Sample records for delaware river

  1. 78 FR 36658 - Safety Zone; Delaware River Waterfront Corp. Fireworks Display, Delaware River; Camden, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-19

    ... portion of the Delaware River from operating while a fireworks event is taking place. This temporary...-AA00 Safety Zone; Delaware River Waterfront Corp. Fireworks Display, Delaware River; Camden, NJ AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary...

  2. 78 FR 59821 - Safety Zone, Delaware River; Wilmington, DE

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... 1625-AA00 Safety Zone, Delaware River; Wilmington, DE AGENCY: Coast Guard, DHS. ACTION: Temporary final... safety zone will encompass all waters of Deepwater Anchorage No. 6, Delaware River, Wilmington, DE from... navigable waters of Deepwater Point Anchorage No. 6, Delaware River, Wilmington, DE, the effect of this...

  3. 75 FR 9426 - Delaware River and Bay Oil Spill Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2008-0333] Delaware River and Bay Oil... Delaware River and Bay Oil Spill Advisory Committee (DRBOSAC) will meet in Philadelphia, PA to discuss various issues to improve oil spill prevention and response strategies for the Delaware River and Bay...

  4. 33 CFR 165.510 - Delaware Bay and River, Salem River, Christina River and Schuylkill River-Regulated Navigation Area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Delaware Bay and River, Salem River, Christina River and Schuylkill River-Regulated Navigation Area. 165.510 Section 165.510... Limited Access Areas Fifth Coast Guard District § 165.510 Delaware Bay and River, Salem River, Christina...

  5. 33 CFR 165.510 - Delaware Bay and River, Salem River, Christina River and Schuylkill River-Regulated Navigation Area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Delaware Bay and River, Salem River, Christina River and Schuylkill River-Regulated Navigation Area. 165.510 Section 165.510... Limited Access Areas Fifth Coast Guard District § 165.510 Delaware Bay and River, Salem River, Christina...

  6. 78 FR 39601 - Safety Zone, Sugar House Casino Fireworks Display, Delaware River; Philadelphia, PA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ...-AA00 Safety Zone, Sugar House Casino Fireworks Display, Delaware River; Philadelphia, PA AGENCY: Coast... the Delaware River. Sugar House Casino has contracted with Pyrotecnico Fireworks to arrange for this display. The Captain of the Port, Sector Delaware Bay, has determined that the Sugar House Casino...

  7. 33 CFR 165.511 - Security Zone; Atlantic Ocean, Chesapeake & Delaware Canal, Delaware Bay, Delaware River and its...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zone; Atlantic Ocean, Chesapeake & Delaware Canal, Delaware Bay, Delaware River and its tributaries. 165.511 Section 165.511... Limited Access Areas Fifth Coast Guard District § 165.511 Security Zone; Atlantic Ocean, Chesapeake...

  8. 33 CFR 165.511 - Security Zone; Atlantic Ocean, Chesapeake & Delaware Canal, Delaware Bay, Delaware River and its...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone; Atlantic Ocean, Chesapeake & Delaware Canal, Delaware Bay, Delaware River and its tributaries. 165.511 Section 165.511... Limited Access Areas Fifth Coast Guard District § 165.511 Security Zone; Atlantic Ocean, Chesapeake...

  9. 33 CFR 165.511 - Security Zone; Atlantic Ocean, Chesapeake & Delaware Canal, Delaware Bay, Delaware River and its...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; Atlantic Ocean, Chesapeake & Delaware Canal, Delaware Bay, Delaware River and its tributaries. 165.511 Section 165.511... Limited Access Areas Fifth Coast Guard District § 165.511 Security Zone; Atlantic Ocean, Chesapeake...

  10. 33 CFR 165.511 - Security Zone; Atlantic Ocean, Chesapeake & Delaware Canal, Delaware Bay, Delaware River and its...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zone; Atlantic Ocean, Chesapeake & Delaware Canal, Delaware Bay, Delaware River and its tributaries. 165.511 Section 165.511... Limited Access Areas Fifth Coast Guard District § 165.511 Security Zone; Atlantic Ocean, Chesapeake...

  11. 33 CFR 165.511 - Security Zone; Atlantic Ocean, Chesapeake & Delaware Canal, Delaware Bay, Delaware River and its...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zone; Atlantic Ocean, Chesapeake & Delaware Canal, Delaware Bay, Delaware River and its tributaries. 165.511 Section 165.511... Limited Access Areas Fifth Coast Guard District § 165.511 Security Zone; Atlantic Ocean, Chesapeake...

  12. Nutrient Enrichment Study Data from the Upper, Middle, and Lower Sections of the Non-Tidal Delaware River, 2009

    USGS Publications Warehouse

    Brightbill, Robin A.; Limbeck, Robert; Silldorff, Erik; Eggleston, Heather L.

    2011-01-01

    The Delaware River Basin Commission is charged with establishing water-quality objectives for the tidal and non-tidal portions of the Delaware River, which include developing nutrient standards that are scientifically defensible. The U.S. Geological Survey, in cooperation with the Delaware River Basin Commission and the Academy of Natural Sciences, studied the effects of nutrient enrichment in the upper, middle, and lower sections of the non-tidal Delaware River. Algal samples were collected from the natural habitat using rock scrapes and from the artificial nutrient enrichment samplers, Matlock periphytometers. The knowledge gained from this study is to be used in helping determine appropriate nutrient criteria for the Delaware River in the oligotrophic, mesotrophic, and eutrophic sections of the river and is a first step toward gathering data that can be used in selecting nutrient effect levels or criteria thresholds for aquatic-life use protection. This report describes the methods for data collection and presents the data collected as part of this study.

  13. Flood of April 2-4, 2005, Delaware River Main Stem from Port Jervis, New York, to Cinnaminson, New Jersey

    USGS Publications Warehouse

    Reed, Timothy J.; Protz, Amy R.

    2007-01-01

    Several conditions, including saturated soils, snowmelt, and heavy rains, caused flooding on the Delaware River on April 2-4, 2005. The event occurred 50 years after the historic 1955 Delaware River flood, and only six months after a smaller but equally notable flood on September 18-19, 2004. The Delaware River flooded for a third time in 22 months in June, 2006. The peak flows and elevations of the 2005 flood were similar to those on June 28-29, 2006. The following report describes the April 2-4, 2005, Delaware River flood, and includes the associated precipitation amounts, peak flows and elevations, and flood frequencies. A comparison of historic Delaware River floods also is presented. The appendix of the report contains detailed information for 156 high-water mark elevations obtained on the main stem of the Delaware River from Port Jervis, New York, to Cinnaminson, New Jersey, for the April 2-4, 2005 flood. The April 2005 event originated with frequent precipitation from December 2004 to March 2005 which saturated the soils in the upper Delaware River Basin. The cold winter froze some of the soils and left a snowpack at higher elevations equivalent to as much as 10 inches of water in some areas. Temperatures rose above freezing, and heavy rains averaging 1 to 3 inches on March 27, 2005, melted some of the snow, causing the Delaware River to rise; however, peak elevations were still 2 to 7 feet below flood stage. Another round of rainfall averaging 2-5 inches in the basin on April 2, 2005, melted the remaining snowpack. The combination of snowmelt and runoff from the two storms produced flood conditions along the main stem of the Delaware River. Flood frequencies of flows at selected tributaries to the Delaware River did not exceed the 35-year recurrence intervals. The Delaware River main stem peak-flow recurrence intervals ranged from 40 to 80 years; flows were approximately 20 percent less than those from the peak of record in 1955. Peak elevations exceeded National Weather Service flood stages defined at continuous-record streamflow-gaging stations by 5 to 7 feet, but were on average 3 to 5 feet lower than the peak of record in August 1955. Peak elevations determined at 48 sites along the main stem of the Delaware River defined the flood profile between the gaging stations. The peak elevation in the tide-effected portion of the Delaware (downstream of Trenton, New Jersey), occurred on April 2, 2 days before the riverine peak, as a result of water pushed into the bay by a low-pressure system situated just off the coast. Every county located along the main stem of the Delaware River was declared a Federal disaster area. Property damage estimates in Pennsylvania, New York, and New Jersey exceeded $200 million.

  14. Report of the River Master of the Delaware River for the period December 1, 2008–November 30, 2009

    USGS Publications Warehouse

    Krejmas, Bruce E.; Paulachok, Gary N.; Mason, Jr., Robert R.; Owens, Marie

    2016-04-06

    A Decree of the Supreme Court of the United States, entered June 7, 1954, established the position of Delaware River Master within the U.S. Geological Survey (USGS). In addition, the Decree authorizes diversions of water from the Delaware River Basin and requires compensating releases from certain reservoirs, owned by New York City, to be made under the supervision and direction of the River Master. The Decree stipulates that the River Master will furnish reports to the Court, not less frequently than annually. This report is the 56th Annual Report of the River Master of the Delaware River. It covers the 2009 River Master report year, the period from December 1, 2008, to November 30, 2009.During the report year, precipitation in the upper Delaware River Basin was 50.89 inches (in.) or 116 percent of the long-term average. Combined storage in Pepacton, Cannonsville, and Neversink Reservoirs remained high throughout the year and did not decline below 80 percent of combined capacity at any time. Delaware River operations during the year were conducted as stipulated by the Decree and the Flexible Flow Management Program (FFMP).Diversions from the Delaware River Basin by New York City and New Jersey were in full compliance with the Decree. Reservoir releases were made as directed by the River Master at rates designed to meet the flow objective for the Delaware River at Montague, New Jersey, on 25 days during the report year. Releases were made at conservation rates—rates designed to relieve thermal stress and protect the fishery and aquatic habitat in the tailwaters of the reservoirs—on all other days.During the report year, New York City and New Jersey complied fully with the terms of the Decree, and directives and requests of the River Master.As part of a long-term program, the quality of water in the Delaware Estuary between Trenton, New Jersey, and Reedy Island Jetty, Delaware, was monitored at various locations. Data on water temperature, specific conductance, dissolved oxygen, and pH were collected continuously by electronic instruments at four sites. In addition, selected water-quality data were collected at 22 sites on a monthly basis.The Delaware River Basin Commission (DRBC) collects monthly samples from March through October at 22 sites between Biles Channel and South Brown Shoal. Samples were collected and analyzed by the State of Delaware for the DRBC. At each site, water samples were collected at a single point near the center of the channel near the surface and analyzed for selected physical properties, and chemical and biological constituents including routine chemical substances, nutrients and bacteria. These consist of analyses of field measurements and laboratory determinations.

  15. Report of the River Master of the Delaware River for the Period December 1, 2002-November 30, 2003

    USGS Publications Warehouse

    Krejmas, Bruce E.; Paulachok, Gary N.; Blanchard, Stephen F.

    2009-01-01

    A Decree of the Supreme Court of the United States, entered in 1954, established the position of Delaware River Master within the U.S. Geological Survey (USGS). In addition, the Decree authorizes diversions of water from the Delaware River Basin and requires compensating releases from certain reservoirs, owned by New York City, to be made under the supervision and direction of the River Master. The Decree stipulates that the River Master will furnish reports to the Court, not less frequently than annually. This report is the 50th Annual Report of the River Master of the Delaware River. It covers the 2003 River Master report year; that is, the period from December 1, 2002 to November 30, 2003. During the report year, precipitation in the upper Delaware River Basin was 13.40 inches (131 percent) greater than the long-term average. Combined storage in Pepacton, Cannonsville, and Neversink Reservoirs was above the long-term median on December 1, 2002. Reservoir storage increased rapidly in mid-March 2003 and all the reservoirs filled and spilled. The reservoirs remained nearly full for the remainder of the report year. Delaware River operations throughout the report year were conducted as stipulated by the Decree. Diversions from the Delaware River Basin by New York City and New Jersey were in compliance with the Decree. Reservoir releases were made as directed by the River Master at rates designed to meet the flow objective for the Delaware River at Montague, New Jersey, on 10 days during the report year. Releases were made at experimental conservation rates - or rates designed to relieve thermal stress and protect the fishery and aquatic habitat in the tailwaters of the reservoirs - on all other days. During the report year, New York City and New Jersey complied fully with the terms of the Decree, and directives and requests of the River Master. As part of a long-term program, the quality of water in the Delaware Estuary between Trenton, New Jersey, and Reedy Island Jetty, Delaware, was monitored at various locations. Data on water temperature, specific conductance, dissolved oxygen, and pH were collected continuously by electronic instruments at four sites. In addition, selected water-quality data were collected at 3 sites on a monthly basis and at 19 sites on a semi-monthly basis.

  16. Report of the River Master of the Delaware River for the Period December 1, 2003-November 30, 2004

    USGS Publications Warehouse

    Krejmas, Bruce E.; Paulachok, Gary N.; Blanchard, Stephen F.

    2009-01-01

    A Decree of the Supreme Court of the United States, entered in 1954, established the position of Delaware River Master within the U.S. Geological Survey (USGS). In addition, the Decree authorizes diversions of water from the Delaware River Basin and requires compensating releases from certain reservoirs, owned by New York City, to be made under the supervision and direction of the River Master. The Decree stipulates that the River Master will furnish reports to the Court, not less frequently than annually. This report is the 51st Annual Report of the River Master of the Delaware River. It covers the 2004 River Master report year; that is, the period from December 1, 2003, to November 30, 2004. During the report year, precipitation in the upper Delaware River Basin was 9.03 in. (121 percent) greater than the long-term average. Combined storage in Pepacton, Cannonsville, and Neversink Reservoirs was at a record high level on December 1, 2003. Reservoir storage remained high throughout the year with at least one reservoir spilling every month of the year. Delaware River operations throughout the year were conducted as stipulated by the Decree. Diversions from the Delaware River Basin by New York City and New Jersey were in compliance with the Decree. Reservoir releases were made as directed by the River Master at rates designed to meet the flow objective for the Delaware River at Montague, New Jersey, on 30 days during the report year. Releases were made at conservation rates - or rates designed to relieve thermal stress and protect the fishery and aquatic habitat in the tailwaters of the reservoirs - on all other days. During the report year, New York City and New Jersey complied fully with the terms of the Decree, and directives and requests of the River Master. As part of a long-term program, the quality of water in the Delaware Estuary between Trenton, New Jersey, and Reedy Island Jetty, Delaware, was monitored at various locations. Data on water temperature, specific conductance, dissolved oxygen, and pH were collected continuously by electronic instruments at four sites. In addition, selected water-quality data were collected at 3 sites on a monthly basis and at 19 sites on a semi-monthly basis.

  17. Report of the River Master of the Delaware River for the period December 1, 2006–November 30, 2007

    USGS Publications Warehouse

    Krejmas, Bruce E.; Paulachok, Gary N.; Blanchard, Stephen F.

    2011-01-01

    A Decree of the Supreme Court of the United States, entered June 7, 1954, established the position of Delaware River Master within the U.S. Geological Survey (USGS). In addition, the Decree authorizes diversions of water from the Delaware River Basin and requires compensating releases from certain reservoirs, owned by New York City, to be made under the supervision and direction of the River Master. The Decree stipulates that the River Master will furnish reports to the Court, not less frequently than annually. This report is the 54th Annual Report of the River Master of the Delaware River. It covers the 2007 River Master report year—the period from December 1, 2006, to November 30, 2007. During the report year, precipitation in the upper Delaware River Basin was 46.72 inches (in.) or 107 percent of the long-term average. Combined storage in Pepacton, Cannonsville, and Neversink Reservoirs was high on December 1, 2006. Reservoir storage remained high throughout the winter, declined seasonally during the summer, and began to recover in mid-October. Delaware River operations throughout the year were conducted as stipulated by the Decree. Diversions from the Delaware River Basin by New York City and New Jersey were in full compliance with the Decree. Reservoir releases were made as directed by the River Master at rates designed to meet the flow objective for the Delaware River at Montague, New Jersey, on 123 days during the report year. Releases were made at conservation rates—or rates designed to relieve thermal stress and protect the fishery and aquatic habitat in the tailwaters of the reservoirs—on all other days. During the report year, New York City and New Jersey complied fully with the terms of the Decree, and directives and requests of the River Master. As part of a long-term program, the quality of water in the Delaware Estuary between Trenton, New Jersey, and Reedy Island Jetty, Delaware, was monitored at various locations. Data on water temperature, specific conductance, dissolved oxygen, and pH were collected continuously by electronic instruments at four sites. In addition, selected water-quality data were collected at 19 sites on a twice–monthly basis and at 3 sites on a monthly basis.

  18. Report of the River Master of the Delaware River for the period December 1, 2004-November 30, 2005

    USGS Publications Warehouse

    Krejmas, Bruce E.; Paulachok, Gary N.; Blanchard, Stephen F.

    2011-01-01

    A Decree of the Supreme Court of the United States, entered in 1954, established the position of Delaware River Master within the U.S. Geological Survey. In addition, the Decree authorizes diversions of water from the Delaware River Basin and requires compensating releases from certain reservoirs, owned by New York City, to be made under the supervision and direction of the River Master. The Decree stipulates that the River Master will furnish reports to the Court, not less frequently than annually. This report is the 52nd Annual Report of the River Master of the Delaware River. It covers the 2005 River Master report year; that is, the period from December 1, 2004, to November 30, 2005. During the report year, precipitation in the upper Delaware River Basin was 7.56 in., or 117 percent of the long-term average. Combined storage in Pepacton, Cannonsville, and Neversink Reservoirs remained high from December 2004 to May 2005 and reached a record high level on April 3, 2005. Reservoir storage decreased steadily from May to early October, then increased rapidly through the end of November. Delaware River operations throughout the year were conducted as stipulated by the Decree. Diversions from the Delaware River Basin by New York City and New Jersey were in compliance with the Decree. Reservoir releases were made as directed by the River Master at rates designed to meet the flow objective for the Delaware River at Montague, New Jersey, on 120 days during the report year. Releases were made at conservation rates-or rates designed to relieve thermal stress and protect the fishery and aquatic habitat in the tailwaters of the reservoirs-on all other days. During the report year, New York City and New Jersey complied fully with the terms of the Decree, and directives and requests of the River Master. As part of a long-term program, the quality of water in the Delaware Estuary between Trenton, New Jersey, and Reedy Island Jetty, Delaware, was monitored at various locations. Data on water temperature, specific conductance, dissolved oxygen, and pH were collected continuously by electronic instruments at four sites. In addition, selected water-quality data were collected at 3 sites on a monthly basis and at 19 sites on a twice-monthly basis.

  19. Report of the River Master of the Delaware River for the period December 1, 2005-November 30, 2006

    USGS Publications Warehouse

    Krejmas, Bruce E.; Paulachok, Gary N.; Blanchard, Stephen F.

    2010-01-01

    A Decree of the Supreme Court of the United States, entered June 7, 1954, established the position of Delaware River Master within the U.S. Geological Survey (USGS). In addition, the Decree authorizes diversions of water from the Delaware River Basin and requires compensating releases from certain reservoirs, owned by New York City, to be made under the supervision and direction of the River Master. The Decree stipulates that the River Master will furnish reports to the Court, not less frequently than annually. This report is the 53rd Annual Report of the River Master of the Delaware River. It covers the 2006 River Master report year-the period from December 1, 2005, to November 30, 2006. During the report year, precipitation in the upper Delaware River Basin was 55.03 inches (in.) or 126 percent of the long-term average. Combined storage in Pepacton, Cannonsville, and Neversink Reservoirs was above the long-term median level on December 1, 2005. Reservoir storage remained above long–term median levels throughout the report year. Delaware River operations during the year were conducted as stipulated by the Decree. Diversions from the Delaware River Basin by New York City and New Jersey were in full compliance with the Decree. Reservoir releases were made as directed by the River Master at rates designed to meet the flow objective for the Delaware River at Montague, New Jersey, on 27 days during the report year. Releases were made at conservation rates-or rates designed to relieve thermal stress and protect the fishery and aquatic habitat in the tailwaters of the reservoirs-on all other days. During the report year, New York City and New Jersey complied fully with the terms of the Decree, and directives and requests of the River Master. As part of a long-term program, the quality of water in the Delaware Estuary between Trenton, New Jersey, and Reedy Island Jetty, Delaware, was monitored at various locations. Data on water temperature, specific conductance, dissolved oxygen, and pH were collected continuously by electronic instruments at four sites. In addition, selected water-quality data were collected at 19 sites on a twice-monthly basis and at 3 sites on a monthly basis.

  20. Report of the River Master of the Delaware River for the period December 1, 2007-November 30, 2008

    USGS Publications Warehouse

    Krejmas, Bruce E.; Paulachok, Gary N.; Blanchard, Stephen F.

    2014-01-01

    A Decree of the Supreme Court of the United States, entered June 7, 1954, established the position of Delaware River Master within the U.S. Geological Survey (USGS). In addition, the Decree authorizes diversions of water from the Delaware River Basin and requires compensating releases from certain reservoirs, owned by New York City, to be made under the supervision and direction of the River Master. The Decree stipulates that the River Master will furnish reports to the Court, not less frequently than annually. This report is the 55th Annual Report of the River Master of the Delaware River. It covers the 2008 River Master report year, the period from December 1, 2007, to November 30, 2008. During the report year, precipitation in the upper Delaware River Basin was 49.79 inches (in.) or 114 percent of the 67 report-year average. Combined storage in Pepacton, Cannonsville, and Neversink Reservoirs remained high from December 2007 to May 2008. Reservoir storage decreased seasonally from June to late October, then increased gradually through the end of November. Delaware River operations during the year were conducted as stipulated by the Decree. Diversions from the Delaware River Basin by New York City and New Jersey were in full compliance with the Decree. Reservoir releases were made as directed by the River Master at rates designed to meet the flow objective for the Delaware River at Montague, New Jersey, on 107 days during the report year. Releases were made at conservation rates—rates designed to relieve thermal stress and protect the fishery and aquatic habitat in the tailwaters of the reservoirs—on all other days. During the report year, New York City and New Jersey complied fully with the terms of the Decree, and directives and requests of the River Master. As part of a long-term program, the quality of water in the Delaware Estuary between Trenton, New Jersey, and Reedy Island Jetty, Delaware, was monitored at various locations. Data on water temperature, specific conductance, dissolved oxygen, and pH were collected continuously by electronic instruments at four sites. Data on water temperature and specific conductance were collected intermittently at one site. In addition, selected water-quality data were collected at 19 sites on a twice-monthly basis and at 3 sites on a monthly basis.

  1. A decision support framework for water management in the Upper Delaware River

    USGS Publications Warehouse

    Bovee, Ken D.; Waddle, Terry J.; Bartholow, John; Burris, Lucy

    2007-01-01

    The Delaware River Basin occupies an area of 12,765 square miles, in portions of south central New York, northeast Pennsylvania, northeast Delaware, and western New Jersey (fig. 1). The river begins as two streams in the Catskill Mountains, the East and West Branches. The two tributaries flow in a southwesterly direction until they meet at Hancock, N.Y. The length of the river from the mouth of Delaware Bay to the confluence at Hancock is 331 miles. Approximately 200 miles of the river between Hancock, N.Y., and Trenton, N.J., is nontidal.

  2. 33 CFR 110.67 - Delaware River, Essington, Pa.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Delaware River, Essington, Pa. 110.67 Section 110.67 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.67 Delaware River, Essington, Pa. North of...

  3. 33 CFR 110.67 - Delaware River, Essington, Pa.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Delaware River, Essington, Pa. 110.67 Section 110.67 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.67 Delaware River, Essington, Pa. North of...

  4. 33 CFR 110.67 - Delaware River, Essington, Pa.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Delaware River, Essington, Pa. 110.67 Section 110.67 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.67 Delaware River, Essington, Pa. North of...

  5. 33 CFR 110.67 - Delaware River, Essington, Pa.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Delaware River, Essington, Pa. 110.67 Section 110.67 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.67 Delaware River, Essington, Pa. North of...

  6. 33 CFR 110.67 - Delaware River, Essington, Pa.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Delaware River, Essington, Pa. 110.67 Section 110.67 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.67 Delaware River, Essington, Pa. North of...

  7. Hydrogeology of the West Branch Delaware River basin, Delaware County, New York

    USGS Publications Warehouse

    Reynolds, Richard J.

    2013-01-01

    In 2009, the U.S. Geological Survey, in cooperation with the New York State Department of Environmental Conservation, began a study of the hydrogeology of the West Branch Delaware River (Cannonsville Reservoir) watershed. There has been recent interest by energy companies in developing the natural gas reserves that are trapped within the Marcellus Shale, which is part of the Hamilton Group of Devonian age that underlies all the West Branch Delaware River Basin. Knowing the extent and thickness of stratified-drift (sand and gravel) aquifers within this basin can help State and Federal regulatory agencies evaluate any effects on these aquifers that gas-well drilling might produce. This report describes the hydrogeology of the 455-square-mile basin in the southwestern Catskill Mountain region of southeastern New York and includes a detailed surficial geologic map of the basin. Analysis of surficial geologic data indicates that the most widespread surficial geologic unit within the basin is till, which is present as deposits of ablation till in major stream valleys and as thick deposits of lodgment till that fill upland basins. Till and colluvium (remobilized till) cover about 89 percent of the West Branch Delaware River Basin, whereas stratified drift (outwash and ice-contact deposits) and alluvium account for 8.9 percent. The Cannonsville Reservoir occupies about 1.9 percent of the basin area. Large areas of outwash and ice-contact deposits occupy the West Branch Delaware River valley along its entire length. These deposits form a stratified-drift aquifer that ranges in thickness from 40 to 50 feet (ft) in the upper West Branch Delaware River valley, from 70 to 140 ft in the middle West Branch Delaware River valley, and from 60 to 70 ft in the lower West Branch Delaware River valley. The gas-bearing Marcellus Shale underlies the entire West Branch Delaware River Basin and ranges in thickness from 600 to 650 ft along the northern divide of the basin to 750 ft thick along the southern divide. The depth to the top of the Marcellus Shale ranges from 3,240 ft along the northern basin divide to 4,150 ft along the southern basin divide. Yields of wells completed in the aquifer are as high as 500 gallons per minute (gal/min). Springs from fractured sandstone bedrock are an important source of domestic and small municipal water supplies in the West Branch Delaware River Basin and elsewhere in Delaware County. The average yield of 178 springs in Delaware County is 8.5 gal/min with a median yield of 3 gal/min. An analysis of two low-flow statistics indicates that groundwater contributions from fractured bedrock compose a significant part of the base flow of the West Branch Delaware River and its tributaries.

  8. 75 FR 12561 - Delaware River and Bay Oil Spill Advisory Committee; Meeting Cancelled

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-16

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2008-0333] Delaware River and Bay Oil Spill Advisory Committee; Meeting Cancelled AGENCY: Coast Guard, DHS. ACTION: Notice of cancellation of meeting. SUMMARY: The Delaware River and Bay Oil Spill Advisory Committee (DRBOSAC) meeting scheduled for...

  9. A predictive model for anti-degradation monitoring of the Delaware River mainstem

    EPA Science Inventory

    The non-tidal portion of the Delaware River can be considered to be in minimally disturbed condition, but there is increasing pressure on the watershed. Thus, the primary goal of this research was to develop a monitoring tool that can be used by the Delaware River Basin Commissi...

  10. 2. CANAL BOAT ENTERING THE DELAWARE CANAL FROM OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. CANAL BOAT ENTERING THE DELAWARE CANAL FROM OF THE LEHIGH RIVER. BOATS COULD BE FERRIED ACROSS THE DELAWARE RIVER TO THE MORRIS CANAL BY A CABLE SUPPORTED TROLLEY. - Morris Canal, Phillipsburg, Warren County, NJ

  11. Introduction to the Delaware River Port Authority's Smart Bridges initiative

    NASA Astrophysics Data System (ADS)

    Box, Robert A.; McCullough, Patrick J.; Bistline, Robert S.

    2000-06-01

    The Delaware River Port Authority, whose mission is to manage, plan and construct transportation facilities and provide transportation services to maximize the safe and efficient movement of people and freight within the Delaware River Valley, located in southwestern Pennsylvania and southern New Jersey, is a self-financing, bi-state Authority, formed by a compact between the Commonwealth of Pennsylvania and the State of New Jersey and approved by the Congress of the United States. The Delaware River Port Authority is firmly committed to the strategic and integrated use of advanced transportation technology to improve traffic flow, operational efficiency and safety on DRPA's four bridges. To this end, the Delaware River Port Authority has initiated a program, appropriately named 'Smart Bridges.' The Delaware River Port Authority has recognized that this type of program is essential to the advancement of the DRPA's mission as an efficient, customer- friendly transportation and regional development agency. Under the Smart Bridges program the Delaware River Port Authority is introducing new technology into its aging infrastructure and transportation systems to ensure that the facilities continue to serve the region into the 21st century and beyond. Initiatives introduced under this program include EZ Pass, video surveillance systems, computerized traffic control systems and partnering with local universities to investigate the application of various innovative technologies to assist in the maintenance of the bridge facilities.

  12. 33 CFR 207.100 - Inland waterway from Delaware River to Chesapeake Bay, Del. and Md. (Chesapeake and Delaware...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... River to Chesapeake Bay, Del. and Md., between Reedy Point, Delaware River, and Old Town Point Wharf.... Traffic lights are located at Reedy Point and Old Town Point Wharf. These traffic lights are described in..., jetties, piers, fences, buildings, trees, telephone lines, lighting structures, or any other property of...

  13. 76 FR 11961 - Safety Zone, Dredging Operations; Delaware River, Marcus Hook, PA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ...-AA00 Safety Zone, Dredging Operations; Delaware River, Marcus Hook, PA AGENCY: Coast Guard, DHS. ACTION... Delaware River while the Dredge Pullen conducts dredging operations at the Sunoco Marcus Hook docks in the vicinity of the Marcus Hook Range near Marcus Hook, PA. This action is necessary to maintain the 42 ft...

  14. 33 CFR 100.T05-0443 - Safety Zone; Fireworks Display, Delaware River, New Hope, PA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Delaware River, New Hope, PA. 100.T05-0443 Section 100.T05-0443 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY REGATTAS AND MARINE PARADES SAFETY OF LIFE ON NAVIGABLE WATERS § 100.T05-0443 Safety Zone; Fireworks Display, Delaware River, New Hope, PA. (a) Location. The safety zone will restrict...

  15. Report for the River Master of the Delaware River for the Period December 1, 2001-November 30, 2002

    USGS Publications Warehouse

    Krejmas, Bruce E.; Paulachok, Gary N.; Carswell, William J.

    2006-01-01

    A Decree of the United States Supreme Court in 1954 established the position of Delaware River Master within the U.S. Geological Survey. In addition, the Decree authorizes diversions of water from the Delaware River Basin and requires compensating releases from certain reservoirs, owned by New York City, to be made under the supervision and direction of the River Master. The Decree stipulates that the River Master will furnish reports to the Court, not less frequently than annually. This report is the 49th Annual Report of the River Master of the Delaware River. It covers the 2002 River Master report year, that is, the period from December 1, 2001, to November 30, 2002. During the report year, precipitation in the upper Delaware River Basin was 2.73 in. greater than the long-term average. Combined storage in Pepacton, Cannonsville, and Neversink Reservoirs was at a record low level on December 1, 2001. Reservoir storage increased steadily from mid-winter until late June. Storage declined steadily from early July to mid-October then increased through the end of the year. Delaware River operations were conducted at reduced levels from December 1, 2001, to May 25, 2002, when drought emergency conditions prevailed, and as prescribed by the Decree from May 26, 2002, to November 30, 2002. Diversions from the Delaware River Basin by New York City and New Jersey were in compliance with the terms of the Decree or with the reduced limits in effect during drought emergency conditions. Reservoir releases were made as directed by the River Master at rates designed to meet the flow objective for the Delaware River at Montague, New Jersey, on 101 days during the report year. Releases were made at experimental conservation rates-or rates designed to relieve thermal stress and protect the fishery and aquatic habitat in the tailwaters of the reservoirs-on all other days. During the report year, New York City and New Jersey complied fully with the terms of the Decree, and during drought emergency conditions, with the terms of the 'Interstate Water Management Recommendations of the Parties to the Decree' (DRBC Resolution 83-13), and directives and requests of the River Master. As part of a long-term program, the quality of water in the Delaware Estuary between Trenton, New Jersey, and Reedy Island Jetty, Delaware, was monitored at various locations. Data on water temperature, specific conductance, dissolved oxygen, and pH were collected by electronic instruments at four sites, and data on water temperature and specific conductance were collected at one site. In addition, selected water-quality data were collected at 3 sites on a monthly basis and at 19 sites on a semimonthly basis.

  16. DELAWARE ESTUARY PCB MODEL

    EPA Science Inventory

    The Delaware River Basin Commission recently completed the first phase of a program to develop and implement Total Maximum Daily Loads (TMDLs) for toxic pollutants for the Delaware Estuary. This complex body of water extends from the head of tide at Trenton, NJ (River Mile 133.2...

  17. Evaluating temporal changes in stream condition in three New Jersey rive basins by using an index of biotic integrity

    USGS Publications Warehouse

    Chang, Ming; Kennen, Jonathan G.; Del Corso, Ellyn

    2000-01-01

    An index of biotic integrity (!B!) modified for New Jersey streams was used to compare changes in stream condition from the 1970s to the 1990s in Delaware, Passaic, and Raritan River Basins. Stream condition was assessed at 88 sampling locations. Mean IBI scores for all basins increased from the 1970s to the 1990s, but the stream-condition category improved (from fair to good) only for the Delaware River Basin. The number of benthic insectivores and the proportion of insectivorous cyprinds increased in all three basins; however, the number of white suckers decreased significantly only in the Delaware River Basin. Results of linear-regression analysis indicate a significant correlation between the percentage of altered land in the basin and change in IBI score (1970s to 1990s) for Delaware River sites. Results of analysis of variance of the rank-transformed IBI scores for the 1970s and 1990s indicate that the three basins was equal in the 1970s. Results of a multiple-comparison test demonstrated that the 1990s IBI values for the Delaware River Basin differed significantly from those for the Passaic and Raritan River Basins. Many factors, such as the imposition of the more stringent standards on water-water and industrial discharges during the 1980s and changes in land-use practices, likely contributed to the change in the Delaware River Basin. A general increase in IBI values for the Passaic, Raritan, and Delaware River Basins over the past 25 years appears to reflect overall improvements in water quality.

  18. 33 CFR 162.40 - Inland waterway from Delaware River to Chesapeake Bay, Del. and Md. (Chesapeake and Delaware Canal).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...., between Reedy Point, Delaware River, and Old Town Point Wharf, Elk River. (b) Speed. No vessel in the..., are required to travel at all times at a safe speed throughout the canal and its approaches so as to... Point and Welch Point. (f) Sailboats. Transiting the canal by vessels under sail is not permitted...

  19. Report of the River Master of the Delaware River for the period December 1, 1985, to November 30, 1986

    USGS Publications Warehouse

    Sauer, S.P.; Harkness, W.E.; Krejmas, B.E.; Vogel, K.L.

    1987-01-01

    A Decree of the Supreme Court of the United States in 1954 established the position of Delaware River Master. The Decree authorizes diversions of water from the Delaware River Basin (Figure 1) and requires compensating releases from certain reservoirs of the City of New York to be made under the supervision and direction of the River Master. Reports to the Court, not less frequently than annually, were stipulated. During the 1986 report year, December 1, 1985, to November 30, 1986, precipitation and runoff varied from below average to above average in the Delaware River Basin. For the year as a whole, precipitation was 4.3 inches above average. Runoff was near average. Operations were under a status of drought at the beginning of the report year. The drought emergency was terminated on December 18, 1985, by the Delaware River Basin Commission, and operations were returned to normal as prescribed by the Decree for the remainder of the report yr. Storage in the reservoirs increased to capacity during the winter months and all New York City Delaware River Basin reservoirs spilled throughout the year. Diversions from Delaware River Basin by New York City and New Jersey did not exceed those authorized by the terms of the Amended Decree. Releases were made as directed by the River Master at rates designed to meet the Montague flow objective on 69 days during the June to November period. Releases were made at conservation rates or at rates designed to relieve thermal stress in the streams downstream from the reservoirs at other times. The excess release quantity as defined by the Decree was not expended by end of the report year. New York City complied fully with the terms of the Decree and with the directives of the River Master during the year. (See also W89-04133) (USGS)

  20. Flood of April 2-3, 2005, Neversink River Basin, New York

    USGS Publications Warehouse

    Suro, Thomas P.; Firda, Gary D.

    2006-01-01

    Heavy rain on April 2-3, 2005 produced rainfall amounts of 3 inches to almost 6 inches within a 36-hour period throughout the Delaware River basin. Major flooding occurred in the East and West Branches of the Delaware River and their tributaries, the main stem of the Delaware River and the Neversink River, a major tributary to the Delaware River. The resultant flooding damaged hundreds of homes, caused millions of dollars in damage to infrastructure in Orange and Sullivan Counties, and forced more than 1,000 residents to evacuate their homes. A total of 20 New York counties were declared Federal disaster areas. Some of the most extensive flooding occurred along the Neversink and Delaware Rivers in Orange and Sullivan Counties, New York. Disaster recovery assistance from the April 2005 flooding in New York stood at almost $35 million in 2005, at which time more than 3,400 New Yorkers had registered for Federal aid. All U.S. Geological Survey stream-gaging stations on the Neversink River below the Neversink Reservoir recorded peak water-surface elevations higher than those recorded during the September 2004 flooding. Peak water-surface elevations at some study sites on the Neversink River exceeded the 500-year flood elevation as documented in flood-insurance studies by the Federal Emergency Management Agency. Flood peaks at some long-term U.S. Geological Survey stream-gaging stations were the highest ever recorded. Several U.S. Geological Survey stream-gaging stations on the Delaware River also recorded peak water-surface elevations that exceeded those recorded during the September 2004 flooding.

  1. Estimation of daily mean streamflow for ungaged stream locations in the Delaware River Basin, water years 1960–2010

    USGS Publications Warehouse

    Stuckey, Marla H.

    2016-06-09

    The ability to characterize baseline streamflow conditions, compare them with current conditions, and assess effects of human activities on streamflow is fundamental to water-management programs addressing water allocation, human-health issues, recreation needs, and establishment of ecological flow criteria. The U.S. Geological Survey, through the National Water Census, has developed the Delaware River Basin Streamflow Estimator Tool (DRB-SET) to estimate baseline (minimally altered) and altered (affected by regulation, diversion, mining, or other anthropogenic activities) and altered streamflow at a daily time step for ungaged stream locations in the Delaware River Basin for water years 1960–2010. Daily mean baseline streamflow is estimated by using the QPPQ method to equate streamflow expressed as a percentile from the flow-duration curve (FDC) for a particular day at an ungaged stream location with the percentile from a FDC for the same day at a hydrologically similar gaged location where streamflow is measured. Parameter-based regression equations were developed for 22 exceedance probabilities from the FDC for ungaged stream locations in the Delaware River Basin. Water use data from 2010 is used to adjust the baseline daily mean streamflow generated from the QPPQ method at ungaged stream locations in the Delaware River Basin to reflect current, or altered, conditions. To evaluate the effectiveness of the overall QPPQ method contained within DRB-SET, a comparison of observed and estimated daily mean streamflows was performed for 109 reference streamgages in and near the Delaware River Basin. The Nash-Sutcliffe efficiency (NSE) values were computed as a measure of goodness of fit. The NSE values (using log10 streamflow values) ranged from 0.22 to 0.98 (median of 0.90) for 45 streamgages in the Upper Delaware River Basin and from -0.37 to 0.98 (median of 0.79) for 41 streamgages in the Lower Delaware River Basin.

  2. Importance of Surface-Ground Water Interaction to Corps Total Water Management: Regional and National Examples

    DTIC Science & Technology

    1991-02-01

    Trenton to Wilmington. Here the Potomac-Raritan- Magothy aquifer system outcrops along approximately 65 miles of the Delaware River as it enters the...industrial supply, ground water from the Potomac-Raritan- Magothy aquifer system flowed to the Delaware River. As the area became populated and industrialized...Delaware River, precipitation, or other freshwater sources to prevent saltwater intrusion of the Potomac-Raritan- Magothy aquifer. Without replenishment

  3. A PREDICTIVE MODEL FOR ANTI-DEGRADATION MONITORING OF THE DELAWARE RIVER

    EPA Science Inventory

    The non-tidal portion of the Delaware River consists of many large sections designated as Wild and Scenic Rivers and passes through two national parks. Although there is increasing pressure on the watershed, large sections of the mainstem of the river can be considered to be in m...

  4. 75 FR 33690 - Safety Zone, Lights on the River Fireworks Display, Delaware River, New Hope, PA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-15

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 100 [Docket No. USCG-2010-0443] RIN 1625-AA00 Safety Zone, Lights on the River Fireworks Display, Delaware River, New Hope, PA AGENCY: Coast... safety zone in during the ``Lights on the River'' fireworks shows. Assistance for Small Entities Under...

  5. Flood of September 18-19, 2004 in the Upper Delaware River Basin, New York

    USGS Publications Warehouse

    Brooks, Lloyd T.

    2005-01-01

    The interaction between the remnants of tropical depression Ivan and a frontal boundary in the upper Delaware River basin on September 18-19, 2004, produced 4 to more than 6 inches of rainfall over a 5-county area within a 24-hour period. Significant flooding occurred on the East Branch Delaware River and its tributaries, and the main stem of the Delaware River. The resultant flooding damaged more than 100 homes and displaced more than 1,000 people. All of the counties within the basin were declared Federal disaster areas, but flood damage in New York was most pronounced in Delaware, Orange, and Sullivan Counties. Flood damage totaled more than $10 million. Peak water-surface elevations at some study sites in the basin exceeded the 500-year flood elevation as documented in flood-insurance studies by the Federal Emergency Management Agency. Flood peaks at some long-term U.S. Geological Survey (USGS) streamflow-gaging stations were the highest ever recorded.

  6. 36 CFR 7.71 - Delaware Water Gap National Recreation Area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of L. R. 45012 (commonly known as the River Road). Loop Two is approximately 6 miles long and begins at the northwest end of Loop One; it goes northeasterly between the Delaware River and River Road for about one mile until it crosses River Road; then southwesterly along the ridge which is south of Hidden...

  7. 36 CFR 7.71 - Delaware Water Gap National Recreation Area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of L. R. 45012 (commonly known as the River Road). Loop Two is approximately 6 miles long and begins at the northwest end of Loop One; it goes northeasterly between the Delaware River and River Road for about one mile until it crosses River Road; then southwesterly along the ridge which is south of Hidden...

  8. 36 CFR 7.71 - Delaware Water Gap National Recreation Area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of L. R. 45012 (commonly known as the River Road). Loop Two is approximately 6 miles long and begins at the northwest end of Loop One; it goes northeasterly between the Delaware River and River Road for about one mile until it crosses River Road; then southwesterly along the ridge which is south of Hidden...

  9. 36 CFR 7.71 - Delaware Water Gap National Recreation Area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of L. R. 45012 (commonly known as the River Road). Loop Two is approximately 6 miles long and begins at the northwest end of Loop One; it goes northeasterly between the Delaware River and River Road for about one mile until it crosses River Road; then southwesterly along the ridge which is south of Hidden...

  10. 36 CFR 7.71 - Delaware Water Gap National Recreation Area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of L. R. 45012 (commonly known as the River Road). Loop Two is approximately 6 miles long and begins at the northwest end of Loop One; it goes northeasterly between the Delaware River and River Road for about one mile until it crosses River Road; then southwesterly along the ridge which is south of Hidden...

  11. Report of the River Master of the Delaware River for the period December 1, 1981, to November 30, 1982

    USGS Publications Warehouse

    Schaefer, Francis T.; Fish, Robert E.

    1982-01-01

    The Amended Decree of the Supreme Court of the United States in 1954 established the position of Delaware River Master to administer provisions of the decree relative to diversions from the Delaware by the City of New York and the State of New Jersey , and releases from reservoirs of the City of New York designed to maintain stipulated rates of flow in the river. Reports to the Court, not less frequently than annually, with copies to the Governors and the Mayor, were stipulated. Water-supply conditions at the beginning of the year were under a status of emergency resulting from drought, which had been declared by the Delaware River Basin Commission. With the filling of the reservoirs, the emergency was lifted April 27. Runoff of Delaware River at Montague, New Jersey, was 19 percent below median during the year as compared to 28 percent below median the previous year. By November, with reservoir storage again declining, reductions in both diversions and releases were imposed. To conserve supplies, reductions were effected on November 13 limiting New York City diversions at 680 mgd and New Jersey to 85 mgd, and the required discharge at Montague was targeted at 1,655 cfs. Water quality of the Delaware River and Estuary was monitored on a continuous basis at six sites for most of the year and on a monthly basis at ten sites to accurately locate the salt front. Highest chloride concentration observed at the Chester, PA, site was 870 mg/l November 4. (USGS)

  12. 27 CFR 9.210 - Lehigh Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Lehigh River in the city of Jim Thorpe; then (8) Proceed east-northeasterly in a straight line to the... along Interstate 80 through Stroudsburg to the west bank of the Delaware River; then (15) Proceed south (downstream) along the west bank of the Delaware River, and, crossing onto the Northampton County map...

  13. 78 FR 48609 - Drawbridge Operation Regulation; Delaware River, NJ; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-09

    ... townships of Tacony, PA and Palmyra, NJ. The deviation cited incorrect vertical clearances in the navigable... the Delaware River, mile 107.2, between the townships of Tacony, PA and Palmyra, NJ. The deviation...

  14. Settlement to Improve Water Quality in Delaware River, Philadelphia-Area Creeks

    EPA Pesticide Factsheets

    EPA and the U.S. Department of Justice have reached agreement with a major water utility in the greater Philadelphia area to significantly reduce sewage discharges to the Delaware River and local creeks.

  15. ON THE WIND-INDUCED EXCHANGE BETWEEN INDIAN RIVER BAY, DELAWARE AND THE ADJACENT CONTINENTAL SHELF. (R826945)

    EPA Science Inventory

    The structure of the wind-induced exchange between Indian River Bay, Delaware and the adjacent continental shelf is examined based on current measurements made at the Indian River Inlet which represents the only conduit of exchange between the bay and the coastal ocean. Local ...

  16. Examination of contaminant exposure and reproduction of ospreys (Pandion haliaetus) nesting in Delaware Bay and River in 2015.

    PubMed

    Rattner, Barnett A; Lazarus, Rebecca S; Bean, Thomas G; McGowan, Peter C; Callahan, Carl R; Erickson, Richard A; Hale, Robert C

    2018-05-22

    A study of ospreys (Pandion haliaetus) nesting in the coastal Inland Bays of Delaware, and the Delaware Bay and Delaware River in 2015 examined spatial and temporal trends in contaminant exposure, food web transfer and reproduction. Concentrations of organochlorine pesticides and metabolites, polychlorinated biphenyls (PCBs), coplanar PCB toxic equivalents, polybrominated diphenyl ethers (PBDEs) and other flame retardants in sample eggs were generally greatest in the Delaware River. Concentrations of legacy contaminants in 2015 Delaware Bay eggs were lower than values observed in the 1970s through early 2000s. Several alternative brominated flame retardants were rarely detected, with only TBPH [bis(2-ethylhexyl)-tetrabromophthalate)] present in 5 of 27 samples at <5 ng/g wet weight. No relation was found between p,p'-DDE, total PCBs or total PBDEs in eggs with egg hatching, eggs lost from nests, nestling loss, fledging and nest success. Osprey eggshell thickness recovered to pre-DDT era values, and productivity was adequate to sustain a stable population. Prey fish contaminant concentrations were generally less than those in osprey eggs, with detection frequencies and concentrations greatest in white perch (Morone americana) from Delaware River compared to the Bay. Biomagnification factors from fish to eggs for p,p'-DDE and total PCBs were generally similar to findings from several Chesapeake Bay tributaries. Overall, findings suggest that there have been improvements in Delaware Estuary waterbird habitat compared to the second half of the 20th century. This trend is in part associated with mitigation of some anthropogenic contaminant threats. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Report of the River Master of the Delaware River for the period December 1, 1984 - November 30, 1985

    USGS Publications Warehouse

    Schaefer, F.T.; Harkness, W.E.; Cecil, L.D.

    1986-01-01

    A Decree of the Supreme Court of the United States in 1954 established the position of Delaware River Master. The Decree authorizes diversions of water from the Delaware River basin and requires compensating releases from certain reservoirs of the City of New York to be made under the supervision and direction of the River Master. Reports to the Court, not less frequently than annually, were stipulated. During the 1985 report year, December 1, 1984, to November 30, 1985, precipitation and runoff varied from below average to above average in the Delaware River basin. For the year as a whole, precipitation was near average. Runoff was below average. Operations were under a status of drought warning or drought from January 23, 1984, through the end of the report year. Below-normal precipitation the first half of the year resulted in decreased storage in the reservoirs to record low levels by March 1, 1985. Storage remained at record low levels from March through September. Above-normal precipitation in September and November served to break the drought and increase storage into the normal zone of the operating curves for the reservoirs. Diversions from the Delaware River basin by New York City did not exceed those authorized by the terms of the Amended Decree or those invoked by the several emergency conservation measures throughout the year. There were no diversions from the Delaware River basin by New Jersey during the year. Releases were made as directed by the River Master at rates designed to meet the Montague flow objective on 82 days between June 14 and September 28. Releases were made at conservation rates or at rates designed to relieve thermal stress in the streams downstream from the reservoirs at other times. (See also W89-04133) (USGS)

  18. Report of the River Master of the Delaware River for the period December 1, 1983 - November 30, 1984

    USGS Publications Warehouse

    Schaefer, F.T.; Harkness, W.E.; Baebenroth, R.W.; Speight, D.W.

    1985-01-01

    A Decree of the U.S. Supreme Court in 1954 established the position of Delaware River Master. The Decree authorizes diversions of water from the Delaware River basin and requires compensating releases from certain reservoirs of the City of New York to be made under the supervision and direction of the River Master. Reports to the Court, not less frequently than annually were stipulated. During the 1984 report year, December 1, 1983 to November 30, 1984, precipitation and runoff varied from above average to below average in the Delaware River basin. For the year as a whole, precipitation and runoff were near average. Operations were under a status of drought warning December 1, 1983; however, the above normal precipitation the first half of the year increased storage in the reservoirs to record levels by June 1, 1984. Below normal precipitation from August to November coupled with large releases to maintain the Montague flow objective and customary diversions for water supply reduced storage in the reservoirs to the drought-warning level by November 27. Diversions from the Delaware River basin by New York City and New Jersey conformed to the terms of the Amended Decree throughout the year. Releases were made as directed by the River Master at rates designed to meet the Montague flow objective on 127 days between June 23 and November 30. Releases were made at conservation rates or at rates designed to relieve thermal stress in the streams downstream from the reservoirs at other times. (USGS)

  19. 43. BOILER HOUSE FOURTH FLOOR, CLOSER VIEW OF STACKS, FORCED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. BOILER HOUSE FOURTH FLOOR, CLOSER VIEW OF STACKS, FORCED DRAFT FANS, AND COAL BUNKER - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  20. Hazardous Waste Cleanup: Solutia Incorporated in Bridgeport, New Jersey

    EPA Pesticide Factsheets

    The Solutia Delaware River Plant has been operating since 1961. The site was part of Monsanto until September 1977 when the corporation spun off its chemical business, which became Solutia Incorporated. The site is adjacent to the Delaware River on 461

  1. 42. BOILER HOUSE FOURTH FLOOR, FORCED DRAFT FANS ABOVE BOILERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. BOILER HOUSE FOURTH FLOOR, FORCED DRAFT FANS ABOVE BOILERS (SEE DRAWING Nos. 10 & 11 OF 13) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  2. 76. TURBINE HALL, UNIT 2 SHOWING BOTH TURBINE AND CONDENSER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    76. TURBINE HALL, UNIT 2 SHOWING BOTH TURBINE AND CONDENSER (SEE ALSO, DRAWING No. 12 OF 13) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  3. 75 FR 11502 - Schedule of Water Charges; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-11

    ... DELAWARE RIVER BASIN COMMISSION 18 CFR Part 410 Schedule of Water Charges; Correction AGENCY: Delaware River Basin Commission. ACTION: Proposed rule; correction. SUMMARY: This document corrects the... of water charges. This correction clarifies that the amended rates are proposed to take effect in two...

  4. 18 CFR 401.0 - Introduction.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Introduction. 401.0 Section 401.0 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE § 401.0 Introduction. (a) The Delaware River Basin Compact...

  5. Delaware River Basin

    USGS Publications Warehouse

    Fischer, Jeffrey M.

    1999-01-01

    Assessing the quality of water in every location of the Nation would not be practical. Therefore, NAWQA investigations are conducted within 59 selected areas called study units (fig. 1). These study units encompass important river and aquifer systems in the United States and represent the diverse geographic, waterresource, land-use, and water-use characteristics of the Nation. The Delaware River Basin is one of 15 study units in which work began in 1996. Water-quality sampling in the study unit will begin in 1999. This fact sheet provides a brief overview of the NAWQA program, describes the Delaware River Basin study unit, identifies the major water-quality issues in the basin, and documents the plan of study that will be followed during the study-unit investigation.

  6. National Dam Inspection Program. Ingham Creek (Aquetong Lake) Dam (NDI ID PA 00224, PA DER 9-49) Delaware River Basin, Ingham Creek, Pennsylvania. Phase I Inspection Report,

    DTIC Science & Technology

    1981-04-01

    Delaware River Basing Ingham Justif icaticn--- L Creek, Pennsylvania. Phase I Inspection Do DEL-AWARE RIVER BASIN Availabilit T Co~es Avail and/or D...about 1.5H:IV and an unknown upstream slope below the water surface. The dam impounds a reservoir with a normal pool surface area of 12.4 acres and a...deep. It was once used to direct water to a mill downstream of the dam and is now in poor condition. The spillway Design Flood (SDF) chosen for this

  7. 45. BOILER HOUSE BETWEEN FOURTH AND FIRST FLOORS SHOWING COAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. BOILER HOUSE BETWEEN FOURTH AND FIRST FLOORS SHOWING COAL BUNKER AND COAL FEEDER PIPES, LOOKING FROM CATWALK - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  8. 23. DETAIL VIEW IN COAL TOWER No. 1 (WEST) OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. DETAIL VIEW IN COAL TOWER No. 1 (WEST) OF THE MECHANISM THAT OPERATES THE COAL BUCKETS, FACING NORTH - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  9. 27. BOILER HOUSE, GENERAL VIEW LOOKING SOUTH, PAST COAL CAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. BOILER HOUSE, GENERAL VIEW LOOKING SOUTH, PAST COAL CAR No. 9 TOWARD COAL CARS No. 11 & 8 - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  10. 68. TURBINE HALL, LOOKING DOWN FROM THE CONTROL ROOM INTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. TURBINE HALL, LOOKING DOWN FROM THE CONTROL ROOM INTO TURBINE HALL AT UNITS 3, 5, AND 2) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  11. A summary of the test procedures and operational details of a Delaware River and an ocean dumping pollution monitoring experiment conducted 28 August 1975

    NASA Technical Reports Server (NTRS)

    Hypes, W. D.; Ohlhorst, C. W.

    1977-01-01

    Two remote sensor evaluation experiments are discussed. One experiment was conducted at the DuPont acid-dump site off the Delaware coast. The second was conducted at an organic waste outfall in the Delaware River. The operational objective of obtaining simultaneous sea truth sampling with remote sensors overpasses was met. Descriptions of the test sites, sensors, sensor platforms, flight lines, sea truth data collected, and operational chronology are presented.

  12. 15. VIEW OF COAL TOWER No. 2, LOOKING WEST TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW OF COAL TOWER No. 2, LOOKING WEST TO EAST FROM COAL TOWER No. 1 (FLOOR BELOW CRANE CONTROL) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  13. 44. BOILER HOUSE FOURTH FLOOR, GENERAL VIEW OF BASE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. BOILER HOUSE FOURTH FLOOR, GENERAL VIEW OF BASE OF STACKS, FORCED DRAFT FANS, AND COAL BUNKER LOOKING TO COAL BUNKER - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  14. 24. DETAIL VIEW IN COAL TOWER No. 1 OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. DETAIL VIEW IN COAL TOWER No. 1 OF THE LEVERS THAT MANIPULATE THE COAL BUCKETS, LOOKING OVER THE BOOM - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  15. 35. BOILER HOUSE, TRACK FOR COAL CARS LEADING TO COAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. BOILER HOUSE, TRACK FOR COAL CARS LEADING TO COAL TOWER No. 2 (NOTE: SKYLIGHT ABOVE; COAL CARS IN FAR BACKGROUND) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  16. 34. BOILER HOUSE, COAL CONVEYOR AND TURNAROUND TRACK FOR COAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. BOILER HOUSE, COAL CONVEYOR AND TURN-AROUND TRACK FOR COAL CARS (NOTE: COAL CAR No. 6 IN FAR BACK GROUND) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  17. 39. BOILER HOUSE, COAL CONVEYOR LEADING FROM COAL TOWER No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. BOILER HOUSE, COAL CONVEYOR LEADING FROM COAL TOWER No. 1 (WEST) (NOTE: COAL CARS No. 9 & 5 IN BACKGROUND) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  18. 76 FR 55368 - Notice of Commission Meeting and Public Hearing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-07

    ... DELAWARE RIVER BASIN COMMISSION Notice of Commission Meeting and Public Hearing Notice is hereby given that the Delaware River Basin Commission will hold a public hearing on Wednesday, September 21... Jersey. The hearing will be part of the Commission's regularly scheduled business meeting, which is open...

  19. 78 FR 54244 - Notice of Public Hearing and Business Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-03

    ... DELAWARE RIVER BASIN COMMISSION Notice of Public Hearing and Business Meeting Notice is hereby given that the Delaware River Basin Commission will hold a public hearing on Wednesday September 11... 12, 2013. The hearing, conference session and business meeting are open to the public and will be...

  20. 18 CFR 430.7 - Determination of protected areas and restriction on water use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DELAWARE RIVER BASIN COMMISSION SPECIAL REGULATIONS GROUND WATER PROTECTION AREA: PENNSYLVANIA § 430.7... a protected area within the meaning and for the purpose of Article 10 of the Delaware River Basin.... Boroughs Elverson, Malvern, Phoenixville, Spring City, West Chester. Townships Lehigh County Lower Milford...

  1. 18 CFR 430.9 - Comprehensive plan policies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....20.4 of the Water Code of the Delaware River Basin shall be applied using the following definition of... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Comprehensive plan policies. 430.9 Section 430.9 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION...

  2. 14. WEST ELEVATION OF COAL TOWER No. 2, LOOKING WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. WEST ELEVATION OF COAL TOWER No. 2, LOOKING WEST TO EAST FROM COAL TOWER No. 1 (FLOOR BELOW THE CRANE CONTROL) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  3. Inventory and management of trespass recreation use at Upper Delaware and Scenic and Recreational River

    USGS Publications Warehouse

    Marion, J.L.; More, Thomas A.; Donnelly, Maureen P.; Graefe, Alan R.; Vaske, Jerry J.

    1989-01-01

    Recreational trespass on private lands within the Upper Delaware Scenic and Recreational River, located along the eastern border between Pennsylvania and New York, prompted this survey of recreational trespass sites. The National Park Service has been mandated to manage river recreational use within its boundaries but land ownership shall remain predominantly private. This survey was conducted to document the number and distribution of river recreation trespass sites and to recommend appropriate management actions to minimize trespass use.

  4. Extent and frequency of inundation on the Perkiomen Creek flood plain from Green Lane Reservoir to the Schuylkill River (near Oaks, Pennsylvania)

    USGS Publications Warehouse

    Busch, William F.

    1969-01-01

    This is the fourth report on the extent and frequency of inundation prepared for the Delaware River Basin Commission. The first of these reports covered floods on the Delaware River in the vicinity of Easton, Pennsylvania and Phillipsburg, New Jersey. The second covered a reach of the Schuylkill River from Conshohocken to Philadelphia. The third was for the Delaware River in the vicinity of Belvidere, New Jersey. The first and third reports were written by George M. Farlekas of the Trenton district, and the second was written by Arthur T. Alter of the Harrisburg district. Specific information as to the areal extent and contents of these studies can be obtained from the Delaware River Basin Commission, P.O. Box 360, Trenton, New Jersey. This flood inundation study is part of an investigative program financed through a cooperative agreement between the U.S. Geological Survey and the Delaware River Basin Commission. The report was prepared under the direction of Norman H. Beamer, District, Chief, U.S. Geological Survey, Harrisburg, Pennsylvania.The streamflow data for Perkiomen Creek at Graterford were collected by the Pennsylvania Department of Forests and Waters from 1914 to 1931. Since 1931 the data have been collected under a cooperative agreement between the U.S. Geological Survey and the Department of Forests and Waters. Data on high-water marks and areas inundated in past periods of flooding have been obtained from many local residents of Montgomery County. The Reading Company cooperated by allowing survey crews to work on their right-of-way. The author is grateful to Mr. John W. Buchanan for surveys, Mr. Lewis C. Shaw for illustrations and to Mrs. Joan C. King for typing.

  5. Drought Risk Assessment for Greater New York Area: A Paleo View

    NASA Astrophysics Data System (ADS)

    Ceylan, G.; Devineni, N.

    2014-12-01

    The Delaware River provides half of New York City's drinking water, is a habitat for wild trout, American shad and the federally endangered dwarf wedge mussel. It has suffered four 100-year floods in the last seven years. A drought during the 1960s stands as a warning of the potential vulnerability of the New York City area to severe water shortages if a similar drought were to recur. The water releases from three New York City dams on the Delaware River's headwaters impact not only the reliability of the city's water supply, but also the potential impact of floods, and the quality of the aquatic habitat in the upper river. The goal of this work is to influence the Delaware River water release policies (FFMP/OST) to further benefit river habitat and fisheries without increasing New York City's drought risk, or the flood risk to down basin residents. The Delaware water release policies are constrained by the dictates of two US Supreme Court Decrees (1931 and 1954) and the need for unanimity among four states: New York, New Jersey, Pennsylvania, and Delaware -- and New York City. Coordination of their activities and the operation under the existing decrees is provided by the Delaware River Basin Commission (DRBC). Questions such as the probability of the system approaching drought state based on the current FFMP plan and the severity of the 1960s drought are addressed using long record paleo-reconstructions of flows. For this study, we developed reconstructed total annual flows (water year) for 3 reservoir inflows using regional tree rings going back up to 1754 (a total of 246 years). The reconstructed flows are used with a simple reservoir model to quantify droughts. We observe that the 1960s drought is by far the worst drought based on 246 years of simulations (since 1754). However, there are intermediate drought warning periods and proper adaptation would be sufficient during these periods. Modified release rules that aid thermal relief to wild trout in the upper Delaware can be explored without much stress to the system during most periods.

  6. 40. BOILER HOUSE, BEGINNING OF COAL CONVEYOR FROM COAL TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. BOILER HOUSE, BEGINNING OF COAL CONVEYOR FROM COAL TOWER No. 1 (FIFTH FLOOR OR CABLE ROAD FLOOR SHOWN IN DRAWING No. 6 OF 13) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  7. 78 FR 11097 - Artificial Island Anchorage No. 2 Partial Closure, Delaware River; Salem, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-15

    ... 1625-AA00 Artificial Island Anchorage No. 2 Partial Closure, Delaware River; Salem, NJ AGENCY: Coast... safety zone around the southern portion of Anchorage 2 (Artificial Island Anchorage) below position 39... will cross the closed portion of the anchorage. This regulation is necessary to provide for the safety...

  8. 78 FR 58985 - Proposed Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To Update...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-25

    ... DELAWARE RIVER BASIN COMMISSION 18 CFR Part 410 Proposed Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To Update Water Quality Criteria for pH AGENCY: Delaware River... public hearing to receive comments on proposed amendments to the Commission's Water Quality Regulations...

  9. 76 FR 50188 - Notice of Proposed Methodology for the Delaware River and Bay Integrated List Water Quality...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-12

    ... Integrated List Water Quality Assessment AGENCY: Delaware River Basin Commission. ACTION: Notice. SUMMARY... Integrated List Water Quality Assessment is available for review and comment. DATES: Comments must be... should have the phrase ``Water Quality Assessment 2012'' in the subject line and should include the name...

  10. 78 FR 10160 - Notice of Commission Meeting and Public Hearing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-13

    ... DELAWARE RIVER BASIN COMMISSION Notice of Commission Meeting and Public Hearing Notice is hereby given that the Delaware River Basin Commission will hold a public hearing on Tuesday, March 5, 2013. A business meeting will be held the following day on Wednesday, March 6, 2013. Both the hearing and business...

  11. 36. BOILER HOUSE, GENERAL VIEW LOOKING TOWARD COAL CAR No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. BOILER HOUSE, GENERAL VIEW LOOKING TOWARD COAL CAR No. 6 (NOTE: COAL DISTRIBUTER HOPPER & CONVEYOR THAT RUNS NORTH TO SOUTH BETWEEN TRACKS ON EAST TOWER SIDE) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  12. 25. BOILER HOUSE, LOOKING FROM THE NORTHEAST AT COAL CARS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. BOILER HOUSE, LOOKING FROM THE NORTHEAST AT COAL CARS No. 9 & 5 (NOTE: COAL CONVEYOR RUNNING ABOVE THE CARS; THIS CONVEYOR ORIGINATES IN COAL TOWER No. 1 (WEST)) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  13. The Delaware River Basin Landsat-Data Collection System Experiment

    NASA Technical Reports Server (NTRS)

    Paulson, R. W. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. This experiment successfully demonstrated that standard U.S. Geological Survey field instrumentation could be easily interfaced with the LANDSAT-DCS and the data made to flow smoothly to water resources management agencies. The experiment was conducted in the Delaware River basin. A truly operational system could not be deployed.

  14. Report of the River Master of the Delaware River for the period of December 1, 1980 to November 30, 1981

    USGS Publications Warehouse

    Schaefer, Francis T.; Fish, Robert E.

    1982-01-01

    Water supply conditions at the beginning of the year were marginal in marked contrast to those for the preceeding nine years. Discharge of the Delaware River at Montague, New Jersey, was only 72% of median as compared to 68% in excess of median the previous year. In December, with reservoir storage again declining, further reductions in both diversions and releases were imposed. With consent of all the parties, reductions were effected on December 20 limiting New York City diversions to 560 mgd, New Jersey to 65 mgd, and the required discharge at Montague was targeted at 1550 cfs. To conserve supplies, additional reductions were imposed in January when the Delaware River basin Commission formally declared a drought. New York City 's limitations was set at 520 mgd and that for New Jersey at 62 mgd. Montague flows were targeted between 1100 cfs, depending upon the location of the salt front in the estuary. Water quality of the Delaware River and Estuary was monitored on a continuous basis at eight sites for most of the year and on a monthly basis at ten sites to accurately locate the salt front. Highest concentrations observed at the Benjamin Franklin Bridge site was 133 mg/l (milligram per liter) on February 2. (USGS)

  15. Hydrogeology, degradation of ground-water quality, and simulation of infiltration from the Delaware River into the Potomac aquifers, northern Delaware

    USGS Publications Warehouse

    Phillips, S.W.

    1987-01-01

    Brackish water is infiltrating from the Delaware River into the underlying Potomac aquifers in the Cretaceous Potomac Formation in northern Delaware. Evidence that infiltration at the river is actually occurring includes chloride concentrations in the aquifers that are above ambient levels and chemical characteristics of groundwater and river water that are similar. Water quality within the Potomac aquifers has been degraded by the infiltration of river water and by leachate from waste disposal sites. The ambient groundwater has chloride concentrations from 10 to 21 mg/L. Chemical analyses indicate that the ambient groundwater is a sodium magnesium calcium-chloride sulfate bicarbonate type. Areas of the Potomac aquifers that have been degraded have chloride concentrations from 40 to 8,600 m/L, with specific conductances of 200 to 27 ,200 microsiemens/cm at 25 C. Chemical analyses indicate the groundwater in these areas is a sodium-chlorate type. Two wells in the lower Potomac aquifer near the Wilmington Marine Terminal also have been affected by the infiltration of river water. Leachate from waste disposal sites has caused localized groundwater degradation in all three Potomac aquifers, especially north of the Delaware Memorial Bridge and at sites near Army Creek and Red Lion Creek. Chloride concentrations up to 8,600 mg/L have resulted from waste disposal leachate. Simulated infiltration of river water into the Potomac aquifers accounts for approximately 6 to 12% of the total aquifer recharge in the area of influence of the pumping. There is a direct correlation between the rate of infiltration of river water and the total well-field pumpage. The rate of infiltration of river water for the pumping scenarios ranged from 0.31 to 0.62 million gal/day. Simulations of freshwater injection demonstrated that 12 barriers wells, each injecting 300 gal/min, would be needed to create a barrier against the infiltration of river water in the upper Potomac aquifer, whereas the middle Potomac aquifer would require 7 wells in injecting 200 gal/min. (Author 's abstract)

  16. 78 FR 63972 - Notice of Proposed Methodology for the 2014 Delaware River and Bay Water Quality Assessment Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... Water Quality Assessment Report AGENCY: Delaware River Basin Commission. ACTION: Notice. SUMMARY: Notice....us , with ``Water Quality Assessment 2014'' as the subject line; via fax to 609-883-9522; via U.S. Mail to DRBC, Attn: Water Quality Assessment 2014, P.O. Box 7360, West Trenton, NJ 08628-0360; via...

  17. 75 FR 54026 - Safety Zone; Red Bull Flugtag, Delaware River, Camden, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... Franklin Bridge. The safety zone will restrict vessel traffic from a portion of the Delaware River [email protected] . If you have questions on viewing the docket, call Renee V. Wright, Program Manager... from vessels and vessels from any debris in the water as a result from the event. Under 5 U.S.C. 553(d...

  18. Chemical character of streams in the Delaware River basin

    USGS Publications Warehouse

    Anderson, Peter W.; McCarthy, Leo T.

    1963-01-01

    The water chemistry of streams in the Delaware River basin falls into eight general groups, when mapped according to the prevalent dissolved-solids content and the predominant ions normally found in the water. The approximate regions representing each of these iso-chemical quality groups are shown on the accompanying base map of the drainage basin.

  19. 33 CFR 165.553 - Security Zone; Salem and Hope Creek Generation Stations, Delaware River, Salem County, New Jersey.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Security Zone; Salem and Hope... Limited Access Areas Fifth Coast Guard District § 165.553 Security Zone; Salem and Hope Creek Generation Stations, Delaware River, Salem County, New Jersey. (a) Location. The following area is a security zone...

  20. 33 CFR 165.553 - Security Zone; Salem and Hope Creek Generation Stations, Delaware River, Salem County, New Jersey.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Security Zone; Salem and Hope... Limited Access Areas Fifth Coast Guard District § 165.553 Security Zone; Salem and Hope Creek Generation Stations, Delaware River, Salem County, New Jersey. (a) Location. The following area is a security zone...

  1. 33 CFR 165.553 - Security Zone; Salem and Hope Creek Generation Stations, Delaware River, Salem County, New Jersey.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; Salem and Hope... Limited Access Areas Fifth Coast Guard District § 165.553 Security Zone; Salem and Hope Creek Generation Stations, Delaware River, Salem County, New Jersey. (a) Location. The following area is a security zone...

  2. 33 CFR 165.553 - Security Zone; Salem and Hope Creek Generation Stations, Delaware River, Salem County, New Jersey.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Security Zone; Salem and Hope... Limited Access Areas Fifth Coast Guard District § 165.553 Security Zone; Salem and Hope Creek Generation Stations, Delaware River, Salem County, New Jersey. (a) Location. The following area is a security zone...

  3. 33 CFR 165.553 - Security Zone; Salem and Hope Creek Generation Stations, Delaware River, Salem County, New Jersey.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Security Zone; Salem and Hope... Limited Access Areas Fifth Coast Guard District § 165.553 Security Zone; Salem and Hope Creek Generation Stations, Delaware River, Salem County, New Jersey. (a) Location. The following area is a security zone...

  4. 33 CFR 165.T05-0495 - Safety Zone, Sugar House Casino Fireworks Display, Delaware River; Philadelphia, PA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Safety Zone, Sugar House Casino Fireworks Display, Delaware River; Philadelphia, PA. 165.T05-0495 Section 165.T05-0495 Navigation and... Areas Fifth Coast Guard District § 165.T05-0495 Safety Zone, Sugar House Casino Fireworks Display...

  5. Watercraft user characteristics, management preferences, and user encounters on the upper Delaware scenic and recreational river: 1979-1996

    Treesearch

    Stephen M. Bowes; Chad P. Dawson

    1998-01-01

    Recreational boaters on the National Park Service managed Upper Delaware Scenic and Recreational River were surveyed about their characteristics, management preferences, and user encounters. Field interviews were conducted from Memorial Day weekend through Labor Day weekend during the summer of 1996. A total of 650 boaters were contacted at public and commercial access...

  6. Streamflow and water-quality monitoring in response to young-of-year smallmouth bass (micropterus dolomieu) mortality in the Susquehanna River and major tributaries, with comparisons to the Delaware and Allegheny Rivers, Pennsylvania, 2008-10

    USGS Publications Warehouse

    Chaplin, Jeffrey J.; Crawford, J. Kent

    2012-01-01

    For the critical period of each year, dissolved oxygen in the Susquehanna River at station C8 typically was 1.5 to 3.0 mg/L lower than in the Delaware River at station C1 and the Allegheny River at station C10. Median daily maximum water temperatures during the critical period of each year ranged from 1.6 to 2.7°C warmer at station C8 than at stations C1 and C10.

  7. Applications of HCMM data to soil moisture snow and estuarine current studies. [soil moisture in Minnesota and water circulation in the Delaware Bay and Potomac River

    NASA Technical Reports Server (NTRS)

    Wiesnet, D. R. (Principal Investigator); Mcginnis, D. F.; Matson, M.

    1979-01-01

    The author has identified the following significant results. Additional analyses of Luverne, Minnesota ground data revealed that soil moisture variations are independent of elevation effects. Tidal fluctuations in the Potomac River and Delaware Bay were examined as a function of surface temperature. Preliminary findings suggest that temperature boundaries are sufficient to detect various stages of the tidal cycle in Delaware Bay, but are as yet uncertain for prediction in the Potomac River. At least three additional cases are needed to completely evaluate the tidal cycle. An alphanumeric printout at a scale of 1:1,000,000 compares closely with a 1:1,000,000 scale DMD image of the Chesapeake Bay region.

  8. Trends in concentrations of polychlorinated biphenyls in fish tissue from selected sites in the Delaware River basin in New Jersey, New York, and Pennsylvania, 1969-98

    USGS Publications Warehouse

    Riva-Murray, Karen; Brightbill, Robin A.; Bilger, Michael D.

    2003-01-01

    Trends in concentrations of polychlorinated biphenyls in fish tissue from selected sites in the Delaware River basin in New Jersey, New York, and Pennsylvania, 1969-98 by Karen Riva-Murray, Robin A. Brightbill, and Michael D. Bilger U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 01-4066 ABSTRACT Polychlorinated biphenyl (PCB) concentrations in fish tissue collected during the 1990's from selected sites in the Delaware River Basin were compared with concentrations in fish tissue collected during 1969-88. Data collected by State and Federal agencies on concentrations in whole-body common carp (Cyprinus carpio) and white sucker (Catostomus commersoni), and edible portions of American eel (Anguilla rostrata), smallmouth bass (Micropterus dolomieu), and channel catfish (Ictalurus punctatus) during 1969-98 were compiled to define temporal trends in concentrations of PCBs in fish tissue from selected segments of the Delaware River, Lehigh River, Schuylkill River, and Brandywine Creek. The Delaware River in the vicinity of Trenton, New Jersey and Yardley, Pennsylvania (above the tidal influence) had the largest long-term data set among the sites considered for this study and was the only site with sufficient data for statistical analysis. A general pattern of decline in PCB concentrations during 1969-98 was apparent for this river segment. PCB concentrations in whole-body white sucker from this lower Delaware River segment declined during 1969-98 from a highest concentration of 7 micrograms per gram (?g/g, wet weight) in a sample collected during 1972 to 0.26 ?g/g (wet weight) in a sample collected during 1998. PCB concentration was negatively correlated with year (Spearman rank correlation -0.46, p < 0.08, n = 15); especially after removal of a sample from 1977 with an unusually low concentration (Spearman rank correlation -0.53, p = 0.05, n = 14). PCB concentrations in edible flesh of American eel declined during 1975-95, from a highest concentration of 3.8 ?g/g (wet weight) in a sample collected during 1976 to less than the reporting limit of 0.26 ?g/g (wet weight) in samples collected during 1993 and 1995. PCB concentrations in most samples (for species considered in this study) collected from the lower Delaware River exceeded the National Academy of Sciences and National Academy of Engineering (NAS/NAE) wildlife guideline level of 0.5 ?g/g during the 1970's and 1980's, and decreased to below this level during the 1990's. No samples of edible portions of game fish exceeded the U.S. Food and Drug Administration (FDA) tolerance level by the mid 1980's. However, the PCB concentration in a smallmouth bass fillet sample that was collected during 1998 (0.37 ?g/g) exceeded the Pennsylvania fish-consumption advisory level of 0.06 ?g/g, and the concentrations in whole-body common carp and white sucker collected during 1998 (1.10 ?g/g and 0.26 ?g/g, respectively) exceeded the New York State Department of Environmental Conservation wildlife criterion concentration of 0.11 ?g/g. (The concentration in carp also exceeded the 1973 NAS/NAE wildlife guideline concentration of 0.5 ?g/g.) Graphical analysis of PCB concentrations in whole white sucker and (or) edible portions of American eel from the upper Delaware River, lower Delaware River, middle Schuylkill River, and Brandywine Creek indicate a decline from the 1970's and (or) 1980's to the middle to late 1990's. Temporal trends in PCB concentrations in white sucker samples from the lower Lehigh and Schuylkill Rivers during 1979-98 are less clear; the PCB concentration (wet-weight basis) from a sample collected in 1998 from the lower Lehigh River was similar to that from a sample collected in 1979, and concentrations actually increased during 1982-98. Similarly, PCB concentrations in samples of white sucker and American eel from the lower Schuylkill River were highly variable over time. A decrease in lipid-adjusted PCB concentrations at both sites (for several whi

  9. Population demographics for the federally endangered dwarf wedgemussel

    USGS Publications Warehouse

    Galbraith, Heather S.; Lellis, William A.; Cole, Jeffrey C.; Blakeslee, Carrie J.; St. John White, Barbara

    2016-01-01

    The dwarf wedgemussel, Alasmidonta heterodon, is a federally endangered freshwater mussel species inhabiting several Atlantic Slope rivers. Studies on population demographics of this species are necessary for status assessment and directing recovery efforts. We conducted qualitative and quantitative surveys for dwarf wedgemussel in the mainstem Delaware River and in four of its tributaries (Big Flat Brook, Little Flat Brook, Neversink River, and Paulinskill River). Population range, relative abundance, size, size structure, and sex ratio were quantified within each river. Total dwarf wedgemussel population size for the surveyed rivers in the Delaware Basin was estimated to be 14,432 individuals (90% confidence limits, 7,961-26,161). Our results suggest that the historically robust Neversink River population has declined, but that this population persists and substantial populations remain in other tributaries. Sex ratios were generally female-biased, and small individuals (<10 mm) found in all rivers indicate recent recruitment. Dwarf wedgemussel was most often found at the surface of the sediment (not buried below) in shallow quadrats (<2.00 m) comprised of small substrate (sand in tributaries; cobble in the mainstem) and minimal aquatic macrophytes. Long-term monitoring, continued surveys for new populations, and assessments of reproductive success are needed to further understand dwarf wedgemussel viability within the Delaware River Basin.

  10. 78 FR 40399 - Safety Zone; Fifth Coast Guard District Fireworks Displays, Delaware River; Philadelphia, PA.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-05

    ... Philadelphia, Pennsylvania. The fireworks display is normally held on July 4th, but this year it will be held... America sponsors an annual fireworks display held on July 4th over the waters of Delaware River... annually on July 4th. However, this year, the fireworks event will be held on July 6, 2013. A fleet of...

  11. Climate change effects on forests, water resources, and communities of the Delaware River Basin

    Treesearch

    Will Price; Susan Beecher

    2014-01-01

    The Delaware River provides drinking water to 5 percent of the United States, or approximately 16.2 million people living in 4 states, 42 counties, and over 800 municipalities. The more than 1.5 billion gallons withdrawn or diverted daily for drinking water is delivered by more than 140 purveyors, yet constitutes less than 20 percent of the average daily withdrawals....

  12. Shifting distributions of adult Atlantic sturgeon amidst post-industrialization and future impacts in the Delaware River: a maximum entropy approach.

    PubMed

    Breece, Matthew W; Oliver, Matthew J; Cimino, Megan A; Fox, Dewayne A

    2013-01-01

    Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) experienced severe declines due to habitat destruction and overfishing beginning in the late 19(th) century. Subsequent to the boom and bust period of exploitation, there has been minimal fishing pressure and improving habitats. However, lack of recovery led to the 2012 listing of Atlantic sturgeon under the Endangered Species Act. Although habitats may be improving, the availability of high quality spawning habitat, essential for the survival and development of eggs and larvae may still be a limiting factor in the recovery of Atlantic sturgeon. To estimate adult Atlantic sturgeon spatial distributions during riverine occupancy in the Delaware River, we utilized a maximum entropy (MaxEnt) approach along with passive biotelemetry during the likely spawning season. We found that substrate composition and distance from the salt front significantly influenced the locations of adult Atlantic sturgeon in the Delaware River. To broaden the scope of this study we projected our model onto four scenarios depicting varying locations of the salt front in the Delaware River: the contemporary location of the salt front during the likely spawning season, the location of the salt front during the historic fishery in the late 19(th) century, an estimated shift in the salt front by the year 2100 due to climate change, and an extreme drought scenario, similar to that which occurred in the 1960's. The movement of the salt front upstream as a result of dredging and climate change likely eliminated historic spawning habitats and currently threatens areas where Atlantic sturgeon spawning may be taking place. Identifying where suitable spawning substrate and water chemistry intersect with the likely occurrence of adult Atlantic sturgeon in the Delaware River highlights essential spawning habitats, enhancing recovery prospects for this imperiled species.

  13. 78 FR 69310 - Endangered and Threatened Species; Protective Regulations for the Gulf of Maine Distinct...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-19

    .... Receivers placed in areas of the Delaware and Hudson rivers, including low-salinity waters (salinity values... Atlantic sturgeon appeared one or more times within low-salinity waters (less than 0.5 ppt) of the Delaware... York Bight DPS sturgeon (29 of 58 captured) occurred in low- salinity waters of either the Delaware or...

  14. Report on Survey Investigation Flood Control and Allied Purposes Along Those Streams That Flow Through Camden County, New Jersey into Delaware River.

    DTIC Science & Technology

    1972-06-01

    Recreation Water pollution Delaware River Sewage disposal N Navi ation ABSTRACT ( R ,..-,- "war .04 ,, 09e -, Identifby block numb.,) The problems of water...characteristics ....... ..... . ...... 2 Land use and development .. ....... . . , 3 Water supply ................. .* 8 Sewage disposal...AND SURROUNDING AREA . . . * * 19 8 SEWAGE TREATMENT PLANT ON NORTH BRANCH PENNSAKEN CREEK FLOOD PLAIN ...... . . 21 9 DEBRIS IN POCACK CREEK

  15. Changes in freshwater mussel communities linked to legacy pollution in the Lower Delaware River

    USGS Publications Warehouse

    Blakeslee, Carrie J.; Silldorff, Erik L.; Galbraith, Heather S.

    2018-01-01

    Freshwater mussels are among the most-imperiled organisms worldwide, although they provide a variety of important functions in the streams and rivers they inhabit. Among Atlantic-slope rivers, the Delaware River is known for its freshwater mussel diversity and biomass; however, limited data are available on the freshwater mussel fauna in the lower, non-tidal portion of the river. This section of the Delaware River has experienced decades of water-quality degradation from both industrial and municipal sources, primarily as a function of one of its major tributaries, the Lehigh River. We completed semi-quantitative snorkel surveys in 53.5 of the 121 km of the river to document mussel community composition and the continued impacts from pollution (particularly inputs from the Lehigh River) on mussel fauna. We detected changes in mussel catch per unit effort (CPUE) below the confluence of the Lehigh River, with significant declines in the dominant species Elliptio complanata (Eastern Elliptio) as we moved downstream from its confluence—CPUE dropped from 179 to 21 mussels/h. Patterns in mussel distribution around the Lehigh confluence matched chemical signatures of Lehigh water input. Specifically, Eastern Elliptio CPUE declined more quickly moving downstream on the Pennsylvania bank, where Lehigh River water input was more concentrated compared to the New Jersey bank. A definitive causal link remains to be established between the Lehigh River and the dramatic shifts in mussel community composition, warranting continued investigation as it relates to mussel conservation and restoration in the basin.

  16. Distribution and movement of shortnose sturgeon (Acipenser brevirostrum) in the Chesapeake Bay

    USGS Publications Warehouse

    Welsh, S.A.; Mangold, M.F.; Skjeveland, J.E.; Spells, A.J.

    2002-01-01

    During a reward program for Atlantic sturgeon (Acipenser oxyrinchus), 40 federally endangered shortnose sturgeon (Acipenser brevirostrum) were captured and reported by commercial fishers between January 1996 and January 2000 from the Chesapeake Bay. Since this is more than double the number of published records of shortnose sturgeon in the Chesapeake Bay between 1876 and 1995, little information has been available on distributions and movement. We used fishery dependent data collected during the reward program to determine the distribution of shortnose sturgeon in the Chesapeake Bay. Sonically-tagged shortnose sturgeon in the Chesapeake Bay and Delaware River were tracked to determine if individuals swim through the Chesapeake and Delaware Canal. Shortnose sturgeon were primarily distributed within the upper Chesapeake Bay. The movements of one individual, tagged within the Chesapeake Bay and later relocated in the canal and Delaware River, indicated that individuals traverse the Chesapeake and Delaware Canal.

  17. Development of a preliminary relative risk model for evaluating regional ecological conditions in the Delaware River Estuary, USA.

    PubMed

    Iannuzzi, Timothy J; Durda, Judi L; Preziosi, Damian V; Ludwig, David F; Stahl, Ralph G; DeSantis, Amanda A; Hoke, Robert A

    2010-01-01

    Effective environmental management and restoration of urbanized systems such as the Delaware River Estuary requires a holistic understanding of the relative importance of various stressor-related impacts throughout the watershed, both historical and ongoing. To that end, it is important to involve as many stakeholders as possible in the management process and to develop a system for sharing of scientific data and information, as well as effective technical tools for evaluating and disseminating the data needed to make management decisions. In this study, we describe a preliminary assessment that was undertaken to evaluate the relative risks for the variety of stressors currently operating within the Delaware Estuary using a relative risk model (RRM) framework. This model was constructed using existing data and information on the ecological conditions and stressors in the main-stem Delaware River below the head of tide at Trenton, New Jersey, USA. A large database was developed with pertinent data from a variety of library, scientific, and regulatory sources. Data were compiled, reviewed, and characterized before development of the Estuary-specific RRM. Our primary goals and objectives in developing this preliminary RRM for the Estuary were to 1) determine if the RRM framework can be adapted to a large complex estuarine system such as the Delaware River, 2) identify the issues associated with adapting the model framework to the various management issues and regional areas/habitats of the River, 3) help identify data needs and potential refinements that might be needed to more specifically quantify relative stressor risks in various areas and habitats of the Estuary to better inform future management goals/actions by Stakeholders. The key conclusions of our preliminary assessment are 1) a diverse suite of stressors is likely affecting the ecological conditions of the Delaware Estuary, 2) chemical (toxicants/contaminants) and physical (sedimentation, habitat loss) stressors were found to be on par with regards to their ranking, and 3) the RRM, in its current form, made it difficult to effectively balance the inequality in the sizes of the study subareas considered in the assessment. Management objectives and related research activities should focus on collecting the necessary data and information to further refine the RRM and assess the relative impacts of these stressors at various scales in the Estuary. By having such a framework and tool available, we believe that stakeholders within the Delaware River watershed will be able to make more informed and risk-based management decisions regarding restoration options for the Estuary.

  18. 75 FR 7457 - Notice of Public Hearing on Stone Energy Corporation Proposed Surface Water Withdrawal and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ...Because of the high level of public interest in projects within the Delaware Basin that are associated with natural gas drilling activities, the Delaware River Basin Commission (DRBC or ``Commission'') will hold a special public hearing on two projects sponsored by the Stone Energy Corporation (hereinafter, ``Stone Energy'') to support natural gas exploration and development activities within the basin. One of the two projects entails a surface water withdrawal from the West Branch Lackawaxen River in Mount Pleasant Township, Pennsylvania (Docket No. D-2009-13-1). The other concerns an existing natural gas well drilling pad site in Clinton Township, Pennsylvania (Docket No. D-2009-18-1). Both projects are located in Wayne County, Pennsylvania, within the drainage area of a portion of the main stem Delaware River that the Commission has classified as Special Protection Waters.

  19. Vulnerbility of production wells in the Potomac-Raritan-Magothy aquifer system to saltwater intrusion from the Delaware River in Camden, Gloucester, and Salem Counties, New Jersey

    USGS Publications Warehouse

    Navoy, Anthony S.; Voronin, Lois M.; Modica, Edward

    2005-01-01

    The Potomac-Raritan-Magothy aquifer system is hydraulically connected to the Delaware River in parts of Camden and Gloucester Counties, New Jersey, and has more limited contact with the river in Salem County, New Jersey. The aquifer system is used widely for water supply, and 122 production wells that are permitted by the New Jersey Department of Environmental Protection to pump more than 100,000 gallons per year in the three counties are within 2 miles of the river. During drought, saltwater may encroach upstream from the Atlantic Ocean and Delaware Bay to areas where the aquifer system is recharged by induced infiltration through the Delaware River streambed. During the drought of the mid-1960's, water with a chloride concentration in excess of potability standards (250 mg/L (milligrams per liter)) encroached into the reach of the river that recharges the aquifer system. The vulnerability of the major production wells in the area to similar saltwater encroachment in the future is a concern to water managers. This vulnerability was evaluated by investigating two scenarios: (1) a one-time recurrence of the conditions approximating those that occurred in the1960's, and (2) the recurrence of those same conditions on an annual basis. Results of ground-water-flow simulation in conjunction with particle tracking and one-dimensional transport analysis indicate that the wells that are most vulnerable to saltwater intrusion are those in the Morris and Delair well fields in Camden County. A single 30-day event during which the concentration of dissolved chloride or sodium exceeds 2,098 mg/L or 407 mg/L, respectively, in the Delaware River would threaten the potability of water from these wells, given New Jersey drinking-water standards of 250 mg/L for dissolved chloride and 50 mg/L for dissolved sodium. This chloride concentration is about six times that observed in the river during the 1960's drought. An annually occurring 1-month event during which the concentrations of dissolved chloride or sodium in the river exceeds 1,818 mg/L or 358 mg/L, respectively, would threaten the potability of water from these wells. Wells outside the Morris and Delair well fields are substantially less vulnerable to the intermittent saltwater intrusion that was simulated.

  20. Delaware River water quality Bristol to Marcus Hook, Pennsylvania, August 1949 to December 1963

    USGS Publications Warehouse

    Keighton, Walter B.

    1965-01-01

    During the 14-year period from August 1949 to July 1963, the U.S. Geological Survey, in cooperation with the city of Philadelphia, collected samples of river water once each month in the 43-mile reach of the Delaware River from Bristol to Marcus Hook, Pa., and daily at Trenton, 10 miles upstream from Bristol. This part of the Delaware is an estuary into which salt water is brought by tides; fresh water flows into the estuary at Trenton, NJ, and farther downstream from the Schuylkill River and other tributaries of the Delaware. In March, April, and May, when fresh-water flow is high, the average concentration of dissolved solids in the water at Bristol was 76 ppm (parts per million), and at Marcus Hook 112 PPM In August and September, streamflow is lower, and the average concentration of dissolved solids increased to 117 PPM at Bristol and 804 PPM at Marcus Hook. Major salinity invasions of the Delaware River occurred in 1949, 1953, 1954, 1957, and 1963. In each of these years the fresh-water flow into the tidal river at Trenton was low during the period from July to October. The greatest dissolved-solids concentrations in these monthly samples were 160 PPM at Bristol and 4,000 PPM at Marcus Hook. At times the dissolved-oxygen concentration of the river water has become dangerously low, especially in that reach of the river between Wharton Street and League Island. At the Benjamin Franklin Bridge, one-third of the samples of river water were less than 30 percent saturated with oxygen; however, no trend, either for better or for worse, was apparent during the 14-year period. It is useful now to summarize these monthly analyses for the period 1949-63 even though a much more detailed description of water quality in this reach of the estuary will soon become available through the use of recording instrumental conditions. This compendium of water-quality data is useful as an explicit statement of water quality during the 14-year study period and is valuable for directing attention to water-quality problems for selecting instrument sites, and for making comparative studies with the more detailed information which is already being obtained with the aid of recording instruments.

  1. Chemical characteristics of Delaware River water, Trenton, New Jersey, to Marcus Hook, Pennsylvania

    USGS Publications Warehouse

    Durfor, Charles N.; Keighton, Walter B.

    1954-01-01

    This progress report gives the results of an investigation of the quality of water in the Delaware River from Trenton, N. J. to Marcus Hook, Pa., for the period August 1949 to December 1952. The Delaware River is the principal source of water for the many industries and municipal water supplies along this reach of the river and both industries and municipalities use it for the disposal of their wastes. Consequently, a study of the quality of the water and variations in the quality caused by changes in streamflow, tidal effects, pollution and other factors is important to the many users. In both New Jersey and Pennsylvania steps are being taken to abate pollution, thus it is of more than passing interest to measure the effects of waste treatment on the quality of the Delaware River water. At average or higher rates of streamflow the mineral content of the water increases slightly from Trenton to Marcus Hook. There is little variation in the concentration of dissolved minerals from bank to bank or from top to bottom of the river. At times of protracted low rates of flow the effect of ocean water mixing with the river water may be noted as far upstream as Philadelphia. At such times the salinity is often greater near the bottom of the river than near the top. The increase in chloride concentration upstream from Philadelphia is small compared to the rapid increase downstream from Philadelphia. Temperatures of offshore water vary with the season, but on a given day are substantially uniform throughout the reach of the river from Trenton to Marcus Hook. The water contains less dissolved oxygen as it flows downstream indicating that oxygen is being consumed by oxidizable matter. From Philadelphia downstream there are periods, especially in late summer, when the dissolved oxygen is barely sufficient to meet the oxygen demands of the pollution load.

  2. Extent and frequency of floods on Delaware River in vicinity of Belvidere, New Jersey

    USGS Publications Warehouse

    Farlekas, George M.

    1966-01-01

    A stream overflowing its banks is a natural phenomenon. This natural phenomenon of flooding has occurred on the Delaware River in the past and will occur in the future. T' o resulting inundation of large areas can cause property damage, business losses and possible loss of life, and may result in emergency costs for protection, rescue, and salvage work. For optimum development of the river valley consistent with the flood risk, an evaluation of flood conditions is necessary. Basic data and the interpretation of the data on the regimen of the streams, particularly the magnitude of floods to be expected, the frequency of their occurrence, and the areas inundated, are essential for planning and development of flood-prone areas.This report presents information relative to the extent, depth, and frequency of floods on the Delaware River and its tributaries in the vicinity of Belvidere, N.J. Flooding on the tributaries detailed in the report pertains only to the effect of backwater from the Delaware River. Data are presented for several past floods with emphasis given to the floods of August 19, 1955 and May 24, 1942. In addition, information is given for a hypothetical flood based on the flood of August 19, 1955 modified by completed (since 1955) and planned flood-control works.By use of relations presented in this report the extent, depth, and frequency of flooding can be estimated for any site along the reach of the Delaware River under study. Flood data and the evaluation of the data are presented so that local and regional agencies, organizations, and individuals may have a technical basis for making decisions on the use of flood-prone areas. The Delaware River Basin Commission and the U.S. Geological Survey regard this program of flood-plain inundation studies as a positive step toward flood-damage prevention. Flood-plain inundation studies, when followed by appropriate land-use regulations, are a valuable and economical supplement to physical works for flood control, such as dams and levees. Both physical works and flood-plain regulations are included in the comprehensive plans for development of the Delaware River basin.Recommendations for land use, or suggestions for limitations of land use, are not made herein. Other reports on recommended general use and regulation of land in flood-prone areas are available (Dola, 1961; White, 1961; American Society of Civil Engineers Task Force on Flood Plain Regulations, 1962; and Goddard, 1963). The primary responsibility for planning for the optimum land use in the flood plain and the implementation of flood-plain zoning or other regulations to achieve such optimum use rest with the state and local interests. The preparation of this report was undertaken after consultation with representatives of the Lehigh-Northampton Counties, Pennsylvania, Joint Planning Commission and the Warren County, New Jersey, Regional Planning Board and after both had demonstrated their need for flood-plain information and their willingness to consider flood-plain regulations.

  3. Long Range Spoil Disposal Study. Part 3. Sub-Study 2. Nature, Source, and Cause of Shoal

    DTIC Science & Technology

    1973-09-01

    Report) Prepared for public release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the abetract entered In Block 20, if different from Report) IS...SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necseseey and identify by block number) Delaware River River Channel Delaware Estuary...Marcus Hook, Pa. Dredging Hydraulic Dredge Spoil Disposal Sediment transport 2o ABSTRACT r -ciftue a r verse - i- - n a eay amd ideai fy by block

  4. 33 CFR 207.100 - Inland waterway from Delaware River to Chesapeake Bay, Del. and Md. (Chesapeake and Delaware...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ruling to the District Engineer whose decision shall be final. A clearance by the dispatcher for a vessel..., jetties, piers, fences, buildings, trees, telephone lines, lighting structures, or any other property of...

  5. Shifting Distributions of Adult Atlantic Sturgeon Amidst Post-Industrialization and Future Impacts in the Delaware River: a Maximum Entropy Approach

    PubMed Central

    Breece, Matthew W.; Oliver, Matthew J.; Cimino, Megan A.; Fox, Dewayne A.

    2013-01-01

    Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) experienced severe declines due to habitat destruction and overfishing beginning in the late 19th century. Subsequent to the boom and bust period of exploitation, there has been minimal fishing pressure and improving habitats. However, lack of recovery led to the 2012 listing of Atlantic sturgeon under the Endangered Species Act. Although habitats may be improving, the availability of high quality spawning habitat, essential for the survival and development of eggs and larvae may still be a limiting factor in the recovery of Atlantic sturgeon. To estimate adult Atlantic sturgeon spatial distributions during riverine occupancy in the Delaware River, we utilized a maximum entropy (MaxEnt) approach along with passive biotelemetry during the likely spawning season. We found that substrate composition and distance from the salt front significantly influenced the locations of adult Atlantic sturgeon in the Delaware River. To broaden the scope of this study we projected our model onto four scenarios depicting varying locations of the salt front in the Delaware River: the contemporary location of the salt front during the likely spawning season, the location of the salt front during the historic fishery in the late 19th century, an estimated shift in the salt front by the year 2100 due to climate change, and an extreme drought scenario, similar to that which occurred in the 1960’s. The movement of the salt front upstream as a result of dredging and climate change likely eliminated historic spawning habitats and currently threatens areas where Atlantic sturgeon spawning may be taking place. Identifying where suitable spawning substrate and water chemistry intersect with the likely occurrence of adult Atlantic sturgeon in the Delaware River highlights essential spawning habitats, enhancing recovery prospects for this imperiled species. PMID:24260570

  6. Flood of June 26-29, 2006, Mohawk, Delaware, and Susquehanna River Basins, New York

    USGS Publications Warehouse

    Suro, Thomas P.; Firda, Gary D.; Szabo, Carolyn O.

    2009-01-01

    A stalled frontal system caused tropical moisture to be funneled northward into New York, causing severe flooding in the Mohawk, Delaware, and Susquehanna River basins during June 26-29, 2006. Rainfall totals for this multi-day event ranged from 2 to 3 inches to greater than 13 inches in southern New York. The storm and flooding claimed four lives in New York, destroyed or damaged thousands of homes and businesses, and closed hundreds of roads and highways. Thousands of people evacuated their homes as floodwaters reached new record elevations at many locations within the three basins. Twelve New York counties were declared Federal disaster areas, more than 15,500 residents applied for disaster assistance, and millions of dollars in damages resulted from the flooding. Disaster-recovery assistance for individuals and businesses adversely affected by the floods of June 2006 reached more than $227 million. The National Weather Service rainfall station at Slide Mountain recorded storm totals of more than 8 inches of rainfall, and the stations at Walton and Fishs Eddy, NY, recorded storm totals of greater than 13 inches of rainfall. The U.S. Geological Survey (USGS) stream-gaging stations at Mohawk River at Little Falls, West Branch Delaware River at Hale Eddy, and Susquehanna River at Vestal, NY, among others, recorded peak discharges of 35,000 ft3/s, 43,400 ft3/s, and 119,000 ft3/s respectively, with greater than 100-year recurrence intervals. The peak water-surface elevation 21.47 ft and the peak discharge 189,000 ft3/s recorded on June 28, 2006, at the Delaware River at Port Jervis stream-gaging station were the highest recorded since the flood of August 1955. At the Susquehanna River at Conklin, NY, stream-gaging station, which has been in operation since 1912, the peak water-surface elevation 25.02 ft and peak discharge 76,800 ft3/s recorded on June 28, 2006, exceeded the previous period-of-record maximums that were set during the flood of March 1936. Documented peak water-surface elevations during the June 2006 flood at many study sites in the Mohawk, Delaware, and Susquehanna River basins exceeded the 100-year flood-profile elevations determined in the flood-insurance studies prepared by the Federal Emergency Management Agency.

  7. National Dam Safety Program. Lake Muskoday Dam (Inventory Number N.Y. 341) Delaware River Basin, Sullivan County, New York. Phase I Inspection Report,

    DTIC Science & Technology

    1981-09-14

    DACW-51-81-C-0006 . PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT. TASK AREA & WORK UNIT NUMBERS ~ Flaherty-Giauara Associates...olie It neceary and Idontily b block number) Dam Safety National Dam Safety Program Visual Inspection Lake Muskoday Dam Hydrology, Structural Stability...DELAWARE RIVER BASIN LAKE MUSKODAY DAM SULLIVAN COUNTY, NEW YORK INVENTORY No.NY341 PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM J T C NEW YORK

  8. 33 CFR 162.40 - Inland waterway from Delaware River to Chesapeake Bay, Del. and Md. (Chesapeake and Delaware Canal).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... avoid damage by suction or wave wash to wharves, landings, riprap protection, or other boats, or injury... suction or wave wash does occur. Owners and operators of yachts, motorboats, rowboats and other craft are...

  9. 33 CFR 162.40 - Inland waterway from Delaware River to Chesapeake Bay, Del. and Md. (Chesapeake and Delaware Canal).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... avoid damage by suction or wave wash to wharves, landings, riprap protection, or other boats, or injury... suction or wave wash does occur. Owners and operators of yachts, motorboats, rowboats and other craft are...

  10. 33 CFR 162.40 - Inland waterway from Delaware River to Chesapeake Bay, Del. and Md. (Chesapeake and Delaware Canal).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... avoid damage by suction or wave wash to wharves, landings, riprap protection, or other boats, or injury... suction or wave wash does occur. Owners and operators of yachts, motorboats, rowboats and other craft are...

  11. 33 CFR 162.40 - Inland waterway from Delaware River to Chesapeake Bay, Del. and Md. (Chesapeake and Delaware Canal).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... avoid damage by suction or wave wash to wharves, landings, riprap protection, or other boats, or injury... suction or wave wash does occur. Owners and operators of yachts, motorboats, rowboats and other craft are...

  12. 77 FR 51787 - Notice of Commission Meeting and Public Hearing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ... DELAWARE RIVER BASIN COMMISSION Notice of Commission Meeting and Public Hearing Notice is hereby... hearing on Wednesday, September 12, 2012. The hearing will be part of the Commission's regularly scheduled... Strategy for the Delaware Estuary and Implementation of the Basin Plan. Items for Public Hearing. The...

  13. Silver Creek Mine Treatment is Golden in Protecting Schuylkill River

    EPA Pesticide Factsheets

    The Schuylkill River spans over 130 miles from its headwaters in Schuylkill County through several counties on to New Philadelphia where it joins the Delaware River. It serves a drinking water source for 1.5 million people.

  14. Direct and indirect atmospheric deposition of PCBs to the Delaware River watershed.

    PubMed

    Totten, Lisa A; Panangadan, Maya; Eisenreich, Steven J; Cavallo, Gregory J; Fikslin, Thomas J

    2006-04-01

    Atmospheric deposition can be an important source of PCBs to aquatic ecosystems. To develop the total maximum daily load (TMDL) for polychlorinated biphenyls (PCBs) for the tidal Delaware River (water-quality Zones 2-5), estimates of the loading of PCBs to the river from atmospheric deposition were generated from seven air-monitoring sites along the river. This paper presents the atmospheric PCB data from these sites, estimates direct atmospheric deposition fluxes, and assesses the importance of atmospheric deposition relative to other sources of PCBs to the river. Also, the relationship between indirect atmospheric deposition and PCB loads from minor tributaries to the Delaware River is discussed. Data from these sites revealed high atmospheric PCB concentrations in the Philadelphia/Camden urban area and lower regional background concentrations in the more remote areas. Wet, dry particle, and gaseous absorption deposition are estimated to contribute about 0.6, 1.8, and 6.5 kg year-(-1) sigmaPCBs to the River, respectively, exceeding the TMDL of 0.139 kg year(-1) by more than an order of magnitude. Penta-PCB watershed fluxes were obtained by dividing the tributary loads by the watershed area. The lowest of these watershed fluxes are less than approximately 1 ng m(-2) day(-1) for penta-PCB and probably indicates pristine watersheds in which PCB loads are dominated by atmospheric deposition. In these watersheds, the pass-through efficiency of PCBs is estimated to be on the order of 1%.

  15. Detailed Project Report. Small Beach Erosion Control Project. Broadkill Beach, Delaware.

    DTIC Science & Technology

    1972-02-01

    this study. TABLE 3 ESTIMATED PROPERTY VALUES IN BROADKILL BEACH (July 1971) Beach Front Property* Entire Community Present Present Fair Value Fair ...between the 14th and 50th year reflect only the land, houses and utilities (minus salvage value estimated at 25% of the fair value ) that are located... Value $ $ 1,221,000 2,866,000 ftExcluding beach area. >4’ 5 11. The water entering Delaware Bay from Delaware River is polluted, but the degree of

  16. Concentrations of metals in blood and feathers of nestling ospreys (Pandion haliaetus) in Chesapeake and Delaware Bays

    USGS Publications Warehouse

    Rattner, B.A.; Golden, N.H.; Toschik, P.C.; McGowan, P.C.; Custer, T.W.

    2008-01-01

    In 2000, 2001, and 2002, blood and feather samples were collected from 40-45-day-old nestling ospreys (Pandion haliaetus) from Chesapeake Bay and Delaware Bay and River. Concentrations of 18 metals, metalloids, and other elements were determined in these samples by inductively coupled plasma-mass spectroscopy, and Hg concentrations were measured by cold vapor atomic absorption spectroscopy. When compared to concurrent reference areas (South, West, and Rhode Rivers), mean As and Hg concentrations in blood were greater (p < 0.05) in two of three Chesapeake Bay regions of concern (Baltimore Harbor [As: 1.18 vs. 0.548 mug/g dw], Anacostia River [Hg: 0.305 vs. 0.178 mug/g dw], and Elizabeth River [As: 0.876 vs. 0.663 mug/g dw; Hg: 0.260 vs. 0.180 mug/g dw]). Lead was detected more frequently in blood of nestlings from the highly industrialized Elizabeth River compared to the rural reference area. When compared to the concurrent reference area, mean Al, Ba, Hg, Mn, and Pb concentrations in feathers were substantially greater (p < 0.05) in one or more Chesapeake regions of concern (Anacostia River [Al: 206 vs. 62.1 mug/g dw; Ba: 3.31 vs. 0.823 mug/g dw; Mn: 65.4 vs. 22.9 mug/g dw] and Elizabeth River [Al: 165 vs. 63.5 mug/g dw; Hg: 1.24 vs. 0.599 mug/g dw; Pb 1.47 vs. 0.543 mug/g dw]). When compared to the coastal Inland Bays reference area, feathers of nestlings from northern Delaware Bay and River had greater concentrations (p < 0.05) of Ba (1.90 vs. 0.660 mug/g dw), Fe (258 vs. 109 mug/g dw), Mn (18.5 vs. 4.66 mug/g dw), Mo (0.130 vs. 0.040 mug/g dw), Pb (1.96 vs. 0.624 mug/g dw), and V (0.671 vs. 0.325 mug/g dw), presumably due to extensive metal-working and petroleum refinery activities. Concentrations of Hg in nestling feathers from Delaware were frequently greater than in the Chesapeake. The present findings and those of related reproductive studies suggest that concentrations of several heavy metals (e.g., Cd, Hg, Pb) in nestling blood and feathers from Chesapeake and Delaware Bays were below toxicity thresholds and do not seem to be affecting chick survival during the nestling period.

  17. 76 FR 16285 - Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To Update Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-23

    ... Plan to update the Commission's human health and aquatic life stream quality objectives (also called... DELAWARE RIVER BASIN COMMISSION 18 CFR Part 410 Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To Update Water Quality Criteria for Toxic Pollutants in the Delaware...

  18. Water Quality of the Upper Delaware Scenic and Recreational River and Tributary Streams, New York and Pennsylvania

    USGS Publications Warehouse

    Siemion, Jason; Murdoch, Peter S.

    2010-01-01

    Water-quality samples were collected from the Upper Delaware Scenic and Recreational River (UPDE) and its tributaries during the period October 1, 2005, to September 30, 2007, to document existing water quality, determine relations between land use and water quality, and identify areas of water-quality concern. A tiered water-quality monitoring framework was used, with the tiers consisting of intensively sampled sites, gradient sites representing the range of land uses present in the basin, and regional stream-survey sites. Median nitrate and total phosphorous concentrations were 1.15 and 0.01 mg/L (milligrams per liter) for three sites on the mainstem Delaware River, 1.27 and 0.009 mg/L for the East Branch Delaware River, 2.04 and 0.01 mg/L for the West Branch Delaware River, and 0.68 and 0.006 mg/L for eight tributaries that represent the range of land uses resent in the basin, respectively. The percentage of agricultural land varied by basin from 0 to 30 percent and the percentage of suburbanization varied from 0 to 17 percent. There was a positive correlation between the percentage of agricultural land use in a basin and observed concentrations of acid neutralizing capacity, calcium, potassium, nitrate, and total dissolved nitrogen, whereas no correlation between the percentage of suburbanization and water quality was detected. Results of stream surveys showed that nitrate concentrations in 55 to 65 percent of the UPDE Basin exceeded the nitrate reference condition and a suggested water-quality guideline for ecological impairment in New York State (0.98 mg/L) during the spring. Many of the affected parts of the basin were more than 90 percent forested and showed signs of episodic acidification, indicating that the long-term effects of acid deposition play a role in the high nitrate levels. Nitrate concentrations in 75 percent of samples collected from agricultural sites exceeded the suggested nitrate water-quality guideline for ecological impairment. Concentrations of nitrate and total phosphorous in samples collected from agricultural sites also were twice and 25 percent higher than those in samples from reference sites, respectively.

  19. Quaternary fluvial history of the Delaware River, New Jersey and Pennsylvania, USA: The effects of glaciation, glacioisostasy, and eustasy on a proglacial river system

    NASA Astrophysics Data System (ADS)

    Stanford, Scott D.; Witte, Ron W.; Braun, Duane D.; Ridge, John C.

    2016-07-01

    Fluvial, glacial, and estuarine deposits in the Delaware Valley record the response of the Delaware River to glaciation, sea-level change, and glacioisostasy during the Quaternary. Incision following an early Pleistocene glaciation created the present valley, which is inset into a Pliocene strath and fluvial plain. Middle and upper Pleistocene and Holocene deposits were laid down in this inset valley. Estuarine terraces in the lower valley and bayshore at + 20 m (probably Marine Isotope Stage [MIS] 11), + 8 m (MIS 5e), and + 3 m (MIS 5a or c), and a fluvial deposit that correlates to offshore MIS 3 marine deposits at - 20 m are at elevations consistent with glacioisostatic models. Successive incisions during lowstands in the middle and late Pleistocene lengthened, deepened, and narrowed the channel in the lower valley and shifted the channel westward in Delaware Bay. During MIS 2 glaciation, from 25 to 18 ka, the Delaware was diverted to the Hudson Shelf Valley by glacioisostatic tilting. Most glacial sediment was trapped in fluvial-lacustrine valley fills north of the terminal moraine. Incision of the valley fill was accomplished during the early stage of rebound, between 17 and 12 ka. Drainage to the Delaware shelf was restored between 15 and 13 ka as the forebulge collapsed. During incision, multiple postglacial terraces formed where the valley was perpendicular to rebound contours and so was steepened and elevated northward; and a single terrace formed where the valley paralleled the contours, and there was no differential elevation or steepening. About 65% of the original volume of MIS 2 glacial sediment remains in the main valley, and most of the eroded volume is in the channel in the lower valley beneath Holocene estuarine fill. Little glacial sediment reached the Delaware or Hudson shelf. Overbank deposition on the lower postglacial terrace and modern floodplain spans the Holocene. The volume of Holocene sediment in the estuary and bay yields a basinwide denudation rate of about 20 m/my.

  20. Black Carbon in Estuarine and Coastal Ocean Dissolved Organic Matter

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio; Harvey, H. Rodger

    2003-01-01

    Black carbon (BC) in ultrafiltered high-molecular-weight DOM (UDOM) was measured in surface waters of Delaware Bay, Chesapeake Bay and the adjacent Atlantic Ocean (USA) to ascertain the importance of riverine and estuarine DOM as a source of BC to the ocean. BC comprised 5-72% of UDOM-C (27+/-l7%) and on average 8.9+/-6.5% of dissolved organic carbon (DOC) with higher values in the turbid region of the Delaware Estuary and lower yields in the river and coastal ocean. The spatial and seasonal distributions of BC along the salinity gradient of Delaware Bay suggest that the higher levels of BC in surface water UDOM originated from localized sources, possibly from atmospheric deposition or released from resuspended sediments. Black carbon comprised 4 to 7% of the DOC in the coastal Atlantic Ocean, revealing that river-estuary systems are important exporters of colloidal BC to the ocean. The annual flux of BC from Delaware Bay UDOM to the Atlantic Ocean was estimated at 2.4x10(exp 10) g BC yr(exp -1). The global river flux of BC through DOM to the ocean could be on the order of 5.5x1O(exp 12)g BC yr (exp -1). These results support the hypothesis that the DOC pool is the intermediate reservoir in which BC ages prior to sedimentary deposition.

  1. 22. Schuylkill River Bridge. Philadelphia, Philadelphia Co., PA. Sec. 1101, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Schuylkill River Bridge. Philadelphia, Philadelphia Co., PA. Sec. 1101, MP 87.14. - Northeast Railroad Corridor, Amtrak route between Delaware-Pennsylvania & Pennsylvania-New Jersey state lines, Philadelphia, Philadelphia County, PA

  2. 21. Schuylkill River Bridge. Philadelphia, Philadelphia Co., PA. Sec. 1101, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Schuylkill River Bridge. Philadelphia, Philadelphia Co., PA. Sec. 1101, MP 87.14. - Northeast Railroad Corridor, Amtrak route between Delaware-Pennsylvania & Pennsylvania-New Jersey state lines, Philadelphia, Philadelphia County, PA

  3. 75 FR 32854 - Drawbridge Operation Regulation; Between Tacony, PA and Palmyra, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-10

    ...), across the Delaware River, mile 107.2, between the townships of Tacony, PA and Palmyra, NJ. The deviation... clearance of the bridge in the closed position by three feet and restricts operation of the draw span. DATES... resurfacing of the bridge roadway. The Tacony-Palmyra Bridge (Route 73) at mile 107.2, across the Delaware...

  4. A Community Terrain-Following Ocean Modeling System (ROMS/TOMS)

    DTIC Science & Technology

    2012-09-30

    next user workshop will be held in Rio de Janeiro , Brazil, October 22-24, 2012. A special fourth day (October 25) has been added to focus modern...grid_extract.m is used to extract the Delaware Bay refinement grid (58 x 142) and Delaware River composite grid (42 x 55). Similarly, grid_extract.m is

  5. 3.0 Foundation programs for the Delaware CEMRI framework

    Treesearch

    Peter S. Murdoch

    2008-01-01

    A complete review of all the national monitoring programs that could possibly contribute to the Delaware River Basin (DRB) CEMRI Framework is beyond the scope of this report. The U.S. Environmental Protection Agency (EPA) Mid-Atlantic Integrated Assessment developed a Web-based annotated inventory of such monitoring programs for the mid-Atlantic region. Olsen et al. (...

  6. Geographic variation in host fish use and larval metamorphosis for the endangered dwarf wedgemussel

    USGS Publications Warehouse

    White, Barbara (St. John); Ferreri, C. Paola; Lellis, William A.; Wicklow, Barry J.; Cole, Jeffrey C.

    2017-01-01

    Host fishes play a crucial role in survival and dispersal of freshwater mussels (Unionoida), particularly rare unionids at conservation risk. Intraspecific variation in host use is not well understood for many mussels, including the endangered dwarf wedgemussel (Alasmidonta heterodon) in the USA.Host suitability of 33 fish species for dwarf wedgemussel glochidia (larvae) from the Delaware and Connecticut river basins was tested in laboratory experiments over 9 years. Relative suitability of three different populations of a single host fish, the tessellated darter (Etheostoma olmstedi), from locations in the Connecticut, Delaware, and Susquehanna river basins, was also tested.Connecticut River basin A. heterodon metamorphosed into juvenile mussels on tessellated darter, slimy sculpin (Cottus cognatus), and Atlantic salmon (Salmo salar) parr. Delaware River basin mussels metamorphosed using these three species, as well as brown trout (Salmo trutta), banded killifish (Fundulus diaphanus), mottled sculpin (Cottus bairdii), striped bass (Morone saxatilis), and shield darter (Percina peltata). Atlantic salmon, striped bass, and sculpins were highly effective hosts, frequently generating 5+ juveniles per fish (JPF) and metamorphosis success (MS; proportion of attaching larvae that successfully metamorphose) ≥ 0.4, and producing juveniles in repeated trials.In experiments on tessellated darters, mean JPF and MS values decreased as isolation between the mussel source (Connecticut River) and each fish source increased; mean JPF = 10.45, 6.85, 4.14, and mean MS = 0.50, 0.41, and 0.34 in Connecticut, Delaware, and Susquehanna river darters, respectively. Host suitability of individual darters was highly variable (JPF = 2–11; MS = 0.20–1.0).The results show that mussel–host fish compatibility in A. heterodon differs among Atlantic coastal rivers, and suggest that hosts including anadromous Atlantic salmon and striped bass may help sustain A. heterodon in parts of its range. Continued examination of host use variation, migratory host roles, and mussel–fish interactions in the wild is critical in conservation of A. heterodon and other vulnerable mussel species.

  7. 40 CFR 81.331 - New Jersey.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Area Somerset County (part) Borough of Somerville 2/5/96 Attainment Toms River Area Ocean County (part) City of Toms River 2/5/96 Attainment Trenton Area Mercer County (part) City of Trenton 2/5/96... Ocean County (part) Area outside Toms River AQCR 151 NE PA—Upper Delaware Valley Unclassifiable...

  8. Water Quality in the Delaware River Basin, Pennsylvania, New Jersey, New York, and Delaware, 1998-2001

    USGS Publications Warehouse

    Fischer, Jeffrey M.; Riva-Murray, Karen; Hickman, R. Edward; Chichester, Douglas C.; Brightbill, Robin A.; Romanok, Kristin M.; Bilger, Michael D.

    2004-01-01

    This report contains the major findings of a 1998-2001 assessment of water quality in the Delaware River Basin. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that quality compares to the quality of water in other areas across the Nation. The water-quality conditions in the Delaware River Basin summarized in this report are discussed in detail in other reports that can be accessed from http://nj.water.usgs.gov/nawqa/delr/. Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report, in addition to reports in this series from other basins, can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  9. 9. Mispillion Lighthouse, Tower Lantern Floor Hatch Mispillion Lighthouse, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Mispillion Lighthouse, Tower Lantern Floor Hatch - Mispillion Lighthouse, South bank of Mispillion River at its confluence with Delaware River at northeast end of County Road 203, 7 miles east of Milford, Milford, Sussex County, DE

  10. 77 FR 21095 - UEK Delaware L.P.; Notice of Declaration of Intention and Soliciting Comments, Protests, and/or...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-09

    ... Indian River in Sussex County, Delaware. The United States Army Corps of Engineers designed, built, and... project uses no dam or impoundment. The proposed project would consist of: (1) Twenty-five 122-inches-tall... water or water power from a government dam; or (4) if applicable, has involved or would involve any...

  11. Study of salt transport processes in Delaware Bay

    USGS Publications Warehouse

    Walters, Roy

    1992-01-01

    The study described here is a subset of a broader climate-related study, and is focused primarily on salinity intrusion into Delaware Bay and River. Given changes in freshwater discharge into the Delaware River as determined from the larger study, and given probable sea level rise estimates, the purpose here is to calculate the distribution of salinity within Delaware Bay and River. The approach adopted for this study is composed of two parts: an analysis of existing physical data in order to derive a basic understanding of the salt dynamics, and numerical simulation of future conditions based on this analysis. There are two important constraints in the model used: it must resolve the spatial scales important to the salt dynamics, and it must be sufficiently efficient to allow extensive sensitivity studies. This has led to the development of a 3D model that uses harmonic decomposition in time and irregular finite elements in space. All nonlinear terms are retained in the governing equations, including quadratic bottom stress, advection, and wave transport (continuity nonlinearity). These equations are coupled to the advection-diffusion equation for salt so that density gradient forcing is included in the momentum equations. Although this study is still in progress, the model has reproduced sea level variations and the 3D structure of tidal and residual currents very well. In addition, the study has addressed the effects of a 1-meter rise in mean sea level on hydrodynamics of the study area. Current work is focused on salt dynamics.

  12. Salinity of the Delaware Estuary

    USGS Publications Warehouse

    Cohen, Bernard; McCarthy, Leo T.

    1962-01-01

    The purpose of this investigation was to obtain data on and study the factors affecting the salinity of the Delaware River from Philadelphia, Pa., to the Appoquinimink River, Del. The general chemical quality of water in the estuary is described, including changes in salinity in the river cross section and profile, diurnal and seasonal changes, and the effects of rainfall, sea level, and winds on salinity. Relationships are established of the concentrations of chloride and dissolved solids to specific conductance. In addition to chloride profiles and isochlor plots, time series are plotted for salinity or some quantity representing salinity, fresh-water discharge, mean river level, and mean sea level. The two major variables which appear to have the greatest effect on the salinity of the estuary are the fresh-water flow of the river and sea level. The most favorable combination of these variables for salt-water encroachment occurs from August to early October and the least favorable combination occurs between December and May.

  13. 33 CFR 165.510 - Delaware Bay and River, Salem River, Christina River and Schuylkill River-Regulated Navigation Area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... between Cape May Light and Harbor of Refuge Light and then continuing to the northernmost extremity of... anchor, no vessel may, without the permission of the COTP: (i) Come or remain within 500 yards of the... dangerous cargo; or (ii) Come or remain within 100 yards of a moored or anchored vessel carrying dangerous...

  14. 33 CFR 165.510 - Delaware Bay and River, Salem River, Christina River and Schuylkill River-Regulated Navigation Area.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... within the regulated navigation area and: (i) Sustained winds are greater than 25 knots but less than 40 knots, ensure the main engines are ready to provide full power in five minutes or less; and (ii) Sustained winds are 40 knots or over, ensure that the main engines are on line to immediately provide...

  15. Evaluation of osprey habitat suitability and interaction with contaminant exposure

    USGS Publications Warehouse

    Toschik, P.C.; Christman, M.C.; Rattner, B.A.; Ottinger, M.A.

    2006-01-01

    Ospreys (Pandion haliaetus) have been the focus of conservation efforts since their dramatic population decline attributed to dichlorodiphenyltrichloroethane and related chemicals in the 1960s. Several recent studies of ospreys nesting in the United States have indicated improved reproduction. However, the density of breeding ospreys varies greatly among locations, with some areas seemingly habitable but not occupied. Because of concerns about pollution in the highly industrialized portions of the Delaware River and Bay, USA, we evaluated contaminant exposure and productivity in ospreys nesting on the Delaware River and Bay in 2002. We characterized habitat in the coastal zone of Delaware, USA, and the area around the river in Pennsylvania, USA, using data we collected as well as extant information provided by state and federal sources. We characterized habitat based on locations of occupied osprey nests in Delaware and Pennsylvania. We evaluated water clarity, water depth, land use and land cover, nest availability, and contaminants in sediment for use in a nest-occupancy model. Our results demonstrated that the presence of occupied nests was associated with water depth, water clarity, distance to an occupied osprey nest, and presence of urban land use, whereas a companion study demonstrated that hatching success was associated with the principal components derived from organochlorine-contaminant concentrations in osprey eggs (total polychlorinated biphenyls, p,p'-dichlorodiphenylethylene, chlordane and metabolites, and heptachlor epoxide). Our study provides guidelines for resource managers and local conservation organizations in management of ospreys and in development of habitat models that are appropriate for other piscivorous and marsh-nesting birds.

  16. Records available to September 30, 1956, on use of water in the Delaware Basin Project area

    USGS Publications Warehouse

    Kammerer, John C.

    1957-01-01

    The purpose of this report is to summarize data on the use of water in the Delaware Basin Project area (fig. 2) and to list the principal data sources that are available in published form. The tables and bibliography will assist Geological Survey personnel assigned to the Delaware Basin Project in evaluating the scope and deficiencies of previous studies of the basin. Information is also given on the use of water by public supplies in the New York-New Jersey region comprising the New York City Metropolitan Area and in the remaining north-central and south-eastern parts of New Jersey. These regions may depend increasingly on water from the Delaware River basin for part of their public supplies. The Geological Survey has the responsibility for appraising and describing the water resources of the Nation as a guide to use, development, control, and conservation of these resources. Cooperative Federal-State water-resources investigations in the Delaware Basin States have been carried on the the Geological Survey for more than 50 years. In July 1956 the Survey began the "Delaware Basin Project," a hydrologic study of the Delaware River basin in order to: 1) Determine present status and trends in water availability, quality, and use, 2) assess and improve the adequacy of the Survey's basic water data program in the basin, 3) interpret and evaluate the water-resources data in terms of past and possible future water-use and land-use practices, and 4) disseminate promptly the results of this investigation for the benefit of all interested agencies and the general public. The Geological Survey is working closely with the U.S. Corps of Engineers and other cooperating Federal and State agencies in providing water data which will contribute to the present coordinated investigation aimed at developing a plan for long-range water development in the Delaware River basin. Estimates of quantities of water used are given for water withdrawn from streams and aquifers during calendar year 1955, as compiled or estimated from publications and manuscripts prepared between 1950 and 1956. All quantities are given in millions of gallons per day (mgd). The source of the water used, ground or surface, and the type of use to which is was put -- public supply, industrial supply, irrigation, or rural use -- is given. Use of water for hydroelectric power was not compiled for this report. Most tables in this report do not subdivide withdrawals into fresh and saline water; however, most supplies are fresh, except some of those withdrawn directly from the Delaware River downstream from Philadelphia, Pa. All quantities are expressed as an average rate for a full year and are lower, therefore, than rates resulting from the increased demand for water during the summer for air conditioning and supplemental irrigation. The primary emphasis of this study was to get an over-all picture of water use throughout large parts of the basin. Therefore, publications relating to a dingle city or county, other than New York City, seldom were used; revisions and refinement based on such sources of information are best made by the field personnel most familiar with locally filed publications and published data.

  17. Hydrologic aspects of the 1998-99 drought in the Delaware River basin

    USGS Publications Warehouse

    Paulachok, Gary N.; Krejmas, Bruce E.; Soden, Heidi L.

    2000-01-01

    A notable drought in the Delaware River Basin during late 1998 and most of 1999 had a major effect on surface and subsurface components of the hydrologic system. The drought conditions resulted from anomalous patterns in the general atmospheric circulation that diverted Gulf and subtropical Atlantic moisture away from the basin. From September 1998 to August 1999, the accumulated precipitation deficiency was greater than 12 inches in the part of the basin above Trenton, N.J. Flows in some streams, mainly in the middle and lower parts of the basin, decreased to levels near or less than those measured during the drought of the 1960's, the most severe drought of record in the basin. On several dates in August 1999, combined storage in three New York City water-supply reservoirs in the upper Delaware River Basin decreased by more than 2 billion gallons per day. The drought had a pronounced effect on ground-water levels, as the combination of below-normal recharge and elevated rates of evapotranspiration produced abnormal water-level declines and record low water levels in much of the basin. The drought was broken in mid-September 1999 when the remnants of Tropical Storm Floyd delivered drenching rains throughout the basin.

  18. Origin of Atlantic Sturgeon collected off the Delaware coast during spring months

    USGS Publications Warehouse

    Wirgin, Isaac; Breece, Matthew W.; Fox, Dewayne A.; Maceda, Lorraine; Wark, Kevin W.; King, Timothy L.

    2015-01-01

    Atlantic Sturgeon Acipenser oxyrinchus oxyrinchus was federally listed under the U.S. Endangered Species Act as five distinct population segments (DPS). Currently, at least 18 estuaries coastwide host spawning populations and the viability of these vary, requiring differing levels of protection. Subadults emigrate from their natal estuaries to marine waters where they are vulnerable to bycatch; one of the major threats to the rebuilding of populations. As a result, identifying the population origin of Atlantic Sturgeon in coastal waters is critical to development of management plans intended to minimize interactions of the most imperiled populations with damaging fisheries. We used mitochondrial DNA control region sequencing and microsatellite DNA analyses to determine the origin of 261 Atlantic Sturgeon collected off the Delaware coast during the spring months. Using individual-based assignment (IBA) testing and mixed stock analysis, we found that specimens originated from all nine of our reference populations and the five DPSs used in the listing determination. Using IBA, we found that the Hudson River population was the largest contributor (38.3%) to our coastal collection. The James (19.9%) and Delaware (13.8%) river populations, at one time thought to be extirpated or nearly so, were the next largest contributors. The three populations combined in the South Atlantic DPS contributed 21% of specimens; the Altamaha River, the largest population in the South Atlantic DPS, only contributed a single specimen to the collection. While the origin of specimens collected on the Delaware coast was most likely within rivers of the New York Bight DPS (52.1%), specimens that originated elsewhere were also well represented. Genetic analyses provide a robust tool to identify the population origin of individual sturgeon outside of their natal estuaries and to determine the quantitative contributions of individual populations to coastal aggregations that are vulnerable to bycatch and other anthropogenic threats.

  19. Dissolved methane in groundwater, Upper Delaware River Basin, Pennsylvania and New York, 2007-12

    USGS Publications Warehouse

    Kappel, William M.

    2013-01-01

    The prospect of natural gas development from the Marcellus and Utica Shales has raised concerns about freshwater aquifers being vulnerable to contamination. Well owners are asking questions about subsurface methane, such as, “Does my well water have methane and is it safe to drink the water?” and “Is my well system at risk of an explosion hazard associated with a combustible gas like methane in groundwater?” This newfound awareness of methane contamination of water wells by stray gas migration is based upon studies such as Molofsky and others (2011) who document the widespread natural occurrence of methane in drinking-water wells in Susquehanna County, Pennsylvania. In the same county, Osborn and others (2011) identified elevated methane concentrations in selected drinking-water wells in the vicinity of Marcellus Shale gas-development activities, although pre-development groundwater samples were not available for comparison. A compilation of dissolved methane concentrations in groundwater for New York State was published by Kappel and Nystrom (2012). Recent work documenting the occurrence and distribution of methane in groundwater was completed in southern Sullivan County, Pennsylvania (Sloto, 2013). Additional work is ongoing with respect to monitoring for stray gases in groundwater (Jackson and others, 2013). These studies and their results indicate the importance of collecting baseline or pre-development data. While such data are being collected in some areas, published data on methane in groundwater are sparse in the Upper Delaware River Basin of Pennsylvania, New York, and New Jersey. To manage drinking-water resources in areas of gas-well drilling and hydraulic fracturing in the Upper Delaware River Basin, the natural occurrence of methane in the tri-state aquifers needs to be documented. The purpose of this report is to present data on dissolved methane concentrations in the groundwater in the Upper Delaware River Basin. The scope is restricted to data for Pennsylvania and New York, no U.S. Geological Survey (USGS) methane analyses are presently available for northwestern New Jersey.

  20. Seasonal variability of the inorganic carbon system in a large coastal plain estuary

    NASA Astrophysics Data System (ADS)

    Joesoef, Andrew; Kirchman, David L.; Sommerfield, Christopher K.; Cai, Wei-Jun

    2017-11-01

    Carbonate geochemistry research in large estuarine systems is limited. More work is needed to understand how changes in land-use activity influence watershed export of organic and inorganic carbon, acids, and nutrients to the coastal ocean. To investigate the seasonal variation of the inorganic carbon system in the Delaware Estuary, one of the largest estuaries along the US east coast, dissolved inorganic carbon (DIC), total alkalinity (TA), and pH were measured along the estuary from June 2013 to April 2015. In addition, DIC, TA, and pH were periodically measured from March to October 2015 in the nontidal freshwater Delaware, Schuylkill, and Christina rivers over a range of discharge conditions. There were strong negative relationships between river TA and discharge, suggesting that changes in HCO3- concentrations reflect dilution of weathering products in the drainage basin. The ratio of DIC to TA, an understudied but important property, was high (1.11) during high discharge and low (0.94) during low discharge, reflecting additional DIC input in the form of carbon dioxide (CO2), most likely from terrestrial organic matter decomposition, rather than bicarbonate (HCO3-) inputs due to drainage basin weathering processes. This is also a result of CO2 loss to the atmosphere due to rapid water transit during the wet season. Our data further show that elevated DIC in the Schuylkill River is substantially different than that in the Delaware River. Thus, tributary contributions must be considered when attributing estuarine DIC sources to the internal carbon cycle versus external processes such as drainage basin mineralogy, weathering intensity, and discharge patterns. Long-term records in the Delaware and Schuylkill rivers indicate shifts toward higher alkalinity in estuarine waters over time, as has been found in other estuaries worldwide. Annual DIC input flux to the estuary and export flux to the coastal ocean are estimated to be 15.7 ± 8.2 × 109 mol C yr-1 and 16.5 ± 10.6 × 109 mol C yr-1, respectively, while net DIC production within the estuary including inputs from intertidal marshes is estimated to be 5.1 × 109 mol C yr-1. The small difference between riverine input and export flux suggests that, in the case of the Delaware Estuary and perhaps other large coastal systems with long freshwater residence times, the majority of the DIC produced in the estuary by biological processes is exchanged with the atmosphere rather than exported to the sea.

  1. 76 FR 58469 - Endangered Species; File Nos. 16526, 16323, 16436, 16422, 16438, 16431, 16507, 16547, 16375...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-21

    ... juvenile Atlantic sturgeon in the Delaware River to locate nursery habitat, characterize population ecology... movement patterns and rate of exchange between coastal river systems in Maine, characterize the population structure and generate estimates of population abundance. Researchers would capture adult, juvenile, and...

  2. Estimating probabilities of reservoir storage for the upper Delaware River basin

    USGS Publications Warehouse

    Hirsch, Robert M.

    1981-01-01

    A technique for estimating conditional probabilities of reservoir system storage is described and applied to the upper Delaware River Basin. The results indicate that there is a 73 percent probability that the three major New York City reservoirs (Pepacton, Cannonsville, and Neversink) would be full by June 1, 1981, and only a 9 percent probability that storage would return to the ' drought warning ' sector of the operations curve sometime in the next year. In contrast, if restrictions are lifted and there is an immediate return to normal operating policies, the probability of the reservoir system being full by June 1 is 37 percent and the probability that storage would return to the ' drought warning ' sector in the next year is 30 percent. (USGS)

  3. Late Pleistocene drainage systems beneath Delaware Bay

    USGS Publications Warehouse

    Knebel, H.J.; Circe, R.C.

    1988-01-01

    Analyses of an extensive grid of seismic-reflection profiles, along with previously published sedimentary data and geologic information from surrounding coastal areas, outline the ancestral drainage systems of the Delaware River beneath lower Delaware Bay. Major paleovalleys within these systems have southeast trends, relief of 10-35 m, widths of 1-8 km, and axial depths of 31-57 m below present sea level. The oldest drainage system was carved into Miocene sands, probably during the late Illinoian lowstand of sea level. It followed a course under the northern half of the bay, continued beneath the Cape May peninsula, and extended onto the present continental shelf. This system was buried by a transgressive sequence of fluvial, estuarine, and shallow-marine sediments during Sangamonian time. At the height of the Sangamonian sea-level transgression, littoral and nearshore processes built the Cape May peninsula southward over the northern drainage system and formed a contiguous submarine sedimentary ridge that extended partway across the present entrance to the bay. When sea level fell during late Wisconsinan time, a second drainage system was eroded beneath the southern half of the bay in response to the southerly shift of the bay mouth. This system, which continued across the shelf, was cut into Coastal Plain deposits of Miocene and younger age and included not only the trunk valley of the Delaware River but a large tributary valley formed by the convergence of secondary streams that drained the Delaware coastal area. During the Holocene rise of sea level, the southern drainage system was covered by a transgressive sequence of fluvial, estuarine, and paralic deposits that accumulated due to the passage of the estuarine circulation cell and to the landward and upward migration of coastal sedimentary environments. Some Holocene deposits have been scoured subsequently by strong tidal currents. The southward migration of the ancestral drainage systems beneath Delaware Bay is analogous to that found under nearby Chesapeake Bay. In both areas, shifts in the bay mouths and river courses have preserved the morphologies and sedimentary fill of former drainage systems and provided a clear record of major sea-level fluctuations. Data from this study demonstrate that important information concerning ancient estuarine environments can be derived from the locations and characteristics of former fluvial systems. ?? 1988.

  4. Detection of Oil in Water Column: Sensor Design

    DTIC Science & Technology

    2013-02-01

    rivers , and initiating dispersant application or oil recovery operations. Challenges in detecting oil within the water column include poor...facility and along transects in the Delaware River . However, all readings were at background, even when there was visible oil on the water surface...levels for extremely high CDOM rich rivers . Detection of Oil in Water Column: Sensor Design 14 UNCLAS//Public | CG-926 RDC | Fitzpatrick, et al

  5. Environmental Assessment: Eagle Heights Housing Area Revitalization Dover Air Force Base, Delaware

    DTIC Science & Technology

    2004-07-01

    tidal species. Butterflies were the only insects surveyed, and nine were found on base. Approximately 51 species of birds were recorded on base...Jones River adjacent to the northern border of the housing area, the fro-fruit (Phyla lanceolata) and the hyssop-leaf hedge- nettle (Stachys...other sites in Delaware that this species is found. The hyssop-leaf hedge- nettle thrives in moist sandy soil along the coast and shoreline and occurs

  6. PAH, PCB, TPH and mercury in surface sediments of the Delaware River Estuary and Delmarva Peninsula, USA.

    PubMed

    Kim, A W; Vane, C H; Moss-Hayes, V; Engelhart, S E; Kemp, A C

    2018-04-01

    Surface sediment concentrations of polycyclic aromatic hydrocarbons (PAH) and polychlorinated biphenyls (PCB), total petroleum hydrocarbons (TPH) and mercury, were compared from two areas with contrasting land use history, the industrial Delaware Estuary and the rural Delmarva Peninsula (USA). TPH in the Delaware (38-616mg/kg) and saturate/aromatic fractions suggested petroleum/industrial sources compared to biogenic sources in the Delmarva coastal control (<34-159mg/kg). Within the Delaware the ∑PAH18 ranged from 3749 to 22,324μg/kg with isomeric ratios indicative of petroleum combustion source/s, conversely, those in the Delmarva (5-2139μg/kg) also yielded relatively higher perylene that were consistent with natural background levels derived from vegetation/coal combustion source/s. ∑PCB(tri-hepta) concentrations in the Delmarva (0.6-6.5μg/kg) were less than the threshold effect concentration (TEC), whereas the Delaware had received much higher PCB loading (18.1-136.8μg/kg) as evidenced by a significantly higher amounts in some samples (>TEC). Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Superfund Record of Decision (EPA Region 3): Metal Banks, Philadelphia, PA, December 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-09-01

    This Record of Decision (ROD) presents the final remedial action selected for the Metal Bank Superfund Site (Site), located in northeastern Philadelphia, Pennsylvania. The remedy addresses contaminated soil, sediment, surface water, and groundwater at the Site and includes: installation of an oil collection system consisting of a sheet pile wall around the southern and western perimeter of the property; installation of temporary cofferdams prior to soil/sediment excavation to minimize transport of contamination into the Delaware River; excavation of contaminated soil within the Courtyard Area within two feet of the surface where polychlorinated biphenyl (PCB) concentrations exceed 10 ppm; disposal ofmore » contaminated soils and sediments that are hazardous; removal and disposal of the underground storage tank and its contents from the Southern Portion of the property; backfilling of excavated areas; posting signs prohibiting consumption of fish caught in the Delaware River in the vicinity of the Site; restrictions on the deed to the property to prevent future residential or agricultural use of the Site, use of the groundwater, and intrusive activities into the subsurface soils below the water table in the Southern Portion of the property; additional investigation to determine whether dense non-aqueous phase liquids (DNAPLs) are present at the Site and whether the storm sewer system in the vicinity of the Site is contaminated; and monitoring of groundwater, the Delaware River, and the Baxter Water intake.« less

  8. User’s guide for the Delaware River Basin Streamflow Estimator Tool (DRB-SET)

    USGS Publications Warehouse

    Stuckey, Marla H.; Ulrich, James E.

    2016-06-09

    IntroductionThe Delaware River Basin Streamflow Estimator Tool (DRB-SET) is a tool for the simulation of streamflow at a daily time step for an ungaged stream location in the Delaware River Basin. DRB-SET was developed by the U.S. Geological Survey (USGS) and funded through WaterSMART as part of the National Water Census, a USGS research program on national water availability and use that develops new water accounting tools and assesses water availability at the regional and national scales. DRB-SET relates probability exceedances at a gaged location to those at an ungaged stream location. Once the ungaged stream location has been identified by the user, an appropriate streamgage is automatically selected in DRB-SET using streamflow correlation (map correlation method). Alternately, the user can manually select a different streamgage or use the closest streamgage. A report file is generated documenting the reference streamgage and ungaged stream location information, basin characteristics, any warnings, baseline (minimally altered) and altered (affected by regulation, diversion, mining, or other anthropogenic activities) daily mean streamflow, and the mean and median streamflow. The estimated daily flows for the ungaged stream location can be easily exported as a text file that can be used as input into a statistical software package to determine additional streamflow statistics, such as flow duration exceedance or streamflow frequency statistics.

  9. National Dam Safety Program. Lake Como Dam (DE 00028), Delaware River Basin, Mill Creek, Kent County, Delaware. Phase I Inspection Report.

    DTIC Science & Technology

    1980-11-01

    STATEMENT (of the abstract antarod in Block 20, It different frm Report) III. SUPPLEMENTARY NOTES Copies are obtainable from National Technical...should employ a professional engineer experienced in operation and maintanance of darns to develop written operating procedures and a periodic...100 YEAR FLOOD WOULD CAUSE A DAM TO bE OVERTOPPED THEREFORE THE OWNER SHOULD ENGAGE A QUALIFIED PkOFEbSIONAL CONSULTANT USING MORE PERCISE METHODS

  10. Responsiveness and Reliability: A History of the Philadelphia District and the Marine Design Center, U.S. Army Corps of Engineers, 1972-2008

    DTIC Science & Technology

    2012-01-01

    Philadelphia, Pa., to the mouth of the Delaware Bay, with appropriate bend widenings, partial deepening of the Marcus Hook anchorage, and relocation...flyway. • Tasked by the North Atlantic Division to support relocating the Army’s C4ISR electronics research and development program to Aberdeen...bill that, in his words , “would cost billions of dollars and often do more harm than good.” His actions outraged Philadelphia’s Delaware River

  11. 9.0 Conclusions

    Treesearch

    Peter S. Murdoch; Jennifer C. Jenkins; Richard A. Birdsey

    2008-01-01

    The Delaware River Basin (DRB) CEMRI effort described in this document points to several opportunities for national and regional collaboration strategies that could greatly improve the interpretive power of our environmental monitoring programs.

  12. A checklist of the aquatic invertebrates of the Delaware River Basin, 1990-2000

    USGS Publications Warehouse

    Bilger, Michael D.; Riva-Murray, Karen; Wall, Gretchen L.

    2005-01-01

    This paper details a compilation of aquatic-invertebrate taxa collected at 1,080 sites as part of 13 surface-water-quality studies completed by selected Federal, state, and local environmental agencies during 1990-2000, within the 32,893-km2 area of the Delaware River Basin. This checklist is intended to be a 'working list' of aquatic invertebrates that can be applied successfully to the calculation and interpretation of various biological estimators to determine the status of water quality and can be used as a foundation to document the current state of biodiversity. It is not intended as a comprehensive historical inventory of the literature or of private and public holdings. A total of 11 phyla comprising 20 classes, 46 orders, 196 families, 685 genera, and 835 species were recorded.

  13. Groundwater quality in the Delaware and St. Lawrence River Basins, New York, 2010

    USGS Publications Warehouse

    Nystrom, Elizabeth A.

    2012-01-01

    Water quality in both study areas is generally good, but concentrations of some constituents equaled or exceeded current or proposed Federal or New York State drinking-water standards. The standards exceeded are color (one sample in the St. Lawrence study area), pH (three samples in the Delaware study area), sodium (one sample in the St. Lawrence study area), total dissolved solids (one sample in the St. Lawrence study area), aluminum (one sample in the Delaware study area and one sample in the St. Lawrence study area), iron (seven samples in the St. Lawrence study area), manganese (one sample in the Delaware study area and five samples in the St. Lawrence study area), gross alpha radioactivity (one sample in the St. Lawrence study area), radon-222 (10 samples in the Delaware study area and 14 samples in the St. Lawrence study area), and bacteria (5 samples in the Delaware study area and 10 samples in the St. Lawrence study area). E. coli bacteria were detected in samples from two wells in the St. Lawrence study area. Concentrations of chloride, fluoride, sulfate, nitrate, nitrite, antimony, arsenic, barium, beryllium, cadmium, chromium, copper, lead, mercury, selenium, silver, thallium, zinc, and uranium did not exceed existing drinking-water standards in any of the samples collected.

  14. Hydrogeology and water quality of the Pepacton Reservoir Watershed in Southeastern New York. Part 2. Hydrogeology, stream base flow, and ground-water recharge

    USGS Publications Warehouse

    Reynolds, R.J.

    2004-01-01

    The hydrogeology of the 372-square-mile Pepacton Reservoir watershed (herein called the East Branch Delaware River Basin) in the southwestern Catskill Mountain region of Southeastern New York is described and depicted in a detailed surficial geologic map and two geologic sections. An analysis of stream discharge records and estimates of mean annual ground-water recharge and stream base flow for eight subbasins in the basin are included.Analysis of surficial geologic data indicates that the most widespread geologic unit within the basin is till, which occurs as masses of ablation till in major stream valleys and as thick deposits of lodgment till that fill upland basins. Till covers about 91.5 percent of the Pepacton Reservoir watershed, whereas stratified drift (alluvium, outwash, and ice-contact deposits) accounts for 6.3 percent. The Pepacton Reservoir occupies about 2.3 percent of the basin area. Large outwash and ice-contact deposits occupy the valleys of the upper East Branch Delaware River, the Tremper Kill, the Platte Kill, the Bush Kill, and Dry Brook. These deposits form stratified-drift aquifers that range in thickness from 90 feet in parts of the upper East Branch Delaware River Valley to less than 30 feet in the Dry Brook valley, and average about 50 feet in the main East Branch Delaware River Valley near Margaretville.An analysis of daily mean stream discharge for the six eastern subbasins for 1998–2001, and for two western subbasins for 1945–52, was performed using three computer programs to obtain estimates of mean annual base flow and mean annual ground-water recharge for the eight subbasins. Mean annual base flow ranged from 15.3 inches per year for the Tremper Kill subbasin to 22.3 inches per year for the Mill Brook subbasin; the latter reflects the highest mean annual precipitation of all the subbasins studied. Estimated mean annual ground-water recharge ranged from 24.3 inches per year for Mill Brook to 15.8 inches per year for the Tremper Kill. The base flow index, which is the mean annual base flow expressed as a percentage of mean annual streamflow, ranged from 69.1 percent for Coles Clove Kill to 75.6 percent for the upper East Branch Delaware River; most subbasin indices were greater than 70 percent. These high base flow indices indicate that because stratified drift covers only a small percentage of subbasin areas (generally 5 to 7 percent), most of the base flow is derived from the fractured sandstone bedrock that underlies the basin.

  15. Delaware River Basin Conservation Act of 2011

    THOMAS, 112th Congress

    Sen. Carper, Thomas R. [D-DE

    2011-06-23

    Senate - 07/16/2012 Placed on Senate Legislative Calendar under General Orders. Calendar No. 452. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  16. Delaware River Basin Conservation Act of 2011

    THOMAS, 112th Congress

    Rep. Carney, John C., Jr. [D-DE-At Large

    2011-06-23

    House - 07/11/2011 Referred to the Subcommittee on Fisheries, Wildlife, Oceans, and Insular Affairs. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  17. Delaware River Basin Conservation Act of 2013

    THOMAS, 113th Congress

    Rep. Carney, John C., Jr. [D-DE-At Large

    2013-02-13

    House - 02/22/2013 Referred to the Subcommittee on Fisheries, Wildlife, Oceans, and Insular Affairs. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  18. Fresh-water discharge salinity relations in the tidal Delaware River

    USGS Publications Warehouse

    Keighton, Walter B.

    1966-01-01

    Sustained flows of fresh water greater than 3,500, 4,400, and 5,300 cubic feet per second into the Delaware River estuary at Trenton, NJ assure low salinity at League Island, Eddystone, and Marcus Hook, respectively. When the discharge at Trenton is less than these critical values, salinity is very sensitive to change in discharge, so that a relatively small decrease in fresh-water discharge results in a relatively great increase in salinity. Comparison of the discharge-salinity relations observed for the 14-year period August 1949-December 1963 with relations proposed by other workers but based on other time periods indicate that such relations change with time and that salinity is affected not only by discharge but also by dredging; construction of breakwater, dikes, and tidal barriers; changing sea level; tidal elevation; tidal range; and wind intensity and direction.

  19. Understanding water column and streambed thermal refugia for endangered mussels in the Delaware River

    USGS Publications Warehouse

    Briggs, Martin A.; Voytek, Emily B.; Day-Lewis, Frederick D.; Rosenberry, Donald O.; Lane, John W.

    2013-01-01

    Groundwater discharge locations along the upper Delaware River, both discrete bank seeps and diffuse streambed upwelling, may create thermal niche environments that benefit the endangered dwarf wedgemussel (Alasmidonta heterodon). We seek to identify whether discrete or diffuse groundwater inflow is the dominant control on refugia. Numerous springs and seeps were identified at all locations where dwarf wedgemussels still can be found. Infrared imagery and custom high spatial resolution fiber-optic distributed temperature sensors reveal complex thermal dynamics at one of the seeps with a relatively stable, cold groundwater plume extending along the streambed/water-column interface during mid-summer. This plume, primarily fed by a discrete bank seep, was shown through analytical and numerical heat-transport modeling to dominate temperature dynamics in the region of potential habitation by the adult dwarf wedgemussel.

  20. Flood of January 19-20, 1996 in New York State

    USGS Publications Warehouse

    Lumia, Richard

    1998-01-01

    Heavy rain during January 18-19, 1996, combined with unseasonably warm temperatures that caused rapid snowmelt, resulted in widespread flooding throughout New York State. Damages to highways, bridges, and private property exceeded $100 million. The storm and flooding claimed 10 lives, stranded hundreds of people, destroyed or damaged thousands of homes and businesses, and closed hundreds of roads. Forty-one counties in New York were declared federal disaster areas. The most severely affected region was within and surrounding the Catskill Mountains. Damages and losses within Delaware County alone exceeded $20 million.More than 4.5 inches of rain fell on at least 45 inches of melting snow in the Catskill Mountain region during January 18-19 and caused major flooding in the area. The most destructive flooding was along Schoharie Creek and the East and West Branches of the Delaware River. Record peak discharges occurred at 57 U.S. Geological Survey streamflow-gaging stations throughout New York. Maximum discharges at 15 sites, mostly within the Schoharie Creek and Delaware River basins, had recurrence intervals equal to or greater than 100 years. The storage of significant amounts of floodwater in several reservoirs sharply reduced peak discharges downstream. This report presents a summary of peak stages and discharges, precipitation maps, floodflow hydrographs, inflow-outflow hydrographs for several reservoirs, and flood profiles along 83 miles of Schoharie Creek from its headwaters in the Catskill Mountains to its mouth at the Mohawk River.

  1. National Dam Safety Program. Roxbury Dam (Inventory Number 788) Delaware River Basin, Delaware County, New York. Phase I Inspection Report,

    DTIC Science & Technology

    1980-05-21

    service spillway was analyzed as a sharp - crested weir with:.a discharge coefficient (c) of 3.1. The auxiliary spillway channel was analyzed as a broad ...upstream portion of this channel is a concrete structure which forms a 27.4 foot long rectangular weir . There is a 5 foot vertical drop beyond the crest ...I on 1.5 Crest Width (ft) 12 g. Service Spillway Type: Concrete channel-rectangular weir . Five foot vertical drop beyond crest . Masonry and laid up

  2. National Dam Safety Program. William H. Luehmann Recreation Pond Dam (Inventory Number N.Y. 1199), Delaware River Basin, Delaware County, New York. Phase I Inspection Report,

    DTIC Science & Technology

    1981-09-14

    runoff. 5.5 FLOODS OF RECORD No records of past flooding in Sherruck Brook are available. 5.6 OVERTOPPING POTENTIAL Our analysis indicates that the...constructed in 1970 and the 30 inch CIMP drain was replaced with the 18 inch steel drain in 1980. e. Seismic Stability The structure is located in Zone...Commerce, Technical Paper No, 40, Rainfall Frequency Atlas of the United States, May 1961, 2) U.S. Department of Commerce, Hydrometeorological Report

  3. 78 FR 47241 - Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To Revise the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-05

    ...The Delaware River Basin Commission (``DRBC'' or ``Commission'') will hold a public hearing to receive comments on proposed amendments to the Commission's Water Quality Regulations, Water Code and Comprehensive Plan to revise the water quality criteria for polychlorinated biphenyls (``PCBs'') in the Delaware Estuary and Bay, DRBC Water Quality Management Zones 2 through 6, for the protection of human health from carcinogenic effects. The Commission will simultaneously solicit comment on a draft implementation strategy to support achievement of the criteria.

  4. Advances in Using Fiber-Optic Distributed Temperature Sensing to Identify the Mixing of Waters

    NASA Astrophysics Data System (ADS)

    Briggs, M. A.; Day-Lewis, F. D.; Rosenberry, D. O.; Harvey, J. W.; Lane, J. W., Jr.; Hare, D. K.; Boutt, D. F.; Voytek, E. B.; Buckley, S.

    2014-12-01

    Fiber-optic distributed temperature sensing (FO-DTS) provides thermal data through space and time along linear cables. When installed along a streambed, FO-DTS can capture the influence of upwelling groundwater (GW) as thermal anomalies. The planning of labor-intensive physical measurements can make use of FO-DTS data to target areas of focused GW discharge that can disproportionately affect surface-water (SW) quality and temperature. Typical longitudinal FO-DTS spatial resolution ranges 0.25 to1.0 m, and cannot resolve small-scale water-column mixing or sub-surface diurnal fluctuations. However, configurations where the cable is wrapped around rods can improve the effective vertical resolution to sub-centimeter scales, and the pipes can be actively heated to induce a thermal tracer. Longitudinal streambed and high-resolution vertical arrays were deployed at the upper Delaware River (PA, USA) and the Quashnet River (MA, USA) for aquatic habitat studies. The resultant datasets exemplify the varied uses of FO-DTS. Cold anomalies found along the Delaware River steambed coincide with zones of known mussel populations, and high-resolution vertical array data showed relatively stable in-channel thermal refugia. Cold anomalies at the Quashnet River identified in 2013 were found to persist in 2014, and seepage measurements and water samples at these locations showed high GW flux with distinctive chemistry. Cable location is paramount to seepage identification, particularly in faster flowing deep streams such as the Quashnet and Delaware Rivers where steambed FO-DTS identified many seepage zones with no surface expression. The temporal characterization of seepage dynamics are unique to FO-DTS. However, data from Tidmarsh Farms, a cranberry bog restoration site in MA, USA indicate that in slower flowing shallow steams GW inflow affects surface temperature; therefore infrared imaging can provide seepage location information similar to FO-DTS with substantially less effort.

  5. Hydrodynamics and Eutrophication Model Study of Indian River and Rehoboth Bay, Delaware

    DTIC Science & Technology

    1994-05-01

    Station, Vicksburg, MS. V Chapter I: Introduction The Study System Indian River and Rehoboth Bay (Figure 1-1) are two water bodies that form part of the...and mass trans- port throughout the system . Objectives The primary objective of this study is to provide a hydrodynamic/ water quality model packge of...portion opens out into Indian River Bay (Figure 3-1). The cooling water diversion was included in the hydrodynamic model. Flow through the power plant, at

  6. Contrasting fish assemblages in free-flowing and impounded tributaries to the Upper Delaware River: Implications for conserving biodiversity

    USGS Publications Warehouse

    Baldigo, Barry P.; Delucia, Mari-Beth; Keller, Walter D.; Schuler, George E.; Apse, Colin D.; Moberg, Tara

    2015-01-01

    The Neversink River and the Beaver Kill in southeastern New York are major tributaries to the Delaware River, the longest undammed river east of the Mississippi. While the Beaver Kill is free flowing for its entire length, the Neversink River is subdivided by the Neversink Reservoir, which likely affects the diversity of local fish assemblages and health of aquatic ecosystems. The reservoir is an important part of the New York City waster-supply system that provides drinking water to more than 9 million people. Fish population and community data from recent quantitative surveys at comparable sites in both basins were assessed to characterize the differences between free-flowing and impounded rivers and the extent of reservoir effects to improve our capacity to define ecosystems responses that two modified flow-release programs (implemented in 2007 and 2011) should produce in the Neversink River. In general, the continuum of changes in fish assemblages which normally occur between headwaters and mouth was relatively uninterrupted in the Beaver Kill, but disrupted by the mid-basin impoundment in the Neversink River. Fish assemblages were also adversely affected at several acidified sites in the upper Neversink River, but not at most sites assessed herein. The reservoir clearly excluded diadromous species from the upper sub-basin, but it also substantially reduced community richness, diversity, and biomass at several mid-basin sites immediately downstream from the impoundment. There results will aid future attempts to determine if fish assemblages respond to more natural, yet highly regulated, flow regimes in the Neversink River. More important, knowledge gained from this study can help optimize use of valuable water resources while promoting species of special concern, such as American eel (Anguilla rostrata) and conserving biodiversity in Catskill Mountain streams.

  7. Near real time water resources data for river basin management

    NASA Technical Reports Server (NTRS)

    Paulson, R. W. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Twenty Data Collection Platforms (DCP) are being field installed on USGS water resources stations in the Delaware River Basin. DCP's have been successfully installed and are operating well on five stream gaging stations, three observation wells, and one water quality monitor in the basin. DCP's have been installed at nine additional water quality monitors, and work is progressing on interfacing the platforms to the monitors. ERTS-related water resources data from the platforms are being provided in near real time, by the Goddard Space Flight Center to the Pennsylvania district, Water Resources Division, U.S. Geological Survey. On a daily basis, the data are computer processed by the Survey and provided to the Delaware River Basin Commission. Each daily summary contains data that were relayed during 4 or 5 of the 15 orbits made by ERTS-1 during the previous day. Water resources parameters relays by the platforms include dissolved oxygen concentrations, temperature, pH, specific conductance, well level, and stream gage height, which is used to compute stream flow for the daily summary.

  8. 8.0 Integrating the effect of terrestrial ecosystem health and land use on the hydrology, habitat, and water quality of the Delaware River and estuary

    Treesearch

    Peter S. Murdoch; John L. Hom; Yude Pan; Jeffrey M. Fischer

    2008-01-01

    To complete the collaborative monitoring study of forested landscapes within the DRB, regional perspective on the cumulative effect of different disturbances on overall ecosystem health. This section describes two modeling activities used as integrating tools for the CEMRI database and a validation system that used nested river monitoring stations.

  9. A bill to reauthorize the Rivers of Steel National Heritage Area, the Lackawanna Valley National Heritage Area, the Delaware and Lehigh National Heritage Corridor, and the Schuylkill River Valley National Heritage Area.

    THOMAS, 113th Congress

    Sen. Casey, Robert P., Jr. [D-PA

    2013-06-13

    Senate - 07/31/2013 Committee on Energy and Natural Resources Subcommittee on National Parks. Hearings held. With printed Hearing: S.Hrg. 113-93. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  10. Hydrogeologic reconnaissance of the Swope Oil Superfund site and vicinity, Camden and Burlington counties, New Jersey

    USGS Publications Warehouse

    Barton, G.J.; Krebs, M.M.

    1990-01-01

    Groundwater beneath a former chemical reclamation facility in New Jersey is contaminated with metals and organic compounds. The off-site migration of these compounds has not been studied; however, a nearby public-supply well is contaminated, and a public-supply well 1,400 ft downgradient from the site may be threatened. The study area, in the New Jersey part of the Atlantic Coastal Plain, is underlain by alluvial deposits composed of gravel, sand, silt, and clay. These deposits comprise the water table aquifer, the confining units, and the confined aquifer throughout the study area. The water table beneath the Swope Oil Superfund site is approximately 17 ft below sea level and groundwater levels throughout the study area are below the stage of the Delaware River. The aquifer system is recharged by precipitation, leakage of water through confining units, and the water induced from the Delaware River. Five public supply-well fields, primarily adjacent to the Delaware River, and four waste disposal sites with observation well networks are located in the study area. Both the water table and confined aquifers are contaminated in several locations. The concentration of metals and/or purgeable organic compounds in more than 20 wells exceeds the U.S. Environmental Protection Agency primary drinking-water standard and the New Jersey Department of Environmental Protection recommended drinking water criteria. Selected data from wells and test borings are presented, including well construction details; drillers ', geologists ', and geophysical logs; water levels; specific-capacity and slug test data; and chemical analysis of groundwater samples. (USGS)

  11. Relations of surface-water quality to streamflow in the Atlantic Coastal, lower Delaware River, and Delaware Bay basins, New Jersey, water years 1976-93

    USGS Publications Warehouse

    Hunchak-Kariouk, Kathryn; Buxton, Debra E.; Hickman, R. Edward

    1999-01-01

    Relations of water quality to streamflow were determined for 18 water-quality constituents at 28 surface-water-quality stations within the drainage area of the Atlantic Coastal, lower Delaware River, and Delaware Bay Basins for water years 1976-93. Surface-water-quality and streamflow data were evaluated for trends (through time) in constituent concentrations during high and low flows, and relations between constituent concentration and streamflow, and between constituent load and streamflow, were determined. Median concentrations were calculated for the entire period of study (water years 1976-93) and for the last 5 years of the period of study (water years 1989-93) to determine whether any large variation in concentration exists between the two periods. Medians also were used to determine the seasonal Kendall\\'s tau statistic, which was then used to evaluate trends in concentrations during high and low flows. Trends in constituent concentrations during high and low flows were evaluated to determine whether the distribution of the observations changes through time for intermittent (nonpoint storm runoff) and constant (point sources and ground water) sources, respectively. High- and low-flow trends in concentrations were determined for some constituents at 26 of the 28 water-quality stations. Seasonal effects on the relations of concentration to streamflow are evident for 10 constituents at 14 or more stations. Dissolved oxygen shows seasonal dependency at all stations. Negative slopes of relations of concentration to streamflow, which indicate a decrease in concentration at high flows, predominate over positive slopes because of dilution of instream concentrations from storm runoff. The slopes of the regression lines of load to streamflow were determined in order to show the relative contributions to the instream load from constant (point sources and ground water) and intermittent sources (storm runoff). Greater slope values indicate larger contributions from storm runoff to instream load, which most likely indicate an increased relative importance of nonpoint sources. Load-to-streamflow relations along a stream reach that tend to increase in a downstream direction indicate the increased relative importance of contributions from storm runoff. Likewise, load-to-streamflow relations along a stream reach that tend to decrease in a downstream direction indicate the increased relative importance of point sources and ground-water discharge. The magnitudes of the load slopes for five constituents increase in the downstream direction along the Great Egg Harbor River, indicating an increased relative importance of storm runoff for these constituents along the river. The magnitudes of the load slopes for 11 constituents decrease in the downstream direction along the Assunpink Creek and for 5 constituents along the Maurice River, indicating a decreased relative importance of storm runoff for these constituents along the rivers.

  12. 13. VIEW OF DECK TRUSS FROM BELOW. BRIGHT SUN IS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW OF DECK TRUSS FROM BELOW. BRIGHT SUN IS PROJECTING SHADOWS FROM AUTO TRAFFIC ONTO WESTERN PIER. - Northampton Street Bridge, Spanning Delaware River at Northampton Street (U.S. Route 22 Alternate), Easton, Northampton County, PA

  13. Simulation of ground-water flow in the Potomac-Raritan-Magothy aquifer system, Pennsauken Township and vicinity, New Jersey

    USGS Publications Warehouse

    Pope, Daryll A.; Watt, Martha K.

    2004-01-01

    The Potomac-Raritan-Magothy aquifer system is one of the primary sources of potable water in the Coastal Plain of New Jersey, particularly in heavily developed areas along the Delaware River. In Pennsauken Township, Camden County, local drinking-water supplies from this aquifer system have been contaminated by hexavalent chromium at concentrations that exceed the New Jersey maximum contaminant level. In particular, ground water at the Puchack well field has been adversely affected to the point where, since 1984, water is no longer withdrawn from this well field for public supply. The area that contains the Puchack well field was added to the National Priorities List in 1998 as a Superfund site. The U.S. Geological Survey (USGS) conducted a reconnaissance study from 1996 to 1998 during which hydrogeologic and water-quality data were collected and a ground-water-flow model was developed to describe the conditions in the aquifer system in the Pennsauken Township area. The current investigation by the USGS, in cooperation with the U.S. Environmental Protection Agency (USEPA), is an extension of the previous study. Results of the current study can be applied to a Remedial Investigation and Feasibility Study conducted at the Puchack well field Superfund site. The USGS study collected additional data on the hydrogeology and water-quality in the area. These data were incorporated into a refined model of the ground-water-flow system in the Potomac-Raritan-Magothy aquifer system. A finite-difference model was developed to simulate ground-water flow and the advective transport of chromium-contaminated ground water in the aquifers of the Potomac-Raritan-Magothy aquifer system in the Pennsauken Township area. An 11-layer model was used to represent the complex hydrogeologic framework. The model was calibrated using steady-state water-level data from March 1998, April 1998, and April 2001. Water-level recovery during the shutdown of Puchack 1 during March to April 1998 was simulated to evaluate model performance in relation to changing stresses. The Delaware River contributes appreciable-flow to the ground-water system from areas where the Middle and Lower aquifers crop out beneath the river. A transient simulation of an aquifer test near the Delaware River was run to help characterize the hydraulic conductivity of the riverbed sediments represented in the model. Vertical flow across confining units between the aquifers is highly variable and is important in the movement of water and associated contaminants through the flow system. The model was imbedded within a regional model of the Potomac-Raritan-Magothy aquifer system in Camden County. In general, a simulation of baseline conditions, which can provide a representation on which simulations of various alternatives can be based for the feasibility study, incorporated average conditions from 1998 to 2000. Ground-water withdrawals within the model area during this period averaged about 14 Mgal/d. Regional ground-water flow is from recharge areas and from the Delaware River to downgradient pumped wells located just east of the model area in central Camden County. Simulation results show an important connection between the Intermediate sand and the Lower aquifer of the Potomac-Raritan-Magothy aquifer system in the vicinity of the chromium-contaminated area. The Delaware River contributes nearly 10 Mgal/d to the flow system, whereas recharge contributes about 6 Mgal/d. Ground-water withdrawals within the model area account for nearly 14 Mgal/d (mostly from the Lower aquifer of the Potomac-Raritan-Magothy aquifer system).

  14. Simulation of Runoff and Reservoir Inflow for Use in a Flood-Analysis Model for the Delaware River, Pennsylvania, New Jersey, and New York, 2004-2006

    USGS Publications Warehouse

    Goode, Daniel J.; Koerkle, Edward H.; Hoffman, Scott A.; Regan, R. Steve; Hay, Lauren E.; Markstrom, Steven L.

    2010-01-01

    A model was developed to simulate inflow to reservoirs and watershed runoff to streams during three high-flow events between September 2004 and June 2006 for the main-stem subbasin of the Delaware River draining to Trenton, N.J. The model software is a modified version of the U.S. Geological Survey (USGS) Precipitation-Runoff Modeling System (PRMS), a modular, physically based, distributed-parameter modeling system developed to evaluate the impacts of various combinations of precipitation, climate, and land use on surface-water runoff and general basin hydrology. The PRMS model simulates time periods associated with main-stem flooding that occurred in September 2004, April 2005, and June 2006 and uses both daily and hourly time steps. Output from the PRMS model was formatted for use as inflows to a separately documented reservoir and riverrouting model, the HEC-ResSim model, developed by the U.S. Army Corps of Engineers Hydrologic Engineering Center to evaluate flooding. The models were integrated through a graphical user interface. The study area is the 6,780 square-mile watershed of the Delaware River in the states of Pennsylvania, New Jersey, and New York that drains to Trenton, N.J. A geospatial database was created for use with a geographic information system to assist model discretization, determine land-surface characterization, and estimate model parameters. The USGS National Elevation Dataset at 100-meter resolution, a Digital Elevation Model (DEM), was used for model discretization into streams and hydrologic response units. In addition, geospatial processing was used to estimate initial model parameters from the DEM and other data layers, including land use. The model discretization represents the study area using 869 hydrologic response units and 452 stream segments. The model climate data for point stations were obtained from multiple sources. These sources included daily data for 22 National Weather Service (NWS) Cooperative Climate Station network stations, hourly data for 15 stations from the National Climatic Data Center, hourly data for 1 station from the NWS Middle Atlantic River Forecast Center records, and daily and hourly data for 7 stations operated by the New York City Department of Environmental Protection. The NWS Multisensor Precipitation Estimate data set for 2001-2007 was used for computing daily precipitation for the model and for computing hourly precipitation for storm simulation periods. Calibration of the PRMS model included regression and optimization algorithms, as well as manual adjustments of model parameters. The general goal of the calibration procedure was to minimize the difference between discharge measured at USGS streamgages and the corresponding discharge simulated by the model. Daily streamflow data from 35 USGS streamgages were used in model calibration. The streamflow data represent areas draining from 20.2 to 6,780 square miles. The PRMS model simulates reservoir inflow and watershed runoff for use as input into HECResSim for the purpose of evaluating and comparing the effects of different watershed conditions on main-stem flooding in the Delaware River watershed draining to Trenton, N.J. The PRMS model is useful as a planning tool to simulate the effects of land-use changes and different antecedent conditions on local runoff and reservoir inflow and, as input to the HEC-ResSim model, on flood flows in the main stem of the Delaware River.

  15. Dynamic Management of Releases for the Delaware River Basin using NYC's Operations Support Tool

    NASA Astrophysics Data System (ADS)

    Weiss, W.; Wang, L.; Murphy, T.; Muralidhar, D.; Tarrier, B.

    2011-12-01

    The New York City Department of Environmental Protection (DEP) has initiated design of an Operations Support Tool (OST), a state-of-the-art decision support system to provide computational and predictive support for water supply operations and planning. Using an interim version of OST, DEP and the New York State Department of Environmental Conservation (DEC) have developed a provisional, one-year Delaware River Basin reservoir release program to succeed the existing Flexible Flow Management Program (FFMP) which expired on May 31, 2011. The FFMP grew out of the Good Faith Agreement of 1983 among the four Basin states (New York, New Jersey, Pennsylvania, and Delaware) that established modified diversions and flow targets during drought conditions. It provided a set of release schedules as a framework for managing diversions and releases from New York City's Delaware Basin reservoirs in order to support multiple objectives, including water supply, drought mitigation, flood mitigation, tailwaters fisheries, main stem habitat, recreation, and salinity repulsion. The provisional program (OST-FFMP) defines available water based on current Upper Delaware reservoir conditions and probabilistic forecasts of reservoir inflow. Releases are then set based on a set of release schedules keyed to the water availability. Additionally, OST-FFMP attempts to provide enhanced downstream flood protection by making spill mitigation releases to keep the Delaware System reservoirs at a seasonally varying conditional storage objective. The OST-FFMP approach represents a more robust way of managing downstream releases, accounting for predicted future hydrologic conditions by making more water available for release when conditions are forecasted to be wet and protecting water supply reliability when conditions are forecasted to be dry. Further, the dynamic nature of the program allows the release decision to be adjusted as hydrologic conditions change. OST simulations predict that this program can provide substantial benefits for downstream stakeholders while protecting DEP's ability to ensure a reliable water supply for 9 million customers in NYC and the surrounding communities. The one-year nature of the program will allow for DEP and the Decree Parties to evaluate and improve the program in the future. This paper will describe the OST-FFMP program and discuss preliminary observations on its performance based on key NYC and downstream stakeholder performance metrics.

  16. Pesticide compounds in streamwater in the Delaware River Basin, December 1998-August 2001

    USGS Publications Warehouse

    Hickman, R. Edward

    2004-01-01

    During 1998-2001, 533 samples of streamwater at 94 sites were collected in the Delaware River Basin in Pennsylvania, New Jersey, New York, and Delaware as part of the U.S. Geological Survey National Water-Quality Assessment Program. Of these samples, 531 samples were analyzed for dissolved concentrations of 47 pesticide compounds (43 pesticides and 4 pesticide degradation products); 70 samples were analyzed for an additional 6 pesticide degradation products. Of the 47 pesticide compounds analyzed for in 531 samples, 30 were detected. The most often detected compounds were atrazine (90.2 percent of samples), metolachlor (86.1 percent), deethylatrazine (82.5 percent), and simazine (78.9 percent). Atrazine, metolachlor, and simazine are pesticides; deethylatrazine is a degradation product of atrazine. Relations between concentrations of pesticides in samples from selected streamwater sites and characteristics of the subbasins draining to these sites were evaluated to determine whether agricultural uses or nonagricultural uses appeared to be the more important sources. Concentrations of atrazine, metolachlor, and pendimethalin appear to be attributable more to agricultural uses than to nonagricultural uses; concentrations of prometon, diazinon, chlorpyrifos, tebuthiuron, trifluralin, and carbaryl appear to be attributable more to nonagricultural uses. In general, pesticide concentrations during the growing season (April-October) were greater than those during the nongrowing season (November-March). For atrazine, metolachlor, and acetochlor, the greatest concentrations generally occurred during May, June, and July. Concentrations of pesticide compounds rarely (in only 7 out of 531 samples) exceeded drinking-water standards or guidelines, indicating that, when considered individually, these compounds present little hazard to the health of the public through consumption of the streamwater. The combined effects of more than one pesticide compound in streamwater were not considered. Diazinon appeared to be the pesticide compound most likely to adversely affect aquatic life in the streams of the Delaware River Basin; concentrations of diazinon exceeded guidelines (designed to protect aquatic life) in 19 samples, the most of any pesticide compound. Concentrations of as many as 5 compounds exceeded guidelines in 29 of 531 samples.

  17. 75 FR 73116 - Delaware River and Bay Oil Spill Advisory Committee; Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-29

    ... is given under the Federal Advisory Committee Act, 5 U.S.C. App. 2 (Pub. L. 92-463). The Coast Guard Authorization Act of 2010 (Pub. L. 111-281) extended the statutory authorization for the Committee until Dec 31...

  18. Ferry Engine Repower to Provide Benefits for Air and Water

    EPA Pesticide Factsheets

    EPA’s Diesel Emission Reduction Act grant to the Delaware River and Bay Authority is bringing new clean air technology to the Cape May-Lewes Ferry, thereby reducing air pollution emissions and contributing to cleaner water in the Chesapeake Bay.

  19. 18 CFR 401.33 - Administrative agreements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... agreements. 401.33 Section 401.33 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... Administrative agreements. The Executive Director is authorized and directed to enter into cooperative Administrative Agreements with federal and state regulatory agencies concerned with the review of projects under...

  20. 18 CFR 401.33 - Administrative agreements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... agreements. 401.33 Section 401.33 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... Administrative agreements. The Executive Director is authorized and directed to enter into cooperative Administrative Agreements with federal and state regulatory agencies concerned with the review of projects under...

  1. 18 CFR 401.33 - Administrative agreements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... agreements. 401.33 Section 401.33 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... Administrative agreements. The Executive Director is authorized and directed to enter into cooperative Administrative Agreements with federal and state regulatory agencies concerned with the review of projects under...

  2. Hazardous Waste Cleanup: Chemours Repauno in Gibbstown, New Jersey

    EPA Pesticide Factsheets

    Chemours Repauno, a former DuPont Company, is located at 200 North Repauno Avenue in Gibbstown, New Jersey. The DuPont Gibbstown plant occupies nearly 1,900 acres along the Delaware River in Gibbstown, Greenwich Township. The plant, which opened in 1880,

  3. Impacts of EPA 2012 commercial pump-out regulations.

    DOT National Transportation Integrated Search

    2012-08-01

    The US EPA issued the Vessel General Permit (VGP) for managing vessel discharges, under the Clean Water : Act. As a result, commercial vessels operating in the New York/New Jersey Harbor and at Delaware River will : be required to comply, including a...

  4. Applications of HCMM data to soil moisture snow and estuarine current studies. [Cooper River and Delaware Bay

    NASA Technical Reports Server (NTRS)

    Wiesnet, D. R. (Principal Investigator); Mcginnis, D. F.; Matson, M.

    1980-01-01

    The author has identified the following significant results. The HCMM thermal data are useful for monitoring estuarine surface thermal patterns. Estuarine thermal patterns, are, under certain conditions, indicative of the surface tidal current circulation patterns. Under optimum conditions, estuaries as small as the Cooper River (i.e., approximately 100 sq km) can be monitored for tidal/thermal circulation patterns by HCMM-type IR sensors.

  5. Flood-inundation maps for the West Branch Delaware River, Delhi, New York, 2012

    USGS Publications Warehouse

    Coon, William F.; Breaker, Brian K.

    2012-01-01

    Digital flood-inundation maps for a 5-mile reach of the West Branch Delaware River through the Village and part of the Town of Delhi, New York, were created by the U.S. Geological Survey (USGS) in cooperation with the Village of Delhi, the Delaware County Soil and Water Conservation District, and the Delaware County Planning Department. The inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/ and the Federal Flood Inundation Mapper Web site at http://wim.usgs.gov/FIMI/FloodInundationMapper.html, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) referenced to the USGS streamgage at West Branch Delaware River upstream from Delhi, N.Y. (station number 01421900). In this study, flood profiles were computed for the stream reach by means of a one-dimensional step-backwater model that had been used to produce the flood insurance rate maps for the most recent flood insurance study for the Town and Village of Delhi. This hydraulic model was used to compute 10 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum and ranging from 7 ft or near bankfull to 16 ft, which exceeds the stages that correspond to both the estimated 0.2-percent annual-exceedance-probability flood (500-year recurrence interval flood) and the maximum recorded peak flow. The simulated water-surface profiles were then combined with a geographic information system (GIS) digital elevation model, which was derived from Light Detection and Ranging (LiDAR) data with a 1.2-ft (0.61-ft root mean squared error) vertical accuracy and 3.3-ft (1-meter) horizontal resolution, to delineate the area flooded at each water level. A map that was produced using this method to delineate the inundated area for the flood that occurred on August 28, 2011, agreed well with highwater marks that had been located in the field using a global positioning system. The availability of the 10 flood-inundation maps on the USGS Flood Inundation Mapping Science Web site, along with Internet information regarding current stage from the USGS streamgage, will provide emergency management personnel and residents with information that is critical for flood-response activities, such as evacuations and road closures, as well as for post-flood recovery efforts.

  6. Modeling the Effects of Land Use and Climate Change on Streamflow in the Delaware River Basin

    NASA Astrophysics Data System (ADS)

    Kwon, P. Y. S.; Endreny, T. A.; Kroll, C. N.; Williamson, T. N.

    2014-12-01

    Forest-cover loss and drinking-water reservoirs in the upper Delaware River Basin of New York may alter summer low streamflows, which could degrade the in-stream habitat for the endangered dwarf wedgemussel. Our project analyzes how flow statistics change with land-cover change for 30-year increments of model-simulated streamflow hydrographs for three watersheds of concern to the National Park Service: the East Branch, West Branch, and main stem of the Delaware River. We use four treatments for land cover ranging from historical high to low forest cover. We subject each land cover to adjusted GCM climate scenarios for 1600, 1900, 1940, and 2040 to isolate land cover from potential climate-change effects. Hydrographs are simulated using the Water Availability Tool for Environmental Resources (WATER), a TOPMODEL-based United States Geological Survey hydrologic decision-support tool, which uses the variable-source-area concept and water budgets to generate streamflow. Model parameters for each watershed change with land-use, and capture differences in soil-physical properties that control how rainfall infiltrates, evaporates, transpires, is stored in the soil, and moves to the stream. Our results analyze flow statistics used as indicators of hydrologic alteration, and access streamflow events below the critical flow needed to provide sustainable habitat for dwarf wedgemussels. These metrics will demonstrate how changes in climate and land use might affect flow statistics. Initial results show that the 1940 WATER simulation outputs generally match observed unregulated low flows from that time period, while performance for regulated flow from the same time period and from 1600, 1900, and 2040 require model input adjustments. Our study will illustrate how increased forest cover could potentially restore in-stream habitat for the endangered dwarf wedgemussel for current and future climate conditions.

  7. Influence of groundwater on distribution of dwarf wedgemussels (Alasmidonta heterodon) in the upper reaches of the Delaware River, northeastern USA

    USGS Publications Warehouse

    Rosenberry, Donald O.; Briggs, Martin A.; Voytek, Emily B.; Lane, John W.

    2016-01-01

    The remaining populations of the endangered dwarf wedgemussel (DWM) (Alasmidonta heterodon) in the upper Delaware River, northeastern USA, were hypothesized to be located in areas of greater-than-normal groundwater discharge to the river. We combined physical (seepage meters, monitoring wells and piezometers), thermal (fiber-optic distributed temperature sensing, infrared, vertical bed-temperature profiling), and geophysical (electromagnetic-induction) methods at several spatial scales to characterize known DWM habitat and explore this hypothesis. Numerous springs were observed using visible and infrared imaging along the river banks at all three known DWM-populated areas, but not in adjacent areas where DWM were absent. Vertical and lateral groundwater gradients were toward the river along all three DWM-populated reaches, with median upward gradients 3 to 9 times larger than in adjacent reaches. Point-scale seepage-meter measurements indicated that upward seepage across the riverbed was faster and more consistently upward at DWM-populated areas. Discrete and areally distributed riverbed-temperature measurements indicated numerous cold areas of groundwater discharge during warm summer months; all were within areas populated by DWM. Electromagnetic-induction measurements, which may indicate riverbed geology, showed patterning but little correlation between bulk streambed electromagnetic conductivity and areal distribution of DWM. In spite of complexity introduced by hyporheic exchange, multiple lines of research provide strong evidence that DWM are located within or directly downstream of areas of substantial focused groundwater discharge to the river. Broad scale thermal-reconnaissance methods (e.g., infrared) may be useful in locating and protecting other currently unknown mussel populations.

  8. Hazardous Waste Cleanup: Methode Electronics Incorporated in Willingboro Township, New Jersey

    EPA Pesticide Factsheets

    The former Methode Electronics facility is a 3.06 acre site located at; 10 Industrial Drive, Willingboro Township, Burlington County, New Jersey, approximately two miles east of the Delaware River, one-half mile southeast of route 130, and one-half mile

  9. 18 CFR 430.3 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Purpose. 430.3 Section 430.3 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION SPECIAL REGULATIONS... implement reasonable water conservation measures and practices, to assure efficient use of limited water...

  10. 18 CFR 430.3 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Purpose. 430.3 Section 430.3 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION SPECIAL REGULATIONS... implement reasonable water conservation measures and practices, to assure efficient use of limited water...

  11. 18 CFR 430.3 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Purpose. 430.3 Section 430.3 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION SPECIAL REGULATIONS... implement reasonable water conservation measures and practices, to assure efficient use of limited water...

  12. 18 CFR 430.3 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Purpose. 430.3 Section 430.3 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION SPECIAL REGULATIONS... implement reasonable water conservation measures and practices, to assure efficient use of limited water...

  13. 18 CFR 430.3 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Purpose. 430.3 Section 430.3 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION SPECIAL REGULATIONS... implement reasonable water conservation measures and practices, to assure efficient use of limited water...

  14. Hazardous Waste Cleanup: Chemours Chambers Works in Deepwater, New Jersey

    EPA Pesticide Factsheets

    The 1,455-acre DuPont Chambers Works Complex -- composed of the Chambers Works manufacturing area and the former Carneys Point Works - is located along the eastern shore of the Delaware River by State Highway 130 (Shell Road) in Deepwater, New Jersey. East

  15. 18 CFR 401.124 - Construction.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Construction. 401.124 Section 401.124 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE General Provisions § 401.124 Construction. This part is...

  16. 18 CFR 401.124 - Construction.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Construction. 401.124 Section 401.124 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE General Provisions § 401.124 Construction. This part is...

  17. 18 CFR 401.124 - Construction.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Construction. 401.124 Section 401.124 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE General Provisions § 401.124 Construction. This part is...

  18. 18 CFR 401.124 - Construction.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Construction. 401.124 Section 401.124 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE General Provisions § 401.124 Construction. This part is...

  19. 18 CFR 401.113 - Segregable materials.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Segregable materials. 401.113 Section 401.113 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... Segregable materials. Any reasonably segregable portion of a record shall be provided to any person...

  20. 18 CFR 420.22 - Prohibition; sanctions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Prohibition; sanctions. 420.22 Section 420.22 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Water Supply Policy § 420.22 Prohibition; sanctions...

  1. 18 CFR 420.31 - Certificate of entitlement.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Certificate of entitlement. 420.31 Section 420.31 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Entitlement; Measurement; Billing § 420.31...

  2. 18 CFR 401.113 - Segregable materials.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Segregable materials. 401.113 Section 401.113 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... Segregable materials. Any reasonably segregable portion of a record shall be provided to any person...

  3. 18 CFR 401.113 - Segregable materials.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Segregable materials. 401.113 Section 401.113 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... Segregable materials. Any reasonably segregable portion of a record shall be provided to any person...

  4. 18 CFR 401.113 - Segregable materials.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Segregable materials. 401.113 Section 401.113 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... Segregable materials. Any reasonably segregable portion of a record shall be provided to any person...

  5. 18 CFR 401.23 - Procedure.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Procedure. 401.23 Section 401.23 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.23 Procedure. Each project included...

  6. 18 CFR 401.23 - Procedure.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Procedure. 401.23 Section 401.23 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.23 Procedure. Each project included...

  7. 18 CFR 401.23 - Procedure.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Procedure. 401.23 Section 401.23 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.23 Procedure. Each project included...

  8. 18 CFR 401.23 - Procedure.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Procedure. 401.23 Section 401.23 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.23 Procedure. Each project included...

  9. 18 CFR 401.0 - Introduction.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... the adoption and revision of the Comprehensive Plan, the Water Resources Program, the exercise of the... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Introduction. 401.0 Section 401.0 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE...

  10. 18 CFR 401.0 - Introduction.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the adoption and revision of the Comprehensive Plan, the Water Resources Program, the exercise of the... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Introduction. 401.0 Section 401.0 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE...

  11. 18 CFR 401.0 - Introduction.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the adoption and revision of the Comprehensive Plan, the Water Resources Program, the exercise of the... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Introduction. 401.0 Section 401.0 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE...

  12. 18 CFR 430.5 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 10 of the Delaware River Basin Compact and this regulation. Ground water recharge means the addition... REGULATIONS GROUND WATER PROTECTION AREA: PENNSYLVANIA § 430.5 Definitions. For purposes of this regulation... sufficient ground water to be important as a source of supply. Comprehensive Plan means the plans, policies...

  13. 18 CFR 430.5 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 10 of the Delaware River Basin Compact and this regulation. Ground water recharge means the addition... REGULATIONS GROUND WATER PROTECTION AREA: PENNSYLVANIA § 430.5 Definitions. For purposes of this regulation... sufficient ground water to be important as a source of supply. Comprehensive Plan means the plans, policies...

  14. 18 CFR 401.81 - Hearings generally.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Hearings generally. 401.81 Section 401.81 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Administrative and Other Hearings § 401.81 Hearings...

  15. 18 CFR 401.84 - Hearing procedure.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Hearing procedure. 401.84 Section 401.84 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Administrative and Other Hearings § 401.84 Hearing...

  16. 18 CFR 415.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Definitions. 415.2 Section 415.2 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-FLOOD PLAIN REGULATIONS Generally § 415.2 Definitions. For the purposes of this...

  17. 18 CFR 401.77 - Informal conference.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Informal conference. 401.77 Section 401.77 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Appeals or Objections to Decisions of the Executive...

  18. 18 CFR 401.23 - Procedure.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Procedure. 401.23 Section 401.23 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.23 Procedure. Each project included...

  19. 18 CFR 415.30 - Regulations generally.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Regulations generally. 415.30 Section 415.30 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-FLOOD PLAIN REGULATIONS Standards § 415.30 Regulations generally. The...

  20. 18 CFR 401.122 - Supplementary details.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Supplementary details. 401.122 Section 401.122 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE General Provisions § 401.122 Supplementary details. Forms...

  1. 18 CFR 401.124 - Construction.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Construction. 401.124 Section 401.124 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE General Provisions § 401.124 Construction. This part is...

  2. 75 FR 27507 - Safety Zone; Delaware River, Big Timber Creek, Westville, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... in June with a rain date of the first Saturday in July. This Safety Zone is necessary to provide for... p.m. on the last Saturday in June with a rain date of the first Saturday in July. Dated: April 29...

  3. Environmental glasnost: protecting a resource you do not own

    Treesearch

    Malcomb Ross, Jr.

    1992-01-01

    The Upper Delaware River management plan offers an alternative to outright purchase and subsequent management of natural recreation areas. Advantages include providing for appropriate growth, pooling agency manpower and funding, and making the private sector more responsive to finding solutions to resource issues.

  4. The role of remotely sensed and relayed data in the Delaware River Basin

    NASA Technical Reports Server (NTRS)

    Paulson, R. W.

    1970-01-01

    A discussion is presented of the planned integration of the existing Delaware River Basin water quality monitoring and data processing systems with a data relay experiment proposed for the Earth Resources Technology Satellite (ERTS)-A, which will be launched in 1972. The experiment is designed to use ERTS-A as a data relay link for a maximum of 20 hydrologic stations in the basin, including streamgaging, reservoir level, ground water level,and water quality monitoring stations. This experiment has the potential for reducing the timelag between data collection and dissemination to less than 12 hours. At present there is a significant timelag between the time when the data are recorded at a monitoring site and the water resources agencies receive the data. The timelag exists because most of these instruments operate in remote locations without telementry, and the data records are removed manually, generally at a weekly frequency. For most water quality monitoring, the data do not reach water resources agencies for a period of 2 weeks to 2 months.

  5. The Role of Remotely Sensed and Relayed Data in the Delaware River Basin

    NASA Technical Reports Server (NTRS)

    Paulson, R. W.

    1971-01-01

    The planned integration of the existing water quality monitoring and data processing systems in the Delaware River Basin with a data relay experiment proposed for the ERTS-1 is discussed. The experiment is designed to use ERTS-1 as a data relay link for a maximum of 20 hydrologic stations in the basin, including stream gaging, reservoir level, ground water level, and water quality monitoring stations. This experiment has the potential for reducing the time lag between data collection and dissemination to less than 12 hours. The experiment will also provide impetus to develop an operational system of real time data processing and dissemination to handle the large quantity of data that will be obtained from the stations in the basin. The results of this experiment will demonstrate the relative merits of satellite relay of data versus conventional means of data telemetry and will provide a basis for the development of operational satellite relay of hydrologic data.

  6. Estimated use of water in the Delaware River Basin in Delaware, New Jersey, New York, and Pennsylvania, 2010

    USGS Publications Warehouse

    Hutson, Susan S.; Linsey, Kristin S.; Ludlow, Russell A.; Reyes, Betzaida; Shourds, Jennifer L.

    2016-11-07

    The Delaware River Basin (DRB) was selected as a Focus Area Study in 2011 by the U.S. Geological Survey (USGS) as part of the USGS National Water Census. The National Water Census is a USGS research program that focuses on national water availability and use and then develops new water accounting tools and assesses water availability at both the regional and national scales. One of the water management needs that the DRB study addressed, and that was identified by stakeholder groups from the DRB, was to improve the integration of state water use and water-supply data and to provide the compiled water use information to basin users. This water use information was also used in the hydrologic modeling and ecological components of the study.Instream and offstream water use was calculated for 2010 for the DRB based on information received from Delaware, New Jersey, New York, and Pennsylvania. Water withdrawal, interbasin transfers, return flow, and hydroelectric power generation release data were compiled for 11 categories by hydrologic subregion, basin, subbasin, and subwatershed. Data availability varied by state. Site-specific data were used whenever possible to calculate public supply, irrigation (golf courses, nurseries, sod farms, and crops), aquaculture, self-supplied industrial, commercial, mining, thermoelectric, and hydroelectric power withdrawals. Where site-specific data were not available, primarily for crop irrigation, livestock, and domestic use, various techniques were used to estimate water withdrawals.Total water withdrawals in the Delaware River Basin were calculated to be about 7,130 million gallons per day (Mgal/d) in 2010. Calculations of withdrawals by source indicate that freshwater withdrawals were about 4,130 Mgal/d (58 percent of the total) and the remaining 3,000 Mgal/d (42 percent) were from saline water. Total surface-water withdrawals were calculated to be 6,590 Mgal/d, or 92 percent of the total; about 54 percent (3,590 Mgal/d) of surface water withdrawn was freshwater. Total groundwater withdrawals were calculated to be 545 Mgal/d (8 percent of the total), all of which was freshwater. During 2010, calculated withdrawals by category, in decreasing order, were: thermoelectric power, 4,910 Mgal/d; public supply, 1,490 Mgal/d; self-supplied industrial, 350 Mgal/d; irrigation, 175 Mgal/d; self-supplied domestic, 117 Mgal/d; mining, 41.3 Mgal/d; aquaculture, 19.3 Mgal/d; livestock, 6.72 Mgal/d, and commercial, 5.89 Mgal/d. The amount of instream use for hydroelectric power generation purposes in 2010 was reported to be 273 Mgal/d for the Wallenpaupack Plant and 127 Mgal/d for the Mongaup River system.Total return flows in the DRB were 2,960 Mgal/d in 2010. Although municipal wastewater-treatment plants accounted for 539 (97 percent) of the return-flow sites, they accounted for about 70 percent of the total return flows in the DRB. There was limited information on return flows from thermoelectric power.

  7. Quality of Delaware River water at Trenton, New Jersey

    USGS Publications Warehouse

    McCarthy, Leo T.; Keighton, Walter B.

    1964-01-01

    Water in the Delaware River at Trenton, NJ, is a mixture of several types--water from the mountainous headwater region, water from the coal-mining regions, and water from the limestone valleys. The quantities of these types of water, in relation to the total quantity of water at Trenton, vary with changes in season and reservoir releases. The chemical quality of the water during the 17-year period 1945-61 was excellent, and the water was suitable for most uses after little or no treatment. The average concentration of dissolved solids was 86 ppm (parts per million), and 90 percent of the time it ranged from 57 to 126 ppm. Usually the pH of the water was close to 7.0 (considered to be a neutral point-neither acid nor alkaline). The hardness was less than 86 ppm 95 percent of the time. The general composition of the dissolved-solids content, in terms of equivalents, is 28 percent calcium, 14 percent magnesium, 8 percent sodium plus potassium, 43 percent bicarbonate plus sulfate, 5 percent chloride, and 2 percent nitrate. Concentrations of minerals in the river water are lowest during March, April and May (median concentration of dissolved solids 66 PPM) and are highest during August and September (median, 107 PPM). Each year an average of 880,000 tons of dissolved solids and 932,000 tons of suspended solids are carried past Trenton by the Delaware River. The greatest monthly loads of dissolved solids are in March and April, and the smallest are from July to October. Suspended-solids loads are greater when the streamflow is high but small the rest of the time. Concentration of suspended solids exceeds 100 PPM only 5 percent of the time. The headwaters in the Delaware River basin are the source of water of excellent quality. Much of this water is stored in reservoirs, and when released during August and September, it improves the quality of the water at Trenton. These releases to augment low flow have the effect of narrowing the range of concentrations of dissolved constituents. In 1952 and 1962, 6 and 19 percent, respectively, of the drainage area above Trenton was regulated by reservoirs. After proposed construction, 60 percent will be regulated by 1975. Thus, it may be that the high concentrations of dissolved constituents observed in the 1945-61 period will not occur again. It is possible that the water quality observed during the period 1945-61 (dissolved solids 57-126 PPM 90 percent of the time, pH close to 7.0, hardness less than 86 PPM 95 percent of the time) is representative of what can be expected in the future, for a variety of hydrologic conditions were experienced in the 17-year period.

  8. Late Wisconsinan-Holocene paleogeography of Delaware Bay; a large coastal plain estuary

    USGS Publications Warehouse

    Knebel, H.J.; Fletcher, C. H.; Kraft, J.C.

    1988-01-01

    Analyses of an extensive grid of seismic reflection profiles along with previously published core data and modern sedimentary environment information from surrounding coastal areas permit an outline of the paleogeography of the large Delaware Bay estuary during the last transgression of sea level. During late Wisconsinan times, the Delaware River system eroded a dendritic drainage pattern into the gravelly and muddy sands of Tertiary and younger age beneath the southern half of the lower bay area. This system included the trunk valley of the ancestral river and a large tributary valley formed by the convergence of secondary streams along the Delaware coast. The evolution of the estuary from this drainage system proceeded as follows: (1) When local relative sea level was at -50 m, the head of the tide reached the present bay-mouth area. (2) At -40 m (possibly 15,000-12,000 yrs ago), the trunk valley of the drainage system was a tidal river that extended more than 30 km up the bay, and a small contiguous inlet existed at the bay mouth. (3) At -30 m (approximately 11,000-10,000 yrs ago), the estuary comprised two narrow passages formed by the drowning of the main and tributary river valleys, and the bay-mouth inlet was 5-6 km wide. (4) At -20 m (between 8000 and 7000 yrs ago), the two passages of the estuary were joined, except for a series of small islands on top of a low intervening ridge, and the inlet channel was 11 km wide. (5) At -10 m (between 6000 and 5000 yrs ago), the estuary was nearly continuous and encompassed about 60% of the present lower bay area. Thin, coarse-grained fluvial deposits accumulated initially within the main channels of the former drainage system as base level was elevated by rising sea level. During the subsequent development of the estuary, clayey silts were deposited rapidly beneath the nontidal estuarine depocenter (turbidity maximum) as it migrated through the bay area, and organic muds accumulated in tidal wetlands that occupied the mouths of tributaries and small marginal embayments. As the fetch and tidal prism of the estuary increased, narrow barrier and headland beaches, composed of fine to coarse sands, were formed locally along the bay shorelines. In the later stages of development, sediment scour, reworking and transport became the dominant processes within the open estuary. Data from this study demonstrate the great temporal and spatial variability of sedimentary deposits within large drowned river-valley estuaries and outline a model that can be used to interpret ancient estuarine strata. ?? 1988.

  9. 18 CFR 430.11 - Advance notice of exploratory drilling.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... exploratory drilling. 430.11 Section 430.11 Conservation of Power and Water Resources DELAWARE RIVER BASIN... exploratory drilling. The Commission encourages consultation with any project sponsor who is considering... project and prior to initiation of exploratory drilling. (a) Any person, firm corporation or other entity...

  10. 18 CFR 415.31 - Prohibited uses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Prohibited uses. 415.31 Section 415.31 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE..., radioactive materials, petroleum products or hazardous material which, if flooded, would pollute the waters of...

  11. 18 CFR 420.44 - Cooling water.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Cooling water. 420.44 Section 420.44 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.44 Cooling water. Water used...

  12. 18 CFR 430.9 - Comprehensive plan policies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ground water levels, water quality degradation, permanent loss of storage capacity, or substantial impact... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Comprehensive plan policies. 430.9 Section 430.9 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION...

  13. 18 CFR 420.44 - Cooling water.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Cooling water. 420.44 Section 420.44 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.44 Cooling water. Water used...

  14. 18 CFR 420.33 - Payment of bills.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Payment of bills. 420.33 Section 420.33 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Entitlement; Measurement; Billing § 420.33 Payment...

  15. 18 CFR 420.33 - Payment of bills.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Payment of bills. 420.33 Section 420.33 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Entitlement; Measurement; Billing § 420.33 Payment...

  16. 18 CFR 420.33 - Payment of bills.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Payment of bills. 420.33 Section 420.33 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Entitlement; Measurement; Billing § 420.33 Payment...

  17. 18 CFR 420.45 - Historical use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... question on March 31, 1971, shall not be entitled to a certificate of entitlement. Hydroelectric Power... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Historical use. 420.45 Section 420.45 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE...

  18. 18 CFR 420.45 - Historical use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... question on March 31, 1971, shall not be entitled to a certificate of entitlement. Hydroelectric Power... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Historical use. 420.45 Section 420.45 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE...

  19. 18 CFR 420.45 - Historical use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... question on March 31, 1971, shall not be entitled to a certificate of entitlement. Hydroelectric Power... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Historical use. 420.45 Section 420.45 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE...

  20. 18 CFR 420.45 - Historical use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... question on March 31, 1971, shall not be entitled to a certificate of entitlement. Hydroelectric Power... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Historical use. 420.45 Section 420.45 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE...

  1. 18 CFR 430.11 - Advance notice of exploratory drilling.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... exploratory drilling. 430.11 Section 430.11 Conservation of Power and Water Resources DELAWARE RIVER BASIN... exploratory drilling. The Commission encourages consultation with any project sponsor who is considering... project and prior to initiation of exploratory drilling. (a) Any person, firm corporation or other entity...

  2. 18 CFR 430.11 - Advance notice of exploratory drilling.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... exploratory drilling. 430.11 Section 430.11 Conservation of Power and Water Resources DELAWARE RIVER BASIN... exploratory drilling. The Commission encourages consultation with any project sponsor who is considering... project and prior to initiation of exploratory drilling. (a) Any person, firm corporation or other entity...

  3. 18 CFR 430.11 - Advance notice of exploratory drilling.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... exploratory drilling. 430.11 Section 430.11 Conservation of Power and Water Resources DELAWARE RIVER BASIN... exploratory drilling. The Commission encourages consultation with any project sponsor who is considering... project and prior to initiation of exploratory drilling. (a) Any person, firm corporation or other entity...

  4. 18 CFR 430.11 - Advance notice of exploratory drilling.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... exploratory drilling. 430.11 Section 430.11 Conservation of Power and Water Resources DELAWARE RIVER BASIN... exploratory drilling. The Commission encourages consultation with any project sponsor who is considering... project and prior to initiation of exploratory drilling. (a) Any person, firm corporation or other entity...

  5. 18 CFR 420.42 - Contracts; minimum charge.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Contracts; minimum charge. 420.42 Section 420.42 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.42 Contracts; minimum...

  6. 18 CFR 420.33 - Payment of bills.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Payment of bills. 420.33 Section 420.33 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Entitlement; Measurement; Billing § 420.33 Payment...

  7. 18 CFR 420.45 - Historical use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Historical use. 420.45 Section 420.45 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.45 Historical use. A person who...

  8. 18 CFR 420.43 - Exempt use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Exempt use. 420.43 Section 420.43 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.43 Exempt use. The following uses...

  9. 18 CFR 420.43 - Exempt use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Exempt use. 420.43 Section 420.43 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.43 Exempt use. The following uses...

  10. 18 CFR 415.50 - General conditions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false General conditions. 415.50 Section 415.50 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... having the same or similar effect on the flood hazard as this regulation, the Commission may condition...

  11. 18 CFR 420.43 - Exempt use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Exempt use. 420.43 Section 420.43 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.43 Exempt use. The following uses...

  12. 18 CFR 420.43 - Exempt use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Exempt use. 420.43 Section 420.43 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.43 Exempt use. The following uses...

  13. 18 CFR 420.43 - Exempt use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Exempt use. 420.43 Section 420.43 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.43 Exempt use. The following uses...

  14. 18 CFR 415.32 - Permitted uses generally.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Permitted uses generally. 415.32 Section 415.32 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION..., picnic grounds, boat launching ramps, swimming areas, parks, wildlife and nature preserves, game farms...

  15. 18 CFR 420.1 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Definitions. 420.1 Section 420.1 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES General § 420.1 Definitions. For the purposes of this part...

  16. 18 CFR 420.1 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Definitions. 420.1 Section 420.1 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES General § 420.1 Definitions. For the purposes of this part...

  17. 18 CFR 420.1 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Definitions. 420.1 Section 420.1 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES General § 420.1 Definitions. For the purposes of this part...

  18. 18 CFR 420.44 - Cooling water.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Cooling water. 420.44 Section 420.44 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.44 Cooling water. Water used...

  19. 18 CFR 420.44 - Cooling water.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Cooling water. 420.44 Section 420.44 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.44 Cooling water. Water used...

  20. 18 CFR 420.44 - Cooling water.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Cooling water. 420.44 Section 420.44 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.44 Cooling water. Water used...

  1. 18 CFR 401.21 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Scope. 401.21 Section 401.21 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.21 Scope. This subpart shall govern the...

  2. 18 CFR 401.21 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Scope. 401.21 Section 401.21 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.21 Scope. This subpart shall govern the...

  3. 18 CFR 401.21 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Scope. 401.21 Section 401.21 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.21 Scope. This subpart shall govern the...

  4. 18 CFR 401.21 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Scope. 401.21 Section 401.21 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.21 Scope. This subpart shall govern the...

  5. 18 CFR 401.113 - Segregable materials.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Segregable materials. 401.113 Section 401.113 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public Access to Records and Information § 401.113...

  6. 18 CFR 401.71 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Scope. 401.71 Section 401.71 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Appeals or Objections to Decisions of the Executive Director in Water...

  7. 18 CFR 401.5 - Review of applications.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Review of applications. 401.5 Section 401.5 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Comprehensive Plan § 401.5 Review of applications...

  8. 18 CFR 401.110 - Fees.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Fees. 401.110 Section 401.110 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public Access to Records and Information § 401.110 Fees. (a...

  9. 18 CFR 415.31 - Prohibited uses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Prohibited uses. 415.31 Section 415.31 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-FLOOD PLAIN REGULATIONS Standards § 415.31 Prohibited uses. (a) Within the...

  10. 18 CFR 401.112 - Exempt information.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Exempt information. 401.112 Section 401.112 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public Access to Records and Information § 401.112 Exempt...

  11. 18 CFR 401.21 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Scope. 401.21 Section 401.21 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.21 Scope. This subpart shall govern the...

  12. 18 CFR 401.83 - Hearing Officer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Hearing Officer. 401.83 Section 401.83 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Administrative and Other Hearings § 401.83 Hearing Officer. (a...

  13. 18 CFR 401.121 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Definitions. 401.121 Section 401.121 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE General Provisions § 401.121 Definitions. For the purposes of this...

  14. 18 CFR 401.109 - Time limitations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Time limitations. 401.109 Section 401.109 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public Access to Records and Information § 401.109 Time...

  15. 18 CFR 401.94 - Adjudicatory hearings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Adjudicatory hearings. 401.94 Section 401.94 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Penalties and Settlements in Lieu of Penalties § 401.94...

  16. 18 CFR 401.78 - Consolidation of hearings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Consolidation of hearings. 401.78 Section 401.78 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Appeals or Objections to Decisions of the Executive...

  17. 18 CFR 401.1 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Scope. 401.1 Section 401.1 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Comprehensive Plan § 401.1 Scope. This subpart shall govern the...

  18. 18 CFR 401.7 - Further action.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Further action. 401.7 Section 401.7 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Comprehensive Plan § 401.7 Further action. The Commission will...

  19. 18 CFR 401.7 - Further action.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Further action. 401.7 Section 401.7 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Comprehensive Plan § 401.7 Further action. The Commission will...

  20. Water resources of southeastern Bucks County, Pennsylvania

    USGS Publications Warehouse

    Graham, Jack B.; Mangan, John W.; White, Walter F.

    1951-01-01

    This report has been prepared as a contribution to the development of southeastern Bucks County, Pa. It summarizes available information on the water resources of this 90-square mile area and evaluates current supplies. Future development of the area may change both the available quantity and the quality of the water supply. The effective development of the area demands a continuing knowledge of the water used and the potential quantity and quality of water available from both underground and surface sources. The area is strategically important to a great industrial section of the Bast. Its eastern boundary is a 26-mile segment of the Delaware River along the extreme southeastern border of Bucks County, Pa. (fig. 1). The present.population of the area is about 40,000, including 24,800 in Bristol Borough and Township and 6,770 in Morrisville. The area is traversed by both the Pennsylvania and the Reading Railroads and also by U.S. Highways 1 and 13. These are main transportation routes connecting the great market outlets of Philadelphia and New York. The Delaware River'is navigable from Morrisville to the sea. The area is only a short distance upstream from the Port of Philadelphia, which ranks second only to New York as the most important seaport in the United States. The area is mostly flat, open land 10 to 60 feet above mean sea level. It contains several large Industries, concentrated chiefly in the Bristol area (pi. 1). There are also scattered industries in the Morrisville, Langhorne, and Bensalem areas. However, Bucks County retains some of the characteristics of a farming region. Truck farming and gardening are still carried on to a considerable extent. Along Delaware River below Morrisville the mining of sand and gravel is an Important industry. The facts summarized in this report have been accumulated over a period of 25 years or more by Federal, State, and local agencies in connection with Investigations for other purposes. Most of the data used in this report have been obtained by the United States Geological Survey in cooperation with the Pennsylvania Department of Forests and Waters, the Pennsylvania Department of Internal Affairs, the Pennsylvania Department of Commerce, and State Planning Board, the City of Philadelphia, the Corps of Engineers, and the Interstate Commission on the Delaware River Basin. This report was prepared in the Water Resources Division of the U.S.Geological Survey by Jack B. Qraham, District Geologist; John W. Mangan, District Engineer; and Walter F. White, Jr., District Chemist, under the general direction of C. G. Paulsen, Chief Hydraulic Engineer.

  1. Environmental Management of Human Waste Disposal for Recreational Boating Activities

    PubMed

    Shafer; Yoon

    1998-01-01

    / A methodology to estimate the number of pump-out facilities and dump stations required to service human waste disposal for recreational power boating activities in Pennsylvania during the 1994 boating season is described. Study results suggest that a total of 39 additional pump-out stations and 13 dump stations may be required on seven major waterbodies: The Three Rivers Area, Lake Erie/Presque Isle Bay, Raystown Lake, the Susquehanna River, the Delaware River, Lake Wallenpaupack, and the Kinzua Reservoir. Suggestions for improving the methodology are provided. KEY WORDS: Human waste; Recreation; Power boating; Waste facilities; Waste disposal; Pennsylvania

  2. Satellite studies of suspended matter and aquatic interfaces in Delaware Bay

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator); Srna, R.; Treasure, W.

    1973-01-01

    The author has identified the following significant results. Three successful ERTS-1 satellite passes have produced synoptic imagery showing distribution of suspended matter and aquatic interfaces over Delaware Bay and adjacent Atlantic coastal regions. The interfaces are a major hydrographic feature in Delaware Bay and frequently include regions of high convergence. In the upper and middle bay the interfaces tend to align along the flow axis of the river and parallel to the shoreline. A correlation has been found between the concentration of sand particles in suspension and the depth, suggesting that most of the heavier particles are lifted into temporary suspension over shoals and shallow areas by currents and waves. The second type of interface is primarily a tidal intrusion of shelf water into the bay during incipient flood tide, with associated discontinuities in salinity and temperature. The convergence properties of such fronts attract heavy accumulations of foam which were found to contain strong concentrations of heavy metals and other toxic substances.

  3. 18 CFR 415.21 - Class II projects.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Class II projects. 415.21 Section 415.21 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... flooded, would pollute the waters of the basin or threaten damage to off-site areas, including, without...

  4. 18 CFR 401.6 - Proposed revisions and changes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Proposed revisions and changes. 401.6 Section 401.6 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Comprehensive Plan § 401.6 Proposed revisions and changes...

  5. 18 CFR 401.6 - Proposed revisions and changes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Proposed revisions and changes. 401.6 Section 401.6 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Comprehensive Plan § 401.6 Proposed revisions and changes...

  6. 18 CFR 401.6 - Proposed revisions and changes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Proposed revisions and changes. 401.6 Section 401.6 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Comprehensive Plan § 401.6 Proposed revisions and changes...

  7. 18 CFR 401.6 - Proposed revisions and changes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Proposed revisions and changes. 401.6 Section 401.6 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Comprehensive Plan § 401.6 Proposed revisions and changes...

  8. Hazardous Waste Cleanup: Sunoco Incorporated - R&M Eagle Point Refinery in Westville, New Jersey

    EPA Pesticide Factsheets

    Sunoco, Inc. - R&M Eagle Point Refinery is located on Route 295 & 130 in Westville, West Deptford Township, New Jersey. The site is a 1,000-acre oil refinery on the Delaware River, 550 acres of which is an active production area.

  9. 18 CFR 420.41 - Schedule of water charges.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Schedule of water charges. 420.41 Section 420.41 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.41 Schedule of water...

  10. 18 CFR 420.33 - Payment of bills.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Payment of bills. 420.33 Section 420.33 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Entitlement; Measurement; Billing § 420.33 Payment of bills...

  11. 18 CFR 415.3 - Purpose and findings.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Purpose and findings. 415.3 Section 415.3 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... flood plain users shall bear the full direct and indirect costs attributable to their use and actions...

  12. 75 FR 4043 - Endangered Species; File No. 14396

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-26

    ... scientific research. ADDRESSES: The permit and related documents are available for review upon written..., notice was published in the Federal Register (74 FR 42861) that a request for a scientific research... scientific study of shortnose sturgeon in the Delaware River where primary study objectives are to locate and...

  13. 18 CFR 401.36 - Water supply projects-Conservation requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... leak detection and control program; (2) Use of the best practicable water-conserving devices and... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Water supply projects-Conservation requirements. 401.36 Section 401.36 Conservation of Power and Water Resources DELAWARE RIVER BASIN...

  14. 18 CFR 401.2 - Concept of the plan.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Concept of the plan. 401.2 Section 401.2 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... changing conditions, research results and new technology. The degree of detail described in particular...

  15. 18 CFR 420.51 - Hydroelectric power plant water use charges.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Hydroelectric power plant water use charges. 420.51 Section 420.51 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Hydroelectric Power Water...

  16. 18 CFR 420.32 - Measurement and billing of water taken.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Measurement and billing of water taken. 420.32 Section 420.32 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Entitlement; Measurement; Billing...

  17. 18 CFR 420.41 - Schedule of water charges.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Schedule of water charges. 420.41 Section 420.41 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Charges; Exemptions § 420.41 Schedule of water...

  18. 18 CFR 401.87 - Assessment of costs; Appeals.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Assessment of costs; Appeals. 401.87 Section 401.87 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Administrative and Other Hearings § 401.87 Assessment of...

  19. 18 CFR 401.87 - Assessment of costs; Appeals.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Assessment of costs; Appeals. 401.87 Section 401.87 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Administrative and Other Hearings § 401.87 Assessment of...

  20. 18 CFR 401.87 - Assessment of costs; Appeals.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Assessment of costs; Appeals. 401.87 Section 401.87 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Administrative and Other Hearings § 401.87 Assessment of...

  1. 18 CFR 401.87 - Assessment of costs; Appeals.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Assessment of costs; Appeals. 401.87 Section 401.87 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Administrative and Other Hearings § 401.87 Assessment of...

  2. 78 FR 24186 - Notice of Public Hearing and Business Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-24

    ... DELAWARE RIVER BASIN COMMISSION Notice of Public Hearing and Business Meeting Notice is hereby... business meeting will be held the following day on Wednesday, May 8, 2013. Both the hearing and business... the Commission. In a departure from past practice, the Commission's business meeting on May 8, 2013...

  3. 18 CFR 430.19 - Ground water withdrawal metering, recording, and reporting.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Ground water withdrawal metering, recording, and reporting. 430.19 Section 430.19 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION SPECIAL REGULATIONS GROUND WATER PROTECTION AREA: PENNSYLVANIA § 430.19...

  4. 18 CFR 401.9 - Custody and availability.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Custody and availability. 401.9 Section 401.9 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Comprehensive Plan § 401.9 Custody and availability. The...

  5. 18 CFR 401.97 - Enforcement of penalties.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Enforcement of penalties. 401.97 Section 401.97 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... authorized to take such action as may be necessary to assure enforcement of this subpart. If a proceeding...

  6. 18 CFR 401.5 - Review of applications.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Review of applications. 401.5 Section 401.5 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... public hearing upon notice thereon as provided in paragraph 14.4(b) of the Compact and may take such...

  7. 18 CFR 415.32 - Permitted uses generally.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Permitted uses generally. 415.32 Section 415.32 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... riding trails. (4) Uses such as lawns, gardens, parking areas and play areas. (b) Within the flood fringe...

  8. Our Children's Burden: Studies of Desegregation in Nine American Communities.

    ERIC Educational Resources Information Center

    Mack, Raymond W., Ed.

    This collection of case studies on school desegregation in nine American communities (Kalamazoo, Michigan; Newark, Delaware; Riverside and Los Angeles, California; Savannah, Georgia; River City and Bayon County, Mississippi; Chicago, Illinois; and, Hempstead, New York.) summarizes and interprets the struggles to solve this domestic social problem.…

  9. 18 CFR 415.31 - Prohibited uses.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Prohibited uses. 415.31 Section 415.31 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE... structure for occupancy at any time by humans or animals. (2) Placing, or depositing, or dumping any spoil...

  10. 18 CFR 415.31 - Prohibited uses.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Prohibited uses. 415.31 Section 415.31 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE... structure for occupancy at any time by humans or animals. (2) Placing, or depositing, or dumping any spoil...

  11. 18 CFR 415.31 - Prohibited uses.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Prohibited uses. 415.31 Section 415.31 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE... structure for occupancy at any time by humans or animals. (2) Placing, or depositing, or dumping any spoil...

  12. 18 CFR 401.24 - Preparation and adoption.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Preparation and adoption. 401.24 Section 401.24 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.24 Preparation and adoption...

  13. 18 CFR 401.24 - Preparation and adoption.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Preparation and adoption. 401.24 Section 401.24 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.24 Preparation and adoption...

  14. 18 CFR 401.26 - Inventory of other projects.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Inventory of other projects. 401.26 Section 401.26 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.26 Inventory of other...

  15. 18 CFR 401.22 - Concept of the Program.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Concept of the Program. 401.22 Section 401.22 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.22 Concept of the Program...

  16. 18 CFR 401.26 - Inventory of other projects.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Inventory of other projects. 401.26 Section 401.26 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.26 Inventory of other...

  17. 18 CFR 401.22 - Concept of the Program.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Concept of the Program. 401.22 Section 401.22 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.22 Concept of the Program...

  18. 18 CFR 401.25 - Alternatives for public projects.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Alternatives for public projects. 401.25 Section 401.25 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.25 Alternatives for public...

  19. 18 CFR 401.25 - Alternatives for public projects.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Alternatives for public projects. 401.25 Section 401.25 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.25 Alternatives for public...

  20. 18 CFR 401.24 - Preparation and adoption.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Preparation and adoption. 401.24 Section 401.24 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.24 Preparation and adoption...

  1. 18 CFR 401.25 - Alternatives for public projects.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Alternatives for public projects. 401.25 Section 401.25 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.25 Alternatives for public...

  2. 18 CFR 401.22 - Concept of the Program.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Concept of the Program. 401.22 Section 401.22 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.22 Concept of the Program...

  3. 18 CFR 401.26 - Inventory of other projects.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Inventory of other projects. 401.26 Section 401.26 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.26 Inventory of other...

  4. 18 CFR 401.25 - Alternatives for public projects.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Alternatives for public projects. 401.25 Section 401.25 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.25 Alternatives for public...

  5. 18 CFR 401.24 - Preparation and adoption.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Preparation and adoption. 401.24 Section 401.24 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.24 Preparation and adoption...

  6. 18 CFR 401.22 - Concept of the Program.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Concept of the Program. 401.22 Section 401.22 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.22 Concept of the Program...

  7. 18 CFR 401.26 - Inventory of other projects.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Inventory of other projects. 401.26 Section 401.26 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.26 Inventory of other...

  8. 18 CFR 401.93 - The record for decision-making.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... record for decision-making. (a) Written submission. In addition to the information required by the... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false The record for decision-making. 401.93 Section 401.93 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION...

  9. 18 CFR 401.83 - Hearing Officer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Hearing Officer. 401.83 Section 401.83 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE... persons. One of them shall be nominated by the water pollution control agency of the state in which the...

  10. 18 CFR 401.83 - Hearing Officer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Hearing Officer. 401.83 Section 401.83 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE... persons. One of them shall be nominated by the water pollution control agency of the state in which the...

  11. 18 CFR 401.83 - Hearing Officer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Hearing Officer. 401.83 Section 401.83 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE... persons. One of them shall be nominated by the water pollution control agency of the state in which the...

  12. 18 CFR 401.83 - Hearing Officer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Hearing Officer. 401.83 Section 401.83 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE... persons. One of them shall be nominated by the water pollution control agency of the state in which the...

  13. 18 CFR 430.19 - Ground water withdrawal metering, recording, and reporting.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Ground water withdrawal... DELAWARE RIVER BASIN COMMISSION SPECIAL REGULATIONS GROUND WATER PROTECTION AREA: PENNSYLVANIA § 430.19 Ground water withdrawal metering, recording, and reporting. (a) Each person, firm, corporation, or other...

  14. 18 CFR 401.102 - Partial disclosure of records.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Partial disclosure of records. 401.102 Section 401.102 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public Access to Records and Information § 401.102 Partial...

  15. 18 CFR 401.40 - Informal conferences and emergencies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Informal conferences and emergencies. 401.40 Section 401.40 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Project Review Under Section 3.8 of the...

  16. 18 CFR 401.92 - Notice to possible violators.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Notice to possible violators. 401.92 Section 401.92 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Penalties and Settlements in Lieu of Penalties § 401.92...

  17. 18 CFR 401.104 - Preparation of new records.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Preparation of new records. 401.104 Section 401.104 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public Access to Records and Information § 401.104...

  18. 18 CFR 401.82 - Authorization to conduct hearings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Authorization to conduct hearings. 401.82 Section 401.82 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Administrative and Other Hearings § 401.82...

  19. 18 CFR 401.33 - Administrative agreements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Administrative agreements. 401.33 Section 401.33 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Project Review Under Section 3.8 of the Compact § 401.33...

  20. 18 CFR 401.99 - Suspension or modification of penalty.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Suspension or modification of penalty. 401.99 Section 401.99 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Penalties and Settlements in Lieu of...

  1. 18 CFR 401.105 - Indexes of certain records.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Indexes of certain records. 401.105 Section 401.105 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public Access to Records and Information § 401.105 Indexes...

  2. 18 CFR 401.86 - Record of proceedings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Record of proceedings. 401.86 Section 401.86 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Administrative and Other Hearings § 401.86 Record of...

  3. 18 CFR 401.101 - Policy on disclosure of Commission records.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Policy on disclosure of Commission records. 401.101 Section 401.101 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public Access to Records and Information...

  4. 18 CFR 401.117 - Disclosure to other Federal government departments and agencies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Disclosure to other Federal government departments and agencies. 401.117 Section 401.117 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public...

  5. 18 CFR 401.89 - Action by the Commission.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Action by the Commission. 401.89 Section 401.89 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Administrative and Other Hearings § 401.89 Action by the...

  6. 18 CFR 401.103 - Request for existing records.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Request for existing records. 401.103 Section 401.103 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public Access to Records and Information § 401.103 Request...

  7. 18 CFR 401.9 - Custody and availability.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Custody and availability. 401.9 Section 401.9 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Comprehensive Plan § 401.9 Custody and availability. The...

  8. 18 CFR 401.6 - Proposed revisions and changes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Proposed revisions and changes. 401.6 Section 401.6 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Comprehensive Plan § 401.6 Proposed revisions and changes...

  9. 18 CFR 401.111 - Waiver of fees.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Waiver of fees. 401.111 Section 401.111 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public Access to Records and Information § 401.111 Waiver of fees...

  10. 18 CFR 415.3 - Purpose and findings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Purpose and findings. 415.3 Section 415.3 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-FLOOD PLAIN REGULATIONS Generally § 415.3 Purpose and findings. (a) The...

  11. 18 CFR 401.95 - Assessment of a penalty.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Assessment of a penalty. 401.95 Section 401.95 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Penalties and Settlements in Lieu of Penalties § 401.95...

  12. 18 CFR 401.37 - Sequence of approval.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Sequence of approval. 401.37 Section 401.37 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Project Review Under Section 3.8 of the Compact § 401.37...

  13. 18 CFR 401.88 - Findings, report and Commission review.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Findings, report and Commission review. 401.88 Section 401.88 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Administrative and Other Hearings § 401.88...

  14. 18 CFR 401.3 - Other agencies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Other agencies. 401.3 Section 401.3 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Comprehensive Plan § 401.3 Other agencies. Projects of the federal...

  15. 18 CFR 401.24 - Preparation and adoption.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Preparation and adoption. 401.24 Section 401.24 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.24 Preparation and adoption...

  16. 18 CFR 415.1 - Short title.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Short title. 415.1 Section 415.1 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-FLOOD PLAIN REGULATIONS Generally § 415.1 Short title. This part shall be known...

  17. 18 CFR 401.22 - Concept of the Program.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Concept of the Program. 401.22 Section 401.22 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.22 Concept of the Program...

  18. 18 CFR 401.97 - Enforcement of penalties.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Enforcement of penalties. 401.97 Section 401.97 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Penalties and Settlements in Lieu of Penalties § 401.97...

  19. 18 CFR 401.72 - Notice and request for hearing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Notice and request for hearing. 401.72 Section 401.72 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Appeals or Objections to Decisions of the Executive...

  20. 18 CFR 401.118 - Disclosure in administrative or court proceedings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Disclosure in administrative or court proceedings. 401.118 Section 401.118 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public Access to Records...

  1. 18 CFR 401.73 - Form of request.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Form of request. 401.73 Section 401.73 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Appeals or Objections to Decisions of the Executive Director in...

  2. 18 CFR 401.106 - FOIA Officer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false FOIA Officer. 401.106 Section 401.106 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public Access to Records and Information § 401.106 FOIA Officer...

  3. 18 CFR 401.87 - Assessment of costs; Appeals.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Assessment of costs; Appeals. 401.87 Section 401.87 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Administrative and Other Hearings § 401.87 Assessment of...

  4. 18 CFR 401.26 - Inventory of other projects.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Inventory of other projects. 401.26 Section 401.26 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.26 Inventory of other...

  5. 18 CFR 415.21 - Class II projects.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Class II projects. 415.21 Section 415.21 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-FLOOD PLAIN REGULATIONS Types of Projects and Jurisdiction § 415.21 Class...

  6. 18 CFR 401.115 - Discretionary disclosure by the Executive Director.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Discretionary disclosure by the Executive Director. 401.115 Section 401.115 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public Access to...

  7. 18 CFR 401.31 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Scope. 401.31 Section 401.31 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Project Review Under Section 3.8 of the Compact § 401.31 Scope. This...

  8. 18 CFR 401.91 - Scope of subpart.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Scope of subpart. 401.91 Section 401.91 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Penalties and Settlements in Lieu of Penalties § 401.91...

  9. 18 CFR 401.41 - Limitation of approval.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Limitation of approval. 401.41 Section 401.41 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Project Review Under Section 3.8 of the Compact § 401.41...

  10. 18 CFR 401.119 - Disclosure to Congress.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Disclosure to Congress. 401.119 Section 401.119 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public Access to Records and Information § 401.119...

  11. 18 CFR 401.107 - Permanent file of requests for Commission records.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Permanent file of requests for Commission records. 401.107 Section 401.107 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public Access to Records...

  12. 18 CFR 401.36 - Water supply projects-Conservation requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Water supply projects-Conservation requirements. 401.36 Section 401.36 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Project Review Under Section 3.8 of the...

  13. 18 CFR 401.76 - Failure to furnish report.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Failure to furnish report. 401.76 Section 401.76 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Appeals or Objections to Decisions of the Executive...

  14. 18 CFR 415.20 - Class I projects.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Class I projects. 415.20 Section 415.20 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-FLOOD PLAIN REGULATIONS Types of Projects and Jurisdiction § 415.20 Class...

  15. 18 CFR 401.4 - Project applications and proposed revisions and changes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Project applications and proposed revisions and changes. 401.4 Section 401.4 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Comprehensive Plan...

  16. 18 CFR 401.74 - Form and contents of report.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Form and contents of report. 401.74 Section 401.74 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Appeals or Objections to Decisions of the Executive...

  17. 18 CFR 401.25 - Alternatives for public projects.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Alternatives for public projects. 401.25 Section 401.25 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Water Resources Program § 401.25 Alternatives for public...

  18. 18 CFR 401.123 - Waiver of rules.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Waiver of rules. 401.123 Section 401.123 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE General Provisions § 401.123 Waiver of rules. The...

  19. Delaware River Dredging Disposal Study, Stage 1 Reconnaissance Report.

    DTIC Science & Technology

    1979-06-01

    increasing traffic and a trend to larger vessel size will cause the hazardous con- ditions. Cessation of periodic rock removal operations would, in...shallow passage across the tidal delta within Indian River and Bay, and increase navigational hazards considerably. Increased loss of life and property...UNITED STATES MEATE , Thea 01. 1 d Of ftgtm f69 Myte emi Magba a eaui mnWe th Prnlli Of lSdatt" 3 of Ow tlvw er fbwe Act qppwed .n 13. IWS. be. mis hseboby

  20. Suspended-Sediment Impacts on Light-limited Productivity in the Delaware Estuary

    NASA Astrophysics Data System (ADS)

    McSweeney, J.; Chant, R. J.; Wilkin, J.; Sommerfield, C. K.

    2016-12-01

    The Delaware Estuary has a history of high anthropogenic nutrient loadings, but has been classified as a high-nutrient, low-growth system due persistent light limitations caused by turbidity. While the biogeochemical implications of light limitation in turbid estuaries has been well-studied, there has been minimal effort focused on the connectivity between hydrodynamics, sediment dynamics, and light-limitation. Our understanding of sediment dynamics in the Delaware Estuary has advanced significantly in the last decade, and this study provides insight about how the spatiotemporal variability of the estuarine turbidity maximum controls the light available for primary productivity. This analysis uses data from eight along-estuary cruises from March, June, September, and December 2010 and 2011 to look at the seasonality of suspended sediment and chlorophyll distributions. By estimating the absorption due to sediment under a range of environmental conditions, we describe how the movement of the turbidity maximum affects light availability. We also use an idealized 2-dimensional Regional Ocean Modeling System (ROMS) numerical model to evaluate how river discharge and spring-neap variability modulate the location of phytoplankton blooms. We conclude that high river flows and neap tides can drive stratification that is strong enough to prevent sediment from being resuspended into the surface layer, thus providing light conditions favorable for primary productivity. This study sheds light on the importance of sediment in the limiting primary productivity, and the role of stratification in promoting production, highlighting the potential limitations of biogeochemical models that do not account for sediment absorption.

  1. Measuring Macrobenthos Biodiversity at Oyster Aquaculture Sites in the Delaware Inland Bays

    NASA Astrophysics Data System (ADS)

    Fuoco, M. J.; Ozbay, G.

    2016-12-01

    The Delaware Inland Bays consists of three shallow coastal bays located in the southern portion of Delaware. Anthropogenic activities have led to the degradation of water quality, because the bays are surrounded by highly developed areas and have low flushing rates. This results in loss of biodiversity and abundance of organisms. Ongoing degradation of the bays has led to a dramatic decline in local oyster populations since the late 1800s. Oysters are keystone species, which provide habitats for organisms and help to improve water quality. This study aims to find if the introduction of oyster aquaculture improves local biodiversity and abundance of macrobenthos. The study was conducted in Rehoboth Bay, Indian River Bay and Little Assawoman Bay. Aquaculture gear was placed at one location in each of the bays and 24 sediment core samples were taken once a month. From these core samples all worms were fixed and stained in a 10% Formalin Rose Bengal solution and preserved in 70% Ethanol for later identification. Stable carbon and nitrogen isotope analysis of oyster tissue will also be performed to assess the health of the bay. The goals of this research are to better understand the role of oyster aquaculture in restoring the viability and health of the Delaware Inland Bays.

  2. Pharmaceuticals in water, fish and osprey nestlings in Delaware River and Bay

    USGS Publications Warehouse

    Bean, Thomas G.; Rattner, Barnett A.; Lazarus, Rebecca S.; Day, Daniel D.; Burket, S. Rebekah; Brooks, Bryan W.; Haddad, Samuel P.; Bowerman, William W.

    2018-01-01

    Exposure of wildlife to Active Pharmaceutical Ingredients (APIs) is likely to occur but studies of risk are limited. One exposure pathway that has received attention is trophic transfer of APIs in a water-fish-osprey food chain. Samples of water, fish plasma and osprey plasma were collected from Delaware River and Bay, and analyzed for 21 APIs. Only 2 of 21 analytes exceeded method detection limits in osprey plasma (acetaminophen and diclofenac) with plasma levels typically 2–3 orders of magnitude below human therapeutic concentrations (HTC). We built upon a screening level model used to predict osprey exposure to APIs in Chesapeake Bay and evaluated whether exposure levels could have been predicted in Delaware Bay had we just measured concentrations in water or fish. Use of surface water and BCFs did not predict API concentrations in fish well, likely due to fish movement patterns, and partitioning and bioaccumulation uncertainties associated with these ionizable chemicals. Input of highest measured API concentration in fish plasma combined with pharmacokinetic data accurately predicted that diclofenac and acetaminophen would be the APIs most likely detected in osprey plasma. For the majority of APIs modeled, levels were not predicted to exceed 1 ng/mL or method detection limits in osprey plasma. Based on the target analytes examined, there is little evidence that APIs represent a significant risk to ospreys nesting in Delaware Bay. If an API is present in fish orders of magnitude below HTC, sampling of fish-eating birds is unlikely to be necessary. However, several human pharmaceuticals accumulated in fish plasma within a recommended safety factor for HTC. It is now important to expand the scope of diet-based API exposure modeling to include alternative exposure pathways (e.g., uptake from landfills, dumps and wastewater treatment plants) and geographic locations (developing countries) where API contamination of the environment may represent greater risk.

  3. 18 CFR 420.41 - Schedule of water charges.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... schedule of water charges. Until changed, the charge for water shall be as follows: (a) $80 per million... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Schedule of water charges. 420.41 Section 420.41 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION...

  4. 18 CFR 420.41 - Schedule of water charges.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... schedule of water charges. Until changed, the charge for water shall be as follows: (a) $80 per million... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Schedule of water charges. 420.41 Section 420.41 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION...

  5. 18 CFR 420.41 - Schedule of water charges.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... schedule of water charges. Until changed, the charge for water shall be as follows: (a) $80 per million... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Schedule of water charges. 420.41 Section 420.41 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION...

  6. Pride of Place: Documenting Community

    ERIC Educational Resources Information Center

    Fattal, Laura Felleman

    2004-01-01

    Plainfield, New Jersey has been a pathway from the Hudson to the Delaware Rivers for Native Americans, a settlement for early settlers, a source for industrial workers, and a residence for homeowners of a wide variety of incomes. The town's architecture recalls its social history. A need was seen to build community through recognition of the…

  7. Perry Lake, Delaware River, Kansas, Cultural Resources Sample Survey of Shoreline Areas.

    DTIC Science & Technology

    1982-09-01

    they lived by hunting large ani- mals, now extinct, such as the mammoth, with finely made stone weapons. Paleolithic Period characterized by man’s use...with another stone or with a bone or piece of wood. Petroglyph Inscription or incision on a rock graphic in nature. Photogranmetry The art and

  8. 18 CFR 401.74 - Form and contents of report.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Form and contents of report. 401.74 Section 401.74 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... verified by a technically qualified person having personal knowledge of the facts stated therein, and shall...

  9. 75 FR 3486 - Susquehanna to Roseland 500kV Transmission Line, Environmental Impact Statement, Delaware Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-21

    ... connection with the Susquehanna to Roseland 500kV Transmission Line. SUMMARY: Pursuant to National... Recreational River, and Appalachian National Scenic Trail, in connection with the proposed Susquehanna (Berwick... expand the width of the transmission line right-of-way beyond the Applicant's current holdings. The...

  10. The Delaware River Basin Collaborative Environmental Monitoring and Research Initiative: Foundation Document

    Treesearch

    Peter S. Murdoch; Jennifer C. Jenkins; Richard A. Birdsey

    2008-01-01

    The U.S. Forest Service, the U.S. Geological Survey, and the National Park Service formed the Collaborative Environmental Monitoring and Research Initiative (CEMRI) to test strategies for integrated environmental monitoring among the agencies. The initiative combined monitoring and research efforts of the participating Federal programs to evaluate health and...

  11. 18 CFR 420.23 - Exempt uses under the Compact.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Exempt uses under the Compact. 420.23 Section 420.23 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS-WATER SUPPLY CHARGES Water Supply Policy § 420.23 Exempt uses under the...

  12. EXISTING AND NEWLY DEVELOPED ASSESSMENT TOOLS AND BIOCRITERIA FOR THE U.S. EPA'S NEW ENGLAND AND MID-ATLANTIC REGIONS

    EPA Science Inventory

    This poster offers an overview of biological assessment programs for wadeable streams and rivers within states in the U.S. EPA Regions 1 (Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island and Vermont) and Region 3 (Delaware, Maryland, Pennsylvania, Virginia and West ...

  13. 18 CFR 401.32 - Concept of 3.8.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Concept of 3.8. 401.32 Section 401.32 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Project Review Under Section 3.8 of the Compact § 401.32 Concept...

  14. 78 FR 39715 - Notice of Public Hearing and Business Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ... DELAWARE RIVER BASIN COMMISSION Notice of Public Hearing and Business Meeting Notice is hereby... business meeting will be held the following day on Wednesday, July 10, 2013. Both the hearing and business... noted there. Public Meeting. The business meeting on July 10, 2013 will begin at 12:15 p.m. and will...

  15. 18 CFR 401.74 - Form and contents of report.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Form and contents of report. 401.74 Section 401.74 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION..., solid, radioactive, or other substance composing the discharge in whole or in part; (3) The thermal...

  16. 18 CFR 401.74 - Form and contents of report.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Form and contents of report. 401.74 Section 401.74 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION..., solid, radioactive, or other substance composing the discharge in whole or in part; (3) The thermal...

  17. 18 CFR 401.74 - Form and contents of report.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Form and contents of report. 401.74 Section 401.74 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION..., solid, radioactive, or other substance composing the discharge in whole or in part; (3) The thermal...

  18. 76 FR 71558 - Notice of Commission Meeting and Public Hearing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ... DELAWARE RIVER BASIN COMMISSION Notice of Commission Meeting and Public Hearing Notice is hereby... hearing on Thursday, December 8, 2011. The hearing will be part of the Commission's regularly scheduled... Public Hearing. The subjects of the public hearing to be held during the 1:30 p.m. business meeting on...

  19. 18 CFR 415.51 - Prior non-conforming structures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Prior non-conforming structures. 415.51 Section 415.51 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... damaged by any means, including a flood, to the extent of 50 percent or more of its market value at that...

  20. Assessing and Predicting the Effectiveness of Stormwater BMPs on Water Quality, Flow, Thermal Regime, and Substrate Integrity in the Delaware River Basin

    EPA Science Inventory

    Assessments of the effectiveness of stormwater best management practices (BMPs) have focused on measurement of load or concentration reductions, which can be translated to predict biological impacts based on chemical water quality criteria. However, many of the impacts of develo...

  1. Monitoring hemlock woolly adelgid and assessing its impacts in the Delaware River Basin

    Treesearch

    David W. Williams; Michael E. Montgomery; Kathleen S. Shields

    2002-01-01

    The Collaborative Environmental Monitoring and Research Initiative (CEMRI) was established recently to test strategies for multi-agency collaboration in environmental monitoring (Murdoch and Jenkins 2002). Participating agencies include the U.S. Geological Survey (USGS), USDA Forest Service, National Park Service, National Aeronautics and Space Administration, and U.S...

  2. 78 FR 66911 - Notice of Availability of Draft Environmental Assessment; City of New York

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... City of New York's existing Cannonsville Dam, which impounds its Cannonsville Water Supply Reservoir. The dam and reservoir are located on the West Branch of the Delaware River, near the Township of... EA) which analyzes the potential environmental effects of construction and operation of the project...

  3. LAND COVER CHANGE AND LARGE SCALE HYDROLOGIC MODELING OF THE SAN PEDRO RIVER AND CATSKILL/DELAWARE BASINS

    EPA Science Inventory

    This study is based on the assumption that land cover change and rainfall spatial variability affect the r-ainfall-runoff relationships on the watershed. Hydrologic response is an integrated indicator of watershed condition, and changes in land cover may affect the overall health...

  4. 18 CFR 401.93 - The record for decision-making.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false The record for decision-making. 401.93 Section 401.93 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Penalties and Settlements in Lieu of Penalties § 401.93 The...

  5. 18 CFR 401.108 - Filing a request for records.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Filing a request for records. 401.108 Section 401.108 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public Access to Records and Information § 401.108 Filing a...

  6. 18 CFR 401.114 - Data and information previously disclosed to the public.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Data and information previously disclosed to the public. 401.114 Section 401.114 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Public Access to...

  7. 18 CFR 401.8 - Public projects under Article 11 of the Compact.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Public projects under Article 11 of the Compact. 401.8 Section 401.8 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Comprehensive Plan § 401.8 Public...

  8. 18 CFR 401.85 - Staff and other expert testimony.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Staff and other expert testimony. 401.85 Section 401.85 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Administrative and Other Hearings § 401.85 Staff and other...

  9. 18 CFR 401.90 - Appeals from final Commission action; Time for appeals.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Appeals from final Commission action; Time for appeals. 401.90 Section 401.90 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Administrative and Other...

  10. 18 CFR 401.32 - Concept of 3.8.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Concept of 3.8. 401.32 Section 401.32 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Project Review Under Section 3.8 of the Compact § 401.32 Concept...

  11. 18 CFR 401.98 - Settlement by agreement in lieu of penalty.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Settlement by agreement in lieu of penalty. 401.98 Section 401.98 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Penalties and Settlements in Lieu...

  12. 18 CFR 401.116 - Disclosure to consultants, advisory committees, State and local government officials, and other...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Disclosure to consultants, advisory committees, State and local government officials, and other special government employees. 401.116 Section 401.116 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION...

  13. 18 CFR 401.2 - Concept of the plan.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Concept of the plan. 401.2 Section 401.2 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Comprehensive Plan § 401.2 Concept of the plan. (a) The...

  14. 18 CFR 410.1 - Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations. 410.1 Section 410.1 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS; WATER...

  15. 18 CFR 401.38 - Form of referral by State or Federal agency.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Form of referral by State or Federal agency. 401.38 Section 401.38 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Project Review Under Section 3.8...

  16. 18 CFR 401.96 - Factors to be applied in fixing penalty amount.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Factors to be applied in fixing penalty amount. 401.96 Section 401.96 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Penalties and Settlements...

  17. 18 CFR 401.34 - Submission of project required.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Submission of project required. 401.34 Section 401.34 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Project Review Under Section 3.8 of the Compact § 401.34...

  18. 18 CFR 401.76 - Failure to furnish report.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Failure to furnish report. 401.76 Section 401.76 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... Director in Water Qualtity Cases § 401.76 Failure to furnish report. The Executive Director may, upon five...

  19. 18 CFR 401.76 - Failure to furnish report.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Failure to furnish report. 401.76 Section 401.76 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... Director in Water Qualtity Cases § 401.76 Failure to furnish report. The Executive Director may, upon five...

  20. 18 CFR 401.76 - Failure to furnish report.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Failure to furnish report. 401.76 Section 401.76 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... Director in Water Qualtity Cases § 401.76 Failure to furnish report. The Executive Director may, upon five...

  1. 18 CFR 401.76 - Failure to furnish report.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Failure to furnish report. 401.76 Section 401.76 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION... Director in Water Qualtity Cases § 401.76 Failure to furnish report. The Executive Director may, upon five...

  2. SS Edgar M. Queeny collision with the Liberian S/T Corinthos, Marcus Hook, Pennsylvania, 31 January 1975. Marine casualty report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-10-27

    At 0029, on January 31, 1975, the U.S. Registered tankship SS EDGAR M. QUEENY, laden with chemical and petroleum products, was maneuvering into Marcus Hook channel of the Delaware River in Pennsylvania, when it collided with the Liberian tanker S/T CORINTHOS which was moored and discharging a bulk cargo of crude oil at the British Petroleum Company dock. The port anchor of the QUEENY slightly penetrated the port side plating of the CORINTHOS at an angle of about 39 deg. into one or more of the wing cargo tanks, which were being pumped and were approximately half full. Almost immediately,more » a series of increasingly intense explosions began in the CORINTHOS, and the vessel was engulfed in flames. Twenty-six persons were killed or are missing and 11 were injured in this accident. The QUEENY suffered minor damage but the CORINTHOS was destroyed. The Delaware River was polluted by oil about Marcus Hook. Property damage was estimated to be $20 million.« less

  3. Qualitative and numerical analyses of the effects of river inflow variations on mixing diagrams in estuaries

    USGS Publications Warehouse

    Cifuentes, L.A.; Schemel, L.E.; Sharp, J.H.

    1990-01-01

    The effects of river inflow variations on alkalinity/salinity distributions in San Francisco Bay and nitrate/salinity distributions in Delaware Bay are described. One-dimensional, advective-dispersion equations for salinity and the dissolved constituents are solved numerically and are used to simulate mixing in the estuaries. These simulations account for time-varying river inflow, variations in estuarine cross-sectional area, and longitudinally varying dispersion coefficients. The model simulates field observations better than models that use constant hydrodynamic coefficients and uniform estuarine geometry. Furthermore, field observations and model simulations are consistent with theoretical 'predictions' that the curvature of propery-salinity distributions depends on the relation between the estuarine residence time and the period of river concentration variation. ?? 1990.

  4. Hydrogeologic setting and ground water flow beneath a section of Indian River Bay, Delaware

    USGS Publications Warehouse

    Krantz, David E.; Manheim, Frank T.; Bratton, John F.; Phelan, Daniel J.

    2004-01-01

    The small bays along the Atlantic coast of the Delmarva Peninsula (Delaware, Maryland, and Virginia) are a valuable natural resource, and an asset for commerce and recreation. These coastal bays also are vulnerable to eutrophication from the input of excess nutrients derived from agriculture and other human activities in the watersheds. Ground water discharge may be an appreciable source of fresh water and a transport pathway for nutrients entering the bays. This paper presents results from an investigation of the physical properties of the surficial aquifer and the processes associated with ground water flow beneath Indian River Bay, Delaware. A key aspect of the project was the deployment of a new technology, streaming horizontal resistivity, to map the subsurface distribution of fresh and saline ground water beneath the bay. The resistivity profiles showed complex patterns of ground water flow, modes of mixing, and submarine ground water discharge. Cores, gamma and electromagnetic-induction logs, and in situ ground water samples collected during a coring operation in Indian River Bay verified the interpretation of the resistivity profiles. The shore-parallel resistivity lines show subsurface zones of fresh ground water alternating with zones dominated by the flow of salt water from the estuary down into the aquifer. Advective flow produces plumes of fresh ground water 400 to 600 m wide and 20 m thick that may extend more than 1 km beneath the estuary. Zones of dispersive mixing between fresh and saline ground water develop on the upper, lower, and lateral boundaries of the the plume. the plumes generally underlie small incised valleys that can be traced landward to stream draining the upland. The incised valleys are filled with 1 to 2 m of silt and peat that act as a semiconfining layer to restrict the downward flow of salt water from the estuary. Active circulation of both the fresh and saline ground water masses beneath the bay is inferred from the geophysical results and supported by geochemical data.

  5. Assessment of the potential effects of climate change on water resources of the Delaware River basin; work plan for 1988-90

    USGS Publications Warehouse

    Ayers, M.A.; Leavesley, G.H.

    1989-01-01

    The current consensus is that some global atmospheric warming will occur as a result of increasing ' greenhouse ' gases. Water resources scientists, planners, and managers are concerned about the uncertainty associated with climatic-change effects on water supplies and what planning might be necessary to mitigate the effects. Collaborative studies between climatologists, hydrologists, biologists, and others are needed to gain this understanding. The Delaware River basin study is an interdisciplinary effort on the part of the U.S. Geological Survey that was initiated to improve understanding of the sensitivity of the basin 's water resources to the potential effects of climate change. The Delaware River basin is 12,765 sq mi in area, crosses five physiographic provinces, and supplies water for an estimated 20 million people within and outside the basin. Climate change presumably will result in changes in precipitation and temperature and could have significant effects on evapotranspiration, streamflow, and groundwater recharge. A rise in sea level is likely to accompany global warming and, depending on changes in freshwater inflows, could alter the salinity of the Estuary and increase saline-water intrusion into adjacent aquifer systems. Because the potential effects are not well understood, this report discusses how the effects of climate change on the basin 's water resources might be defined and evaluated. The study objective is to investigate the basin 's hydrologic response, under existing water management policy and infrastructure, to various scenarios of climate change. Specific objectives include defining the temporal and spatial variability of basin hydrology under existing climate conditions , developing climate-change scenarios, and evaluating the potential effects and sensitivities of basin water availability to these scenarios. The objectives will be accomplished through intensive modeling analysis of the basin 's climate, watershed, estuary, and aquifer systems. (USGS)

  6. User's manual for the upper Delaware River riverine environmental flow decision support system (REFDSS), Version 1.1.2

    USGS Publications Warehouse

    Talbert, Colin; Maloney, Kelly O.; Holmquist-Johnson, Chris; Hanson, Leanne

    2014-01-01

    Between 2002 and 2006, the Fort Collins Science Center (FORT) at the U.S. Geological Survey (USGS) conducted field surveys, organized workshops, and performed analysis of habitat for trout and shad in the Upper Delaware River Basin. This work culminated in the development of decision support system software (the Delaware River DSS–DRDSS, Bovee and others, 2007) that works in conjunction with the Delaware River Basin Commission’s reservoir operations model, OASIS, to facilitate comparison of the habitat and water-delivery effects of alternative operating scenarios for the Basin. This original DRDSS application was developed in Microsoft Excel and is available to all interested parties through the FORT web site (http://www.fort.usgs.gov/Products/Software/DRDSS/). Initial user feedback on the original Excel-based DSS highlighted the need for a more user-friendly and powerful interface to effectively deliver the complex data and analyses encapsulated in the DSS. In order to meet this need, the USGS FORT and Northern Appalachian Research Branch (NARB) developed an entirely new graphical user interface (GUI) application. Support for this research was through the DOI WaterSmart program (http://www.doi.gov/watersmart/html/index.php) of which the USGS component is the National Water Census (http://water.usgs.gov/watercensus/WaterSMART.html). The content and methodology of the new GUI interface emulates those of the original DSS with a few exceptions listed below. Refer to Bovee and others (2007) for the original information. Significant alterations to the original DSS include: • We moved from Excel-based data storage and processing to a more powerful database back end powered by SQLite. The most notable effect of this is that the previous maximum temporal extent of 10 years has been replaced by a dynamic extent that can now cover the entire period of record for which we have data (1928–2000). • We incorporated interactive geographic information system (GIS) visualization and dynamic data processing. Previous habitat maps were generated outside of the DSS in an ad hoc process that the end user could not update or investigate. • The original bathymetric data collected in 2005 at the three main stem reaches was augmented with a higher resolution dataset collected in 2010. This new dataset was collected in order to conduct higher resolution (finer pixel size) two-dimensional (2D) hydrodynamic modeling for evaluating dwarf wedgemussel (DWM, Alasmidonta heterodon) habitat. • Results charts are now substantially more interactive, dynamic, and accessible, which allows users to more easily focus on their particular topics of interest as well as drill down to the source data used to calculate given results.

  7. Mesohabitat use of threatened hemlock forests by breeding birds of the Delaware River basin in northeastern United States

    USGS Publications Warehouse

    Ross, R.M.; Redell, L.A.; Bennett, R.M.; Young, J.A.

    2004-01-01

    Avian biodiversity may be at risk in eastern parks and forests due to continued expansion of the hemlock woolly adelgid (Adelges tsugae), an exotic homopteran insect native to East Asia. To assess avian biodiversity, mesohabitat relations, and the risk of species loss with declining hemlock forests in Appalachian park lands, 80 randomly distributed fixed-radius plots were established in which territories of breeding birds were estimated on four forest-terrain types (hemlock and hardwood benches and ravines) in the Delaware Water Gap National Recreation Area. Both species richness and number of territories were higher in hardwood than hemlock forest types and in bench than ravine terrain types. Four insectivorous species, Acadian flycatcher (Empidonax virescens), blue-headed vireo (Vireo solitarius), black-throated green warbler (Dendroica virens), and Blackburnian warbler (Dendroica fusca), showed high affinity for hemlock forest type and exhibited significantly greater numbers of territories in hemlock than hardwood sites. These species are hemlock-associated species at risk from continued hemlock decline in the Delaware River valley and similar forests of the mid-Atlantic east slope. Two of these species, the blue-headed vireo and Blackburnian warbler, appeared to specialize on ravine mesohabitats of hemlock stands, the vireo a low-to-mid canopy species, the warbler a mid-to-upper canopy forager. Unchecked expansion of the exotic adelgid and subsequent hemlock decline could negatively impact 3,600 pairs from the park and several million pairs from northeastern United States hemlock forests due to elimination of preferred habitat.

  8. Extent and frequency of floods on the Schuylkill River near Phoenixville and Pottstown, Pennsylvania

    USGS Publications Warehouse

    Busch, William F.; Shaw, Lewis C.

    1973-01-01

    Knowledge of the frequency and extent of flooding is an important requirement for the design of all works of man bordering or encroaching on flood plains. The proper design of bridges, culverts, dams, highways, levees, reservoirs, sewage-disposal systems, waterworks and all structures on the flood plains of streams requires careful consideration of flood hazards. -1- By use of relations presented in this report, the extent, depth, and frequency of flooding can be estimated for any site along the reach of the Schuylkill River from Oaks to Pottstown. These flood data are presented so that regulatory agencies, organizations, and individuals may have a technical basis for making decisions on the use of flood-prone areas. The Delaware River Basin Commission and the U. S. Geological Survey regard this program of flood-plain-inundation studies as a positive step toward flood-damage prevention. Flood-plaininundation studies are a prerequisite to flood-plain management which may include a mixture of flood-control structures and/or land-use regulations. Both physical works and flood-plain regulations are included in the Comprehensive Plan for development of the Delaware River basin, of which the Schuylkill River is a part. Recommendations for land use, or suggestions for limitations of land use, are not made herein. Other reports on use and regulation of land in flood-prone areas are available (Dola, 1961; White, 1961; American Society of Civil Engineers Task Force on Flood Plain Regulations, 1962; and Goddard, 1963). The primary responsibility for planning for optimum land use in the flood plain and the implementation of flood-plain zoning or other regulations to achieve such optimum use rests with State, and local interests.

  9. Streamflow simulation for continental-scale river basins

    NASA Astrophysics Data System (ADS)

    Nijssen, Bart; Lettenmaier, Dennis P.; Liang, Xu; Wetzel, Suzanne W.; Wood, Eric F.

    1997-04-01

    A grid network version of the two-layer variable infiltration capacity (VIC-2L) macroscale hydrologic model is described. VIC-2L is a hydrologically based soil- vegetation-atmosphere transfer scheme designed to represent the land surface in numerical weather prediction and climate models. The grid network scheme allows streamflow to be predicted for large continental rivers. Off-line (observed and estimated surface meteorological and radiative forcings) applications of the model to the Columbia River (1° latitude-longitude spatial resolution) and Delaware River (0.5° resolution) are described. The model performed quite well in both applications, reproducing the seasonal hydrograph and annual flow volumes to within a few percent. Difficulties in reproducing observed streamflow in the arid portion of the Snake River basin are attributed to groundwater-surface water interactions, which are not modeled by VIC-2L.

  10. 18 CFR 401.8 - Public projects under Article 11 of the Compact.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Public projects under Article 11 of the Compact. 401.8 Section 401.8 Conservation of Power and Water Resources DELAWARE RIVER... amended or revised pursuant to the Compact and this part. Any project which is changed substantially from...

  11. Modeling forest carbon cycle using long-term carbon stock field measurement in the Delaware River Basin

    Treesearch

    Bing Xu; Yude Pan; Alain F. Plante; Kevin McCullough; Richard Birdsey

    2017-01-01

    Process-based models are a powerful approach to test our understanding of biogeochemical processes, to extrapolate ground survey data from limited plots to the landscape scale, and to simulate the effects of climate change, nitrogen deposition, elevated atmospheric CO2, increasing natural disturbances, and land-use change on ecological processes...

  12. National Dam Safety Program. Whitehead Dam (NJ00559), Delaware River Basin, Assunpink Creek, Mercer County, New Jersey. Phase I Inspection Report.

    DTIC Science & Technology

    1980-03-01

    Magothy and Raritan Formations. These marine formations are comprised of alternating beds of clay and sand. Assunpink Creek is near the westerly extent...of the Magothy and Raritan formations and their overall thickness may be as little as twenty five feet. Precambrian bedrock underlies these

  13. 2.0 Introduction to the Delaware River Basin pilot study

    Treesearch

    Peter S. Murdoch; Jennifer C. Jenkins; Richard A. Birdsey

    2008-01-01

    The past 20 years of environmental research have shown that the environment is not made up of discrete components acting independently, but rather it is a mosaic of complex relationships among air, land, water, living resources, and human activities. The data collection and analytical capabilities of current ecosystem assessment and monitoring programs are insufficient...

  14. 76 FR 37002 - Drawbridge Operation Regulation; Delaware River, Between Burlington, NJ and Bristol, PA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ... the operating lift cables. DATES: This deviation is effective from 12:01 a.m. July 9, 2011, until 11.... SUPPLEMENTARY INFORMATION: The Burlington County Bridge Commission, who owns and operates this vertical-lift... 33 CFR 117.5 and 117.716(b) to facilitate the replacement of the lift cables. The Burlington-Bristol...

  15. 77 FR 60896 - Drawbridge Operation Regulation; Delaware River, Between Burlington, NJ and Bristol, PA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ... the operating lift cables. DATES: This deviation is effective from 7 a.m. on October 30, 2012 to 3 p.m.... SUPPLEMENTARY INFORMATION: The Burlington County Bridge Commission, who owns and operates this vertical-lift... 33 CFR 117.5 and 117.716(b) to facilitate the adjustment of the operational lift cables. The...

  16. 75 FR 18524 - Delaware River and Bay Oil Spill Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-12

    ... added to the agenda up to April 26, 2010. Procedural This meeting is open to the public. All persons entering the building will have to present identification and may be subject to screening. Please note that.... Dated: April 7, 2010. Joseph M. Re, Captain, U.S. Coast Guard, Office of Performance Management (CG-0954...

  17. A bill to reauthorize the Rivers of Steel National Heritage Area, the Lackawanna Valley National Heritage Area, and the Delaware and Lehigh National Heritage Corridor.

    THOMAS, 112th Congress

    Sen. Casey, Robert P., Jr. [D-PA

    2012-02-27

    Senate - 03/07/2012 Committee on Energy and Natural Resources Subcommittee on National Parks. Hearings held. With printed Hearing: S.Hrg. 112-401. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  18. 4.0 Measuring and monitoring forest carbon stocks and fluxes

    Treesearch

    Jennifer C. Jenkins; Peter S. Murdoch; Richard A. Birdsey; John L. Hom

    2008-01-01

    Measuring and monitoring forest productivity and carbon (C) is of growing concern for natural resource managers and policymakers. With the Delaware River Basin (DRB) as a pilot region, this subproject of the CEMRI sought to: improve the ability of the ground-based Forest Inventory and Analysis (FIA) networks to more completely assess forest C stocks and fluxes,...

  19. 18 CFR 430.7 - Determination of protected areas and restriction on water use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... protected areas and restriction on water use. 430.7 Section 430.7 Conservation of Power and Water Resources... Determination of protected areas and restriction on water use. In consideration of the foregoing facts and for... a protected area within the meaning and for the purpose of Article 10 of the Delaware River Basin...

  20. 18 CFR 430.7 - Determination of protected areas and restriction on water use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... protected areas and restriction on water use. 430.7 Section 430.7 Conservation of Power and Water Resources... Determination of protected areas and restriction on water use. In consideration of the foregoing facts and for... a protected area within the meaning and for the purpose of Article 10 of the Delaware River Basin...

  1. 18 CFR 430.7 - Determination of protected areas and restriction on water use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... protected areas and restriction on water use. 430.7 Section 430.7 Conservation of Power and Water Resources... Determination of protected areas and restriction on water use. In consideration of the foregoing facts and for... a protected area within the meaning and for the purpose of Article 10 of the Delaware River Basin...

  2. Pre-Holocene to Modern Evolution of the Lower Delaware Estuary: Constraints from High-Resolution Chirp Subbottom Profiles

    NASA Astrophysics Data System (ADS)

    Daw, Julianne

    Throughout the Quaternary Period, the Delaware Estuary, which is located within the Mid-Atlantic region of the United States, has undergone substantial change as a result of sea-level fluctuations. To better understand the recent (late Pleistocene to Holocene) evolution of the region, chirp subbottom profiles were analyzed within Delaware Bay near the southern end of the Delaware River Navigation Channel including the adjacent shoals and sloughs, using RoxAnn bottom classification data and available vibracores to aid in interpreting sediment types and depositional environments within the study area. Using seismic processing software (SonarWiz6), chirp profiles were processed and reflection events were identified and their positions digitized. Major reflection events were analyzed using a seismic facies approach. The identified facies were each characterized as distinct units composed of reflections with unique elements, such as configuration, amplitude, and continuity. Five seismic facies were identified and their thicknesses determined. Depths to the major reflection events were correlated with sediment boundaries as observed in the available vibracores, allowing the seismic facies to be interpreted in terms of their associated sediment types and inferred environments of deposition. The distributions of surficial and subsurface seismic and sedimentological features were visualized using three-dimensional images. The interpretations of the identified facies are as follows: Facies I is a surficial unit of the modern Holocene estuarine deposits; Facies II is a beach-berm washover zone deposition; Facies III is a deposit of a lagoonal environment; Facies IV is a deposit of an open water environment; and Facies V is a marsh deposition. The chirp data, when integrated with available information from vibracores and RoxAnn bottom sediment classification, was also used to map the position of a former major river system (paleochannel). This paleochannel, trending generally northwest to southeast, can be correlated with the southern channel that was identified in previous work by Knebel and Circe (1988). In addition to the knowledge gained by studying the geological evolution of Delaware Bay, our data can be used by decision makers and stakeholders to inform future management of the Delaware Estuary in practical applications that range from planning for maintenance dredging of the navigation channel to determining locations and thicknesses of suitable sand resources for shoreline replenishment. The surficial layer that would be most affected by such applications is mostly composed of sand & muddy sand, but in the deeper portions and along the shoals, it is composed of mixed and coarse sediments and mud & sandy mud, respectively. Furthermore, the surficial unit is thickest (between 1.5 and 4 meters) in the central and eastern regions of the study area encompassing the deeper portions, and it is thinnest (up to 1 meter) along the western and northern regions that include the shoals.

  3. A time-dependent, three-dimensional model of the Delaware Bay and River system. Part 2: Three-dimensional flow fields and residual circulation

    NASA Astrophysics Data System (ADS)

    Galperin, Boris; Mellor, George L.

    1990-09-01

    The three-dimensional model of Delaware Bay, River and adjacent continental shelf was described in Part 1. Here, Part 2 of this two-part paper demonstrates that the model is capable of realistic simulation of current and salinity distributions, tidal cycle variability, events of strong mixing caused by high winds and rapid salinity changes due to high river runoff. The 25-h average subtidal circulation strongly depends on the wind forcing. Monthly residual currents and salinity distributions demonstrate a classical two-layer estuarine circulation wherein relatively low salinity water flows out at the surface and compensating high salinity water from the shelf flows at the bottom. The salinity intrusion is most vigorous along deep channels in the Bay. Winds can generate salinity fronts inside and outside the Bay and enhance or weaken the two-layer circulation pattern. Since the portion of the continental shelf included in the model is limited, the model shelf circulation is locally wind-driven and excludes such effects as coastally trapped waves and interaction with Gulf Stream rings; nevertheless, a significant portion of the coastal elevation variability is hindcast by the model. Also, inclusion of the shelf improves simulation of salinity inside the Bay compared with simulations where the salinity boundary condition is specified at the mouth of the Bay.

  4. Developing and testing temperature models for regulated systems: a case study on the Upper Delaware River

    USGS Publications Warehouse

    Cole, Jeffrey C.; Maloney, Kelly O.; Schmid, Matthias; McKenna, James E.

    2014-01-01

    Water temperature is an important driver of many processes in riverine ecosystems. If reservoirs are present, their releases can greatly influence downstream water temperatures. Models are important tools in understanding the influence these releases may have on the thermal regimes of downstream rivers. In this study, we developed and tested a suite of models to predict river temperature at a location downstream of two reservoirs in the Upper Delaware River (USA), a section of river that is managed to support a world-class coldwater fishery. Three empirical models were tested, including a Generalized Least Squares Model with a cosine trend (GLScos), AutoRegressive Integrated Moving Average (ARIMA), and Artificial Neural Network (ANN). We also tested one mechanistic Heat Flux Model (HFM) that was based on energy gain and loss. Predictor variables used in model development included climate data (e.g., solar radiation, wind speed, etc.) collected from a nearby weather station and temperature and hydrologic data from upstream U.S. Geological Survey gages. Models were developed with a training dataset that consisted of data from 2008 to 2011; they were then independently validated with a test dataset from 2012. Model accuracy was evaluated using root mean square error (RMSE), Nash Sutcliffe efficiency (NSE), percent bias (PBIAS), and index of agreement (d) statistics. Model forecast success was evaluated using baseline-modified prime index of agreement (md) at the one, three, and five day predictions. All five models accurately predicted daily mean river temperature across the entire training dataset (RMSE = 0.58–1.311, NSE = 0.99–0.97, d = 0.98–0.99); ARIMA was most accurate (RMSE = 0.57, NSE = 0.99), but each model, other than ARIMA, showed short periods of under- or over-predicting observed warmer temperatures. For the training dataset, all models besides ARIMA had overestimation bias (PBIAS = −0.10 to −1.30). Validation analyses showed all models performed well; the HFM model was the most accurate compared other models (RMSE = 0.92, both NSE = 0.98, d = 0.99) and the ARIMA model was least accurate (RMSE = 2.06, NSE = 0.92, d = 0.98); however, all models had an overestimation bias (PBIAS = −4.1 to −10.20). Aside from the one day forecast ARIMA model (md = 0.53), all models forecasted fairly well at the one, three, and five day forecasts (md = 0.77–0.96). Overall, we were successful in developing models predicting daily mean temperature across a broad range of temperatures. These models, specifically the GLScos, ANN, and HFM, may serve as important tools for predicting conditions and managing thermal releases in regulated river systems such as the Delaware River. Further model development may be important in customizing predictions for particular biological or ecological needs, or for particular temporal or spatial scales.

  5. Developing and testing temperature models for regulated systems: A case study on the Upper Delaware River

    NASA Astrophysics Data System (ADS)

    Cole, Jeffrey C.; Maloney, Kelly O.; Schmid, Matthias; McKenna, James E.

    2014-11-01

    Water temperature is an important driver of many processes in riverine ecosystems. If reservoirs are present, their releases can greatly influence downstream water temperatures. Models are important tools in understanding the influence these releases may have on the thermal regimes of downstream rivers. In this study, we developed and tested a suite of models to predict river temperature at a location downstream of two reservoirs in the Upper Delaware River (USA), a section of river that is managed to support a world-class coldwater fishery. Three empirical models were tested, including a Generalized Least Squares Model with a cosine trend (GLScos), AutoRegressive Integrated Moving Average (ARIMA), and Artificial Neural Network (ANN). We also tested one mechanistic Heat Flux Model (HFM) that was based on energy gain and loss. Predictor variables used in model development included climate data (e.g., solar radiation, wind speed, etc.) collected from a nearby weather station and temperature and hydrologic data from upstream U.S. Geological Survey gages. Models were developed with a training dataset that consisted of data from 2008 to 2011; they were then independently validated with a test dataset from 2012. Model accuracy was evaluated using root mean square error (RMSE), Nash Sutcliffe efficiency (NSE), percent bias (PBIAS), and index of agreement (d) statistics. Model forecast success was evaluated using baseline-modified prime index of agreement (md) at the one, three, and five day predictions. All five models accurately predicted daily mean river temperature across the entire training dataset (RMSE = 0.58-1.311, NSE = 0.99-0.97, d = 0.98-0.99); ARIMA was most accurate (RMSE = 0.57, NSE = 0.99), but each model, other than ARIMA, showed short periods of under- or over-predicting observed warmer temperatures. For the training dataset, all models besides ARIMA had overestimation bias (PBIAS = -0.10 to -1.30). Validation analyses showed all models performed well; the HFM model was the most accurate compared other models (RMSE = 0.92, both NSE = 0.98, d = 0.99) and the ARIMA model was least accurate (RMSE = 2.06, NSE = 0.92, d = 0.98); however, all models had an overestimation bias (PBIAS = -4.1 to -10.20). Aside from the one day forecast ARIMA model (md = 0.53), all models forecasted fairly well at the one, three, and five day forecasts (md = 0.77-0.96). Overall, we were successful in developing models predicting daily mean temperature across a broad range of temperatures. These models, specifically the GLScos, ANN, and HFM, may serve as important tools for predicting conditions and managing thermal releases in regulated river systems such as the Delaware River. Further model development may be important in customizing predictions for particular biological or ecological needs, or for particular temporal or spatial scales.

  6. Water resources data, Maryland and Delaware, water year 1997, volume 2. ground-water data

    USGS Publications Warehouse

    Smigaj, Michael J.; Saffer, Richard W.; Starsoneck, Roger J.; Tegeler, Judith L.

    1998-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Maryland and Delaware each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data - Maryland and Delaware.' This series of annual reports for Maryland and Delaware began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the l975 water year, the report format was changed to present, in one volume, data on quantities of surface water, quality of surface and ground water, and ground-water levels. In the 1989 water year, the report format was changed to two volumes. Both volumes contained data on quantities of surface water, quality of surface and ground water, and ground-water levels. Volume 1 contained data on the Atlantic Slope Basins (Delaware River thru Patuxent River) and Volume 2 contained data on the Monongahela and Potomac River basins. Beginning with the 1991 water year, Volume 1 contains all information on quantities of surface water and surface- water-quality data and Volume 2 contains ground-water levels and ground-water-quality data. This report is Volume 2 in our 1998 series and includes records of water levels and water quality of ground-water wells and springs. It contains records for water levels at 397 observation wells, discharge data for 6 springs, and water quality at 107 wells. Location of ground-water level wells are shown on figures 3 and 4. The location for the ground-water-quality sites are shown on figures 5. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Maryland and Delaware. Prior to introduction of this series and for several water years concurrent with it, water resources data for Maryland and Delaware were published in U.S. Geological Survey Water-Supply Papers. Data on water levels for the 1935 through 1974 water years were published under the title 'Ground-Water Levels in the United States.' The above mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States and may be purchased from the Branch of Information Services, Federal Center, Bldg. 41, Box 25286, Denver, CO 80225-0286. Publications similar to this report are published annually by the Geological Survey for all States. These official Survey reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as 'U.S. Geological Survey Water-Data Report MD-DE-98-2.' For archiving and general distribution, the reports for l971- 74 water years also are identified as water data reports. These water-data reports are for sale in paper copy or in microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161. Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone (410)238-4200.

  7. Method comparison for forest soil carbon and nitrogen estimates in the Delaware River basin

    Treesearch

    B. Xu; Yude Pan; A.H. Johnson; A.F. Plante

    2016-01-01

    The accuracy of forest soil C and N estimates is hampered by forest soils that are rocky, inaccessible, and spatially heterogeneous. A composite coring technique is the standard method used in Forest Inventory and Analysis, but its accuracy has been questioned. Quantitative soil pits provide direct measurement of rock content and soil mass from a larger, more...

  8. Landscape characteristics affecting streams in urbanizing regions of the Delaware River Basin (New Jersey, New York, and Pennsylvania, U.S.)

    Treesearch

    Karen Riva-Murray; Rachel Riemann; Peter Murdoch; Jeffrey M. Fischer; Robin. Brightbill

    2010-01-01

    Widespread and increasing urbanization has resulted in the need to assess, monitor, and understand its effects on stream water quality. Identifying relations between stream ecological condition and urban intensity indicators such as impervious surface provides important, but insufficient information to effectively address planning and management needs in such areas. In...

  9. 77 FR 47334 - Safety Zone; Red Bull Flugtag, Delaware River; Camden, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-08

    ... body of your document so that we can contact you if we have questions regarding your submission. To... Meeting We do not now plan to hold a public meeting. But you may submit a request for one, using one of... comment (see ADDRESSES) explaining why you think it qualifies and how and to what degree this rule would...

  10. Invasive Species Guidebook for Department of Defense Installations in the Delaware River Basin: Identification, Control, and Restoration

    DTIC Science & Technology

    2009-06-01

    155 SECTION II: PREVENTING RECURRING INVASIVE SPECIES AND RESTORING HISTORICAL PLANT COMMUNITIES ...Wilcove et al. 1998, Westbrook et al. 2005). Beyond degradation to ecological communities , invasive species can threaten human health and cause...recurrence of problem invasive species. This section also gives recommendations for returning management areas to historical native plant communities

  11. 76 FR 81825 - Drawbridge Operation Regulation; Delaware River, Between Burlington, NJ and Bristol, PA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... replacement of the lift cables. DATES: This deviation is effective 7 a.m. December 27, 2011, until 3 p.m... vertical lift drawbridge, has requested a temporary deviation from the current operating regulations set out in 33 CFR 117.5 and 117.716(b) to facilitate the replacement of the lift cables. The Burlington...

  12. Marie Zimmermann Farm, U.S. Route 209, 5 Miles Southwest of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Marie Zimmermann Farm, U.S. Route 209, 5 Miles Southwest of Milford. The property is defined at its northern boundary by Zimmermann Road and at the west by Long Meadow Road. The east boundary of the parcel is the edge of the Delaware River. The south edge of the parcel is irregularly oriented east-to-west. , Milford, Pike County, PA

  13. 5.0 Monitoring methods for forests vulnerable to non-native invasive pest species

    Treesearch

    David W. Williams; Michael E. Montgomery; Kathleen S. Shields; Richard A. Evans

    2008-01-01

    Non-native invasive species pose a serious threat to forest resources, requiring programs to monitor their spatial spread and the damage they inflict on forest ecosystems. Invasive species research in the Delaware River Basin (DRB) had three primary objectives: to develop and evaluate monitoring protocols for selected pests and resulting ecosystem damage at the IMRAs...

  14. 18 CFR 410.1 - Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations. 410.1 Section 410.1 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS; WATER CODE AND ADMINISTRATIVE MANUAL-PART III...

  15. 18 CFR 410.1 - Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations. 410.1 Section 410.1 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS; WATER CODE AND ADMINISTRATIVE MANUAL-PART III...

  16. 18 CFR 410.1 - Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations. 410.1 Section 410.1 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS; WATER CODE AND ADMINISTRATIVE MANUAL-PART III...

  17. 18 CFR 410.1 - Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Basin regulations-Water Code and Administrative Manual-Part III Water Quality Regulations. 410.1 Section 410.1 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL BASIN REGULATIONS; WATER CODE AND ADMINISTRATIVE MANUAL-PART III...

  18. Black carbon concentrations in a goods-movement neighborhood of Philadelphia, PA

    Treesearch

    Michelle C. Kondo; Chris Mizes; John Lee; Igor Burstyn

    2014-01-01

    Communities along the Delaware River in Philadelphia, USA such as Port Richmond, are subject to traffic associated with goods movement to and from port facilities and local industry. Air pollution associated with this traffic poses an environmental health concern in this and other urban areas. Our study measures black carbon (BC) in Port Richmond and examines its...

  19. 18 CFR 401.39 - Form of submission of projects not requiring prior approval by State or Federal agencies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Form of submission of projects not requiring prior approval by State or Federal agencies. 401.39 Section 401.39 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND...

  20. 1.0 Executive summary

    Treesearch

    Peter S. Murdock; Jennifer C. Jenkins; Richard A. Birdsey

    2008-01-01

    The Delaware River Basin (DRB) in the coastal mid-Atlantic region of the United States covers 12,700 mi2 of primarily forested land. The DRB is home to 7.2 million people, and an additional 7 million people in New York City and northern New Jersey rely on surface water diverted from the DRB for their water supply. Major watershed issues in the...

  1. Sensitivity of water resources in the Delaware River basin to climate variability and change

    USGS Publications Warehouse

    Ayers, Mark A.; Wolock, David M.; McCabe, Gregory J.; Hay, Lauren E.; Tasker, Gary D.

    1994-01-01

    Because of the greenhouse effect, projected increases in atmospheric carbon dioxide levels might cause global warming, which in turn could result in changes in precipitation patterns and evapotranspiration and in increases in sea level. This report describes the greenhouse effect; discusses the problems and uncertainties associated with the detection, prediction, and effects of climate change; and presents the results of sensitivity analyses of how climate change might affect water resources in the Delaware River basin. Sensitivity analyses suggest that potentially serious shortfalls of certain water resources in the basin could result if some scenarios for climate change come true . The results of model simulations of the basin streamflow demonstrate the difficulty in distinguishing the effects that climate change versus natural climate variability have on streamflow and water supply . The future direction of basin changes in most water resources, furthermore, cannot be precisely determined because of uncertainty in current projections of regional temperature and precipitation . This large uncertainty indicates that, for resource planning, information defining the sensitivities of water resources to a range of climate change is most relevant . The sensitivity analyses could be useful in developing contingency plans for evaluating and responding to changes, should they occur.

  2. A model of late quaternary landscape development in the Delaware Valley, New Jersey and Pennsylvania

    USGS Publications Warehouse

    Ridge, J.C.; Evenson, E.B.; Sevon, W.D.

    1992-01-01

    In the Delaware Valley of New Jersey and eastern Pennsylvania the late Quaternary history of colluviation, fluvial adjustment, and soil formation is based on the ages of pre-Wisconsinan soils and glacial deposits which are indicated by feld relationships and inferred from mid-latitude climate changes indicated by marine oxygen-isotope records. The area is divided into four terranes characterized by sandstone, gneiss, slate and carbonate rocks. Since the last pre-Wisconsinan glaciation (> 130 ka, inferred to be late Illinoian), each terrane responded differently to chemical and mechanical weathering. During the Sangamon interglacial stage (??? 130-75 ka) in situ weathering is inferred to have occurred at rates greater than transportation of material which resulted in the formation of deep, highly weathered soil and saprolite, and dissolution of carbonate rocks. Cold climatic conditions during the Wisconsinan, on the other hand, induced erosion of the landscape at rates faster than soil development. Upland erosion during the Wisconsinan removed pre-Wisconsinan soil and glacial sediment and bedrock to produce muddy to blocky colluvium, gre??zes lite??es, and alluvial fans on footslopes. Fluvial gravel and overlying colluvium in the Delaware Valley, both buried by late Wisconsinan outwash, are inferred to represent episodes of early and middle Wisconsinan (??? 75-25 ka) upland erosion and river aggradiation followed by river degradation and colluvium deposition. Early-middle Wisconsinan colluvium is more voluminous than later colluvium despite colder, possibly permafrost conditions during the late Wisconsinan ??? 25-10 ka). Extensive colluviation during the early and middle Wisconsinan resulted from a longer (50 kyr), generally cold interval of erosion with a greater availability of easily eroded pre-Wisconsinan surficial materials on uplands than during the late Wisconsinan. After recession of late Wisconsinan ice from its terminal position, soil formation and landscape stability were delayed until the Holocene by a lingering cold climate, slope erosion, colluvium and alluvial fan deposition, and eolian sedimentation. Late Quaternary erosion in the Delaware Valley was dominated by glacial and periglacial processes during glacial stages. During the warm interglacial stages, soils developed on a more stable landscape. These souls were easily colluviated by periglacial erosion during periods of intermittent cold climate. ?? 1992.

  3. Environmental drivers of dissolved organic matter molecular composition in the Delaware Estuary

    NASA Astrophysics Data System (ADS)

    Osterholz, Helena; Kirchman, David L.; Niggemann, Jutta; Dittmar, Thorsten

    2016-11-01

    Estuaries as connectors of freshwater and marine aquatic systems are hotspots of biogeochemical element cycling. In one of the best studied temperate estuaries, the Delaware Estuary (USA), we investigated the variability of dissolved organic matter (DOM) over five sampling cruises along the salinity gradient in August and November of 3 consecutive years. Dissolved organic carbon (DOC) concentrations were more variable in the upper reaches of the estuary (245±49 µmol L-1) than at the mouth of the estuary (129±14 µmol L-1). Bulk DOC decreased conservatively along the transect in November but was non-conservative with increased DOC concentrations mid-estuary in August. Detailed analysis of the solid-phase extractable DOM pool via ultrahigh resolution mass spectrometry (Fourier-transform ion cyclotron resonance mass spectrometry, FT-ICR-MS) revealed compositional differences at the molecular level that were not reflected in changes in concentration. Besides the mixing of terrestrial and marine endmember signatures, river discharge levels and biological activity were found to impact DOM molecular composition. DOM composition changed less between August and November than along the salinity gradient. Relative contributions of presumed photolabile DOM compounds did not reveal non-conservative behavior indicative of photochemical processing; suggesting that on the timescales of estuarine mixing photochemical removal of molecules plays a minor role in the turbid Delaware Bay. Overall, a large portion of molecular formulae overlapped between sampling campaigns and persisted during estuarine passage. Extending the analysis to the structural level via the fragmentation of molecular masses in the FT-ICR-MS cell, we found that the relative abundance of isomers along the salinity gradient did not change, indicating a high structural similarity of aquatic DOM independent of the origin. These results point towards a recalcitrant character of the DOM supplied by the Delaware River. We demonstrate that in addition to bulk DOC quantification, detailed information on molecular composition is essential for constraining sources of DOM and to identify the processes that impact estuarine DOM, thereby controlling amount and composition of DOM eventually discharged to the ocean through estuaries.

  4. An airborne laser fluorosensor for the detection of oil on water

    NASA Technical Reports Server (NTRS)

    Kim, H. H.; Hickman, G. D.

    1975-01-01

    An airborne laser fluorosensor for the detection of oil derivatives on water has been tested. The system transmits 337 nm UV radiation at the rate of 100 pulses per second and monitors fluorescent emission at 540 nm. Daylight flight tests were made over the areas of controlled oil spills and additional reconnaissance flights were made over a 50 km stretch of the Delaware River to establish ambient oil baseline in the river. The results show that the device is capable of monitoring and mapping out extremely low level oil on water which cannot be identified by ordinary photographic method.

  5. Water-Quality Monitoring in Response to Young-of-the-Year Smallmouth Bass (Micropterus dolomieu) Mortality in the Susquehanna River and Major Tributaries, Pennsylvania: 2008

    USGS Publications Warehouse

    Chaplin, Jeffrey J.; Crawford, J. Kent; Brightbill, Robin A.

    2009-01-01

    Mortalities of young-of-the-year (YOY) smallmouth bass (Micropterus dolomieu) recently have occurred in the Susquehanna River due to Flavobacterium columnare, a bacterium that typically infects stressed fish. Stress factors include but are not limited to elevated water temperature and low dissolved oxygen during times critical for survival and development of smallmouth bass (May 1 through July 31). The infections were first discovered in the Susquehanna River and major tributaries in the summer months of 2005 but also were prevalent in 2007. The U.S. Geological Survey, Pennsylvania Fish and Boat Commission, Pennsylvania Department of Environmental Protection, and PPL Corporation worked together to monitor dissolved oxygen, water temperature, pH, and specific conductance on a continuous basis at seven locations from May through mid October 2008. In addition, nutrient concentrations, which may affect dissolved-oxygen concentrations, were measured once in water and streambed sediment at 25 locations. Data from water-quality meters (sondes) deployed as pairs showed daily minimum dissolved-oxygen concentration at YOY smallmouth-bass microhabitats in the Susquehanna River at Clemson Island and the Juniata River at Howe Township Park were significantly lower (p-value < 0.0001) than nearby main-channel habitats. The average daily minimum dissolved-oxygen concentration during the critical period (May 1-July 31) was 1.1 mg/L lower in the Susquehanna River microhabitat and 0.3 mg/L lower in the Juniata River. Daily minimum dissolved-oxygen concentrations were lower than the applicable national criterion (5.0 mg/L) in microhabitat in the Susquehanna River at Clemson Island on 31 days (of 92 days in the critical period) compared to no days in the corresponding main-channel habitat. In the Juniata River, daily minimum dissolved-oxygen concentration in the microhabitat was lower than 5.0 mg/L on 20 days compared to only 5 days in the main-channel habitat. The maximum time periods that dissolved oxygen was less than 5.0 mg/L in microhabitats of the Susquehanna and Juniata Rivers were 8.5 and 5.5 hours, respectively. Dissolved-oxygen concentrations lower than the national criterion generally occurred during nighttime and early-morning hours between midnight and 0800. The lowest instantaneous dissolved-oxygen concentrations measured in microhabitats during the critical period were 3.3 mg/L for the Susquehanna River at Clemson Island (June 11, 2008) and 4.1 mg/L for the Juniata River at Howe Township Park (July 22, 2008). Comparison of 2008 data to available continuous-monitoring data from 1974 to 1979 in the Susquehanna River at Harrisburg, Pa., indicates the critical period of 2008 had an average daily mean dissolved-oxygen concentration that was 1.1 mg/L lower (p-value < 0.0001) than in the 1970s and an average daily mean water temperature that was 0.8 deg C warmer (p-value = 0.0056). Streamflow was not significantly different (p-value = 0.0952) between the two time periods indicating that it is not a likely explanation for the differences in water quality. During the critical period in 2008, dissolved-oxygen concentrations were lower in the Susquehanna River at Harrisburg, Pa., than in the Delaware River at Trenton, N.J., or Allegheny River at Acmetonia near Pittsburgh, Pa. Daily minimum dissolved-oxygen concentrations were below the national criterion of 5.0 mg/L on 6 days during the critical period in the Susquehanna River at Harrisburg compared to no days in the Delaware River at Trenton and the Allegheny River at Acmetonia. Average daily mean water temperature in the Susquehanna River at Harrisburg was 1.8 deg C warmer than in the Delaware River at Trenton and 3.4 deg C warmer than in the Allegheny River at Acmetonia. These results indicate that any stress induced by dissolved oxygen or other environmental conditions is likely to be magnified by elevated temperature in the Susquehanna River at Harrisburg compared to the Delaw

  6. 33 CFR 110.157 - Delaware Bay and River.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...′59″, longitude 75°23′07″ ) bearing 228 from Ship John Shoal Light, 167 yards southwest of the...: Beginning at a point bearing 105° from the northernmost point of Reedy Island, 167 yards easterly of the... Range at latitude 39°31′43″, thence to a point bearing 168°30′, 3,150 yards, from Chesapeake and...

  7. 33 CFR 110.157 - Delaware Bay and River.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...′59″, longitude 75°23′07″) bearing 228 from Ship John Shoal Light, 167 yards southwest of the...: Beginning at a point bearing 105° from the northernmost point of Reedy Island, 167 yards easterly of the... Range at latitude 39°31′43″, thence to a point bearing 168°30′, 3,150 yards, from Chesapeake and...

  8. 33 CFR 110.157 - Delaware Bay and River.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...′59″, longitude 75°23′07″ ) bearing 228 from Ship John Shoal Light, 167 yards southwest of the...: Beginning at a point bearing 105° from the northernmost point of Reedy Island, 167 yards easterly of the... Range at latitude 39°31′43″, thence to a point bearing 168°30′, 3,150 yards, from Chesapeake and...

  9. 33 CFR 110.157 - Delaware Bay and River.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...′59″, longitude 75°23′07″) bearing 228 from Ship John Shoal Light, 167 yards southwest of the...: Beginning at a point bearing 105° from the northernmost point of Reedy Island, 167 yards easterly of the... Range at latitude 39°31′43″, thence to a point bearing 168°30′, 3,150 yards, from Chesapeake and...

  10. 33 CFR 110.157 - Delaware Bay and River.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...′59″, longitude 75°23′07″) bearing 228 from Ship John Shoal Light, 167 yards southwest of the...: Beginning at a point bearing 105° from the northernmost point of Reedy Island, 167 yards easterly of the... Range at latitude 39°31′43″, thence to a point bearing 168°30′, 3,150 yards, from Chesapeake and...

  11. 2012 Existing Landscape Plan Marie Zimmermann Farm, U.S. Route ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2012 Existing Landscape Plan - Marie Zimmermann Farm, U.S. Route 209, 5 Miles Southwest of Milford. The property is defined at its northern boundary by Zimmermann Road and at the west by Long Meadow Road. The east boundary of the parcel is the edge of the Delaware River. The south edge of the parcel is irregularly oriented east-to-west. , Milford, Pike County, PA

  12. Decadal change of forest biomass carbon stocks and tree demography in the Delaware River Basin

    Treesearch

    Bing Xu; Yude Pan; Alain F. Plante; Arthur Johnson; Jason Cole; Richard Birdsey

    2016-01-01

    Quantifying forest biomass carbon (C) stock change is important for understanding forest dynamics and their feedbacks with climate change. Forests in the northeastern U.S. have been a net carbon sink in recent decades, but C accumulation in some northern hardwood forests has been halted due to the impact of emerging stresses such as invasive pests, land use change and...

  13. Ground-water resources in the tri-state region adjacent to the Lower Delaware River

    USGS Publications Warehouse

    Barksdale, Henry C.; Greenman, David W.; Lang, Solomon Max; Hilton, George Stockbridge; Outlaw, Donald E.

    1958-01-01

    The maximum beneficial utilization of the ground-water resources cannot be accomplished in haphazard fashion. It must be planned and controlled on the basis of sound, current information about the hydrology of the various aquifers. Continued and, in some areas, intensified investigations of the ground-water resources of the region should form the basis for such planning and control.

  14. National Dam Safety Program. Upper Mohawk Lake Dam (NJ00292), Delaware River Basin, Tributary to Paulins Kill River, Sussex County, New Jersey. Phase I Inspection Report.

    DTIC Science & Technology

    1981-07-01

    AD-AI03 500 NEW JERSEY DEPT OF ENVIRONMENTAL PROTECTION TRENTON --ETC F/G 13/13 NATIONAL DAM SAFETY PROGRA . UPPER MOHAWK LAKE DAM (NJOO292) D0-TC...NATIONAL DAM SAFETY PROGRAM DTIC UG 3 1981 PRO F, SA G DISTl-%iL ~ Lj,,. U L TED. DEPARTMENT OF THE ARMY Philadelphie District Corps oF Engineers...GOVT ACCESSION Ni. 3. RECIPLLT*S CATALOG NUMBER ib EN/NAP-�/NJO0292-81/07 0, u)-, c J . () 4. TITLE (and Subtl) S. TYPE OF REPORT a PERIOD

  15. Status of Shortnose Sturgeon in the Potomac River. Part 1: Field Studies

    USGS Publications Warehouse

    Kynard, Boyd; Breece, Matthew; Atcheson, Megan; Kieffer, Micah; Mangold, Mike

    2007-01-01

    Field studies during more than 3 years (March 2004–July 2007) collected data on life history of Potomac River shortnose sturgeon Acipenser brevirostrum to understand their biological status in the river. We sampled intensively for adults using gill nets, but captured only one adult in 2005. Another adult was captured in 2006 by a commercial fisher. Both fish were females with excellent body and fin condition, both had mature eggs, and both were telemetrytagged to track their movements. The lack of capturing adults, even when intensive netting was guided by movements of tracked fish, indicated abundance of the species was less than in any river known with a sustaining population of the species. Telemetry tracking of the two females (one during September 2005–July 2007, one during March 2006–February 2007) found they remained in the river for all the year, not for just a few months like sturgeons on a coastal migration. Further, one fish used the same freshwater reach during three summers. The two sturgeons used different reaches during some seasons, with one fish using saline water more than the other. The adults homed to small reaches in the same month each year, like shortnose sturgeon in their natal river. The total reach used by tracked sturgeons was 124 km (rkm 63–187), of which the lowermost 78 km, which was used for summering and wintering, contained the freshwater: saltwater interface. The most upstream reach used (rkm 185–187) contained potential spawning habitat. This reach was visited by one female on a pre-spawning migration in April 2006, but spawning was likely unsuccessful. Water quality (dissolved oxygen and temperature) in the summering–wintering reach was adequate all the year, although during the summer it was minimally acceptable. We periodically recaptured the same tagged female and found she healed well after tagging, appeared healthy in body and fins, grew well, and rapidly matured a new clutch of eggs. All surveys indicated adults had sufficient habitat and water quality needed to complete their life history. While we studied only two adults, all data strongly suggests shortnose sturgeons are a permanent resident of the Potomac River diadromous fish community. Life-history movements of the Potomac River adults were similar to adults in northcentral rivers, like the Delaware River, not to adults in southern rivers. We did not identify a unique life history behavior that separated Potomac River adults from other populations. Life history data indicates Potomac River shortnose sturgeons are most likely remnants of the natal population or colonizers from a north-central river, like the Delaware River.

  16. Report of the Comprehensive Survey of the Water Resources of the Delaware River Basin. Volume 10. Appendix T and U

    DTIC Science & Technology

    1960-12-01

    proposed four-lane divided highway which would cross two "arms" of the reservoir west and southwest of Salem Church if constructed as proposed, would...itPurpose 29 27,000 I 1,250 ’ Em Allentown EADINO Nernstown TRENTON PHILADELPHIA cemd~n PFA WIM~T French Creek LOCATIONooM:P LEGEND fL2Z2Tz~..multiple

  17. National Dam Safety Program. N.J. No Name Number 30 Dam (NJ00339), Delaware River Basin, Weldon Brook, Morris County, New Jersey. Phase I Inspection Report.

    DTIC Science & Technology

    1981-07-01

    type of migating measures required to increase the capacity of the spillway. 2. Stability analyses should be performed to determine the need for and...type of migating measures required to ensure that the darn is stable. 3. The outlet works should be repaired to allow for emergency drawdown of the

  18. National Guidebook for Application of Hydrogeomorphic Assessment to Tidal Fringe Wetlands

    DTIC Science & Technology

    1998-12-01

    Wrighton Road Lothian, MD 20711 Ron Thorn Battele Marine Science Laboratory 1529 West Sequim Bay Road Sequim , WA 98382 Rena Weichenburg U.S. Army...This region includes the Delaware and Chesapeake Bay estuaries and, except for the exclusion of the microtidal Albemarle and Pamlico Sounds...Gulf (Pearl River, Mississippi, to Galveston Bay , Texas). Small tidal range (< 1 m), meteorologically dominated diurnal tides. Freshwater input

  19. Higher Education and Health Care Institutions as Stimuli for the Revitalization of Camden, New Jersey, through Capital Expansion, Collaboration, and Political Advocacy

    ERIC Educational Resources Information Center

    Giles-Gee, Helen; Rozewski, Mark

    2006-01-01

    Camden, New Jersey, a city of 80,000 located directly across the Delaware River from center-city Philadelphia, is, by any index of urban decay, one of the nation's most distressed urban centers. While severely ineffective, the city houses the essential building blocks of future recovery: branches of four colleges and universities and two major…

  20. 76 FR 6727 - Proposed Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-08

    ...The Delaware River Basin Commission published in the Federal Register of January 4, 2011 a proposed rule containing tentative dates and locations for public hearings on proposed amendments to its Water Quality Regulations, Water Code and Comprehensive Plan relating to natural gas development projects. The public hearing dates have been changed and locations and times established, as set forth below.

Top