1980-11-01
STATEMENT (of the abstract antarod in Block 20, It different frm Report) III. SUPPLEMENTARY NOTES Copies are obtainable from National Technical...should employ a professional engineer experienced in operation and maintanance of darns to develop written operating procedures and a periodic...100 YEAR FLOOD WOULD CAUSE A DAM TO bE OVERTOPPED THEREFORE THE OWNER SHOULD ENGAGE A QUALIFIED PkOFEbSIONAL CONSULTANT USING MORE PERCISE METHODS
Fischer, Jeffrey M.; Riva-Murray, Karen; Hickman, R. Edward; Chichester, Douglas C.; Brightbill, Robin A.; Romanok, Kristin M.; Bilger, Michael D.
2004-01-01
This report contains the major findings of a 1998-2001 assessment of water quality in the Delaware River Basin. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that quality compares to the quality of water in other areas across the Nation. The water-quality conditions in the Delaware River Basin summarized in this report are discussed in detail in other reports that can be accessed from http://nj.water.usgs.gov/nawqa/delr/. Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report, in addition to reports in this series from other basins, can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).
Hydrogeology of the West Branch Delaware River basin, Delaware County, New York
Reynolds, Richard J.
2013-01-01
In 2009, the U.S. Geological Survey, in cooperation with the New York State Department of Environmental Conservation, began a study of the hydrogeology of the West Branch Delaware River (Cannonsville Reservoir) watershed. There has been recent interest by energy companies in developing the natural gas reserves that are trapped within the Marcellus Shale, which is part of the Hamilton Group of Devonian age that underlies all the West Branch Delaware River Basin. Knowing the extent and thickness of stratified-drift (sand and gravel) aquifers within this basin can help State and Federal regulatory agencies evaluate any effects on these aquifers that gas-well drilling might produce. This report describes the hydrogeology of the 455-square-mile basin in the southwestern Catskill Mountain region of southeastern New York and includes a detailed surficial geologic map of the basin. Analysis of surficial geologic data indicates that the most widespread surficial geologic unit within the basin is till, which is present as deposits of ablation till in major stream valleys and as thick deposits of lodgment till that fill upland basins. Till and colluvium (remobilized till) cover about 89 percent of the West Branch Delaware River Basin, whereas stratified drift (outwash and ice-contact deposits) and alluvium account for 8.9 percent. The Cannonsville Reservoir occupies about 1.9 percent of the basin area. Large areas of outwash and ice-contact deposits occupy the West Branch Delaware River valley along its entire length. These deposits form a stratified-drift aquifer that ranges in thickness from 40 to 50 feet (ft) in the upper West Branch Delaware River valley, from 70 to 140 ft in the middle West Branch Delaware River valley, and from 60 to 70 ft in the lower West Branch Delaware River valley. The gas-bearing Marcellus Shale underlies the entire West Branch Delaware River Basin and ranges in thickness from 600 to 650 ft along the northern divide of the basin to 750 ft thick along the southern divide. The depth to the top of the Marcellus Shale ranges from 3,240 ft along the northern basin divide to 4,150 ft along the southern basin divide. Yields of wells completed in the aquifer are as high as 500 gallons per minute (gal/min). Springs from fractured sandstone bedrock are an important source of domestic and small municipal water supplies in the West Branch Delaware River Basin and elsewhere in Delaware County. The average yield of 178 springs in Delaware County is 8.5 gal/min with a median yield of 3 gal/min. An analysis of two low-flow statistics indicates that groundwater contributions from fractured bedrock compose a significant part of the base flow of the West Branch Delaware River and its tributaries.
1981-09-14
runoff. 5.5 FLOODS OF RECORD No records of past flooding in Sherruck Brook are available. 5.6 OVERTOPPING POTENTIAL Our analysis indicates that the...constructed in 1970 and the 30 inch CIMP drain was replaced with the 18 inch steel drain in 1980. e. Seismic Stability The structure is located in Zone...Commerce, Technical Paper No, 40, Rainfall Frequency Atlas of the United States, May 1961, 2) U.S. Department of Commerce, Hydrometeorological Report
Code of Federal Regulations, 2013 CFR
2013-07-01
...; Chesapeake and Delaware Canal, Chesapeake City Anchorage Basin, MD. 165.556 Section 165.556 Navigation and..., Chesapeake City Anchorage Basin, MD. (a) Location. The following area is a regulated navigation area: All waters of the Chesapeake and Delaware (C & D) Canal within the anchorage basin at Chesapeake City...
Code of Federal Regulations, 2012 CFR
2012-07-01
...; Chesapeake and Delaware Canal, Chesapeake City Anchorage Basin, MD. 165.556 Section 165.556 Navigation and..., Chesapeake City Anchorage Basin, MD. (a) Location. The following area is a regulated navigation area: All waters of the Chesapeake and Delaware (C & D) Canal within the anchorage basin at Chesapeake City...
Code of Federal Regulations, 2014 CFR
2014-07-01
...; Chesapeake and Delaware Canal, Chesapeake City Anchorage Basin, MD. 165.556 Section 165.556 Navigation and..., Chesapeake City Anchorage Basin, MD. (a) Location. The following area is a regulated navigation area: All waters of the Chesapeake and Delaware (C & D) Canal within the anchorage basin at Chesapeake City...
Code of Federal Regulations, 2010 CFR
2010-07-01
...; Chesapeake and Delaware Canal, Chesapeake City Anchorage Basin, MD. 165.556 Section 165.556 Navigation and..., Chesapeake City Anchorage Basin, MD. (a) Location. The following area is a regulated navigation area: All waters of the Chesapeake and Delaware (C & D) Canal within the anchorage basin at Chesapeake City...
Code of Federal Regulations, 2011 CFR
2011-07-01
...; Chesapeake and Delaware Canal, Chesapeake City Anchorage Basin, MD. 165.556 Section 165.556 Navigation and..., Chesapeake City Anchorage Basin, MD. (a) Location. The following area is a regulated navigation area: All waters of the Chesapeake and Delaware (C & D) Canal within the anchorage basin at Chesapeake City...
Chang, Ming; Kennen, Jonathan G.; Del Corso, Ellyn
2000-01-01
An index of biotic integrity (!B!) modified for New Jersey streams was used to compare changes in stream condition from the 1970s to the 1990s in Delaware, Passaic, and Raritan River Basins. Stream condition was assessed at 88 sampling locations. Mean IBI scores for all basins increased from the 1970s to the 1990s, but the stream-condition category improved (from fair to good) only for the Delaware River Basin. The number of benthic insectivores and the proportion of insectivorous cyprinds increased in all three basins; however, the number of white suckers decreased significantly only in the Delaware River Basin. Results of linear-regression analysis indicate a significant correlation between the percentage of altered land in the basin and change in IBI score (1970s to 1990s) for Delaware River sites. Results of analysis of variance of the rank-transformed IBI scores for the 1970s and 1990s indicate that the three basins was equal in the 1970s. Results of a multiple-comparison test demonstrated that the 1990s IBI values for the Delaware River Basin differed significantly from those for the Passaic and Raritan River Basins. Many factors, such as the imposition of the more stringent standards on water-water and industrial discharges during the 1980s and changes in land-use practices, likely contributed to the change in the Delaware River Basin. A general increase in IBI values for the Passaic, Raritan, and Delaware River Basins over the past 25 years appears to reflect overall improvements in water quality.
18 CFR 401.74 - Form and contents of report.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Form and contents of report. 401.74 Section 401.74 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... verified by a technically qualified person having personal knowledge of the facts stated therein, and shall...
Stuckey, Marla H.
2016-06-09
The ability to characterize baseline streamflow conditions, compare them with current conditions, and assess effects of human activities on streamflow is fundamental to water-management programs addressing water allocation, human-health issues, recreation needs, and establishment of ecological flow criteria. The U.S. Geological Survey, through the National Water Census, has developed the Delaware River Basin Streamflow Estimator Tool (DRB-SET) to estimate baseline (minimally altered) and altered (affected by regulation, diversion, mining, or other anthropogenic activities) and altered streamflow at a daily time step for ungaged stream locations in the Delaware River Basin for water years 1960–2010. Daily mean baseline streamflow is estimated by using the QPPQ method to equate streamflow expressed as a percentile from the flow-duration curve (FDC) for a particular day at an ungaged stream location with the percentile from a FDC for the same day at a hydrologically similar gaged location where streamflow is measured. Parameter-based regression equations were developed for 22 exceedance probabilities from the FDC for ungaged stream locations in the Delaware River Basin. Water use data from 2010 is used to adjust the baseline daily mean streamflow generated from the QPPQ method at ungaged stream locations in the Delaware River Basin to reflect current, or altered, conditions. To evaluate the effectiveness of the overall QPPQ method contained within DRB-SET, a comparison of observed and estimated daily mean streamflows was performed for 109 reference streamgages in and near the Delaware River Basin. The Nash-Sutcliffe efficiency (NSE) values were computed as a measure of goodness of fit. The NSE values (using log10 streamflow values) ranged from 0.22 to 0.98 (median of 0.90) for 45 streamgages in the Upper Delaware River Basin and from -0.37 to 0.98 (median of 0.79) for 41 streamgages in the Lower Delaware River Basin.
Geologic framework of the offshore region adjacent to Delaware
Benson, R.N.; Roberts, J.H.
1989-01-01
Several multichannel, common depth point (CDP) seismic reflection profiles concentrated in the area of the entrance to Delaware Bay provide a tie between the known onshore geology of the Coastal Plain of Delaware and the offshore geology of the Baltimore Canyon Trough. The data provide a basis for understanding the geologic framework and petroleum resource potential of the area immediately offshore Delaware. Our research has focused on buried early Mesozoic rift basins and their geologic history. Assuming that the buried basins are analogous to the exposed Newark Supergroup basins of Late Triassic-Early Jurassic age, the most likely possibility for occurrence of hydrocarbon source beds in the area of the landward margin of the Baltimore Canyon Trough is presumed to be lacustrine, organic-rich shales probably present in the basins. Although buried basins mapped offshore Delaware are within reach of drilling, no holes have been drilled to date; therefore, direct knowledge of source, reservoir, and sealing beds is absent. Buried rift basins offshore Delaware show axial trends ranging from NW-SE to NNE-SSW. Seismic reflection profiles are too widely spaced to delineate basin boundaries accurately. Isopleths of two-way travel time representing basin fill suggest that, structurally, the basins are grabens and half-grabens. As shown on seismic reflection profiles, bounding faults of the basins intersect or merge with low-angle fault surfaces that cut the pre-Mesozoic basement. The rift basins appear to have formed by Mesozoic extension that resulted in reverse motion on reactivated basement thrust faults that originated from compressional tectonics during the Paleozoic. Computer-plotted structure contour maps derived from analysis of seismic reflection profiles provide information on the burial history of the rift basins. The postrift unconformity bevels the rift basins and, in the offshore area mapped, ranges from 2000 to 12,000 m below present sea level. The oldest postrift sediments that cover the more deeply buried rift basins are estimated to be of Middle Jurassic age (Bajocian-Bathonian), the probable time of opening of the Atlantic Ocean basin and onset of continental drift about 175-180 m.y. ago. By late Oxfordian-early Kimmeridgian time, the less deeply buried basins nearshore Delaware had been covered. A time-temperature index of maturity plot of one of the basins indicates that only dry gas would be present in reservoirs in synrift rocks buried by more than 6000 m of postrift sediments and in the oldest (Bathonian?-Callovian?) postrift rocks. Less deeply buried synrift rocks landward of the basin modeled might still be within the oil generation window. ?? 1989.
Flood of September 18-19, 2004 in the Upper Delaware River Basin, New York
Brooks, Lloyd T.
2005-01-01
The interaction between the remnants of tropical depression Ivan and a frontal boundary in the upper Delaware River basin on September 18-19, 2004, produced 4 to more than 6 inches of rainfall over a 5-county area within a 24-hour period. Significant flooding occurred on the East Branch Delaware River and its tributaries, and the main stem of the Delaware River. The resultant flooding damaged more than 100 homes and displaced more than 1,000 people. All of the counties within the basin were declared Federal disaster areas, but flood damage in New York was most pronounced in Delaware, Orange, and Sullivan Counties. Flood damage totaled more than $10 million. Peak water-surface elevations at some study sites in the basin exceeded the 500-year flood elevation as documented in flood-insurance studies by the Federal Emergency Management Agency. Flood peaks at some long-term U.S. Geological Survey (USGS) streamflow-gaging stations were the highest ever recorded.
Dunne, Paul; Tasker, Gary
1996-01-01
The reservoirs and pumping stations that comprise the Raritan River Basin water-supply system and its interconnections to the Delaware-Raritan Canal water-supply system, operated by the New Jersey Water Supply Authority (NJWSA), provide potable water to central New Jersey communities. The water reserve of this combined system can easily be depleted by an extended period of below-normal precipitation. Efficient operation of the combined system is vital to meeting the water-supply needs of central New Jersey. In an effort to improve the efficiency of the system operation, the U.S. Geological Survey (USGS), in cooperation with the NJWSA, has developed a computer model that provides a technical basis for evaluating the effects of alternative patterns of operation of the Raritan River Basin water-supply system. This fact sheet describes the model, its technical basis, and its operation.
ERIC Educational Resources Information Center
Roux, June N.
2017-01-01
This Executive Position Paper examines the experiential learning component of the business capstone course at Delaware Technical Community College's George campus in Wilmington, Delaware. As a statewide institution of higher education, Delaware Tech offers associate of applied science degrees in practical, skills-based majors, including a number…
Chemical character of streams in the Delaware River basin
Anderson, Peter W.; McCarthy, Leo T.
1963-01-01
The water chemistry of streams in the Delaware River basin falls into eight general groups, when mapped according to the prevalent dissolved-solids content and the predominant ions normally found in the water. The approximate regions representing each of these iso-chemical quality groups are shown on the accompanying base map of the drainage basin.
NASA Astrophysics Data System (ADS)
Campbell, Nancy S.
This executive position paper examines the critical shortage of Delaware high school science teachers and Delaware Technical & Community College's possible role in addressing this shortage. A concise analysis of economic and political implications of the science teacher shortage is presented. The following topics were researched and evaluated: the specific science teacher needs for Delaware school districts; the science teacher education program offerings at Delaware universities and colleges; the Alternative Route to Teacher Certification (ARTC); and the state of Delaware's scholarship response to the need. Recommendations for Delaware Tech's role include the development and implementation of two new Associate of Arts of Teaching programs in physics secondary science education and chemistry secondary science education.
Fischer, Jeffrey M.
1999-01-01
Assessing the quality of water in every location of the Nation would not be practical. Therefore, NAWQA investigations are conducted within 59 selected areas called study units (fig. 1). These study units encompass important river and aquifer systems in the United States and represent the diverse geographic, waterresource, land-use, and water-use characteristics of the Nation. The Delaware River Basin is one of 15 study units in which work began in 1996. Water-quality sampling in the study unit will begin in 1999. This fact sheet provides a brief overview of the NAWQA program, describes the Delaware River Basin study unit, identifies the major water-quality issues in the basin, and documents the plan of study that will be followed during the study-unit investigation.
75 FR 11502 - Schedule of Water Charges; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-11
... DELAWARE RIVER BASIN COMMISSION 18 CFR Part 410 Schedule of Water Charges; Correction AGENCY: Delaware River Basin Commission. ACTION: Proposed rule; correction. SUMMARY: This document corrects the... of water charges. This correction clarifies that the amended rates are proposed to take effect in two...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Introduction. 401.0 Section 401.0 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE § 401.0 Introduction. (a) The Delaware River Basin Compact...
ERIC Educational Resources Information Center
Uekawa, Kazuaki; Merola, Stacey; Fernandez, Felix; Porowski, Allan
2010-01-01
This Technical Brief presents an historical analysis of key indicators of dropout for Delaware students in grades 9-12. Cut points for key risk indicators of high school dropout for the State of Delaware are provided. Using data provided by the Delaware Department of Education (DDOE), relationships between student dropout and several student…
76 FR 55368 - Notice of Commission Meeting and Public Hearing
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-07
... DELAWARE RIVER BASIN COMMISSION Notice of Commission Meeting and Public Hearing Notice is hereby given that the Delaware River Basin Commission will hold a public hearing on Wednesday, September 21... Jersey. The hearing will be part of the Commission's regularly scheduled business meeting, which is open...
77 FR 51787 - Notice of Commission Meeting and Public Hearing
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-27
... DELAWARE RIVER BASIN COMMISSION Notice of Commission Meeting and Public Hearing Notice is hereby... hearing on Wednesday, September 12, 2012. The hearing will be part of the Commission's regularly scheduled... Strategy for the Delaware Estuary and Implementation of the Basin Plan. Items for Public Hearing. The...
78 FR 54244 - Notice of Public Hearing and Business Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-03
... DELAWARE RIVER BASIN COMMISSION Notice of Public Hearing and Business Meeting Notice is hereby given that the Delaware River Basin Commission will hold a public hearing on Wednesday September 11... 12, 2013. The hearing, conference session and business meeting are open to the public and will be...
18 CFR 430.7 - Determination of protected areas and restriction on water use.
Code of Federal Regulations, 2010 CFR
2010-04-01
... DELAWARE RIVER BASIN COMMISSION SPECIAL REGULATIONS GROUND WATER PROTECTION AREA: PENNSYLVANIA § 430.7... a protected area within the meaning and for the purpose of Article 10 of the Delaware River Basin.... Boroughs Elverson, Malvern, Phoenixville, Spring City, West Chester. Townships Lehigh County Lower Milford...
18 CFR 430.9 - Comprehensive plan policies.
Code of Federal Regulations, 2011 CFR
2011-04-01
....20.4 of the Water Code of the Delaware River Basin shall be applied using the following definition of... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Comprehensive plan policies. 430.9 Section 430.9 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION...
Sauer, S.P.; Harkness, W.E.; Krejmas, B.E.; Vogel, K.L.
1987-01-01
A Decree of the Supreme Court of the United States in 1954 established the position of Delaware River Master. The Decree authorizes diversions of water from the Delaware River Basin (Figure 1) and requires compensating releases from certain reservoirs of the City of New York to be made under the supervision and direction of the River Master. Reports to the Court, not less frequently than annually, were stipulated. During the 1986 report year, December 1, 1985, to November 30, 1986, precipitation and runoff varied from below average to above average in the Delaware River Basin. For the year as a whole, precipitation was 4.3 inches above average. Runoff was near average. Operations were under a status of drought at the beginning of the report year. The drought emergency was terminated on December 18, 1985, by the Delaware River Basin Commission, and operations were returned to normal as prescribed by the Decree for the remainder of the report yr. Storage in the reservoirs increased to capacity during the winter months and all New York City Delaware River Basin reservoirs spilled throughout the year. Diversions from Delaware River Basin by New York City and New Jersey did not exceed those authorized by the terms of the Amended Decree. Releases were made as directed by the River Master at rates designed to meet the Montague flow objective on 69 days during the June to November period. Releases were made at conservation rates or at rates designed to relieve thermal stress in the streams downstream from the reservoirs at other times. The excess release quantity as defined by the Decree was not expended by end of the report year. New York City complied fully with the terms of the Decree and with the directives of the River Master during the year. (See also W89-04133) (USGS)
78 FR 10160 - Notice of Commission Meeting and Public Hearing
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-13
... DELAWARE RIVER BASIN COMMISSION Notice of Commission Meeting and Public Hearing Notice is hereby given that the Delaware River Basin Commission will hold a public hearing on Tuesday, March 5, 2013. A business meeting will be held the following day on Wednesday, March 6, 2013. Both the hearing and business...
We sampled 92 wetlands from four different basins in the United States to quantify observer repeatability in rapid wetland condition assessment using the Delaware Rapid Assessment Protocol (DERAP). In the Inland Bays basin of Delaware, 58 wetland sites were sampled by multiple ob...
Records available to September 30, 1956, on use of water in the Delaware Basin Project area
Kammerer, John C.
1957-01-01
The purpose of this report is to summarize data on the use of water in the Delaware Basin Project area (fig. 2) and to list the principal data sources that are available in published form. The tables and bibliography will assist Geological Survey personnel assigned to the Delaware Basin Project in evaluating the scope and deficiencies of previous studies of the basin. Information is also given on the use of water by public supplies in the New York-New Jersey region comprising the New York City Metropolitan Area and in the remaining north-central and south-eastern parts of New Jersey. These regions may depend increasingly on water from the Delaware River basin for part of their public supplies. The Geological Survey has the responsibility for appraising and describing the water resources of the Nation as a guide to use, development, control, and conservation of these resources. Cooperative Federal-State water-resources investigations in the Delaware Basin States have been carried on the the Geological Survey for more than 50 years. In July 1956 the Survey began the "Delaware Basin Project," a hydrologic study of the Delaware River basin in order to: 1) Determine present status and trends in water availability, quality, and use, 2) assess and improve the adequacy of the Survey's basic water data program in the basin, 3) interpret and evaluate the water-resources data in terms of past and possible future water-use and land-use practices, and 4) disseminate promptly the results of this investigation for the benefit of all interested agencies and the general public. The Geological Survey is working closely with the U.S. Corps of Engineers and other cooperating Federal and State agencies in providing water data which will contribute to the present coordinated investigation aimed at developing a plan for long-range water development in the Delaware River basin. Estimates of quantities of water used are given for water withdrawn from streams and aquifers during calendar year 1955, as compiled or estimated from publications and manuscripts prepared between 1950 and 1956. All quantities are given in millions of gallons per day (mgd). The source of the water used, ground or surface, and the type of use to which is was put -- public supply, industrial supply, irrigation, or rural use -- is given. Use of water for hydroelectric power was not compiled for this report. Most tables in this report do not subdivide withdrawals into fresh and saline water; however, most supplies are fresh, except some of those withdrawn directly from the Delaware River downstream from Philadelphia, Pa. All quantities are expressed as an average rate for a full year and are lower, therefore, than rates resulting from the increased demand for water during the summer for air conditioning and supplemental irrigation. The primary emphasis of this study was to get an over-all picture of water use throughout large parts of the basin. Therefore, publications relating to a dingle city or county, other than New York City, seldom were used; revisions and refinement based on such sources of information are best made by the field personnel most familiar with locally filed publications and published data.
The Delaware River Basin Commission recently completed the first phase of a program to develop and implement Total Maximum Daily Loads (TMDLs) for toxic pollutants for the Delaware Estuary. This complex body of water extends from the head of tide at Trenton, NJ (River Mile 133.2...
Brightbill, Robin A.; Limbeck, Robert; Silldorff, Erik; Eggleston, Heather L.
2011-01-01
The Delaware River Basin Commission is charged with establishing water-quality objectives for the tidal and non-tidal portions of the Delaware River, which include developing nutrient standards that are scientifically defensible. The U.S. Geological Survey, in cooperation with the Delaware River Basin Commission and the Academy of Natural Sciences, studied the effects of nutrient enrichment in the upper, middle, and lower sections of the non-tidal Delaware River. Algal samples were collected from the natural habitat using rock scrapes and from the artificial nutrient enrichment samplers, Matlock periphytometers. The knowledge gained from this study is to be used in helping determine appropriate nutrient criteria for the Delaware River in the oligotrophic, mesotrophic, and eutrophic sections of the river and is a first step toward gathering data that can be used in selecting nutrient effect levels or criteria thresholds for aquatic-life use protection. This report describes the methods for data collection and presents the data collected as part of this study.
The Delaware River Basin Landsat-Data Collection System Experiment
NASA Technical Reports Server (NTRS)
Paulson, R. W. (Principal Investigator)
1975-01-01
The author has identified the following significant results. This experiment successfully demonstrated that standard U.S. Geological Survey field instrumentation could be easily interfaced with the LANDSAT-DCS and the data made to flow smoothly to water resources management agencies. The experiment was conducted in the Delaware River basin. A truly operational system could not be deployed.
Hydrologic aspects of the 1998-99 drought in the Delaware River basin
Paulachok, Gary N.; Krejmas, Bruce E.; Soden, Heidi L.
2000-01-01
A notable drought in the Delaware River Basin during late 1998 and most of 1999 had a major effect on surface and subsurface components of the hydrologic system. The drought conditions resulted from anomalous patterns in the general atmospheric circulation that diverted Gulf and subtropical Atlantic moisture away from the basin. From September 1998 to August 1999, the accumulated precipitation deficiency was greater than 12 inches in the part of the basin above Trenton, N.J. Flows in some streams, mainly in the middle and lower parts of the basin, decreased to levels near or less than those measured during the drought of the 1960's, the most severe drought of record in the basin. On several dates in August 1999, combined storage in three New York City water-supply reservoirs in the upper Delaware River Basin decreased by more than 2 billion gallons per day. The drought had a pronounced effect on ground-water levels, as the combination of below-normal recharge and elevated rates of evapotranspiration produced abnormal water-level declines and record low water levels in much of the basin. The drought was broken in mid-September 1999 when the remnants of Tropical Storm Floyd delivered drenching rains throughout the basin.
A Safety Case Approach for Deep Geologic Disposal of DOE HLW and DOE SNF in Bedded Salt - 13350
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sevougian, S. David; MacKinnon, Robert J.; Leigh, Christi D.
2013-07-01
The primary objective of this study is to investigate the feasibility and utility of developing a defensible safety case for disposal of United States Department of Energy (U.S. DOE) high-level waste (HLW) and DOE spent nuclear fuel (SNF) in a conceptual deep geologic repository that is assumed to be located in a bedded salt formation of the Delaware Basin [1]. A safety case is a formal compilation of evidence, analyses, and arguments that substantiate and demonstrate the safety of a proposed or conceptual repository. We conclude that a strong initial safety case for potential licensing can be readily compiled bymore » capitalizing on the extensive technical basis that exists from prior work on the Waste Isolation Pilot Plant (WIPP), other U.S. repository development programs, and the work published through international efforts in salt repository programs such as in Germany. The potential benefits of developing a safety case include leveraging previous investments in WIPP to reduce future new repository costs, enhancing the ability to effectively plan for a repository and its licensing, and possibly expediting a schedule for a repository. A safety case will provide the necessary structure for organizing and synthesizing existing salt repository science and identifying any issues and gaps pertaining to safe disposal of DOE HLW and DOE SNF in bedded salt. The safety case synthesis will help DOE to plan its future R and D activities for investigating salt disposal using a risk-informed approach that prioritizes test activities that include laboratory, field, and underground investigations. It should be emphasized that the DOE has not made any decisions regarding the disposition of DOE HLW and DOE SNF. Furthermore, the safety case discussed herein is not intended to either site a repository in the Delaware Basin or preclude siting in other media at other locations. Rather, this study simply presents an approach for accelerated development of a safety case for a potential DOE HLW and DOE SNF repository using the currently available technical basis for bedded salt. This approach includes a summary of the regulatory environment relevant to disposal of DOE HLW and DOE SNF in a deep geologic repository, the key elements of a safety case, the evolution of the safety case through the successive phases of repository development and licensing, and the existing technical basis that could be used to substantiate the safety of a geologic repository if it were to be sited in the Delaware Basin. We also discuss the potential role of an underground research laboratory (URL). (authors)« less
A predictive model for anti-degradation monitoring of the Delaware River mainstem
The non-tidal portion of the Delaware River can be considered to be in minimally disturbed condition, but there is increasing pressure on the watershed. Thus, the primary goal of this research was to develop a monitoring tool that can be used by the Delaware River Basin Commissi...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-18
... technical analysis submitted for parallel-processing by DNREC on December 9, 2010, to address significant... technical analysis submitted by DNREC for parallel-processing on December 9, 2010, to satisfy the... consists of a technical analysis that provides detailed support for Delaware's position that it has...
Report of the River Master of the Delaware River for the period December 1, 2008–November 30, 2009
Krejmas, Bruce E.; Paulachok, Gary N.; Mason, Jr., Robert R.; Owens, Marie
2016-04-06
A Decree of the Supreme Court of the United States, entered June 7, 1954, established the position of Delaware River Master within the U.S. Geological Survey (USGS). In addition, the Decree authorizes diversions of water from the Delaware River Basin and requires compensating releases from certain reservoirs, owned by New York City, to be made under the supervision and direction of the River Master. The Decree stipulates that the River Master will furnish reports to the Court, not less frequently than annually. This report is the 56th Annual Report of the River Master of the Delaware River. It covers the 2009 River Master report year, the period from December 1, 2008, to November 30, 2009.During the report year, precipitation in the upper Delaware River Basin was 50.89 inches (in.) or 116 percent of the long-term average. Combined storage in Pepacton, Cannonsville, and Neversink Reservoirs remained high throughout the year and did not decline below 80 percent of combined capacity at any time. Delaware River operations during the year were conducted as stipulated by the Decree and the Flexible Flow Management Program (FFMP).Diversions from the Delaware River Basin by New York City and New Jersey were in full compliance with the Decree. Reservoir releases were made as directed by the River Master at rates designed to meet the flow objective for the Delaware River at Montague, New Jersey, on 25 days during the report year. Releases were made at conservation rates—rates designed to relieve thermal stress and protect the fishery and aquatic habitat in the tailwaters of the reservoirs—on all other days.During the report year, New York City and New Jersey complied fully with the terms of the Decree, and directives and requests of the River Master.As part of a long-term program, the quality of water in the Delaware Estuary between Trenton, New Jersey, and Reedy Island Jetty, Delaware, was monitored at various locations. Data on water temperature, specific conductance, dissolved oxygen, and pH were collected continuously by electronic instruments at four sites. In addition, selected water-quality data were collected at 22 sites on a monthly basis.The Delaware River Basin Commission (DRBC) collects monthly samples from March through October at 22 sites between Biles Channel and South Brown Shoal. Samples were collected and analyzed by the State of Delaware for the DRBC. At each site, water samples were collected at a single point near the center of the channel near the surface and analyzed for selected physical properties, and chemical and biological constituents including routine chemical substances, nutrients and bacteria. These consist of analyses of field measurements and laboratory determinations.
1981-04-01
Delaware River Basing Ingham Justif icaticn--- L Creek, Pennsylvania. Phase I Inspection Do DEL-AWARE RIVER BASIN Availabilit T Co~es Avail and/or D...about 1.5H:IV and an unknown upstream slope below the water surface. The dam impounds a reservoir with a normal pool surface area of 12.4 acres and a...deep. It was once used to direct water to a mill downstream of the dam and is now in poor condition. The spillway Design Flood (SDF) chosen for this
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-19
...Because of the high level of public interest in projects within the Delaware Basin that are associated with natural gas drilling activities, the Delaware River Basin Commission (DRBC or ``Commission'') will hold a special public hearing on two projects sponsored by the Stone Energy Corporation (hereinafter, ``Stone Energy'') to support natural gas exploration and development activities within the basin. One of the two projects entails a surface water withdrawal from the West Branch Lackawaxen River in Mount Pleasant Township, Pennsylvania (Docket No. D-2009-13-1). The other concerns an existing natural gas well drilling pad site in Clinton Township, Pennsylvania (Docket No. D-2009-18-1). Both projects are located in Wayne County, Pennsylvania, within the drainage area of a portion of the main stem Delaware River that the Commission has classified as Special Protection Waters.
Report of the River Master of the Delaware River for the period December 1, 1984 - November 30, 1985
Schaefer, F.T.; Harkness, W.E.; Cecil, L.D.
1986-01-01
A Decree of the Supreme Court of the United States in 1954 established the position of Delaware River Master. The Decree authorizes diversions of water from the Delaware River basin and requires compensating releases from certain reservoirs of the City of New York to be made under the supervision and direction of the River Master. Reports to the Court, not less frequently than annually, were stipulated. During the 1985 report year, December 1, 1984, to November 30, 1985, precipitation and runoff varied from below average to above average in the Delaware River basin. For the year as a whole, precipitation was near average. Runoff was below average. Operations were under a status of drought warning or drought from January 23, 1984, through the end of the report year. Below-normal precipitation the first half of the year resulted in decreased storage in the reservoirs to record low levels by March 1, 1985. Storage remained at record low levels from March through September. Above-normal precipitation in September and November served to break the drought and increase storage into the normal zone of the operating curves for the reservoirs. Diversions from the Delaware River basin by New York City did not exceed those authorized by the terms of the Amended Decree or those invoked by the several emergency conservation measures throughout the year. There were no diversions from the Delaware River basin by New Jersey during the year. Releases were made as directed by the River Master at rates designed to meet the Montague flow objective on 82 days between June 14 and September 28. Releases were made at conservation rates or at rates designed to relieve thermal stress in the streams downstream from the reservoirs at other times. (See also W89-04133) (USGS)
NASA Astrophysics Data System (ADS)
Dishron, Joseph B.
2011-12-01
The Delaware Basin of the Permian Basin is a classic intra-cratonic basin of West Texas and Southeast New Mexico. Hydrocarbon exploration and production have occurred in the region since the early 1920s, and, as a result, the formations related to these oil and gas reserves have been studied in great detail. Some formations in the Delaware Basin, however, have not been studied in such detail, and this thesis examines one, lesser-known unit that could have economic potential. The Lamar Limestone (Lamar Lime) of the Bell Canyon Formation has commonly been dismissed as a production interval; rather, it has been described as a source and seal rock for the Ramsey Sand of the lower Bell Canyon Formation. However, recent studies found that the Lamar Lime was contributing to production, and it has been described by Trentham (2006) as a potentia "mini Barnett" reservoir. The depths of these deposits are in a range that is ideal for oil accumulation. This study made use of data from wells and test holes drilled in the western Delaware Basin, Culberson County, Texas. Many oil and gas wells have been drilled in the western Delaware Basin, but they are concentrated in the north and east portions of Culberson County. In addition, sulfur wells were drilled in the area in the late 1960s and early 1970s. Analyses of the well logs of these wells and of core and outcrop studies were completed to gain a better understanding of the distribution and economic potential of the Lamar. Both datasets were combined to provide information not readily available in the oil and gas dataset. The Lamar Lime is an excellent marker bed because it underlies thick evaporites. The evaporite sequences are Ochoan in age, and, therefore, the contact of the Lamar Lime (Bell Canyon Formation) and the Castile Formation is the approximate boundary for the Guadalupian-Ochoan Series. The Castile Formation, the Salado Formation, and the Rustler Formation (from oldest to youngest) are the evaporite units that consist of halite, gypsum, and anhydrite and are discussed herein. The boundary also marks a significant faunal-extinction event. The high organic content found in the Lamar Lime helps to evaluate the economic potential. Updated isopach and structural contour maps extend the knowledge of the Lamar Lime more to the western Delaware Basin.
Report of the River Master of the Delaware River for the Period December 1, 2002-November 30, 2003
Krejmas, Bruce E.; Paulachok, Gary N.; Blanchard, Stephen F.
2009-01-01
A Decree of the Supreme Court of the United States, entered in 1954, established the position of Delaware River Master within the U.S. Geological Survey (USGS). In addition, the Decree authorizes diversions of water from the Delaware River Basin and requires compensating releases from certain reservoirs, owned by New York City, to be made under the supervision and direction of the River Master. The Decree stipulates that the River Master will furnish reports to the Court, not less frequently than annually. This report is the 50th Annual Report of the River Master of the Delaware River. It covers the 2003 River Master report year; that is, the period from December 1, 2002 to November 30, 2003. During the report year, precipitation in the upper Delaware River Basin was 13.40 inches (131 percent) greater than the long-term average. Combined storage in Pepacton, Cannonsville, and Neversink Reservoirs was above the long-term median on December 1, 2002. Reservoir storage increased rapidly in mid-March 2003 and all the reservoirs filled and spilled. The reservoirs remained nearly full for the remainder of the report year. Delaware River operations throughout the report year were conducted as stipulated by the Decree. Diversions from the Delaware River Basin by New York City and New Jersey were in compliance with the Decree. Reservoir releases were made as directed by the River Master at rates designed to meet the flow objective for the Delaware River at Montague, New Jersey, on 10 days during the report year. Releases were made at experimental conservation rates - or rates designed to relieve thermal stress and protect the fishery and aquatic habitat in the tailwaters of the reservoirs - on all other days. During the report year, New York City and New Jersey complied fully with the terms of the Decree, and directives and requests of the River Master. As part of a long-term program, the quality of water in the Delaware Estuary between Trenton, New Jersey, and Reedy Island Jetty, Delaware, was monitored at various locations. Data on water temperature, specific conductance, dissolved oxygen, and pH were collected continuously by electronic instruments at four sites. In addition, selected water-quality data were collected at 3 sites on a monthly basis and at 19 sites on a semi-monthly basis.
Report of the River Master of the Delaware River for the Period December 1, 2003-November 30, 2004
Krejmas, Bruce E.; Paulachok, Gary N.; Blanchard, Stephen F.
2009-01-01
A Decree of the Supreme Court of the United States, entered in 1954, established the position of Delaware River Master within the U.S. Geological Survey (USGS). In addition, the Decree authorizes diversions of water from the Delaware River Basin and requires compensating releases from certain reservoirs, owned by New York City, to be made under the supervision and direction of the River Master. The Decree stipulates that the River Master will furnish reports to the Court, not less frequently than annually. This report is the 51st Annual Report of the River Master of the Delaware River. It covers the 2004 River Master report year; that is, the period from December 1, 2003, to November 30, 2004. During the report year, precipitation in the upper Delaware River Basin was 9.03 in. (121 percent) greater than the long-term average. Combined storage in Pepacton, Cannonsville, and Neversink Reservoirs was at a record high level on December 1, 2003. Reservoir storage remained high throughout the year with at least one reservoir spilling every month of the year. Delaware River operations throughout the year were conducted as stipulated by the Decree. Diversions from the Delaware River Basin by New York City and New Jersey were in compliance with the Decree. Reservoir releases were made as directed by the River Master at rates designed to meet the flow objective for the Delaware River at Montague, New Jersey, on 30 days during the report year. Releases were made at conservation rates - or rates designed to relieve thermal stress and protect the fishery and aquatic habitat in the tailwaters of the reservoirs - on all other days. During the report year, New York City and New Jersey complied fully with the terms of the Decree, and directives and requests of the River Master. As part of a long-term program, the quality of water in the Delaware Estuary between Trenton, New Jersey, and Reedy Island Jetty, Delaware, was monitored at various locations. Data on water temperature, specific conductance, dissolved oxygen, and pH were collected continuously by electronic instruments at four sites. In addition, selected water-quality data were collected at 3 sites on a monthly basis and at 19 sites on a semi-monthly basis.
Report of the River Master of the Delaware River for the period December 1, 2006–November 30, 2007
Krejmas, Bruce E.; Paulachok, Gary N.; Blanchard, Stephen F.
2011-01-01
A Decree of the Supreme Court of the United States, entered June 7, 1954, established the position of Delaware River Master within the U.S. Geological Survey (USGS). In addition, the Decree authorizes diversions of water from the Delaware River Basin and requires compensating releases from certain reservoirs, owned by New York City, to be made under the supervision and direction of the River Master. The Decree stipulates that the River Master will furnish reports to the Court, not less frequently than annually. This report is the 54th Annual Report of the River Master of the Delaware River. It covers the 2007 River Master report year—the period from December 1, 2006, to November 30, 2007. During the report year, precipitation in the upper Delaware River Basin was 46.72 inches (in.) or 107 percent of the long-term average. Combined storage in Pepacton, Cannonsville, and Neversink Reservoirs was high on December 1, 2006. Reservoir storage remained high throughout the winter, declined seasonally during the summer, and began to recover in mid-October. Delaware River operations throughout the year were conducted as stipulated by the Decree. Diversions from the Delaware River Basin by New York City and New Jersey were in full compliance with the Decree. Reservoir releases were made as directed by the River Master at rates designed to meet the flow objective for the Delaware River at Montague, New Jersey, on 123 days during the report year. Releases were made at conservation rates—or rates designed to relieve thermal stress and protect the fishery and aquatic habitat in the tailwaters of the reservoirs—on all other days. During the report year, New York City and New Jersey complied fully with the terms of the Decree, and directives and requests of the River Master. As part of a long-term program, the quality of water in the Delaware Estuary between Trenton, New Jersey, and Reedy Island Jetty, Delaware, was monitored at various locations. Data on water temperature, specific conductance, dissolved oxygen, and pH were collected continuously by electronic instruments at four sites. In addition, selected water-quality data were collected at 19 sites on a twice–monthly basis and at 3 sites on a monthly basis.
Report of the River Master of the Delaware River for the period December 1, 2004-November 30, 2005
Krejmas, Bruce E.; Paulachok, Gary N.; Blanchard, Stephen F.
2011-01-01
A Decree of the Supreme Court of the United States, entered in 1954, established the position of Delaware River Master within the U.S. Geological Survey. In addition, the Decree authorizes diversions of water from the Delaware River Basin and requires compensating releases from certain reservoirs, owned by New York City, to be made under the supervision and direction of the River Master. The Decree stipulates that the River Master will furnish reports to the Court, not less frequently than annually. This report is the 52nd Annual Report of the River Master of the Delaware River. It covers the 2005 River Master report year; that is, the period from December 1, 2004, to November 30, 2005. During the report year, precipitation in the upper Delaware River Basin was 7.56 in., or 117 percent of the long-term average. Combined storage in Pepacton, Cannonsville, and Neversink Reservoirs remained high from December 2004 to May 2005 and reached a record high level on April 3, 2005. Reservoir storage decreased steadily from May to early October, then increased rapidly through the end of November. Delaware River operations throughout the year were conducted as stipulated by the Decree. Diversions from the Delaware River Basin by New York City and New Jersey were in compliance with the Decree. Reservoir releases were made as directed by the River Master at rates designed to meet the flow objective for the Delaware River at Montague, New Jersey, on 120 days during the report year. Releases were made at conservation rates-or rates designed to relieve thermal stress and protect the fishery and aquatic habitat in the tailwaters of the reservoirs-on all other days. During the report year, New York City and New Jersey complied fully with the terms of the Decree, and directives and requests of the River Master. As part of a long-term program, the quality of water in the Delaware Estuary between Trenton, New Jersey, and Reedy Island Jetty, Delaware, was monitored at various locations. Data on water temperature, specific conductance, dissolved oxygen, and pH were collected continuously by electronic instruments at four sites. In addition, selected water-quality data were collected at 3 sites on a monthly basis and at 19 sites on a twice-monthly basis.
Report of the River Master of the Delaware River for the period December 1, 2005-November 30, 2006
Krejmas, Bruce E.; Paulachok, Gary N.; Blanchard, Stephen F.
2010-01-01
A Decree of the Supreme Court of the United States, entered June 7, 1954, established the position of Delaware River Master within the U.S. Geological Survey (USGS). In addition, the Decree authorizes diversions of water from the Delaware River Basin and requires compensating releases from certain reservoirs, owned by New York City, to be made under the supervision and direction of the River Master. The Decree stipulates that the River Master will furnish reports to the Court, not less frequently than annually. This report is the 53rd Annual Report of the River Master of the Delaware River. It covers the 2006 River Master report year-the period from December 1, 2005, to November 30, 2006. During the report year, precipitation in the upper Delaware River Basin was 55.03 inches (in.) or 126 percent of the long-term average. Combined storage in Pepacton, Cannonsville, and Neversink Reservoirs was above the long-term median level on December 1, 2005. Reservoir storage remained above long–term median levels throughout the report year. Delaware River operations during the year were conducted as stipulated by the Decree. Diversions from the Delaware River Basin by New York City and New Jersey were in full compliance with the Decree. Reservoir releases were made as directed by the River Master at rates designed to meet the flow objective for the Delaware River at Montague, New Jersey, on 27 days during the report year. Releases were made at conservation rates-or rates designed to relieve thermal stress and protect the fishery and aquatic habitat in the tailwaters of the reservoirs-on all other days. During the report year, New York City and New Jersey complied fully with the terms of the Decree, and directives and requests of the River Master. As part of a long-term program, the quality of water in the Delaware Estuary between Trenton, New Jersey, and Reedy Island Jetty, Delaware, was monitored at various locations. Data on water temperature, specific conductance, dissolved oxygen, and pH were collected continuously by electronic instruments at four sites. In addition, selected water-quality data were collected at 19 sites on a twice-monthly basis and at 3 sites on a monthly basis.
Report of the River Master of the Delaware River for the period December 1, 2007-November 30, 2008
Krejmas, Bruce E.; Paulachok, Gary N.; Blanchard, Stephen F.
2014-01-01
A Decree of the Supreme Court of the United States, entered June 7, 1954, established the position of Delaware River Master within the U.S. Geological Survey (USGS). In addition, the Decree authorizes diversions of water from the Delaware River Basin and requires compensating releases from certain reservoirs, owned by New York City, to be made under the supervision and direction of the River Master. The Decree stipulates that the River Master will furnish reports to the Court, not less frequently than annually. This report is the 55th Annual Report of the River Master of the Delaware River. It covers the 2008 River Master report year, the period from December 1, 2007, to November 30, 2008. During the report year, precipitation in the upper Delaware River Basin was 49.79 inches (in.) or 114 percent of the 67 report-year average. Combined storage in Pepacton, Cannonsville, and Neversink Reservoirs remained high from December 2007 to May 2008. Reservoir storage decreased seasonally from June to late October, then increased gradually through the end of November. Delaware River operations during the year were conducted as stipulated by the Decree. Diversions from the Delaware River Basin by New York City and New Jersey were in full compliance with the Decree. Reservoir releases were made as directed by the River Master at rates designed to meet the flow objective for the Delaware River at Montague, New Jersey, on 107 days during the report year. Releases were made at conservation rates—rates designed to relieve thermal stress and protect the fishery and aquatic habitat in the tailwaters of the reservoirs—on all other days. During the report year, New York City and New Jersey complied fully with the terms of the Decree, and directives and requests of the River Master. As part of a long-term program, the quality of water in the Delaware Estuary between Trenton, New Jersey, and Reedy Island Jetty, Delaware, was monitored at various locations. Data on water temperature, specific conductance, dissolved oxygen, and pH were collected continuously by electronic instruments at four sites. Data on water temperature and specific conductance were collected intermittently at one site. In addition, selected water-quality data were collected at 19 sites on a twice-monthly basis and at 3 sites on a monthly basis.
1981-09-14
DACW-51-81-C-0006 . PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT. TASK AREA & WORK UNIT NUMBERS ~ Flaherty-Giauara Associates...olie It neceary and Idontily b block number) Dam Safety National Dam Safety Program Visual Inspection Lake Muskoday Dam Hydrology, Structural Stability...DELAWARE RIVER BASIN LAKE MUSKODAY DAM SULLIVAN COUNTY, NEW YORK INVENTORY No.NY341 PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM J T C NEW YORK
Siemion, Jason; Murdoch, Peter S.
2010-01-01
Water-quality samples were collected from the Upper Delaware Scenic and Recreational River (UPDE) and its tributaries during the period October 1, 2005, to September 30, 2007, to document existing water quality, determine relations between land use and water quality, and identify areas of water-quality concern. A tiered water-quality monitoring framework was used, with the tiers consisting of intensively sampled sites, gradient sites representing the range of land uses present in the basin, and regional stream-survey sites. Median nitrate and total phosphorous concentrations were 1.15 and 0.01 mg/L (milligrams per liter) for three sites on the mainstem Delaware River, 1.27 and 0.009 mg/L for the East Branch Delaware River, 2.04 and 0.01 mg/L for the West Branch Delaware River, and 0.68 and 0.006 mg/L for eight tributaries that represent the range of land uses resent in the basin, respectively. The percentage of agricultural land varied by basin from 0 to 30 percent and the percentage of suburbanization varied from 0 to 17 percent. There was a positive correlation between the percentage of agricultural land use in a basin and observed concentrations of acid neutralizing capacity, calcium, potassium, nitrate, and total dissolved nitrogen, whereas no correlation between the percentage of suburbanization and water quality was detected. Results of stream surveys showed that nitrate concentrations in 55 to 65 percent of the UPDE Basin exceeded the nitrate reference condition and a suggested water-quality guideline for ecological impairment in New York State (0.98 mg/L) during the spring. Many of the affected parts of the basin were more than 90 percent forested and showed signs of episodic acidification, indicating that the long-term effects of acid deposition play a role in the high nitrate levels. Nitrate concentrations in 75 percent of samples collected from agricultural sites exceeded the suggested nitrate water-quality guideline for ecological impairment. Concentrations of nitrate and total phosphorous in samples collected from agricultural sites also were twice and 25 percent higher than those in samples from reference sites, respectively.
A decision support framework for water management in the Upper Delaware River
Bovee, Ken D.; Waddle, Terry J.; Bartholow, John; Burris, Lucy
2007-01-01
The Delaware River Basin occupies an area of 12,765 square miles, in portions of south central New York, northeast Pennsylvania, northeast Delaware, and western New Jersey (fig. 1). The river begins as two streams in the Catskill Mountains, the East and West Branches. The two tributaries flow in a southwesterly direction until they meet at Hancock, N.Y. The length of the river from the mouth of Delaware Bay to the confluence at Hancock is 331 miles. Approximately 200 miles of the river between Hancock, N.Y., and Trenton, N.J., is nontidal.
Delaware Middle Schools Beating the Odds. Technical Report Number T2010.4
ERIC Educational Resources Information Center
Grusenmeyer, Linda; Fifield, Steve; Murphy, Aideen; Nian, Qinghua; Qian, Xiaoyu
2010-01-01
The investigation identified Delaware public and charter middle schools across the state which outperformed other Delaware middle schools with similar student demographic profiles. Teachers and administrators at six of these "Beating the Odds" schools and at six comparison middle schools were surveyed regarding their schools…
ANALYSIS OF LANDSCAPE AND WATER QUALITY IN THE NEW YORK CATSKILL - DELAWARE WATERSHED (1973-1998)
The primary goal of this study is to improve risk assessment through the development of methods and tools for characterization of landscape and water resource change. Exploring the relationship between landscape pattern and water quality in the Catskill-Delaware basins will impro...
Creating an Alternative Developmental Math Pathway at Delaware Technical Community College
ERIC Educational Resources Information Center
Bradley, John Patrick, Jr.
2017-01-01
Developmental mathematics pass rates at Delaware Technical Community College (DTCC) have remained the same or decreased for a number of years despite two different math curriculum redesigns. They hover around 50 percent or below at each campus, even after the implementation of a second redesign this past Fall 2016 semester. The first redesign…
Report of the River Master of the Delaware River for the period December 1, 1983 - November 30, 1984
Schaefer, F.T.; Harkness, W.E.; Baebenroth, R.W.; Speight, D.W.
1985-01-01
A Decree of the U.S. Supreme Court in 1954 established the position of Delaware River Master. The Decree authorizes diversions of water from the Delaware River basin and requires compensating releases from certain reservoirs of the City of New York to be made under the supervision and direction of the River Master. Reports to the Court, not less frequently than annually were stipulated. During the 1984 report year, December 1, 1983 to November 30, 1984, precipitation and runoff varied from above average to below average in the Delaware River basin. For the year as a whole, precipitation and runoff were near average. Operations were under a status of drought warning December 1, 1983; however, the above normal precipitation the first half of the year increased storage in the reservoirs to record levels by June 1, 1984. Below normal precipitation from August to November coupled with large releases to maintain the Montague flow objective and customary diversions for water supply reduced storage in the reservoirs to the drought-warning level by November 27. Diversions from the Delaware River basin by New York City and New Jersey conformed to the terms of the Amended Decree throughout the year. Releases were made as directed by the River Master at rates designed to meet the Montague flow objective on 127 days between June 23 and November 30. Releases were made at conservation rates or at rates designed to relieve thermal stress in the streams downstream from the reservoirs at other times. (USGS)
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations. 410.1 Section 410.1 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS; WATER...
Stable-isotope geochemistry of groundwaters in the Delaware Basin of southeastern New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, S.J.; Harvey, D.M.
/sup 18/O//sup 16/O and D/H ratio measurements have been made on groundwaters sampled from the Rustler Formation (Ochoan, Permian) and related rocks in the northern Delaware Basin of southeastern New Mexico. Most confined Rustler waters at the Waste Isolation Pilot Plant (WIPP) site and to the west in Nash Draw and confined waters from the Capitan limestone constitute one population in deltaD/delta/sup 18/O space, while unconfined groundwaters inferred to originate as modern surface recharge to alluvium, sandstones in the Ogallala Formation, the near-surface Rustler in southwestern Nash Draw, and the Capitan vadose zone in the Guadalupe Mountains (Carlsbad Caverns) constitutemore » a distinctly different population; the two do not overlap. A likely explanation for this distinction is that meteoric recharge to most of the Rustler and Capitan took place in the geologic past under climatic conditions significantly different from the present. Available tritium and radiocarbon data are consistent with this hypothesis, and the apparent age of confined groundwaters is in excess of 12,000 radiocarbon years, suggesting that recharge took place under wetter conditions in the late Pleistocene. Processes governing recharge in the Delaware Basin are significantly different from those in the nearby Roswell Artesian Basin, but may be similar to those previously described for the Albuquerque (New Mexico) and Murray (South Australia) Basins. 133 refs.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-23
... Plan to update the Commission's human health and aquatic life stream quality objectives (also called... DELAWARE RIVER BASIN COMMISSION 18 CFR Part 410 Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To Update Water Quality Criteria for Toxic Pollutants in the Delaware...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-25
... DELAWARE RIVER BASIN COMMISSION 18 CFR Part 410 Proposed Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To Update Water Quality Criteria for pH AGENCY: Delaware River... public hearing to receive comments on proposed amendments to the Commission's Water Quality Regulations...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-12
... Integrated List Water Quality Assessment AGENCY: Delaware River Basin Commission. ACTION: Notice. SUMMARY... Integrated List Water Quality Assessment is available for review and comment. DATES: Comments must be... should have the phrase ``Water Quality Assessment 2012'' in the subject line and should include the name...
Extent and frequency of floods on Delaware River in vicinity of Belvidere, New Jersey
Farlekas, George M.
1966-01-01
A stream overflowing its banks is a natural phenomenon. This natural phenomenon of flooding has occurred on the Delaware River in the past and will occur in the future. T' o resulting inundation of large areas can cause property damage, business losses and possible loss of life, and may result in emergency costs for protection, rescue, and salvage work. For optimum development of the river valley consistent with the flood risk, an evaluation of flood conditions is necessary. Basic data and the interpretation of the data on the regimen of the streams, particularly the magnitude of floods to be expected, the frequency of their occurrence, and the areas inundated, are essential for planning and development of flood-prone areas.This report presents information relative to the extent, depth, and frequency of floods on the Delaware River and its tributaries in the vicinity of Belvidere, N.J. Flooding on the tributaries detailed in the report pertains only to the effect of backwater from the Delaware River. Data are presented for several past floods with emphasis given to the floods of August 19, 1955 and May 24, 1942. In addition, information is given for a hypothetical flood based on the flood of August 19, 1955 modified by completed (since 1955) and planned flood-control works.By use of relations presented in this report the extent, depth, and frequency of flooding can be estimated for any site along the reach of the Delaware River under study. Flood data and the evaluation of the data are presented so that local and regional agencies, organizations, and individuals may have a technical basis for making decisions on the use of flood-prone areas. The Delaware River Basin Commission and the U.S. Geological Survey regard this program of flood-plain inundation studies as a positive step toward flood-damage prevention. Flood-plain inundation studies, when followed by appropriate land-use regulations, are a valuable and economical supplement to physical works for flood control, such as dams and levees. Both physical works and flood-plain regulations are included in the comprehensive plans for development of the Delaware River basin.Recommendations for land use, or suggestions for limitations of land use, are not made herein. Other reports on recommended general use and regulation of land in flood-prone areas are available (Dola, 1961; White, 1961; American Society of Civil Engineers Task Force on Flood Plain Regulations, 1962; and Goddard, 1963). The primary responsibility for planning for the optimum land use in the flood plain and the implementation of flood-plain zoning or other regulations to achieve such optimum use rest with the state and local interests. The preparation of this report was undertaken after consultation with representatives of the Lehigh-Northampton Counties, Pennsylvania, Joint Planning Commission and the Warren County, New Jersey, Regional Planning Board and after both had demonstrated their need for flood-plain information and their willingness to consider flood-plain regulations.
Busch, William F.
1969-01-01
This is the fourth report on the extent and frequency of inundation prepared for the Delaware River Basin Commission. The first of these reports covered floods on the Delaware River in the vicinity of Easton, Pennsylvania and Phillipsburg, New Jersey. The second covered a reach of the Schuylkill River from Conshohocken to Philadelphia. The third was for the Delaware River in the vicinity of Belvidere, New Jersey. The first and third reports were written by George M. Farlekas of the Trenton district, and the second was written by Arthur T. Alter of the Harrisburg district. Specific information as to the areal extent and contents of these studies can be obtained from the Delaware River Basin Commission, P.O. Box 360, Trenton, New Jersey. This flood inundation study is part of an investigative program financed through a cooperative agreement between the U.S. Geological Survey and the Delaware River Basin Commission. The report was prepared under the direction of Norman H. Beamer, District, Chief, U.S. Geological Survey, Harrisburg, Pennsylvania.The streamflow data for Perkiomen Creek at Graterford were collected by the Pennsylvania Department of Forests and Waters from 1914 to 1931. Since 1931 the data have been collected under a cooperative agreement between the U.S. Geological Survey and the Department of Forests and Waters. Data on high-water marks and areas inundated in past periods of flooding have been obtained from many local residents of Montgomery County. The Reading Company cooperated by allowing survey crews to work on their right-of-way. The author is grateful to Mr. John W. Buchanan for surveys, Mr. Lewis C. Shaw for illustrations and to Mrs. Joan C. King for typing.
3.0 Foundation programs for the Delaware CEMRI framework
Peter S. Murdoch
2008-01-01
A complete review of all the national monitoring programs that could possibly contribute to the Delaware River Basin (DRB) CEMRI Framework is beyond the scope of this report. The U.S. Environmental Protection Agency (EPA) Mid-Atlantic Integrated Assessment developed a Web-based annotated inventory of such monitoring programs for the mid-Atlantic region. Olsen et al. (...
Report for the River Master of the Delaware River for the Period December 1, 2001-November 30, 2002
Krejmas, Bruce E.; Paulachok, Gary N.; Carswell, William J.
2006-01-01
A Decree of the United States Supreme Court in 1954 established the position of Delaware River Master within the U.S. Geological Survey. In addition, the Decree authorizes diversions of water from the Delaware River Basin and requires compensating releases from certain reservoirs, owned by New York City, to be made under the supervision and direction of the River Master. The Decree stipulates that the River Master will furnish reports to the Court, not less frequently than annually. This report is the 49th Annual Report of the River Master of the Delaware River. It covers the 2002 River Master report year, that is, the period from December 1, 2001, to November 30, 2002. During the report year, precipitation in the upper Delaware River Basin was 2.73 in. greater than the long-term average. Combined storage in Pepacton, Cannonsville, and Neversink Reservoirs was at a record low level on December 1, 2001. Reservoir storage increased steadily from mid-winter until late June. Storage declined steadily from early July to mid-October then increased through the end of the year. Delaware River operations were conducted at reduced levels from December 1, 2001, to May 25, 2002, when drought emergency conditions prevailed, and as prescribed by the Decree from May 26, 2002, to November 30, 2002. Diversions from the Delaware River Basin by New York City and New Jersey were in compliance with the terms of the Decree or with the reduced limits in effect during drought emergency conditions. Reservoir releases were made as directed by the River Master at rates designed to meet the flow objective for the Delaware River at Montague, New Jersey, on 101 days during the report year. Releases were made at experimental conservation rates-or rates designed to relieve thermal stress and protect the fishery and aquatic habitat in the tailwaters of the reservoirs-on all other days. During the report year, New York City and New Jersey complied fully with the terms of the Decree, and during drought emergency conditions, with the terms of the 'Interstate Water Management Recommendations of the Parties to the Decree' (DRBC Resolution 83-13), and directives and requests of the River Master. As part of a long-term program, the quality of water in the Delaware Estuary between Trenton, New Jersey, and Reedy Island Jetty, Delaware, was monitored at various locations. Data on water temperature, specific conductance, dissolved oxygen, and pH were collected by electronic instruments at four sites, and data on water temperature and specific conductance were collected at one site. In addition, selected water-quality data were collected at 3 sites on a monthly basis and at 19 sites on a semimonthly basis.
Ayers, M.A.; Leavesley, G.H.
1989-01-01
The current consensus is that some global atmospheric warming will occur as a result of increasing ' greenhouse ' gases. Water resources scientists, planners, and managers are concerned about the uncertainty associated with climatic-change effects on water supplies and what planning might be necessary to mitigate the effects. Collaborative studies between climatologists, hydrologists, biologists, and others are needed to gain this understanding. The Delaware River basin study is an interdisciplinary effort on the part of the U.S. Geological Survey that was initiated to improve understanding of the sensitivity of the basin 's water resources to the potential effects of climate change. The Delaware River basin is 12,765 sq mi in area, crosses five physiographic provinces, and supplies water for an estimated 20 million people within and outside the basin. Climate change presumably will result in changes in precipitation and temperature and could have significant effects on evapotranspiration, streamflow, and groundwater recharge. A rise in sea level is likely to accompany global warming and, depending on changes in freshwater inflows, could alter the salinity of the Estuary and increase saline-water intrusion into adjacent aquifer systems. Because the potential effects are not well understood, this report discusses how the effects of climate change on the basin 's water resources might be defined and evaluated. The study objective is to investigate the basin 's hydrologic response, under existing water management policy and infrastructure, to various scenarios of climate change. Specific objectives include defining the temporal and spatial variability of basin hydrology under existing climate conditions , developing climate-change scenarios, and evaluating the potential effects and sensitivities of basin water availability to these scenarios. The objectives will be accomplished through intensive modeling analysis of the basin 's climate, watershed, estuary, and aquifer systems. (USGS)
Dynamic Management of Releases for the Delaware River Basin using NYC's Operations Support Tool
NASA Astrophysics Data System (ADS)
Weiss, W.; Wang, L.; Murphy, T.; Muralidhar, D.; Tarrier, B.
2011-12-01
The New York City Department of Environmental Protection (DEP) has initiated design of an Operations Support Tool (OST), a state-of-the-art decision support system to provide computational and predictive support for water supply operations and planning. Using an interim version of OST, DEP and the New York State Department of Environmental Conservation (DEC) have developed a provisional, one-year Delaware River Basin reservoir release program to succeed the existing Flexible Flow Management Program (FFMP) which expired on May 31, 2011. The FFMP grew out of the Good Faith Agreement of 1983 among the four Basin states (New York, New Jersey, Pennsylvania, and Delaware) that established modified diversions and flow targets during drought conditions. It provided a set of release schedules as a framework for managing diversions and releases from New York City's Delaware Basin reservoirs in order to support multiple objectives, including water supply, drought mitigation, flood mitigation, tailwaters fisheries, main stem habitat, recreation, and salinity repulsion. The provisional program (OST-FFMP) defines available water based on current Upper Delaware reservoir conditions and probabilistic forecasts of reservoir inflow. Releases are then set based on a set of release schedules keyed to the water availability. Additionally, OST-FFMP attempts to provide enhanced downstream flood protection by making spill mitigation releases to keep the Delaware System reservoirs at a seasonally varying conditional storage objective. The OST-FFMP approach represents a more robust way of managing downstream releases, accounting for predicted future hydrologic conditions by making more water available for release when conditions are forecasted to be wet and protecting water supply reliability when conditions are forecasted to be dry. Further, the dynamic nature of the program allows the release decision to be adjusted as hydrologic conditions change. OST simulations predict that this program can provide substantial benefits for downstream stakeholders while protecting DEP's ability to ensure a reliable water supply for 9 million customers in NYC and the surrounding communities. The one-year nature of the program will allow for DEP and the Decree Parties to evaluate and improve the program in the future. This paper will describe the OST-FFMP program and discuss preliminary observations on its performance based on key NYC and downstream stakeholder performance metrics.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations. 410.1 Section 410.1 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS; WATER CODE AND ADMINISTRATIVE MANUAL-PART III...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations. 410.1 Section 410.1 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS; WATER CODE AND ADMINISTRATIVE MANUAL-PART III...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations. 410.1 Section 410.1 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS; WATER CODE AND ADMINISTRATIVE MANUAL-PART III...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations. 410.1 Section 410.1 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS; WATER CODE AND ADMINISTRATIVE MANUAL-PART III...
Vitrinite reflectance data for the Permian Basin, west Texas and southeast New Mexico
Pawlewicz, Mark; Barker, Charles E.; McDonald, Sargent
2005-01-01
This report presents a compilation of vitrinite reflectance (Ro) data based on analyses of samples of drill cuttings collected from 74 boreholes spread throughout the Permian Basin of west Texas and southeast New Mexico (fig. 1). The resulting data consist of 3 to 24 individual Ro analyses representing progressively deeper stratigraphic units in each of the boreholes (table 1). The samples, Cambrian-Ordovician to Cretaceous in age, were collected at depths ranging from 200 ft to more than 22,100 ft.The R0 data were plotted on maps that depict three different maturation levels for organic matter in the sedimentary rocks of the Permian Basin (figs. 2-4). These maps show depths at the various borehole locations where the R0 values were calculated to be 0.6 (fig. 2), 1.3 (fig. 3), and 2.0 (fig. 4) percent, which correspond, generally, to the onset of oil generation, the onset of oil cracking, and the limit of oil preservation, respectively.The four major geologic structural features within the Permian Basin–Midland Basin, Delaware Basin, Central Basin Platform, and Northwest Shelf (fig. 1) differ in overall depth, thermal history and tectonic style. In the western Delaware Basin, for example, higher maturation is observed at relatively shallow depths, resulting from uplift and eastward basin tilting that began in the Mississippian and ultimately exposed older, thermally mature rocks. Maturity was further enhanced in this basin by the emplacement of early and mid-Tertiary intrusives. Volcanic activity also appears to have been a controlling factor for maturation of organic matter in the southern part of the otherwise tectonically stable Northwest Shelf (Barker and Pawlewicz, 1987). Depths to the three different Ro values are greatest in the eastern Delaware Basin and southern Midland Basin. This appears to be a function of tectonic activity related to the Marathon-Ouachita orogeny, during the Late-Middle Pennsylvanian, whose affects were widespread across the Permian Basin. The Central Basin Platform has been a positive feature since the mid to-late Paleozoic, during which time sedimentation occurred along its flanks. This nonsubsidence, along with the lack of supplemental heating (volcanism), implies lower maturation levels.
Flood of April 2-3, 2005, Neversink River Basin, New York
Suro, Thomas P.; Firda, Gary D.
2006-01-01
Heavy rain on April 2-3, 2005 produced rainfall amounts of 3 inches to almost 6 inches within a 36-hour period throughout the Delaware River basin. Major flooding occurred in the East and West Branches of the Delaware River and their tributaries, the main stem of the Delaware River and the Neversink River, a major tributary to the Delaware River. The resultant flooding damaged hundreds of homes, caused millions of dollars in damage to infrastructure in Orange and Sullivan Counties, and forced more than 1,000 residents to evacuate their homes. A total of 20 New York counties were declared Federal disaster areas. Some of the most extensive flooding occurred along the Neversink and Delaware Rivers in Orange and Sullivan Counties, New York. Disaster recovery assistance from the April 2005 flooding in New York stood at almost $35 million in 2005, at which time more than 3,400 New Yorkers had registered for Federal aid. All U.S. Geological Survey stream-gaging stations on the Neversink River below the Neversink Reservoir recorded peak water-surface elevations higher than those recorded during the September 2004 flooding. Peak water-surface elevations at some study sites on the Neversink River exceeded the 500-year flood elevation as documented in flood-insurance studies by the Federal Emergency Management Agency. Flood peaks at some long-term U.S. Geological Survey stream-gaging stations were the highest ever recorded. Several U.S. Geological Survey stream-gaging stations on the Delaware River also recorded peak water-surface elevations that exceeded those recorded during the September 2004 flooding.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-25
... Water Quality Assessment Report AGENCY: Delaware River Basin Commission. ACTION: Notice. SUMMARY: Notice....us , with ``Water Quality Assessment 2014'' as the subject line; via fax to 609-883-9522; via U.S. Mail to DRBC, Attn: Water Quality Assessment 2014, P.O. Box 7360, West Trenton, NJ 08628-0360; via...
User’s guide for the Delaware River Basin Streamflow Estimator Tool (DRB-SET)
Stuckey, Marla H.; Ulrich, James E.
2016-06-09
IntroductionThe Delaware River Basin Streamflow Estimator Tool (DRB-SET) is a tool for the simulation of streamflow at a daily time step for an ungaged stream location in the Delaware River Basin. DRB-SET was developed by the U.S. Geological Survey (USGS) and funded through WaterSMART as part of the National Water Census, a USGS research program on national water availability and use that develops new water accounting tools and assesses water availability at the regional and national scales. DRB-SET relates probability exceedances at a gaged location to those at an ungaged stream location. Once the ungaged stream location has been identified by the user, an appropriate streamgage is automatically selected in DRB-SET using streamflow correlation (map correlation method). Alternately, the user can manually select a different streamgage or use the closest streamgage. A report file is generated documenting the reference streamgage and ungaged stream location information, basin characteristics, any warnings, baseline (minimally altered) and altered (affected by regulation, diversion, mining, or other anthropogenic activities) daily mean streamflow, and the mean and median streamflow. The estimated daily flows for the ungaged stream location can be easily exported as a text file that can be used as input into a statistical software package to determine additional streamflow statistics, such as flow duration exceedance or streamflow frequency statistics.
Climate change effects on forests, water resources, and communities of the Delaware River Basin
Will Price; Susan Beecher
2014-01-01
The Delaware River provides drinking water to 5 percent of the United States, or approximately 16.2 million people living in 4 states, 42 counties, and over 800 municipalities. The more than 1.5 billion gallons withdrawn or diverted daily for drinking water is delivered by more than 140 purveyors, yet constitutes less than 20 percent of the average daily withdrawals....
18 CFR 420.22 - Prohibition; sanctions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Prohibition; sanctions. 420.22 Section 420.22 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Water Supply Policy § 420.22 Prohibition; sanctions...
18 CFR 420.31 - Certificate of entitlement.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Certificate of entitlement. 420.31 Section 420.31 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Entitlement; Measurement; Billing § 420.31...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Definitions. 415.2 Section 415.2 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-FLOOD PLAIN REGULATIONS Generally § 415.2 Definitions. For the purposes of this...
18 CFR 415.30 - Regulations generally.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Regulations generally. 415.30 Section 415.30 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-FLOOD PLAIN REGULATIONS Standards § 415.30 Regulations generally. The...
Reed, Timothy J.; Protz, Amy R.
2007-01-01
Several conditions, including saturated soils, snowmelt, and heavy rains, caused flooding on the Delaware River on April 2-4, 2005. The event occurred 50 years after the historic 1955 Delaware River flood, and only six months after a smaller but equally notable flood on September 18-19, 2004. The Delaware River flooded for a third time in 22 months in June, 2006. The peak flows and elevations of the 2005 flood were similar to those on June 28-29, 2006. The following report describes the April 2-4, 2005, Delaware River flood, and includes the associated precipitation amounts, peak flows and elevations, and flood frequencies. A comparison of historic Delaware River floods also is presented. The appendix of the report contains detailed information for 156 high-water mark elevations obtained on the main stem of the Delaware River from Port Jervis, New York, to Cinnaminson, New Jersey, for the April 2-4, 2005 flood. The April 2005 event originated with frequent precipitation from December 2004 to March 2005 which saturated the soils in the upper Delaware River Basin. The cold winter froze some of the soils and left a snowpack at higher elevations equivalent to as much as 10 inches of water in some areas. Temperatures rose above freezing, and heavy rains averaging 1 to 3 inches on March 27, 2005, melted some of the snow, causing the Delaware River to rise; however, peak elevations were still 2 to 7 feet below flood stage. Another round of rainfall averaging 2-5 inches in the basin on April 2, 2005, melted the remaining snowpack. The combination of snowmelt and runoff from the two storms produced flood conditions along the main stem of the Delaware River. Flood frequencies of flows at selected tributaries to the Delaware River did not exceed the 35-year recurrence intervals. The Delaware River main stem peak-flow recurrence intervals ranged from 40 to 80 years; flows were approximately 20 percent less than those from the peak of record in 1955. Peak elevations exceeded National Weather Service flood stages defined at continuous-record streamflow-gaging stations by 5 to 7 feet, but were on average 3 to 5 feet lower than the peak of record in August 1955. Peak elevations determined at 48 sites along the main stem of the Delaware River defined the flood profile between the gaging stations. The peak elevation in the tide-effected portion of the Delaware (downstream of Trenton, New Jersey), occurred on April 2, 2 days before the riverine peak, as a result of water pushed into the bay by a low-pressure system situated just off the coast. Every county located along the main stem of the Delaware River was declared a Federal disaster area. Property damage estimates in Pennsylvania, New York, and New Jersey exceeded $200 million.
The Role of Remotely Sensed and Relayed Data in the Delaware River Basin
NASA Technical Reports Server (NTRS)
Paulson, R. W.
1971-01-01
The planned integration of the existing water quality monitoring and data processing systems in the Delaware River Basin with a data relay experiment proposed for the ERTS-1 is discussed. The experiment is designed to use ERTS-1 as a data relay link for a maximum of 20 hydrologic stations in the basin, including stream gaging, reservoir level, ground water level, and water quality monitoring stations. This experiment has the potential for reducing the time lag between data collection and dissemination to less than 12 hours. The experiment will also provide impetus to develop an operational system of real time data processing and dissemination to handle the large quantity of data that will be obtained from the stations in the basin. The results of this experiment will demonstrate the relative merits of satellite relay of data versus conventional means of data telemetry and will provide a basis for the development of operational satellite relay of hydrologic data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salasovich, J.; Geiger, J.; Mosey, G.
2013-06-01
The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Standard Chlorine of Delaware site in Delaware City, Delaware, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.
18 CFR 420.44 - Cooling water.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Cooling water. 420.44 Section 420.44 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.44 Cooling water. Water used...
18 CFR 420.44 - Cooling water.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Cooling water. 420.44 Section 420.44 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.44 Cooling water. Water used...
18 CFR 420.33 - Payment of bills.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Payment of bills. 420.33 Section 420.33 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Entitlement; Measurement; Billing § 420.33 Payment...
18 CFR 420.33 - Payment of bills.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Payment of bills. 420.33 Section 420.33 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Entitlement; Measurement; Billing § 420.33 Payment...
18 CFR 420.33 - Payment of bills.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Payment of bills. 420.33 Section 420.33 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Entitlement; Measurement; Billing § 420.33 Payment...
18 CFR 420.42 - Contracts; minimum charge.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Contracts; minimum charge. 420.42 Section 420.42 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.42 Contracts; minimum...
18 CFR 420.33 - Payment of bills.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Payment of bills. 420.33 Section 420.33 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Entitlement; Measurement; Billing § 420.33 Payment...
18 CFR 420.45 - Historical use.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Historical use. 420.45 Section 420.45 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.45 Historical use. A person who...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Exempt use. 420.43 Section 420.43 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.43 Exempt use. The following uses...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Exempt use. 420.43 Section 420.43 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.43 Exempt use. The following uses...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Exempt use. 420.43 Section 420.43 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.43 Exempt use. The following uses...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Exempt use. 420.43 Section 420.43 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.43 Exempt use. The following uses...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Exempt use. 420.43 Section 420.43 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.43 Exempt use. The following uses...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Definitions. 420.1 Section 420.1 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES General § 420.1 Definitions. For the purposes of this part...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Definitions. 420.1 Section 420.1 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES General § 420.1 Definitions. For the purposes of this part...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Definitions. 420.1 Section 420.1 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES General § 420.1 Definitions. For the purposes of this part...
18 CFR 420.44 - Cooling water.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Cooling water. 420.44 Section 420.44 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.44 Cooling water. Water used...
18 CFR 420.44 - Cooling water.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Cooling water. 420.44 Section 420.44 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.44 Cooling water. Water used...
18 CFR 420.44 - Cooling water.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Cooling water. 420.44 Section 420.44 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.44 Cooling water. Water used...
18 CFR 415.31 - Prohibited uses.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Prohibited uses. 415.31 Section 415.31 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-FLOOD PLAIN REGULATIONS Standards § 415.31 Prohibited uses. (a) Within the...
Fletcher, C. H.; Knebel, H.J.; Kraft, J.C.
1992-01-01
The Holocene transgression of the Delaware Bay estuary and adjacent Atlantic coast results from the combined effect of regional crustal subsidence and eustasy. Together, the estuary and ocean coast constitute a small sedimentary basin whose principal depocenter has migrated with the transgression. A millenial time series of isopach and paleogeographic reconstructions for the migrating depocenter outlines the basin-wide pattern of sediment distribution and accumulation. Upland sediments entering the basin through the estuarine turbidity maximum accumulate in tidal wetland or open water sedimentary environments. Wind-wave activity at the edge of the tidal wetlands erodes the aggraded Holocene section and builds migrating washover barriers. Along the Atlantic and estuary coasts of Delaware, the area of the upland environment decreases from 2.0 billion m2 to 730 million m2 during the transgression. The area of the tidal wetland environment increases from 140 million to 270 million m2, and due to the widening of the estuary the area of open water increases from 190 million to 1.21 billion m2. Gross uncorrected rates of sediment accumulation for the tidal wetlands decrease from 0.64 mm/yr at 6 ka to 0.48 mm/yr at 1 ka. In the open water environments uncorrected rates decrease from 0.50 mm/yr to 0.04 mm/yr over the same period. We also present data on total sediment volumes within the tidal wetland and open water environments at specific intervals during the Holocene.
Dissolved methane in groundwater, Upper Delaware River Basin, Pennsylvania and New York, 2007-12
Kappel, William M.
2013-01-01
The prospect of natural gas development from the Marcellus and Utica Shales has raised concerns about freshwater aquifers being vulnerable to contamination. Well owners are asking questions about subsurface methane, such as, “Does my well water have methane and is it safe to drink the water?” and “Is my well system at risk of an explosion hazard associated with a combustible gas like methane in groundwater?” This newfound awareness of methane contamination of water wells by stray gas migration is based upon studies such as Molofsky and others (2011) who document the widespread natural occurrence of methane in drinking-water wells in Susquehanna County, Pennsylvania. In the same county, Osborn and others (2011) identified elevated methane concentrations in selected drinking-water wells in the vicinity of Marcellus Shale gas-development activities, although pre-development groundwater samples were not available for comparison. A compilation of dissolved methane concentrations in groundwater for New York State was published by Kappel and Nystrom (2012). Recent work documenting the occurrence and distribution of methane in groundwater was completed in southern Sullivan County, Pennsylvania (Sloto, 2013). Additional work is ongoing with respect to monitoring for stray gases in groundwater (Jackson and others, 2013). These studies and their results indicate the importance of collecting baseline or pre-development data. While such data are being collected in some areas, published data on methane in groundwater are sparse in the Upper Delaware River Basin of Pennsylvania, New York, and New Jersey. To manage drinking-water resources in areas of gas-well drilling and hydraulic fracturing in the Upper Delaware River Basin, the natural occurrence of methane in the tri-state aquifers needs to be documented. The purpose of this report is to present data on dissolved methane concentrations in the groundwater in the Upper Delaware River Basin. The scope is restricted to data for Pennsylvania and New York, no U.S. Geological Survey (USGS) methane analyses are presently available for northwestern New Jersey.
Reynolds, R.J.
2004-01-01
The hydrogeology of the 372-square-mile Pepacton Reservoir watershed (herein called the East Branch Delaware River Basin) in the southwestern Catskill Mountain region of Southeastern New York is described and depicted in a detailed surficial geologic map and two geologic sections. An analysis of stream discharge records and estimates of mean annual ground-water recharge and stream base flow for eight subbasins in the basin are included.Analysis of surficial geologic data indicates that the most widespread geologic unit within the basin is till, which occurs as masses of ablation till in major stream valleys and as thick deposits of lodgment till that fill upland basins. Till covers about 91.5 percent of the Pepacton Reservoir watershed, whereas stratified drift (alluvium, outwash, and ice-contact deposits) accounts for 6.3 percent. The Pepacton Reservoir occupies about 2.3 percent of the basin area. Large outwash and ice-contact deposits occupy the valleys of the upper East Branch Delaware River, the Tremper Kill, the Platte Kill, the Bush Kill, and Dry Brook. These deposits form stratified-drift aquifers that range in thickness from 90 feet in parts of the upper East Branch Delaware River Valley to less than 30 feet in the Dry Brook valley, and average about 50 feet in the main East Branch Delaware River Valley near Margaretville.An analysis of daily mean stream discharge for the six eastern subbasins for 1998–2001, and for two western subbasins for 1945–52, was performed using three computer programs to obtain estimates of mean annual base flow and mean annual ground-water recharge for the eight subbasins. Mean annual base flow ranged from 15.3 inches per year for the Tremper Kill subbasin to 22.3 inches per year for the Mill Brook subbasin; the latter reflects the highest mean annual precipitation of all the subbasins studied. Estimated mean annual ground-water recharge ranged from 24.3 inches per year for Mill Brook to 15.8 inches per year for the Tremper Kill. The base flow index, which is the mean annual base flow expressed as a percentage of mean annual streamflow, ranged from 69.1 percent for Coles Clove Kill to 75.6 percent for the upper East Branch Delaware River; most subbasin indices were greater than 70 percent. These high base flow indices indicate that because stratified drift covers only a small percentage of subbasin areas (generally 5 to 7 percent), most of the base flow is derived from the fractured sandstone bedrock that underlies the basin.
18 CFR 415.21 - Class II projects.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Class II projects. 415.21 Section 415.21 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... flooded, would pollute the waters of the basin or threaten damage to off-site areas, including, without...
18 CFR 420.41 - Schedule of water charges.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Schedule of water charges. 420.41 Section 420.41 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.41 Schedule of water...
18 CFR 420.33 - Payment of bills.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Payment of bills. 420.33 Section 420.33 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Entitlement; Measurement; Billing § 420.33 Payment of bills...
18 CFR 420.51 - Hydroelectric power plant water use charges.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Hydroelectric power plant water use charges. 420.51 Section 420.51 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Hydroelectric Power Water...
18 CFR 420.32 - Measurement and billing of water taken.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Measurement and billing of water taken. 420.32 Section 420.32 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Entitlement; Measurement; Billing...
18 CFR 420.41 - Schedule of water charges.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Schedule of water charges. 420.41 Section 420.41 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.41 Schedule of water...
18 CFR 415.3 - Purpose and findings.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Purpose and findings. 415.3 Section 415.3 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-FLOOD PLAIN REGULATIONS Generally § 415.3 Purpose and findings. (a) The...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Short title. 415.1 Section 415.1 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-FLOOD PLAIN REGULATIONS Generally § 415.1 Short title. This part shall be known...
18 CFR 415.21 - Class II projects.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Class II projects. 415.21 Section 415.21 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-FLOOD PLAIN REGULATIONS Types of Projects and Jurisdiction § 415.21 Class...
18 CFR 415.20 - Class I projects.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Class I projects. 415.20 Section 415.20 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-FLOOD PLAIN REGULATIONS Types of Projects and Jurisdiction § 415.20 Class...
Flood of June 26-29, 2006, Mohawk, Delaware, and Susquehanna River Basins, New York
Suro, Thomas P.; Firda, Gary D.; Szabo, Carolyn O.
2009-01-01
A stalled frontal system caused tropical moisture to be funneled northward into New York, causing severe flooding in the Mohawk, Delaware, and Susquehanna River basins during June 26-29, 2006. Rainfall totals for this multi-day event ranged from 2 to 3 inches to greater than 13 inches in southern New York. The storm and flooding claimed four lives in New York, destroyed or damaged thousands of homes and businesses, and closed hundreds of roads and highways. Thousands of people evacuated their homes as floodwaters reached new record elevations at many locations within the three basins. Twelve New York counties were declared Federal disaster areas, more than 15,500 residents applied for disaster assistance, and millions of dollars in damages resulted from the flooding. Disaster-recovery assistance for individuals and businesses adversely affected by the floods of June 2006 reached more than $227 million. The National Weather Service rainfall station at Slide Mountain recorded storm totals of more than 8 inches of rainfall, and the stations at Walton and Fishs Eddy, NY, recorded storm totals of greater than 13 inches of rainfall. The U.S. Geological Survey (USGS) stream-gaging stations at Mohawk River at Little Falls, West Branch Delaware River at Hale Eddy, and Susquehanna River at Vestal, NY, among others, recorded peak discharges of 35,000 ft3/s, 43,400 ft3/s, and 119,000 ft3/s respectively, with greater than 100-year recurrence intervals. The peak water-surface elevation 21.47 ft and the peak discharge 189,000 ft3/s recorded on June 28, 2006, at the Delaware River at Port Jervis stream-gaging station were the highest recorded since the flood of August 1955. At the Susquehanna River at Conklin, NY, stream-gaging station, which has been in operation since 1912, the peak water-surface elevation 25.02 ft and peak discharge 76,800 ft3/s recorded on June 28, 2006, exceeded the previous period-of-record maximums that were set during the flood of March 1936. Documented peak water-surface elevations during the June 2006 flood at many study sites in the Mohawk, Delaware, and Susquehanna River basins exceeded the 100-year flood-profile elevations determined in the flood-insurance studies prepared by the Federal Emergency Management Agency.
Estimating probabilities of reservoir storage for the upper Delaware River basin
Hirsch, Robert M.
1981-01-01
A technique for estimating conditional probabilities of reservoir system storage is described and applied to the upper Delaware River Basin. The results indicate that there is a 73 percent probability that the three major New York City reservoirs (Pepacton, Cannonsville, and Neversink) would be full by June 1, 1981, and only a 9 percent probability that storage would return to the ' drought warning ' sector of the operations curve sometime in the next year. In contrast, if restrictions are lifted and there is an immediate return to normal operating policies, the probability of the reservoir system being full by June 1 is 37 percent and the probability that storage would return to the ' drought warning ' sector in the next year is 30 percent. (USGS)
Sensitivity of water resources in the Delaware River basin to climate variability and change
Ayers, Mark A.; Wolock, David M.; McCabe, Gregory J.; Hay, Lauren E.; Tasker, Gary D.
1994-01-01
Because of the greenhouse effect, projected increases in atmospheric carbon dioxide levels might cause global warming, which in turn could result in changes in precipitation patterns and evapotranspiration and in increases in sea level. This report describes the greenhouse effect; discusses the problems and uncertainties associated with the detection, prediction, and effects of climate change; and presents the results of sensitivity analyses of how climate change might affect water resources in the Delaware River basin. Sensitivity analyses suggest that potentially serious shortfalls of certain water resources in the basin could result if some scenarios for climate change come true . The results of model simulations of the basin streamflow demonstrate the difficulty in distinguishing the effects that climate change versus natural climate variability have on streamflow and water supply . The future direction of basin changes in most water resources, furthermore, cannot be precisely determined because of uncertainty in current projections of regional temperature and precipitation . This large uncertainty indicates that, for resource planning, information defining the sensitivities of water resources to a range of climate change is most relevant . The sensitivity analyses could be useful in developing contingency plans for evaluating and responding to changes, should they occur.
Case Study: POLYTECH High School, Woodside, Delaware.
ERIC Educational Resources Information Center
Southern Regional Education Board, Atlanta, GA.
POLYTECH High School in Woodside, Delaware, has gone from being among the worst schools in the High Schools That Work (HSTW) network to among the best. Polytech, which is now a full-time technical high school, has improved its programs and outcomes by implementing a series of organizational, curriculum, teaching, guidance, and leadership changes,…
18 CFR 420.23 - Exempt uses under the Compact.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Exempt uses under the Compact. 420.23 Section 420.23 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Water Supply Policy § 420.23 Exempt uses under the...
Near real time water resources data for river basin management
NASA Technical Reports Server (NTRS)
Paulson, R. W. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Twenty Data Collection Platforms (DCP) are being field installed on USGS water resources stations in the Delaware River Basin. DCP's have been successfully installed and are operating well on five stream gaging stations, three observation wells, and one water quality monitor in the basin. DCP's have been installed at nine additional water quality monitors, and work is progressing on interfacing the platforms to the monitors. ERTS-related water resources data from the platforms are being provided in near real time, by the Goddard Space Flight Center to the Pennsylvania district, Water Resources Division, U.S. Geological Survey. On a daily basis, the data are computer processed by the Survey and provided to the Delaware River Basin Commission. Each daily summary contains data that were relayed during 4 or 5 of the 15 orbits made by ERTS-1 during the previous day. Water resources parameters relays by the platforms include dissolved oxygen concentrations, temperature, pH, specific conductance, well level, and stream gage height, which is used to compute stream flow for the daily summary.
Drought Risk Assessment for Greater New York Area: A Paleo View
NASA Astrophysics Data System (ADS)
Ceylan, G.; Devineni, N.
2014-12-01
The Delaware River provides half of New York City's drinking water, is a habitat for wild trout, American shad and the federally endangered dwarf wedge mussel. It has suffered four 100-year floods in the last seven years. A drought during the 1960s stands as a warning of the potential vulnerability of the New York City area to severe water shortages if a similar drought were to recur. The water releases from three New York City dams on the Delaware River's headwaters impact not only the reliability of the city's water supply, but also the potential impact of floods, and the quality of the aquatic habitat in the upper river. The goal of this work is to influence the Delaware River water release policies (FFMP/OST) to further benefit river habitat and fisheries without increasing New York City's drought risk, or the flood risk to down basin residents. The Delaware water release policies are constrained by the dictates of two US Supreme Court Decrees (1931 and 1954) and the need for unanimity among four states: New York, New Jersey, Pennsylvania, and Delaware -- and New York City. Coordination of their activities and the operation under the existing decrees is provided by the Delaware River Basin Commission (DRBC). Questions such as the probability of the system approaching drought state based on the current FFMP plan and the severity of the 1960s drought are addressed using long record paleo-reconstructions of flows. For this study, we developed reconstructed total annual flows (water year) for 3 reservoir inflows using regional tree rings going back up to 1754 (a total of 246 years). The reconstructed flows are used with a simple reservoir model to quantify droughts. We observe that the 1960s drought is by far the worst drought based on 246 years of simulations (since 1754). However, there are intermediate drought warning periods and proper adaptation would be sufficient during these periods. Modified release rules that aid thermal relief to wild trout in the upper Delaware can be explored without much stress to the system during most periods.
Peter S. Murdoch; Jennifer C. Jenkins; Richard A. Birdsey
2008-01-01
The Delaware River Basin (DRB) CEMRI effort described in this document points to several opportunities for national and regional collaboration strategies that could greatly improve the interpretive power of our environmental monitoring programs.
A checklist of the aquatic invertebrates of the Delaware River Basin, 1990-2000
Bilger, Michael D.; Riva-Murray, Karen; Wall, Gretchen L.
2005-01-01
This paper details a compilation of aquatic-invertebrate taxa collected at 1,080 sites as part of 13 surface-water-quality studies completed by selected Federal, state, and local environmental agencies during 1990-2000, within the 32,893-km2 area of the Delaware River Basin. This checklist is intended to be a 'working list' of aquatic invertebrates that can be applied successfully to the calculation and interpretation of various biological estimators to determine the status of water quality and can be used as a foundation to document the current state of biodiversity. It is not intended as a comprehensive historical inventory of the literature or of private and public holdings. A total of 11 phyla comprising 20 classes, 46 orders, 196 families, 685 genera, and 835 species were recorded.
The role of remotely sensed and relayed data in the Delaware River Basin
NASA Technical Reports Server (NTRS)
Paulson, R. W.
1970-01-01
A discussion is presented of the planned integration of the existing Delaware River Basin water quality monitoring and data processing systems with a data relay experiment proposed for the Earth Resources Technology Satellite (ERTS)-A, which will be launched in 1972. The experiment is designed to use ERTS-A as a data relay link for a maximum of 20 hydrologic stations in the basin, including streamgaging, reservoir level, ground water level,and water quality monitoring stations. This experiment has the potential for reducing the timelag between data collection and dissemination to less than 12 hours. At present there is a significant timelag between the time when the data are recorded at a monitoring site and the water resources agencies receive the data. The timelag exists because most of these instruments operate in remote locations without telementry, and the data records are removed manually, generally at a weekly frequency. For most water quality monitoring, the data do not reach water resources agencies for a period of 2 weeks to 2 months.
Magnitude and Frequency of Floods on Nontidal Streams in Delaware
Ries, Kernell G.; Dillow, Jonathan J.A.
2006-01-01
Reliable estimates of the magnitude and frequency of annual peak flows are required for the economical and safe design of transportation and water-conveyance structures. This report, done in cooperation with the Delaware Department of Transportation (DelDOT) and the Delaware Geological Survey (DGS), presents methods for estimating the magnitude and frequency of floods on nontidal streams in Delaware at locations where streamgaging stations monitor streamflow continuously and at ungaged sites. Methods are presented for estimating the magnitude of floods for return frequencies ranging from 2 through 500 years. These methods are applicable to watersheds exhibiting a full range of urban development conditions. The report also describes StreamStats, a web application that makes it easy to obtain flood-frequency estimates for user-selected locations on Delaware streams. Flood-frequency estimates for ungaged sites are obtained through a process known as regionalization, using statistical regression analysis, where information determined for a group of streamgaging stations within a region forms the basis for estimates for ungaged sites within the region. One hundred and sixteen streamgaging stations in and near Delaware with at least 10 years of non-regulated annual peak-flow data available were used in the regional analysis. Estimates for gaged sites are obtained by combining the station peak-flow statistics (mean, standard deviation, and skew) and peak-flow estimates with regional estimates of skew and flood-frequency magnitudes. Example flood-frequency estimate calculations using the methods presented in the report are given for: (1) ungaged sites, (2) gaged locations, (3) sites upstream or downstream from a gaged location, and (4) sites between gaged locations. Regional regression equations applicable to ungaged sites in the Piedmont and Coastal Plain Physiographic Provinces of Delaware are presented. The equations incorporate drainage area, forest cover, impervious area, basin storage, housing density, soil type A, and mean basin slope as explanatory variables, and have average standard errors of prediction ranging from 28 to 72 percent. Additional regression equations that incorporate drainage area and housing density as explanatory variables are presented for use in defining the effects of urbanization on peak-flow estimates throughout Delaware for the 2-year through 500-year recurrence intervals, along with suggestions for their appropriate use in predicting development-affected peak flows. Additional topics associated with the analyses performed during the study are also discussed, including: (1) the availability and description of more than 30 basin and climatic characteristics considered during the development of the regional regression equations; (2) the treatment of increasing trends in the annual peak-flow series identified at 18 gaged sites, with respect to their relations with maximum 24-hour precipitation and housing density, and their use in the regional analysis; (3) calculation of the 90-percent confidence interval associated with peak-flow estimates from the regional regression equations; and (4) a comparison of flood-frequency estimates at gages used in a previous study, highlighting the effects of various improved analytical techniques.
Extent and frequency of floods on the Schuylkill River near Phoenixville and Pottstown, Pennsylvania
Busch, William F.; Shaw, Lewis C.
1973-01-01
Knowledge of the frequency and extent of flooding is an important requirement for the design of all works of man bordering or encroaching on flood plains. The proper design of bridges, culverts, dams, highways, levees, reservoirs, sewage-disposal systems, waterworks and all structures on the flood plains of streams requires careful consideration of flood hazards. -1- By use of relations presented in this report, the extent, depth, and frequency of flooding can be estimated for any site along the reach of the Schuylkill River from Oaks to Pottstown. These flood data are presented so that regulatory agencies, organizations, and individuals may have a technical basis for making decisions on the use of flood-prone areas. The Delaware River Basin Commission and the U. S. Geological Survey regard this program of flood-plain-inundation studies as a positive step toward flood-damage prevention. Flood-plaininundation studies are a prerequisite to flood-plain management which may include a mixture of flood-control structures and/or land-use regulations. Both physical works and flood-plain regulations are included in the Comprehensive Plan for development of the Delaware River basin, of which the Schuylkill River is a part. Recommendations for land use, or suggestions for limitations of land use, are not made herein. Other reports on use and regulation of land in flood-prone areas are available (Dola, 1961; White, 1961; American Society of Civil Engineers Task Force on Flood Plain Regulations, 1962; and Goddard, 1963). The primary responsibility for planning for optimum land use in the flood plain and the implementation of flood-plain zoning or other regulations to achieve such optimum use rests with State, and local interests.
Geographic variation in host fish use and larval metamorphosis for the endangered dwarf wedgemussel
White, Barbara (St. John); Ferreri, C. Paola; Lellis, William A.; Wicklow, Barry J.; Cole, Jeffrey C.
2017-01-01
Host fishes play a crucial role in survival and dispersal of freshwater mussels (Unionoida), particularly rare unionids at conservation risk. Intraspecific variation in host use is not well understood for many mussels, including the endangered dwarf wedgemussel (Alasmidonta heterodon) in the USA.Host suitability of 33 fish species for dwarf wedgemussel glochidia (larvae) from the Delaware and Connecticut river basins was tested in laboratory experiments over 9 years. Relative suitability of three different populations of a single host fish, the tessellated darter (Etheostoma olmstedi), from locations in the Connecticut, Delaware, and Susquehanna river basins, was also tested.Connecticut River basin A. heterodon metamorphosed into juvenile mussels on tessellated darter, slimy sculpin (Cottus cognatus), and Atlantic salmon (Salmo salar) parr. Delaware River basin mussels metamorphosed using these three species, as well as brown trout (Salmo trutta), banded killifish (Fundulus diaphanus), mottled sculpin (Cottus bairdii), striped bass (Morone saxatilis), and shield darter (Percina peltata). Atlantic salmon, striped bass, and sculpins were highly effective hosts, frequently generating 5+ juveniles per fish (JPF) and metamorphosis success (MS; proportion of attaching larvae that successfully metamorphose) ≥ 0.4, and producing juveniles in repeated trials.In experiments on tessellated darters, mean JPF and MS values decreased as isolation between the mussel source (Connecticut River) and each fish source increased; mean JPF = 10.45, 6.85, 4.14, and mean MS = 0.50, 0.41, and 0.34 in Connecticut, Delaware, and Susquehanna river darters, respectively. Host suitability of individual darters was highly variable (JPF = 2–11; MS = 0.20–1.0).The results show that mussel–host fish compatibility in A. heterodon differs among Atlantic coastal rivers, and suggest that hosts including anadromous Atlantic salmon and striped bass may help sustain A. heterodon in parts of its range. Continued examination of host use variation, migratory host roles, and mussel–fish interactions in the wild is critical in conservation of A. heterodon and other vulnerable mussel species.
Sensitivity of water resources in the Delaware River basin to climate variability and change
Ayers, Mark A.; Wolock, David M.; McCabe, Gregory J.; Hay, Lauren E.; Tasker, Gary D.
1993-01-01
Because of the "greenhouse effect," projected increases in atmospheric carbon dioxide levels might cause global warming, which in turn could result in changes in precipitation patterns and evapotranspiration and in increases in sea level. This report describes the greenhouse effect; discusses the problems and uncertainties associated with the detection, prediction, and effects of climatic change, and presents the results of sensitivity-analysis studies of the potential effects of climate change on water resources in the Delaware River basin. On the basis of sensitivity analyses, potentially serious shortfalls of certain water resources in the basin could result if some climatic-change scenarios become true. The results of basin streamflow-model simulations in this study demonstrate the difficulty in distinguishing effects of climatic change on streamflow and water supply from effects of natural variability in current climate. The future direction of basin changes in most water resources, furthermore, cannot be determined precisely because of uncertainty in current projections of regional temperature and precipitation. This large uncertainty indicates that, for resource planning, information defining the sensitivities of water resources to a range of climate change is most relevant. The sensitivity analyses could be useful in developing contingency plans on how to evaluate and respond to changes, should they occur.
Delaware River Basin Conservation Act of 2011
Sen. Carper, Thomas R. [D-DE
2011-06-23
Senate - 07/16/2012 Placed on Senate Legislative Calendar under General Orders. Calendar No. 452. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
Delaware River Basin Conservation Act of 2011
Rep. Carney, John C., Jr. [D-DE-At Large
2011-06-23
House - 07/11/2011 Referred to the Subcommittee on Fisheries, Wildlife, Oceans, and Insular Affairs. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
Delaware River Basin Conservation Act of 2013
Rep. Carney, John C., Jr. [D-DE-At Large
2013-02-13
House - 02/22/2013 Referred to the Subcommittee on Fisheries, Wildlife, Oceans, and Insular Affairs. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
Groundwater quality in the Delaware and St. Lawrence River Basins, New York, 2010
Nystrom, Elizabeth A.
2012-01-01
Water quality in both study areas is generally good, but concentrations of some constituents equaled or exceeded current or proposed Federal or New York State drinking-water standards. The standards exceeded are color (one sample in the St. Lawrence study area), pH (three samples in the Delaware study area), sodium (one sample in the St. Lawrence study area), total dissolved solids (one sample in the St. Lawrence study area), aluminum (one sample in the Delaware study area and one sample in the St. Lawrence study area), iron (seven samples in the St. Lawrence study area), manganese (one sample in the Delaware study area and five samples in the St. Lawrence study area), gross alpha radioactivity (one sample in the St. Lawrence study area), radon-222 (10 samples in the Delaware study area and 14 samples in the St. Lawrence study area), and bacteria (5 samples in the Delaware study area and 10 samples in the St. Lawrence study area). E. coli bacteria were detected in samples from two wells in the St. Lawrence study area. Concentrations of chloride, fluoride, sulfate, nitrate, nitrite, antimony, arsenic, barium, beryllium, cadmium, chromium, copper, lead, mercury, selenium, silver, thallium, zinc, and uranium did not exceed existing drinking-water standards in any of the samples collected.
Improving the Velocity Structure in the Delaware Basin of West Texas for Seismicity Monitoring
NASA Astrophysics Data System (ADS)
Huang, D.; Aiken, C.; Savvaidis, A.; Young, B.; Walter, J. I.
2017-12-01
The State of Texas has commissioned the Bureau of Economic Geology to install a seismic network (TexNet) which, when complete, will employ 22 permanent and 33 portable new stations. In the area of west Texas, where it consists of two major sedimentary basins - the Delaware and Midland basins, 7 new permanent stations have been deployed. Starting from January 2017, TexNet has detected several hundreds of small-sized earthquakes in the area adjacent to the Pecos township. In response to the detection of a surprisingly high occurrence of seismicity in this area, we have increased the number of seismic stations through the addition of portable deployments. The depth range of the detected seismicity is from subsurface down to 14 km depth. Based on the initial hypocentral information determined by the TexNet's routine process, we further relocated these earthquakes using the double-difference relocation method (i.e., hypoDD). At the same time, we employed statistic regression (i.e., the Wadati diagram) to constrain the origin times of these relocated earthquakes, while their hypocentral locations have been better constrained by hypoDD relocation. The constrained origin times and relocated earthquake hypocenters, along with the velocity information of subsurface from a local sonic-log profile, are used in tomographic inversion to update the crustal velocity model for the Delaware basin and surrounding area. Preliminary results suggest that both local topography and subsurface structures have strong influence on locating earthquakes that occurred at a shallower depth range in west Texas. A subsurface layer with Vp of 4.5-5.0 km/s is suggested to corroborate the regional tectonic setting as a sedimentary basin. Our next steps are to include more local and teleseismic data recorded by TexNet as well as by stations from the previous US Transportable Array. Inclusion of these data will increase ray-crossing coverage within the volume of the velocity model, resulting in a better model resolution.
1980-05-21
service spillway was analyzed as a sharp - crested weir with:.a discharge coefficient (c) of 3.1. The auxiliary spillway channel was analyzed as a broad ...upstream portion of this channel is a concrete structure which forms a 27.4 foot long rectangular weir . There is a 5 foot vertical drop beyond the crest ...I on 1.5 Crest Width (ft) 12 g. Service Spillway Type: Concrete channel-rectangular weir . Five foot vertical drop beyond crest . Masonry and laid up
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-05
...The Delaware River Basin Commission (``DRBC'' or ``Commission'') will hold a public hearing to receive comments on proposed amendments to the Commission's Water Quality Regulations, Water Code and Comprehensive Plan to revise the water quality criteria for polychlorinated biphenyls (``PCBs'') in the Delaware Estuary and Bay, DRBC Water Quality Management Zones 2 through 6, for the protection of human health from carcinogenic effects. The Commission will simultaneously solicit comment on a draft implementation strategy to support achievement of the criteria.
Hutson, Susan S.; Linsey, Kristin S.; Ludlow, Russell A.; Reyes, Betzaida; Shourds, Jennifer L.
2016-11-07
The Delaware River Basin (DRB) was selected as a Focus Area Study in 2011 by the U.S. Geological Survey (USGS) as part of the USGS National Water Census. The National Water Census is a USGS research program that focuses on national water availability and use and then develops new water accounting tools and assesses water availability at both the regional and national scales. One of the water management needs that the DRB study addressed, and that was identified by stakeholder groups from the DRB, was to improve the integration of state water use and water-supply data and to provide the compiled water use information to basin users. This water use information was also used in the hydrologic modeling and ecological components of the study.Instream and offstream water use was calculated for 2010 for the DRB based on information received from Delaware, New Jersey, New York, and Pennsylvania. Water withdrawal, interbasin transfers, return flow, and hydroelectric power generation release data were compiled for 11 categories by hydrologic subregion, basin, subbasin, and subwatershed. Data availability varied by state. Site-specific data were used whenever possible to calculate public supply, irrigation (golf courses, nurseries, sod farms, and crops), aquaculture, self-supplied industrial, commercial, mining, thermoelectric, and hydroelectric power withdrawals. Where site-specific data were not available, primarily for crop irrigation, livestock, and domestic use, various techniques were used to estimate water withdrawals.Total water withdrawals in the Delaware River Basin were calculated to be about 7,130 million gallons per day (Mgal/d) in 2010. Calculations of withdrawals by source indicate that freshwater withdrawals were about 4,130 Mgal/d (58 percent of the total) and the remaining 3,000 Mgal/d (42 percent) were from saline water. Total surface-water withdrawals were calculated to be 6,590 Mgal/d, or 92 percent of the total; about 54 percent (3,590 Mgal/d) of surface water withdrawn was freshwater. Total groundwater withdrawals were calculated to be 545 Mgal/d (8 percent of the total), all of which was freshwater. During 2010, calculated withdrawals by category, in decreasing order, were: thermoelectric power, 4,910 Mgal/d; public supply, 1,490 Mgal/d; self-supplied industrial, 350 Mgal/d; irrigation, 175 Mgal/d; self-supplied domestic, 117 Mgal/d; mining, 41.3 Mgal/d; aquaculture, 19.3 Mgal/d; livestock, 6.72 Mgal/d, and commercial, 5.89 Mgal/d. The amount of instream use for hydroelectric power generation purposes in 2010 was reported to be 273 Mgal/d for the Wallenpaupack Plant and 127 Mgal/d for the Mongaup River system.Total return flows in the DRB were 2,960 Mgal/d in 2010. Although municipal wastewater-treatment plants accounted for 539 (97 percent) of the return-flow sites, they accounted for about 70 percent of the total return flows in the DRB. There was limited information on return flows from thermoelectric power.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-29
...), DNREC supplemented its September 16, 2009 submittal with a technical analysis submitted to EPA for... supplemental technical analysis, for which it has requested parallel-processing, through the public notice and... submitted the technical analysis to EPA as a formal supplement to its September 16, 2009 submittal. The...
Population demographics for the federally endangered dwarf wedgemussel
Galbraith, Heather S.; Lellis, William A.; Cole, Jeffrey C.; Blakeslee, Carrie J.; St. John White, Barbara
2016-01-01
The dwarf wedgemussel, Alasmidonta heterodon, is a federally endangered freshwater mussel species inhabiting several Atlantic Slope rivers. Studies on population demographics of this species are necessary for status assessment and directing recovery efforts. We conducted qualitative and quantitative surveys for dwarf wedgemussel in the mainstem Delaware River and in four of its tributaries (Big Flat Brook, Little Flat Brook, Neversink River, and Paulinskill River). Population range, relative abundance, size, size structure, and sex ratio were quantified within each river. Total dwarf wedgemussel population size for the surveyed rivers in the Delaware Basin was estimated to be 14,432 individuals (90% confidence limits, 7,961-26,161). Our results suggest that the historically robust Neversink River population has declined, but that this population persists and substantial populations remain in other tributaries. Sex ratios were generally female-biased, and small individuals (<10 mm) found in all rivers indicate recent recruitment. Dwarf wedgemussel was most often found at the surface of the sediment (not buried below) in shallow quadrats (<2.00 m) comprised of small substrate (sand in tributaries; cobble in the mainstem) and minimal aquatic macrophytes. Long-term monitoring, continued surveys for new populations, and assessments of reproductive success are needed to further understand dwarf wedgemussel viability within the Delaware River Basin.
Water resources data, Maryland and Delaware, water year 1997, volume 2. ground-water data
Smigaj, Michael J.; Saffer, Richard W.; Starsoneck, Roger J.; Tegeler, Judith L.
1998-01-01
The Water Resources Division of the U.S. Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Maryland and Delaware each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data - Maryland and Delaware.' This series of annual reports for Maryland and Delaware began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the l975 water year, the report format was changed to present, in one volume, data on quantities of surface water, quality of surface and ground water, and ground-water levels. In the 1989 water year, the report format was changed to two volumes. Both volumes contained data on quantities of surface water, quality of surface and ground water, and ground-water levels. Volume 1 contained data on the Atlantic Slope Basins (Delaware River thru Patuxent River) and Volume 2 contained data on the Monongahela and Potomac River basins. Beginning with the 1991 water year, Volume 1 contains all information on quantities of surface water and surface- water-quality data and Volume 2 contains ground-water levels and ground-water-quality data. This report is Volume 2 in our 1998 series and includes records of water levels and water quality of ground-water wells and springs. It contains records for water levels at 397 observation wells, discharge data for 6 springs, and water quality at 107 wells. Location of ground-water level wells are shown on figures 3 and 4. The location for the ground-water-quality sites are shown on figures 5. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Maryland and Delaware. Prior to introduction of this series and for several water years concurrent with it, water resources data for Maryland and Delaware were published in U.S. Geological Survey Water-Supply Papers. Data on water levels for the 1935 through 1974 water years were published under the title 'Ground-Water Levels in the United States.' The above mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States and may be purchased from the Branch of Information Services, Federal Center, Bldg. 41, Box 25286, Denver, CO 80225-0286. Publications similar to this report are published annually by the Geological Survey for all States. These official Survey reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as 'U.S. Geological Survey Water-Data Report MD-DE-98-2.' For archiving and general distribution, the reports for l971- 74 water years also are identified as water data reports. These water-data reports are for sale in paper copy or in microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161. Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone (410)238-4200.
18 CFR 401.33 - Administrative agreements.
Code of Federal Regulations, 2012 CFR
2012-04-01
... agreements. 401.33 Section 401.33 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... Administrative agreements. The Executive Director is authorized and directed to enter into cooperative Administrative Agreements with federal and state regulatory agencies concerned with the review of projects under...
18 CFR 401.33 - Administrative agreements.
Code of Federal Regulations, 2010 CFR
2010-04-01
... agreements. 401.33 Section 401.33 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... Administrative agreements. The Executive Director is authorized and directed to enter into cooperative Administrative Agreements with federal and state regulatory agencies concerned with the review of projects under...
18 CFR 401.33 - Administrative agreements.
Code of Federal Regulations, 2013 CFR
2013-04-01
... agreements. 401.33 Section 401.33 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... Administrative agreements. The Executive Director is authorized and directed to enter into cooperative Administrative Agreements with federal and state regulatory agencies concerned with the review of projects under...
18 CFR 430.7 - Determination of protected areas and restriction on water use.
Code of Federal Regulations, 2011 CFR
2011-04-01
... located within the Delaware Basin: Townships Berks County Douglass, Hereford, Union. Bucks County..., Telford, Trumbauersville. Townships Chester County Birmingham, Charlestown, East Coventry, East Bradford.... Boroughs Elverson, Malvern, Phoenixville, Spring City, West Chester. Townships Lehigh County Lower Milford...
Pesticide compounds in streamwater in the Delaware River Basin, December 1998-August 2001
Hickman, R. Edward
2004-01-01
During 1998-2001, 533 samples of streamwater at 94 sites were collected in the Delaware River Basin in Pennsylvania, New Jersey, New York, and Delaware as part of the U.S. Geological Survey National Water-Quality Assessment Program. Of these samples, 531 samples were analyzed for dissolved concentrations of 47 pesticide compounds (43 pesticides and 4 pesticide degradation products); 70 samples were analyzed for an additional 6 pesticide degradation products. Of the 47 pesticide compounds analyzed for in 531 samples, 30 were detected. The most often detected compounds were atrazine (90.2 percent of samples), metolachlor (86.1 percent), deethylatrazine (82.5 percent), and simazine (78.9 percent). Atrazine, metolachlor, and simazine are pesticides; deethylatrazine is a degradation product of atrazine. Relations between concentrations of pesticides in samples from selected streamwater sites and characteristics of the subbasins draining to these sites were evaluated to determine whether agricultural uses or nonagricultural uses appeared to be the more important sources. Concentrations of atrazine, metolachlor, and pendimethalin appear to be attributable more to agricultural uses than to nonagricultural uses; concentrations of prometon, diazinon, chlorpyrifos, tebuthiuron, trifluralin, and carbaryl appear to be attributable more to nonagricultural uses. In general, pesticide concentrations during the growing season (April-October) were greater than those during the nongrowing season (November-March). For atrazine, metolachlor, and acetochlor, the greatest concentrations generally occurred during May, June, and July. Concentrations of pesticide compounds rarely (in only 7 out of 531 samples) exceeded drinking-water standards or guidelines, indicating that, when considered individually, these compounds present little hazard to the health of the public through consumption of the streamwater. The combined effects of more than one pesticide compound in streamwater were not considered. Diazinon appeared to be the pesticide compound most likely to adversely affect aquatic life in the streams of the Delaware River Basin; concentrations of diazinon exceeded guidelines (designed to protect aquatic life) in 19 samples, the most of any pesticide compound. Concentrations of as many as 5 compounds exceeded guidelines in 29 of 531 samples.
NASA Astrophysics Data System (ADS)
Madsen, J.; Skalak, K.; Watson, G.; Scantlebury, K.; Allen, D.; Quillen, A.
2006-12-01
With funding from the National Science Foundation, the University of Delaware (UD) in partnership with the New Castle County Vocational Technical School District (NCCoVoTech) in Delaware has initiated a GK-12 Program. In each of year this program, nine full time UD graduate students in the sciences, who have completed all or most of their coursework, will be selected to serve as fellows. Participation in the GK-12 program benefits the graduate fellows in many ways. In addition to gaining general insight into current issues of science education, the fellows enhance their experience as scientific researchers by directly improving their ability to effectively communicate complex quantitative and technical knowledge to an audience with multiple and diverse learning needs. In the first year of this project, fellows have been paired with high school science teachers from NCCoVoTech. These pairs, along with the principal investigators (PIs) of this program have formed a learning community that is taking this opportunity to examine and to reflect on current issues in science education while specifically addressing critical needs in teaching science in vocational technical high schools. By participating in summer workshops and follow-up meetings facilitated by the PIs, the fellows have been introduced to a number of innovative teaching strategies including problem-based learning (PBL). Fellow/teacher pairs have begun to develop and teach PBL activities that are in agreement with State of Delaware science standards and that support student learning through inquiry. Fellows also have the opportunity to engage in coteaching with their teacher partner. In this "teaching at the elbow of another", fellows will gain a better understanding of and appreciation for the complexities and nuances of teaching science in vocational technical high schools. While not taught as a stand-alone course in NCCoVoTech high schools, earth science topics are integrated into the science curriculum at nearly all levels from the freshman through the senior year. Three of the current group of nine fellows are engaged in Ph.D.-level research within the disciplines of astronomy and hydrology. They will bring this expertise into their collaboration with their practicing teachers with the goal of improving the understanding of earth science topics by high school students within a vocational technical school setting.
Ensuring Equitable Opportunities for Delaware's Undocumented Career and Technical School Population
ERIC Educational Resources Information Center
Vieni-Vento, Sarah R.
2012-01-01
This executive position paper proposes a legal process by which undocumented students enrolled in career and technical schools can obtain cooperative employment and pursue post-secondary opportunities. The recommended process is based on the current plight of undocumented students who are caught between harsh federal immigration policies and…
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Small business stationary source... PLANS Delaware § 52.460 Small business stationary source technical and environmental compliance... Environmental Control submitted a plan for the establishment and implementation of a Small Business Stationary...
Seasonal variability of the inorganic carbon system in a large coastal plain estuary
NASA Astrophysics Data System (ADS)
Joesoef, Andrew; Kirchman, David L.; Sommerfield, Christopher K.; Cai, Wei-Jun
2017-11-01
Carbonate geochemistry research in large estuarine systems is limited. More work is needed to understand how changes in land-use activity influence watershed export of organic and inorganic carbon, acids, and nutrients to the coastal ocean. To investigate the seasonal variation of the inorganic carbon system in the Delaware Estuary, one of the largest estuaries along the US east coast, dissolved inorganic carbon (DIC), total alkalinity (TA), and pH were measured along the estuary from June 2013 to April 2015. In addition, DIC, TA, and pH were periodically measured from March to October 2015 in the nontidal freshwater Delaware, Schuylkill, and Christina rivers over a range of discharge conditions. There were strong negative relationships between river TA and discharge, suggesting that changes in HCO3- concentrations reflect dilution of weathering products in the drainage basin. The ratio of DIC to TA, an understudied but important property, was high (1.11) during high discharge and low (0.94) during low discharge, reflecting additional DIC input in the form of carbon dioxide (CO2), most likely from terrestrial organic matter decomposition, rather than bicarbonate (HCO3-) inputs due to drainage basin weathering processes. This is also a result of CO2 loss to the atmosphere due to rapid water transit during the wet season. Our data further show that elevated DIC in the Schuylkill River is substantially different than that in the Delaware River. Thus, tributary contributions must be considered when attributing estuarine DIC sources to the internal carbon cycle versus external processes such as drainage basin mineralogy, weathering intensity, and discharge patterns. Long-term records in the Delaware and Schuylkill rivers indicate shifts toward higher alkalinity in estuarine waters over time, as has been found in other estuaries worldwide. Annual DIC input flux to the estuary and export flux to the coastal ocean are estimated to be 15.7 ± 8.2 × 109 mol C yr-1 and 16.5 ± 10.6 × 109 mol C yr-1, respectively, while net DIC production within the estuary including inputs from intertidal marshes is estimated to be 5.1 × 109 mol C yr-1. The small difference between riverine input and export flux suggests that, in the case of the Delaware Estuary and perhaps other large coastal systems with long freshwater residence times, the majority of the DIC produced in the estuary by biological processes is exchanged with the atmosphere rather than exported to the sea.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Purpose. 430.3 Section 430.3 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION SPECIAL REGULATIONS... implement reasonable water conservation measures and practices, to assure efficient use of limited water...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Purpose. 430.3 Section 430.3 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION SPECIAL REGULATIONS... implement reasonable water conservation measures and practices, to assure efficient use of limited water...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Purpose. 430.3 Section 430.3 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION SPECIAL REGULATIONS... implement reasonable water conservation measures and practices, to assure efficient use of limited water...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Purpose. 430.3 Section 430.3 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION SPECIAL REGULATIONS... implement reasonable water conservation measures and practices, to assure efficient use of limited water...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Purpose. 430.3 Section 430.3 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION SPECIAL REGULATIONS... implement reasonable water conservation measures and practices, to assure efficient use of limited water...
18 CFR 401.124 - Construction.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Construction. 401.124 Section 401.124 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE General Provisions § 401.124 Construction. This part is...
18 CFR 401.124 - Construction.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Construction. 401.124 Section 401.124 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE General Provisions § 401.124 Construction. This part is...
18 CFR 401.124 - Construction.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Construction. 401.124 Section 401.124 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE General Provisions § 401.124 Construction. This part is...
18 CFR 401.124 - Construction.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Construction. 401.124 Section 401.124 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE General Provisions § 401.124 Construction. This part is...
18 CFR 401.113 - Segregable materials.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Segregable materials. 401.113 Section 401.113 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... Segregable materials. Any reasonably segregable portion of a record shall be provided to any person...
18 CFR 401.113 - Segregable materials.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Segregable materials. 401.113 Section 401.113 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... Segregable materials. Any reasonably segregable portion of a record shall be provided to any person...
18 CFR 401.113 - Segregable materials.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Segregable materials. 401.113 Section 401.113 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... Segregable materials. Any reasonably segregable portion of a record shall be provided to any person...
18 CFR 401.113 - Segregable materials.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Segregable materials. 401.113 Section 401.113 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... Segregable materials. Any reasonably segregable portion of a record shall be provided to any person...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Procedure. 401.23 Section 401.23 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.23 Procedure. Each project included...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Procedure. 401.23 Section 401.23 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.23 Procedure. Each project included...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Procedure. 401.23 Section 401.23 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.23 Procedure. Each project included...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Procedure. 401.23 Section 401.23 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.23 Procedure. Each project included...
Code of Federal Regulations, 2014 CFR
2014-04-01
... the adoption and revision of the Comprehensive Plan, the Water Resources Program, the exercise of the... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Introduction. 401.0 Section 401.0 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE...
Code of Federal Regulations, 2013 CFR
2013-04-01
... the adoption and revision of the Comprehensive Plan, the Water Resources Program, the exercise of the... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Introduction. 401.0 Section 401.0 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE...
Code of Federal Regulations, 2012 CFR
2012-04-01
... the adoption and revision of the Comprehensive Plan, the Water Resources Program, the exercise of the... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Introduction. 401.0 Section 401.0 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 10 of the Delaware River Basin Compact and this regulation. Ground water recharge means the addition... REGULATIONS GROUND WATER PROTECTION AREA: PENNSYLVANIA § 430.5 Definitions. For purposes of this regulation... sufficient ground water to be important as a source of supply. Comprehensive Plan means the plans, policies...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 10 of the Delaware River Basin Compact and this regulation. Ground water recharge means the addition... REGULATIONS GROUND WATER PROTECTION AREA: PENNSYLVANIA § 430.5 Definitions. For purposes of this regulation... sufficient ground water to be important as a source of supply. Comprehensive Plan means the plans, policies...
18 CFR 401.81 - Hearings generally.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Hearings generally. 401.81 Section 401.81 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Administrative and Other Hearings § 401.81 Hearings...
18 CFR 401.84 - Hearing procedure.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Hearing procedure. 401.84 Section 401.84 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Administrative and Other Hearings § 401.84 Hearing...
18 CFR 401.77 - Informal conference.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Informal conference. 401.77 Section 401.77 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Appeals or Objections to Decisions of the Executive...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Procedure. 401.23 Section 401.23 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.23 Procedure. Each project included...
18 CFR 401.122 - Supplementary details.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Supplementary details. 401.122 Section 401.122 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE General Provisions § 401.122 Supplementary details. Forms...
18 CFR 401.124 - Construction.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Construction. 401.124 Section 401.124 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE General Provisions § 401.124 Construction. This part is...
John, Charles B.; Cheeseman, R.J.; Lorenz, J.C.; Millgate, M.L.
1978-01-01
The proposed Waste Isolation Pilot Plant (WIPP) area includes about 18,960 acres in Tps. 22 and 23 S., Rs. 30 and 31 E., New Mexico Principal Meridian, Eddy County, southeastern New Mexico. It is located within the Carlsbad Mining District about 25 miles east of Carlsbad. The WIPP area is immediately south of the Capitan Limestone subcrop, which formed the northern margin of the Delaware basin in Permian time. During Late Permian (Ochoan) time, gypsum, anhydrite, and halite were deposited in the seas of the Delaware basin to form the Castile Formation. These deposits have a maximum thickness of about 2,000 feet and grade upward into the more argillaceous beds of the Salado Formation. The Salado Formation contains abundant sulfate minerals, notably anhydrite and polyhalite. The potash ore minerals, langbeinite and sylvite, occur in the upper part of the Salado Formation in the McNutt potash zone, a local name applied to a potassium-rich zone.
Schaefer, Francis T.; Fish, Robert E.
1982-01-01
The Amended Decree of the Supreme Court of the United States in 1954 established the position of Delaware River Master to administer provisions of the decree relative to diversions from the Delaware by the City of New York and the State of New Jersey , and releases from reservoirs of the City of New York designed to maintain stipulated rates of flow in the river. Reports to the Court, not less frequently than annually, with copies to the Governors and the Mayor, were stipulated. Water-supply conditions at the beginning of the year were under a status of emergency resulting from drought, which had been declared by the Delaware River Basin Commission. With the filling of the reservoirs, the emergency was lifted April 27. Runoff of Delaware River at Montague, New Jersey, was 19 percent below median during the year as compared to 28 percent below median the previous year. By November, with reservoir storage again declining, reductions in both diversions and releases were imposed. To conserve supplies, reductions were effected on November 13 limiting New York City diversions at 680 mgd and New Jersey to 85 mgd, and the required discharge at Montague was targeted at 1,655 cfs. Water quality of the Delaware River and Estuary was monitored on a continuous basis at six sites for most of the year and on a monthly basis at ten sites to accurately locate the salt front. Highest chloride concentration observed at the Chester, PA, site was 870 mg/l November 4. (USGS)
18 CFR 430.11 - Advance notice of exploratory drilling.
Code of Federal Regulations, 2010 CFR
2010-04-01
... exploratory drilling. 430.11 Section 430.11 Conservation of Power and Water Resources DELAWARE RIVER BASIN... exploratory drilling. The Commission encourages consultation with any project sponsor who is considering... project and prior to initiation of exploratory drilling. (a) Any person, firm corporation or other entity...
18 CFR 415.31 - Prohibited uses.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Prohibited uses. 415.31 Section 415.31 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE..., radioactive materials, petroleum products or hazardous material which, if flooded, would pollute the waters of...
18 CFR 430.9 - Comprehensive plan policies.
Code of Federal Regulations, 2010 CFR
2010-04-01
... ground water levels, water quality degradation, permanent loss of storage capacity, or substantial impact... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Comprehensive plan policies. 430.9 Section 430.9 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION...
18 CFR 420.45 - Historical use.
Code of Federal Regulations, 2013 CFR
2013-04-01
... question on March 31, 1971, shall not be entitled to a certificate of entitlement. Hydroelectric Power... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Historical use. 420.45 Section 420.45 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE...
18 CFR 420.45 - Historical use.
Code of Federal Regulations, 2014 CFR
2014-04-01
... question on March 31, 1971, shall not be entitled to a certificate of entitlement. Hydroelectric Power... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Historical use. 420.45 Section 420.45 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE...
18 CFR 420.45 - Historical use.
Code of Federal Regulations, 2012 CFR
2012-04-01
... question on March 31, 1971, shall not be entitled to a certificate of entitlement. Hydroelectric Power... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Historical use. 420.45 Section 420.45 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE...
18 CFR 420.45 - Historical use.
Code of Federal Regulations, 2011 CFR
2011-04-01
... question on March 31, 1971, shall not be entitled to a certificate of entitlement. Hydroelectric Power... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Historical use. 420.45 Section 420.45 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE...
18 CFR 430.11 - Advance notice of exploratory drilling.
Code of Federal Regulations, 2011 CFR
2011-04-01
... exploratory drilling. 430.11 Section 430.11 Conservation of Power and Water Resources DELAWARE RIVER BASIN... exploratory drilling. The Commission encourages consultation with any project sponsor who is considering... project and prior to initiation of exploratory drilling. (a) Any person, firm corporation or other entity...
18 CFR 430.11 - Advance notice of exploratory drilling.
Code of Federal Regulations, 2013 CFR
2013-04-01
... exploratory drilling. 430.11 Section 430.11 Conservation of Power and Water Resources DELAWARE RIVER BASIN... exploratory drilling. The Commission encourages consultation with any project sponsor who is considering... project and prior to initiation of exploratory drilling. (a) Any person, firm corporation or other entity...
18 CFR 430.11 - Advance notice of exploratory drilling.
Code of Federal Regulations, 2012 CFR
2012-04-01
... exploratory drilling. 430.11 Section 430.11 Conservation of Power and Water Resources DELAWARE RIVER BASIN... exploratory drilling. The Commission encourages consultation with any project sponsor who is considering... project and prior to initiation of exploratory drilling. (a) Any person, firm corporation or other entity...
18 CFR 430.11 - Advance notice of exploratory drilling.
Code of Federal Regulations, 2014 CFR
2014-04-01
... exploratory drilling. 430.11 Section 430.11 Conservation of Power and Water Resources DELAWARE RIVER BASIN... exploratory drilling. The Commission encourages consultation with any project sponsor who is considering... project and prior to initiation of exploratory drilling. (a) Any person, firm corporation or other entity...
18 CFR 415.50 - General conditions.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false General conditions. 415.50 Section 415.50 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... having the same or similar effect on the flood hazard as this regulation, the Commission may condition...
18 CFR 415.32 - Permitted uses generally.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Permitted uses generally. 415.32 Section 415.32 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION..., picnic grounds, boat launching ramps, swimming areas, parks, wildlife and nature preserves, game farms...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Scope. 401.21 Section 401.21 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.21 Scope. This subpart shall govern the...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Scope. 401.21 Section 401.21 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.21 Scope. This subpart shall govern the...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Scope. 401.21 Section 401.21 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.21 Scope. This subpart shall govern the...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Scope. 401.21 Section 401.21 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.21 Scope. This subpart shall govern the...
18 CFR 401.113 - Segregable materials.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Segregable materials. 401.113 Section 401.113 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public Access to Records and Information § 401.113...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Scope. 401.71 Section 401.71 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Appeals or Objections to Decisions of the Executive Director in Water...
18 CFR 401.5 - Review of applications.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Review of applications. 401.5 Section 401.5 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Comprehensive Plan § 401.5 Review of applications...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Fees. 401.110 Section 401.110 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public Access to Records and Information § 401.110 Fees. (a...
18 CFR 401.112 - Exempt information.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Exempt information. 401.112 Section 401.112 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public Access to Records and Information § 401.112 Exempt...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Scope. 401.21 Section 401.21 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.21 Scope. This subpart shall govern the...
18 CFR 401.83 - Hearing Officer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Hearing Officer. 401.83 Section 401.83 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Administrative and Other Hearings § 401.83 Hearing Officer. (a...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Definitions. 401.121 Section 401.121 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE General Provisions § 401.121 Definitions. For the purposes of this...
18 CFR 401.109 - Time limitations.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Time limitations. 401.109 Section 401.109 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public Access to Records and Information § 401.109 Time...
18 CFR 401.94 - Adjudicatory hearings.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Adjudicatory hearings. 401.94 Section 401.94 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Penalties and Settlements in Lieu of Penalties § 401.94...
18 CFR 401.78 - Consolidation of hearings.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Consolidation of hearings. 401.78 Section 401.78 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Appeals or Objections to Decisions of the Executive...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Scope. 401.1 Section 401.1 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Comprehensive Plan § 401.1 Scope. This subpart shall govern the...
18 CFR 401.7 - Further action.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Further action. 401.7 Section 401.7 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Comprehensive Plan § 401.7 Further action. The Commission will...
18 CFR 401.7 - Further action.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Further action. 401.7 Section 401.7 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Comprehensive Plan § 401.7 Further action. The Commission will...
Baker, Ronald J.; Esralew, Rachel A.
2010-01-01
Concentrations and loads of water-quality constituents in six streams in the lower Delaware River Basin of New Jersey were determined in a multi-year study conducted by the U.S. Geological Survey, in cooperation with the New Jersey Department of Environmental Protection. Two streams receive water from relatively undeveloped basins, two from largely agricultural basins, and two from heavily urbanized basins. Each stream was monitored during eight storms and at least eight times during base flow during 2002-07. Sampling was conducted during base flow before each storm, when stage was first observed to rise, and several times during the rising limb of the hydrographs. Agricultural and urban land use has resulted in statistically significant increases in loads of nitrogen and phosphorus species relative to loads in undeveloped basins. For example, during the growing season, median storm flow concentrations of total nitrogen in the two streams in agricultural areas were 6,290 and 1,760 mg/L, compared to 988 and 823 mg/L for streams in urban areas, and 719 and 333 mg/L in undeveloped areas. Although nutrient concentrations and loads were clearly related to land useurban, agricultural, and undeveloped within the drainage basins, other basin characteristics were found to be important. Residual nutrients entrapped in lake sediments from streams that received effluent from recently removed sewage-treatment plants are hypothesized to be the cause of extremely high levels of nutrient loads to one urban stream, whereas another urban stream with similar land-use percentages (but without the legacy of sewage-treatment plants) had much lower levels of nutrients. One of the two agricultural streams studied had higher nutrient loads than the other, especially for total phosphorous and organic nitrogen. This difference appears to be related to the presence (or absence) of livestock (cattle).
18 CFR 401.6 - Proposed revisions and changes.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Proposed revisions and changes. 401.6 Section 401.6 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Comprehensive Plan § 401.6 Proposed revisions and changes...
18 CFR 401.6 - Proposed revisions and changes.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Proposed revisions and changes. 401.6 Section 401.6 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Comprehensive Plan § 401.6 Proposed revisions and changes...
18 CFR 401.6 - Proposed revisions and changes.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Proposed revisions and changes. 401.6 Section 401.6 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Comprehensive Plan § 401.6 Proposed revisions and changes...
18 CFR 401.6 - Proposed revisions and changes.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Proposed revisions and changes. 401.6 Section 401.6 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Comprehensive Plan § 401.6 Proposed revisions and changes...
18 CFR 415.3 - Purpose and findings.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Purpose and findings. 415.3 Section 415.3 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... flood plain users shall bear the full direct and indirect costs attributable to their use and actions...
18 CFR 401.36 - Water supply projects-Conservation requirements.
Code of Federal Regulations, 2010 CFR
2010-04-01
... leak detection and control program; (2) Use of the best practicable water-conserving devices and... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Water supply projects-Conservation requirements. 401.36 Section 401.36 Conservation of Power and Water Resources DELAWARE RIVER BASIN...
18 CFR 401.2 - Concept of the plan.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Concept of the plan. 401.2 Section 401.2 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... changing conditions, research results and new technology. The degree of detail described in particular...
18 CFR 401.87 - Assessment of costs; Appeals.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Assessment of costs; Appeals. 401.87 Section 401.87 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Administrative and Other Hearings § 401.87 Assessment of...
18 CFR 401.87 - Assessment of costs; Appeals.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Assessment of costs; Appeals. 401.87 Section 401.87 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Administrative and Other Hearings § 401.87 Assessment of...
18 CFR 401.87 - Assessment of costs; Appeals.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Assessment of costs; Appeals. 401.87 Section 401.87 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Administrative and Other Hearings § 401.87 Assessment of...
18 CFR 401.87 - Assessment of costs; Appeals.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Assessment of costs; Appeals. 401.87 Section 401.87 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Administrative and Other Hearings § 401.87 Assessment of...
78 FR 24186 - Notice of Public Hearing and Business Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-24
... DELAWARE RIVER BASIN COMMISSION Notice of Public Hearing and Business Meeting Notice is hereby... business meeting will be held the following day on Wednesday, May 8, 2013. Both the hearing and business... the Commission. In a departure from past practice, the Commission's business meeting on May 8, 2013...
18 CFR 430.19 - Ground water withdrawal metering, recording, and reporting.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Ground water withdrawal metering, recording, and reporting. 430.19 Section 430.19 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION SPECIAL REGULATIONS GROUND WATER PROTECTION AREA: PENNSYLVANIA § 430.19...
18 CFR 401.9 - Custody and availability.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Custody and availability. 401.9 Section 401.9 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Comprehensive Plan § 401.9 Custody and availability. The...
18 CFR 401.97 - Enforcement of penalties.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Enforcement of penalties. 401.97 Section 401.97 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... authorized to take such action as may be necessary to assure enforcement of this subpart. If a proceeding...
18 CFR 401.5 - Review of applications.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Review of applications. 401.5 Section 401.5 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... public hearing upon notice thereon as provided in paragraph 14.4(b) of the Compact and may take such...
18 CFR 415.32 - Permitted uses generally.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Permitted uses generally. 415.32 Section 415.32 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... riding trails. (4) Uses such as lawns, gardens, parking areas and play areas. (b) Within the flood fringe...
18 CFR 415.31 - Prohibited uses.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Prohibited uses. 415.31 Section 415.31 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE... structure for occupancy at any time by humans or animals. (2) Placing, or depositing, or dumping any spoil...
18 CFR 415.31 - Prohibited uses.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Prohibited uses. 415.31 Section 415.31 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE... structure for occupancy at any time by humans or animals. (2) Placing, or depositing, or dumping any spoil...
18 CFR 415.31 - Prohibited uses.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Prohibited uses. 415.31 Section 415.31 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE... structure for occupancy at any time by humans or animals. (2) Placing, or depositing, or dumping any spoil...
18 CFR 401.24 - Preparation and adoption.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Preparation and adoption. 401.24 Section 401.24 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.24 Preparation and adoption...
18 CFR 401.24 - Preparation and adoption.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Preparation and adoption. 401.24 Section 401.24 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.24 Preparation and adoption...
18 CFR 401.26 - Inventory of other projects.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Inventory of other projects. 401.26 Section 401.26 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.26 Inventory of other...
18 CFR 401.22 - Concept of the Program.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Concept of the Program. 401.22 Section 401.22 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.22 Concept of the Program...
18 CFR 401.26 - Inventory of other projects.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Inventory of other projects. 401.26 Section 401.26 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.26 Inventory of other...
18 CFR 401.22 - Concept of the Program.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Concept of the Program. 401.22 Section 401.22 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.22 Concept of the Program...
18 CFR 401.25 - Alternatives for public projects.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Alternatives for public projects. 401.25 Section 401.25 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.25 Alternatives for public...
18 CFR 401.25 - Alternatives for public projects.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Alternatives for public projects. 401.25 Section 401.25 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.25 Alternatives for public...
18 CFR 401.24 - Preparation and adoption.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Preparation and adoption. 401.24 Section 401.24 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.24 Preparation and adoption...
18 CFR 401.25 - Alternatives for public projects.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Alternatives for public projects. 401.25 Section 401.25 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.25 Alternatives for public...
18 CFR 401.22 - Concept of the Program.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Concept of the Program. 401.22 Section 401.22 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.22 Concept of the Program...
18 CFR 401.26 - Inventory of other projects.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Inventory of other projects. 401.26 Section 401.26 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.26 Inventory of other...
18 CFR 401.25 - Alternatives for public projects.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Alternatives for public projects. 401.25 Section 401.25 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.25 Alternatives for public...
18 CFR 401.24 - Preparation and adoption.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Preparation and adoption. 401.24 Section 401.24 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.24 Preparation and adoption...
18 CFR 401.22 - Concept of the Program.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Concept of the Program. 401.22 Section 401.22 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.22 Concept of the Program...
18 CFR 401.26 - Inventory of other projects.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Inventory of other projects. 401.26 Section 401.26 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.26 Inventory of other...
18 CFR 401.93 - The record for decision-making.
Code of Federal Regulations, 2010 CFR
2010-04-01
... record for decision-making. (a) Written submission. In addition to the information required by the... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false The record for decision-making. 401.93 Section 401.93 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION...
18 CFR 401.83 - Hearing Officer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Hearing Officer. 401.83 Section 401.83 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE... persons. One of them shall be nominated by the water pollution control agency of the state in which the...
18 CFR 401.83 - Hearing Officer.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Hearing Officer. 401.83 Section 401.83 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE... persons. One of them shall be nominated by the water pollution control agency of the state in which the...
18 CFR 401.83 - Hearing Officer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Hearing Officer. 401.83 Section 401.83 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE... persons. One of them shall be nominated by the water pollution control agency of the state in which the...
18 CFR 401.83 - Hearing Officer.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Hearing Officer. 401.83 Section 401.83 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE... persons. One of them shall be nominated by the water pollution control agency of the state in which the...
18 CFR 430.19 - Ground water withdrawal metering, recording, and reporting.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Ground water withdrawal... DELAWARE RIVER BASIN COMMISSION SPECIAL REGULATIONS GROUND WATER PROTECTION AREA: PENNSYLVANIA § 430.19 Ground water withdrawal metering, recording, and reporting. (a) Each person, firm, corporation, or other...
18 CFR 401.102 - Partial disclosure of records.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Partial disclosure of records. 401.102 Section 401.102 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public Access to Records and Information § 401.102 Partial...
18 CFR 401.40 - Informal conferences and emergencies.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Informal conferences and emergencies. 401.40 Section 401.40 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Project Review Under Section 3.8 of the...
18 CFR 401.92 - Notice to possible violators.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Notice to possible violators. 401.92 Section 401.92 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Penalties and Settlements in Lieu of Penalties § 401.92...
18 CFR 401.104 - Preparation of new records.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Preparation of new records. 401.104 Section 401.104 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public Access to Records and Information § 401.104...
18 CFR 401.82 - Authorization to conduct hearings.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Authorization to conduct hearings. 401.82 Section 401.82 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Administrative and Other Hearings § 401.82...
18 CFR 401.33 - Administrative agreements.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Administrative agreements. 401.33 Section 401.33 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Project Review Under Section 3.8 of the Compact § 401.33...
18 CFR 401.99 - Suspension or modification of penalty.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Suspension or modification of penalty. 401.99 Section 401.99 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Penalties and Settlements in Lieu of...
18 CFR 401.105 - Indexes of certain records.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Indexes of certain records. 401.105 Section 401.105 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public Access to Records and Information § 401.105 Indexes...
18 CFR 401.86 - Record of proceedings.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Record of proceedings. 401.86 Section 401.86 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Administrative and Other Hearings § 401.86 Record of...
18 CFR 401.101 - Policy on disclosure of Commission records.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Policy on disclosure of Commission records. 401.101 Section 401.101 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public Access to Records and Information...
18 CFR 401.117 - Disclosure to other Federal government departments and agencies.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Disclosure to other Federal government departments and agencies. 401.117 Section 401.117 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public...
18 CFR 401.89 - Action by the Commission.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Action by the Commission. 401.89 Section 401.89 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Administrative and Other Hearings § 401.89 Action by the...
18 CFR 401.103 - Request for existing records.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Request for existing records. 401.103 Section 401.103 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public Access to Records and Information § 401.103 Request...
18 CFR 401.9 - Custody and availability.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Custody and availability. 401.9 Section 401.9 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Comprehensive Plan § 401.9 Custody and availability. The...
18 CFR 401.6 - Proposed revisions and changes.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Proposed revisions and changes. 401.6 Section 401.6 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Comprehensive Plan § 401.6 Proposed revisions and changes...
18 CFR 401.111 - Waiver of fees.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Waiver of fees. 401.111 Section 401.111 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public Access to Records and Information § 401.111 Waiver of fees...
18 CFR 401.95 - Assessment of a penalty.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Assessment of a penalty. 401.95 Section 401.95 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Penalties and Settlements in Lieu of Penalties § 401.95...
18 CFR 401.37 - Sequence of approval.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Sequence of approval. 401.37 Section 401.37 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Project Review Under Section 3.8 of the Compact § 401.37...
18 CFR 401.88 - Findings, report and Commission review.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Findings, report and Commission review. 401.88 Section 401.88 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Administrative and Other Hearings § 401.88...
18 CFR 401.3 - Other agencies.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Other agencies. 401.3 Section 401.3 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Comprehensive Plan § 401.3 Other agencies. Projects of the federal...
18 CFR 401.24 - Preparation and adoption.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Preparation and adoption. 401.24 Section 401.24 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.24 Preparation and adoption...
18 CFR 401.22 - Concept of the Program.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Concept of the Program. 401.22 Section 401.22 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.22 Concept of the Program...
18 CFR 401.97 - Enforcement of penalties.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Enforcement of penalties. 401.97 Section 401.97 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Penalties and Settlements in Lieu of Penalties § 401.97...
18 CFR 401.72 - Notice and request for hearing.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Notice and request for hearing. 401.72 Section 401.72 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Appeals or Objections to Decisions of the Executive...
18 CFR 401.118 - Disclosure in administrative or court proceedings.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Disclosure in administrative or court proceedings. 401.118 Section 401.118 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public Access to Records...
18 CFR 401.73 - Form of request.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Form of request. 401.73 Section 401.73 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Appeals or Objections to Decisions of the Executive Director in...
18 CFR 401.106 - FOIA Officer.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false FOIA Officer. 401.106 Section 401.106 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public Access to Records and Information § 401.106 FOIA Officer...
18 CFR 401.87 - Assessment of costs; Appeals.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Assessment of costs; Appeals. 401.87 Section 401.87 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Administrative and Other Hearings § 401.87 Assessment of...
18 CFR 401.26 - Inventory of other projects.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Inventory of other projects. 401.26 Section 401.26 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.26 Inventory of other...
18 CFR 401.115 - Discretionary disclosure by the Executive Director.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Discretionary disclosure by the Executive Director. 401.115 Section 401.115 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public Access to...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Scope. 401.31 Section 401.31 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Project Review Under Section 3.8 of the Compact § 401.31 Scope. This...
18 CFR 401.91 - Scope of subpart.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Scope of subpart. 401.91 Section 401.91 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Penalties and Settlements in Lieu of Penalties § 401.91...
18 CFR 401.41 - Limitation of approval.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Limitation of approval. 401.41 Section 401.41 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Project Review Under Section 3.8 of the Compact § 401.41...
18 CFR 401.119 - Disclosure to Congress.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Disclosure to Congress. 401.119 Section 401.119 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public Access to Records and Information § 401.119...
18 CFR 401.107 - Permanent file of requests for Commission records.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Permanent file of requests for Commission records. 401.107 Section 401.107 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public Access to Records...
18 CFR 401.36 - Water supply projects-Conservation requirements.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Water supply projects-Conservation requirements. 401.36 Section 401.36 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Project Review Under Section 3.8 of the...
18 CFR 401.76 - Failure to furnish report.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Failure to furnish report. 401.76 Section 401.76 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Appeals or Objections to Decisions of the Executive...
18 CFR 401.4 - Project applications and proposed revisions and changes.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Project applications and proposed revisions and changes. 401.4 Section 401.4 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Comprehensive Plan...
18 CFR 401.74 - Form and contents of report.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Form and contents of report. 401.74 Section 401.74 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Appeals or Objections to Decisions of the Executive...
18 CFR 401.25 - Alternatives for public projects.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Alternatives for public projects. 401.25 Section 401.25 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.25 Alternatives for public...
18 CFR 401.123 - Waiver of rules.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Waiver of rules. 401.123 Section 401.123 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE General Provisions § 401.123 Waiver of rules. The...
NASA Astrophysics Data System (ADS)
Hoyos, Isabel; Baquero-Bernal, Astrid; Hagemann, Stefan
2013-09-01
In Colombia, the access to climate related observational data is restricted and their quantity is limited. But information about the current climate is fundamental for studies on present and future climate changes and their impacts. In this respect, this information is especially important over the Colombian Caribbean Catchment Basin (CCCB) that comprises over 80 % of the population of Colombia and produces about 85 % of its GDP. Consequently, an ensemble of several datasets has been evaluated and compared with respect to their capability to represent the climate over the CCCB. The comparison includes observations, reconstructed data (CPC, Delaware), reanalyses (ERA-40, NCEP/NCAR), and simulated data produced with the regional climate model REMO. The capabilities to represent the average annual state, the seasonal cycle, and the interannual variability are investigated. The analyses focus on surface air temperature and precipitation as well as on surface water and energy balances. On one hand the CCCB characteristics poses some difficulties to the datasets as the CCCB includes a mountainous region with three mountain ranges, where the dynamical core of models and model parameterizations can fail. On the other hand, it has the most dense network of stations, with the longest records, in the country. The results can be summarised as follows: all of the datasets demonstrate a cold bias in the average temperature of CCCB. However, the variability of the average temperature of CCCB is most poorly represented by the NCEP/NCAR dataset. The average precipitation in CCCB is overestimated by all datasets. For the ERA-40, NCEP/NCAR, and REMO datasets, the amplitude of the annual cycle is extremely high. The variability of the average precipitation in CCCB is better represented by the reconstructed data of CPC and Delaware, as well as by NCEP/NCAR. Regarding the capability to represent the spatial behaviour of CCCB, temperature is better represented by Delaware and REMO, while precipitation is better represented by Delaware. Among the three datasets that permit an analysis of surface water and energy balances (REMO, ERA-40, and NCEP/NCAR), REMO best demonstrates the closure property of the surface water balance within the basin, while NCEP/NCAR does not demonstrate this property well. The three datasets represent the energy balance fairly well, although some inconsistencies were found in the individual balance components for NCEP/NCAR.
18 CFR 420.41 - Schedule of water charges.
Code of Federal Regulations, 2012 CFR
2012-04-01
... schedule of water charges. Until changed, the charge for water shall be as follows: (a) $80 per million... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Schedule of water charges. 420.41 Section 420.41 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION...
18 CFR 420.41 - Schedule of water charges.
Code of Federal Regulations, 2013 CFR
2013-04-01
... schedule of water charges. Until changed, the charge for water shall be as follows: (a) $80 per million... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Schedule of water charges. 420.41 Section 420.41 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION...
18 CFR 420.41 - Schedule of water charges.
Code of Federal Regulations, 2014 CFR
2014-04-01
... schedule of water charges. Until changed, the charge for water shall be as follows: (a) $80 per million... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Schedule of water charges. 420.41 Section 420.41 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION...
Peter S. Murdoch; Jennifer C. Jenkins; Richard A. Birdsey
2008-01-01
The U.S. Forest Service, the U.S. Geological Survey, and the National Park Service formed the Collaborative Environmental Monitoring and Research Initiative (CEMRI) to test strategies for integrated environmental monitoring among the agencies. The initiative combined monitoring and research efforts of the participating Federal programs to evaluate health and...
18 CFR 401.32 - Concept of 3.8.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Concept of 3.8. 401.32 Section 401.32 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Project Review Under Section 3.8 of the Compact § 401.32 Concept...
78 FR 39715 - Notice of Public Hearing and Business Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-02
... DELAWARE RIVER BASIN COMMISSION Notice of Public Hearing and Business Meeting Notice is hereby... business meeting will be held the following day on Wednesday, July 10, 2013. Both the hearing and business... noted there. Public Meeting. The business meeting on July 10, 2013 will begin at 12:15 p.m. and will...
18 CFR 401.74 - Form and contents of report.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Form and contents of report. 401.74 Section 401.74 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION..., solid, radioactive, or other substance composing the discharge in whole or in part; (3) The thermal...
18 CFR 401.74 - Form and contents of report.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Form and contents of report. 401.74 Section 401.74 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION..., solid, radioactive, or other substance composing the discharge in whole or in part; (3) The thermal...
18 CFR 401.74 - Form and contents of report.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Form and contents of report. 401.74 Section 401.74 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION..., solid, radioactive, or other substance composing the discharge in whole or in part; (3) The thermal...
76 FR 71558 - Notice of Commission Meeting and Public Hearing
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-18
... DELAWARE RIVER BASIN COMMISSION Notice of Commission Meeting and Public Hearing Notice is hereby... hearing on Thursday, December 8, 2011. The hearing will be part of the Commission's regularly scheduled... Public Hearing. The subjects of the public hearing to be held during the 1:30 p.m. business meeting on...
18 CFR 415.51 - Prior non-conforming structures.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Prior non-conforming structures. 415.51 Section 415.51 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... damaged by any means, including a flood, to the extent of 50 percent or more of its market value at that...
Assessments of the effectiveness of stormwater best management practices (BMPs) have focused on measurement of load or concentration reductions, which can be translated to predict biological impacts based on chemical water quality criteria. However, many of the impacts of develo...
Monitoring hemlock woolly adelgid and assessing its impacts in the Delaware River Basin
David W. Williams; Michael E. Montgomery; Kathleen S. Shields
2002-01-01
The Collaborative Environmental Monitoring and Research Initiative (CEMRI) was established recently to test strategies for multi-agency collaboration in environmental monitoring (Murdoch and Jenkins 2002). Participating agencies include the U.S. Geological Survey (USGS), USDA Forest Service, National Park Service, National Aeronautics and Space Administration, and U.S...
This study is based on the assumption that land cover change and rainfall spatial variability affect the r-ainfall-runoff relationships on the watershed. Hydrologic response is an integrated indicator of watershed condition, and changes in land cover may affect the overall health...
18 CFR 401.93 - The record for decision-making.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false The record for decision-making. 401.93 Section 401.93 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Penalties and Settlements in Lieu of Penalties § 401.93 The...
18 CFR 401.108 - Filing a request for records.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Filing a request for records. 401.108 Section 401.108 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public Access to Records and Information § 401.108 Filing a...
18 CFR 401.114 - Data and information previously disclosed to the public.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Data and information previously disclosed to the public. 401.114 Section 401.114 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public Access to...
18 CFR 401.8 - Public projects under Article 11 of the Compact.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Public projects under Article 11 of the Compact. 401.8 Section 401.8 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Comprehensive Plan § 401.8 Public...
18 CFR 401.85 - Staff and other expert testimony.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Staff and other expert testimony. 401.85 Section 401.85 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Administrative and Other Hearings § 401.85 Staff and other...
18 CFR 401.90 - Appeals from final Commission action; Time for appeals.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Appeals from final Commission action; Time for appeals. 401.90 Section 401.90 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Administrative and Other...
18 CFR 401.32 - Concept of 3.8.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Concept of 3.8. 401.32 Section 401.32 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Project Review Under Section 3.8 of the Compact § 401.32 Concept...
18 CFR 401.98 - Settlement by agreement in lieu of penalty.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Settlement by agreement in lieu of penalty. 401.98 Section 401.98 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Penalties and Settlements in Lieu...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Disclosure to consultants, advisory committees, State and local government officials, and other special government employees. 401.116 Section 401.116 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION...
18 CFR 401.2 - Concept of the plan.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Concept of the plan. 401.2 Section 401.2 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Comprehensive Plan § 401.2 Concept of the plan. (a) The...
18 CFR 401.38 - Form of referral by State or Federal agency.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Form of referral by State or Federal agency. 401.38 Section 401.38 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Project Review Under Section 3.8...
18 CFR 401.96 - Factors to be applied in fixing penalty amount.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Factors to be applied in fixing penalty amount. 401.96 Section 401.96 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Penalties and Settlements...
18 CFR 401.34 - Submission of project required.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Submission of project required. 401.34 Section 401.34 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Project Review Under Section 3.8 of the Compact § 401.34...
18 CFR 401.76 - Failure to furnish report.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Failure to furnish report. 401.76 Section 401.76 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... Director in Water Qualtity Cases § 401.76 Failure to furnish report. The Executive Director may, upon five...
18 CFR 401.76 - Failure to furnish report.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Failure to furnish report. 401.76 Section 401.76 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... Director in Water Qualtity Cases § 401.76 Failure to furnish report. The Executive Director may, upon five...
18 CFR 401.76 - Failure to furnish report.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Failure to furnish report. 401.76 Section 401.76 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... Director in Water Qualtity Cases § 401.76 Failure to furnish report. The Executive Director may, upon five...
18 CFR 401.76 - Failure to furnish report.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Failure to furnish report. 401.76 Section 401.76 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... Director in Water Qualtity Cases § 401.76 Failure to furnish report. The Executive Director may, upon five...
NASA Technical Reports Server (NTRS)
Pluhowski, E. J. (Principal Investigator)
1977-01-01
The author has identified the following significant results. Land use data derived from high altitude photography and satellite imagery were studied for 49 basins in Delaware, and eastern Maryland and Virginia. Applying multiple regression techniques to a network of gaging stations monitoring runoff from 39 of the basins, demonstrated that land use data from high altitude photography provided an effective means of significantly improving estimates of stream flow. Forty stream flow characteristic equations for incorporating remotely sensed land use information, were compared with a control set of equations using map derived land cover. Significant improvement was detected in six equations where level 1 data was added and in five equations where level 2 information was utilized. Only four equations were improved significantly using land use data derived from LANDSAT imagery. Significant losses in accuracy due to the use of remotely sensed land use information were detected only in estimates of flood peaks. Losses in accuracy for flood peaks were probably due to land cover changes associated with temporal differences among the primary land use data sources.
The report describes a technical assistance project that explored how smart growth and sustainable stormwater management approaches (known as green infrastructure) could be applied to Sussex County, DE.
Schaefer, Francis T.; Fish, Robert E.
1982-01-01
Water supply conditions at the beginning of the year were marginal in marked contrast to those for the preceeding nine years. Discharge of the Delaware River at Montague, New Jersey, was only 72% of median as compared to 68% in excess of median the previous year. In December, with reservoir storage again declining, further reductions in both diversions and releases were imposed. With consent of all the parties, reductions were effected on December 20 limiting New York City diversions to 560 mgd, New Jersey to 65 mgd, and the required discharge at Montague was targeted at 1550 cfs. To conserve supplies, additional reductions were imposed in January when the Delaware River basin Commission formally declared a drought. New York City 's limitations was set at 520 mgd and that for New Jersey at 62 mgd. Montague flows were targeted between 1100 cfs, depending upon the location of the salt front in the estuary. Water quality of the Delaware River and Estuary was monitored on a continuous basis at eight sites for most of the year and on a monthly basis at ten sites to accurately locate the salt front. Highest concentrations observed at the Benjamin Franklin Bridge site was 133 mg/l (milligram per liter) on February 2. (USGS)
Vocational Education's New Job: Defend Thyself--Supporters Hope Congress Will Deflect Budget Knife
ERIC Educational Resources Information Center
Cavanagh, Sean
2005-01-01
When educators from across the country, and even other nations, are looking for ideas on how to blend career and technical training with demanding academics, their search often takes them to this rural pocket of southern Delaware, the home of Sussex Technical High School. Fifteen years after overhauling its mission, this school framed by fields…
Riva-Murray, Karen; Brightbill, Robin A.; Bilger, Michael D.
2003-01-01
Trends in concentrations of polychlorinated biphenyls in fish tissue from selected sites in the Delaware River basin in New Jersey, New York, and Pennsylvania, 1969-98 by Karen Riva-Murray, Robin A. Brightbill, and Michael D. Bilger U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 01-4066 ABSTRACT Polychlorinated biphenyl (PCB) concentrations in fish tissue collected during the 1990's from selected sites in the Delaware River Basin were compared with concentrations in fish tissue collected during 1969-88. Data collected by State and Federal agencies on concentrations in whole-body common carp (Cyprinus carpio) and white sucker (Catostomus commersoni), and edible portions of American eel (Anguilla rostrata), smallmouth bass (Micropterus dolomieu), and channel catfish (Ictalurus punctatus) during 1969-98 were compiled to define temporal trends in concentrations of PCBs in fish tissue from selected segments of the Delaware River, Lehigh River, Schuylkill River, and Brandywine Creek. The Delaware River in the vicinity of Trenton, New Jersey and Yardley, Pennsylvania (above the tidal influence) had the largest long-term data set among the sites considered for this study and was the only site with sufficient data for statistical analysis. A general pattern of decline in PCB concentrations during 1969-98 was apparent for this river segment. PCB concentrations in whole-body white sucker from this lower Delaware River segment declined during 1969-98 from a highest concentration of 7 micrograms per gram (?g/g, wet weight) in a sample collected during 1972 to 0.26 ?g/g (wet weight) in a sample collected during 1998. PCB concentration was negatively correlated with year (Spearman rank correlation -0.46, p < 0.08, n = 15); especially after removal of a sample from 1977 with an unusually low concentration (Spearman rank correlation -0.53, p = 0.05, n = 14). PCB concentrations in edible flesh of American eel declined during 1975-95, from a highest concentration of 3.8 ?g/g (wet weight) in a sample collected during 1976 to less than the reporting limit of 0.26 ?g/g (wet weight) in samples collected during 1993 and 1995. PCB concentrations in most samples (for species considered in this study) collected from the lower Delaware River exceeded the National Academy of Sciences and National Academy of Engineering (NAS/NAE) wildlife guideline level of 0.5 ?g/g during the 1970's and 1980's, and decreased to below this level during the 1990's. No samples of edible portions of game fish exceeded the U.S. Food and Drug Administration (FDA) tolerance level by the mid 1980's. However, the PCB concentration in a smallmouth bass fillet sample that was collected during 1998 (0.37 ?g/g) exceeded the Pennsylvania fish-consumption advisory level of 0.06 ?g/g, and the concentrations in whole-body common carp and white sucker collected during 1998 (1.10 ?g/g and 0.26 ?g/g, respectively) exceeded the New York State Department of Environmental Conservation wildlife criterion concentration of 0.11 ?g/g. (The concentration in carp also exceeded the 1973 NAS/NAE wildlife guideline concentration of 0.5 ?g/g.) Graphical analysis of PCB concentrations in whole white sucker and (or) edible portions of American eel from the upper Delaware River, lower Delaware River, middle Schuylkill River, and Brandywine Creek indicate a decline from the 1970's and (or) 1980's to the middle to late 1990's. Temporal trends in PCB concentrations in white sucker samples from the lower Lehigh and Schuylkill Rivers during 1979-98 are less clear; the PCB concentration (wet-weight basis) from a sample collected in 1998 from the lower Lehigh River was similar to that from a sample collected in 1979, and concentrations actually increased during 1982-98. Similarly, PCB concentrations in samples of white sucker and American eel from the lower Schuylkill River were highly variable over time. A decrease in lipid-adjusted PCB concentrations at both sites (for several whi
Bing Xu; Yude Pan; Alain F. Plante; Kevin McCullough; Richard Birdsey
2017-01-01
Process-based models are a powerful approach to test our understanding of biogeochemical processes, to extrapolate ground survey data from limited plots to the landscape scale, and to simulate the effects of climate change, nitrogen deposition, elevated atmospheric CO2, increasing natural disturbances, and land-use change on ecological processes...
1980-03-01
Magothy and Raritan Formations. These marine formations are comprised of alternating beds of clay and sand. Assunpink Creek is near the westerly extent...of the Magothy and Raritan formations and their overall thickness may be as little as twenty five feet. Precambrian bedrock underlies these
2.0 Introduction to the Delaware River Basin pilot study
Peter S. Murdoch; Jennifer C. Jenkins; Richard A. Birdsey
2008-01-01
The past 20 years of environmental research have shown that the environment is not made up of discrete components acting independently, but rather it is a mosaic of complex relationships among air, land, water, living resources, and human activities. The data collection and analytical capabilities of current ecosystem assessment and monitoring programs are insufficient...
The development of rapid assessment methods has become a priority for many organizations that want to report on the condition of wetlands at larger scales requiring many sampling sites. To have faith in these rapid methods, however, requires that they be verified with more compr...
4.0 Measuring and monitoring forest carbon stocks and fluxes
Jennifer C. Jenkins; Peter S. Murdoch; Richard A. Birdsey; John L. Hom
2008-01-01
Measuring and monitoring forest productivity and carbon (C) is of growing concern for natural resource managers and policymakers. With the Delaware River Basin (DRB) as a pilot region, this subproject of the CEMRI sought to: improve the ability of the ground-based Forest Inventory and Analysis (FIA) networks to more completely assess forest C stocks and fluxes,...
18 CFR 430.7 - Determination of protected areas and restriction on water use.
Code of Federal Regulations, 2013 CFR
2013-04-01
... protected areas and restriction on water use. 430.7 Section 430.7 Conservation of Power and Water Resources... Determination of protected areas and restriction on water use. In consideration of the foregoing facts and for... a protected area within the meaning and for the purpose of Article 10 of the Delaware River Basin...
18 CFR 430.7 - Determination of protected areas and restriction on water use.
Code of Federal Regulations, 2012 CFR
2012-04-01
... protected areas and restriction on water use. 430.7 Section 430.7 Conservation of Power and Water Resources... Determination of protected areas and restriction on water use. In consideration of the foregoing facts and for... a protected area within the meaning and for the purpose of Article 10 of the Delaware River Basin...
18 CFR 430.7 - Determination of protected areas and restriction on water use.
Code of Federal Regulations, 2014 CFR
2014-04-01
... protected areas and restriction on water use. 430.7 Section 430.7 Conservation of Power and Water Resources... Determination of protected areas and restriction on water use. In consideration of the foregoing facts and for... a protected area within the meaning and for the purpose of Article 10 of the Delaware River Basin...
Method comparison for forest soil carbon and nitrogen estimates in the Delaware River basin
B. Xu; Yude Pan; A.H. Johnson; A.F. Plante
2016-01-01
The accuracy of forest soil C and N estimates is hampered by forest soils that are rocky, inaccessible, and spatially heterogeneous. A composite coring technique is the standard method used in Forest Inventory and Analysis, but its accuracy has been questioned. Quantitative soil pits provide direct measurement of rock content and soil mass from a larger, more...
Karen Riva-Murray; Rachel Riemann; Peter Murdoch; Jeffrey M. Fischer; Robin. Brightbill
2010-01-01
Widespread and increasing urbanization has resulted in the need to assess, monitor, and understand its effects on stream water quality. Identifying relations between stream ecological condition and urban intensity indicators such as impervious surface provides important, but insufficient information to effectively address planning and management needs in such areas. In...
2009-06-01
155 SECTION II: PREVENTING RECURRING INVASIVE SPECIES AND RESTORING HISTORICAL PLANT COMMUNITIES ...Wilcove et al. 1998, Westbrook et al. 2005). Beyond degradation to ecological communities , invasive species can threaten human health and cause...recurrence of problem invasive species. This section also gives recommendations for returning management areas to historical native plant communities
5.0 Monitoring methods for forests vulnerable to non-native invasive pest species
David W. Williams; Michael E. Montgomery; Kathleen S. Shields; Richard A. Evans
2008-01-01
Non-native invasive species pose a serious threat to forest resources, requiring programs to monitor their spatial spread and the damage they inflict on forest ecosystems. Invasive species research in the Delaware River Basin (DRB) had three primary objectives: to develop and evaluate monitoring protocols for selected pests and resulting ecosystem damage at the IMRAs...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Form of submission of projects not requiring prior approval by State or Federal agencies. 401.39 Section 401.39 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND...
Peter S. Murdock; Jennifer C. Jenkins; Richard A. Birdsey
2008-01-01
The Delaware River Basin (DRB) in the coastal mid-Atlantic region of the United States covers 12,700 mi2 of primarily forested land. The DRB is home to 7.2 million people, and an additional 7 million people in New York City and northern New Jersey rely on surface water diverted from the DRB for their water supply. Major watershed issues in the...
NASA Astrophysics Data System (ADS)
Mohrig, D. C.; Ustipak, K.
2016-12-01
Exposures in the Guadalupe and Delaware mountains together with well logs and core from the Delaware Basin capture a system-wide picture of the stratigraphy defining the terrestrial, shallow marine, basin slope and basin floor environments associated with the Permian Brushy Canyon Formation. Patterns of erosion and styles of deposition characterizing any one of these environments cannot be fully understood without explicit consideration of sediment transport in the adjacent environments. Properties of an inherited basin margin and slope are particularly important to unraveling the transport histories in the linked terrestrial - to - deep marine environments defining the Brushy Canyon Fm. A one-dimensional turbidity current model will be used to show that the inherited submarine slope of about six degrees is steep enough that all sand-transporting currents are erosional down its length. This slope segment detaches the terrestrial and shallow marine environments from the deeper marine environments and decreases the potential for sediment accumulation in the former. All sediment transported to the brink of the basin slope is efficiently moved to deeper water, promoting a tendency for very little sediment to be preserved in the terrestrial environment; a property of the Brushy Canyon system that has spurred on considerable debate and speculation amongst geoscientists studying the formation. The steep inherited slope and its ability to generate erosional sandy turbidity currents also provides an explanation for the high relative fraction of thin-bedded, mud-rich deposits that are present in the most proximal deep marine setting. Again, a one-dimensional turbidity current model is used to show that only very dilute, muddy currents are expected to accumulate in significant quantity at this position in the long profile of the system. Coarser sediment load is confined to and efficiently transported through erosionally based channels onto the basin floor. Finally, the observed spatial trends in sediment erosion over the proximal 20 - 30 km of the basin floor and net sedimentation out to distances approaching 160 km from the shelf edge will be explored and further quantified using the one-dimensional numerical model for turbidity currents.
Baldigo, Barry P.; Delucia, Mari-Beth; Keller, Walter D.; Schuler, George E.; Apse, Colin D.; Moberg, Tara
2015-01-01
The Neversink River and the Beaver Kill in southeastern New York are major tributaries to the Delaware River, the longest undammed river east of the Mississippi. While the Beaver Kill is free flowing for its entire length, the Neversink River is subdivided by the Neversink Reservoir, which likely affects the diversity of local fish assemblages and health of aquatic ecosystems. The reservoir is an important part of the New York City waster-supply system that provides drinking water to more than 9 million people. Fish population and community data from recent quantitative surveys at comparable sites in both basins were assessed to characterize the differences between free-flowing and impounded rivers and the extent of reservoir effects to improve our capacity to define ecosystems responses that two modified flow-release programs (implemented in 2007 and 2011) should produce in the Neversink River. In general, the continuum of changes in fish assemblages which normally occur between headwaters and mouth was relatively uninterrupted in the Beaver Kill, but disrupted by the mid-basin impoundment in the Neversink River. Fish assemblages were also adversely affected at several acidified sites in the upper Neversink River, but not at most sites assessed herein. The reservoir clearly excluded diadromous species from the upper sub-basin, but it also substantially reduced community richness, diversity, and biomass at several mid-basin sites immediately downstream from the impoundment. There results will aid future attempts to determine if fish assemblages respond to more natural, yet highly regulated, flow regimes in the Neversink River. More important, knowledge gained from this study can help optimize use of valuable water resources while promoting species of special concern, such as American eel (Anguilla rostrata) and conserving biodiversity in Catskill Mountain streams.
Modeling the Effects of Land Use and Climate Change on Streamflow in the Delaware River Basin
NASA Astrophysics Data System (ADS)
Kwon, P. Y. S.; Endreny, T. A.; Kroll, C. N.; Williamson, T. N.
2014-12-01
Forest-cover loss and drinking-water reservoirs in the upper Delaware River Basin of New York may alter summer low streamflows, which could degrade the in-stream habitat for the endangered dwarf wedgemussel. Our project analyzes how flow statistics change with land-cover change for 30-year increments of model-simulated streamflow hydrographs for three watersheds of concern to the National Park Service: the East Branch, West Branch, and main stem of the Delaware River. We use four treatments for land cover ranging from historical high to low forest cover. We subject each land cover to adjusted GCM climate scenarios for 1600, 1900, 1940, and 2040 to isolate land cover from potential climate-change effects. Hydrographs are simulated using the Water Availability Tool for Environmental Resources (WATER), a TOPMODEL-based United States Geological Survey hydrologic decision-support tool, which uses the variable-source-area concept and water budgets to generate streamflow. Model parameters for each watershed change with land-use, and capture differences in soil-physical properties that control how rainfall infiltrates, evaporates, transpires, is stored in the soil, and moves to the stream. Our results analyze flow statistics used as indicators of hydrologic alteration, and access streamflow events below the critical flow needed to provide sustainable habitat for dwarf wedgemussels. These metrics will demonstrate how changes in climate and land use might affect flow statistics. Initial results show that the 1940 WATER simulation outputs generally match observed unregulated low flows from that time period, while performance for regulated flow from the same time period and from 1600, 1900, and 2040 require model input adjustments. Our study will illustrate how increased forest cover could potentially restore in-stream habitat for the endangered dwarf wedgemussel for current and future climate conditions.
Williamson, Tanja N.; Lant, Jeremiah G.; Claggett, Peter; Nystrom, Elizabeth A.; Milly, Paul C.D.; Nelson, Hugh L.; Hoffman, Scott A.; Colarullo, Susan J.; Fischer, Jeffrey M.
2015-11-18
The Water Availability Tool for Environmental Resources (WATER) is a decision support system for the nontidal part of the Delaware River Basin that provides a consistent and objective method of simulating streamflow under historical, forecasted, and managed conditions. In order to quantify the uncertainty associated with these simulations, however, streamflow and the associated hydroclimatic variables of potential evapotranspiration, actual evapotranspiration, and snow accumulation and snowmelt must be simulated and compared to long-term, daily observations from sites. This report details model development and optimization, statistical evaluation of simulations for 57 basins ranging from 2 to 930 km2 and 11.0 to 99.5 percent forested cover, and how this statistical evaluation of daily streamflow relates to simulating environmental changes and management decisions that are best examined at monthly time steps normalized over multiple decades. The decision support system provides a database of historical spatial and climatic data for simulating streamflow for 2001–11, in addition to land-cover and general circulation model forecasts that focus on 2030 and 2060. WATER integrates geospatial sampling of landscape characteristics, including topographic and soil properties, with a regionally calibrated hillslope-hydrology model, an impervious-surface model, and hydroclimatic models that were parameterized by using three hydrologic response units: forested, agricultural, and developed land cover. This integration enables the regional hydrologic modeling approach used in WATER without requiring site-specific optimization or those stationary conditions inferred when using a statistical model.
Curriculum Competencies, 1984.
ERIC Educational Resources Information Center
Delaware Technical and Community Coll., Dover. Terry Campus.
This manual specifies the skills and abilities possessed by the graduates of programs offered by the Terry Campus of Delaware Technical and Community College. First, introductory material discusses the college's competency-based philosophy and the efforts by faculty and administrators to criterion reference the competencies perceived by faculty to…
Managing the Community College with an Entrepreneurial Spirit.
ERIC Educational Resources Information Center
Kotula, John R.; Decker, Henry J.
Drawing from experiences at Delaware Technical and Community College (DTCC), these papers discuss the institution's entrepreneurial approach to two aspects of college administration: developing relationships with business and industry, and management planning. Entrepreneurship is defined as the ability to find and evaluate opportunities, locate…
Decadal change of forest biomass carbon stocks and tree demography in the Delaware River Basin
Bing Xu; Yude Pan; Alain F. Plante; Arthur Johnson; Jason Cole; Richard Birdsey
2016-01-01
Quantifying forest biomass carbon (C) stock change is important for understanding forest dynamics and their feedbacks with climate change. Forests in the northeastern U.S. have been a net carbon sink in recent decades, but C accumulation in some northern hardwood forests has been halted due to the impact of emerging stresses such as invasive pests, land use change and...
State Minimum Competencies for High School Graduation. Technical Note.
ERIC Educational Resources Information Center
Lawlor, Joseph
This paper contains descriptions of mandated minimum competency programs in 13 states: Connecticut, Delaware, Georgia, Hawaii, Idaho, Kansas, Missouri, New Jersey, New York, North Carolina, South Carolina, Texas, and Vermont. Each description provides the skills assessed in the state, the assessment instruments used, and the overall purposes of…
Using Strategic Planning To Improve Rural Schools.
ERIC Educational Resources Information Center
D'Amico, Joseph J.
This paper describes the elements of strategic planning and applies them to educational reform and improvement. The paper also describes how a planning model, Strategic Planning for Educational Reform and Improvement (SPERI), was used by Rural Assistance Councils (RACs) in Pennsylvania and Delaware, with technical assistance from Research for…
Composite Technology Personnel Development. Final Report.
ERIC Educational Resources Information Center
Massuda, Rachel; Fink, Edwin
A project was conducted at Delaware County Community College, Media, Pennsylvania, to train two instructional staff members in the area of composite materials technology. A 1-year training program was set up for the two technical instructional specialists at the Boeing Helicopter Training Center, Eddystone, Pennsylvania. The program consisted of…
U.S. Geological Survey National Water Census: Colorado River Basin Geographic Focus Area Study
Bruce, Breton W.; Clow, David W.; Maupin, Molly A.; Miller, Matthew P.; Senay, Gabriel B.; Sexstone, Graham A.; Susong, David D.
2015-12-01
The Colorado River Basin (CRB) and the Delaware and Apalachicola-Chattahoochee-Flint (ACF) River Basins were selected by the Department of the Interior for the first round of FASs because of the perceived water shortages in the basins and potential conflicts over water supply and allocations. After gathering input from numerous stakeholders in the CRB, the USGS determined that surface-water resources in the basin were already being closely monitored and that the most important scientific contribution could be made by helping to improve estimates of four water-budget components: evapotranspiration losses, snowpack hydrodynamics, water-use information, and the relative importance of groundwater discharge in supporting streamflow across the basin. The purpose of this fact sheet is to provide a brief summary of the CRB FAS results as the study nears completion. Although some project results are still in the later stages of review and publication, this fact sheet provides an overall description of the work completed and cites the publications in which additional information can be found.
1960-12-01
proposed four-lane divided highway which would cross two "arms" of the reservoir west and southwest of Salem Church if constructed as proposed, would...itPurpose 29 27,000 I 1,250 ’ Em Allentown EADINO Nernstown TRENTON PHILADELPHIA cemd~n PFA WIM~T French Creek LOCATIONooM:P LEGEND fL2Z2Tz~..multiple
1981-07-01
type of migating measures required to increase the capacity of the spillway. 2. Stability analyses should be performed to determine the need for and...type of migating measures required to ensure that the darn is stable. 3. The outlet works should be repaired to allow for emergency drawdown of the
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-08
...The Delaware River Basin Commission published in the Federal Register of January 4, 2011 a proposed rule containing tentative dates and locations for public hearings on proposed amendments to its Water Quality Regulations, Water Code and Comprehensive Plan relating to natural gas development projects. The public hearing dates have been changed and locations and times established, as set forth below.
The origin of fluids in the salt beds of the Delaware Basin, New Mexico and Texas
O'Neil, J.R.; Johnson, C.M.; White, L.D.; Roedder, E.
1986-01-01
Oxygen and hydrogen isotope analyses have been made of (1) brines from several wells in the salt deposits of the Delaware Basin, (2) inclusion fluids in halite crystals from the ERDA No. 9 site, and (3) local ground waters of meteoric origin. The isotopic compositions indicate that the brines are genetically related and that they probably originated from the evaporation of paleo-ocean waters. Although highly variable in solute contents, the brines have rather uniform isotopic compositions. The stable isotope compositions of brine from the ERDA No. 6 site (826.3 m depth) and fluid inclusions from the ERDA No. 9 site are variable but remarkably regular and show that (1) mixing with old or modern meteoric waters has occurred, the extent of mixing apparently decreasing with depth, and (2) water in the ERDA No. 6 brine may have originated from the dehydration of gypsum. Alternatively, the data may reflect simple evaporation of meteoric water on a previously dry marine flat. Stable isotope compositions of all the waters analyzed indicate that there has been fairly extensive mixing with ground water throughout the area, but that no significant circulation has occurred. The conclusions bear importantly on the suitability of these salt beds and others as repositories for nuclear waste. ?? 1986.
EPA has developed several technical notes that provide in depth information on a specific function in BASINS. Technical notes can be used to answer questions users may have, or to provide additional information on the application of features in BASINS.
Talbert, Colin; Maloney, Kelly O.; Holmquist-Johnson, Chris; Hanson, Leanne
2014-01-01
Between 2002 and 2006, the Fort Collins Science Center (FORT) at the U.S. Geological Survey (USGS) conducted field surveys, organized workshops, and performed analysis of habitat for trout and shad in the Upper Delaware River Basin. This work culminated in the development of decision support system software (the Delaware River DSS–DRDSS, Bovee and others, 2007) that works in conjunction with the Delaware River Basin Commission’s reservoir operations model, OASIS, to facilitate comparison of the habitat and water-delivery effects of alternative operating scenarios for the Basin. This original DRDSS application was developed in Microsoft Excel and is available to all interested parties through the FORT web site (http://www.fort.usgs.gov/Products/Software/DRDSS/). Initial user feedback on the original Excel-based DSS highlighted the need for a more user-friendly and powerful interface to effectively deliver the complex data and analyses encapsulated in the DSS. In order to meet this need, the USGS FORT and Northern Appalachian Research Branch (NARB) developed an entirely new graphical user interface (GUI) application. Support for this research was through the DOI WaterSmart program (http://www.doi.gov/watersmart/html/index.php) of which the USGS component is the National Water Census (http://water.usgs.gov/watercensus/WaterSMART.html). The content and methodology of the new GUI interface emulates those of the original DSS with a few exceptions listed below. Refer to Bovee and others (2007) for the original information. Significant alterations to the original DSS include: • We moved from Excel-based data storage and processing to a more powerful database back end powered by SQLite. The most notable effect of this is that the previous maximum temporal extent of 10 years has been replaced by a dynamic extent that can now cover the entire period of record for which we have data (1928–2000). • We incorporated interactive geographic information system (GIS) visualization and dynamic data processing. Previous habitat maps were generated outside of the DSS in an ad hoc process that the end user could not update or investigate. • The original bathymetric data collected in 2005 at the three main stem reaches was augmented with a higher resolution dataset collected in 2010. This new dataset was collected in order to conduct higher resolution (finer pixel size) two-dimensional (2D) hydrodynamic modeling for evaluating dwarf wedgemussel (DWM, Alasmidonta heterodon) habitat. • Results charts are now substantially more interactive, dynamic, and accessible, which allows users to more easily focus on their particular topics of interest as well as drill down to the source data used to calculate given results.
Milici, Robert C.; Coleman, James L.; Rowan, Elisabeth L.; Cook, Troy A.; Charpentier, Ronald R.; Kirschbaum, Mark A.; Klett, Timothy R.; Pollastro, Richard M.; Schenk, Christopher J.
2012-01-01
During the early opening of the Atlantic Ocean in the Mesozoic Era, numerous extensional basins formed along the eastern margin of the North American continent from Florida northward to New England and parts of adjacent Canada. The basins extend generally from the offshore Atlantic continental margin westward beneath the Atlantic Coastal Plain to the Appalachian Mountains. Using a geology-based assessment method, the U.S. Geological Survey estimated a mean undiscovered natural gas resource of 3,860 billion cubic feet and a mean undiscovered natural gas liquids resource of 135 million barrels in continuous accumulations within five of the East Coast Mesozoic basins: the Deep River, Dan River-Danville, and Richmond basins, which are within the Piedmont Province of North Carolina and Virginia; the Taylorsville basin, which is almost entirely within the Atlantic Coastal Plain Province of Virginia and Maryland; and the southern part of the Newark basin (herein referred to as the South Newark basin), which is within the Blue Ridge Thrust Belt Province of New Jersey. The provinces, which contain these extensional basins, extend across parts of Georgia, South Carolina, North Carolina, Virginia, Maryland, Delaware, Pennsylvania, New Jersey, New York, Connecticut, and Massachusetts.
Sloto, Ronald A.; Buxton, Debra E.
2005-01-01
This pilot study, done by the U.S. Geological Survey in cooperation with the Delaware River Basin Commission, developed annual water budgets using available data for five watersheds in the Delaware River Basin with different degrees of urbanization and different geological settings. A basin water budget and a water-use budget were developed for each watershed. The basin water budget describes inputs to the watershed (precipitation and imported water), outputs of water from the watershed (streamflow, exported water, leakage, consumed water, and evapotranspiration), and changes in ground-water and surface-water storage. The water-use budget describes water withdrawals in the watershed (ground-water and surface-water withdrawals), discharges of water in the watershed (discharge to surface water and ground water), and movement of water of water into and out of the watershed (imports, exports, and consumed water). The water-budget equations developed for this study can be applied to any watershed in the Delaware River Basin. Data used to develop the water budgets were obtained from available long-term meteorological and hydrological data-collection stations and from water-use data collected by regulatory agencies. In the Coastal Plain watersheds, net ground-water loss from unconfined to confined aquifers was determined by using ground-water-flow-model simulations. Error in the water-budget terms is caused by missing data, poor or incomplete measurements, overestimated or underestimated quantities, measurement or reporting errors, and the use of point measurements, such as precipitation and water levels, to estimate an areal quantity, particularly if the watershed is hydrologically or geologically complex or the data-collection station is outside the watershed. The complexity of the water budgets increases with increasing watershed urbanization and interbasin transfer of water. In the Wissahickon Creek watershed, for example, some ground water is discharged to streams in the watershed, some is exported as wastewater, and some is exported for public supply. In addition, ground water withdrawn outside the watershed is imported for public supply or imported as wastewater for treatment and discharge in the watershed. A GIS analysis was necessary to quantify many of the water-budget components. The 89.9-square mile East Branch Brandywine Creek watershed in Pennsylvania is a rural watershed with reservoir storage that is underlain by fractured rock. Water budgets were developed for 1977-2001. Average annual precipitation, streamflow, and evapotranspiration were 46.89, 21.58, and 25.88 inches, respectively. Some water was imported (average of 0.68 inches) into the watershed for public-water supply and as wastewater for treatment and discharge; these imports resulted in a net gain of water to the watershed. More water was discharged to East Branch Brandywine Creek than was withdrawn from it; the net discharge resulted in an increase in streamflow. Most ground water was withdrawn (average of 0.25 inches) for public-water supply. Surface water was withdrawn (average of 0.58 inches) for public-water and industrial supply. Discharge of water by sewage-treatment plants and industries (average of 1.22 inches) and regulation by Marsh Creek Reservoir caused base flow to appear an average of 7.2 percent higher than it would have been without these additional sources. On average, 67 percent of the difference was caused by sewage-treatment-plant and industrial discharges, and 33 percent was caused by regulation of the Marsh Creek Reservoir. Water imports, withdrawals, and discharges have been increasing as the watershed becomes increasingly urbanized. The 64-square mile Wissahickon Creek watershed in Pennsylvania is an urban watershed underlain by fractured rock. Water budgets were developed for 1987-98. Average annual precipitation, streamflow, and evapotranspiration were 47.23, 22.24, and 23.12 inches, respectively. The watershed is highly u
ERIC Educational Resources Information Center
Sciple, Judith A.
2010-01-01
Community colleges are an integral part of the American higher education system, providing open access to postsecondary education to all who have the ability to benefit. These institutions, however, often suffer from negative perceptions regarding their effectiveness and quality of instruction. Community colleges can address these perceptions by…
ERIC Educational Resources Information Center
Strusowski, Lisa June
2013-01-01
Career centers at community colleges across America are utilizing technology in a variety of ways to efficiently and effectively deliver their services to students. Therefore, identifying and understanding the technology-related preferences and needs of community college students is fundamental for planning and establishing relevant online career…
Traileka Glacier X-Stack. Final Scientific/Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borkar, Shekhar
2015-09-01
The XStack Traleika Glacier (XSTG) project was a three-year research award for exploring a revolutionary exascale-class machine software framework. The XSTG program, including Intel, UC San Diego, Pacific Northwest National Lab, UIUC, Rice University, Reservoir Labs, ET International, and U. Delaware, had major accomplishments, insights, and products resulting from this three-year effort.
1981-02-01
submerged by tailwater. I0 C. Appurtenant Structures The spillway consists of a concrete capped overflow section of the dam 66 feet long, 7.4 feet wide and 1...some cycles. Dcpp CATSKILL FORMATION, PACKERTON MBR . THROUGH POPLAR GAP MBR - Fine to medium-grained sandstones, well-indurated to quartzitic
Rudine, S.F.; Wardlaw, B.R.; Rohr, D.M.; Grant, R.E.
2000-01-01
The Guadalupian rocks of the northern Del Norte Mountains were deposited in a foreland basin between land of the Marathon orogen and a carbonate shoal established on the geanticline separating the foreland basin from the Delaware basin. Deposition was alternately influenced by coarse clastic input from the orogen and carbonate shoal, which interrupted shallow basinal siltstone depletion. Relatively deeper-water deposition is characterized by carbonate input from the shoal, and relatively shallow-water deposition is characterized by sandstone input from the orogen. Deposition was in five general transgressive-regressive packages that include (1) the Road Canyon Formation and the first siltstone member and first sandstone member of the Word Formation, (2) the second siltstone member, Appel Ranch Member, and limy sandy siltstone member of the Word Formation, (3) the Vidrio Formation, (4) the lower and part of the middle members of the Altuda Formation, and (5) part of the middle and upper members of the Altuda Formation.
Domagalski, Joseph L.; Xinquan, Zhou; Chao, Lin; Deguo, Zhi; Chi, Fan Lan; Kaitai, Xu; Ying, Lu; Luo, Yang; Shide, Liu; Dewen, Liu; Yong, Guo; Qi, Tian; Jing, Liu; Weidong, Yu; Shedlock, Robert; Knifong, Donna
2001-01-01
Ground-water quality with respect to nitrate, major inorganic constituents, pesticides, stable isotopes, and tritium was assessed in the agricultural Tangshan region in the Hai He River basin of the People's Republic of China and compared with three similar regions in the United States: the Delmarva Peninsula of the States of Delaware, Maryland, and Virginia, and the San Joaquin and Sacramento Valleys of the State of California. These four regions are considered similar with respect to size, land use, or climate. Median nitrate concentrations were found to be similar in the four regions in most instances, and those median concentrations were below the American nitrate drinking water standard of 10 milligrams per liter, however, higher concentrations, and a greater range of concentration, were evident for the Tangshan region.
ERIC Educational Resources Information Center
Mergner, Leslie A.
2013-01-01
Higher education is experiencing unprecedented change due to economic and demographic projections, largely focusing on the usage of adjunct faculty. No longer will community colleges be able to rely solely on full-time faculty to ensure that students persist to graduation. This executive position paper provides a proposed plan for a formalized…
ERIC Educational Resources Information Center
Craft, Rebecca W.
2013-01-01
Nationwide, students enrolled in community colleges respond to national surveys indicating that academic resources are very important, while at the same time failing to utilize those same resources. This study focused on identifying the reasons for this incongruity on the Terry Campus of Delaware Technical Community College. Using a sequential…
1980-07-01
3 - C-L lz - gI Ado 00 V.,nw e. 232 "is. BRUSH, DEBRIS, AND SOIL COVERING CREST, CREST IS SHORTER THAN ~DELN AUXILIARY SPILLWAY -~Z Z KNOLL LOCKLIN...some rockfall from vertical and high-angle cut slopes. Bedrock is entirely overlain by glacial till of Late Wisconsin Age. This till is an unsorted
1981-07-01
performed on an "as needed" basis. Sediment and accumulated debris are frequently removed from the spillway since the dam is used for water supply. 4.3...Rugr Unvriy oi uvyo M.10 J n 19504. IVION OF ATE REOURESBETHANY ’d -HOLE DAM , M-23M-i Staiiddpoismsl f aieoii AR/Z Recet aluvi m V poite inporlydaie
Screening for Dissolved Methane in Groundwater Across Texas Shale Plays
NASA Astrophysics Data System (ADS)
Nicot, J. P.; Mickler, P. J.; Hildenbrand, Z.; Larson, T.; Darvari, R.; Uhlman, K.; Smyth, R. C.; Scanlon, B. R.
2014-12-01
There is considerable interest in methane concentrations in groundwater, particularly as they relate to hydraulic fracturing in shale plays. Recent studies of aquifers in the footprint of several gas plays across the US have shown that (1) dissolved thermogenic methane may or may not be present in the shallow groundwater and (2) shallow thermogenic methane may be naturally occurring and emplaced through mostly vertical migration over geologic time and not necessarily a consequence of recent unconventional gas production. We are currently conducting a large sampling campaign across the state of Texas to characterize shallow methane in fresh-water aquifers overlying shale plays and other tight formations. We collected a total of ~800 water samples, ~500 in the Barnett, ~150 in the Eagle Ford, ~80 in the Haynesville shale plays as well as ~50 in the Delaware Basin of West Texas. Preliminary analytical results suggest that dissolved methane is not widespread in shallow groundwater and that, when present at concentrations exceeding 10 mg/L, it is often of thermogenic origin according to the isotopic signature and to the presence of other light hydrocarbons. The Barnett Shale contains a large methane hotspot (~ 2 miles wide) along the Hood-Parker county line which is likely of natural origin whereas the Eagle Ford and Haynesville shales, neglecting microbial methane, show more distributed methane occurrences. Samples from the Delaware Basin show no methane except close to blowouts.
Water Resources Data, Pennsylvania, Water Year 1999. Volume 1. Delaware River Basin
Durlin, R.R.; Schaffstall, W.P.
2000-01-01
IntroductionThe Water Resources Division of the U.S. Geological Survey, in cooperation with State, municipal, and Federal agencies, collects a large amount of data pertaining to the water resources of Pennsylvania each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, these data are published annually in this report series entitled "Water Resources Data - Pennsylvania, Volumes 1, 2, and 3." Volume 1 contains data for the Delaware River Basin; Volume 2, the Susquehanna and Potomac River Basins; and Volume 3, the Ohio River and St. Lawrence River Basins.This report, Volume 1, contains: (1) discharge records for 74 continuous-record streamflow-gaging stations, 7 partial-record stations, and 13 special study and miscellaneous streamflow sites; (2) elevation and contents records for 14 lakes and reservoirs; (3) water-quality records for 29 gaging stations and 11 ungaged streamsites; (4) water-quality records for 87 special-study stations;(5) water-level records for 55 network observation wells; and (6) water-quality analyses of ground water from 11 ground-water wells. Additional water data collected at various sites not involved in the systematic data-collection program may also be presented.Publications similar to this report are published annually by the Geological Survey for all States. For the purpose of archiving, these official reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report PA-99-1." These water data reports, beginning with the 1971 water year, are for sale as paper copy or microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.The annual series of Water Data Reports for Pennsylvania began with the 1961 water-year report and contained only data relating to quantities of surface water. With the 1964 water year, a companion report (part 2) was introduced that contained only data relating to water quality. Beginning with the 1975 water year the report was changed to its present format of three volumes (by river basin), with each volume containing data on quantities of surface water, quality of surface and ground water, and ground-water levels.Prior to the introduction of this series and for several years concurrent with it, water-resources data for Pennsylvania were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage, and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-Water Supply of the United States," which was released in numbered parts as determined by natural drainage basins. For the 1961-70 water years, these data were published in two 5-year reports. Data prior to 1961 are included in two reports: "Compilation of Records of Surface Waters of the United States through 1950," and "Compilation of Records of Surface Waters of the United States, October 1950 to September 1960." Data for Pennsylvania are published in Parts 1, 3, and 4. Data on chemical quality, temperature, and suspended sediment for the 1941-70 water years were published annually under the title "Quality of Surface Waters of the United States," and ground-water levels for the 1935-74 water years were published under the title "Ground-Water Levels in the United States." The above mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States and may be purchased from the U.S. Geological Survey, Information Services, Box 25286, Denver, CO 80225.Information for ordering specific reports may be obtained from the Pennsylvania District Office at the address given on the back of the title page or by phoning the Scientific and Technical Products Section, at (717) 730-6940. Information on the availability of unpublished data or statistical analyses may be obtained from the District Information Specialist by telephone at (717) 730-6916 or by FAX at (717) 730-6997.
Water Resources Data, Pennsylvania, Water Year 2001. Volume 1. Delaware River Basin
Durlin, R.R.; Schaffstall, W.P.
2002-01-01
IntroductionThe Water Resources Division of the U.S. Geological Survey, in cooperation with State, municipal, and Federal agencies, collects a large amount of data pertaining to the water resources of Pennsylvania each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, these data are published annually in this report series entitled "Water Resources Data - Pennsylvania, Volumes 1, 2, and 3." Volume 1 contains data for the Delaware River Basin; Volume 2, the Susquehanna and Potomac River Basins; and Volume 3, the Ohio River and St. Lawrence River Basins.This report, Volume 1, contains: (1) discharge records for 77 continuous-record streamflow-gaging stations, 7 partial-record stations, and 46 special study and miscellaneous streamflow sites; (2) elevation and contents records for 13 lakes and reservoirs; (3) water-quality records for 28 gaging stations and 11 ungaged streamsites; (4) water-quality records for 27 special-study stations; (5) water-level records for 56 network observation wells; and (6) water-quality analyses of ground water from 111 ground-water wells. Additional water data collected at various sites not involved in the systematic data-collection program may also be presented.Publications similar to this report are published annually by the Geological Survey for all States. For the purpose of archiving, these official reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report PA-01-1." These water data reports, beginning with the 1971 water year, are for sale as paper copy or microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.The annual series of Water Data Reports for Pennsylvania began with the 1961 water-year report and contained only data relating to quantities of surface water. With the 1964 water year, a companion report (part 2) was introduced that contained only data relating to water quality. Beginning with the 1975 water year the report was changed to its present format of three volumes (by river basin), with each volume containing data on quantities of surface water, quality of surface and ground water, and ground-water levels.Prior to the introduction of this series and for several years concurrent with it, water-resources data for Pennsylvania were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage, and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-Water Supply of the United States," which was released in numbered parts as determined by natural drainage basins. For the 1961-70 water years, these data were published in two 5-year reports. Data prior to 1961 are included in two reports: "Compilation of Records of Surface Waters of the United States through 1950," and "Compilation of Records of Surface Waters of the United States, October 1950 to September 1960." Data for Pennsylvania are published in Parts 1, 3, and 4. Data on chemical quality, temperature, and suspended sediment for the 1941-70 water years were published annually under the title "Quality of Surface Waters of the United States," and ground-water levels for the 1935-74 water years were published under the title "Ground-Water Levels in the United States." The above mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States and may be purchased from the U.S. Geological Survey, Information Services, Box 25286, Denver, CO 80225.Information for ordering specific reports may be obtained from the Pennsylvania District Office at the address given on the back of the title page or by phoning the Scientific and Technical Products Section, at (717) 730-6940. Information on the availability of unpublished data or statistical analyses may be obtained from the District Information Specialist by telephone at (717) 730-6916 or by FAX at (717) 730-6997.
Water resources data, Pennsylvania, water year 2000, Volume 1. Delaware River Basin
Durlin, R.R.; Schaffstall, W.P.
2001-01-01
The Water Resources Division of the U.S. Geological Survey, in cooperation with State, municipal, and Federal agencies, collects a large amount of data pertaining to the water resources of Pennsylvania each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, these data are published annually in this report series entitled "Water Resources Data - Pennsylvania, Volumes 1, 2, and 3." Volume 1 contains data for the Delaware River Basin; Volume 2, the Susquehanna and Potomac River Basins; and Volume 3, the Ohio River and St. Lawrence River Basins.This report, Volume 1, contains: (1) discharge records for 76 continuous-record streamflow-gaging stations, 7 partial-record stations, and 13 special study and miscellaneous streamflow sites; (2) elevation and contents records for 14 lakes and reservoirs; (3) water-quality records for 28 gaging stations and 14 ungaged streamsites; (4) water-quality records for 77 special-study stations; (5) water-level records for 53 network observation wells; and (6) water-quality analyses of ground water from 101 ground-water wells. Additional water data collected at various sites not involved in the systematic data-collection program may also be presented.Publications similar to this report are published annually by the Geological Survey for all States. For the purpose of archiving, these official reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report PA-00-1." These water data reports, beginning with the 1971 water year, are for sale as paper copy or microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.The annual series of Water Data Reports for Pennsylvania began with the 1961 water-year report and contained only data relating to quantities of surface water. With the 1964 water year, a companion report (part 2) was introduced that contained only data relating to water quality. Beginningwith the 1975 water year the report was changed to its present format of three volumes (by river basin), with each volume containing data on quantities of surface water, quality of surface and ground water, and ground-water levels.Prior to the introduction of this series and for several years concurrent with it, water-resources data for Pennsylvania were published in U.S. Geological Survey Water-Supply Papers. Data on stream discharge and stage, and on lake or reservoir contents and stage, through September 1960, were published annually under the title "Surface-Water Supply of the United States," which was released in numbered parts as determined by natural drainage basins. For the 1961-70 water years, these data were published in two 5-year reports. Data prior to 1961 are included in two reports: "Compilation of Records of Surface Waters of the United States through 1950," and "Compilation of Records of Surface Waters of the United States, October 1950 to September 1960." Data for Pennsylvania are published in Parts 1, 3, and 4. Data on chemical quality, temperature, and suspended sediment for the 1941-70 water years were published annually under the title "Quality of Surface Waters of the United States," and ground-water levels for the 1935-74 water years were published under the title "Ground-Water Levels in the United States." The above mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States and may be purchased from the U.S. Geological Survey, Information Services, Box 25286, Denver, CO 80225.Information for ordering specific reports may be obtained from the Pennsylvania District Office at the address given on the back of the title page or by phoning the Scientific and Technical Products Section, at (717) 730-6940. Information on the availability of unpublished data or statistical analyses may be obtained from the District Information Specialist by telephone at (717) 730-6916 or by FAX at (717) 730-6997.
Galbraith, Heather S.; Blakeslee, Carrie J.; Cole, Jeffrey C.; Talbert, Colin; Maloney, Kelly O.
2016-01-01
Defining habitat suitability criteria (HSC) of aquatic biota can be a key component to environmental flow science. HSC can be developed through numerous methods; however, few studies have evaluated the consistency of HSC developed by different methodologies. We directly compared HSC for depth and velocity developed by the Delphi method (expert opinion) and by two primary literature meta-analyses (literature-derived range and interquartile range) to assess whether these independent methods produce analogous criteria for multiple species (rainbow trout, brown trout, American shad, and shallow fast guild) and life stages. We further evaluated how these two independently developed HSC affect calculations of habitat availability under three alternative reservoir management scenarios in the upper Delaware River at a mesohabitat (main channel, stream margins, and flood plain), reach, and basin scale. In general, literature-derived HSC fell within the range of the Delphi HSC, with highest congruence for velocity habitat. Habitat area predicted using the Delphi HSC fell between the habitat area predicted using two literature-derived HSC, both at the basin and the site scale. Predicted habitat increased in shallow regions (stream margins and flood plain) using literature-derived HSC while Delphi-derived HSC predicted increased channel habitat. HSC generally favoured the same reservoir management scenario; however, no favoured reservoir management scenario was the most common outcome when applying the literature range HSC. The differences found in this study lend insight into how different methodologies can shape HSC and their consequences for predicted habitat and water management decisions. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Risk assessment of tropical cyclone rainfall flooding in the Delaware River Basin
NASA Astrophysics Data System (ADS)
Lu, P.; Lin, N.; Smith, J. A.; Emanuel, K.
2016-12-01
Rainfall-induced inland flooding is a leading cause of death, injury, and property damage from tropical cyclones (TCs). In the context of climate change, it has been shown that extreme precipitation from TCs is likely to increase during the 21st century. Assessing the long-term risk of inland flooding associated with landfalling TCs is therefore an important task. Standard risk assessment techniques, which are based on observations from rain gauges and stream gauges, are not broadly applicable to TC induced flooding, since TCs are rare, extreme events with very limited historical observations at any specific location. Also, rain gauges and stream gauges can hardly capture the complex spatial variation of TC rainfall and flooding. Furthermore, the utility of historically based assessments is compromised by climate change. Regional dynamical downscaling models can resolve many features of TC precipitation. In terms of risk assessment, however, it is computationally demanding to run such models to obtain long-term climatology of TC induced flooding. Here we apply a computationally efficient climatological-hydrological method to assess the risk of inland flooding associated with landfalling TCs. It includes: 1) a deterministic TC climatology modeling method to generate large numbers of synthetic TCs with physically correlated characteristics (i.e., track, intensity, size) under observed and projected climates; 2) a simple physics-based tropical cyclone rainfall model which is able to simulate rainfall fields associated with each synthetic storm; 3) a hydrologic modeling system that takes in rainfall fields to simulate flood peaks over an entire drainage basin. We will present results of this method applied to the Delaware River Basin in the mid-Atlantic US.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1992-10-01
This appendix contains background information, technical descriptions, economic data, mass and energy balances, and information on environmental releases for the refuse derived fuels (RDF) option in municipal solid waste management alternatives. Demonstration programs at St. Louis, Missouri; Franklin, Ohio; and Delaware are discussed. Information on pellet production and cofiring with coal is also presented.
Revitalization: How One High School Succeeded in Providing a Quality Welding Program
ERIC Educational Resources Information Center
Stott, Tim
2006-01-01
Like many schools in the United States, Delcastle Technical High School in New Castle, Delaware, has felt the pain of falling enrollment in its welding and fabrication program. At one point, the program had shrunk to just 19 students and, as a result, could not produce enough graduates for local businesses that relied on Delcastle graduates. It…
The Impact of Read Right: Semester-Only versus Year-Long Inplementation
ERIC Educational Resources Information Center
Sell, John B.
2013-01-01
Faced with meeting the requirements of the No Child Left Behind Act of 2001, schools are under pressure to have 100% of their students meet national standards in reading by 2014. For the 2010-2011 and 2011-2012 school years, Sussex Technical High School (STHS) in Georgetown, Delaware chose to adopt Read Right, a reading comprehension improvement…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-01
... 56, Room 2300, P.O. Box 25426, Denver, CO 80225-0426, (720) 544- 2903/TDD (800) 659-3656. Delaware... Place, P.O. Box 147010, Gainesville, FL 32614-7010, (352) 338-3400/TDD (352) 338- 3499. Georgia USDA... (318) 473-7655. Maine USDA Rural Development State Office, 967 Illinois Avenue, Suite 4, P.O. Box 405...
Get College- and Career-Ready at a Vo-Tech High School
ERIC Educational Resources Information Center
Demarest, Kathy K.; Gehrt, Victoria C.
2015-01-01
While talk abounds in the buzzword-happy education arena of what it means to develop students who are college and career ready, the author paints a portrait of a vocational-technical school district in northern Delaware that is actually doing both with its students, and has been for some 40 years. The vo-tech experience is not for students who…
1981-05-01
froma small concreto , platform which extends out from the- culvert fas Ci,). The qate is divided into two section, and is mounted on a steel frame...se(ver al concreto fILurneS that0 e xiend fromn the, nrmcurhli me andI drain baick into the, reiser vo ir . AlIl were o-r i qi n a Iv e% qu i pped( wi
1981-03-01
Rignt; End of Damn. P. sp LI Tway Stah. "’nt.. - -JZIL E. e efz Abutment. of’ Damn. 74". I I~ 1t 1 1 of Darnm Downstream Side. ~ 4L Gi Ex ir End~ of...susceptible to slope failure; however, the presence of well-developed bedding and Joint planes will result in some rockfall from vertical and high
1981-03-01
mi. - 24 hour). The Corps of Engineers has recommended the use of the SCS triangular unit hydrograph with the curvilinear transformation. Hydrologic ...construction records, and preliminary structural and hydraulic and hydrologic calculations, as applicable. An assessment of the dam’s general condition...FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING
North Atlantic Regional Water Resources Study. Main Report
1972-06-01
Areas of the Rgion are found in Annex 1 to this Report. These Area Programs have The NAR is presently growing at a slower rate been reformu!ld into...Physical Characteristics of The Region double to 86.2 million by the year 2020. The rate of growth is about 80 percent of that The North Atlantic Region...Use of 141 and Delaware River Basin (Area 15). wells and of waste water intakes, while small, is growing at an increased rate . Publicly supplied and
1960-12-01
disposed into the sewers provided that the material is soluble. (2) Radioactive levels include the following: strontium 90 or polonium 210 , not to...abundance can have a direct effect upon animal populations dependent upon them for food , the quantity and quality of the zooplankton is one index to the...obtain further data on the effect on crops of irrigation with primary effluent and to evaluate operating problems directly related to public health
Reflected GPS Power for the Detection of Surface Roughness Patterns in Coastal Water
NASA Technical Reports Server (NTRS)
Oertel, George, F.; Allen, Thomas R.
2000-01-01
Coastal bays formed by the barrier islands of Delaware, Maryland and Virginia are parts of a coastal region known as a "Coastal Compartment". The coastal compartment between the Chesapeake and Delaware Bays is actually the mosaic of landscapes on the headland of the interfluve that separates these large drainage basins. The coastal compartments form a variety of different-shaped waterways landward of the coastline. Shape differences along the boundaries produce differences in exposure to wind and waves. Different shoreface topographies seaward of the coastline also influence surface roughness by changing wave-refraction patterns. Surface-water roughness (caused by waves) is controlled by a number of parameters, including fetch, shielding, exposure corridors, water-mass boundary conditions, wetland vegetation and water depth in coastal bays. In the coastal ocean, surface roughness patterns are controlled by shoreface shoaling and inlet refraction patterns in the coastal ocean. Knowledge of wave phenomena in the nearshore and backbarrier areas is needed to understand how wave climate influences important ecosystems in estuaries and bays.
Pope, L.M.; Brewer, L.D.; Foley, G.A.; Morgan, S.C.
1996-01-01
A study of the distribution and transport of atrazine in surface water in the 1,117 square-mile Delaware River Basin in northeast Kansas was conducted from July 1992 through September 1995. The purpose of this report is to present information to assess the present (1992-95) conditions and possible future changes in the distribution and magnitude of atrazine concentrations, loads, and yields spatially, temporally, and in relation to hydrologic conditions and land-use characteristics. A network of 11 stream-monitoring and sample-collection sites was established within the basin. Stream- water samples were collected during a wide range of hydrologic conditions throughout the study. Nearly 5,000 samples were analyzed by enzyme- linked immunosorbent assay (ELISA) for triazine herbicide concentrations. Daily mean triazine herbicide concentrations were calculated for all sampling sites and subsequently used to estimate daily mean atrazine concentrations with a linear- regression relation between ELISA-derived triazine concentrations and atrazine concentrations determined by gas chromatography/mass spectrometry for 141 dual-analyzed surface-water samples. During May, June, and July, time-weighted, daily mean atrazine concentrations in streams in the Delaware River Basin commonly exceeded the value of 3.0-ug/L (micrograms per liter) annual mean Maximum Contaminant Level (MCL) established by the U.S. Environmental Protection Agency for drinking-water supplies. Time-weighted, daily mean concentrations equal to or greater than 20 ug/L were not uncommon. However, most time- weighted, daily mean concentrations were less than 1.0 ug/L from August through April. The largest time-weighted, monthly mean atrazine concentrations occurred during May, June, and July. Most monthly mean concentrations between August and April were less than 0.50 ug/L. Large differences were documented in monthly mean concentrations within the basin. Sites receiving runoff from the northern and northeastern parts of the Delaware River Basin had the largest monthly and annual mean atrazine concentrations. Time- weighted, annual mean atrazine concentrations did not exceed the MCL in water from any sampling site for either the 1993 or 1994 crop years (April-March); however, concentrations were during 1994 than during 1993. Time-weighted, annual mean concentrations in water from among the 11 sampling sites during the 1993 crop year ranged from 0.27 to 1.5 ug/L and from 0.36 to 2.8 ug/L during the 1994 crop year. Furthermore, concentrations in samples from the outflow of Perry Lake were larger during the first 6 months of the 1995 crop year than during the previous year. Flow-weighted, annual mean atrazine concentrations were larger than time-weighted, annual mean concentrations in water from all sampling sites upstream of Perry Lake, and samples from several sites had concentrations were substantially larger than the MCL. This difference explained why time-weighted, annual mean concentrations in the outflow of Perry Lake were larger than corresponding time-weighted concentrations in water from sampling sites upstream of Perry Lake. Flow- weighted, annual mean concentrations in water from among the 11 sampling sites during the 1993 crop year ranged from 1.0 to 4.4 ug/L and from 1.0 to 8.9 ug/L during the 1994 crop year. Statistically significant linear-regression equations were identified relating the percentage of subbasin in cropland to time- and flow-weighted, average annual mean atrazine concentrations. The relations indicate that time-weighted, average annual mean atrazine concentrations may not exceed the MCL in water from subbasins with at least about 70-percent cropland. However, flow-weighted, average annual mean atrazine concentrations may exceed the MCL when the percentage of cropland is greater than about 40 percent. Approximately 90 percent of the annual atrazine load is transport from May through July. Atrazine loads and yields were larger during the 1993 cro
Elemental sulfur in Eddy County, New Mexico
Hinds, Jim S.; Cunningham, Richard R.
1970-01-01
Sulfur has been reported in Eddy County, N. Mex., in rocks ranging from Silurian to Holocene in age at depths of 0-15,020 feet. Targets of present exploration are Permian formations in the Delaware Basin and northwest shelf areas at depths of less than 4,000 feet. Most of the reported sulfur occurrences in the shelf area are in the 'Abo' (as used by some subsurface geologists), Yeso, and San Andres Formations and the Artesia Group. Sulfur deposition in the dense dolomites of the 'Abo,' Yeso, and San Andres Formations is attributed to the reduction of ionic sulfate by hydrogen sulfide in formation waters in zones of preexisting porosity and permeability. A similar origin accounts for most of the sulfur deposits in the formations of the Artesia Group, but some of the sulfur in these formations may have originated in place through the alteration of anhydrite to carbonate and sulfur by the metabolic processes of bacteria in the presence of hydrocarbons. Exploration in the Delaware Basin area is directed primarily toward the Castile Formation. Sulfur deposits in the Castile Formation are found in irregular masses of cavernous brecciated secondary carbonate rock enveloped by impermeable anhydrite. The carbonate masses, or 'castiles,' probably originated as collapse features resulting from subsurface solution and upward stopping. Formation of carbonate rock and sulfur in the castiles is attributed to the reduction of brecciated anhydrite by bacteria and hydrocarbons in the same process ascribed to the formation of carbonate and sulfur in the caprocks of salt domes.
ERIC Educational Resources Information Center
Delaware State Board for Vocational Education, Milford.
This guide, prepared for the Delaware State Board of Education and the State Department of Public Instruction, is intended to assist individuals developing curricula to prepare students for entry-level positions in various banking and financial occupations. It is divided into three sections, each of which consists of a cross-referenced listing of…
An index of biological integrity for northern Mid-Atlantic Slope drainages
Daniels, R.A.; Riva-Murray, K.; Halliwell, D.B.; Vana-Miller, D. L.; Bilger, Michael D.
2002-01-01
An index of biological integrity (IBI) was developed for streams in the Hudson, Delaware, and Susquehanna River drainages in the northeastern United States based on fish assemblage data from the Mohawk River drainage of New York. The original IBI, developed for streams in the U.S. Midwest, was modified to reflect the assemblage composition and structure present in Mid-Atlantic Slope drainages. We replaced several of the Midwestern IBI metrics and criteria scores because fishes common to the Midwest are absent from or poorly represented in the Northeast and because stream fish assemblages in the Northeast are less rich than those in the Midwest. For all replacement metrics we followed the ecology-based rationale used in the development of each of the metrics of the Midwestern IBI so that the basic theoretical underpinnings of the IBI remained unchanged. The validity of this modified IBI is demonstrated by examining the quality of streams in the Hudson, Delaware, and lower Susquehanna River basins. The relationships between the IBI and other indicators of environmental quality are examined using data on assemblages of fish and benthic macroinvertebrates and on chemical and physical stream characteristics obtained during 1993-2000 by the U.S. Geological Survey's National Water Quality Assessment Program in these three river basins. A principal components analysis (PCA) of chemical and physical variables from 27 sites resulted in an environmental quality gradient as the primary PCA axis (eigenvalue, 0.41 ). Principal components analysis site scores were significantly correlated with such benthic macroinvertebrate metrics as the percentage of Ephemeroptera, Plecoptera, and Trichoptera taxa (Spearman R = -0.66, P < 0.001). Index of biological integrity scores for sites in these three river basins were significantly correlated with this environmental quality gradient (Spearman R = -0.78, P = 0.0001). The northern Mid-Atlantic Slope IBI appears to be sensitive to environmental degradation in all three of the river basins addressed in this study. Adjustment of metric scoring criteria may be warranted, depending on composition of fish species in streams in the study area and on the relative effort used in the collection of fish assemblage data.
Iannuzzi, Timothy J; Durda, Judi L; Preziosi, Damian V; Ludwig, David F; Stahl, Ralph G; DeSantis, Amanda A; Hoke, Robert A
2010-01-01
Effective environmental management and restoration of urbanized systems such as the Delaware River Estuary requires a holistic understanding of the relative importance of various stressor-related impacts throughout the watershed, both historical and ongoing. To that end, it is important to involve as many stakeholders as possible in the management process and to develop a system for sharing of scientific data and information, as well as effective technical tools for evaluating and disseminating the data needed to make management decisions. In this study, we describe a preliminary assessment that was undertaken to evaluate the relative risks for the variety of stressors currently operating within the Delaware Estuary using a relative risk model (RRM) framework. This model was constructed using existing data and information on the ecological conditions and stressors in the main-stem Delaware River below the head of tide at Trenton, New Jersey, USA. A large database was developed with pertinent data from a variety of library, scientific, and regulatory sources. Data were compiled, reviewed, and characterized before development of the Estuary-specific RRM. Our primary goals and objectives in developing this preliminary RRM for the Estuary were to 1) determine if the RRM framework can be adapted to a large complex estuarine system such as the Delaware River, 2) identify the issues associated with adapting the model framework to the various management issues and regional areas/habitats of the River, 3) help identify data needs and potential refinements that might be needed to more specifically quantify relative stressor risks in various areas and habitats of the Estuary to better inform future management goals/actions by Stakeholders. The key conclusions of our preliminary assessment are 1) a diverse suite of stressors is likely affecting the ecological conditions of the Delaware Estuary, 2) chemical (toxicants/contaminants) and physical (sedimentation, habitat loss) stressors were found to be on par with regards to their ranking, and 3) the RRM, in its current form, made it difficult to effectively balance the inequality in the sizes of the study subareas considered in the assessment. Management objectives and related research activities should focus on collecting the necessary data and information to further refine the RRM and assess the relative impacts of these stressors at various scales in the Estuary. By having such a framework and tool available, we believe that stakeholders within the Delaware River watershed will be able to make more informed and risk-based management decisions regarding restoration options for the Estuary.
McKinney, Kevin C.
2006-01-01
This report presents abstracts of technical studies that are focused on the hydrogeologic framework of the Espa?ola basin, a major subbasin of the Cenozoic Rio Grande rift. The Rio Grande, Rio Chama, Santa Fe River, and their tributaries carry important surface water in the Espa?ola basin. Sediments and interbedded volcanic rocks fill the Espa?ola basin and form extensive aquifer systems for ground water. Surface and ground water provide the principal sources of water for most residents of the basin, including people in the cities of Santa Fe, Espa?ola, and Los Alamos as well as Native Americans in several Pueblos. The abstracts describe results of technical studies that were presented either as poster exhibits or oral presentations at the fifth-annual Espa?ola basin workshop, held March 7-8 of 2006 in Santa Fe, New Mexico. The principal goal of this workshop was to share information about ongoing studies. The Espa?ola basin workshop was hosted by the Espa?ola basin technical advisory group (EBTAG) and sponsored by the U.S. Geological Survey, the New Mexico Bureau of Geology and Mineral Resources, and the Water Research Technical Assistance Office of Los Alamos National Laboratory. Abstracts in this report have been grouped into six information themes: Basic Water Data, Water Quality and Water Chemistry, Water Balance and Stream/Aquifer Interaction, Data Integration and Hydrologic Model Testing, Three-Dimensional Hydrogeological Architecture, and Geologic Framework. Abstracts submitted by U.S. Geological Survey authors in this report have had their technical content peer reviewed before they were included in the report. Technical reviews were not required for abstracts submitted by authors outside the USGS, although most did receive peer reviews within their originating agencies. Taken together, the abstracts in this report provide a view of the current status of hydrogeologic research within the Espa?ola basin.
Flood of January 19-20, 1996 in New York State
Lumia, Richard
1998-01-01
Heavy rain during January 18-19, 1996, combined with unseasonably warm temperatures that caused rapid snowmelt, resulted in widespread flooding throughout New York State. Damages to highways, bridges, and private property exceeded $100 million. The storm and flooding claimed 10 lives, stranded hundreds of people, destroyed or damaged thousands of homes and businesses, and closed hundreds of roads. Forty-one counties in New York were declared federal disaster areas. The most severely affected region was within and surrounding the Catskill Mountains. Damages and losses within Delaware County alone exceeded $20 million.More than 4.5 inches of rain fell on at least 45 inches of melting snow in the Catskill Mountain region during January 18-19 and caused major flooding in the area. The most destructive flooding was along Schoharie Creek and the East and West Branches of the Delaware River. Record peak discharges occurred at 57 U.S. Geological Survey streamflow-gaging stations throughout New York. Maximum discharges at 15 sites, mostly within the Schoharie Creek and Delaware River basins, had recurrence intervals equal to or greater than 100 years. The storage of significant amounts of floodwater in several reservoirs sharply reduced peak discharges downstream. This report presents a summary of peak stages and discharges, precipitation maps, floodflow hydrographs, inflow-outflow hydrographs for several reservoirs, and flood profiles along 83 miles of Schoharie Creek from its headwaters in the Catskill Mountains to its mouth at the Mohawk River.
Changes in freshwater mussel communities linked to legacy pollution in the Lower Delaware River
Blakeslee, Carrie J.; Silldorff, Erik L.; Galbraith, Heather S.
2018-01-01
Freshwater mussels are among the most-imperiled organisms worldwide, although they provide a variety of important functions in the streams and rivers they inhabit. Among Atlantic-slope rivers, the Delaware River is known for its freshwater mussel diversity and biomass; however, limited data are available on the freshwater mussel fauna in the lower, non-tidal portion of the river. This section of the Delaware River has experienced decades of water-quality degradation from both industrial and municipal sources, primarily as a function of one of its major tributaries, the Lehigh River. We completed semi-quantitative snorkel surveys in 53.5 of the 121 km of the river to document mussel community composition and the continued impacts from pollution (particularly inputs from the Lehigh River) on mussel fauna. We detected changes in mussel catch per unit effort (CPUE) below the confluence of the Lehigh River, with significant declines in the dominant species Elliptio complanata (Eastern Elliptio) as we moved downstream from its confluence—CPUE dropped from 179 to 21 mussels/h. Patterns in mussel distribution around the Lehigh confluence matched chemical signatures of Lehigh water input. Specifically, Eastern Elliptio CPUE declined more quickly moving downstream on the Pennsylvania bank, where Lehigh River water input was more concentrated compared to the New Jersey bank. A definitive causal link remains to be established between the Lehigh River and the dramatic shifts in mussel community composition, warranting continued investigation as it relates to mussel conservation and restoration in the basin.
Fleck, W.B.; Vroblesky, D.A.
1996-01-01
Geomorphic processes and the aquatic habitat of the Redwood Creek basin were studied extensively between 1973 and 1983. This volume contains 22 separate articles by 32 investigators who studied geology, major storms, timber harvesting and its role on accelerating erosion, mass movement, fluvial erosion, sediment transport and storage, stream channel response to storms and landuse, stream habitat, and stream chemistry. This research describes a rapidly eroding landscape that is sensitive to effects of both landuse and major storms.
1981-01-01
12 6.1 Visual Observations ..... ............... . 12 6.2 Design and Construction Techniques .......... . 13 6.3 Past Performance...Techniques. No information is available that details the methods of design and/or construction. 6.3 Past Performance. No records relative to the...Inc., New York, 1959. 8. Weir Experiments, Coefficients, and Formulas, R. E. Horton, Water Supply and Irrigation Paper No. 200, Department of the
1981-04-01
5.4 Method of Analysis. The facility has been analyzed in accordance with procedures and guidelines established by the U.S. Army, Corps of Engineers...1 CHECKED IT____________ - DATE 3 264 &MAbh.: & &E),~iAS 4Ke A wACE )_’ 7Z LS.&.S. PLA IL - W&S6 Af8aLw)" A.-~ 1PE*)X F_ ?LATF- E - 8-77)r4liS IA
Daily Flow Model of the Delaware River Basin. Main Report.
1981-09-01
DATE U.S. Army Engineer District, Philadelphia Sept. 1981 2nd & Chestnut Sts. 13. NUMBER OF PAGES Philadelphia, PA 19106 144 p . 14. MONITORING AGENCY...VOLMEI FOR I DEVELOPMENTE OF A AIYRFLOW MODEL ( O T1 I "I I I. ~ p ~ ---- I i I TABLE OF CONTENTS I Page No. LIST OF FIGURES iii LIST OF TABLES vi I...Sample Duration Table from Program A969 111-35 111-19 Sample Low Flow Table from Program A969 111-38 111-20 Sample Log- P .?arson Low Flow Frequency
Water Quality in the Delmarva Peninsula, Delaware, Maryland, and Virginia, 1999-2001
Denver, Judith M.; Ator, Scott W.; Debrewer, Linda M.; Ferrari, Matthew J.; Barbaro, Jeffrey R.; Hancock, Tracy C.; Brayton, Michael J.; Nardi, Mark R.
2004-01-01
This report contains the major findings of a 1999-2001 assessment of water quality in the Delmarva Peninsula. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is assessed at many scales?from local ground-water flow paths to regional ground-water networks and in surface water?and is discussed in terms of local, State, and regional issues. Conditions in the Delmarva Peninsula are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies; universities; public interest groups; or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. Other products describing water-quality conditions in the Delmarva Peninsula are available. Detailed technical information, data and analyses, methodology, models, graphs, and maps that support the findings presented in this report can be accessed from http://md.water.usgs.gov/delmarva. Other reports in this series and data collected from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).
Streamflow simulation for continental-scale river basins
NASA Astrophysics Data System (ADS)
Nijssen, Bart; Lettenmaier, Dennis P.; Liang, Xu; Wetzel, Suzanne W.; Wood, Eric F.
1997-04-01
A grid network version of the two-layer variable infiltration capacity (VIC-2L) macroscale hydrologic model is described. VIC-2L is a hydrologically based soil- vegetation-atmosphere transfer scheme designed to represent the land surface in numerical weather prediction and climate models. The grid network scheme allows streamflow to be predicted for large continental rivers. Off-line (observed and estimated surface meteorological and radiative forcings) applications of the model to the Columbia River (1° latitude-longitude spatial resolution) and Delaware River (0.5° resolution) are described. The model performed quite well in both applications, reproducing the seasonal hydrograph and annual flow volumes to within a few percent. Difficulties in reproducing observed streamflow in the arid portion of the Snake River basin are attributed to groundwater-surface water interactions, which are not modeled by VIC-2L.
Flood of May 23, 2004, in the Turkey and Maquoketa River basins, northeast Iowa
Eash, David A.
2006-01-01
Severe flooding occurred on May 23, 2004, in the Turkey River Basin in Clayton County and in the Maquoketa River Basin in Delaware County following intense thunderstorms over northeast Iowa. Rain gages at Postville and Waucoma, Iowa, recorded 72-hour rainfall of 6.32 and 6.55 inches, respectively, on May 23. Unofficial rainfall totals of 8 to 10 inches were reported in the Turkey River Basin. The peak discharge on May 23 at the Turkey River at Garber streamflow-gaging station was 66,700 cubic feet per second (recurrence interval greater than 500 years) and is the largest flood on record in the Turkey River Basin. The timing of flood crests on the Turkey and Volga Rivers, and local tributaries, coincided to produce a record flood on the lower part of the Turkey River. Three large floods have occurred at the Turkey River at Garber gaging station in a 13-year period. Peak discharges of the floods of June 1991 and May 1999 were 49,900 cubic feet per second (recurrence interval about 150 years) and 53,900 cubic feet per second (recurrence interval about 220 years), respectively. The peak discharge on May 23 at the Maquoketa River at Manchester gaging station was 26,000 cubic feet per second (recurrence interval about 100 years) and is the largest known flood in the upper part of the Maquoketa River Basin.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zone; Atlantic Ocean, Chesapeake & Delaware Canal, Delaware Bay, Delaware River and its tributaries. 165.511 Section 165.511... Limited Access Areas Fifth Coast Guard District § 165.511 Security Zone; Atlantic Ocean, Chesapeake...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone; Atlantic Ocean, Chesapeake & Delaware Canal, Delaware Bay, Delaware River and its tributaries. 165.511 Section 165.511... Limited Access Areas Fifth Coast Guard District § 165.511 Security Zone; Atlantic Ocean, Chesapeake...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; Atlantic Ocean, Chesapeake & Delaware Canal, Delaware Bay, Delaware River and its tributaries. 165.511 Section 165.511... Limited Access Areas Fifth Coast Guard District § 165.511 Security Zone; Atlantic Ocean, Chesapeake...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zone; Atlantic Ocean, Chesapeake & Delaware Canal, Delaware Bay, Delaware River and its tributaries. 165.511 Section 165.511... Limited Access Areas Fifth Coast Guard District § 165.511 Security Zone; Atlantic Ocean, Chesapeake...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zone; Atlantic Ocean, Chesapeake & Delaware Canal, Delaware Bay, Delaware River and its tributaries. 165.511 Section 165.511... Limited Access Areas Fifth Coast Guard District § 165.511 Security Zone; Atlantic Ocean, Chesapeake...
Williamson, Tanja N.; Nystrom, Elizabeth A.; Milly, Paul C.D.
2016-01-01
The Delaware River Basin (DRB) encompasses approximately 0.4 % of the area of the United States (U.S.), but supplies water to 5 % of the population. We studied three forested tributaries to quantify the potential climate-driven change in hydrologic budget for two 25-year time periods centered on 2030 and 2060, focusing on sensitivity to the method of estimating potential evapotranspiration (PET) change. Hydrology was simulated using the Water Availability Tool for Environmental Resources (Williamson et al. 2015). Climate-change scenarios for four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCMs) and two Representative Concentration Pathways (RCPs) were used to derive monthly change factors for temperature (T), precipitation (PPT), and PET according to the energy-based method of Priestley and Taylor (1972). Hydrologic simulations indicate a general increase in annual (especially winter) streamflow (Q) as early as 2030 across the DRB, with a larger increase by 2060. This increase in Q is the result of (1) higher winter PPT, which outweighs an annual actual evapotranspiration (AET) increase and (2) (for winter) a major shift away from storage of PPT as snow pack. However, when PET change is evaluated instead using the simpler T-based method of Hamon (1963), the increases in Q are small or even negative. In fact, the change of Q depends as much on PET method as on time period or RCP. This large sensitivity and associated uncertainty underscore the importance of exercising caution in the selection of a PET method for use in climate-change analyses.
Advanced Multifunctional Materials for High Speed Combatant Hulls
2015-11-25
Combatant Hulls 5a. CONTRACT NUMBER 5b. GRANT NUMBER N00014-14-1-0269 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Mark S. Mirotznik 5d. PROJECT...High Speed Combatant Hulls ’ PI Information: Mark S. Mirotznik, Associate Professor Tel: (302) 831 -4241 Department of Electrical and Computer... HULLS FINAL TECHNICAL REPORT 1.0 Abstract In this ONR funded project investigators at the University of Delaware’s Department of Electrical
Hunchak-Kariouk, Kathryn; Buxton, Debra E.; Hickman, R. Edward
1999-01-01
Relations of water quality to streamflow were determined for 18 water-quality constituents at 28 surface-water-quality stations within the drainage area of the Atlantic Coastal, lower Delaware River, and Delaware Bay Basins for water years 1976-93. Surface-water-quality and streamflow data were evaluated for trends (through time) in constituent concentrations during high and low flows, and relations between constituent concentration and streamflow, and between constituent load and streamflow, were determined. Median concentrations were calculated for the entire period of study (water years 1976-93) and for the last 5 years of the period of study (water years 1989-93) to determine whether any large variation in concentration exists between the two periods. Medians also were used to determine the seasonal Kendall\\'s tau statistic, which was then used to evaluate trends in concentrations during high and low flows. Trends in constituent concentrations during high and low flows were evaluated to determine whether the distribution of the observations changes through time for intermittent (nonpoint storm runoff) and constant (point sources and ground water) sources, respectively. High- and low-flow trends in concentrations were determined for some constituents at 26 of the 28 water-quality stations. Seasonal effects on the relations of concentration to streamflow are evident for 10 constituents at 14 or more stations. Dissolved oxygen shows seasonal dependency at all stations. Negative slopes of relations of concentration to streamflow, which indicate a decrease in concentration at high flows, predominate over positive slopes because of dilution of instream concentrations from storm runoff. The slopes of the regression lines of load to streamflow were determined in order to show the relative contributions to the instream load from constant (point sources and ground water) and intermittent sources (storm runoff). Greater slope values indicate larger contributions from storm runoff to instream load, which most likely indicate an increased relative importance of nonpoint sources. Load-to-streamflow relations along a stream reach that tend to increase in a downstream direction indicate the increased relative importance of contributions from storm runoff. Likewise, load-to-streamflow relations along a stream reach that tend to decrease in a downstream direction indicate the increased relative importance of point sources and ground-water discharge. The magnitudes of the load slopes for five constituents increase in the downstream direction along the Great Egg Harbor River, indicating an increased relative importance of storm runoff for these constituents along the river. The magnitudes of the load slopes for 11 constituents decrease in the downstream direction along the Assunpink Creek and for 5 constituents along the Maurice River, indicating a decreased relative importance of storm runoff for these constituents along the rivers.
Clean Energy Application Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freihaut, Jim
2013-09-30
The Mid Atlantic Clean Energy Application Center (MACEAC), managed by The Penn State College of Engineering, serves the six states in the Mid-Atlantic region (Pennsylvania, New Jersey, Delaware, Maryland, Virginia and West Virginia) plus the District of Columbia. The goals of the Mid-Atlantic CEAC are to promote the adoption of Combined Heat and Power (CHP), Waste Heat Recovery (WHR) and District Energy Systems (DES) in the Mid Atlantic area through education and technical support to more than 1,200 regional industry and government representatives in the region. The successful promotion of these technologies by the MACEAC was accomplished through the followingmore » efforts; (1)The MACEAC developed a series of technology transfer networks with State energy and environmental offices, Association of Energy Engineers local chapters, local community development organizations, utilities and, Penn State Department of Architectural Engineering alumni and their firms to effectively educate local practitioners about the energy utilization, environmental and economic advantages of CHP, WHR and DES; (2) Completed assessments of the regional technical and market potential for CHP, WHR and DE technologies application in the context of state specific energy prices, state energy and efficiency portfolio development. The studies were completed for Pennsylvania, New Jersey and Maryland and included a set of incentive adoption probability models used as a to guide during implementation discussions with State energy policy makers; (3) Using the technical and market assessments and adoption incentive models, the Mid Atlantic CEAC developed regional strategic action plans for the promotion of CHP Application technology for Pennsylvania, New Jersey and Maryland; (4) The CHP market assessment and incentive adoption model information was discussed, on a continuing basis, with relevant state agencies, policy makers and Public Utility Commission organizations resulting in CHP favorable incentive programs in New Jersey, Pennsylvania, Maryland and Delaware; (5) Developed and maintained a MACEAC website to provide technical information and regional CHP, WHR and DE case studies and site profiles for use by interested stakeholders in information transfer and policy discussions; (6) Provided Technical Assistance through feasibility studies and on site evaluations. The MACEAC completed 28 technical evaluations and 9 Level 1 CHP analyses ; and (7) the MACEAC provided Technical Education to the region through a series of 29 workshops and webinars, 37 technical presentations, 14 seminars and participation in 13 CHP conferences.« less
Configuration Management Plan for K Basins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weir, W.R.; Laney, T.
This plan describes a configuration management program for K Basins that establishes the systems, processes, and responsibilities necessary for implementation. The K Basins configuration management plan provides the methodology to establish, upgrade, reconstitute, and maintain the technical consistency among the requirements, physical configuration, and documentation. The technical consistency afforded by this plan ensures accurate technical information necessary to achieve the mission objectives that provide for the safe, economic, and environmentally sound management of K Basins and the stored material. The configuration management program architecture presented in this plan is based on the functional model established in the DOE Standard, DOE-STD-1073-93,more » {open_quotes}Guide for Operational Configuration Management Program{close_quotes}.« less
McKinney, Kevin C.
2005-01-01
This report presents abstracts of technical studies that pertain to the hydrogeologic framework of the Espa?ola basin, a major subbasin of the Cenozoic Rio Grande rift. Sediments and interbedded volcanic rocks that fill the Espa?ola basin comprise an aquifer system that is an important source of water for many residents of the basin, including people in the cities of Santa Fe, Espa?ola, and Los Alamos as well as Native Americans in eleven Pueblos. The abstracts describe results of technical studies that were presented either as poster exhibits or oral presentations at the forth-annual Espa?ola basin workshop, held March 1-2 of 2005 in Santa Fe, New Mexico. The principal goal of this workshop was to share information about ongoing studies. The Espa?ola basin workshop was hosted by the Espa?ola basin technical advisory group (EBTAG) and sponsored by the U.S. Geological Survey, the New Mexico Bureau of Geology and Mineral Resources, and both the Water Research Technical Assistance Office and the Groundwater Protection Program of Los Alamos National Laboratory. Abstracts in this report have been grouped into six information themes: Basic Water Data, Water Quality and Water Chemistry, Water Balance and Stream/Aquifer Interaction, Data Integration and Hydrologic Model Testing, Three-Dimensional Hydrogeological Architecture, and Geologic Framework. Taken together, the abstracts in this report provide a view of the current status of hydrogeologic research within the Espa?ola basin.
Ross, R.M.; Redell, L.A.; Bennett, R.M.; Young, J.A.
2004-01-01
Avian biodiversity may be at risk in eastern parks and forests due to continued expansion of the hemlock woolly adelgid (Adelges tsugae), an exotic homopteran insect native to East Asia. To assess avian biodiversity, mesohabitat relations, and the risk of species loss with declining hemlock forests in Appalachian park lands, 80 randomly distributed fixed-radius plots were established in which territories of breeding birds were estimated on four forest-terrain types (hemlock and hardwood benches and ravines) in the Delaware Water Gap National Recreation Area. Both species richness and number of territories were higher in hardwood than hemlock forest types and in bench than ravine terrain types. Four insectivorous species, Acadian flycatcher (Empidonax virescens), blue-headed vireo (Vireo solitarius), black-throated green warbler (Dendroica virens), and Blackburnian warbler (Dendroica fusca), showed high affinity for hemlock forest type and exhibited significantly greater numbers of territories in hemlock than hardwood sites. These species are hemlock-associated species at risk from continued hemlock decline in the Delaware River valley and similar forests of the mid-Atlantic east slope. Two of these species, the blue-headed vireo and Blackburnian warbler, appeared to specialize on ravine mesohabitats of hemlock stands, the vireo a low-to-mid canopy species, the warbler a mid-to-upper canopy forager. Unchecked expansion of the exotic adelgid and subsequent hemlock decline could negatively impact 3,600 pairs from the park and several million pairs from northeastern United States hemlock forests due to elimination of preferred habitat.
1981-08-01
1 AU9r, 1,981 Division of Water Resources ~ .N~EtO P.O. Box CN029 I.NME Trenton, NJ 08625 50 R.MONITORING AGENCY NAME 0 ADORESS(ll dilloai how Cmnt...trespassing on the slopes of the dam. j. Provide a drain or other means for removing water collecting in the low-level outlet chamber. k. Reestablish and...Copies furnished: Mr. Dirk C. Hofman, P.E., Deputy Director Division of Water Resources N.J. Dept. of Environmental IProtection P.O. Box CN029 Trenton
2009-04-10
CAPE CANAVERAL, Fla. –Black-necked stilts move onto the bank of the Turn Basin behind the NASA News Center at NASA's Kennedy Space Center in Florida. The species inhabits salt marshes and coastal bays in the East, ranging along the Atlantic Coast from Delaware and the Carolinas to northern South America. Kennedy shares a boundary with the Merritt Island National Wildlife Refuge that includes salt-water estuaries, brackish marshes, hardwood hammocks and pine flatwoods. The diverse landscape provides habitat for more than 310 species of birds, 25 mammals, 117 fishes and 65 amphibians and reptiles. Photo credit: NASA/Ben Smegelsky
1980-01-01
to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It...at or above the normal pool level are in poor to fair condition, and logs below normal pool level are in fair to good condition. No evidence of wooden...appeared to be in fair condition (Photograph K). Although cracks in the concrete are numerous, there seemed to be no loose pieces of concrete. There
1980-08-01
5. That the valve on the outlet pipe be maintained and operated at least once each year . 6. That the low area on the right side of the spillway be...EVALUATION OF FEATURES 12 SECTION 6 - STRUCTURAL STABILITY 6.1 EVALUATION OF STRUCTURAL STABILITY 14 SECTION 7 - ASSESSMENT AND RECOMMENDATIONS 7.1 DAM...Classification: High (Refer to Section 3.i.E.) E. Ownership: Ms. Lavanda L. Lyman, Executive Director Rolling Hill Girl Scout Council 733 Route 202
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-11
...., a Delaware limited partnership; Tailwind Capital Partners (PP), L.P., a Delaware limited partnership; Tailwind Capital Partners, L.P., a Delaware limited partnership; Tailwind Capital Partners (ERISA), L.P., a Delaware limited partnership; Tailwind HSB Holdings, LLC, a Delaware limited liability company; Tailwind...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-02
... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [B-38-2013] Foreign-Trade Zone 99--Wilmington, Delaware; Application for Expansion of Subzone 99E; Delaware City Refining Company LLC; New Castle County... (grantee of FTZ 99), through the Delaware Economic Development Office, requesting the expansion of Subzone...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-19
... portion of the Delaware River from operating while a fireworks event is taking place. This temporary...-AA00 Safety Zone; Delaware River Waterfront Corp. Fireworks Display, Delaware River; Camden, NJ AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary...
Localized geohazards in West Texas, captured by multi-temporal Sentinel-1A/B interferometry
NASA Astrophysics Data System (ADS)
Kim, J. W.; Lu, Z.
2017-12-01
West Texas contains the Permian Basin and is particularly composed of three major geologic sedimentary basins: Delaware Basin, Central Basin Platform, and Midland Basin. Because the vast region was once covered by a shallow sea and had experienced long-lasting evaporation million years ago, the West Texas is underlain by a thick layer of water soluble rocks including the carbonate and evaporite rocks. In addition, the geologic composition provided abundant hydrocarbons in the depth of several kilometers, but the human activities exploiting the massive oil and gas from the subsurface made negative impacts on the stability of underground and ground surface. Most deformation and localized geohazards have been unnoticed by means of field measurements or remote sensing methods, because the West Texas is located in the low populated, remote region. The Sentinel-1A/B has continuously acquired the SAR imagery with a large swath of 250 km over the region, and its multi-temporal measurements can provide clues on what are really taking place on the ground surface, what are the causes to trigger the localized subsidence/uplift, and what should be done to prevent more severe disasters in the future. We have established an automated Sentinel-1A/B InSAR processing system on SMU supercomputer (Maneframe), its continuous monitoring will help us unveil the current status of deformation occurring in West Texas.
Estimation of potential runoff-contributing areas in the Kansas-Lower Republican River Basin, Kansas
Juracek, Kyle E.
1999-01-01
Digital soils and topographic data were used to estimate and compare potential runoff-contributing areas for 19 selected subbasins representing soil, slope, and runoff variability within the Kansas-Lower Republican (KLR) River Basin. Potential runoff-contributing areas were estimated separately and collectively for the processes of infiltration-excess and saturation-excess overland flow using a set of environmental conditions that represented high, moderate, and low potential runoff. For infiltration-excess overland flow, various rainfall intensities and soil permeabilities were used. For saturation-excess overland flow, antecedent soil-moisture conditions and a topographic wetness index were used. Results indicated that the subbasins with relatively high potential runoff are located in the central part of the KLR River Basin. These subbasins are Black Vermillion River, Clarks Creek, Delaware River upstream from Muscotah, Grasshopper Creek, Mill Creek (Wabaunsee County), Soldier Creek, Vermillion Creek (Pottawatomie County), and Wildcat Creek. The subbasins with relatively low potential runoff are located in the western one-third of the KLR River Basin, with one exception, and are Buffalo Creek, Little Blue River upstream from Barnes, Mill Creek (Washington County), Republican River between Concordia and Clay Center, Republican River upstream from Concordia, Wakarusa River downstream from Clinton Lake (exception), and White Rock Creek. The ability to distinguish the subbasins as having relatively high or low potential runoff was possible mostly due to the variability of soil permeability across the KLR River Basin.
2008-11-17
shale oil.7 The Mahogany zone can reach 200 feet in thickness in the Uinta Basin of Utah, and thus could represent a technical potential of producing...undiscovered technically recoverable conventional oil and natural gas liquids are estimated to underlie the Uinta -Piceance Basin of Utah-Colorado and...River formation over maps of access categories prepared for the EPCA inventory (Figure 6). The Uinta basin in Utah is shown as being subject to
Duris, Joseph W.; Reif, Andrew G.; Olson, Leif E.; Johnson, Heather E.
2011-01-01
The City of Wilmington, Delaware, is in the downstream part of the Brandywine Creek Basin, on the main stem of Brandywine Creek. Wilmington uses this stream, which drains a mixed-land-use area upstream, for its main drinking-water supply. Because the stream is used for drinking water, Wilmington is in need of information about the occurrence and distribution of specific fecally derived pathogenic bacteria (disease-causing bacteria) and their relations to commonly measured fecal-indicator bacteria (FIB), as well as information regarding the potential sources of the fecal pollution and pathogens in the basin. This study focused on five routinely sampled sites within the basin, one each on the West Branch and the East Branch of Brandywine Creek and at three on the main stem below the confluence of the West and East Branches. These sites were sampled monthly for 1 year. Targeted event samples were collected on two occasions during high flow and two occasions during normal flow. On the basis of this study, high flows in the Brandywine Creek Basin were related to increases in FIB densities, and in the frequency of selected pathogen and source markers, in the West Branch and main stem of Brandywine Creek, but not in the East Branch. Water exceeding the moderate fullbody-contact single-sample recreational water-quality criteria (RWQC) for Escherichia coli (E. coli) was more likely to contain selected markers for pathogenic E. coli (eaeA,stx1, and rfbO157 gene markers) and bovine fecal sources (E. hirae and LTIIa gene markers), whereas samples exceeding the enterococci RWQC were more likely to contain the same pathogenic markers but also were more likely to carry a marker indicative of human source (esp gene marker). On four sample dates, during high flow between October and March, the West Branch was the only observed potential contributor of selected pathogen and bovine source markers to the main stem of Brandywine Creek. Indeed, the stx2 marker, which indicates a highly virulent type of pathogenic E. coli, was found only in the West Branch and main stem at high flow but was not found in the East Branch under similar conditions. However, it must be noted that throughout the entire year of sampling there were occasions, during both high and normal flows, when both the East and West Branches were potential contributors of pathogen and microbial-source tracking markers to the main stem. Therefore, this study indicates that under selected conditions (high flow, October through March), West Branch Brandywine Creek Basin was the most likely source of elevated FIB densities in the main stem. These elevated densities are associated with more frequent detection of selected pathogenic E. coli markers (rfbO157 stx1) and are associated with MST markers of bovine source. However, during other times of the year, both the West Branch and East Branch Basins are acting as potential sources of FIB and fecally derived pathogens.
Williamson, Tanja N.; Lant, Jeremiah G.
2015-11-18
The Water Availability Tool for Environmental Resources (WATER) is a decision support system (DSS) for the nontidal part of the Delaware River Basin (DRB) that provides a consistent and objective method of simulating streamflow under historical, forecasted, and managed conditions. WATER integrates geospatial sampling of landscape characteristics, including topographic and soil properties, with a regionally calibrated hillslope-hydrology model, an impervious-surface model, and hydroclimatic models that have been parameterized using three hydrologic response units—forested, agricultural, and developed land cover. It is this integration that enables the regional hydrologic-modeling approach used in WATER without requiring site-specific optimization or those stationary conditions inferred when using a statistical model. The DSS provides a “historical” database, ideal for simulating streamflow for 2001–11, in addition to land-cover forecasts that focus on 2030 and 2060. The WATER Application Utilities are provided with the DSS and apply change factors for precipitation, temperature, and potential evapotranspiration to a 1981–2011 climatic record provided with the DSS. These change factors were derived from a suite of general circulation models (GCMs) and representative concentration pathway (RCP) emission scenarios. These change factors are based on 25-year monthly averages (normals) that are centere on 2030 and 2060. The WATER Application Utilities also can be used to apply a 2010 snapshot of water use for the DRB; a factorial approach enables scenario testing of increased or decreased water use for each simulation. Finally, the WATER Application Utilities can be used to reformat streamflow time series for input to statistical or reservoir management software.
Riva-Murray, K.; Riemann, R.; Murdoch, P.; Fischer, J.M.; Brightbill, R.
2010-01-01
Widespread and increasing urbanization has resulted in the need to assess, monitor, and understand its effects on stream water quality. Identifying relations between stream ecological condition and urban intensity indicators such as impervious surface provides important, but insufficient information to effectively address planning and management needs in such areas. In this study we investigate those specific landscape metrics which are functionally linked to indicators of stream ecological condition, and in particular, identify those characteristics that exacerbate or mitigate changes in ecological condition over and above impervious surface. The approach used addresses challenges associated with redundancy of landscape metrics, and links landscape pattern and composition to an indicator of stream ecological condition across a broad area of the eastern United States. Macroinvertebrate samples were collected during 2000-2001 from forty-two sites in the Delaware River Basin, and landscape data of high spatial and thematic resolution were obtained from photointerpretation of 1999 imagery. An ordination-derived 'biotic score' was positively correlated with assemblage tolerance, and with urban-related chemical characteristics such as chloride concentration and an index of potential pesticide toxicity. Impervious surface explained 56% of the variation in biotic score, but the variation explained increased to as high as 83% with the incorporation of a second land use, cover, or configuration metric at catchment or riparian scales. These include land use class-specific cover metrics such as percent of urban land with tree cover, forest fragmentation metrics such as aggregation index, riparian metrics such as percent tree cover, and metrics related to urban aggregation. Study results indicate that these metrics will be important to monitor in urbanizing areas in addition to impervious surface. ?? 2010 US Government.
1. NORTHWEST OBLIQUE AERIAL VIEW OF FORT DELAWARE AND PEA ...
1. NORTHWEST OBLIQUE AERIAL VIEW OF FORT DELAWARE AND PEA PATCH ISLAND. REMAINS OF SEA WALL VISIBLE IN FOREGROUND AND RIGHT OF IMAGE. - Fort Delaware, Sea Wall, Pea Patch Island, Delaware City, New Castle County, DE
DELAWARE ESTUARY A MANAGEMENT PLAN FOR THE DELAWARE ESTUARY
Wise conservation and management of the Delaware Estuary is arguably the most important cooperative environmental initiative ever jointly undertaken by the States of New Jersey, Pennsylvania, and Delaware. While much has been accomplished over the past few decades to improve wate...
Assessment of potential shale gas and shale oil resources of the Norte Basin, Uruguay, 2011
Schenk, Christopher J.; Kirschbaum, Mark A.; Charpentier, Ronald R.; Cook, Troy; Klett, Timothy R.; Gautier, Donald L.; Pollastro, Richard M.; Weaver, Jean N.; Brownfield, Michael
2011-01-01
Using a performance-based geological assessment methodology, the U.S. Geological Survey estimated mean volumes of 13.4 trillion cubic feet of potential technically recoverable shale gas and 0.5 billion barrels of technically recoverable shale oil resources in the Norte Basin of Uruguay.
1960-12-01
such as the Journal of the American Water Works Association, Public Works Magazine, Transactions of the American Society of Civil Engineers, reports of...American Water Works Associa- tion, August 1951. . .P-3 t I Picton 6/ related water use to population growth by application of trends in per capita...Committees on Public Works of the United States Senate and House of Representatives. Of the seven resolutions 1/ pertaining to this survey, five of them
2009-04-10
CAPE CANAVERAL, Fla. –Black-necked stilts look as if they're doing handstands on their mirror images in the shallow water of the Turn Basin behind the NASA News Center at NASA's Kennedy Space Center in Florida. The species inhabits salt marshes and coastal bays in the East, ranging along the Atlantic Coast from Delaware and the Carolinas to northern South America. Kennedy shares a boundary with the Merritt Island National Wildlife Refuge that includes salt-water estuaries, brackish marshes, hardwood hammocks and pine flatwoods. The diverse landscape provides habitat for more than 310 species of birds, 25 mammals, 117 fishes and 65 amphibians and reptiles. Photo credit: NASA/Ben Smegelsky
1980-01-01
Lake bal; 1.fs iv . 2 EVAI 17,,6 !1 ’,!L1i c valu t (it 1t -l t WIh lit S is fair .* ii I ’ t.it t lbankmitt ,hiouild r,-move,i .ini -- ’ co ’rIt e...note that f a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to...structures appear to be in fair condition. In accordance with the Corps of Engineer’s evaluation guidelines, the size classification of this dam is
1981-07-01
AD-AI03 500 NEW JERSEY DEPT OF ENVIRONMENTAL PROTECTION TRENTON --ETC F/G 13/13 NATIONAL DAM SAFETY PROGRA . UPPER MOHAWK LAKE DAM (NJOO292) D0-TC...NATIONAL DAM SAFETY PROGRAM DTIC UG 3 1981 PRO F, SA G DISTl-%iL ~ Lj,,. U L TED. DEPARTMENT OF THE ARMY Philadelphie District Corps oF Engineers...GOVT ACCESSION Ni. 3. RECIPLLT*S CATALOG NUMBER ib EN/NAP-/NJO0292-81/07 0, u)-, c J . () 4. TITLE (and Subtl) S. TYPE OF REPORT a PERIOD
1981-08-01
40L . 3 00 0. CLL LU W Ali CD 4* 41 z mc Ic -f-Q) EU; 14.) *U C jj o CA oU EPU 0 . to0 4 .) zO c06 -eN - 0 Cjuj c z *I.) M K L CUOLJ 4.) z4.) L U5 Z...a rusiword. miti.ogn to #livekommoem, not proved. SCatskill Formationl~kc/k 1 i.E Ifa brosominsh shalom End send- S ines: "nl,les mie. End vr .is
78 FR 14060 - Television Broadcasting Services; Seaford, Delaware and Dover, Delaware
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-04
... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 73 [MB Docket No. 13-40, RM-11691; DA 13-160] Television Broadcasting Services; Seaford, Delaware and Dover, Delaware AGENCY: Federal Communications...: Federal Communications Commission, Office of the Secretary, 445 12th Street SW., Washington, DC 20554. In...
ERIC Educational Resources Information Center
Berry, John N., III
2007-01-01
To librarians at the Delaware Division of Libraries, Governor Ruth Ann Minner, Secretary of State Harriet Smith Windsor, and Assistant Secretary of State Rick Geisenberger are "the Delaware Dream Team." The governor and her team supported funding for the 2004 statewide effort that resulted in the Delaware Master Plan for Library Services…
Improving estimates of streamflow characteristics by using Landsat-1 imagery
Hollyday, Este F.
1976-01-01
Imagery from the first Earth Resources Technology Satellite (renamed Landsat-1) was used to discriminate physical features of drainage basins in an effort to improve equations used to estimate streamflow characteristics at gaged and ungaged sites. Records of 20 gaged basins in the Delmarva Peninsula of Maryland, Delaware, and Virginia were analyzed for 40 statistical streamflow characteristics. Equations relating these characteristics to basin characteristics were obtained by a technique of multiple linear regression. A control group of equations contains basin characteristics derived from maps. An experimental group of equations contains basin characteristics derived from maps and imagery. Characteristics from imagery were forest, riparian (streambank) vegetation, water, and combined agricultural and urban land use. These basin characteristics were isolated photographically by techniques of film-density discrimination. The area of each characteristic in each basin was measured photometrically. Comparison of equations in the control group with corresponding equations in the experimental group reveals that for 12 out of 40 equations the standard error of estimate was reduced by more than 10 percent. As an example, the standard error of estimate of the equation for the 5-year recurrence-interval flood peak was reduced from 46 to 32 percent. Similarly, the standard error of the equation for the mean monthly flow for September was reduced from 32 to 24 percent, the standard error for the 7-day, 2-year recurrence low flow was reduced from 136 to 102 percent, and the standard error for the 3-day, 2-year flood volume was reduced from 30 to 12 percent. It is concluded that data from Landsat imagery can substantially improve the accuracy of estimates of some streamflow characteristics at sites in the Delmarva Peninsula.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-31
... National Scenic Trail; Delaware Water Gap National Recreation Area and Middle Delaware National Scenic and... pass through three units of the National Park System: The Appalachian National Scenic Trail, Delaware.... SUPPLEMENTARY INFORMATION: The Appalachian National Scenic Trail, Delaware Water Gap National Recreation Area...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Air Quality Control Region (Pennsylvania-New Jersey-Delaware). 81.15 Section 81.15 Protection of... Interstate Air Quality Control Region (Pennsylvania-New Jersey-Delaware). The Metropolitan Philadelphia Interstate Air Quality Control Region (Pennsylvania-New Jersey-Delaware) consists of the territorial area...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-17
... Promulgation of Air Quality Implementation Plans; Delaware, State Board Requirements AGENCY: Environmental... revision to the Delaware State Implementation Plan (SIP) submitted by the Delaware Department of Natural Resources and Environmental Control (DNREC) on January 11, 2013. The SIP revision addresses requirements of...
40 CFR 81.55 - Northeast Pennsylvania-Upper Delaware Valley Interstate Air Quality Control Region.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Northeast Pennsylvania-Upper Delaware... Designation of Air Quality Control Regions § 81.55 Northeast Pennsylvania-Upper Delaware Valley Interstate Air Quality Control Region. The Northeast Pennsylvania-Upper Delaware Valley Interstate Air Quality Control...
78 FR 59821 - Safety Zone, Delaware River; Wilmington, DE
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-30
... 1625-AA00 Safety Zone, Delaware River; Wilmington, DE AGENCY: Coast Guard, DHS. ACTION: Temporary final... safety zone will encompass all waters of Deepwater Anchorage No. 6, Delaware River, Wilmington, DE from... navigable waters of Deepwater Point Anchorage No. 6, Delaware River, Wilmington, DE, the effect of this...
Morrowan sedimentation in the Orogrande basin, west Texas and south-central New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connolly, W.M.; Stanton, R.J. Jr.
1986-03-01
Morrowan strata in the Hueco and Franklin Mountains reflect deposition within a shallow, gradually subsiding, carbonate shelf lagoon. Postulated environments fluctuated between open shelf lagoon with localized shoaling, restricted inner shelf lagoon, and peritidal settings. Variations in depth were slight, probably not exceeding several tens of meters within the photic zone. The La Tuna Formation (Franklin Mountains) was deposited near the axis (center) of the Orogrande basin; the lower division of the Magdalena limestone (Hueco Mountains), 30 mi east, was deposited 20-30 mi west of the paleoshoreline. Physiographically, the Orogrande sea was a small gulf, offering a certain degree ofmore » protection from the Morrowan seaway to the south. Sedimentologically, it was a wide expanse of predominantly quiet-water carbonate sedimentation with subordinate argillaceous influex and coarser peripheral clastics. The Orogrande basin, a stratigraphic feature, corresponds to a blanket deposit of shallow epeiric carbonates. Climatic and orographic effects are invoked to explain the contrasting style of clastic sedimentation in the Delaware and orogrande basins, east and west of the Pedernal uplift. Analysis of Morrowan carbonates reveals no evidence of cyclicity, major transgressions or regressions, or local tectonic activity. Deposition was stable and in equilibrium with a gradually subsiding shallow basin. Based on lithologic, faunal, biostratigraphic, and paleogeographic criteria, the lower division is both laterally and temporally equivalent with the La Tuna Formation. Accordingly, the latter term is advocated in favor of the former, which lacks both priority and formal status.« less
1981-12-01
Creek, Russian River Basin, Sonoma County , California; Hydraulic Model Investigation," Technical Report H-73-3, U. S. Army Engineer Waterways Experiment...Springs Dam, Dry Creek, Russian River Basin, Sonoma County , Cali- fornia; Hydraulic Model Investigation," Technical Report H-73-3, U. S. Army Engineer...Structures Ables, J. H., Jr., and Pickering, G. A. 1973 (Feb). "Outlet Works, 0 Warm Springs Dam, Dry Creek, Russian River Basin, Sonoma County , Cali
Sloto, Ronald A.
2004-01-01
This report describes the results of a study by the U.S. Geological Survey, in cooperation with the Delaware River Basin Commission, to develop a regional ground-water-flow model of the French Creek Basin in Chester County, Pa. The model was used to assist water-resource managers by illustrating the interconnection between ground-water and surface-water systems. The 70.7-mi2 (square mile) French Creek Basin is in the Piedmont Physiographic Province and is underlain by crystalline and sedimentary fractured-rock aquifers. Annual water budgets were calculated for 1969-2001 for the French Creek Basin upstream of streamflow measurement station French Creek near Phoenixville (01472157). Average annual precipitation was 46.28 in. (inches), average annual streamflow was 20.29 in., average annual base flow determined by hydrograph separation was 12.42 in., and estimated average annual ET (evapotranspiration) was 26.10 in. Estimated average annual recharge was 14.32 in. and is equal to 31 percent of the average annual precipitation. Base flow made up an average of 61 percent of streamflow. Ground-water flow in the French Creek Basin was simulated using the finite-difference MODFLOW-96 computer program. The model structure is based on a simplified two-dimensional conceptualization of the ground-water-flow system. The modeled area was extended outside the French Creek Basin to natural hydrologic boundaries; the modeled area includes 40 mi2 of adjacent areas outside the basin. The hydraulic conductivity for each geologic unit was calculated from reported specific-capacity data determined from aquifer tests and was adjusted during model calibration. The model was calibrated for aboveaverage conditions by simulating base-flow and water-level measurements made on May 1, 2001, using a recharge rate of 20 in/yr (inches per year). The model was calibrated for below-average conditions by simulating base-flow and water-level measurements made on September 11 and 17, 2001, using a recharge rate of 6.2 in/yr. Average conditions were simulated by adjusting the recharge rate until simulated streamflow at streamflow-measurement station 01472157 matched the long-term (1968-2001) average base flow of 54.1 cubic feet per second. The recharge rate used for average conditions was 15.7 in/yr. The effect of drought in the French Creek Basin was simulated using a drought year recharge rate of 8 in/yr for 3 months. After 3 months of drought, the simulated streamflow of French Creek at streamflow-measurement station 01472157 decreased 34 percent. The simulations show that after 6 months of average recharge (15.7 in/yr) following drought, streamflow and water levels recovered almost to pre-drought conditions. The effect of increased ground-water withdrawals on stream base flow in the South Branch French Creek Subbasin was simulated under average and drought conditions with pumping rates equal to 50, 75, and 100 percent of the Delaware River Basin Commission Ground Water Protected Area (GWPA) withdrawal limit (1,393 million gallons per year) with all pumped water removed from the basin. For average recharge conditions, the simulated streamflow of South Branch French Creek at the mouth decreased 18, 28, and 37 percent at a withdrawal rate equal to 50, 75, and 100 percent of the GWPA limit, respectively. After 3 months of drought recharge conditions, the simulated streamflow of South Branch French Creek at the mouth decreased 27, 40, and 52 percent at a withdrawal rate equal to 50, 75, and 100 percent of the GWPA limit, respectively. The effect of well location on base flow, water levels, and the sources of water to the well was simulated by locating a hypothetical well pumping 200 gallons per minute in different places in the Beaver Run Subbasin with all pumped water removed from the basin. The smallest reduction in the base flow of Beaver Run was from a well on the drainage divide
BASINS User Information and Guidance
This page provides links to guidance on how to use BASINS, including the User’s Manual, tutorials and training, technical notes, case studies, and publications that highlight the use of BASINS in various watershed analyses.
2012-2013 Delaware Valley Household Travel Survey | Transportation Secure
Data Center | NREL 12-2013 Delaware Valley Household Travel Survey 2012-2013 Delaware Valley Household Travel Survey The 2012-2013 Delaware Valley Household Travel Survey collected data for multiple ) sponsored the survey in collaboration with AbtSRBI. Methodology A sampling strategy was designed to recruit
Northeastern Research Station
2002-01-01
Forests protect watersheds, provide opportunities for recreation and settings for aesthetic enjoyment, serve as habitat for wildlife, and produce wood and other forest products. The forests of Delaware contribute greatly to the quality of life of the residents, making the State a better place in which to live. This brochure highlights significant trends in Delaware?s...
75 FR 9426 - Delaware River and Bay Oil Spill Advisory Committee; Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-02
... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2008-0333] Delaware River and Bay Oil... Delaware River and Bay Oil Spill Advisory Committee (DRBOSAC) will meet in Philadelphia, PA to discuss various issues to improve oil spill prevention and response strategies for the Delaware River and Bay...
Race to the Top - Early Learning Challenge: 2014 Annual Performance Report. Delaware
ERIC Educational Resources Information Center
Race to the Top - Early Learning Challenge, 2015
2015-01-01
This Race to the Top - Early Learning Challenge (RTT-ELC) annual performance report for the year 2014 describes Delaware's accomplishments, lessons learned, challenges, and strategies Delaware will implement to address those challenges. At the end of Year Three of the Early Learning Challenge Grant, Delaware continues to make significant progress…
78 FR 39601 - Safety Zone, Sugar House Casino Fireworks Display, Delaware River; Philadelphia, PA
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-02
...-AA00 Safety Zone, Sugar House Casino Fireworks Display, Delaware River; Philadelphia, PA AGENCY: Coast... the Delaware River. Sugar House Casino has contracted with Pyrotecnico Fireworks to arrange for this display. The Captain of the Port, Sector Delaware Bay, has determined that the Sugar House Casino...
Delaware County Community College Business and International Education Program.
ERIC Educational Resources Information Center
Delaware County Community Coll., Media, PA.
In 1987, Delaware County Community College (DCCC) initiated the Delaware Valley Trade Enhancement Project, comprising a number of activities to promote the involvement of local firms in international trade. One of the first activities of the Delaware Valley Trade Enhancement project was a survey of over 6,000 small and medium-sized businesses in…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-13
... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [B-94-2013] Foreign-Trade Zone (FTZ) 99--Wilmington, Delaware, Notification of Proposed Production Activity, Noramco, Inc., (Pharmaceutical Intermediate), Wilmington, Delaware The Delaware Economic Development Office, grantee of FTZ 99, submitted a notification of proposed production activity to...
Gaswirth, Stephanie B.
2017-03-06
The U.S. Geological Survey completed a geology-based assessment of undiscovered, technically recoverable continuous petroleum resources in the Wolfcamp shale in the Midland Basin part of the Permian Basin Province of west Texas. This is the first U.S. Geological Survey evaluation of continuous resources in the Wolfcamp shale in the Midland Basin. Since the 1980s, the Wolfcamp shale in the Midland Basin has been part of the “Wolfberry” play. This play has traditionally been developed using vertical wells that are completed and stimulated in multiple productive stratigraphic intervals that include the Wolfcamp shale and overlying Spraberry Formation. Since the shift to horizontal wells targeting the organic-rich shale of the Wolfcamp, more than 3,000 horizontal wells have been drilled and completed in the Midland Basin Wolfcamp section. The U.S. Geological Survey assessed technically recoverable mean resources of 20 billion barrels of oil and 16 trillion cubic feet of associated gas in the Wolfcamp shale in the Midland Basin.
Quantification and probabilistic modeling of CRT obsolescence for the State of Delaware
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schumacher, Kelsea A., E-mail: kschum@udel.edu; Schumacher, Thomas, E-mail: schumact@udel.edu; Agbemabiese, Lawrence, E-mail: agbe@udel.edu
2014-11-15
Highlights: • We modeled the obsolescence of cathode ray tube devices in the State of Delaware. • 411,654 CRT units or ∼16,500 metric tons have been recycled in Delaware since 2002. • The peak of the CRT obsolescence in Delaware passed by 2012. • The Delaware average CRT recycling rate between 2002 and 13 was approximately 27.5%. • CRTs will continue to infiltrate the system likely until 2033. - Abstract: The cessation of production and replacement of cathode ray tube (CRT) displays with flat screen displays have resulted in the proliferation of CRTs in the electronic waste (e-waste) recycle stream.more » However, due to the nature of the technology and presence of hazardous components such as lead, CRTs are the most challenging of electronic components to recycle. In the State of Delaware it is due to this challenge and the resulting expense combined with the large quantities of CRTs in the recycle stream that electronic recyclers now charge to accept Delaware’s e-waste. Therefore it is imperative that the Delaware Solid Waste Authority (DSWA) understand future quantities of CRTs entering the waste stream. This study presents the results of an assessment of CRT obsolescence in the State of Delaware. A prediction model was created utilizing publicized sales data, a variety of lifespan data as well as historic Delaware CRT collection rates. Both a deterministic and a probabilistic approach using Monte Carlo Simulation (MCS) were performed to forecast rates of CRT obsolescence to be anticipated in the State of Delaware. Results indicate that the peak of CRT obsolescence in Delaware has already passed, although CRTs are anticipated to enter the waste stream likely until 2033.« less
Gondolellid conodonts and depositional setting of the Phosphoria Formation
Wardlaw, Bruce R.
2015-01-01
The Phosphoria Formation and related rocks were deposited over an 8.9 m.y. interval beginning approximately 274.0Ma and ending approximately 265.1Ma. The Meade Peak Phosphatic Shale Member was deposited in southeastern Idaho and adjacent Wyoming over 5.4 m.y. from approximately 273.2 to 268.6 Ma. The Retort Phosphatic Shale Member was deposited in southwestern Montana and west-central Wyoming over 1.3 m.y. from approximately 267.4 to 266.1Ma. The base of the Roadian Stage of the Middle Permian occurs within the lower phosphate zone of the Meade Peak. The base of the Wordian Stage occurs within the upper phosphate zone of the Meade Peak. The presence of a cool-water brachiopod fauna, cool-water conodont faunas, and the absence of fusulinids throughout the Phosphoria basin indicate the presence of pervasive cool, upwelling waters. Acritarchs are intimately associated with phosphorites and phosphatic shales and may have been the primary organic producer to help drive phosphate production. The gondolellid conodont fauna of the Phosphoria Formation links a geographic cline of Jinogondolella nankingensis from the Delaware basin, West Texas, to the Sverdrup basin, Canadian Arctic, and shows distinct differentiation in species distribution, as do other conodont groups, within the Phosphoria basin. Ten species and two subspecies of gondolellid conodonts are recognized from the Phosphoria Formation and related rocks that belong to Mesogondolella and Jinogondolella.
ERIC Educational Resources Information Center
Niemeyer, Arielle
2014-01-01
Delaware's history with school desegregation is complicated and contradictory. The state both advanced and impeded the goals of "Brown v. Board of Education." After implementing desegregation plans that were ineffective by design, Delaware was ultimately placed under the first metropolitan, multi-district desegregation court order in the…
Taking Stock: An Analysis of Delaware's High School Standards and Course Requirements
ERIC Educational Resources Information Center
Achieve, Inc., 2005
2005-01-01
Delaware's secretary of education and the president of the State Board of Education asked Achieve to provide an analysis of the quality of Delaware's high school content standards and its course-taking requirements. In assisting Delaware in its commitment to raising the quality of its expectations for high school graduates, Achieve examined the…
Vogel, Karen L.; Reif, Andrew G.
1993-01-01
The 54-square-mile Red Clay Creek Basin, located in the lower Delaware River Basin, is underlain primarily by metamorphic rocks that range from Precambrian to Lower Paleozoic in age. Ground water flows through secondary openings in fractured crystalline rock and through primary openings below the water table in the overlying saprolite. Secondary porosity and permeability vary with hydrogeologic unit, topographic setting, and depth. Thirty-nine percent of the water-bearing zones are encountered within 100 feet of the land surface, and 79 percent are within 200 feet. The fractured crystalline rock and overlying saprolite act as a single aquifer under unconfined conditions. The water table is a subdued replica of the land surface. Local ground-water flow systems predominate in the basin, and natural ground-water discharge is to streams, comprising 62 to 71 percent of streamflow. Water budgets for 1988-90 for the 45-square-mile effective drainage area above the Woodale, Del., streamflow-measurement station show that annual precipitation ranged from 43.59 to 59.14 inches and averaged 49.81 inches, annual streamflow ranged from 15.35 to 26.33 inches and averaged 20.24 inches, and annual evapotranspiration ranged from 27.87 to 30.43 inches and averaged 28.98 inches. The crystalline rocks of the Red Clay Creek Basin were simulated two-dimensionally as a single aquifer under unconfined conditions. The model was calibrated for short-term steady-state conditions on November 2, 1990. Recharge was 8.32 inches per year. Values of aquifer hydraulic conductivity in hillside topographic settings ranged from 0.07 to 2.60 feet per day. Values of streambed hydraulic conductivity ranged from 0.08 to 26.0 feet per day. Prior to simulations where ground-water development was increased, the calibrated steady-state model was modified to approximate long-term average conditions in the basin. Base flow of 11.98 inches per year and a ground-water evapotranspiration rate of 2.17 inches per year were simulated by the model. Different combinations of ground-water supply and wastewater-disposal plans were simulated to assess their effects on the stream-aquifer system. Six of the simulations represent an increase in population of 14,283 and water use of 1.07 million gallons per day. One simulation represents an increase in population of 28,566 and water use of 2.14 million gallons per day. Reduction of average base flow is greatest for development plans with wastewater removed from the basin through sewers and is proportional to the amount of water removed from the basin. The development plan that had the least effect on water levels and base flow included on-lot wells and on-lot septic systems. Five organochlorine insecticides--lindane, DDT, dieldrin, heptachlor, and methoxychlor--were detected in ground water. Four organophosphorus insecticides--malathion, parathion, diazinon, and phorate--were detected in ground water. Four volatile organic compounds--benzene, toluene, tetrachloroethylene, and trichloroethylene--were detected in ground water. Phenol was detected at concentrations up to 8 micrograms per liter in water from 50 percent of 14 wells sampled. The concentration of dissolved nitrate in water from 18 percent of wells sampled exceeded 10 milligrams per liter as nitrogen; concentration of nitrate were as high as 19 milligrams per liter. PCB was detected in the bottom material of West Branch Red Clay Creek at Kennet Square at concentrations up to 5,600 micrograms per kilogram.
Romanok, Kristin M.; Fischer, Jeffrey M.; Riva-Murray, Karen; Brightbill, Robin; Bilger, Michael
2006-01-01
As part of the National Water-Quality Assessment (NAWQA) program activities in the Delaware River Basin (DELR), samples of fish tissue from 21 sites and samples of bed sediment from 35 sites were analyzed for a suite of organic compounds and trace elements. The sampling sites, within subbasins ranging in size from 11 to 600 square miles, were selected to represent 5 main land-use categories in the DELR -forest, low-agricultural, agricultural, urban, and mixed use. Samples of both fish tissue and bed sediment were also collected from 4 'large-river' sites that represented drainage areas ranging from 1,300 to 6,800 square miles, areas in which the land is used for a variety of purposes. One or more of the organochlorine compounds-DDT and chlordane metabolites, polychlorinated biphenyls (total PCBs), and dieldrin- were detected frequently in samples collected over a wide geographic area. One or more of these compounds were detected in fish-tissue samples from 92 percent of the sites and in bed-sediment samples from 82 percent of the sites. Concentrations of total DDT, total chlordanes, total PCBs, and dieldrin in whole white suckers and in bed sediment were significantly related to urban/industrial basin characteristics, such as percentage of urban land use and population density. Semi-volatile organic compounds (SVOCs)-total polycyclic aromatic hydrocarbons (PAHs), total phthalates, and phenols- were detected frequently in bed-sediment samples. All three types of SVOCs were detected in samples from at least one site in each land-use category. The highest detection rates and concentrations typically were in samples from sites in the urban and mixed land-use categories, as well as from the large-river sites. Concentrations of total PAHs and total phthalates in bed-sediment samples were found to be statistically related to percentages of urban land use and to population density in the drainage areas represented by the sampling sites. The samples of fish tissue and bed sediment collected throughout the DELR were analyzed for a large suite of trace elements, but results of the analyses for eight elements-arsenic, cadmium, chromium, copper, lead, nickel, mercury, and zinc- that are considered contaminants of concern are described in this report. One or more of the eight trace elements were detected in samples from every fish tissue and bed-sediment sampling site, and all of the trace elements were detected in samples from 97 percent of the bed-sediment sites. The concentrations of organic compounds and trace elements in the DELR samples were compared to applicable guidelines for the protection of wildlife and other biological organisms. Concentrations of total DDT, total chlordanes, total PCBs, and dieldrin in fish-tissue samples from 14 sites exceeded one or more of the Wildlife Protective Guidelines established by the New York State Department of Environmental Conservation. Concentrations of one or more organic compounds in samples from 16 bed-sediment sites exceeded the Threshold Effects Concentrations (TEC) of the Canadian Sediment Quality Guidelines, and concentrations of one or more of the eight trace elements in samples from 38 bed-sediment sites exceeded the TEC. (The TEC is the concentration below which adverse biological effects in freshwater ecosystems are expected to be rare.) Concentrations of organic compounds in samples from some bed-sediment sites exceeded the Canadian Probable Effects Concentrations (PEC), and concentrations of trace elements in samples from 18 sites exceeded the PEC. (The PEC is the concentration above which adverse effects to biological organisms are expected to occur frequently). Concentrations of organic compounds and trace elements in samples from the DELR were compared to similar data from other NAWQA study units in the northeastern United States and also data from the Mobile River (Alabama) Basin and the Northern Rockies Intermontane Basin study units. Median concentrations of to
1981-07-01
A102 671 NEJESYEPOFEVONETLPOETO TRNO FI133 NATIONAL DAM SAFETY PROGRAM. LAKE OCQUITTUNK DAM (NJO0260), OEL--ETC(U) JUL 81 A PERERA DACW61- C -0011...NISED3 I D: C YN .I!’ A SIGrNIFICANT NXt ’BEi OF PAG-W W9IGHl DO t RIPR ODUCE LEGIBLY. DEPARTMENT OF THE ARMOTIC Philadelphia District E LECTE9...l1()iora~ble IT; ndan "! yrn& Dirztrjbutijo.l r TF . Governor oi New JersEy AvDTiI biA, tic aton, Nuw Jerstx’ Olb21 77 L D i,-,t Spe( C i.A Uear
1980-06-01
V 5 - 1i/ .; t (cl S . /40 T POo. t t tv / I? I H 4O/- /o 31. C1 A Lot,- PoL e (6I 3 / - - - v ... S . OFCHKD. BY ------ DATE-------. . .. . . . . . R JE T : f6. SUBJECT --------------------------. PROECT-!. II Ii I V 1:2 ,,.,, - ) ) .( y...DATE/,/’ -’ REEGER ASSOCIATES SHEET NO. 7, CNKD. BY DATE PROJECT SUBJECT t AXtI Ic C / PA; 4 ( It o’,’ ’- ,’ S ’ L V / 4 LA d1A ’l, V HYC4P) 4,A 4, I
18. Photocopy of print (Original in Smith's History of Delaware ...
18. Photocopy of print (Original in Smith's History of Delaware County, Pennsylvania) MAIN AND EAST ELEVATIONS - Caleb Pusey House, 15 Race Street (Landingford Plantation), Upland, Delaware County, PA
5. ISLAND ROAD BRIDGE. COLWYN, DELAWARE CO., PA. Sec. 1101, ...
5. ISLAND ROAD BRIDGE. COLWYN, DELAWARE CO., PA. Sec. 1101, MP 5.58. - Northeast Railroad Corridor, Amtrak route between Delaware-Pennsylvania & Pennsylvania-New Jersey state lines, Philadelphia, Philadelphia County, PA
4. COBBS CREEK BRIDGE. COLWYN, DELAWARE CO., PA. Sec. 1101, ...
4. COBBS CREEK BRIDGE. COLWYN, DELAWARE CO., PA. Sec. 1101, MP 5.73 - Northeast Railroad Corridor, Amtrak route between Delaware-Pennsylvania & Pennsylvania-New Jersey state lines, Philadelphia, Philadelphia County, PA
Energy Efficiency Team Helping Delaware Towns Find Savings
The wastewater treatment plant in Selbyville, Delaware, is benefitting from an EPA-Delaware partnership designed to help water and wastewater facilities save energy and money while cutting pollution that contributes to climate change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel F. Ancona III; Kathryn E. George; Richard P. Bowers
This study, supported by the US Department of Energy, Wind Powering America Program, Maryland Department of Natural Resources and Chesapeake Bay Foundation, analyzed barriers to wind energy development in the Mid-Atlantic region along with options for overcoming or mitigating them. The Mid-Atlantic States including Delaware, Maryland, North Carolina and Virginia, have excellent wind energy potential and growing demand for electricity, but only two utility-scale projects have been installed to date. Reasons for this apathetic development of wind resources were analyzed and quantified for four markets. Specific applications are: 1) Appalachian mountain ridgeline sites, 2) on coastal plains and peninsulas, 3)more » at shallow water sites in Delaware and Chesapeake Bays, Albemarle and Pamlico Sounds, and 4) at deeper water sites off the Atlantic coast. Each market has distinctly different opportunities and barriers. The primary barriers to wind development described in this report can be grouped into four categories; state policy and regulatory issues, wind resource technical uncertainty, economic viability, and public interest in environmental issues. The properties of these typologies are not mutually independent and do interact. The report concluded that there are no insurmountable barriers to land-based wind energy projects and they could be economically viable today. Likewise potential sites in sheltered shallow waters in regional bay and sounds have been largely overlooked but could be viable currently. Offshore ocean-based applications face higher costs and technical and wind resource uncertainties. The ongoing research and development program, revision of state incentive policies, additional wind measurement efforts, transmission system expansion, environmental baseline studies and outreach to private developers and stakeholders are needed to reduce barriers to wind energy development.« less
Quantification and probabilistic modeling of CRT obsolescence for the State of Delaware.
Schumacher, Kelsea A; Schumacher, Thomas; Agbemabiese, Lawrence
2014-11-01
The cessation of production and replacement of cathode ray tube (CRT) displays with flat screen displays have resulted in the proliferation of CRTs in the electronic waste (e-waste) recycle stream. However, due to the nature of the technology and presence of hazardous components such as lead, CRTs are the most challenging of electronic components to recycle. In the State of Delaware it is due to this challenge and the resulting expense combined with the large quantities of CRTs in the recycle stream that electronic recyclers now charge to accept Delaware's e-waste. Therefore it is imperative that the Delaware Solid Waste Authority (DSWA) understand future quantities of CRTs entering the waste stream. This study presents the results of an assessment of CRT obsolescence in the State of Delaware. A prediction model was created utilizing publicized sales data, a variety of lifespan data as well as historic Delaware CRT collection rates. Both a deterministic and a probabilistic approach using Monte Carlo Simulation (MCS) were performed to forecast rates of CRT obsolescence to be anticipated in the State of Delaware. Results indicate that the peak of CRT obsolescence in Delaware has already passed, although CRTs are anticipated to enter the waste stream likely until 2033. Copyright © 2014 Elsevier Ltd. All rights reserved.
43. BOILER HOUSE FOURTH FLOOR, CLOSER VIEW OF STACKS, FORCED ...
43. BOILER HOUSE FOURTH FLOOR, CLOSER VIEW OF STACKS, FORCED DRAFT FANS, AND COAL BUNKER - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA
42. BOILER HOUSE FOURTH FLOOR, FORCED DRAFT FANS ABOVE BOILERS ...
42. BOILER HOUSE FOURTH FLOOR, FORCED DRAFT FANS ABOVE BOILERS (SEE DRAWING Nos. 10 & 11 OF 13) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA
76. TURBINE HALL, UNIT 2 SHOWING BOTH TURBINE AND CONDENSER ...
76. TURBINE HALL, UNIT 2 SHOWING BOTH TURBINE AND CONDENSER (SEE ALSO, DRAWING No. 12 OF 13) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA
Delaware's annual traffic statistical report, 2010
DOT National Transportation Integrated Search
2011-01-01
The Traffic Control Section of the Delaware State Police is the repository for all Delaware traffic crash data. This includes all crash reports regardless of the geographical areas in which they occur or the policy agency conducting the investigation...
Delaware's annual traffic statistical report, 2005
DOT National Transportation Integrated Search
2006-04-10
The Traffic Control Section of the Delaware State Police is the repository for all Delaware traffic crash data. This includes all crash reports regardless of the geographical areas in which they occur or the policy agency conducting the investigation...
Delaware's annual traffic statistical report, 2007
DOT National Transportation Integrated Search
2007-01-01
The Traffic Control Section of the Delaware State Police is the repository for all Delaware traffic crash data. This includes all crash reports regardless of the geographical areas in which they occur or the policy agency conducting the investigation...
Delaware's annual traffic statistical report, 2006
DOT National Transportation Integrated Search
2006-01-01
The Traffic Control Section of the Delaware State Police is the repository for all Delaware traffic crash data. This includes all crash reports regardless of the geographical areas in which they occur or the policy agency conducting the investigation...
Delaware's annual traffic statistical report, 2009
DOT National Transportation Integrated Search
2010-04-12
The Traffic Control Section of the Delaware State Police is the repository for all Delaware traffic crash data. This includes all crash reports regardless of the geographical areas in which they occur or the policy agency conducting the investigation...
Delaware's annual traffic statistical report, 2011
DOT National Transportation Integrated Search
2012-01-01
The Traffic Control Section of the Delaware State Police is the repository for all Delaware traffic crash data. This includes all crash reports regardless of the geographical areas in which they occur or the policy agency conducting the investigation...
Delaware's annual traffic statistical report, 2008
DOT National Transportation Integrated Search
2009-04-13
The Traffic Control Section of the Delaware State Police is the repository for all Delaware traffic crash data. This includes all crash reports regardless of the geographical areas in which they occur or the policy agency conducting the investigation...
2. CANAL BOAT ENTERING THE DELAWARE CANAL FROM OF THE ...
2. CANAL BOAT ENTERING THE DELAWARE CANAL FROM OF THE LEHIGH RIVER. BOATS COULD BE FERRIED ACROSS THE DELAWARE RIVER TO THE MORRIS CANAL BY A CABLE SUPPORTED TROLLEY. - Morris Canal, Phillipsburg, Warren County, NJ
ERIC Educational Resources Information Center
Delaware State Coll., Dover.
The collective bargaining agreement between the Delaware State College Board of Trustees and the Delaware State College Chapter (145 members) of the American Association of University Professors covering the period September 1, 1983-August 31, 1986 is presented. Items covered in the agreement include: unit recognition and definitions,…
Gaswirth, Stephanie B.; Marra, Kristen R.; Lillis, Paul G.; Mercier, Tracey J.; Leathers-Miller, Heidi M.; Schenk, Christopher J.; Klett, Timothy R.; Le, Phuong A.; Tennyson, Marilyn E.; Hawkins, Sarah J.; Brownfield, Michael E.; Pitman, Janet K.; Finn, Thomas M.
2016-11-15
Using a geology-based assessment methodology, the U.S. Geological Survey assessed technically recoverable mean resources of 20 billion barrels of oil and 16 trillion cubic feet of gas in the Wolfcamp shale in the Midland Basin part of the Permian Basin Province, Texas.
45. BOILER HOUSE BETWEEN FOURTH AND FIRST FLOORS SHOWING COAL ...
45. BOILER HOUSE BETWEEN FOURTH AND FIRST FLOORS SHOWING COAL BUNKER AND COAL FEEDER PIPES, LOOKING FROM CATWALK - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA
23. DETAIL VIEW IN COAL TOWER No. 1 (WEST) OF ...
23. DETAIL VIEW IN COAL TOWER No. 1 (WEST) OF THE MECHANISM THAT OPERATES THE COAL BUCKETS, FACING NORTH - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-07
... against Baltimore Gas and Electric Company (BGE), Pepco Holdings, Inc. (PHI), and affiliates; Potomac...), seeking a Commission order to reduce the base return equity used in BGE's and PHI Companies' formula...
27. BOILER HOUSE, GENERAL VIEW LOOKING SOUTH, PAST COAL CAR ...
27. BOILER HOUSE, GENERAL VIEW LOOKING SOUTH, PAST COAL CAR No. 9 TOWARD COAL CARS No. 11 & 8 - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA
Transportation elements assessment : Town of Milton, Delaware, September 29, 2009.
DOT National Transportation Integrated Search
2009-09-29
During the summer of 2009, the Delaware T2 Center collected extensive data : and completed analyses related to transportation infrastructure in the Town : of Milton, Delaware. This report presents those data, the analyses, and : resulting recommendat...
68. TURBINE HALL, LOOKING DOWN FROM THE CONTROL ROOM INTO ...
68. TURBINE HALL, LOOKING DOWN FROM THE CONTROL ROOM INTO TURBINE HALL AT UNITS 3, 5, AND 2) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA
Assessing the needs of Delaware's older drivers.
DOT National Transportation Integrated Search
2007-06-01
In light of Delawares growing population age 60 and older (60+), it is important to plan for the : states projected increase in older drivers. Information from the United States Census Bureau : (2005) indicates that Delaware is projected to hav...
NASA Astrophysics Data System (ADS)
Aufdenkampe, A. K.; Karwan, D. L.; Aalto, R. E.; Marquard, J.; Yoo, K.; Wenell, B.; Chen, C.
2012-12-01
We have proposed that the rate at which fresh, carbon-free minerals are delivered to and mix with fresh organic matter determines the rate of carbon preservation at a watershed scale (Aufdenkampe et al. 2011). Although many studies have examined the role of erosion in carbon balances, none consider that fresh carbon and fresh minerals interact. We believe that this mechanism may be a dominant sequestration process in watersheds with strong anthropogenic impacts. Our hypothesis - that the rate of mixing fresh carbon with fresh, carbon-free minerals is a primary control on watershed-scale carbon sequestration - is central to our Christina River Basin Critical Zone Observatory project (CRB-CZO, http://www.udel.edu/czo/). The Christina River Basin spans 1440 km2 from piedmont to Atlantic coastal plain physiographic provinces in the states of Pennsylvania and Delaware, and experienced intensive deforestation and land use beginning in the colonial period of the USA. Here we present a synthesis of multi-disciplinary data from the CRB-CZO on materials as they are transported from sapprolite to topsoils to colluvium to suspended solids to floodplains, wetlands and eventually to the Delaware Bay estuary. At the heart of our analysis is a spatially-integrated, flux-weighted comparison of the organic carbon to mineral surface area ratio (OC/SA) of erosion source materials versus transported and deposited materials. Because source end-members - such as forest topsoils, farmed topsoils, gullied subsoils and stream banks - represent a wide distribution of initial, pre-erosion OC/SA, we quantify source contributions using geochemical sediment fingerprinting approaches (Walling 2005). Analytes used for sediment fingerprinting include: total mineral elemental composition (including rare earth elements), fallout radioisotope activity for common erosion tracers (beryllium-7, beryllium-10, lead-210, cesium-137), particle size distribution and mineral specific surface area, in addition to organic carbon and nitrogen content with stable isotope (13C, 15N) and radiocarbon (14C) abundance to quantify OC/SA and organic carbon sources and mean age. We then use multivariate mixing model analysis to quantify the fractional contribution of each source end-member to each sample of suspended or deposited sediments. Last, we calculate a predicted OC/SA based on source end-member mixing and compare to the measured OC/SA to quantify net change in mineral complexed carbon.
15. VIEW OF COAL TOWER No. 2, LOOKING WEST TO ...
15. VIEW OF COAL TOWER No. 2, LOOKING WEST TO EAST FROM COAL TOWER No. 1 (FLOOR BELOW CRANE CONTROL) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA
44. BOILER HOUSE FOURTH FLOOR, GENERAL VIEW OF BASE OF ...
44. BOILER HOUSE FOURTH FLOOR, GENERAL VIEW OF BASE OF STACKS, FORCED DRAFT FANS, AND COAL BUNKER LOOKING TO COAL BUNKER - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA
24. DETAIL VIEW IN COAL TOWER No. 1 OF THE ...
24. DETAIL VIEW IN COAL TOWER No. 1 OF THE LEVERS THAT MANIPULATE THE COAL BUCKETS, LOOKING OVER THE BOOM - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA
35. BOILER HOUSE, TRACK FOR COAL CARS LEADING TO COAL ...
35. BOILER HOUSE, TRACK FOR COAL CARS LEADING TO COAL TOWER No. 2 (NOTE: SKYLIGHT ABOVE; COAL CARS IN FAR BACKGROUND) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA
34. BOILER HOUSE, COAL CONVEYOR AND TURNAROUND TRACK FOR COAL ...
34. BOILER HOUSE, COAL CONVEYOR AND TURN-AROUND TRACK FOR COAL CARS (NOTE: COAL CAR No. 6 IN FAR BACK GROUND) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA