDC regulation in Otsuka Long-Evans Tokushima Fatty (OLETF) rats both before (8 weeks of age) and after (25 weeks of age) the onset of type 2 diabetes mellitus. Long-Evans Tokushima Otsuka (LETO) rats were used as controls. Plasma branched-chain amino acid and branched-chain alpha-keto acid concentrations were significantly increased in young and middle-aged OLETF rats. Although the hepatic complex was nearly 100% active in all animals, total BCKDC activity and protein abundance of E1alpha, E1beta, and E2 subunits were markedly lower in OLETF than in LETO rats at 8 and 25 weeks of age. In addition, hepatic BCKDC activity and protein amounts were significantly decreased in LETO rats aged 25 weeks than in LETO rats aged 8 weeks. In skeletal muscle, E1beta and E2 proteins were significantly reduced, whereas E1alpha tended to increase in OLETF rats. Taken together, these results suggest that (1) whole-body branched-chain alpha-keto acid oxidation capacity is extremely reduced in OLETF rats independently of diabetes development, (2) the aging process decreases BCKDC activity and protein abundance in the liver of normal rats, and (3) differential posttranscriptional regulation for the subunits of BCKDC may exist in skeletal muscle.
Huang, Xiaoping; Bedoyan, Jirair K; Demirbas, Didem; Harris, David J; Miron, Alexander; Edelheit, Simone; Grahame, George; DeBrosse, Suzanne D; Wong, Lee-Jun; Hoppel, Charles L; Kerr, Douglas S; Anselm, Irina; Berry, Gerard T
2017-03-01
Mutations in SUCLA2 result in succinyl-CoA ligase (ATP-forming) or succinyl-CoA synthetase (ADP-forming) (A-SCS) deficiency, a mitochondrial tricarboxylic acid cycle disorder. The phenotype associated with this gene defect is largely encephalomyopathy. We describe two siblings compound heterozygous for SUCLA2 mutations, c.985A>G (p.M329V) and c.920C>T (p.A307V), with parents confirmed as carriers of each mutation. We developed a new LC-MS/MS based enzyme assay to demonstrate the decreased SCS activity in the siblings with this unique genotype. Both siblings shared bilateral progressive hearing loss, encephalopathy, global developmental delay, generalized myopathy, and dystonia with choreoathetosis. Prior to diagnosis and because of lactic acidosis and low activity of muscle pyruvate dehydrogenase complex (PDC), sibling 1 (S1) was placed on dichloroacetate, while sibling 2 (S2) was on a ketogenic diet. S1 developed severe cyclic vomiting refractory to therapy, while S2 developed Leigh syndrome, severe GI dysmotility, intermittent anemia, hypogammaglobulinemia and eventually succumbed to his disorder. The mitochondrial DNA contents in skeletal muscle (SM) were normal in both siblings. Pyruvate dehydrogenase complex, ketoglutarate dehydrogenase complex, and several mitochondrial electron transport chain (ETC) activities were low or at the low end of the reference range in frozen SM from S1 and/or S2. In contrast, activities of PDC, other mitochondrial enzymes of pyruvate metabolism, ETC and, integrated oxidative phosphorylation, in skin fibroblasts were not significantly impaired. Although we show that propionyl-CoA inhibits PDC, it does not appear to account for decreased PDC activity in SM. A better understanding of the mechanisms of phenotypic variability and the etiology for tissue-specific secondary deficiencies of mitochondrial enzymes of oxidative metabolism, and independently mitochondrial DNA depletion (common in other cases of A-SCS deficiency), is needed given the implications for control of lactic acidosis and possible clinical management. Copyright © 2016 Elsevier Inc. All rights reserved.
XoxF Is Required for Expression of Methanol Dehydrogenase in Methylobacterium extorquens AM1 ▿
Skovran, Elizabeth; Palmer, Alexander D.; Rountree, Austin M.; Good, Nathan M.; Lidstrom, Mary E.
2011-01-01
In Gram-negative methylotrophic bacteria, the first step in methylotrophic growth is the oxidation of methanol to formaldehyde in the periplasm by methanol dehydrogenase. In most organisms studied to date, this enzyme consists of the MxaF and MxaI proteins, which make up the large and small subunits of this heterotetrameric enzyme. The Methylobacterium extorquens AM1 genome contains two homologs of MxaF, XoxF1 and XoxF2, which are ∼50% identical to MxaF and ∼90% identical to each other. It was previously reported that xoxF is not required for methanol growth in M. extorquens AM1, but here we show that when both xoxF homologs are absent, strains are unable to grow in methanol medium and lack methanol dehydrogenase activity. We demonstrate that these defects result from the loss of gene expression from the mxa promoter and suggest that XoxF is part of a complex regulatory cascade involving the 2-component systems MxcQE and MxbDM, which are required for the expression of the methanol dehydrogenase genes. PMID:21873495
Nemeria, Natalia S; Gerfen, Gary; Guevara, Elena; Nareddy, Pradeep Reddy; Szostak, Michal; Jordan, Frank
2017-07-01
Recently, we reported that the human 2-oxoglutarate dehydrogenase (hE1o) component of the 2-oxoglutarate dehydrogenase complex (OGDHc) could produce the reactive oxygen species superoxide and hydrogen peroxide (detected by chemical means) from its substrate 2-oxoglutarate (OG), most likely concurrently with one-electron oxidation by dioxygen of the thiamin diphosphate (ThDP)-derived enamine intermediate to a C2α-centered radical (detected by Electron Paramagnetic Resonance) [Nemeria et al., 2014 [17]; Ambrus et al. 2015 [18
Oxidative modification of lipoic acid by HNE in Alzheimer disease brain.
Hardas, Sarita S; Sultana, Rukhsana; Clark, Amy M; Beckett, Tina L; Szweda, Luke I; Murphy, M Paul; Butterfield, D Allan
2013-01-01
Alzheimer disease (AD) is an age-related neurodegenerative disease characterized by the presence of three pathological hallmarks: synapse loss, extracellular senile plaques (SP) and intracellular neurofibrillary tangles (NFTs). The major component of SP is amyloid β-peptide (Aβ), which has been shown to induce oxidative stress. The AD brain shows increased levels of lipid peroxidation products, including 4-hydroxy-2-nonenal (HNE). HNE can react covalently with Cys, His, or Lys residues on proteins, altering structure and function of the latter. In the present study we measured the levels of the HNE-modified lipoic acid in brain of subjects with AD and age-matched controls. Lipoic acid is a key co-factor for a number of proteins including pyruvate dehydrogenase and α-ketoglutarate dehydrogenase, key complexes for cellular energetics. We observed a significant decrease in the levels of HNE-lipoic acid in the AD brain compared to that of age-matched controls. To investigate this phenomenon further, the levels and activity of lipoamide dehydrogenase (LADH) were measured in AD and control brains. Additionally, LADH activities were measured after in-vitro HNE-treatment to mice brains. Both LADH levels and activities were found to be significantly reduced in AD brain compared to age-matched control. HNE-treatment also reduced the LADH activity in mice brain. These data are consistent with a two-hit hypothesis of AD: oxidative stress leads to lipid peroxidation that, in turn, causes oxidative dysfunction of key energy-related complexes in mitochondria, triggering neurodegeneration. This study is consonant with the notion that lipoic acid supplementation could be a potential treatment for the observed loss of cellular energetics in AD and potentiate the antioxidant defense system to prevent or delay the oxidative stress in and progression of this devastating dementing disorder.
Adrenal 11-beta hydroxysteroid dehydrogenase activity in response to stress.
Zallocchi, Marisa; Matković, Laura; Damasco, María C
2004-06-01
This work studied the effect of stresses produced by simulated gavage or gavage with 200 mmol/L HCl two hours before adrenal extraction, on the activities of the 11beta-hydroxysteroid dehydrogenase 1 and 11beta-hydroxysteroid dehydrogenase 2 isoforms present in the rat adrenal gland. These activities were determined on immediately prepared adrenal microsomes following incubations with 3H-corticosterone and NAD+ or NADP+. 11-dehydrocorticosterone was measured as an end-product by TLC, and controls were adrenal microsomes from rats kept under basal (unstressed) conditions. 11beta-hydroxysteroid dehydrogenase 1 activity, but not 11beta-hydroxysteroid dehydrogenase 2 activity, was increased under both stress-conditions. Homeostatically, the stimulation of 11beta-hydroxysteroid dehydrogenase 1 activity would increase the supply of glucocorticoids. These, in turn, would activate the enzyme phenylethanolamine N-methyl transferase, thereby improving the synthesis of epinephrine as part of the stress-response.
Rachamin, Gloria; Macdonald, J. Alain; Wahid, Samina; Clapp, Jeremy J.; Khanna, Jatinder M.; Israel, Yedy
1980-01-01
In young (4-week-old) male and female spontaneously hypertensive (SH) rats, ethanol metabolic rate in vivo and hepatic alcohol dehydrogenase activity in vitro are high and not different in the two sexes. In males, ethanol metabolic rate falls markedly between 4 and 10 weeks of age, which coincides with the time of development of sexual maturity in the rat. Alcohol dehydrogenase activity is also markedly diminished in the male SH rat and correlates well with the changes in ethanol metabolism. There is virtually no influence of age on ethanol metabolic rate and alcohol dehydrogenase activity in the female SH rat. Castration of male SH rats prevents the marked decrease in ethanol metabolic rate and alcohol dehydrogenase activity, whereas ovariectomy has no effect on these parameters in female SH rats. Chronic administration of testosterone to castrated male SH rats and to female SH rats decreases ethanol metabolic rate and alcohol dehydrogenase activity to values similar to those found in mature males. Chronic administration of oestradiol-17β to male SH rats results in marked stimulation of ethanol metabolic rate and alcohol dehydrogenase activity to values similar to those found in female SH rats. Chronic administration of ethanol to male SH rats from 4 to 11 weeks of age prevents the marked age-dependent decreases in ethanol metabolic rate and alcohol dehydrogenase activity, but has virtually no effect in castrated rats. In the intoxicated chronically ethanol-fed male SH rats, serum testosterone concentrations are significantly depressed. In vitro, testosterone has no effect on hepatic alcohol dehydrogenase activity of young male and female SH rats. In conclusion, in the male SH rat, ethanol metabolic rate appears to be limited by alcohol dehydrogenase activity and is modulated by testosterone. Testosterone has an inhibitory effect and oestradiol has a testosterone-dependent stimulatory effect on alcohol dehydrogenase activity and ethanol metabolic rate in these animals. PMID:6990919
Comparative Studies of Enzymes Related to Serine Metabolism in Higher Plants 1
Cheung, Geoffrey P.; Rosenblum, I. Y.; Sallach, H. J.
1968-01-01
The following enzymes related to serine metabolism in higher plants have been investigated: 1) d-3-phosphoglycerate dehydrogenase, 2) phosphohydroxypyruvate:l-glutamate transaminase, 3) d-glycerate dehydrogenase, and 4) hydroxypyruvate:l-alanine transaminase. Comparative studies on the distribution of the 2 dehydrogenases in seeds and leaves from various plants revealed that d-3-phosphoglycerate dehydrogenase is widely distributed in seeds in contrast to d-glycerate dehydrogenase, which is either absent or present at low levels, and that the reverse pattern is observed in green leaves. The levels of activity of the 4 enzymes listed above were followed in different tissues of the developing pea (Pisum sativum, var. Alaska). In the leaf, from the tenth to seventeenth day of germination, the specific activity of d-glycerate dehydrogenase increased markedly and was much higher than d-3-phosphoglycerate dehydrogenase which remained relatively constant during this time period. Etiolation resulted in a decrease in d-glycerate dehydrogenase and an increase in d-3-phosphoglycerate dehydrogenase activities. In apical meristem, on the other hand, the level of d-3-phosphoglycerate dehydrogenase exceeded that of d-glycerate dehydrogenase at all time periods studied. Low and decreasing levels of both dehydrogenases were found in epicotyl and cotyledon. The specific activities of the 2 transaminases remained relatively constant during development in both leaf and apical meristem. In general, however, the levels of phosphohydroxypyruvate:l-glutamate transaminase were comparable to those of d-3-phosphoglycerate dehydrogenase in a given tissue as were those for hydroxypyruvate: l-alanine transaminase and d-glycerate dehydrogenase. PMID:5699148
Forsgren, L; Libelius, R; Holmberg, M; von Döbeln, U; Wibom, R; Heijbel, J; Sandgren, O; Holmgren, G
1996-12-01
The autosomal dominant cerebellar ataxias (ADCA) are a group of neurodegenerative disorders with ataxia and dysarthria as early and dominant signs. In ADCA type II, retinal degeneration causes severe visual impairment. ADCA type II has recently been mapped to chromosome 3p by three independent groups. In the family with ADCA type II studied here, the disease has been mapped to chromosome 3p12-p21.1. Histochemical examination of muscle biopsies in 5 cases showed slight neurogenic atrophy and irregular lobulated appearance or focal decreases of enzyme activity when staining for NADH dehydrogenase, succinic dehydrogenase and cytochrome oxidase. Ragged-red fibres were scarce. Electron microscopic examination showed uneven distribution of mitochondria with large fibre areas devoid of mitochondria and/or large subsarcolemmal accumulations of small rounded mitochondria, and frequent autophagic vacuoles. These vacuoles contained remnants of multiple small rounded organelles, possibly mitochondria, and had a remarkably consistent ultrastructural appearance. Biochemical investigation of mitochondrial function showed reduced activity of complex IV and slightly reduced activity of complex I in the respiratory chain in a severely affected child while no abnormalities were found in his affected uncle.
Clostridium acidurici electron-bifurcating formate dehydrogenase.
Wang, Shuning; Huang, Haiyan; Kahnt, Jörg; Thauer, Rudolf K
2013-10-01
Cell extracts of uric acid-grown Clostridium acidurici catalyzed the coupled reduction of NAD(+) and ferredoxin with formate at a specific activity of 1.3 U/mg. The enzyme complex catalyzing the electron-bifurcating reaction was purified 130-fold and found to be composed of four subunits encoded by the gene cluster hylCBA-fdhF2.
Central carbon metabolism in marine bacteria examined with a simplified assay for dehydrogenases.
Wen, Weiwei; Wang, Shizhen; Zhou, Xiaofen; Fang, Baishan
2013-06-01
A simplified assay platform was developed to measure the activities of the key oxidoreductases in central carbon metabolism of various marine bacteria. Based on microplate assay, the platform was low-cost and simplified by unifying the reaction conditions of enzymes including temperature, buffers, and ionic strength. The central carbon metabolism of 16 marine bacteria, involving Pseudomonas, Exiguobacterium, Marinobacter, Citreicella, and Novosphingobium were studied. Six key oxidoreductases of central carbon metabolism, glucose-6-phosphate dehydrogenase, pyruvate dehydrogenase, 2-ketoglutarate dehydrogenase, malate dehydrogenase, malic enzyme, and isocitrate dehydrogenase were investigated by testing their activities in the pathway. High activity of malate dehydrogenase was found in Citreicella marina, and the specific activity achieved 22 U/mg in cell crude extract. The results also suggested that there was a considerable variability on key enzymes' activities of central carbon metabolism in some strains which have close evolutionary relationship while they adapted to the requirements of the niche they (try to) occupy.
Redox imbalance and mitochondrial abnormalities in the diabetic lung.
Wu, Jinzi; Jin, Zhen; Yan, Liang-Jun
2017-04-01
Although the lung is one of the least studied organs in diabetes, increasing evidence indicates that it is an inevitable target of diabetic complications. Nevertheless, the underlying biochemical mechanisms of lung injury in diabetes remain largely unexplored. Given that redox imbalance, oxidative stress, and mitochondrial dysfunction have been implicated in diabetic tissue injury, we set out to investigate mechanisms of lung injury in diabetes. The objective of this study was to evaluate NADH/NAD + redox status, oxidative stress, and mitochondrial abnormalities in the diabetic lung. Using STZ induced diabetes in rat as a model, we measured redox-imbalance related parameters including aldose reductase activity, level of poly ADP ribose polymerase (PAPR-1), NAD + content, NADPH content, reduced form of glutathione (GSH), and glucose 6-phophate dehydrogenase (G6PD) activity. For assessment of mitochondrial abnormalities in the diabetic lung, we measured the activities of mitochondrial electron transport chain complexes I to IV and complex V as well as dihydrolipoamide dehydrogenase (DLDH) content and activity. We also measured the protein content of NAD + dependent enzymes such as sirtuin3 (sirt3) and NAD(P)H: quinone oxidoreductase 1 (NQO1). Our results demonstrate that NADH/NAD + redox imbalance occurs in the diabetic lung. This redox imbalance upregulates the activities of complexes I to IV, but not complex V; and this upregulation is likely the source of increased mitochondrial ROS production, oxidative stress, and cell death in the diabetic lung. These results, together with the findings that the protein contents of DLDH, sirt3, and NQO1 all are decreased in the diabetic lung, demonstrate that redox imbalance, mitochondrial abnormality, and oxidative stress contribute to lung injury in diabetes. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Control of C-H Bond Activation by Mo-Oxo Complexes: pKa or Bond Dissociation Free Energy (BDFE)?
Nazemi, Azadeh; Cundari, Thomas R
2017-10-16
A density functional theory (DFT) study (BMK/6-31+G(d)) was initiated to investigate the activation of benzylic carbon-hydrogen bonds by a molybdenum-oxo complex with a potentially redox noninnocent supporting ligand-a simple mimic of the active species of the enzyme ethylbenzene dehydrogenase (EBDH)-through deprotonation (C-H bond heterolysis) or hydrogen atom abstraction (C-H bond homolysis) routes. Activation free-energy barriers for neutral and anionic Mo-oxo complexes were high, but lower for anionic complexes than neutral complexes. Interesting trends as a function of substituents were observed that indicated significant H δ+ character in the transition states (TS), which was further supported by the preference for [2 + 2] addition over HAA for most complexes. Hence, it was hypothesized that C-H activation by these EBDH mimics is controlled more by the pK a than by the bond dissociation free energy of the C-H bond being activated. Therefore, the results suggest promising pathways for designing more efficient and selective catalysts for hydrocarbon oxidation based on EBDH active-site mimics.
Sanchez-Moreno, M; Ortega, J E; Valero, A
1989-12-01
High levels of malate dehydrogenase were found in Trichuris ovis. Two molecular forms of the enzyme, of different cellular location and electrophoretic pattern, were isolated and purified. The activity of soluble malate dehydrogenase was greater than that of mitochondrial malate dehydrogenase. Both forms also displayed different electrophoretic profiles in comparison with purified extracts from goat (Capra hircus) liver. Substrate concentration directly affected enzyme activity. Host and parasite malate dehydrogenase activity were both inhibited by a series of benzimidazoles and pyrimidine-derived compounds, some of which markedly reduced parasite enzyme activity, but not host enzyme activity. Percentage inhibition by some pyrimidine derivatives was greater than that produced by benzimidazoles.
Tellurite-exposed Escherichia coli exhibits increased intracellular {alpha}-ketoglutarate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinoso, Claudia A.; Auger, Christopher; Appanna, Vasu D.
2012-05-18
Highlights: Black-Right-Pointing-Pointer Tellurite-exposed E. coli exhibits decreased {alpha}-KG dehydrogenase activity. Black-Right-Pointing-Pointer Cells lacking {alpha}-KGDH genes are more sensitive to ROS than isogenic, wt E. coli. Black-Right-Pointing-Pointer KG accumulation may serve to face tellurite-mediated oxidative damage in E. coli. -- Abstract: The tellurium oxyanion tellurite is toxic to most organisms because of its ability to generate oxidative stress. However, the detailed mechanism(s) how this toxicant interferes with cellular processes have yet to be fully understood. As part of our effort to decipher the molecular interactions of tellurite with living systems, we have evaluated the global metabolism of {alpha}-ketoglutarate a known antioxidantmore » in Escherichia coli. Tellurite-exposed cells displayed reduced activity of the KG dehydrogenase complex (KGDHc), resulting in increased intracellular KG content. This complex's reduced activity seems to be due to decreased transcription in the stressed cells of sucA, a gene that encodes the E1 component of KGDHc. Furthermore, it was demonstrated that the increase in total reactive oxygen species and superoxide observed upon tellurite exposure was more evident in wild type cells than in E. coli with impaired KGDHc activity. These results indicate that KG may be playing a pivotal role in combating tellurite-mediated oxidative damage.« less
Armstrong, Craig T; Anderson, J L Ross; Denton, Richard M
2014-04-15
The regulation of the 2-oxoglutarate dehydrogenase complex is central to intramitochondrial energy metabolism. In the present study, the active full-length E1 subunit of the human complex has been expressed and shown to be regulated by Ca2+, adenine nucleotides and NADH, with NADH exerting a major influence on the K0.5 value for Ca2+. We investigated two potential Ca2+-binding sites on E1, which we term site 1 (D114ADLD) and site 2 (E139SDLD). Comparison of sequences from vertebrates with those from Ca2+-insensitive non-vertebrate complexes suggest that site 1 may be the more important. Consistent with this view, a mutated form of E1, D114A, shows a 6-fold decrease in sensitivity for Ca2+, whereas variant ∆site1 (in which the sequence of site 1 is replaced by A114AALA) exhibits an almost complete loss of Ca2+ activation. Variant ∆site2 (in which the sequence is replaced with A139SALA) shows no measurable change in Ca2+ sensitivity. We conclude that site 1, but not site 2, forms part of a regulatory Ca2+-binding site, which is distinct from other previously described Ca2+-binding sites.
Lawlis, V B; Roche, T E
1981-04-28
Micromolar Ca2+ markedly reduces NADH inhibition of bovine kidney alpha-ketoglutarate dehydrogenase complex [Lawlis, V. B., & Roche, T. E. (1980) Mol. Cell. Biochem. 32, 147-152]. Product inhibition patterns from initial velocity studies conducted at less than 10(-9) M or at 1.5 X 10(-5) M Ca2+ with NAD+, CoA, or alpha-ketoglutarate as the variable substrate showed that NADH was a noncompetitive inhibitor with respect to each of these substrates, except at high NAD+ concentrations, where reciprocal plots were nonlinear and the inhibition pattern for NADH vs. NAD+ changed from a noncompetitive to a competitive pattern. From slope and intercept replots, 2-fold to 12-fold higher inhibition constants were estimated for inhibition by NADH vs. the various substrates in the presence of 1.5 X 10(-5) M Ca2+ than for inhibition at less than 10(-9) M Ca2+. These inhibition patterns and the lack of an effect of Ca2+ on the inhibition of the dihydrolipoyl dehydrogenase component suggested that Ca2+-modulated NADH inhibition occurs at an allosteric site with competitive binding at the site by high levels of NAD+. Decarboxylation of alpha-keto[1-14C]glutarate by the resolved alpha-ketoglutarate dehydrogenase component was investigated in the presence of 5.0 mM glyoxylate which served as an efficient acceptor. NADH (0.2 mM) or 1.0 mM ATP inhibited the partial reaction whereas 15 muM Ca2+, 1.0 mM ADP, or 10 mM NAD+ stimulated the partial reaction and reduced NADH inhibition of this reaction. Thus these effectors alter the activity of the alpha-ketoglutarate dehydrogenase complex by binding at allosteric sites on the alpha-ketoglutarate dehydrogenase component. Inhibition by NADH over a wide range of NADH/NAD+ ratios was measured under conditions in which the level of alpha-ketoglutarate was adjusted to give matching control activities at less than 10(-9) M Ca2+ or 1.5 X 10(-5) M Ca2+ in either the presence or the absence of 1.6 mM ADP. These studies establish that both Ca2+ and ADP decreased NADH inhibition under conditions compensating for the effects of Ca2+ and ADP on S0.5 for alpha-ketoglutarate. ADP was particularly effective in reducing NADH inhibition; further studies are required to determine whether this occurs through binding of NADH and ADP at the same, overlapping, or interacting sites.
Ferriero, Rosa; Nusco, Edoardo; De Cegli, Rossella; Carissimo, Annamaria; Manco, Giuseppe; Brunetti-Pierri, Nicola
2018-03-24
Acute liver failure is a rapidly progressive deterioration of hepatic function resulting in high mortality and morbidity. Metabolic enzymes can translocate to the nucleus to regulate histone acetylation and gene expression. Levels and activities of pyruvate dehydrogenase complex (PDHC) and lactate dehydrogenase (LDH) were evaluated in nuclear fractions of livers of mice exposed to various hepatotoxins including CD95-antibody, α-amanitin, and acetaminophen. Whole-genome gene expression profiling by RNA-seq was performed in livers of mice with acute liver failure and analyzed by gene ontology enrichment analysis. Cell viability was evaluated in cell lines knocked-down for PDHA1 or LDH-A and in cells incubated with the LDH inhibitor galloflavin after treatment with CD95-antibody. We evaluated whether the histone acetyltransferase inhibitor garcinol or galloflavin could reduce liver damage in mice with acute liver failure. Levels and activities of PDHC and LDH were increased in nuclear fractions of livers of mice with acute liver failure. The increase of nuclear PDHC and LDH was associated with increased concentrations of acetyl-CoA and lactate in nuclear fractions, and histone H3 hyper-acetylation. Gene expression in livers of mice with acute liver failure suggested that increased histone H3 acetylation induces the expression of genes related to damage response. Reduced histone acetylation by the histone acetyltransferase inhibitor garcinol decreased liver damage and improved survival in mice with acute liver failure. Knock-down of PDHC or LDH improved viability in cells exposed to a pro-apoptotic stimulus. Treatment with the LDH inhibitor galloflavin that was also found to inhibit PDHC, reduced hepatic necrosis, apoptosis, and expression of pro-inflammatory cytokines in mice with acute liver failure. Mice treated with galloflavin also showed a dose-response increase in survival. PDHC and LDH translocate to the nucleus, leading to increased nuclear concentrations of acetyl-CoA and lactate. This results in histone H3 hyper-acetylation and expression of damage response genes. Inhibition of PDHC and LDH reduces liver damage and improves survival in mice with acute liver failure. Thus, PDHC and LDH are targets for therapy of acute liver failure. Acute liver failure is a rapidly progressive deterioration of liver function resulting in high mortality. In experimental mouse models of acute liver failure, we found that two metabolic enzymes, namely pyruvate dehydrogenase complex and lactic dehydrogenase, translocate to the nucleus resulting in detrimental gene expression. Treatment with an inhibitor of these two enzymes was found to reduce liver damage and to improve survival. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Lactate dehydrogenase inhibition: exploring possible applications beyond cancer treatment.
Di Stefano, Giuseppina; Manerba, Marcella; Di Ianni, Lorenza; Fiume, Luigi
2016-04-01
Lactate dehydrogenase (LDH) inhibition is considered a worthwhile attempt in the development of innovative anticancer strategies. Unfortunately, in spite of the involvement of several research institutions and pharma-companies, the discovery of LDH inhibitors with drug-like properties seems a hardly resolvable challenge. While awaiting new advancements, in the present review we will examine other pathologic conditions characterized by increased glycolysis and LDH activity, which could potentially benefit from LDH inhibition. The rationale for targeting LDH activity in these contexts is the same justifying the LDH-based approach in anticancer therapy: because of the enzyme position at the end of glycolytic pathway, LDH inhibitors are not expected to hinder glucose metabolism of normal cells. Moreover, we will summarize the latest contributions in the discovery of enzyme inhibitors and try to glance over the reasons underlying the complexity of this research.
Villa, Roberto Federico; Gorini, Antonella; Hoyer, Siegfried
2009-12-01
The effect of ageing and the relationships between the catalytic properties of enzymes linked to Krebs' cycle, electron transfer chain, glutamate and aminoacid metabolism of cerebral cortex, a functional area very sensitive to both age and ischemia, were studied on mitochondria of adult and aged rats, after complete ischemia of 15 minutes duration. The maximum rate (Vmax) of the following enzyme activities: citrate synthase, malate dehydrogenase, succinate dehydrogenase for Krebs' cycle; NADH-cytochrome c reductase as total (integrated activity of Complex I-III), rotenone sensitive (Complex I) and cytochrome oxidase (Complex IV) for electron transfer chain; glutamate dehydrogenase, glutamate-oxaloacetate-and glutamate-pyruvate transaminases for glutamate metabolism were assayed in non-synaptic, perikaryal mitochondria and in two populations of intra-synaptic mitochondria, i.e., the light and heavy mitochondrial fraction. The results indicate that in normal, steady-state cerebral cortex, the value of the same enzyme activity markedly differs according (a) to the different populations of mitochondria, i.e., non-synaptic or intra-synaptic light and heavy, (b) and respect to ageing. After 15 min of complete ischemia, the enzyme activities of mitochondria located near the nucleus (perikaryal mitochondria) and in synaptic structures (intra-synaptic mitochondria) of the cerebral tissue were substantially modified by ischemia. Non-synaptic mitochondria seem to be more affected by ischemia in adult and particularly in aged animals than the intra-synaptic light and heavy mitochondria. The observed modifications in enzyme activities reflect the metabolic state of the tissue at each specific experimental condition, as shown by comparative evaluation with respect to the content of energy-linked metabolites and substrates. The derangements in enzyme activities due to ischemia is greater in aged than in adult animals and especially the non-synaptic and the intra-synaptic light mitochondria seems to be more affected in aged animals. These data allow the hypothesis that the observed modifications of catalytic activities in non-synaptic and intra-synaptic mitochondrial enzyme systems linked to energy metabolism, amino acids and glutamate metabolism are primary responsible for the physiopathological responses of cerebral tissue to complete cerebral ischemia for 15 min duration during ageing.
Genetics Home Reference: pyruvate dehydrogenase deficiency
... form that cells can use. The pyruvate dehydrogenase complex converts a molecule called pyruvate, which is formed from the breakdown of carbohydrates, into another molecule called acetyl-CoA. This conversion ...
Majumdar, Amit
2014-08-28
Carbon monoxide dehydrogenases (CODHs) use CO as their sole source of carbon and energy and are found in both aerobic and anaerobic carboxidotrophic bacteria. Reversible transformation of CO to CO2 is catalyzed by a bimetallic [Mo-(μ2-S)-Cu] system in aerobic and by a highly asymmetric [Ni-Fe-S] cluster in anaerobic CODH active sites. The CODH activity in the microorganisms effects the removal of almost 10(8) tons of CO annually from the lower atmosphere and earth and thus help to maintain a sub-toxic concentration of CO. Despite an appreciable amount of work, the mechanism of CODH activity is not clearly understood yet. Moreover, biomimetic chemistry directed towards the active sites of CODHs faces several synthetic challenges. The synthetic problems associated with the modeling chemistry and strategies adopted to overcome those problems are discussed along with their limitations. A critical analysis of the exciting results delineating the present status of CODH modeling chemistry and its future prospects are presented.
Regulation of NADH/CoQ oxidoreductase: do phosphorylation events affect activity?
Maj, Mary C; Raha, Sandeep; Myint, Tomoko; Robinson, Brian H
2004-01-01
We had previously suggested that phosphorylation of proteins by mitochondrial kinases regulate the activity of NADH/CoQ oxidoreductase. Initial data showed that pyruvate dehydrogenase kinase (PDK) and cAMP-dependent protein kinase A (PKA) phosphorylate mitochondrial membrane proteins. Upon phosphorylation with crude PDK, mitochondria appeared to be deficient in NADH/cytochrome c reductase activity associated with increased superoxide production. Conversely, phosphorylation by PKA resulted in increased NADH/cytochrome c reductase activity and decreased superoxide formation. Current data confirms PKA involvement in regulating Complex I activity through phosphorylation of an 18 kDa subunit. Beef heart NADH/ cytochrome c reductase activity increases to 150% of control upon incubation with PKA and ATP-gamma-S. We have cloned the four human isoforms of PDK and purified beef heart Complex I. Incubation of mitochondria with PDK isoforms and ATP did not alter Complex I activity or superoxide production. Radiolabeling of mitochondria and purified Complex I with PDK failed to reveal phosphorylated proteins.
Armstrong, D G
1979-01-01
1. The distribution of 3 beta-hydroxy steroid dehydrogenase was examined in the subcellular fractions of granulosa cells collected from the ovary of the domestic fowl. 2. 3 beta-hydroxy steroid dehydrogenase activity was observed in the mitochondrial (4000g for 20min) and microsomal (105 000g for 120min) fractions. 3. Approximately three times more 3 beta-hydroxy steroid dehydrogenase activity was associated with the cytochrome oxidase activity (a mitochondrial marker enzyme) in anteovulatory-follicle granulosa cells than with that of the postovulatory follicle. 4. Comparison of the latent properties of mitochondrial 3 beta-hydroxy steroid dehydrogenase with those of cytochrome oxidase and isocitrate dehydrogenase indicated that 3 beta-hydroxy steroid dehydrogenase is located extramitochondrially. 5. This apparent distribution of 3 beta-hydroxy steroid dehydrogenase is explained on the basis that the mitochondrial activity is either an artefact caused by a redistribution in the subcellular location of the enzyme, occurring during homogenization, or by the existence of a functionally heterogeneous endoplasmic reticulum that yields particles of widely differing sedimentation properties. PMID:518548
Sazanov, Leonid A.; Burrows, Paul A.; Nixon, Peter J.
1998-01-01
The plastid genomes of several plants contain ndh genes—homologues of genes encoding subunits of the proton-pumping NADH:ubiquinone oxidoreductase, or complex I, involved in respiration in mitochondria and eubacteria. From sequence similarities with these genes, the ndh gene products have been suggested to form a large protein complex (Ndh complex); however, the structure and function of this complex remains to be established. Herein we report the isolation of the Ndh complex from the chloroplasts of the higher plant Pisum sativum. The purification procedure involved selective solubilization of the thylakoid membrane with dodecyl maltoside, followed by two anion-exchange chromatography steps and one size-exclusion chromatography step. The isolated Ndh complex has an apparent total molecular mass of approximately 550 kDa and according to SDS/PAGE consists of at least 16 subunits including NdhA, NdhI, NdhJ, NdhK, and NdhH, which were identified by N-terminal sequencing and immunoblotting. The Ndh complex showed an NADH- and deamino-NADH-specific dehydrogenase activity, characteristic of complex I, when either ferricyanide or the quinones menadione and duroquinone were used as electron acceptors. This study describes the isolation of the chloroplast analogue of the respiratory complex I and provides direct evidence for the function of the plastid Ndh complex as an NADH:plastoquinone oxidoreductase. Our results are compatible with a dual role for the Ndh complex in the chlororespiratory and cyclic photophosphorylation pathways. PMID:9448329
21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... dehydrogenase isoenzymes test system is a device intended to measure the activity of lactate dehydrogenase isoenzymes (a group of enzymes with similar biological activity) in serum. Measurements of lactate...
21 CFR 862.1445 - Lactate dehydrogenase isoenzymes test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... dehydrogenase isoenzymes test system is a device intended to measure the activity of lactate dehydrogenase isoenzymes (a group of enzymes with similar biological activity) in serum. Measurements of lactate...
Detailed kinetics and regulation of mammalian 2-oxoglutarate dehydrogenase
2011-01-01
Background Mitochondrial 2-oxoglutarate (α-ketoglutarate) dehydrogenase complex (OGDHC), a key regulatory point of tricarboxylic acid (TCA) cycle, plays vital roles in multiple pathways of energy metabolism and biosynthesis. The catalytic mechanism and allosteric regulation of this large enzyme complex are not fully understood. Here computer simulation is used to test possible catalytic mechanisms and mechanisms of allosteric regulation of the enzyme by nucleotides (ATP, ADP), pH, and metal ion cofactors (Ca2+ and Mg2+). Results A model was developed based on an ordered ter-ter enzyme kinetic mechanism combined with con-formational changes that involve rotation of one lipoic acid between three catalytic sites inside the enzyme complex. The model was parameterized using a large number of kinetic data sets on the activity of OGDHC, and validated by comparison of model predictions to independent data. Conclusions The developed model suggests a hybrid rapid-equilibrium ping-pong random mechanism for the kinetics of OGDHC, consistent with previously reported mechanisms, and accurately describes the experimentally observed regulatory effects of cofactors on the OGDHC activity. This analysis provides a single consistent theoretical explanation for a number of apparently contradictory results on the roles of phosphorylation potential, NAD (H) oxidation-reduction state ratio, as well as the regulatory effects of metal ions on ODGHC function. PMID:21943256
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Li; Hu, Zhong-jun; Luo, Yuan-ming
Recombinant thermosomes from the Acidianus tengchongensis strain S5{sup T} were purified to homogeneity and assembled in vitro into homo-oligomers (rATcpn{alpha} or rATcpn{beta}) and hetero-oligomers (rATcpn{alpha}{beta}). The symmetries of these complexes were determined by electron microscopy and image analysis. The rATcpn{alpha} homo-oligomer was shown to possess 8-fold symmetry while both rATcpn{beta} and rATcpn{alpha}{beta} oligomers adopted 9-fold symmetry. rATcpn{alpha}{beta} oligomers were shown to contain the {alpha} and {beta} subunits in a 1:2 ratio. All of the complexes prevented the irreversible inactivation of yeast alcohol dehydrogenase at 55 {sup o}C and completely prevented the formation of aggregates during thermal inactivation of citrate synthasemore » at 45 {sup o}C. All rATcpn complexes showed trace ATP hydrolysis activity. Furthermore, rATcpn{beta} sequestered fully chemically denatured substrates (GFP and thermophilic malic dehydrogenase) in vitro without refolding them in an ATP-dependent manner. This property is similar to previously reported properties of chaperonins from Sulfolobus tokodaii and Sulfolobus acidocaldarius. These features are consistent with the slow growth rates of these species of archaea in their native environment.« less
Effect of palladium α-lipoic acid complex on energy in the brain mitochondria of aged rats.
Ajith, Thekkuttuparambil Ananthanarayanan; Nima, Nalin; Veena, Ravindran Kalathil; Janardhanan, Kainoor Krishnankutty; Antonawich, Francis
2014-01-01
According to the mitochondrial mutation theory of aging, the impairment of mitochondrial functions and decline of cellular bioenergetics are induced by highly reactive oxygen species (ROS). Supplementation with antioxidants may protect mitochondria against respiration-linked oxidative stress and reduce decay by preserving genomic and structural integrity. Several clinical studies have reported beneficial effects of α-lipoic acid (LA) administration in individuals with Alzheimer's disease, particularly improving their spatial orientation; however, no studies have been reported on the effects of palladium α-lipoic acid (Pd-LA). The current study examined the effects of the Pd-LA complex on mitochondrial energy status in the brains of aged rats. The study used male Wistar rats, some that were older than 24 mo and weighed approximately 350 ± 50 g and some that were younger than 24 mo and weighed approximately 175 ± 25 g. The research team divided the rats into 5 groups of 6 rats. The study was conducted at the Amala Cancer Research Centre in Amala Nagar, Thrissur, Kerala, India. Three groups of rats were controls: (1) young controls administered no solution, (2) aged controls administered 1 mL/kg of a 0.25% solution (PO) of sodium hydroxide (NaOH), and (3) positive aged controls treated with LA (7.6 mg/kg, PO) dissolved in an alkaline saline (0.25% NaOH, w/v). Two groups were intervention groups: (1) aged rats treated with 1.2 mg/kg of Pd-LA (PO) and (2) aged rats treated with 23.5 mg/kg of Pd-LA (PO). The research team administered the solutions once daily for 30 d. After 30 d, all animals were sacrificed. The research team evaluated serum transaminases, lactate dehydrogenase (LDH), serum urea, and creatinine. The activities of superoxide dismutase (SOD), catalase (CAT), and the levels of reduced glutathione (GSH) were determined in the blood samples. Krebs cycle dehydrogenases were evaluated in the brain mitochondria. Furthermore, the activities of the respiratory chain complexes I, III and IV as well as adenosine triphosphate (ATP) levels were estimated in the mitochondrial fraction. The study found that Pd-LA elevated the mitochondrial ATP levels in the brains of aged rats by enhancing the activity of not only the Krebs cycle dehydrogenases but also complexes I and IV. Furthermore, Pd-LA improved the body weight and blood antioxidant status of aged rats without affecting the functions of liver or renal cells. The results of the current study demonstrate that Pd-LA improves mitochondrial energy status in the brains of aged rats. The effects can be attributed to the enhancing effect on the Krebs cycle dehydrogenase and the activities of complexes I, III, and IV. The results further support the possible use of Pd-LA as an adjuvant treatment, together with the standard cholinesterase inhibitors, in individuals with mild or moderate dementia caused by Alzheimer's disease (AD).
Alcohol Dehydrogenase Activities of Wine Yeasts in Relation to Higher Alcohol Formation
Singh, Rajendra; Kunkee, Ralph E.
1976-01-01
Alcohol dehydrogenase activities were examined in cell-free extracts of 10 representative wine yeast strains having various productivities of higher alcohols (fusel oil). The amount of fusel alcohols (n-propanol, isobutanol, active pentanol, and isopentanol) produced by the different yeasts and the specific alcohol dehydrogenase activities with the corresponding alcohols as substrates were found to be significantly related. No such relationship was found for ethanol. The amounts of higher alcohols formed during vinification could be predicted from the specific activities of the alcohol dehydrogenases with high accuracy. The results suggest a close relationship between the control of the activities of alcohol dehydrogenase and the formation of fusel oil alcohols. Also, new procedures for the prediction of higher alcohol formation during alcoholic beverage fermentation are suggested. PMID:16345179
Halim, Nader D; Mcfate, Thomas; Mohyeldin, Ahmed; Okagaki, Peter; Korotchkina, Lioubov G; Patel, Mulchand S; Jeoung, Nam Ho; Harris, Robert A; Schell, Michael J; Verma, Ajay
2010-08-01
Glucose metabolism in nervous tissue has been proposed to occur in a compartmentalized manner with astrocytes contributing largely to glycolysis and neurons being the primary site of glucose oxidation. However, mammalian astrocytes and neurons both contain mitochondria, and it remains unclear why in culture neurons oxidize glucose, lactate, and pyruvate to a much larger extent than astrocytes. The objective of this study was to determine whether pyruvate metabolism is differentially regulated in cultured neurons versus astrocytes. Expression of all components of the pyruvate dehydrogenase complex (PDC), the rate-limiting step for pyruvate entry into the Krebs cycle, was determined in cultured astrocytes and neurons. In addition, regulation of PDC enzymatic activity in the two cell types via protein phosphorylation was examined. We show that all components of the PDC are expressed in both cell types in culture, but that PDC activity is kept strongly inhibited in astrocytes through phosphorylation of the pyruvate dehydrogenase alpha subunit (PDH alpha). In contrast, neuronal PDC operates close to maximal levels with much lower levels of phosphorylated PDH alpha. Dephosphorylation of astrocytic PDH alpha restores PDC activity and lowers lactate production. Our findings suggest that the glucose metabolism of astrocytes and neurons may be far more flexible than previously believed. (c) 2010 Wiley-Liss, Inc.
Steinbeck, K; Caterson, I D; Astbury, L; Turtle, J R
1987-01-01
Pyruvate dehydrogenase complex activity is the major determinant of glucose oxidation in animal cells. Tissue glucose oxidation is reduced in obesity and states of insulin resistance and alternate fuels are utilized for energy and pyruvate dehydrogenase activity is reduced in cardiac muscle in obesity. The effect of four different diets (standard laboratory chow, high-carbohydrate, high-protein and high-fat) on weight gain, cardiac pyruvate dehydrogenase activity (PDHa) and serum insulin, glucose and free fatty acids was studied in the gold thioglucose obese mouse. All four diets produced significant weight gain in the gold thioglucose injected animal. Cardiac PDHa was influenced by both obesity and diet composition. The obese chow-fed animals had significantly reduced PDHa. On high-carbohydrate and high-protein feeding lean controls had a significant decrease in cardiac PDHa compared to chow-fed controls, but only in high-carbohydrate-fed animals was this further reduced by obesity. High-fat feeding produced a rapid and almost complete suppression of PDHa in both lean and obese animals. Serum insulin, glucose and free fatty acids were also affected by diet as well as obesity. The highest serum insulins were found in chow-fed obese animals whereas the highest serum glucoses were in high-carbohydrate-fed obese animals. Hyperinsulinaemia did not develop in the high-fat-fed obese animal, but the highest serum free fatty acids were found in high-fat feeding. It is concluded that both diet composition and obesity affect cardiac PDHa and therefore glucose utilization in this tissue. Insulin resistance in the acute stages of obesity development is also affected by diet composition.
Zhao, Y; Jaskiewicz, J; Harris, R A
1992-01-01
Feeding clofibric acid to rats caused little or no change in total activity of the liver branched-chain 2-oxo acid dehydrogenase complex (BCODC). No change in mass of liver BCODC was detected by immunoblot analysis in response to dietary clofibric acid. No changes in abundance of mRNAs for the BCODC E1 alpha, E1 beta and E2 subunits were detected by Northern-blot analysis. Likewise, dietary clofibric acid had no effect on the activity state of liver BCODC (percentage of enzyme in the dephosphorylated, active, form) of rats fed on a chow diet. However, dietary clofibric acid greatly increased the activity state of liver BCODC of rats fed on a diet deficient in protein. No stable change in liver BCODC kinase activity was found in response to clofibric acid in either chow-fed or low-protein-fed rats. Clofibric acid had a biphasic effect on flux through BCODC in hepatocytes prepared from low-protein-fed rats. Stimulation of BCODC flux at low concentrations was due to clofibric acid inhibition of BCODC kinase, which in turn allowed activation of BCODC by BCODC phosphatase. Inhibition of BCODC flux at high concentrations was due to direct inhibition of BCODC by clofibric acid. The results suggest that the effects of clofibric acid in vivo on branched-chain amino acid metabolism can be explained by the inhibitory effects of this drug on BCODC kinase. Images Fig. 2. Fig. 3. PMID:1637295
Shim, Da Jeong; Nemeria, Natalia S.; Balakrishnan, Anand; Patel, Hetalben; Song, Jaeyoung; Wang, Junjie; Jordan, Frank; Farinas, Edgardo T.
2011-01-01
The first component (E1o) of the Escherichia coli 2-oxoglutarate dehydrogenase complex (OGDHc) was engineered to accept substrates lacking the 5-carboxylate group by subjecting H260 and H298 to saturation mutagenesis. Apparently, H260 is required for substrate recognition, but H298 could be replaced by hydrophobic residues of similar molecular volume. To interrogate whether the second component would enable synthesis of acyl-coenzymeA derivatives, hybrid complexes consisting of recombinant components of OGDHc (o) and pyruvate dehydrogenase (p) enzymes were constructed, suggesting that a different component is the ‘gatekeeper’ for specificity for these two multienzyme complexes in bacteria, E1p for pyruvate, but E2o for 2-oxoglutarate. PMID:21809826
Carere, Jason; McKenna, Sarah E; Kimber, Matthew S; Seah, Stephen Y K
2013-05-21
HsaF and HsaG are an aldolase and dehydrogenase from the cholesterol degradation pathway of Mycobacterium tuberculosis. HsaF could be heterologously expressed and purified as a soluble dimer, but the enzyme was inactive in the absence of HsaG. HsaF catalyzes the aldol cleavage of 4-hydroxy-2-oxoacids to produce pyruvate and an aldehyde. The enzyme requires divalent metals for activity, with a preference for Mn(2+). The Km values for 4-hydroxy-2-oxoacids were about 20-fold lower than observed for the aldolase homologue, BphI from the polychlorinated biphenyl degradation pathway. Acetaldehyde and propionaldehyde were channeled directly to the dehydrogenase, HsaG, without export to the bulk solvent where they were transformed to acyl-CoA in an NAD(+) and coenzyme A dependent reaction. HsaG is able to utilize aldehydes up to five carbons in length as substrates, with similar catalytic efficiencies. The HsaF-HsaG complex was crystallized and its structure was determined to a resolution of 1.93 Å. Substitution of serine 41 in HsaG with isoleucine or aspartate resulted in about 35-fold increase in Km for CoA but only 4-fold increase in Km dephospho-CoA, suggesting that this residue interacts with the 3'-ribose phosphate of CoA. A second protein annotated as a 4-hydroxy-2-oxopentanoic acid aldolase in M. tuberculosis (MhpE, Rv3469c) was expressed and purified, but was found to lack aldolase activity. Instead this enzyme was found to possess oxaloacetate decarboxylase activity, consistent with the conservation (with the 4-hydroxy-2-oxoacid aldolases) of residues involved in pyruvate enolate stabilization.
Moxley, Michael A.; Beard, Daniel A.; Bazil, Jason N.
2016-01-01
Mammalian E3 is an essential mitochondrial enzyme responsible for catalyzing the terminal reaction in the oxidative catabolism of several metabolites. E3 is a key regulator of metabolic fuel selection as a component of the pyruvate dehydrogenase complex (PDHc). E3 regulates PDHc activity by altering the affinity of pyruvate dehydrogenase kinase, an inhibitor of the enzyme complex, through changes in reduction and acetylation state of lipoamide moieties set by the NAD+/NADH ratio. Thus, an accurate kinetic model of E3 is needed to predict overall mammalian PDHc activity. Here, we have combined numerous literature data sets and new equilibrium spectroscopic experiments with a multitude of independently collected forward and reverse steady-state kinetic assays using pig heart E3. The latter kinetic assays demonstrate a pH-dependent transition of NAD+ activation to inhibition, shown here, to our knowledge, for the first time in a single consistent data set. Experimental data were analyzed to yield a thermodynamically constrained four-redox-state model of E3 that simulates pH-dependent activation/inhibition and active site redox states for various conditions. The developed model was used to determine substrate/product conditions that give maximal E3 rates and show that, due to non-Michaelis-Menten behavior, the maximal flux is different compared with the classically defined kcat. PMID:26644471
Clostridium acidurici Electron-Bifurcating Formate Dehydrogenase
Wang, Shuning; Huang, Haiyan; Kahnt, Jörg
2013-01-01
Cell extracts of uric acid-grown Clostridium acidurici catalyzed the coupled reduction of NAD+ and ferredoxin with formate at a specific activity of 1.3 U/mg. The enzyme complex catalyzing the electron-bifurcating reaction was purified 130-fold and found to be composed of four subunits encoded by the gene cluster hylCBA-fdhF2. PMID:23872566
Mechanism of neem limonoids-induced cell death in cancer: role of oxidative phosphorylation
Yadav, Neelu; Kumar, Sandeep; Kumar, Rahul; Srivastava, Pragya; Sun, Leimin; Rapali, Peter; Marlowe, Timothy; Schneider, Andrea; Inigo, Joseph; O’Malley, Jordan; Londonkar, Ramesh; Gogada, Raghu; Chaudhary, Ajay; Yadava, Nagendra; Chandra, Dhyan
2016-01-01
We have previously reported that neem limonoids (neem) induce multiple cancer cell death pathways. Here we dissect the underlying mechanisms of neem-induced apoptotic cell death in cancer. We observed that neem-induced caspase activation does not require Bax/Bak channel-mediated mitochondrial outer membrane permeabilization, permeability transition pore, and mitochondrial fragmentation. Neem enhanced mitochondrial DNA and mitochondrial biomass. While oxidative phosphorylation (OXPHOS) Complex-I activity was decreased, the activities of other OXPHOS complexes including Complex-II and -IV were unaltered. Increased reactive oxygen species (ROS) levels were associated with an increase in mitochondrial biomass and apoptosis upon neem exposure. Complex-I deficiency due to the loss of Ndufa1-encoded MWFE protein inhibited neem-induced caspase activation and apoptosis, but cell death induction was enhanced. Complex II-deficiency due to the loss of succinate dehydrogenase complex subunit C (SDHC) robustly decreased caspase activation, apoptosis, and cell death. Additionally, the ablation of Complexes-I, -III, -IV, and -V together did not inhibit caspase activation. Together, we demonstrate that neem limonoids target OXPHOS system to induce cancer cell death, which does not require upregulation or activation of proapoptotic Bcl-2 family proteins. PMID:26627937
Mechanism of neem limonoids-induced cell death in cancer: Role of oxidative phosphorylation.
Yadav, Neelu; Kumar, Sandeep; Kumar, Rahul; Srivastava, Pragya; Sun, Leimin; Rapali, Peter; Marlowe, Timothy; Schneider, Andrea; Inigo, Joseph R; O'Malley, Jordan; Londonkar, Ramesh; Gogada, Raghu; Chaudhary, Ajay K; Yadava, Nagendra; Chandra, Dhyan
2016-01-01
We have previously reported that neem limonoids (neem) induce multiple cancer cell death pathways. Here we dissect the underlying mechanisms of neem-induced apoptotic cell death in cancer. We observed that neem-induced caspase activation does not require Bax/Bak channel-mediated mitochondrial outer membrane permeabilization, permeability transition pore, and mitochondrial fragmentation. Neem enhanced mitochondrial DNA and mitochondrial biomass. While oxidative phosphorylation (OXPHOS) Complex-I activity was decreased, the activities of other OXPHOS complexes including Complex-II and -IV were unaltered. Increased reactive oxygen species (ROS) levels were associated with an increase in mitochondrial biomass and apoptosis upon neem exposure. Complex-I deficiency due to the loss of Ndufa1-encoded MWFE protein inhibited neem-induced caspase activation and apoptosis, but cell death induction was enhanced. Complex II-deficiency due to the loss of succinate dehydrogenase complex subunit C (SDHC) robustly decreased caspase activation, apoptosis, and cell death. Additionally, the ablation of Complexes-I, -III, -IV, and -V together did not inhibit caspase activation. Together, we demonstrate that neem limonoids target OXPHOS system to induce cancer cell death, which does not require upregulation or activation of proapoptotic Bcl-2 family proteins. Copyright © 2015 Elsevier Inc. All rights reserved.
Crystal structure of homoisocitrate dehydrogenase from Schizosaccharomyces pombe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulfer, Stacie L.; Hendershot, Jenna M.; Trievel, Raymond C.
Lysine biosynthesis in fungi, euglena, and certain archaebacteria occurs through the {alpha}-aminoadipate pathway. Enzymes in the first steps of this pathway have been proposed as potential targets for the development of antifungal therapies, as they are absent in animals but are conserved in several pathogenic fungi species, including Candida, Cryptococcus, and Aspergillus. One potential antifungal target in the {alpha}-aminoadipate pathway is the third enzyme in the pathway, homoisocitrate dehydrogenase (HICDH), which catalyzes the divalent metal-dependent conversion of homoisocitrate to 2-oxoadipate (2-OA) using nicotinamide adenine dinucleotide (NAD{sup +}) as a cofactor. HICDH belogns to a family of {beta}-hydroxyacid oxidative decarboxylases thatmore » includes malate dehydrogenase, tartrate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase (ICDH), and 3-isopropylmalte dehydrogenase (IPMDH). ICDH and IPMDH are well-characterized enzymes that catalyze the decarboxylation of isocitrate to yield 2-oxoglutarate (2-OG) in the citric acid cycle and the conversion of 3-isopropylmalate to 2-oxoisovalerate in the leucine biosynthetic pathway, respectively. Recent structural and biochemical studies of HICDH reveal that this enzyme shares sequence, structural, and mechanistic homology with ICDH and IPMDH. To date, the only published structures of HICDH are from the archaebacteria Thermus thermophilus (TtHICDH). Fungal HICDHs diverge from TtHICDH in several aspects, including their thermal stability, oligomerization state, and substrate specificity, thus warranting further characterization. To gain insights into these differences, they determined crystal structures of a fungal Schizosaccharomyces pombe HICDH (SpHICDH) as an apoenzyme and as a binary complex with additive tripeptide glycyl-glycyl-glycine (GGG) to 1.55 {angstrom} and 1.85 {angstrom} resolution, respectively. Finally, a comparison of the SpHICDH and TtHICDH structures reveal differences in their active sites that help explain the variations in their respective substrate specificities.« less
Orywal, Karolina; Jelski, Wojciech; Werel, Tadeusz; Szmitkowski, Maciej
2018-01-02
The aim of this study was to determine the differences in the activity of Alcohol Dehydrogenase (ADH) isoenzymes and Aldehyde Dehydrogenase (ALDH) in normal and cancerous bladder cells. Class III, IV of ADH and total ADH activity were measured by the photometric method and class I, II ADH and ALDH activity by the fluorometric method. Significantly higher total activity of ADH was found in both, low-grade and high-grade bladder cancer, in comparison to healthy tissues. The increased activity of total ADH in bladder cancer cells may be the cause of metabolic disorders in cancer cells, which may intensify carcinogenesis.
Some enzymes of carbohydrate metabolism in Mesocestoides corti and Heterakis spumosa.
Dubinský, P; Ruscinová, B; Hetmanski, S L; Arme, C; Turceková, L; Rybos, M
1991-09-01
The activities of selected enzymes of carbohydrate metabolism were measured in tetrathyridia of Mesocestoides corti and in adult females and males of Heterakis spumosa. When the species were compared, only lactate dehydrogenase and phosphoenolpyruvate carboxykinase activities were considerably higher in M. corti. Activities of other enzymes were higher in H. spumosa, with malate dehydrogenase activity being considerably so. In H. spumosa, enzyme activity was higher, and succinate dehydrogenase markedly so in males, when compared with females. Tetrathyridia aged 170 and 210 days show relatively stable malate and lactate dehydrogenase activities, and mice of ICR and BALB/c strains are suitable for the maintenance of tetrathyridia.
Action of diclofenac on kidney mitochondria and cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, Lin Eng; Vincent, Annette S.; Halliwell, Barry
2006-09-22
The mitochondrial membrane potential measured in isolated rat kidney mitochondria and in digitonin-permeabilized MDCK type II cells pre-energized with succinate, glutamate, and/or malate was reduced by micromolar diclofenac dose-dependently. However, ATP biosynthesis from glutamate/malate was significantly more compromised compared to that from succinate. Inhibition of the malate-aspartate shuttle by diclofenac with a resultant decrease in the ability of mitochondria to generate NAD(P)H was demonstrated. Diclofenac however had no effect on the activities of NADH dehydrogenase, glutamate dehydrogenase, and malate dehydrogenase. In conclusion, decreased NAD(P)H production due to an inhibition of the entry of malate and glutamate via the malate-aspartate shuttlemore » explained the more pronounced decreased rate of ATP biosynthesis from glutamate and malate by diclofenac. This drug, therefore affects the bioavailability of two major respiratory complex I substrates which would normally contribute substantially to supplying the reducing equivalents for mitochondrial electron transport for generation of ATP in the renal cell.« less
Bioenergetics of Stromal Cells as a Predictor of Aggressive Prostate Cancer
2016-11-01
complex tissue preparations (human prostate and prostatic adenoma) and rat ventral prostate cells it was reported to exhibit high aerobic glycolysis [19...pyruvate dehydrogenase kinase), 2DG (inhibitor of hexokinase), or metformin (inhibitor of mitochondrial complex I) [41] as a therapeutic approach to... cyanide 4-(trifluoromethoxy) phenylhydrazone; GAPDH, Glyceraldehyde 3-phosphate dehydrogenase; GlyST, Glycolytic stress test; HPV, human papilloma virus
Andreesen, Jan R.; Ljungdahl, Lars G.
1973-01-01
The formation of the nicotinamide adenine dinucleotide phosphate-dependent formate dehydrogenase in Clostridium thermoaceticum is stimulated by the presence of molybdate and selenite in the growth medium. The highest formate dehydrogenase activity was obtained with 2.5 × 10−4 M Na2MoO4 and 5 × 10−5 Na2SeO3. Tungstate but not vanadate could replace molybdate and stimulate the formation of formate dehydrogenase. Tungstate stimulated activity more than molybdate, and in combination with molybdate the stimulation of formation of formate dehydrogenase was additive. Formate dehydrogenase was isolated from cells grown in the presence of Na275SeO2, and a correlation was observed between bound 75Se and enzyme activity. PMID:4147651
Villa, Roberto Federico; Ferrari, Federica; Gorini, Antonella
2012-12-01
The effect of aging and CDP-choline treatment (20 mg kg⁻¹ body weight i.p. for 28 days) on the maximal rates (V(max)) of representative mitochondrial enzyme activities related to Krebs' cycle (citrate synthase, α-ketoglutarate dehydrogenase, malate dehydrogenase), glutamate and related amino acid metabolism (glutamate dehydrogenase, glutamate-oxaloacetate- and glutamate-pyruvate transaminases) were evaluated in non-synaptic and intra-synaptic "light" and "heavy" mitochondria from frontal cerebral cortex of male Wistar rats aged 4, 12, 18 and 24 months. During aging, enzyme activities vary in a complex way respect to the type of mitochondria, i.e. non-synaptic and intra-synaptic. This micro-heterogeneity is an important factor, because energy-related mitochondrial enzyme catalytic properties cause metabolic modifications of physiopathological significance in cerebral tissue in vivo, also discriminating pre- and post-synaptic sites of action for drugs and affecting tissue responsiveness to noxious stimuli. Results show that CDP-choline in vivo treatment enhances cerebral energy metabolism selectively at 18 months, specifically modifying enzyme catalytic activities in non-synaptic and intra-synaptic "light" mitochondrial sub-populations. This confirms that the observed changes in enzyme catalytic activities during aging reflect the bioenergetic state at each single age and the corresponding energy requirements, further proving that in vivo drug treatment is able to interfere with the neuronal energy metabolism. Copyright © 2012. Published by Elsevier Ltd.
Bacterial inactivation of the anticancer drug doxorubicin.
Westman, Erin L; Canova, Marc J; Radhi, Inas J; Koteva, Kalinka; Kireeva, Inga; Waglechner, Nicholas; Wright, Gerard D
2012-10-26
Microbes are exposed to compounds produced by members of their ecological niche, including molecules with antibiotic or antineoplastic activities. As a result, even bacteria that do not produce such compounds can harbor the genetic machinery to inactivate or degrade these molecules. Here, we investigated environmental actinomycetes for their ability to inactivate doxorubicin, an aminoglycosylated anthracycline anticancer drug. One strain, Streptomyces WAC04685, inactivates doxorubicin via a deglycosylation mechanism. Activity-based purification of the enzymes responsible for drug inactivation identified the NADH dehydrogenase component of respiratory electron transport complex I, which was confirmed by gene inactivation studies. A mechanism where reduction of the quinone ring of the anthracycline by NADH dehydrogenase leads to deglycosylation is proposed. This work adds anticancer drug inactivation to the enzymatic inactivation portfolio of actinomycetes and offers possibilities for novel applications in drug detoxification. Copyright © 2012 Elsevier Ltd. All rights reserved.
Weber, Katharina; Erdem, Özlen F; Bill, Eckhard; Weyhermüller, Thomas; Lubitz, Wolfgang
2014-06-16
A series of four [S2Ni(μ-S)2FeCp*Cl] compounds with different tetradentate thiolate/thioether ligands bound to the Ni(II) ion is reported (Cp* = C5Me5). The {S2Ni(μ-S)2Fe} core of these compounds resembles structural features of the active site of [NiFe] hydrogenases. Detailed analyses of the electronic structures of these compounds by Mössbauer and electron paramagnetic resonance spectroscopy, magnetic measurements, and density functional theory calculations reveal the oxidation states Ni(II) low spin and Fe(II) high spin for the metal ions. The same electronic configurations have been suggested for the Cred1 state of the C-cluster [NiFeu] subsite in carbon monoxide dehydrogenases (CODH). The Ni-Fe distance of ∼3 Å excludes a metal-metal bond between nickel and iron, which is in agreement with the computational results. Electrochemical experiments show that iron is the redox active site in these complexes, performing a reversible one-electron oxidation. The four complexes are discussed with regard to their similarities and differences both to the [NiFe] hydrogenases and the C-cluster of Ni-containing CODH.
Mitochondrial Bioenergetics and Dysfunction in Failing Heart.
Sheeran, Freya L; Pepe, Salvatore
2017-01-01
Energy insufficiency has been recognized as a key feature of systolic heart failure. Although mitochondria have long been known to sustain myocardial work energy supply, the capacity to therapeutically target mitochondrial bioenergetics dysfunction is hampered by a complex interplay of multiple perturbations that progressively compound causing myocardial failure and collapse. Compared to non-failing human donor hearts, activity rates of complexes I and IV, nicotinamide nucleotide transhydrogenase (NADPH-transhydrogenase, Nnt) and the Krebs cycle enzymes isocitrate dehydrogenase, malate dehydrogenase and aconitase are markedly decreased in end-stage heart failure. Diminished REDOX capacity with lower total glutathione and coenzyme Q 10 levels are also a feature of chronic left ventricular failure. Decreased enzyme activities in part relate to abundant and highly specific oxidative, nitrosylative, and hyperacetylation modifications. In this brief review we highlight that energy deficiency in end-stage failing human left ventricle predominantly involves concomitantly impaired activities of key electron transport chain and Krebs cycle enzymes rather than altered expression of respective genes or proteins. Augmented oxidative modification of these enzyme subunit structures, and the formation of highly reactive secondary metabolites, implicates dysfunction due to diminished capacity for management of mitochondrial reactive oxygen species, which contribute further to progressive decreases in bioenergetic capacity and contractile function in human heart failure.
Serrano, A.; Cordoba, F.; Gonzalez-Reyes, J. A.; Navas, P.; Villalba, J. M.
1994-01-01
Highly purified plasma membrane fractions were obtained from onion (Allium cepa L.) roots and used as a source for purification of redox proteins. Plasma membranes solubilized with Triton X-100 contained two distinct polypeptides showing NAD(P)H-dependent dehydrogenase activities. Dehydrogenase I was purified by gel filtration in Sephacryl S-300 HR, ion-exchange chromatography in DEAE-Sepharose CL-6B, and dye-ligand affinity chromatography in Blue-Sepharose CL-6B after biospecific elution with NADH. Dehydrogenase I consisted of a single polypeptide of about 27 kD and an isoelectric point of about 6. Dehydrogenase II was purified from the DEAE-unbound fraction by chromatography in Blue-Sepharose CL-6B and affinity elution with NADH. Dehydrogenase II consisted of a single polypeptide of about 31 kD and an isoelectric point of about 8. Purified dehydrogenase I oxidized both NADPH and NADH, although higher rates of electron transfer were obtained with NADPH. Maximal activity was achieved with NADPH as donor and juglone or coenzyme Q as acceptor. Dehydrogenase II was specific for NADH and exhibited maximal activity with ferricyanide. Optimal pH for both dehydrogenases was about 6. Dehydrogenase I was moderately inhibited by dicumarol, thenoyltrifluoroacetone, and the thiol reagent N-ethyl-maleimide. A strong inhibition of dehydrogenase II was obtained with dicumarol, thenoyltrifluoroacetone, and the thiol reagent p-hydroxymercuribenzoate. PMID:12232306
Shi, Qingli; Xu, Hui; Kleinman, Wayne A.; Gibson, Gary E.
2011-01-01
Measures in autopsied brains from Alzheimer’s Disease (AD) patients reveal a decrease in the activity of α-ketoglutarate dehydrogenase complex (KGDHC) and an increase in malate dehydrogenase (MDH) activity. The present experiments tested whether both changes could be caused by the common oxidant H2O2 and to probe the mechanism underlying these changes. Since the response to H2O2 is modified by the level of the E2k subunit of KGDHC, the interaction of MDH and KGDHC was studied in cells with varying levels of E2k. In cells with only 23% of normal E2k protein levels, one hour treatment with H2O2 decreased KGDHC and increased MDH activity as well as the mRNA level for both cytosolic and mitochondrial MDH. The increase in MDH did not occur in cells with 100% or 46% of normal E2k. Longer treatments with H2O2 inhibited the activity of both enzymes. Glutathione is a major regulator of cellular redox state and can modify enzyme activities. H2O2 converts reduced glutathione (GSH) to oxidized glutathione (GSSG), which reacts with protein thiols. Treatment of purified KGDHC with GSSG leads to glutathionylation of all three KGDHC subunits. Thus, cellular glutathione level was manipulated by two means to determine the effect on KGDHC and MDH activities. Both buthionine sulfoximine (BSO), which inhibits glutathione synthesis without altering redox state, and H2O2 diminished glutathione to a similar level after 24 hrs. However, H2O2, but not BSO, reduced KGDHC and MDH activities, and the reduction was greater in the E2k-23 line. These findings suggest that the E2k may mediate diverse responses of KGDHC and MDH to oxidants. In addition, the differential response of activities to BSO and H2O2 together with the in vitro interaction of KGDHC with GSSG suggests that glutathionylation is one possible mechanism underlying oxidative stress-induced inhibition of the TCA cycle enzymes. PMID:18206986
Hecht, K; Wrba, A; Jaenicke, R
1989-07-15
Thermophilic lactate dehydrogenases from Thermotoga maritima and Bacillus stearothermophilus are stable up to temperature limits close to the optimum growth temperature of their parent organisms. Their catalytic properties are anomalous in that Km shows a drastic increase with increasing temperature. At low temperatures, the effect levels off. Extreme halophilic malate dehydrogenase from Halobacterium marismortui exhibits a similar anomaly. Increasing salt concentration (NaCl) leads to an optimum curve for Km, oxaloacctate while Km, NADH remains constant. Previous claims that the activity of halophilic malate dehydrogenase shows a maximum at 1.25 M NaCl are caused by limiting substrate concentration; at substrate saturation, specific activity of halophilic malate dehydrogenase reaches a constant value at ionic strengths I greater than or equal to 1 M. Non-halophilic (mitochondrial) malate dehydrogenase shows Km characteristics similar to those observed for the halophilic enzyme. The drastic decrease in specific activity of the mitochondrial enzyme at elevated salt concentrations is caused by the salt-induced increase in rigidity of the enzyme, rather than gross structural changes.
Nichols, B J; Rigoulet, M; Denton, R M
1994-01-01
The regulatory properties of NAD(+)-isocitrate dehydrogenase and oxoglutarate dehydrogenase in extracts of yeast and rat heart mitochondria were studied under identical conditions. Yeast NAD(+)-isocitrate dehydrogenase exhibits a low K0.5 for isocitrate and is activated by AMP and ADP, but is insensitive to ATP and Ca2+. In contrast, the rat heart NAD(+)-isocitrate dehydrogenase was insensitive to AMP, but was activated by ADP and by Ca2+ in the presence of ADP or ATP. Both yeast and rat heart oxoglutarate dehydrogenase were stimulated by ADP, but only the heart enzyme was activated by Ca2+. All the enzymes studied were activated by decreases in pH, but to differing extents. The effects of Ca2+, adenine nucleotides and pH were through K0.5 for isocitrate or 2-oxoglutarate. These observations are discussed with reference to the deduced amino acid sequences of the constituent subunits of the enzymes, where they are available. PMID:7980405
Lin, Ruiting; Elf, Shannon; Shan, Changliang; Kang, Hee-Bum; Ji, Quanjiang; Zhou, Lu; Hitosugi, Taro; Zhang, Liang; Zhang, Shuai; Seo, Jae Ho; Xie, Jianxin; Tucker, Meghan; Gu, Ting-Lei; Sudderth, Jessica; Jiang, Lei; Mitsche, Matthew; DeBerardinis, Ralph J; Wu, Shaoxiong; Li, Yuancheng; Mao, Hui; Chen, Peng R; Wang, Dongsheng; Chen, Georgia Zhuo; Hurwitz, Selwyn J; Lonial, Sagar; Arellano, Martha L; Khoury, Hanna J; Khuri, Fadlo R; Lee, Benjamin H; Lei, Qunying; Brat, Daniel J; Ye, Keqiang; Boggon, Titus J; He, Chuan; Kang, Sumin; Fan, Jun; Chen, Jing
2015-11-01
The oxidative pentose phosphate pathway (PPP) contributes to tumour growth, but the precise contribution of 6-phosphogluconate dehydrogenase (6PGD), the third enzyme in this pathway, to tumorigenesis remains unclear. We found that suppression of 6PGD decreased lipogenesis and RNA biosynthesis and elevated ROS levels in cancer cells, attenuating cell proliferation and tumour growth. 6PGD-mediated production of ribulose-5-phosphate (Ru-5-P) inhibits AMPK activation by disrupting the active LKB1 complex, thereby activating acetyl-CoA carboxylase 1 and lipogenesis. Ru-5-P and NADPH are thought to be precursors in RNA biosynthesis and lipogenesis, respectively; thus, our findings provide an additional link between the oxidative PPP and lipogenesis through Ru-5-P-dependent inhibition of LKB1-AMPK signalling. Moreover, we identified and developed 6PGD inhibitors, physcion and its derivative S3, that effectively inhibited 6PGD, cancer cell proliferation and tumour growth in nude mice xenografts without obvious toxicity, suggesting that 6PGD could be an anticancer target.
Gong, Jianli; Hoyos, Beatrice; Acin-Perez, Rebeca; Vinogradov, Valerie; Shabrova, Elena; Zhao, Feng; Leitges, Michael; Fischman, Donald; Manfredi, Giovanni; Hammerling, Ulrich
2012-08-01
Energy production in mitochondria is a multistep process that requires coordination of several subsystems. While reversible phosphorylation is emerging as the principal tool, it is still unclear how this signal network senses the workloads of processes as different as fuel procurement, catabolism in the Krebs cycle, and stepwise oxidation of reducing equivalents in the electron transfer chain. We previously proposed that mitochondria use oxidized cytochrome c in concert with retinol to activate protein kinase Cδ, thereby linking a prominent kinase network to the redox balance of the ETC. Here, we show that activation of PKCε in mitochondria also requires retinol as a cofactor, implying a redox-mechanism. Whereas activated PKCδ transmits a stimulatory signal to the pyruvate dehdyrogenase complex (PDHC), PKCε opposes this signal and inhibits the PDHC. Our results suggest that the balance between PKCδ and ε is of paramount importance not only for flux of fuel entering the Krebs cycle but for overall energy homeostasis. We observed that the synthetic retinoid fenretinide substituted for the retinol cofactor function but, on chronic use, distorted this signal balance, leading to predominance of PKCε over PKCδ. The suppression of the PDHC might explain the proapoptotic effect of fenretinide on tumor cells, as well as the diminished adiposity observed in experimental animals and humans. Furthermore, a disturbed balance between PKCδ and PKCε might underlie the injury inflicted on the ischemic myocardium during reperfusion. dehydrogenase complex.
Hortsch, Ralf; Weuster-Botz, Dirk
2011-04-01
Parallel operated milliliter-scale stirred tank bioreactors were applied for recombinant protein expression studies in simple batch experiments without pH titration. An enzymatic glucose release system (EnBase), a complex medium, and the frequently used LB and TB media were compared with regard to growth of Escherichia coli and recombinant protein expression (alcohol dehydrogenase (ADH) from Lactobacillus brevis and formate dehydrogenase (FDH) from Candida boidinii). Dissolved oxygen and pH were recorded online, optical densities were measured at-line, and the activities of ADH and FDH were analyzed offline. Best growth was observed in a complex medium with maximum dry cell weight concentrations of 14 g L(-1). EnBase cultivations enabled final dry cell weight concentrations between 6 and 8 g L(-1). The pH remained nearly constant in EnBase cultivations due to the continuous glucose release, showing the usefulness of this glucose release system especially for pH-sensitive bioprocesses. Cell-specific enzyme activities varied considerably depending on the different media used. Maximum specific ADH activities were measured with the complex medium, 6 h after induction with IPTG, whereas the highest specific FDH activities were achieved with the EnBase medium at low glucose release profiles 24 h after induction. Hence, depending on the recombinant protein, different medium compositions, times for induction, and times for cell harvest have to be evaluated to achieve efficient expression of recombinant proteins in E. coli. A rapid experimental evaluation can easily be performed with parallel batch operated small-scale stirred tank bioreactors.
21 CFR 862.1670 - Sorbitol dehydrogenase test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sorbitol dehydrogenase test system. 862.1670... Systems § 862.1670 Sorbitol dehydrogenase test system. (a) Identification. A sorbitol dehydrogenase test system is a device intended to measure the activity of the enzyme sorbitol dehydrogenase in serum...
Stringency of substrate specificity of Escherichia coli malate dehydrogenase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boernke, W. E.; Millard, C. S.; Stevens, P. W.
1995-09-10
Malate dehydrogenase and lactate dehydrogenase are members of the structurally and functionally homologous family of 2-ketoacid dehydrogenases. Both enzymes display high specificity for their respective keto substrates, oxaloacetate and pyruvate. Closer analysis of their specificity, however, reveals that the specificity of malate dehydrogenase is much stricter and less malleable than that of lactate dehydrogenase. Site-specific mutagenesis of the two enzymes in an attempt to reverse their specificity has met with contrary results. Conversion of a specific active-site glutamine to arginine in lactate dehydrogenase from Bacillus stearothermophilus generated an enzyme that displayed activity toward oxaloacetate equal to that of the nativemore » enzyme toward pyruvate (H. M. Wilks et al. (1988) Science 242, 1541-1544). We have constructed a series of mutants in the mobile, active site loop of the Escherichia coli malate dehydrogenase that incorporate the complementary change, conversion of arginine 81 to glutamine, to evaluate the role of charge distribution and conformational flexibility within this loop in defining the substrate specificity of these enzymes. Mutants incorporating the change R81Q all had reversed specificity, displaying much higher activity toward pyruvate than to the natural substrate, oxaloacetate. In contrast to the mutated lactate dehydrogenase, these reversed-specificity mutants were much less active than the native enzyme. Secondary mutations within the loop of the E. coli enzyme (A80N, A80P, A80P/M85E/D86T) had either no or only moderately beneficial effects on the activity of the mutant enzyme toward pyruvate. The mutation A80P, which can be expected to reduce the overall flexibility of the loop, modestly improved activity toward pyruvate. The possible physiological relevance of the stringent specificity of malate dehydrogenase was investigated. In normal strains of E. coli, fermentative metabolism was not affected by expression of the mutant malate dehydrogenase. However, when expressed in a strain of E. coli unable to ferment glucose, the mutant enzyme restored growth and produced lactic acid as the sole fermentation product.« less
The Krebs cycle is part of the complex process where cells turn food into energy. One of the elements of the Krebs cycle is succinate dehydrogenase (SDH). Loss of SDH activity in cells has been linked to tumor formation. This new trial is studying guadecitabine for tumors associated with Krebs cycle dysfunction. Learn more...
Probing conformational states of glutaryl-CoA dehydrogenase by fragment screening
DOE Office of Scientific and Technical Information (OSTI.GOV)
Begley, Darren W.; Davies, Douglas R.; Hartley, Robert C.
Glutaric acidemia type 1 is an inherited metabolic disorder which can cause macrocephaly, muscular rigidity, spastic paralysis and other progressive movement disorders in humans. The defects in glutaryl-CoA dehydrogenase (GCDH) associated with this disease are thought to increase holoenzyme instability and reduce cofactor binding. Here, the first structural analysis of a GCDH enzyme in the absence of the cofactor flavin adenine dinucleotide (FAD) is reported. The apo structure of GCDH from Burkholderia pseudomallei reveals a loss of secondary structure and increased disorder in the FAD-binding pocket relative to the ternary complex of the highly homologous human GCDH. After conducting amore » fragment-based screen, four small molecules were identified which bind to GCDH from B. pseudomallei. Complex structures were determined for these fragments, which cause backbone and side-chain perturbations to key active-site residues. Structural insights from this investigation highlight differences from apo GCDH and the utility of small-molecular fragments as chemical probes for capturing alternative conformational states of preformed protein crystals.« less
Kita, K; Konishi, K; Anraku, Y
1986-01-01
Two terminal oxidase complexes, cytochrome b-562-o complex and cytochrome b-558-d complex, are isolated in highly purified forms which show ubiquinol oxidase activities. From the result of steady-state kinetics of cytochromes in the membrane and E'm values of purified cytochromes, we propose a branched arrangement of the late exponential phase of aerobic growth, as shown in Fig. 10. Cytochrome b-556 is reduced by several dehydrogenases and the gene for this cytochrome (cybA) is located in the sdh gene cluster. Recently, we found another low-potential b-type cytochrome, cytochrome b-561 (Em' = 20 mV), which is also reduced by dehydrogenases. The position of this new cytochrome in the aerobic respiratory chain is under investigation. Two terminal oxidase complexes branch at the site of ubiquinone-8, and the Km value for oxygen of the purified cytochrome b-558-d complex is about 8-fold lower than that of the purified cytochrome b-562-o complex when ubiquinol-1 is used as substrate. This result is consistent with the idea that the cytochrome b-558-d complex is synthesized as an alternative oxidase for more efficient utilization of oxygen at low oxygen concentration. Thus, E. coli cells can maintain efficient oxidative energy conservation over a wide range of oxygen pressures by simply changing the contents of the two terminal oxidases, each of which functions as a coupling site.
Cornille, Emilie; Abou-Hamdan, Mhamad; Khrestchatisky, Michel; Nieoullon, André; de Reggi, Max; Gharib, Bouchra
2010-04-23
The administration of the ketone bodies hydroxybutyrate and acetoacetate is known to exert a protective effect against metabolic disorders associated with cerebral pathologies. This suggests that the enhancement of their endogenous production might be a rational therapeutic approach. Ketone bodies are generated by fatty acid beta-oxidation, a process involving a mitochondrial oxido-reductase superfamily, with fatty acid-CoA thioesters as substrates. In this report, emphasis is on the penultimate step of the process, i.e. L-3-hydroxybutyryl-CoA dehydrogenase activity. We determined changes in enzyme activity and in circulating ketone body levels in the MPTP mouse model of Parkinson's disease. Since the active moiety of CoA is pantetheine, mice were treated with pantethine, its naturally-occurring form. Pantethine has the advantage of being known as an anti-inflammatory and hypolipidemic agent with very few side effects. We found that dehydrogenase activity and circulating ketone body levels were drastically reduced by the neurotoxin MPTP, whereas treatment with pantethine overcame these adverse effects. Pantethine prevented dopaminergic neuron loss and motility disorders. In vivo and in vitro experiments showed that the protection was associated with enhancement of glutathione (GSH) production as well as restoration of respiratory chain complex I activity and mitochondrial ATP levels. Remarkably, pantethine treatment boosted the circulating ketone body levels in MPTP-intoxicated mice, but not in normal animals. These finding demonstrate the feasibility of the enhancement of endogenous ketone body production and provide a promising therapeutic approach to Parkinson's disease as well as, conceivably, to other neurodegenerative disorders.
Regulation of aflatoxin biosynthesis: effect of glucose on activities of various glycolytic enzymes.
Buchanan, R L; Lewis, D F
1984-01-01
Catabolism of carbohydrates has been implicated in the regulation of aflatoxin synthesis. To characterize this effect further, the activities of various enzymes associated with glucose catabolism were determined in Aspergillus parasiticus organisms that were initially cultured in peptone-mineral salts medium and then transferred to glucose-mineral salts and peptone-mineral salts media. After an initial increase in activity, the levels of glucose 6-phosphate dehydrogenase, mannitol dehydrogenase, and malate dehydrogenase were lowered in the presence of glucose. Phosphofructokinase activity was greater in the peptone-grown mycelium, but fructose diphosphatase was largely unaffected by carbon source. Likewise, carbon source had relatively little effect on the activities of pyruvate kinase, malic enzyme, isocitrate-NADP dehydrogenase, and isocitrate-NAD dehydrogenase. The results suggest that glucose may, in part, regulate aflatoxin synthesis via a carbon catabolite repression of NADPH-generating and tricarboxylic acid cycle enzymes. PMID:6091545
Retinaldehyde Dehydrogenase 1 Deficiency Inhibits PPARγ-Mediated Bone Loss and Marrow Adiposity
Nallamshetty, Shriram; Le, Phuong T.; Wang, Hong; Issacsohn, Maya J.; Reeder, David J.; Rhee, Eun-Jung; Kiefer, Florian W.; Brown, Jonathan D.; Rosen, Clifford J.; Plutzky, Jorge
2014-01-01
PPARγ, a ligand-activated nuclear receptor, regulates fundamental aspects of bone homeostasis and skeletal remodeling. PPARγ-activating anti-diabetic thiazolidinediones in clinical use promote marrow adiposity, bone loss, and skeletal fractures. As such, delineating novel regulatory pathways that modulate the action of PPARγ, and its obligate heterodimeric partner RXR, may have important implications for our understanding and treatment of disorders of low bone mineral density. We present data here establishing retinaldehyde dehydrogenase 1 (Aldh1a1) and its substrate retinaldehyde (Rald) as novel determinants of PPARγ-RXR actions in the skeleton. When compared to wild type (WT) controls, retinaldehyde dehydrogenase-deficient (Aldh1a1−/−) mice were protected against bone loss and marrow adiposity induced by either the thiazolidinedione rosiglitazone or a high fat diet, both of which potently activate the PPARγ-RXR complex. Consistent with these results, Rald, which accumulates in vivo in Aldh1a1−/− mice, protects against rosiglitazone-mediated inhibition of osteoblastogenesis in vitro. In addition, Rald potently inhibits in vitro adipogenesis and osteoclastogenesis in WT mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) respectively. Primary Aldh1a1−/− HSCs also demonstrate impaired osteoclastogenesis in vitro compared to WT controls. Collectively, these findings identify Rald and retinoid metabolism through Aldh1a1 as important novel modulators of PPARγ-RXR transactivation in the marrow niche. PMID:25064526
Retinaldehyde dehydrogenase 1 deficiency inhibits PPARγ-mediated bone loss and marrow adiposity.
Nallamshetty, Shriram; Le, Phuong T; Wang, Hong; Issacsohn, Maya J; Reeder, David J; Rhee, Eun-Jung; Kiefer, Florian W; Brown, Jonathan D; Rosen, Clifford J; Plutzky, Jorge
2014-10-01
PPARγ, a ligand-activated nuclear receptor, regulates fundamental aspects of bone homeostasis and skeletal remodeling. PPARγ-activating anti-diabetic thiazolidinediones in clinical use promote marrow adiposity, bone loss, and skeletal fractures. As such, delineating novel regulatory pathways that modulate the action of PPARγ, and its obligate heterodimeric partner RXR, may have important implications for our understanding and treatment of disorders of low bone mineral density. We present data here establishing retinaldehyde dehydrogenase 1 (Aldh1a1) and its substrate retinaldehyde (Rald) as novel determinants of PPARγ-RXR actions in the skeleton. When compared to wild type (WT) controls, retinaldehyde dehydrogenase-deficient (Aldh1a1(-/-)) mice were protected against bone loss and marrow adiposity induced by either the thiazolidinedione rosiglitazone or a high fat diet, both of which potently activate the PPARγ-RXR complex. Consistent with these results, Rald, which accumulates in vivo in Aldh1a1(-/-) mice, protects against rosiglitazone-mediated inhibition of osteoblastogenesis in vitro. In addition, Rald potently inhibits in vitro adipogenesis and osteoclastogenesis in WT mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) respectively. Primary Aldh1a1(-/-) HSCs also demonstrate impaired osteoclastogenesis in vitro compared to WT controls. Collectively, these findings identify Rald and retinoid metabolism through Aldh1a1 as important novel modulators of PPARγ-RXR transactivation in the marrow niche. Copyright © 2014 Elsevier Inc. All rights reserved.
Pinske, Constanze
2018-01-01
Formate dehydrogenase H (FDH-H) and [NiFe]-hydrogenase 3 (Hyd-3) form the catalytic components of the hydrogen-producing formate hydrogenlyase (FHL) complex, which disproportionates formate to H 2 and CO 2 during mixed acid fermentation in enterobacteria. FHL comprises minimally seven proteins and little is understood about how this complex is assembled. Early studies identified a ferredoxin-like protein, HydN, as being involved in FDH-H assembly into the FHL complex. In order to understand how FDH-H and its small subunit HycB, which is also a ferredoxin-like protein, attach to the FHL complex, the possible roles of HydN and its paralogue, YsaA, in FHL complex stability and assembly were investigated. Deletion of the hycB gene reduced redox dye-mediated FDH-H activity to approximately 10%, abolished FHL-dependent H 2 -production, and reduced Hyd-3 activity. These data are consistent with HycB being an essential electron transfer component of the FHL complex. The FDH-H activity of the hydN and the ysaA deletion strains was reduced to 59 and 57% of the parental, while the double deletion reduced activity of FDH-H to 28% and the triple deletion with hycB to 1%. Remarkably, and in contrast to the hycB deletion, the absence of HydN and YsaA was without significant effect on FHL-dependent H 2 -production or total Hyd-3 activity; FDH-H protein levels were also unaltered. This is the first description of a phenotype for the E. coli ysaA deletion strain and identifies it as a novel factor required for optimal redox dye-linked FDH-H activity. A ysaA deletion strain could be complemented for FDH-H activity by hydN and ysaA , but the hydN deletion strain could not be complemented. Introduction of these plasmids did not affect H 2 production. Bacterial two-hybrid interactions showed that YsaA, HydN, and HycB interact with each other and with the FDH-H protein. Further novel anaerobic cross-interactions of 10 ferredoxin-like proteins in E. coli were also discovered and described. Together, these data indicate that FDH-H activity measured with the redox dye benzyl viologen is the sum of the FDH-H protein interacting with three independent small subunits and suggest that FDH-H can associate with different redox-protein complexes in the anaerobic cell to supply electrons from formate oxidation.
Pennacchio, Angela; Sannino, Vincenzo; Sorrentino, Giosuè; Rossi, Mosè; Raia, Carlo A; Esposito, Luciana
2013-05-01
The gene encoding a novel alcohol dehydrogenase that belongs to the short-chain dehydrogenases/reductases superfamily was identified in the aerobic thermoacidophilic crenarchaeon Sulfolobus acidocaldarius strain DSM 639. The saadh2 gene was heterologously overexpressed in Escherichia coli, and the resulting protein (SaADH2) was purified to homogeneity and both biochemically and structurally characterized. The crystal structure of the SaADH2 NADH-bound form reveals that the enzyme is a tetramer consisting of identical 27,024-Da subunits, each composed of 255 amino acids. The enzyme has remarkable thermophilicity and thermal stability, displaying activity at temperatures up to 80 °C and a 30-min half-inactivation temperature of ∼88 °C. It also shows good tolerance to common organic solvents and a strict requirement for NAD(H) as the coenzyme. SaADH2 displays a preference for the reduction of alicyclic, bicyclic and aromatic ketones and α-ketoesters, but is poorly active on aliphatic, cyclic and aromatic alcohols, showing no activity on aldehydes. Interestingly, the enzyme catalyses the asymmetric reduction of benzil to (R)-benzoin with both excellent conversion (98 %) and optical purity (98 %) by way of an efficient in situ NADH-recycling system involving a second thermophilic ADH. The crystal structure of the binary complex SaADH2-NADH, determined at 1.75 Å resolution, reveals details of the active site providing hints on the structural basis of the enzyme enantioselectivity.
Ohmura, M; Hara, A; Nakagawa, M; Sawada, H
1990-01-01
NAD(+)-linked and NADP(+)-linked 3 alpha-hydroxysteroid dehydrogenases were purified to homogeneity from hamster liver cytosol. The two monomeric enzymes, although having similar molecular masses of 38,000, differed from each other in pI values, activation energy and heat stability. The two proteins also gave different fragmentation patterns by gel electrophoresis after digestion with protease. The NADP(+)-linked enzyme catalysed the oxidoreduction of various 3 alpha-hydroxysteroids, whereas the NAD(+)-linked enzyme oxidized the 3 alpha-hydroxy group of pregnanes and some bile acids, and the 17 beta-hydroxy group of testosterone and androstanes. The thermal stabilities of the 3 alpha- and 17 beta-hydroxysteroid dehydrogenase activities of the NAD(+)-linked enzyme were identical, and the two enzyme activities were inhibited by mixing 17 beta- and 3 alpha-hydroxysteroid substrates, respectively. Medroxyprogesterone acetate, hexoestrol and 3 beta-hydroxysteroids competitively inhibited 3 alpha- and 17 beta-hydroxysteroid dehydrogenase activities of the enzyme. These results show that hamster liver contains a 3 alpha(17 beta)-hydroxysteroid dehydrogenase structurally and functionally distinct from 3 alpha-hydroxysteroid dehydrogenase. Images Fig. 1. Fig. 2. PMID:2317205
Diez, Jesús; Gómez-Baena, Guadalupe; Rangel-Zúñiga, Oriol Alberto; García-Fernández, José Manuel
2014-01-01
The enzyme isocitrate dehydrogenase (ICDH; EC 1.1.1.42) catalyzes the oxidative decarboxylation of isocitrate, to produce 2-oxoglutarate. The incompleteness of the tricarboxylic acids cycle in marine cyanobacteria confers a special importance to isocitrate dehydrogenase in the C/N balance, since 2-oxoglutarate can only be metabolized through the glutamine synthetase/glutamate synthase pathway. The physiological regulation of isocitrate dehydrogenase was studied in cultures of Prochlorococcus sp. strain PCC 9511, by measuring enzyme activity and concentration using the NADPH production assay and Western blotting, respectively. The enzyme activity showed little changes under nitrogen or phosphorus starvation, or upon addition of the inhibitors DCMU, DBMIB and MSX. Azaserine, an inhibitor of glutamate synthase, induced clear increases in the isocitrate dehydrogenase activity and icd gene expression after 24 h, and also in the 2-oxoglutarate concentration. Iron starvation had the most significant effect, inducing a complete loss of isocitrate dehydrogenase activity, possibly mediated by a process of oxidative inactivation, while its concentration was unaffected. Our results suggest that isocitrate dehydrogenase responds to changes in the intracellular concentration of 2-oxoglutarate and to the redox status of the cells in Prochlorococcus. PMID:25061751
Blombach, Bastian; Arndt, Annette; Auchter, Marc; Eikmanns, Bernhard J.
2009-01-01
Pyruvate dehydrogenase complex-deficient strains of Corynebacterium glutamicum produce l-valine from glucose only after depletion of the acetate required for growth. Here we show that inactivation of the DeoR-type transcriptional regulator SugR or replacement of acetate by ethanol already in course of the growth phase results in efficient l-valine production. PMID:19088318
Initial data on biological activity of taiga-steppe soils in the lower reaches of the Kolyma River.
Schelchkova, M V; Davydov, S P; Fyodorov-Davydov, D G; Davydova, A I; Boeskorov, G G; Solomonov, N G
2017-11-01
Microbiological and enzyme activities of extrazonal taiga-steppe soils in the lower reaches of the Kolyma River have been studied for the first time. Contrary to north-taiga cryometamorphic soils, predominating in the area, microbial cenoses under herb-sedge petrophytic and grass-sagebrush-herb thermophytic steppes are characterized by features typical for arid soils. The saturation of the soil profile with microorganisms is greater, and the development of actinomycetes is more intensive. The enzyme complex is characterized by high activity of dehydrogenases.
1988-03-11
adenine dinucleotide FAD = flavin-adenine dinucleotide iipS2 = lipoic acid lip(SH)2 = dihydrolipoic acid CoA = coenzyme A. SHepatic PDH complex activity...tissues has yet to be fully characterized, but it probably involves arsenic binding to the lipoic acid and dithiol moieties of the complex (Fluharty...covalently bound lipoic acid substrate of dihydrolipoyl transacetylase is greater per mole of L and CVAA than for sodium arsenite. This is possible
Borgnia, Mario J.; Banerjee, Soojay; Merk, Alan; Matthies, Doreen; Bartesaghi, Alberto; Rao, Prashant; Pierson, Jason; Earl, Lesley A.; Falconieri, Veronica
2016-01-01
Cryo-electron microscopy (cryo-EM) methods are now being used to determine structures at near-atomic resolution and have great promise in molecular pharmacology, especially in the context of mapping the binding of small-molecule ligands to protein complexes that display conformational flexibility. We illustrate this here using glutamate dehydrogenase (GDH), a 336-kDa metabolic enzyme that catalyzes the oxidative deamination of glutamate. Dysregulation of GDH leads to a variety of metabolic and neurologic disorders. Here, we report near-atomic resolution cryo-EM structures, at resolutions ranging from 3.2 Å to 3.6 Å for GDH complexes, including complexes for which crystal structures are not available. We show that the binding of the coenzyme NADH alone or in concert with GTP results in a binary mixture in which the enzyme is in either an “open” or “closed” state. Whereas the structure of NADH in the active site is similar between the open and closed states, it is unexpectedly different at the regulatory site. Our studies thus demonstrate that even in instances when there is considerable structural information available from X-ray crystallography, cryo-EM methods can provide useful complementary insights into regulatory mechanisms for dynamic protein complexes. PMID:27036132
Dijk, John A; Gerritse, Jan; Schraa, Gosse; Stams, Alfons J M
2004-12-01
The pathway of 2-chloroethanol degradation in the denitrifying Pseudomonas stutzeri strain JJ was investigated. In cell-free extracts, activities of a phenazine methosulfate (PMS)-dependent chloroethanol dehydrogenase, an NAD-dependent chloroacetaldehyde dehydrogenase, and a chloroacetate dehalogenase were detected. This suggested that the 2-chloroethanol degradation pathway in this denitrifying strain is the same as found in aerobic bacteria that degrade chloroethanol. Activity towards primary alcohols, secondary alcohols, diols, and other chlorinated alcohols could be measured in cell-free extracts with chloroethanol dehydrogenase (CE-DH) activity. PMS and phenazine ethosulfate (PES) were used as primary electron acceptors, but not NAD, NADP or ferricyanide. Cells of strain JJ cultured in a continuous culture under nitrate limitation exhibited chloroethanol dehydrogenase activity that was a 12 times higher than in cells grown in batch culture. However, under chloroethanol-limiting conditions, CE-DH activity was in the same range as in batch culture. Cells grown on ethanol did not exhibit CE-DH activity. Instead, NAD-dependent ethanol dehydrogenase (E-DH) activity and PMS-dependent E-DH activity were detected.
Xu, Xiang; Zhao, Jingyue; Xu, Zhen; Peng, Baozhen; Huang, Qiuhua; Arnold, Eddy; Ding, Jianping
2004-08-06
Isocitrate dehydrogenases (IDHs) catalyze the oxidative decarboxylation of isocitrate to alpha-ketoglutarate, and regulation of the enzymatic activity of IDHs is crucial for their biological functions. Bacterial IDHs are reversibly regulated by phosphorylation of a strictly conserved serine residue at the active site. Eukaryotic NADP-dependent IDHs (NADP-IDHs) have been shown to have diverse important biological functions; however, their regulatory mechanism remains unclear. Structural studies of human cytosolic NADP-IDH (HcIDH) in complex with NADP and in complex with NADP, isocitrate, and Ca2+ reveal three biologically relevant conformational states of the enzyme that differ substantially in the structure of the active site and in the overall structure. A structural segment at the active site that forms a conserved alpha-helix in all known NADP-IDH structures assumes a loop conformation in the open, inactive form of HcIDH; a partially unraveled alpha-helix in the semi-open, intermediate form; and an alpha-helix in the closed, active form. The side chain of Asp279 of this segment occupies the isocitrate-binding site and forms hydrogen bonds with Ser94 (the equivalent of the phosphorylation site in bacterial IDHs) in the inactive form and chelates the metal ion in the active form. The structural data led us to propose a novel self-regulatory mechanism for HcIDH that mimics the phosphorylation mechanism used by the bacterial homologs, consistent with biochemical and biological data. This mechanism might be applicable to other eukaryotic NADP-IDHs. The results also provide insights into the recognition and specificity of substrate and cofactor by eukaryotic NADP-IDHs.
Construction of Mutant Glucose Oxidases with Increased Dye-Mediated Dehydrogenase Activity
Horaguchi, Yohei; Saito, Shoko; Kojima, Katsuhiro; Tsugawa, Wakako; Ferri, Stefano; Sode, Koji
2012-01-01
Mutagenesis studies on glucose oxidases (GOxs) were conducted to construct GOxs with reduced oxidase activity and increased dehydrogenase activity. We focused on two representative GOxs, of which crystal structures have already been reported—Penicillium amagasakiense GOx (PDB ID; 1gpe) and Aspergillus niger GOx (PDB ID; 1cf3). We constructed oxygen-interacting structural models for GOxs, and predicted the residues responsible for oxidative half reaction with oxygen on the basis of the crystal structure of cholesterol oxidase as well as on the fact that both enzymes are members of the glucose/methanol/choline (GMC) oxidoreductase family. Rational amino acid substitution resulted in the construction of an engineered GOx with drastically decreased oxidase activity and increased dehydrogenase activity, which was higher than that of the wild-type enzyme. As a result, the dehydrogenase/oxidase ratio of the engineered enzyme was more than 11-fold greater than that of the wild-type enzyme. These results indicate that alteration of the dehydrogenase/oxidase activity ratio of GOxs is possible by introducing a mutation into the putative functional residues responsible for oxidative half reaction with oxygen of these enzymes, resulting in a further increased dehydrogenase activity. This is the first study reporting the alteration of GOx electron acceptor preference from oxygen to an artificial electron acceptor. PMID:23203056
Fang, Baishan; Niu, Jin; Ren, Hong; Guo, Yingxia; Wang, Shizhen
2014-01-01
Mechanistic insights regarding the activity enhancement of dehydrogenase by metal ion substitution were investigated by a simple method using a kinetic and thermodynamic analysis. By profiling the binding energy of both the substrate and product, the metal ion's role in catalysis enhancement was revealed. Glycerol dehydrogenase (GDH) from Klebsiella pneumoniae sp., which demonstrated an improvement in activity by the substitution of a zinc ion with a manganese ion, was used as a model for the mechanistic study of metal ion substitution. A kinetic model based on an ordered Bi-Bi mechanism was proposed considering the noncompetitive product inhibition of dihydroxyacetone (DHA) and the competitive product inhibition of NADH. By obtaining preliminary kinetic parameters of substrate and product inhibition, the number of estimated parameters was reduced from 10 to 4 for a nonlinear regression-based kinetic parameter estimation. The simulated values of time-concentration curves fit the experimental values well, with an average relative error of 11.5% and 12.7% for Mn-GDH and GDH, respectively. A comparison of the binding energy of enzyme ternary complex for Mn-GDH and GDH derived from kinetic parameters indicated that metal ion substitution accelerated the release of dioxyacetone. The metal ion's role in catalysis enhancement was explicated.
Heather, Lisa C.; Griffin, Julian L.; Clarke, Kieran; Radda, George K.; Tyler, Damian J.
2015-01-01
Background Pyruvate dehydrogenase (PDH) is a key regulator of cardiac substrate selection and is regulated by both pyruvate dehydrogenase kinase (PDK)-mediated phosphorylation and feedback inhibition. The extent to which chronic upregulation of PDK protein levels, acutely increased PDK activity and acute feedback inhibition limit PDH flux remains unclear because existing in vitro assessment methods inherently disrupt the enzyme complex. We have previously demonstrated that hyperpolarized 13C-labelled metabolic tracers with magnetic resonance spectroscopy (MRS) can monitor flux through PDH in vivo. The aim of this study was to determine the relative contributions of acute and chronic changes in PDK and PDH activities to in vivo myocardial PDH flux. Methodology/Principal Findings We examined both fed and fasted rats with either hyperpolarized [1-13C]pyruvate alone or hyperpolarized [1-13C]pyruvate co-infused with malate (to modulate mitochondrial NADH/NAD+ and acetyl-CoA/CoA ratios, which alter both PDH activity and flux). To confirm the metabolic fate of infused malate, we performed in vitro 1H NMR spectroscopy on cardiac tissue extracts. We observed that in fed rats, where PDH activity was high, the presence of malate increased PDH flux by 27%, whereas in the fasted state, malate infusion had no effect on PDH flux. Conclusions/Significance These observations suggest that pyruvate oxidation is limited by feedback inhibition from acetyl-CoA only when PDH activity is high. Therefore, in the case of PDH, and potentially other enzymes, hyperpolarized 13C MR can be used to non-invasively assess enzymatic regulation. PMID:21387444
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wynn, R. Max; Kato, Masato; Chuang, Jacinta L.
2008-10-21
Human pyruvate dehydrogenase complex (PDC) is down-regulated by pyruvate dehydrogenase kinase (PDK) isoforms 1-4. PDK4 is overexpressed in skeletal muscle in type 2 diabetes, resulting in impaired glucose utilization. Here we show that human PDK4 has robust core-free basal activity, which is considerably higher than activity levels of other PDK isoforms stimulated by the PDC core. PDK4 binds the L3 lipoyl domain, but its activity is not significantly stimulated by any individual lipoyl domains or the core of PDC. The 2.0-{angstrom} crystal structures of the PDK4 dimer with bound ADP reveal an open conformation with a wider active-site cleft, comparedmore » with that in the closed conformation epitomized by the PDK2-ADP structure. The open conformation in PDK4 shows partially ordered C-terminal cross-tails, in which the conserved DW (Asp{sup 394}-Trp{sup 395}) motif from one subunit anchors to the N-terminal domain of the other subunit. The open conformation fosters a reduced binding affinity for ADP, facilitating the efficient removal of product inhibition by this nucleotide. Alteration or deletion of the DW-motif disrupts the C-terminal cross-tail anchor, resulting in the closed conformation and the nearly complete inactivation of PDK4. Fluorescence quenching and enzyme activity data suggest that compounds AZD7545 and dichloroacetate lock PDK4 in the open and the closed conformational states, respectively. We propose that PDK4 with bound ADP exists in equilibrium between the open and the closed conformations. The favored metastable open conformation is responsible for the robust basal activity of PDK4 in the absence of the PDC core.« less
Wynn, R Max; Kato, Masato; Chuang, Jacinta L; Tso, Shih-Chia; Li, Jun; Chuang, David T
2008-09-12
Human pyruvate dehydrogenase complex (PDC) is down-regulated by pyruvate dehydrogenase kinase (PDK) isoforms 1-4. PDK4 is overexpressed in skeletal muscle in type 2 diabetes, resulting in impaired glucose utilization. Here we show that human PDK4 has robust core-free basal activity, which is considerably higher than activity levels of other PDK isoforms stimulated by the PDC core. PDK4 binds the L3 lipoyl domain, but its activity is not significantly stimulated by any individual lipoyl domains or the core of PDC. The 2.0-A crystal structures of the PDK4 dimer with bound ADP reveal an open conformation with a wider active-site cleft, compared with that in the closed conformation epitomized by the PDK2-ADP structure. The open conformation in PDK4 shows partially ordered C-terminal cross-tails, in which the conserved DW (Asp(394)-Trp(395)) motif from one subunit anchors to the N-terminal domain of the other subunit. The open conformation fosters a reduced binding affinity for ADP, facilitating the efficient removal of product inhibition by this nucleotide. Alteration or deletion of the DW-motif disrupts the C-terminal cross-tail anchor, resulting in the closed conformation and the nearly complete inactivation of PDK4. Fluorescence quenching and enzyme activity data suggest that compounds AZD7545 and dichloroacetate lock PDK4 in the open and the closed conformational states, respectively. We propose that PDK4 with bound ADP exists in equilibrium between the open and the closed conformations. The favored metastable open conformation is responsible for the robust basal activity of PDK4 in the absence of the PDC core.
Jordan, Frank; Arjunan, Palaniappa; Kale, Sachin; Nemeria, Natalia S.; Furey, William
2009-01-01
The region encompassing residues 401–413 on the E1 component of the pyruvate dehydrogenase multienzyme complex from Escherichia coli comprises a loop (the inner loop) which was not seen in the X-ray structure in the presence of thiamin diphosphate, the required cofactor for the enzyme. This loop is seen in the presence of a stable analogue of the pre-decarboxylation intermediate, the covalent adduct between the substrate analogue methyl acetylphosphonate and thiamin diphosphate, C2α-phosphonolactylthiamin diphosphate. It has been shown that the residue H407 and several other residues on this loop are required to reduce the mobility of the loop so electron density corresponding to it can be seen once the pre-decarboxylation intermediate is formed. Concomitantly, the loop encompassing residues 541–557 (the outer loop) appears to work in tandem with the inner loop and there is a hydrogen bond between the two loops ensuring their correlated motion. The inner loop was shown to: a) sequester the active center from carboligase side reactions; b) assist the interaction between the E1 and the E2 components, thereby affecting the overall reaction rate of the entire multienzyme complex; c) control substrate access to the active center. Using viscosity effects on kinetics it was shown that formation of the pre-decarboxylation intermediate is specifically affected by loop movement. A cysteine-less variant was created for the E1 component, onto which cysteines were substituted at selected loop positions. Introducing an electron spin resonance spin label and an 19F NMR label onto these engineered cysteines, the loop mobility was examined: a) both methods suggested that in the absence of ligand, the loop exists in two conformations; b) line-shape analysis of the NMR signal at different temperatures, enabled estimation of the rate constant for loop movement, and this rate constant was found to be of the same order of magnitude as the turnover number for the enzyme under the same conditions. Furthermore, this analysis gave important insights into rate-limiting thermal loop dynamics. Overall, the results suggest that the dynamic properties correlate with catalytic events on the E1 component of the pyruvate dehydrogenase complex. PMID:20160956
Milne, Jacqueline L. S.; Wu, Xiongwu; Borgnia, Mario J.; Lengyel, Jeffrey S.; Brooks, Bernard R.; Shi, Dan; Perham, Richard N.; Subramaniam, Sriram
2006-01-01
The pyruvate dehydrogenase multienzyme complexes are among the largest multifunctional catalytic machines in cells, catalyzing the production of acetyl CoA from pyruvate. We have previously reported the molecular architecture of an 11-MDa subcomplex comprising the 60-mer icosahedral dihydrolipoyl acetyltransferase (E2) decorated with 60 copies of the heterotetrameric (α2β2) 153-kDa pyruvate decarboxylase (E1) from Bacillus stearothermophilus (Milne, J. L. S., Shi, D., Rosenthal, P. B., Sunshine, J. S., Domingo, G. J., Wu, X., Brooks, B. R., Perham, R. N., Henderson, R., and Subramaniam, S. (2002) EMBO J. 21, 5587–5598). An annular gap of ~90 Å separates the acetyltransferase catalytic domains of the E2 from an outer shell formed of E1 tetramers. Using cryoelectron microscopy, we present here a three-dimensional reconstruction of the E2 core decorated with 60 copies of the homodimeric 100-kDa dihydrolipoyl dehydrogenase (E3). The E2E3 complex has a similar annular gap of ~75 Å between the inner icosahedral assembly of acetyltransferase domains and the outer shell of E3 homodimers. Automated fitting of the E3 coordinates into the map suggests excellent correspondence between the density of the outer shell map and the positions of the two best fitting orientations of E3. As in the case of E1 in the E1E2 complex, the central 2-fold axis of the E3 homodimer is roughly oriented along the periphery of the shell, making the active sites of the enzyme accessible from the annular gap between the E2 core and the outer shell. The similarities in architecture of the E1E2 and E2E3 complexes indicate fundamental similarities in the mechanism of active site coupling involved in the two key stages requiring motion of the swinging lipoyl domain across the annular gap, namely the synthesis of acetyl CoA and regeneration of the dithiolane ring of the lipoyl domain. PMID:16308322
Bastien, C.; Machlin, S.; Zhang, Y.; Donaldson, K.; Hanson, R. S.
1989-01-01
Restriction maps of genes required for the synthesis of active methanol dehydrogenase in Methylobacterium organophilum XX and Methylobacterium sp. strain AM1 have been completed and compared. In these two species of pink-pigmented, type II methylotrophs, 15 genes were identified that were required for the expression of methanol dehydrogenase activity. None of these genes were required for the synthesis of the prosthetic group of methanol dehydrogenase, pyrroloquinoline quinone. The structural gene required for the synthesis of cytochrome cL, an electron acceptor uniquely required for methanol dehydrogenase, and the genes encoding small basic peptides that copurified with methanol dehydrogenases were closely linked to the methanol dehydrogenase structural genes. A cloned 22-kilobase DNA insert from Methylsporovibrio methanica 81Z, an obligate type II methanotroph, complemented mutants that contained lesions in four genes closely linked to the methanol dehydrogenase structural genes. The methanol dehydrogenase and cytochrome cL structural genes were found to be transcribed independently in M. organophilum XX. Only two of the genes required for methanol dehydrogenase synthesis in this bacterium were found to be cotranscribed. PMID:16348074
21 CFR 862.1440 - Lactate dehydrogenase test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Systems § 862.1440 Lactate dehydrogenase test system. (a) Identification. A lactate dehydrogenase test system is a device intended to measure the activity of the enzyme lactate dehydrogenase in serum. Lactate... hepatitis, cirrhosis, and metastatic carcinoma of the liver, cardiac diseases such as myocardial infarction...
21 CFR 862.1420 - Isocitric dehydrogenase test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Systems § 862.1420 Isocitric dehydrogenase test system. (a) Identification. An isocitric dehydrogenase test system is a device intended to measure the activity of the enzyme isocitric dehydrogenase in serum... disease such as viral hepatitis, cirrhosis, or acute inflammation of the biliary tract; pulmonary disease...
Mino, Yasuaki; Naito, Takafumi; Shimoyama, Kumiko; Ogawa, Noriyoshi; Kawakami, Junichi
2017-07-01
Background Mycophenolate mofetil has recently been reported to be effective against systemic lupus erythematosus. The influence of the pharmacokinetics of mycophenolic acid, the active form of mycophenolate mofetil and the major inactive mycophenolic acid phenolic glucuronide on the activity of the target enzyme inosine 5'-monophosphate dehydrogenase, is expected to be revealed. The aim of this study was to identify the factors associated with inosine 5'-monophosphate dehydrogenase activity in systemic lupus erythematosus patients. Methods Fifty systemic lupus erythematosus patients in remission maintenance phase (29 received mycophenolate mofetil [MMF+] and 21 did not [MMF-]) were enrolled. Median and interquartile range of dose of mycophenolate mofetil were 1500 and 1000-1500 mg/day, respectively. Stepwise multiple linear regression analysis was performed to assess the dependence between inosine 5'-monophosphate dehydrogenase activity and 25 predictor values including predose plasma concentrations of free mycophenolic acid and mycophenolic acid phenolic glucuronide. Results Median and interquartile range of predose total plasma concentrations of mycophenolic acid and mycophenolic acid phenolic glucuronide were 2.73 and 1.43-5.73 and 25.5 and 13.1-54.7 µg/mL, respectively. Predose inosine 5'-monophosphate dehydrogenase activity was significantly higher in MMF+ than MMF- patients (median 38.3 and 20.6 nmoL xanthosine 5'-monophosphate/g haemoglobin/h, P<0.01). The plasma concentration of free mycophenolic acid phenolic glucuronide, complement fraction C3 and body weight were significant predictors accounting for interindividual variability in the inosine 5'-monophosphate dehydrogenase activity (adjusted R 2 = 0.52, P < 0.01) in a multivariate analysis. Conclusions Predose inosine 5'-monophosphate dehydrogenase activity was higher in systemic lupus erythematosus patients receiving mycophenolate mofetil therapy. Inosine 5'-monophosphate dehydrogenase activity may be determined by mycophenolic acid exposure and complement fraction C3 in systemic lupus erythematosus patients.
Hara, A; Hayashibara, M; Nakayama, T; Hasebe, K; Usui, S; Sawada, H
1985-01-01
We have kinetically and immunologically demonstrated that testosterone 17 beta-dehydrogenase (NADP+) isoenzymes (EC 1.1.1.64) and aldehyde reductase (EC 1.1.1.2) from guinea-pig liver catalyse the oxidation of benzene dihydrodiol (trans-1,2-dihydroxycyclohexa-3,5-diene) to catechol. One isoenzyme of testosterone 17 beta-dehydrogenase, which has specificity for 5 beta-androstanes, oxidized benzene dihydrodiol at a 3-fold higher rate than 5 beta-dihydrotestosterone, and showed a more than 4-fold higher affinity for benzene dihydrodiol and Vmax. value than did another isoenzyme, which exhibits specificity for 5 alpha-androstanes, and aldehyde reductase. Immunoprecipitation of guinea-pig liver cytosol with antisera against the testosterone 17 beta-dehydrogenase isoenzymes and aldehyde reductase indicated that most of the benzene dihydrodiol dehydrogenase activity in the tissue is due to testosterone 17 beta-dehydrogenase. PMID:2983661
Passalacqua, Thais G; Torres, Fábio A E; Nogueira, Camila T; de Almeida, Leticia; Del Cistia, Mayara L; dos Santos, Mariana B; Dutra, Luis A; Bolzani, Vanderlan da Silva; Regasini, Luis O; Graminha, Márcia A S; Marchetto, Reinaldo; Zottis, Aderson
2015-09-01
The enzyme glycerol-3-phosphate dehydrogenase (G3PDH) from Leishmania species is considered as an attractive target to design new antileishmanial drugs and a previous in silico study reported on the importance of chalcones to achieve its inhibition. Here, we report the identification of a synthetic chalcone in our in vitro assays with promastigote cells from Leishmania amazonensis, its biological activity in animal models, and docking followed by molecular dynamics simulation to investigate the molecular interactions and structural patterns that are crucial to achieve the inhibition complex between this compound and G3PDH. A molecular fragment of this natural product derivative can provide new inhibitors with increased potency and selectivity. Copyright © 2015 Elsevier Ltd. All rights reserved.
21 CFR 862.1670 - Sorbitol dehydrogenase test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Systems § 862.1670 Sorbitol dehydrogenase test system. (a) Identification. A sorbitol dehydrogenase test system is a device intended to measure the activity of the enzyme sorbitol dehydrogenase in serum... cirrhosis or acute hepatitis. (b) Classification. Class I (general controls). The device is exempt from the...
Okada, M; Shimura, K; Shiraki, H; Nakagawa, H
1983-11-01
The preceding paper showed that IMP dehydrogenase [IMP:NAD+ oxidoreductase, EC 1.2.1.14] tended to form a precipitable complex(es) through ionic and hydrophobic interactions. On the basis of these observations, a method was developed for purification of IMP dehydrogenase from Yoshida sarcoma ascites cells. On SDS-polyacrylamide gel electrophoresis, the purified preparation (1.19 U/mg protein) appeared homogeneous and its minimum molecular weight was estimated to be 68K daltons. Amino acid analyses indicated a subunit molecular weight of 68,042. Molecular sieve chromatography in the presence of 10% (NH4)2SO4 showed that the molecular weight of the native enzyme was 127K daltons. These values indicate that the native enzyme is composed of two identical subunits. However, the purified enzyme gave 4 protein bands on polyacrylamide gel electrophoresis under non-denaturing conditions, and appeared as a single fraction in the vicinity of the void volume on Ultrogel AcA 34 column chromatography at low salt concentration, indicating that its molecular weight exceeded 200K daltons. These findings indicate that the enzyme tends to aggregate owing to its own physicochemical characteristics. The Km values for IMP and NAD were calculated to be 12 and 25 microM, respectively, and the Ki values for XMP, GMP, and AMP to be 109, 130, and 854 microM, respectively. The purified enzyme showed full activity in the presence of K+, and K+ could be partially replaced by Na+. PCMB inactivated the enzyme, but the activity was completely restored by the addition of DTT. Cl-IMP also inactivated the enzyme and IMP prevented this inactivation.(ABSTRACT TRUNCATED AT 250 WORDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malik, Radhika; Viola, Ronald E.
2010-10-28
The first structure of an NAD-dependent tartrate dehydrogenase (TDH) has been solved to 2 {angstrom} resolution by single anomalous diffraction (SAD) phasing as a complex with the intermediate analog oxalate, Mg{sup 2+} and NADH. This TDH structure from Pseudomonas putida has a similar overall fold and domain organization to other structurally characterized members of the hydroxy-acid dehydrogenase family. However, there are considerable differences between TDH and these functionally related enzymes in the regions connecting the core secondary structure and in the relative positioning of important loops and helices. The active site in these complexes is highly ordered, allowing the identificationmore » of the substrate-binding and cofactor-binding groups and the ligands to the metal ions. Residues from the adjacent subunit are involved in both the substrate and divalent metal ion binding sites, establishing a dimer as the functional unit and providing structural support for an alternating-site reaction mechanism. The divalent metal ion plays a prominent role in substrate binding and orientation, together with several active-site arginines. Functional groups from both subunits form the cofactor-binding site and the ammonium ion aids in the orientation of the nicotinamide ring of the cofactor. A lysyl amino group (Lys192) is the base responsible for the water-mediated proton abstraction from the C2 hydroxyl group of the substrate that begins the catalytic reaction, followed by hydride transfer to NAD. A tyrosyl hydroxyl group (Tyr141) functions as a general acid to protonate the enolate intermediate. Each substrate undergoes the initial hydride transfer, but differences in substrate orientation are proposed to account for the different reactions catalyzed by TDH.« less
Howard, Thomas P.; Fryer, Michael J.; Singh, Prashant; Metodiev, Metodi; Lytovchenko, Anna; Obata, Toshihiro; Fernie, Alisdair R.; Kruger, Nicholas J.; Quick, W. Paul; Lloyd, Julie C.; Raines, Christine A.
2011-01-01
The thioredoxin-regulated chloroplast protein CP12 forms a multienzyme complex with the Calvin-Benson cycle enzymes phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). PRK and GAPDH are inactivated when present in this complex, a process shown in vitro to be dependent upon oxidized CP12. The importance of CP12 in vivo in higher plants, however, has not been investigated. Here, antisense suppression of CP12 in tobacco (Nicotiana tabacum) was observed to impact on NAD-induced PRK and GAPDH complex formation but had little effect on enzyme activity. Additionally, only minor changes in photosynthetic carbon fixation were observed. Despite this, antisense plants displayed changes in growth rates and morphology, including dwarfism and reduced apical dominance. The hypothesis that CP12 is essential to separate oxidative pentose phosphate pathway activity from Calvin-Benson cycle activity, as proposed in cyanobacteria, was tested. No evidence was found to support this role in tobacco. Evidence was seen, however, for a restriction to malate valve capacity, with decreases in NADP-malate dehydrogenase activity (but not protein levels) and pyridine nucleotide content. Antisense repression of CP12 also led to significant changes in carbon partitioning, with increased carbon allocation to the cell wall and the organic acids malate and fumarate and decreased allocation to starch and soluble carbohydrates. Severe decreases were also seen in 2-oxoglutarate content, a key indicator of cellular carbon sufficiency. The data presented here indicate that in tobacco, CP12 has a role in redox-mediated regulation of carbon partitioning from the chloroplast and provides strong in vivo evidence that CP12 is required for normal growth and development in plants. PMID:21865489
Parker, Antony R
2003-12-01
The interaction of several dehydrogenases with the electron transferring flavoprotein (ETF) is a crucial step required for the successful transfer of electrons into the electron transport chain. The exact determinants regarding the interaction of ETF with its dehydrogenase partners are still unknown. Chemical modification of ETF with arginine-specific reagents resulted in the loss, to varying degrees, of activity with medium chain acyl-coenzyme A dehydrogenase (MCAD). The kinetic profiles showed the inactivations followed pseudo-first-order kinetics for all reagents used. For activity with MCAD, maximum inactivation of ETF was accomplished by 2,3-butanedione (4% residual activity after 120 min) and it was shown that modification of one arginine residue was responsible for the inactivation. Almost 100% restoration of this ETF activity was achieved upon incubation with free arginine. However, the same 2,3-butanedione modified ETF only possessed decreased activity with dimethylglycine-(DMGDH, 44%) and sarcosine- (SDH, 27%) dehydrogenases unlike the abolition with MCAD. Full protection of ETF from arginine modification by 2,3-butanedione was achieved using substrate-protected DMGDH, MCAD and SDH respectively. Cross-protection studies of ETF with the three dehydrogenases implied use of the same single arginine residue in the binding of all three dehydrogenases. These results lead us to conclude that this single arginine residue is essential in the binding of the ETF to MCAD, but only contributes partially to the binding of ETF to SDH and DMGDH and thus, the determinants of the dehydrogenase binding sites overlap but are not identical.
Crystal structure of human aldehyde dehydrogenase 1A3 complexed with NAD+ and retinoic acid
Moretti, Andrea; Li, Jianfeng; Donini, Stefano; Sobol, Robert W.; Rizzi, Menico; Garavaglia, Silvia
2016-01-01
The aldehyde dehydrogenase family 1 member A3 (ALDH1A3) catalyzes the oxidation of retinal to the pleiotropic factor retinoic acid using NAD+. The level of ALDHs enzymatic activity has been used as a cancer stem cell marker and seems to correlate with tumour aggressiveness. Elevated ALDH1A3 expression in mesenchymal glioma stem cells highlights the potential of this isozyme as a prognosis marker and drug target. Here we report the first crystal structure of human ALDH1A3 complexed with NAD+ and the product all-trans retinoic acid (REA). The tetrameric ALDH1A3 folds into a three domain-based architecture highly conserved along the ALDHs family. The structural analysis revealed two different and coupled conformations for NAD+ and REA that we propose to represent two snapshots along the catalytic cycle. Indeed, the isoprenic moiety of REA points either toward the active site cysteine, or moves away adopting the product release conformation. Although ALDH1A3 shares high sequence identity with other members of the ALDH1A family, our structural analysis revealed few peculiar residues in the 1A3 isozyme active site. Our data provide information into the ALDH1As catalytic process and can be used for the structure-based design of selective inhibitors of potential medical interest. PMID:27759097
Santos, Sónia Sá; Gibson, Gary E; Cooper, Arthur J L; Denton, Travis T; Thompson, Charles M; Bunik, Victoria I; Alves, Paula M; Sonnewald, Ursula
2006-02-15
Diminished activity of the alpha-ketoglutarate dehydrogenase complex (KGDHC), an important component of the tricarboxylic acid (TCA) cycle, occurs in several neurological diseases. The effect of specific KGDHC inhibitors [phosphonoethyl ester of succinyl phosphonate (PESP) and the carboxy ethyl ester of succinyl phosphonate (CESP)] on [1-13C]glucose and [U-13C]glutamate metabolism in intact cerebellar granule neurons was investigated. Both inhibitors decreased formation of [4-13C]glutamate from [1-13C]glucose, a reduction in label in glutamate derived from [1-13C]glucose/[U-13C]glutamate through a second turn of the TCA cycle and a decline in the amounts of gamma-aminobutyric acid (GABA), aspartate, and alanine. PESP decreased formation of [U-13C]aspartate and total glutathione, whereas CESP decreased concentrations of valine and leucine. The findings are consistent with decreased KGDHC activity; increased alpha-ketoglutarate formation; increased transamination of alpha-ketoglutarate with valine, leucine, and GABA; and new equilibrium position of the aspartate aminotransferase reaction. Overall, the findings also suggest that some carbon derived from alpha-ketoglutarate may bypass the block in the TCA cycle at KGDHC by means of the GABA shunt and/or conversion of valine to succinate. The results suggest the potential of succinyl phosphonate esters for modeling the biochemical and pathophysiological consequences of reduced KGDHC activity in brain diseases.
He, Hong-Wu; Peng, Hao; Wang, Tao; Wang, Chubei; Yuan, Jun-Lin; Chen, Ting; He, Junbo; Tan, Xiaosong
2013-03-13
Pyruvate dehydrogenase complex (PDHc) is the site of action of a new class of herbicides. On the basis of the previous work for O,O'-dimethyl α-(substituted-phenoxyacetoxy)alkylphosphonates (I), further synthetic modifications were made by introducing a fural and a thienyl group to structure I. A series of α-(substituted-phenoxyacetoxy)-α-heterocyclylmethylphosphonate derivatives (II) were synthesized as potential inhibitors of PDHc. The postemergent activity of the title compounds II was evaluated in greenhouse experiments. The in vitro efficacy of II against PDHc was also examined. Compounds II with fural as R(3) and 2,4-dichloro as X and Y showed significant herbicidal activity and effective inhibition against PDHc from plants. O,O'-Dimethyl α-(2,4-dichlorophenoxyacetoxy)-α-(furan-2-yl)methylphosphonate II-17 had higher inhibitory potency against PDHc from Pisum sativum than against PDHc from Oryza sativa in vitro and was most effective against broadleaf weeds at 50 and 300 ai g/ha. II-17 was safe for maize and rice even at the dose of 900-1200 ai g/ha. Field trials at different regions in China showed that II-17 (HWS) could control a broad spectrum of broad-leaved and sedge weeds at the rate of 225-375 ai g/ha for postemergent applications in maize fields. II-17 (HWS) displayed potential utility as a selective herbicide.
Tigranian, R A; Vetrova, E G; Abraham, S; Lin, C; Klein, H
1983-01-01
The activities of malate, isocitrate, and lactate dehydrogenases were measured in the liver mitochondrial and cytoplasmatic fractions of rats flown for 18.5 days onboard Cosmos-1129. The activities of the oxidative enzymes, malate and isocitrate dehydrogenases, in the mitochondrial fraction and those of the glycolytic enzyme, lactate dehydrogenase, in the cytoplasmatic fraction were found to decrease.
Huang, Hsueh-Meei; Zhang, Hui; Xu, Hui; Gibson, Gary E
2003-01-20
Mitochondrial dysfunction occurs in many neurodegenerative diseases. The alpha-ketoglutarate dehydrogenase complex (KGDHC) catalyzes a key and arguably rate-limiting step of the tricarboxylic acid cycle (TCA). A reduction in the activity of the KGDHC occurs in brains and cells of patients with many of these disorders and may underlie the abnormal mitochondrial function. Abnormalities in calcium homeostasis also occur in fibroblasts from Alzheimer's disease (AD) patients and in cells bearing mutations that lead to AD. Thus, the present studies test whether the reduction of KGDHC activity can lead to the alterations in mitochondrial function and calcium homeostasis. alpha-Keto-beta-methyl-n-valeric acid (KMV) inhibits KGDHC activity in living N2a cells in a dose- and time-dependent manner. Surprisingly, concentration of KMV that inhibit in situ KGDHC by 80% does not alter the mitochondrial membrane potential (MMP). However, similar concentrations of KMV induce the release of cytochrome c from mitochondria into the cytosol, reduce basal [Ca(2+)](i) by 23% (P<0.005), and diminish the bradykinin (BK)-induced calcium release from the endoplasmic reticulum (ER) by 46% (P<0.005). This result suggests that diminished KGDHC activities do not lead to the Ca(2+) abnormalities in fibroblasts from AD patients or cells bearing PS-1 mutations. The increased release of cytochrome c with diminished KGDHC activities will be expected to activate other pathways including cell death cascades. Reductions in this key mitochondrial enzyme will likely make the cells more vulnerable to metabolic insults that promote cell death.
Coutinho, Agnes E; Brown, Jeremy K; Yang, Fu; Brownstein, David G; Gray, Mohini; Seckl, Jonathan R; Savill, John S; Chapman, Karen E
2013-01-01
Mast cells are key initiators of allergic, anaphylactic and inflammatory reactions, producing mediators that affect vascular permeability, angiogenesis and fibrosis. Glucocorticoid pharmacotherapy reduces mast cell number, maturation and activation but effects at physiological levels are unknown. Within cells, glucocorticoid concentration is modulated by the 11β-hydroxysteroid dehydrogenases (11β-HSDs). Here we show expression and activity of 11β-HSD1, but not 11β-HSD2, in mouse mast cells with 11β-HSD activity only in the keto-reductase direction, regenerating active glucocorticoids (cortisol, corticosterone) from inert substrates (cortisone, 11-dehydrocorticosterone). Mast cells from 11β-HSD1-deficient mice show ultrastructural evidence of increased activation, including piecemeal degranulation and have a reduced threshold for IgG immune complex-induced mast cell degranulation. Consistent with reduced intracellular glucocorticoid action in mast cells, levels of carboxypeptidase A3 mRNA, a glucocorticoid-inducible mast cell-specific transcript, are lower in peritoneal cells from 11β-HSD1-deficient than control mice. These findings suggest that 11β-HSD1-generated glucocorticoids may tonically restrain mast cell degranulation, potentially influencing allergic, anaphylactic and inflammatory responses.
Hou, X; Chen, X; Zhang, M; Yan, A
2016-01-01
Plasmodium falciparum, the most fatal parasite that causes malaria, is responsible for over one million deaths per year. P. falciparum dihydroorotate dehydrogenase (PfDHODH) has been validated as a promising drug development target for antimalarial therapy since it catalyzes the rate-limiting step for DNA and RNA biosynthesis. In this study, we investigated the quantitative structure-activity relationships (QSAR) of the antimalarial activity of PfDHODH inhibitors by generating four computational models using a multilinear regression (MLR) and a support vector machine (SVM) based on a dataset of 255 PfDHODH inhibitors. All the models display good prediction quality with a leave-one-out q(2) >0.66, a correlation coefficient (r) >0.85 on both training sets and test sets, and a mean square error (MSE) <0.32 on training sets and <0.37 on test sets, respectively. The study indicated that the hydrogen bonding ability, atom polarizabilities and ring complexity are predominant factors for inhibitors' antimalarial activity. The models are capable of predicting inhibitors' antimalarial activity and the molecular descriptors for building the models could be helpful in the development of new antimalarial drugs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nemeria, Natalia S; Arjunan, Palaniappa; Chandrasekhar, Krishnamoorthy
2010-11-03
Kinetic, spectroscopic, and structural analysis tested the hypothesis that a chain of residues connecting the 4{prime}-aminopyrimidine N1{prime} atoms of thiamin diphosphates (ThDPs) in the two active centers of the Escherichia coli pyruvate dehydrogenase complex E1 component provides a signal transduction pathway. Substitution of the three acidic residues (Glu{sup 571}, Glu{sup 235}, and Glu{sup 237}) and Arg{sup 606} resulted in impaired binding of the second ThDP, once the first active center was filled, suggesting a pathway for communication between the two ThDPs. (1) Steady-state kinetic and fluorescence quenching studies revealed that upon E571A, E235A, E237A, and R606A substitutions, ThDP binding inmore » the second active center was affected. (2) Analysis of the kinetics of thiazolium C2 hydrogen/deuterium exchange of enzyme-bound ThDP suggests half-of-the-sites reactivity for the E1 component, with fast (activated site) and slow exchanging sites (dormant site). The E235A and E571A variants gave no evidence for the slow exchanging site, indicating that only one of two active sites is filled with ThDP. (3) Titration of the E235A and E237A variants with methyl acetylphosphonate monitored by circular dichroism suggested that only half of the active sites were filled with a covalent predecarboxylation intermediate analog. (4) Crystal structures of E235A and E571A in complex with ThDP revealed the structural basis for the spectroscopic and kinetic observations and showed that either substitution affects cofactor binding, despite the fact that Glu{sup 235} makes no direct contact with the cofactor. The role of the conserved Glu{sup 571} residue in both catalysis and cofactor orientation is revealed by the combined results for the first time.« less
Narayan, Srinivas B.; Master, Stephen R.; Sireci, Anthony N.; Bierl, Charlene; Stanley, Paige E.; Li, Changhong; Stanley, Charles A.; Bennett, Michael J.
2012-01-01
Proteins involved in mitochondrial metabolic pathways engage in functionally relevant multi-enzyme complexes. We previously described an interaction between short-chain 3-hydroxyacyl-coenzyme A dehydrogenase (SCHAD) and glutamate dehydrogenase (GDH) explaining the clinical phenotype of hyperinsulinism in SCHAD-deficient patients and adding SCHAD to the list of mitochondrial proteins capable of forming functional, multi-pathway complexes. In this work, we provide evidence of SCHAD's involvement in additional interactions forming tissue-specific metabolic super complexes involving both membrane-associated and matrix-dwelling enzymes and spanning multiple metabolic pathways. As an example, in murine liver, we find SCHAD interaction with aspartate transaminase (AST) and GDH from amino acid metabolic pathways, carbamoyl phosphate synthase I (CPS-1) from ureagenesis, other fatty acid oxidation and ketogenesis enzymes and fructose-bisphosphate aldolase, an extra-mitochondrial enzyme of the glycolytic pathway. Most of the interactions appear to be independent of SCHAD's role in the penultimate step of fatty acid oxidation suggesting an organizational, structural or non-enzymatic role for the SCHAD protein. PMID:22496890
Variation in microbial activity in histosols and its relationship to soil moisture.
Tate, R L; Terry, R E
1980-08-01
Microbial biomass, dehydrogenase activity, carbon metabolism, and aerobic bacterial populations were examined in cropped and fallow Pahokee muck (a lithic medisaprist) of the Florida Everglades. Dehydrogenase activity was two- to sevenfold greater in soil cropped to St. Augustinegrass (Stenotaphrum secundatum (Walt) Kuntz) compared with uncropped soil, whereas biomass ranged from equivalence in the two soils to a threefold stimulation in the cropped soil. Biomass in soil cropped to sugarcane (Saccharum spp. L) approximated that from the grass field, whereas dehydrogenase activities of the cane soil were nearly equivalent to those of the fallow soil. Microbial biomass, dehydrogenase activity, aerobic bacterial populations, and salicylate oxidation rates all correlated with soil moisture levels. These data indicate that within the moisture ranges detected in the surface soils, increased moisture stimulated microbial activity, whereas within the soil profile where moisture ranges reached saturation, increased moisture inhibited aerobic activities and stimulated anaerobic processes.
Variation in Microbial Activity in Histosols and Its Relationship to Soil Moisture †
Tate, Robert L.; Terry, Richard E.
1980-01-01
Microbial biomass, dehydrogenase activity, carbon metabolism, and aerobic bacterial populations were examined in cropped and fallow Pahokee muck (a lithic medisaprist) of the Florida Everglades. Dehydrogenase activity was two- to sevenfold greater in soil cropped to St. Augustinegrass (Stenotaphrum secundatum (Walt) Kuntz) compared with uncropped soil, whereas biomass ranged from equivalence in the two soils to a threefold stimulation in the cropped soil. Biomass in soil cropped to sugarcane (Saccharum spp. L) approximated that from the grass field, whereas dehydrogenase activities of the cane soil were nearly equivalent to those of the fallow soil. Microbial biomass, dehydrogenase activity, aerobic bacterial populations, and salicylate oxidation rates all correlated with soil moisture levels. These data indicate that within the moisture ranges detected in the surface soils, increased moisture stimulated microbial activity, whereas within the soil profile where moisture ranges reached saturation, increased moisture inhibited aerobic activities and stimulated anaerobic processes. PMID:16345610
Khunderyakova, N V; Zakharchenko, A V; Zakharchenko, M V; Muller, H; Fedotcheva, I; Kondrashova, M N
2015-01-01
Biological effects of light near infrared radiation (850 nm), with modulation acoustic frequency of 101 Hz, was studied. The study was conducted on rats, the effect was recorded by succinate dehydrogenase activity in lymphocytes on the blood smear after administration of the activating dose of adrenaline, which simulates the state of the organism in the early stages of the pathogenic effects (stress). A pronounced regulating effect of infrared radiation on the activity of succinate dehydrogenase in animals activated by adrenaline was shown. Infrared radiation has a normalizing effect reducing the degree of inhibition or activation of the enzyme induced by adrenaline and had no effect on the control animals. Thus, by modulating the activity of succinate dehydrogenase infrared radiation regulates energy production in the mitochondria supported by the most powerful oxidation substrate--succinic acid, which is especially pronounced under stress.
Troglitazone induces differentiation in Trypanosoma brucei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denninger, Viola; Figarella, Katherine; Schoenfeld, Caroline
2007-05-15
Trypanosoma brucei, a protozoan parasite causing sleeping sickness, is transmitted by the tsetse fly and undergoes a complex lifecycle including several defined stages within the insect vector and its mammalian host. In the latter, differentiation from the long slender to the short stumpy form is induced by a yet unknown factor of trypanosomal origin. Here we describe that some thiazolidinediones are also able to induce differentiation. In higher eukaryotes, thiazolidinediones are involved in metabolism and differentiation processes mainly by binding to the intracellular receptor peroxisome proliferator activated receptor {gamma}. Our studies focus on the effects of troglitazone on bloodstream formmore » trypanosomes. Differentiation was monitored using mitochondrial markers (membrane potential, succinate dehydrogenase activity, inhibition of oxygen uptake by KCN, amount of cytochrome transcripts), morphological changes (Transmission EM and light microscopy), and transformation experiments (loss of the Variant Surface Glycoprotein coat and increase of dihydroliponamide dehydrogenase activity). To further investigate the mechanisms responsible for these changes, microarray analyses were performed, showing an upregulation of expression site associated gene 8 (ESAG8), a potential differentiation regulator.« less
d-Alanine Oxidase from Escherichia coli: Localization and Induction by l-Alanine
Raunio, R. P.; Jenkins, W. T.
1973-01-01
Dialyzed membranes of Escherichia coli prepared by an ethylenediaminetetraacetic acid-lysozyme method catalyze the oxidation of both l-alanine and d-alanine. The specific activities for the oxidations of both d-alanine and l-alanine are increased fivefold when the cells are grown in the presence of either l-alanine or dl-alanine, but are increased only slightly when grown in the presence of d-alanine. In the dl-alanine-induced system, the specific activities for the oxidations of some other d-amino acids are also raised. dl-alanine also induces two other alanine catabolizing enzymes, alanine dehydrogenase and alanine-glutamate aminotransferase which are found in the “soluble” fraction of lysozyme-treated cells. The oxidations of both l-alanine and d-alanine were associated with the membranes of induced cells. After the membranes were disintegrated by sonic treatment, both l-alanine and d-alanine oxidation catalysts sedimented in a sucrose density gradient together with d-lactate and l-lactate dehydrogenases, apparently as a single multienzyme complex. PMID:4146872
Sun, Xue-Gang; Fu, Xiu-Qiong; Cai, Hong-Bing; Liu, Qiang; Li, Chun-Hua; Liu, Ya-Wei; Li, Ying-Jia; Liu, Zhi-Feng; Song, Yu-Hong; Lv, Zhi-Ping
2011-07-01
This study was designed to investigate mechanisms of the protective effects of Salvia miltiorrhiza polysaccharide (SMPS) against lipopolysaccharide (LPS)-induced immunological liver injury (ILI) in Bacille Calmette-Guérin (BCG)-primed mice. Two-dimensional difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis showed that three proteins are down-regulated and six proteins are up-regulated by SMPS. SMPS reduces the degree of liver injury by up-regulating the enzymes of the citric acid cycle, namely malate dehydrogenase (MDH) and 2-oxoglutarate dehydrogenase complex. LPS significantly increases nuclear factor kappa B (NF-κB) activation, inducible nitric oxide synthase (iNOS) expression and MDA level in BCG primed mice liver, whereas SMPS treatment protects against the immunological liver injury through inhibition of the NF-κB activation by up-regulation of PRDX6 and the subsequent attenuation of lipid peroxidation, iNOS expression and inflammation. Copyright © 2011 John Wiley & Sons, Ltd.
Computational Study on New Natural Compound Inhibitors of Pyruvate Dehydrogenase Kinases
Zhou, Xiaoli; Yu, Shanshan; Su, Jing; Sun, Liankun
2016-01-01
Pyruvate dehydrogenase kinases (PDKs) are key enzymes in glucose metabolism, negatively regulating pyruvate dehyrogenase complex (PDC) activity through phosphorylation. Inhibiting PDKs could upregulate PDC activity and drive cells into more aerobic metabolism. Therefore, PDKs are potential targets for metabolism related diseases, such as cancers and diabetes. In this study, a series of computer-aided virtual screening techniques were utilized to discover potential inhibitors of PDKs. Structure-based screening using Libdock was carried out following by ADME (adsorption, distribution, metabolism, excretion) and toxicity prediction. Molecular docking was used to analyze the binding mechanism between these compounds and PDKs. Molecular dynamic simulation was utilized to confirm the stability of potential compound binding. From the computational results, two novel natural coumarins compounds (ZINC12296427 and ZINC12389251) from the ZINC database were found binding to PDKs with favorable interaction energy and predicted to be non-toxic. Our study provide valuable information of PDK-coumarins binding mechanisms in PDK inhibitor-based drug discovery. PMID:26959013
Computational Study on New Natural Compound Inhibitors of Pyruvate Dehydrogenase Kinases.
Zhou, Xiaoli; Yu, Shanshan; Su, Jing; Sun, Liankun
2016-03-04
Pyruvate dehydrogenase kinases (PDKs) are key enzymes in glucose metabolism, negatively regulating pyruvate dehyrogenase complex (PDC) activity through phosphorylation. Inhibiting PDKs could upregulate PDC activity and drive cells into more aerobic metabolism. Therefore, PDKs are potential targets for metabolism related diseases, such as cancers and diabetes. In this study, a series of computer-aided virtual screening techniques were utilized to discover potential inhibitors of PDKs. Structure-based screening using Libdock was carried out following by ADME (adsorption, distribution, metabolism, excretion) and toxicity prediction. Molecular docking was used to analyze the binding mechanism between these compounds and PDKs. Molecular dynamic simulation was utilized to confirm the stability of potential compound binding. From the computational results, two novel natural coumarins compounds (ZINC12296427 and ZINC12389251) from the ZINC database were found binding to PDKs with favorable interaction energy and predicted to be non-toxic. Our study provide valuable information of PDK-coumarins binding mechanisms in PDK inhibitor-based drug discovery.
Bartek, Tobias; Blombach, Bastian; Lang, Siegmund; Eikmanns, Bernhard J.; Wiechert, Wolfgang; Oldiges, Marco; Nöh, Katharina; Noack, Stephan
2011-01-01
l-Valine can be formed successfully using C. glutamicum strains missing an active pyruvate dehydrogenase enzyme complex (PDHC). Wild-type C. glutamicum and four PDHC-deficient strains were compared by 13C metabolic flux analysis, especially focusing on the split ratio between glycolysis and the pentose phosphate pathway (PPP). Compared to the wild type, showing a carbon flux of 69% ± 14% through the PPP, a strong increase in the PPP flux was observed in PDHC-deficient strains with a maximum of 113% ± 22%. The shift in the split ratio can be explained by an increased demand of NADPH for l-valine formation. In accordance, the introduction of the Escherichia coli transhydrogenase PntAB, catalyzing the reversible conversion of NADH to NADPH, into an l-valine-producing C. glutamicum strain caused the PPP flux to decrease to 57% ± 6%, which is below the wild-type split ratio. Hence, transhydrogenase activity offers an alternative perspective for sufficient NADPH supply, which is relevant for most amino acid production systems. Moreover, as demonstrated for l-valine, this bypass leads to a significant increase of product yield due to a concurrent reduction in carbon dioxide formation via the PPP. PMID:21784914
A Proteomic View at the Biochemistry of Syntrophic Butyrate Oxidation in Syntrophomonas wolfei
Schmidt, Alexander; Müller, Nicolai; Schink, Bernhard; Schleheck, David
2013-01-01
In syntrophic conversion of butyrate to methane and CO2, butyrate is oxidized to acetate by secondary fermenting bacteria such as Syntrophomonas wolfei in close cooperation with methanogenic partner organisms, e.g., Methanospirillum hungatei. This process involves an energetically unfavourable shift of electrons from the level of butyryl-CoA oxidation to the substantially lower redox potential of proton and/or CO2 reduction, in order to transfer these electrons to the methanogenic partner via hydrogen and/or formate. In the present study, all prominent membrane-bound and soluble proteins expressed in S. wolfei specifically during syntrophic growth with butyrate, in comparison to pure-culture growth with crotonate, were examined by one- and two-dimensional gel electrophoresis, and identified by peptide fingerprinting-mass spectrometry. A membrane-bound, externally oriented, quinone-linked formate dehydrogenase complex was expressed at high level specifically during syntrophic butyrate oxidation, comprising a selenocystein-linked catalytic subunit with a membrane-translocation pathway signal (TAT), a membrane-bound iron-sulfur subunit, and a membrane-bound cytochrome. Soluble hydrogenases were expressed at high levels specifically during growth with crotonate. The results were confirmed by native protein gel electrophoresis, by formate dehydrogenase and hydrogenase-activity staining, and by analysis of formate dehydrogenase and hydrogenase activities in intact cells and cell extracts. Furthermore, constitutive expression of a membrane-bound, internally oriented iron-sulfur oxidoreductase (DUF224) was confirmed, together with expression of soluble electron-transfer flavoproteins (EtfAB) and two previously identified butyryl-CoA dehydrogenases. Our findings allow to depict an electron flow scheme for syntrophic butyrate oxidation in S. wolfei. Electrons derived from butyryl-CoA are transferred through a membrane-bound EtfAB:quinone oxidoreductase (DUF224) to a menaquinone cycle and further via a b-type cytochrome to an externally oriented formate dehydrogenase. Hence, an ATP hydrolysis-driven proton-motive force across the cytoplasmatic membrane would provide the energy input for the electron potential shift necessary for formate formation. PMID:23468890
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bastien, C.; Machlin, S.; Zhang, Y.
Restriction maps of genes required for the synthesis of active methanol dehydrogenase in Methylobacterium organophilum XX and Methylobacterium sp. strain AM1 have been completed and compared. In these two species of pink-pigmented, type II methylotrophs, 15 genes were identified that were required for the expression of methanol dehydrogenase activity. None of these genes were required for the synthesis of the prosthetic group of methanol dehydrogenase, pyrroloquinoline quinone. The structural gene required for the synthesis of cytochrome c{sub L}, an electron acceptor uniquely required for methanol dehydrogenase, and the genes encoding small basic peptides that copurified with methanol dehydrogenases were closelymore » linked to the methanol dehydrogenase structural genes. A cloned 22-kilobase DNA insert from Methylsporovibrio methanica 81Z, an obligate type II methanotroph, complemented mutants that contained lesions in four genes closely linked to the methanol dehydrogenase structural genes. The methanol dehydrogenase and cytochrome c{sub L} structural genes were found to be transcribed independently in M. organophilum XX. Only two of the genes required for methanol dehydrogenase synthesis in this bacterium were found to be cotranscribed.« less
Nanjo, H; Adachi, H; Morihana, S; Mizoguchi, T; Nishihara, T; Terada, T
1995-05-11
Bovine liver cytosolic dihydrodiol dehydrogenase (DD3) has been characterized by its unique dihydrodiol dehydrogenase activity for trans-benzenedihydrodiol (trans-1,2-dihydrobenzene-1,2-diol) with the highest affinity and the greatest velocity among three multiple forms of dihydrodiol dehydrogenases (DD1-DD3). It is the first time that DD3 has shown a significant dehydrogenase activity for (S)-(+)-1-indanol with low Km value (0.33 +/- 0.022 mM) and high K(cat) value (25 +/- 0.79 min-1). The investigation of the product inhibition of (S)-(+)-1-indanol with NADP+ versus 1-indanone and NADPH clearly showed that the enzymatic reaction of DD3 may follow a typical ordered Bi Bi mechanism similar to many aldo/keto reductases. Additionally, DD3 was shown to catalyze the dehydrogenation of bile acids (lithocholic acid, taurolithocholic acid and taurochenodeoxycholic acid) having no 12-hydroxy groups with low Km values (17 +/- 0.65, 33 +/- 1.9 and 890 +/- 73 microM, respectively). In contrast, DD1, 3 alpha-hydroxysteroid dehydrogenase, shows a broad substrate specificity for many bile acids with higher affinity than those of DD3. Competitive inhibition of DD3 with androsterone against dehydrogenase activity for (S)-(+)-1-indanol, trans-benzenedihydrodiol or lithocholic acid suggests that these three substrates bind to the same substrate binding site of DD3, different from the case of human liver bile acid binder/dihydrodiol dehydrogenase (Takikawa, H., Stolz, A., Sugiyama, Y., Yoshida, H., Yamamoto, M. and Kaplowitz, N. (1990) J. Biol. Chem. 265, 2132-2136). Considering the reaction mechanism, DD3 may also play an important role in bile acids metabolism as well as the detoxication of aromatic hydrocarbons.
Tamrakar, Pratistha; Ibrahim, Baher A; Gujar, Amit D; Briski, Karen P
2015-02-01
The ability of estrogen to shield the brain from the bioenergetic insult hypoglycemia is unclear. Estradiol (E) prevents hypoglycemic activation of the energy deficit sensor adenosine 5'-monophosphate-activated protein kinase (AMPK) in hindbrain metabolosensory A2 noradrenergic neurons. This study investigates the hypothesis that estrogen regulates A2 AMPK through control of fuel metabolism and/or upstream protein kinase/phosphatase enzyme expression. A2 cells were harvested by laser microdissection after insulin or vehicle (V) injection of E- or oil (O)-implanted ovariectomized female rats. Cell lysates were evaluated by immunoblot for glycolytic, tricarboxylic acid cycle, respiratory chain, and acetyl-CoA-malonyl-CoA pathway enzymes. A2 phosphofructokinase (PFKL), isocitrate dehydrogenase, pyruvate dehydrogenase, and ATP synthase subunit profiles were elevated in E/V vs. O/V; hypoglycemia augmented PFKL and α-ketoglutarate dehydrogenase expression in E only. Hypoglycemia increased A2 Ca(2+) /calmodulin-dependent protein kinase-β in O and reduced protein phosphatase in both groups. A2 phospho-AMPK levels were equivalent in O/V vs. E/V but elevated during hypoglycemia in O only. These results implicate E in compensatory upregulation of substrate catabolism and corresponding maintenance of energy stability of A2 metabolosensory neurons during hypoglycemia, outcomes that support the potential viability of molecular substrates for hormone action as targets for therapies alleviating hypoglycemic brain injury. © 2014 Wiley Periodicals, Inc.
Yakushi, Toshiharu; Fukunari, Seiya; Kodama, Tomohiro; Matsutani, Minenosuke; Nina, Shun; Kataoka, Naoya; Theeragool, Gunjana; Matsushita, Kazunobu
2018-05-01
Acetic acid fermentation is widely considered a consequence of ethanol oxidation by two membrane-bound enzymes-alcohol dehydrogenase and aldehyde dehydrogenase (ALDH)-of acetic acid bacteria. Here, we used a markerless gene disruption method to construct a mutant of the Acetobacter pasteurianus strain SKU1108 with a deletion in the aldH gene, which encodes the large catalytic subunit of a heterotrimeric ALDH complex (AldFGH), to examine the role of AldFGH in acetic acid fermentation. The ΔaldH strain grew less on ethanol-containing medium, i.e., acetic acid fermentation conditions, than the wild-type strain and significantly accumulated acetaldehyde in the culture medium. Unexpectedly, acetaldehyde oxidase activity levels of the intact ΔaldH cells and the ΔaldH cell membranes were similar to those of the wild-type strain, which might be attributed to an additional ALDH isozyme (AldSLC). The apparent K M values of the wild-type and ΔaldH membranes for acetaldehyde were similar to each other, when the cells were cultured in nonfermentation conditions, where ΔaldH cells grow as well as the wild-type cells. However, the membranes of the wild-type cells grown under fermentation conditions showed a 10-fold lower apparent K M value than those of the cells grown under nonfermentation conditions. Under fermentation conditions, transcriptional levels of a gene for AldSLC were 10-fold lower than those under nonfermentation conditions, whereas aldH transcript levels were not dramatically changed under the two conditions. We suggest that A. pasteurianus SKU1108 has two ALDHs, and the AldFGH complex is indispensable for acetic acid fermentation and is the major enzyme under fermentation conditions.
Seabra, Amedea B; Ouellet, Marc; Antonic, Marija; Chrétien, Michelle N; English, Ann M
2013-11-30
Vascular relaxation to nitroglycerin (glyceryl trinitrate; GTN) requires its bioactivation by mechanisms that remain controversial. We report here that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the release of nitrite from GTN. In assays containing dithiothreitol (DTT) and NAD(+), the GTN reductase activity of purified GAPDH produces nitrite and 1,2-GDN as the major products. A vmax of 2.6nmolmin(-)(1)mg(-)(1) was measured for nitrite production by GAPDH from rabbit muscle and a GTN KM of 1.2mM. Reductive denitration of GTN in the absence of DTT results in dose- and time-dependent inhibition of GAPDH dehydrogenase activity. Disulfiram, a thiol-modifying drug, inhibits both the dehydrogenase and GTN reductase activity of GAPDH, while DTT or tris(2-carboxyethyl)phosphine reverse the GTN-induced inhibition. Incubation of intact human erythrocytes or hemolysates with 2mM GTN for 60min results in 50% inhibition of GAPDH's dehydrogenase activity, indicating that GTN is taken up by these cells and that the dehydrogenase is a target of GTN. Thus, erythrocyte GAPDH may contribute to GTN bioactivation. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
Leferink, Nicole G. H.; Hendriks, Annemarie; Brouns, Stan J. J.; Hennemann, Hans-Georg; Dauβmann, Thomas; van der Oost, John
2008-01-01
There is considerable interest in the use of enantioselective alcohol dehydrogenases for the production of enantio- and diastereomerically pure diols, which are important building blocks for pharmaceuticals, agrochemicals and fine chemicals. Due to the need for a stable alcohol dehydrogenase with activity at low-temperature process conditions (30°C) for the production of (2S,5S)-hexanediol, we have improved an alcohol dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus (AdhA). A stable S-selective alcohol dehydrogenase with increased activity at 30°C on the substrate 2,5-hexanedione was generated by laboratory evolution on the thermostable alcohol dehydrogenase AdhA. One round of error-prone PCR and screening of ∼1,500 mutants was performed. The maximum specific activity of the best performing mutant with 2,5-hexanedione at 30°C was tenfold higher compared to the activity of the wild-type enzyme. A 3D-model of AdhA revealed that this mutant has one mutation in the well-conserved NADP(H)-binding site (R11L), and a second mutation (A180V) near the catalytic and highly conserved threonine at position 183. PMID:18452026
Izard, T; Aevarsson, A; Allen, M D; Westphal, A H; Perham, R N; de Kok, A; Hol, W G
1999-02-16
The pyruvate dehydrogenase multienzyme complex (Mr of 5-10 million) is assembled around a structural core formed of multiple copies of dihydrolipoyl acetyltransferase (E2p), which exhibits the shape of either a cube or a dodecahedron, depending on the source. The crystal structures of the 60-meric dihydrolipoyl acyltransferase cores of Bacillus stearothermophilus and Enterococcus faecalis pyruvate dehydrogenase complexes were determined and revealed a remarkably hollow dodecahedron with an outer diameter of approximately 237 A, 12 large openings of approximately 52 A diameter across the fivefold axes, and an inner cavity with a diameter of approximately 118 A. Comparison of cubic and dodecahedral E2p assemblies shows that combining the principles of quasi-equivalence formulated by Caspar and Klug [Caspar, D. L. & Klug, A. (1962) Cold Spring Harbor Symp. Quant. Biol. 27, 1-4] with strict Euclidean geometric considerations results in predictions of the major features of the E2p dodecahedron matching the observed features almost exactly.
URF6, Last Unidentified Reading Frame of Human mtDNA, Codes for an NADH Dehydrogenase Subunit
NASA Astrophysics Data System (ADS)
Chomyn, Anne; Cleeter, Michael W. J.; Ragan, C. Ian; Riley, Marcia; Doolittle, Russell F.; Attardi, Giuseppe
1986-10-01
The polypeptide encoded in URF6, the last unassigned reading frame of human mitochondrial DNA, has been identified with antibodies to peptides predicted from the DNA sequence. Antibodies prepared against highly purified respiratory chain NADH dehydrogenase from beef heart or against the cytoplasmically synthesized 49-kilodalton iron-sulfur subunit isolated from this enzyme complex, when added to a deoxycholate or a Triton X-100 mitochondrial lysate of HeLa cells, specifically precipitated the URF6 product together with the six other URF products previously identified as subunits of NADH dehydrogenase. These results strongly point to the URF6 product as being another subunit of this enzyme complex. Thus, almost 60% of the protein coding capacity of mammalian mitochondrial DNA is utilized for the assembly of the first enzyme complex of the respiratory chain. The absence of such information in yeast mitochondrial DNA dramatizes the variability in gene content of different mitochondrial genomes.
NASA Technical Reports Server (NTRS)
Tseng, B. S.; Kasper, C. E.; Edgerton, V. R.
1994-01-01
The relationship between myonuclear number, cellular size, succinate dehydrogenase activity, and myosin type was examined in single fiber segments (n = 54; 9 +/- 3 mm long) mechanically dissected from soleus and plantaris muscles of adult rats. One end of each fiber segment was stained for DNA before quantitative photometric analysis of succinate dehydrogenase activity; the other end was double immunolabeled with fast and slow myosin heavy chain monoclonal antibodies. Mean +/- S.D. cytoplasmic volume/myonucleus ratio was higher in fast and slow plantaris fibers (112 +/- 69 vs. 34 +/- 21 x 10(3) microns3) than fast and slow soleus fibers (40 +/- 20 vs. 30 +/- 14 x 10(3) microns3), respectively. Slow fibers always had small volumes/myonucleus, regardless of fiber diameter, succinate dehydrogenase activity, or muscle of origin. In contrast, smaller diameter (< 70 microns) fast soleus and plantaris fibers with high succinate dehydrogenase activity appeared to have low volumes/myonucleus while larger diameter (> 70 microns) fast fibers with low succinate dehydrogenase activity always had large volume/myonucleus. Slow soleus fibers had significantly greater numbers of myonuclei/mm than did either fast soleus or fast plantaris fibers (116 +/- 51 vs. 55 +/- 22 and 44 +/- 23), respectively. These data suggest that the myonuclear domain is more limited in slow than fast fibers and in the fibers with a high, compared to a low, oxidative metabolic capability.
Buhler, Donald R.; Benville, P.
1969-01-01
The specific activity of liver glucose 6-phosphate dehydrogenase in yearling rainbow trout remained unchanged when the fish were starved for periods as long as 8 weeks and when starved animals were fed diets of various compositions. Injection of insulin concurrently with refeeding also failed to alter the specific activity of the enzyme in trout. The absence of a dietary or insulin influence on the teleost enzyme system is to be contrasted with studies in mammals in which the activity of hepatic glucose 6-P dehydrogenase was markedly stimulated after refeeding starved animals or injection of insulin.Ingestion of the pesticide DDT by juvenile coho salmon or adult rainbow trout also had no effect on the specific activity of liver glucose 6-P dehydrogenase and DDT failed to inhibit the rainbow trout enzyme in vitro. These results also differ considerably from those found in higher animals.These results suggest that the glucose 6-P dehydrogenase enzyme in teleosts may be under a different type of regulatory control from that found in mammals.
Shen, Yangbin; Zhan, Yulu; Li, Shuping; Ning, Fandi; Du, Ying; Huang, Yunjie; He, Ting; Zhou, Xiaochun
2018-03-09
As an excellent hydrogen-storage medium, methanol has many advantages, such as high hydrogen content (12.6 wt %), low cost, and availability from biomass or photocatalysis. However, conventional methanol-water reforming usually proceeds at high temperatures. In this research, we successfully designed a new effective strategy to generate hydrogen from methanol at near-room temperature. The strategy involved two main processes: CH 3 OH→HCOOH→H 2 and NADH→HCOOH→H 2 . The first process (CH 3 OH→HCOOH→H 2 ) was performed by an alcohol dehydrogenase (ADH), an aldehyde dehydrogenase (ALDH), and an Ir catalyst. The second procedure (NADH→HCOOH→H 2 ) was performed by formate dehydrogenase (FDH) and the Ir catalyst. The Ir catalyst used was a previously reported polymer complex catalyst [Cp*IrCl 2 (ppy); Cp*=pentamethylcyclopentadienyl, ppy=polypyrrole] with high catalytic activity for the decomposition of formic acid at room temperature and is compatible with enzymes, coenzymes, and poisoning chemicals. Our results revealed that the optimum hydrogen generation rate could reach up to 17.8 μmol h -1 g cat -1 under weak basic conditions at 30 °C. This will have high impact on hydrogen storage, production, and applications and should also provide new inspiration for hydrogen generation from methanol. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lee, M T; Ahmed, T; Haddad, R; Friedman, M E
1989-01-01
Bovine liver beta-D-glucuronide glucuronohydrolase, EC 3.2.1.32), wheat germ acid phosphatase (orthophosphoric monoesterphosphohydrolase, EC 3.1.3.2) and bovine liver L-malate dehydrogenase (L-malate: NAD oxidoreductase, EC 1.1.1.37) were inhibited by a series of gold (I) complexes that have been used as anti-inflammatory drugs. Both sodium thiosulfatoaurate (I) (Na AuTs) and sodium thiomalatoraurate (NaAuTM) effectively inhibited all three enzymes, while thioglucosoaurate (I) (AuTG) only inhibited L-malate dehydrogenase. The equilibrium constants (K1) ranged from nearly 4000 microM for the NaAuTM-beta-glucuronidase interaction to 24 microM for the NaAuTS-beta-glucuronidase interaction. The rate of covalent bond formation (kp) ranged from 0.00032 min-1 for NaAuTM-beta-glucuronidase formation to 1.7 min-1 for AuTG-L-malate dehydrogenase formation. The equilibrium data shows that the gold (I) drugs bind by several orders lower than the gold (III) compounds, suggesting a significantly stronger interaction between the more highly charged gold ion and the enzyme. Yet the rate of covalent bond formation depends as much on the structure of the active site as upon the lability of the gold-ligand bond. It was also observed that the more effective the gold inhibition the more toxic the compound.
NASA Astrophysics Data System (ADS)
Laskar, Amaj Ahmed; Alam, Md Fazle; Ahmad, Mohammad; Younus, Hina
2018-04-01
Human salivary aldehyde dehydrogenase (hsALDH) is primarily a class 3 ALDH (ALDH3A1), and is an important antioxidant enzyme present in the saliva which maintains healthy oral cavity. It detoxifies toxic aldehydes into non-toxic carboxylic acids in the oral cavity. Reduced level of hsALDH activity is a risk factor for oral cancer development. It is involved in the resistance of certain chemotherapeutic drugs. Coffee has been reported to affect the activity of salivary ALDH. In this study, the effect of caffeine on the activity (dehydrogenase and esterase) of hsALDH was investigated. The binding of caffeine to hsALDH was studied using different biophysical methods and molecular docking analysis. Caffeine was found to inhibit both crude and purified hsALDH. The Km increased and the Vmax decreased showing a mixed type of inhibition. Caffeine decreased the nucleophilicity of the catalytic cysteine residue. It binds to the active site of ALDH3A1 by forming a complex through non-covalent interactions with some highly conserved amino acid residues. It partially alters the secondary structure of the enzyme. Therefore, it is very likely that caffeine binds and inhibits the activity of hsALDH by decreasing substrate binding affinity and the catalytic efficiency of the enzyme. The study indicates that oral intake of caffeine may have a harmful effect on the oral health and may increase the risk of carcinogenesis through the inhibition of this important enzyme. Further, the inactivation of oxazaphosphorine based chemotherapeutic drugs by ALDH3A1 may be prevented by using caffeine as an adjuvant during medication which is expected to increase the sensitivity of these drugs through its inhibitory effect on the enzyme.
Berndt, Nikolaus; Bulik, Sascha; Holzhütter, Hermann-Georg
2012-01-01
Reduced activity of brain α-ketoglutarate dehydrogenase complex (KGDHC) occurs in a number of neurodegenerative diseases like Parkinson's disease and Alzheimer's disease. In order to quantify the relation between diminished KGDHC activity and the mitochondrial ATP generation, redox state, transmembrane potential, and generation of reactive oxygen species (ROS) by the respiratory chain (RC), we developed a detailed kinetic model. Model simulations revealed a threshold-like decline of the ATP production rate at about 60% inhibition of KGDHC accompanied by a significant increase of the mitochondrial membrane potential. By contrast, progressive inhibition of the enzyme aconitase had only little impact on these mitochondrial parameters. As KGDHC is susceptible to ROS-dependent inactivation, we also investigated the reduction state of those sites of the RC proposed to be involved in ROS production. The reduction state of all sites except one decreased with increasing degree of KGDHC inhibition suggesting an ROS-reducing effect of KGDHC inhibition. Our model underpins the important role of reduced KGDHC activity in the energetic breakdown of neuronal cells during development of neurodegenerative diseases. PMID:22719765
2009-01-01
The ADH (alcohol dehydrogenase) system is one of the earliest known models of molecular evolution, and is still the most studied in Drosophila. Herein, we studied this model in the genus Anastrepha (Diptera, Tephritidae). Due to the remarkable advantages it presents, it is possible to cross species with different Adh genotypes and with different phenotype traits related to ethanol tolerance. The two species studied here each have a different number of Adh gene copies, whereby crosses generate polymorphisms in gene number and in composition of the genetic background. We measured certain traits related to ethanol metabolism and tolerance. ADH specific enzyme activity presented gene by environment interactions, and the larval protein content showed an additive pattern of inheritance, whilst ADH enzyme activity per larva presented a complex behavior that may be explained by epistatic effects. Regression models suggest that there are heritable factors acting on ethanol tolerance, which may be related to enzymatic activity of the ADHs and to larval mass, although a pronounced environmental effect on ethanol tolerance was also observed. By using these data, we speculated on the mechanisms of ethanol tolerance and its inheritance as well as of associated traits. PMID:21637665
Sewell, Holly L.; Kaster, Anne-Kristin
2017-01-01
ABSTRACT The deep marine subsurface is one of the largest unexplored biospheres on Earth and is widely inhabited by members of the phylum Chloroflexi. In this report, we investigated genomes of single cells obtained from deep-sea sediments of the Peruvian Margin, which are enriched in such Chloroflexi. 16S rRNA gene sequence analysis placed two of these single-cell-derived genomes (DscP3 and Dsc4) in a clade of subphylum I Chloroflexi which were previously recovered from deep-sea sediment in the Okinawa Trough and a third (DscP2-2) as a member of the previously reported DscP2 population from Peruvian Margin site 1230. The presence of genes encoding enzymes of a complete Wood-Ljungdahl pathway, glycolysis/gluconeogenesis, a Rhodobacter nitrogen fixation (Rnf) complex, glyosyltransferases, and formate dehydrogenases in the single-cell genomes of DscP3 and Dsc4 and the presence of an NADH-dependent reduced ferredoxin:NADP oxidoreductase (Nfn) and Rnf in the genome of DscP2-2 imply a homoacetogenic lifestyle of these abundant marine Chloroflexi. We also report here the first complete pathway for anaerobic benzoate oxidation to acetyl coenzyme A (CoA) in the phylum Chloroflexi (DscP3 and Dsc4), including a class I benzoyl-CoA reductase. Of remarkable evolutionary significance, we discovered a gene encoding a formate dehydrogenase (FdnI) with reciprocal closest identity to the formate dehydrogenase-like protein (complex iron-sulfur molybdoenzyme [CISM], DET0187) of terrestrial Dehalococcoides/Dehalogenimonas spp. This formate dehydrogenase-like protein has been shown to lack formate dehydrogenase activity in Dehalococcoides/Dehalogenimonas spp. and is instead hypothesized to couple HupL hydrogenase to a reductive dehalogenase in the catabolic reductive dehalogenation pathway. This finding of a close functional homologue provides an important missing link for understanding the origin and the metabolic core of terrestrial Dehalococcoides/Dehalogenimonas spp. and of reductive dehalogenation, as well as the biology of abundant deep-sea Chloroflexi. PMID:29259088
Soreze, Yohan; Boutron, Audrey; Habarou, Florence; Barnerias, Christine; Nonnenmacher, Luc; Delpech, Hélène; Mamoune, Asmaa; Chrétien, Dominique; Hubert, Laurence; Bole-Feysot, Christine; Nitschke, Patrick; Correia, Isabelle; Sardet, Claude; Boddaert, Nathalie; Hamel, Yamina; Delahodde, Agnès; Ottolenghi, Chris; de Lonlay, Pascale
2013-12-17
Synthesis and apoenzyme attachment of lipoic acid have emerged as a new complex metabolic pathway. Mutations in several genes involved in the lipoic acid de novo pathway have recently been described (i.e., LIAS, NFU1, BOLA3, IBA57), but no mutation was found so far in genes involved in the specific process of attachment of lipoic acid to apoenzymes pyruvate dehydrogenase (PDHc), α-ketoglutarate dehydrogenase (α-KGDHc) and branched chain α-keto acid dehydrogenase (BCKDHc) complexes. Exome capture was performed in a boy who developed Leigh disease following a gastroenteritis and had combined PDH and α-KGDH deficiency with a unique amino acid profile that partly ressembled E3 subunit (dihydrolipoamide dehydrogenase / DLD) deficiency. Functional studies on patient fibroblasts were performed. Lipoic acid administration was tested on the LIPT1 ortholog lip3 deletion strain yeast and on patient fibroblasts. Exome sequencing identified two heterozygous mutations (c.875C > G and c.535A > G) in the LIPT1 gene that encodes a mitochondrial lipoyltransferase which is thought to catalyze the attachment of lipoic acid on PDHc, α-KGDHc, and BCKDHc. Anti-lipoic acid antibodies revealed absent expression of PDH E2, BCKDH E2 and α-KGDH E2 subunits. Accordingly, the production of 14CO2 by patient fibroblasts after incubation with 14Cglucose, 14Cbutyrate or 14C3OHbutyrate was very low compared to controls. cDNA transfection experiments on patient fibroblasts rescued PDH and α-KGDH activities and normalized the levels of pyruvate and 3OHbutyrate in cell supernatants. The yeast lip3 deletion strain showed improved growth on ethanol medium after lipoic acid supplementation and incubation of the patient fibroblasts with lipoic acid decreased lactate level in cell supernatants. We report here a putative case of impaired free or H protein-derived lipoic acid attachment due to LIPT1 mutations as a cause of PDH and α-KGDH deficiencies. Our study calls for renewed efforts to understand the mechanisms of pathology of lipoic acid-related defects and their heterogeneous biochemical expression, in order to devise efficient diagnostic procedures and possible therapies.
Toogood, Helen S; Leys, David; Scrutton, Nigel S
2007-11-01
Electron transferring flavoproteins (ETFs) are soluble heterodimeric FAD-containing proteins that function primarily as soluble electron carriers between various flavoprotein dehydrogenases. ETF is positioned at a key metabolic branch point, responsible for transferring electrons from up to 10 primary dehydrogenases to the membrane-bound respiratory chain. Clinical mutations of ETF result in the often fatal disease glutaric aciduria type II. Structural and biophysical studies of ETF in complex with partner proteins have shown that ETF partitions the functions of partner binding and electron transfer between (a) a 'recognition loop', which acts as a static anchor at the ETF-partner interface, and (b) a highly mobile redox-active FAD domain. Together, this enables the FAD domain of ETF to sample a range of conformations, some compatible with fast interprotein electron transfer. This 'conformational sampling' enables ETF to recognize structurally distinct partners, whilst also maintaining a degree of specificity. Complex formation triggers mobility of the FAD domain, an 'induced disorder' mechanism contrasting with the more generally accepted models of protein-protein interaction by induced fit mechanisms. We discuss the implications of the highly dynamic nature of ETFs in biological interprotein electron transfer. ETF complexes point to mechanisms of electron transfer in which 'dynamics drive function', a feature that is probably widespread in biology given the modular assembly and flexible nature of biological electron transfer systems.
NASA Astrophysics Data System (ADS)
Ge, Chunmei; Yang, Yingge; Fan, Yonghong; Li, Wen; Pan, Renrui; Zheng, Zhiming; Yu, Zengliang
2008-02-01
The wild type strain Rhizopus oryzae PW352 was mutated by means of nitrogen ion implantation (15 keV, 7.8 × 1014 ~ 2.08 × 1015 ions/cm2) to find an industrial strain with a higher L(+)-lactic acid yield, and two mutants RE3303 and RF9052 were isolated. In order to discuss the mechanism primarily, Lactate Dehydrogenase of Rhizopus oryzae was studied. While the two mutants produced L(+)-lactic acid by 75% more than the wild strain did, their specific activity of Lactate Dehydrogenase was found to be higher than that in the wild strain. The optimum temperature of Lactate Dehydrogenase in Rhizopus oryzae RF9052 was higher. Compared to the wild strain, the Michaelis constant (Km) value of Lactate Dehydrogenase in the mutants was changed. All these changes show that L(+)-lactic acid production has a correlation with the specific activity of Lactate Dehydrogenase. The low-energy ions, implanted into the strain, may improve the specific activity of Lactate Dehydrogenase by influencing its gene structure and protein structure.
Debarbouille, Michel; Gardan, Rozenn; Arnaud, Maryvonne; Rapoport, George
1999-01-01
A new gene, bkdR (formerly called yqiR), encoding a regulator with a central (catalytic) domain was found in Bacillus subtilis. This gene controls the utilization of isoleucine and valine as sole nitrogen sources. Seven genes, previously called yqiS, yqiT, yqiU, yqiV, bfmBAA, bfmBAB, and bfmBB and now referred to as ptb, bcd, buk, lpd, bkdA1, bkdA2, and bkdB, are located downstream from the bkdR gene in B. subtilis. The products of these genes are similar to phosphate butyryl coenzyme A transferase, leucine dehydrogenase, butyrate kinase, and four components of the branched-chain keto acid dehydrogenase complex: E3 (dihydrolipoamide dehydrogenase), E1α (dehydrogenase), E1β (decarboxylase), and E2 (dihydrolipoamide acyltransferase). Isoleucine and valine utilization was abolished in bcd and bkdR null mutants of B. subtilis. The seven genes appear to be organized as an operon, bkd, transcribed from a −12, −24 promoter. The expression of the bkd operon was induced by the presence of isoleucine or valine in the growth medium and depended upon the presence of the sigma factor SigL, a member of the sigma 54 family. Transcription of this operon was abolished in strains containing a null mutation in the regulatory gene bkdR. Deletion analysis showed that upstream activating sequences are involved in the expression of the bkd operon and are probably the target of bkdR. Transcription of the bkd operon is also negatively controlled by CodY, a global regulator of gene expression in response to nutritional conditions. PMID:10094682
Lai, Ching-Long; Li, Yeung-Pin; Liu, Chiu-Ming; Hsieh, Hsiu-Shan; Yin, Shih-Jiun
2013-02-25
Previous studies have reported that cimetidine, an H2-receptor antagonist used to treat gastric and duodenal ulcers, can inhibit alcohol dehydrogenases (ADHs) and ethanol metabolism. Human alcohol dehydrogenases and aldehyde dehydrogenases (ALDHs), the principal enzymes responsible for metabolism of ethanol, are complex enzyme families that exhibit functional polymorphisms among ethnic groups and distinct tissue distributions. We investigated the inhibition by cimetidine of alcohol oxidation by recombinant human ADH1A, ADH1B1, ADH1B2, ADH1B3, ADH1C1, ADH1C2, ADH2, and ADH4, and aldehyde oxidation by ALDH1A1 and ALDH2 at pH 7.5 and a cytosolic NAD(+) concentration. Cimetidine acted as competitive or noncompetitive inhibitors for the ADH and ALDH isozymes/allozymes with near mM inhibition constants. The metabolic interactions between cimetidine and ethanol/acetaldehyde were assessed by computer simulation using the inhibition equations and the determined kinetic constants. At therapeutic drug levels (0.015 mM) and physiologically relevant concentrations of ethanol (10 mM) and acetaldehyde (10 μM) in target tissues, cimetidine could weakly inhibit (<5%) the activities of ADH1B2 and ADH1B3 in liver, ADH2 in liver and small intestine, ADH4 in stomach, and ALDH1A1 in the three tissues, but not significantly affect ADH1A, ADH1B1, ADH1C1/2, or ALDH2. At higher drug levels, which may accumulate in cells (0.2 mM), the activities of the weakly-inhibited enzymes may be decreased more significantly. The quantitative effects of cimetidine on metabolism of ethanol and other physiological substrates of ADHs need further investigation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
AROMATIC METABOLISM IN PLANTS. I. A STUDY OF THE PREPHENATE DEHYDROGENASE FROM BEAN PLANTS,
achieved in the pH range from 7 to 8. The enzyme is inhibited by sulphydryl complexing compounds. Addition of phenylalanine, tyrosine, or cinnamate ...mung bean (Phaseolus aureus Roxb.). A study was made of the variation in the amount of prephenate dehydrogenase and aromatic amino acid transaminase in
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Masato; Wynn, R. Max; Chuang, Jacinta L.
2009-09-11
We report the crystal structures of the phosporylated pyruvate dehydrogenase (E1p) component of the human pyruvate dehydrogenase complex (PDC). The complete phosphorylation at Ser264-{alpha} (site 1) of a variant E1p protein was achieved using robust pyruvate dehydrogenase kinase 4 free of the PDC core. We show that unlike its unmodified counterpart, the presence of a phosphoryl group at Ser264-{alpha} prevents the cofactor thiamine diphosphate-induced ordering of the two loops carrying the three phosphorylation sites. The disordering of these phosphorylation loops is caused by a previously unrecognized steric clash between the phosphoryl group at site 1 and a nearby Ser266-{alpha}, whichmore » nullifies a hydrogen-bonding network essential for maintaining the loop conformations. The disordered phosphorylation loops impede the binding of lipoyl domains of the PDC core to E1p, negating the reductive acetylation step. This results in the disruption of the substrate channeling in the PDC, leading to the inactivation of this catalytic machine.« less
Role of quinate dehydrogenase in quinic acid metabolism in conifers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osipov, V.I.; Shein, I.V.
1986-08-10
Quinate dehydrogenase was isolated from young needles of the Siberian larch and partially purified by ammonium sulfate fractionation. It was found that in conifers, in contrast to other plants, quinate dehydrogenase is active both with NAD and with NADP. The values of K/sub m/ for quinate and NADP were 1.8 and 0.18 mM. The enzyme exhibits maximum activity at pH 9.0. It was assumed that NADP-dependent quinate dehydrogenase is responsible for quinic acid synthesis. The special features of the organization and regulation of the initial stages of the shikimate pathway in conifers are discussed.
Samokhvalov, V; Ignatov, V; Kondrashova, M
2004-01-01
We investigated oxidative processes in mitochondria of Saccharomyces cerevisiae grown on ethanol in the course of chronological aging. We elaborated a model of chronological aging that avoids the influence of exhaustion of medium, as well as the accumulation of toxic metabolites during aging. A decrease in total respiration of cells and, even more, of the contribution of respiration coupled with ATP-synthesis was observed during aging. Aging is also related with the decrease of the contribution of malonate-insensitive respiration. Activities of citrate-synthase (CS), alpha-ketoglutarate dehydrogenase (KGDH) and malate dehydrogenase (MDH) were threefold decreased. The activity of NADP-dependent isocitrate dehydrogenase (NADP-ICDH) decreased more significantly, while the activity of NAD-dependent isocitrate dehydrogenase (NAD-ICDH) fell even greater, being completely inactivated on the third week of aging. In contrast, succinate dehydrogenase (SDH), enzymes of glyoxylate cycle (GCL) (isocitrate lyase (ICL) and malate synthase (MLS)), and enzymes of ethanol oxidation (alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ACDH)), were activated by 50% or more. The behavior of oxidative enzymes and metabolic pathways are apparently inherent to a more viable, long-lived cells in population, selected in the course of chronological aging. This selection allows cells to reveal the mechanism of their higher viability as caused by shunting of complete Krebs cycle by glyoxylate cycle, with a concomitant increased rate of the most efficient energy source, namely succinate formation and oxidation. Thiobarbituric-reactive species (TAR species) increased during aging. We supposed that to be the immediate cause of damage of a part of yeast population. These data show that a greater succinate contribution to respiration in more active cells is a general property of yeast and animal tissues.
Agrawal, Vishwanath P.; Kolattukudy, P. E.
1977-01-01
A cell-free extract obtained from suberizing potato (Solanum tuberosum L.) tuber disks catalyzed the conversion of 16-hydroxy[G-3H]hexadecanoic acid to the corresponding dicarboxylic acid with NADP or NAD as the cofactor, with a slight preference for the former. This ω-hydroxyacid dehydrogenase activity, located largely in the 100,000g supernatant fraction, has a pH optimum of 9.5. It showed an apparent Km of 50 μM for 16-hydroxyhexadecanoic acid. The dehydrogenase activity was inhibited by thiol reagents, such as p-chloromercuribenzoate, N-ethylmaleimide, and iodoacetamide, and this dehydrogenase is shown to be different from alcohol dehydrogenase. That 16-oxohexadecanoic acid was an intermediate in the conversion of 16-hydroxyhexadecanoic acid to the corresponding dicarboxylic acid was suggested by the observation that the cell-free extract also catalyzed the conversion of 16-oxohexadecanoic acid to the dicarboxylic acid, with NADP as the preferred cofactor. The time course of development of the ω-hydroxyacid dehydrogenase activity in the suberizing potato disks correlated with the rate of deposition of suberin. Experiments with actinomycin D and cycloheximide suggested that the transcriptional processes, which are directly related to suberin biosynthesis and ω-hydroxyacid dehydrogenase biosynthesis, occurred between 72 and 96 hours after wounding. These results strongly suggest that a wound-induced ω-hydroxyacid dehydrogenase is involved in suberin biosynthesis in potato disks. PMID:16659915
Gupta, Surbhi; Sharma, Bhupesh
2014-06-05
Huntington׳s disease (HD), a devastating neurodegenerative disorder, is characterized by weight loss, impairment of motor function, cognitive dysfunction, neuropsychiatric disturbances and striatal damage. Phosphodiesterase-1 (PDE1) has been implicated in various neurological diseases. Mitochondrial potassium channels in the brain take part in neuroprotection. This study has been structured to investigate the role of vinpocetine, a selective PDE1 inhibitor as well as nicorandil, selective ATP sensitive potassium (KATP) channel opener in 3-nitropropionic acid (3-NP) induced HD symptoms in rats. Systemic administration of 3-NP significantly, reduced body weight, impaired locomotion, grip strength and impaired cognition. 3-NP elicited marked oxidative stress in the brain (enhanced malondialdehyde-MDA, reduced glutathione-GSH content, superoxide dismutase-SOD and catalase-CAT), elevated brain acetylcholinesterase activity and inflammation (myeloperoxidase-MPO), with marked nitrosative stress (nitrite/nitrate) in the brain. 3-NP has also induced mitochondrial dysfunction (impaired mitochondrial NADH dehydrogenase-complex I, succinate dehydrogenase-complex II and cytochrome oxidase-complex IV) activities in the striatum of the rat. Tetrabenazine was used as a positive control. Treatment with vinpocetine, nicorandil and tetrabenazine ameliorated 3-NP induced reduction in body weight, impaired locomotion, grip strength and impaired cognition. Treatment with these drugs reduced brain striatum oxidative (MDA, GSH, SOD and CAT) and nitrosative (nitrite/nitrate) stress, acetylcholinesterase activity, inflammation and mitochondrial dysfunctions. These results indicate that vinpocetine, a selective PDE1 inhibitor and nicorandil, a KATP channel opener have attenuated 3-NP induced experimental HD. Hence, pharmacological modulation of PDE1 as well as KATP channels may be considered as potential research targets for mitigation of HD. Copyright © 2014 Elsevier B.V. All rights reserved.
Bharathi, Sivakama S.; Zhang, Yuxun; Mohsen, Al-Walid; Uppala, Radha; Balasubramani, Manimalha; Schreiber, Emanuel; Uechi, Guy; Beck, Megan E.; Rardin, Matthew J.; Vockley, Jerry; Verdin, Eric; Gibson, Bradford W.; Hirschey, Matthew D.; Goetzman, Eric S.
2013-01-01
Long-chain acyl-CoA dehydrogenase (LCAD) is a key mitochondrial fatty acid oxidation enzyme. We previously demonstrated increased LCAD lysine acetylation in SIRT3 knockout mice concomitant with reduced LCAD activity and reduced fatty acid oxidation. To study the effects of acetylation on LCAD and determine sirtuin 3 (SIRT3) target sites, we chemically acetylated recombinant LCAD. Acetylation impeded substrate binding and reduced catalytic efficiency. Deacetylation with recombinant SIRT3 partially restored activity. Residues Lys-318 and Lys-322 were identified as SIRT3-targeted lysines. Arginine substitutions at Lys-318 and Lys-322 prevented the acetylation-induced activity loss. Lys-318 and Lys-322 flank residues Arg-317 and Phe-320, which are conserved among all acyl-CoA dehydrogenases and coordinate the enzyme-bound FAD cofactor in the active site. We propose that acetylation at Lys-318/Lys-322 causes a conformational change which reduces hydride transfer from substrate to FAD. Medium-chain acyl-CoA dehydrogenase and acyl-CoA dehydrogenase 9, two related enzymes with lysines at positions equivalent to Lys-318/Lys-322, were also efficiently deacetylated by SIRT3 following chemical acetylation. These results suggest that acetylation/deacetylation at Lys-318/Lys-322 is a mode of regulating fatty acid oxidation. The same mechanism may regulate other acyl-CoA dehydrogenases. PMID:24121500
Proton mediated control of biochemical reactions with bioelectronic pH modulation
NASA Astrophysics Data System (ADS)
Deng, Yingxin; Miyake, Takeo; Keene, Scott; Josberger, Erik E.; Rolandi, Marco
2016-04-01
In Nature, protons (H+) can mediate metabolic process through enzymatic reactions. Examples include glucose oxidation with glucose dehydrogenase to regulate blood glucose level, alcohol dissolution into carboxylic acid through alcohol dehydrogenase, and voltage-regulated H+ channels activating bioluminescence in firefly and jellyfish. Artificial devices that control H+ currents and H+ concentration (pH) are able to actively influence biochemical processes. Here, we demonstrate a biotransducer that monitors and actively regulates pH-responsive enzymatic reactions by monitoring and controlling the flow of H+ between PdHx contacts and solution. The present transducer records bistable pH modulation from an “enzymatic flip-flop” circuit that comprises glucose dehydrogenase and alcohol dehydrogenase. The transducer also controls bioluminescence from firefly luciferase by affecting solution pH.
Groysman, Stanislav; Majumdar, Amit; Zheng, Shao-Liang; Holm, R H
2010-02-01
Reactions directed at the synthesis of structural analogues of the active site of molybdenum-containing carbon monoxide dehydrogenase have been investigated utilizing [WO(2)S(bdt)](2-) (1) and [WOS(2)(bdt)](2-) (2) and sterically hindered [Cu(R)L] or [Cu(SSiR'(3))(2)](-) as reactants. All successful reactions of 2 afford the binuclear W(VI)/Cu(I) products [WO(bdt)(mu(2)-S)(2)Cu(L)](2-/-) with L = carbene (3), Ar*S (4), Ar* (7), SSiR(3) (R = Ph (5), Pr(i) (6)). Similarly, [W(bdt)(OSiPh(3))S(2)](-) leads to [W(bdt)(OSiPh(3))(mu(2)-S)(2)Cu(SAr*)](-) (8). These complexes, with apical oxo and basal dithiolato and sulfido coordination (excluding 8), terminal thiolate ligation at Cu(I) (4-6, 8), and W-(mu(2)-S)-Cu bridging, bear a structural resemblance to the enzyme site. Differences include two bridges instead of one and the absence of basal oxo/hydroxo ligation. Complex 8 differs from the others by utilizing apical and basal sulfido ligands in bridge formation. Related reaction systems based on 1 gave 4 in small yield or product mixtures in which the desired monobridged complex [WO(2)(bdt)(mu(2)-S)Cu(R)](2-) was not detected. Mass spectrometric analysis of the reaction system with L = carbene suggests that any monobridged species forms may converted to the dibridged form by disproportionation. In these experiments, the use of W(VI) preserves the structural integrity of Mo(VI), whose analogues of 1 and 2 have not been isolated. (Ar* = 2,6-bis(2,4,6-triisopropylphenyl)phenyl, bdt = benzene-1,2-dithiolate(2-)).
Uche-Nwachi, E O; Caxton-Martins, A E
1997-06-01
Histochemical studies of the activities of glucose-6-phosphate dehydrogenase (G-6-PD) and D5-3 beta-hydroxysteroid dehydrogenase (D5-3 beta-HSD) in the ovaries of 40 day old litters of Wistar rats whose mothers were folic acid deficient from the 13th day of gestation showed very weak or no enzyme activity. Biochemical estimations of these enzymes showed that the specific activity of 3 beta-HSD in the experimental animal was 20% that of control while that of G-6-PD in the experimental animals was 14% that of control. This implies that folic acid deficiency instituted at a critical period in gestation in Wistar rats adversely affects steroidogenesis in the ovaries of their litters.
Novel mutations in IBA57 are associated with leukodystrophy and variable clinical phenotypes.
Torraco, Alessandra; Ardissone, Anna; Invernizzi, Federica; Rizza, Teresa; Fiermonte, Giuseppe; Niceta, Marcello; Zanetti, Nadia; Martinelli, Diego; Vozza, Angelo; Verrigni, Daniela; Di Nottia, Michela; Lamantea, Eleonora; Diodato, Daria; Tartaglia, Marco; Dionisi-Vici, Carlo; Moroni, Isabella; Farina, Laura; Bertini, Enrico; Ghezzi, Daniele; Carrozzo, Rosalba
2017-01-01
Defects of the Fe/S cluster biosynthesis represent a subgroup of diseases affecting the mitochondrial energy metabolism. In the last years, mutations in four genes (NFU1, BOLA3, ISCA2 and IBA57) have been related to a new group of multiple mitochondrial dysfunction syndromes characterized by lactic acidosis, hyperglycinemia, multiple defects of the respiratory chain complexes, and impairment of four lipoic acid-dependent enzymes: α-ketoglutarate dehydrogenase complex, pyruvic dehydrogenase, branched-chain α-keto acid dehydrogenase complex and the H protein of the glycine cleavage system. Few patients have been reported with mutations in IBA57 and with variable clinical phenotype. Herein, we describe four unrelated patients carrying novel mutations in IBA57. All patients presented with combined or isolated defect of complex I and II. Clinical features varied widely, ranging from fatal infantile onset of the disease to acute and severe psychomotor regression after the first year of life. Brain MRI was characterized by cavitating leukodystrophy. The identified mutations were never reported previously and all had a dramatic effect on IBA57 stability. Our study contributes to expand the array of the genotypic variation of IBA57 and delineates the leukodystrophic pattern of IBA57 deficient patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuang, J.L.; Chuang, D.T.; Cox, R.P.
1996-06-01
Maple syrup urine disease (MSUD) or branched-chain ketoaciduria is caused by a deficiency in the mitochondrial branched-chain {alpha}-ketoacid dehydrogenase (BCKAD) complex. The clinical manifestations are characterized by accumulation of branched chain amino and {alpha}-ketoacids, which leads to severe cerebral edema with seizures, ketoacidosis, and mental retardation. The BCKAD complex comprises three catalytic components, i.e., a decarboxylase (E1) consisting of two E1{alpha} (M{sub r} = 46,000) and two E1{Beta} (M{sub r} = 37,500) subunits, a transacylase (E2) that contains 24 lipoic acid-bearing subunits, and a dehydrogenase (E3), which is a homodimeric flavoprotein. MSUD is genetically heterogeneous, since mutations in the E1{alpha}more » subunit (type IA MSUD), the E1{Beta} subunit (type IB), the E2 subunit (type II) and the E3 subunit (type III) have been described. The functional consequences of certain mutations in the BCKAD complex have been studied. 23 refs., 3 figs.« less
Kobylyns'ka, L I; Havryliuk, D Ia; Riabtseva, A O; Mitina, N Ie; Zaichenko, O S; Zimenkovskyĭ, B S; Stoĭka, R S
2014-01-01
The aim of this study was to measure the activity of enzymes which reflect cardiotoxic action in rats of novel synthetic 4-thiazolidone derivatives--3882, 3288 and 3833 that demonstrated antineoplastic effect in vitro towards 60 lines of human tumor cells tested in the framework of the program of screening new anticancer drugs at the National Cancer Institute (USA). Such action of these compounds was compared with the effect of well known anticancer agent doxorubicin and after conjugation of all above mentioned substances with new polyethylenglycol-containing polymeric comb-like carrier that was synthesized by the authors. Among the biochemical indicators of cardiotoxic action of anticancer agents, activity of the following enzymes in rat blood serum showed to be the most informative: creatine kinase, lactate dehydrogenase, aspartate aminotransferase, and alanine aminotransterase. Tenfold injection of doxorubicin in a dose of 5.5 mg/kg of weight caused rats' death, while 3882, 3288 and 3833 preparations had not such action. Application of the doxorubicin in combination with polymeric carrier prolonged the survival time to 20 days. Thus, the injection of anticancer agents in a complex with polymeric carrier provides a significant decrease in their cardiotoxicity that was confirmed by the corresponding changes in the activity of marker enzymes: creatine kinase, lactate dehydrogenase, aspartate aminotransferase and alanine aminotransferase in blood serum of treated rats.
Holton, Simon J; Anandhakrishnan, Madhankumar; Geerlof, Arie; Wilmanns, Matthias
2013-02-01
Hydroxyacid dehydrogenases, responsible for the stereospecific conversion of 2-keto acids to 2-hydroxyacids in lactic acid producing bacteria, have a range of biotechnology applications including antibiotic synthesis, flavor development in dairy products and the production of valuable synthons. The genome of Lactobacillus delbrueckii ssp. bulgaricus, a member of the heterogeneous group of lactic acid bacteria, encodes multiple hydroxyacid dehydrogenases whose structural and functional properties remain poorly characterized. Here, we report the apo and coenzyme NAD⁺ complexed crystal structures of the L. bulgaricusD-isomer specific 2-hydroxyacid dehydrogenase, D2-HDH. Comparison with closely related members of the NAD-dependent dehydrogenase family reveals that whilst the D2-HDH core fold is structurally conserved, the substrate-binding site has a number of non-canonical features that may influence substrate selection and thus dictate the physiological function of the enzyme. Copyright © 2012 Elsevier Inc. All rights reserved.
Lo, Jonathan; Zheng, Tianyong; Hon, Shuen; Olson, Daniel G; Lynd, Lee R
2015-04-01
Thermoanaerobacterium saccharolyticum and Clostridium thermocellum are anaerobic thermophilic bacteria being investigated for their ability to produce biofuels from plant biomass. The bifunctional alcohol and aldehyde dehydrogenase gene, adhE, is present in these bacteria and has been known to be important for ethanol formation in other anaerobic alcohol producers. This study explores the inactivation of the adhE gene in C. thermocellum and T. saccharolyticum. Deletion of adhE reduced ethanol production by >95% in both T. saccharolyticum and C. thermocellum, confirming that adhE is necessary for ethanol formation in both organisms. In both adhE deletion strains, fermentation products shifted from ethanol to lactate production and resulted in lower cell density and longer time to reach maximal cell density. In T. saccharolyticum, the adhE deletion strain lost >85% of alcohol dehydrogenase (ADH) activity. Aldehyde dehydrogenase (ALDH) activity did not appear to be affected, although ALDH activity was low in cell extracts. Adding ubiquinone-0 to the ALDH assay increased activity in the T. saccharolyticum parent strain but did not increase activity in the adhE deletion strain, suggesting that ALDH activity was inhibited. In C. thermocellum, the adhE deletion strain lost >90% of ALDH and ADH activity in cell extracts. The C. thermocellum adhE deletion strain contained a point mutation in the lactate dehydrogenase gene, which appears to deregulate its activation by fructose 1,6-bisphosphate, leading to constitutive activation of lactate dehydrogenase. Thermoanaerobacterium saccharolyticum and Clostridium thermocellum are bacteria that have been investigated for their ability to produce biofuels from plant biomass. They have been engineered to produce higher yields of ethanol, yet questions remain about the enzymes responsible for ethanol formation in these bacteria. The genomes of these bacteria encode multiple predicted aldehyde and alcohol dehydrogenases which could be responsible for alcohol formation. This study explores the inactivation of adhE, a gene encoding a bifunctional alcohol and aldehyde dehydrogenase. Deletion of adhE reduced ethanol production by >95% in both T. saccharolyticum and C. thermocellum, confirming that adhE is necessary for ethanol formation in both organisms. In strains without adhE, we note changes in biochemical activity, product formation, and growth. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Yoshioka, T; Uematsu, T
1998-07-01
The formation of N-hydroxy-N-arylacylamides from nitroso aromatic compounds and 2-oxo acids was investigated using rat liver subcellular fractions. Activities were found in both mitochondria and cytosol, except for activities for phenylpyruvate and glyoxylate; the former did not produce N-hydroxy-N-phenylphenylacetamide and the latter nonenzymatically produced N-hydroxy-N-phenylformamide with nitrosobenzene (NOB). The cytosolic activity of N-hydroxy-N-phenylglycolamide formation was indicated to be due to transketolase, which utilized hydroxypyruvate as a glycolic aldehyde donor to NOB. With mitochondria, 2-oxo acids (including hydroxypyruvate) served as substrates for the biotransformation of NOB to the corresponding N-hydroxy-N-phenylacylamides. The substrate preference was 2-oxobutyrate > pyruvate > 2-oxoisovalerate > 2-oxoisocaproate > 2-oxovalerate > 2-oxo-3-methylvalerate, judging from Vmax/half-saturating concentration for mitochondria values. The half-saturating concentrations for NOB were nearly constant. The mitochondrial activity was due to pyruvate dehydrogenase complex and branched-chain 2-oxo acid dehydrogenase complex (BCDHC). By using partially purified BCDHC, pyruvate and 2-oxobutyrate were found to be common substrates for both of the enzymes, and 2-oxoisovalerate was shown to be the most effective substrate for BCDHC. Analysis by the Taft equation indicated that the polar effects, rather than the steric effects, of the alkyl groups of 2-oxo acids are important for BCDHC-catalyzed formation of N-hydroxy-N-phenylacylamides. A positive Hammett constant obtained for the formation of N-hydroxy-N-arylisobutyramides indicates that an electron-withdrawing substituent makes the nitroso compounds susceptible to BCDHC-catalyzed biotransformation.
NASA Technical Reports Server (NTRS)
Ishihara, A.; Ohira, Y.; Roy, R. R.; Nagaoka, S.; Sekiguchi, C.; Hinds, W. E.; Edgerton, V. R.
1997-01-01
The cross-sectional areas and succinate dehydrogenase activities of L5 dorsal root ganglion neurons in rats were determined after 14 days of spaceflight and after nine days of recovery. The mean and distribution of the cross-sectional areas were similar to age-matched, ground-based controls for both the spaceflight and for the spaceflight plus recovery groups. The mean succinate dehydrogenase activity was significantly lower in spaceflight compared to aged-matched control rats, whereas the mean succinate dehydrogenase activity was similar in age-matched control and spaceflight plus recovery rats. The mean succinate dehydrogenase activity of neurons with cross-sectional areas between 1000 and 2000 microns2 was lower (between 7 and 10%) in both the spaceflight and the spaceflight plus recovery groups compared to the appropriate control groups. The reduction in the oxidative capacity of a subpopulation of sensory neurons having relatively large cross-sectional areas immediately following spaceflight and the sustained depression for nine days after returning to 1 g suggest that the 0 g environment induced significant alterations in proprioceptive function.
Sensory-motor polyneuropathy occurring in variant maple syrup urine disease.
Harty, S; King, M D; McCoy, B; Costigan, D; Treacy, E P
2008-12-01
Maple syrup urine disease (MSUD; OMIM 248600) results from an inherited deficiency of the branched-chain ketoacid dehydrogenase (BCKD) complex. Approximately 20% of patients with BCKD deficiency are non-classic variants of MSUD with differing clinical severity. Outcomes for this cohort are generally favourable; episodes of metabolic decompensation do not appear to correlate with adverse events if acute management is promptly provided. A case of predominantly axonal sensory-motor neuropathy following metabolic decompensation which persisted for a number of months is presented in an adolescent girl with variant (intermediate type) MSUD. EMG and nerve conduction studies suggested a pre-existent asymptomatic chronic neuropathy, exacerbated by the acute decompensation. Peak leucine concentration at decompensation was 1083 μmol/L. The patient had laboratory signs of secondary mitochondrial respiratory chain dysfunction at presentation. She had been on a moderate dose of thiamine prior to decompensation; thiamine and pyridoxine blood concentrations were normal. This, to our knowledge, is the first report of a neuropathy presenting in a patient with a decompensation of variant MSUD. We propose that this presentation resembles the intermittent neuropathy observed in pyruvate dehydrogenase deficiency and may reflect secondary inhibition of pyruvate dehydrogenase activity by MSUD metabolites.
1991-01-01
DEFICIENCY OF GLUCOSE - 6 - PHOSPHATE DEHYDROGENASE (G- 6 ...the prevalence of deficient activity of the enzyme glucose - 6 - phosphate dehydrogenase (G- 6 -PD) among - Ces difficiences enzymatiques sant plus particu...Screening for glucose - 6 - 3 - CaosBy W.H. - Hematologic diseases. In : I lunter’s Tropical phosphate dehydrogenase (G- 6 -PD) deficiency by a simple
Rashed, H M; Waller, F M; Patel, T B
1988-04-25
The metabolic flux through the alpha-ketoglutarate dehydrogenase reaction in perfused livers was monitored by measuring the rate of 14CO2 production from [1-14C]alpha-ketoglutarate. The rates of 14CO2 production and glucose production from [1-14C]alpha-ketoglutarate were increased with increasing perfusate alpha-ketoglutarate concentrations. Vasopressin, angiotensin II, and the alpha 1-adrenergic agonist phenylephrine stimulated transiently by 2.5-fold the metabolic flux through the alpha-ketoglutarate dehydrogenase reaction in the presence and absence of Ca2+ in the perfusion medium. High concentrations of glucagon (1 x 10(-8) M) and 8-p-chlorophenylthio-cAMP (100 microM) (data not shown) also stimulated transiently the metabolic flux through the alpha-ketoglutarate dehydrogenase reaction. However, lower glucagon concentrations (1 x 10(-9) M) stimulated the rate of 14CO2 production from [1-14C]alpha-ketoglutarate only under conditions optimized to fix the cellular oxidation-reduction state at an intermediate level, when glucagon (1 x 10(-9) M)-mediated elevation of cAMP content was greater than that observed under highly oxidizing and reducing conditions. These data indicate that agonists which increase cytosolic free Ca2+ levels stimulate the metabolic flux through the alpha-ketoglutarate dehydrogenase complex. Furthermore, the data presented here demonstrate for the first time that physiological glucagon concentrations stimulate the metabolic flux through the alpha-ketoglutarate dehydrogenase reaction only under conditions known to be optimal for glucagon-mediated Ca2+ mobilization in the isolated perfused rat liver.
Ghosh, D; Weeks, C M; Grochulski, P; Duax, W L; Erman, M; Rimsay, R L; Orr, J C
1991-01-01
The x-ray structure of a short-chain dehydrogenase, the bacterial holo 3 alpha,20 beta-hydroxysteroid dehydrogenase (EC 1.1.1.53), is described at 2.6 A resolution. This enzyme is active as a tetramer and crystallizes with four identical subunits in the asymmetric unit. It has the alpha/beta fold characteristic of the dinucleotide binding region. The fold of the rest of the subunit, the quaternary structure, and the nature of the cofactor-enzyme interactions are, however, significantly different from those observed in the long-chain dehydrogenases. The architecture of the postulated active site is consistent with the observed stereospecificity of the enzyme and the fact that the tetramer is the active form. There is only one cofactor and one substrate-binding site per subunit; the specificity for both 3 alpha- and 20 beta-ends of the steroid results from the binding of the steroid in two orientations near the same cofactor at the same catalytic site. Images PMID:1946424
Popova, Antoaneta V; Rausch, Saskia; Hundertmark, Michaela; Gibon, Yves; Hincha, Dirk K
2015-10-01
The accumulation of Late Embryogenesis Abundant (LEA) proteins in plants is associated with tolerance against stresses such as freezing and desiccation. Two main functions have been attributed to LEA proteins: membrane stabilization and enzyme protection. We have hypothesized previously that LEA7 from Arabidopsis thaliana may stabilize membranes because it interacts with liposomes in the dry state. Here we show that LEA7, contrary to this expectation, did not stabilize liposomes during drying and rehydration. Instead, it partially preserved the activity of the enzyme lactate dehydrogenase (LDH) during drying and freezing. Fourier-transform infrared (FTIR) spectroscopy showed no evidence of aggregation of LDH in the dry or rehydrated state under conditions that lead to complete loss of activity. To approximate the complex influence of intracellular conditions on the protective effects of a LEA protein in a convenient in-vitro assay, we measured the activity of two Arabidopsis enzymes (glucose-6-P dehydrogenase and ADP-glucose pyrophosphorylase) in total soluble leaf protein extract (Arabidopsis soluble proteome, ASP) after drying and rehydration or freezing and thawing. LEA7 partially preserved the activity of both enzymes under these conditions, suggesting its role as an enzyme protectant in vivo. Further FTIR analyses indicated the partial reversibility of protein aggregation in the dry ASP during rehydration. Similarly, aggregation in the dry ASP was strongly reduced by LEA7. In addition, mixtures of LEA7 with sucrose or verbascose reduced aggregation more than the single additives, presumably through the effects of the protein on the H-bonding network of the sugar glasses. Copyright © 2015 Elsevier B.V. All rights reserved.
Reversible inactivation of CO dehydrogenase with thiol compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreß, Oliver; Gnida, Manuel; Pelzmann, Astrid M.
2014-05-09
Highlights: • Rather large thiols (e.g. coenzyme A) can reach the active site of CO dehydrogenase. • CO- and H{sub 2}-oxidizing activity of CO dehydrogenase is inhibited by thiols. • Inhibition by thiols was reversed by CO or upon lowering the thiol concentration. • Thiols coordinate the Cu ion in the [CuSMo(=O)OH] active site as a third ligand. - Abstract: Carbon monoxide dehydrogenase (CO dehydrogenase) from Oligotropha carboxidovorans is a structurally characterized member of the molybdenum hydroxylase enzyme family. It catalyzes the oxidation of CO (CO + H{sub 2}O → CO{sub 2} + 2e{sup −} + 2H{sup +}) which proceedsmore » at a unique [CuSMo(=O)OH] metal cluster. Because of changing activities of CO dehydrogenase, particularly in subcellular fractions, we speculated whether the enzyme would be subject to regulation by thiols (RSH). Here we establish inhibition of CO dehydrogenase by thiols and report the corresponding K{sub i}-values (mM): L-cysteine (5.2), D-cysteine (9.7), N-acetyl-L-cysteine (8.2), D,L-homocysteine (25.8), L-cysteine–glycine (2.0), dithiothreitol (4.1), coenzyme A (8.3), and 2-mercaptoethanol (9.3). Inhibition of the enzyme was reversed by CO or upon lowering the thiol concentration. Electron paramagnetic resonance spectroscopy (EPR) and X-ray absorption spectroscopy (XAS) of thiol-inhibited CO dehydrogenase revealed a bimetallic site in which the RSH coordinates to the Cu-ion as a third ligand ([Mo{sup VI}(=O)OH{sub (2)}SCu{sup I}(SR)S-Cys]) leaving the redox state of the Cu(I) and the Mo(VI) unchanged. Collectively, our findings establish a regulation of CO dehydrogenase activity by thiols in vitro. They also corroborate the hypothesis that CO interacts with the Cu-ion first. The result that thiol compounds much larger than CO can freely travel through the substrate channel leading to the bimetallic cluster challenges previous concepts involving chaperone function and is of importance for an understanding how the sulfuration step in the assembly of the bimetallic cluster might proceed.« less
Ozcicek, Fatih; Aktas, Mehmet; Türkmen, Kultigin; Coban, T Abdulkadir; Cankaya, Murat
2014-07-01
Iron is an essential element that is necessary for all cells in the body. Iron deficiency anemia (IDA) is one of the most common nutritional disorders in both developed and developing countries. The glutathione pathway is paramount to antioxidant defense and glucose-6-phosphate dehydrogenase (G6PD)-deficient cells do not cope well with oxidative damage. The goal of this study was to check the activities of G6PD, 6-phosphogluconate dehydrogenase, glutathione reductase in patients with IDA. We analyzed the plasma samples of 102 premenopausal women with IDA and 88 healthy control subjects. Glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activity as compared to the reduction of NADP +, glutathione reductase activity was performed based on the oxidation of NADPH. 2 ml of plasma were used in all analyzes. SPSS program was used for all of the statistical analysis. Diagnosis of iron deficiency in patients belonging to the analysis of blood were ferritin 3.60 ± 2.7 ng / mL, hemoglobin 9.4 ± 1.5 mg / dl and hematocrit 30.7 ± 4.1% ratio; in healthy subjects ferritin 53.5 ± 41.7 ng/ml, hemoglobin level 13.9 ± 1.3 mg / dl and hematocrit ratio 42 ± 3.53%. When compared to healthy subjects the glutathione reductase level (P<0.001) was found to be significantly higher in patients with IDA. IDA patients with moderate and severe anemia had lower GR activity when compared to IDA patients with mild anemia. But the plasma levels of glucose-6-phosphate dehydrogenase (P<0,600) and 6-phosphogluconate dehydrogenase (P<0,671) did not show any differences between healthy subjects and in patients with IDA. It was shown that Glucose-6-Phosphate Dehydrogenase and 6-Phosphogluconate Dehydrogenase have no effect on iron-deficiency anemia in patients. The plasma GR levels of premenopausal women with IDA were found to be higher compared to healthy subjects, which could be secondary to erythrocyte protection against oxidative stress being commonly seen in IDA.
The role of Pyruvate Dehydrogenase Complex in cardiovascular diseases.
Sun, Wanqing; Liu, Quan; Leng, Jiyan; Zheng, Yang; Li, Ji
2015-01-15
The regulation of mammalian myocardial carbohydrate metabolism is complex; many factors such as arterial substrate and hormone levels, coronary flow, inotropic state and the nutritional status of the tissue play a role in regulating mammalian myocardial carbohydrate metabolism. The Pyruvate Dehydrogenase Complex (PDHc), a mitochondrial matrix multienzyme complex, plays an important role in energy homeostasis in the heart by providing the link between glycolysis and the tricarboxylic acid (TCA) cycle. In TCA cycle, PDHc catalyzes the conversion of pyruvate into acetyl-CoA. This review determines that there is altered cardiac glucose in various pathophysiological states consequently causing PDC to be altered. This review further summarizes evidence for the metabolism mechanism of the heart under normal and pathological conditions including ischemia, diabetes, hypertrophy and heart failure. Copyright © 2014 Elsevier Inc. All rights reserved.
Ries, Laure Nicolas Annick; de Assis, Leandro José; Rodrigues, Fernando José Santos; Caldana, Camila; Rocha, Marina Campos; Malavazi, Iran; Bayram, Özgür; Goldman, Gustavo H
2018-05-24
The pyruvate dehydrogenase complex (PDH), that converts pyruvate to acetyl-coA, is regulated by pyruvate dehydrogenase kinases (PDHK) and phosphatases (PDHP) that have been shown to be important for morphology, pathogenicity and carbon source utilisation in different fungal species. The aim of this study was to investigate the role played by the three PDHKs PkpA, PkpB and PkpC in carbon source utilisation in the reference filamentous fungus Aspergillus nidulans , in order to unravel regulatory mechanisms which could prove useful for fungal biotechnological and biomedical applications. PkpA and PkpB were shown to be mitochondrial whereas PkpC localised to the mitochondria in a carbon source-dependent manner. Only PkpA was shown to regulate PDH activity. In the presence of glucose, deletion of pkpA and pkpC resulted in reduced glucose utilisation, which affected carbon catabolite repression (CCR) and hydrolytic enzyme secretion, due to de-regulated glycolysis and TCA cycle enzyme activities. Furthermore, PkpC was shown to be required for the correct metabolic utilisation of cellulose and acetate. PkpC negatively regulated the activity of the glyoxylate cycle enzyme isocitrate lyase (ICL), required for acetate metabolism. In summary, this study identified PDHKs important for the regulation of central carbon metabolism in the presence of different carbon sources, with effects on the secretion of biotechnologically important enzymes and carbon source-related growth. This work demonstrates how central carbon metabolism can affect a variety of fungal traits and lays a basis for further investigation into these characteristics with potential interest for different applications. Copyright © 2018, G3: Genes, Genomes, Genetics.
NASA Astrophysics Data System (ADS)
Fu, Jinglin; Yang, Yuhe Renee; Johnson-Buck, Alexander; Liu, Minghui; Liu, Yan; Walter, Nils G.; Woodbury, Neal W.; Yan, Hao
2014-07-01
Swinging arms are a key functional component of multistep catalytic transformations in many naturally occurring multi-enzyme complexes. This arm is typically a prosthetic chemical group that is covalently attached to the enzyme complex via a flexible linker, allowing the direct transfer of substrate molecules between multiple active sites within the complex. Mimicking this method of substrate channelling outside the cellular environment requires precise control over the spatial parameters of the individual components within the assembled complex. DNA nanostructures can be used to organize functional molecules with nanoscale precision and can also provide nanomechanical control. Until now, protein-DNA assemblies have been used to organize cascades of enzymatic reactions by controlling the relative distance and orientation of enzymatic components or by facilitating the interface between enzymes/cofactors and electrode surfaces. Here, we show that a DNA nanostructure can be used to create a multi-enzyme complex in which an artificial swinging arm facilitates hydride transfer between two coupled dehydrogenases. By exploiting the programmability of DNA nanostructures, key parameters including position, stoichiometry and inter-enzyme distance can be manipulated for optimal activity.
Fu, Jinglin; Yang, Yuhe Renee; Johnson-Buck, Alexander; Liu, Minghui; Liu, Yan; Walter, Nils G; Woodbury, Neal W; Yan, Hao
2014-07-01
Swinging arms are a key functional component of multistep catalytic transformations in many naturally occurring multi-enzyme complexes. This arm is typically a prosthetic chemical group that is covalently attached to the enzyme complex via a flexible linker, allowing the direct transfer of substrate molecules between multiple active sites within the complex. Mimicking this method of substrate channelling outside the cellular environment requires precise control over the spatial parameters of the individual components within the assembled complex. DNA nanostructures can be used to organize functional molecules with nanoscale precision and can also provide nanomechanical control. Until now, protein-DNA assemblies have been used to organize cascades of enzymatic reactions by controlling the relative distance and orientation of enzymatic components or by facilitating the interface between enzymes/cofactors and electrode surfaces. Here, we show that a DNA nanostructure can be used to create a multi-enzyme complex in which an artificial swinging arm facilitates hydride transfer between two coupled dehydrogenases. By exploiting the programmability of DNA nanostructures, key parameters including position, stoichiometry and inter-enzyme distance can be manipulated for optimal activity.
Proton mediated control of biochemical reactions with bioelectronic pH modulation
Deng, Yingxin; Miyake, Takeo; Keene, Scott; ...
2016-04-07
In Nature, protons (H +) can mediate metabolic process through enzymatic reactions. Examples include glucose oxidation with glucose dehydrogenase to regulate blood glucose level, alcohol dissolution into carboxylic acid through alcohol dehydrogenase, and voltage-regulated H + channels activating bioluminescence in firefly and jellyfish. Artificial devices that control H + currents and H + concentration (pH) are able to actively influence biochemical processes. Here, we demonstrate a biotransducer that monitors and actively regulates pH-responsive enzymatic reactions by monitoring and controlling the flow of H + between PdH x contacts and solution. The present transducer records bistable pH modulation from an “enzymaticmore » flip-flop” circuit that comprises glucose dehydrogenase and alcohol dehydrogenase. Furthermore, the transducer also controls bioluminescence from firefly luciferase by affecting solution pH.« less
Eprintsev, A T; Mal'tseva, E V; Shatskikh, A S; Popov, V N
2011-01-01
The involvement of active oxygen forms in the regulation of the expression of mitochondrial respiratory chain components, which are not related to energy storing, has been in vitro and in vivo studied in Lycopersicum esculentum L. The highest level of transcription of genes encoding alternative oxidase and NADH dehydrogenase has been observed in green tomato leaves. It has been shown that even low H2O2 concentrations activate both aoxlalpha and ndb1 genes, encoding alternative oxidase and external mitochondrial rotenone-insensitive NADH dehydrogenase, respectively. According to our results, in the case of an oxidative stress, alternative oxidase and NADH dehydrogenase are coexpressed in tomato plant tissues, and active oxygen forms serve as the secondary messengers of their coexpression.
Proton mediated control of biochemical reactions with bioelectronic pH modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Yingxin; Miyake, Takeo; Keene, Scott
In Nature, protons (H +) can mediate metabolic process through enzymatic reactions. Examples include glucose oxidation with glucose dehydrogenase to regulate blood glucose level, alcohol dissolution into carboxylic acid through alcohol dehydrogenase, and voltage-regulated H + channels activating bioluminescence in firefly and jellyfish. Artificial devices that control H + currents and H + concentration (pH) are able to actively influence biochemical processes. Here, we demonstrate a biotransducer that monitors and actively regulates pH-responsive enzymatic reactions by monitoring and controlling the flow of H + between PdH x contacts and solution. The present transducer records bistable pH modulation from an “enzymaticmore » flip-flop” circuit that comprises glucose dehydrogenase and alcohol dehydrogenase. Furthermore, the transducer also controls bioluminescence from firefly luciferase by affecting solution pH.« less
Fokina, K V; Yazykova, M Y; Danshina, P V; Schmalhausen, E V; Muronetz, V I
2000-04-01
Data are presented concerning the possible participation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in regulation of the glycolytic pathway and the level of 2,3-diphosphoglycerate in erythrocytes. Experimental support has been obtained for the hypothesis according to which a mild oxidation of GAPDH must result in acceleration of glycolysis and in decrease in the level of 2, 3-diphosphoglycerate due to the acyl phosphatase activity of the mildly oxidized enzyme. Incubation of erythrocytes in the presence of 1 mM hydrogen peroxide decreases 2,3-diphosphoglycerate concentration and causes accumulation of 3-phosphoglycerate. It is assumed that the acceleration of glycolysis in the presence of oxidative agents described previously by a number of authors could be attributed to the acyl phosphatase activity of GAPDH. A pH-dependent complexing of GAPDH and 3-phosphoglycerate kinase or 2, 3-diphosphoglycerate mutase is found to determine the fate of 1,3-diphosphoglycerate that serves as a substrate for the synthesis of 2,3-diphosphoglycerate as well as for the 3-phosphoglycerate kinase reaction in glycolysis. A withdrawal of the two-enzyme complexes from the erythrocyte lysates using Sepharose-bound anti-GAPDH antibodies prevents the pH-dependent accumulation of the metabolites. The role of GAPDH in the regulation of glycolysis and the level of 2,3-diphosphoglycerate in erythrocytes is discussed.
Chen, Huanlian; Denton, Travis T; Xu, Hui; Calingasan, Noel; Beal, M Flint; Gibson, Gary E
2016-12-01
Reductions in metabolism and excess oxidative stress are prevalent in multiple neurodegenerative diseases. The activity of the mitochondrial enzyme α-ketoglutarate dehydrogenase complex (KGDHC) appears central to these abnormalities. KGDHC is diminished in multiple neurodegenerative diseases. KGDHC can not only be rate limiting for NADH production and for substrate level phosphorylation, but is also a source of reactive oxygen species (ROS). The goal of these studies was to determine how changes in KGDHC modify baseline ROS, the ability to buffer ROS, baseline glutathionylation, calcium modulation and cell death in response to external oxidants. In vivo, reducing KGDHC with adeno virus diminished neurogenesis and increased oxidative stress. In vitro, treatments of short duration increased ROS and glutathionylation and enhanced the ability of the cells to diminish the ROS from added oxidants. However, long-term reductions lessened the ability to diminish ROS, diminished glutathionylation and exaggerated oxidant-induced changes in calcium and cell death. Increasing KGDHC enhanced the ability of the cells to diminish externally added ROS and protected against oxidant-induced changes in calcium and cell death. The results suggest that brief periods of diminished KGDHC are protective, while prolonged reductions are harmful. Furthermore, elevated KGDHC activities are protective. Thus, mitogenic therapies that increase KGDHC may be beneficial in neurodegenerative diseases. Read the Editorial Highlight for this article on Page 689. © 2016 International Society for Neurochemistry.
Lüddeke, Frauke; Wülfing, Annika; Timke, Markus; Germer, Frauke; Weber, Johanna; Dikfidan, Aytac; Rahnfeld, Tobias; Linder, Dietmar; Meyerdierks, Anke
2012-01-01
Castellaniella defragrans is a Betaproteobacterium capable of coupling the oxidation of monoterpenes with denitrification. Geraniol dehydrogenase (GeDH) activity was induced during growth with limonene in comparison to growth with acetate. The N-terminal sequence of the purified enzyme directed the cloning of the corresponding open reading frame (ORF), the first bacterial gene for a GeDH (geoA, for geraniol oxidation pathway). The C. defragrans geraniol dehydrogenase is a homodimeric enzyme that affiliates with the zinc-containing benzyl alcohol dehydrogenases in the superfamily of medium-chain-length dehydrogenases/reductases (MDR). The purified enzyme most efficiently catalyzes the oxidation of perillyl alcohol (kcat/Km = 2.02 × 106 M−1 s−1), followed by geraniol (kcat/Km = 1.57 × 106 M−1 s−1). Apparent Km values of <10 μM are consistent with an in vivo toxicity of geraniol above 5 μM. In the genetic vicinity of geoA is a putative aldehyde dehydrogenase that was named geoB and identified as a highly abundant protein during growth with phellandrene. Extracts of Escherichia coli expressing geoB demonstrated in vitro a geranial dehydrogenase (GaDH) activity. GaDH activity was independent of coenzyme A. The irreversible formation of geranic acid allows for a metabolic flux from β-myrcene via linalool, geraniol, and geranial to geranic acid. PMID:22286981
Lüddeke, Frauke; Wülfing, Annika; Timke, Markus; Germer, Frauke; Weber, Johanna; Dikfidan, Aytac; Rahnfeld, Tobias; Linder, Dietmar; Meyerdierks, Anke; Harder, Jens
2012-04-01
Castellaniella defragrans is a Betaproteobacterium capable of coupling the oxidation of monoterpenes with denitrification. Geraniol dehydrogenase (GeDH) activity was induced during growth with limonene in comparison to growth with acetate. The N-terminal sequence of the purified enzyme directed the cloning of the corresponding open reading frame (ORF), the first bacterial gene for a GeDH (geoA, for geraniol oxidation pathway). The C. defragrans geraniol dehydrogenase is a homodimeric enzyme that affiliates with the zinc-containing benzyl alcohol dehydrogenases in the superfamily of medium-chain-length dehydrogenases/reductases (MDR). The purified enzyme most efficiently catalyzes the oxidation of perillyl alcohol (k(cat)/K(m) = 2.02 × 10(6) M(-1) s(-1)), followed by geraniol (k(cat)/K(m) = 1.57 × 10(6) M(-1) s(-1)). Apparent K(m) values of <10 μM are consistent with an in vivo toxicity of geraniol above 5 μM. In the genetic vicinity of geoA is a putative aldehyde dehydrogenase that was named geoB and identified as a highly abundant protein during growth with phellandrene. Extracts of Escherichia coli expressing geoB demonstrated in vitro a geranial dehydrogenase (GaDH) activity. GaDH activity was independent of coenzyme A. The irreversible formation of geranic acid allows for a metabolic flux from β-myrcene via linalool, geraniol, and geranial to geranic acid.
Perry, J E; Ishii-Ohba, H; Stalvey, J R
1991-06-01
Key to the production of biologically active steroids is the enzyme 3 beta-hydroxysteroid dehydrogenase-isomerase. Some controversy has arisen concerning the subcellular distribution of this enzyme within steroidogenic cells. The distribution of 3 beta-hydroxysteroid dehydrogenase-isomerase was assessed in subcellular fractions obtained from homogenates of rat, bovine, and mouse adrenal glands in two ways. The activity of 3 beta-hydroxysteroid dehydrogenase-isomerase was quantitated by measuring the conversion of radiolabeled pregnenolone to radiolabeled progesterone in an aliquot of each of the fractions obtained. The presence of the enzyme was assessed by performing Western analyses on aliquots of each of the fractions obtained with the use of a specific polyclonal antiserum against 3 beta-hydroxysteroid dehydrogenase-isomerase, the characterization of which is described. In control experiments, the degree of contamination of the fractions was determined by assessing the presence of known subcellular fraction markers with Western analysis. In the bovine and mouse adrenal glands, 3 beta-hydroxysteroid dehydrogenase-isomerase appears to be localized solely in the microsomal fraction, while in the rat, 3 beta-hydroxysteroid dehydrogenase-isomerase appears to have dual subcellular distribution: the microsomes and the inner mitochondrial membrane. We conclude that there is a species difference in the subcellular distribution of this important steroidogenic enzyme and that this species difference may be related to the steroidogenic pathway preferred in that species.
Miyabe, Y; Amano, T; Deyashiki, Y; Hara, A; Tsukada, F
1995-01-01
We have investigated the steady-state kinetics for a cytosolic 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase isozyme of human liver and its inhibition by several bile acids and anti-inflammatory drugs such as indomethacin, flufemanic acid and naproxen. Initial velocity and product inhibition studies performed in the NADP(+)-linked (S)-1-indanol oxidation at pH 7.4 were consistent with a sequential ordered mechanism in which NADP+ binds first and leaves last. The bile acids and drugs, competitive inhibitors with respect to the alcohol substrate, exhibited uncompetitive inhibition with respect to the coenzyme, with Ki values less than 1 microM, whereas indomethacin exhibited noncompetitive inhibition (Ki < 24 microM). The kinetics of the inhibition by a mixture of the two inhibitors suggests that bile acids and drugs, except indomethacin, bind to overlapping sites at the active center of the enzyme-coenzyme binary complex.
Gründel, Anne; Friedrich, Kathleen; Pfeiffer, Melanie; Jacobs, Enno; Dumke, Roger
2015-01-01
The dual role of glycolytic enzymes in cytosol-located metabolic processes and in cell surface-mediated functions with an influence on virulence is described for various micro-organisms. Cell wall-less bacteria of the class Mollicutes including the common human pathogen Mycoplasma pneumoniae possess a reduced genome limiting the repertoire of virulence factors and metabolic pathways. After the initial contact of bacteria with cells of the respiratory epithelium via a specialized complex of adhesins and release of cell-damaging factors, surface-displayed glycolytic enzymes may facilitate the further interaction between host and microbe. In this study, we described detection of the four subunits of pyruvate dehydrogenase complex (PDHA-D) among the cytosolic and membrane-associated proteins of M. pneumoniae. Subunits of PDH were cloned, expressed and purified to produce specific polyclonal guinea pig antisera. Using colony blotting, fractionation of total proteins and immunofluorescence experiments, the surface localization of PDHA-C was demonstrated. All recombinant PDH subunits are able to bind to HeLa cells and human plasminogen. These interactions can be specifically blocked by the corresponding polyclonal antisera. In addition, an influence of ionic interactions on PDHC-binding to plasminogen as well as of lysine residues on the association of PDHA-D with plasminogen was confirmed. The PDHB subunit was shown to activate plasminogen and the PDHB-plasminogen complex induces degradation of human fibrinogen. Hence, our data indicate that the surface-associated PDH subunits might play a role in the pathogenesis of M. pneumoniae infections by interaction with human plasminogen. PMID:25978044
Sudheesh, N P; Ajith, T A; Janardhanan, K K
2013-04-30
Decreased mitochondrial function has been suggested to be one of the important pathological events in isoproterenol (ISO)-induced cardiotoxicity. In this communication, we have evaluated the protective effect of Ganoderma lucidum against ISO induced cardiac toxicity and mitochondrial dysfunction. Cardiac toxicity was assessed by determining the activities of creatine kinase (CK) and lactate dehydrogenases (LDH) after subcutaneous injection of ISO (85 mg/kg) at an interval of 24h for 2 days. The animals were sacrificed 24h after last ISO administration. G. lucidum (100 and 250 mg/kg, p.o.) was given to the rats once daily for 15 days prior to the ISO challenge. Similarly, α-Tocopherol (100mg/kg, p.o) was kept as the standard. To assess the extent of cardiac mitochondrial damage, the activities of Krebs cycle dehydrogenases and mitochondrial complexes I, II, III, and IV as well as the level of ROS and mitochondrial membrane potential (ΔΨmt) were evaluated. Administration of G. lucidum and α-tocopherol significantly protected the elevated activities of CK and LDH. Further, the activities of mitochondrial enzymes and the level of ΔΨmt were significantly enhanced and the level of ROS was significantly declined in the G. lucidum and α-tocopherol treatments. The present study concluded that the cardiac mitochondrial enzymes are markedly declined by the ISO challenge and the administration G. lucidum and α-Tocopherol significantly protected mitochondria by preventing the decline of antioxidant status and ΔΨmt or by directly scavenging the free radicals. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Preston, R S; Philp, A; Claessens, T; Gijezen, L; Dydensborg, A B; Dunlop, E A; Harper, K T; Brinkhuizen, T; Menko, F H; Davies, D M; Land, S C; Pause, A; Baar, K; van Steensel, M A M; Tee, A R
2011-03-10
Under conditions of reduced tissue oxygenation, hypoxia-inducible factor (HIF) controls many processes, including angiogenesis and cellular metabolism, and also influences cell proliferation and survival decisions. HIF is centrally involved in tumour growth in inherited diseases that give rise to renal cell carcinoma (RCC), such as Von Hippel-Lindau syndrome and tuberous sclerosis complex. In this study, we examined whether HIF is involved in tumour formation of RCC in Birt-Hogg-Dubé syndrome. For this, we analysed a Birt-Hogg-Dubé patient-derived renal tumour cell line (UOK257) that is devoid of the Birt-Hogg-Dubé protein (BHD) and observed high levels of HIF activity. Knockdown of BHD expression also caused a threefold activation of HIF, which was not as a consequence of more HIF1α or HIF2α protein. Transcription of HIF target genes VEGF, BNIP3 and CCND1 was also increased. We found nuclear localization of HIF1α and increased expression of VEGF, BNIP3 and GLUT1 in a chromophobe carcinoma from a Birt-Hogg-Dubé patient. Our data also reveal that UOK257 cells have high lactate dehydrogenase, pyruvate kinase and 3-hydroxyacyl-CoA dehydrogenase activity. We observed increased expression of pyruvate dehydrogenase kinase 1 (a HIF gene target), which in turn leads to increased phosphorylation and inhibition of pyruvate dehydrogenase. Together with increased protein levels of GLUT1, our data reveal that UOK257 cells favour glycolytic rather than lipid metabolism (a cancer phenomenon termed the 'Warburg effect'). UOK257 cells also possessed a higher expression level of the L-lactate influx monocarboxylate transporter 1 and consequently utilized L-lactate as a metabolic fuel. As a result of their higher dependency on glycolysis, we were able to selectively inhibit the growth of these UOK257 cells by treatment with 2-deoxyglucose. This work suggests that targeting glycolytic metabolism may be used therapeutically to treat Birt-Hogg-Dubé-associated renal lesions. © 2011 Macmillan Publishers Limited
Oxidoreductases Involved in Cell Carbon Synthesis of Methanobacterium thermoautotrophicum
Zeikus, J. G.; Fuchs, G.; Kenealy, W.; Thauer, R. K.
1977-01-01
Cell-free extracts of Methanobacterium thermoautotrophicum were found to contain high activities of the following oxidoreductases (at 60°C): pyruvate dehydrogenase (coenzyme A acetylating), 275 nmol/min per mg of protein; α-ketoglutarate dehydrogenase (coenzyme A acylating), 100 nmol/min per mg; fumarate reductase, 360 nmol/min per mg; malate dehydrogenase, 240 nmol/min per mg; and glyceraldehyde-3-phosphate dehydrogenase, 100 nmol/min per mg. The kinetic properties (apparent Vmax and KM values), pH optimum, temperature dependence of the rate, and specificity for electron acceptors/donors of the different oxidoreductases were examined. Pyruvate dehydrogenase and α-ketoglutarate dehydrogenase were shown to be two separate enzymes specific for factor 420 rather than for nicotinamide adenine dinucleotide (NAD), NADP, or ferredoxin as the electron acceptor. Both activities catalyzed the reduction of methyl viologen with the respective α-ketoacid and a coenzyme A-dependent exchange between the carboxyl group of the α-ketoacid and CO2. The data indicate that the two enzymes are similar to pyruvate synthase and α-ketoglutarate synthase, respectively. Fumarate reductase was found in the soluble cell fraction. This enzyme activity coupled with reduced benzyl viologen as the electron donor, but reduced factor 420, NADH, or NADPH was not effective. The cells did not contain menaquinone, thus excluding this compound as the physiological electron donor for fumarate reduction. NAD was the preferred coenzyme for malate dehydrogenase, whereas NADP was preferred for glyceraldehyde-3-phosphate dehydrogenase. The organism also possessed a factor 420-dependent hydrogenase and a factor 420-linked NADP reductase. The involvement of the described oxidoreductases in cell carbon synthesis is discussed. PMID:914779
Glycerophosphate-dependent hydrogen peroxide production by rat liver mitochondria.
Jesina, P; Kholová, D; Bolehovská, R; Cervinková, Z; Drahota, Z; Houstek, J
2004-01-01
We studied the extent to which hormonally-induced mitochondrial glycerophosphate dehydrogenase (mGPDH) activity contributes to the supply of reducing equivalents to the mitochondrial respiratory chain in the rat liver. The activity of glycerophosphate oxidase was compared with those of NADH oxidase and/or succinate oxidase. It was found that triiodothyronine-activated mGPDH represents almost the same capacity for the saturation of the respiratory chain as Complex II. Furthermore, the increase of mGPDH activity induced by triiodothyronine correlated with an increase of capacity for glycerophosphate-dependent hydrogen peroxide production. As a result of hormonal treatment, a 3-fold increase in glycerophosphate-dependent hydrogen peroxide production by liver mitochondria was detected by polarographic and luminometric measurements.
Vastano, Valeria; Salzillo, Marzia; Siciliano, Rosa A; Muscariello, Lidia; Sacco, Margherita; Marasco, Rosangela
2014-01-01
Lactobacillus plantarum is among the species with a probiotic activity. Adhesion of probiotic bacteria to host tissues is an important principle for strain selection, because it represents a crucial step in the colonization process of either pathogens or commensals. Most bacterial adhesins are proteins, and a major target for them is fibronectin, an extracellular matrix glycoprotein. In this study we demonstrate that PDHB, a component of the pyruvate dehydrogenase complex, is a factor contributing to fibronectin-binding in L. plantarum LM3. By means of fibronectin overlay immunoblotting assay, we identified a L. plantarum LM3 surface protein with apparent molecular mass of 35 kDa. Mass spectrometric analysis shows that this protein is the pyruvate dehydrogenase E1 beta-subunit (PDHB). The corresponding pdhB gene is located in a 4-gene cluster encoding pyruvate dehydrogenase. In LM3-B1, carrying a null mutation in pdhB, the 35 kDa adhesin was not anymore detectable by immunoblotting assay. Nevertheless, the pdhB null mutation did not abolish pdhA, pdhC, and pdhD transcription in LM3-B1. By adhesion assays, we show that LM3-B1 cells bind to immobilized fibronectin less efficiently than wild type cells. Moreover, we show that pdhB expression is negatively regulated by the CcpA protein and is induced by bile. Copyright © 2013. Published by Elsevier GmbH.
Scott, R H; DeMoss, J A
1976-01-01
When Escherichia coli was grown on medium containing 10 mM tungstate the formation of active formate dehydrogenase, nitrate reductase, and the complete formate-nitrate electron transport pathway was inhibited. Incubation of the tungstate-grown cells with 1 mM molybdate in the presence of chloramphenicol led to the rapid activation of both formate dehydrogenase and nitrate reductase, and, after a considerable lag, the complete electron transport pathway. Protein bands which corresponded to formate dehydrogenase and nitrate reductase were identified on polyacrylamide gels containing Triton X-100 after the activities were released from the membrane fraction and partially purified Cytochrome b1 was associated with the protein band corresponding to formate dehydrogenase but was not found elsewhere on the gels. When a similar fraction was prepared from cells grown on 10 mM tungstate, an inactive band corresponding to formate dehydrogenase was not observed on polyacrylamide gels; rather, a new faster migrating band was present. Cytochrome b1 was not associated with this band nor was it found anywhere else on the gels. This new band disappeared when the tungstate-grown cells were incubated with molybdate in the presence of chloramphenicol. The formate dehydrogenase activity which was formed, as well as a corresponding protein band, appeared at the original position on the gels. Cytochrome b1 was again associated with this band. The protein band which corresponded to nitrate reductase also was severely depressed in the tungstate-grown cells and a new faster migrating band appeared on the polyacrylamide gels. Upon activation of the nitrate reductase by incubation of the cells with molybdate, the new band diminished and protein reappeared at the original position. Most of the nitrate reductase activity which was formed appeared at the original position of nitrate reductase on gels although some was present at the position of the inactive band formed by tungstate-grown cells. Apparently, inactive forms of both formate dehydrogenase and nitrate reductase accumulate during growth on tungstate which are electrophoretically distinct from the active enzymes. Activation by molybdate results in molecular changes which include the reassociation of cytochrome b1 with formate dehydrogenase and restoration of both enzymes to their original electrophoretic mobilities. Images PMID:770433
Li, Xinjian; Jiang, Yuhui; Meisenhelder, Jill; Yang, Weiwei; Hawke, David H; Zheng, Yanhua; Xia, Yan; Aldape, Kenneth; He, Jie; Hunter, Tony; Wang, Liwei; Lu, Zhimin
2016-03-03
It is unclear how the Warburg effect that exemplifies enhanced glycolysis in the cytosol is coordinated with suppressed mitochondrial pyruvate metabolism. We demonstrate here that hypoxia, EGFR activation, and expression of K-Ras G12V and B-Raf V600E induce mitochondrial translocation of phosphoglycerate kinase 1 (PGK1); this is mediated by ERK-dependent PGK1 S203 phosphorylation and subsequent PIN1-mediated cis-trans isomerization. Mitochondrial PGK1 acts as a protein kinase to phosphorylate pyruvate dehydrogenase kinase 1 (PDHK1) at T338, which activates PDHK1 to phosphorylate and inhibit the pyruvate dehydrogenase (PDH) complex. This reduces mitochondrial pyruvate utilization, suppresses reactive oxygen species production, increases lactate production, and promotes brain tumorigenesis. Furthermore, PGK1 S203 and PDHK1 T338 phosphorylation levels correlate with PDH S293 inactivating phosphorylation levels and poor prognosis in glioblastoma patients. This work highlights that PGK1 acts as a protein kinase in coordinating glycolysis and the tricarboxylic acid (TCA) cycle, which is instrumental in cancer metabolism and tumorigenesis. Copyright © 2016 Elsevier Inc. All rights reserved.
Naito, E; Ito, M; Yokota, I; Saijo, T; Matsuda, J; Osaka, H; Kimura, S; Kuroda, Y
1997-08-01
We report molecular analysis of thiamin-responsive pyruvate dehydrogenase complex (PDHC) deficiency in a patient with an X-linked form of Leigh syndrome. PDHC activity in cultured lymphoblastoid cells of this patient and his asymptomatic mother were normal in the presence of a high thiamin pyrophosphate (TPP) concentration (0.4 mmol/L). However, in the presence of a low concentration (1 x 10(-4) mmol/L) of TPP, the activity was significantly decreased, indicating that PDHC deficiency in this patient was due to decreased affinity of PDHC for TPP. The patient's older brother also was diagnosed as PDHC deficiency with Leigh syndrome, suggesting that PDHC deficiency in these two brothers was not a de novo mutation. Sequencing of the X-linked PDHC E1 alpha subunit revealed a C-->G point mutation at nucleotide 787, resulting in a substitution of glycine for arginine 263. Restriction enzyme analysis of the E1 alpha gene revealed that the mother was a heterozygote, indicating that thiamin-responsive PDHC deficiency associated with Leigh syndrome due to this mutation is transmitted by X-linked inheritance.
Inhibition of Cancer-Associated Mutant Isocitrate Dehydrogenases by 2-thiohydantoin compounds
Kogiso, Mari; Yao, Yuan; Zhou, Chao; Li, Xiao-Nan; Song, Yongcheng
2015-01-01
Somatic mutations of isocitrate dehydrogenase 1 (IDH1) at R132 are frequently found in certain cancers such as glioma. With losing the activity of wild-type IDH1, the R132H and R132C mutant proteins can reduce α-ketoglutaric acid (α-KG) to D-2-hydroxyglutaric acid (D2HG). The resulting high concentration of D2HG inhibits many α-KG-dependent dioxygenases, including histone demethylases, to cause broad histone hypermethylation. These aberrant epigenetic changes are responsible for initiation of these cancers. We report the synthesis, structure activity relationships, enzyme kinetics and binding thermodynamics of a novel series of 2-thiohydantoin and related compounds, among which several compounds are potent inhibitors of mutant IDH1 with Ki as low as 420 nM. X-ray crystal structures of IDH1(R132H) in complex with two inhibitors are reported, showing their inhibitor-protein interactions. These compounds can decrease the cellular concentration of D2HG, reduce the levels of histone methylation, and suppress proliferation of stem-like cancer cells in BT142 glioma with IDH1 R132H mutation. PMID:26280302
Nakamura, K; Yamaki, M; Sarada, M; Nakayama, S; Vibat, C R; Gennis, R B; Nakayashiki, T; Inokuchi, H; Kojima, S; Kita, K
1996-01-05
Complex II (succinate-ubiquinone oxidoreductase) from Escherichia coli is composed of four nonidentical subunits encoded by the sdhCDAB operon. Gene products of sdhC and sdhD are small hydrophobic subunits that anchor the hydrophilic catalytic subunits (flavoprotein and iron-sulfur protein) to the cytoplasmic membrane and are believed to be the components of cytochrome b556 in E. coli complex II. In the present study, to elucidate the role of two hydrophobic subunits in the heme b ligation and functional assembly of complex II, plasmids carrying portions of the sdh gene were constructed and introduced into E. coli MK3, which lacks succinate dehydrogenase and fumarate reductase activities. The expression of polypeptides with molecular masses of about 19 and 17 kDa was observed when sdhC and sdhD were introduced into MK3, respectively, indicating that sdhC encodes the large subunit (cybL) and sdhD the small subunit (cybS) of cytochrome b556. An increase in cytochrome b content was found in the membrane when sdhD was introduced, while the cytochrome b content did not change when sdhC was introduced. However, the cytochrome b expressed by the plasmid carrying sdhD differed from cytochrome b556 in its CO reactivity and red shift of the alpha absorption peak to 557.5 nm at 77 K. Neither hydrophobic subunit was able to bind the catalytic portion to the membrane, and only succinate dehydrogenase activity, not succinate-ubiquinone oxidoreductase activity, was found in the cytoplasmic fractions of the cells. In contrast, significantly higher amounts of cytochrome b556 were expressed in the membrane when sdhC and sdhD genes were both present, and the catalytic portion was found to be localized in the membrane with succinate-ubiquitnone oxidoreductase and succinate oxidase activities. These results strongly suggest that both hydrophobic subunits are required for heme insertion into cytochrome b556 and are essential for the functional assembly of E. coli complex II in the membrane. Accumulation of the catalytic portion in the cytoplasm was found when sdhCDAB was introduced into a heme synthesis mutant, suggesting the importance of heme in the assembly of E. coli complex II.
Kabysheva, Maria S; Storozhevykh, Tatiana P; Pinelis, Vsevolod G; Bunik, Victoria I
2009-05-01
Impairment of the 2-oxoglutarate oxidative decarboxylation by the 2-oxoglutarate dehydrogenase complex (OGDHC) is associated with the glutamate accumulation, ROS production and neuropathologies. We hypothesized that correct function of OGDHC under metabolic stress is essential to overcome the glutamate excitotoxic action on neurons. We show that synthetic phosphono analogs of 2-oxoglutarate, succinyl phosphonate and its phosphono ethyl ester, improve the catalysis by brain OGDHC through inhibiting the side reaction of irreversible inactivation of its first component, 2-oxoglutarate dehydrogenase. Under the substrate and cofactor saturation, the component and complex undergo the inactivation during catalysis with the apparent rate constant 0.2 min(-1). The inactivation rate is reduced by 90% and 60% in the presence of 50 microM succinyl phosphonate and its phosphono ethyl ester, correspondingly. In cultured cerebellar granule neurons exposed to excitotoxic glutamate, the phosphonates (100 microM) protect from the irreversible impairment of mitochondrial function and delayed calcium deregulation. The deregulation amplitude is decreased by succinyl phosphonate and its phosphono ethyl ester by 50% and 30%, correspondingly. Thus, succinyl phosphonate is more potent than its phosphono ethyl ester in protecting both the isolated brain OGDHC from inactivation and cultured neurons from the glutamate-induced calcium deregulation. The correlation of the relative efficiency of the phosphonates in vitro and in situ indicates that their cellular effects are due to targeting OGDHC, which is in accord with independent studies. We conclude that the compounds preserving the 2-oxoglutarate dehydrogenase activity are of neuroprotective value upon metabolic disbalance induced by glutamate excess.
Coenzyme Q biosynthesis and its role in the respiratory chain structure.
Alcázar-Fabra, María; Navas, Plácido; Brea-Calvo, Gloria
2016-08-01
Coenzyme Q (CoQ) is a unique electron carrier in the mitochondrial respiratory chain, which is synthesized on-site by a nuclear encoded multiprotein complex. CoQ receives electrons from different redox pathways, mainly NADH and FADH2 from tricarboxylic acid pathway, dihydroorotate dehydrogenase, electron transfer flavoprotein dehydrogenase and glycerol-3-phosphate dehydrogenase that support key aspects of the metabolism. Here we explore some lines of evidence supporting the idea of the interaction of CoQ with the respiratory chain complexes, contributing to their superassembly, including respirasome, and its role in reactive oxygen species production in the mitochondrial inner membrane. We also review the current knowledge about the involvement of mitochondrial genome defects and electron transfer flavoprotein dehydrogenase mutations in the induction of secondary CoQ deficiency. This mechanism would imply specific interactions coupling CoQ itself or the CoQ-biosynthetic apparatus with the respiratory chain components. These interactions would regulate mitochondrial CoQ steady-state levels and function. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. Copyright © 2016 Elsevier B.V. All rights reserved.
Belyaeva, Olga V.; Chetyrkin, Sergei V.; Clark, Amy L.; Kostereva, Natalia V.; SantaCruz, Karen S.; Chronwall, Bibie M.; Kedishvili, Natalia Y.
2008-01-01
Allopregnanolone (ALLO) and androsterone (ADT) are naturally occurring 3α-hydroxysteroids that act as positive allosteric regulators of γ-aminobutyric acid type A receptors. In addition, ADT activates nuclear farnesoid X receptor and ALLO activates pregnane X receptor. At least with respect to γ-aminobutyric acid type A receptors, the biological activity of ALLO and ADT depends on the 3α-hydroxyl group and is lost upon its conversion to either 3-ketosteroid or 3β-hydroxyl epimer. Such strict structure-activity relationships suggest that the oxidation or epimerization of 3α-hydroxysteroids may serve as physiologically relevant mechanisms for the control of the local concentrations of bioactive 3α-hydroxysteroids. The exact enzymes responsible for the oxidation and epimerization of 3α-hydroxysteroids in vivo have not yet been identified, but our previous studies showed that microsomal nicotinamide adenine dinucleotide-dependent short-chain dehydrogenases/reductases (SDRs) with dual retinol/sterol dehydrogenase substrate specificity (RoDH-like group of SDRs) can oxidize and epimerize 3α-hydroxysteroids in vitro. Here, we present the first evidence that microsomal nicotinamide adenine dinucleotide-dependent 3α-hydroxysteroid dehydrogenase/epimerase activities are widely distributed in human tissues with the highest activity levels found in liver and testis and lower levels in lung, spleen, brain, kidney, and ovary. We demonstrate that RoDH-like SDRs contribute to the oxidation and epimerization of ALLO and ADT in living cells, and show that RoDH enzymes are expressed in tissues that have microsomal 3α-hydroxysteroid dehydrogenase/epimerase activities. Together, these results provide further support for the role of RoDH-like SDRs in human metabolism of 3α-hydroxysteroids and offer a new insight into the enzymology of ALLO and ADT inactivation. PMID:17289849
Belyaeva, Olga V; Chetyrkin, Sergei V; Clark, Amy L; Kostereva, Natalia V; SantaCruz, Karen S; Chronwall, Bibie M; Kedishvili, Natalia Y
2007-05-01
Allopregnanolone (ALLO) and androsterone (ADT) are naturally occurring 3alpha-hydroxysteroids that act as positive allosteric regulators of gamma-aminobutyric acid type A receptors. In addition, ADT activates nuclear farnesoid X receptor and ALLO activates pregnane X receptor. At least with respect to gamma-aminobutyric acid type A receptors, the biological activity of ALLO and ADT depends on the 3alpha-hydroxyl group and is lost upon its conversion to either 3-ketosteroid or 3beta-hydroxyl epimer. Such strict structure-activity relationships suggest that the oxidation or epimerization of 3alpha-hydroxysteroids may serve as physiologically relevant mechanisms for the control of the local concentrations of bioactive 3alpha-hydroxysteroids. The exact enzymes responsible for the oxidation and epimerization of 3alpha-hydroxysteroids in vivo have not yet been identified, but our previous studies showed that microsomal nicotinamide adenine dinucleotide-dependent short-chain dehydrogenases/reductases (SDRs) with dual retinol/sterol dehydrogenase substrate specificity (RoDH-like group of SDRs) can oxidize and epimerize 3alpha-hydroxysteroids in vitro. Here, we present the first evidence that microsomal nicotinamide adenine dinucleotide-dependent 3alpha-hydroxysteroid dehydrogenase/epimerase activities are widely distributed in human tissues with the highest activity levels found in liver and testis and lower levels in lung, spleen, brain, kidney, and ovary. We demonstrate that RoDH-like SDRs contribute to the oxidation and epimerization of ALLO and ADT in living cells, and show that RoDH enzymes are expressed in tissues that have microsomal 3alpha-hydroxysteroid dehydrogenase/epimerase activities. Together, these results provide further support for the role of RoDH-like SDRs in human metabolism of 3alpha-hydroxysteroids and offer a new insight into the enzymology of ALLO and ADT inactivation.
Araújo, Wagner L.; Tohge, Takayuki; Osorio, Sonia; Lohse, Marc; Balbo, Ilse; Krahnert, Ina; Sienkiewicz-Porzucek, Agata; Usadel, Björn; Nunes-Nesi, Adriano; Fernie, Alisdair R.
2012-01-01
Transgenic tomato (Solanum lycopersicum) plants expressing a fragment of the gene encoding the E1 subunit of the 2-oxoglutarate dehydrogenase complex in the antisense orientation and exhibiting substantial reductions in the activity of this enzyme exhibit a considerably reduced rate of respiration. They were, however, characterized by largely unaltered photosynthetic rates and fruit yields but restricted leaf, stem, and root growth. These lines displayed markedly altered metabolic profiles, including changes in tricarboxylic acid cycle intermediates and in the majority of the amino acids but unaltered pyridine nucleotide content both in leaves and during the progression of fruit ripening. Moreover, they displayed a generally accelerated development exhibiting early flowering, accelerated fruit ripening, and a markedly earlier onset of leaf senescence. In addition, transcript and selective hormone profiling of gibberellins and abscisic acid revealed changes only in the former coupled to changes in transcripts encoding enzymes of gibberellin biosynthesis. The data obtained are discussed in the context of the importance of this enzyme in both photosynthetic and respiratory metabolism as well as in programs of plant development connected to carbon–nitrogen interactions. PMID:22751214
Dhagat, Urmi; Endo, Satoshi; Mamiya, Hiroaki; Hara, Akira; El-Kabbani, Ossama
2009-03-01
3(17)alpha-Hydroxysteroid dehydrogenase (AKR1C21) is a unique member of the aldo-keto reductase (AKR) superfamily owing to its ability to reduce 17-ketosteroids to 17alpha-hydroxysteroids, as opposed to other members of the AKR family, which can only produce 17beta-hydroxysteroids. In this paper, the crystal structure of a double mutant (G225P/G226P) of AKR1C21 in complex with the coenzyme NADP(+) and the inhibitor hexoestrol refined at 2.1 A resolution is presented. Kinetic analysis and molecular-modelling studies of 17alpha- and 17beta-hydroxysteroid substrates in the active site of AKR1C21 suggested that Gly225 and Gly226 play an important role in determining the substrate stereospecificity of the enzyme. Additionally, the G225P/G226P mutation of the enzyme reduced the affinity (K(m)) for both 3alpha- and 17alpha-hydroxysteroid substrates by up to 160-fold, indicating that these residues are critical for the binding of substrates.
21 CFR 862.1565 - 6-Phosphogluconate dehydrogenase test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Test Systems § 862.1565 6-Phosphogluconate dehydrogenase test system. (a) Identification. A 6-phosphogluconate dehydrogenase test system is a device intended to measure the activity of the enzyme 6... are used in the diagnosis and treatment of certain liver diseases (such as hepatitis) and anemias. (b...
21 CFR 862.1565 - 6-Phosphogluconate dehydrogenase test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Test Systems § 862.1565 6-Phosphogluconate dehydrogenase test system. (a) Identification. A 6-phosphogluconate dehydrogenase test system is a device intended to measure the activity of the enzyme 6... are used in the diagnosis and treatment of certain liver diseases (such as hepatitis) and anemias. (b...
Joshi, Mandar A.; Jeoung, Nam Ho; Obayashi, Mariko; Hattab, Eyas M.; Brocken, Eric G.; Liechty, Edward A.; Kubek, Michael J.; Vattem, Krishna M.; Wek, Ronald C.; Harris, Robert A.
2006-01-01
The BCKDH (branched-chain α-keto acid dehydrogenase complex) catalyses the rate-limiting step in the oxidation of BCAAs (branched-chain amino acids). Activity of the complex is regulated by a specific kinase, BDK (BCKDH kinase), which causes inactivation, and a phosphatase, BDP (BCKDH phosphatase), which causes activation. In the present study, the effect of the disruption of the BDK gene on growth and development of mice was investigated. BCKDH activity was much greater in most tissues of BDK−/− mice. This occurred in part because the E1 component of the complex cannot be phosphorylated due to the absence of BDK and also because greater than normal amounts of the E1 component were present in tissues of BDK−/− mice. Lack of control of BCKDH activity resulted in markedly lower blood and tissue levels of the BCAAs in BDK−/− mice. At 12 weeks of age, BDK−/− mice were 15% smaller than wild-type mice and their fur lacked normal lustre. Brain, muscle and adipose tissue weights were reduced, whereas weights of the liver and kidney were greater. Neurological abnormalities were apparent by hind limb flexion throughout life and epileptic seizures after 6–7 months of age. Inhibition of protein synthesis in the brain due to hyperphosphorylation of eIF2α (eukaryotic translation initiation factor 2α) might contribute to the neurological abnormalities seen in BDK−/− mice. BDK−/− mice show significant improvement in growth and appearance when fed a high protein diet, suggesting that higher amounts of dietary BCAA can partially compensate for increased oxidation in BDK−/− mice. Disruption of the BDK gene establishes that regulation of BCKDH by phosphorylation is critically important for the regulation of oxidative disposal of BCAAs. The phenotype of the BDK−/− mice demonstrates the importance of tight regulation of oxidative disposal of BCAAs for normal growth and neurological function. PMID:16875466
Macdonald, I A; Webb, G R; Mahony, D E
1978-10-01
Cell-free extracts were prepared from mixed fecal anaerobic bacteria grown from stools of 14 vegetarian Seventh-Day Adventists, 16 omnivorous control subjects, and eight patients recently diagnosed with cancer of the large bowel. Preparations were assayed for NAD- and NADP-dependent 3alpha-, 7alpha- and 12alpha-hydroxysteroid dehydrogenases with bile salts and androsterone as substrates (eight substrate-cofactor combinations were tested). A significant intergroup difference was observed in the amounts of NAD- and NADP-dependent 7alpha-hydroxysteroid dehydrogenase produced: bowel cancer patients exceeded controls, and controls exceeded Seventh-Day Adventists. Other enzyme activity comparisons were not significant. The pH values of the stools were significantly higher in cancer patients compared to Seventh-Day Adventists; values were 7.03 +/- 0.60 and 6.46 +/- 0.58 respectively. The pH value for controls was 6.66 +/- 0.62. A plot of pH value versus NADP-dependent 7alpha-hydroxysteroid dehydrogenase tended to separate the cancer patients from the other groups. Comparative data suggest that much of the 3alpha-hydroxysteroid dehydrogenase active against bile salt is also active against androsterone.
Activation of liver alcohol dehydrogenase by glycosylation.
Tsai, C S; White, J H
1983-01-01
D-Fructose and D-glucose activate alcohol dehydrogenase from horse liver to oxidize ethanol. One mol of D-[U-14C]fructose or D-[U-14C]glucose is covalently incorporated per mol of the maximally activated enzyme. Amino acid and N-terminal analyses of the 14C-labelled glycopeptide isolated from a proteolytic digest of the [14C]glycosylated enzyme implicate lysine-315 as the site of the glycosylation. 13C-n.m.r.-spectroscopic studies indicate that D-[13C]glucose is covalently linked in N-glucosidic and Amadori-rearranged structures in the [13C]glucosylated alcohol dehydrogenase. Experimental results are consistent with the formation of the N-glycosylic linkage between glycose and lysine-315 of liver alcohol dehydrogenase in the initial step that results in an enhanced catalytic efficiency to oxidize ethanol. PMID:6342612
Identification of a canine model of pyruvate dehydrogenase phosphatase 1 deficiency.
Cameron, Jessie M; Maj, Mary C; Levandovskiy, Valeriy; MacKay, Neviana; Shelton, G Diane; Robinson, Brian H
2007-01-01
Exercise intolerance syndromes are well known to be associated with inborn errors of metabolism affecting glycolysis (phosphorylase and phosphofructokinase deficiency) and fatty acid oxidation (palmitoyl carnitine transferase deficiency). We have identified a canine model for profound exercise intolerance caused by a deficit in PDP1 (EC 3.1.3.43), the phosphatase enzyme that activates the pyruvate dehydrogenase complex (PDHc). The Clumber spaniel breed was originated in 1760 by the Duc de Noailles, as a hunting dog with a gentle temperament suitable for the 'elderly gentleman'. Here we report that 20% of the current Clumber and Sussex spaniel population are carriers for a null mutation in PDP1, and that homozygosity produces severe exercise intolerance. Human pyruvate dehydrogenase phosphatase deficiency was recently characterized at the molecular level. However, the nature of the human mutation (loss of a single amino acid altering PDP1 activity) made it impossible to discern the role of the second phosphatase isoform, PDP2, in the deficient phenotype. Here we show that the null mutation in dogs provides a valuable animal model with which to study the effects of dysregulation of the PDHc. Knowledge of the molecular defect has allowed for the institution of a rapid restriction enzyme test for the canine mutation that will allow for selective breeding and has led to a suggested dietary therapy for affected dogs that has proven to be beneficial. Pharmacological and genetic therapies for PDP1 deficiency can now be investigated and the role of PDP2 can be fully characterized.
Hosseini, Seyed H; Kohler, James J; Haase, Chad P; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William
2007-03-01
Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-gamma. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity.
Hosseini, Seyed H.; Kohler, James J.; Haase, Chad P.; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William
2007-01-01
Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-γ. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity. PMID:17322372
Pyruvate dehydrogenase complex (PDC) export from the mitochondrial matrix.
Ng, Fanny; Tang, Bor Luen
2014-01-01
Studies on mitochondria protein import had revealed in detail molecular mechanisms of how peptides and proteins could be selectively targeted and translocated across membrane bound organelles. The opposite process of mitochondrial export, while known to occur in various aspects of cellular physiology and pathology, is less well understood. Two very recent reports have indicated that a large mitochondrial matrix protein complex, the pyruvate dehydrogenase complex (PDC) (or its component subunits), could be exported to the lysosomes and the nucleus, respectively. In the case of the latter, evidence was presented to suggest that the entire complex of 8-10 MDa could translocate in its entirety from the mitochondrial matrix to the nucleus upon mitogenic or stress stimuli. We discuss these findings in perspective to what is currently known about the processes of transport in and out of the mitochondrion.
NASA Technical Reports Server (NTRS)
Dominiak, Paulina; Ciszak, Ewa M.; Korotchkina, Lioubov; Sidhu, Sukhdeep; Patel, Mulchand
2003-01-01
Thiamin pyrophosphate (TPP), the biologically active form of vitamin BI, is a cofactor of enzymes catalyzing reactions involving the cleavage of a carbon-carbon bond adjacent to an oxo group. TPP-dependent enzymes show a common mechanism of TPP activation by: (1) forming the ionic N-H...O(sup -) hydrogen bonding between the N1' atom of the aminopirymidine ring of the coenzyme and intrinsic gamma-carboxylate group of glutamate and (2) imposing an "active" V-conformation that brings the N4' atom of the aminopirymidine to the distance required for the intramolecular C-H.. .N hydrogen bonding with the thiazolium C2 atom. Within these two hydrogen bonds that rapidly exchange protons, protonation of the N1' atom is strictly coordinated with the deprotonation of the 4' -amino group and eventually abstraction of the proton from C2. The human pyruvate dehydrogenase Elp, component of human pyruvate dehydrogenase complex, catalyzes the irreversible decarboxylation of the pyruvate followed by the reductive acetylation of the lipoyl group of dihydrolipoyl acyltransferase. Elp is alpha(sub 2)beta(sub2)-heterotetrameric with a molecular mass of I54 kDa, which has two catalytic sites, each providing TPP and magnesium ion as cofactors and each formed on the interface between the PP and PYR domains. The dynamic nonequivalence of two otherwise chemically equivalent catalytic sites has been observed and the flip-flop mechanism was suggested, according to which two active sites affect each other and in which different steps of the catalytic reaction are performed in each of the sites at any given moment. Based on specific futures of human pyruvate dehydrogenase including rigid and flexible connections between domains that bind the cofactor we propose a mechanistic model for the flip-flop action of this enzyme. We postulate that the dynamic protein environment drives the exchange of tautomers in the 4' -aminopyrimidine ring of the cofactor through a concerted shuttl-like motion of tightly connected domains. The dynamic exchange of those tautomers, in turns, is required during the reactions of pyruvate decarboxylation and reductive acetylation of lipoamide. Thus the shuttle-like motion of the domains is coordinated with the reactions of decarboxylation and acetylation, which are carried out in each of the cofactor sites resulting in a flip-flop action of the enzyme. The structure-derived mechanism of action of human pyruvate dehydrogenase may be likely common for other TPP-dependent enzymes.
Marsden, J. R.; Dawson, I. M. P.
1974-01-01
Histochemical enzymatic studies were performed on 30 freshly resected large bowel carcinomas, 30 samples of normal colonic epithelium, and six samples of the histologically normal epithelium (so-called transitional epithelium) immediately adjacent to a carcinoma. Five enzymes were studied: nicotine adenine dinucleotide tetrazolium reductase (NADH-TR), glucose-6-phosphate dehydrogenase, succinate dehydrogenase, monoamine oxidase, and acid phosphatase. Quantitative and qualitative differences in enzyme activity were observed between normal, transitional, and carcinomatous mucosa as follows: monoamine oxidase activity was moderate in normal mucosa, high in transitional mucosa, and low in carcinoma. Succinate dehydrogenase activity was high in transitional mucosa and low or moderate in normal and carcinomatous mucosa. Glucose-6-phosphate dehydrogenase activity showed a gradation from low in normal mucosa to high in carcinoma while acid phosphatase showed the reverse of this pattern. The tetrazolium reductase activity was low or moderate in normal and transitional mucosa and high in carcinoma. These differences in enzyme activity and their possible clinical and metabolic significance are discussed. ImagesFig 2Fig 3 PMID:4154840
Structure-Based Engineering of an Artificially Generated NADP+-Dependent d-Amino Acid Dehydrogenase.
Hayashi, Junji; Seto, Tomonari; Akita, Hironaga; Watanabe, Masahiro; Hoshino, Tamotsu; Yoneda, Kazunari; Ohshima, Toshihisa; Sakuraba, Haruhiko
2017-06-01
A stable NADP + -dependent d-amino acid dehydrogenase (DAADH) was recently created from Ureibacillus thermosphaericus meso -diaminopimelate dehydrogenase through site-directed mutagenesis. To produce a novel DAADH mutant with different substrate specificity, the crystal structure of apo-DAADH was determined at a resolution of 1.78 Å, and the amino acid residues responsible for the substrate specificity were evaluated using additional site-directed mutagenesis. By introducing a single D94A mutation, the enzyme's substrate specificity was dramatically altered; the mutant utilized d-phenylalanine as the most preferable substrate for oxidative deamination and had a specific activity of 5.33 μmol/min/mg at 50°C, which was 54-fold higher than that of the parent DAADH. In addition, the specific activities of the mutant toward d-leucine, d-norleucine, d-methionine, d-isoleucine, and d-tryptophan were much higher (6 to 25 times) than those of the parent enzyme. For reductive amination, the D94A mutant exhibited extremely high specific activity with phenylpyruvate (16.1 μmol/min/mg at 50°C). The structures of the D94A-Y224F double mutant in complex with NADP + and in complex with both NADPH and 2-keto-6-aminocapronic acid (lysine oxo-analogue) were then determined at resolutions of 1.59 Å and 1.74 Å, respectively. The phenylpyruvate-binding model suggests that the D94A mutation prevents the substrate phenyl group from sterically clashing with the side chain of Asp94. A structural comparison suggests that both the enlarged substrate-binding pocket and enhanced hydrophobicity of the pocket are mainly responsible for the high reactivity of the D94A mutant toward the hydrophobic d-amino acids with bulky side chains. IMPORTANCE In recent years, the potential uses for d-amino acids as source materials for the industrial production of medicines, seasonings, and agrochemicals have been growing. To date, several methods have been used for the production of d-amino acids, but all include tedious steps. The use of NAD(P) + -dependent d-amino acid dehydrogenase (DAADH) makes single-step production of d-amino acids from oxo-acid analogs and ammonia possible. We recently succeeded in creating a stable DAADH and demonstrated that it is applicable for one-step synthesis of d-amino acids, such as d-leucine and d-isoleucine. As the next step, the creation of an enzyme exhibiting different substrate specificity and higher catalytic efficiency is a key to the further development of d-amino acid production. In this study, we succeeded in creating a novel mutant exhibiting extremely high catalytic activity for phenylpyruvate amination. Structural insight into the mutant will be useful for further improvement of DAADHs. Copyright © 2017 American Society for Microbiology.
Structure-Based Engineering of an Artificially Generated NADP+-Dependent d-Amino Acid Dehydrogenase
Hayashi, Junji; Seto, Tomonari; Akita, Hironaga; Watanabe, Masahiro; Hoshino, Tamotsu; Yoneda, Kazunari; Ohshima, Toshihisa
2017-01-01
ABSTRACT A stable NADP+-dependent d-amino acid dehydrogenase (DAADH) was recently created from Ureibacillus thermosphaericus meso-diaminopimelate dehydrogenase through site-directed mutagenesis. To produce a novel DAADH mutant with different substrate specificity, the crystal structure of apo-DAADH was determined at a resolution of 1.78 Å, and the amino acid residues responsible for the substrate specificity were evaluated using additional site-directed mutagenesis. By introducing a single D94A mutation, the enzyme's substrate specificity was dramatically altered; the mutant utilized d-phenylalanine as the most preferable substrate for oxidative deamination and had a specific activity of 5.33 μmol/min/mg at 50°C, which was 54-fold higher than that of the parent DAADH. In addition, the specific activities of the mutant toward d-leucine, d-norleucine, d-methionine, d-isoleucine, and d-tryptophan were much higher (6 to 25 times) than those of the parent enzyme. For reductive amination, the D94A mutant exhibited extremely high specific activity with phenylpyruvate (16.1 μmol/min/mg at 50°C). The structures of the D94A-Y224F double mutant in complex with NADP+ and in complex with both NADPH and 2-keto-6-aminocapronic acid (lysine oxo-analogue) were then determined at resolutions of 1.59 Å and 1.74 Å, respectively. The phenylpyruvate-binding model suggests that the D94A mutation prevents the substrate phenyl group from sterically clashing with the side chain of Asp94. A structural comparison suggests that both the enlarged substrate-binding pocket and enhanced hydrophobicity of the pocket are mainly responsible for the high reactivity of the D94A mutant toward the hydrophobic d-amino acids with bulky side chains. IMPORTANCE In recent years, the potential uses for d-amino acids as source materials for the industrial production of medicines, seasonings, and agrochemicals have been growing. To date, several methods have been used for the production of d-amino acids, but all include tedious steps. The use of NAD(P)+-dependent d-amino acid dehydrogenase (DAADH) makes single-step production of d-amino acids from oxo-acid analogs and ammonia possible. We recently succeeded in creating a stable DAADH and demonstrated that it is applicable for one-step synthesis of d-amino acids, such as d-leucine and d-isoleucine. As the next step, the creation of an enzyme exhibiting different substrate specificity and higher catalytic efficiency is a key to the further development of d-amino acid production. In this study, we succeeded in creating a novel mutant exhibiting extremely high catalytic activity for phenylpyruvate amination. Structural insight into the mutant will be useful for further improvement of DAADHs. PMID:28363957
Simonin, Vagner; Galina, Antonio
2013-01-01
NO (nitric oxide) is described as an inhibitor of plant and mammalian respiratory chains owing to its high affinity for COX (cytochrome c oxidase), which hinders the reduction of oxygen to water. In the present study we show that in plant mitochondria NO may interfere with other respiratory complexes as well. We analysed oxygen consumption supported by complex I and/or complex II and/or external NADH dehydrogenase in Percoll-isolated potato tuber (Solanum tuberosum) mitochondria. When mitochondrial respiration was stimulated by succinate, adding the NO donors SNAP (S-nitroso-N-acetyl-DL-penicillamine) or DETA-NONOate caused a 70% reduction in oxygen consumption rate in state 3 (stimulated with 1 mM of ADP). This inhibition was followed by a significant increase in the Km value of SDH (succinate dehydrogenase) for succinate (Km of 0.77±0.19 to 34.3±5.9 mM, in the presence of NO). When mitochondrial respiration was stimulated by external NADH dehydrogenase or complex I, NO had no effect on respiration. NO itself and DETA-NONOate had similar effects to SNAP. No significant inhibition of respiration was observed in the absence of ADP. More importantly, SNAP inhibited PTM (potato tuber mitochondria) respiration independently of oxygen tensions, indicating a different kinetic mechanism from that observed in mammalian mitochondria. We also observed, in an FAD reduction assay, that SNAP blocked the intrinsic SDH electron flow in much the same way as TTFA (thenoyltrifluoroacetone), a non-competitive SDH inhibitor. We suggest that NO inhibits SDH in its ubiquinone site or its Fe-S centres. These data indicate that SDH has an alternative site of NO action in plant mitochondria.
Pyruvate dehydrogenase deficiency and epilepsy.
Prasad, Chitra; Rupar, Tony; Prasad, Asuri N
2011-11-01
The pyruvate dehydrogenase complex (PDHc) is a mitochondrial matrix multienzyme complex that provides the link between glycolysis and the tricarboxylic acid (TCA) cycle by catalyzing the conversion of pyruvate into acetyl-CoA. PDHc deficiency is one of the commoner metabolic disorders of lactic acidosis presenting with neurological phenotypes that vary with age and gender. In this mini-review, we postulate mechanisms of epilepsy in the setting of PDHc deficiency using two illustrative cases (one with pyruvate dehydrogenase complex E1-alpha polypeptide (PDHA1) deficiency and the second one with pyruvate dehydrogenase complex E1-beta subunit (PDHB) deficiency (a rare subtype of PDHc deficiency)) and a selected review of published case series. PDHc plays a critical role in the pathway of carbohydrate metabolism and energy production. In severe deficiency states the resulting energy deficit impacts on brain development in utero resulting in structural brain anomalies and epilepsy. Milder deficiency states present with variable manifestations that include cognitive delay, ataxia, and seizures. Epileptogenesis in PDHc deficiency is linked to energy failure, development of structural brain anomalies and abnormal neurotransmitter metabolism. The use of the ketogenic diet bypasses the metabolic block, by providing a direct source of acetyl-CoA, leading to amelioration of some symptoms. Genetic counseling is essential as PDHA1 deficiency (commonest defect) is X-linked although females can be affected due to unfavorable lyonization, while PDHB and PDH phosphatase (PDP) deficiencies (much rarer defects) are of autosomal recessive inheritance. Research is in progress for looking into animal models to better understand pathogenesis and management of this challenging disorder. Copyright © 2011 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Lai, J C; Cooper, A J
1986-11-01
The substrate and cofactor requirements and some kinetic properties of the alpha-ketoglutarate dehydrogenase complex (KGDHC; EC 1.2.4.2, EC 2.3.1.61, and EC 1.6.4.3) in purified rat brain mitochondria were studied. Brain mitochondrial KGDHC showed absolute requirement for alpha-ketoglutarate, CoA and NAD, and only partial requirement for added thiamine pyrophosphate, but no requirement for Mg2+ under the assay conditions employed in this study. The pH optimum was between 7.2 and 7.4, but, at pH values below 7.0 or above 7.8, KGDHC activity decreased markedly. KGDHC activity in various brain regions followed the rank order: cerebral cortex greater than cerebellum greater than or equal to midbrain greater than striatum = hippocampus greater than hypothalamus greater than pons and medulla greater than olfactory bulb. Significant inhibition of brain mitochondrial KGDHC was noted at pathological concentrations of ammonia (0.2-2 mM). However, the purified bovine heart KGDHC and KGDHC activity in isolated rat heart mitochondria were much less sensitive to inhibition. At 5 mM both beta-methylene-D,L-aspartate and D,L-vinylglycine (inhibitors of cerebral glucose oxidation) inhibited the purified heart but not the brain mitochondrial enzyme complex. At approximately 10 microM, calcium slightly stimulated (by 10-15%) the brain mitochondrial KGDHC. At concentrations above 100 microM, calcium (IC50 = 1 mM) inhibited both brain mitochondrial and purified heart KGDHC. The present results suggest that some of the kinetic properties of the rat brain mitochondrial KGDHC differ from those of the purified bovine heart and rat heart mitochondrial enzyme complexes. They also suggest that the inhibition of KGDHC by ammonia and the consequent effect on the citric acid cycle fluxes may be of pathophysiological and/or pathogenetic importance in hyperammonemia and in diseases (e.g., hepatic encephalopathy, inborn errors of urea metabolism, Reye's syndrome) where hyperammonemia is a consistent feature. Brain accumulation of calcium occurs in a number of pathological conditions. Therefore, it is possible that such a calcium accumulation may have a deleterious effect on KGDHC activity.
NASA Astrophysics Data System (ADS)
Zhu, D.-W.; Han, Q.; Qiu, W.; Campbell, R. L.; Xie, B.-X.; Azzi, A.; Lin, S.-X.
1999-01-01
Human estrogenic 17β-hydroxysteroid dehydrogenase (17β-HSD1) is responsible for the synthesis of active estrogens that stimulate the proliferation of breast cancer cells. The enzyme has been crystallized using a Mg 2+/PEG (3500)/β-octyl glucoside system [Zhu et al., J. Mol. Biol. 234 (1993) 242]. The space group of these crystals is C2. Here we report that cations can affect 17β-HSD1 crystallization significantly. In the presence of Mn 2+ instead of Mg 2+, crystals have been obtained in the same space group with similar unit cell dimensions. In the presence of Li + and Na + instead of Mg 2+, the space group has been changed to P2 12 12 1. A whole data set for a crystal of 17ß-HSD1 complex with progesterone grown in the presence of Li + has been collected to 1.95 Å resolution with a synchrotron source. The cell dimensions are a=41.91 Å, b=108.21 Å, c=117.00 Å. The structure has been preliminarily determined by molecular replacement, yielding important information on crystal packing in the presence of different cations. In order to further understand the structure-function relationship of 17β-HSD1, enzyme complexes with several ligands have been crystallized. As the steroids have very low aqueous solubility, we used a combined method of seeding and co-crystallization to obtain crystals of 17β-HSD1 complexed with various ligands. This method provides ideal conditions for growing complex crystals, with ligands such as 20α-hydroxysteroid progesterone, testosterone and 17β-methyl-estradiol-NADP +. Several complex structures have been determined with reliable electronic density of the bound ligands.
Marri, Lucia; Zaffagnini, Mirko; Collin, Valérie; Issakidis-Bourguet, Emmanuelle; Lemaire, Stéphane D; Pupillo, Paolo; Sparla, Francesca; Miginiac-Maslow, Myroslawa; Trost, Paolo
2009-03-01
The Calvin cycle enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) can form under oxidizing conditions a supramolecular complex with the regulatory protein CP12. Both GAPDH and PRK activities are inhibited within the complex, but they can be fully restored by reduced thioredoxins (TRXs). We have investigated the interactions of eight different chloroplast thioredoxin isoforms (TRX f1, m1, m2, m3, m4, y1, y2, x) with GAPDH (A(4), B(4), and B(8) isoforms), PRK and CP12 (isoform 2), all from Arabidopsis thaliana. In the complex, both A(4)-GAPDH and PRK were promptly activated by TRX f1, or more slowly by TRXs m1 and m2, but all other TRXs were ineffective. Free PRK was regulated by TRX f1, m1, or m2, while B(4)- and B(8)-GAPDH were absolutely specific for TRX f1. Interestingly, reductive activation of PRK caged in the complex was much faster than reductive activation of free oxidized PRK, and activation of A(4)-GAPDH in the complex was much faster (and less demanding in terms of reducing potential) than activation of free oxidized B(4)- or B(8)-GAPDH. It is proposed that CP12-assembled supramolecular complex may represent a reservoir of inhibited enzymes ready to be released in fully active conformation following reduction and dissociation of the complex by TRXs upon the shift from dark to low light. On the contrary, autonomous redox-modulation of GAPDH (B-containing isoforms) would be more suited to conditions of very active photosynthesis.
Wolfe, Lynne A; He, Miao; Vockley, Jerry; Payne, Nicole; Rhead, William; Hoppel, Charles; Spector, Elaine; Gernert, Kim; Gibson, K Michael
2010-12-01
We describe a 22-year-old male who developed severe hypoglycemia and lethargy during an acute illness at 4 months of age and subsequently grew and developed normally. At age 4 years he developed recurrent vomiting with mild hyperammonemia and dehydration requiring frequent hospitalizations. Glutaric aciduria Type II was suspected based upon biochemical findings and managed with cornstarch, carnitine and riboflavin supplements. He did not experience metabolic crises between ages 4-12 years. He experienced recurrent vomiting, mild hyperammonemia, and generalized weakness associated with acute illnesses and growth spurts. At age 18 years, he developed exercise intolerance and proximal muscle weakness leading to the identification of multiple acyl-CoA dehydrogenase and complex II/III deficiencies in both skeletal muscle and liver. Subsequent molecular characterization of the ETFDH gene revealed novel heterozygous mutations, p.G274X:c.820 G > T (exon 7) and p.P534L: c.1601 C > T (exon 12), the latter within the iron sulfur-cluster and predicted to affect ubiquinone reductase activity of ETFDH and the docking of ETF to ETFDH. Our case supports the concept of a structural interaction between ETFDH and other enzyme partners, and suggests that the conformational change upon ETF binding to ETFDH may play a key role in linking ETFDH to II/III super-complex formation.
Maslov, D A; Nawathean, P; Scheel, J
1999-04-30
In plant-dwelling trypanosomatids from the genus Phytomonas, mitochondrial functions, such as cytochrome mediated respiration, ATP production and Krebs cycle, are missing, and cell energetics is based on the glycolysis. Using Blue Native/Tricine-SDS two-dimensional gel electrophoretic analysis, we observed that mitochondrial respiratory Complexes III (cytochrome bc1) and IV (cytochrome c oxidase) were absent in Phytomonas serpens; however, Complex V (ATPase) was present. A deletion of the genes for cytochrome c oxidase subunit III (COIII) and apocytochrome b (Cyb) was identified within the 6234 bp sequenced region of the 31 kb maxicircle kinetoplast DNA. Genes, found in this region, include 12S and 9S ribosomal RNAs, subunits 7, 8 and 9 of NADH dehydrogenase (ND7, ND8 and ND9) and subunit 6 of ATPase (A6 or MURF4), as well as the genes (MURF1, MURF5 and G3) with unknown function. Most genes are actively transcribed and some mRNAs are edited. Fully edited mRNAs for A6 and G3 were abundant, while edited ND7 transcripts were rare, and only partially edited and pre-edited transcripts for ND8 were detected. The data show that the mitochondrial genome of P. serpens is functional, although its functions may be limited to expressing the ATPase and, possibly, NADH dehydrogenase complexes.
Structural Basis for "Flip-Flop" Action of Human Pyruvate Dehydrogenase
NASA Technical Reports Server (NTRS)
Ciszak, Ewa; Korotchkina, Lioubov; Dominiak, Paulina; Sidhu, Sukhdeep; Patel, Mulchand
2003-01-01
The derivative of vitamin B1, thiamin pyrophosphate is a cofactor of pyruvate dehydrogenase, a component enzyme of the mitochondrial pyruvate dehydrogenase multienzyme complex that plays a major role in directing energy metabolism in the cell. This cofactor is used to cleave the C(sup alpha)-C(=O) bond of pyruvate followed by reductive acetyl transfer to lipoyl-dihydrolipoamide acetyltransferase. In alpha(sub 2)beta(sub 2)-tetrameric human pyruvate dehydrogenase, there are two cofactor binding sites, each of them being a center of independently conducted, although highly coordinated enzymatic reactions. The dynamic nonequivalence of two, otherwise chemically equivalent, catalytic sites can now be understood based on the recently determined crystal structure of the holo-form of human pyruvate dehydrogenase at 1.95A resolution. The structure of pyruvate dehydrogenase was determined using a combination of MAD phasing and molecular replacement followed by rounds of torsion-angles molecular-dynamics simulated-annealing refinement. The final pyruvate dehydrogenase structure included coordinates for all protein amino acids two cofactor molecules, two magnesium and two potassium ions, and 742 water molecules. The structure was refined to R = 0.202 and R(sub free) = 0.244. Our structural analysis of the enzyme folding and domain assembly identified a simple mechanism of this protein motion required for the conduct of catalytic action.
Amaral, Alexandre Umpierrez; Seminotti, Bianca; Cecatto, Cristiane; Fernandes, Carolina Gonçalves; Busanello, Estela Natacha Brandt; Zanatta, Ângela; Kist, Luiza Wilges; Bogo, Maurício Reis; de Souza, Diogo Onofre Gomes; Woontner, Michael; Goodman, Stephen; Koeller, David M; Wajner, Moacir
2012-11-01
Mitochondrial dysfunction has been proposed to play an important role in the neuropathology of glutaric acidemia type I (GA I). However, the relevance of bioenergetics disruption and the exact mechanisms responsible for the cortical leukodystrophy and the striatum degeneration presented by GA I patients are not yet fully understood. Therefore, in the present work we measured the respiratory chain complexes activities I-IV, mitochondrial respiratory parameters state 3, state 4, the respiratory control ratio and dinitrophenol (DNP)-stimulated respiration (uncoupled state), as well as the activities of α-ketoglutarate dehydrogenase (α-KGDH), creatine kinase (CK) and Na+, K+-ATPase in cerebral cortex, striatum and hippocampus from 30-day-old Gcdh-/- and wild type (WT) mice fed with a normal or a high Lys (4.7%) diet. When a baseline (0.9% Lys) diet was given, we verified mild alterations of the activities of some respiratory chain complexes in cerebral cortex and hippocampus, but not in striatum from Gcdh-/- mice as compared to WT animals. Furthermore, the mitochondrial respiratory parameters and the activities of α-KGDH and CK were not modified in all brain structures from Gcdh-/- mice. In contrast, we found a significant reduction of Na(+), K(+)-ATPase activity associated with a lower degree of its expression in cerebral cortex from Gcdh-/- mice. Furthermore, a high Lys (4.7%) diet did not accentuate the biochemical alterations observed in Gcdh-/- mice fed with a normal diet. Since Na(+), K(+)-ATPase activity is required for cell volume regulation and to maintain the membrane potential necessary for a normal neurotransmission, it is presumed that reduction of this enzyme activity may represent a potential underlying mechanism involved in the brain swelling and cortical abnormalities (cortical atrophy with leukodystrophy) observed in patients affected by GA I. Copyright © 2012 Elsevier Inc. All rights reserved.
Wakamatsu, Taisuke; Sakuraba, Haruhiko; Kitamura, Megumi; Hakumai, Yuichi; Fukui, Kenji; Ohnishi, Kouhei; Ashiuchi, Makoto; Ohshima, Toshihisa
2017-01-15
l-Tryptophan dehydrogenase from Nostoc punctiforme NIES-2108 (NpTrpDH), despite exhibiting high amino acid sequence identity (>30%)/homology (>50%) with NAD(P) + -dependent l-Glu/l-Leu/l-Phe/l-Val dehydrogenases, exclusively catalyzes reversible oxidative deamination of l-Trp to 3-indolepyruvate in the presence of NAD + Here, we determined the crystal structure of the apo form of NpTrpDH. The structure of the NpTrpDH monomer, which exhibited high similarity to that of l-Glu/l-Leu/l-Phe dehydrogenases, consisted of a substrate-binding domain (domain I, residues 3 to 133 and 328 to 343) and an NAD + /NADH-binding domain (domain II, residues 142 to 327) separated by a deep cleft. The apo-NpTrpDH existed in an open conformation, where domains I and II were apart from each other. The subunits dimerized themselves mainly through interactions between amino acid residues around the β-1 strand of each subunit, as was observed in the case of l-Phe dehydrogenase. The binding site for the substrate l-Trp was predicted by a molecular docking simulation and validated by site-directed mutagenesis. Several hydrophobic residues, which were located in the active site of NpTrpDH and possibly interacted with the side chain of the substrate l-Trp, were arranged similarly to that found in l-Leu/l-Phe dehydrogenases but fairly different from that of an l-Glu dehydrogenase. Our crystal structure revealed that Met-40, Ala-69, Ile-74, Ile-110, Leu-288, Ile-289, and Tyr-292 formed a hydrophobic cluster around the active site. The results of the site-directed mutagenesis experiments suggested that the hydrophobic cluster plays critical roles in protein folding, l-Trp recognition, and catalysis. Our results provide critical information for further characterization and engineering of this enzyme. In this study, we determined the three-dimensional structure of l-Trp dehydrogenase, analyzed its various site-directed substitution mutants at residues located in the active site, and obtained the following informative results. Several residues in the active site form a hydrophobic cluster, which may be a part of the hydrophobic core essential for protein folding. To our knowledge, there is no previous report demonstrating that a hydrophobic cluster in the active site of any l-amino acid dehydrogenase may have a critical impact on protein folding. Furthermore, our results suggest that this hydrophobic cluster could strictly accommodate l-Trp. These studies show the structural characteristics of l-Trp dehydrogenase and hence would facilitate novel applications of l-Trp dehydrogenase. Copyright © 2016 American Society for Microbiology.
2013-01-01
Background Synthesis and apoenzyme attachment of lipoic acid have emerged as a new complex metabolic pathway. Mutations in several genes involved in the lipoic acid de novo pathway have recently been described (i.e., LIAS, NFU1, BOLA3, IBA57), but no mutation was found so far in genes involved in the specific process of attachment of lipoic acid to apoenzymes pyruvate dehydrogenase (PDHc), α-ketoglutarate dehydrogenase (α-KGDHc) and branched chain α-keto acid dehydrogenase (BCKDHc) complexes. Methods Exome capture was performed in a boy who developed Leigh disease following a gastroenteritis and had combined PDH and α-KGDH deficiency with a unique amino acid profile that partly ressembled E3 subunit (dihydrolipoamide dehydrogenase / DLD) deficiency. Functional studies on patient fibroblasts were performed. Lipoic acid administration was tested on the LIPT1 ortholog lip3 deletion strain yeast and on patient fibroblasts. Results Exome sequencing identified two heterozygous mutations (c.875C > G and c.535A > G) in the LIPT1 gene that encodes a mitochondrial lipoyltransferase which is thought to catalyze the attachment of lipoic acid on PDHc, α-KGDHc, and BCKDHc. Anti-lipoic acid antibodies revealed absent expression of PDH E2, BCKDH E2 and α-KGDH E2 subunits. Accordingly, the production of 14CO2 by patient fibroblasts after incubation with 14Cglucose, 14Cbutyrate or 14C3OHbutyrate was very low compared to controls. cDNA transfection experiments on patient fibroblasts rescued PDH and α-KGDH activities and normalized the levels of pyruvate and 3OHbutyrate in cell supernatants. The yeast lip3 deletion strain showed improved growth on ethanol medium after lipoic acid supplementation and incubation of the patient fibroblasts with lipoic acid decreased lactate level in cell supernatants. Conclusion We report here a putative case of impaired free or H protein-derived lipoic acid attachment due to LIPT1 mutations as a cause of PDH and α-KGDH deficiencies. Our study calls for renewed efforts to understand the mechanisms of pathology of lipoic acid-related defects and their heterogeneous biochemical expression, in order to devise efficient diagnostic procedures and possible therapies. PMID:24341803
Ochsner, Andrea M; Müller, Jonas E N; Mora, Carlos A; Vorholt, Julia A
2014-08-25
In the Gram-positive methylotroph Bacillus methanolicus, methanol oxidation is catalyzed by an NAD-dependent methanol dehydrogenase (Mdh) that belongs to the type III alcohol dehydrogenase (Adh) family. It was previously shown that the in vitro activity of B. methanolicus Mdh is increased by the endogenous activator protein Act, a Nudix hydrolase. Here we show that this feature is not unique, but more widespread among type III Adhs in combination with Act or other Act-like Nudix hydrolases. In addition, we studied the effect of site directed mutations in the predicted active site of Mdh and two other type III Adhs with regard to activity and activation by Act. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
2009-01-01
Background L-arabitol dehydrogenase (LAD) and xylitol dehydrogenase (XDH) are involved in the degradation of L-arabinose and D-xylose, which are among the most abundant monosaccharides on earth. Previous data demonstrated that LAD and XDH not only differ in the activity on their biological substrate, but also that only XDH has significant activity on D-sorbitol and may therefore be more closely related to D-sorbitol dehydrogenases (SDH). In this study we aimed to identify residues involved in the difference in substrate specificity. Results Phylogenetic analysis demonstrated that LAD, XDH and SDH form 3 distinct groups of the family of dehydrogenases containing an Alcohol dehydrogenase GroES-like domain (pfam08240) and likely have evolved from a common ancestor. Modelling of LadA and XdhA of the saprobic fungus Aspergillus niger on human SDH identified two residues in LadA (M70 and Y318), that may explain the absence of activity on D-sorbitol. While introduction of the mutation M70F in LadA of A. niger resulted in a nearly complete enzyme inactivation, the Y318F resulted in increased activity for L-arabitol and xylitol. Moreover, the affinity for D-sorbitol was increased in this mutant. Conclusion These data demonstrates that Y318 of LadA contributes significantly to the substrate specificity difference between LAD and XDH/SDH. PMID:19674460
INACTIVATION OF E. COLI PYRUVATE FORMATE-LYASE: ROLE OF AdhE AND SMALL MOLECULES
Nnyepi, Mbako R.; Peng, Yi; Broderick, Joan B.
2007-01-01
E. coli AdhE has been reported to harbor three distinct enzymatic activities: alcohol dehydrogenase, acetaldehyde-CoA dehydrogenase, and pyruvate formate-lyase (PFL) deactivase. Herein we report on the cloning, expression, and purification of E. coli AdhE, and the re-investigation of its purported enzymatic activities. While both the alcohol dehydrogenase and acetaldehyde-CoA dehydrogenase activities were readily detectible, we were unable to obtain any evidence for catalytic deactivation of PFL by AdhE, regardless of whether the reported cofactors for deactivation (Fe(II), NAD, and CoA) were present. Our results demonstrate that AdhE is not a PFL deactivating enzyme. We have also examined the potential for deactivation of active PFL by small-molecule thiols. Both β-mercaptoethanol and dithiothreitol deactivate PFL efficiently, with the former providing quite rapid deactivation. PFL deactivated by these thiols can be reactivated, suggesting that this deactivation is non-destructive transfer of an H atom equivalent to quench the glycyl radical. PMID:17280641
Adem, Sevki; Ciftci, Mehmet
2016-06-01
The present study was aimed to investigate characterization and purification of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and glutathione reductase from rat heart and the inhibitory effect of three drugs. The purification of the enzymes was performed using 2',5'-ADP sepharose 4B affinity material. The subunit and the natural molecular weights were analyzed by SDS-PAGE and gel filtration. Biochemical characteristics such as the optimum temperature, pH, stable pH, and salt concentration were examined for each enzyme. Types of product inhibition and Ki values with Km and Vmax values of the substrates and coenzymes were determined. According to the obtained Ki and IC50 values, furosemide, digoxin, and dopamine showed inhibitory effect on the enzyme activities at low millimolar concentrations in vitro conditions. Dopamine inhibited the activity of these enzymes as competitive, whereas furosemide and digoxin inhibited the activity of the enzyme as noncompetitive. © 2016 Wiley Periodicals, Inc.
Kershaw, W C; Barsotti, D A; Leonard, T B; Dent, J G; Lage, G L
1989-01-01
The effect of methoxyflurane anesthesia on allyl alcohol-induced hepatotoxicity and the metabolism of allyl alcohol was studied in male rats. Hepatotoxicity was assessed by the measurement of serum alanine aminotransferase activity and histopathological examination. Allyl alcohol-induced hepatotoxicity was enhanced when allyl alcohol (32 mg/kg) was administered 4 hr before or up to 8 days after a single 10-min exposure to methoxyflurane vapors. The possibility that methoxyflurane increases alcohol dehydrogenase-dependent oxidation of allyl alcohol to acrolein, the proposed toxic metabolite, was evaluated by measuring the rate of acrolein formation in the presence of allyl alcohol and liver cytosol. The effect of methoxyflurane on alcohol dehydrogenase activity in liver cytosol was also assessed by measuring the rate of NAD+ utilization in the presence of ethyl alcohol or allyl alcohol. Alcohol dehydrogenase activity and rate of acrolein formation were elevated in methoxyflurane-pretreated rats. The results suggest that a modest increase in alcohol dehydrogenase activity and rate of acrolein formation markedly enhances allyl alcohol-induced hepatotoxicity.
Shimomura, Yoshiharu; Murakami, Taro; Nakai, Naoya; Nagasaki, Masaru; Harris, Robert A
2004-06-01
Branched-chain amino acids (BCAAs) are essential amino acids that can be oxidized in skeletal muscle. It is known that BCAA oxidation is promoted by exercise. The mechanism responsible for this phenomenon is attributed to activation of the branched-chain alpha-keto acid dehydrogenase (BCKDH) complex, which catalyzes the second-step reaction of the BCAA catabolic pathway and is the rate-limiting enzyme in the pathway. This enzyme complex is regulated by a phosphorylation-dephosphorylation cycle. The BCKDH kinase is responsible for inactivation of the complex by phosphorylation, and the activity of the kinase is inversely correlated with the activity state of the BCKDH complex, which suggests that the kinase is the primary regulator of the complex. We found recently that administration of ligands for peroxisome proliferator-activated receptor-alpha (PPARalpha) in rats caused activation of the hepatic BCKDH complex in association with a decrease in the kinase activity, which suggests that promotion of fatty acid oxidation upregulates the BCAA catabolism. Long-chain fatty acids are ligands for PPARalpha, and the fatty acid oxidation is promoted by several physiological conditions including exercise. These findings suggest that fatty acids may be one of the regulators of BCAA catabolism and that the BCAA requirement is increased by exercise. Furthermore, BCAA supplementation before and after exercise has beneficial effects for decreasing exercise-induced muscle damage and promoting muscle-protein synthesis; this suggests the possibility that BCAAs are a useful supplement in relation to exercise and sports.
Wilcoxen, Jarett; Hille, Russ
2013-01-01
The reaction of the air-tolerant CO dehydrogenase from Oligotropha carboxidovorans with H2 has been examined. Like the Ni-Fe CO dehydrogenase, the enzyme can be reduced by H2 with a limiting rate constant of 5.3 s−1 and a dissociation constant Kd of 525 μm; both kred and kred/Kd, reflecting the breakdown of the Michaelis complex and the reaction of free enzyme with free substrate in the low [S] regime, respectively, are largely pH-independent. During the reaction with H2, a new EPR signal arising from the Mo/Cu-containing active site of the enzyme is observed which is distinct from the signal seen when the enzyme is reduced by CO, with greater g anisotropy and larger hyperfine coupling to the active site 63,65Cu. The signal also exhibits hyperfine coupling to at least two solvent-exchangeable protons of bound substrate that are rapidly exchanged with solvent. Proton coupling is also evident in the EPR signal seen with the dithionite-reduced native enzyme, and this coupling is lost in the presence of bicarbonate. We attribute the coupled protons in the dithionite-reduced enzyme to coordinated water at the copper site in the native enzyme and conclude that bicarbonate is able to displace this water from the copper coordination sphere. On the basis of our results, a mechanism for H2 oxidation is proposed which involves initial binding of H2 to the copper of the binuclear center, displacing the bound water, followed by sequential deprotonation through a copper-hydride intermediate to reduce the binuclear center. PMID:24165123
Tong, Wing-Hang; Maio, Nunziata; Zhang, De-Liang; Palmieri, Erika M; Ollivierre, Hayden; Ghosh, Manik C; McVicar, Daniel W; Rouault, Tracey A
2018-05-22
Given the essential roles of iron-sulfur (Fe-S) cofactors in mediating electron transfer in the mitochondrial respiratory chain and supporting heme biosynthesis, mitochondrial dysfunction is a common feature in a growing list of human Fe-S cluster biogenesis disorders, including Friedreich ataxia and GLRX5-related sideroblastic anemia. Here, our studies showed that restriction of Fe-S cluster biogenesis not only compromised mitochondrial oxidative metabolism but also resulted in decreased overall histone acetylation and increased H3K9me3 levels in the nucleus and increased acetylation of α-tubulin in the cytosol by decreasing the lipoylation of the pyruvate dehydrogenase complex, decreasing levels of succinate dehydrogenase and the histone acetyltransferase ELP3, and increasing levels of the tubulin acetyltransferase MEC17. Previous studies have shown that the metabolic shift in Toll-like receptor (TLR)-activated myeloid cells involves rapid activation of glycolysis and subsequent mitochondrial respiratory failure due to nitric oxide (NO)-mediated damage to Fe-S proteins. Our studies indicated that TLR activation also actively suppresses many components of the Fe-S cluster biogenesis machinery, which exacerbates NO-mediated damage to Fe-S proteins by interfering with cluster recovery. These results reveal new regulatory pathways and novel roles of the Fe-S cluster biogenesis machinery in modifying the epigenome and acetylome and provide new insights into the etiology of Fe-S cluster biogenesis disorders.
Deyashiki, Y; Taniguchi, H; Amano, T; Nakayama, T; Hara, A; Sawada, H
1992-01-01
Two monomeric dihydrodiol dehydrogenases with pI values of 5.4 and 7.6 were co-purified with androsterone dehydrogenase activity to homogeneity from human liver. The two enzymes differed from each other on peptide mapping and in their heat-stabilities; with respect to the latter the dihydrodiol dehydrogenase and 3 alpha-hydroxysteroid dehydrogenase activities of the respective enzymes were similarly inactivated. The pI 5.4 enzyme was equally active towards trans- and cis-benzene dihydrodiols, and towards (S)- and (R)-forms of indan-1-ol and 1,2,3,4-tetrahydronaphth-1-ol and oxidized the 3 alpha-hydroxy group of C19-, C21- and C24-steroids, whereas the pI 7.6 enzyme showed high specificity for trans-benzene dihydrodiol, (S)-forms of the alicyclic alcohols and C19- and C21-steroids. Although the two enzymes reduced various xenobiotic carbonyl compounds and the 3-oxo group of C19- and C21-steroids, and were A-specific in the hydrogen transfer from NADPH, only the pI 5.4 enzyme showed reductase activity towards 7 alpha-hydroxy-5 beta-cholestan-3-one and dehydrolithocholic acid. The affinity of the two enzymes for the steroidal substrates was higher than that for the xenobiotic substrates. The two enzymes also showed different susceptibilities to the inhibition by anti-inflammatory drugs and bile acids. Whereas the pI-5.4 enzyme was highly sensitive to anti-inflammatory steroids, showing mixed-type inhibitions with respect to indan-1-ol and androsterone, the pI 7.6 enzyme was inhibited more potently by non-steroidal anti-inflammatory drugs and bile acids than by the steroidal drugs, and the inhibitions were all competitive. These structural and functional differences suggest that the two enzymes are 3 alpha-hydroxysteroid dehydrogenase isoenzymes. Images Fig. 2. PMID:1554355
The sites and topology of mitochondrial superoxide production
Brand, Martin D.
2010-01-01
Mitochondrial superoxide production is an important source of reactive oxygen species in cells, and may cause or contribute to ageing and the diseases of ageing. Seven major sites of superoxide production in mammalian mitochondria are known and widely accepted. In descending order of maximum capacity they are the ubiquinone binding sites in complex I (site IQ) and complex III (site IIIQo), glycerol 3-phosphate dehydrogenase, the flavin in complex I (site IF), the electron transferring flavoprotein:Q oxidoreductase (ETFQOR) of fatty acid beta oxidation, and pyruvate and 2-oxoglutarate dehydrogenases. None of these sites is fully characterized and for some we only have sketchy information. The topology of the sites is important because it determines whether or not a site will produce superoxide in the mitochondrial matrix and be able to damage mitochondrial DNA. All sites produce superoxide in the matrix; site IIIQo and glycerol 3-phosphate dehydrogenase also produce superoxide to the intermembrane space. The relative contribution of each site to mitochondrial reactive oxygen species generation in the absence of electron transport inhibitors is unknown in isolated mitochondria, in cells or in vivo, and may vary considerably with species, tissue, substrate, energy demand and oxygen tension. PMID:20064600
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmer, Nicholas J., E-mail: nic@cryst.bioc.cam.ac.uk; King, Jerry D.; Department of Veterinary Medicine, Cambridge CB3 0ES
2007-08-01
The expression, purification, and crystallisation of the short-chain dehydrogenases WbmF, WbmG and WbmH from B. bronchiseptica are described. Native diffraction data to 1.5, 2.0, and 2.2 Å were obtained for the three proteins, together with complexes with nucleotides. The short-chain dehydrogenase enzymes WbmF, WbmG and WbmH from Bordetella bronchiseptica were cloned into Escherichia coli expression vectors, overexpressed and purified to homogeneity. Crystals of all three wild-type enzymes were obtained using vapour-diffusion crystallization with high-molecular-weight PEGs as a primary precipitant at alkaline pH. Some of the crystallization conditions permitted the soaking of crystals with cofactors and nucleotides or nucleotide sugars, whichmore » are possible substrate compounds, and further conditions provided co-complexes of two of the proteins with these compounds. The crystals diffracted to resolutions of between 1.50 and 2.40 Å at synchrotron X-ray sources. The synchrotron data obtained were sufficient to determine eight structures of the three enzymes in complex with a variety of cofactors and substrate molecules.« less
Clofibric acid stimulates branched-chain amino acid catabolism by three mechanisms.
Kobayashi, Rumi; Murakami, Taro; Obayashi, Mariko; Nakai, Naoya; Jaskiewicz, Jerzy; Fujiwara, Yoko; Shimomura, Yoshiharu; Harris, Robert A
2002-11-15
Clofibrate promotes catabolism of branched-chain amino acids by increasing the activity of the branched-chain alpha-keto acid dehydrogenase [BCKDH] complex. Depending upon the sex of the rats, nutritional state, and tissue being studied, clofibrate can affect BCKDH complex activity by three different mechanisms. First, by directly inhibiting BCKDH kinase activity, clofibrate can increase the proportion of the BCKDH complex in the active, dephosphorylated state. This occurs in situations in which the BCKDH complex is largely inactive due to phosphorylation, e.g., in the skeletal muscle of chow-fed rats or in the liver of female rats late in the light cycle. Second, by increasing the levels at which the enzyme components of the BCKDH complex are expressed, clofibrate can increase the total enzymatic activity of the BCKDH complex. This is readily demonstrated in livers of rats fed a low-protein diet, a nutritional condition that induces a decrease in the level of expression of the BCKDH complex. Third, by decreasing the amount of BCKDH kinase expressed and therefore its activity, clofibrate induces an increase in the percentage of the BCKDH complex in the active, dephosphorylated state. This occurs in the livers of rats fed a low-protein diet, a nutritional condition that causes inactivation of the BCKDH complex due to upregulation of the amount of BCKDH kinase. WY-14,643, which, like clofibric acid, is a ligand for the peroxisome-proliferator-activated receptor alpha [PPARalpha], does not directly inhibit BCKDH kinase but produces the same long-term effects as clofibrate on expression of the BCKDH complex and its kinase. Thus, clofibrate is unique in its capacity to stimulate BCAA oxidation through inhibition of BCKDH kinase activity, whereas PPARalpha activators in general promote BCAA oxidation by increasing expression of components of the BCKDH complex and decreasing expression of the BCKDH kinase.
Genetics Home Reference: hereditary xanthinuria
... xanthine dehydrogenase, described above, and another enzyme called aldehyde oxidase. Mutations in the MOCOS gene prevent xanthine dehydrogenase and aldehyde oxidase from being turned on (activated). The loss ...
Androgen-estrogen synergy in rat levator ani muscle Glucose-6-phosphate dehydrogenase
NASA Technical Reports Server (NTRS)
Max, S. R.
1984-01-01
The effects of castration and hormone administration on the activity of glucose-6-phosphate dehydrogenase in the rat levator ani muscle were studied. Castration caused a decrease in enzyme activity and in wet weight of the levator ani muscle. Chronic administration of testosterone propionate increased glucose-6-phosphate dehydrogenase activity in the levator ani muscle of castrated rats; the magnitude of the recovery of enzyme activity was related to the length of time of exposure to testosterone propionate after castration as well as to the length of time the animals were castrated. The longer the period of castration before exposure to testosterone propionate, the greater the effect. This result may be related to previously reported castration-mediated increases in androgen receptor binding in muscle. Dihydrotestosterone was less effective than testosterone propionate in enhancing glucose-6-phosphate dehydrogenase activity in the levator ani muscle from castrated rats; estradiol-17-beta alone was ineffective. Combined treatment with estradiol-17-beta and dihydrotestosterone, however, was as effective as testosterone alone. Thus, androgens and estrogens may exert synergistic effects on levator ani muscle.
An efficient ribitol-specific dehydrogenase from Enterobacter aerogenes.
Singh, Ranjitha; Singh, Raushan; Kim, In-Won; Sigdel, Sujan; Kalia, Vipin C; Kang, Yun Chan; Lee, Jung-Kul
2015-05-01
An NAD(+)-dependent ribitol dehydrogenase from Enterobacter aerogenes KCTC 2190 (EaRDH) was cloned and successfully expressed in Escherichia coli. The complete 729-bp gene was amplified, cloned, expressed, and subsequently purified in an active soluble form using nickel affinity chromatography. The enzyme had an optimal pH and temperature of 11.0 and 45°C, respectively. Among various polyols, EaRDH exhibited activity only toward ribitol, with Km, Vmax, and kcat/Km values of 10.3mM, 185Umg(-1), and 30.9s(-1)mM(-1), respectively. The enzyme showed strong preference for NAD(+) and displayed no detectable activity with NADP(+). Homology modeling and sequence analysis of EaRDH, along with its biochemical properties, confirmed that EaRDH belongs to the family of NAD(+)-dependent ribitol dehydrogenases, a member of short-chain dehydrogenase/reductase (SCOR) family. EaRDH showed the highest activity and unique substrate specificity among all known RDHs. Homology modeling and docking analysis shed light on the molecular basis of its unusually high activity and substrate specificity. Copyright © 2015 Elsevier Inc. All rights reserved.
Histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase.
Van Noorden, C J
1984-01-01
Histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase has found many applications in biomedical research. However, up to several years ago, the methods used often appeared to be unreliable because many artefacts occurred during processing and staining of tissue sections or cells. The development of histochemical methods preventing loss or redistribution of the enzyme by using either polyvinyl alcohol as a stabilizer or a semipermeable membrane interposed between tissue section and incubation medium, has lead to progress in the topochemical localization of glucose-6-phosphate dehydrogenase. Optimization of incubation conditions has further increased the precision of histochemical methods. Precise cytochemical methods have been developed either by the use of a polyacrylamide carrier in which individual cells have been incorporated before staining or by including polyvinyl alcohol in the incubation medium. In the present text, these methods for the histochemical and cytochemical localization of glucose-6-phosphate dehydrogenase for light microscopical and electron microscopical purposes are extensively discussed along with immunocytochemical techniques. Moreover, the validity of the staining methods is considered both for the localization of glucose-6-phosphate dehydrogenase activity in cells and tissues and for cytophotometric analysis. Finally, many applications of the methods are reviewed in the fields of functional heterogeneity of tissues, early diagnosis of carcinoma, effects of xenobiotics on cellular metabolism, diagnosis of inherited glucose-6-phosphate dehydrogenase deficiency, analysis of steroid-production in reproductive organs, and quality control of oocytes of mammals. It is concluded that the use of histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase is of highly significant value in the study of diseased tissues. In many cases, the first pathological change is an increase in glucose-6-phosphate dehydrogenase activity and detection of these early changes in a few cells by histochemical means only, enables prediction of other subsequent abnormal metabolic events. Analysis of glucose-6-phosphate dehydrogenase deficiency in erythrocytes has been improved as well by the development of cytochemical tools. Heterozygous deficiency can now be detected in a reliable way. Cell biological studies of development or maturation of various tissues or cells have profited from the use of histochemistry and cytochemistry of glucose-6-phosphate dehydrogenase activity.(ABSTRACT TRUNCATED AT 400 WORDS)
Sauer, Sven W; Opp, Silvana; Hoffmann, Georg F; Koeller, David M; Okun, Jürgen G; Kölker, Stefan
2011-01-01
Glutaric aciduria type I, an inherited deficiency of glutaryl-coenzyme A dehydrogenase localized in the final common catabolic pathway of L-lysine, L-hydroxylysine and L-tryptophan, leads to accumulation of neurotoxic glutaric and 3-hydroxyglutaric acid, as well as non-toxic glutarylcarnitine. Most untreated patients develop irreversible brain damage during infancy that can be prevented in the majority of cases if metabolic treatment with a low L-lysine diet and L-carnitine supplementation is started in the newborn period. The biochemical effect of this treatment remains uncertain, since cerebral concentrations of neurotoxic metabolites can only be determined by invasive techniques. Therefore, we studied the biochemical effect and mechanism of metabolic treatment in glutaryl-coenzyme A dehydrogenase-deficient mice, an animal model with complete loss of glutaryl-coenzyme A dehydrogenase activity, focusing on the tissue-specific changes of neurotoxic metabolites and key enzymes of L-lysine metabolism. Here, we demonstrate that low L-lysine diet, but not L-carnitine supplementation, lowered the concentration of glutaric acid in brain, liver, kidney and serum. L-carnitine supplementation restored the free L-carnitine pool and enhanced the formation of glutarylcarnitine. The effect of low L-lysine diet was amplified by add-on therapy with L-arginine, which we propose to result from competition with L-lysine at system y(+) of the blood-brain barrier and the mitochondrial L-ornithine carriers. L-lysine can be catabolized in the mitochondrial saccharopine or the peroxisomal pipecolate pathway. We detected high activity of mitochondrial 2-aminoadipate semialdehyde synthase, the rate-limiting enzyme of the saccharopine pathway, in the liver, whereas it was absent in the brain. Since we found activity of the subsequent enzymes of L-lysine oxidation, 2-aminoadipate semialdehyde dehydrogenase, 2-aminoadipate aminotransferase and 2-oxoglutarate dehydrogenase complex as well as peroxisomal pipecolic acid oxidase in brain tissue, we postulate that the pipecolate pathway is the major route of L-lysine degradation in the brain and the saccharopine pathway is the major route in the liver. Interestingly, treatment with clofibrate decreased cerebral and hepatic concentrations of glutaric acid in glutaryl-coenzyme A dehydrogenase-deficient mice. This finding opens new therapeutic perspectives such as pharmacological stimulation of alternative L-lysine oxidation in peroxisomes. In conclusion, this study gives insight into the discrepancies between cerebral and hepatic L-lysine metabolism, provides for the first time a biochemical proof of principle for metabolic treatment in glutaric aciduria type I and suggests that further optimization of treatment could be achieved by exploitation of competition between L-lysine and L-arginine at physiological barriers and enhancement of peroxisomal L-lysine oxidation and glutaric acid breakdown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, William J; Senkovich, Olga; Chattopadhyay, Debasish
2009-06-08
The structure, function and reaction mechanism of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) have been extensively studied. Based on these studies, three anion binding sites have been identified, one 'Ps' site (for binding the C-3 phosphate of the substrate) and two sites, 'Pi' and 'new Pi', for inorganic phosphate. According to the original flip-flop model, the substrate phosphate group switches from the 'Pi' to the 'Ps' site during the multistep reaction. In light of the discovery of the 'new Pi' site, a modified flip-flop mechanism, in which the C-3 phosphate of the substrate binds to the 'new Pi' site and flips tomore » the 'Ps' site before the hydride transfer, was proposed. An alternative model based on a number of structures of B. stearothermophilus GAPDH ternary complexes (non-covalent and thioacyl intermediate) proposes that in the ternary Michaelis complex the C-3 phosphate binds to the 'Ps' site and flips from the 'Ps' to the 'new Pi' site during or after the redox step. We determined the crystal structure of Cryptosporidium parvum GAPDH in the apo and holo (enzyme + NAD) state and the structure of the ternary enzyme-cofactor-substrate complex using an active site mutant enzyme. The C. parvum GAPDH complex was prepared by pre-incubating the enzyme with substrate and cofactor, thereby allowing free movement of the protein structure and substrate molecules during their initial encounter. Sulfate and phosphate ions were excluded from purification and crystallization steps. The quality of the electron density map at 2{angstrom} resolution allowed unambiguous positioning of the substrate. In three subunits of the homotetramer the C-3 phosphate group of the non-covalently bound substrate is in the 'new Pi' site. A concomitant movement of the phosphate binding loop is observed in these three subunits. In the fourth subunit the C-3 phosphate occupies an unexpected site not seen before and the phosphate binding loop remains in the substrate-free conformation. Orientation of the substrate with respect to the active site histidine and serine (in the mutant enzyme) also varies in different subunits. The structures of the C. parvum GAPDH ternary complex and other GAPDH complexes demonstrate the plasticity of the substrate binding site. We propose that the active site of GAPDH can accommodate the substrate in multiple conformations at multiple locations during the initial encounter. However, the C-3 phosphate group clearly prefers the 'new Pi' site for initial binding in the active site.« less
Stowe, Robert C; Sun, Qin; Elsea, Sarah H; Scaglia, Fernando
2018-05-01
Lipoic acid is an essential cofactor for the mitochondrial 2-ketoacid dehydrogenase complexes and the glycine cleavage system. Lipoyltransferase 1 catalyzes the covalent attachment of lipoate to these enzyme systems. Pathogenic variants in LIPT1 gene have recently been described in four patients from three families, commonly presenting with severe lactic acidosis resulting in neonatal death and/or poor neurocognitive outcomes. We report a 2-month-old male with severe lactic acidosis, refractory status epilepticus, and brain imaging suggestive of Leigh disease. Exome sequencing implicated compound heterozygous LIPT1 pathogenic variants. We describe the fifth case of LIPT1 deficiency, whose phenotype progressed to that of an early infantile epileptic encephalopathy, which is novel compared to previously described patients whom we will review. Due to the significant biochemical and phenotypic overlap that LIPT1 deficiency and mitochondrial energy cofactor disorders have with pyruvate dehydrogenase deficiency and/or nonketotic hyperglycinemia, they are and have been presumptively under-diagnosed without exome sequencing. © 2018 Wiley Periodicals, Inc.
Veitch, K; Draye, J P; Van Hoof, F; Sherratt, H S
1988-09-01
Rats were maintained on a riboflavin-deficient diet or on a diet containing clofibrate (0.5%, w/w). The activities of the mitochondrial FAD-dependent straight-chain acyl-CoA dehydrogenases (butyryl-CoA, octanoyl-CoA and palmitoyl-CoA) and the branched-chain acyl-CoA dehydrogenases (isovaleryl-CoA and isobutyryl-CoA) involved in the degradation of branched-chain acyl-CoA esters derived from branched-chain amino acids were assayed in liver mitochondrial extracts prepared in the absence and presence of exogenous FAD. These activities were low in livers from riboflavin-deficient rats (11, 28, 16, 6 and less than 2% of controls respectively) when prepared in the absence of exogenous FAD, and were not restored to control values when prepared in 25 microM-FAD (29, 47, 28, 7 and 17%). Clofibrate feeding increased the activities of butyryl-CoA, octanoyl-CoA and palmitoyl-CoA dehydrogenases (by 48, 116 and 98% of controls respectively), but not, by contrast, the activities of isovaleryl-CoA and isobutyryl-CoA dehydrogenases (62 and 102% of controls respectively). The mitochondrial fractions from riboflavin-deficient and from clofibrate-fed rats oxidized palmitoylcarnitine in State 3 at rates of 32 and 163% respectively of those from control rats.
NASA Astrophysics Data System (ADS)
Moreno, Angel; Kuzmiak-Glancy, Sarah; Jaimes, Rafael; Kay, Matthew W.
2017-03-01
Reduction of NAD+ by dehydrogenase enzymes to form NADH is a key component of cellular metabolism. In cellular preparations and isolated mitochondria suspensions, enzyme-dependent fluorescence recovery after photobleaching (ED-FRAP) of NADH has been shown to be an effective approach for measuring the rate of NADH production to assess dehydrogenase enzyme activity. Our objective was to demonstrate how dehydrogenase activity could be assessed within the myocardium of perfused hearts using NADH ED-FRAP. This was accomplished using a combination of high intensity UV pulses to photobleach epicardial NADH. Replenishment of epicardial NADH fluorescence was then imaged using low intensity UV illumination. NADH ED-FRAP parameters were optimized to deliver 23.8 mJ of photobleaching light energy at a pulse width of 6 msec and a duty cycle of 50%. These parameters provided repeatable measurements of NADH production rate during multiple metabolic perturbations, including changes in perfusate temperature, electromechanical uncoupling, and acute ischemia/reperfusion injury. NADH production rate was significantly higher in every perturbation where the energy demand was either higher or uncompromised. We also found that NADH production rate remained significantly impaired after 10 min of reperfusion after global ischemia. Overall, our results indicate that myocardial NADH ED-FRAP is a useful optical non-destructive approach for assessing dehydrogenase activity.
Miyazaki, Kentaro
2005-05-27
Beta-decarboxylating dehydrogenases comprise 3-isopropylmalate dehydrogenase, isocitrate dehydrogenase, and homoisocitrate dehydrogenase. They share a high degree of amino acid sequence identity and occupy equivalent positions in the amino acid biosynthetic pathways for leucine, glutamate, and lysine, respectively. Therefore, not only the enzymes but also the whole pathways should have evolved from a common ancestral pathway. In Pyrococcus horikoshii, only one pathway of the three has been identified in the genomic sequence, and PH1722 is the sole beta-decarboxylating dehydrogenase gene. The organism does not require leucine, glutamate, or lysine for growth; the single pathway might play multiple (i.e., ancestral) roles in amino acid biosynthesis. The PH1722 gene was cloned and expressed in Escherichia coli and the substrate specificity of the recombinant enzyme was investigated. It exhibited activities on isocitrate and homoisocitrate at near equal efficiency, but not on 3-isopropylmalate. PH1722 is thus a novel, bifunctional beta-decarboxylating dehydrogenase, which likely plays a dual role in glutamate and lysine biosynthesis in vivo.
NASA Astrophysics Data System (ADS)
Li, Huilin; Wongkongkathep, Piriya; Van Orden, Steve L.; Ogorzalek Loo, Rachel R.; Loo, Joseph A.
2014-12-01
"Native" mass spectrometry (MS) has been proven to be increasingly useful for structural biology studies of macromolecular assemblies. Using horse liver alcohol dehydrogenase (hADH) and yeast alcohol dehydrogenase (yADH) as examples, we demonstrate that rich information can be obtained in a single native top-down MS experiment using Fourier transform ion cyclotron mass spectrometry (FTICR MS). Beyond measuring the molecular weights of the protein complexes, isotopic mass resolution was achieved for yeast ADH tetramer (147 kDa) with an average resolving power of 412,700 at m/z 5466 in absorption mode, and the mass reflects that each subunit binds to two zinc atoms. The N-terminal 89 amino acid residues were sequenced in a top-down electron capture dissociation (ECD) experiment, along with the identifications of the zinc binding site at Cys46 and a point mutation (V58T). With the combination of various activation/dissociation techniques, including ECD, in-source dissociation (ISD), collisionally activated dissociation (CAD), and infrared multiphoton dissociation (IRMPD), 40% of the yADH sequence was derived directly from the native tetramer complex. For hADH, native top-down ECD-MS shows that both E and S subunits are present in the hADH sample, with a relative ratio of 4:1. Native top-down ISD of the hADH dimer shows that each subunit (E and S chains) binds not only to two zinc atoms, but also the NAD/NADH ligand, with a higher NAD/NADH binding preference for the S chain relative to the E chain. In total, 32% sequence coverage was achieved for both E and S chains.
Regulation by magnesium of potato tuber mitochondrial respiratory activities.
Vicente, Joaquim A F; Madeira, Vítor M C; Vercesi, Anibal E
2004-12-01
Dehydrogenase activities of potato tuber mitochondria and corresponding phosphorylation rates were measured for the dependence on external and mitochondrial matrix Mg2+. Magnesium stimulated state 3 and state 4 respiration, with significantly different concentrations of matrix Mg2+ required for optimal activities of the several substrates. Maximal stimulation of respiration with all substrates was obtained at 2-mM external Mg2+. However, respiration of malate, citrate, and alpha-ketoglutarate requires at least 4-mM Mg2+ inside mitochondria for maximization of dehydrogenase activities. The phosphorylation system, requires a low level of internal Mg2+ (0.25 mM) to reach high activity, as judged by succinate-dependent respiration. However, mitochondria respiring on citrate or alpha-ketoglutarate only sustain high levels of phosphorylation with at least 4-mM matrix Mg2+. Respiration of succinate is active without external and matrix Mg2+, although stimulated by the cation. Respiration of alpha-ketoglutarate was strictly dependent on external Mg2+ required for substrate transport into mitochondria, and internal Mg2+ is required for dehydrogenase activity. Respiration of citrate and malate also depend on internal Mg2+ but, unlike alpha-ketoglutarate, some activity still remains without external Mg2+. All the substrates revealed insensitive to external and internal mitochondrial Ca2+, except the exogenous NADH dehydrogenase, which requires either external Ca2+ or Mg2+ for detectable activity. Calcium is more efficient than Mg2+, both having cumulative stimulation. Unlike Ca2+, Mn2+ could substitute for Mg2+, before and after addition of A23, showing its ability to regulate phosphorylation and succinate dehydrogenase activities, with almost the same efficiency as Mg2+.
Bacterial formate hydrogenlyase complex.
McDowall, Jennifer S; Murphy, Bonnie J; Haumann, Michael; Palmer, Tracy; Armstrong, Fraser A; Sargent, Frank
2014-09-23
Under anaerobic conditions, Escherichia coli can carry out a mixed-acid fermentation that ultimately produces molecular hydrogen. The enzyme directly responsible for hydrogen production is the membrane-bound formate hydrogenlyase (FHL) complex, which links formate oxidation to proton reduction and has evolutionary links to Complex I, the NADH:quinone oxidoreductase. Although the genetics, maturation, and some biochemistry of FHL are understood, the protein complex has never been isolated in an intact form to allow biochemical analysis. In this work, genetic tools are reported that allow the facile isolation of FHL in a single chromatographic step. The core complex is shown to comprise HycE (a [NiFe] hydrogenase component termed Hyd-3), FdhF (the molybdenum-dependent formate dehydrogenase-H), and three iron-sulfur proteins: HycB, HycF, and HycG. A proportion of this core complex remains associated with HycC and HycD, which are polytopic integral membrane proteins believed to anchor the core complex to the cytoplasmic side of the membrane. As isolated, the FHL complex retains formate hydrogenlyase activity in vitro. Protein film electrochemistry experiments on Hyd-3 demonstrate that it has a unique ability among [NiFe] hydrogenases to catalyze production of H2 even at high partial pressures of H2. Understanding and harnessing the activity of the FHL complex is critical to advancing future biohydrogen research efforts.
USDA-ARS?s Scientific Manuscript database
CP12 is a small intrinsically unstructured protein that forms a multiprotein complex with two Calvin Cycle enzymes, phosphoribulokinase (PRK) and NAD(P)-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The complex can be reconstituted in vitro from recombinant proteins under conditions t...
Zimmerman, Joshua R.; Smucker, Bradley W.; Dain, Ryan P.; VanStipdonk, Michael J.
2011-01-01
Nickel Superoxide Dismutase (NiSOD) and the A-cluster of Carbon Monoxide Dehydrogenase/Acetyl Coenzyme A Synthase (CODH/ACS) both feature active sites with Ni coordinated by thiolate and amide donors. It is likely that the particular set of donors is important in tuning the redox potential of the Ni center(s). We report herein an expansion of our efforts involving the use of 2,2′-dithiodibenzaldehyde (DTDB) as a synthon for metal-thiolate complexes to reactions with Ni complexes of N,N-dimethylethylenediamine (dmen). In the presence of coordinating counterions, these reactions result in monomeric square-planar complexes of the tridentate N2S donor ligand derived from the Schiff-base condensation of dmen and DTDB. In the absence of a coordinating counterion, we have isolated a Ni(II) complex with an asymmetric N2S2 donor set involving one amine and one imine N donor in addition to two thiolate donors. This latter complex is discussed with respect to its relevance to the active site of NiSOD. PMID:21666847
Bchini, Raphaël; Vasiliou, Vasilis; Branlant, Guy; Talfournier, François; Rahuel-Clermont, Sophie
2012-01-01
Retinoic acid (RA), a metabolite of vitamin A, exerts pleiotropic effects throughout life in vertebrate organisms. Thus, RA action must be tightly regulated through the coordinated action of biosynthetic and degradating enzymes. The last step of retinoic acid biosynthesis is irreversibly catalyzed by the NAD-dependent retinal dehydrogenases (RALDH), which are members of the aldehyde dehydrogenase (ALDH) superfamily. Low intracellular retinal concentrations imply efficient substrate molecular recognition to ensure high affinity and specificity of RALDHs for retinal. This study addresses the molecular basis of retinal recognition in human ALDH1A1 (or RALDH1) and rat ALDH1A2 (or RALDH2), through the comparison of the catalytic behavior of retinal analogs and use of the fluorescence properties of retinol. We show that, in contrast to long chain unsaturated substrates, the rate-limiting step of retinal oxidation by RALDHs is associated with acylation. Use of the fluorescence resonance energy transfer upon retinol interaction with RALDHs provides evidence that retinal recognition occurs in two steps: binding into the substrate access channel, and a slower structural reorganization with a rate constant of the same magnitude as the kcat for retinal oxidation: 0.18 vs. 0.07 s−1 and 0.25 vs. 0.1 s−1 for ALDH1A1 and ALDH1A2, respectively. This suggests that the conformational transition of the RALDH-retinal complex significantly contributes to the rate-limiting step that controls the kinetics of retinal oxidation, as a prerequisite for the formation of a catalytically competent Michaelis complex. This conclusion is consistent with the general notion that structural flexibility within the active site of ALDH enzymes has been shown to be an integral component of catalysis. PMID:23220587
Kenealy, W R; Thompson, T E; Schubert, K R; Zeikus, J G
1982-01-01
The mechanism of ammonia assimilation in Methanosarcina barkeri and Methanobacterium thermoautotrophicum was documented by analysis of enzyme activities, 13NH3 incorporation studies, and comparison of growth and enzyme activity levels in continuous culture. Glutamate accounted for 65 and 52% of the total amino acids in the soluble pools of M. barkeri and M. thermoautotrophicum. Both organisms contained significant activities of glutamine synthetase, glutamate synthase, glutamate oxaloacetate transaminase, and glutamate pyruvate transaminase. Hydrogen-reduced deazaflavin-factor 420 or flavin mononucleotide but not NAD, NADP, or ferredoxin was used as the electron donor for glutamate synthase in M. barkeri. Glutamate dehydrogenase activity was not detected in either organism, but alanine dehydrogenase activity was present in M. thermoautotrophicum. The in vivo activity of the glutamine synthetase was verified in M. thermoautotrophicum by analysis of 13NH3 incorporation into glutamine, glutamate, and alanine. Alanine dehydrogenase and glutamine synthetase activity varied in response to [NH4+] when M. thermoautotrophicum was cultured in a chemostat with cysteine as the sulfur source. Alanine dehydrogenase activity and growth yield (grams of cells/mole of methane) were highest when the organism was cultured with excess ammonia, whereas growth yield was lower and glutamine synthetase was maximal when ammonia was limiting. PMID:6122678
Costa, Kyle C; Wong, Phoebe M; Wang, Tiansong; Lie, Thomas J; Dodsworth, Jeremy A; Swanson, Ingrid; Burn, June A; Hackett, Murray; Leigh, John A
2010-06-15
In methanogenic Archaea, the final step of methanogenesis generates methane and a heterodisulfide of coenzyme M and coenzyme B (CoM-S-S-CoB). Reduction of this heterodisulfide by heterodisulfide reductase to regenerate HS-CoM and HS-CoB is an exergonic process. Thauer et al. [Thauer, et al. 2008 Nat Rev Microbiol 6:579-591] recently suggested that in hydrogenotrophic methanogens the energy of heterodisulfide reduction powers the most endergonic reaction in the pathway, catalyzed by the formylmethanofuran dehydrogenase, via flavin-based electron bifurcation. Here we present evidence that these two steps in methanogenesis are physically linked. We identify a protein complex from the hydrogenotrophic methanogen, Methanococcus maripaludis, that contains heterodisulfide reductase, formylmethanofuran dehydrogenase, F(420)-nonreducing hydrogenase, and formate dehydrogenase. In addition to establishing a physical basis for the electron-bifurcation model of energy conservation, the composition of the complex also suggests that either H(2) or formate (two alternative electron donors for methanogenesis) can donate electrons to the heterodisulfide-H(2) via F(420)-nonreducing hydrogenase or formate via formate dehydrogenase. Electron flow from formate to the heterodisulfide rather than the use of H(2) as an intermediate represents a previously unknown path of electron flow in methanogenesis. We further tested whether this path occurs by constructing a mutant lacking F(420)-nonreducing hydrogenase. The mutant displayed growth equal to wild-type with formate but markedly slower growth with hydrogen. The results support the model of electron bifurcation and suggest that formate, like H(2), is closely integrated into the methanogenic pathway.
Light-regulation of enzyme activity in anacystis nidulans (Richt.).
Duggan, J X; Anderson, L E
1975-01-01
The effect of light on the levels of activity of six enzymes which are light-modulated in higher plants was examined in the photosynthetic procaryot Anacystis nidulans. Ribulose-5-phosphate kinase (EC 2.7.1.19) was found to be light-activated in vivo and dithiothreitol-activated in vitro while glucose-6-phosphate dehydrogenase (EC 1.1.1.49) was light-inactivated and dithiothreitol-inactivated. The enzymes fructose-1,6-diphosphate phosphatase (EC 3.1.3.11), sedoheptulose-1,7-diphosphate phosphatase, NAD- and NADP-linked glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12; EC 1.2.1.13) were not affected by light treatment of the intact algae, but sedoheptulose-diphosphate phosphatase and the glyceraldehyde-3-phosphate dehydrogenases were dithiothreitol-activated in crude extracts. Light apparently controls the activity of the reductive and oxidative pentose phosphate pathway in this photosynthetic procaryot as in higher plants, through a process which probably involves reductive modulation of enzyme activity.
Yoneda, Kazunari; Sakuraba, Haruhiko; Araki, Tomohiro; Ohshima, Toshihisa
2018-05-01
A gene encoding L-serine dehydrogenase (L-SerDH) that exhibits extremely low sequence identity to the Agrobacterium tumefaciens L-SerDH was identified in the hyperthermophilic archaeon Pyrobaculum calidifontis. The predicted amino acid sequence showed 36% identity with that of Pseudomonas aeruginosa L-SerDH, suggesting that P. calidifontis L-SerDH is a novel type of L-SerDH, like Ps. aeruginosa L-SerDH. The overexpressed enzyme appears to be the most thermostable L-SerDH described to date, and no loss of activity was observed by incubation for 30 min at temperatures up to 100 °C. The enzyme showed substantial reactivity towards D-serine, in addition to L-serine. Two different crystal structures of P. calidifontis L-SerDH were determined using the Se-MAD and MR method: the structure in complex with NADP + /sulfate ion at 1.18 Å and the structure in complex with NADP + /L-tartrate (substrate analog) at 1.57 Å. The fold of the catalytic domain showed similarity with that of Ps. aeruginosa L-SerDH. However, the active site structure significantly differed between the two enzymes. Based on the structure of the tartrate, L- and D-serine and 3-hydroxypropionate molecules were modeled into the active site and the substrate binding modes were estimated. A structural comparison suggests that the wide cavity at the substrate binding site is likely responsible for the high reactivity of the enzyme toward both L- and D-serine enantiomers. This is the first description of the structure of the novel type of L-SerDH with bound NADP + and substrate analog, and it provides new insight into the substrate binding mechanism of L-SerDH. The results obtained here may be very informative for the creation of L- or D-serine-specific SerDH by protein engineering.
Novello, F.; Gumaa, J. A.; McLean, Patricia
1969-01-01
1. Measurements were made of the non-oxidative reactions of the pentose phosphate cycle in liver (transketolase, transaldolase, ribulose 5-phosphate epimerase and ribose 5-phosphate isomerase activities) in a variety of hormonal and nutritional conditions. In addition, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities were measured for comparison with the oxidative reactions of the cycle; hexokinase, glucokinase and phosphoglucose isomerase activities were also included. Starvation for 2 days caused significant lowering of activity of all the enzymes of the pentose phosphate cycle based on activity in the whole liver. Re-feeding with a high-carbohydrate diet restored all the enzyme activities to the range of the control values with the exception of that of glucose 6-phosphate dehydrogenase, which showed the well-known `overshoot' effect. Re-feeding with a high-fat diet also restored the activities of all the enzymes of the pentose phosphate cycle and of hexokinase; glucokinase activity alone remained unchanged. Expressed as units/g. of liver or units/mg. of protein hexokinase, glucose 6-phosphate dehydrogenase, transketolase and pentose phosphate isomerase activities were unchanged by starvation; both 6-phosphogluconate dehydrogenase and ribulose 5-phosphate epimerase activities decreased faster than the liver weight or protein content. 2. Alloxan-diabetes resulted in a decrease of approx. 30–40% in the activities of 6-phosphogluconate dehydrogenase, ribose 5-phosphate isomerase, ribulose 5-phosphate epimerase and transketolase; in contrast with this glucose 6-phosphate dehydrogenase, transaldolase and phosphoglucose isomerase activities were unchanged. Treatment of alloxan-diabetic rats with protamine–zinc–insulin for 3 days caused a very marked increase to above normal levels of activity in all the enzymes of the pentose phosphate pathway except ribulose 5-phosphate epimerase, which was restored to the control value. Hexokinase activity was also raised by this treatment. After 7 days treatment of alloxan-diabetic rats with protamine–zinc–insulin the enzyme activities returned towards the control values. 3. In adrenalectomized rats the two most important changes were the rise in hexokinase activity and the fall in transketolase activity; in addition, ribulose 5-phosphate epimerase activity was also decreased. These effects were reversed by cortisone treatment. In addition, in cortisone-treated adrenalectomized rats glucokinase activity was significantly lower than the control value. 4. In thyroidectomized rats both ribose 5-phosphate isomerase and transketolase activities were decreased; in contrast with this transaldolase activity did not change significantly. Hypophysectomy caused a 50% fall in transketolase activity that was partially reversed by treatment with thyroxine and almost fully reversed by treatment with growth hormone for 8 days. 5. The results are discussed in relation to the hormonal control of the non-oxidative reactions of the pentose phosphate cycle, the marked changes in transketolase activity being particularly outstanding. PMID:5791534
Serrano, A
1992-01-01
A dihydrolipoamide dehydrogenase (dihydrolipoamide: NAD+ oxidoreductase, EC 1.8.1.4) (DLD) has been found in the soluble fraction of cells of both unicellular (Synechococcus sp. strain P.C.C. 6301) and filamentous (Calothrix sp. strain P.C.C. 7601 and Anabaena sp. strain P.C.C. 7119) cyanobacteria. DLD from Anabaena sp. was purified 3000-fold to electrophoretic homogeneity. The purified enzyme exhibited a specific activity of 190 units/mg and was characterized as a dimeric FAD-containing protein with a native molecular mass of 104 kDa, a Stokes' radius of 4.28 nm and a very acidic pI value of about 3.7. As is the case with the same enzyme from other sources, cyanobacterial DLD showed specificity for NADH and lipoamide, or lipoic acid, as substrates. Nevertheless, the strong acidic character of the Anabaena DLD is a distinctive feature with respect to the same enzyme from other organisms. The presence of essential thiol groups was suggested by the inactivation produced by thiol-group-reactive reagents and heavy-metal ions, with lipoamide, but not NAD+, behaving as a protective agent. The function and physiological significance of Anabaena DLD are discussed in relation to the fact that 2-oxoacid dehydrogenase complexes have not been detected so far in filamentous cyanobacteria. Glycine decarboxylase activity, which might be involved in photorespiratory metabolism, has been found, however, in cell extracts of Anabaena sp. strain P.C.C. 7119 as the present study demonstrates. Images Fig. 2. PMID:1471997
Aleshin, Vasily A; Artiukhov, Artem V; Oppermann, Henry; Kazantsev, Alexey V; Lukashev, Nikolay V; Bunik, Victoria I
2015-08-21
Cellular NAD(P)H-dependent oxidoreductase activity with artificial dyes (NAD(P)H-OR) is an indicator of viability, as the cellular redox state is important for biosynthesis and antioxidant defense. However, high NAD(P)H due to impaired mitochondrial oxidation, known as reductive stress, should increase NAD(P)H-OR yet perturb viability. To better understand this complex behavior, we assayed NAD(P)H-OR with resazurin (Alamar Blue) in glioblastoma cell lines U87 and T98G, treated with inhibitors of central metabolism, oxythiamin, and phosphonate analogs of 2-oxo acids. Targeting the thiamin diphosphate (ThDP)-dependent enzymes, the inhibitors are known to decrease the NAD(P)H production in the pentose phosphate shuttle and/or upon mitochondrial oxidation of 2-oxo acids. Nevertheless, the inhibitors elevated NAD(P)H-OR with resazurin in a time- and concentration-dependent manner, suggesting impaired NAD(P)H oxidation rather than increased viability. In particular, inhibition of the ThDP-dependent enzymes affects metabolism of malate, which mediates mitochondrial oxidation of cytosolic NAD(P)H. We showed that oxythiamin not only inhibited mitochondrial 2-oxo acid dehydrogenases, but also induced cell-specific changes in glutamate and malate dehydrogenases and/or malic enzyme. As a result, inhibition of the 2-oxo acid dehydrogenases compromises mitochondrial metabolism, with the dysregulated electron fluxes leading to increases in cellular NAD(P)H-OR. Perturbed mitochondrial oxidation of NAD(P)H may thus complicate the NAD(P)H-based viability assay.
Aleshin, Vasily A.; Artiukhov, Artem V.; Oppermann, Henry; Kazantsev, Alexey V.; Lukashev, Nikolay V.; Bunik, Victoria I.
2015-01-01
Cellular NAD(P)H-dependent oxidoreductase activity with artificial dyes (NAD(P)H-OR) is an indicator of viability, as the cellular redox state is important for biosynthesis and antioxidant defense. However, high NAD(P)H due to impaired mitochondrial oxidation, known as reductive stress, should increase NAD(P)H-OR yet perturb viability. To better understand this complex behavior, we assayed NAD(P)H-OR with resazurin (Alamar Blue) in glioblastoma cell lines U87 and T98G, treated with inhibitors of central metabolism, oxythiamin, and phosphonate analogs of 2-oxo acids. Targeting the thiamin diphosphate (ThDP)-dependent enzymes, the inhibitors are known to decrease the NAD(P)H production in the pentose phosphate shuttle and/or upon mitochondrial oxidation of 2-oxo acids. Nevertheless, the inhibitors elevated NAD(P)H-OR with resazurin in a time- and concentration-dependent manner, suggesting impaired NAD(P)H oxidation rather than increased viability. In particular, inhibition of the ThDP-dependent enzymes affects metabolism of malate, which mediates mitochondrial oxidation of cytosolic NAD(P)H. We showed that oxythiamin not only inhibited mitochondrial 2-oxo acid dehydrogenases, but also induced cell-specific changes in glutamate and malate dehydrogenases and/or malic enzyme. As a result, inhibition of the 2-oxo acid dehydrogenases compromises mitochondrial metabolism, with the dysregulated electron fluxes leading to increases in cellular NAD(P)H-OR. Perturbed mitochondrial oxidation of NAD(P)H may thus complicate the NAD(P)H-based viability assay. PMID:26308058
Iuchi, S; Cole, S T; Lin, E C
1990-01-01
In Escherichia coli, sn-glycerol-3-phosphate can be oxidized by two different flavo-dehydrogenases, an anaerobic enzyme encoded by the glpACB operon and an aerobic enzyme encoded by the glpD operon. These two operons belong to the glp regulon specifying the utilization of glycerol, sn-glycerol-3-phosphate, and glycerophosphodiesters. In glpR mutant cells grown under conditions of low catabolite repression, the glpA operon is best expressed anaerobically with fumarate as the exogenous electron acceptor, whereas the glpD operon is best expressed aerobically. Increased anaerobic expression of glpA is dependent on the fnr product, a pleiotropic activator of genes involved in anaerobic respiration. In this study we found that the expression of a glpA1(Oxr) (oxygen-resistant) mutant operon, selected for increased aerobic expression, became less dependent on the FNR protein but more dependent on the cyclic AMP-catabolite gene activator protein complex mediating catabolite repression. Despite the increased aerobic expression of glpA1(Oxr), a twofold aerobic repressibility persisted. Moreover, anaerobic repression by nitrate respiration remained normal. Thus, there seems to exist a redox control apart from the FNR-mediated one. We also showed that the anaerobic repression of the glpD operon was fully relieved by mutations in either arcA (encoding a presumptive DNA recognition protein) or arcB (encoding a presumptive redox sensor protein). The arc system is known to mediate pleiotropic control of genes of aerobic function.
Gründel, Anne; Jacobs, Enno; Dumke, Roger
2016-12-01
Mycoplasma pneumoniae is a major cause of community-acquired respiratory infections worldwide. Due to the strongly reduced genome, the number of virulence factors expressed by this cell wall-less pathogen is limited. To further understand the processes during host colonization, we investigated the interactions of the previously confirmed surface-located glycolytic enzymes of M. pneumoniae (pyruvate dehydrogenase A-C [PdhA-C], glyceraldehyde-3-phosphate dehydrogenase [GapA], lactate dehydrogenase [Ldh], phosphoglycerate mutase [Pgm], pyruvate kinase [Pyk] and transketolase [Tkt]) to the human extracellular matrix (ECM) proteins fibrinogen (Fn), fibronectin (Fc), lactoferrin (Lf), laminin (Ln) and vitronectin (Vc), respectively. Concentration-dependent interactions between Fn and Vc and all eight recombinant proteins derived from glycolytic enzymes, between Ln and PdhB-C, GapA, Ldh, Pgm, Pyk and Tkt, between Lf and PdhA-C, GapA and Pyk, and between Fc and PdhC and GapA were demonstrated. In most cases, these associations are significantly influenced by ionic forces and by polyclonal sera against recombinant proteins. In immunoblotting, the complex of human plasminogen, activator (tissue-type or urokinase plasminogen activator) and glycolytic enzyme was not able to degrade Fc, Lf and Ln, respectively. In contrast, degradation of Vc was confirmed in the presence of all eight enzymes tested. Our data suggest that the multifaceted associations of surface-localized glycolytic enzymes play a potential role in the adhesion and invasion processes during infection of human respiratory mucosa by M. pneumoniae. Copyright © 2016 Elsevier GmbH. All rights reserved.
Pinard, J M; Marsac, C; Barkaoui, E; Desguerre, I; Birch-Machin, M; Reinert, P; Ponsot, G
1999-04-01
Succinate dehydrogenase (SDH) deficiency is rare. Clinical manifestations can appear in infancy with a marked impairment of psychomotor development with pyramidal signs and extrapyramidal rigidity. A 10-month-old boy developed severe neurological features, evoking a Leigh syndrome; magnetic resonance imaging showed features of leukodystrophy. A deficiency in the complex II respiratory chain (succinate dehydrogenase [SDH]) was shown. The course was remarkable by the regression of neurological impairment under treatment by riboflavin. The delay of psychomotor development, mainly involving language, was moderate at the age of 5 years. The relatively good prognosis of this patient, despite severe initial neurological impairment, may be due to the partial enzyme deficiency and/or riboflavin administration.
Chaperone-like properties of tobacco plastid thioredoxins f and m
Sanz-Barrio, Ruth; Fernández-San Millán, Alicia; Carballeda, Jon; Corral-Martínez, Patricia; Seguí-Simarro, José M.; Farran, Inmaculada
2012-01-01
Thioredoxins (Trxs) are ubiquitous disulphide reductases that play important roles in the redox regulation of many cellular processes. However, some redox-independent functions, such as chaperone activity, have also been attributed to Trxs in recent years. The focus of our study is on the putative chaperone function of the well-described plastid Trxs f and m. To that end, the cDNA of both Trxs, designated as NtTrxf and NtTrxm, was isolated from Nicotiana tabacum plants. It was found that bacterially expressed tobacco Trx f and Trx m, in addition to their disulphide reductase activity, possessed chaperone-like properties. In vitro, Trx f and Trx m could both facilitate the reactivation of the cysteine-free form of chemically denatured glucose-6 phosphate dehydrogenase (foldase chaperone activity) and prevent heat-induced malate dehydrogenase aggregation (holdase chaperone activity). Our results led us to infer that the disulphide reductase and foldase chaperone functions prevail when the proteins occur as monomers and the well-conserved non-active cysteine present in Trx f is critical for both functions. By contrast, the holdase chaperone activity of both Trxs depended on their oligomeric status: the proteins were functional only when they were associated with high molecular mass protein complexes. Because the oligomeric status of both Trxs was induced by salt and temperature, our data suggest that plastid Trxs could operate as molecular holdase chaperones upon oxidative stress, acting as a type of small stress protein. PMID:21948853
Chapman, John C; Polanco, Jose R; Min, Soohong; Michael, Sandra D
2005-01-01
In mouse ovaries, the enzyme 3 beta-hydroxysteroid dehydrogenase (HSD) is distributed between microsomes and mitochondria. Throughout the follicular phase of the estrous cycle, the HSD activity in microsomes is predominant; whereas, after LH stimulation, HSD activity during the luteal phase is highest in the mitochondria. The current study examined whether or not LH stimulation always results in an increase in mitochondrial HSD activity. This was accomplished by measuring the HSD activity in microsomal and mitochondrial fractions from ovaries of pregnant mice. These animals have two peaks of LH during gestation, and one peak of LH after parturition. It was found that mitochondrial HSD activity was highest after each peak of LH. It is proposed that mitochondrial HSD is essential for the synthesis of high levels of progesterone. The increase in HSD activity in mitochondria after LH stimulation occurs because: 1) LH initiates the simultaneous synthesis of HSD and the cholesterol side-chain cleavage enzyme (P450scc); and, 2) HSD and P450scc bind together to form a complex, which becomes inserted into the inner membrane of the mitochondria. High levels of progesterone are synthesized by mitochondrial HSD because: 1) the requisite NAD+ cofactor for progesterone synthesis is provided directly by the mitochondria, rather than indirectly via the rate limiting malate-aspartate shuttle; and, 2) the end-product inhibition of P450scc by pregnenolone is eliminated because pregnenolone is converted to progesterone. PMID:15804366
de Assis, Leandro José; Ries, Laure Nicolas Annick; Savoldi, Marcela; Dinamarco, Taisa Magnani; Goldman, Gustavo Henrique; Brown, Neil Andrew
2015-01-01
Aspergillus nidulans is an important mold and a model system for the study of fungal cell biology. In addition, invasive A. nidulans pulmonary infections are common in humans with chronic granulomatous disease. The morphological and biochemical transition from dormant conidia into active, growing, filamentous hyphae requires the coordination of numerous biosynthetic, developmental, and metabolic processes. The present study exhibited the diversity of roles performed by seven phosphatases in regulating cell cycle, development, and metabolism in response to glucose and alternative carbon sources. The identified phosphatases highlighted the importance of several signaling pathways regulating filamentous growth, the action of the pyruvate dehydrogenase complex as a metabolic switch controlling carbon usage, and the identification of the key function performed by the α-ketoglutarate dehydrogenase during germination. These novel insights into the fundamental roles of numerous phosphatases in germination and carbon sensing have provided new avenues of research into the identification of inhibitors of fungal germination, with implications for the food, feed, and pharmaceutical industries. PMID:25762568
USDA-ARS?s Scientific Manuscript database
Aldehyde dehydrogenase 1 (ALDH1) catalyzes oxidation of toxic aldehydes to carboxylic acids. Physiologic levels of Mg2+ ions influence ALDH1 activity in part by increasing NADH binding affinity to the enzyme thus reducing activity. By using time-resolved fluorescence spectroscopy, we have resolved t...
Müller, A; Sies, H
1982-01-01
The volatile hydrocarbons ethane and n-pentane are produced at increased rates by isolated perfused rat liver during the metabolism of acutely ethanol. The effect is half-maximal at 0.5 mM-ethanol, and its is not observed when inhibitors of alcohol dehydrogenase such as 4-methyl- or 4-propyl-pyrazole are also present. Propanol, another substrate for the dehydrogenase, is also active. Increased alkane production can be initiated by adding acetaldehyde in the presence of 4-methyl- or 4-propyl-pyrazole. An antioxidant, cyanidanol, suppresses the ethanol-induced alkane production. The data obtained with the isolated organ demonstrate that products known to arise from the peroxidation of polyunsaturated fatty acids are formed in the presence of ethanol and that the activity of alcohol dehydrogenase is required for the generation of the active radical species. The mere presence of ethanol, e.g. at binding sites of special form(s) of cytochrome P-450, it not sufficient to elicit an increased production of volatile hydrocarbons by rat liver. PMID:6751324
Prolonged Fasting Identifies Heat Shock Protein 10 as a Sirtuin 3 Substrate
Lu, Zhongping; Chen, Yong; Aponte, Angel M.; Battaglia, Valentina; Gucek, Marjan; Sack, Michael N.
2015-01-01
Although Sirtuin 3 (SIRT3), a mitochondrially enriched deacetylase and activator of fat oxidation, is down-regulated in response to high fat feeding, the rate of fatty acid oxidation and mitochondrial protein acetylation are invariably enhanced in this dietary milieu. These paradoxical data implicate that additional acetylation modification-dependent levels of regulation may be operational under nutrient excess conditions. Because the heat shock protein (Hsp) Hsp10-Hsp60 chaperone complex mediates folding of the fatty acid oxidation enzyme medium-chain acyl-CoA dehydrogenase, we tested whether acetylation-dependent mitochondrial protein folding contributes to this regulatory discrepancy. We demonstrate that Hsp10 is a functional SIRT3 substrate and that, in response to prolonged fasting, SIRT3 levels modulate mitochondrial protein folding. Acetyl mutagenesis of Hsp10 lysine 56 alters Hsp10-Hsp60 binding, conformation, and protein folding. Consistent with Hsp10-Hsp60 regulation of fatty acid oxidation enzyme integrity, medium-chain acyl-CoA dehydrogenase activity and fat oxidation are elevated by Hsp10 acetylation. These data identify acetyl modification of Hsp10 as a nutrient-sensing regulatory node controlling mitochondrial protein folding and metabolic function. PMID:25505263
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, Jeong Chan; Lee, Sangmin; Shin, Su Young
Overexpression of AtNTRC (AtNTRC{sup OE}) in Arabidopsis thaliana led to a freezing and cold stress tolerance, whereas a knockout mutant (atntrc) showed a stress-sensitive phenotype. Biochemical analyses showed that the recombinant AtNTRC proteins exhibited a cryoprotective activity for malate dehydrogenase and lactic dehydrogenase. Furthermore, conclusive evidence of its interaction with nucleic acids in vitro is provided here on the basis of gel shift and electron microscopy analysis. Recombinant AtNTRC efficiently protected RNA and DNA from RNase A and metal catalyzed oxidation damage, respectively. The C-terminal thioredoxin domain is required for the nucleic acid–protein complex formation. From these results, it can bemore » hypothesized that AtNTRC, which is known to be an electron donor of peroxiredoxin, contributes the stability of macromolecules under cold stress. - Highlights: • AtNTRC has a cryoprotective activity in vitro. • Overexpression of AtNTRC increases tolerance to freezing and cold shock stresses. • Thioredoxin domain of AtNTRC protects nucleic acids in vitro. • AtNTRC inhibits protein aggregation under freezing stress in vitro.« less
Elkalaf, Moustafa; Tůma, Petr; Weiszenstein, Martin; Polák, Jan; Trnka, Jan
2016-01-01
Methyltriphenylphosphonium (TPMP) salts have been widely used to measure the mitochondrial membrane potential and the triphenylphosphonium (TPP+) moiety has been attached to many bioactive compounds including antioxidants to target them into mitochondria thanks to their high affinity to accumulate in the mitochondrial matrix. The adverse effects of these compounds on cellular metabolism have been insufficiently studied and are still poorly understood. Micromolar concentrations of TPMP cause a progressive inhibition of cellular respiration in adherent cells without a marked effect on mitochondrial coupling. In permeabilized cells the inhibition was limited to NADH-linked respiration. We found a mixed inhibition of the Krebs cycle enzyme 2-oxoglutarate dehydrogenase complex (OGDHC) with an estimated IC50 3.93 [3.70-4.17] mM, which is pharmacologically plausible since it corresponds to micromolar extracellular concentrations. Increasing the lipophilic character of the used TPP+ compound further potentiates the inhibition of OGDHC activity. This effect of TPMP on the Krebs cycle ought to be taken into account when interpreting observations on cells and mitochondria in the presence of TPP+ derivatives. Compounds based on or similar to TPP+ derivatives may also be used to alter OGDHC activity for experimental or therapeutic purposes.
Elkalaf, Moustafa; Tůma, Petr; Weiszenstein, Martin; Polák, Jan
2016-01-01
Methyltriphenylphosphonium (TPMP) salts have been widely used to measure the mitochondrial membrane potential and the triphenylphosphonium (TPP+) moiety has been attached to many bioactive compounds including antioxidants to target them into mitochondria thanks to their high affinity to accumulate in the mitochondrial matrix. The adverse effects of these compounds on cellular metabolism have been insufficiently studied and are still poorly understood. Micromolar concentrations of TPMP cause a progressive inhibition of cellular respiration in adherent cells without a marked effect on mitochondrial coupling. In permeabilized cells the inhibition was limited to NADH-linked respiration. We found a mixed inhibition of the Krebs cycle enzyme 2-oxoglutarate dehydrogenase complex (OGDHC) with an estimated IC50 3.93 [3.70–4.17] mM, which is pharmacologically plausible since it corresponds to micromolar extracellular concentrations. Increasing the lipophilic character of the used TPP+ compound further potentiates the inhibition of OGDHC activity. This effect of TPMP on the Krebs cycle ought to be taken into account when interpreting observations on cells and mitochondria in the presence of TPP+ derivatives. Compounds based on or similar to TPP+ derivatives may also be used to alter OGDHC activity for experimental or therapeutic purposes. PMID:27537184
Johnson, M A; Turnbull, D M
1984-04-01
Quantitative cytochemical and biochemical techniques have been used in combination to study the response of mitochondrial oxidative enzymes in individual muscle fibre types to hypo- and hyperthyroidism. Hypothyroidism resulted in decreased activity of succinate dehydrogenase (SDH), L-glycerol-3-phosphate dehydrogenase (L-GPDH), and D-3-hydroxybutyrate dehydrogenase (D-HBDH) in all fibre types of both slow-twitch soleus and fast-twitch extensor digitorum longus (e.d.l.) muscles. In hyperthyroidism, only L-GPDH activity increased in e.d.l. but more marked increases were seen in soleus muscles, which also showed increased SDH activity. In addition to these alterations in the enzyme activity in individual fibre types the metabolic profile of the muscle is further modified by the hormone-induced interconversion of slow- to fast-twitch fibres and vice versa.
Arai, Kazuhito; Kamata, Takeo; Uchikoba, Hiroyuki; Fushinobu, Shinya; Matsuzawa, Hiroshi; Taguchi, Hayao
2001-01-01
The nonallosteric and allosteric l-lactate dehydrogenases of Lactobacillus pentosus and L. casei, respectively, exhibited broad substrate specificities, giving virtually the same maximal reaction velocity and substrate Km values for pyruvate and oxaloacetate. Replacement of Pro101 with Asn reduced the activity of the L. pentosus enzyme toward these alternative substrates to a greater extent than the activity toward pyruvate. PMID:11114942
Constantin-Teodosiu, Dumitru; Constantin, Despina; Stephens, Francis; Laithwaite, David; Greenhaff, Paul L
2012-05-01
High-fat feeding inhibits pyruvate dehydrogenase complex (PDC)-controlled carbohydrate (CHO) oxidation, which contributes to muscle insulin resistance. We aimed to reveal molecular changes underpinning this process in resting and exercising humans. We also tested whether pharmacological activation of PDC overrides these diet-induced changes. Healthy males consumed a control diet (CD) and on two further occasions an isocaloric high-fat diet (HFD). After each diet, subjects cycled for 60 min after intravenous infusion with saline (CD and HFD) or dichloroacetate (HFD+DCA). Quadriceps muscle biopsies obtained before and after 10 and 60 min of exercise were used to estimate CHO use, PDC activation, and mRNAs associated with insulin, fat, and CHO signaling. Compared with CD, HFD increased resting pyruvate dehydrogenase kinase 2 (PDK2), PDK4, forkhead box class O transcription factor 1 (FOXO1), and peroxisome proliferator-activated receptor transcription factor α (PPARα) mRNA and reduced PDC activation. Exercise increased PDC activation and whole-body CHO use in HFD, but to a lower extent than in CD. Meanwhile PDK4 and FOXO1, but not PPARα or PDK2, mRNA remained elevated. HFD+DCA activated PDC throughout and restored whole-body CHO use during exercise. FOXO1 appears to play a role in HFD-mediated muscle PDK4 upregulation and inhibition of PDC and CHO oxidation in humans. Also, pharmacological activation of PDC restores HFD-mediated inhibition of CHO oxidation during exercise.
Recanatini, Maurizio; Cavalli, Andrea
2011-01-01
In humans, type 1 11β-hydroxysteroid dehydrogenase (11β-HSD-1) plays a key role in the regulation of the glucocorticoids balance by converting the inactive hormone cortisone into cortisol. Numerous functional aspects of 11β-HSD-1 have been understood thanks to the availability at the Worldwide Protein Data Bank of a number of X-ray structures of the enzyme either alone or in complex with inhibitors, and to several experimental data. However at present, a complete description of the dynamic behaviour of 11β-HSD-1 upon substrate binding is missing. To this aim we firstly docked cortisone into the catalytic site of 11β-HSD-1 (both wild type and Y177A mutant), and then we used steered molecular dynamics and metadynamics to simulate its undocking. This methodology helped shedding light at molecular level on the complex relationship between the enzyme and its natural substrate. In particular, the work highlights a) the reason behind the functional dimerisation of 11β-HSD-1, b) the key role of Y177 in the cortisone binding event, c) the fine tuning of the active site degree of solvation, and d) the role of the S228-P237 loop in ligand recognition. PMID:21966510
Spectroscopic characterisation of interaction of ferulic acid with aldehyde dehydrogenase (ALDH).
Kolawole, Ayodele O; Agaba, Ruth J; Oluwole, Matthew O
2017-05-01
Interaction of a pharmacological important phenolic, ferulic acid, with Aldehyde dehydrogenase (ALDH) at the simulative pH condition, was studied using spectroscopic approach. Ferulic acid caused a decrease in the fluorescence intensity formed from ALDH-ferulic acid complex resulting in mixed inhibition of ALDH activity (IC 50 =30.65μM). The intrinsic quenching was dynamic and induced altered conformation of ALDH and made the protein less compact but might not unfold it. ALDH has two binding sites for ferulic acid at saturating concentrations having association constant of 1.35×10 3 Lmol -1 and a dissociation constant of 9.7×10 7 Lmol -1 at 25°C indicating ALDH-ferulic acid complex formation is more favourable than its dissociation. The interaction was not spontaneous and endothermic and suggests the involvement of hydrophobic interactions with a FRET binding distance of 4.49nm. Change in pH near and far from isoelectric points of ferulic acid did not affect the bonding interaction. Using trehalose as viscosogen, the result from Stoke-Einstein hypothesis showed that ferulic acid-ALDH binding and dissociation equilibrium was diffusion controlled. These results clearly suggest the unique binding properties and lipophilicity influence of ferulic acid. Copyright © 2017 Elsevier B.V. All rights reserved.
BCAA Metabolism and NH3 Homeostasis.
Conway, M E; Hutson, S M
2016-01-01
The branched chain amino acids (BCAA) are essential amino acids required not only for growth and development, but also as nutrient signals and as nitrogen donors to neurotransmitter synthesis and glutamate/glutamine cycling. Transamination and oxidative decarboxylation of the BCAAs are catalysed by the branched-chain aminotransferase proteins (BCATm, mitochondrial and BCATc, cytosolic) and the branched-chain α-keto acid dehydrogenase enzyme complex (BCKDC), respectively. These proteins show tissue, cell compartmentation, and protein-protein interactions, which call for substrate shuttling or channelling and nitrogen transfer for oxidation to occur. Efficient regulation of these pathways is mediated through the redox environment and phosphorylation in response to dietary and hormonal stimuli. The wide distribution of these proteins allows for effective BCAA utilisation. We discuss how BCAT, BCKDC, and glutamate dehydrogenase operate in supramolecular complexes, allowing for efficient channelling of substrates. The role of BCAAs in brain metabolism is highlighted in rodent and human brain, where differential expression of BCATm indicates differences in nitrogen metabolism between species. Finally, we introduce a new role for BCAT, where a change in function is triggered by oxidation of its redox-active switch. Our understanding of how BCAA metabolism and nitrogen transfer is regulated is important as many studies now point to BCAA metabolic dysregulation in metabolic and neurodegenerative conditions.
NASA Technical Reports Server (NTRS)
Chalmers, G. R.; Edgerton, V. R.
1989-01-01
The effect of tissue fixation on succinate dehydrogenase and cytochrome oxidase activity in single motoneurons of the rat was demonstrated using a computer image processing system. Inhibition of enzyme activity by chemical fixation was variable, with some motoneurons being affected more than others. It was concluded that quantification of enzymatic activity in chemically fixed tissue provides an imprecise estimate of enzyme activities found in fresh-frozen tissues.
Differential Role of Glutamate Dehydrogenase in Nitrogen Metabolism of Maize Tissues 1
Loyola-Vargas, Victor Manuel; de Jimenez, Estela Sanchez
1984-01-01
Both calli and plantlets of maize (Zea mays L. var Tuxpeño 1) were exposed to specific nitrogen sources, and the aminative (NADH) and deaminative (NAD+) glutamate dehydrogenase activities were measured at various periods of time in homogenates of calli, roots, and leaves. A differential effect of the nitrogen sources on the tissues tested was observed. In callus tissue, glutamate, ammonium, and urea inhibited glutamate dehydrogenase (GDH) activity. The amination and deamination reactions also showed different ratios of activity under different nitrogen sources. In roots, ammonium and glutamine produced an increase in GDH-NADH activity whereas the same metabolites were inhibitory of this activity in leaves. These data suggest the presence of isoenzymes or conformers of GDH, specific for each tissue, whose activities vary depending on the nutritional requirements of the tissue and the state of differentiation. PMID:16663876
Tricarboxylic acid cycle without malate dehydrogenase in Streptomyces coelicolor M-145.
Takahashi-Íñiguez, Tóshiko; Barrios-Hernández, Joana; Rodríguez-Maldonado, Marion; Flores, María Elena
2018-06-23
The oxidation of malate to oxaloacetate is catalysed only by a nicotinamide adenine dinucleotide-dependent malate dehydrogenase encoded by SCO4827 in Streptomyces coelicolor. A mutant lacking the malate dehydrogenase gene was isolated and no enzymatic activity was detected. As expected, the ∆mdh mutant was unable to grow on malate as the sole carbon source. However, the mutant grew less in minimal medium with glucose and there was a delay of 36 h. The same behaviour was observed when the mutant was grown on minimal medium with casamino acids or glycerol. For unknown reasons, the mutant was not able to grow in YEME medium with glucose. The deficiency of malate dehydrogenase affected the expression of the isocitrate dehydrogenase and alpha-ketoglutarate dehydrogenase genes, decreasing the expression of both genes by approximately two- to threefold.
Rutter, G A; Denton, R M
1988-01-01
1. Toluene-permeabilized rat heart mitochondria have been used to study the regulation of NAD+-linked isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase by Ca2+, adenine and nicotinamide nucleotides, and to compare the properties of the enzymes in situ, with those in mitochondrial extracts. 2. Although K0.5 values (concn. giving half-maximal effect) for Ca2+ of 2-oxoglutarate dehydrogenase were around 1 microM under all conditions, corresponding values for NAD+-linked isocitrate dehydrogenase were in the range 5-43 microM. 3. For both enzymes, K0.5 values for Ca2+ observed in the presence of ATP were 3-10-fold higher than those in the presence of ADP, with values increasing over the ADP/ATP range 0.0-1.0. 4. 2-Oxoglutarate dehydrogenase was less sensitive to inhibition by NADH when assayed in permeabilized mitochondria than in mitochondrial extracts. Similarly, the Km of NAD+-linked isocitrate dehydrogenase for threo-Ds-isocitrate was lower in permeabilized mitochondria than in extracts under all the conditions investigated. 5. It is concluded that in the intact heart Ca2+ activation of NAD+-linked isocitrate dehydrogenase may not necessarily occur in parallel with that of the other mitochondrial Ca2+-sensitive enzymes, 2-oxoglutarate dehydrogenase and the pyruvate dehydrogenase system. PMID:3421900
Dolferus, R.; Osterman, J. C.; Peacock, W. J.; Dennis, E. S.
1997-01-01
This article reports the cloning of the genes encoding the Arabidopsis and rice class III ADH enzymes, members of the alcohol dehydrogenase or medium chain reductase/dehydrogenase superfamily of proteins with glutathione-dependent formaldehyde dehydrogenase activity (GSH-FDH). Both genes contain eight introns in exactly the same positions, and these positions are conserved in plant ethanol-active Adh genes (class P). These data provide further evidence that plant class P genes have evolved from class III genes by gene duplication and acquisition of new substrate specificities. The position of introns and similarities in the nucleic acid and amino acid sequences of the different classes of ADH enzymes in plants and humans suggest that plant and animal class III enzymes diverged before they duplicated to give rise to plant and animal ethanol-active ADH enzymes. Plant class P ADH enzymes have gained substrate specificities and evolved promoters with different expression properties, in keeping with their metabolic function as part of the alcohol fermentation pathway. PMID:9215914
Malver, Olaf; Sebastian, Mina J; Oppenheimer, Norman J
2014-11-01
A new, acyclic NAD-analog, acycloNAD(+) has been synthesized where the nicotinamide ribosyl moiety has been replaced by the nicotinamide (2-hydroxyethoxy)methyl moiety. The chemical properties of this analog are comparable to those of β-NAD(+) with a redox potential of -324mV and a 341nm λmax for the reduced form. Both yeast alcohol dehydrogenase (YADH) and horse liver alcohol dehydrogenase (HLADH) catalyze the reduction of acycloNAD(+) by primary alcohols. With HLADH 1-butanol has the highest Vmax at 49% that of β-NAD(+). The primary deuterium kinetic isotope effect is greater than 3 indicating a significant contribution to the rate limiting step from cleavage of the carbon-hydrogen bond. The stereochemistry of the hydride transfer in the oxidation of stereospecifically deuterium labeled n-butanol is identical to that for the reaction with β-NAD(+). In contrast to the activity toward primary alcohols there is no detectable reduction of acycloNAD(+) by secondary alcohols with HLADH although these alcohols serve as competitive inhibitors. The net effect is that acycloNAD(+) has converted horse liver ADH from a broad spectrum alcohol dehydrogenase, capable of utilizing either primary or secondary alcohols, into an exclusively primary alcohol dehydrogenase. This is the first example of an NAD analog that alters the substrate specificity of a dehydrogenase and, like site-directed mutagenesis of proteins, establishes that modifications of the coenzyme distance from the active site can be used to alter enzyme function and substrate specificity. These and other results, including the activity with α-NADH, clearly demonstrate the promiscuity of the binding interactions between dehydrogenases and the riboside phosphate of the nicotinamide moiety, thus greatly expanding the possibilities for the design of analogs and inhibitors of specific dehydrogenases. Copyright © 2014 Elsevier B.V. All rights reserved.
Frayne, Jan; Taylor, Abby; Cameron, Gus; Hadfield, Andrea T.
2009-01-01
Sperm glyceraldehyde-3-phosphate dehydrogenase has been shown to be a successful target for a non-hormonal contraceptive approach, but the agents tested to date have had unacceptable side effects. Obtaining the structure of the sperm-specific isoform to allow rational inhibitor design has therefore been a goal for a number of years but has proved intractable because of the insoluble nature of both native and recombinant protein. We have obtained soluble recombinant sperm glyceraldehyde-3-phosphate dehydrogenase as a heterotetramer with the Escherichia coli glyceraldehyde-3-phosphate dehydrogenase in a ratio of 1:3 and have solved the structure of the heterotetramer which we believe represents a novel strategy for structure determination of an insoluble protein. A structure was also obtained where glyceraldehyde 3-phosphate binds in the Ps pocket in the active site of the sperm enzyme subunit in the presence of NAD. Modeling and comparison of the structures of human somatic and sperm-specific glyceraldehyde-3-phosphate dehydrogenase revealed few differences at the active site and hence rebut the long presumed structural specificity of 3-chlorolactaldehyde for the sperm isoform. The contraceptive activity of α-chlorohydrin and its apparent specificity for the sperm isoform in vivo are likely to be due to differences in metabolism to 3-chlorolactaldehyde in spermatozoa and somatic cells. However, further detailed analysis of the sperm glyceraldehyde-3-phosphate dehydrogenase structure revealed sites in the enzyme that do show significant difference compared with published somatic glyceraldehyde-3-phosphate dehydrogenase structures that could be exploited by structure-based drug design to identify leads for novel male contraceptives. PMID:19542219
Syed, Umesalma; Ganapasam, Sudhandiran
2017-01-01
To elucidate the key biochemical indexes associated with 1, 2-dimethylhydrazine (DMH)-induced colon carcinogenesis and the modulatory efficacy of a dietary polyphenol, ellagic acid (EA). Wistar rats were chosen to study objective, and were divided into 4 groups; Group 1-control rats; Group 2-rats received EA (60 mg/kg body weight/day, orally); rats in Group 3-induced with DMH (20 mg/kg body weight) subcutaneously for 15 weeks; DMH-induced Group 4 rats were initiated with EA treatment. We examined key citric acid cycle enzymes such as isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, malate dehydrogenase and the activities of respiratory chain enzymes NADH dehydrogenase and Cytochrome-C-oxidase and membrane-bound enzyme profiles (Na +/K + ATPase, Ca 2+ ATPase and Mg 2+ ATPase), activities of lysosomal proteases such as β-D-glucuronidase, β-galactosidase and N-acety-β-D-glucosaminidase and cellular thiols (oxidized glutathione, protein thiols, and total thiols). It was found that administration of DMH to rats decreased both mitochondrial and membrane-bound enzymes activities, increased activities of lysosomal enzymes and further modulates cellular thiols levels. Treatment with EA significantly restored the mitochondrial and ATPases levels and further reduced lysosomal enzymes to near normalcy thereby restoring harmful effects induced by DMH. EA treatment was able to effectively restore the detrimental effects induced by DMH, which proves the chemoprotective function of EA against DMH-induced experimental colon carcinogenesis.
Karthikeyan, K; Sarala Bai, B R; Niranjali Devaraj, S
2007-11-30
This study was designed to examine the effects of grape seed proanthocyanidins (GSP) against myocardial injury (MI) induced by isoproterenol (ISO), in a rat model. Induction of rats with ISO (85 mg/kg body weight, subcutaneously) for 2 days resulted in a significant decrease in the activities of heart mitochondrial enzymes (isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase and alpha-ketoglutarate dehydrogenase) and respiratory chain enzymes (NADH dehydrogenase and cytochrome c oxidase). The activities of lysosomal enzymes (alpha-d-glucuronidase, alpha-d-N-acetylglucosaminidase, cathepsin-D, acid phosphatases and alpha-d-galactosidase) were increased significantly in the heart and serum of ISO-induced rats. The prior administration of GSP for 6 days a week for 5 weeks significantly increased the activities of mitochondrial and respiratory chain enzymes and significantly decreased the activities of lysosomal enzymes in the heart tissues of ISO-induced rats, which proves the stress stabilizing action of GSP. Oral administration of grape seed proanthocyanidins alone (50, 100 and 150 mg/kg) to normal rats did not show any significant effect in all the parameters studied. These biochemical functional alterations were supported by the macroscopic enzyme mapping assay of ischemic myocardium. Thus, this study shows that 100 and 150 mg/kg of GSP gives protection against ISO-induced MI and demonstrates that GSP has a significant effect in the protection of heart.
Guschin, Dmitrii A; Castillo, John; Dimcheva, Nina; Schuhmann, Wolfgang
2010-10-01
The design of polymers carrying suitable ligands for coordinating Os complexes in ligand exchange reactions against labile chloro ligands is a strategy for the synthesis of redox polymers with bound Os centers which exhibit a wide variation in their redox potential. This strategy is applied to polymers with an additional variation of the properties of the polymer backbone with respect to pH-dependent solubility, monomer composition, hydrophilicity etc. A library of Os-complex-modified electrodeposition polymers was synthesized and initially tested with respect to their electron-transfer ability in combination with enzymes such as glucose oxidase, cellobiose dehydrogenase, and PQQ-dependent glucose dehydrogenase entrapped during the pH-induced deposition process. The different polymer-bound Os complexes in a library containing 50 different redox polymers allowed the statistical evaluation of the impact of an individual ligand to the overall redox potential of an Os complex. Using a simple linear regression algorithm prediction of the redox potential of Os complexes becomes feasible. Thus, a redox polymer can now be designed to optimally interact in electron-transfer reactions with a selected enzyme.
Pan, Xiaoliang; Schwartz, Steven D
2015-04-30
It has long been recognized that the structure of a protein creates a hierarchy of conformations interconverting on multiple time scales. The conformational heterogeneity of the Michaelis complex is of particular interest in the context of enzymatic catalysis in which the reactant is usually represented by a single conformation of the enzyme/substrate complex. Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate with concomitant interconversion of two forms of the cofactor nicotinamide adenine dinucleotide (NADH and NAD(+)). Recent experimental results suggest that multiple substates exist within the Michaelis complex of LDH, and they show a strong variance in their propensity toward the on-enzyme chemical step. In this study, microsecond-scale all-atom molecular dynamics simulations were performed on LDH to explore the free energy landscape of the Michaelis complex, and network analysis was used to characterize the distribution of the conformations. Our results provide a detailed view of the kinetic network of the Michaelis complex and the structures of the substates at atomistic scales. They also shed light on the complete picture of the catalytic mechanism of LDH.
Leigh disease presenting in utero due to a novel missense mutation in the mitochondrial DNA-ND3.
Leshinsky-Silver, Esther; Lev, Dorit; Malinger, Gustavo; Shapira, Daniel; Cohen, Sarit; Lerman-Sagie, Tally; Saada, Ann
2010-05-01
Leigh syndrome can be caused by defects in both nuclear and mitochondrial genes involved in energy metabolism. Recently, an increasing number of mutations in mitochondrial DNA encoding regions, especially in NADH dehydrogenase (respiratory chain complex I) subunits, have been reported as causative of early onset Leigh syndrome. We describe a patient whose fetal brain ultrasound demonstrated periventricular pseudocyst suggestive of a possible mitochondrial disorder who presented postnatally with Leigh syndrome. A muscle biopsy demonstrated a partial decrease in complex I and pyruvate dehydrogenase (PDH-E1 alpha) activity. Sequencing of the PDH-E1 alpha gene did not reveal any mutation. Sequencing of the mtDNA revealed a novel heteroplasmic G10254A (D66N) mutation in the ND3 gene. This change results in a substitution of aspartic acid to asparagine in a highly conserved domain of the ND3 subunit. The mutation could not be detected in the mother's blood or urine sediment. Blue native gel electrophoresis of muscle mitochondria revealed a normal size, albeit a decreased level of complex I. The G10254A substitution in the mtDNA-ND3 gene is another cause of maternally inherited Leigh syndrome. This case demonstrates that periventricular pseudocysts may be the initial in utero presentation in patients with mitochondrial disorders. We emphasize the importance of screening the mtDNA in pediatric patients as the first step in molecular diagnosis of Leigh syndrome. (c) 2010 Elsevier Inc. All rights reserved.
Novel amide-based inhibitors of inosine 5'-monophosphate dehydrogenase.
Watterson, Scott H; Liu, Chunjian; Dhar, T G Murali; Gu, Henry H; Pitts, William J; Barrish, Joel C; Fleener, Catherine A; Rouleau, Katherine; Sherbina, N Z; Hollenbaugh, Diane L; Iwanowicz, Edwin J
2002-10-21
A series of novel amide-based small molecule inhibitors of inosine monophosphate dehydrogenase (IMPDH) was explored. The synthesis and the structure-activity relationships (SARs) derived from in vitro studies are described.
Rapid synthesis of triazine inhibitors of inosine monophosphate dehydrogenase.
Pitts, William J; Guo, Junqing; Dhar, T G Murali; Shen, Zhongqi; Gu, Henry H; Watterson, Scott H; Bednarz, Mark S; Chen, Bang Chi; Barrish, Joel C; Bassolino, Donna; Cheney, Daniel; Fleener, Catherine A; Rouleau, Katherine A; Hollenbaugh, Diane L; Iwanowicz, Edwin J
2002-08-19
A series of novel triazine-based small molecule inhibitors (IV) of inosine monophosphate dehydrogenase was prepared. The synthesis and the structure-activity relationships (SAR) derived from in vitro studies are described.
Vuorinen, Anna; Seibert, Julia; Papageorgiou, Vassilios P; Rollinger, Judith M; Odermatt, Alex; Schuster, Daniela; Assimopoulou, Andreana N
2015-04-01
In traditional medicine, the oleoresinous gum of Pistacia lentiscus var. chia, so-called mastic gum, has been used to treat multiple conditions such as coughs, sore throats, eczema, dyslipidemia, and diabetes. Mastic gum is rich in triterpenes, which have been postulated to exert antidiabetic effects and improve lipid metabolism. In fact, there is evidence of oleanonic acid, a constituent of mastic gum, acting as a peroxisome proliferator-activated receptor γ agonist, and mastic gum being antidiabetic in mice in vivo. Despite these findings, the exact antidiabetic mechanism of mastic gum remains unknown. Glucocorticoids play a key role in regulating glucose and fatty acid metabolism, and inhibition of 11β-hydroxysteroid dehydrogenase 1 that converts inactive cortisone to active cortisol has been proposed as a promising approach to combat metabolic disturbances including diabetes. In this study, a pharmacophore-based virtual screening was applied to filter a natural product database for possible 11β-hydroxysteroid dehydrogenase 1 inhibitors. The hit list analysis was especially focused on the triterpenoids present in Pistacia species. Multiple triterpenoids, such as masticadienonic acid and isomasticadienonic acid, main constituents of mastic gum, were identified. Indeed, masticadienonic acid and isomasticadienonic acid selectively inhibited 11β-hydroxysteroid dehydrogenase 1 over 11β-hydroxysteroid dehydrogenase 2 at low micromolar concentrations. These findings suggest that inhibition of 11β-hydroxysteroid dehydrogenase 1 contributes to the antidiabetic activity of mastic gum. Georg Thieme Verlag KG Stuttgart · New York.
Warren, Blair E.; Lou, Phing-How; Lucchinetti, Eliana; Zhang, Liyan; Clanachan, Alexander S.; Affolter, Andreas; Hersberger, Martin; Zaugg, Michael
2014-01-01
Although evidence that type 2 diabetes mellitus (T2DM) is accompanied by mitochondrial dysfunction in skeletal muscle has been accumulating, a causal link between mitochondrial dysfunction and the pathogenesis of the disease remains unclear. Our study focuses on an early stage of the disease to determine whether mitochondrial dysfunction contributes to the development of T2DM. The fructose-fed (FF) rat was used as an animal model of early T2DM. Mitochondrial respiration and acylcarnitine species were measured in oxidative (soleus) and glycolytic [extensor digitorum longus (EDL)] muscle. Although FF rats displayed characteristic signs of T2DM, including hyperglycemia, hyperinsulinemia, and hypertriglyceridemia, mitochondrial content was preserved in both muscles from FF rats. The EDL muscle had reduced complex I and complex I and II respiration in the presence of pyruvate but not glutamate. The decrease in pyruvate-supported respiration was due to a decrease in pyruvate dehydrogenase activity. Accumulation of C14:1 and C14:2 acylcarnitine species and a decrease in respiration supported by long-chain acylcarnitines but not acetylcarnitine indicated dysfunctional β-oxidation in the EDL muscle. In contrast, the soleus muscle showed preserved mitochondrial respiration, pyruvate dehydrogenase activity, and increased fatty acid oxidation, as evidenced by overall reduced acylcarnitine levels. Aconitase activity, a sensitive index of reactive oxygen species production in mitochondria, was reduced exclusively in EDL muscle, which showed lower levels of the antioxidant enzymes thioredoxin reductase and glutathione peroxidase. Here, we show that the glycolytic EDL muscle is more prone to an imbalance between energy supply and oxidation caused by insulin resistance than the oxidative soleus muscle. PMID:24425766
NASA Astrophysics Data System (ADS)
Ostrovtsova, Svetlana A.; Volodenkov, Alexander P.; Maskevich, Alexander A.; Artsukevich, Irina M.; Anufrik, Slavomir S.; Makarchikov, Alexander F.; Chernikevich, Ivan P.; Stepuro, Vitali I.
1998-05-01
Three enzymes differing in their structural composition were irradiated by UV lasers to study the effect of temperature, protein concentration and addition of small molecules on their sensitivity to radiation exposure. The laser-induced effects were due to the structural complexity of the protein molecules and depended on the dose applied, the wavelength and the density of irradiation. The multi-enzyme 2- oxoglutarate dehydrogenase complex was subjected to pronounced irradiation-induced changes whereas the response of the two other enzymes was less significant. Reduction of the protein levels in irradiated samples was important under the XeCl laser coercion and the effects depended on the doses applied. The laser irradiation effects are suggested to be realized by means of conformational changes in the protein molecules and intermolecular association- dissociation processes.
Gomez-Mingot, Maria; Porcher, Jean-Philippe; Todorova, Tanya K; Fogeron, Thibault; Mellot-Draznieks, Caroline; Li, Yun; Fontecave, Marc
2015-10-29
Bis(dithiolene)tungsten complexes, W(VI)O2 (L = dithiolene)2 and W(IV)O (L = dithiolene)2, which mimic the active site of formate dehydrogenases, have been characterized by cyclic voltammetry and controlled potential electrolysis in acetonitrile. They are shown to be able to catalyze the electroreduction of protons into hydrogen in acidic organic media, with good Faradaic yields (75-95%) and good activity (rate constants of 100 s(-1)), with relatively high overpotentials (700 mV). They also catalyze proton reduction into hydrogen upon visible light irradiation, in combination with [Ru(bipyridine)3](2+) as a photosensitizer and ascorbic acid as a sacrificial electron donor. On the basis of detailed DFT calculations, a reaction mechanism is proposed in which the starting W(VI)O2 (L = dithiolene)2 complex acts as a precatalyst and hydrogen is further formed from a key reduced W-hydroxo-hydride intermediate.
Li, Fuli; Hinderberger, Julia; Seedorf, Henning; Zhang, Jin; Buckel, Wolfgang; Thauer, Rudolf K
2008-02-01
Cell extracts of butyrate-forming clostridia have been shown to catalyze acetyl-coenzyme A (acetyl-CoA)- and ferredoxin-dependent formation of H2 from NADH. It has been proposed that these bacteria contain an NADH:ferredoxin oxidoreductase which is allosterically regulated by acetyl-CoA. We report here that ferredoxin reduction with NADH in cell extracts from Clostridium kluyveri is catalyzed by the butyryl-CoA dehydrogenase/Etf complex and that the acetyl-CoA dependence previously observed is due to the fact that the cell extracts catalyze the reduction of acetyl-CoA with NADH via crotonyl-CoA to butyryl-CoA. The cytoplasmic butyryl-CoA dehydrogenase complex was purified and is shown to couple the endergonic reduction of ferredoxin (E0' = -410 mV) with NADH (E0' = -320 mV) to the exergonic reduction of crotonyl-CoA to butyryl-CoA (E0' = -10 mV) with NADH. The stoichiometry of the fully coupled reaction is extrapolated to be as follows: 2 NADH + 1 oxidized ferredoxin + 1 crotonyl-CoA = 2 NAD+ + 1 ferredoxin reduced by two electrons + 1 butyryl-CoA. The implications of this finding for the energy metabolism of butyrate-forming anaerobes are discussed in the accompanying paper.
Guarani, Virginia; Paulo, Joao; Zhai, Bo; Huttlin, Edward L; Gygi, Steven P; Harper, J Wade
2014-03-01
Complex I (CI) of the electron transport chain, a large membrane-embedded NADH dehydrogenase, couples electron transfer to the release of protons into the mitochondrial inner membrane space to promote ATP production through ATP synthase. In addition to being a central conduit for ATP production, CI activity has been linked to neurodegenerative disorders, including Parkinson's disease. CI is built in a stepwise fashion through the actions of several assembly factors. We employed interaction proteomics to interrogate the molecular associations of 15 core subunits and assembly factors previously linked to human CI deficiency, resulting in a network of 101 proteins and 335 interactions (edges). TIMMDC1, a predicted 4-pass membrane protein, reciprocally associated with multiple members of the MCIA CI assembly factor complex and core CI subunits and was localized in the mitochondrial inner membrane, and its depletion resulted in reduced CI activity and cellular respiration. Quantitative proteomics demonstrated a role for TIMMDC1 in assembly of membrane-embedded and soluble arms of the complex. This study defines a new membrane-embedded CI assembly factor and provides a resource for further analysis of CI biology.
Carattino, Marcelo D; Peralta, Susana; Pérez-Coll, Cristina; Naab, Fabián; Burlón, Alejandro; Kreiner, Andrés J; Preller, Ana F; de Schroeder, Teresa M Fonovich
2004-03-01
The effects of copper and cadmium on metabolism through the pentose phosphate pathway were evaluated in Bufo arenarum toad ovary. The effects of the two metals on dehydrogenases from this pathway were evaluated by three experiments: (1) in samples obtained from control females with addition of the metals to the reaction mixture (in vitro), (2) in samples obtained from control females and after long-term exposure of females to 4 and 100 microg/L of Cu or Cd in the incubation media (in vitro after exposure to the metals in vivo), and (3) 14CO2 production through the pentose phosphate pathway was evaluated after [U-14C]glucose microinjection on ovulated oocytes (in vivo after microinjection of the metals). Results from (1) evidenced inhibition of both enzyme activities but only above 1.5 mM Cu and Cd added to the reaction mixture. In (2) both glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities decreased in samples from the ovaries of females exposed in vivo to Cu, in a concentration-dependent manner (up to 90% in females exposed to 100 microg/L Cu: 2.12 +/- 1.57 NADPH micromol/min microg protein x 10(-5) vs 19.97 +/- 8.54 in control females). Cd treatment of the toads only rendered an inhibitory effect on 6-phosphogluconate dehydrogenase activity after exposure to 4 microg/L of the bivalent cation. (3) In vivo 14CO2 evolution significantly decreased in oocytes coinjected with 6.3 x 10(-3) mM Cu (calculated intracellular final concentration of the metal injected) and radioactive glucose. Cu and Cd concentration in samples from exposed females were always under detection limit by particle-induced X-ray emission. The results presented here are in agreement with a role for both glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities determination as biomarkers of effect and exposure for Cu but not for Cd toxicity.
Sola-Carvajal, Agustín; García-García, María Inmaculada; Sánchez-Carrón, Guiomar; García-Carmona, Francisco; Sánchez-Ferrer, Alvaro
2012-11-01
Short-chain dehydrogenases/reductases (SDR) constitute one of the largest enzyme superfamilies with over 60,000 non-redundant sequences in the database, many of which need a correct functional assignment. Among them, the gene AAC16202.1 (NCBI) from Rhodobacter capsulatus SB1003 has been assigned in Uniprot both as a sorbitol dehydrogenase (#D5AUY1) and, as an N-acetyl-d-mannosamine dehydrogenase (#O66112), both enzymes being of biotechnological interest. When the gene was overexpressed in Escherichia coli Rosetta (DE3)pLys, the purified enzyme was not active toward N-acetyl-d-mannosamine, whereas it was active toward d-sorbitol and d-fructose. However, the relative activities toward xylitol and l-iditol (0.45 and 6.9%, respectively) were low compared with that toward d-sorbitol. Thus, the enzyme could be considered sorbitol dehydrogenase (SDH) with very low activity toward xylitol, which could increase its biotechnological interest for determining sorbitol without the unspecific cross-determination of added xylitol in food and pharma compositions. The tetrameric enzyme (120 kDa) showed similar catalytic efficiency (2.2 × 10(3) M(-1) s(-1)) to other sorbitol dehydrogenases for d-sorbitol, with an optimum pH of 9.0 and an optimum temperature of 37 °C. The enzyme was also more thermostable than other reported SDH, ammonium sulfate being the best stabilizer in this respect, increasing the melting temperature (T(m)) up to 52.9 °C. The enzyme can also be considered as a new member of the Zn(2+) independent SDH family since no effect on activity was detected in the presence of divalent cations or chelating agents. Finally, its in silico analysis enabled the specific conserved sequence blocks that are the fingerprints of bacterial sorbitol dehydrogenases and mainly located at C-terminal of the protein, to be determined for the first time. This knowledge will facilitate future data curation of present databases and a better functional assignment of newly described sequences. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Alcohol Dehydrogenase and Ethanol in the Stems of Trees 1
Kimmerer, Thomas W.; Stringer, Mary A.
1988-01-01
Anaerobic fermentation in plants is usually thought to be a transient phenomenon, brought about by environmental limitations to oxygen availability, or by structural constraints to oxygen transport. The vascular cambium of trees is separated from the air by the outer bark and secondary phloem, and we hypothesized that the cambium may experience sufficient hypoxia to induce anaerobic fermentation. We found high alcohol dehydrogenase activity in the cambium of several tree species. Mean activity of alcohol dehydrogenase in Populus deltoides was 165 micromoles NADH oxidized per minute per gram fresh weight in May. Pyruvate decarboxylase activity was also present in the cambium of P. deltoides, with mean activity of 26 micromoles NADH oxidized per minute per gram fresh weight in May. Lactate dehydrogenase activity was not present in any tree species we examined. Contrary to our expectation, alcohol dehydrogenase activity was inversely related to bark thickness in Acer saccharum and unrelated to bark thickness in two Populus species. Bark thickness may be less important in limiting oxygen availability to the cambium than is oxygen consumption by rapidly respiring phloem and cambium in actively growing trees. Ethanol was present in the vascular cambium of all species examined, with mean concentrations of 35 to 143 nanomoles per gram fresh weight, depending on species. Ethanol was also present in xylem sap and may have been released from the cambium into the transpiration stream. The presence in the cambium of the enzymes necessary for fermentation as well as the products of fermentation is evidence that respiration in the vascular cambium of trees may be oxygen-limited, but other biosynthetic origins of ethanol have not been ruled out. PMID:16666209
Scaini, Giselli; Santos, Patricia M; Benedet, Joana; Rochi, Natália; Gomes, Lara M; Borges, Lislaine S; Rezin, Gislaine T; Pezente, Daiana P; Quevedo, João; Streck, Emilio L
2010-05-31
Several works report brain impairment of metabolism as a mechanism underlying depression. Citrate synthase and succinate dehydrogenase are enzymes localized within cells in the mitochondrial matrix and are important steps of Krebs cycle. In addition, citrate synthase has been used as a quantitative enzyme marker for the presence of intact mitochondria. Thus, we investigated citrate synthase and succinate dehydrogenase activities from rat brain after chronic administration of paroxetine, nortriptiline and venlafaxine. Adult male Wistar rats received daily injections of paroxetine (10mg/kg), nortriptiline (15mg/kg), venlafaxine (10mg/kg) or saline in 1.0mL/kg volume for 15 days. Twelve hours after the last administration, the rats were killed by decapitation, the hippocampus, striatum and prefrontal cortex were immediately removed, and activities of citrate synthase and succinate dehydrogenase were measured. We verified that chronic administration of paroxetine increased citrate synthase activity in the prefrontal cortex, hippocampus, striatum and cerebral cortex of adult rats; cerebellum was not affected. Chronic administration of nortriptiline and venlafaxine did not affect the enzyme activity in these brain areas. Succinate dehydrogenase activity was increased by chronic administration of paroxetine and nortriptiline in the prefrontal cortex, hippocampus, striatum and cerebral cortex of adult rats; cerebellum was not affected either. Chronic administration of venlafaxine increased succinate dehydrogenase activity in prefrontal cortex, but did not affect the enzyme activity in cerebellum, hippocampus, striatum and cerebral cortex. Considering that metabolism impairment is probably involved in the pathophysiology of depressive disorders, an increase in these enzymes by antidepressants may be an important mechanism of action of these drugs. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Prabhakaran, R; Kalaivani, P; Huang, R; Poornima, P; Vijaya Padma, V; Dallemer, F; Natarajan, K
2013-02-01
Three new nickel(II) thiosemicarbazone complexes have been synthesized and characterized by analytical, spectral, and single-crystal X-ray diffraction studies. In complex 1, the ligand 2-hydroxy-1-naphthaldehydethiosemicarbazone coordinated as a monobasic tridentate donor, whereas in complexes 2 and 3, the ligands salicylaldehyde-4(N)-ethylthiosemicarbazone and 2-hydroxy-1-naphthaldehyde-4(N)-ethylthiosemicarbazone coordinated as a dibasic tridentate donor. The DNA binding ability of the complexes in calf thymus DNA was explored by absorption and emission titration experiments. The antioxidant property of the new complexes was evaluated to test their free-radical scavenging ability. In vitro cytotoxicity assays were performed for the new complexes in A549 and HepG2 cell lines. The new compounds overcome cisplatin resistance in the A549 cell line and they were also active in the HepG2 cell line. The cellular uptake study showed the accumulation of the complexes in tumor cells depended on the nature of the ligand attached to the nickel ion.
Microbial response of an acid forest soil to experimental soil warming
S.S. Arnold; I.J. Fernandez; L.E. Rustad; L.M. Zibilske
1999-01-01
Effects of increased soil temperature on soil microbial biomass and dehydrogenase activity were examined on organic (O) horizon material in a low-elevation spruce-fir ecosystem. Soil temperature was maintained at 5 °C above ambient during the growing season in the experimental plots, and soil temperature, moisture, microbial biomass, and dehydrogenase activity were...
Heinstra, P W; Geer, B W; Seykens, D; Langevin, M
1989-01-01
Both aldehyde dehydrogenase (ALDH, EC 1.2.1.3) and the aldehyde dehydrogenase activity of alcohol dehydrogenase (ADH, EC 1.1.1.1) were found to coexist in Drosophila melanogaster larvae. The enzymes, however, showed different inhibition patterns with respect to pyrazole, cyanamide and disulphiram. ALDH-1 and ALDH-2 isoenzymes were detected in larvae by electrophoretic methods. Nonetheless, in tracer studies in vivo, more than 75% of the acetaldehyde converted to acetate by the ADH ethanol-degrading pathway appeared to be also catalysed by the ADH enzyme. The larval fat body probably was the major site of this pathway. Images Fig. 1. Fig. 2. PMID:2499314
A Novel Cofactor-binding Mode in Bacterial IMP Dehydrogenases Explains Inhibitor Selectivity*
Makowska-Grzyska, Magdalena; Kim, Youngchang; Maltseva, Natalia; Osipiuk, Jerzy; Gu, Minyi; Zhang, Minjia; Mandapati, Kavitha; Gollapalli, Deviprasad R.; Gorla, Suresh Kumar; Hedstrom, Lizbeth; Joachimiak, Andrzej
2015-01-01
The steadily rising frequency of emerging diseases and antibiotic resistance creates an urgent need for new drugs and targets. Inosine 5′-monophosphate dehydrogenase (IMP dehydrogenase or IMPDH) is a promising target for the development of new antimicrobial agents. IMPDH catalyzes the oxidation of IMP to XMP with the concomitant reduction of NAD+, which is the pivotal step in the biosynthesis of guanine nucleotides. Potent inhibitors of bacterial IMPDHs have been identified that bind in a structurally distinct pocket that is absent in eukaryotic IMPDHs. The physiological role of this pocket was not understood. Here, we report the structures of complexes with different classes of inhibitors of Bacillus anthracis, Campylobacter jejuni, and Clostridium perfringens IMPDHs. These structures in combination with inhibition studies provide important insights into the interactions that modulate selectivity and potency. We also present two structures of the Vibrio cholerae IMPDH in complex with IMP/NAD+ and XMP/NAD+. In both structures, the cofactor assumes a dramatically different conformation than reported previously for eukaryotic IMPDHs and other dehydrogenases, with the major change observed for the position of the NAD+ adenosine moiety. More importantly, this new NAD+-binding site involves the same pocket that is utilized by the inhibitors. Thus, the bacterial IMPDH-specific NAD+-binding mode helps to rationalize the conformation adopted by several classes of prokaryotic IMPDH inhibitors. These findings offer a potential strategy for further ligand optimization. PMID:25572472
NADP-dependent enzymes are involved in response to salt and hypoosmotic stress in cucumber plants.
Hýsková, Veronika; Plisková, Veronika; Červený, Václav; Ryšlavá, Helena
2017-07-01
Salt stress is one of the most damaging plant stressors, whereas hypoosmotic stress is not considered to be a dangerous type of stress in plants and has been less extensively studied. This study was performed to compare the metabolism of cucumber plants grown in soil with plants transferred to distilled water and to a 100 mM NaCl solution. Even though hypoosmotic stress caused by distilled water did not cause such significant changes in the relative water content, Na+/K+ ratio and Rubisco content as those caused by salt stress, it was accompanied by more pronounced changes in the specific activities of NADP-dependent enzymes. After 3 days, the specific activities of NADP-isocitrate dehydrogenase, glucose-6-phosphate dehydrogenase, NADP-malic enzyme and non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase in leaves were highest under hypoosmotic stress, and lowest in plants grown in soil. In roots, salt stress caused a decrease in the specific activities of major NADP-enzymes. However, at the beginning of salt stress, NADP-galactose-1-dehydrogenase and ribose-1-dehydrogenase were involved in a plant defense response in both roots and leaves. Therefore, the enhanced demands of NADPH in stress can be replenished by a wide range of NADP-dependent enzymes.
The effects of iron deficiency on rat liver enzymes.
Bailey-Wood, R.; Blayney, L. M.; Muir, J. R.; Jacobs, A.
1975-01-01
The effect of iron deficiency on a number or iron containing enzymes in rat liver has been examined. In addition, 6-phosphogluconate dehydrogenase and glucose 6-phosphate dehydrogenase have been assayed. Of the mitochondrial electron transport reactions only succinate-cytochrome C reductase activity was decreased in iron deficient animals. Microsomal reductase enzymes associated with the NADPH-oxidase system were also markedly decreased although cytochrome P450 concentrations were unaffected. Both 6-phosphogluconate dehydrogenase and glucose 6-phosphate dehydrogenase were reduced in young iron deficient rats but the former had returned to control levels at the age of 14 weeks. PMID:172099
Kanetsuna, Fuminori; Carbonell, Luis M.
1966-01-01
Kanetsuna, Fuminori (Instituto Venezolano de Investigaciones Cientificas, Caracas, Venezuela), and Luis M. Carbonell. Enzymes in glycolysis and the citric acid cycle in the yeast and mycelial forms of Paracoccidioides brasiliensis. J. Bacteriol. 92:1315–1320. 1966.—Enzymatic activities in glycolysis, the hexose monophosphate shunt, and the citric acid cycle in cell-free extracts of the yeast and mycelial forms of Paracoccidioides brasiliensis were examined comparatively. Both forms have the enzymes of these pathways. Activities of glucose-6-phosphate dehydrogenase and malic dehydrogenase of the mycelial form were higher than those of the yeast form. Another 15 enzymatic activities of the mycelial form were lower than those of the yeast form. The activity of glyceraldehyde-3-phosphate dehydrogenase showed the most marked difference between the two forms, its activity in the mycelial form being about 20% of that in the yeast form. PMID:5924267
Jin, Ying-Hua; Fan, Jun; Sun, Fei
2014-01-01
3-hydroxyacyl-CoA dehydrogenase (HAD, EC 1.1.1.35) is a homodimeric enzyme localized in the mitochondrial matrix, which catalyzes the third step in fatty acid β-oxidation. The crystal structures of human HAD and subsequent complexes with cofactor/substrate enabled better understanding of HAD catalytic mechanism. However, numerous human diseases were found related to mutations at HAD dimerization interface that is away from the catalytic pocket. The role of HAD dimerization in its catalytic activity needs to be elucidated. Here, we solved the crystal structure of Caenorhabditis elegans HAD (cHAD) that is highly conserved to human HAD. Even though the cHAD mutants (R204A, Y209A and R204A/Y209A) with attenuated interactions on the dimerization interface still maintain a dimerization form, their enzymatic activities significantly decrease compared to that of the wild type. Such reduced activities are in consistency with the reduced ratios of the catalytic intermediate formation. Further molecular dynamics simulations results reveal that the alteration of the dimerization interface will increase the fluctuation of a distal region (a.a. 60–80) that plays an important role in the substrate binding. The increased fluctuation decreases the stability of the catalytic intermediate formation, and therefore the enzymatic activity is attenuated. Our study reveals the molecular mechanism about the essential role of the HAD dimerization interface in its catalytic activity via allosteric effects. PMID:24763278
Maio, Nunziata; Palmieri, Erika M.; Ollivierre, Hayden; Ghosh, Manik C.
2018-01-01
Given the essential roles of iron-sulfur (Fe-S) cofactors in mediating electron transfer in the mitochondrial respiratory chain and supporting heme biosynthesis, mitochondrial dysfunction is a common feature in a growing list of human Fe-S cluster biogenesis disorders, including Friedreich ataxia and GLRX5-related sideroblastic anemia. Here, our studies showed that restriction of Fe-S cluster biogenesis not only compromised mitochondrial oxidative metabolism but also resulted in decreased overall histone acetylation and increased H3K9me3 levels in the nucleus and increased acetylation of α-tubulin in the cytosol by decreasing the lipoylation of the pyruvate dehydrogenase complex, decreasing levels of succinate dehydrogenase and the histone acetyltransferase ELP3, and increasing levels of the tubulin acetyltransferase MEC17. Previous studies have shown that the metabolic shift in Toll-like receptor (TLR)–activated myeloid cells involves rapid activation of glycolysis and subsequent mitochondrial respiratory failure due to nitric oxide (NO)–mediated damage to Fe-S proteins. Our studies indicated that TLR activation also actively suppresses many components of the Fe-S cluster biogenesis machinery, which exacerbates NO-mediated damage to Fe-S proteins by interfering with cluster recovery. These results reveal new regulatory pathways and novel roles of the Fe-S cluster biogenesis machinery in modifying the epigenome and acetylome and provide new insights into the etiology of Fe-S cluster biogenesis disorders. PMID:29784770
Endo, Satoshi; Miyagi, Namiki; Matsunaga, Toshiyuki; Hara, Akira; Ikari, Akira
2016-03-25
We report characterization of a member of the short-chain dehydrogenase/reductase superfamily encoded in a human gene, DHRS11. The recombinant protein (DHRS11) efficiently catalyzed the conversion of the 17-keto group of estrone, 4- and 5-androstenes and 5α-androstanes into their 17β-hydroxyl metabolites with NADPH as a coenzyme. In contrast, it exhibited reductive 3β-hydroxysteroid dehydrogenase activity toward 5β-androstanes, 5β-pregnanes, 4-pregnenes and bile acids. Additionally, DHRS11 reduced α-dicarbonyls (such as diacetyl and methylglyoxal) and alicyclic ketones (such as 1-indanone and loxoprofen). The enzyme activity was inhibited in a mixed-type manner by flavonoids, and competitively by carbenoxolone, glycyrrhetinic acid, zearalenone, curcumin and flufenamic acid. The expression of DHRS11 mRNA was observed widely in human tissues, most abundantly in testis, small intestine, colon, kidney and cancer cell lines. Thus, DHRS11 represents a novel type of 17β-hydroxysteroid dehydrogenase with unique catalytic properties and tissue distribution. Copyright © 2016 Elsevier Inc. All rights reserved.
Holness, Mark J; Bulmer, Karen; Smith, Nicholas D; Sugden, Mary C
2003-02-01
Liver contains two pyruvate dehydrogenase kinases (PDKs), namely PDK2 and PDK4, which regulate glucose oxidation through inhibitory phosphorylation of the pyruvate dehydrogenase complex (PDC). Starvation increases hepatic PDK2 and PDK4 protein expression, the latter occurring, in part, via a mechanism involving peroxisome proliferator-activated receptor-alpha (PPARalpha). High-fat feeding and hyperthyroidism, which increase circulating lipid supply, enhance hepatic PDK2 protein expression, but these increases are insufficient to account for observed increases in hepatic PDK activity. Enhanced expression of PDK4, but not PDK2, occurs in part via a mechanism involving PPAR-alpha. Heterodimerization partners for retinoid X receptors (RXRs) include PPARalpha and thyroid-hormone receptors (TRs). We therefore investigated the responses of hepatic PDK protein expression to high-fat feeding and hyperthyroidism in relation to hepatic lipid delivery and disposal. High-fat feeding increased hepatic PDK2, but not PDK4, protein expression whereas hyperthyroidism increased both hepatic PDK2 and PDK4 protein expression. Both manipulations decreased the sensitivity of hepatic carnitine palmitoyltransferase I (CPT I) to suppression by malonyl-CoA, but only hyperthyrodism elevated plasma fatty acid and ketone-body concentrations and CPT I maximal activity. Administration of the selective PPAR-alpha activator WY14,643 significantly increased PDK4 protein to a similar extent in both control and high-fat-fed rats, but WY14,643 treatment and hyperthyroidism did not have additive effects on hepatic PDK4 protein expression. PPARalpha activation did not influence hepatic PDK2 protein expression in euthyroid rats, suggesting that up-regulation of PDK2 by hyperthyroidism does not involve PPARalpha, but attenuated the effect of hyperthyroidism to increase hepatic PDK2 expression. The results indicate that hepatic PDK4 up-regulation can be achieved by heterodimerization of either PPARalpha or TR with the RXR receptor and that effects of PPARalpha activation on hepatic PDK2 and PDK4 expression favour a switch towards preferential expression of PDK4.
Sewell, Holly L; Kaster, Anne-Kristin; Spormann, Alfred M
2017-12-19
The deep marine subsurface is one of the largest unexplored biospheres on Earth and is widely inhabited by members of the phylum Chloroflexi In this report, we investigated genomes of single cells obtained from deep-sea sediments of the Peruvian Margin, which are enriched in such Chloroflexi 16S rRNA gene sequence analysis placed two of these single-cell-derived genomes (DscP3 and Dsc4) in a clade of subphylum I Chloroflexi which were previously recovered from deep-sea sediment in the Okinawa Trough and a third (DscP2-2) as a member of the previously reported DscP2 population from Peruvian Margin site 1230. The presence of genes encoding enzymes of a complete Wood-Ljungdahl pathway, glycolysis/gluconeogenesis, a Rhodobacter nitrogen fixation (Rnf) complex, glyosyltransferases, and formate dehydrogenases in the single-cell genomes of DscP3 and Dsc4 and the presence of an NADH-dependent reduced ferredoxin:NADP oxidoreductase (Nfn) and Rnf in the genome of DscP2-2 imply a homoacetogenic lifestyle of these abundant marine Chloroflexi We also report here the first complete pathway for anaerobic benzoate oxidation to acetyl coenzyme A (CoA) in the phylum Chloroflexi (DscP3 and Dsc4), including a class I benzoyl-CoA reductase. Of remarkable evolutionary significance, we discovered a gene encoding a formate dehydrogenase (FdnI) with reciprocal closest identity to the formate dehydrogenase-like protein (complex iron-sulfur molybdoenzyme [CISM], DET0187) of terrestrial Dehalococcoides/Dehalogenimonas spp. This formate dehydrogenase-like protein has been shown to lack formate dehydrogenase activity in Dehalococcoides/Dehalogenimonas spp. and is instead hypothesized to couple HupL hydrogenase to a reductive dehalogenase in the catabolic reductive dehalogenation pathway. This finding of a close functional homologue provides an important missing link for understanding the origin and the metabolic core of terrestrial Dehalococcoides/Dehalogenimonas spp. and of reductive dehalogenation, as well as the biology of abundant deep-sea Chloroflexi IMPORTANCE The deep marine subsurface is one of the largest unexplored biospheres on Earth and is widely inhabited by members of the phylum Chloroflexi In this report, we investigated genomes of single cells obtained from deep-sea sediments and provide evidence for a homacetogenic lifestyle of these abundant marine Chloroflexi Moreover, genome signature and key metabolic genes indicate an evolutionary relationship between these deep-sea sediment microbes and terrestrial, reductively dehalogenating Dehalococcoides . Copyright © 2017 Sewell et al.
Dudzik, A; Snoch, W; Borowiecki, P; Opalinska-Piskorz, J; Witko, M; Heider, J; Szaleniec, M
2015-06-01
Enzyme-catalyzed enantioselective reductions of ketones and keto esters have become popular for the production of homochiral building blocks which are valuable synthons for the preparation of biologically active compounds at industrial scale. Among many kinds of biocatalysts, dehydrogenases/reductases from various microorganisms have been used to prepare optically pure enantiomers from carbonyl compounds. (S)-1-phenylethanol dehydrogenase (PEDH) was found in the denitrifying bacterium Aromatoleum aromaticum (strain EbN1) and belongs to the short-chain dehydrogenase/reductase family. It catalyzes the stereospecific oxidation of (S)-1-phenylethanol to acetophenone during anaerobic ethylbenzene mineralization, but also the reverse reaction, i.e., NADH-dependent enantioselective reduction of acetophenone to (S)-1-phenylethanol. In this work, we present the application of PEDH for asymmetric reduction of 42 prochiral ketones and 11 β-keto esters to enantiopure secondary alcohols. The high enantioselectivity of the reaction is explained by docking experiments and analysis of the interaction and binding energies of the theoretical enzyme-substrate complexes leading to the respective (S)- or (R)-alcohols. The conversions were carried out in a batch reactor using Escherichia coli cells with heterologously produced PEDH as whole-cell catalysts and isopropanol as reaction solvent and cosubstrate for NADH recovery. Ketones were converted to the respective secondary alcohols with excellent enantiomeric excesses and high productivities. Moreover, the progress of product formation was studied for nine para-substituted acetophenone derivatives and described by neural network models, which allow to predict reactor behavior and provides insight on enzyme reactivity. Finally, equilibrium constants for conversion of these substrates were derived from the progress curves of the reactions. The obtained values matched very well with theoretical predictions.
Nowak, Grazyna; Takacsova-Bakajsova, Diana; Megyesi, Judit
2017-01-01
Previously, we documented that activation of protein kinase C-ε (PKC-ε) mediates mitochondrial dysfunction in cultured renal proximal tubule cells (RPTC). This study tested whether deletion of PKC-ε decreases dysfunction of renal cortical mitochondria and improves kidney function after renal ischemia. PKC-ε levels in mitochondria of ischemic kidneys increased 24 h after ischemia. Complex I- and complex II-coupled state 3 respirations were reduced 44 and 27%, respectively, in wild-type (WT) but unchanged and increased in PKC-ε-deficient (KO) mice after ischemia. Respiratory control ratio coupled to glutamate/malate oxidation decreased 50% in WT but not in KO mice. Activities of complexes I, III, and IV were decreased 59, 89, and 61%, respectively, in WT but not in KO ischemic kidneys. Proteomics revealed increases in levels of ATP synthase (α-subunit), complexes I and III, cytochrome oxidase, α-ketoglutarate dehydrogenase, and thioredoxin-dependent peroxide reductase after ischemia in KO but not in WT animals. PKC-ε deletion prevented ischemia-induced increases in oxidant production. Plasma creatinine levels increased 12-fold in WT and 3-fold in KO ischemic mice. PKC-ε deletion reduced tubular necrosis, brush border loss, and distal segment damage in ischemic kidneys. PKC-ε activation in hypoxic RPTC in primary culture exacerbated, whereas PKC-ε inhibition reduced, decreases in: 1) complex I- and complex II-coupled state 3 respirations and 2) activities of complexes I, III, and IV. We conclude that PKC-ε activation mediates 1) dysfunction of complexes I and III of the respiratory chain, 2) oxidant production, 3) morphological damage to the kidney, and 4) decreases in renal functions after ischemia. Copyright © 2017 the American Physiological Society.
Takacsova-Bakajsova, Diana; Megyesi, Judit
2016-01-01
Previously, we documented that activation of protein kinase C-ε (PKC-ε) mediates mitochondrial dysfunction in cultured renal proximal tubule cells (RPTC). This study tested whether deletion of PKC-ε decreases dysfunction of renal cortical mitochondria and improves kidney function after renal ischemia. PKC-ε levels in mitochondria of ischemic kidneys increased 24 h after ischemia. Complex I- and complex II-coupled state 3 respirations were reduced 44 and 27%, respectively, in wild-type (WT) but unchanged and increased in PKC-ε-deficient (KO) mice after ischemia. Respiratory control ratio coupled to glutamate/malate oxidation decreased 50% in WT but not in KO mice. Activities of complexes I, III, and IV were decreased 59, 89, and 61%, respectively, in WT but not in KO ischemic kidneys. Proteomics revealed increases in levels of ATP synthase (α-subunit), complexes I and III, cytochrome oxidase, α-ketoglutarate dehydrogenase, and thioredoxin-dependent peroxide reductase after ischemia in KO but not in WT animals. PKC-ε deletion prevented ischemia-induced increases in oxidant production. Plasma creatinine levels increased 12-fold in WT and 3-fold in KO ischemic mice. PKC-ε deletion reduced tubular necrosis, brush border loss, and distal segment damage in ischemic kidneys. PKC-ε activation in hypoxic RPTC in primary culture exacerbated, whereas PKC-ε inhibition reduced, decreases in: 1) complex I- and complex II-coupled state 3 respirations and 2) activities of complexes I, III, and IV. We conclude that PKC-ε activation mediates 1) dysfunction of complexes I and III of the respiratory chain, 2) oxidant production, 3) morphological damage to the kidney, and 4) decreases in renal functions after ischemia. PMID:27760765
Jiroutková, Kateřina; Krajčová, Adéla; Ziak, Jakub; Fric, Michal; Waldauf, Petr; Džupa, Valér; Gojda, Jan; Němcova-Fürstová, Vlasta; Kovář, Jan; Elkalaf, Moustafa; Trnka, Jan; Duška, František
2015-12-24
Mitochondrial damage occurs in the acute phase of critical illness, followed by activation of mitochondrial biogenesis in survivors. It has been hypothesized that bioenergetics failure of skeletal muscle may contribute to the development of ICU-acquired weakness. The aim of the present study was to determine whether mitochondrial dysfunction persists until protracted phase of critical illness. In this single-centre controlled-cohort ex vivo proof-of-concept pilot study, we obtained vastus lateralis biopsies from ventilated patients with ICU-acquired weakness (n = 8) and from age and sex-matched metabolically healthy controls (n = 8). Mitochondrial functional indices were measured in cytosolic context by high-resolution respirometry in tissue homogenates, activities of respiratory complexes by spectrophotometry and individual functional capacities were correlated with concentrations of electron transport chain key subunits from respiratory complexes II, III, IV and V measured by western blot. The ability of aerobic ATP synthesis (OXPHOS) was reduced to ~54% in ICU patients (p<0.01), in correlation with the depletion of complexes III (~38% of control, p = 0.02) and IV (~26% of controls, p<0.01) and without signs of mitochondrial uncoupling. When mitochondrial functional indices were adjusted to citrate synthase activity, OXPHOS and the activity of complexes I and IV were not different, whilst the activities of complexes II and III were increased in ICU patients 3-fold (p<0.01) respectively 2-fold (p<0.01). Compared to healthy controls, in ICU patients we have demonstrated a ~50% reduction of the ability of skeletal muscle to synthetize ATP in mitochondria. We found a depletion of complex III and IV concentrations and relative increases in functional capacities of complex II and glycerol-3-phosphate dehydrogenase/complex III.
Pan, Haiyun; Zhou, Rui; Louie, Gordon V.; Mühlemann, Joëlle K.; Bomati, Erin K.; Bowman, Marianne E.; Dudareva, Natalia; Dixon, Richard A.; Noel, Joseph P.; Wang, Xiaoqiang
2014-01-01
The enzymes cinnamoyl-CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) catalyze the two key reduction reactions in the conversion of cinnamic acid derivatives into monolignol building blocks for lignin polymers in plant cell walls. Here, we describe detailed functional and structural analyses of CCRs from Medicago truncatula and Petunia hybrida and of an atypical CAD (CAD2) from M. truncatula. These enzymes are closely related members of the short-chain dehydrogenase/reductase (SDR) superfamily. Our structural studies support a reaction mechanism involving a canonical SDR catalytic triad in both CCR and CAD2 and an important role for an auxiliary cysteine unique to CCR. Site-directed mutants of CAD2 (Phe226Ala and Tyr136Phe) that enlarge the phenolic binding site result in a 4- to 10-fold increase in activity with sinapaldehyde, which in comparison to the smaller coumaraldehyde and coniferaldehyde substrates is disfavored by wild-type CAD2. This finding demonstrates the potential exploitation of rationally engineered forms of CCR and CAD2 for the targeted modification of monolignol composition in transgenic plants. Thermal denaturation measurements and structural comparisons of various liganded and unliganded forms of CCR and CAD2 highlight substantial conformational flexibility of these SDR enzymes, which plays an important role in the establishment of catalytically productive complexes of the enzymes with their NADPH and phenolic substrates. PMID:25217505
Zimmermann, Philipp; Hoof, Santina; Braun-Cula, Beatrice; Herwig, Christian; Limberg, Christian
2018-04-10
Reduced CO 2 species are key intermediates in a variety of natural and synthetic processes. In the majority of systems, however, they elude isolation or characterisation owing to high reactivity or limited accessibility (heterogeneous systems), and their formulations thus often remain uncertain or are based on calculations only. We herein report on a Ni-CO 2 2- complex that is unique in many ways. While its structural and electronic features help understand the CO 2 -bound state in Ni,Fe carbon monoxide dehydrogenases, its reactivity sheds light on how CO 2 can be converted into CO/CO 3 2- by nickel complexes. In addition, the complex was generated by a rare example of formate β-deprotonation, a mechanistic step relevant to the nickel-catalysed conversion of H x CO y z- at electrodes and formate oxidation in formate dehydrogenases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheshchevik, V.T.; Department of Biochemistry, Yanka Kupala Grodno State University, Len. Kom. Blvd. - 50, 230017 Grodno; Lapshina, E.A.
In current societies, the risk of toxic liver damage has markedly increased. The aim of the present work was to carry out further research into the mechanism(s) of liver mitochondrial damage induced by acute (0.8 g/kg body weight, single injection) or chronic (1.6 g/ kg body weight, 30 days, biweekly injections) carbon tetrachloride – induced intoxication and to evaluate the hepatoprotective potential of the antioxidant, melatonin, as well as succinate and cranberry flavonoids in rats. Acute intoxication resulted in considerable impairment of mitochondrial respiratory parameters in the liver. The activity of mitochondrial succinate dehydrogenase (complex II) decreased (by 25%, pmore » < 0.05). Short-term melatonin treatment (10 mg/kg, three times) of rats did not reduce the degree of toxic mitochondrial dysfunction but decreased the enhanced NO production. After 30-day chronic intoxication, no significant change in the respiratory activity of liver mitochondria was observed, despite marked changes in the redox-balance of mitochondria. The activities of the mitochondrial enzymes, succinate dehydrogenase and glutathione peroxidase, as well as that of cytoplasmic catalase in liver cells were inhibited significantly. Mitochondria isolated from the livers of the rats chronically treated with CCl{sub 4} displayed obvious irreversible impairments. Long-term melatonin administration (10 mg/kg, 30 days, daily) to chronically intoxicated rats diminished the toxic effects of CCl{sub 4}, reducing elevated plasma activities of alanine aminotransferase and aspartate aminotransferase and bilirubin concentration, prevented accumulation of membrane lipid peroxidation products in rat liver and resulted in apparent preservation of the mitochondrial ultrastructure. The treatment of the animals by the complex of melatonin (10 mg/kg) plus succinate (50 mg/kg) plus cranberry flavonoids (7 mg/kg) was even more effective in prevention of toxic liver injury and liver mitochondria damage. Highlights: ► After 30-day chronic CCl{sub 4} intoxication mitochondria displayed considerable changes. ► The functional parameters of mitochondria were similar to the control values. ► Melatonin + succinate + flavonoids prevented mitochondrial ultrastructure damage. ► The above complex enhanced regenerative processes in the liver.« less
Rurek, Michal; Woyda-Ploszczyca, Andrzej M; Jarmuszkiewicz, Wieslawa
2015-01-01
The biogenesis of the cauliflower curd mitochondrial proteome was investigated under cold, heat and the recovery. For the first time, two dimensional fluorescence difference gel electrophoresis was used to study the plant mitochondrial complexome in heat and heat recovery. Particularly, changes in the complex I and complex III subunits and import proteins, and the partial disintegration of matrix complexes were observed. The presence of unassembled subunits of ATP synthase was accompanied by impairment in mitochondrial translation of its subunit. In cold and heat, the transcription profiles of mitochondrial genes were uncorrelated. The in-gel activities of respiratory complexes were particularly affected after stress recovery. Despite a general stability of respiratory chain complexes in heat, functional studies showed that their activity and the ATP synthesis yield were affected. Contrary to cold stress, heat stress resulted in a reduced efficiency of oxidative phosphorylation likely due to changes in alternative oxidase (AOX) activity. Stress and stress recovery differently modulated the protein level and activity of AOX. Heat stress induced an increase in AOX activity and protein level, and AOX1a and AOX1d transcript level, while heat recovery reversed the AOX protein and activity changes. Conversely, cold stress led to a decrease in AOX activity (and protein level), which was reversed after cold recovery. Thus, cauliflower AOX is only induced by heat stress. In heat, contrary to the AOX activity, the activity of rotenone-insensitive internal NADH dehydrogenase was diminished. The relevance of various steps of plant mitochondrial biogenesis to temperature stress response and recovery is discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Neutron scattering reveals the dynamic basis of protein adaptation to extreme temperature.
Tehei, Moeava; Madern, Dominique; Franzetti, Bruno; Zaccai, Giuseppe
2005-12-09
To explore protein adaptation to extremely high temperatures, two parameters related to macromolecular dynamics, the mean square atomic fluctuation and structural resilience, expressed as a mean force constant, were measured by neutron scattering for hyperthermophilic malate dehydrogenase from Methanococcus jannaschii and a mesophilic homologue, lactate dehydrogenase from Oryctolagus cunniculus (rabbit) muscle. The root mean square fluctuations, defining flexibility, were found to be similar for both enzymes (1.5 A) at their optimal activity temperature. Resilience values, defining structural rigidity, are higher by an order of magnitude for the high temperature-adapted protein (0.15 Newtons/meter for O. cunniculus lactate dehydrogenase and 1.5 Newtons/meter for M. jannaschii malate dehydrogenase). Thermoadaptation appears to have been achieved by evolution through selection of appropriate structural rigidity in order to preserve specific protein structure while allowing the conformational flexibility required for activity.
Amaral-de-Carvalho, Diogo; Oliveira, Elsa; Alves, Ângela; Costa, Vítor; Calado, Gonçalo
2018-01-01
Mannitol oxidase and polyol dehydrogenases are enzymes that convert polyalcohols into sugars. Mannitol oxidase was previously investigated in terrestrial snails and slugs, being also present in a few aquatic gastropods. However, the overall distribution of this enzyme in the Gastropoda was not known. Polyol dehydrogenases are also poorly studied in gastropods and other mollusks. In this study, polyalcohol oxidase and dehydrogenase activities were assayed in the digestive gland of 26 species of gastropods, representing the clades Patellogastropoda, Neritimorpha, Vetigastropoda, Caenogastropoda and Heterobranchia. Marine, freshwater and terrestrial species, including herbivores and carnivores were analyzed. Ultrastructural observations were undertake in species possessing mannitol oxidase, in order to investigate the correlation between this enzyme and the presence of tubular structures known to be associated with it. Mannitol oxidase activity was detected in the digestive gland of herbivores from the clades Caenogastropoda and Heterobranchia, but not in any carnivores or in herbivores from the clades Patellogastropoda, Neritimorpha and Vetigastropoda. In most of the species used in this study, dehydrogenase activities were detected using both D-mannitol and D-sorbitol as substrates. Nevertheless, in some carnivores these activities were not detected with both polyalcohols. Ultrastructural observations revealed tubular structures in digestive gland cells of some species having mannitol oxidase activity, but they were not observed in others. Based on our results, we suggest that mannitol oxidase first occurred in a herbivorous or omnivorous ancestor of Apogastropoda, the clade formed by caenogastropods and heterobranchs, being subsequently lost in those species that shifted towards a carnivorous diet. PMID:29529078
Simavorian, P S; Saakian, I L; Gevorkian, D A
1991-04-01
It has been established that the development of acute pancreatitis is accompanied by the reduced activity of glutamate dehydrogenase in the mitochondrial fraction of pancreas, pronounced in the focus of tissue necrosis and less expressed in the reactive inflammation focus. Besides this in the pancreas redistribution of enzyme, activity in the subcellular organelles takes place and enzyme activity emerges in the cytosol and further--in the blood and peritoneum liquid. Sodium thiosulfate has a marked correlation effect.
Baron, S F; Franklund, C V; Hylemon, P B
1991-01-01
Southern blot analysis indicated that the gene encoding the constitutive, NADP-linked bile acid 7 alpha-hydroxysteroid dehydrogenase of Eubacterium sp. strain VPI 12708 was located on a 6.5-kb EcoRI fragment of the chromosomal DNA. This fragment was cloned into bacteriophage lambda gt11, and a 2.9-kb piece of this insert was subcloned into pUC19, yielding the recombinant plasmid pBH51. DNA sequence analysis of the 7 alpha-hydroxysteroid dehydrogenase gene in pBH51 revealed a 798-bp open reading frame, coding for a protein with a calculated molecular weight of 28,500. A putative promoter sequence and ribosome binding site were identified. The 7 alpha-hydroxysteroid dehydrogenase mRNA transcript in Eubacterium sp. strain VPI 12708 was about 0.94 kb in length, suggesting that it is monocistronic. An Escherichia coli DH5 alpha transformant harboring pBH51 had approximately 30-fold greater levels of 7 alpha-hydroxysteroid dehydrogenase mRNA, immunoreactive protein, and specific activity than Eubacterium sp. strain VPI 12708. The 7 alpha-hydroxysteroid dehydrogenase purified from the pBH51 transformant was similar in subunit molecular weight, specific activity, and kinetic properties to that from Eubacterium sp. strain VPI 12708, and it reached with antiserum raised against the authentic enzyme on Western immunoblots. Alignment of the amino acid sequence of the 7 alpha-hydroxysteroid dehydrogenase with those of 10 other pyridine nucleotide-linked alcohol/polyol dehydrogenases revealed six conserved amino acid residues in the N-terminal regions thought to function in coenzyme binding. Images PMID:1856160
Moreno-Sánchez, R; Bravo, C; Westerhoff, H V
1999-09-01
Two complementary methods were used to determine how the rate of respiration and that of ATP hydrolysis were controlled in rat liver submitochondrial particles. In the first, 'direct control analysis' method, respiration was titrated with malonate, antimycin or cyanide at 20, 30 and 37 degrees C, to determine the flux control exerted by succinate dehydrogenase, cytochrome bc1 complex and cytochrome c oxidase, respectively. Together, the three respiratory complexes only controlled the flux by about 50%, leaving the other 50% of flux control to the H+ leak. In the second, 'elasticity based' method, the elasticity coefficients of the respiratory chain or the H+-ATPase and the H+ leak towards the H+ gradient were determined. Then, the flux control coefficients were calculated using the connectivity and summation laws of metabolic control theory. The correspondence between the flux control coefficients determined in the two ways validated the two methods. This allowed us to use the second method to analyse what was the kinetic origin of the observed distribution of control. Control of ATP hydrolysis by the ATPase decreased with increasing ATPase activity; hence, the control exerted by the H+ leak increased with increasing ATPase activity, due to a diminishing elasticity towards the H+ gradient. Reverse electron transport was mainly controlled by the ATPase; the sum of flux control coefficients of succinate dehydrogenase, NADH-CoQ oxidoreductase, and H+-ATPase yielded a value greater than one, indicating that the H+ leak exerted a significant negative control on this pathway.
De Sousa Peixoto, R A; Turban, S; Battle, J H; Chapman, K E; Seckl, J R; Morton, N M
2008-04-01
Glucocorticoid excess promotes visceral obesity and cardiovascular disease. Similar features are found in the highly prevalent metabolic syndrome in the absence of high levels of systemic cortisol. Although elevated activity of the glucocorticoid-amplifying enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) within adipocytes might explain this paradox, the potential role of 11beta-HSD1 in preadipocytes is less clear; human omental adipose stromal vascular (ASV) cells exhibit 11beta-dehydrogenase activity (inactivation of glucocorticoids) probably due to the absence of cofactor provision by hexose-6-phosphate dehydrogenase. To clarify the depot-specific impact of 11beta-HSD1, we assessed whether preadipocytes in ASV from mesenteric (as a representative of visceral adipose tissue) and sc tissue displayed 11beta-HSD1 activity in mice. 11beta-HSD1 was highly expressed in freshly isolated ASV cells, predominantly in preadipocytes. 11beta-HSD1 mRNA and protein levels were comparable between ASV and adipocyte fractions in both depots. 11beta-HSD1 was an 11beta-reductase, thus reactivating glucocorticoids in ASV cells, consistent with hexose-6-phosphate dehydrogenase mRNA expression. Unexpectedly, glucocorticoid reactivation was higher in intact mesenteric ASV cells despite a lower expression of 11beta-HSD1 mRNA and protein (homogenate activity) levels than sc ASV cells. This suggests a novel depot-specific control over 11beta-HSD1 enzyme activity. In vivo, high-fat diet-induced obesity was accompanied by increased visceral fat preadipocyte differentiation in wild-type but not 11beta-HSD1(-/-) mice. The results suggest that 11beta-HSD1 reductase activity is augmented in mouse mesenteric preadipocytes where it promotes preadipocyte differentiation and contributes to visceral fat accumulation in obesity.
Over-Expression, Purification and Crystallization of Human Dihydrolipoamide Dehydrogenase
NASA Technical Reports Server (NTRS)
Hong, Y. S.; Ciszak, Ewa; Patel, Mulchand
2000-01-01
Dehydrolipoamide dehydrogenase (E3; dihydrolipoan-tide:NAD+ oxidoreductase, EC 1.8.1.4) is a common catalytic component found in pyruvate dehydrogenase complex, alpha-ketoglutarate dehydrogenase complex, and branched-chain cc-keto acid dehydrogenase complex. E3 is also a component (referred to as L protein) of the glycine cleavage system in bacterial metabolism (2). Active E3 forms a homodimer with four distinctive subdomain structures (FAD binding, NAD+ binding, central and interface domains) with non-covalently but tightly bound FAD in the holoenzyme. Deduced amino acids from cloned full-length human E3 gene showed a total of 509 amino acids with a leader sequence (N-terminal 35 amino acids) that is excised (mature form) during transportation of expressed E3 into mitochondria membrane. So far, three-dimensional structure of human E3 has not been reported. Our effort to achieve the elucidation of the X-ray crystal structure of human E3 will be presented. Recombinant pPROEX-1 expression vector (from GIBCO BRL Life Technologies) having the human E3 gene without leader sequence was constructed by Polymerase Chain Reaction (PCR) and subsequent ligation, and cloned in E.coli XL1-Blue by transformation. Since pPROEX-1 vector has an internal His-tag (six histidine peptide) located at the upstream region of a multicloning site, one-step affinity purification of E3 using nickelnitriloacetic acid (Ni-NTA) agarose resin, which has a strong affinity to His-tag, was feasible. Also a seven-amino-acid spacer peptide and a recombinant tobacco etch virus protease recognition site (seven amino acids peptide) found between His-tag and first amino acid of expressed E3 facilitated the cleavage of His-tag from E3 after the affinity purification. By IPTG induction, ca. 15 mg of human E3 (mature form) was obtained from 1L LB culture with overnight incubation at 25C. Over 98% of purity of E3 from one-step Ni-NTA agarose affinity purification was confirmed by SDS-PAGE analysis. For crystallization, E3 samples were prepared with and without His-tag. To minimize the aggregation of E3, apo- and holo- forms of E3s were tested, as well as a mutated E3. Dynamic light scattering measurements revealed that the E3 preparations without His-tag and substrate are highly monodispersive with regard to homodimers. Consequent crystallization trials of this E3 preparation led to single crystals of E3 grown by the vapor diffusion method. Crystals were obtained within a few days from solution containing poly (ethylene glycol) monomethyl ether 5000 as a precipitant. Autoindexing and integration of the X-ray diffraction data showed that E3 crystals belong to an orthorhombic system with unit cell parameters a-- 123. 1, b= 165.3 and c=214.3A. Further optimization of protein preparation and crystallization experiments for the structural determination will be discussed.
Santiago, Rocío; Alarcón, Borja; de Armas, Roberto; Vicente, Carlos; Legaz, María Estrella
2012-06-01
This study describes a method for determining cinnamyl alcohol dehydrogenase activity in sugarcane stems using reverse phase (RP) high-performance liquid chromatography to elucidate their possible lignin origin. Activity is assayed using the reverse mode, the oxidation of hydroxycinnamyl alcohols into hydroxycinnamyl aldehydes. Appearance of the reaction products, coniferaldehyde and sinapaldehyde is determined by measuring absorbance at 340 and 345 nm, respectively. Disappearance of substrates, coniferyl alcohol and sinapyl alcohol is measured at 263 and 273 nm, respectively. Isocratic elution with acetonitrile:acetic acid through an RP Mediterranea sea C18 column is performed. As case examples, we have examined two different cultivars of sugarcane; My 5514 is resistant to smut, whereas B 42231 is susceptible to the pathogen. Inoculation of sugarcane stems elicits lignification and produces significant increases of coniferyl alcohol dehydrogenase (CAD) and sinapyl alcohol dehydrogenase (SAD). Production of lignin increases about 29% in the resistant cultivar and only 13% in the susceptible cultivar after inoculation compared to uninoculated plants. Our results show that the resistance of My 5514 to smut is likely derived, at least in part, to a marked increase of lignin concentration by the activation of CAD and SAD. Copyright © Physiologia Plantarum 2012.
Padmanabhan, M; Mainzen Prince, P Stanely
2007-02-13
This study was aimed to evaluate the preventive role of S-allylcysteine (SAC) on mitochondrial and lysosomal enzymes in isoproterenol (ISO)-induced rats. Male albino Wistar rats were pretreated with SAC (50, 100 and 150 mg/kg) daily for a period of 45 days. After the treatment period, ISO (150 mg/kg) was subcutaneously injected to rats at an interval of 24 h for two days. The activities of heart mitochondrial enzymes (isocitrate dehydrogenase, succinate dehydrogenase, malate dehydrogenase and alpha-ketoglutarate dehydrogenase) and respiratory chain enzymes (NADH dehydrogenase and cytochrome C oxidase) were decreased significantly (p<0.05) in ISO-induced rats. The activities of lysosomal enzymes (beta-glucuronidase, beta-N-acetyl glucosaminidase, beta-galactosidase, cathepsin-D and acid phosphatase) were increased significantly (p<0.05) in serum and heart of ISO-induced rats. Pretreatment with SAC (100 mg/kg and 150 mg/kg) for a period of 45 days increased significantly (p<0.05) the activities of mitochondrial and respiratory chain enzymes and decreased the activities of lysosomal enzymes significantly (p<0.05) in ISO-induced rats. Oral administration of SAC (50, 100 and 150 mg/kg) for a period of 45 days to normal rats did not show any significant (p<0.05) effect in all the parameters studied. The altered electrocardiogram (ECG) of ISO-treated rats was also restored to near normal by treatment with SAC (100 and 150 mg/kg). These results confirm the efficacy of SAC in alleviating ISO-induced cardiac damage.
Tran, Steven; Nowicki, Magda; Chatterjee, Diptendu; Gerlai, Robert
2015-01-02
Chronic ethanol exposure paradigms have been successfully used in the past to induce behavioral and central nervous system related changes in zebrafish. However, it is currently unknown whether chronic ethanol exposure alters ethanol metabolism in adult zebrafish. In the current study we examine the effect of acute ethanol exposure on adult zebrafish behavioral responses, as well as alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activity in the liver. We then examine how two different chronic ethanol exposure paradigms (continuous and repeated ethanol exposure) alter behavioral responses and liver enzyme activity during a subsequent acute ethanol challenge. Acute ethanol exposure increased locomotor activity in a dose-dependent manner. ADH activity was shown to exhibit an inverted U-shaped curve and ALDH activity was decreased by ethanol exposure at all doses. During the acute ethanol challenge, animals that were continuously housed in ethanol exhibited a significantly reduced locomotor response and increased ADH activity, however, ALDH activity did not change. Zebrafish that were repeatedly exposed to ethanol demonstrated a small but significant attenuation of the locomotor response during the acute ethanol challenge but ADH and ALDH activity was similar to controls. Overall, we identified two different chronic ethanol exposure paradigms that differentially alter behavioral and physiological responses in zebrafish. We speculate that these two paradigms may allow dissociation of central nervous system-related and liver enzyme-dependent ethanol induced changes in zebrafish. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pan, Xiaoliang; Schwartz, Steven
2015-03-01
It has long been recognized that the structure of a protein is a hierarchy of conformations interconverting on multiple time scales. However, the conformational heterogeneity is rarely considered in the context of enzymatic catalysis in which the reactant is usually represented by a single conformation of the enzyme/substrate complex. Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate with concomitant interconversion of two forms of the cofactor nicotinamide adenine dinucleotide (NADH and NAD+). Recent experimental results suggest that multiple substates exist within the Michaelis complex of LDH, and they are catalytic competent at different reaction rates. In this study, millisecond-scale all-atom molecular dynamics simulations were performed on LDH to explore the free energy landscape of the Michaelis complex, and network analysis was used to characterize the distribution of the conformations. Our results provide a detailed view of the kinetic network the Michaelis complex and the structures of the substates at atomistic scale. It also shed some light on understanding the complete picture of the catalytic mechanism of LDH.
Variants of glycerol dehydrogenase having D-lactate dehydrogenase activity and uses thereof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qingzhao; Shanmugam, Keelnatham T.; Ingram, Lonnie O'Neal
The present invention provides methods of designing and generating glycerol dehydrogenase (GlyDH) variants that have altered function as compared to a parent polypeptide. The present invention further provides nucleic acids encoding GlyDH polypeptide variants having altered function as compared to the parent polypeptide. Host cells comprising polynucleotides encoding GlyDH variants and methods of producing lactic acids are also provided in various aspects of the invention.
Gómez-Manzo, Saúl; Escamilla, José E; González-Valdez, Abigail; López-Velázquez, Gabriel; Vanoye-Carlo, América; Marcial-Quino, Jaime; de la Mora-de la Mora, Ignacio; Garcia-Torres, Itzhel; Enríquez-Flores, Sergio; Contreras-Zentella, Martha Lucinda; Arreguín-Espinosa, Roberto; Kroneck, Peter M H; Sosa-Torres, Martha Elena
2015-01-07
Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2-C6) and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde.
Peng, Yingjie; Zhong, Chen; Huang, Wei; Ding, Jianping
2008-09-01
Isocitrate dehydrogenases (IDHs) catalyze oxidative decarboxylation of isocitrate (ICT) into alpha-ketoglutarate (AKG). We report here the crystal structures of Saccharomyces cerevesiae mitochondrial NADP-IDH Idp1p in binary complexes with coenzyme NADP, or substrate ICT, or product AKG, and in a quaternary complex with NADPH, AKG, and Ca(2+), which represent different enzymatic states during the catalytic reaction. Analyses of these structures identify key residues involved in the binding of these ligands. Comparisons among these structures and with the previously reported structures of other NADP-IDHs reveal that eukaryotic NADP-IDHs undergo substantial conformational changes during the catalytic reaction. Binding or release of the ligands can cause significant conformational changes of the structural elements composing the active site, leading to rotation of the large domain relative to the small and clasp domains along two hinge regions (residues 118-124 and residues 284-287) while maintaining the integrity of its secondary structural elements, and thus, formation of at least three distinct overall conformations. Specifically, the enzyme adopts an open conformation when bound to NADP, a quasi-closed conformation when bound to ICT or AKG, and a fully closed conformation when bound to NADP, ICT, and Ca(2+) in the pseudo-Michaelis complex or with NADPH, AKG, and Ca(2+) in the product state. The conformational changes of eukaryotic NADP-IDHs are quite different from those of Escherichia coli NADP-IDH, for which significant conformational changes are observed only between two forms of the apo enzyme, suggesting that the catalytic mechanism of eukaryotic NADP-IDHs is more complex than that of EcIDH, and involves more fine-tuned conformational changes.
Arjunan, Palaniappa; Chandrasekhar, Krishnamoorthy; Sax, Martin; Brunskill, Andrew; Nemeria, Natalia; Jordan, Frank; Furey, William
2004-03-09
Thiamin thiazolone diphosphate (ThTDP), a potent inhibitor of the E1 component from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc), binds to the enzyme with greater affinity than does the cofactor thiamin diphosphate (ThDP). To identify what determines this difference, the crystal structure of the apo PDHc E1 component complex with ThTDP and Mg(2+) has been determined at 2.1 A and compared to the known structure of the native holoenzyme, PDHc E1-ThDP-Mg(2+) complex. When ThTDP replaces ThDP, reorganization occurs in the protein structure in the vicinity of the active site involving positional and conformational changes in some amino acid residues, a change in the V coenzyme conformation, addition of new hydration sites, and elimination of others. These changes culminate in an increase in the number of hydrogen bonds to the protein, explaining the greater affinity of the apoenzyme for ThTDP. The observed hydrogen bonding pattern is not an invariant feature of ThDP-dependent enzymes but rather specific to this enzyme since the extra hydrogen bonds are made with nonconserved residues. Accordingly, these sequence-related hydrogen bonding differences likewise explain the wide variation in the affinities of different thiamin-dependent enzymes for ThTDP and ThDP. The sequence of each enzyme determines its ability to form hydrogen bonds to the inhibitor or cofactor. Mechanistic roles are suggested for the aforementioned reorganization and its reversal in PDHc E1 catalysis: to promote substrate binding and product release. This study also provides additional insight into the role of water in enzyme inhibition and catalysis.
Peng, Yingjie; Zhong, Chen; Huang, Wei; Ding, Jianping
2008-01-01
Isocitrate dehydrogenases (IDHs) catalyze oxidative decarboxylation of isocitrate (ICT) into α-ketoglutarate (AKG). We report here the crystal structures of Saccharomyces cerevesiae mitochondrial NADP-IDH Idp1p in binary complexes with coenzyme NADP, or substrate ICT, or product AKG, and in a quaternary complex with NADPH, AKG, and Ca2+, which represent different enzymatic states during the catalytic reaction. Analyses of these structures identify key residues involved in the binding of these ligands. Comparisons among these structures and with the previously reported structures of other NADP-IDHs reveal that eukaryotic NADP-IDHs undergo substantial conformational changes during the catalytic reaction. Binding or release of the ligands can cause significant conformational changes of the structural elements composing the active site, leading to rotation of the large domain relative to the small and clasp domains along two hinge regions (residues 118–124 and residues 284–287) while maintaining the integrity of its secondary structural elements, and thus, formation of at least three distinct overall conformations. Specifically, the enzyme adopts an open conformation when bound to NADP, a quasi-closed conformation when bound to ICT or AKG, and a fully closed conformation when bound to NADP, ICT, and Ca2+ in the pseudo-Michaelis complex or with NADPH, AKG, and Ca2+ in the product state. The conformational changes of eukaryotic NADP-IDHs are quite different from those of Escherichia coli NADP-IDH, for which significant conformational changes are observed only between two forms of the apo enzyme, suggesting that the catalytic mechanism of eukaryotic NADP-IDHs is more complex than that of EcIDH, and involves more fine-tuned conformational changes. PMID:18552125
Devasundaram, Santhi; Raja, Alamelu
2017-07-01
The partial effectiveness against pulmonary tuberculosis (PTB), displayed by the existing tuberculosis (TB) vaccine, bacillus Calmette-Guérin (BCG), highlights the need for novel vaccines to replace or improve BCG. In TB immunology, antigen-specific cellular immune response is frequently considered indispensable. Latency-associated antigens are intriguing as targets for TB vaccine development. The mycobacterial protein, dihydrolipoamide dehydrogenase (Lpd; Rv0462), the third enzyme of the pyruvate dehydrogenase (PDH) complex, facilitates Mycobacterium tuberculosis to resist host reactive nitrogen intermediates. Multicolor flow cytometry analysis of whole-blood cultures showed higher Lpd-specific Th1 recall response (IFN-γ, TNF-α, and IL-2; P = 0.0006) and memory CD4 + and CD8 + T cells (CCR7 + CD45RA - and CCR7 - CD45RA - ) in healthy household contacts (HHC) of TB ( P < 0.0001), which is comparable with or higher than the standard antigens, ESAT-6 and CFP-10. The frequency of Lpd-specific multifunctional T cells was higher in HHC compared with PTB patients. However, there is no significant statistical correlation. Regulatory T cell (T reg ) analysis of HHCs and active TB patients demonstrated very low Lpd-specific CD4 + T regs relative to ESAT-6 and CFP-10. Our study demonstrates that the Lpd antigen induces a strong cellular immune response in healthy mycobacteria-infected individuals. In consideration of this population having demonstrated immunologic protection against active TB disease development, our data are encouraging about the possible use of Lpd as a target for further TB subunit vaccine development. © Society for Leukocyte Biology.
The Molecular Biology, Biochemistry, and Physiology of Human Steroidogenesis and Its Disorders
Auchus, Richard J.
2011-01-01
Steroidogenesis entails processes by which cholesterol is converted to biologically active steroid hormones. Whereas most endocrine texts discuss adrenal, ovarian, testicular, placental, and other steroidogenic processes in a gland-specific fashion, steroidogenesis is better understood as a single process that is repeated in each gland with cell-type-specific variations on a single theme. Thus, understanding steroidogenesis is rooted in an understanding of the biochemistry of the various steroidogenic enzymes and cofactors and the genes that encode them. The first and rate-limiting step in steroidogenesis is the conversion of cholesterol to pregnenolone by a single enzyme, P450scc (CYP11A1), but this enzymatically complex step is subject to multiple regulatory mechanisms, yielding finely tuned quantitative regulation. Qualitative regulation determining the type of steroid to be produced is mediated by many enzymes and cofactors. Steroidogenic enzymes fall into two groups: cytochrome P450 enzymes and hydroxysteroid dehydrogenases. A cytochrome P450 may be either type 1 (in mitochondria) or type 2 (in endoplasmic reticulum), and a hydroxysteroid dehydrogenase may belong to either the aldo-keto reductase or short-chain dehydrogenase/reductase families. The activities of these enzymes are modulated by posttranslational modifications and by cofactors, especially electron-donating redox partners. The elucidation of the precise roles of these various enzymes and cofactors has been greatly facilitated by identifying the genetic bases of rare disorders of steroidogenesis. Some enzymes not principally involved in steroidogenesis may also catalyze extraglandular steroidogenesis, modulating the phenotype expected to result from some mutations. Understanding steroidogenesis is of fundamental importance to understanding disorders of sexual differentiation, reproduction, fertility, hypertension, obesity, and physiological homeostasis. PMID:21051590
Gründel, Anne; Pfeiffer, Melanie; Jacobs, Enno
2015-01-01
In different bacteria, primarily cytosolic and metabolic proteins are characterized as surface localized and interacting with different host factors. These moonlighting proteins include glycolytic enzymes, and it has been hypothesized that they influence the virulence of pathogenic species. The presence of surface-displayed glycolytic enzymes and their interaction with human plasminogen as an important host factor were investigated in the genome-reduced and cell wall-less microorganism Mycoplasma pneumoniae, a common agent of respiratory tract infections of humans. After successful expression of 19 glycolytic enzymes and production of polyclonal antisera, the localization of proteins in the mycoplasma cell was characterized using fractionation of total proteins, colony blot, mild proteolysis and immunofluorescence of M. pneumoniae cells. Eight glycolytic enzymes, pyruvate dehydrogenases A to C (PdhA-C), glyceraldehyde-3-phosphate dehydrogenase (GapA), lactate dehydrogenase (Ldh), phosphoglycerate mutase (Pgm), pyruvate kinase (Pyk), and transketolase (Tkt), were confirmed as surface expressed and all are able to interact with plasminogen. Plasminogen bound to recombinant proteins PdhB, GapA, and Pyk was converted to plasmin in the presence of urokinase plasminogen activator and plasmin-specific substrate d-valyl-leucyl-lysine-p-nitroanilide dihydrochloride. Furthermore, human fibrinogen was degraded by the complex of plasminogen and recombinant protein PdhB or Pgm. In addition, surface-displayed proteins (except PdhC) bind to human lung epithelial cells, and the interaction was reduced significantly by preincubation of cells with antiplasminogen. Our results suggest that plasminogen binding and activation by different surface-localized glycolytic enzymes of M. pneumoniae may play a role in successful and long-term colonization of the human respiratory tract. PMID:26667841
Pavkov-Keller, Tea; Bakhuis, Janny; Steinkellner, Georg; Jolink, Fenneke; Keijmel, Esther; Birner-Gruenberger, Ruth; Gruber, Karl
2016-10-10
Hydroxynitrile lyases (HNLs) catalyze the asymmetric addition of HCN to aldehydes producing enantiomerically pure cyanohydrins. These enzymes can be heterologously expressed in large quantities making them interesting candidates for industrial applications. The HNLs from Rosaceae evolved from flavin dependent dehydrogenase/oxidase structures. Here we report the high resolution X-ray structure of the highly glycosylated Prunus amygdalus HNL isoenzyme5 (PaHNL5 V317A) expressed in Aspergillus niger and its complex with benzyl alcohol. A comparison with the structure of isoenzyme PaHNL1 indicates a higher accessibility to the active site and a larger cavity for PaHNL5. Additionally, the PaHNL5 complex structure with benzyl alcohol was compared with the structurally related aryl-alcohol oxidase (AAO). Even though both enzymes contain an FAD-cofactor and histidine residues at crucial positions in the active site, PaHNL5 lacks the oxidoreductase activity. The structures indicate that in PaHNLs benzyl alcohol is bound too far away from the FAD cofactor in order to be oxidized. Copyright © 2016 Elsevier B.V. All rights reserved.
Detergents as selective inhibitors and inactivators of enzymes.
Vincenzini, M T; Favilli, F; Stio, M; Vanni, P; Treves, C
1985-01-01
In order to study the detergent-enzyme interaction and to clarify whether such an interaction produces specific or non-specific effects, we investigated the action of natural and synthetic detergents on enzymatic systems of different levels of complexity (crystalline enzymes, crude homogenates, organ preparations, organisms in toto i.e. rats and germinating seeds). The enzyme-detergent interaction was examined both as a time-independent phenomenon (inhibition) and as a time-dependent phenomenon (inactivation). In in vitro experiments a clear inhibition of pyridine-dependent dehydrogenases by long-chain anionic detergents was found. Cationic detergents have their greatest effect on lipase, LDH, MDH and ICDH from rat liver homogenates. At low concentrations SDS inactivates all the dehydrogenase enzymes studied. With high concentrations (10 mM) of SDS and dodecyltrimethylammonium bromide (C12), there was a sharp and non-specific decrease of enzymatic activities. In the in vivo studies, rats were given detergents to drink; the cationic detergent (C12) was far more effective than SDS with enzymes from both intestine and liver homogenates. SDS and C12 do not seem to interfere with enzyme activities at the beginning of the germination of Pinus pinea and Triticum durum seeds. However a marked reduction of activities does occur at the respective maximum germination times of these seeds. The nonionic detergent is ineffective both as inhibitor and as inactivator.
Tymecka-Mulik, Joanna; Boss, Lidia; Maciąg-Dorszyńska, Monika; Matias Rodrigues, João F; Gaffke, Lidia; Wosinski, Anna; Cech, Grzegorz M; Szalewska-Pałasz, Agnieszka; Węgrzyn, Grzegorz; Glinkowska, Monika
2017-01-01
To ensure faithful transmission of genetic material to progeny cells, DNA replication is tightly regulated, mainly at the initiation step. Escherichia coli cells regulate the frequency of initiation according to growth conditions. Results of the classical, as well as the latest studies, suggest that the DNA replication in E. coli starts at a predefined, constant cell volume per chromosome but the mechanisms coordinating DNA replication with cell growth are still not fully understood. Results of recent investigations have revealed a role of metabolic pathway proteins in the control of cell division and a direct link between metabolism and DNA replication has also been suggested both in Bacillus subtilis and E. coli cells. In this work we show that defects in the acetate overflow pathway suppress the temperature-sensitivity of a defective replication initiator-DnaA under acetogenic growth conditions. Transcriptomic and metabolic analyses imply that this suppression is correlated with pyruvate accumulation, resulting from alterations in the pyruvate dehydrogenase (PDH) activity. Consequently, deletion of genes encoding the pyruvate dehydrogenase subunits likewise resulted in suppression of the thermal-sensitive growth of the dnaA46 strain. We propose that the suppressor effect may be directly related to the PDH complex activity, providing a link between an enzyme of the central carbon metabolism and DNA replication.
A Proteomic View at T Cell Costimulation
Hombach, Andreas A.; Recktenwald, Christian V.; Dressler, Sven P.; Abken, Hinrich; Seliger, Barbara
2012-01-01
The “two-signal paradigm” in T cell activation predicts that the cooperation of “signal 1,” provided by the T cell receptor (TCR) through engagement of major histocompatility complex (MHC)-presented peptide, with “signal 2″ provided by costimulatory molecules, the prototype of which is CD28, is required to induce T cell effector functions. While the individual signalling pathways are well understood, little is known about global changes in the proteome pattern during TCR/CD28-mediated activation. Therefore, comparative 2-DE-based proteome analyses of CD3+ CD69- resting T cells versus cells incubated with (i) the agonistic anti-CD3 antibody OKT3 mimicking signal 1 in absence or presence of IL-2 and/or with (ii) the agonistic antibody 15E8 triggering CD28-mediated signaling were performed. Differentially regulated spots were defined leading to the identification of proteins involved in the regulation of the metabolism, shaping and maintenance of the cytoskeleton and signal transduction. Representative members of the differentially expressed protein families, such as calmodulin (CALM), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), L-lactate dehydrogenase (LDH), Rho GDP-dissociation inhibitor 2 (GDIR2), and platelet basic protein (CXCL7), were independently verified by flow cytometry. Data provide a detailed map of individual protein alterations at the global proteome level in response to TCR/CD28-mediated T cell activation. PMID:22539942
Characterization of the Membrane-Bound Succinic Dehydrogenase of Micrococcus lysodeikticus
Pollock, Jerry J.; Linder, Regina; Salton, Milton R. J.
1971-01-01
The occurrence of succinic dehydrogenase [succinic:(acceptor) oxidoreductase, EC 1.3.99.1] in membrane fractions of Micrococcus lysodeikticus was investigated. The enzyme could be purified 10-fold, by deoxycholate treatment. Butanol extraction of membranes yielded an active fraction, nonsedimentable at 130,000 × g for 2 hr and altered in its phospholipid content relative to membranes. The activity of the enzyme in particulate preparations was decreased in the presence of competitive inhibitors and by compounds known to react with iron, sulfhydryl groups, and flavine. In this respect, the bacterial succinic dehydrogenase is similar to the enzyme derived from yeast and mammalian sources. In certain membrane fractions, Ca2+ and Mg2+ exhibited inhibitory effects whereas Triton X-100 caused activation. The enzyme could also be activated by substrate. In the phenazine reductase assay, incomplete reduction of electron acceptor was observed upon addition of divalent cations and iron binding agents. Images PMID:4327510
Characterization of the membrane-bound succinic dehydrogenase of Micrococcus lysodeikticus.
Pollock, J J; Linder, R; Salton, M R
1971-07-01
The occurrence of succinic dehydrogenase [succinic:(acceptor) oxidoreductase, EC 1.3.99.1] in membrane fractions of Micrococcus lysodeikticus was investigated. The enzyme could be purified 10-fold, by deoxycholate treatment. Butanol extraction of membranes yielded an active fraction, nonsedimentable at 130,000 x g for 2 hr and altered in its phospholipid content relative to membranes. The activity of the enzyme in particulate preparations was decreased in the presence of competitive inhibitors and by compounds known to react with iron, sulfhydryl groups, and flavine. In this respect, the bacterial succinic dehydrogenase is similar to the enzyme derived from yeast and mammalian sources. In certain membrane fractions, Ca(2+) and Mg(2+) exhibited inhibitory effects whereas Triton X-100 caused activation. The enzyme could also be activated by substrate. In the phenazine reductase assay, incomplete reduction of electron acceptor was observed upon addition of divalent cations and iron binding agents.
Bhateja, Deepak Kumar; Dhull, Dinesh K; Gill, Aneet; Sidhu, Akramdeep; Sharma, Saurabh; Reddy, B V Krishna; Padi, Satyanarayana S V
2012-01-05
Peroxisome proliferators activated receptor is regarded as potential therapeutic targets to control various neurodegenerative disorders. However, none of the study has elucidated its effect in the treatment of Huntington's disease. We explored whether peroxisome proliferators activated receptor-α agonist may attenuate various behavioral and biochemical alterations induced by systemic administration of 3-nitropropionic acid (3-NP), an accepted experimental animal model of Huntington's disease phenotype. Intraperitoneal administration of 3-NP (20mg/kg., i.p.) for 4days in rats produced hypolocomotion, muscle incoordination, and cognitive dysfunction. Daily treatment with fenofibrate (100 or 200mg/kg., p.o.), 30min prior to 3-NP administration for a total of 4days, significantly improved the 3-NP induced motor and cognitive impairment. Biochemical analysis revealed that systemic 3-NP administration significantly increased oxidative and nitrosative stress (increase lipid peroxidation, protein carbonyls and nitrite level), lactate dehydrogenase activity whereas, decreased the activities of catalase, superoxide dismutase, reduced glutathione, and succinate dehydrogenase. Fenofibrate treatment significantly attenuated oxidative damage, cytokines and improved mitochondrial complexes enzyme activity in brain. In the present study, MK886, a selective inhibitor of peroxisome proliferators activated receptor-α was employed to elucidate the beneficial effect through either receptor dependent or receptor independent neuroprotective mechanisms. Administration of MK886 (1mg/kg, i.p.) prior to fenofibrate (200mg/kg, p.o.) abolished the effect of fenofibrate. The results showed that receptor dependent neuroprotective effects of fenofibrate in 3-NP administered rats provide a new evidence for a role of PPAR-α activation in neuroprotection that is attributed by modulating oxidative stress and inflammation. Copyright © 2011. Published by Elsevier B.V.
Adams, Mark K; Lee, Seung-Ah; Belyaeva, Olga V; Wu, Lizhi; Kedishvili, Natalia Y
2017-10-01
All-trans-retinoic acid (RA) is a bioactive derivative of vitamin A that serves as an activating ligand for nuclear transcription factors, retinoic acid receptors. RA biosynthesis is initiated by the enzymes that oxidize retinol to retinaldehyde. It is well established that retinol dehydrogenase 10 (RDH10, SDR16C4), which belongs to the 16C family of the short chain dehydrogenase/reductase (SDR) superfamily of proteins, is the major enzyme responsible for the oxidation of retinol to retinaldehyde for RA biosynthesis during embryogenesis. However, several lines of evidence point towards the existence of additional retinol dehydrogenases that contribute to RA biosynthesis in vivo. In close proximity to RDH10 gene on human chromosome 8 are located two genes that are phylogenetically related to RDH10. The predicted protein products of these genes, retinol dehydrogenase epidermal 2 (RDHE2, SDR16C5) and retinol dehydrogenase epidermal 2-similar (RDHE2S, SDR16C6), share 59% and 56% sequence similarity with RDH10, respectively. Previously, we showed that the single ortholog of the human RDHE2 and RDHE2S in frogs, Xenopus laevis rdhe2, oxidizes retinol to retinaldehyde and is essential for frog embryonic development. In this study, we explored the potential of each of the two human proteins to contribute to RA biosynthesis. The results of this study demonstrate that human RDHE2 exhibits a relatively low but reproducible activity when expressed in either HepG2 or HEK293 cells. Expression of the native RDHE2 is downregulated in the presence of elevated levels of RA. On the other hand, the protein encoded by the human RDHE2S gene is unstable when expressed in HEK293 cells. RDHE2S protein produced in Sf9 cells is stable but has no detectable catalytic activity towards retinol. We conclude that the human RDHE2S does not contribute to RA biosynthesis, whereas the low-activity RA-sensitive human RDHE2 may have a role in adjusting the cellular levels of RA in accord with specific physiological conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
High-throughput screening for cellobiose dehydrogenases by Prussian Blue in situ formation.
Vasilchenko, Liliya G; Ludwig, Roland; Yershevich, Olga P; Haltrich, Dietmar; Rabinovich, Mikhail L
2012-07-01
Extracellular fungal flavocytochrome cellobiose dehydrogenase (CDH) is a promising enzyme for both bioelectronics and lignocellulose bioconversion. A selective high-throughput screening assay for CDH in the presence of various fungal oxidoreductases was developed. It is based on Prussian Blue (PB) in situ formation in the presence of cellobiose (<0.25 mM), ferric acetate, and ferricyanide. CDH induces PB formation via both reduction of ferricyanide to ferrocyanide reacting with an excess of Fe³⁺ (pathway 1) and reduction of ferric ions to Fe²⁺ reacting with the excess of ferricyanide (pathway 2). Basidiomycetous and ascomycetous CDH formed PB optimally at pH 3.5 and 4.5, respectively. In contrast to the holoenzyme CDH, its FAD-containing dehydrogenase domain lacking the cytochrome domain formed PB only via pathway 1 and was less active than the parent enzyme. The assay can be applied on active growing cultures on agar plates or on fungal culture supernatants in 96-well plates under aerobic conditions. Neither other carbohydrate oxidoreductases (pyranose dehydrogenase, FAD-dependent glucose dehydrogenase, glucose oxidase) nor laccase interfered with CDH activity in this assay. Applicability of the developed assay for the selection of new ascomycetous CDH producers as well as possibility of the controlled synthesis of new PB nanocomposites by CDH are discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dhar, T G Murali; Shen, Zhongqi; Gu, Henry H; Chen, Ping; Norris, Derek; Watterson, Scott H; Ballentine, Shelley K; Fleener, Catherine A; Rouleau, Katherine A; Barrish, Joel C; Townsend, Robert; Hollenbaugh, Diane L; Iwanowicz, Edwin J
2003-10-20
A series of novel small molecule inhibitors of inosine monophosphate dehydrogenase (IMPDH), based upon a 3-cyanoindole core, were explored. IMPDH catalyzes the rate determining step in guanine nucleotide biosynthesis and is a target for anticancer, immunosuppressive and antiviral therapy. The synthesis and the structure-activity relationships (SAR), derived from in vitro studies, for this new series of inhibitors is given.
Arjunan, Palaniappa; Sax, Martin; Brunskill, Andrew; Chandrasekhar, Krishnamoorthy; Nemeria, Natalia; Zhang, Sheng; Jordan, Frank; Furey, William
2006-06-02
The crystal structure of the E1 component from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc) has been determined with phosphonolactylthiamin diphosphate (PLThDP) in its active site. PLThDP serves as a structural and electrostatic analogue of the natural intermediate alpha-lactylthiamin diphosphate (LThDP), in which the carboxylate from the natural substrate pyruvate is replaced by a phosphonate group. This represents the first example of an experimentally determined, three-dimensional structure of a thiamin diphosphate (ThDP)-dependent enzyme containing a covalently bound, pre-decarboxylation reaction intermediate analogue and should serve as a model for the corresponding intermediates in other ThDP-dependent decarboxylases. Regarding the PDHc-specific reaction, the presence of PLThDP induces large scale conformational changes in the enzyme. In conjunction with the E1-PLThDP and E1-ThDP structures, analysis of a H407A E1-PLThDP variant structure shows that an interaction between His-407 and PLThDP is essential for stabilization of two loop regions in the active site that are otherwise disordered in the absence of intermediate analogue. This ordering completes formation of the active site and creates a new ordered surface likely involved in interactions with the lipoyl domains of E2s within the PDHc complex. The tetrahedral intermediate analogue is tightly held in the active site through direct hydrogen bonds to residues His-407, Tyr-599, and His-640 and reveals a new, enzyme-induced, strain-related feature that appears to aid in the decarboxylation process. This feature is almost certainly present in all ThDP-dependent decarboxylases; thus its inclusion in our understanding of general thiamin catalysis is important.
Prochukhanov, R A; Rostovtseva, T I
1977-11-01
A method of quantitative histenzymatic analysis was applied for determination of the involution changes of the neuroendocrine system. The activity of NAD- and NADP-reductases, acid and alkaline phosphatases, glucose-6-phosphoric dehydrogenase, 3-OH-steroid-dehydrogenase, 11-hydroxysteroid dehydrogenases was investigated in the adenohypophysis and in the adrenal cortex of rats aged 4 and 12 months. There were revealed peculiarities attending the structural-metabolic provision of physiological reconstructions of the neuro-endocrine system under conditions of the estral cycle at the early involution stages. An initial reduction of the cell ular-vascular transport with the retention of the functional activity of the intracellular organoids was demonstrated in ageing animals.
Zhuang, Linghang; Tice, Colin M; Xu, Zhenrong; Zhao, Wei; Cacatian, Salvacion; Ye, Yuan-Jie; Singh, Suresh B; Lindblom, Peter; McKeever, Brian M; Krosky, Paula M; Zhao, Yi; Lala, Deepak; Kruk, Barbara A; Meng, Shi; Howard, Lamont; Johnson, Judith A; Bukhtiyarov, Yuri; Panemangalore, Reshma; Guo, Joan; Guo, Rong; Himmelsbach, Frank; Hamilton, Bradford; Schuler-Metz, Annette; Schauerte, Heike; Gregg, Richard; McGeehan, Gerard M; Leftheris, Katerina; Claremon, David A
2017-07-15
A potent, in vivo efficacious 11β hydroxysteroid dehydrogenase type 1 (11β HSD1) inhibitor (11j) has been identified. Compound 11j inhibited 11β HSD1 activity in human adipocytes with an IC 50 of 4.3nM and in primary human adipose tissue with an IC 80 of 53nM. Oral administration of 11j to cynomolgus monkey inhibited 11β HSD1 activity in adipose tissue. Compound 11j exhibited >1000× selectivity over other hydroxysteroid dehydrogenases, displays desirable pharmacodynamic properties and entered human clinical trials in 2011. Copyright © 2017 Elsevier Ltd. All rights reserved.
Toxicovigilance: new biochemical tool used in sulfonylurea herbicides toxicology studies.
Belhadj-Tahar, Hafid; Adamczewski, Nicolas; Nassar, Bertrand; Coulais, Yvon
2003-06-01
In vitro toxic effects of sulfonylurea herbicides (thifensulfuron-methyl and metsulfuron-methyl) were evaluated according to a new protocol. Physiological conditions were reproduced in order to boost toxicovigilance. Sulfonylureas and their hydrolysis products were added to biological substrates such as urea, alanine, aspartic acid, alpha-ketoglutarate, oxaloacetate, pyruvate and then incubated with some specific enzymes. Addition of these sulfonylureas and their degradation products did not significantly change the enzymatic activity of the urease, aspartate-aminotransferase, glutamate dehydrogenase, malate dehydrogenase and lactate dehydrogenase. However, the acid hydrolysis products inhibited up to 95% of the activity of the alanine-aminotransferase at low concentrations (0.27 micromol L(-1)). Inhibition did not affect the mitochondrial aspartate-aminotransferase.
Filomeni, Giuseppe; Cardaci, Simone; Da Costa Ferreira, Ana Maria; Rotilio, Giuseppe; Ciriolo, Maria Rosa
2011-08-01
We have demonstrated previously that the complex bis[(2-oxindol-3-ylimino)-2-(2-aminoethyl)pyridine-N,N']copper(II), named [Cu(isaepy)(2)], induces AMPK (AMP-activated protein kinase)-dependent/p53-mediated apoptosis in tumour cells by targeting mitochondria. In the present study, we found that p38(MAPK) (p38 mitogen-activated protein kinase) is the molecular link in the phosphorylation cascade connecting AMPK to p53. Transfection of SH-SY5Y cells with a dominant-negative mutant of AMPK resulted in a decrease in apoptosis and a significant reduction in phospho-active p38(MAPK) and p53. Similarly, reverse genetics of p38(MAPK) yielded a reduction in p53 and a decrease in the extent of apoptosis, confirming an exclusive hierarchy of activation that proceeds via AMPK/p38(MAPK)/p53. Fuel supplies counteracted [Cu(isaepy)(2)]-induced apoptosis and AMPK/p38(MAPK)/p53 activation, with glucose being the most effective, suggesting a role for energetic imbalance in [Cu(isaepy)(2)] toxicity. Co-administration of 3BrPA (3-bromopyruvate), a well-known inhibitor of glycolysis, and succinate dehydrogenase, enhanced apoptosis and AMPK/p38(MAPK)/p53 signalling pathway activation. Under these conditions, no toxic effect was observed in SOD (superoxide dismutase)-overexpressing SH-SY5Y cells or in PCNs (primary cortical neurons), which are, conversely, sensitized to the combined treatment with [Cu(isaepy)(2)] and 3BrPA only if grown in low-glucose medium or incubated with the glucose-6-phosphate dehydrogenase inhibitor dehydroepiandrosterone. Overall, the results suggest that NADPH deriving from the pentose phosphate pathway contributes to PCN resistance to [Cu(isaepy)(2)] toxicity and propose its employment in combination with 3BrPA as possible tool for cancer treatment. © The Authors Journal compilation © 2011 Biochemical Society
Ketogenic diet in pyruvate dehydrogenase complex deficiency: short- and long-term outcomes.
Sofou, Kalliopi; Dahlin, Maria; Hallböök, Tove; Lindefeldt, Marie; Viggedal, Gerd; Darin, Niklas
2017-03-01
Our aime was to study the short- and long-term effects of ketogenic diet on the disease course and disease-related outcomes in patients with pyruvate dehydrogenase complex deficiency, the metabolic factors implicated in treatment outcomes, and potential safety and compliance issues. Pediatric patients diagnosed with pyruvate dehydrogenase complex deficiency in Sweden and treated with ketogenic diet were evaluated. Study assessments at specific time points included developmental and neurocognitive testing, patient log books, and investigator and parental questionnaires. A systematic literature review was also performed. Nineteen patients were assessed, the majority having prenatal disease onset. Patients were treated with ketogenic diet for a median of 2.9 years. All patients alive at the time of data registration at a median age of 6 years. The treatment had a positive effect mainly in the areas of epilepsy, ataxia, sleep disturbance, speech/language development, social functioning, and frequency of hospitalizations. It was also safe-except in one patient who discontinued because of acute pancreatitis. The median plasma concentration of ketone bodies (3-hydroxybutyric acid) was 3.3 mmol/l. Poor dietary compliance was associated with relapsing ataxia and stagnation of motor and neurocognitive development. Results of neurocognitive testing are reported for 12 of 19 patients. Ketogenic diet was an effective and safe treatment for the majority of patients. Treatment effect was mainly determined by disease phenotype and attainment and maintenance of ketosis.
Li, Fuli; Hinderberger, Julia; Seedorf, Henning; Zhang, Jin; Buckel, Wolfgang; Thauer, Rudolf K.
2008-01-01
Cell extracts of butyrate-forming clostridia have been shown to catalyze acetyl-coenzyme A (acetyl-CoA)- and ferredoxin-dependent formation of H2 from NADH. It has been proposed that these bacteria contain an NADH:ferredoxin oxidoreductase which is allosterically regulated by acetyl-CoA. We report here that ferredoxin reduction with NADH in cell extracts from Clostridium kluyveri is catalyzed by the butyryl-CoA dehydrogenase/Etf complex and that the acetyl-CoA dependence previously observed is due to the fact that the cell extracts catalyze the reduction of acetyl-CoA with NADH via crotonyl-CoA to butyryl-CoA. The cytoplasmic butyryl-CoA dehydrogenase complex was purified and is shown to couple the endergonic reduction of ferredoxin (E0′ = −410 mV) with NADH (E0′ = −320 mV) to the exergonic reduction of crotonyl-CoA to butyryl-CoA (E0′ = −10 mV) with NADH. The stoichiometry of the fully coupled reaction is extrapolated to be as follows: 2 NADH + 1 oxidized ferredoxin + 1 crotonyl-CoA = 2 NAD+ + 1 ferredoxin reduced by two electrons + 1 butyryl-CoA. The implications of this finding for the energy metabolism of butyrate-forming anaerobes are discussed in the accompanying paper. PMID:17993531
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inaoka, Daniel Ken; Takashima, Eizo; Osanai, Arihiro
2005-10-01
The Trypanosoma cruzi dihydroorotate dehydrogenase, a key enzyme in pyrimidine de novo biosynthesis and redox homeostasis, was crystallized in complex with its first reaction product, orotate. Dihydroorotate dehydrogenase (DHOD) catalyzes the oxidation of dihydroorotate to orotate, the fourth step and the only redox reaction in the de novo biosynthesis of pyrimidine. DHOD from Trypanosoma cruzi (TcDHOD) has been expressed as a recombinant protein in Escherichia coli and purified to homogeneity. Crystals of the TcDHOD–orotate complex were grown at 277 K by the sitting-drop vapour-diffusion technique using polyethylene glycol 3350 as a precipitant. The crystals diffract to better than 1.8 Åmore » resolution using synchrotron radiation (λ = 0.900 Å). X-ray diffraction data were collected at 100 K and processed to 1.9 Å resolution with 98.2% completeness and an overall R{sub merge} of 7.8%. The TcDHOD crystals belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 67.87, b = 71.89, c = 123.27 Å. The presence of two molecules in the asymmetric unit (2 × 34 kDa) gives a crystal volume per protein weight (V{sub M}) of 2.2 Å{sup 3} Da{sup −1} and a solvent content of 44%.« less
Wang, Shuning; Huang, Haiyan; Kahnt, Jörg; Mueller, Alexander P.; Köpke, Michael
2013-01-01
Flavin-based electron bifurcation is a recently discovered mechanism of coupling endergonic to exergonic redox reactions in the cytoplasm of anaerobic bacteria and archaea. Among the five electron-bifurcating enzyme complexes characterized to date, one is a heteromeric ferredoxin- and NAD-dependent [FeFe]-hydrogenase. We report here a novel electron-bifurcating [FeFe]-hydrogenase that is NADP rather than NAD specific and forms a complex with a formate dehydrogenase. The complex was found in high concentrations (6% of the cytoplasmic proteins) in the acetogenic Clostridium autoethanogenum autotrophically grown on CO, which was fermented to acetate, ethanol, and 2,3-butanediol. The purified complex was composed of seven different subunits. As predicted from the sequence of the encoding clustered genes (fdhA/hytA-E) and from chemical analyses, the 78.8-kDa subunit (FdhA) is a selenocysteine- and tungsten-containing formate dehydrogenase, the 65.5-kDa subunit (HytB) is an iron-sulfur flavin mononucleotide protein harboring the NADP binding site, the 51.4-kDa subunit (HytA) is the [FeFe]-hydrogenase proper, and the 18.1-kDa (HytC), 28.6-kDa (HytD), 19.9-kDa (HytE1), and 20.1-kDa (HytE2) subunits are iron-sulfur proteins. The complex catalyzed both the reversible coupled reduction of ferredoxin and NADP+ with H2 or formate and the reversible formation of H2 and CO2 from formate. We propose the complex to have two functions in vivo, namely, to normally catalyze CO2 reduction to formate with NADPH and reduced ferredoxin in the Wood-Ljungdahl pathway and to catalyze H2 formation from NADPH and reduced ferredoxin when these redox mediators get too reduced during unbalanced growth of C. autoethanogenum on CO (E0′ = −520 mV). PMID:23893107
Wang, Shuning; Huang, Haiyan; Kahnt, Jörg; Mueller, Alexander P; Köpke, Michael; Thauer, Rudolf K
2013-10-01
Flavin-based electron bifurcation is a recently discovered mechanism of coupling endergonic to exergonic redox reactions in the cytoplasm of anaerobic bacteria and archaea. Among the five electron-bifurcating enzyme complexes characterized to date, one is a heteromeric ferredoxin- and NAD-dependent [FeFe]-hydrogenase. We report here a novel electron-bifurcating [FeFe]-hydrogenase that is NADP rather than NAD specific and forms a complex with a formate dehydrogenase. The complex was found in high concentrations (6% of the cytoplasmic proteins) in the acetogenic Clostridium autoethanogenum autotrophically grown on CO, which was fermented to acetate, ethanol, and 2,3-butanediol. The purified complex was composed of seven different subunits. As predicted from the sequence of the encoding clustered genes (fdhA/hytA-E) and from chemical analyses, the 78.8-kDa subunit (FdhA) is a selenocysteine- and tungsten-containing formate dehydrogenase, the 65.5-kDa subunit (HytB) is an iron-sulfur flavin mononucleotide protein harboring the NADP binding site, the 51.4-kDa subunit (HytA) is the [FeFe]-hydrogenase proper, and the 18.1-kDa (HytC), 28.6-kDa (HytD), 19.9-kDa (HytE1), and 20.1-kDa (HytE2) subunits are iron-sulfur proteins. The complex catalyzed both the reversible coupled reduction of ferredoxin and NADP(+) with H2 or formate and the reversible formation of H2 and CO2 from formate. We propose the complex to have two functions in vivo, namely, to normally catalyze CO2 reduction to formate with NADPH and reduced ferredoxin in the Wood-Ljungdahl pathway and to catalyze H2 formation from NADPH and reduced ferredoxin when these redox mediators get too reduced during unbalanced growth of C. autoethanogenum on CO (E0' = -520 mV).
Fritzen, Andreas Maechel; Lundsgaard, Anne-Marie; Jeppesen, Jacob; Christiansen, Mette Landau Brabaek; Biensø, Rasmus; Dyck, Jason R B; Pilegaard, Henriette; Kiens, Bente
2015-11-01
It is well known that exercise has a major impact on substrate metabolism for many hours after exercise. However, the regulatory mechanisms increasing lipid oxidation and facilitating glycogen resynthesis in the post-exercise period are unknown. To address this, substrate oxidation was measured after prolonged exercise and during the following 6 h post-exercise in 5´-AMP activated protein kinase (AMPK) α2 and α1 knock-out (KO) and wild-type (WT) mice with free access to food. Substrate oxidation was similar during exercise at the same relative intensity between genotypes. During post-exercise recovery, a lower lipid oxidation (P < 0.05) and higher glucose oxidation were observed in AMPKα2 KO (respiratory exchange ratio (RER) = 0.84 ± 0.02) than in WT and AMPKα1 KO (average RER = 0.80 ± 0.01) without genotype differences in muscle malonyl-CoA or free-carnitine concentrations. A similar increase in muscle pyruvate dehydrogenase kinase 4 (PDK4) mRNA expression in WT and AMPKα2 KO was observed following exercise, which is consistent with AMPKα2 deficiency not affecting the exercise-induced activation of the PDK4 transcriptional regulators HDAC4 and SIRT1. Interestingly, PDK4 protein content increased (63%, P < 0.001) in WT but remained unchanged in AMPKα2 KO. In accordance with the lack of increase in PDK4 protein content, lower (P < 0.01) inhibitory pyruvate dehydrogenase (PDH)-E1α Ser(293) phosphorylation was observed in AMPKα2 KO muscle compared to WT. These findings indicate that AMPKα2 regulates muscle metabolism post-exercise through inhibition of the PDH complex and hence glucose oxidation, subsequently creating conditions for increased fatty acid oxidation. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
A high effective NADH-ferricyanide dehydrogenase coupled with laccase for NAD(+) regeneration.
Wang, Jizhong; Yang, Chengli; Chen, Xing; Bao, Bingxin; Zhang, Xuan; Li, Dali; Du, Xingfan; Shi, Ruofu; Yang, Junfang; Zhu, Ronghui
2016-08-01
To find an efficient and cheap system for NAD(+) regeneration A NADH-ferricyanide dehydrogenase was obtained from an isolate of Escherichia coli. Optimal activity of the NADH dehydrogenase was at 45 °C and pH 7.5, with a K m value for NADH of 10 μM. By combining the NADH dehydrogenase, potassium ferricyanide and laccase, a bi-enzyme system for NAD(+) regeneration was established. The system is attractive in that the O2 consumed by laccase is from air and the sole byproduct of the reaction is water. During the reaction process, 10 mM NAD(+) was transformed from NADH in less than 2 h under the condition of 0.5 U NADH dehydrogenase, 0.5 U laccase, 0.1 mM potassium ferricyanide at pH 5.6, 30 °C CONCLUSION: The bi-enzyme system employed the NADH-ferricyanide dehydrogenase and laccase as catalysts, and potassium ferricyanide as redox mediator, is a promising alternative for NAD(+) regeneration.
Saccharomyces cerevisiae KNU5377 stress response during high-temperature ethanol fermentation.
Kim, Il-Sup; Kim, Young-Saeng; Kim, Hyun; Jin, Ingnyol; Yoon, Ho-Sung
2013-03-01
Fuel ethanol production is far more costly to produce than fossil fuels. There are a number of approaches to cost-effective fuel ethanol production from biomass. We characterized stress response of thermotolerant Saccharomyces cerevisiae KNU5377 during glucose-based batch fermentation at high temperature (40°C). S. cerevisiae KNU5377 (KNU5377) transcription factors (Hsf1, Msn2/4, and Yap1), metabolic enzymes (hexokinase, glyceraldehyde-3-phosphate dehydrogenase, glucose-6-phosphate dehydrogenase, isocitrate dehydrogenase, and alcohol dehydrogenase), antioxidant enzymes (thioredoxin 3, thioredoxin reductase, and porin), and molecular chaperones and its cofactors (Hsp104, Hsp82, Hsp60, Hsp42, Hsp30, Hsp26, Cpr1, Sti1, and Zpr1) are upregulated during fermentation, in comparison to S. cerevisiae S288C (S288C). Expression of glyceraldehyde-3-phosphate dehydrogenase increased significantly in KNU5377 cells. In addition, cellular hydroperoxide and protein oxidation, particularly lipid peroxidation of triosephosphate isomerase, was lower in KNU5377 than in S288C. Thus, KNU5377 activates various cell rescue proteins through transcription activators, improving tolerance and increasing alcohol yield by rapidly responding to fermentation stress through redox homeostasis and proteostasis.
Vijayavel, K; Balasubramanian, M P
2006-06-01
The sublethal effect of naphthalene was studied on the physiology of a mud crab Scylla serrata. The 96 h acute toxicity of naphthalene was determined and found to be 28 mg 1(-1) (LC100), 18 mg 1(-1) (LC50), 10 mg 1(-1) (LC0) respectively. The 30 days sublethal effect (LC0) 9 mg 1(-1), 8 mg 1(-1), 10 mg 1(-1), of naphthalene was investigated in the crab S. serrata with reference to oxygen consumption and changes in the activity of respiratory enzymes. The results indicated that naphthalene caused disturbance in the normal physiology of the crab. The bioaccumulation of naphthalene was also investigated in gills, hepatopancreas, haemolymph and ovary. The consumption of oxygen increased in the naphthalene medium when compared with that of the crabs exposed to naphthalene free medium. A decreased trend in the activity of respiratory enzymes such as lactate dehydrogenase (LDH), isocitrate dehydrogenase (ICDH), succinate dehydrogenase (SDH), malate dehydrogenase (MDH), alpha-ketoglutarate dehydrogenase (alpha-KDH) and glutathione (GSH) were recorded in the hepatopancreas, ovary and gills of S. serrata for all the tested concentrations of naphthalene and the results were analyzed for their significance.
A novel cofactor-binding mode in bacterial IMP dehydrogenases explains inhibitor selectivity.
Makowska-Grzyska, Magdalena; Kim, Youngchang; Maltseva, Natalia; Osipiuk, Jerzy; Gu, Minyi; Zhang, Minjia; Mandapati, Kavitha; Gollapalli, Deviprasad R; Gorla, Suresh Kumar; Hedstrom, Lizbeth; Joachimiak, Andrzej
2015-02-27
The steadily rising frequency of emerging diseases and antibiotic resistance creates an urgent need for new drugs and targets. Inosine 5'-monophosphate dehydrogenase (IMP dehydrogenase or IMPDH) is a promising target for the development of new antimicrobial agents. IMPDH catalyzes the oxidation of IMP to XMP with the concomitant reduction of NAD(+), which is the pivotal step in the biosynthesis of guanine nucleotides. Potent inhibitors of bacterial IMPDHs have been identified that bind in a structurally distinct pocket that is absent in eukaryotic IMPDHs. The physiological role of this pocket was not understood. Here, we report the structures of complexes with different classes of inhibitors of Bacillus anthracis, Campylobacter jejuni, and Clostridium perfringens IMPDHs. These structures in combination with inhibition studies provide important insights into the interactions that modulate selectivity and potency. We also present two structures of the Vibrio cholerae IMPDH in complex with IMP/NAD(+) and XMP/NAD(+). In both structures, the cofactor assumes a dramatically different conformation than reported previously for eukaryotic IMPDHs and other dehydrogenases, with the major change observed for the position of the NAD(+) adenosine moiety. More importantly, this new NAD(+)-binding site involves the same pocket that is utilized by the inhibitors. Thus, the bacterial IMPDH-specific NAD(+)-binding mode helps to rationalize the conformation adopted by several classes of prokaryotic IMPDH inhibitors. These findings offer a potential strategy for further ligand optimization. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
2015-01-01
Biosynthesis of aspartate (Asp)-derived amino acids lysine (Lys), methionine (Met), threonine (Thr), and isoleucine involves monofunctional Asp kinases (AKs) and dual-functional Asp kinase-homoserine dehydrogenases (AK-HSDHs). Four-week-old loss-of-function Arabidopsis (Arabidopsis thaliana) mutants in the AK-HSDH2 gene had increased amounts of Asp and Asp-derived amino acids, especially Thr, in leaves. To explore mechanisms behind this phenotype, we obtained single mutants for other AK and AK-HSDH genes, generated double mutants from ak-hsdh2 and ak mutants, and performed free and protein-bound amino acid profiling, transcript abundance, and activity assays. The increases of Asp, Lys, and Met in ak-hsdh2 were also observed in ak1-1, ak2-1, ak3-1, and ak-hsdh1-1. However, the Thr increase in ak-hsdh2 was observed in ak-hsdh1-1 but not in ak1-1, ak2-1, or ak3-1. Activity assays showed that AK2 and AK-HSDH1 are the major contributors to overall AK and HSDH activities, respectively. Pairwise correlation analysis revealed positive correlations between the amount of AK transcripts and Lys-sensitive AK activity and between the amount of AK-HSDH transcripts and both Thr-sensitive AK activity and total HSDH activity. In addition, the ratio of total AK activity to total HSDH activity negatively correlates with the ratio of Lys to the total amount of Met, Thr, and isoleucine. These data led to the hypothesis that the balance between Lys-sensitive AKs and Thr-sensitive AK-HSDHs is important for maintaining the amounts and ratios of Asp-derived amino acids. PMID:26063505
Mustafi, Nurije; Grünberger, Alexander; Mahr, Regina; Helfrich, Stefan; Nöh, Katharina; Blombach, Bastian; Kohlheyer, Dietrich; Frunzke, Julia
2014-01-01
The majority of biotechnologically relevant metabolites do not impart a conspicuous phenotype to the producing cell. Consequently, the analysis of microbial metabolite production is still dominated by bulk techniques, which may obscure significant variation at the single-cell level. In this study, we have applied the recently developed Lrp-biosensor for monitoring of amino acid production in single cells of gradually engineered L-valine producing Corynebacterium glutamicum strains based on the pyruvate dehydrogenase complex-deficient (PDHC) strain C. glutamicum ΔaceE. Online monitoring of the sensor output (eYFP fluorescence) during batch cultivation proved the sensor's suitability for visualizing different production levels. In the following, we conducted live cell imaging studies on C. glutamicum sensor strains using microfluidic chip devices. As expected, the sensor output was higher in microcolonies of high-yield producers in comparison to the basic strain C. glutamicum ΔaceE. Microfluidic cultivation in minimal medium revealed a typical Gaussian distribution of single cell fluorescence during the production phase. Remarkably, low amounts of complex nutrients completely changed the observed phenotypic pattern of all strains, resulting in a phenotypic split of the population. Whereas some cells stopped growing and initiated L-valine production, others continued to grow or showed a delayed transition to production. Depending on the cultivation conditions, a considerable fraction of non-fluorescent cells was observed, suggesting a loss of metabolic activity. These studies demonstrate that genetically encoded biosensors are a valuable tool for monitoring single cell productivity and to study the phenotypic pattern of microbial production strains.
Schreier, Tina B; Antoine, Cléry; Schläfli, Michael; Galbier, Florian; Stadler, Martha; Demarsy, Emilie; Albertini, Daniele; Maier, Benjamin A; Kessler, Felix; Hörtensteiner, Stefan; Zeeman, Samuel C; Kötting, Oliver
2018-06-22
Malate dehydrogenases (MDH) convert malate to oxaloacetate using NAD(H) or NADP(H) as a cofactor. Arabidopsis thaliana mutants lacking plastidial NAD-dependent MDH (pdnad-mdh) are embryo-lethal, and constitutive silencing (miR-mdh-1) causes a pale, dwarfed phenotype. The reason for these severe phenotypes is unknown. Here, we rescued the embryo lethality of pdnad-mdh via embryo-specific expression of pdNAD-MDH. Rescued seedlings developed white leaves with aberrant chloroplasts and failed to reproduce. Inducible silencing of pdNAD-MDH at the rosette stage also resulted in white newly emerging leaves. These data suggest that pdNAD-MDH is important for early plastid development, which is consistent with the reductions in major plastidial galactolipid, carotenoid and protochlorophyllide levels in miR-mdh-1 seedlings. Surprisingly, the targeting of other NAD-dependent MDH isoforms to the plastid did not complement the embryo lethality of pdnad-mdh, while expression of enzymatically inactive pdNAD-MDH did. These complemented plants grew indistinguishably from the wild type. Both active and inactive forms of pdNAD-MDH interact with a heteromeric AAA-ATPase complex at the inner membrane of the chloroplast envelope. Silencing the expression of FtsH12, a key member of this complex, resulted in a phenotype that strongly resembles miR-mdh-1. We propose that pdNAD-MDH is essential for chloroplast development due to its moonlighting role in stabilizing FtsH12, distinct from its enzymatic function. © 2018 American Society of Plant Biologists. All rights reserved.
Mahr, Regina; Helfrich, Stefan; Nöh, Katharina; Blombach, Bastian; Kohlheyer, Dietrich; Frunzke, Julia
2014-01-01
The majority of biotechnologically relevant metabolites do not impart a conspicuous phenotype to the producing cell. Consequently, the analysis of microbial metabolite production is still dominated by bulk techniques, which may obscure significant variation at the single-cell level. In this study, we have applied the recently developed Lrp-biosensor for monitoring of amino acid production in single cells of gradually engineered L-valine producing Corynebacterium glutamicum strains based on the pyruvate dehydrogenase complex-deficient (PDHC) strain C. glutamicum ΔaceE. Online monitoring of the sensor output (eYFP fluorescence) during batch cultivation proved the sensor's suitability for visualizing different production levels. In the following, we conducted live cell imaging studies on C. glutamicum sensor strains using microfluidic chip devices. As expected, the sensor output was higher in microcolonies of high-yield producers in comparison to the basic strain C. glutamicum ΔaceE. Microfluidic cultivation in minimal medium revealed a typical Gaussian distribution of single cell fluorescence during the production phase. Remarkably, low amounts of complex nutrients completely changed the observed phenotypic pattern of all strains, resulting in a phenotypic split of the population. Whereas some cells stopped growing and initiated L-valine production, others continued to grow or showed a delayed transition to production. Depending on the cultivation conditions, a considerable fraction of non-fluorescent cells was observed, suggesting a loss of metabolic activity. These studies demonstrate that genetically encoded biosensors are a valuable tool for monitoring single cell productivity and to study the phenotypic pattern of microbial production strains. PMID:24465669
Gibson, Gary E; Chen, Huan-Lian; Xu, Hui; Qiu, Linghua; Xu, Zuoshang; Denton, Travis T; Shi, Qingli
2012-06-01
Understanding the molecular sequence of events that culminate in multiple abnormalities in brains from patients that died with Alzheimer's disease (AD) will help to reveal the mechanisms of the disease and identify upstream events as therapeutic targets. The activity of the mitochondrial α-ketoglutarate dehydrogenase complex (KGDHC) in homogenates from autopsy brain declines with AD. Experimental reductions in KGDHC in mouse models of AD promote plaque and tangle formation, the hallmark pathologies of AD. We hypothesize that deficits in KGDHC also lead to the abnormalities in endoplasmic reticulum (ER) calcium stores and cytosolic calcium following K(+) depolarization that occurs in cells from AD patients and transgenic models of AD. The activity of the mitochondrial enzyme KGDHC was diminished acutely (minutes), long-term (days), or chronically (weeks). Acute inhibition of KGDHC produced effects on calcium opposite to those in AD, while the chronic or long-term inhibition of KGDHC mimicked the AD-related changes in calcium. Divergent changes in proteins released from the mitochondria that affect endoplasmic reticulum calcium channels may underlie the selective cellular consequences of acute versus longer term inhibition of KGDHC. The results suggest that the mitochondrial abnormalities in AD can be upstream of those in calcium. Copyright © 2012 Elsevier Inc. All rights reserved.
Gibson, Gary E.; Chen, Huan-Lian; Xu, Hui; Qiu, Linghua; Xu, Zuoshang; Denton, Travis T.; Shi, Qingli
2011-01-01
Understanding the molecular sequence of events that culminate in multiple abnormalities in brains from patients that died with Alzheimer’s Disease (AD) will help to reveal the mechanisms of the disease and identify upstream events as therapeutic targets. The activity of the mitochondrial α-ketoglutarate dehydrogenase complex (KGDHC) in homogenates from autopsy brain declines with AD. Experimental reductions in KGDHC in mouse models of AD promote plaque and tangle formation, the hallmark pathologies of AD. We hypothesize that deficits in KGDHC also lead to the abnormalities in endoplasmic reticulum (ER) calcium stores and cytosolic calcium following K+ -depolarization that occur in cells from AD patients and transgenic models of AD. The activity of the mitochondrial enzyme KGDHC was diminished acutely (minutes), long term (days) or chronically (weeks). Acute inhibition of KGDHC produced effects on calcium opposite to those in AD, while the chronic or long term inhibition of KGDHC mimicked the AD-related changes in calcium. Divergent changes in proteins released from the mitochondria that effect ER calcium channels may underlie the selective cellular consequences of acute versus longer term inhibition of KGDHC. The results suggest that the mitochondrial abnormalities in AD can be upstream of those in calcium. PMID:22169199
Mu, Hong-Na; Li, Quan; Pan, Chun-Shui; Liu, Yu-Ying; Yan, Li; Hu, Bai-He; Sun, Kai; Chang, Xin; Zhao, Xin-Rong; Fan, Jing-Yu; Han, Jing-Yan
2015-08-01
Sirtuin 3 (Sirt3) plays critical roles in regulating mitochondrial oxidative metabolism. However, whether Sirt3 is involved in liver ischemia and reperfusion (I/R) injury remains elusive. Caffeic acid (CA) is a natural antioxidant derived from Salvia miltiorrhiza. Whether CA protects against liver I/R injury through regulating Sirt3 and the mitochondrial respiratory chain (MRC) is unclear. This study investigated the effect of CA on liver I/R injury, microcirculatory disturbance, and potential mechanisms, particularly focusing on Sirt3-dependent MRC. Liver I/R of male Sprague-Dawley rats was established by occlusion of portal area vessels for 30 min followed by 120 min of reperfusion. CA (15 mg/kg/h) was continuously infused via the femoral vein starting 30 min before ischemia. After I/R, Sirt3 expression, and MRC activity decreased, acetylation of NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9 and succinate dehydrogenase complex, subunit A, flavoprotein variant provoked, and the liver microcirculatory disturbance and injury were observed. Treatment with CA attenuated liver injury, inhibited Sirt3 down-expression, and up-regulated MRC activity. CA attenuated rat liver microcirculatory disturbance and oxidative injury through regulation of Sirt3 and the mitochondrial respiratory chain. Copyright © 2015 Elsevier Inc. All rights reserved.
UVA Irradiation of Dysplastic Keratinocytes: Oxidative Damage versus Antioxidant Defense
Nechifor, Marina T.; Niculiţe, Cristina M.; Urs, Andreea O.; Regalia, Teodor; Mocanu, Mihaela; Popescu, Alexandra; Manda, Gina; Dinu, Diana; Leabu, Mircea
2012-01-01
UVA affects epidermal cell physiology in a complex manner, but the harmful effects have been studied mainly in terms of DNA damage, mutagenesis and carcinogenesis. We investigated UVA effects on membrane integrity and antioxidant defense of dysplastic keratinocytes after one and two hours of irradiation, both immediately after exposure, and 24 h post-irradiation. To determine the UVA oxidative stress on cell membrane, lipid peroxidation was correlated with changes in fatty acid levels. Membrane permeability and integrity were assessed by propidium iodide staining and lactate dehydrogenase release. The effects on keratinocyte antioxidant protection were investigated in terms of catalase activity and expression. Lipid peroxidation increased in an exposure time-dependent manner. UVA exposure decreased the level of polyunsaturated fatty acids, which gradually returned to its initial value. Lactate dehydrogenase release showed a dramatic loss in membrane integrity after 2 h minimum of exposure. The cell ability to restore membrane permeability was noted at 24 h post-irradiation (for one hour exposure). Catalase activity decreased in an exposure time-dependent manner. UVA-irradiated dysplastic keratinocytes developed mechanisms leading to cell protection and survival, following a non-lethal exposure. The surviving cells gained an increased resistance to apoptosis, suggesting that their pre-malignant status harbors an abnormal ability to control their fate. PMID:23222638
Wang, Ling-Yu; Hung, Chiu-Lien; Chen, Yun-Ru; Yang, Joy C; Wang, Junjian; Campbell, Mel; Izumiya, Yoshihiro; Chen, Hong-Wu; Wang, Wen-Ching; Ann, David K; Kung, Hsing-Jien
2016-09-13
The histone lysine demethylase KDM4A/JMJD2A has been implicated in prostate carcinogenesis through its role in transcriptional regulation. Here, we describe KDM4A as a E2F1 coactivator and demonstrate a functional role for the E2F1-KDM4A complex in the control of tumor metabolism. KDM4A associates with E2F1 on target gene promoters and enhances E2F1 chromatin binding and transcriptional activity, thereby modulating the transcriptional profile essential for cancer cell proliferation and survival. The pyruvate dehydrogenase kinases (PDKs) PDK1 and PDK3 are direct targets of KDM4A and E2F1 and modulate the switch between glycolytic metabolism and mitochondrial oxidation. Downregulation of KDM4A leads to elevated activity of pyruvate dehydrogenase and mitochondrial oxidation, resulting in excessive accumulation of reactive oxygen species. The altered metabolic phenotypes can be partially rescued by ectopic expression of PDK1 and PDK3, indicating a KDM4A-dependent tumor metabolic regulation via PDK. Our results suggest that KDM4A is a key regulator of tumor metabolism and a potential therapeutic target for prostate cancer. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Positive selection on D-lactate dehydrogenases of Lactobacillus delbrueckii subspecies bulgaricus.
Zhang, Jifeng; Gong, Guangyu; Wang, Xiao; Zhang, Hao; Tian, Weidong
2015-08-01
Lactobacillus delbrueckii has been widely used for yogurt fermentation. It has genes encoding both D- and L-type lactate dehydrogenases (LDHs) that catalyse the production of L(+) or D(-) stereoisomer of lactic acid. D-lactic acid is the primary lactate product by L. delbrueckii, yet it cannot be metabolised by human intestine. Since it has been domesticated for long time, an interesting question arises regarding to whether the selection pressure has affected the evolution of both L-LDH and D-LDH genes in the genome. To answer this question, in this study the authors first investigated the evolution of these two genes by constructing phylogenetic trees. They found that D-LDH-based phylogenetic tree could better represent the phylogenetic relationship in the acidophilus complex than L-LDH-based tree. They next investigated the evolutions of LDH genes of L. delbrueckii at amino acid level, and found that D-LDH gene in L. delbrueckii is positively selected, possibly a consequence of long-term domestication. They further identified four amino acids that are under positive selection. One of them, V261, is located at the centre of three catalytic active sites, indicating likely functional effects on the enzyme activity. The selection from the domestication process thus provides direction for future engineering of D-LDH.
Ligand Binding Phenomena that Pertain to the Metabolic Function of Renalase
Beaupre, Brett A.; Roman, Joseph V.; Hoag, Matthew R.; Meneely, Kathleen M.; Silvaggi, Nicholas R.; Lamb, Audrey L.; Moran, Graham R.
2017-01-01
Renalase catalyzes the oxidation of isomers of β-NAD(P)H that carry the hydride in the 2 or 6 positions of the nicotinamide base to form β-NAD(P)+. This activity is thought to alleviate inhibition of multiple β-NAD(P)-dependent enzymes of primary and secondary metabolism by these isomers. Here we present evidence for a variety of ligand binding phenomena relevant to the function of renalase. We offer evidence of the potential for primary metabolism inhibition with structures of malate dehydrogenase and lactate dehydrogenase bound to the 6-dihydroNAD isomer. The previously observed preference of renalase from Pseudomonas for NAD-derived substrates over those derived from NADP is accounted for by the structure of the enzyme in complex with NADPH. We also show that nicotinamide nucleosides and mononucloetides reduced in the 2- and 6-positions are renalase substrates, but bind weakly. A seven-fold enhancement of acquisition (kred/Kd) for 6-dihydronicotinamide riboside was observed for human renalase in the presence of ADP. However, generally the addition of complement ligands, ADP for mononucloetide or AMP for nucleoside substrates, did not enhance the reductive half-reaction. Non-substrate nicotinamide nucleosides or nucleotides bind weakly suggesting that only β-NADH and β-NADPH compete with dinucleotide substrates for access to the active site. PMID:27769837
NASA Astrophysics Data System (ADS)
Wang, Zhenya; Chang, Yiqun; Han, Yushui; Liu, Kangjia; Hou, Jinsong; Dai, Chengli; Zhai, Yuanhao; Guo, Jialiang; Sun, Pinghua; Lin, Jing; Chen, Weimin
2016-11-01
Mutation of isocitrate dehydrogenase 1 (IDH1) which is frequently found in certain cancers such as glioma, sarcoma and acute myeloid leukemia, has been proven to be a potent drug target for cancer therapy. In silico methodologies such as 3D-QSAR and molecular docking were performed to explore compounds with better mutant isocitrate dehydrogenase 1 (MIDH1) inhibitory activity using a series of 40 newly reported 1-hydroxypyridin-2-one compounds as MIDH1 inhibitors. The satisfactory CoMFA and CoMSIA models obtained after internal and external cross-validation gave q2 values of 0.691 and 0.535, r2 values of 0.984 and 0.936, respectively. 3D contour maps generated from CoMFA and CoMSIA along with the docking results provided information about the structural requirements for better MIDH1 inhibitory activity. Based on the structure-activity relationship, 17 new potent molecules with better predicted activity than the most active compound in the literature have been designed.
Zhou, Jilai; Shao, Xiongjun; Olson, Daniel G; Murphy, Sean Jean-Loup; Tian, Liang; Lynd, Lee R
2017-05-01
Thermoanaerobacter ethanolicus is a promising candidate for biofuel production due to the broad range of substrates it can utilize and its high ethanol yield compared to other thermophilic bacteria, such as Clostridium thermocellum. Three alcohol dehydrogenases, AdhA, AdhB and AdhE, play key roles in ethanol formation. To study their physiological roles during ethanol formation, we deleted them separately and in combination. Previously, it has been thought that both AdhB and AdhE were bifunctional alcohol dehydrogenases. Here we show that AdhE has primarily acetyl-CoA reduction activity (ALDH) and almost no acetaldehyde reduction (ADH) activity, whereas AdhB has no ALDH activity and but high ADH activity. We found that AdhA and AdhB have similar patterns of activity. Interestingly, although deletion of both adhA and adhB reduced ethanol production, a single deletion of either one actually increased ethanol yields by 60-70%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, P.K.; Sastry, K.V.
1981-02-01
The effect of the 50% lethal concentration and of a sublethal concentration (0.3 mg/liter) of mercuric chloride on the activities of succinic, lactic, and pyruvic dehydrogenases in the digestive system of two teleost fishes, Ophiocephalus punctatus and Heteropneustes fossilis, respectively, has been studied at intervals of 96 h and 7, 15, and 30 days. The results show that dehydrogenases are not affected much by short-term exposure. However, the activities of all three enzymes are inhibited by chronic exposure to mercury and maximum inhibition is observed after 15 days of exposure. Among the different parts of the digestive system, the livermore » is the most affected organ, and of the two fishes, Heteropneustes is more sensitive to mercury treatment.« less
Cloning and sequencing of the cDNA species for mammalian dimeric dihydrodiol dehydrogenases.
Arimitsu, E; Aoki, S; Ishikura, S; Nakanishi, K; Matsuura, K; Hara, A
1999-01-01
Cynomolgus and Japanese monkey kidneys, dog and pig livers and rabbit lens contain dimeric dihydrodiol dehydrogenase (EC 1.3.1.20) associated with high carbonyl reductase activity. Here we have isolated cDNA species for the dimeric enzymes by reverse transcriptase-PCR from human intestine in addition to the above five animal tissues. The amino acid sequences deduced from the monkey, pig and dog cDNA species perfectly matched the partial sequences of peptides digested from the respective enzymes of these animal tissues, and active recombinant proteins were expressed in a bacterial system from the monkey and human cDNA species. Northern blot analysis revealed the existence of a single 1.3 kb mRNA species for the enzyme in these animal tissues. The human enzyme shared 94%, 85%, 84% and 82% amino acid identity with the enzymes of the two monkey strains (their sequences were identical), the dog, the pig and the rabbit respectively. The sequences of the primate enzymes consisted of 335 amino acid residues and lacked one amino acid compared with the other animal enzymes. In contrast with previous reports that other types of dihydrodiol dehydrogenase, carbonyl reductases and enzymes with either activity belong to the aldo-keto reductase family or the short-chain dehydrogenase/reductase family, dimeric dihydrodiol dehydrogenase showed no sequence similarity with the members of the two protein families. The dimeric enzyme aligned with low degrees of identity (14-25%) with several prokaryotic proteins, in which 47 residues are strictly or highly conserved. Thus dimeric dihydrodiol dehydrogenase has a primary structure distinct from the previously known mammalian enzymes and is suggested to constitute a novel protein family with the prokaryotic proteins. PMID:10477285
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desjardins, Morgan; Mak, Wai Shun; O’Brien, Terrence E.
Enzymes have been through millions of years of evolution during which their active-site microenvironments are fine-tuned. Active-site residues are commonly conserved within protein families, indicating their importance for substrate recognition and catalysis. In this work, we systematically mutated active-site residues of l-threonine dehydrogenase from Thermoplasma volcanium and characterized the mutants against a panel of substrate analogs. Our results demonstrate that only a subset of these residues plays an essential role in substrate recognition and catalysis and that the native enzyme activity can be further enhanced roughly 4.6-fold by a single point mutation. Kinetic characterization of mutants on substrate analogs showsmore » that l-threonine dehydrogenase possesses promiscuous activities toward other chemically similar compounds not previously observed. Quantum chemical calculations on the hydride-donating ability of these substrates also reveal that this enzyme did not evolve to harness the intrinsic substrate reactivity for enzyme catalysis. Our analysis provides insights into connections between the details of enzyme active-site structure and specific function. Finally, these results are directly applicable to rational enzyme design and engineering.« less
Desjardins, Morgan; Mak, Wai Shun; O’Brien, Terrence E.; ...
2017-07-07
Enzymes have been through millions of years of evolution during which their active-site microenvironments are fine-tuned. Active-site residues are commonly conserved within protein families, indicating their importance for substrate recognition and catalysis. In this work, we systematically mutated active-site residues of l-threonine dehydrogenase from Thermoplasma volcanium and characterized the mutants against a panel of substrate analogs. Our results demonstrate that only a subset of these residues plays an essential role in substrate recognition and catalysis and that the native enzyme activity can be further enhanced roughly 4.6-fold by a single point mutation. Kinetic characterization of mutants on substrate analogs showsmore » that l-threonine dehydrogenase possesses promiscuous activities toward other chemically similar compounds not previously observed. Quantum chemical calculations on the hydride-donating ability of these substrates also reveal that this enzyme did not evolve to harness the intrinsic substrate reactivity for enzyme catalysis. Our analysis provides insights into connections between the details of enzyme active-site structure and specific function. Finally, these results are directly applicable to rational enzyme design and engineering.« less
Silva, A R; Silva, C G; Ruschel, C; Helegda, C; Wyse, A T; Wannmacher, C M; Wajner, M; Dutra-Filho, C S
2001-12-01
In the present study we investigated the effects of L-pyroglutamic acid (PGA), which predominantly accumulates in the inherited metabolic diseases glutathione synthetase deficiency (GSD) and gamma-glutamylcysteine synthetase deficiency (GCSD), on some in vitro parameters of energy metabolism and lipid biosynthesis. We evaluated the rates of CO2 production and lipid synthesis from [U-14C]acetate, as well as ATP levels and the activities of creatine kinase and of the respiratory chain complexes I-IV in cerebral cortex of young rats in the presence of PGA at final concentrations ranging from 0.5 to 3 mM. PGA significantly reduced brain CO2 production by 50% at the concentrations of 0.5 to 3 mM, lipid biosynthesis by 20% at concentrations of 0.5 to 3 mM and ATP levels by 52% at the concentration of 3 mM. Regarding the enzyme activities, PGA significantly decreased NADH:cytochrome c oxireductase (complex I plus CoQ plus complex III) by 40% at concentrations of 0.5-3.0 mM and cytochrome c oxidase activity by 22-30% at the concentration of 3.0 mM, without affecting the activities of succinate dehydrogenase, succinate:DCPIP oxireductase (complex II), succinate:cytochrome c oxireductase (complex II plus CoQ plus complex III) or creatine kinase. The results strongly indicate that PGA impairs brain energy production. If these effects also occur in humans, it is possible that they may contribute to the neuropathology of patients affected by these diseases.
Deutch, Charles E
2013-11-01
The autotrophic nitrifying bacterium Nitrosomonas europaea does not synthesize 2-oxoglutarate (α-ketoglutarate) dehydrogenase under aerobic conditions and so has an incomplete citric acid cycle. L-malate (S-malate) dehydrogenase (MDH) from N. europaea was predicted to show similarity to the NADP(+)-dependent enzymes from chloroplasts and was separated from the NAD(+)-dependent proteins from most other bacteria or mitochondria. MDH activity in a soluble fraction from N. europaea ATCC 19718 was measured spectrophotometrically and exhibited simple Michaelis-Menten kinetics. In the reductive direction, activity with NADH increased from pH 6.0 to 8.5 but activity with NADPH was consistently lower and decreased with pH. At pH 7.0, the K m for oxaloacetate was 20 μM; the K m for NADH was 22 μM but that for NADPH was at least 10 times higher. In the oxidative direction, activity with NAD(+) increased with pH but there was very little activity with NADP(+). At pH 7.0, the K m for L-malate was 5 mM and the K m for NAD(+) was 24 μM. The reductive activity was quite insensitive to inhibition by L-malate but the oxidative activity was very sensitive to oxaloacetate. MDH activity was not strongly activated or inhibited by glycolytic or citric acid cycle metabolites, adenine nucleotides, NaCl concentrations, or most metal ions, but increased with temperature up to about 55 °C. The reductive activity was consistently 10-20 times higher than the oxidative activity. These results indicate that the L-malate dehydrogenase in N. europaea is similar to other NAD(+)-dependent MDHs (EC 1.1.1.37) but physiologically adapted for its role in a reductive biosynthetic sequence.
Leffa, Daniela Dimer; Rezin, Gislaine Tezza; Daumann, Francine; Longaretti, Luiza M; Dajori, Ana Luiza F; Gomes, Lara Mezari; Silva, Milena Carvalho; Streck, Emílio L; de Andrade, Vanessa Moraes
2017-03-01
Obesity is a multifactorial disease that comes from an imbalance between food intake and energy expenditure. Moreover, studies have shown a relationship between mitochondrial dysfunction and obesity. In the present study, we investigated the effect of acerola juices (unripe, ripe, and industrial) and its main pharmacologically active components (vitamin C and rutin) on the activity of enzymes of energy metabolism in the brain of mice fed a palatable cafeteria diet. Two groups of male Swiss mice were fed on a standard diet (STA) or a cafeteria diet (CAF) for 13 weeks. Afterwards, the CAF-fed animals were divided into six subgroups, each of which received a different supplement for one further month (water, unripe, ripe or industrial acerola juices, vitamin C, or rutin) by gavage. Our results demonstrated that CAF diet inhibited the activity of citrate synthase in the prefrontal cortex, hippocampus, and hypothalamus. Moreover, CAF diet decreased the complex I activity in the hypothalamus, complex II in the prefrontal cortex, complex II-III in the hypothalamus, and complex IV in the posterior cortex and striatum. The activity of succinate dehydrogenase and creatine kinase was not altered by the CAF diet. However, unripe acerola juice reversed the inhibition of the citrate synthase activity in the prefrontal cortex and hypothalamus. Ripe acerola juice reversed the inhibition of citrate synthase in the hypothalamus. The industrial acerola juice reversed the inhibition of complex I activity in the hypothalamus. The other changes were not reversed by any of the tested substances. In conclusion, we suggest that alterations in energy metabolism caused by obesity can be partially reversed by ripe, unripe, and industrial acerola juice.
Proline dehydrogenase promotes senescence through the generation of reactive oxygen species.
Nagano, Taiki; Nakashima, Akio; Onishi, Kengo; Kawai, Kosuke; Awai, Yuto; Kinugasa, Mizuki; Iwasaki, Tetsushi; Kikkawa, Ushio; Kamada, Shinji
2017-04-15
Cellular senescence is a complex stress response characterized by permanent loss of proliferative capacity and is implicated in age-related disorders. Although the transcriptional activity of p53 (encoded by TP53 ) is known to be vital for senescence induction, the downstream effector genes critical for senescence remain unsolved. Recently, we have identified the proline dehydrogenase gene ( PRODH ) to be upregulated specifically in senescent cells in a p53-dependent manner, and the functional relevance of this to senescence is yet to be defined. Here, we conducted functional analyses to explore the relationship between PRODH and the senescence program. We found that genetic and pharmacological inhibition of PRODH suppressed senescent phenotypes induced by DNA damage. Furthermore, ectopic expression of wild-type PRODH, but not enzymatically inactive forms, induced senescence associated with the increase in reactive oxygen species (ROS) and the accumulation of DNA damage. Treatment with N-acetyl-L-cysteine, a ROS scavenger, prevented senescence induced by PRODH overexpression. These results indicate that PRODH plays a causative role in DNA damage-induced senescence through the enzymatic generation of ROS. © 2017. Published by The Company of Biologists Ltd.
Pro-apoptotic effect of fly ash leachates in hepatocytes of freshwater fish (Channa punctata Bloch).
Ali, Mehboob; Rahman, Shakilur; Rehman, Hasibur; Bhatia, Kanchan; Ansari, Rizwan A; Raisuddin, Sheikh
2007-02-01
The pro-apoptotic effect of fly ash leachates (FAL) was studied in the hepatocytes of an Indian freshwater fish, Channa punctata Bloch. Hepatocytes were exposed to different concentrations of '7-day' FAL for 24 and 48h and various parameters of apoptosis were studied using standardized procedures. FAL-induced apoptosis in hepatocytes was indicated by cytological examination, DNA fragmentation and DNA laddering. The induction in cytochrome-c release, caspases 3, 7, 10 and 9 activities and lactate dehydrogenase level provide mechanistic platform for FAL-induced apoptosis. Cytological examination showed an unambiguous apoptotic effect of ash leachates in fish hepatocytes. Exposed hepatocytes also showed increased production of H(2)O(2), superoxide ions and an increase in lipid peroxidation (LPO). The present study suggests a possible role of reactive oxygen species (ROS) in FAL-induced apoptosis in hepatocytes. Lactate dehydrogenase, LPO and apoptosis as biomarkers of cytotoxicity have recently been used for assessment of ecotoxicological impact of environmental chemicals. Our findings show that these biomarkers may also be used for evaluation of ecotoxicological impact of complex chemical mixture such as fly ash and its leachates.
Li, Ming; Nie, Yao; Mu, Xiao Qing; Zhang, Rongzhen; Xu, Yan
2016-07-03
Biocatalytic asymmetric synthesis has been widely used for preparation of optically active chiral alcohols as the important intermediates and precursors of active pharmaceutical ingredients. However, the available whole-cell system involving anti-Prelog specific alcohol dehydrogenase is yet limited. A recombinant Escherichia coli system expressing anti-Prelog stereospecific alcohol dehydrogenase from Candida parapsilosis was established as a whole-cell system for catalyzing asymmetric reduction of aryl ketones to anti-Prelog configured alcohols. Using 2-hydroxyacetophenone as the substrate, reaction factors including pH, cell status, and substrate concentration had obvious impacts on the outcome of whole-cell biocatalysis, and xylose was found to be an available auxiliary substrate for intracellular cofactor regeneration, by which (S)-1-phenyl-1,2-ethanediol was achieved with an optical purity of 97%e.e. and yield of 89% under the substrate concentration of 5 g/L. Additionally, the feasibility of the recombinant cells toward different aryl ketones was investigated, and most of the corresponding chiral alcohol products were obtained with an optical purity over 95%e.e. Therefore, the whole-cell system involving recombinant stereospecific alcohol dehydrogenase was constructed as an efficient biocatalyst for highly enantioselective anti-Prelog synthesis of optically active aryl alcohols and would be promising in the pharmaceutical industry.
Schmiesing, Jessica; Schlüter, Hartmut; Ullrich, Kurt; Braulke, Thomas; Mühlhausen, Chris
2014-01-01
Glutaric aciduria type 1 (GA1) is an inherited neurometabolic disorder caused by mutations in the GCDH gene encoding glutaryl-CoA dehydrogenase (GCDH), which forms homo- and heteromeric complexes in the mitochondrial matrix. GA1 patients are prone to the development of encephalopathic crises which lead to an irreversible disabling dystonic movement disorder. The clinical and biochemical manifestations of GA1 vary considerably and lack correlations to the genotype. Using an affinity chromatography approach we report here for the first time on the identification of mitochondrial proteins interacting directly with GCDH. Among others, dihydrolipoamide S-succinyltransferase (DLST) involved in the formation of glutaryl-CoA, and the β-subunit of the electron transfer flavoprotein (ETFB) serving as electron acceptor, were identified as GCDH binding partners. We have adapted the yellow fluorescent protein-based fragment complementation assay and visualized the oligomerization of GCDH as well as its direct interaction with DLST and ETFB in mitochondria of living cells. These data suggest that GCDH is a constituent of multimeric mitochondrial dehydrogenase complexes, and the characterization of their interrelated functions may provide new insights into the regulation of lysine oxidation and the pathophysiology of GA1.