Pulsatile desynchronizing delayed feedback for closed-loop deep brain stimulation
Lysyansky, Borys; Rosenblum, Michael; Pikovsky, Arkady; Tass, Peter A.
2017-01-01
High-frequency (HF) deep brain stimulation (DBS) is the gold standard for the treatment of medically refractory movement disorders like Parkinson’s disease, essential tremor, and dystonia, with a significant potential for application to other neurological diseases. The standard setup of HF DBS utilizes an open-loop stimulation protocol, where a permanent HF electrical pulse train is administered to the brain target areas irrespectively of the ongoing neuronal dynamics. Recent experimental and clinical studies demonstrate that a closed-loop, adaptive DBS might be superior to the open-loop setup. We here combine the notion of the adaptive high-frequency stimulation approach, that aims at delivering stimulation adapted to the extent of appropriately detected biomarkers, with specifically desynchronizing stimulation protocols. To this end, we extend the delayed feedback stimulation methods, which are intrinsically closed-loop techniques and specifically designed to desynchronize abnormal neuronal synchronization, to pulsatile electrical brain stimulation. We show that permanent pulsatile high-frequency stimulation subjected to an amplitude modulation by linear or nonlinear delayed feedback methods can effectively and robustly desynchronize a STN-GPe network of model neurons and suggest this approach for desynchronizing closed-loop DBS. PMID:28273176
How time delay and network design shape response patterns in biochemical negative feedback systems.
Börsch, Anastasiya; Schaber, Jörg
2016-08-24
Negative feedback in combination with time delay can bring about both sustained oscillations and adaptive behaviour in cellular networks. Here, we study which design features of systems with delayed negative feedback shape characteristic response patterns with special emphasis on the role of time delay. To this end, we analyse generic two-dimensional delay differential equations describing the dynamics of biochemical signal-response networks. We investigate the influence of several design features on the stability of the model equilibrium, i.e., presence of auto-inhibition and/or mass conservation and the kind and/or strength of the delayed negative feedback. We show that auto-inhibition and mass conservation have a stabilizing effect, whereas increasing abruptness and decreasing feedback threshold have a de-stabilizing effect on the model equilibrium. Moreover, applying our theoretical analysis to the mammalian p53 system we show that an auto-inhibitory feedback can decouple period and amplitude of an oscillatory response, whereas the delayed feedback can not. Our theoretical framework provides insight into how time delay and design features of biochemical networks act together to elicit specific characteristic response patterns. Such insight is useful for constructing synthetic networks and controlling their behaviour in response to external stimulation.
Effective Desynchronization by Nonlinear Delayed Feedback
NASA Astrophysics Data System (ADS)
Popovych, Oleksandr V.; Hauptmann, Christian; Tass, Peter A.
2005-04-01
We show that nonlinear delayed feedback opens up novel means for the control of synchronization. In particular, we propose a demand-controlled method for powerful desynchronization, which does not require any time-consuming calibration. Our technique distinguishes itself by its robustness against variations of system parameters, even in strongly coupled ensembles of oscillators. We suggest our method for mild and effective deep brain stimulation in neurological diseases characterized by pathological cerebral synchronization.
NASA Astrophysics Data System (ADS)
Che, Yanqiu; Yang, Tingting; Li, Ruixue; Li, Huiyan; Han, Chunxiao; Wang, Jiang; Wei, Xile
2015-09-01
In this paper, we propose a dynamic delayed feedback control approach or desynchronization of chaotic-bursting synchronous activities in an ensemble of globally coupled neuronal oscillators. We demonstrate that the difference signal between an ensemble's mean field and its time delayed state, filtered and fed back to the ensemble, can suppress the self-synchronization in the ensemble. These individual units are decoupled and stabilized at the desired desynchronized states while the stimulation signal reduces to the noise level. The effectiveness of the method is illustrated by examples of two different populations of globally coupled chaotic-bursting neurons. The proposed method has potential for mild, effective and demand-controlled therapy of neurological diseases characterized by pathological synchronization.
Dijksterhuis, Chris; Lewis-Evans, Ben; Jelijs, Bart; de Waard, Dick; Brookhuis, Karel; Tucha, Oliver
2015-02-01
Pay-As-You-Drive (PAYD) insurance links an individual's driving behaviour to the insurance fee that they pay, making car insurance more actuarially accurate. The best known PAYD insurance format is purely mileage based and is estimated to reduce accidents by about 15% (Litman, 2011). However, these benefits could be further enhanced by incorporating a wider range of driving behaviours, such as lateral and longitudinal accelerations and speeding behaviour, thereby stimulating not only a safe but also an eco-friendly driving style. Currently, feedback on rewards and driver behaviour is mostly provided through a web-based interface, which is presented temporally separated from driving. However, providing immediate feedback within the vehicle itself could elicit more effect. To investigate this hypothesis, two groups of 20 participants drove with a behavioural based PAYD system in a driving simulator and were provided with either delayed feedback through a website, or immediate feedback through an in-car interface, allowing them to earn up to €6 extra. To be clear, every participant in the web group did actually view their feedback during the one week between sessions. Results indicate clear driving behaviour improvements for both PAYD groups as compared to baseline rides and an equal sized control group. After both PAYD groups had received feedback, the initial advantage of the in-car group was reduced substantially. Taken together with usability ratings and driving behaviours in specific situations these results show a moderate advantage of using immediate in-car feedback. However, the study also showed that under conditions of feedback certainty, the effectiveness of delayed feedback approaches that of immediate feedback as compared to a naïve control group. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hauptmann, C; Roulet, J-C; Niederhauser, J J; Döll, W; Kirlangic, M E; Lysyansky, B; Krachkovskyi, V; Bhatti, M A; Barnikol, U B; Sasse, L; Bührle, C P; Speckmann, E-J; Götz, M; Sturm, V; Freund, H-J; Schnell, U; Tass, P A
2009-12-01
In the past decade deep brain stimulation (DBS)-the application of electrical stimulation to specific target structures via implanted depth electrodes-has become the standard treatment for medically refractory Parkinson's disease and essential tremor. These diseases are characterized by pathological synchronized neuronal activity in particular brain areas. We present an external trial DBS device capable of administering effectively desynchronizing stimulation techniques developed with methods from nonlinear dynamics and statistical physics according to a model-based approach. These techniques exploit either stochastic phase resetting principles or complex delayed-feedback mechanisms. We explain how these methods are implemented into a safe and user-friendly device.
VLF wave growth and discrete emission triggering in the magnetosphere - A feedback model
NASA Technical Reports Server (NTRS)
Helliwell, R. A.; Inan, U. S.
1982-01-01
A simple nonlinear feedback model is presented to explain VLF wave growth and emission triggering observed in VLF transmission experiments. The model is formulated in terms of the interaction of electrons with a slowly varying wave in an inhomogeneous medium as in an unstable feedback amplifier with a delay line; constant frequency oscillations are generated on the magnetic equator, while risers and fallers are generated on the downstream and upstream sides of the equator, respectively. Quantitative expressions are obtained for the stimulated radiation produced by energy exchanged between energetic electrons and waves by Doppler-shifted cyclotron resonance, and feedback between the stimulated radiation and the phase bunched currents is incorporated in terms of a two-port discrete time model. The resulting model is capable of explaining the observed temporal growth and saturation effects, phase advance, retardation or frequency shift during growth in the context of a single parameter depending on the energetic particle distribution function, as well as pretermination triggering.
Oblak, Ethan F; Lewis-Peacock, Jarrod A; Sulzer, James S
2017-07-01
Direct manipulation of brain activity can be used to investigate causal brain-behavior relationships. Current noninvasive neural stimulation techniques are too coarse to manipulate behaviors that correlate with fine-grained spatial patterns recorded by fMRI. However, these activity patterns can be manipulated by having people learn to self-regulate their own recorded neural activity. This technique, known as fMRI neurofeedback, faces challenges as many participants are unable to self-regulate. The causes of this non-responder effect are not well understood due to the cost and complexity of such investigation in the MRI scanner. Here, we investigated the temporal dynamics of the hemodynamic response measured by fMRI as a potential cause of the non-responder effect. Learning to self-regulate the hemodynamic response involves a difficult temporal credit-assignment problem because this signal is both delayed and blurred over time. Two factors critical to this problem are the prescribed self-regulation strategy (cognitive or automatic) and feedback timing (continuous or intermittent). Here, we sought to evaluate how these factors interact with the temporal dynamics of fMRI without using the MRI scanner. We first examined the role of cognitive strategies by having participants learn to regulate a simulated neurofeedback signal using a unidimensional strategy: pressing one of two buttons to rotate a visual grating that stimulates a model of visual cortex. Under these conditions, continuous feedback led to faster regulation compared to intermittent feedback. Yet, since many neurofeedback studies prescribe implicit self-regulation strategies, we created a computational model of automatic reward-based learning to examine whether this result held true for automatic processing. When feedback was delayed and blurred based on the hemodynamics of fMRI, this model learned more reliably from intermittent feedback compared to continuous feedback. These results suggest that different self-regulation mechanisms prefer different feedback timings, and that these factors can be effectively explored and optimized via simulation prior to deployment in the MRI scanner.
Sulzer, James S.
2017-01-01
Direct manipulation of brain activity can be used to investigate causal brain-behavior relationships. Current noninvasive neural stimulation techniques are too coarse to manipulate behaviors that correlate with fine-grained spatial patterns recorded by fMRI. However, these activity patterns can be manipulated by having people learn to self-regulate their own recorded neural activity. This technique, known as fMRI neurofeedback, faces challenges as many participants are unable to self-regulate. The causes of this non-responder effect are not well understood due to the cost and complexity of such investigation in the MRI scanner. Here, we investigated the temporal dynamics of the hemodynamic response measured by fMRI as a potential cause of the non-responder effect. Learning to self-regulate the hemodynamic response involves a difficult temporal credit-assignment problem because this signal is both delayed and blurred over time. Two factors critical to this problem are the prescribed self-regulation strategy (cognitive or automatic) and feedback timing (continuous or intermittent). Here, we sought to evaluate how these factors interact with the temporal dynamics of fMRI without using the MRI scanner. We first examined the role of cognitive strategies by having participants learn to regulate a simulated neurofeedback signal using a unidimensional strategy: pressing one of two buttons to rotate a visual grating that stimulates a model of visual cortex. Under these conditions, continuous feedback led to faster regulation compared to intermittent feedback. Yet, since many neurofeedback studies prescribe implicit self-regulation strategies, we created a computational model of automatic reward-based learning to examine whether this result held true for automatic processing. When feedback was delayed and blurred based on the hemodynamics of fMRI, this model learned more reliably from intermittent feedback compared to continuous feedback. These results suggest that different self-regulation mechanisms prefer different feedback timings, and that these factors can be effectively explored and optimized via simulation prior to deployment in the MRI scanner. PMID:28753639
Actin cytoskeleton of chemotactic amoebae operates close to the onset of oscillations
Westendorf, Christian; Negrete, Jose; Bae, Albert J.; Sandmann, Rabea; Bodenschatz, Eberhard; Beta, Carsten
2013-01-01
The rapid reorganization of the actin cytoskeleton in response to external stimuli is an essential property of many motile eukaryotic cells. Here, we report evidence that the actin machinery of chemotactic Dictyostelium cells operates close to an oscillatory instability. When averaging the actin response of many cells to a short pulse of the chemoattractant cAMP, we observed a transient accumulation of cortical actin reminiscent of a damped oscillation. At the single-cell level, however, the response dynamics ranged from short, strongly damped responses to slowly decaying, weakly damped oscillations. Furthermore, in a small subpopulation, we observed self-sustained oscillations in the cortical F-actin concentration. To substantiate that an oscillatory mechanism governs the actin dynamics in these cells, we systematically exposed a large number of cells to periodic pulse trains of different frequencies. Our results indicate a resonance peak at a stimulation period of around 20 s. We propose a delayed feedback model that explains our experimental findings based on a time-delay in the regulatory network of the actin system. To test the model, we performed stimulation experiments with cells that express GFP-tagged fusion proteins of Coronin and actin-interacting protein 1, as well as knockout mutants that lack Coronin and actin-interacting protein 1. These actin-binding proteins enhance the disassembly of actin filaments and thus allow us to estimate the delay time in the regulatory feedback loop. Based on this independent estimate, our model predicts an intrinsic period of 20 s, which agrees with the resonance observed in our periodic stimulation experiments. PMID:23431176
Adaptive elimination of synchronization in coupled oscillator
NASA Astrophysics Data System (ADS)
Zhou, Shijie; Ji, Peng; Zhou, Qing; Feng, Jianfeng; Kurths, Jürgen; Lin, Wei
2017-08-01
We present here an adaptive control scheme with a feedback delay to achieve elimination of synchronization in a large population of coupled and synchronized oscillators. We validate the feasibility of this scheme not only in the coupled Kuramoto’s oscillators with a unimodal or bimodal distribution of natural frequency, but also in two representative models of neuronal networks, namely, the FitzHugh-Nagumo spiking oscillators and the Hindmarsh-Rose bursting oscillators. More significantly, we analytically illustrate the feasibility of the proposed scheme with a feedback delay and reveal how the exact topological form of the bimodal natural frequency distribution influences the scheme performance. We anticipate that our developed scheme will deepen the understanding and refinement of those controllers, e.g. techniques of deep brain stimulation, which have been implemented in remedying some synchronization-induced mental disorders including Parkinson disease and epilepsy.
Aytemür, Ali; Almeida, Nathalia; Lee, Kwang-Hyuk
2017-02-01
Adaptation to delayed sensory feedback following an action produces a subjective time compression between the action and the feedback (temporal recalibration effect, TRE). TRE is important for sensory delay compensation to maintain a relationship between causally related events. It is unclear whether TRE is a sensory modality-specific phenomenon. In 3 experiments employing a sensorimotor synchronization task, we investigated this question using cathodal transcranial direct-current stimulation (tDCS). We found that cathodal tDCS over the visual cortex, and to a lesser extent over the auditory cortex, produced decreased visual TRE. However, both auditory and visual cortex tDCS did not produce any measurable effects on auditory TRE. Our study revealed different nature of TRE in auditory and visual domains. Visual-motor TRE, which is more variable than auditory TRE, is a sensory modality-specific phenomenon, modulated by the auditory cortex. The robustness of auditory-motor TRE, unaffected by tDCS, suggests the dominance of the auditory system in temporal processing, by providing a frame of reference in the realignment of sensorimotor timing signals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tang, Jie; Suga, Nobuo
2009-01-01
In auditory cortex of the mustached bat, the FF (F means frequency modulation), dorsal fringe (DF) and ventral fringe (VF) areas consist of “combination-sensitive” neurons tuned to the pair of an emitted biosonar pulse and its echo with a specific delay (best delay: BD). The DF and VF areas are hierarchically at a higher level than the FF area. Focal electric stimulation of the FF area evokes “centrifugal” BD shifts of DF neurons, i.e., shifts away from the BD of the stimulated FF neurons, whereas stimulation of the DF neurons evokes “centripetal” BD shifts of FF neurons, i.e., shifts toward the BD of the stimulated DF neurons. In our current studies, we found that the feed forward projection from FF neurons evokes centrifugal BD shifts of VF neurons, that the feedback projection from VF neurons evokes centripetal BD shifts of FF neurons, that the contralateral projection from DF neurons evokes centripetal BD shifts of DF neurons, and that the centripetal BD shifts evoked by the DF and VF neurons are 2.5 times larger than the centrifugal BD shifts evoked by the FF neurons. The centrifugal BD shifts shape the selective neural representation of a specific target-distance, whereas the centripetal BD shifts expand the representation of the selected specific target-distance to focus on the processing of the target information at a specific distance. The centrifugal and centripetal BD shifts evoked by the feed forward and feedback projections promote finer analysis of a target at shorter distances. PMID:19494145
Multistability and hidden attractors in an impulsive Goodwin oscillator with time delay
NASA Astrophysics Data System (ADS)
Zhusubaliyev, Z. T.; Mosekilde, E.; Churilov, A. N.; Medvedev, A.
2015-07-01
The release of luteinizing hormone (LH) is driven by intermittent bursts of activity in the hypothalamic nerve centers of the brain. Luteinizing hormone again stimulates release of the male sex hormone testosterone (Te) and, via the circulating concentration of Te, the hypothalamic nerve centers are subject to a negative feedback regulation that is capable of modifying the intermittent bursts into more regular pulse trains. Bifurcation analysis of a hybrid model that attempts to integrate the intermittent bursting activity with a continuous hormone secretion has recently demonstrated a number of interesting nonlinear dynamic phenomena, including bistability and deterministic chaos. The present paper focuses on the additional complexity that arises when the time delay in the continuous part of the model exceeds the typical bursting interval of the feedback. Under these conditions, the hybrid model is capable of displaying quasiperiodicity and border collisions as well as multistability and hidden attractors.
Sinha, Neha; Glass, Arnold Lewis
2015-01-01
Three experiments, two performed in the laboratory and one embedded in a college psychology lecture course, investigated the effects of immediate versus delayed feedback following a multiple-choice exam on subsequent short answer and multiple-choice exams. Performance on the subsequent multiple-choice exam was not affected by the timing of the feedback on the prior exam; however, performance on the subsequent short answer exam was better following delayed than following immediate feedback. This was true regardless of the order in which immediate versus delayed feedback was given. Furthermore, delayed feedback only had a greater effect than immediate feedback on subsequent short answer performance following correct, confident responses on the prior exam. These results indicate that delayed feedback cues a student's prior response and increases subsequent recollection of that response. The practical implication is that delayed feedback is better than immediate feedback during academic testing.
Weismüller, Benjamin; Ghio, Marta; Logmin, Kazimierz; Hartmann, Christian; Schnitzler, Alfons; Pollok, Bettina; Südmeyer, Martin; Bellebaum, Christian
2018-05-11
Phasic dopamine (DA) signals conveyed from the substantia nigra to the striatum and the prefrontal cortex crucially affect learning from feedback, with DA bursts facilitating learning from positive feedback and DA dips facilitating learning from negative feedback. Consequently, diminished nigro-striatal dopamine levels as in unmedicated patients suffering from Parkinson's Disease (PD) have been shown to lead to a negative learning bias. Recent studies suggested a diminished striatal contribution to feedback processing when the outcome of an action is temporally delayed. This study investigated whether the bias towards negative feedback learning induced by a lack of DA in PD patients OFF medication is modulated by feedback delay. To this end, PD patients OFF medication and healthy controls completed a probabilistic selection task, in which feedback was given immediately (after 800 ms) or delayed (after 6800 ms). PD patients were impaired in immediate but not delayed feedback learning. However, differences in the preference for positive/negative learning between patients and controls were seen for both learning from immediate and delayed feedback, with evidence of stronger negative learning in patients than controls. A Bayesian analysis of the data supports the conclusion that feedback timing did not affect the learning bias in the patients. These results hint at reduced, but still relevant nigro-striatal contribution to feedback learning, when feedback is delayed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Time-delayed feedback control of diffusion in random walkers.
Ando, Hiroyasu; Takehara, Kohta; Kobayashi, Miki U
2017-07-01
Time delay in general leads to instability in some systems, while specific feedback with delay can control fluctuated motion in nonlinear deterministic systems to a stable state. In this paper, we consider a stochastic process, i.e., a random walk, and observe its diffusion phenomenon with time-delayed feedback. As a result, the diffusion coefficient decreases with increasing delay time. We analytically illustrate this suppression of diffusion by using stochastic delay differential equations and justify the feasibility of this suppression by applying time-delayed feedback to a molecular dynamics model.
Warren, Ted J.; Van Hook, Matthew J.; Tranchina, Daniel
2016-01-01
Inhibitory feedback from horizontal cells (HCs) to cones generates center-surround receptive fields and color opponency in the retina. Mechanisms of HC feedback remain unsettled, but one hypothesis proposes that an ephaptic mechanism may alter the extracellular electrical field surrounding photoreceptor synaptic terminals, thereby altering Ca2+ channel activity and photoreceptor output. An ephaptic voltage change produced by current flowing through open channels in the HC membrane should occur with no delay. To test for this mechanism, we measured kinetics of inhibitory feedback currents in Ambystoma tigrinum cones and rods evoked by hyperpolarizing steps applied to synaptically coupled HCs. Hyperpolarizing HCs stimulated inward feedback currents in cones that averaged 8–9 pA and exhibited a biexponential time course with time constants averaging 14–17 ms and 120–220 ms. Measurement of feedback-current kinetics was limited by three factors: (1) HC voltage-clamp speed, (2) cone voltage-clamp speed, and (3) kinetics of Ca2+ channel activation or deactivation in the photoreceptor terminal. These factors totaled ∼4–5 ms in cones meaning that the true fast time constants for HC-to-cone feedback currents were 9–13 ms, slower than expected for ephaptic voltage changes. We also compared speed of feedback to feedforward glutamate release measured at the same cone/HC synapses and found a latency for feedback of 11–14 ms. Inhibitory feedback from HCs to rods was also significantly slower than either measurement kinetics or feedforward release. The finding that inhibitory feedback from HCs to photoreceptors involves a significant delay indicates that it is not due to previously proposed ephaptic mechanisms. SIGNIFICANCE STATEMENT Lateral inhibitory feedback from horizontal cells (HCs) to photoreceptors creates center-surround receptive fields and color-opponent interactions. Although underlying mechanisms remain unsettled, a longstanding hypothesis proposes that feedback is due to ephaptic voltage changes that regulate photoreceptor synaptic output by altering Ca2+ channel activity. Ephaptic processes should occur with no delay. We measured kinetics of inhibitory feedback currents evoked in photoreceptors with voltage steps applied to synaptically coupled HCs and found that feedback is too slow to be explained by ephaptic voltage changes generated by current flowing through continuously open channels in HC membranes. By eliminating the proposed ephaptic mechanism for HC feedback regulation of photoreceptor Ca2+ channels, our data support earlier proposals that synaptic cleft pH changes are more likely responsible. PMID:27683904
Electrotactile EMG feedback improves the control of prosthesis grasping force
NASA Astrophysics Data System (ADS)
Schweisfurth, Meike A.; Markovic, Marko; Dosen, Strahinja; Teich, Florian; Graimann, Bernhard; Farina, Dario
2016-10-01
Objective. A drawback of active prostheses is that they detach the subject from the produced forces, thereby preventing direct mechanical feedback. This can be compensated by providing somatosensory feedback to the user through mechanical or electrical stimulation, which in turn may improve the utility, sense of embodiment, and thereby increase the acceptance rate. Approach. In this study, we compared a novel approach to closing the loop, namely EMG feedback (emgFB), to classic force feedback (forceFB), using electrotactile interface in a realistic task setup. Eleven intact-bodied subjects and one transradial amputee performed a routine grasping task while receiving emgFB or forceFB. The two feedback types were delivered through the same electrotactile interface, using a mixed spatial/frequency coding to transmit 8 discrete levels of the feedback variable. In emgFB, the stimulation transmitted the amplitude of the processed myoelectric signal generated by the subject (prosthesis input), and in forceFB the generated grasping force (prosthesis output). The task comprised 150 trials of routine grasping at six forces, randomly presented in blocks of five trials (same force). Interquartile range and changes in the absolute error (AE) distribution (magnitude and dispersion) with respect to the target level were used to assess precision and overall performance, respectively. Main results. Relative to forceFB, emgFB significantly improved the precision of myoelectric commands (min/max of the significant levels) for 23%/36% as well as the precision of force control for 12%/32%, in intact-bodied subjects. Also, the magnitude and dispersion of the AE distribution were reduced. The results were similar in the amputee, showing considerable improvements. Significance. Using emgFB, the subjects therefore decreased the uncertainty of the forward pathway. Since there is a correspondence between the EMG and force, where the former anticipates the latter, the emgFB allowed for predictive control, as the subjects used the feedback to adjust the desired force even before the prosthesis contacted the object. In conclusion, the online emgFB was superior to the classic forceFB in realistic conditions that included electrotactile stimulation, limited feedback resolution (8 levels), cognitive processing delay, and time constraints (fast grasping).
Labrunée, Marc; Boned, Anne; Granger, Richard; Bousquet, Marc; Jordan, Christian; Richard, Lisa; Garrigues, Damien; Gremeaux, Vincent; Sénard, Jean-Michel; Pathak, Atul; Guiraud, Thibaut
2015-11-01
The aim of this study was to determine whether 45 mins of transcutaneous electrical nerve stimulation before exercise could delay pain onset and increase walking distance in peripheral artery disease patients. After a baseline assessment of the walking velocity that led to pain after 300 m, 15 peripheral artery disease patients underwent four exercise sessions in a random order. The patients had a 45-min transcutaneous electrical nerve stimulation session with different experimental conditions: 80 Hz, 10 Hz, sham (presence of electrodes without stimulation), or control with no electrodes, immediately followed by five walking bouts on a treadmill until pain occurred. The patients were allowed to rest for 10 mins between each bout and had no feedback concerning the walking distance achieved. Total walking distance was significantly different between T10, T80, sham, and control (P < 0.0003). No difference was observed between T10 and T80, but T10 was different from sham and control. Sham, T10, and T80 were all different from control (P < 0.001). There was no difference between each condition for heart rate and blood pressure. Transcutaneous electrical nerve stimulation immediately before walking can delay pain onset and increase walking distance in patients with class II peripheral artery disease, with transcutaneous electrical nerve stimulation of 10 Hz being the most effective.
Effects of stochastic time-delayed feedback on a dynamical system modeling a chemical oscillator.
González Ochoa, Héctor O; Perales, Gualberto Solís; Epstein, Irving R; Femat, Ricardo
2018-05-01
We examine how stochastic time-delayed negative feedback affects the dynamical behavior of a model oscillatory reaction. We apply constant and stochastic time-delayed negative feedbacks to a point Field-Körös-Noyes photosensitive oscillator and compare their effects. Negative feedback is applied in the form of simulated inhibitory electromagnetic radiation with an intensity proportional to the concentration of oxidized light-sensitive catalyst in the oscillator. We first characterize the system under nondelayed inhibitory feedback; then we explore and compare the effects of constant (deterministic) versus stochastic time-delayed feedback. We find that the oscillatory amplitude, frequency, and waveform are essentially preserved when low-dispersion stochastic delayed feedback is used, whereas small but measurable changes appear when a large dispersion is applied.
Effects of stochastic time-delayed feedback on a dynamical system modeling a chemical oscillator
NASA Astrophysics Data System (ADS)
González Ochoa, Héctor O.; Perales, Gualberto Solís; Epstein, Irving R.; Femat, Ricardo
2018-05-01
We examine how stochastic time-delayed negative feedback affects the dynamical behavior of a model oscillatory reaction. We apply constant and stochastic time-delayed negative feedbacks to a point Field-Körös-Noyes photosensitive oscillator and compare their effects. Negative feedback is applied in the form of simulated inhibitory electromagnetic radiation with an intensity proportional to the concentration of oxidized light-sensitive catalyst in the oscillator. We first characterize the system under nondelayed inhibitory feedback; then we explore and compare the effects of constant (deterministic) versus stochastic time-delayed feedback. We find that the oscillatory amplitude, frequency, and waveform are essentially preserved when low-dispersion stochastic delayed feedback is used, whereas small but measurable changes appear when a large dispersion is applied.
Delayed Intermodal Contingency Affects Young Children's Recognition of Their Current Self
ERIC Educational Resources Information Center
Miyazaki, Michiko; Hiraki, Kazuo
2006-01-01
This study investigated whether 2-, 3-, and 4-year-olds use their video feedback as a reflection of their current state, even when their feedback was presented with a short temporal delay. In Experiment 1, the effects of 1- and 2-s delayed feedback were examined on an analog of the mark test. In the case of live and 1-s delayed feedback,…
Distorted retrospective eyewitness reports as functions of feedback and delay.
Wells, Gary L; Olson, Elizabeth A; Charman, Steve D
2003-03-01
Participant-witnesses viewed a crime video and attempted to identify the culprit from a culprit-absent lineup. The 253 mistaken-identification eyewitnesses were randomly given confirming, disconfirming, or no feedback regarding their identifications. Feedback was immediate or delayed 48 hr, and measures were immediate or delayed 48 hr. Confirming, but not disconfirming, feedback led to distortions of eyewitnesses' recalled confidence, amount of attention paid during witnessing, goodness of view, ability to make out facial details, length of time to identification, and other measures related to the witnessing experience. Unexpectedly, neither delaying the measures nor delaying feedback for 48 hr moderated these effects. The results underscore the need for double-blind lineups and neutral assessments of eyewitnesses' certainty and other judgments prior to feedback.
NASA Astrophysics Data System (ADS)
Ishbulatov, Yu. M.; Karavaev, A. S.; Kiselev, A. R.; Semyachkina-Glushkovskaya, O. V.; Postnov, D. E.; Bezruchko, B. P.
2018-04-01
A method for the reconstruction of time-delayed feedback system is investigated, which is based on the detection of synchronous response of a slave time-delay system with respect to the driving from the master system under study. The structure of the driven system is similar to the structure of the studied time-delay system, but the feedback circuit is broken in the driven system. The method efficiency is tested using short and noisy data gained from an electronic chaotic oscillator with time-delayed feedback.
ERIC Educational Resources Information Center
Povinelli, Daniel J.; And Others
1996-01-01
Investigated the ability of young children to recognize themselves in delayed videotapes and recent photographs. Results suggested a significant developmental delay in young children's success on mark tests of self-recognition using delayed feedback as compared to live feedback, which may have important implications for characterizing the…
Two-dimensional dissipative rogue waves due to time-delayed feedback in cavity nonlinear optics.
Tlidi, Mustapha; Panajotov, Krassimir
2017-01-01
We demonstrate a way to generate two-dimensional rogue waves in two types of broad area nonlinear optical systems subject to time-delayed feedback: in the generic Lugiato-Lefever model and in the model of a broad-area surface-emitting laser with saturable absorber. The delayed feedback is found to induce a spontaneous formation of rogue waves. In the absence of delayed feedback, spatial pulses are stationary. The rogue waves are exited and controlled by the delay feedback. We characterize their formation by computing the probability distribution of the pulse height. The long-tailed statistical contribution, which is often considered as a signature of the presence of rogue waves, appears for sufficiently strong feedback. The generality of our analysis suggests that the feedback induced instability leading to the spontaneous formation of two-dimensional rogue waves is a universal phenomenon.
Effect of delayed auditory feedback on normal speakers at two speech rates
NASA Astrophysics Data System (ADS)
Stuart, Andrew; Kalinowski, Joseph; Rastatter, Michael P.; Lynch, Kerry
2002-05-01
This study investigated the effect of short and long auditory feedback delays at two speech rates with normal speakers. Seventeen participants spoke under delayed auditory feedback (DAF) at 0, 25, 50, and 200 ms at normal and fast rates of speech. Significantly two to three times more dysfluencies were displayed at 200 ms (p<0.05) relative to no delay or the shorter delays. There were significantly more dysfluencies observed at the fast rate of speech (p=0.028). These findings implicate the peripheral feedback system(s) of fluent speakers for the disruptive effects of DAF on normal speech production at long auditory feedback delays. Considering the contrast in fluency/dysfluency exhibited between normal speakers and those who stutter at short and long delays, it appears that speech disruption of normal speakers under DAF is a poor analog of stuttering.
Klink, P Christiaan; Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Roelfsema, Pieter R
2017-07-05
The visual cortex is hierarchically organized, with low-level areas coding for simple features and higher areas for complex ones. Feedforward and feedback connections propagate information between areas in opposite directions, but their functional roles are only partially understood. We used electrical microstimulation to perturb the propagation of neuronal activity between areas V1 and V4 in monkeys performing a texture-segregation task. In both areas, microstimulation locally caused a brief phase of excitation, followed by inhibition. Both these effects propagated faithfully in the feedforward direction from V1 to V4. Stimulation of V4, however, caused little V1 excitation, but it did yield a delayed suppression during the late phase of visually driven activity. This suppression was pronounced for the V1 figure representation and weaker for background representations. Our results reveal functional differences between feedforward and feedback processing in texture segregation and suggest a specific modulating role for feedback connections in perceptual organization. Copyright © 2017 Elsevier Inc. All rights reserved.
Time-delayed feedback control of coherence resonance chimeras
NASA Astrophysics Data System (ADS)
Zakharova, Anna; Semenova, Nadezhda; Anishchenko, Vadim; Schöll, Eckehard
2017-11-01
Using the model of a FitzHugh-Nagumo system in the excitable regime, we investigate the influence of time-delayed feedback on noise-induced chimera states in a network with nonlocal coupling, i.e., coherence resonance chimeras. It is shown that time-delayed feedback allows for the control of the range of parameter values where these chimera states occur. Moreover, for the feedback delay close to the intrinsic period of the system, we find a novel regime which we call period-two coherence resonance chimera.
NASA Astrophysics Data System (ADS)
Tlidi, Mustapha; Panajotov, Krassimir; Ferré, Michel; Clerc, Marcel G.
2017-11-01
Time-delayed feedback plays an important role in the dynamics of spatially extended systems. In this contribution, we consider the generic Lugiato-Lefever model with delay feedback that describes Kerr optical frequency comb in all fiber cavities. We show that the delay feedback strongly impacts the spatiotemporal dynamical behavior resulting from modulational instability by (i) reducing the threshold associated with modulational instability and by (ii) decreasing the critical frequency at the onset of this instability. We show that for moderate input intensities it is possible to generate drifting cavity solitons with an asymmetric radiation emitted from the soliton tails. Finally, we characterize the formation of rogue waves induced by the delay feedback.
Period locking due to delayed feedback in a laser with saturable absorber.
Carr, T W
2003-08-01
We consider laser with saturable absorber operating in the pulsating regime that is subject to delayed feedback. Alone, both the saturable absorber and delayed feedback cause the clockwise output to become unstable to periodic output via Hopf bifurcations. The delay feedback causes the laser pulse period to lock to an integer fraction of the feedback time. We derive a map from the original model to describe the periodic pulsations of the laser. Equations for the period of the laser predict the occurrence of the different locking states as well as the value of the pump when there is a switch between the locked states.
Delayed activation of the primary orbitofrontal cortex in post-traumatic anosmia.
Lee, Vincent Kyu; Nardone, Raffaele; Wasco, Fern; Panigrahy, Ashok; Zuccoli, Giulio
2016-01-01
Functional magnetic resonance imaging may help in elucidating the pathophysiology of post-traumatic anosmia. Using an fMRI olfactory stimulus paradigm, this study compared BOLD activation of the brain in a 21-year old male research subject with post-traumatic anosmia and a 19-year old male normal healthy control participant. A delayed activation of the primary orbitofrontal cortex was found in the subject with traumatic anosmia, which may represent a crucial pathophysiological mechanism in the subject with traumatic anosmia due to axonal injury or traumatic transection at the lamina cribrosa level. In healthy subjects the activation of secondary cortical areas may be due to the habituation effect in the primary olfactory cortex. This raises the possibility that, in the absence of secondary activation areas-that may act as a feed-back habituation or desensitization in the patient-one of the primary response areas is activated over the longer period of stimulation. The failed activation of these secondary areas in the patient may cause a feed-back habituation or desensitization in the patient and could also play a role in the disturbed perception of odours.
Acquisition and Retention of Esperanto: The Case for Error Correction and Immediate Feedback
ERIC Educational Resources Information Center
Brosvic, Gary M.; Epstein, Michael L.; Dihoff, Roberta E.; Cook, Michael J.
2006-01-01
Participants completed 5 laboratory examinations during which the number of responses permitted (1 response, up to 4 responses) and the timing of feedback (no feedback control: Scantron form; delayed feedback: end-of-test, 24-hr delay; immediate feedback: assistant, response form) were manipulated. Participants completed a 100-item cumulative…
Risk-Taking and the Feedback Negativity Response to Loss among At-Risk Adolescents
Crowley, Michael J.; Wu, Jia; Crutcher, Clifford; Bailey, Christopher A.; Lejuez, C.W.; Mayes, Linda C.
2009-01-01
Event-related brain potentials were examined in 32 adolescents (50% female) from a high-risk sample, who were exposed to cocaine and other drugs prenatally. Adolescents were selected for extreme high- or low-risk behavior on the Balloon Analog Risk Task, a measure of real-world risk-taking propensity. The feedback error-related negativity (fERN), an event-related potential (ERP) that occurs when an expected reward does not occur, was examined in a game in which choices lead to monetary gains and losses with feedback delayed 1 or 2 s. The fERN was clearly visible in the fronto-central scalp region in this adolescent sample. Feedback type, feedback delay, risk status, and sex were all associated with fERN variability. Monetary feedback also elicited a P300-like component, moderated by delay and sex. Delaying reward feedback may provide a means for studying complementary functioning of dopamine and norepinephrine systems. PMID:19372694
Delay-based virtual congestion control in multi-tenant datacenters
NASA Astrophysics Data System (ADS)
Liu, Yuxin; Zhu, Danhong; Zhang, Dong
2018-03-01
With the evolution of cloud computing and virtualization, the congestion control of virtual datacenters has become the basic issue for multi-tenant datacenters transmission. Regarding to the friendly conflict of heterogeneous congestion control among multi-tenant, this paper proposes a delay-based virtual congestion control, which translates the multi-tenant heterogeneous congestion control into delay-based feedback uniformly by setting the hypervisor translation layer, modifying three-way handshake of explicit feedback and packet loss feedback and throttling receive window. The simulation results show that the delay-based virtual congestion control can effectively solve the unfairness of heterogeneous feedback congestion control algorithms.
Spacecraft stability and control using new techniques for periodic and time-delayed systems
NASA Astrophysics Data System (ADS)
NAzari, Morad
This dissertation addresses various problems in spacecraft stability and control using specialized theoretical and numerical techniques for time-periodic and time-delayed systems. First, the effects of energy dissipation are considered in the dual-spin spacecraft, where the damper masses in the platform (?) and the rotor (?) cause energy loss in the system. Floquet theory is employed to obtain stability charts for different relative spin rates of the subsystem [special characters omitted] with respect to the subsystem [special characters omitted]. Further, the stability and bifurcation of delayed feedback spin stabilization of a rigid spacecraft is investigated. The spin is stabilized about the principal axis of the intermediate moment of inertia using a simple delayed feedback control law. In particular, linear stability is analyzed via the exponential-polynomial characteristic equations and then the method of multiple scales is used to obtain the normal form of the Hopf bifurcation. Next, the dynamics of a rigid spacecraft with nonlinear delayed multi-actuator feedback control are studied, where a nonlinear feedback controller using an inverse dynamics approach is sought for the controlled system to have the desired linear delayed closed-loop dynamics (CLD). Later, three linear state feedback control strategies based on Chebyshev spectral collocation and the Lyapunov Floquet transformation (LFT) are explored for regulation control of linear periodic time delayed systems. First , a delayed feedback control law with discrete delay is implemented and the stability of the closed-loop response is investigated in the parameter space of available control gains using infinite-dimensional Floquet theory. Second, the delay differential equation (DDE) is discretized into a large set of ordinary differential equations (ODEs) using the Chebyshev spectral continuous time approximation (CSCTA) and delayed feedback with distributed delay is applied. The third strategy involves use of both CSCTA and the reduced Lyapunov Floquet transformation (RLFT) in order to design a non-delayed feedback control law. The delayed Mathieu equation is used as an illustrative example in which the closed-loop response and control effort are compared for all three control strategies. Finally, three example applications of control of time-periodic astrodynamic systems, i.e. formation flying control for an elliptic Keplerian chief orbit, body-fixed hovering control over a tumbling asteroid, and stationkeeping in Earth-Moon L1 halo orbits, are shown using versions of the control strategies introduced above. These applications employ a mixture of feedforward and non-delayed periodic-gain state feedback for tracking control of natural and non-natural motions in these systems. A major conclusion is that control effort is minimized by employing periodic-gain (rather than constant-gain) feedback control in such systems.
Role of peripheral reflexes in the initiation of the esophageal phase of swallowing
Medda, Bidyut K.; Babaei, Arash; Shaker, Reza
2014-01-01
The aim of this study was to determine the role of peripheral reflexes in initiation of the esophageal phase of swallowing. In 10 decerebrate cats, we recorded electromyographic responses from the pharynx, larynx, and esophagus and manometric data from the esophagus. Water (1–5 ml) was injected into the nasopharynx to stimulate swallowing, and the timing of the pharyngeal and esophageal phases of swallowing was quantified. The effects of transection or stimulation of nerves innervating the esophagus on swallowing and esophageal motility were tested. We found that the percent occurrence of the esophageal phase was significantly related to the bolus size. While the time delays between the pharyngeal and esophageal phases of swallowing were not related to the bolus size, they were significantly more variable than the time delays between activation of muscles within the pharyngeal phase. Transection of the sensory innervation of the proximal cervical esophagus blocked or significantly inhibited activation of the esophageal phase in the proximal cervical esophagus. Peripheral electrical stimulation of the pharyngoesophageal nerve activated the proximal cervical esophagus, peripheral electrical stimulation of the vagus nerve activated the distal cervical esophagus, and peripheral electrical stimulation the superior laryngeal nerve (SLN) had no effect on the esophagus. Centripetal electrical stimulation of the SLN activated the cervical component of the esophageal phase of swallowing before initiation of the pharyngeal phase. Therefore, we concluded that initiation of the esophageal phase of swallowing depends on feedback from peripheral reflexes acting through the SLN, rather than a central program. PMID:24557762
Sarlegna, Fabrice R; Baud-Bovy, Gabriel; Danion, Frédéric
2010-08-01
When we manipulate an object, grip force is adjusted in anticipation of the mechanical consequences of hand motion (i.e., load force) to prevent the object from slipping. This predictive behavior is assumed to rely on an internal representation of the object dynamic properties, which would be elaborated via visual information before the object is grasped and via somatosensory feedback once the object is grasped. Here we examined this view by investigating the effect of delayed visual feedback during dextrous object manipulation. Adult participants manually tracked a sinusoidal target by oscillating a handheld object whose current position was displayed as a cursor on a screen along with the visual target. A delay was introduced between actual object displacement and cursor motion. This delay was linearly increased (from 0 to 300 ms) and decreased within 2-min trials. As previously reported, delayed visual feedback altered performance in manual tracking. Importantly, although the physical properties of the object remained unchanged, delayed visual feedback altered the timing of grip force relative to load force by about 50 ms. Additional experiments showed that this effect was not due to task complexity nor to manual tracking. A model inspired by the behavior of mass-spring systems suggests that delayed visual feedback may have biased the representation of object dynamics. Overall, our findings support the idea that visual feedback of object motion can influence the predictive control of grip force even when the object is grasped.
Synchronization of unidirectionally delay-coupled chaotic oscillators with memory
NASA Astrophysics Data System (ADS)
Jaimes-Reátegui, Rider; Vera-Ávila, Victor P.; Sevilla-Escoboza, Ricardo; Huerta-Cuéllar, Guillermo; Castañeda-Hernández, Carlos E.; Chiu-Zarate, Roger; Pisarchik, Alexander N.
2016-11-01
We study synchronization of two chaotic oscillators coupled with time delay in a master-slave configuration and with delayed positive feedback in the slave oscillator which acts as memory. The dynamics of the slave oscillator is analyzed with bifurcation diagrams of the peak value of the system variable with respect to the coupling and feedback strengths and two delay times. For small coupling, when the oscillators' phases synchronize, memory can induce bistability and stabilize periodic orbits, whereas for stronger coupling it is not possible. The delayed feedback signal impairs synchronization, simultaneously enhancing coherence of the slave oscillator.
Stabilization of self-mode-locked quantum dash lasers by symmetric dual-loop optical feedback
NASA Astrophysics Data System (ADS)
Asghar, Haroon; Wei, Wei; Kumar, Pramod; Sooudi, Ehsan; McInerney, John. G.
2018-02-01
We report experimental studies of the influence of symmetric dual-loop optical feedback on the RF linewidth and timing jitter of self-mode-locked two-section quantum dash lasers emitting at 1550 nm. Various feedback schemes were investigated and optimum levels determined for narrowest RF linewidth and low timing jitter, for single-loop and symmetric dual-loop feedback. Two symmetric dual-loop configurations, with balanced and unbalanced feedback ratios, were studied. We demonstrate that unbalanced symmetric dual loop feedback, with the inner cavity resonant and fine delay tuning of the outer loop, gives narrowest RF linewidth and reduced timing jitter over a wide range of delay, unlike single and balanced symmetric dual-loop configurations. This configuration with feedback lengths 80 and 140 m narrows the RF linewidth by 4-67x and 10-100x, respectively, across the widest delay range, compared to free-running. For symmetric dual-loop feedback, the influence of different power split ratios through the feedback loops was determined. Our results show that symmetric dual-loop feedback is markedly more effective than single-loop feedback in reducing RF linewidth and timing jitter, and is much less sensitive to delay phase, making this technique ideal for applications where robustness and alignment tolerance are essential.
Consistency properties of chaotic systems driven by time-delayed feedback
NASA Astrophysics Data System (ADS)
Jüngling, T.; Soriano, M. C.; Oliver, N.; Porte, X.; Fischer, I.
2018-04-01
Consistency refers to the property of an externally driven dynamical system to respond in similar ways to similar inputs. In a delay system, the delayed feedback can be considered as an external drive to the undelayed subsystem. We analyze the degree of consistency in a generic chaotic system with delayed feedback by means of the auxiliary system approach. In this scheme an identical copy of the nonlinear node is driven by exactly the same signal as the original, allowing us to verify complete consistency via complete synchronization. In the past, the phenomenon of synchronization in delay-coupled chaotic systems has been widely studied using correlation functions. Here, we analytically derive relationships between characteristic signatures of the correlation functions in such systems and unequivocally relate them to the degree of consistency. The analytical framework is illustrated and supported by numerical calculations of the logistic map with delayed feedback for different replica configurations. We further apply the formalism to time series from an experiment based on a semiconductor laser with a double fiber-optical feedback loop. The experiment constitutes a high-quality replica scheme for studying consistency of the delay-driven laser and confirms the general theoretical results.
Picoloto, Luana Altran; Cardoso, Ana Cláudia Vieira; Cerqueira, Amanda Venuti; Oliveira, Cristiane Moço Canhetti de
2017-12-07
To verify the effect of delayed auditory feedback on speech fluency of individuals who stutter with and without central auditory processing disorders. The participants were twenty individuals with stuttering from 7 to 17 years old and were divided into two groups: Stuttering Group with Auditory Processing Disorders (SGAPD): 10 individuals with central auditory processing disorders, and Stuttering Group (SG): 10 individuals without central auditory processing disorders. Procedures were: fluency assessment with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF), assessment of the stuttering severity and central auditory processing (CAP). Phono Tools software was used to cause a delay of 100 milliseconds in the auditory feedback. The "Wilcoxon Signal Post" test was used in the intragroup analysis and "Mann-Whitney" test in the intergroup analysis. The DAF caused a statistically significant reduction in SG: in the frequency score of stuttering-like disfluencies in the analysis of the Stuttering Severity Instrument, in the amount of blocks and repetitions of monosyllabic words, and in the frequency of stuttering-like disfluencies of duration. Delayed auditory feedback did not cause statistically significant effects on SGAPD fluency, individuals with stuttering with auditory processing disorders. The effect of delayed auditory feedback in speech fluency of individuals who stutter was different in individuals of both groups, because there was an improvement in fluency only in individuals without auditory processing disorder.
Balasubramaniam, Ramesh
2014-01-01
Sensory information from our eyes, skin and muscles helps guide and correct balance. Less appreciated, however, is that delays in the transmission of sensory information between our eyes, limbs and central nervous system can exceed several 10s of milliseconds. Investigating how these time-delayed sensory signals influence balance control is central to understanding the postural system. Here, we investigate how delayed visual feedback and cognitive performance influence postural control in healthy young and older adults. The task required that participants position their center of pressure (COP) in a fixed target as accurately as possible without visual feedback about their COP location (eyes-open balance), or with artificial time delays imposed on visual COP feedback. On selected trials, the participants also performed a silent arithmetic task (cognitive dual task). We separated COP time series into distinct frequency components using low and high-pass filtering routines. Visual feedback delays affected low frequency postural corrections in young and older adults, with larger increases in postural sway noted for the group of older adults. In comparison, cognitive performance reduced the variability of rapid center of pressure displacements in young adults, but did not alter postural sway in the group of older adults. Our results demonstrate that older adults prioritize vision to control posture. This visual reliance persists even when feedback about the task is delayed by several hundreds of milliseconds. PMID:24614576
Delayed excitatory and inhibitory feedback shape neural information transmission
NASA Astrophysics Data System (ADS)
Chacron, Maurice J.; Longtin, André; Maler, Leonard
2005-11-01
Feedback circuitry with conduction and synaptic delays is ubiquitous in the nervous system. Yet the effects of delayed feedback on sensory processing of natural signals are poorly understood. This study explores the consequences of delayed excitatory and inhibitory feedback inputs on the processing of sensory information. We show, through numerical simulations and theory, that excitatory and inhibitory feedback can alter the firing frequency response of stochastic neurons in opposite ways by creating dynamical resonances, which in turn lead to information resonances (i.e., increased information transfer for specific ranges of input frequencies). The resonances are created at the expense of decreased information transfer in other frequency ranges. Using linear response theory for stochastically firing neurons, we explain how feedback signals shape the neural transfer function for a single neuron as a function of network size. We also find that balanced excitatory and inhibitory feedback can further enhance information tuning while maintaining a constant mean firing rate. Finally, we apply this theory to in vivo experimental data from weakly electric fish in which the feedback loop can be opened. We show that it qualitatively predicts the observed effects of inhibitory feedback. Our study of feedback excitation and inhibition reveals a possible mechanism by which optimal processing may be achieved over selected frequency ranges.
Secondary adaptation of memory-guided saccades
Srimal, Riju; Curtis, Clayton E.
2011-01-01
Adaptation of saccade gains in response to errors keeps vision and action co-registered in the absence of awareness or effort. Timing is key, as the visual error must be available shortly after the saccade is generated or adaptation does not occur. Here, we tested the hypothesis that when feedback is delayed, learning still occurs, but does so through small secondary corrective saccades. Using a memory-guided saccade task, we gave feedback about the accuracy of saccades that was falsely displaced by a consistent amount, but only after long delays. Despite the delayed feedback, over time subjects improved in accuracy toward the false feedback. They did so not by adjusting their primary saccades, but via directed corrective saccades made before feedback was given. We propose that saccade learning may be driven by different types of feedback teaching signals. One teaching signal relies upon a tight temporal relation with the saccade and contributes to obligatory learning independent of awareness. When this signal is ineffective due to delayed error feedback, a second compensatory teaching signal enables flexible adjustments to the spatial goal of saccades and helps maintain sensorimotor accuracy. PMID:20803135
ERIC Educational Resources Information Center
Price, Anne T.; Martella, Ronald C.; Marchand-Martella, Nancy E.; Cleanthous, Charalambos C.
2002-01-01
The effects of immediate feedback provided through a wireless headphone FM transmission system were compared to the effects of delayed feedback on inappropriate verbalizations of a 10-year-old with attention deficit/hyperactivity disorder. Results indicate that inappropriate verbalizations decreased during both conditions, although the decrease…
Feedback Dialogues That Stimulate Students' Reflective Thinking
ERIC Educational Resources Information Center
Van der Schaaf, Marieke; Baartman, Liesbeth; Prins, Frans; Oosterbaan, Anne; Schaap, Harmen
2013-01-01
How can feedback dialogues stimulate students' reflective thinking? This study aims to investigate: (1) the effects of feedback dialogues between teachers and students on students' perceptions of teacher feedback and (2) the relation between features of feedback dialogues and students' thinking activities as part of reflective thinking. A…
Linear feedback stabilization of a dispersively monitored qubit
NASA Astrophysics Data System (ADS)
Patti, Taylor Lee; Chantasri, Areeya; García-Pintos, Luis Pedro; Jordan, Andrew N.; Dressel, Justin
2017-08-01
The state of a continuously monitored qubit evolves stochastically, exhibiting competition between coherent Hamiltonian dynamics and diffusive partial collapse dynamics that follow the measurement record. We couple these distinct types of dynamics together by linearly feeding the collected record for dispersive energy measurements directly back into a coherent Rabi drive amplitude. Such feedback turns the competition cooperative and effectively stabilizes the qubit state near a target state. We derive the conditions for obtaining such dispersive state stabilization and verify the stabilization conditions numerically. We include common experimental nonidealities, such as energy decay, environmental dephasing, detector efficiency, and feedback delay, and show that the feedback delay has the most significant negative effect on the feedback protocol. Setting the measurement collapse time scale to be long compared to the feedback delay yields the best stabilization.
NASA Astrophysics Data System (ADS)
Shi, Peiming; Yuan, Danzhen; Han, Dongying; Zhang, Ying; Fu, Rongrong
2018-06-01
Stochastic resonance (SR) phenomena in a time-delayed feedback tristable system driven by Gaussian white noise are investigated by simulating the potential function, mean first-passage time (MFPT), and signal-to-noise ratio (SNR) of the system. Through the use of a short delay time, the generalized potential function and stationary probability density function (PDF) are obtained. The delay feedback term has a significant effect on both equations, and that the parameters b, c, and d have different effects on the three wells of the potential function. The MFPT is calculated, which plays an extremely important role in research on particles escape rates. We find that the delay feedback term can affect the noise enhanced stability (NES). In addition, the SR characteristics are studied by the index of SNR. The simulation demonstrates that SNR is a non-monotonic distributed and that the peak SNR value can be attained by adjusting the appropriate parameters. Finally, the proposed theory is combined with a variable step method and applied to the detection of high frequencies in experiments. The result indicates that the fault frequency can be identified, and that the energy of the fault signal can be enhanced under suitable delay feedback parameters.
Kimura, Kenta; Kimura, Motohiro
2016-09-28
The evaluative processing of the valence of action feedback is reflected by an event-related brain potential component called feedback-related negativity (FRN) or reward positivity (RewP). Recent studies have shown that FRN/RewP is markedly reduced when the action-feedback interval is long (e.g. 6000 ms), indicating that an increase in the action-feedback interval can undermine the evaluative processing of the valence of action feedback. The aim of the present study was to investigate whether or not such undermined evaluative processing of delayed action feedback could be restored by improving the accuracy of the prediction in terms of the timing of action feedback. With a typical gambling task in which the participant chose one of two cards and received an action feedback indicating monetary gain or loss, the present study showed that FRN/RewP was significantly elicited even when the action-feedback interval was 6000 ms, when an auditory stimulus sequence was additionally presented during the action-feedback interval as a temporal cue. This result suggests that the undermined evaluative processing of delayed action feedback can be restored by increasing the accuracy of the prediction on the timing of the action feedback.
McKenna, Erin; Bray, Laurence C Jayet; Zhou, Weiwei; Joiner, Wilsaan M
2017-10-01
Delays in transmitting and processing sensory information require correctly associating delayed feedback to issued motor commands for accurate error compensation. The flexibility of this alignment between motor signals and feedback has been demonstrated for movement recalibration to visual manipulations, but the alignment dependence for adapting movement dynamics is largely unknown. Here we examined the effect of visual feedback manipulations on force-field adaptation. Three subject groups used a manipulandum while experiencing a lag in the corresponding cursor motion (0, 75, or 150 ms). When the offset was applied at the start of the session (continuous condition), adaptation was not significantly different between groups. However, these similarities may be due to acclimation to the offset before motor adaptation. We tested additional subjects who experienced the same delays concurrent with the introduction of the perturbation (abrupt condition). In this case adaptation was statistically indistinguishable from the continuous condition, indicating that acclimation to feedback delay was not a factor. In addition, end-point errors were not significantly different across the delay or onset conditions, but end-point correction (e.g., deceleration duration) was influenced by the temporal offset. As an additional control, we tested a group of subjects who performed without visual feedback and found comparable movement adaptation results. These results suggest that visual feedback manipulation (absence or temporal misalignment) does not affect adaptation to novel dynamics, independent of both acclimation and perceptual awareness. These findings could have implications for modeling how the motor system adjusts to errors despite concurrent delays in sensory feedback information. NEW & NOTEWORTHY A temporal offset between movement and distorted visual feedback (e.g., visuomotor rotation) influences the subsequent motor recalibration, but the effects of this offset for altered movement dynamics are largely unknown. Here we examined the influence of 1 ) delayed and 2 ) removed visual feedback on the adaptation to novel movement dynamics. These results contribute to understanding of the control strategies that compensate for movement errors when there is a temporal separation between motion state and sensory information. Copyright © 2017 the American Physiological Society.
ERIC Educational Resources Information Center
Brosvic, Gary M.; Epstein, Michael L.; Cook, Michael J.; Dihoff, Roberta E.
2005-01-01
Participants completed 5 classroom examinations during which the timing of knowledge of results (no feedback: Scantron form; delayed feedback: end-of-test, 24 hour delay; immediate feedback: educator, response form) and iterative responding (1 response, up to 4 responses) were manipulated. At the end of the semester, each participant completed a…
Stability of Nonlinear Systems with Unknown Time-varying Feedback Delay
NASA Astrophysics Data System (ADS)
Chunodkar, Apurva A.; Akella, Maruthi R.
2013-12-01
This paper considers the problem of stabilizing a class of nonlinear systems with unknown bounded delayed feedback wherein the time-varying delay is 1) piecewise constant 2) continuous with a bounded rate. We also consider application of these results to the stabilization of rigid-body attitude dynamics. In the first case, the time-delay in feedback is modeled specifically as a switch among an arbitrarily large set of unknown constant values with a known strict upper bound. The feedback is a linear function of the delayed states. In the case of linear systems with switched delay feedback, a new sufficiency condition for average dwell time result is presented using a complete type Lyapunov-Krasovskii (L-K) functional approach. Further, the corresponding switched system with nonlinear perturbations is proven to be exponentially stable inside a well characterized region of attraction for an appropriately chosen average dwell time. In the second case, the concept of the complete type L-K functional is extended to a class of nonlinear time-delay systems with unknown time-varying time-delay. This extension ensures stability robustness to time-delay in the control design for all values of time-delay less than the known upper bound. Model-transformation is used in order to partition the nonlinear system into a nominal linear part that is exponentially stable with a bounded perturbation. We obtain sufficient conditions which ensure exponential stability inside a region of attraction estimate. A constructive method to evaluate the sufficient conditions is presented together with comparison with the corresponding constant and piecewise constant delay. Numerical simulations are performed to illustrate the theoretical results of this paper.
Feedback and feedforward adaptation to visuomotor delay during reaching and slicing movements.
Botzer, Lior; Karniel, Amir
2013-07-01
It has been suggested that the brain and in particular the cerebellum and motor cortex adapt to represent the environment during reaching movements under various visuomotor perturbations. It is well known that significant delay is present in neural conductance and processing; however, the possible representation of delay and adaptation to delayed visual feedback has been largely overlooked. Here we investigated the control of reaching movements in human subjects during an imposed visuomotor delay in a virtual reality environment. In the first experiment, when visual feedback was unexpectedly delayed, the hand movement overshot the end-point target, indicating a vision-based feedback control. Over the ensuing trials, movements gradually adapted and became accurate. When the delay was removed unexpectedly, movements systematically undershot the target, demonstrating that adaptation occurred within the vision-based feedback control mechanism. In a second experiment designed to broaden our understanding of the underlying mechanisms, we revealed similar after-effects for rhythmic reversal (out-and-back) movements. We present a computational model accounting for these results based on two adapted forward models, each tuned for a specific modality delay (proprioception or vision), and a third feedforward controller. The computational model, along with the experimental results, refutes delay representation in a pure forward vision-based predictor and suggests that adaptation occurred in the forward vision-based predictor, and concurrently in the state-based feedforward controller. Understanding how the brain compensates for conductance and processing delays is essential for understanding certain impairments concerning these neural delays as well as for the development of brain-machine interfaces. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Structural Properties and Estimation of Delay Systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Kwong, R. H. S.
1975-01-01
Two areas in the theory of delay systems were studied: structural properties and their applications to feedback control, and optimal linear and nonlinear estimation. The concepts of controllability, stabilizability, observability, and detectability were investigated. The property of pointwise degeneracy of linear time-invariant delay systems is considered. Necessary and sufficient conditions for three dimensional linear systems to be made pointwise degenerate by delay feedback were obtained, while sufficient conditions for this to be possible are given for higher dimensional linear systems. These results were applied to obtain solvability conditions for the minimum time output zeroing control problem by delay feedback. A representation theorem is given for conditional moment functionals of general nonlinear stochastic delay systems, and stochastic differential equations are derived for conditional moment functionals satisfying certain smoothness properties.
Impact of time delays on oscillatory dynamics of interlinked positive and negative feedback loops
NASA Astrophysics Data System (ADS)
Huang, Bo; Tian, Xinyu; Liu, Feng; Wang, Wei
2016-11-01
Interlinking a positive feedback loop (PFL) with a negative feedback loop (NFL) constitutes a typical motif in genetic networks, performing various functions in cell signaling. How time delay in feedback regulation affects the dynamics of such systems still remains unclear. Here, we investigate three systems of interlinked PFL and NFL with time delays: a synthetic genetic oscillator, a three-node circuit, and a simplified single-node model. The stability of steady states and the routes to oscillation in the single-node model are analyzed in detail. The amplitude and period of oscillations vary with a pointwise periodicity over a range of time delay. Larger-amplitude oscillations can be induced when the PFL has an appropriately long delay, in comparison with the PFL with no delay or short delay; this conclusion holds true for all the three systems. We unravel the underlying mechanism for the above effects via analytical derivation under a limiting condition. We also develop a stochastic algorithm for simulating a single reaction with two delays and show that robust oscillations can be maintained by the PFL with a properly long delay in the single-node system. This work presents an effective method for constructing robust large-amplitude oscillators and interprets why similar circuit architectures are engaged in timekeeping systems such as circadian clocks.
Feedback enhances the positive effects and reduces the negative effects of multiple-choice testing.
Butler, Andrew C; Roediger, Henry L
2008-04-01
Multiple-choice tests are used frequently in higher education without much consideration of the impact this form of assessment has on learning. Multiple-choice testing enhances retention of the material tested (the testing effect); however, unlike other tests, multiple-choice can also be detrimental because it exposes students to misinformation in the form of lures. The selection of lures can lead students to acquire false knowledge (Roediger & Marsh, 2005). The present research investigated whether feedback could be used to boost the positive effects and reduce the negative effects of multiple-choice testing. Subjects studied passages and then received a multiple-choice test with immediate feedback, delayed feedback, or no feedback. In comparison with the no-feedback condition, both immediate and delayed feedback increased the proportion of correct responses and reduced the proportion of intrusions (i.e., lure responses from the initial multiple-choice test) on a delayed cued recall test. Educators should provide feedback when using multiple-choice tests.
ERIC Educational Resources Information Center
Takaso, Hideki; Eisner, Frank; Wise, Richard J. S.; Scott, Sophie K.
2010-01-01
Purpose: Delayed auditory feedback is a technique that can improve fluency in stutterers, while disrupting fluency in many nonstuttering individuals. The aim of this study was to determine the neural basis for the detection of and compensation for such a delay, and the effects of increases in the delay duration. Method: Positron emission…
Yoshikawa, Naoya; Suzuki, Yasuyuki; Kiyono, Ken; Nomura, Taishin
2016-01-01
The stabilization of an inverted pendulum on a manually controlled cart (cart-inverted-pendulum; CIP) in an upright position, which is analogous to balancing a stick on a fingertip, is considered in order to investigate how the human central nervous system (CNS) stabilizes unstable dynamics due to mechanical instability and time delays in neural feedback control. We explore the possibility that a type of intermittent time-delayed feedback control, which has been proposed for human postural control during quiet standing, is also a promising strategy for the CIP task and stick balancing on a fingertip. Such a strategy hypothesizes that the CNS exploits transient contracting dynamics along a stable manifold of a saddle-type unstable upright equilibrium of the inverted pendulum in the absence of control by inactivating neural feedback control intermittently for compensating delay-induced instability. To this end, the motions of a CIP stabilized by human subjects were experimentally acquired, and computational models of the system were employed to characterize the experimental behaviors. We first confirmed fat-tailed non-Gaussian temporal fluctuation in the acceleration distribution of the pendulum, as well as the power-law distributions of corrective cart movements for skilled subjects, which was previously reported for stick balancing. We then showed that the experimental behaviors could be better described by the models with an intermittent delayed feedback controller than by those with the conventional continuous delayed feedback controller, suggesting that the human CNS stabilizes the upright posture of the pendulum by utilizing the intermittent delayed feedback-control strategy. PMID:27148031
Yoshikawa, Naoya; Suzuki, Yasuyuki; Kiyono, Ken; Nomura, Taishin
2016-01-01
The stabilization of an inverted pendulum on a manually controlled cart (cart-inverted-pendulum; CIP) in an upright position, which is analogous to balancing a stick on a fingertip, is considered in order to investigate how the human central nervous system (CNS) stabilizes unstable dynamics due to mechanical instability and time delays in neural feedback control. We explore the possibility that a type of intermittent time-delayed feedback control, which has been proposed for human postural control during quiet standing, is also a promising strategy for the CIP task and stick balancing on a fingertip. Such a strategy hypothesizes that the CNS exploits transient contracting dynamics along a stable manifold of a saddle-type unstable upright equilibrium of the inverted pendulum in the absence of control by inactivating neural feedback control intermittently for compensating delay-induced instability. To this end, the motions of a CIP stabilized by human subjects were experimentally acquired, and computational models of the system were employed to characterize the experimental behaviors. We first confirmed fat-tailed non-Gaussian temporal fluctuation in the acceleration distribution of the pendulum, as well as the power-law distributions of corrective cart movements for skilled subjects, which was previously reported for stick balancing. We then showed that the experimental behaviors could be better described by the models with an intermittent delayed feedback controller than by those with the conventional continuous delayed feedback controller, suggesting that the human CNS stabilizes the upright posture of the pendulum by utilizing the intermittent delayed feedback-control strategy.
NASA Astrophysics Data System (ADS)
Yang, Tao; Cao, Qingjie
2018-03-01
This work presents analytical studies of the stiffness nonlinearities SD (smooth and discontinuous) oscillator under displacement and velocity feedback control with a time delay. The SD oscillator can capture the qualitative characteristics of quasi-zero-stiffness and negative-stiffness. We focus mainly on the primary resonance of the quasi-zero-stiffness SD oscillator and the stochastic resonance (SR) of the negative-stiffness SD oscillator. Using the averaging method, we have been analyzed the amplitude response of the quasi-zero-stiffness SD oscillator. In this regard, the optimum time delay for changing the control intensity according to the optimization standard proposed can be obtained. For the optimum time delay, increasing the displacement feedback intensity is advantageous to suppress the vibrations in resonant regime where vibration isolation is needed, however, increasing the velocity feedback intensity is advantageous to strengthen the vibrations. Moreover, the effects of time-delayed feedback on the SR of the negative-stiffness SD oscillator are investigated under harmonic forcing and Gaussian white noise, based on the Langevin and Fokker-Planck approaches. The time-delayed feedback can enhance the SR phenomenon where vibrational energy harvesting is needed. This paper established the relationship between the parameters and vibration properties of a stiffness nonlinearities SD which provides the guidance for optimizing time-delayed control for vibration isolation and vibrational energy harvesting of the nonlinear systems.
NASA Astrophysics Data System (ADS)
Siscoe, G. L.
2012-12-01
What is a system? A group of elements interacting with each other so as to create feedback loops. A system gets complex as the number of feedback loops increases and as the feedback loops exhibit time delays. Positive and negative feedback loops with time delays can give a system intrinsic time dependence and emergent properties. A system generally has input and output flows of something (matter, energy, money), which, if time variable, add an extrinsic component to its behavior. The magnetosphere is a group of elements interacting through feedback loops, some with time delays, driven by energy and mass inflow from a variable solar wind and outflow into the atmosphere and solar wind. The magnetosphere is a complex system. With no solar wind, there is no behavior. With solar wind, there is behavior from intrinsic and extrinsic causes. As a contribution to taking a macroscopic view of magnetospheric dynamics, to treating the magnetosphere as a globally integrated, complex entity, I will discus the magnetosphere as a system, its feedback loops, time delays, emergent behavior, and intrinsic and extrinsic behavior modes.
Eye movements in interception with delayed visual feedback.
Cámara, Clara; de la Malla, Cristina; López-Moliner, Joan; Brenner, Eli
2018-07-01
The increased reliance on electronic devices such as smartphones in our everyday life exposes us to various delays between our actions and their consequences. Whereas it is known that people can adapt to such delays, the mechanisms underlying such adaptation remain unclear. To better understand these mechanisms, the current study explored the role of eye movements in interception with delayed visual feedback. In two experiments, eye movements were recorded as participants tried to intercept a moving target with their unseen finger while receiving delayed visual feedback about their own movement. In Experiment 1, the target randomly moved in one of two different directions at one of two different velocities. The delay between the participant's finger movement and movement of the cursor that provided feedback about the finger movements was gradually increased. Despite the delay, participants followed the target with their gaze. They were quite successful at hitting the target with the cursor. Thus, they moved their finger to a position that was ahead of where they were looking. Removing the feedback showed that participants had adapted to the delay. In Experiment 2, the target always moved in the same direction and at the same velocity, while the cursor's delay varied across trials. Participants still always directed their gaze at the target. They adjusted their movement to the delay on each trial, often succeeding to intercept the target with the cursor. Since their gaze was always directed at the target, and they could not know the delay until the cursor started moving, participants must have been using peripheral vision of the delayed cursor to guide it to the target. Thus, people deal with delays by directing their gaze at the target and using both experience from previous trials (Experiment 1) and peripheral visual information (Experiment 2) to guide their finger in a way that will make the cursor hit the target.
Wang, Daming; Wang, Longsheng; Zhao, Tong; Gao, Hua; Wang, Yuncai; Chen, Xianfeng; Wang, Anbang
2017-05-15
Time delay signature (TDS) of a semiconductor laser subject to dispersive optical feedback from a chirped fibre Bragg grating (CFBG) is investigated experimentally and numerically. Different from mirror, CFBG provides additional frequency-dependent delay caused by dispersion, and thus induces external-cavity modes with irregular mode separation rather than a fixed separation induced by mirror feedback. Compared with mirror feedback, the CFBG feedback can greatly depress and even eliminate the TDS, although it leads to a similar quasi-period route to chaos with increases of feedback. In experiments, by using a CFBG with dispersion of 2000ps/nm, the TDS is decreased by 90% to about 0.04 compared with mirror feedback. Furthermore, both numerical and experimental results show that the TDS evolution is quite different: the TDS decreases more quickly down to a lower plateau (even background noise level of autocorrelation function) and never rises again. This evolution tendency is also different from that of FBG feedback, of which the TDS first decreases to a minimal value and then increases again as feedback strength increases. In addition, the CFBG feedback has no filtering effects and does not require amplification for feedback light.
Li, Xiao-Zhou; Li, Song-Sui; Zhuang, Jun-Ping; Chan, Sze-Chun
2015-09-01
A semiconductor laser with distributed feedback from a fiber Bragg grating (FBG) is investigated for random bit generation (RBG). The feedback perturbs the laser to emit chaotically with the intensity being sampled periodically. The samples are then converted into random bits by a simple postprocessing of self-differencing and selecting bits. Unlike a conventional mirror that provides localized feedback, the FBG provides distributed feedback which effectively suppresses the information of the round-trip feedback delay time. Randomness is ensured even when the sampling period is commensurate with the feedback delay between the laser and the grating. Consequently, in RBG, the FBG feedback enables continuous tuning of the output bit rate, reduces the minimum sampling period, and increases the number of bits selected per sample. RBG is experimentally investigated at a sampling period continuously tunable from over 16 ns down to 50 ps, while the feedback delay is fixed at 7.7 ns. By selecting 5 least-significant bits per sample, output bit rates from 0.3 to 100 Gbps are achieved with randomness examined by the National Institute of Standards and Technology test suite.
Comparison of Progressive Prompt Delay with and without Instructive Feedback
ERIC Educational Resources Information Center
Reichow, Brian; Wolery, Mark
2011-01-01
We examined the effectiveness and efficiency of 2 instructional arrangements using progressive prompt delay (PPD) with 3 young children with autism and 1 child with developmental delays. Specifically, we compared PPD with instructive feedback (IF) to PPD without IF in an adapted alternating treatment design. The results suggested that (a) children…
Delayed Auditory Feedback and Movement
ERIC Educational Resources Information Center
Pfordresher, Peter Q.; Dalla Bella, Simone
2011-01-01
It is well known that timing of rhythm production is disrupted by delayed auditory feedback (DAF), and that disruption varies with delay length. We tested the hypothesis that disruption depends on the state of the movement trajectory at the onset of DAF. Participants tapped isochronous rhythms at a rate specified by a metronome while hearing DAF…
The Delphi Process: Some Assumptions and Some Realities.
ERIC Educational Resources Information Center
Waldron, James S.
The effectiveness of the Delphi Technique is evaluated in terms of immediate and delayed controlled information feedback (feedback within 5 seconds as compared with a 24-hour delay); and the relationships that exist among measures of integrative complexity, estimations about the time of occurrence of future events, and time delay between task…
Auditory feedback blocks memory benefits of cueing during sleep
Schreiner, Thomas; Lehmann, Mick; Rasch, Björn
2015-01-01
It is now widely accepted that re-exposure to memory cues during sleep reactivates memories and can improve later recall. However, the underlying mechanisms are still unknown. As reactivation during wakefulness renders memories sensitive to updating, it remains an intriguing question whether reactivated memories during sleep also become susceptible to incorporating further information after the cue. Here we show that the memory benefits of cueing Dutch vocabulary during sleep are in fact completely blocked when memory cues are directly followed by either correct or conflicting auditory feedback, or a pure tone. In addition, immediate (but not delayed) auditory stimulation abolishes the characteristic increases in oscillatory theta and spindle activity typically associated with successful reactivation during sleep as revealed by high-density electroencephalography. We conclude that plastic processes associated with theta and spindle oscillations occurring during a sensitive period immediately after the cue are necessary for stabilizing reactivated memory traces during sleep. PMID:26507814
Analysis of a dc bus system with a nonlinear constant power load and its delayed feedback control.
Konishi, Keiji; Sugitani, Yoshiki; Hara, Naoyuki
2014-02-01
This paper tackles a destabilizing problem of a direct-current (dc) bus system with constant power loads, which can be considered a fundamental problem of dc power grid networks. The present paper clarifies scenarios of the destabilization and applies the well-known delayed-feedback control to the stabilization of the destabilized bus system on the basis of nonlinear science. Further, we propose a systematic procedure for designing the delayed feedback controller. This controller can converge the bus voltage exactly on an unstable operating point without accurate information and can track it using tiny control energy even when a system parameter, such as the power consumption of the load, is slowly varied. These features demonstrate that delayed feedback control can be considered a strong candidate for solving the destabilizing problem.
Output transformations and separation results for feedback linearisable delay systems
NASA Astrophysics Data System (ADS)
Cacace, F.; Conte, F.; Germani, A.
2018-04-01
The class of strict-feedback systems enjoys special properties that make it similar to linear systems. This paper proves that such a class is equivalent, under a change of coordinates, to the wider class of feedback linearisable systems with multiplicative input, when the multiplicative terms are functions of the measured variables only. We apply this result to the control problem of feedback linearisable nonlinear MIMO systems with input and/or output delays. In this way, we provide sufficient conditions under which a separation result holds for output feedback control and moreover a predictor-based controller exists. When these conditions are satisfied, we obtain that the existence of stabilising controllers for arbitrarily large delays in the input and/or the output can be proved for a wider class of systems than previously known.
NASA Astrophysics Data System (ADS)
Zhang, Kemei; Zhao, Cong-Ran; Xie, Xue-Jun
2015-12-01
This paper considers the problem of output feedback stabilisation for stochastic high-order feedforward nonlinear systems with time-varying delay. By using the homogeneous domination theory and solving several troublesome obstacles in the design and analysis, an output feedback controller is constructed to drive the closed-loop system globally asymptotically stable in probability.
My action lasts longer: Potential link between subjective time and agency during voluntary action.
Imaizumi, Shu; Asai, Tomohisa
2017-05-01
Time perception distorts across different phases of bodily movement. During motor execution, sensory feedback matching an internal sensorimotor prediction is perceived to last longer. The sensorimotor prediction also underlies sense of agency. We investigated association between subjective time and agency during voluntary action. Participants performed hand action while watching a video feedback of their hand with various delays to manipulate agency. The perceived duration and agency over the video feedback were judged. Minimal delay of the video feedback resulted in longer perceived duration than the actual duration and stronger agency, while substantial feedback delay resulted in shorter perceived duration and weaker agency. These fluctuations of perceived duration and agency were nullified by the feedback of other's hand instead of their own, but not by inverted feedback from a third-person perspective. Subjective time during action might be associated with agency stemming from sensorimotor prediction, and self-other distinction based on bodily appearance. Copyright © 2017 Elsevier Inc. All rights reserved.
Pornpattananangkul, Narun; Nusslock, Robin
2016-01-01
While almost everyone discounts the value of future rewards over immediate rewards, people differ in their so-called delay-discounting. One of the several factors that may explain individual differences in delay-discounting is reward-processing. To study individual-differences in reward-processing, however, one needs to consider the heterogeneity of neural-activity at each reward-processing stage. Here using EEG, we separated reward-related neural activity into distinct reward-anticipation and reward-outcome stages using time-frequency characteristics. Thirty-seven individuals completed a behavioral delay-discounting task. Reward-processing EEG activity was assessed using a separate reward-learning task, called a reward time-estimation task. During this task, participants were instructed to estimate time duration and were provided performance feedback on a trial-by-trial basis. Participants received monetary-reward for accurate-performance on Reward trials, but not on No-Reward trials. Reward trials, relative to No-Reward trials, enhanced EEG activity during both reward-anticipation stage (including, cued-locked delta power during cue-evaluation and pre-feedback alpha suppression during feedback-anticipation) and at the reward-outcome stage (including, feedback-locked delta, theta and beta power). Moreover, all of these EEG indices correlated with behavioral performance in the time-estimation task, suggesting their essential roles in learning and adjusting performance to maximize winnings in a reward-learning situation. Importantly, enhanced EEG power during Reward trials for 1) pre-feedback alpha suppression, 2) feedback-locked theta and 3) feedback-locked beta was associated with a greater preference for larger-but-delayed rewards. Results highlight the association between a stronger preference toward larger-but-delayed rewards and enhanced reward-processing. Moreover, our reward-processing EEG indices detail the specific stages of reward-processing where these associations occur. PMID:27477630
Feedback in the OSCE: What Do Residents Remember?
Humphrey-Murto, Susan; Mihok, Marika; Pugh, Debra; Touchie, Claire; Halman, Samantha; Wood, Timothy J
2016-01-01
The move to competency-based education has heightened the importance of direct observation of clinical skills and effective feedback. The Objective Structured Clinical Examination (OSCE) is widely used for assessment and affords an opportunity for both direct observation and feedback to occur simultaneously. For feedback to be effective, it should include direct observation, assessment of performance, provision of feedback, reflection, decision making, and use of feedback for learning and change. If one of the goals of feedback is to engage students to think about their performance (i.e., reflection), it would seem imperative that they can recall this feedback both immediately and into the future. This study explores recall of feedback in the context of an OSCE. Specifically, the purpose of this study was to (a) determine the amount and the accuracy of feedback that trainees remember immediately after an OSCE, as well as 1 month later, and (b) assess whether prompting immediate recall improved delayed recall. Internal medicine residents received 2 minutes of verbal feedback from physician examiners in the context of an OSCE. The feedback was audio-recorded and later transcribed. Residents were randomly allocated to the immediate recall group (immediate-RG; n = 10) or the delayed recall group (delayed-RG; n = 8). The immediate-RG completed a questionnaire prompting recall of feedback received immediately after the OSCE, and then again 1 month later. The delayed-RG completed a questionnaire only 1 month after the OSCE. The total number and accuracy of feedback points provided by examiners were compared to the points recalled by residents. Results comparing recall at 1 month between the immediate-RG and the delayed-RG were also studied. Physician examiners provided considerably more feedback points (M = 16.3) than the residents recalled immediately after the OSCE (M = 2.61, p < .001). There was no significant difference between the number of feedback points recalled upon completion of the OSCE (2.61) compared to 1 month later (M = 1.96, p = .06, Cohen's d = .70). Prompting immediate recall did not improve later recall. The mean accuracy score for feedback recall immediately after the OSCE was 4.3/9 or "somewhat representative," and at 1 month the score dropped to 3.5/9 or "not representative" (ns). Residents recall very few feedback points immediately after the OSCE and 1 month later. The feedback points that are recalled are neither very accurate nor representative of the feedback actually provided.
ERIC Educational Resources Information Center
Appelman, Michelle; Vail, Cynthia O.; Lieberman-Betz, Rebecca G.
2014-01-01
The authors of this study evaluated the acquisition of instructive feedback information presented to four kindergarten children with mild delays taught in dyads using a constant time delay (CTD) procedure. They also assessed the learning of observational (dyadic partner) information within this instructional arrangement. A multiple probe design…
Nonlinear Time Delayed Feedback Control of Aeroelastic Systems: A Functional Approach
NASA Technical Reports Server (NTRS)
Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.
2003-01-01
In addition to its intrinsic practical importance, nonlinear time delayed feedback control applied to lifting surfaces can result in interesting aeroelastic behaviors. In this paper, nonlinear aeroelastic response to external time-dependent loads and stability boundary for actively controlled lifting surfaces, in an incompressible flow field, are considered. The structural model and the unsteady aerodynamics are considered linear. The implications of the presence of time delays in the linear/nonlinear feedback control and of geometrical parameters on the aeroelasticity of lifting surfaces are analyzed and conclusions on their implications are highlighted.
Effects of kinesthetic and cutaneous stimulation during the learning of a viscous force field.
Rosati, Giulio; Oscari, Fabio; Pacchierotti, Claudio; Prattichizzo, Domenico
2014-01-01
Haptic stimulation can help humans learn perceptual motor skills, but the precise way in which it influences the learning process has not yet been clarified. This study investigates the role of the kinesthetic and cutaneous components of haptic feedback during the learning of a viscous curl field, taking also into account the influence of visual feedback. We present the results of an experiment in which 17 subjects were asked to make reaching movements while grasping a joystick and wearing a pair of cutaneous devices. Each device was able to provide cutaneous contact forces through a moving platform. The subjects received visual feedback about joystick's position. During the experiment, the system delivered a perturbation through (1) full haptic stimulation, (2) kinesthetic stimulation alone, (3) cutaneous stimulation alone, (4) altered visual feedback, or (5) altered visual feedback plus cutaneous stimulation. Conditions 1, 2, and 3 were also tested with the cancellation of the visual feedback of position error. Results indicate that kinesthetic stimuli played a primary role during motor adaptation to the viscous field, which is a fundamental premise to motor learning and rehabilitation. On the other hand, cutaneous stimulation alone appeared not to bring significant direct or adaptation effects, although it helped in reducing direct effects when used in addition to kinesthetic stimulation. The experimental conditions with visual cancellation of position error showed slower adaptation rates, indicating that visual feedback actively contributes to the formation of internal models. However, modest learning effects were detected when the visual information was used to render the viscous field.
Pornpattananangkul, Narun; Nusslock, Robin
2016-10-01
While almost everyone discounts the value of future rewards over immediate rewards, people differ in their so-called delay-discounting. One of the several factors that may explain individual differences in delay-discounting is reward-processing. To study individual-differences in reward-processing, however, one needs to consider the heterogeneity of neural-activity at each reward-processing stage. Here using EEG, we separated reward-related neural activity into distinct reward-anticipation and reward-outcome stages using time-frequency characteristics. Thirty-seven individuals first completed a behavioral delay-discounting task. Then reward-processing EEG activity was assessed using a separate reward-learning task, called a reward time-estimation task. During this EEG task, participants were instructed to estimate time duration and were provided performance feedback on a trial-by-trial basis. Participants received monetary-reward for accurate-performance on Reward trials, but not on No-Reward trials. Reward trials, relative to No-Reward trials, enhanced EEG activity during both reward-anticipation (including, cued-locked delta power during cue-evaluation and pre-feedback alpha suppression during feedback-anticipation) and reward-outcome (including, feedback-locked delta, theta and beta power) stages. Moreover, all of these EEG indices correlated with behavioral performance in the time-estimation task, suggesting their essential roles in learning and adjusting performance to maximize winnings in a reward-learning situation. Importantly, enhanced EEG power during Reward trials, as reflected by stronger 1) pre-feedback alpha suppression, 2) feedback-locked theta and 3) feedback-locked beta, was associated with a greater preference for larger-but-delayed rewards in a separate, behavioral delay-discounting task. Results highlight the association between a stronger preference toward larger-but-delayed rewards and enhanced reward-processing. Moreover, our reward-processing EEG indices detail the specific stages of reward-processing where these associations occur. Copyright © 2016 Elsevier Ltd. All rights reserved.
Delays in using chromatic and luminance information to correct rapid reaches.
Kane, Adam; Wade, Alex; Ma-Wyatt, Anna
2011-09-07
People can use feedback to make online corrections to movements but only if there is sufficient time to integrate the new information and make the correction. A key variable in this process is therefore the speed at which the new information about the target location is coded. Conduction velocities for chromatic signals are lower than for achromatic signals so it may take longer to correct reaches to chromatic stimuli. In addition to this delay, the sensorimotor system may prefer achromatic information over the chromatic information as delayed information may be less valuable when movements are made under time pressure. A down-weighting of chromatic information may result in additional latencies for chromatically directed reaches. In our study, participants made online corrections to reaches to achromatic, (L-M)-cone, and S-cone stimuli. Our chromatic stimuli were carefully adjusted to minimize stimulation of achromatic pathways, and we equated stimuli both in terms of detection thresholds and also by their estimated neural responses. Similar stimuli were used throughout the subjective adjustments and final reaching experiment. Using this paradigm, we found that responses to achromatic stimuli were only slightly faster than responses to (L-M)-cone and S-cone stimuli. We conclude that the sensorimotor system treats chromatic and achromatic information similarly and that the delayed chromatic responses primarily reflect early conduction delays.
ERIC Educational Resources Information Center
Sturges, Persis T.
This experiment was designed to test the effect of immediate and delayed feedback on retention of learning in an educational situation. Four groups of college undergraduates took a multiple-choice computer-managed test. Three of these groups received informative feedback (the entire item with the correct answer identified) either: (1) immediately…
NASA Technical Reports Server (NTRS)
Luck, Rogelio; Ray, Asok
1990-01-01
A procedure for compensating for the effects of distributed network-induced delays in integrated communication and control systems (ICCS) is proposed. The problem of analyzing systems with time-varying and possibly stochastic delays could be circumvented by use of a deterministic observer which is designed to perform under certain restrictive but realistic assumptions. The proposed delay-compensation algorithm is based on a deterministic state estimator and a linear state-variable-feedback control law. The deterministic observer can be replaced by a stochastic observer without any structural modifications of the delay compensation algorithm. However, if a feedforward-feedback control law is chosen instead of the state-variable feedback control law, the observer must be modified as a conventional nondelayed system would be. Under these circumstances, the delay compensation algorithm would be accordingly changed. The separation principle of the classical Luenberger observer holds true for the proposed delay compensator. The algorithm is suitable for ICCS in advanced aircraft, spacecraft, manufacturing automation, and chemical process applications.
Stability and Bifurcation Analysis in a Maglev System with Multiple Delays
NASA Astrophysics Data System (ADS)
Zhang, Lingling; Huang, Jianhua; Huang, Lihong; Zhang, Zhizhou
This paper considers the time-delayed feedback control for Maglev system with two discrete time delays. We determine constraints on the feedback time delays which ensure the stability of the Maglev system. An algorithm is developed for drawing a two-parametric bifurcation diagram with respect to two delays τ1 and τ2. Direction and stability of periodic solutions are also determined using the normal form method and center manifold theory by Hassard. The complex dynamical behavior of the Maglev system near the domain of stability is confirmed by exhaustive numerical simulation.
Theory of feedback controlled brain stimulations for Parkinson's disease
NASA Astrophysics Data System (ADS)
Sanzeni, A.; Celani, A.; Tiana, G.; Vergassola, M.
2016-01-01
Limb tremor and other debilitating symptoms caused by the neurodegenerative Parkinson's disease are currently treated by administering drugs and by fixed-frequency deep brain stimulation. The latter interferes directly with the brain dynamics by delivering electrical impulses to neurons in the subthalamic nucleus. While deep brain stimulation has shown therapeutic benefits in many instances, its mechanism is still unclear. Since its understanding could lead to improved protocols of stimulation and feedback control, we have studied a mathematical model of the many-body neural network dynamics controlling the dynamics of the basal ganglia. On the basis of the results obtained from the model, we propose a new procedure of active stimulation, that depends on the feedback of the network and that respects the constraints imposed by existing technology. We show by numerical simulations that the new protocol outperforms the standard ones for deep brain stimulation and we suggest future experiments that could further improve the feedback procedure.
Revival of oscillations from deaths in diffusively coupled nonlinear systems: Theory and experiment
NASA Astrophysics Data System (ADS)
Zou, Wei; Sebek, Michael; Kiss, István Z.; Kurths, Jürgen
2017-06-01
Amplitude death (AD) and oscillation death (OD) are two structurally different oscillation quenching phenomena in coupled nonlinear systems. As a reverse issue of AD and OD, revival of oscillations from deaths attracts an increasing attention recently. In this paper, we clearly disclose that a time delay in the self-feedback component of the coupling destabilizes not only AD but also OD, and even the AD to OD transition in paradigmatic models of coupled Stuart-Landau oscillators under diverse death configurations. Using a rigorous analysis, the effectiveness of this self-feedback delay in revoking AD is theoretically proved to be valid in an arbitrary network of coupled Stuart-Landau oscillators with generally distributed propagation delays. Moreover, the role of self-feedback delay in reviving oscillations from AD is experimentally verified in two delay-coupled electrochemical reactions.
Revival of oscillations from deaths in diffusively coupled nonlinear systems: Theory and experiment.
Zou, Wei; Sebek, Michael; Kiss, István Z; Kurths, Jürgen
2017-06-01
Amplitude death (AD) and oscillation death (OD) are two structurally different oscillation quenching phenomena in coupled nonlinear systems. As a reverse issue of AD and OD, revival of oscillations from deaths attracts an increasing attention recently. In this paper, we clearly disclose that a time delay in the self-feedback component of the coupling destabilizes not only AD but also OD, and even the AD to OD transition in paradigmatic models of coupled Stuart-Landau oscillators under diverse death configurations. Using a rigorous analysis, the effectiveness of this self-feedback delay in revoking AD is theoretically proved to be valid in an arbitrary network of coupled Stuart-Landau oscillators with generally distributed propagation delays. Moreover, the role of self-feedback delay in reviving oscillations from AD is experimentally verified in two delay-coupled electrochemical reactions.
NASA Astrophysics Data System (ADS)
Guo, Chenyu; Zhang, Weidong; Bao, Jie
2012-02-01
This article is concerned with the problem of robust H ∞ output feedback control for a kind of networked control systems with time-varying network-induced delays. Instead of using boundaries of time delays to represent all time delays, the occurrence probability of each time delay is considered in H∞ stability analysis and stabilisation. The problem addressed is the design of an output feedback controller such that, for all admissible uncertainties, the resulting closed-loop system is stochastically stable for the zero disturbance input and also simultaneously achieves a prescribed H∞ performance level. It is shown that less conservativeness is obtained. A set of linear matrix inequalities is given to solve the corresponding controller design problem. An example is provided to show the effectiveness and applicability of the proposed method.
Dynamics of localized structures in reaction-diffusion systems induced by delayed feedback
NASA Astrophysics Data System (ADS)
Gurevich, Svetlana V.
2013-05-01
We are interested in stability properties of a single localized structure in a three-component reaction-diffusion system subjected to the time-delayed feedback. We shall show that variation in the product of the delay time and the feedback strength leads to complex dynamical behavior of the system, including formation of target patterns, spontaneous motion, and spontaneous breathing as well as various complex structures, arising from combination of different oscillatory instabilities. In the case of spontaneous motion, we provide a bifurcation analysis of the delayed system and derive an order parameter equation for the position of the localized structure, explicitly describing its temporal evolution in the vicinity of the bifurcation point. This equation is a subject to a nonlinear delay differential equation, which can be transformed to the normal form of the pitchfork drift bifurcation.
NASA Astrophysics Data System (ADS)
Meng, Su; Chen, Jie; Sun, Jian
2017-10-01
This paper investigates the problem of observer-based output feedback control for networked control systems with non-uniform sampling and time-varying transmission delay. The sampling intervals are assumed to vary within a given interval. The transmission delay belongs to a known interval. A discrete-time model is first established, which contains time-varying delay and norm-bounded uncertainties coming from non-uniform sampling intervals. It is then converted to an interconnection of two subsystems in which the forward channel is delay-free. The scaled small gain theorem is used to derive the stability condition for the closed-loop system. Moreover, the observer-based output feedback controller design method is proposed by utilising a modified cone complementary linearisation algorithm. Finally, numerical examples illustrate the validity and superiority of the proposed method.
NASA Astrophysics Data System (ADS)
Tlidi, M.; Averlant, E.; Vladimirov, A.; Panajotov, K.
2012-09-01
We consider a broad area vertical-cavity surface-emitting laser (VCSEL) operating below the lasing threshold and subject to optical injection and time-delayed feedback. We derive a generalized delayed Swift-Hohenberg equation for the VCSEL system, which is valid close to the nascent optical bistability. We first characterize the stationary-cavity solitons by constructing their snaking bifurcation diagram and by showing clustering behavior within the pinning region of parameters. Then, we show that the delayed feedback induces a spontaneous motion of two-dimensional (2D) cavity solitons in an arbitrary direction in the transverse plane. We characterize moving cavity solitons by estimating their threshold and calculating their velocity. Numerical 2D solutions of the governing semiconductor laser equations are in close agreement with those obtained from the delayed generalized Swift-Hohenberg equation.
Acceleration feedback improves balancing against reflex delay
Insperger, Tamás; Milton, John; Stépán, Gábor
2013-01-01
A model for human postural balance is considered in which the time-delayed feedback depends on position, velocity and acceleration (proportional–derivative–acceleration (PDA) feedback). It is shown that a PDA controller is equivalent to a predictive controller, in which the prediction is based on the most recent information of the state, but the control input is not involved into the prediction. A PDA controller is superior to the corresponding proportional–derivative controller in the sense that the PDA controller can stabilize systems with approximately 40 per cent larger feedback delays. The addition of a sensory dead zone to account for the finite thresholds for detection by sensory receptors results in highly intermittent, complex oscillations that are a typical feature of human postural sway. PMID:23173196
State feedback controller design for the synchronization of Boolean networks with time delays
NASA Astrophysics Data System (ADS)
Li, Fangfei; Li, Jianning; Shen, Lijuan
2018-01-01
State feedback control design to make the response Boolean network synchronize with the drive Boolean network is far from being solved in the literature. Motivated by this, this paper studies the feedback control design for the complete synchronization of two coupled Boolean networks with time delays. A necessary condition for the existence of a state feedback controller is derived first. Then the feedback control design procedure for the complete synchronization of two coupled Boolean networks is provided based on the necessary condition. Finally, an example is given to illustrate the proposed design procedure.
Mode Selection Rules for a Two-Delay System with Positive and Negative Feedback Loops
NASA Astrophysics Data System (ADS)
Takahashi, Kin'ya; Kobayashi, Taizo
2018-04-01
The mode selection rules for a two-delay system, which has negative feedback with a short delay time t1 and positive feedback with a long delay time t2, are studied numerically and theoretically. We find two types of mode selection rules depending on the strength of the negative feedback. When the strength of the negative feedback |α1| (α1 < 0) is sufficiently small compared with that of the positive feedback α2 (> 0), 2m + 1-th harmonic oscillation is well sustained in a neighborhood of t1/t2 = even/odd, i.e., relevant condition. In a neighborhood of the irrelevant condition given by t1/t2 = odd/even or t1/t2 = odd/odd, higher harmonic oscillations are observed. However, if |α1| is slightly less than α2, a different mode selection rule works, where the condition t1/t2 = odd/even is relevant and the conditions t1/t2 = odd/odd and t1/t2 = even/odd are irrelevant. These mode selection rules are different from the mode selection rule of the normal two-delay system with two positive feedback loops, where t1/t2 = odd/odd is relevant and the others are irrelevant. The two types of mode selection rules are induced by individually different mechanisms controlling the Hopf bifurcation, i.e., the Hopf bifurcation controlled by the "boosted bifurcation process" and by the "anomalous bifurcation process", which occur for |α1| below and above the threshold value αth, respectively.
ERIC Educational Resources Information Center
Timmons, Beverly A.; Boudreau, James P.
Reported are five studies on the use of delayed auditory feedback (DAF) with stutterers. The first study indicates that sex differences and age differences in temporal reaction were found when subjects (5-, 7-, 9-, 11-, and 13-years-old) recited a nursery rhyme under DAF and NAF (normal auditory feedback) conditions. The second study is reported…
NASA Astrophysics Data System (ADS)
Qin, Shunda; Ge, Hongxia; Cheng, Rongjun
2018-02-01
In this paper, a new lattice hydrodynamic model is proposed by taking delay feedback and flux change rate effect into account in a single lane. The linear stability condition of the new model is derived by control theory. By using the nonlinear analysis method, the mKDV equation near the critical point is deduced to describe the traffic congestion. Numerical simulations are carried out to demonstrate the advantage of the new model in suppressing traffic jam with the consideration of flux change rate effect in delay feedback model.
Delayed feedback control in quantum transport.
Emary, Clive
2013-09-28
Feedback control in quantum transport has been predicted to give rise to several interesting effects, among them quantum state stabilization and the realization of a mesoscopic Maxwell's daemon. These results were derived under the assumption that control operations on the system are affected instantaneously after the measurement of electronic jumps through it. In this contribution, I describe how to include a delay between detection and control operation in the master equation theory of feedback-controlled quantum transport. I investigate the consequences of delay for the state stabilization and Maxwell's daemon schemes. Furthermore, I describe how delay can be used as a tool to probe coherent oscillations of electrons within a transport system and how this formalism can be used to model finite detector bandwidth.
Dagnino, Bruno; Gariel-Mathis, Marie-Alice
2014-01-01
Previous transcranial magnetic stimulation (TMS) studies suggested that feedback from higher to lower areas of the visual cortex is important for the access of visual information to awareness. However, the influence of cortico-cortical feedback on awareness and the nature of the feedback effects are not yet completely understood. In the present study, we used electrical microstimulation in the visual cortex of monkeys to test the hypothesis that cortico-cortical feedback plays a role in visual awareness. We investigated the interactions between the primary visual cortex (V1) and area V4 by applying microstimulation in both cortical areas at various delays. We report that the monkeys detected the phosphenes produced by V1 microstimulation but subthreshold V4 microstimulation did not influence V1 phosphene detection thresholds. A second experiment examined the influence of V4 microstimulation on the monkeys' ability to detect the dimming of one of three peripheral visual stimuli. Again, microstimulation of a group of V4 neurons failed to modulate the monkeys' perception of a stimulus in their receptive field. We conclude that conditions exist where microstimulation of area V4 has only a limited influence on visual perception. PMID:25392172
Dagnino, Bruno; Gariel-Mathis, Marie-Alice; Roelfsema, Pieter R
2015-02-01
Previous transcranial magnetic stimulation (TMS) studies suggested that feedback from higher to lower areas of the visual cortex is important for the access of visual information to awareness. However, the influence of cortico-cortical feedback on awareness and the nature of the feedback effects are not yet completely understood. In the present study, we used electrical microstimulation in the visual cortex of monkeys to test the hypothesis that cortico-cortical feedback plays a role in visual awareness. We investigated the interactions between the primary visual cortex (V1) and area V4 by applying microstimulation in both cortical areas at various delays. We report that the monkeys detected the phosphenes produced by V1 microstimulation but subthreshold V4 microstimulation did not influence V1 phosphene detection thresholds. A second experiment examined the influence of V4 microstimulation on the monkeys' ability to detect the dimming of one of three peripheral visual stimuli. Again, microstimulation of a group of V4 neurons failed to modulate the monkeys' perception of a stimulus in their receptive field. We conclude that conditions exist where microstimulation of area V4 has only a limited influence on visual perception. Copyright © 2015 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Faria, Teresa; Oliveira, José J.
This paper addresses the local and global stability of n-dimensional Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks. Necessary and sufficient conditions for local stability independent of the choice of the delay functions are given, by imposing a weak nondelayed diagonal dominance which cancels the delayed competition effect. The global asymptotic stability of positive equilibria is established under conditions slightly stronger than the ones required for the linear stability. For the case of monotone interactions, however, sharper conditions are presented. This paper generalizes known results for discrete delays to systems with distributed delays. Several applications illustrate the results.
Rouhollahi, Korosh; Emadi Andani, Mehran; Karbassi, Seyed Mahdi; Izadi, Iman
2017-02-01
Deep brain stimulation (DBS) is an efficient therapy to control movement disorders of Parkinson's tremor. Stimulation of one area of basal ganglia (BG) by DBS with no feedback is the prevalent opinion. Reduction of additional stimulatory signal delivered to the brain is the advantage of using feedback. This results in reduction of side effects caused by the excessive stimulation intensity. In fact, the stimulatory intensity of controllers is decreased proportional to reduction of hand tremor. The objective of this study is to design a new controller structure to decrease three indicators: (i) the hand tremor; (ii) the level of delivered stimulation in disease condition; and (iii) the ratio of the level of delivered stimulation in health condition to disease condition. For this purpose, the authors offer a new closed-loop control structure to stimulate two areas of BG simultaneously. One area (STN: subthalamic nucleus) is stimulated by an adaptive controller with feedback error learning. The other area (GPi: globus pallidus internal) is stimulated by a partial state feedback (PSF) controller. Considering the three indicators, the results show that, stimulating two areas simultaneously leads to better performance compared with stimulating one area only. It is shown that both PSF and adaptive controllers are robust regarding system parameter uncertainties. In addition, a method is proposed to update the parameters of the BG model in real time. As a result, the parameters of the controllers can be updated based on the new parameters of the BG model.
Effect of metrology time delay on overlay APC
NASA Astrophysics Data System (ADS)
Carlson, Alan; DiBiase, Debra
2002-07-01
The run-to-run control strategy of lithography APC is primarily composed of a feedback loop as shown in the diagram below. It is known that the insertion of a time delay in a feedback loop can cause degradation in control performance and could even cause a stable system to become unstable, if the time delay becomes sufficiently large. Many proponents of integrated metrology methods have cited the damage caused by metrology time delays as the primary justification for moving from a stand-alone to integrated metrology. While there is little dispute over the qualitative form of this argument, there has been very light published about the quantitative effects under real fab conditions - precisely how much control is lost due to these time delays. Another issue regarding time delays is that the length of these delays is not typically fixed - they vary from lot to lot and in some cases this variance can be large - from one hour on the short side to over 32 hours on the long side. Concern has been expressed that the variability in metrology time delays can cause undesirable dynamics in feedback loops that make it difficult to optimize feedback filters and gains and at worst could drive a system unstable. By using data from numerous fabs, spanning many sizes and styles of operation, we have conducted a quantitative study of the time delay effect on overlay run- to-run control. Our analysis resulted in the following conclusions: (1) There is a significant and material relationship between metrology time delay and overlay control under a variety of real world production conditions. (2) The run-to-run controller can be configured to minimize sensitivity to time delay variations. (3) The value of moving to integrated metrology can be quantified.
Saccadic interception of a moving visual target after a spatiotemporal perturbation.
Fleuriet, Jérome; Goffart, Laurent
2012-01-11
Animals can make saccadic eye movements to intercept a moving object at the right place and time. Such interceptive saccades indicate that, despite variable sensorimotor delays, the brain is able to estimate the current spatiotemporal (hic et nunc) coordinates of a target at saccade end. The present work further tests the robustness of this estimate in the monkey when a change in eye position and a delay are experimentally added before the onset of the saccade and in the absence of visual feedback. These perturbations are induced by brief microstimulation in the deep superior colliculus (dSC). When the microstimulation moves the eyes in the direction opposite to the target motion, a correction saccade brings gaze back on the target path or very near. When it moves the eye in the same direction, the performance is more variable and depends on the stimulated sites. Saccades fall ahead of the target with an error that increases when the stimulation is applied more caudally in the dSC. The numerous cases of compensation indicate that the brain is able to maintain an accurate and robust estimate of the location of the moving target. The inaccuracies observed when stimulating the dSC that encodes the visual field traversed by the target indicate that dSC microstimulation can interfere with signals encoding the target motion path. The results are discussed within the framework of the dual-drive and the remapping hypotheses.
Gurevich, Svetlana V
2014-10-28
The dynamics of a single breathing localized structure in a three-component reaction-diffusion system subjected to time-delayed feedback is investigated. It is shown that variation of the delay time and the feedback strength can lead either to stabilization of the breathing or to delay-induced periodic or quasi-periodic oscillations of the localized structure. A bifurcation analysis of the system in question is provided and an order parameter equation is derived that describes the dynamics of the localized structure in the vicinity of the Andronov-Hopf bifurcation. With the aid of this equation, the boundaries of the stabilization domains as well as the dependence of the oscillation radius on delay parameters can be explicitly derived, providing a robust mechanism to control the behaviour of the breathing localized structure in a straightforward manner. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Theory of repetitively pulsed operation of diode lasers subject to delayed feedback
DOE Office of Scientific and Technical Information (OSTI.GOV)
Napartovich, A P; Sukharev, A G
2015-03-31
Repetitively pulsed operation of a diode laser with delayed feedback has been studied theoretically at varying feedback parameters and pump power levels. A new approach has been proposed that allows one to reduce the system of Lang–Kobayashi equations for a steady-state repetitively pulsed operation mode to a first-order nonlinear differential equation. We present partial solutions that allow the pulse shape to be predicted. (lasers)
Bi-frontal direct current stimulation affects delay discounting choices.
Hecht, David; Walsh, Vincent; Lavidor, Michal
2013-01-01
In delay discounting tasks, participants decide between receiving a certain amount of money now or a larger sum sometime in the future. This study investigated the effects of transcranial direct current stimulation on delay discounting. Participants made delay discounting choices while receiving a bi-frontal stimulation of right-hemisphere anodal/left-hemisphere cathodal, left-hemisphere anodal/right-hemisphere cathodal, and sham stimulation, in three separate sessions. When the difference between the alternatives was 10% or more, participants generally preferred to wait for the larger sum. Nevertheless, there were more choices of smaller "immediate" gains, instead of the larger delayed options, when the left dorsolateral prefrontal cortex (DLPFC) was facilitated and the right DLPFC inhibited, compared to the sham stimulation. These observations indicate the significant role of the prefrontal cortex in delay discounting choices, and demonstrate that increased left frontal activation combined with decreased right frontal activation can alter decision-making by intensifying a tendency to choose immediate gains.
The Accuracy of Computer-Assisted Feedback and Students' Responses to It
ERIC Educational Resources Information Center
Lavolette, Elizabeth; Polio, Charlene; Kahng, Jimin
2015-01-01
Various researchers in second language acquisition have argued for the effectiveness of immediate rather than delayed feedback. In writing, truly immediate feedback is impractical, but computer-assisted feedback provides a quick way of providing feedback that also reduces the teacher's workload. We explored the accuracy of feedback from…
Stepp, Cara E; Matsuoka, Yoky
2012-01-01
Incorporating sensory feedback with prosthetic devices is now possible, but the optimal methods of providing such feedback are still unknown. The relative utility of amplitude and pulse train frequency modulated stimulation paradigms for providing vibrotactile feedback for object manipulation was assessed in 10 participants. The two approaches were studied during virtual object manipulation using a robotic interface as a function of presentation order and a simultaneous cognitive load. Despite the potential pragmatic benefits associated with pulse train frequency modulated vibrotactile stimulation, comparison of the approach with amplitude modulation indicates that amplitude modulation vibrotactile stimulation provides superior feedback for object manipulation.
Identification of neural structures involved in stuttering using vibrotactile feedback.
Cheadle, Oliver; Sorger, Clarissa; Howell, Peter
Feedback delivered over auditory and vibratory afferent pathways has different effects on the fluency of people who stutter (PWS). These features were exploited to investigate the neural structures involved in stuttering. The speech signal vibrated locations on the body (vibrotactile feedback, VTF). Eleven PWS read passages under VTF and control (no-VTF) conditions. All combinations of vibration amplitude, synchronous or delayed VTF and vibrator position (hand, sternum or forehead) were presented. Control conditions were performed at the beginning, middle and end of test sessions. Stuttering rate, but not speaking rate, differed between the control and VTF conditions. Notably, speaking rate did not change between when VTF was delayed versus when it was synchronous in contrast with what happens with auditory feedback. This showed that cerebellar mechanisms, which are affected when auditory feedback is delayed, were not implicated in the fluency-enhancing effects of VTF, suggesting that there is a second fluency-enhancing mechanism. Copyright © 2018 Elsevier Inc. All rights reserved.
Nguimdo, Romain Modeste; Lacot, Eric; Jacquin, Olivier; Hugon, Olivier; Van der Sande, Guy; Guillet de Chatellus, Hugues
2017-02-01
Reservoir computing (RC) systems are computational tools for information processing that can be fully implemented in optics. Here, we experimentally and numerically show that an optically pumped laser subject to optical delayed feedback can yield similar results to those obtained for electrically pumped lasers. Unlike with previous implementations, the input data are injected at a time interval that is much larger than the time-delay feedback. These data are directly coupled to the feedback light beam. Our results illustrate possible new avenues for RC implementations for prediction tasks.
Two-actor conflict with time delay: A dynamical model
NASA Astrophysics Data System (ADS)
Qubbaj, Murad R.; Muneepeerakul, Rachata
2012-11-01
Recent mathematical dynamical models of the conflict between two different actors, be they nations, groups, or individuals, have been developed that are capable of predicting various outcomes depending on the chosen feedback strategies, initial conditions, and the previous states of the actors. In addition to these factors, this paper examines the effect of time delayed feedback on the conflict dynamics. Our analysis shows that under certain initial and feedback conditions, a stable neutral equilibrium of conflict may destabilize for some critical values of time delay, and the two actors may evolve to new emotional states. We investigate the results by constructing critical delay surfaces for different sets of parameters and analyzing results from numerical simulations. These results provide new insights regarding conflict and conflict resolution and may help planners in adjusting and assessing their strategic decisions.
EFFECT OF DELAYED AUDITORY FEEDBACK, SPEECH RATE, AND SEX ON SPEECH PRODUCTION.
Stuart, Andrew; Kalinowski, Joseph
2015-06-01
Perturbations in Delayed Auditory Feedback (DAF) and speech rate were examined as sources of disruptions in speech between men and women. Fluent adult men (n = 16) and women (n = 16) spoke at a normal and an imposed fast rate of speech with 0, 25, 50, 100, and 200 msec. DAF. The syllable rate significantly increased when participants were instructed to speak at a fast rate, and the syllable rate decreased with increasing DAF delays. Men's speech rate was significantly faster during the fast speech rate condition with a 200 msec. DAF. Disfluencies increased with increasing DAF delay. Significantly more disfluency occurred at delays of 25 and 50 msec. at the fast rate condition, while more disfluency occurred at 100 and 200 msec. in normal rate conditions. Men and women did not display differences in the number of disfluencies. These findings demonstrate sex differences in susceptibility to perturbations in DAF and speech rate suggesting feedforward/feedback subsystems that monitor vocalizations may be different between sexes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boubendir, Yassine; Mendez, Vicenc; Rotstein, Horacio G.
2010-09-15
We study the evolution of fronts in a bistable equation with time-delayed global feedback in the fast reaction and slow diffusion regime. This equation generalizes the Hodgkin-Grafstein and Allen-Cahn equations. We derive a nonlinear equation governing the motion of fronts, which includes a term with delay. In the one-dimensional case this equation is linear. We study the motion of one- and two-dimensional fronts, finding a much richer dynamics than for the previously studied cases (without time-delayed global feedback). We explain the mechanism by which localized fronts created by inhibitory global coupling loose stability in a Hopf bifurcation as the delaymore » time increases. We show that for certain delay times, the prevailing phase is different from that corresponding to the system in the absence of global coupling. Numerical simulations of the partial differential equation are in agreement with the analytical predictions.« less
Modulating resonance behaviors by noise recycling in bistable systems with time delay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Zhongkui, E-mail: sunzk2008@gmail.com; Xu, Wei; Yang, Xiaoli
In this paper, the impact of noise recycling on resonance behaviors is studied theoretically and numerically in a prototypical bistable system with delayed feedback. According to the interior cooperating and interacting activity of noise recycling, a theory has been proposed by reducing the non-Markovian problem into a two-state model, wherein both the master equation and the transition rates depend on not only the current state but also the earlier two states due to the recycling lag and the feedback delay. By virtue of this theory, the formulae of the power spectrum density and the linear response function have been foundmore » analytically. And the theoretical results are well verified by numerical simulations. It has been demonstrated that both the recycling lag and the feedback delay play a crucial role in the resonance behaviors. In addition, the results also suggest an alternative scheme to modulate or control the coherence or stochastic resonance in bistable systems with time delay.« less
Zhang, Yinping; Wang, Qing-Guo
2008-12-01
In the referenced paper, there is technical carelessness in the third lemma and in the main result. Hence, it is a possible failure when the result is used to design the intermittent linear state feedback controller for exponential synchronization of two chaotic delayed systems.
NASA Astrophysics Data System (ADS)
Tang, X. H.; Zou, Xingfu
We consider a non-autonomous Lotka-Volterra competition system with distributed delays but without instantaneous negative feedbacks (i.e., pure delay systems). We establish some 3/2-type and M-matrix-type criteria for global attractivity of the positive equilibrium of the system, which generalise and improve the existing ones.
The effect of modifying response and performance feedback parameters on the CNV in humans
NASA Technical Reports Server (NTRS)
Otto, D. A.; Leifer, L. J.
1972-01-01
The effect on the CNV of sustained and delayed motor response with the dominant and nondominant hand in the presence and absence of visual performance feedback, was studied in 15 male adults. Monopolar scalp recordings were obtained at Fz, Cz, Pz, and bilaterally over the motor hand area. Results indicated that the magnitude of the CNV was greater in the delayed than sustained response task, greater in the presence than absence of feedback, and greater over the motor hand area contralateral to movement. Frontal CNV habituated in the sustained, but not the delayed response task, suggested that frontal negative variations in the former case signify an orienting response to novelty or uncertainty. The absence of habituation in the delay condition was interpreted in terms of the motor inhibitory function of frontal association cortex. Performance feedback appeared to enhance CNV indirectly by increasing the motivation of subjects. A multiprocess conception of CNV was proposed in which vortex-negative slow potentials reflect a multiplicity of psychophysiological processes occurring at a variety of cortical and subcortical locations in the brain preparatory to a motor or mental action.
Learning from Feedback: Spacing and the Delay-Retention Effect
ERIC Educational Resources Information Center
Smith, Troy A.; Kimball, Daniel R.
2010-01-01
Most modern research on the effects of feedback during learning has assumed that feedback is an error correction mechanism. Recent studies of feedback-timing effects have suggested that feedback might also strengthen initially correct responses. In an experiment involving cued recall of trivia facts, we directly tested several theories of…
Feedback in Action--The Mechanism of the Iris.
ERIC Educational Resources Information Center
Pingnet, B.; And Others
1988-01-01
Describes two demonstration experiments. Outlines a demonstration of the general principle of positive and negative feedback and the influence of time delays in feedback circuits. Elucidates the principle of negative feedback with a model of the iris of the eye. Emphasizes the importance of feedback in biological systems. (CW)
NASA Technical Reports Server (NTRS)
Milman, M. H.
1985-01-01
A factorization approach is presented for deriving approximations to the optimal feedback gain for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the feedback kernels.
The Trade-Off Mechanism in Mammalian Circadian Clock Model with Two Time Delays
NASA Astrophysics Data System (ADS)
Yan, Jie; Kang, Xiaxia; Yang, Ling
Circadian clock is an autonomous oscillator which orchestrates the daily rhythms of physiology and behaviors. This study is devoted to explore how a positive feedback loop affects the dynamics of mammalian circadian clock. We simplify an experimentally validated mathematical model in our previous work, to a nonlinear differential equation with two time delays. This simplified mathematical model incorporates the pacemaker of mammalian circadian clock, a negative primary feedback loop, and a critical positive auxiliary feedback loop, Rev-erbα/Cry1 loop. We perform analytical studies of the system. Delay-dependent conditions for the asymptotic stability of the nontrivial positive steady state of the model are investigated. We also prove the existence of Hopf bifurcation, which leads to self-sustained oscillation of mammalian circadian clock. Our theoretical analyses show that the oscillatory regime is reduced upon the participation of the delayed positive auxiliary loop. However, further simulations reveal that the auxiliary loop can enable the circadian clock gain widely adjustable amplitudes and robust period. Thus, the positive auxiliary feedback loop may provide a trade-off mechanism, to use the small loss in the robustness of oscillation in exchange for adaptable flexibility in mammalian circadian clock. The results obtained from the model may gain new insights into the dynamics of biological oscillators with interlocked feedback loops.
Intensity coding in electric hearing: effects of electrode configurations and stimulation waveforms.
Chua, Tiffany Elise H; Bachman, Mark; Zeng, Fan-Gang
2011-01-01
Current cochlear implants typically stimulate the auditory nerve with biphasic pulses and monopolar electrode configurations. Tripolar stimulation can increase spatial selectivity and potentially improve place pitch related perception but requires higher current levels to elicit the same loudness as monopolar stimulation. The present study combined delayed pseudomonophonasic pulses, which produce lower thresholds, with tripolar stimulation in an attempt to solve the power-performance tradeoff problem. The present study systematically measured thresholds, dynamic range, loudness growth, and intensity discrimination using either biphasic or delayed pseudomonophonasic pulses under both monopolar and tripolar stimulation. Participants were five Clarion cochlear implant users. For each subject, data from apical, middle, and basal electrode positions were collected when possible. Compared with biphasic pulses, delayed pseudomonophonasic pulses increased the dynamic range by lowering thresholds while maintaining comparable maximum allowable levels under both electrode configurations. However, delayed pseudomonophonasic pulses did not change the shape of loudness growth function and actually increased intensity discrimination limens, especially at lower current levels. The present results indicate that delayed pseudomonophonasic pulses coupled with tripolar stimulation cannot provide significant power savings nor can it increase the functional dynamic range. Whether this combined stimulation could improve functional spectral resolution remains to be seen.
Security-enhanced chaos communication with time-delay signature suppression and phase encryption.
Xue, Chenpeng; Jiang, Ning; Lv, Yunxin; Wang, Chao; Li, Guilan; Lin, Shuqing; Qiu, Kun
2016-08-15
A security-enhanced chaos communication scheme with time delay signature (TDS) suppression and phase-encrypted feedback light is proposed, in virtue of dual-loop feedback with independent high-speed phase modulation. We numerically investigate the property of TDS suppression in the intensity and phase space and quantitatively discuss security of the proposed system by calculating the bit error rate of eavesdroppers who try to crack the system by directly filtering the detected signal or by using a similar semiconductor laser to synchronize the link signal and extract the data. The results show that TDS embedded in the chaotic carrier can be well suppressed by properly setting the modulation frequency, which can keep the time delay a secret from the eavesdropper. Moreover, because the feedback light is encrypted, without the accurate time delay and key, the eavesdropper cannot reconstruct the symmetric operation conditions and decode the correct data.
The actin cytoskeleton of chemotactic amoebae operates close to the onset of oscillations
NASA Astrophysics Data System (ADS)
Westendorf, Christian; Negrete, Jose, Jr.; Bae, Albert; Sandmann, Rabea; Bodenschatz, Eberhard; Beta, Carsten
2013-03-01
We report evidence that the actin machinery of chemotactic Dictyostelium cells operates close to an oscillatory instability. The averaged F-actin response of many cells to a short-time pulse of cAMP is reminiscent of a damped oscillation. At the single-cell level, however, the response dynamics ranged from short, strongly damped responses to slowly decaying, weakly damped oscillations. Furthermore, in a small subpopulation, we observed self-sustained oscillations in the cortical F-actin concentration. We systematically exposed a large number of cells to periodic pulse trains. The results indicate a resonance peak at periodic inputs of around 20 s. We propose a delayed feedback model that explains our experimental findings based on a time-delay in the actin regulatory network. To quantitatively test the model, we performed stimulation experiments with cells that express GFP-tagged fusion proteins of Coronin and Aip1. These served as markers of the F-actin disassembly process and thus allow us to estimate the delay time. Based on this independent estimate, our model predicts an intrinsic period of 20 s, which agrees with the resonance observed experimentally. Financial support by the Max-Planck Society and the DFG (SFB 937).
Delay-induced depinning of localized structures in a spatially inhomogeneous Swift-Hohenberg model
NASA Astrophysics Data System (ADS)
Tabbert, Felix; Schelte, Christian; Tlidi, Mustapha; Gurevich, Svetlana V.
2017-03-01
We report on the dynamics of localized structures in an inhomogeneous Swift-Hohenberg model describing pattern formation in the transverse plane of an optical cavity. This real order parameter equation is valid close to the second-order critical point associated with bistability. The optical cavity is illuminated by an inhomogeneous spatial Gaussian pumping beam and subjected to time-delayed feedback. The Gaussian injection beam breaks the translational symmetry of the system by exerting an attracting force on the localized structure. We show that the localized structure can be pinned to the center of the inhomogeneity, suppressing the delay-induced drift bifurcation that has been reported in the particular case where the injection is homogeneous, assuming a continuous wave operation. Under an inhomogeneous spatial pumping beam, we perform the stability analysis of localized solutions to identify different instability regimes induced by time-delayed feedback. In particular, we predict the formation of two-arm spirals, as well as oscillating and depinning dynamics caused by the interplay of an attracting inhomogeneity and destabilizing time-delayed feedback. The transition from oscillating to depinning solutions is investigated by means of numerical continuation techniques. Analytically, we use an order parameter approach to derive a normal form of the delay-induced Hopf bifurcation leading to an oscillating solution. Additionally we model the interplay of an attracting inhomogeneity and destabilizing time delay by describing the localized solution as an overdamped particle in a potential well generated by the inhomogeneity. In this case, the time-delayed feedback acts as a driving force. Comparing results from the later approach with the full Swift-Hohenberg model, we show that the approach not only provides an instructive description of the depinning dynamics, but also is numerically accurate throughout most of the parameter regime.
Hesse, Constanze; Schenk, Thomas
2014-05-01
It has been suggested that while movements directed at visible targets are processed within the dorsal stream, movements executed after delay rely on the visual representations of the ventral stream (Milner & Goodale, 2006). This interpretation is supported by the observation that a patient with ventral stream damage (D.F.) has trouble performing accurate movements after a delay, but performs normally when the target is visible during movement programming. We tested D.F.'s visuomotor performance in a letter-posting task whilst varying the amount of visual feedback available. Additionally, we also varied whether D.F. received tactile feedback at the end of each trial (posting through a letter box vs posting on a screen) and whether environmental cues were available during the delay period (removing the target only vs suppressing vision completely with shutter glasses). We found that in the absence of environmental cues patient D.F. was unaffected by the introduction of delay and performed as accurately as healthy controls. However, when environmental cues and vision of the moving hand were available during and after the delay period, D.F.'s visuomotor performance was impaired. Thus, while healthy controls benefit from the availability of environmental landmarks and/or visual feedback of the moving hand, such cues seem less beneficial to D.F. Taken together our findings suggest that ventral stream damage does not always impact the ability to make delayed movements but compromises the ability to use environmental landmarks and visual feedback efficiently. Copyright © 2014 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Chon, HeeCheong; Kraft, Shelly Jo; Zhang, Jingfei; Loucks, Torrey; Ambrose, Nicoline G.
2013-01-01
Purpose: Delayed auditory feedback (DAF) is known to induce stuttering-like disfluencies (SLDs) and cause speech rate reductions in normally fluent adults, but the reason for speech disruptions is not fully known, and individual variation has not been well characterized. Studying individual variation in susceptibility to DAF may identify factors…
Delayed Auditory Feedback in the Treatment of Stuttering: Clients as Consumers
ERIC Educational Resources Information Center
Van Borsel, John; Reunes, Gert; Van den Bergh, Nathalie
2003-01-01
Purpose: To investigate the effect of repeated exposure to delayed auditory feedback (DAF) during a 3-month period outside a clinical environment and with only minimal clinical guidance on speech fluency in people who stutter. Method: A pretest-post-test design was used with repeated exposure to DAF during 3 months as the independent variable.…
Song, Zhibao; Zhai, Junyong
2018-04-01
This paper addresses the problem of adaptive output-feedback control for a class of switched stochastic time-delay nonlinear systems with uncertain output function, where both the control coefficients and time-varying delay are unknown. The drift and diffusion terms are subject to unknown homogeneous growth condition. By virtue of adding a power integrator technique, an adaptive output-feedback controller is designed to render that the closed-loop system is bounded in probability, and the state of switched stochastic nonlinear system can be globally regulated to the origin almost surely. A numerical example is provided to demonstrate the validity of the proposed control method. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Feedback as Real-Time Constructions
ERIC Educational Resources Information Center
Keiding, Tina Bering; Qvortrup, Ane
2014-01-01
This article offers a re-description of feedback and the significance of time in feedback constructions based on systems theory. It describes feedback as internal, real-time constructions in a learning system. From this perspective, feedback is neither immediate nor delayed, but occurs in the very moment it takes place. This article argues for a…
NASA Astrophysics Data System (ADS)
Asghar, Haroon; McInerney, John G.
2017-09-01
We demonstrate an asymmetric dual-loop feedback scheme to suppress external cavity side-modes induced in self-mode-locked quantum-dash lasers with conventional single and dual-loop feedback. In this letter, we achieved optimal suppression of spurious tones by optimizing the length of second delay time. We observed that asymmetric dual-loop feedback, with large (~8x) disparity in cavity lengths, eliminates all external-cavity side-modes and produces flat RF spectra close to the main peak with low timing jitter compared to single-loop feedback. Significant reduction in RF linewidth and reduced timing jitter was also observed as a function of increased second feedback delay time. The experimental results based on this feedback configuration validate predictions of recently published numerical simulations. This interesting asymmetric dual-loop feedback scheme provides simplest, efficient and cost effective stabilization of side-band free optoelectronic oscillators based on mode-locked lasers.
Zhang, Dingguo; Xu, Heng; Shull, Peter B; Liu, Jianrong; Zhu, Xiangyang
2015-05-02
Transcutaneous electrical stimulation can provide amputees with tactile feedback for better manipulating an advanced prosthesis. In general, there are two ways to transfer the stimulus to the skin: somatotopical feedback (SF) that stimulates the phantom digit somatotopy on the stump and non-somatotopical feedback (NF) that stimulates other positions on the human body. To investigate the difference between SF and NF, electrotactile experiments were conducted on seven amputees. Electrical stimulation was applied via a complete phantom map to the residual limb (SF) and to the upper arm (NF) separately. The behavior results of discrimination accuracy and response time were used to examine: 1) performance differences between SF and NF for discriminating position, type and strength of tactile feedback; 2) performance differences between SF and NF for one channel (1C), three channels (3C), and five channels (5C). NASA-TLX standardized testing was used to determine differences in mental workload between SF and NF. The grand-averaged discrimination accuracy for SF was 6% higher than NF, and the average response time for SF was 600 ms faster than NF. SF is better than NF for position, type, strength, and the overall modality regarding both accuracy and response time except for 1C modality (p<0.001). Among the six modalities of stimulation channels, performance of 1C/SF was the best, which was similar to that of 1C/NF and 3C/SF; performance of 3C/NF was similar to that of 5C/SF; performance of 5C/NF was the worst. NASA-TLX scores indicated that mental workload increased as the number of stimulation channels increased. We quantified the difference between SF and NF, and the influence of different number of stimulation channels. SF was better than NF in general, but the practical issues such as the limited area of stumps could constrain the use of SF. We found that more channels increased the amount and richness of information to the amputee while fewer channels resulted in higher performance, and thus the 3C/SF modality was a good compromise. Based on this study, we provide possible solutions to the practical problems involving the implementation of tactile feedback for amputees. These results are expected to promote the application of SF and NF tactile feedback for amputees in the future.
ERIC Educational Resources Information Center
Butterworth, James R.
1975-01-01
Industrial objectives, if they are employee oriented, produce feedback, and the motivation derived from the feedback helps reduce turnover. Feedback is the power to clarify objectives, to stimulate communication, and to motivate people. (Author/MW)
Wang, Min; Ge, Shuzhi Sam; Hong, Keum-Shik
2010-11-01
This paper presents adaptive neural tracking control for a class of non-affine pure-feedback systems with multiple unknown state time-varying delays. To overcome the design difficulty from non-affine structure of pure-feedback system, mean value theorem is exploited to deduce affine appearance of state variables x(i) as virtual controls α(i), and of the actual control u. The separation technique is introduced to decompose unknown functions of all time-varying delayed states into a series of continuous functions of each delayed state. The novel Lyapunov-Krasovskii functionals are employed to compensate for the unknown functions of current delayed state, which is effectively free from any restriction on unknown time-delay functions and overcomes the circular construction of controller caused by the neural approximation of a function of u and [Formula: see text] . Novel continuous functions are introduced to overcome the design difficulty deduced from the use of one adaptive parameter. To achieve uniformly ultimate boundedness of all the signals in the closed-loop system and tracking performance, control gains are effectively modified as a dynamic form with a class of even function, which makes stability analysis be carried out at the present of multiple time-varying delays. Simulation studies are provided to demonstrate the effectiveness of the proposed scheme.
Bifurcation analysis of delay-induced resonances of the El-Niño Southern Oscillation
Krauskopf, Bernd; Sieber, Jan
2014-01-01
Models of global climate phenomena of low to intermediate complexity are very useful for providing an understanding at a conceptual level. An important aspect of such models is the presence of a number of feedback loops that feature considerable delay times, usually due to the time it takes to transport energy (for example, in the form of hot/cold air or water) around the globe. In this paper, we demonstrate how one can perform a bifurcation analysis of the behaviour of a periodically forced system with delay in dependence on key parameters. As an example, we consider the El-Niño Southern Oscillation (ENSO), which is a sea-surface temperature (SST) oscillation on a multi-year scale in the basin of the Pacific Ocean. One can think of ENSO as being generated by an interplay between two feedback effects, one positive and one negative, which act only after some delay that is determined by the speed of transport of SST anomalies across the Pacific. We perform here a case study of a simple delayed-feedback oscillator model for ENSO, which is parametrically forced by annual variation. More specifically, we use numerical bifurcation analysis tools to explore directly regions of delay-induced resonances and other stability boundaries in this delay-differential equation model for ENSO. PMID:25197254
A Mobile Early Stimulation Program to Support Children with Developmental Delays in Brazil.
Dias, Raquel da Luz; Silva, Kátia Cristina Correa Guimarães; Lima, Marcela Raquel de Oliveira; Alves, João Guilherme Bezerra; Abidi, Syed Sibte Raza
2018-01-01
Developmental delay is a deviation development from the normative milestones during the childhood and it may be caused by neurological disorders. Early stimulation is a standardized and simple technique to treat developmental delays in children (aged 0-3 years), allowing them to reach the best development possible and to mitigate neuropsychomotor sequelae. However, the outcomes of the treatment depending on the involvement of the family, to continue the activities at home on a daily basis. To empower and educate parents of children with neurodevelopmental delays to administer standardized early stimulation programs at home, we developed a mobile early stimulation program that provides timely and evidence-based clinical decision support to health professionals and a personalized guidance to parents about how to administer early stimulation to their child at home.
Comprehensive feedback on trainee surgeons’ non-technical skills
Dieckmann, Peter; Beier-Holgersen, Randi; Rosenberg, Jacob; Oestergaard, Doris
2015-01-01
Objectives This study aimed to explore the content of conversations, feedback style, and perceived usefulness of feedback to trainee surgeons when conversations were stimulated by a tool for assessing surgeons’ non-technical skills. Methods Trainee surgeons and their supervisors used the Non-Technical Skills for Surgeons in Denmark tool to stimulate feedback conversations. Audio recordings of post-operation feedback conversations were collected. Trainees and supervisors provided questionnaire responses on the usefulness and comprehensiveness of the feedback. The feedback conversations were qualitatively analyzed for content and feedback style. Usefulness was investigated using a scale from 1 to 5 and written comments were qualitatively analyzed. Results Six trainees and six supervisors participated in eight feedback conversations. Eighty questionnaires (response rate 83 percent) were collected from 13 trainees and 12 supervisors. Conversations lasted median eight (2-15) minutes. Supervisors used the elements and categories in the tool to structure the content of the conversations. Supervisors tended to talk about the trainees’ actions and their own frames rather than attempting to understand the trainees’ perceptions. Supervisors and trainees welcomed the feedback opportunity and agreed that the conversations were useful and comprehensive. Conclusions The content of the feedback conversations reflected the contents of the tool and the feedback was considered useful and comprehensive. However, supervisors talked primarily about their own frames, so in order for the feedback to reach its full potential, supervisors may benefit from training techniques to stimulate a deeper reflection among trainees. PMID:25602262
Universal photonic quantum computation via time-delayed feedback
Pichler, Hannes; Choi, Soonwon; Zoller, Peter; Lukin, Mikhail D.
2017-01-01
We propose and analyze a deterministic protocol to generate two-dimensional photonic cluster states using a single quantum emitter via time-delayed quantum feedback. As a physical implementation, we consider a single atom or atom-like system coupled to a 1D waveguide with a distant mirror, where guided photons represent the qubits, while the mirror allows the implementation of feedback. We identify the class of many-body quantum states that can be produced using this approach and characterize them in terms of 2D tensor network states. PMID:29073057
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feltus, M.A.; Knerr, R.; Shoop, U.
1993-01-01
RETRAN-03 studies were performed for the boiling water reactor (BWR) turbine trip without bypass (TTWOB) event to investigate how the non-neutron-absorbing material on control rod tips affect scram delay timing and reactivity feedback. Scram delay, Doppler temperature, and moderator void (density) feedback were varied to assess their relative impact on kinetics behavior. Although a generic point-kinetics RETRAN-03 TTWOB model 2 was employed, actual plant information was used to develop the basic and parametric cases.
Delay-induced stochastic bifurcations in a bistable system under white noise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Zhongkui, E-mail: sunzk@nwpu.edu.cn; Fu, Jin; Xu, Wei
2015-08-15
In this paper, the effects of noise and time delay on stochastic bifurcations are investigated theoretically and numerically in a time-delayed Duffing-Van der Pol oscillator subjected to white noise. Due to the time delay, the random response is not Markovian. Thereby, approximate methods have been adopted to obtain the Fokker-Planck-Kolmogorov equation and the stationary probability density function for amplitude of the response. Based on the knowledge that stochastic bifurcation is characterized by the qualitative properties of the steady-state probability distribution, it is found that time delay and feedback intensity as well as noise intensity will induce the appearance of stochasticmore » P-bifurcation. Besides, results demonstrated that the effects of the strength of the delayed displacement feedback on stochastic bifurcation are accompanied by the sensitive dependence on time delay. Furthermore, the results from numerical simulations best confirm the effectiveness of the theoretical analyses.« less
Intensity coding in electric hearing: Effects of electrode configurations and stimulation waveforms
Chua, Tiffany Elise H.; Bachman, Mark; Zeng, Fan-Gang
2011-01-01
Objectives Current cochlear implants typically stimulate the auditory nerve with biphasic pulses and monopolar electrode configurations. Tripolar stimulation can increase spatial selectivity and potentially improve place pitch related perception, but requires higher current levels to elicit the same loudness as monopolar stimulation. The present study combined delayed pseudomonophonasic pulses, which produce lower thresholds, with tripolar stimulation in an attempt to solve the power-performance tradeoff problem. Design The present study systematically measured thresholds, dynamic range, loudness growth, and intensity discrimination using either biphasic or delayed pseudomonophonasic pulses under both monopolar and tripolar stimulation. Participants were 5 Clarion cochlear implant users. For each subject, data from apical, middle and basal electrode positions were collected when possible. Results Compared with biphasic pulses, delayed pseudomonophonasic pulses increased the dynamic range by lowering thresholds while maintaining comparable maximum allowable levels under both electrode configurations. However, delayed pseudomonophonasic pulses did not change the shape of loudness growth function and actually increased intensity discrimination limens, especially at lower current levels. Conclusions The present results indicate that delayed pseudomonophonasic pulses coupled with tripolar stimulation cannot provide significant power savings, nor can it increase the functional dynamic range. Whether this combined stimulation could improve functional spectral resolution remains to be seen. PMID:21610498
Yamamoto, Kosuke; Kawabata, Hideaki
2014-12-01
We ordinarily speak fluently, even though our perceptions of our own voices are disrupted by various environmental acoustic properties. The underlying mechanism of speech is supposed to monitor the temporal relationship between speech production and the perception of auditory feedback, as suggested by a reduction in speech fluency when the speaker is exposed to delayed auditory feedback (DAF). While many studies have reported that DAF influences speech motor processing, its relationship to the temporal tuning effect on multimodal integration, or temporal recalibration, remains unclear. We investigated whether the temporal aspects of both speech perception and production change due to adaptation to the delay between the motor sensation and the auditory feedback. This is a well-used method of inducing temporal recalibration. Participants continually read texts with specific DAF times in order to adapt to the delay. Then, they judged the simultaneity between the motor sensation and the vocal feedback. We measured the rates of speech with which participants read the texts in both the exposure and re-exposure phases. We found that exposure to DAF changed both the rate of speech and the simultaneity judgment, that is, participants' speech gained fluency. Although we also found that a delay of 200 ms appeared to be most effective in decreasing the rates of speech and shifting the distribution on the simultaneity judgment, there was no correlation between these measurements. These findings suggest that both speech motor production and multimodal perception are adaptive to temporal lag but are processed in distinct ways.
David, Nicole; Skoruppa, Stefan; Gulberti, Alessandro
2016-01-01
The sense of agency describes the ability to experience oneself as the agent of one's own actions. Previous studies of the sense of agency manipulated the predicted sensory feedback related either to movement execution or to the movement’s outcome, for example by delaying the movement of a virtual hand or the onset of a tone that resulted from a button press. Such temporal sensorimotor discrepancies reduce the sense of agency. It remains unclear whether movement-related feedback is processed differently than outcome-related feedback in terms of agency experience, especially if these types of feedback differ with respect to sensory modality. We employed a mixed-reality setup, in which participants tracked their finger movements by means of a virtual hand. They performed a single tap, which elicited a sound. The temporal contingency between the participants’ finger movements and (i) the movement of the virtual hand or (ii) the expected auditory outcome was systematically varied. In a visual control experiment, the tap elicited a visual outcome. For each feedback type and participant, changes in the sense of agency were quantified using a forced-choice paradigm and the Method of Constant Stimuli. Participants were more sensitive to delays of outcome than to delays of movement execution. This effect was very similar for visual or auditory outcome delays. Our results indicate different contributions of movement- versus outcome-related sensory feedback to the sense of agency, irrespective of the modality of the outcome. We propose that this differential sensitivity reflects the behavioral importance of assessing authorship of the outcome of an action. PMID:27536948
Time-delay signature of chaos in 1550 nm VCSELs with variable-polarization FBG feedback.
Li, Yan; Wu, Zheng-Mao; Zhong, Zhu-Qiang; Yang, Xian-Jie; Mao, Song; Xia, Guang-Qiong
2014-08-11
Based on the framework of spin-flip model (SFM), the output characteristics of a 1550 nm vertical-cavity surface-emitting laser (VCSEL) subject to variable-polarization fiber Bragg grating (FBG) feedback (VPFBGF) have been investigated. With the aid of the self-correlation function (SF) and the permutation entropy (PE) function, the time-delay signature (TDS) of chaos in the VPFBGF-VCSEL is evaluated, and then the influences of the operation parameters on the TDS of chaos are analyzed. The results show that the TDS of chaos can be suppressed efficiently through selecting suitable coupling coefficient and feedback rate of the FBG, and is weaker than that of chaos generated by traditional variable-polarization mirror feedback VCSELs (VPMF-VCSELs) or polarization-preserved FBG feedback VCSELs (PPFBGF-VCSELs).
Embedding the dynamics of a single delay system into a feed-forward ring.
Klinshov, Vladimir; Shchapin, Dmitry; Yanchuk, Serhiy; Wolfrum, Matthias; D'Huys, Otti; Nekorkin, Vladimir
2017-10-01
We investigate the relation between the dynamics of a single oscillator with delayed self-feedback and a feed-forward ring of such oscillators, where each unit is coupled to its next neighbor in the same way as in the self-feedback case. We show that periodic solutions of the delayed oscillator give rise to families of rotating waves with different wave numbers in the corresponding ring. In particular, if for the single oscillator the periodic solution is resonant to the delay, it can be embedded into a ring with instantaneous couplings. We discover several cases where the stability of a periodic solution for the single unit can be related to the stability of the corresponding rotating wave in the ring. As a specific example, we demonstrate how the complex bifurcation scenario of simultaneously emerging multijittering solutions can be transferred from a single oscillator with delayed pulse feedback to multijittering rotating waves in a sufficiently large ring of oscillators with instantaneous pulse coupling. Finally, we present an experimental realization of this dynamical phenomenon in a system of coupled electronic circuits of FitzHugh-Nagumo type.
Differential Effects of Context and Feedback on Orthographic Learning: How Good Is Good Enough?
ERIC Educational Resources Information Center
Martin-Chang, Sandra; Ouellette, Gene; Bond, Linda
2017-01-01
In this study, students in Grade 2 read different sets of words under 4 experimental training conditions (context/feedback, isolation/feedback, context/no-feedback, isolation/no-feedback). Training took place over 10 trials, followed by a spelling test and a delayed reading posttest. Reading in context boosted reading accuracy initially; in…
ERIC Educational Resources Information Center
Cameron, Brian; Dwyer, Francis
2005-01-01
Online and computer-based instructional gaming is becoming a viable instructional strategy at all levels of education. The purpose of this study was to examine the effect of (a) gaming, (b) gaming plus embedded questions, and (c) gaming plus questions plus feedback on delayed retention of different types of educational objectives for students…
ERIC Educational Resources Information Center
Dunn, John C.; Newell, Ben R.; Kalish, Michael L.
2012-01-01
Evidence that learning rule-based (RB) and information-integration (II) category structures can be dissociated across different experimental variables has been used to support the view that such learning is supported by multiple learning systems. Across 4 experiments, we examined the effects of 2 variables, the delay between response and feedback…
ERIC Educational Resources Information Center
Maddox, W. Todd; Ing, A. David
2005-01-01
W. T. Maddox, F. G. Ashby, and C. J. Bohil (2003) found that delayed feedback adversely affects information-integration but not rule-based category learning in support of a multiple-systems approach to category learning. However, differences in the number of stimulus dimensions relevant to solving the task and perceptual similarity failed to rule…
Silvoni, Stefano; Cavinato, Marianna; Volpato, Chiara; Cisotto, Giulia; Genna, Clara; Agostini, Michela; Turolla, Andrea; Ramos-Murguialday, Ander; Piccione, Francesco
2013-01-01
In a proof-of-principle prototypical demonstration we describe a new type of brain-machine interface (BMI) paradigm for upper limb motor-training. The proposed technique allows a fast contingent and proportionally modulated stimulation of afferent proprioceptive and motor output neural pathways using operant learning. Continuous and immediate assisted-feedback of force proportional to rolandic rhythm oscillations during actual movements was employed and illustrated with a single case experiment. One hemiplegic patient was trained for 2 weeks coupling somatosensory brain oscillations with force-field control during a robot-mediated center-out motor-task whose execution approaches movements of everyday life. The robot facilitated actual movements adding a modulated force directed to the target, thus providing a non-delayed proprioceptive feedback. Neuro-electric, kinematic, and motor-behavioral measures were recorded in pre- and post-assessments without force assistance. Patient's healthy arm was used as control since neither a placebo control was possible nor other control conditions. We observed a generalized and significant kinematic improvement in the affected arm and a spatial accuracy improvement in both arms, together with an increase and focalization of the somatosensory rhythm changes used to provide assisted-force-feedback. The interpretation of the neurophysiological and kinematic evidences reported here is strictly related to the repetition of the motor-task and the presence of the assisted-force-feedback. Results are described as systematic observations only, without firm conclusions about the effectiveness of the methodology. In this prototypical view, the design of appropriate control conditions is discussed. This study presents a novel operant-learning-based BMI-application for motor-training coupling brain oscillations and force feedback during an actual movement.
Polarization-resolved time-delay signatures of chaos induced by FBG-feedback in VCSEL.
Zhong, Zhu-Qiang; Li, Song-Sui; Chan, Sze-Chun; Xia, Guang-Qiong; Wu, Zheng-Mao
2015-06-15
Polarization-resolved chaotic emission intensities from a vertical-cavity surface-emitting laser (VCSEL) subject to feedback from a fiber Bragg grating (FBG) are numerically investigated. Time-delay (TD) signatures of the feedback are examined through various means including self-correlations of intensity time-series of individual polarizations, cross-correlation of intensities time-series between both polarizations, and permutation entropies calculated for the individual polarizations. The results show that the TD signatures can be clearly suppressed by selecting suitable operation parameters such as the feedback strength, FBG bandwidth, and Bragg frequency. Also, in the operational parameter space, numerical maps of TD signatures and effective bandwidths are obtained, which show regions of chaotic signals with both wide bandwidths and weak TD signatures. Finally, by comparing with a VCSEL subject to feedback from a mirror, the VCSEL subject to feedback from the FBG generally shows better concealment of the TD signatures with similar, or even wider, bandwidths.
Fixed-base simulator study of the effect of time delays in visual cues on pilot tracking performance
NASA Technical Reports Server (NTRS)
Queijo, M. J.; Riley, D. R.
1975-01-01
Factors were examined which determine the amount of time delay acceptable in the visual feedback loop in flight simulators. Acceptable time delays are defined as delays which significantly affect neither the results nor the manner in which the subject 'flies' the simulator. The subject tracked a target aircraft as it oscillated sinusoidally in a vertical plane only. The pursuing aircraft was permitted five degrees of freedom. Time delays of from 0.047 to 0.297 second were inserted in the visual feedback loop. A side task was employed to maintain the workload constant and to insure that the pilot was fully occupied during the experiment. Tracking results were obtained for 17 aircraft configurations having different longitudinal short-period characteristics. Results show a positive correlation between improved handling qualities and a longer acceptable time delay.
Bifurcation Analysis and Chaos Control in a Modified Finance System with Delayed Feedback
NASA Astrophysics Data System (ADS)
Yang, Jihua; Zhang, Erli; Liu, Mei
2016-06-01
We investigate the effect of delayed feedback on the finance system, which describes the time variation of the interest rate, for establishing the fiscal policy. By local stability analysis, we theoretically prove the existences of Hopf bifurcation and Hopf-zero bifurcation. By using the normal form method and center manifold theory, we determine the stability and direction of a bifurcating periodic solution. Finally, we give some numerical solutions, which indicate that when the delay passes through certain critical values, chaotic oscillation is converted into a stable equilibrium or periodic orbit.
Karimi, Hamid Reza; Gao, Huijun
2008-07-01
A mixed H2/Hinfinity output-feedback control design methodology is presented in this paper for second-order neutral linear systems with time-varying state and input delays. Delay-dependent sufficient conditions for the design of a desired control are given in terms of linear matrix inequalities (LMIs). A controller, which guarantees asymptotic stability and a mixed H2/Hinfinity performance for the closed-loop system of the second-order neutral linear system, is then developed directly instead of coupling the model to a first-order neutral system. A Lyapunov-Krasovskii method underlies the LMI-based mixed H2/Hinfinity output-feedback control design using some free weighting matrices. The simulation results illustrate the effectiveness of the proposed methodology.
Neural node network and model, and method of teaching same
Parlos, A.G.; Atiya, A.F.; Fernandez, B.; Tsai, W.K.; Chong, K.T.
1995-12-26
The present invention is a fully connected feed forward network that includes at least one hidden layer. The hidden layer includes nodes in which the output of the node is fed back to that node as an input with a unit delay produced by a delay device occurring in the feedback path (local feedback). Each node within each layer also receives a delayed output (crosstalk) produced by a delay unit from all the other nodes within the same layer. The node performs a transfer function operation based on the inputs from the previous layer and the delayed outputs. The network can be implemented as analog or digital or within a general purpose processor. Two teaching methods can be used: (1) back propagation of weight calculation that includes the local feedback and the crosstalk or (2) more preferably a feed forward gradient decent which immediately follows the output computations and which also includes the local feedback and the crosstalk. Subsequent to the gradient propagation, the weights can be normalized, thereby preventing convergence to a local optimum. Education of the network can be incremental both on and off-line. An educated network is suitable for modeling and controlling dynamic nonlinear systems and time series systems and predicting the outputs as well as hidden states and parameters. The educated network can also be further educated during on-line processing. 21 figs.
Neural node network and model, and method of teaching same
Parlos, Alexander G.; Atiya, Amir F.; Fernandez, Benito; Tsai, Wei K.; Chong, Kil T.
1995-01-01
The present invention is a fully connected feed forward network that includes at least one hidden layer 16. The hidden layer 16 includes nodes 20 in which the output of the node is fed back to that node as an input with a unit delay produced by a delay device 24 occurring in the feedback path 22 (local feedback). Each node within each layer also receives a delayed output (crosstalk) produced by a delay unit 36 from all the other nodes within the same layer 16. The node performs a transfer function operation based on the inputs from the previous layer and the delayed outputs. The network can be implemented as analog or digital or within a general purpose processor. Two teaching methods can be used: (1) back propagation of weight calculation that includes the local feedback and the crosstalk or (2) more preferably a feed forward gradient decent which immediately follows the output computations and which also includes the local feedback and the crosstalk. Subsequent to the gradient propagation, the weights can be normalized, thereby preventing convergence to a local optimum. Education of the network can be incremental both on and off-line. An educated network is suitable for modeling and controlling dynamic nonlinear systems and time series systems and predicting the outputs as well as hidden states and parameters. The educated network can also be further educated during on-line processing.
Dissociation of agency and body ownership following visuomotor temporal recalibration
Imaizumi, Shu; Asai, Tomohisa
2015-01-01
Bodily self-consciousness consists of one’s sense of agency (I am causing an action) and body ownership (my body belongs to me). Both stem from the temporal congruence between different modalities, although some visuomotor temporal incongruence is acceptable for agency. To examine the association or dissociation between agency and body ownership in the context of different temporal sensitivities, we applied a temporal recalibration paradigm, in which subjective synchrony between asynchronous hand action and its visual feedback can be perceived after exposure to the asynchronous visuomotor stimulation. In the experiment, participants continuously clasped and unclasped their hand while watching an online video of their hand that was presented with delays of 50, 110, 170, 230, 290, and 350 ms. Then, they rated a video of their hand with a delay of 50 ms (test stimulus) with respect to the synchrony between hand action and hand video and the perceived agency over the video. Moreover, proprioceptive drift of participants’ hand location toward the hand video during the exposure was measured as an index of illusory body ownership. Results indicated that perception of agency emerged over the delayed hand video as subjective visuomotor synchrony was recalibrated, but that body ownership did not emerge for the delayed video, even after the recalibration. We suggest that there is a dissociation between agency and body ownership following visuomotor temporal recalibration. PMID:25999826
Molecular genetic analysis of circadian timekeeping in Drosophila
Hardin, Paul E.
2014-01-01
A genetic screen for mutants that alter circadian rhythms in Drosophila identified the first clock gene - the period (per) gene. The per gene is a central player within a transcriptional feedback loop that represents the core mechanism for keeping circadian time in Drosophila and other animals. The per feedback loop, or core loop, is interlocked with the Clock (Clk) feedback loop, but whether the Clk feedback loop contributes to circadian timekeeping is not known. A series of distinct molecular events are thought to control transcriptional feedback in the core loop. The time it takes to complete these events should take much less than 24h, thus delays must be imposed at different steps within the core loop. As new clock genes are identified, the molecular mechanisms responsible for these delays have been revealed in ever-increasing detail, and provide an in depth accounting of how transcriptional feedback loops keep circadian time. The phase of these feedback loops shift to maintain synchrony with environmental cycles, the most reliable of which is light. Although a great deal is known about cell-autonomous mechanisms of light-induced phase shifting by CRYPTOCHROME (CRY), much less is known about non-cell autonomous mechanisms. CRY mediates phase shifts through an uncharacterized mechanism in certain brain oscillator neurons, and carries out a dual role as a photoreceptor and transcription factor in other tissues. Here I will review how transcriptional feedback loops function to keep time in Drosophila, how they impose delays to maintain a 24h cycle, and how they maintain synchrony with environmental light:dark cycles. The transcriptional feedback loops that keep time in Drosophila are well conserved in other animals, thus what we learn about these loops in Drosophila should continue to provide insight into the operation of analogous transcriptional feedback loops in other animals. PMID:21924977
Martínez-Llinàs, Jade; Colet, Pere; Erneux, Thomas
2015-03-01
We consider a model for two delay-coupled optoelectronic oscillators under positive delayed feedback as prototypical to study the conditions for synchronization of asymmetric square-wave oscillations, for which the duty cycle is not half of the period. We show that the scenario arising for positive feedback is much richer than with negative feedback. First, it allows for the coexistence of multiple in- and out-of-phase asymmetric periodic square waves for the same parameter values. Second, it is tunable: The period of all the square-wave periodic pulses can be tuned with the ratio of the delays, and the duty cycle of the asymmetric square waves can be changed with the offset phase while the total period remains constant. Finally, in addition to the multiple in- and out-of-phase periodic square waves, low-frequency periodic asymmetric solutions oscillating in phase may coexist for the same values of the parameters. Our analytical results are in agreement with numerical simulations and bifurcation diagrams obtained by using continuation techniques.
Overt vs. covert speed cameras in combination with delayed vs. immediate feedback to the offender.
Marciano, Hadas; Setter, Pe'erly; Norman, Joel
2015-06-01
Speeding is a major problem in road safety because it increases both the probability of accidents and the severity of injuries if an accident occurs. Speed cameras are one of the most common speed enforcement tools. Most of the speed cameras around the world are overt, but there is evidence that this can cause a "kangaroo effect" in driving patterns. One suggested alternative to prevent this kangaroo effect is the use of covert cameras. Another issue relevant to the effect of enforcement countermeasures on speeding is the timing of the fine. There is general agreement on the importance of the immediacy of the punishment, however, in the context of speed limit enforcement, implementing such immediate punishment is difficult. An immediate feedback that mediates the delay between the speed violation and getting a ticket is one possible solution. This study examines combinations of concealment and the timing of the fine in operating speed cameras in order to evaluate the most effective one in terms of enforcing speed limits. Using a driving simulator, the driving performance of the following four experimental groups was tested: (1) overt cameras with delayed feedback, (2) overt cameras with immediate feedback, (3) covert cameras with delayed feedback, and (4) covert cameras with immediate feedback. Each of the 58 participants drove in the same scenario on three different days. The results showed that both median speed and speed variance were higher with overt than with covert cameras. Moreover, implementing a covert camera system along with immediate feedback was more conducive to drivers maintaining steady speeds at the permitted levels from the very beginning. Finally, both 'overt cameras' groups exhibit a kangaroo effect throughout the entire experiment. It can be concluded that an implementation strategy consisting of covert speed cameras combined with immediate feedback to the offender is potentially an optimal way to motivate drivers to maintain speeds at the speed limit. Copyright © 2015 Elsevier Ltd. All rights reserved.
Li, Y L; Xu, D L; Fu, Y M; Zhou, J X
2011-09-01
This paper presents a systematic study on the stability of a two-dimensional vibration isolation floating raft system with a time-delayed feedback control. Based on the generalized Sturm criterion, the critical control gain for the delay-independent stability region and critical time delays for the stability switches are derived. The critical conditions can provide a theoretical guidance of chaotification design for line spectra reduction. Numerical simulations verify the correctness of the approach. Bifurcation analyses reveal that chaotification is more likely to occur in unstable region defined by these critical conditions, and the stiffness of the floating raft and mass ratio are the sensitive parameters to reduce critical control gain.
NASA Astrophysics Data System (ADS)
Ponomarenko, V. I.; Kul'minskii, D. D.; Karavaev, A. S.; Prokhorov, M. D.
2017-03-01
Peculiarities of the collective dynamics of self-sustained oscillators in an ensemble of identical bistable systems with delayed feedback coupled via a mean field have been experimentally studied and numerically simulated. It is established that the ensemble can occur in so-called "chimera" states, whereby some elements exhibit synchronous oscillations, while other oscillators exhibit asynchronous behavior.
Tutu, Hiroki
2011-06-01
Stochastic resonance (SR) enhanced by time-delayed feedback control is studied. The system in the absence of control is described by a Langevin equation for a bistable system, and possesses a usual SR response. The control with the feedback loop, the delay time of which equals to one-half of the period (2π/Ω) of the input signal, gives rise to a noise-induced oscillatory switching cycle between two states in the output time series, while its average frequency is just smaller than Ω in a small noise regime. As the noise intensity D approaches an appropriate level, the noise constructively works to adapt the frequency of the switching cycle to Ω, and this changes the dynamics into a state wherein the phase of the output signal is entrained to that of the input signal from its phase slipped state. The behavior is characterized by power loss of the external signal or response function. This paper deals with the response function based on a dichotomic model. A method of delay-coordinate series expansion, which reduces a non-Markovian transition probability flux to a series of memory fluxes on a discrete delay-coordinate system, is proposed. Its primitive implementation suggests that the method can be a potential tool for a systematic analysis of SR phenomenon with delayed feedback loop. We show that a D-dependent behavior of poles of a finite Laplace transform of the response function qualitatively characterizes the structure of the power loss, and we also show analytical results for the correlation function and the power spectral density.
A technique for sequential segmental neuromuscular stimulation with closed loop feedback control.
Zonnevijlle, Erik D H; Abadia, Gustavo Perez; Somia, Naveen N; Kon, Moshe; Barker, John H; Koenig, Steven; Ewert, D L; Stremel, Richard W
2002-01-01
In dynamic myoplasty, dysfunctional muscle is assisted or replaced with skeletal muscle from a donor site. Electrical stimulation is commonly used to train and animate the skeletal muscle to perform its new task. Due to simultaneous tetanic contractions of the entire myoplasty, muscles are deprived of perfusion and fatigue rapidly, causing long-term problems such as excessive scarring and muscle ischemia. Sequential stimulation contracts part of the muscle while other parts rest, thus significantly improving blood perfusion. However, the muscle still fatigues. In this article, we report a test of the feasibility of using closed-loop control to economize the contractions of the sequentially stimulated myoplasty. A simple stimulation algorithm was developed and tested on a sequentially stimulated neo-sphincter designed from a canine gracilis muscle. Pressure generated in the lumen of the myoplasty neo-sphincter was used as feedback to regulate the stimulation signal via three control parameters, thereby optimizing the performance of the myoplasty. Additionally, we investigated and compared the efficiency of amplitude and frequency modulation techniques. Closed-loop feedback enabled us to maintain target pressures within 10% deviation using amplitude modulation and optimized control parameters (correction frequency = 4 Hz, correction threshold = 4%, and transition time = 0.3 s). The large-scale stimulation/feedback setup was unfit for chronic experimentation, but can be used as a blueprint for a small-scale version to unveil the theoretical benefits of closed-loop control in chronic experimentation.
Multiunit Activity-Based Real-Time Limb-State Estimation from Dorsal Root Ganglion Recordings
Han, Sungmin; Chu, Jun-Uk; Kim, Hyungmin; Park, Jong Woong; Youn, Inchan
2017-01-01
Proprioceptive afferent activities could be useful for providing sensory feedback signals for closed-loop control during functional electrical stimulation (FES). However, most previous studies have used the single-unit activity of individual neurons to extract sensory information from proprioceptive afferents. This study proposes a new decoding method to estimate ankle and knee joint angles using multiunit activity data. Proprioceptive afferent signals were recorded from a dorsal root ganglion with a single-shank microelectrode during passive movements of the ankle and knee joints, and joint angles were measured as kinematic data. The mean absolute value (MAV) was extracted from the multiunit activity data, and a dynamically driven recurrent neural network (DDRNN) was used to estimate ankle and knee joint angles. The multiunit activity-based MAV feature was sufficiently informative to estimate limb states, and the DDRNN showed a better decoding performance than conventional linear estimators. In addition, processing time delay satisfied real-time constraints. These results demonstrated that the proposed method could be applicable for providing real-time sensory feedback signals in closed-loop FES systems. PMID:28276474
Relation between delayed feedback and delay-coupled systems and its application to chaotic lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soriano, Miguel C., E-mail: miguel@ifisc.uib-csic.es; Flunkert, Valentin; Fischer, Ingo
2013-12-15
We present a systematic approach to identify the similarities and differences between a chaotic system with delayed feedback and two mutually delay-coupled systems. We consider the general case in which the coupled systems are either unsynchronized or in a generally synchronized state, in contrast to the mostly studied case of identical synchronization. We construct a new time-series for each of the two coupling schemes, respectively, and present analytic evidence and numerical confirmation that these two constructed time-series are statistically equivalent. From the construction, it then follows that the distribution of time-series segments that are small compared to the overall delaymore » in the system is independent of the value of the delay and of the coupling scheme. By focusing on numerical simulations of delay-coupled chaotic lasers, we present a practical example of our findings.« less
Saxena, Pratik; Charpin-El Hamri, Ghislaine; Folcher, Marc; Zulewski, Henryk; Fussenegger, Martin
2016-01-01
Graves’ disease is an autoimmune disorder that causes hyperthyroidism because of autoantibodies that bind to the thyroid-stimulating hormone receptor (TSHR) on the thyroid gland, triggering thyroid hormone release. The physiological control of thyroid hormone homeostasis by the feedback loops involving the hypothalamus–pituitary–thyroid axis is disrupted by these stimulating autoantibodies. To reset the endogenous thyrotrophic feedback control, we designed a synthetic mammalian gene circuit that maintains thyroid hormone homeostasis by monitoring thyroid hormone levels and coordinating the expression of a thyroid-stimulating hormone receptor antagonist (TSHAntag), which competitively inhibits the binding of thyroid-stimulating hormone or the human autoantibody to TSHR. This synthetic control device consists of a synthetic thyroid-sensing receptor (TSR), a yeast Gal4 protein/human thyroid receptor-α fusion, which reversibly triggers expression of the TSHAntag gene from TSR-dependent promoters. In hyperthyroid mice, this synthetic circuit sensed pathological thyroid hormone levels and restored the thyrotrophic feedback control of the hypothalamus–pituitary–thyroid axis to euthyroid hormone levels. Therapeutic plug and play gene circuits that restore physiological feedback control in metabolic disorders foster advanced gene- and cell-based therapies. PMID:26787873
NASA Astrophysics Data System (ADS)
Li, Jimeng; Li, Ming; Zhang, Jinfeng
2017-08-01
Rolling bearings are the key components in the modern machinery, and tough operation environments often make them prone to failure. However, due to the influence of the transmission path and background noise, the useful feature information relevant to the bearing fault contained in the vibration signals is weak, which makes it difficult to identify the fault symptom of rolling bearings in time. Therefore, the paper proposes a novel weak signal detection method based on time-delayed feedback monostable stochastic resonance (TFMSR) system and adaptive minimum entropy deconvolution (MED) to realize the fault diagnosis of rolling bearings. The MED method is employed to preprocess the vibration signals, which can deconvolve the effect of transmission path and clarify the defect-induced impulses. And a modified power spectrum kurtosis (MPSK) index is constructed to realize the adaptive selection of filter length in the MED algorithm. By introducing the time-delayed feedback item in to an over-damped monostable system, the TFMSR method can effectively utilize the historical information of input signal to enhance the periodicity of SR output, which is beneficial to the detection of periodic signal. Furthermore, the influence of time delay and feedback intensity on the SR phenomenon is analyzed, and by selecting appropriate time delay, feedback intensity and re-scaling ratio with genetic algorithm, the SR can be produced to realize the resonance detection of weak signal. The combination of the adaptive MED (AMED) method and TFMSR method is conducive to extracting the feature information from strong background noise and realizing the fault diagnosis of rolling bearings. Finally, some experiments and engineering application are performed to evaluate the effectiveness of the proposed AMED-TFMSR method in comparison with a traditional bistable SR method.
ERIC Educational Resources Information Center
Reynolds, Brady; Schiffbauer, Ryan
2005-01-01
Delay of Gratification (DG) and Delay Discounting (DD) represent two indices of impulsive behavior often treated as though they represent equivalent or the same underlying processes. However, there are key differences between DG and DD procedures, and between certain research findings with each procedure, that suggest they are not equivalent. In…
Antfolk, Christian; D'Alonzo, Marco; Controzzi, Marco; Lundborg, Göran; Rosén, Birgitta; Sebelius, Fredrik; Cipriani, Christian
2013-01-01
This work assesses the ability of transradial amputees to discriminate multi-site tactile stimuli in sensory discrimination tasks. It compares different sensory feedback modalities using an artificial hand prosthesis in: 1) a modality matched paradigm where pressure recorded on the five fingertips of the hand was fed back as pressure stimulation on five target points on the residual limb; and 2) a modality mismatched paradigm where the pressures were transformed into mechanical vibrations and fed back. Eight transradial amputees took part in the study and were divided in two groups based on the integrity of their phantom map; group A had a complete phantom map on the residual limb whereas group B had an incomplete or nonexisting map. The ability in localizing stimuli was compared with that of 10 healthy subjects using the vibration feedback and 11 healthy subjects using the pressure feedback (in a previous study), on their forearms, in similar experiments. Results demonstrate that pressure stimulation surpassed vibrotactile stimulation in multi-site sensory feedback discrimination. Furthermore, we demonstrate that subjects with a detailed phantom map had the best discrimination performance and even surpassed healthy participants for both feedback paradigms whereas group B had the worst performance overall. Finally, we show that placement of feedback devices on a complete phantom map improves multi-site sensory feedback discrimination, independently of the feedback modality.
A feedback control model for network flow with multiple pure time delays
NASA Technical Reports Server (NTRS)
Press, J.
1972-01-01
A control model describing a network flow hindered by multiple pure time (or transport) delays is formulated. Feedbacks connect each desired output with a single control sector situated at the origin. The dynamic formulation invokes the use of differential difference equations. This causes the characteristic equation of the model to consist of transcendental functions instead of a common algebraic polynomial. A general graphical criterion is developed to evaluate the stability of such a problem. A digital computer simulation confirms the validity of such criterion. An optimal decision making process with multiple delays is presented.
A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback.
Klaes, Christian; Shi, Ying; Kellis, Spencer; Minxha, Juri; Revechkis, Boris; Andersen, Richard A
2014-10-01
Present day cortical brain-machine interfaces (BMIs) have made impressive advances using decoded brain signals to control extracorporeal devices. Although BMIs are used in a closed-loop fashion, sensory feedback typically is visual only. However medical case studies have shown that the loss of somesthesis in a limb greatly reduces the agility of the limb even when visual feedback is available. To overcome this limitation, this study tested a closed-loop BMI that utilizes intracortical microstimulation to provide 'tactile' sensation to a non-human primate. Using stimulation electrodes in Brodmann area 1 of somatosensory cortex (BA1) and recording electrodes in the anterior intraparietal area, the parietal reach region and dorsal area 5 (area 5d), it was found that this form of feedback can be used in BMI tasks. Providing somatosensory feedback has the poyential to greatly improve the performance of cognitive neuroprostheses especially for fine control and object manipulation. Adding stimulation to a BMI system could therefore improve the quality of life for severely paralyzed patients.
NASA Astrophysics Data System (ADS)
Yan, Sen-lin
2014-12-01
We study dynamics in an opto-electronic delayed feedback two-section semiconductor laser. We predict theoretically that the system can result in bistability and bifurcation. We analyze numerically the route to chaos from stability to bifurcation by varying the delayed time, feedback strength and two in-currents. The system displays the four distinct types or modes of stable, periodic pulsed or self-pulsing, undamped oscillating or beating, and chaos. The frequency and intensity varying with the delayed time in the self-pulsation regions are discussed detailedly to find that the pulsing frequency is reduced with the long delayed time while the pulsing intensity is added. And the chaotic pulsing frequency is increased with the large in-current Ja. The laser relaxation oscillation frequency is decreased with the large in-current Jb. One in-current characterize dynamics in the laser to conduce to stable, periodic pulsed, beating and chaotic states by altering its values. The other in-current characterize dynamics in the chaotic laser to be controlled to a stable state after a road to quasi-period by adding the values.
Taming stochastic bifurcations in fractional-order systems via noise and delayed feedback
NASA Astrophysics Data System (ADS)
Sun, Zhongkui; Zhang, Jintian; Yang, Xiaoli; Xu, Wei
2017-08-01
The dynamics in fractional-order systems have been widely studied during the past decade due to the potential applications in new materials and anomalous diffusions, but the investigations have been so far restricted to a fractional-order system without time delay(s). In this paper, we report the first study of random responses of fractional-order system coupled with noise and delayed feedback. Stochastic averaging method has been utilized to determine the stationary probability density functions (PDFs) by means of the principle of minimum mean-square error, based on which stochastic bifurcations could be identified through recognizing the shape of the PDFs. It has been found that by changing the fractional order the shape of the PDFs can switch from unimodal distribution to bimodal one, or from bimodal distribution to unimodal one, thus announcing the onset of stochastic bifurcation. Further, we have demonstrated that by merely modulating the time delay, the feedback strengths, or the noise intensity, the shapes of PDFs can transit between a single peak and a double peak. Therefore, it provides an efficient candidate to control, say, induce or suppress, the stochastic bifurcations in fractional-order systems.
Digital signal processor and processing method for GPS receivers
NASA Technical Reports Server (NTRS)
Thomas, Jr., Jess B. (Inventor)
1989-01-01
A digital signal processor and processing method therefor for use in receivers of the NAVSTAR/GLOBAL POSITIONING SYSTEM (GPS) employs a digital carrier down-converter, digital code correlator and digital tracking processor. The digital carrier down-converter and code correlator consists of an all-digital, minimum bit implementation that utilizes digital chip and phase advancers, providing exceptional control and accuracy in feedback phase and in feedback delay. Roundoff and commensurability errors can be reduced to extremely small values (e.g., less than 100 nanochips and 100 nanocycles roundoff errors and 0.1 millichip and 1 millicycle commensurability errors). The digital tracking processor bases the fast feedback for phase and for group delay in the C/A, P.sub.1, and P.sub.2 channels on the L.sub.1 C/A carrier phase thereby maintaining lock at lower signal-to-noise ratios, reducing errors in feedback delays, reducing the frequency of cycle slips and in some cases obviating the need for quadrature processing in the P channels. Simple and reliable methods are employed for data bit synchronization, data bit removal and cycle counting. Improved precision in averaged output delay values is provided by carrier-aided data-compression techniques. The signal processor employs purely digital operations in the sense that exactly the same carrier phase and group delay measurements are obtained, to the last decimal place, every time the same sampled data (i.e., exactly the same bits) are processed.
ERIC Educational Resources Information Center
Lincoln, Michelle; Packman, Ann; Onslow, Mark; Jones, Mark
2010-01-01
Purpose: To investigate the impact on percentage of syllables stuttered of various durations of delayed auditory feedback (DAF), levels of frequency-altered feedback (FAF), and masking auditory feedback (MAF) during conversational speech. Method: Eleven adults who stuttered produced 10-min conversational speech samples during a control condition…
Simple Optoelectronic Feedback in Microwave Oscillators
NASA Technical Reports Server (NTRS)
Maleki, Lute; Iltchenko, Vladimir
2009-01-01
A proposed method of stabilizing microwave and millimeter-wave oscillators calls for the use of feedback in optoelectronic delay lines characterized by high values of the resonance quality factor (Q). The method would extend the applicability of optoelectronic feedback beyond the previously reported class of optoelectronic oscillators that comprise two-port electronic amplifiers in closed loops with high-Q feedback circuits.
Quantization improves stabilization of dynamical systems with delayed feedback
NASA Astrophysics Data System (ADS)
Stepan, Gabor; Milton, John G.; Insperger, Tamas
2017-11-01
We show that an unstable scalar dynamical system with time-delayed feedback can be stabilized by quantizing the feedback. The discrete time model corresponds to a previously unrecognized case of the microchaotic map in which the fixed point is both locally and globally repelling. In the continuous-time model, stabilization by quantization is possible when the fixed point in the absence of feedback is an unstable node, and in the presence of feedback, it is an unstable focus (spiral). The results are illustrated with numerical simulation of the unstable Hayes equation. The solutions of the quantized Hayes equation take the form of oscillations in which the amplitude is a function of the size of the quantization step. If the quantization step is sufficiently small, the amplitude of the oscillations can be small enough to practically approximate the dynamics around a stable fixed point.
The Roles of Feedback and Feedforward as Humans Learn to Control Unknown Dynamic Systems.
Zhang, Xingye; Wang, Shaoqian; Hoagg, Jesse B; Seigler, T Michael
2018-02-01
We present results from an experiment in which human subjects interact with an unknown dynamic system 40 times during a two-week period. During each interaction, subjects are asked to perform a command-following (i.e., pursuit tracking) task. Each subject's performance at that task improves from the first trial to the last trial. For each trial, we use subsystem identification to estimate each subject's feedforward (or anticipatory) control, feedback (or reactive) control, and feedback time delay. Over the 40 trials, the magnitudes of the identified feedback controllers and the identified feedback time delays do not change significantly. In contrast, the identified feedforward controllers do change significantly. By the last trial, the average identified feedforward controller approximates the inverse of the dynamic system. This observation provides evidence that a fundamental component of human learning is updating the anticipatory control until it models the inverse dynamics.
Reliance on auditory feedback in children with childhood apraxia of speech.
Iuzzini-Seigel, Jenya; Hogan, Tiffany P; Guarino, Anthony J; Green, Jordan R
2015-01-01
Children with childhood apraxia of speech (CAS) have been hypothesized to continuously monitor their speech through auditory feedback to minimize speech errors. We used an auditory masking paradigm to determine the effect of attenuating auditory feedback on speech in 30 children: 9 with CAS, 10 with speech delay, and 11 with typical development. The masking only affected the speech of children with CAS as measured by voice onset time and vowel space area. These findings provide preliminary support for greater reliance on auditory feedback among children with CAS. Readers of this article should be able to (i) describe the motivation for investigating the role of auditory feedback in children with CAS; (ii) report the effects of feedback attenuation on speech production in children with CAS, speech delay, and typical development, and (iii) understand how the current findings may support a feedforward program deficit in children with CAS. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Feedback control of flow vorticity at low Reynolds numbers.
Zeitz, Maria; Gurevich, Pavel; Stark, Holger
2015-03-01
Our aim is to explore strategies of feedback control to design and stabilize novel dynamic flow patterns in model systems of complex fluids. To introduce the control strategies, we investigate the simple Newtonian fluid at low Reynolds number in a circular geometry. Then, the fluid vorticity satisfies a diffusion equation. We determine the mean vorticity in the sensing area and use two control strategies to feed it back into the system by controlling the angular velocity of the circular boundary. Hysteretic feedback control generates self-regulated stable oscillations in time, the frequency of which can be adjusted over several orders of magnitude by tuning the relevant feedback parameters. Time-delayed feedback control initiates unstable vorticity modes for sufficiently large feedback strength. For increasing delay time, we first observe oscillations with beats and then regular trains of narrow pulses. Close to the transition line between the resting fluid and the unstable modes, these patterns are relatively stable over long times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacMartin, Douglas; Kravitz, Benjamin S.; Keith, David
2014-07-08
If solar radiation management (SRM) were ever implemented, feedback of the observed climate state might be used to adjust the radiative forcing of SRM, in order to compensate for uncertainty in either the forcing or the climate response; this would also compensate for unexpected changes in the system, e.g. a nonlinear change in climate sensitivity. This feedback creates an emergent coupled human-climate system, with entirely new dynamics. In addition to the intended response to greenhouse-gas induced changes, the use of feedback would also result in a geoengineering response to natural climate variability. We use a simple box-diffusion dynamic model tomore » understand how changing feedback-control parameters and time delay affect the behavior of this coupled natural-human system, and verify these predictions using the HadCM3L general circulation model. In particular, some amplification of natural variability is unavoidable; any time delay (e.g., to average out natural variability, or due to decision-making) exacerbates this amplification, with oscillatory behavior possible if there is a desire for rapid correction (high feedback gain), but a delayed response needed for decision making. Conversely, the need for feedback to compensate for uncertainty, combined with a desire to avoid excessive amplification, results in a limit on how rapidly SRM could respond to uncertain changes.« less
Frankel, Mitchell A; Dowden, Brett R; Mathews, V John; Normann, Richard A; Clark, Gregory A; Meek, Sanford G
2011-06-01
Although asynchronous intrafascicular multi-electrode stimulation (IFMS) can evoke fatigue-resistant muscle force, a priori determination of the necessary stimulation parameters for precise force production is not possible. This paper presents a proportionally-modulated, multiple-input single-output (MISO) controller that was designed and experimentally validated for real-time, closed-loop force-feedback control of asynchronous IFMS. Experiments were conducted on anesthetized felines with a Utah Slanted Electrode Array implanted in the sciatic nerve, either acutely or chronically ( n = 1 for each). Isometric forces were evoked in plantar-flexor muscles, and target forces consisted of up to 7 min of step, sinusoidal, and more complex time-varying trajectories. The controller was successful in evoking steps in force with time-to-peak of less than 0.45 s, steady-state ripple of less than 7% of the mean steady-state force, and near-zero steady-state error even in the presence of muscle fatigue, but with transient overshoot of near 20%. The controller was also successful in evoking target sinusoidal and complex time-varying force trajectories with amplitude error of less than 0.5 N and time delay of approximately 300 ms. This MISO control strategy can potentially be used to develop closed-loop asynchronous IFMS controllers for a wide variety of multi-electrode stimulation applications to restore lost motor function.
Single generation cycles and delayed feedback cycles are not separate phenomena.
Pfaff, T; Brechtel, A; Drossel, B; Guill, C
2014-12-01
We study a simple model for generation cycles, which are oscillations with a period of one or a few generation times of the species. The model is formulated in terms of a single delay-differential equation for the population density of an adult stage, with recruitment to the adult stage depending on the intensity of competition during the juvenile phase. This model is a simplified version of a group of models proposed by Gurney and Nisbet, who were the first to distinguish between single-generation cycles and delayed-feedback cycles. According to these authors, the two oscillation types are caused by different mechanisms and have periods in different intervals, which are one to two generation times for single-generation cycles and two to four generation times for delayed-feedback cycles. By abolishing the strict coupling between the maturation time and the time delay between competition and its effect on the population dynamics, we find that single-generation cycles and delayed-feedback cycles occur in the same model version, with a gradual transition between the two as the model parameters are varied over a sufficiently large range. Furthermore, cycle periods are not bounded to lie within single octaves. This implies that a clear distinction between different types of generation cycles is not possible. Cycles of all periods and even chaos can be generated by varying the parameters that determine the time during which individuals from different cohorts compete with each other. This suggests that life-cycle features in the juvenile stage and during the transition to the adult stage are important determinants of the dynamics of density limited populations. Copyright © 2014 Elsevier Inc. All rights reserved.
Danner, Simon M.; Freundl, Brigitta; Binder, Heinrich; Mayr, Winfried; Rattay, Frank; Minassian, Karen
2015-01-01
In individuals with motor-complete spinal cord injury, epidural stimulation of the lumbosacral spinal cord at 2 Hz evokes unmodulated reflexes in the lower limbs, while stimulation at 22–60 Hz can generate rhythmic burstlike activity. Here we elaborated on an output pattern emerging at transitional stimulation frequencies with consecutively elicited reflexes alternating between large and small. We analyzed responses concomitantly elicited in thigh and leg muscle groups bilaterally by epidural stimulation in eight motor-complete spinal cord-injured individuals. Periodic amplitude modulation of at least 20 successive responses occurred in 31.4% of all available data sets with stimulation frequency set at 5–26 Hz, with highest prevalence at 16 Hz. It could be evoked in a single muscle group only but was more strongly expressed and consistent when occurring in pairs of antagonists or in the same muscle group bilaterally. Latencies and waveforms of the modulated reflexes corresponded to those of the unmodulated, monosynaptic responses to 2-Hz stimulation. We suggest that the cyclical changes of reflex excitability resulted from the interaction of facilitatory and inhibitory mechanisms emerging after specific delays and with distinct durations, including postactivation depression, recurrent inhibition and facilitation, as well as reafferent feedback activation. The emergence of large responses within the patterns at a rate of 5.5/s or 8/s may further suggest the entrainment of spinal mechanisms as involved in clonus. The study demonstrates that the human lumbosacral spinal cord can organize a simple form of rhythmicity through the repetitive activation of spinal reflex circuits. PMID:25904708
Resonant current in coupled inertial Brownian particles with delayed-feedback control
NASA Astrophysics Data System (ADS)
Gao, Tian-Fu; Zheng, Zhi-Gang; Chen, Jin-Can
2017-12-01
The transport of a walker in rocking feedback-controlled ratchets is investigated. The walker consists of two coupled "feet" that allow the interchange of the order of particles while the walker moves. In the underdamped case, the deterministic dynamics of the walker in a tilted asymmetric ratchet with an external periodic force is considered. It is found that delayed feedback ratchets with a switching-onand-off dependence of the states of the system can lead to absolute negative mobility. In such a novel phenomenon, the particles move against the bias. Moreover, the walker can acquire a series of resonant steps for different values of the current. It is interesting to find that the resonant currents of the walker are induced by the phase locked motion that corresponds to the synchronization of the motion with the change in the frequency of the external driving. These resonant steps can be well predicted in terms of time-space symmetry analysis, which is in good agreement with dynamics simulations. The transport performances can be optimized and controlled by suitably adjusting the parameters of the delayed-feedback ratchets.
Feedback Control of Resistive Wall Modes in Slowly Rotating DIII-D Plasmas
NASA Astrophysics Data System (ADS)
Okabayashi, M.; Chance, M. S.; Takahashi, H.; Garofalo, A. M.; Reimerdes, H.; in, Y.; Chu, M. S.; Jackson, G. L.; La Haye, R. J.; Strait, E. J.
2006-10-01
In slowly rotating plasmas on DIII-D, the requirement of RWM control feedback have been identified, using a MHD code along with measured power supply characteristics. It was found that a small time delay is essential for achieving high beta if no rotation stabilization exists. The overall system delay or the band pass time constant should be in the range of 0.4 of the RWM growth time. Recently the control system was upgraded using twelve linear audio amplifiers and a faster digital control system, reducing the time-delay from 600 to 100 μs. The advantage has been clearly observed when the RWMs excited by ELMs were effectively controlled by feedback even if the rotation transiently slowed nearly to zero. This study provides insight on stability in the low- rotation plasmasw with balanced NBI in DIII-D and also in ITER.
Act-and-wait time-delayed feedback control of autonomous systems
NASA Astrophysics Data System (ADS)
Pyragas, Viktoras; Pyragas, Kestutis
2018-02-01
Recently an act-and-wait modification of time-delayed feedback control has been proposed for the stabilization of unstable periodic orbits in nonautonomous dynamical systems (Pyragas and Pyragas, 2016 [30]). The modification implies a periodic switching of the feedback gain and makes the closed-loop system finite-dimensional. Here we extend this modification to autonomous systems. In order to keep constant the phase difference between the controlled orbit and the act-and-wait switching function an additional small-amplitude periodic perturbation is introduced. The algorithm can stabilize periodic orbits with an odd number of real unstable Floquet exponents using a simple single-input single-output constraint control.
Zaheer, Muhammad Hamad; Rehan, Muhammad; Mustafa, Ghulam; Ashraf, Muhammad
2014-11-01
This paper proposes a novel state feedback delay-range-dependent control approach for chaos synchronization in coupled nonlinear time-delay systems. The coupling between two systems is esteemed to be nonlinear subject to time-lags. Time-varying nature of both the intrinsic and the coupling delays is incorporated to broad scope of the present study for a better-quality synchronization controller synthesis. Lyapunov-Krasovskii (LK) functional is employed to derive delay-range-dependent conditions that can be solved by means of the conventional linear matrix inequality (LMI)-tools. The resultant control approach for chaos synchronization of the master-slave time-delay systems considers non-zero lower bound of the intrinsic as well as the coupling time-delays. Further, the delay-dependent synchronization condition has been established as a special case of the proposed LK functional treatment. Furthermore, a delay-range-dependent condition, independent of the delay-rate, has been provided to address the situation when upper bound of the delay-derivative is unknown. A robust state feedback control methodology is formulated for synchronization of the time-delay chaotic networks against the L2 norm bounded perturbations by minimizing the L2 gain from the disturbance to the synchronization error. Numerical simulation results are provided for the time-delay chaotic networks to show effectiveness of the proposed delay-range-dependent chaos synchronization methodologies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Safety implications of providing real-time feedback to distracted drivers.
Donmez, Birsen; Boyle, Linda Ng; Lee, John D
2007-05-01
A driving simulator study was conducted to assess whether real-time feedback on a driver's state can influence the driver's interaction with in-vehicle information systems (IVIS). Previous studies have shown that IVIS tasks can undermine driver safety by increasing driver distraction. Thus, mitigating driver distraction using a feedback mechanism appears promising. This study was designed to test real-time feedback that alerts drivers based on their off-road eye glances. Feedback was displayed in two display locations (vehicle-centered, and IVIS-centered) to 16 young and 13 middle-aged drivers. Distraction was observed as problematic for both age groups with delayed responses to a lead vehicle-braking event as indicated by delayed accelerator releases. Significant benefits were not observed for braking and steering behavior for this experiment, but there was a significant change in drivers' interaction with IVIS. When given feedback on their distracted state, drivers looked at the in-vehicle display less frequently regardless of where feedback was displayed in the vehicle. This indicates that real-time feedback based on the driver state can positively alter driver's engagement in distracting activities, helping them attend better to the roadway.
Evidence of a Critical Phase Transition in Purely Temporal Dynamics with Long-Delayed Feedback
NASA Astrophysics Data System (ADS)
Faggian, Marco; Ginelli, Francesco; Marino, Francesco; Giacomelli, Giovanni
2018-04-01
Experimental evidence of an absorbing phase transition, so far associated with spatiotemporal dynamics, is provided in a purely temporal optical system. A bistable semiconductor laser, with long-delayed optoelectronic feedback and multiplicative noise, shows the peculiar features of a critical phenomenon belonging to the directed percolation universality class. The numerical study of a simple, effective model provides accurate estimates of the transition critical exponents, in agreement with both theory and our experiment. This result pushes forward a hard equivalence of nontrivial stochastic, long-delayed systems with spatiotemporal ones and opens a new avenue for studying out-of-equilibrium universality classes in purely temporal dynamics.
Regenerative memory in time-delayed neuromorphic photonic resonators
NASA Astrophysics Data System (ADS)
Romeira, B.; Avó, R.; Figueiredo, José M. L.; Barland, S.; Javaloyes, J.
2016-01-01
We investigate a photonic regenerative memory based upon a neuromorphic oscillator with a delayed self-feedback (autaptic) connection. We disclose the existence of a unique temporal response characteristic of localized structures enabling an ideal support for bits in an optical buffer memory for storage and reshaping of data information. We link our experimental implementation, based upon a nanoscale nonlinear resonant tunneling diode driving a laser, to the paradigm of neuronal activity, the FitzHugh-Nagumo model with delayed feedback. This proof-of-concept photonic regenerative memory might constitute a building block for a new class of neuron-inspired photonic memories that can handle high bit-rate optical signals.
Pearson, Adam R; West, Tessa V; Dovidio, John F; Powers, Stacie Renfro; Buck, Ross; Henning, Robert
2008-12-01
Intergroup interactions between racial or ethnic majority and minority groups are often stressful for members of both groups; however, the dynamic processes that promote or alleviate tension in intergroup interaction remain poorly understood. Here we identify a behavioral mechanism-response delay-that can uniquely contribute to anxiety and promote disengagement from intergroup contact. Minimally acquainted White, Black, and Latino participants engaged in intergroup or intragroup dyadic conversation either in real time or with a subtle temporal disruption (1-s delay) in audiovisual feedback. Whereas intergroup dyads reported greater anxiety and less interest in contact after engaging in delayed conversation than after engaging in real-time conversation, intragroup dyads reported less anxiety in the delay condition than they did after interacting in real time. These findings have theoretical and practical implications for understanding intergroup communication and social dynamics and for promoting positive intergroup contact.
Brousseau, Nicholas; Sauvageau, Chantal; Ouakki, Manale; Audet, Diane; Kiely, Marilou; Couture, Colette; Paré, Alain; Deceuninck, Geneviève
2010-12-03
Vaccine coverage (VC) at a given age is a widely-used indicator for measuring the performance of vaccination programs. However, there is increasing data suggesting that measuring delays in administering vaccines complements the measure of VC. Providing feedback to vaccinators is recognized as an effective strategy for improving vaccine coverage, but its implementation has not been widely documented in Canada. The objective of this study was to evaluate the feasibility of providing personalized feedback to vaccinators and its impact on vaccination delays (VD). In April and May 2008, a one-hour personalized feedback session was provided to health professionals in vaccinating medical clinics in the Quebec City region. VD for vaccines administered at two and twelve months of age were presented. Data from the regional vaccination registry were analysed for participating clinics. Two 12-month periods before and after the intervention were compared, namely from April 1st, 2007 to March 31st, 2008 and from June 1st, 2008 to May 31st, 2009. Ten medical clinics out of the twelve approached (83%), representing more than 2500 vaccinated children, participated in the project. Preparing and conducting the feedback involved 20 hours of work and expenses of $1000 per clinic. Based on a delay of one month, 94% of first doses of DTaP-Polio-Hib and 77% of meningococcal vaccine doses respected the vaccination schedule both before and after the intervention. Following the feedback, respect of the vaccination schedule increased for vaccines planned at 12 months for the four clinics that had modified their vaccination practices related to multiple injections (depending on the clinic, VD decreased by 24.4%, 32.0%, 40.2% and 44.6% respectively, p < 0.001 for all comparisons). The present study shows that it is feasible to provide personalized feedback to vaccinating clinics. While it may have encouraged positive changes in practice concerning multiple injections, this intervention on its own did not impact vaccination delays of the clinics visited. It is possible that feedback integrated into other types of effective interventions and sustained over time may have more impact on VD.
Performance constraints and compensation for teleoperation with delay
NASA Technical Reports Server (NTRS)
Mclaughlin, J. S.; Staunton, B. D.
1989-01-01
A classical control perspective is used to characterize performance constraints and evaluate compensation techniques for teleoperation with delay. Use of control concepts such as open and closed loop performance, stability, and bandwidth yield insight to the delay problem. Teleoperator performance constraints are viewed as an open loop time delay lag and as a delay-induced closed loop bandwidth constraint. These constraints are illustrated with a simple analytical tracking example which is corroborated by a real time, 'man-in-the-loop' tracking experiment. The experiment also provides insight to those controller characteristics which are unique to a human operator. Predictive displays and feedforward commands are shown to provide open loop compensation for delay lag. Low pass filtering of telemetry or feedback signals is interpreted as closed loop compensation used to maintain a sufficiently low bandwidth for stability. A new closed loop compensation approach is proposed that uses a reactive (or force feedback) hand controller to restrict system bandwidth by impeding operator inputs.
Controlling Mackey-Glass chaos.
Kiss, Gábor; Röst, Gergely
2017-11-01
The Mackey-Glass equation is the representative example of delay induced chaotic behavior. Here, we propose various control mechanisms so that otherwise erratic solutions are forced to converge to the positive equilibrium or to a periodic orbit oscillating around that equilibrium. We take advantage of some recent results of the delay differential literature, when a sufficiently large domain of the phase space has been shown to be attractive and invariant, where the system is governed by monotone delayed feedback and chaos is not possible due to some Poincaré-Bendixson type results. We systematically investigate what control mechanisms are suitable to drive the system into such a situation and prove that constant perturbation, proportional feedback control, Pyragas control, and state dependent delay control can all be efficient to control Mackey-Glass chaos with properly chosen control parameters.
Controlling Mackey-Glass chaos
NASA Astrophysics Data System (ADS)
Kiss, Gábor; Röst, Gergely
2017-11-01
The Mackey-Glass equation is the representative example of delay induced chaotic behavior. Here, we propose various control mechanisms so that otherwise erratic solutions are forced to converge to the positive equilibrium or to a periodic orbit oscillating around that equilibrium. We take advantage of some recent results of the delay differential literature, when a sufficiently large domain of the phase space has been shown to be attractive and invariant, where the system is governed by monotone delayed feedback and chaos is not possible due to some Poincaré-Bendixson type results. We systematically investigate what control mechanisms are suitable to drive the system into such a situation and prove that constant perturbation, proportional feedback control, Pyragas control, and state dependent delay control can all be efficient to control Mackey-Glass chaos with properly chosen control parameters.
Tanaka, Saori; Sugiyama, Nanae; Takahashi, Yuko; Mantoku, Daiki; Sawabe, Yukinori; Kuwabara, Hiroko; Nakano, Takashi; Shimamoto, Chikao; Matsumura, Hitoshi; Marunaka, Yoshinori; Nakahari, Takashi
2014-12-15
In antral mucous cells, acetylcholine (ACh, 1 μM) activates Ca(2+)-regulated exocytosis, consisting of a peak in exocytotic events that declines rapidly (initial phase) followed by a second slower decline (late phase) lasting during ACh stimulation. GW7647 [a peroxisome proliferation activation receptor α (PPARα) agonist] enhanced the ACh-stimulated initial phase, and GW6471 (a PPARα antagonist) abolished the GW7647-induced enhancement. However, GW6471 produced the delayed, but transient, increase in the ACh-stimulated late phase, and it also decreased the initial phase and produced the delayed increase in the late phase during stimulation with ACh alone. A similar delayed increase in the ACh-stimulated late phase is induced by an inhibitor of the PKG, Rp8BrPETcGMPS, suggesting that GW6471 inhibits cGMP accumulation. An inhibitor of nitric oxide synthase 1 (NOS1), N(5)-[imino(propylamino)methyl]-L-ornithine hydrochloride (N-PLA), also abolished the GW7647-induced-enhancement of ACh-stimulated initial phase but produced the delayed increase in the late phase. However, in the presence of N-PLA, an NO donor or 8BrcGMP enhanced the ACh-stimulated initial phase and abolished the delayed increase in the late phase. Moreover, GW7647 and ACh stimulated NO production and cGMP accumulation in antral mucosae, which was inhibited by GW6471 or N-PLA. Western blotting and immunohistochemistry revealed that NOS1 and PPARα colocalize in antral mucous cells. In conclusion, during ACh stimulation, a PPARα autocrine mechanism, which accumulates NO via NOS1 leading to cGMP accumulation, modulates the Ca(2+)-regulated exocytosis in antral mucous cells. Copyright © 2014 the American Physiological Society.
Experimental relevance of global properties of time-delayed feedback control.
von Loewenich, Clemens; Benner, Hartmut; Just, Wolfram
2004-10-22
We show by means of theoretical considerations and electronic circuit experiments that time-delayed feedback control suffers from severe global constraints if transitions at the control boundaries are discontinuous. Subcritical behavior gives rise to small basins of attraction and thus limits the control performance. The reported properties are, on the one hand, universal since the mechanism is based on general arguments borrowed from bifurcation theory and, on the other hand, directly visible in experimental time series.
Höhne, Klaus; Shirahama, Hiroyuki; Choe, Chol-Ung; Benner, Hartmut; Pyragas, Kestutis; Just, Wolfram
2007-05-25
We demonstrate by electronic circuit experiments the feasibility of an unstable control loop to stabilize torsion-free orbits by time-delayed feedback control. Corresponding analytical normal form calculations and numerical simulations reveal a severe dependence of the basin of attraction on the particular coupling scheme of the control force. Such theoretical predictions are confirmed by the experiments and emphasize the importance of the coupling scheme for the global control performance.
Van Borsel, John; Eeckhout, Hannelore
2008-09-01
This study investigated listeners' perception of the speech naturalness of people who stutter (PWS) speaking under delayed auditory feedback (DAF) with particular attention for possible listener differences. Three panels of judges consisting of 14 stuttering individuals, 14 speech language pathologists, and 14 naive listeners rated the naturalness of speech samples of stuttering and non-stuttering individuals using a 9-point interval scale. Results clearly indicate that these three groups evaluate naturalness differently. Naive listeners appear to be more severe in their judgements than speech language pathologists and stuttering listeners, and speech language pathologists are apparently more severe than PWS. The three listener groups showed similar trends with respect to the relationship between speech naturalness and speech rate. Results of all three indicated that for PWS, the slower a speaker's rate was, the less natural speech was judged to sound. The three listener groups also showed similar trends with regard to naturalness of the stuttering versus the non-stuttering individuals. All three panels considered the speech of the non-stuttering participants more natural. The reader will be able to: (1) discuss the speech naturalness of people who stutter speaking under delayed auditory feedback, (2) discuss listener differences about the naturalness of people who stutter speaking under delayed auditory feedback, and (3) discuss the importance of speech rate for the naturalness of speech.
Schiefer, Matthew; Tan, Daniel; Sidek, Steven M; Tyler, Dustin J
2016-02-01
Tactile feedback is critical to grip and object manipulation. Its absence results in reliance on visual and auditory cues. Our objective was to assess the effect of sensory feedback on task performance in individuals with limb loss. Stimulation of the peripheral nerves using implanted cuff electrodes provided two subjects with sensory feedback with intensity proportional to forces on the thumb, index, and middle fingers of their prosthetic hand during object manipulation. Both subjects perceived the sensation on their phantom hand at locations corresponding to the locations of the forces on the prosthetic hand. A bend sensor measured prosthetic hand span. Hand span modulated the intensity of sensory feedback perceived on the thenar eminence for subject 1 and the middle finger for subject 2. We performed three functional tests with the blindfolded subjects. First, the subject tried to determine whether or not a wooden block had been placed in his prosthetic hand. Second, the subject had to locate and remove magnetic blocks from a metal table. Third, the subject performed the Southampton Hand Assessment Procedure (SHAP). We also measured the subject's sense of embodiment with a survey and his self-confidence. Blindfolded performance with sensory feedback was similar to sighted performance in the wooden block and magnetic block tasks. Performance on the SHAP, a measure of hand mechanical function and control, was similar with and without sensory feedback. An embodiment survey showed an improved sense of integration of the prosthesis in self body image with sensory feedback. Sensory feedback by peripheral nerve stimulation improved object discrimination and manipulation, embodiment, and confidence. With both forms of feedback, the blindfolded subjects tended toward results obtained with visual feedback.
Roh, Taehwan; Song, Kiseok; Cho, Hyunwoo; Shin, Dongjoo; Yoo, Hoi-Jun
2014-12-01
A wearable neuro-feedback system is proposed with a low-power neuro-feedback SoC (NFS), which supports mental status monitoring with encephalography (EEG) and transcranial electrical stimulation (tES) for neuro-modulation. Self-configured independent component analysis (ICA) is implemented to accelerate source separation at low power. Moreover, an embedded support vector machine (SVM) enables online source classification, configuring the ICA accelerator adaptively depending on the types of the decomposed components. Owing to the hardwired accelerating functions, the NFS dissipates only 4.45 mW to yield 16 independent components. For non-invasive neuro-modulation, tES stimulation up to 2 mA is implemented on the SoC. The NFS is fabricated in 130-nm CMOS technology.
NASA Technical Reports Server (NTRS)
Milman, Mark H.
1987-01-01
The fundamental control synthesis issue of establishing a priori convergence rates of approximation schemes for feedback controllers for a class of distributed parameter systems is addressed within the context of hereditary systems. Specifically, a factorization approach is presented for deriving approximations to the optimal feedback gains for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the controls, trajectories and feedback kernels. Two algorithms are derived from the basic approximation scheme, including a fast algorithm, in the time-invariant case. A numerical example is also considered.
Giannakakos, Antonia R; Vladescu, Jason C; Kisamore, April N; Reeve, Sharon A
2016-06-01
Direct teaching procedures are often an important part of early intensive behavioral intervention for consumers with autism spectrum disorder. In the present study, a video model with voiceover (VMVO) instruction plus feedback was evaluated to train three staff trainees to implement a most-to-least direct (MTL) teaching procedure. Probes for generalization were conducted with untrained direct teaching procedures (i.e., least-to-most, prompt delay) and with an actual consumer. The results indicated that VMVO plus feedback was effective in training the staff trainees to implement the MTL procedure. Although additional feedback was required for the staff trainees to show mastery of the untrained direct teaching procedures (i.e., least-to-most and prompt delay) and with an actual consumer, moderate to high levels of generalization were observed.
NASA Technical Reports Server (NTRS)
Milman, Mark H.
1988-01-01
The fundamental control synthesis issue of establishing a priori convergence rates of approximation schemes for feedback controllers for a class of distributed parameter systems is addressed within the context of hereditary schemes. Specifically, a factorization approach is presented for deriving approximations to the optimal feedback gains for the linear regulator-quadratic cost problem associated with time-varying functional differential equations with control delays. The approach is based on a discretization of the state penalty which leads to a simple structure for the feedback control law. General properties of the Volterra factors of Hilbert-Schmidt operators are then used to obtain convergence results for the controls, trajectories and feedback kernels. Two algorithms are derived from the basic approximation scheme, including a fast algorithm, in the time-invariant case. A numerical example is also considered.
ERIC Educational Resources Information Center
McAdam, David B.; And Others
1993-01-01
A self-management approach (utilizing self-counting of behaviors, corrective verbal feedback, and contingent verbal praise) was effectively used to reduce stereotypical body rocking in a congenitally blind young adult. Positive results were maintained, with replacement of overt counting with covert counting and immediate with delayed feedback as…
Mathematics Practice without Feedback: A Desirable Difficulty in a Classroom Setting
ERIC Educational Resources Information Center
Fyfe, Emily R.; Rittle-Johnson, Bethany
2017-01-01
Recent research highlights the potential benefits of practice without feedback on learner's strategy knowledge. However, most prior work has been conducted in one-on-one settings with short retention intervals. We compared the effects of mathematics practice with and without correct-answer feedback on immediate and 1-week delayed performance in a…
Autonomous learning by simple dynamical systems with delayed feedback.
Kaluza, Pablo; Mikhailov, Alexander S
2014-09-01
A general scheme for the construction of dynamical systems able to learn generation of the desired kinds of dynamics through adjustment of their internal structure is proposed. The scheme involves intrinsic time-delayed feedback to steer the dynamics towards the target performance. As an example, a system of coupled phase oscillators, which can, by changing the weights of connections between its elements, evolve to a dynamical state with the prescribed (low or high) synchronization level, is considered and investigated.
Dynamical regimes and intracavity propagation delay in external cavity semiconductor diode lasers
NASA Astrophysics Data System (ADS)
Jayaprasath, E.; Sivaprakasam, S.
2017-11-01
Intracavity propagation delay, a delay introduced by a semiconductor diode laser, is found to significantly influence synchronization of multiple semiconductor diode lasers, operated either in stable or in chaotic regime. Two diode lasers coupled in unidirectional scheme is considered in this numerical study. A diode laser subjected to an optical feedback, also called an external cavity diode laser, acts as the transmitter laser (TL). A solitary diode laser acts as the receiver laser (RL). The optical output of the TL is coupled to the RL and laser operating parameters are optimized to achieve synchronization in their output intensities. The time-of-flight between the TL and RL introduces an intercavity time delay in the dynamics of RL. In addition to this, an intracavity propagation delay arises as the TL's field propagated within the RL. This intracavity propagation delay is evaluated by cross-correlation analysis between the output intensities of the lasers. The intracavity propagation delay is found to increase as the external cavity feedback rate of TL is increased, while an increment in the injection rate between the two lasers resulted in a reduction of intracavity propagation delay.
Facilitating effects of deep brain stimulation on feedback learning in Parkinson's disease.
Meissner, Sarah Nadine; Südmeyer, Martin; Keitel, Ariane; Pollok, Bettina; Bellebaum, Christian
2016-10-15
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) provides an effective treatment for Parkinson's disease (PD) motor symptoms. However, findings of effects on cognitive function such as feedback learning remain controversial and rare. The aim of the present study was to gain a better understanding of cognitive alterations associated with STN-DBS. Therefore, we investigated effects of STN-DBS on active and observational feedback learning in PD. 18 PD patients with STN-DBS and 18 matched healthy controls completed active and observational feedback learning tasks. Patients were investigated ON and OFF STN-DBS. Tasks consisted of learning (with feedback) and test phases (without feedback). STN-DBS improved active learning during feedback trials and PD patients ON (but not OFF) STN-DBS showed comparable performance patterns as healthy controls. No STN-DBS effect was found when assessing performance during active test trials without feedback. In this case, however, STN-DBS effects were found to depend on symptom severity. While more impaired patients benefited from STN-DBS, stimulation had no facilitating effect on patients with less severe symptoms. Along similar lines, the severity of motor symptoms tended to be significantly correlated with differences in active test performance due to STN-DBS. For observational feedback learning, there was a tendency for a positive STN-DBS effect with patients reaching the performance level of healthy controls only ON STN-DBS. The present data suggest that STN-DBS facilitates active feedback learning in PD patients. Furthermore, they provide first evidence that STN-DBS might not only affect learning from own but also from observed actions and outcomes. Copyright © 2016 Elsevier B.V. All rights reserved.
Anticontrol of chaos in continuous-time systems via time-delay feedback.
Wang, Xiao Fan; Chen, Guanrong; Yu, Xinghuo
2000-12-01
In this paper, a systematic design approach based on time-delay feedback is developed for anticontrol of chaos in a continuous-time system. This anticontrol method can drive a finite-dimensional, continuous-time, autonomous system from nonchaotic to chaotic, and can also enhance the existing chaos of an originally chaotic system. Asymptotic analysis is used to establish an approximate relationship between a time-delay differential equation and a discrete map. Anticontrol of chaos is then accomplished based on this relationship and the differential-geometry control theory. Several examples are given to verify the effectiveness of the methodology and to illustrate the systematic design procedure. (c) 2000 American Institute of Physics.
Ikeda-like chaos on a dynamically filtered supercontinuum light source
NASA Astrophysics Data System (ADS)
Chembo, Yanne K.; Jacquot, Maxime; Dudley, John M.; Larger, Laurent
2016-08-01
We demonstrate temporal chaos in a color-selection mechanism from the visible spectrum of a supercontinuum light source. The color-selection mechanism is governed by an acousto-optoelectronic nonlinear delayed-feedback scheme modeled by an Ikeda-like equation. Initially motivated by the design of a broad audience live demonstrator in the framework of the International Year of Light 2015, the setup also provides a different experimental tool to investigate the dynamical complexity of delayed-feedback dynamics. Deterministic hyperchaos is analyzed here from the experimental time series. A projection method identifies the delay parameter, for which the chaotic strange attractor originally evolving in an infinite-dimensional phase space can be revealed in a two-dimensional subspace.
Hartmann, Cornelia; Dosen, Strahinja; Amsuess, Sebastian; Farina, Dario
2015-09-01
Electrocutaneous stimulation is a promising approach to provide sensory feedback to amputees, and thus close the loop in upper limb prosthetic systems. However, the stimulation introduces artifacts in the recorded electromyographic (EMG) signals, which may be detrimental for the control of myoelectric prostheses. In this study, artifact blanking with three data segmentation approaches was investigated as a simple method to restore the performance of pattern recognition in prosthesis control (eight motions) when EMG signals are corrupted by stimulation artifacts. The methods were tested over a range of stimulation conditions and using four feature sets, comprising both time and frequency domain features. The results demonstrated that when stimulation artifacts were present, the classification performance improved with blanking in all tested conditions. In some cases, the classification performance with blanking was at the level of the benchmark (artifact-free data). The greatest pulse duration and frequency that allowed a full performance recovery were 400 μs and 150 Hz, respectively. These results show that artifact blanking can be used as a practical solution to eliminate the negative influence of the stimulation artifact on EMG pattern classification in a broad range of conditions, thus allowing to close the loop in myoelectric prostheses using electrotactile feedback.
Chaos control by electric current in an enzymatic reaction.
Lekebusch, A; Förster, A; Schneider, F W
1996-09-01
We apply the continuous delayed feedback method of Pyragas to control chaos in the enzymatic Peroxidase-Oxidase (PO) reaction, using the electric current as the control parameter. At each data point in the time series, a time delayed feedback function applies a small amplitude perturbation to inert platinum electrodes, which causes redox processes on the surface of the electrodes. These perturbations are calculated as the difference between the previous (time delayed) signal and the actual signal. Unstable periodic P1, 1(1), and 1(2) orbits (UPOs) were stabilized in the CSTR (continuous stirred tank reactor) experiments. The stabilization is demonstrated by at least three conditions: A minimum in the experimental dispersion function, the equality of the delay time with the period of the stabilized attractor and the embedment of the stabilized periodic attractor in the chaotic attractor.
Leib, Raz; Rubin, Inbar; Nisky, Ilana
2018-05-16
Interaction with an object often requires the estimation of its mechanical properties. We examined whether the hand that is used to interact with the object and their handedness affected people's estimation of these properties using stiffness estimation as a test case. We recorded participants' responses on a stiffness discrimination of a virtual elastic force field and the grip force applied on the robotic device during the interaction. In half of the trials, the robotic device delayed the participants' force feedback. Consistent with previous studies, delayed force feedback biased the perceived stiffness of the force field. Interestingly, in both left-handed and right-handed participants, for the delayed force field, there was even less perceived stiffness when participants used their left hand than their right hand. This result supports the idea that haptic processing is affected by laterality in the brain, not by handedness. Consistent with previous studies, participants adjusted their applied grip force according to the correct size and timing of the load force regardless of the hand that was used, the handedness, or the delay. This suggests that in all these conditions, participants were able to form an accurate internal representation of the anticipated trajectory of the load force (size and timing) and that this representation was used for accurate control of grip force independently of the perceptual bias. Thus, these results provide additional evidence for the dissociation between action and perception in the processing of delayed information.
NASA Astrophysics Data System (ADS)
Bruns, Tim M.; Wagenaar, Joost B.; Bauman, Matthew J.; Gaunt, Robert A.; Weber, Douglas J.
2013-04-01
Objective. Functional electrical stimulation (FES) approaches often utilize an open-loop controller to drive state transitions. The addition of sensory feedback may allow for closed-loop control that can respond effectively to perturbations and muscle fatigue. Approach. We evaluated the use of natural sensory nerve signals obtained with penetrating microelectrode arrays in lumbar dorsal root ganglia (DRG) as real-time feedback for closed-loop control of FES-generated hind limb stepping in anesthetized cats. Main results. Leg position feedback was obtained in near real-time at 50 ms intervals by decoding the firing rates of more than 120 DRG neurons recorded simultaneously. Over 5 m of effective linear distance was traversed during closed-loop stepping trials in each of two cats. The controller compensated effectively for perturbations in the stepping path when DRG sensory feedback was provided. The presence of stimulation artifacts and the quality of DRG unit sorting did not significantly affect the accuracy of leg position feedback obtained from the linear decoding model as long as at least 20 DRG units were included in the model. Significance. This work demonstrates the feasibility and utility of closed-loop FES control based on natural neural sensors. Further work is needed to improve the controller and electrode technologies and to evaluate long-term viability.
Bruns, Tim M; Wagenaar, Joost B; Bauman, Matthew J; Gaunt, Robert A; Weber, Douglas J
2013-01-01
Objective Functional electrical stimulation (FES) approaches often utilize an open-loop controller to drive state transitions. The addition of sensory feedback may allow for closed-loop control that can respond effectively to perturbations and muscle fatigue. Approach We evaluated the use of natural sensory nerve signals obtained with penetrating microelectrode arrays in lumbar dorsal root ganglia (DRG) as real-time feedback for closed-loop control of FES-generated hind limb stepping in anesthetized cats. Main results Leg position feedback was obtained in near real-time at 50 ms intervals by decoding the firing rates of more than 120 DRG neurons recorded simultaneously. Over 5 m of effective linear distance was traversed during closed-loop stepping trials in each of two cats. The controller compensated effectively for perturbations in the stepping path when DRG sensory feedback was provided. The presence of stimulation artifacts and the quality of DRG unit sorting did not significantly affect the accuracy of leg position feedback obtained from the linear decoding model as long as at least 20 DRG units were included in the model. Significance This work demonstrates the feasibility and utility of closed-loop FES control based on natural neural sensors. Further work is needed to improve the controller and electrode technologies and to evaluate long-term viability. PMID:23503062
Simultaneous recording of mouse retinal ganglion cells during epiretinal or subretinal stimulation
Sim, S.L.; Szalewski, R.J.; Johnson, L.J.; Akah, L.E.; Shoemaker, L.E.; Thoreson, W.B.; Margalit, E.
2015-01-01
We compared response patterns and electrical receptive fields (ERF) of retinal ganglion cells (RGCs) during epiretinal and subretinal electrical stimulation of isolated mouse retina. Retinas were stimulated with an array of 3200 independently controllable electrodes. Four response patterns were observed: a burst of activity immediately after stimulation (Type I cells, Vision Research (2008), 48, 1562–1568), delayed bursts beginning >25 ms after stimulation (Type II), a combination of both (Type III), and inhibition of ongoing spike activity. Type I responses were produced more often by epiretinal than subretinal stimulation whereas delayed and inhibitory responses were evoked more frequently by subretinal stimulation. Response latencies were significantly shorter with epiretinal than subretinal stimulation. These data suggest that subretinal stimulation is more effective at activating intraretinal circuits than epiretinal stimulation. There was no significant difference in charge threshold between subretinal and epiretinal configurations. ERFs were defined by the stimulating array surface area that successfully stimulated spikes in an RGC. ERFs were complex in shape, similar to receptive fields mapped with light. ERF areas were significantly smaller with subretinal than epiretinal stimulation. This may reflect the greater distance between stimulating electrodes and RGCs in the subretinal configuration. ERFs for immediate and delayed responses mapped within the same Type III cells differed in shape and size, consistent with different sites and mechanisms for generating these two response types. PMID:24863584
van Vugt, F T; Kafczyk, T; Kuhn, W; Rollnik, J D; Tillmann, B; Altenmüller, E
2016-01-01
Learning to play musical instruments such as piano was previously shown to benefit post-stroke motor rehabilitation. Previous work hypothesised that the mechanism of this rehabilitation is that patients use auditory feedback to correct their movements and therefore show motor learning. We tested this hypothesis by manipulating the auditory feedback timing in a way that should disrupt such error-based learning. We contrasted a patient group undergoing music-supported therapy on a piano that emits sounds immediately (as in previous studies) with a group whose sounds are presented after a jittered delay. The delay was not noticeable to patients. Thirty-four patients in early stroke rehabilitation with moderate motor impairment and no previous musical background learned to play the piano using simple finger exercises and familiar children's songs. Rehabilitation outcome was not impaired in the jitter group relative to the normal group. Conversely, some clinical tests suggests the jitter group outperformed the normal group. Auditory feedback-based motor learning is not the beneficial mechanism of music-supported therapy. Immediate auditory feedback therapy may be suboptimal. Jittered delay may increase efficacy of the proposed therapy and allow patients to fully benefit from motivational factors of music training. Our study shows a novel way to test hypotheses concerning music training in a single-blinded way, which is an important improvement over existing unblinded tests of music interventions.
Prsa, Mario; Galiñanes, Gregorio L; Huber, Daniel
2017-02-22
Neuronal motor commands, whether generating real or neuroprosthetic movements, are shaped by ongoing sensory feedback from the displacement being produced. Here we asked if cortical stimulation could provide artificial feedback during operant conditioning of cortical neurons. Simultaneous two-photon imaging and real-time optogenetic stimulation were used to train mice to activate a single neuron in motor cortex (M1), while continuous feedback of its activity level was provided by proportionally stimulating somatosensory cortex. This artificial signal was necessary to rapidly learn to increase the conditioned activity, detect correct performance, and maintain the learned behavior. Population imaging in M1 revealed that learning-related activity changes are observed in the conditioned cell only, which highlights the functional potential of individual neurons in the neocortex. Our findings demonstrate the capacity of animals to use an artificially induced cortical channel in a behaviorally relevant way and reveal the remarkable speed and specificity at which this can occur. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Nataraj, Raviraj; Audu, Musa L; Kirsch, Robert F; Triolo, Ronald J
2010-12-01
Previous investigations of feedback control of standing after spinal cord injury (SCI) using functional neuromuscular stimulation (FNS) have primarily targeted individual joints. This study assesses the potential efficacy of comprehensive (trunk, hips, knees, and ankles) joint feedback control against postural disturbances using a bipedal, 3-D computer model of SCI stance. Proportional-derivative feedback drove an artificial neural network trained to produce muscle excitation patterns consistent with maximal joint stiffness values achievable about neutral stance given typical SCI muscle properties. Feedback gains were optimized to minimize upper extremity (UE) loading required to stabilize against disturbances. Compared to the baseline case of maximum constant muscle excitations used clinically, the controller reduced UE loading by 55% in resisting external force perturbations and by 84% during simulated one-arm functional tasks. Performance was most sensitive to inaccurate measurements of ankle plantar/dorsiflexion position and hip ab/adduction velocity feedback. In conclusion, comprehensive joint feedback demonstrates potential to markedly improve FNS standing function. However, alternative control structures capable of effective performance with fewer sensor-based feedback parameters may better facilitate clinical usage.
Nataraj, Raviraj; Audu, Musa L.; Kirsch, Robert F.; Triolo, Ronald J.
2013-01-01
Previous investigations of feedback control of standing after spinal cord injury (SCI) using functional neuromuscular stimulation (FNS) have primarily targeted individual joints. This study assesses the potential efficacy of comprehensive (trunk, hips, knees, and ankles) joint-feedback control against postural disturbances using a bipedal, three-dimensional computer model of SCI stance. Proportional-derivative feedback drove an artificial neural network trained to produce muscle excitation patterns consistent with maximal joint stiffness values achievable about neutral stance given typical SCI muscle properties. Feedback gains were optimized to minimize upper extremity (UE) loading required to stabilize against disturbances. Compared to the baseline case of maximum constant muscle excitations used clinically, the controller reduced UE loading by 55% in resisting external force perturbations and by 84% during simulated one-arm functional tasks. Performance was most sensitive to inaccurate measurements of ankle plantar/dorsiflexion position and hip ab/adduction velocity feedback. In conclusion, comprehensive joint-feedback demonstrates potential to markedly improve FNS standing function. However, alternative control structures capable of effective performance with fewer sensor-based feedback parameters may better facilitate clinical usage. PMID:20923741
Han, Sungmin; Chu, Jun-Uk; Park, Jong Woong; Youn, Inchan
2018-05-15
Proprioceptive afferent activities recorded by a multichannel microelectrode have been used to decode limb movements to provide sensory feedback signals for closed-loop control in a functional electrical stimulation (FES) system. However, analyzing the high dimensionality of neural activity is one of the major challenges in real-time applications. This paper proposes a linear feature projection method for the real-time decoding of ankle and knee joint angles. Single-unit activity was extracted as a feature vector from proprioceptive afferent signals that were recorded from the L7 dorsal root ganglion during passive movements of ankle and knee joints. The dimensionality of this feature vector was then reduced using a linear feature projection composed of projection pursuit and negentropy maximization (PP/NEM). Finally, a time-delayed Kalman filter was used to estimate the ankle and knee joint angles. The PP/NEM approach had a better decoding performance than did other feature projection methods, and all processes were completed within the real-time constraints. These results suggested that the proposed method could be a useful decoding method to provide real-time feedback signals in closed-loop FES systems.
Transfer of learned perception of sensorimotor simultaneity.
Pesavento, Michael J; Schlag, John
2006-10-01
Synchronizing a motor response to a predictable sensory stimulus, like a periodic flash or click, relies on feedback (somesthetic, auditory, visual, or other) from the motor response. Practically, this results in a small (<50 ms) asynchrony in which the motor response leads the sensory event. Here we show that the perceived simultaneity in a coincidence-anticipation task (line crossing) is affected by changing the perceived simultaneity in a different task (pacing). In the pace task, human subjects were instructed to press a key in perfect synchrony with a red square flashed every second. In training sessions, feedback was provided by flashing a blue square with each key press, below the red square. There were two types of training pace sessions: one in which the feedback was provided with no delay, the other (adapting), in which the feedback was progressively delayed (up to 100 ms). Subjects' asynchrony was unchanged in the first case, but it was significantly increased in the pace task with delay. In the coincidence-anticipation task, a horizontally moving vertical bar crossed a vertical line in the middle of a screen. Subjects were instructed to press a key exactly when the bar crossed the line. They were given no feedback on their performance. Asynchrony on the line-crossing task was tested after the training pace task with feedback. We found that this asynchrony to be significantly increased even though there never was any feedback on the coincidence-anticipation task itself. Subjects were not aware that their sensorimotor asynchrony had been lengthened (sometimes doubled). We conclude that perception of simultaneity in a sensorimotor task is learned. If this perception is caused by coincidence of signals in the brain, the timing of these signals depends on something-acquired by experience-more adaptable than physiological latencies.
NASA Astrophysics Data System (ADS)
Terrien, Soizic; Krauskopf, Bernd; Broderick, Neil G. R.; Andréoli, Louis; Selmi, Foued; Braive, Rémy; Beaudoin, Grégoire; Sagnes, Isabelle; Barbay, Sylvain
2017-10-01
A semiconductor micropillar laser with delayed optical feedback is considered. In the excitable regime, we show that a single optical perturbation can trigger a train of pulses that is sustained for a finite duration. The distribution of the pulse train duration exhibits an exponential behavior characteristic of a noise-induced process driven by uncorrelated white noise present in the system. The comparison of experimental observations with theoretical and numerical analysis of a minimal model yields excellent agreement. Importantly, the random switch-off process takes place between two attractors of different nature: an equilibrium and a periodic orbit. Our analysis shows that there is a small time window during which the pulsations are very sensitive to noise, and this explains the observed strong bias toward switch-off. These results raise the possibility of all optical control of the pulse train duration that may have an impact for practical applications in photonics and may also apply to the dynamics of other noise-driven excitable systems with delayed feedback.
Strength of German accent under altered auditory feedback
HOWELL, PETER; DWORZYNSKI, KATHARINA
2007-01-01
Borden’s (1979, 1980) hypothesis that speakers with vulnerable speech systems rely more heavily on feedback monitoring than do speakers with less vulnerable systems was investigated. The second language (L2) of a speaker is vulnerable, in comparison with the native language, so alteration to feedback should have a detrimental effect on it, according to this hypothesis. Here, we specifically examined whether altered auditory feedback has an effect on accent strength when speakers speak L2. There were three stages in the experiment. First, 6 German speakers who were fluent in English (their L2) were recorded under six conditions—normal listening, amplified voice level, voice shifted in frequency, delayed auditory feedback, and slowed and accelerated speech rate conditions. Second, judges were trained to rate accent strength. Training was assessed by whether it was successful in separating German speakers speaking English from native English speakers, also speaking English. In the final stage, the judges ranked recordings of each speaker from the first stage as to increasing strength of German accent. The results show that accents were more pronounced under frequency-shifted and delayed auditory feedback conditions than under normal or amplified feedback conditions. Control tests were done to ensure that listeners were judging accent, rather than fluency changes caused by altered auditory feedback. The findings are discussed in terms of Borden’s hypothesis and other accounts about why altered auditory feedback disrupts speech control. PMID:11414137
Cessation of oscillations in a chemo-mechanical oscillator
NASA Astrophysics Data System (ADS)
Phogat, Richa; Tiwari, Ishant; Kumar, Pawan; Rivera, Marco; Parmananda, Punit
2018-06-01
In this paper, different methods for cessation of oscillations in a chemo-mechanical oscillator [mercury beating heart (MBH)] are presented. The first set of experiments were carried out on a single MBH oscillator. To achieve cessation of oscillations, two protocols, namely, inverted feedback and delayed feedback were employed. In the second set of experiments, two quasi-identical MBH oscillators are considered. They are first synchronized via a bidirectional attractive coupling. These two synchronized oscillators are thereafter coupled with a unidirectional repulsive coupling and the system dynamics were observed. Subsequently, in the next protocol, the effect of a unidirectional delay coupling on the two synchronized oscillators was explored. The cessation of oscillations in all the above experimental setups was observed as the feedback/coupling was switched on at a suitable strength. Oscillatory dynamics of the system were restored when the feedback/coupling was switched off.
Feedback equilibrium control during human standing
Alexandrov, Alexei V.; AA, Frolov; FB, Horak; P, Carlson-Kuhta; S, Park
2006-01-01
Equilibrium maintenance during standing in humans was investigated with a 3-joint (ankle, knee and hip) sagittal model of body movement. The experimental paradigm consisted of sudden perturbations of humans in quiet stance by backward displacements of the support platform. Data analysis was performed using eigenvectors of motion equation. The results supported three conclusions. First, independent feedback control of movements along eigenvectors (eigenmovements) can adequately describe human postural responses to stance perturbations. This conclusion is consistent with previous observations (Alexandrov et al., 2001b) that these same eigenmovements are also independently controlled in a feed-forward manner during voluntary upper-trunk bending. Second, independent feedback control of each eigenmovement is sufficient to provide its stability. Third, the feedback loop in each eigenmovement can be modeled as a linear visco-elastic spring with delay. Visco-elastic parameters and time-delay values result from the combined contribution of passive visco-elastic mechanisms and sensory systems of different modalities. PMID:16228222
ERIC Educational Resources Information Center
Kouri, Theresa A.; Selle, Carrie A.; Riley, Sarah A.
2006-01-01
Purpose: Guided reading is a common practice recommended for children in the early stages of literacy development. While experts agree that oral reading facilitates literacy skills, controversy exists concerning which corrective feedback strategies are most effective. The purpose of this study was to compare feedback procedures stemming from 2…
NASA Astrophysics Data System (ADS)
Berezina-Greene, Maria A.; Guinan, John J.
2015-12-01
To aid in understanding their origin, stimulus frequency otoacoustic emissions (SFOAEs) were measured at a series of tone frequencies using the suppression method, both with and without stimulation of medial olivocochlear (MOC) efferents, in anesthetized guinea pigs. Time-frequency analysis showed SFOAE energy peaks in 1-3 delay components throughout the measured frequency range (0.5-12 kHz). One component's delay usually coincided with the phase-gradient delay. When multiple delay components were present, they were usually near SFOAE dips. Below 2 kHz, SFOAE delays were shorter than predicted from mechanical measurements. With MOC stimulation, SFOAE amplitude was decreased at most frequencies, but was sometimes enhanced, and all SFOAE delay components were affected. The MOC effects and an analysis of model data suggest that the multiple SFOAE delay components arise at the edges of the traveling-wave peak, not far basal of the peak. Comparisons with published guinea-pig neural data suggest that the short latencies of low-frequency SFOAEs may arise from coherent reflection from an organ-of-Corti motion that has a shorter group delay than the traveling wave.
ERIC Educational Resources Information Center
Kollöffel, Bas; de Jong, Ton
2016-01-01
Feedback indicating how well students are performing during a learning task can be very stimulating. In this study with a pre- and post-test design, the effects of two types of performance feedback on learning results were compared: feedback during a learning task was either stated in terms of how well the students were performing relative to…
Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging.
Blamire, A M; Ogawa, S; Ugurbil, K; Rothman, D; McCarthy, G; Ellermann, J M; Hyder, F; Rattner, Z; Shulman, R G
1992-01-01
We report the use of high-speed magnetic resonance imaging to follow the changes in image intensity in the human visual cortex during stimulation by a flashing checkerboard stimulus. Measurements were made in a 2.1-T, 1-m-diameter magnet, part of a Bruker Biospec spectrometer that we had programmed to do echo-planar imaging. A 15-cm-diameter surface coil was used to transmit and receive signals. Images were acquired during periods of stimulation from 2 s to 180 s. Images were acquired in 65.5 ms in a 10-mm slice with in-plane voxel size of 6 x 3 mm. Repetition time (TR) was generally 2 s, although for the long flashing periods, TR = 8 s was used. Voxels were located onto an inversion recovery image taken with 2 x 2 mm in-plane resolution. Image intensity increased after onset of the stimulus. The mean change in signal relative to the prestimulation level (delta S/S) was 9.7% (SD = 2.8%, n = 20) with an echo time of 70 ms. Irrespective of the period of stimulation, the increase in magnetic resonance signal intensity was delayed relative to the stimulus. The mean delay measured from the start of stimulation for each protocol was as follows: 2-s stimulation, delay = 3.5 s (SD = 0.5 s, n = 10) (the delay exceeds stimulus duration); 20- to 24-s stimulation, delay = 5 s (SD = 2 s, n = 20). PMID:1438317
The synchronization of asymmetric-structured electric coupling neuronal system
NASA Astrophysics Data System (ADS)
Wang, Guanping; Jin, Wuyin; Liu, Hao; Sun, Wei
2018-02-01
Based on the Hindmarsh-Rose (HR) model, the synchronization dynamics of asymmetric-structured electric coupling two neuronal system is investigated in this paper. It is discovered that when the time-delay scope and coupling strength for the synchronization are correlated positively under unequal time delay, the time-delay difference does not make a clear distinction between the two individual inter-spike intervals (ISI) bifurcation diagrams of the two coupled neurons. Therefore, the superficial difference of the system synchronization dynamics is not obvious for the unequal time-delay feedback. In the asymmetrical current incentives under asymmetric electric coupled system, the two neurons can only be almost completely synchronized in specific area of the interval which end-pointed with two discharge modes for a single neuron under different stimuli currents before coupling, but the intervention of time-delay feedback, together with the change of the coupling strength, can make the coupled system not only almost completely synchronized within anywhere in the front area, but also outside of it.
CK1/Doubletime activity delays transcription activation in the circadian clock
O'Neil, Jenna L; Merz, Gregory E; Dusad, Kritika; Crane, Brian R; Young, Michael W
2018-01-01
In the Drosophila circadian clock, Period (PER) and Timeless (TIM) proteins inhibit Clock-mediated transcription of per and tim genes until PER is degraded by Doubletime/CK1 (DBT)-mediated phosphorylation, establishing a negative feedback loop. Multiple regulatory delays within this feedback loop ensure ~24 hr periodicity. Of these delays, the mechanisms that regulate delayed PER degradation (and Clock reactivation) remain unclear. Here we show that phosphorylation of certain DBT target sites within a central region of PER affect PER inhibition of Clock and the stability of the PER/TIM complex. Our results indicate that phosphorylation of PER residue S589 stabilizes and activates PER inhibitory function in the presence of TIM, but promotes PER degradation in its absence. The role of DBT in regulating PER activity, stabilization and degradation ensures that these events are chronologically and biochemically linked, and contributes to the timing of an essential delay that influences the period of the circadian clock. PMID:29611807
Combined Auditory and Vibrotactile Feedback for Human-Machine-Interface Control.
Thorp, Elias B; Larson, Eric; Stepp, Cara E
2014-01-01
The purpose of this study was to determine the effect of the addition of binary vibrotactile stimulation to continuous auditory feedback (vowel synthesis) for human-machine interface (HMI) control. Sixteen healthy participants controlled facial surface electromyography to achieve 2-D targets (vowels). Eight participants used only real-time auditory feedback to locate targets whereas the other eight participants were additionally alerted to having achieved targets with confirmatory vibrotactile stimulation at the index finger. All participants trained using their assigned feedback modality (auditory alone or combined auditory and vibrotactile) over three sessions on three days and completed a fourth session on the third day using novel targets to assess generalization. Analyses of variance performed on the 1) percentage of targets reached and 2) percentage of trial time at the target revealed a main effect for feedback modality: participants using combined auditory and vibrotactile feedback performed significantly better than those using auditory feedback alone. No effect was found for session or the interaction of feedback modality and session, indicating a successful generalization to novel targets but lack of improvement over training sessions. Future research is necessary to determine the cognitive cost associated with combined auditory and vibrotactile feedback during HMI control.
Virtual reality and telerobotics applications of an Address Recalculation Pipeline
NASA Technical Reports Server (NTRS)
Regan, Matthew; Pose, Ronald
1994-01-01
The technology described in this paper was designed to reduce latency to user interactions in immersive virtual reality environments. It is also ideally suited to telerobotic applications such as interaction with remote robotic manipulators in space or in deep sea operations. in such circumstances the significant latency is observed response to user stimulus which is due to communications delays, and the disturbing jerkiness due to low and unpredictable frame rates on compressed video user feedback or computationally limited virtual worlds, can be masked by our techniques. The user is provided with highly responsive visual feedback independent of communication or computational delays in providing physical video feedback or in rendering virtual world images. Virtual and physical environments can be combined seamlessly using these techniques.
Factorization and the synthesis of optimal feedback kernels for differential-delay systems
NASA Technical Reports Server (NTRS)
Milman, Mark M.; Scheid, Robert E.
1987-01-01
A combination of ideas from the theories of operator Riccati equations and Volterra factorizations leads to the derivation of a novel, relatively simple set of hyperbolic equations which characterize the optimal feedback kernel for the finite-time regulator problem for autonomous differential-delay systems. Analysis of these equations elucidates the underlying structure of the feedback kernel and leads to the development of fast and accurate numerical methods for its computation. Unlike traditional formulations based on the operator Riccati equation, the gain is characterized by means of classical solutions of the derived set of equations. This leads to the development of approximation schemes which are analogous to what has been accomplished for systems of ordinary differential equations with given initial conditions.
Wang, Xu; Zhu, Yuting; Sun, Congcong; Wang, Tao; Shen, Yingjie; Cai, Wanhui; Sun, Jia; Chi, Lisha; Wang, Haijun; Song, Na; Niu, Chao; Shen, Jiayi; Cong, Weitao; Zhu, Zhongxin; Xuan, Yuanhu; Li, Xiaokun; Jin, Litai
2017-01-01
Skin wound healing is a complex process requiring the coordinated behavior of many cell types, especially in the proliferation and migration of fibroblasts. Basic fibroblast growth factor (bFGF) is a member of the FGF family that promotes fibroblast migration, but the underlying molecular mechanism remains elusive. The present RNA sequencing study showed that the expression levels of several canonical Wnt pathway genes, including Wnt2b, Wnt3, Wnt11, T-cell factor 7 (TCF7), and Frizzled 8 (FZD8) were modified by bFGF stimulation in fibroblasts. Enzyme-linked immunosorbent assay (ELISA) analysis also showed that Wnt pathway was activated under bFGF treatment. Furthermore, treatment of fibroblasts with lithium chloride or IWR-1, an inducer and inhibitor of the Wnt signaling pathway, respectively, promoted and inhibited cell migration. Also, levels of cytosolic glycogen synthase kinase 3 beta phosphorylated at serine9 (pGSK3β Ser9) and nuclear β-catenin were increased upon exposure to bFGF. Molecular and biochemical assays indicated that phosphoinositide 3-kinase (PI3K) signaling activated the GSK3β/β-catenin/Wnt signaling pathway via activation of c-Jun N-terminal kinase (JNK), suggesting that PI3K and JNK act at the upstream of β-catenin. In contrast, knock-down of β-catenin delayed fibroblast cell migration even under bFGF stimulation. RNA sequencing analysis of β-catenin knock-down fibroblasts demonstrated that β-catenin positively regulated the transcription of bFGF and FGF21. Moreover, FGF21 treatment activated AKT and JNK, and accelerated fibroblast migration to a similar extent as bFGF does. In addition, ELISA analysis demonstrated that both of bFGF and FGF21 were auto secretion factor and be regulated by Wnt pathway stimulators. Taken together, our analyses define a feedback regulatory loop between bFGF (FGF21) and Wnt signaling acting through β-catenin in skin fibroblasts. PMID:28217097
Falcone, Brian; Wada, Atsushi; Parasuraman, Raja
2018-01-01
Transcranial direct current stimulation (tDCS) has been shown to enhance cognitive performance on a variety of tasks. It is hypothesized that tDCS enhances performance by affecting task related cortical excitability changes in networks underlying or connected to the site of stimulation facilitating long term potentiation. However, many recent studies have called into question the reliability and efficacy of tDCS to induce modulatory changes in brain activity. In this study, our goal is to investigate the individual differences in tDCS induced modulatory effects on brain activity related to the degree of enhancement in performance, providing insight into this lack of reliability. In accomplishing this goal, we used functional magnetic resonance imaging (fMRI) concurrently with tDCS stimulation (1 mA, 30 minutes duration) using a visual search task simulating real world conditions. The experiment consisted of three fMRI sessions: pre-training (no performance feedback), training (performance feedback which included response accuracy and target location and either real tDCS or sham stimulation given), and post-training (no performance feedback). The right posterior parietal cortex was selected as the site of anodal tDCS based on its known role in visual search and spatial attention processing. Our results identified a region in the right precentral gyrus, known to be involved with visual spatial attention and orienting, that showed tDCS induced task related changes in cortical excitability that were associated with individual differences in improved performance. This same region showed greater activity during the training session for target feedback of incorrect (target-error feedback) over correct trials for the tDCS stim over sham group indicating greater attention to target features during training feedback when trials were incorrect. These results give important insight into the nature of neural excitability induced by tDCS as it relates to variability in individual differences in improved performance shedding some light the apparent lack of reliability found in tDCS research. PMID:29782510
Krieg, Sandro M; Tarapore, Phiroz E; Picht, Thomas; Tanigawa, Noriko; Houde, John; Sollmann, Nico; Meyer, Bernhard; Vajkoczy, Peter; Berger, Mitchel S; Ringel, Florian; Nagarajan, Srikantan
2014-10-15
Within the primary motor cortex, navigated transcranial magnetic stimulation (nTMS) has been shown to yield maps strongly correlated with those generated by direct cortical stimulation (DCS). However, the stimulation parameters for repetitive nTMS (rTMS)-based language mapping are still being refined. For this purpose, the present study compares two rTMS protocols, which differ in the timing of pulse train onset relative to picture presentation onset during object naming. Results were the correlated with DCS language mapping during awake surgery. Thirty-two patients with left-sided perisylvian tumors were examined by rTMS prior to awake surgery. Twenty patients underwent rTMS pulse trains starting at 300 ms after picture presentation onset (delayed TMS), whereas another 12 patients received rTMS pulse trains starting at the picture presentation onset (ONSET TMS). These rTMS results were then evaluated for correlation with intraoperative DCS results as gold standard in terms of differential consistencies in receiver operating characteristics (ROC) statistics. Logistic regression analysis by protocols and brain regions were conducted. Within and around Broca's area, there was no difference in sensitivity (onset TMS: 100%, delayed TMS: 100%), negative predictive value (NPV) (onset TMS: 100%, delayed TMS: 100%), and positive predictive value (PPV) (onset TMS: 55%, delayed TMS: 54%) between the two protocols compared to DCS. However, specificity differed significantly (onset TMS: 67%, delayed TMS: 28%). In contrast, for posterior language regions, such as supramarginal gyrus, angular gyrus, and posterior superior temporal gyrus, early pulse train onset stimulation showed greater specificity (onset TMS: 92%, delayed TMS: 20%), NPV (onset TMS: 92%, delayed TMS: 57%) and PPV (onset TMS: 75%, delayed TMS: 30%) with comparable sensitivity (onset TMS: 75%, delayed TMS: 70%). Logistic regression analysis also confirmed the greater fit of the predictions by rTMS that had the pulse train onset coincident with the picture presentation onset when compared to the delayed stimulation. Analyses of differential disruption patterns of mapped cortical regions were further able to distinguish clusters of cortical regions standardly associated with semantic and pre-vocalization phonological networks proposed in various models of word production. Repetitive nTMS predictions by both protocols correlate well with DCS outcomes especially in Broca's region, particularly with regard to TMS negative predictions. With this study, we have demonstrated that rTMS stimulation onset coincident with picture presentation onset improves the accuracy of preoperative language maps, particularly within posterior language areas. Moreover, immediate and delayed pulse train onsets may have complementary disruption patterns that could differentially capture cortical regions causally necessary for semantic and pre-vocalization phonological networks. Published by Elsevier Inc.
Athanasopoulos, Georgios I; Carey, Stephen J; Hatfield, John V
2011-07-01
This paper describes the design of a programmable transmit beamformer application-specific integrated circuit (ASIC) with 8 channels for ultrasound imaging systems. The system uses a 20-MHz reference clock. A digital delay-locked loop (DLL) was designed with 50 variable delay elements, each of which provides a clock with different phase from a single reference. Two phase detectors compare the phase difference of the reference clock with the feedback clock, adjusting the delay of the delay elements to bring the feedback clock signal in phase with the reference clock signal. Two independent control voltages for the delay elements ensure that the mark space ratio of the pulses remain at 50%. By combining a 10- bit asynchronous counter with the delays from the DLL, each channel can be programmed to give a maximum time delay of 51 μs with 1 ns resolution. It can also give bursts of up to 64 pulses. Finally, for a single pulse, it can adjust the pulse width between 9 ns and 100 ns by controlling the current flowing through a capacitor in a one-shot circuit, for use with 40-MHz and 5-MHz transducers, respectively.
Effects of delay and noise in a negative feedback regulatory motif
NASA Astrophysics Data System (ADS)
Palassini, Matteo; Dies, Marta
2009-03-01
The small copy number of the molecules involved in gene regulation can induce nontrivial stochastic phenomena such as noise-induced oscillations. An often neglected aspect of regulation dynamics are the delays involved in transcription and translation. Delays introduce analytical and computational complications because the dynamics is non-Markovian. We study the interplay of noise and delays in a negative feedback model of the p53 core regulatory network. Recent experiments have found pronounced oscillations in the concentrations of proteins p53 and Mdm2 in individual cells subjected to DNA damage. Similar oscillations occur in the Hes-1 and NK-kB systems, and in circadian rhythms. Several mechanisms have been proposed to explain this oscillatory behaviour, such as deterministic limit cycles, with and without delay, or noise-induced excursions in excitable models. We consider a generic delayed Master Equation incorporating the activation of Mdm2 by p53 and the Mdm2-promoted degradation of p53. In the deterministic limit and for large delays, the model shows a Hopf bifurcation. Via exact stochastic simulations, we find strong noise-induced oscillations well outside the limit-cycle region. We propose that this may be a generic mechanism for oscillations in gene regulatory systems.
Li, Shukai; Yang, Lixing; Gao, Ziyou; Li, Keping
2014-11-01
In this paper, the stabilization strategies of a general nonlinear car-following model with reaction-time delay of the drivers are investigated. The reaction-time delay of the driver is time varying and bounded. By using the Lyapunov stability theory, the sufficient condition for the existence of the state feedback control strategy for the stability of the car-following model is given in the form of linear matrix inequality, under which the traffic jam can be well suppressed with respect to the varying reaction-time delay. Moreover, by considering the external disturbance for the running cars, the robust state feedback control strategy is designed, which ensures robust stability and a smaller prescribed H∞ disturbance attenuation level for the traffic flow. Numerical examples are given to illustrate the effectiveness of the proposed methods. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Experiments with arbitrary networks in time-multiplexed delay systems
NASA Astrophysics Data System (ADS)
Hart, Joseph D.; Schmadel, Don C.; Murphy, Thomas E.; Roy, Rajarshi
2017-12-01
We report a new experimental approach using an optoelectronic feedback loop to investigate the dynamics of oscillators coupled on large complex networks with arbitrary topology. Our implementation is based on a single optoelectronic feedback loop with time delays. We use the space-time interpretation of systems with time delay to create large networks of coupled maps. Others have performed similar experiments using high-pass filters to implement the coupling; this restricts the network topology to the coupling of only a few nearest neighbors. In our experiment, the time delays and coupling are implemented on a field-programmable gate array, allowing the creation of networks with arbitrary coupling topology. This system has many advantages: the network nodes are truly identical, the network is easily reconfigurable, and the network dynamics occur at high speeds. We use this system to study cluster synchronization and chimera states in both small and large networks of different topologies.
Consensus for multi-agent systems with time-varying input delays
NASA Astrophysics Data System (ADS)
Yuan, Chengzhi; Wu, Fen
2017-10-01
This paper addresses the consensus control problem for linear multi-agent systems subject to uniform time-varying input delays and external disturbance. A novel state-feedback consensus protocol is proposed under the integral quadratic constraint (IQC) framework, which utilises not only the relative state information from neighbouring agents but also the real-time information of delays by means of the dynamic IQC system states for feedback control. Based on this new consensus protocol, the associated IQC-based control synthesis conditions are established and fully characterised as linear matrix inequalities (LMIs), such that the consensus control solution with optimal ? disturbance attenuation performance can be synthesised efficiently via convex optimisation. A numerical example is used to demonstrate the proposed approach.
Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users.
Witteveen, Heidi J B; Rietman, Hans S; Veltink, Peter H
2015-06-01
User feedback about grasping force and hand aperture is very important in object handling with myoelectric forearm prostheses but is lacking in current prostheses. Vibrotactile feedback increases the performance of healthy subjects in virtual grasping tasks, but no extensive validation on potential users has been performed. Investigate the performance of upper-limb loss subjects in grasping tasks with vibrotactile stimulation, providing hand aperture, and grasping force feedback. Cross-over trial. A total of 10 subjects with upper-limb loss performed virtual grasping tasks while perceiving vibrotactile feedback. Hand aperture feedback was provided through an array of coin motors and grasping force feedback through a single miniature stimulator or an array of coin motors. Objects with varying sizes and weights had to be grasped by a virtual hand. Percentages correctly applied hand apertures and correct grasping force levels were all higher for the vibrotactile feedback condition compared to the no-feedback condition. With visual feedback, the results were always better compared to the vibrotactile feedback condition. Task durations were comparable for all feedback conditions. Vibrotactile grasping force and hand aperture feedback improves grasping performance of subjects with upper-limb loss. However, it should be investigated whether this is of additional value in daily-life tasks. This study is a first step toward the implementation of sensory vibrotactile feedback for users of myoelectric forearm prostheses. Grasping force feedback is crucial for optimal object handling, and hand aperture feedback is essential for reduction of required visual attention. Grasping performance with feedback is evaluated for the potential users. © The International Society for Prosthetics and Orthotics 2014.
Antrop, I; Roeyers, H; Van Oost, P; Buysse, A
2000-02-01
Thirty hyperactive and 30 non-hyperactive children were confronted with a delay, consisting of a waiting situation of 15 minutes, either with or without extra stimulation provided by the presentation of a videotape. The behaviour of the child during the waiting period was videotaped and later coded by two naive observers. In line with theories that emphasise the stimulation-seeking function of hyperactive behaviours, such as the optimal stimulation account and the delay aversion theory, a group by stimulation effect was hypothesised. For two categories of activity this was found, with ADHD children displaying more activity than non-ADHD children in the no-stimulation but not in the stimulation condition. These data provide support for the stimulation-seeking function of certain features of ADHD hyperactivity.
ERIC Educational Resources Information Center
Hula, Shannon N. Austermann; Robin, Donald A.; Maas, Edwin; Ballard, Kirrie J.; Schmidt, Richard A.
2008-01-01
Purpose: Two studies examined speech skill learning in persons with apraxia of speech (AOS). Motor-learning research shows that delaying or reducing the frequency of feedback promotes retention and transfer of skills. By contrast, immediate or frequent feedback promotes temporary performance enhancement but interferes with retention and transfer.…
Theoretical and experimental aspects of chaos control by time-delayed feedback.
Just, Wolfram; Benner, Hartmut; Reibold, Ekkehard
2003-03-01
We review recent developments for the control of chaos by time-delayed feedback methods. While such methods are easily applied even in quite complex experimental context the theoretical analysis yields infinite-dimensional differential-difference systems which are hard to tackle. The essential ideas for a general theoretical approach are sketched and the results are compared to electronic circuits and to high power ferromagnetic resonance experiments. Our results show that the control performance can be understood on the basis of experimentally accessible quantities without resort to any model for the internal dynamics.
Auditory reafferences: the influence of real-time feedback on movement control.
Kennel, Christian; Streese, Lukas; Pizzera, Alexandra; Justen, Christoph; Hohmann, Tanja; Raab, Markus
2015-01-01
Auditory reafferences are real-time auditory products created by a person's own movements. Whereas the interdependency of action and perception is generally well studied, the auditory feedback channel and the influence of perceptual processes during movement execution remain largely unconsidered. We argue that movements have a rhythmic character that is closely connected to sound, making it possible to manipulate auditory reafferences online to understand their role in motor control. We examined if step sounds, occurring as a by-product of running, have an influence on the performance of a complex movement task. Twenty participants completed a hurdling task in three auditory feedback conditions: a control condition with normal auditory feedback, a white noise condition in which sound was masked, and a delayed auditory feedback condition. Overall time and kinematic data were collected. Results show that delayed auditory feedback led to a significantly slower overall time and changed kinematic parameters. Our findings complement previous investigations in a natural movement situation with non-artificial auditory cues. Our results support the existing theoretical understanding of action-perception coupling and hold potential for applied work, where naturally occurring movement sounds can be implemented in the motor learning processes.
McAlpine, D; Jiang, D; Palmer, A R
1996-08-01
Monaural and binaural response properties of single units in the inferior colliculus (IC) of the guinea pig were investigated. Neurones were classified according to the effect of monaural stimulation of either ear alone and the effect of binaural stimulation. The majority (309/334) of IC units were excited (E) by stimulation of the contralateral ear, of which 41% (127/309) were also excited by monaural ipsilateral stimulation (EE), and the remainder (182/309) were unresponsive to monaural ipsilateral stimulation (EO). For units with best frequencies (BF) up to 3 kHz, similar proportions of EE and EO units were observed. Above 3 kHz, however, significantly more EO than EE units were observed. Units were also classified as either facilitated (F), suppressed (S), or unaffected (O) by binaural stimulation. More EO than EE units were suppressed or unaffected by binaural stimulation, and more EE than EO units were facilitated. There were more EO/S units above 1.5 kHz than below. Binaural beats were used to examine the interaural delay sensitivity of low-BF (BF < 1.5 kHz) units. The distributions of preferred interaural phases and, by extension, interaural delays, resembled those seen in other species, and those obtained using static interaural delays in the IC of the guinea pig. Units with best phase (BP) angles closer to zero generally showed binaural facilitation, whilst those with larger BPs generally showed binaural suppression. The classification of units based upon binaural stimulation with BF tones was consistent with their interaural-delay sensitivity. Characteristic delays (CD) were examined for 96 low-BF units. A clear relationship between BF and CD was observed. CDs of units with very low BFs (< 200 Hz) were long and positive, becoming progressively shorter as BF increased until, for units with BFs between 400 and 800 Hz, the majority of CDs were negative. Above 800 Hz, both positive and negative CDs were observed. A relationship between CD and characteristic phase (CP) was also observed, with CPs increasing in value as CDs became more negative. These results demonstrate that binaural processing in the guinea pig at low frequencies is similar to that reported in all other species studied. However, the dependence of CD on BF would suggest that the delay line system that sets up the interaural-delay sensitivity in the lower brainstem varies across frequency as well as within each frequency band.
Pasluosta, Cristian; Kiele, Patrick; Stieglitz, Thomas
2018-04-01
The somatosensory system contributes substantially to the integration of multiple sensor modalities into perception. Tactile sensations, proprioception and even temperature perception are integrated to perceive embodiment of our limbs. Damage of somatosensory networks can severely affect the execution of daily life activities. Peripheral injuries are optimally corrected via direct interfacing of the peripheral nerves. Recent advances in implantable devices, stimulation paradigms, and biomimetic sensors enabled the restoration of natural sensations after amputation of the limb. The refinement of stimulation patterns to deliver natural feedback that can be interpreted intuitively such to prescind from long-learning sessions is crucial to function restoration. For this review, we collected state-of-the-art knowledge on the evolution of stimulation paradigms from single fiber stimulation to the eliciting of multisensory sensations. Data from the literature are structured into six sections: (a) physiology of the somatosensory system; (b) stimulation of single fibers; (c) restoral of multisensory percepts; (d) closure of the control loop in hand prostheses; (e) sensory restoration and the sense of embodiment, and (f) methodologies to assess stimulation outcomes. Full functional recovery demands further research on multisensory integration and brain plasticity, which will bring new paradigms for intuitive sensory feedback in the next generation of limb prostheses. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
The Effects of Aging on Time Reproduction in Delayed Free-Recall
ERIC Educational Resources Information Center
Rakitin, B.C.; Stern, Y.; Malapani, C.
2005-01-01
The experiments presented here demonstrate that normal aging amplifies differences in time production occurring in delayed free-recall testing. Experiment 1 compared the time production ability of two healthy aged groups as well as college-aged participants. During the test session, which followed a 24-h delay and omitted all feedback and examples…
ERIC Educational Resources Information Center
Birringer-Haig, Joan I.
2014-01-01
The goal of the study was to investigate how teachers' reflection and asking for feedback--critical aspects of teachers' professional growth--can be explained and stimulated by teachers' self-efficacy, principals' feedback, and servant leadership characteristics. A mixed-method study was conducted with data collected from surveys and interviews…
Motor Cortex Stimulation for Pain Relief: Do Corollary Discharges Play a Role?
Brasil-Neto, Joaquim P
2016-01-01
Both invasive and non-invasive motor cortex stimulation techniques have been successfully employed in the treatment of chronic pain, but the precise mechanism of action of such treatments is not fully understood. It has been hypothesized that a mismatch of normal interaction between motor intention and sensory feedback may result in central pain. Sensory feedback may come from peripheral nerves, vision and also from corollary discharges originating from the motor cortex itself. Therefore, a possible mechanism of action of motor cortex stimulation might be corollary discharge reinforcement, which could counterbalance sensory feedback deficiency. In other instances, primary deficiency in the production of corollary discharges by the motor cortex might be the culprit and stimulation of cortical motor areas might then be beneficial by enhancing production of such discharges. Here we review evidence for a possible role of motor cortex corollary discharges upon both the pathophysiology and the response to motor cortex stimulation of different types of chronic pain. We further suggest that the right dorsolateral prefrontal cortex (DLPC), thought to constantly monitor incongruity between corollary discharges, vision and proprioception, might be an interesting target for non-invasive neuromodulation in cases of chronic neuropathic pain.
Delayed coherent quantum feedback from a scattering theory and a matrix product state perspective
NASA Astrophysics Data System (ADS)
Guimond, P.-O.; Pletyukhov, M.; Pichler, H.; Zoller, P.
2017-12-01
We study the scattering of photons propagating in a semi-infinite waveguide terminated by a mirror and interacting with a quantum emitter. This paradigm constitutes an example of coherent quantum feedback, where light emitted towards the mirror gets redirected back to the emitter. We derive an analytical solution for the scattering of two-photon states, which is based on an exact resummation of the perturbative expansion of the scattering matrix, in a regime where the time delay of the coherent feedback is comparable to the timescale of the quantum emitter’s dynamics. We compare the results with numerical simulations based on matrix product state techniques simulating the full dynamics of the system, and extend the study to the scattering of coherent states beyond the low-power limit.
Tsujimoto, Satoshi; Genovesio, Aldo; Wise, Steven P.
2012-01-01
We compared neuronal activity in the dorsolateral (PFdl), orbital (PFo) and polar (PFp) prefrontal cortex as monkeys performed three tasks. In two tasks, a cue instructed one of two strategies: stay with the previous response or shift to the alternative. Visual stimuli served as cues in one of these tasks; in the other, fluid rewards did so. In the third task, visuospatial cues instructed each response. A delay period followed each cue. As reported previously, PFdl encoded strategies (stay or shift) and responses (left or right) during the cue and delay periods, while PFo encoded strategies and PFp encoded neither strategies nor responses; during the feedback period, all three areas encoded responses, not strategies. Four novel findings emerged from the present analysis. (1) The strategy encoded by PFdl and PFo cells during the cue and delay periods was modality specific. (2) The response encoded by PFdl cells was task- and modality specific during the cue period, but during the delay and feedback periods it became task- and modality general. (3) Although some PFdl and PFo cells responded to or anticipated rewards, we could rule out reward effects for most strategy-and response-related activity. (4) Immediately before feedback, only PFp signaled responses that were correct according to the cued strategy; after feedback, only PFo signaled the response that had been made, whether correct or incorrect. These signals support a role in generating responses by PFdl, assigning outcomes to choices by PFo, and assigning outcomes to cognitive processes by PFp. PMID:22875935
ERIC Educational Resources Information Center
Rassaei, Ehsan; Moinzadeh, Ahmad
2011-01-01
The current research examines the immediate and delayed effects of three types of corrective feedback, namely recasts, metalinguistic feedback, and clarification requests, on the acquisition of English wh-question forms by Iranian EFL learners. To this end, 134 Iranian EFL learners comprising 4 intact classes participated in the study. Learners in…
ADHD and Delay Aversion: The Influence of Non-Temporal Stimulation on Choice for Delayed Rewards
ERIC Educational Resources Information Center
Antrop, Inge; Stock, Pieter; Verte, Sylvie; Wiersema, Jan Roelt; Baeyens, Dieter; Roeyers, Herbert
2006-01-01
Background: Delay aversion, the motivation to escape or avoid delay, results in preference for small immediate over large delayed rewards. Delay aversion has been proposed as one distinctive psychological process that may underlie the behavioural symptoms and cognitive deficits of attention deficit/hyperactivity disorder (ADHD). Furthermore, the…
Efferent feedback can explain many hearing phenomena
NASA Astrophysics Data System (ADS)
Holmes, W. Harvey; Flax, Matthew R.
2015-12-01
The mixed mode cochlear amplifier (MMCA) model was presented at the last Mechanics of Hearing workshop [4]. The MMCA consists principally of a nonlinear feedback loop formed when an efferent-controlled outer hair cell (OHC) is combined with the cochlear mechanics and the rest of the relevant neurobiology. Essential elements of this model are efferent control of the OHC motility and a delay in the feedback to the OHC. The input to the MMCA is the passive travelling wave. In the MMCA amplification is localized where both the neural and tuned mechanical systems meet in the Organ of Corti (OoC). The simplest model based on this idea is a nonlinear delay line resonator (DLR), which is mathematically described by a nonlinear delay-differential equation (DDE). This model predicts possible Hopf bifurcations and exhibits its most interesting behaviour when operating near a bifurcation. This contribution presents some simulation results using the DLR model. These show that various observed hearing phenomena can be accounted for by this model, at least qualitatively, including compression effects, two-tone suppression and some forms of otoacoustic emissions (OAEs).
Chin, Sanghoon; Thévenaz, Luc; Sancho, Juan; Sales, Salvador; Capmany, José; Berger, Perrine; Bourderionnet, Jérôme; Dolfi, Daniel
2010-10-11
We experimentally demonstrate a novel technique to process broadband microwave signals, using all-optically tunable true time delay in optical fibers. The configuration to achieve true time delay basically consists of two main stages: photonic RF phase shifter and slow light, based on stimulated Brillouin scattering in fibers. Dispersion properties of fibers are controlled, separately at optical carrier frequency and in the vicinity of microwave signal bandwidth. This way time delay induced within the signal bandwidth can be manipulated to correctly act as true time delay with a proper phase compensation introduced to the optical carrier. We completely analyzed the generated true time delay as a promising solution to feed phased array antenna for radar systems and to develop dynamically reconfigurable microwave photonic filters.
Maximizing the security of chaotic optical communications.
Hou, T T; Yi, L L; Yang, X L; Ke, J X; Hu, Y; Yang, Q; Zhou, P; Hu, W S
2016-10-03
The practical application of chaotic optical communications has been limited by two aspects: the difficulty in concealing the time delay - a critical security parameter in feedback chaotic systems, and the difficulty of significantly enlarging the key space without complicating the implementation. Here we propose an architecture to break the above limits. By introducing a frequency-dependent group delay module with frequency tuning resolution of 1 MHz into the chaotic feedback loop, we demonstrate excellent time delay concealment effect, and an additional huge key space of 1048 can be achieved at the same time. The effectiveness is proved by both numerical simulation and experiment. Besides, the proposed scheme is compatible with the existing commercial optical communication systems, thus pave the way for high-speed secure optical communications.
Task-dependent vestibular feedback responses in reaching.
Keyser, Johannes; Medendorp, W Pieter; Selen, Luc P J
2017-07-01
When reaching for an earth-fixed object during self-rotation, the motor system should appropriately integrate vestibular signals and sensory predictions to compensate for the intervening motion and its induced inertial forces. While it is well established that this integration occurs rapidly, it is unknown whether vestibular feedback is specifically processed dependent on the behavioral goal. Here, we studied whether vestibular signals evoke fixed responses with the aim to preserve the hand trajectory in space or are processed more flexibly, correcting trajectories only in task-relevant spatial dimensions. We used galvanic vestibular stimulation to perturb reaching movements toward a narrow or a wide target. Results show that the same vestibular stimulation led to smaller trajectory corrections to the wide than the narrow target. We interpret this reduced compensation as a task-dependent modulation of vestibular feedback responses, tuned to minimally intervene with the task-irrelevant dimension of the reach. These task-dependent vestibular feedback corrections are in accordance with a central prediction of optimal feedback control theory and mirror the sophistication seen in feedback responses to mechanical and visual perturbations of the upper limb. NEW & NOTEWORTHY Correcting limb movements for external perturbations is a hallmark of flexible sensorimotor behavior. While visual and mechanical perturbations are corrected in a task-dependent manner, it is unclear whether a vestibular perturbation, naturally arising when the body moves, is selectively processed in reach control. We show, using galvanic vestibular stimulation, that reach corrections to vestibular perturbations are task dependent, consistent with a prediction of optimal feedback control theory. Copyright © 2017 the American Physiological Society.
ERIC Educational Resources Information Center
Brosvic, Gary M.; Epstein, Michael L.; Dihoff, Roberta E.; Cook, Michael L.
2006-01-01
The present studies were undertaken to examine the effects of manipulating delay-interval task (Study 1) and timing of feedback (Study 2) on acquisition and retention. Participants completed a 100-item cumulative final examination, which included 50 items from each laboratory examination, plus 50 entirely new items. Acquisition and retention were…
Activity In Children With ADHD During Waiting Situations In The Classroom: A Pilot Study
ERIC Educational Resources Information Center
Antrop, Inge; Buysse, Ann; Roeyers, Herbert; Van Oost, Paulette
2005-01-01
Background: According to the optimal stimulation theory and the delay aversion hypothesis, children with attention deficit hyperactivity disorder (ADHD) experience difficulties when they are confronted with low levels of stimulation and delay, respectively. Aim: This study investigated the activity level of children with ADHD during waiting…
Resonant spatiotemporal learning in large random recurrent networks.
Daucé, Emmanuel; Quoy, Mathias; Doyon, Bernard
2002-09-01
Taking a global analogy with the structure of perceptual biological systems, we present a system composed of two layers of real-valued sigmoidal neurons. The primary layer receives stimulating spatiotemporal signals, and the secondary layer is a fully connected random recurrent network. This secondary layer spontaneously displays complex chaotic dynamics. All connections have a constant time delay. We use for our experiments a Hebbian (covariance) learning rule. This rule slowly modifies the weights under the influence of a periodic stimulus. The effect of learning is twofold: (i) it simplifies the secondary-layer dynamics, which eventually stabilizes to a periodic orbit; and (ii) it connects the secondary layer to the primary layer, and realizes a feedback from the secondary to the primary layer. This feedback signal is added to the incoming signal, and matches it (i.e., the secondary layer performs a one-step prediction of the forthcoming stimulus). After learning, a resonant behavior can be observed: the system resonates with familiar stimuli, which activates a feedback signal. In particular, this resonance allows the recognition and retrieval of partial signals, and dynamic maintenance of the memory of past stimuli. This resonance is highly sensitive to the temporal relationships and to the periodicity of the presented stimuli. When we present stimuli which do not match in time or space, the feedback remains silent. The number of different stimuli for which resonant behavior can be learned is analyzed. As with Hopfield networks, the capacity is proportional to the size of the second, recurrent layer. Moreover, the high capacity displayed allows the implementation of our model on real-time systems interacting with their environment. Such an implementation is reported in the case of a simple behavior-based recognition task on a mobile robot. Finally, we present some functional analogies with biological systems in terms of autonomy and dynamic binding, and present some hypotheses on the computational role of feedback connections.
Two Effects of Electrical Fields on Chloroplasts 1
Arnold, William A.; Azzi, Jim R.
1977-01-01
An electrical field across a suspension of Chenopodium chloroplasts stimulates the emission of delayed light during the time the field is on. This stimulation can be used to calculate the distance over which the electron moves in the untrapping process that gives the delayed light. An electrical field applied at the time of illumination gives a polarization to the suspension of chloroplasts that lasts for some seconds. This polarization is a new way to study delayed light and fluorescence from chloroplasts. Images PMID:16660112
Sun, Shishuo; Tan, Pengcheng; Huang, Xiaoheng; Zhang, Wei; Kong, Chen; Ren, Fangfang; Su, Xiong
2018-02-16
Both the magnitude and duration of insulin signaling are important in executing its cellular functions. Insulin-induced degradation of insulin receptor substrate 1 (IRS1) represents a key negative feedback loop that restricts insulin signaling. Moreover, high concentrations of fatty acids (FAs) and glucose involved in the etiology of obesity-associated insulin resistance also contribute to the regulation of IRS1 degradation. The scavenger receptor CD36 binds many lipid ligands, and its contribution to insulin resistance has been extensively studied, but the exact regulation of insulin sensitivity by CD36 is highly controversial. Herein, we found that CD36 knockdown in C2C12 myotubes accelerated insulin-stimulated Akt activation, but the activated signaling was sustained for a much shorter period of time as compared with WT cells, leading to exacerbated insulin-induced insulin resistance. This was likely due to enhanced insulin-induced IRS1 degradation after CD36 knockdown. Overexpression of WT CD36, but not a ubiquitination-defective CD36 mutant, delayed IRS1 degradation. We also found that CD36 functioned through ubiquitination-dependent binding to IRS1 and inhibiting its interaction with cullin 7, a key component of the multisubunit cullin-RING E3 ubiquitin ligase complex. Moreover, dissociation of the Src family kinase Fyn from CD36 by free FAs or Fyn knockdown/inhibition accelerated insulin-induced IRS1 degradation, likely due to disrupted IRS1 interaction with CD36 and thus enhanced binding to cullin 7. In summary, we identified a CD36-dependent FA-sensing pathway that plays an important role in negative feedback regulation of insulin activation and may open up strategies for preventing or managing type 2 diabetes mellitus. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Presynaptic pH and vesicle fusion in Drosophila larvae neurones.
Caldwell, Lesley; Harries, Peter; Sydlik, Sebastian; Schwiening, Christof J
2013-11-01
Both intracellular pH (pHi) and synaptic cleft pH change during neuronal activity yet little is known about how these pH shifts might affect synaptic transmission by influencing vesicle fusion. To address this we imaged pH- and Ca(2+) -sensitive fluorescent indicators (HPTS, Oregon green) in boutons at neuromuscular junctions. Electrical stimulation of motor nerves evoked presynaptic Ca(2+) i rises and pHi falls (∼0.1 pH units) followed by recovery of both Ca(2+) i and pHi. The plasma-membrane calcium ATPase (PMCA) inhibitor, 5(6)-carboxyeosin diacetate, slowed both the calcium recovery and the acidification. To investigate a possible calcium-independent role for the pHi shifts in modulating vesicle fusion we recorded post-synaptic miniature end-plate potential (mEPP) and current (mEPC) frequency in Ca(2+) -free solution. Acidification by propionate superfusion, NH(4)(+) withdrawal, or the inhibition of acid extrusion on the Na(+)/H(+) exchanger (NHE) induced a rise in miniature frequency. Furthermore, the inhibition of acid extrusion enhanced the rise induced by propionate addition and NH(4)(+) removal. In the presence of NH(4)(+), 10 out of 23 cells showed, after a delay, one or more rises in miniature frequency. These findings suggest that Ca(2+) -dependent pHi shifts, caused by the PMCA and regulated by NHE, may stimulate vesicle release. Furthermore, in the presence of membrane permeant buffers, exocytosed acid or its equivalents may enhance release through positive feedback. This hitherto neglected pH signalling, and the potential feedback role of vesicular acid, could explain some important neuronal excitability changes associated with altered pH and its buffering. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Wang, Yunong; Cheng, Rongjun; Ge, Hongxia
2017-08-01
In this paper, a lattice hydrodynamic model is derived considering not only the effect of flow rate difference but also the delayed feedback control signal which including more comprehensive information. The control method is used to analyze the stability of the model. Furthermore, the critical condition for the linear steady traffic flow is deduced and the numerical simulation is carried out to investigate the advantage of the proposed model with and without the effect of flow rate difference and the control signal. The results are consistent with the theoretical analysis correspondingly.
NASA Astrophysics Data System (ADS)
Song, Haiyu; Yu, Li; Zhang, Dan; Zhang, Wen-An
2012-12-01
This paper is concerned with the finite-time quantized H∞ control problem for a class of discrete-time switched time-delay systems with time-varying exogenous disturbances. By using the sector bound approach and the average dwell time method, sufficient conditions are derived for the switched system to be finite-time bounded and ensure a prescribed H∞ disturbance attenuation level, and a mode-dependent quantized state feedback controller is designed by solving an optimization problem. Two illustrative examples are provided to demonstrate the effectiveness of the proposed theoretical results.
Chaotic oscillations and noise transformations in a simple dissipative system with delayed feedback
NASA Astrophysics Data System (ADS)
Zverev, V. V.; Rubinstein, B. Ya.
1991-04-01
We analyze the statistical behavior of signals in nonlinear circuits with delayed feedback in the presence of external Markovian noise. For the special class of circuits with intense phase mixing we develop an approach for the computation of the probability distributions and multitime correlation functions based on the random phase approximation. Both Gaussian and Kubo-Andersen models of external noise statistics are analyzed and the existence of the stationary (asymptotic) random process in the long-time limit is shown. We demonstrate that a nonlinear system with chaotic behavior becomes a noise amplifier with specific statistical transformation properties.
Wide-beam sensors for controlling dual-delay systems
NASA Astrophysics Data System (ADS)
Edwards, J. B.; Twemlow, J. K.
1982-09-01
A class of dual delay feedback systems of open loop transfer function G(s) = k exp(-Xs)/l - exp(-Ws) is shown to be unstable if ratio X/W is noninteger. By means of z-transform techniques it is shown that, by using a feedback transducer that senses over a substantial distance either side of its central axis, closed-loop stability may be restored. Such transducers, termed widebeam sensors, include transmission, backscatter and natural radiation types as well as electromechanical conveyor belt weighers. Designing transducers for very narrow beams may not be desirable from the overall system viewpoint.
Daliri, Ayoub; Max, Ludo
2018-02-01
Auditory modulation during speech movement planning is limited in adults who stutter (AWS), but the functional relevance of the phenomenon itself remains unknown. We investigated for AWS and adults who do not stutter (AWNS) (a) a potential relationship between pre-speech auditory modulation and auditory feedback contributions to speech motor learning and (b) the effect on pre-speech auditory modulation of real-time versus delayed auditory feedback. Experiment I used a sensorimotor adaptation paradigm to estimate auditory-motor speech learning. Using acoustic speech recordings, we quantified subjects' formant frequency adjustments across trials when continually exposed to formant-shifted auditory feedback. In Experiment II, we used electroencephalography to determine the same subjects' extent of pre-speech auditory modulation (reductions in auditory evoked potential N1 amplitude) when probe tones were delivered prior to speaking versus not speaking. To manipulate subjects' ability to monitor real-time feedback, we included speaking conditions with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF). Experiment I showed that auditory-motor learning was limited for AWS versus AWNS, and the extent of learning was negatively correlated with stuttering frequency. Experiment II yielded several key findings: (a) our prior finding of limited pre-speech auditory modulation in AWS was replicated; (b) DAF caused a decrease in auditory modulation for most AWNS but an increase for most AWS; and (c) for AWS, the amount of auditory modulation when speaking with DAF was positively correlated with stuttering frequency. Lastly, AWNS showed no correlation between pre-speech auditory modulation (Experiment II) and extent of auditory-motor learning (Experiment I) whereas AWS showed a negative correlation between these measures. Thus, findings suggest that AWS show deficits in both pre-speech auditory modulation and auditory-motor learning; however, limited pre-speech modulation is not directly related to limited auditory-motor adaptation; and in AWS, DAF paradoxically tends to normalize their otherwise limited pre-speech auditory modulation. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Petersen, John E.; Shunturov, Vladislav; Janda, Kathryn; Platt, Gavin; Weinberger, Kate
2007-01-01
Purpose: In residential buildings, personal choices influence electricity and water consumption. Prior studies indicate that information feedback can stimulate resource conservation. College dormitories provide an excellent venue for controlled study of the effects of feedback. The goal of this study is to assess how different resolutions of…
A Chaotic Intervention: Creativity and Peer Learning in Design Education
ERIC Educational Resources Information Center
Budge, Kylie; Beale, Claire; Lynas, Emma
2013-01-01
Peer feedback and critique is integral to the creative practice of studio-based textile designers. In a creative learning context, how do students perceive the role of peer feedback and critique? What conditions do students identify as being important to stimulating creativity in a collaborative peer feedback and critique-driven learning…
ERIC Educational Resources Information Center
Almendarez Barron, Maria
2012-01-01
The National Council for Accreditation of Teacher Education has called for strengthening teacher preparation by incorporating more fieldwork. Supervision with effective instructional feedback is an essential component of meaningful fieldwork, and immediate feedback has proven more efficacious than delayed feedback. Rock and her colleagues have…
Farivar, Reza; Thompson, Benjamin; Mansouri, Behzad; Hess, Robert F
2011-12-20
Factors such as strabismus or anisometropia during infancy can disrupt normal visual development and result in amblyopia, characterized by reduced visual function in an otherwise healthy eye and often associated with persistent suppression of inputs from the amblyopic eye by those from the dominant eye. It has become evident from fMRI studies that the cortical response to stimulation of the amblyopic eye is also affected. We were interested to compare the hemodynamic response function (HRF) of early visual cortex to amblyopic vs. dominant eye stimulation. In the first experiment, we found that stimulation of the amblyopic eye resulted in a signal that was both attenuated and delayed in its time to peak. We postulated that this delay may be due to suppressive effects of the dominant eye and, in our second experiment, measured the cortical response of amblyopic eye stimulation under two conditions--where the dominant eye was open and seeing a static pattern (high suppression) or where the dominant eye was patched and closed (low suppression). We found that the HRF in response to amblyopic eye stimulation depended on whether the dominant eye was open. This effect was manifested as both a delayed HRF under the suppressed condition and an amplitude reduction.
Virtual grasping: closed-loop force control using electrotactile feedback.
Jorgovanovic, Nikola; Dosen, Strahinja; Djozic, Damir J; Krajoski, Goran; Farina, Dario
2014-01-01
Closing the control loop by providing somatosensory feedback to the user of a prosthesis is a well-known, long standing challenge in the field of prosthetics. Various approaches have been investigated for feedback restoration, ranging from direct neural stimulation to noninvasive sensory substitution methods. Although there are many studies presenting closed-loop systems, only a few of them objectively evaluated the closed-loop performance, mostly using vibrotactile stimulation. Importantly, the conclusions about the utility of the feedback were partly contradictory. The goal of the current study was to systematically investigate the capability of human subjects to control grasping force in closed loop using electrotactile feedback. We have developed a realistic experimental setup for virtual grasping, which operated in real time, included a set of real life objects, as well as a graphical and dynamical model of the prosthesis. We have used the setup to test 10 healthy, able bodied subjects to investigate the role of training, feedback and feedforward control, robustness of the closed loop, and the ability of the human subjects to generalize the control to previously "unseen" objects. Overall, the outcomes of this study are very optimistic with regard to the benefits of feedback and reveal various, practically relevant, aspects of closed-loop control.
Leoutsakos, Jeannie-Marie S; Yan, Haijuan; Anderson, William S; Asaad, Wael F; Baltuch, Gordon; Burke, Anna; Chakravarty, M Mallar; Drake, Kristen E; Foote, Kelly D; Fosdick, Lisa; Giacobbe, Peter; Mari, Zoltan; McAndrews, Mary Pat; Munro, Cynthia A; Oh, Esther S; Okun, Michael S; Pendergrass, Jo Cara; Ponce, Francisco A; Rosenberg, Paul B; Sabbagh, Marwan N; Salloway, Stephen; Tang-Wai, David F; Targum, Steven D; Wolk, David; Lozano, Andres M; Smith, Gwenn S; Lyketsos, Constantine G
2018-06-09
Given recent challenges in developing new treatments for Alzheimer dementia (AD), it is vital to explore alternate treatment targets, such as neuromodulation for circuit dysfunction. We previously reported an exploratory Phase IIb double-blind trial of deep brain stimulation targeting the fornix (DBS-f) in mild AD (the ADvance trial). We reported safety but no clinical benefits of DBS-f versus the delayed-on (sham) treatment in 42 participants after one year. However, secondary post hoc analyses of the one-year data suggested a possible DBS-f benefit for participants≥65 years. To examine the long-term safety and clinical effects of sustained and delayed-on DBS-f treatment of mild AD after two years. 42 participants underwent implantation of DBS-f electrodes, with half randomized to active DBS-f stimulation (early on) for two years and half to delayed-on (sham) stimulation after 1 year to provide 1 year of active DBS-f stimulation (delayed on). We evaluated safety and clinical outcomes over the two years of the trial. DBS-f had a favorable safety profile with similar rates of adverse events across both trial phases (years 1 and 2) and between treatment arms. There were no differences between treatment arms on any primary clinical outcomes. However, post-hoc age group analyses suggested a possible benefit among older (>65) participants. DBS-f was safe. Additional study of mechanisms of action and methods for titrating stimulation parameters will be needed to determine if DBS has potential as an AD treatment. Future efficacy studies should focus on patients over age 65.
Groen, Yvonne; Tucha, Oliver; Wijers, Albertus A.; Althaus, Monika
2013-01-01
Objectives Current models of ADHD suggest abnormal reward and punishment sensitivity, but the exact mechanisms are unclear. This study aims to investigate effects of continuous reward and punishment on the processing of performance feedback in children with ADHD and the modulating effects of stimulant medication. Methods 15 Methylphenidate (Mph)-treated and 15 Mph-free children of the ADHD-combined type and 17 control children performed a selective attention task with three feedback conditions: no-feedback, gain and loss. Event Related Potentials (ERPs) time-locked to feedback and errors were computed. Results All groups performed more accurately with gain and loss than without feedback. Feedback-related ERPs demonstrated no group differences in the feedback P2, but an enhanced late positive potential (LPP) to feedback stimuli (both gains and losses) for Mph-free children with ADHD compared to controls. Feedback-related ERPs in Mph-treated children with ADHD were similar to controls. Correlational analyses in the ADHD groups revealed that the severity of inattention problems correlated negatively with the feedback P2 amplitude and positively with the LPP to losses and omitted gains. Conclusions The early selective attention for rewarding and punishing feedback was relatively intact in children with ADHD, but the late feedback processing was deviant (increased feedback LPP). This may explain the often observed positive effects of continuous reinforcement on performance and behaviour in children with ADHD. However, these group findings cannot be generalised to all individuals with the ADHD, because the feedback-related ERPs were associated with the severity of the inattention problems. Children with ADHD-combined type with more inattention problems showed both deviant early attentional selection of feedback stimuli, and deviant late processing of non-reward and punishment. PMID:23555639
Groen, Yvonne; Tucha, Oliver; Wijers, Albertus A; Althaus, Monika
2013-01-01
Current models of ADHD suggest abnormal reward and punishment sensitivity, but the exact mechanisms are unclear. This study aims to investigate effects of continuous reward and punishment on the processing of performance feedback in children with ADHD and the modulating effects of stimulant medication. 15 Methylphenidate (Mph)-treated and 15 Mph-free children of the ADHD-combined type and 17 control children performed a selective attention task with three feedback conditions: no-feedback, gain and loss. Event Related Potentials (ERPs) time-locked to feedback and errors were computed. All groups performed more accurately with gain and loss than without feedback. Feedback-related ERPs demonstrated no group differences in the feedback P2, but an enhanced late positive potential (LPP) to feedback stimuli (both gains and losses) for Mph-free children with ADHD compared to controls. Feedback-related ERPs in Mph-treated children with ADHD were similar to controls. Correlational analyses in the ADHD groups revealed that the severity of inattention problems correlated negatively with the feedback P2 amplitude and positively with the LPP to losses and omitted gains. The early selective attention for rewarding and punishing feedback was relatively intact in children with ADHD, but the late feedback processing was deviant (increased feedback LPP). This may explain the often observed positive effects of continuous reinforcement on performance and behaviour in children with ADHD. However, these group findings cannot be generalised to all individuals with the ADHD, because the feedback-related ERPs were associated with the severity of the inattention problems. Children with ADHD-combined type with more inattention problems showed both deviant early attentional selection of feedback stimuli, and deviant late processing of non-reward and punishment.
Fujii, Shinya; Lulic, Tea; Chen, Joyce L.
2016-01-01
Motor learning is a process whereby the acquisition of new skills occurs with practice, and can be influenced by the provision of feedback. An important question is what frequency of feedback facilitates motor learning. The guidance hypothesis assumes that the provision of less augmented feedback is better than more because a learner can use his/her own inherent feedback. However, it is unclear whether this hypothesis holds true for all types of augmented feedback, including for example sonified information about performance. Thus, we aimed to test what frequency of augmented sonified feedback facilitates the motor learning of a novel joint coordination pattern. Twenty healthy volunteers first reached to a target with their arm (baseline phase). We manipulated this baseline kinematic data for each individual to create a novel target joint coordination pattern. Participants then practiced to learn the novel target joint coordination pattern, receiving either feedback on every trial i.e., 100% feedback (n = 10), or every other trial, i.e., 50% feedback (n = 10; acquisition phase). We created a sonification system to provide the feedback. This feedback was a pure tone that varied in intensity in proportion to the error of the performed joint coordination relative to the target pattern. Thus, the auditory feedback contained information about performance in real-time (i.e., “concurrent, knowledge of performance feedback”). Participants performed the novel joint coordination pattern with no-feedback immediately after the acquisition phase (immediate retention phase), and on the next day (delayed retention phase). The root-mean squared error (RMSE) and variable error (VE) of joint coordination were significantly reduced during the acquisition phase in both 100 and 50% feedback groups. There was no significant difference in VE between the groups at immediate and delayed retention phases. However, at both these retention phases, the 100% feedback group showed significantly smaller RMSE than the 50% group. Thus, contrary to the guidance hypothesis, our findings suggest that the provision of more, concurrent knowledge of performance auditory feedback during the acquisition of a novel joint coordination pattern, may result in better skill retention. PMID:27375414
The Physics of Ultracold Sr2 Molecules: Optical Production and Precision Measurement
2013-01-01
causing stimulated emission. The wavelength of the feedback light is determined by the angle of the feedback mirror . The zeroth order is the output from...with representative mirror , diffraction grating and diode housing (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.14 Schematic of...of the feedback light is determined by the angle of the feedback mirror . The zeroth order is the output from the ECDL. . . . . . . . . . . . 23 2.15
2015-10-01
Modulated Sensory Feedback from, a Hand Prosthesis PRINCIPAL INVESTIGATOR: Bradley Greger, PhD CONTRACTING ORGANIZATION: Arizona State University...Residual Peripheral Nerves to Provide Dextrous Control of, and Modulated Sensory Feedback from, a Hand Prosthesis 5a. CONTRACT NUMBER 5b. GRANT...Peripheral Nerve Interface, Prosthetic Hand, Neural Prosthesis , Sensory Feedback, Micro-stimulation, Electrophysiology, Action Potentials, Micro
Prueckl, R; Taub, A H; Herreros, I; Hogri, R; Magal, A; Bamford, S A; Giovannucci, A; Almog, R Ofek; Shacham-Diamand, Y; Verschure, P F M J; Mintz, M; Scharinger, J; Silmon, A; Guger, C
2011-01-01
In this paper the replacement of a lost learning function of rats through a computer-based real-time recording and feedback system is shown. In an experiment two recording electrodes and one stimulation electrode were implanted in an anesthetized rat. During a classical-conditioning paradigm, which includes tone and airpuff stimulation, biosignals were recorded and the stimulation events detected. A computational model of the cerebellum acquired the association between the stimuli and gave feedback to the brain of the rat using deep brain stimulation in order to close the eyelid of the rat. The study shows that replacement of a lost brain function using a direct bidirectional interface to the brain is realizable and can inspire future research for brain rehabilitation.
Williams, Camille K.; Tremblay, Luc; Carnahan, Heather
2016-01-01
Researchers in the domain of haptic training are now entering the long-standing debate regarding whether or not it is best to learn a skill by experiencing errors. Haptic training paradigms provide fertile ground for exploring how various theories about feedback, errors and physical guidance intersect during motor learning. Our objective was to determine how error minimizing, error augmenting and no haptic feedback while learning a self-paced curve-tracing task impact performance on delayed (1 day) retention and transfer tests, which indicate learning. We assessed performance using movement time and tracing error to calculate a measure of overall performance – the speed accuracy cost function. Our results showed that despite exhibiting the worst performance during skill acquisition, the error augmentation group had significantly better accuracy (but not overall performance) than the error minimization group on delayed retention and transfer tests. The control group’s performance fell between that of the two experimental groups but was not significantly different from either on the delayed retention test. We propose that the nature of the task (requiring online feedback to guide performance) coupled with the error augmentation group’s frequent off-target experience and rich experience of error-correction promoted information processing related to error-detection and error-correction that are essential for motor learning. PMID:28082937
Synchronization of fractional-order complex-valued neural networks with time delay.
Bao, Haibo; Park, Ju H; Cao, Jinde
2016-09-01
This paper deals with the problem of synchronization of fractional-order complex-valued neural networks with time delays. By means of linear delay feedback control and a fractional-order inequality, sufficient conditions are obtained to guarantee the synchronization of the drive-response systems. Numerical simulations are provided to show the effectiveness of the obtained results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cè, Emiliano; Rampichini, Susanna; Monti, Elena; Venturelli, Massimo; Limonta, Eloisa; Esposito, Fabio
2017-01-01
Peripheral fatigue involves electrochemical and mechanical mechanisms. An electromyographic, mechanomyographic and force combined approach may permit a kinetic evaluation of the changes at the synaptic, skeletal muscle fiber, and muscle-tendon unit level during a fatiguing stimulation. Surface electromyogram, mechanomyogram, force and stimulation current were detected from the gastrocnemius medialis muscle in twenty male participants during a fatiguing stimulation (twelve blocks of 35 Hz stimulations, duty cycle 9 s on/1 s off, duration 120 s). The total electromechanical delay and its three components (between stimulation current and electromyogram, synaptic component; between electromyogram and mechanomyogram signal onset, muscle fiber electrochemical component, and between mechanomyogram and force signal onset, mechanical component) were calculated. Interday reliability and sensitivity were determined. After fatigue, peak force decreased by 48% (P < 0.05) and the total electromechanical delay and its synaptic, electrochemical and mechanical components lengthened from 25.8 ± 0.9, 1.47 ± 0.04, 11.2 ± 0.6, and 13.1 ± 1.3 ms to 29.0 ± 1.6, 1.56 ± 0.05, 12.4 ± 0.9, and 17.2 ± 0.6 ms, respectively (P < 0.05). During fatigue, the total electromechanical delay and the mechanical component increased significantly after the 40th second, and then remained stable. The synaptic and electrochemical components lengthened significantly after the 20th and 30th second, respectively. Interday reliability was high to very high, with an adequate level of sensitivity. The kinetic evaluation of the delays during the fatiguing stimulation highlighted different onsets and kinetics, with the events at synaptic level being the first to reveal a significant elongation, followed by those at the intra-fiber level. The mechanical events, which were the most affected by fatigue, were the last to lengthen.
Quantifying the determinants of decremental response in critical ventricular tachycardia substrate.
Beheshti, Mohammadali; Nayyar, Sachin; Magtibay, Karl; Massé, Stéphane; Porta-Sanchez, Andreu; Haldar, Shouvik; Bhaskaran, Abhishek; Vigmond, Edward; Nanthakumar, Kumaraswamy
2018-05-28
Decremental response evoked with extrastimulation (DEEP) is a useful tool for determining diastolic return path of ventricular tachycardia (VT). Though a targeted VT ablation is feasible with this approach, determinants of DEEP response have not been studied OBJECTIVES: To elucidate the effects of clinically relevant factors, specifically, the proximity of the stimulation site to the arrhythmogenic scar, stimulation wave direction, number of channels open in the scar, size of the scar and number of extra stimuli on decrement and entropy of DEEP potentials. In a 3-dimensional bi-domain simulation of human ventricular tissue (TNNP cell model), an irregular subendocardial myopathic region was generated. An irregular channel of healthy tissue with five potential entry branches was shaped into the myopathic region. A bipolar electrogram was derived from two electrodes positioned in the centre of the myopathic region. Evoked delays between far-field and local Electrogram (EGM) following an extrastimulus (S1-S2, 500-350 ms) were measured as the stimulation site, channel branches, and inexcitable tissue size were altered. Stimulation adjacent to the inexcitable tissue from the side opposite to the point-of-entry produces longest DEEP delay. The DEEP delay shortens when the stimulation point is farther away from the scar, and it decreases maximally when stimulation is done from a site beside a conduction barrier. Entropy increases with S2 when stimulation site is from farther away. An unprotected channel structure with multiple side-branch openings had shorter DEEP delay compared to a protected channel structure with a paucity of additional side-branch openings and a point-of-entry on the side opposite to the pacing source. Addition of a second shorter extrastimulus did not universally lead to higher DEEP delay CONCLUSIONS: Location and direction of the wavefront in relation to scar entry and size of scar determine the degree of evoked response while the number of extrastimuli has a small additional decremental effect. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hoover, Adria E N; Elzein, Yasmeenah; Harris, Laurence R
2016-07-01
Right-handed people show an advantage in detecting a delay in visual feedback concerning an active movement of their right hand when it is viewed in a natural perspective compared to when it is seen as if viewing another person's hand (Hoover and Harris in Exp Brain Res 233:1053-1060, 2012. doi: 10.1007/s00221-014-4181-9 ; Exp Brain Res 222:389-397, 2015a. doi: 10.1007/s00221-012-3224-3 ). This self-advantage is unique to their dominant hand and may reflect an enhanced sense of ownership which contributes to how right-handed people relate to the world. Here we asked whether left-handers show the same pattern of performance for their dominant hand. We measured the minimum delay that could be detected by 29 left-handers when viewing either their dominant or non-dominant hand from 'self' or 'other' perspectives and compared their thresholds to an age-matched sample of 22 right-handers. Right-handers showed a significant signature self-advantage of 19 ms when viewing their dominant hand in an expected 'self' perspective compared to 'other' perspectives. Left-handers, however, showed no such advantage for either their dominant or non-dominant hand. This lack of self-advantage in detecting delayed visual feedback might indicate a less secure sense of body ownership amongst left-handers.
Alibeji, Naji A; Molazadeh, Vahidreza; Dicianno, Brad E; Sharma, Nitin
2018-01-01
A hybrid walking neuroprosthesis that combines functional electrical stimulation (FES) with a powered lower limb exoskeleton can be used to restore walking in persons with paraplegia. It provides therapeutic benefits of FES and torque reliability of the powered exoskeleton. Moreover, by harnessing metabolic power of muscles via FES, the hybrid combination has a potential to lower power consumption and reduce actuator size in the powered exoskeleton. Its control design, however, must overcome the challenges of actuator redundancy due to the combined use of FES and electric motor. Further, dynamic disturbances such as electromechanical delay (EMD) and muscle fatigue must be considered during the control design process. This ensures stability and control performance despite disparate dynamics of FES and electric motor. In this paper, a general framework to coordinate FES of multiple gait-governing muscles with electric motors is presented. A muscle synergy-inspired control framework is used to derive the controller and is motivated mainly to address the actuator redundancy issue. Dynamic postural synergies between FES of the muscles and the electric motors were artificially generated through optimizations and result in key dynamic postures when activated. These synergies were used in the feedforward path of the control system. A dynamic surface control technique, modified with a delay compensation term, is used as the feedback controller to address model uncertainty, the cascaded muscle activation dynamics, and EMD. To address muscle fatigue, the stimulation levels in the feedforward path were gradually increased based on a model-based fatigue estimate. A Lyapunov-based stability approach was used to derive the controller and guarantee its stability. The synergy-based controller was demonstrated experimentally on an able-bodied subject and person with an incomplete spinal cord injury.
How does feedback in mini-CEX affect students' learning response?
Sudarso, Sulistiawati; Rahayu, Gandes Retno; Suhoyo, Yoyo
2016-12-19
This study was aimed to explore students' learning response toward feedback during mini-CEX encounter. This study used a phenomenological approach to identify the students' experiences toward feedback during mini-CEX encounter. Data was collected using Focus Group Discussion (FGD) for all students who were in their final week of clerkship in the internal medicine rotation. There were 4 FGD groups (6 students for each group). All FGD were audio-taped and transcribed verbatim. The FGD transcripts were analyzed thematically and managed using Atlas-ti (version 7.0). Feedback content and the way of providing feedback on mini-CEX stimulated students' internal process, including self-reflection, emotional response, and motivation. These internal processes encouraged the students to take action or do a follow-up on the feedback to improve their learning process. In addition, there was also an external factor, namely consequences, which also influenced the students' reaction to the follow-up on feedback. In the end, this action caused several learning effects that resulted in the students' increased self-efficacy, attitude, knowledge and clinical skill. Feedback content and the way of providing feedback on mini-CEX stimulates the students' internal processes to do a follow-up on feedback. However, another external factor also affects the students' decision on the follow-up actions. The follow-ups result in various learning effects on the students. Feedback given along with summative assessment enhances learning effects on students, as well. It is suggested that supervisors of clinical education are prepared to comprehend every factor influencing feedback on mini CEX to improve the students' learning response.
Magnonic Crystal as a Delay Line for Low-Noise Auto-Oscillator
2015-05-12
Magnonic crystal as a delay line for low-noise auto-oscillator Elena Bankowski and Thomas Meitzler U.S. Army TARDEC, Warren, Michigan 48397, USA...authors propose to use the magnonic crystal patterned on the YIG magnetic film as an efficient delay line in the feedback loop of tunable auto-oscillator...increasing the thickness of such delay line as compare to the YIG film with no pattern. In turn, use of this magnonic crystal opens a way to improve
Erickson, Dana; Miles, John M.; Bowers, Cyril Y.
2011-01-01
To test the postulate that sex difference, sex steroids, and peptidyl secretagogues control GH autofeedback, 11 healthy postmenopausal women and 14 older men were each given 1) a single iv pulse of GH to enforce negative feedback and 2) continuous iv infusion of saline vs. combined GHRH/GHRP-2 to drive feedback escape during pharmacological estradiol (E2; women) or testosterone (T; men) supplementation vs. placebo in a double-blind, prospectively randomized crossover design. By three-way ANCOVA, sex difference, sex hormone treatment, peptide stimulation, and placebo/saline responses (covariate) controlled total (integrated) GH recovery during feedback (each P < 0.001). Both sex steroid milieu (P = 0.019) and dual-peptide stimulation (P < 0.001) determined nadir (maximally feedback-suppressed) GH concentrations. E2/T exposure elevated nadir GH concentrations during saline infusion (P = 0.003), whereas dual-peptide infusion did so independently of T/E2 and sex difference (P = 0.001). All three of sex difference (P = 0.001), sex steroid treatment (P = 0.005), and double-peptide stimulation (P < 0.001) augmented recovery of peak (maximally feedback-escaped) GH concentrations. Peak GH responses to dual-peptidyl agonists were greater in women than in men (P = 0.016). E2/T augmented peak GH recovery during saline infusion (P < 0.001). Approximate entropy analysis corroborated independent effects of sex steroid treatment (P = 0.012) and peptide infusion (P < 0.001) on GH regularity. In summary, sex difference, sex steroid supplementation, and combined peptide drive influence nadir, peak, and entropic measurements of GH release under controlled negative feedback. To the degree that the pharmacological sex steroid, GH, and dual-peptide clamps provide prephysiological regulatory insights, these outcomes suggest major determinants of pulsatile GH secretion in the feedback domain. PMID:21467302
Karniel, Amir; Nisky, Ilana
2015-01-01
During interaction with objects, we form an internal representation of their mechanical properties. This representation is used for perception and for guiding actions, such as in precision grip, where grip force is modulated with the predicted load forces. In this study, we explored the relationship between grip force adjustment and perception of stiffness during interaction with linear elastic force fields. In a forced-choice paradigm, participants probed pairs of virtual force fields while grasping a force sensor that was attached to a haptic device. For each pair, they were asked which field had higher level of stiffness. In half of the pairs, the force feedback of one of the fields was delayed. Participants underestimated the stiffness of the delayed field relatively to the nondelayed, but their grip force characteristics were similar in both conditions. We analyzed the magnitude of the grip force and the lag between the grip force and the load force in the exploratory probing movements within each trial. Right before answering which force field had higher level of stiffness, both magnitude and lag were similar between delayed and nondelayed force fields. These results suggest that an accurate internal representation of environment stiffness and time delay was used for adjusting the grip force. However, this representation did not help in eliminating the bias in stiffness perception. We argue that during performance of a perceptual task that is based on proprioceptive feedback, separate neural mechanisms are responsible for perception and action-related computations in the brain. PMID:25717155
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Margaret; Chiang, Eugene, E-mail: mpan@astro.berkeley.edu
2012-01-15
'Propellers' are features in Saturn's A ring associated with moonlets that open partial gaps. They exhibit non-Keplerian motion (Tiscareno et al.); the longitude residuals of the best-observed propeller, 'Bleriot', appear consistent with a sinusoid of period {approx}4 years. Pan and Chiang proposed that propeller moonlets librate in 'frog resonances' with co-orbiting ring material. By analogy with the restricted three-body problem, they treated the co-orbital material as stationary in the rotating frame and neglected non-co-orbital material. Here we use simple numerical experiments to extend the frog model, including feedback due to the gap's motion, and drag associated with the Lindblad diskmore » torques that cause Type I migration. Because the moonlet creates the gap, we expect the gap centroid to track the moonlet, but only after a time delay t{sub delay}, the time for a ring particle to travel from conjunction with the moonlet to the end of the gap. We find that frog librations can persist only if t{sub delay} exceeds the frog libration period P{sub lib}, and if damping from Lindblad torques balances driving from co-orbital torques. If t{sub delay} << Pl{sub ib}, then the libration amplitude damps to zero. In the case of Bleriot, the frog resonance model can reproduce the observed libration period P{sub lib} {approx_equal} 4 yr. However, our simple feedback prescription suggests that Bleriot's t{sub delay} {approx} 0.01P{sub lib}, which is inconsistent with the observed libration amplitude of 260 km. We urge more accurate treatments of feedback to test the assumptions of our toy models.« less
Auditory short-term memory activation during score reading.
Simoens, Veerle L; Tervaniemi, Mari
2013-01-01
Performing music on the basis of reading a score requires reading ahead of what is being played in order to anticipate the necessary actions to produce the notes. Score reading thus not only involves the decoding of a visual score and the comparison to the auditory feedback, but also short-term storage of the musical information due to the delay of the auditory feedback during reading ahead. This study investigates the mechanisms of encoding of musical information in short-term memory during such a complicated procedure. There were three parts in this study. First, professional musicians participated in an electroencephalographic (EEG) experiment to study the slow wave potentials during a time interval of short-term memory storage in a situation that requires cross-modal translation and short-term storage of visual material to be compared with delayed auditory material, as it is the case in music score reading. This delayed visual-to-auditory matching task was compared with delayed visual-visual and auditory-auditory matching tasks in terms of EEG topography and voltage amplitudes. Second, an additional behavioural experiment was performed to determine which type of distractor would be the most interfering with the score reading-like task. Third, the self-reported strategies of the participants were also analyzed. All three parts of this study point towards the same conclusion according to which during music score reading, the musician most likely first translates the visual score into an auditory cue, probably starting around 700 or 1300 ms, ready for storage and delayed comparison with the auditory feedback.
Leib, Raz; Karniel, Amir; Nisky, Ilana
2015-05-01
During interaction with objects, we form an internal representation of their mechanical properties. This representation is used for perception and for guiding actions, such as in precision grip, where grip force is modulated with the predicted load forces. In this study, we explored the relationship between grip force adjustment and perception of stiffness during interaction with linear elastic force fields. In a forced-choice paradigm, participants probed pairs of virtual force fields while grasping a force sensor that was attached to a haptic device. For each pair, they were asked which field had higher level of stiffness. In half of the pairs, the force feedback of one of the fields was delayed. Participants underestimated the stiffness of the delayed field relatively to the nondelayed, but their grip force characteristics were similar in both conditions. We analyzed the magnitude of the grip force and the lag between the grip force and the load force in the exploratory probing movements within each trial. Right before answering which force field had higher level of stiffness, both magnitude and lag were similar between delayed and nondelayed force fields. These results suggest that an accurate internal representation of environment stiffness and time delay was used for adjusting the grip force. However, this representation did not help in eliminating the bias in stiffness perception. We argue that during performance of a perceptual task that is based on proprioceptive feedback, separate neural mechanisms are responsible for perception and action-related computations in the brain. Copyright © 2015 the American Physiological Society.
Auditory Short-Term Memory Activation during Score Reading
Simoens, Veerle L.; Tervaniemi, Mari
2013-01-01
Performing music on the basis of reading a score requires reading ahead of what is being played in order to anticipate the necessary actions to produce the notes. Score reading thus not only involves the decoding of a visual score and the comparison to the auditory feedback, but also short-term storage of the musical information due to the delay of the auditory feedback during reading ahead. This study investigates the mechanisms of encoding of musical information in short-term memory during such a complicated procedure. There were three parts in this study. First, professional musicians participated in an electroencephalographic (EEG) experiment to study the slow wave potentials during a time interval of short-term memory storage in a situation that requires cross-modal translation and short-term storage of visual material to be compared with delayed auditory material, as it is the case in music score reading. This delayed visual-to-auditory matching task was compared with delayed visual-visual and auditory-auditory matching tasks in terms of EEG topography and voltage amplitudes. Second, an additional behavioural experiment was performed to determine which type of distractor would be the most interfering with the score reading-like task. Third, the self-reported strategies of the participants were also analyzed. All three parts of this study point towards the same conclusion according to which during music score reading, the musician most likely first translates the visual score into an auditory cue, probably starting around 700 or 1300 ms, ready for storage and delayed comparison with the auditory feedback. PMID:23326487
Schauer, Michael; Mauritz, Karl-Heinz
2003-11-01
To demonstrate the effect of rhythmical auditory stimulation in a musical context for gait therapy in hemiparetic stroke patients, when the stimulation is played back measure by measure initiated by the patient's heel-strikes (musical motor feedback). Does this type of musical feedback improve walking more than a less specific gait therapy? The randomized controlled trial considered 23 registered stroke patients. Two groups were created by randomization: the control group received 15 sessions of conventional gait therapy and the test group received 15 therapy sessions with musical motor feedback. Inpatient rehabilitation hospital. Median post-stroke interval was 44 days and the patients were able to walk without technical aids with a speed of approximately 0.71 m/s. Gait velocity, step duration, gait symmetry, stride length and foot rollover path length (heel-on-toe-off distance). The test group showed more mean improvement than the control group: stride length increased by 18% versus 0%, symmetry deviation decreased by 58% versus 20%, walking speed increased by 27% versus 4% and rollover path length increased by 28% versus 11%. Musical motor feedback improves the stroke patient's walk in selected parameters more than conventional gait therapy. A fixed memory in the patient's mind about the song and its timing may stimulate the improvement of gait even without the presence of an external pacemaker.
A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback
Klaes, Christian; Shi, Ying; Kellis, Spencer; Minxha, Juri; Revechkis, Boris; Andersen, Richard A.
2015-01-01
Present day cortical brain machine interfaces (BMI) have made impressive advances using decoded brain signals to control extracorporeal devices. Although BMIs are used in a closed-loop fashion, sensory feedback typically is visual only. However medical case studies have shown that the loss of somesthesis in a limb greatly reduces the agility of the limb even when visual feedback is available (for review see Robles-De-La-Torre, 2006). To overcome this limitation, this study tested a closed-loop BMI that utilizes intracortical microstimulation (ICMS) to provide ‘tactile’ sensation to a non-human primate (NHP). Using stimulation electrodes in Brodmann area 1 of somatosensory cortex (BA1) and recording electrodes in the anterior intraparietal area (AIP), the parietal reach region (PRR) and dorsal area 5 (area 5d), it was found that this form of feedback can be used in BMI tasks. PMID:25242377
Representing delayed force feedback as a combination of current and delayed states.
Avraham, Guy; Mawase, Firas; Karniel, Amir; Shmuelof, Lior; Donchin, Opher; Mussa-Ivaldi, Ferdinando A; Nisky, Ilana
2017-10-01
To adapt to deterministic force perturbations that depend on the current state of the hand, internal representations are formed to capture the relationships between forces experienced and motion. However, information from multiple modalities travels at different rates, resulting in intermodal delays that require compensation for these internal representations to develop. To understand how these delays are represented by the brain, we presented participants with delayed velocity-dependent force fields, i.e., forces that depend on hand velocity either 70 or 100 ms beforehand. We probed the internal representation of these delayed forces by examining the forces the participants applied to cope with the perturbations. The findings showed that for both delayed forces, the best model of internal representation consisted of a delayed velocity and current position and velocity. We show that participants relied initially on the current state, but with adaptation, the contribution of the delayed representation to adaptation increased. After adaptation, when the participants were asked to make movements with a higher velocity for which they had not previously experienced with the delayed force field, they applied forces that were consistent with current position and velocity as well as delayed velocity representations. This suggests that the sensorimotor system represents delayed force feedback using current and delayed state information and that it uses this representation when generalizing to faster movements. NEW & NOTEWORTHY The brain compensates for forces in the body and the environment to control movements, but it is unclear how it does so given the inherent delays in information transmission and processing. We examined how participants cope with delayed forces that depend on their arm velocity 70 or 100 ms beforehand. After adaptation, participants applied opposing forces that revealed a partially correct representation of the perturbation using the current and the delayed information. Copyright © 2017 the American Physiological Society.
Hatch plasticity in response to varied inundation frequency in Aedes albopictus.
Vitek, Christopher J; Livdahl, Todd
2009-07-01
Eggs of container-breeding mosquitoes are able to withstand drought conditions as an egg and hatch when submerged. Frequent rainfall can be simulated by frequent submersion, and drought conditions can be simulated by infrequent submersion. We examined the hatch response of Aedes albopictus (Skuse) eggs to simulated drought conditions. Ae. albopictus eggs from a strain originating outside Kobe, Japan, were subjected to one of three treatments; high-frequency hatch stimulation consisting of submerging the eggs in a nutrient broth mixture every 3 d, low-frequency hatch stimulation consisting of submerging the eggs every 7 d, and delayed high-frequency hatch stimulation. Eggs that were subjected to lower-frequency stimulation showed a significant decrease in hatch delay, which was the opposite of the predicted response. This decrease in hatch delay may be an example of hatch plasticity in response to drought conditions. This response could not be explained as a result of the difference in the ages of the eggs on any given stimulus. A decreased hatch delay response to potential drought conditions combined with rapid larval development may enable Ae. albopictus, whose eggs are not as desiccation resistant as some other container-breeding mosquitoes, to survive extended drought.
Just, Wolfram; Popovich, Svitlana; Amann, Andreas; Baba, Nilüfer; Schöll, Eckehard
2003-02-01
We investigate time-delayed feedback control schemes which are based on the unstable modes of the target state, to stabilize unstable periodic orbits. The periodic time dependence of these modes introduces an external time scale in the control process. Phase shifts that develop between these modes and the controlled periodic orbit may lead to a huge increase of the control performance. We illustrate such a feature on a nonlinear reaction diffusion system with global coupling and give a detailed investigation for the Rössler model. In addition we provide the analytical explanation for the observed control features.
Legacy Effect of Amazonian Drought Delays the Season Transition from Dry to Wet
NASA Astrophysics Data System (ADS)
Shi, M.; Liu, J.; Wong, S.; Worden, J. R.; Fisher, J.; Frankenberg, C.
2017-12-01
The long-term drought effect on forest coverage, so-called legacy effect, has been observed in ground and remote sensing measurements. Drought and forest loss may amplify each other through vegetation-atmosphere feedbacks. In this study, we investigate the impact of the reduced growth of southern Amazonian forest from the 2005 drought on dry-to-wet season transition and its variations in 2005 and 2006. We quantified the vegetation-atmosphere feedbacks with the Community Atmosphere Model version 5 (CAM5) with a control and a sensitivity experiments. We further investigate the mechanism of vegetation-atmosphere feedbacks with data-constrained evapotranspiration (ET) and HDO/H2O observations from the Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) and from the Tropospheric Emission Spectrometer (TES). Our results show that the dry season end (DSE) in southern Amazonian forest was delayed by 15 days in 2005 and by 25 days in 2006 with drought induced leaf carbon pool reduction. The postponed DSE is triggered by the reduced evapotranspiration (ET), but amplified by change of large-scale circulation. The reduction of ET and its delaying effect on dry-wet season transition is further confirmed with SCIAMACHY and TES HDO/H2O measurements.
Bifurcation analysis of a delay reaction-diffusion malware propagation model with feedback control
NASA Astrophysics Data System (ADS)
Zhu, Linhe; Zhao, Hongyong; Wang, Xiaoming
2015-05-01
With the rapid development of network information technology, information networks security has become a very critical issue in our work and daily life. This paper attempts to develop a delay reaction-diffusion model with a state feedback controller to describe the process of malware propagation in mobile wireless sensor networks (MWSNs). By analyzing the stability and Hopf bifurcation, we show that the state feedback method can successfully be used to control unstable steady states or periodic oscillations. Moreover, formulas for determining the properties of the bifurcating periodic oscillations are derived by applying the normal form method and center manifold theorem. Finally, we conduct extensive simulations on large-scale MWSNs to evaluate the proposed model. Numerical evidences show that the linear term of the controller is enough to delay the onset of the Hopf bifurcation and the properties of the bifurcation can be regulated to achieve some desirable behaviors by choosing the appropriate higher terms of the controller. Furthermore, we obtain that the spatial-temporal dynamic characteristics of malware propagation are closely related to the rate constant for nodes leaving the infective class for recovered class and the mobile behavior of nodes.
Ultra-high-frequency chaos in a time-delay electronic device with band-limited feedback.
Illing, Lucas; Gauthier, Daniel J
2006-09-01
We report an experimental study of ultra-high-frequency chaotic dynamics generated in a delay-dynamical electronic device. It consists of a transistor-based nonlinearity, commercially-available amplifiers, and a transmission-line for feedback. The feedback is band-limited, allowing tuning of the characteristic time-scales of both the periodic and high-dimensional chaotic oscillations that can be generated with the device. As an example, periodic oscillations ranging from 48 to 913 MHz are demonstrated. We develop a model and use it to compare the experimentally observed Hopf bifurcation of the steady-state to existing theory [Illing and Gauthier, Physica D 210, 180 (2005)]. We find good quantitative agreement of the predicted and the measured bifurcation threshold, bifurcation type and oscillation frequency. Numerical integration of the model yields quasiperiodic and high dimensional chaotic solutions (Lyapunov dimension approximately 13), which match qualitatively the observed device dynamics.
Mobayen, Saleh
2018-06-01
This paper proposes a combination of composite nonlinear feedback and integral sliding mode techniques for fast and accurate chaos synchronization of uncertain chaotic systems with Lipschitz nonlinear functions, time-varying delays and disturbances. The composite nonlinear feedback method allows accurate following of the master chaotic system and the integral sliding mode control provides invariance property which rejects the perturbations and preserves the stability of the closed-loop system. Based on the Lyapunov- Krasovskii stability theory and linear matrix inequalities, a novel sufficient condition is offered for the chaos synchronization of uncertain chaotic systems. This method not only guarantees the robustness against perturbations and time-delays, but also eliminates reaching phase and avoids chattering problem. Simulation results demonstrate that the suggested procedure leads to a great control performance. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Supernova feedback in numerical simulations of galaxy formation: separating physics from numerics
NASA Astrophysics Data System (ADS)
Smith, Matthew C.; Sijacki, Debora; Shen, Sijing
2018-07-01
While feedback from massive stars exploding as supernovae (SNe) is thought to be one of the key ingredients regulating galaxy formation, theoretically it is still unclear how the available energy couples to the interstellar medium and how galactic scale outflows are launched. We present a novel implementation of six sub-grid SN feedback schemes in the moving-mesh code AREPO, including injections of thermal and/or kinetic energy, two parametrizations of delayed cooling feedback and a `mechanical' feedback scheme that injects the correct amount of momentum depending on the relevant scale of the SN remnant resolved. All schemes make use of individually time-resolved SN events. Adopting isolated disc galaxy set-ups at different resolutions, with the highest resolution runs reasonably resolving the Sedov-Taylor phase of the SN, we aim to find a physically motivated scheme with as few tunable parameters as possible. As expected, simple injections of energy overcool at all but the highest resolution. Our delayed cooling schemes result in overstrong feedback, destroying the disc. The mechanical feedback scheme is efficient at suppressing star formation, agrees well with the Kennicutt-Schmidt relation, and leads to converged star formation rates and galaxy morphologies with increasing resolution without fine-tuning any parameters. However, we find it difficult to produce outflows with high enough mass loading factors at all but the highest resolution, indicating either that we have oversimplified the evolution of unresolved SN remnants, require other stellar feedback processes to be included, and require a better star formation prescription or most likely some combination of these issues.
Supernova feedback in numerical simulations of galaxy formation: separating physics from numerics
NASA Astrophysics Data System (ADS)
Smith, Matthew C.; Sijacki, Debora; Shen, Sijing
2018-04-01
While feedback from massive stars exploding as supernovae (SNe) is thought to be one of the key ingredients regulating galaxy formation, theoretically it is still unclear how the available energy couples to the interstellar medium and how galactic scale outflows are launched. We present a novel implementation of six sub-grid SN feedback schemes in the moving-mesh code AREPO, including injections of thermal and/or kinetic energy, two parametrizations of delayed cooling feedback and a `mechanical' feedback scheme that injects the correct amount of momentum depending on the relevant scale of the SN remnant resolved. All schemes make use of individually time-resolved SN events. Adopting isolated disk galaxy setups at different resolutions, with the highest resolution runs reasonably resolving the Sedov-Taylor phase of the SN, we aim to find a physically motivated scheme with as few tunable parameters as possible. As expected, simple injections of energy overcool at all but the highest resolution. Our delayed cooling schemes result in overstrong feedback, destroying the disk. The mechanical feedback scheme is efficient at suppressing star formation, agrees well with the Kennicutt-Schmidt relation and leads to converged star formation rates and galaxy morphologies with increasing resolution without fine tuning any parameters. However, we find it difficult to produce outflows with high enough mass loading factors at all but the highest resolution, indicating either that we have oversimplified the evolution of unresolved SN remnants, require other stellar feedback processes to be included, require a better star formation prescription or most likely some combination of these issues.
NASA Astrophysics Data System (ADS)
Kim, Jisung; Kim, Saehan; Lee, Keekeun
2017-06-01
For the first time, a wireless and chipless neuron stimulator was developed by utilizing a surface acoustic wave (SAW) delay line, a diode-capacitor interface, a sharp metal tip, and antennas for the stimulation of neurons in the brain. The SAW delay line supersedes presently existing complex wireless transmission systems composed of a few thousands of transistors, enabling the fabrication of wireless and chipless transceiver systems. The diode-capacitor interface was used to convert AC signals to DC signals and induce stimulus pulses at a sharp metal probe. A 400 MHz RF energy was wirelessly radiated from antennas and then stimulation pulses were observed at a sharp gold probe. A ˜5 m reading distance was obtained using a 1 mW power from a network analyzer. The cycles of electromagnetic (EM) radiation from an antenna were controlled by shielding the antenna with an EM absorber. Stimulation pulses with different amplitudes and durations were successfully observed at the probe. The obtained pulses were ˜0.08 mV in amplitude and 3-10 Hz in frequency. Coupling-of-mode (COM) and SPICE modeling simulations were also used to determine the optimal structural parameters for SAW delay line and the values of passive elements. On the basis of the extracted parameters, the entire system was experimentally implemented and characterized.
Chen, Jian; Zhang, Xing; Wang, Yong; Ye, Yu; Huang, Zhaoquan
2018-05-02
For postmenopausal cardiovascular disease, long-term estrogen therapy may increase the risk of breast cancer. To reduce this risk, estrogen may be replaced with the phytoestrogen formononetin, but how formononetin acts on vascular endothelial cells (ECs) and breast cancer cells is unclear. Here, we show that low concentrations of formononetin induced proliferation and inhibited apoptosis more strongly in cultured human umbilical vein endothelial cells (HUVECs) than in breast cancer cells expressing estrogen receptor α (ERα) (MCF-7, BT474) or not (MDA-MB-231), and that this differential stimulation was associated with miR-375 up-regulation in HUVECs. For the first time, we demonstrate the presence of a feedback loop involving miR-375, ras dexamethasone-induced 1 (RASD1), and ERα in normal HUVECs, and we show that formononetin stimulated this feedback loop in HUVECs but not in MCF-7 or BT474 cells. In all three cell lines, formononetin increased Akt phosphorylation and Bcl-2 expression. Inhibiting miR-375 blocked these changes and increased proliferation in HUVECs, but not in MCF-7 or BT474 cells. In ovariectomized rats, formononetin increased uterine weight and caused similar changes in levels of miR-375, RASD1, ERα, and Bcl-2 in aortic ECs as in cultured HUVECs. In mice bearing MCF-7 xenografts, tumor growth was stimulated by 17β-estradiol but not by formononetin. These results suggest selective action of formononetin in ECs (proliferation stimulation and apoptosis inhibition) relative to breast cancer cells, possibly via a feedback loop involving miR-375, RASD1, and ERα. This differential effect may explain why formononetin may not increase the risk of postmenopausal breast cancer. © 2018 Wiley Periodicals, Inc.
Otsuka, T; Ishii, K; Osako, Y; Okutani, F; Taniguchi, M; Oka, T; Kaba, H
2001-05-01
When female mice are mated, they form a memory to the pheromonal signal of their male partner. The neural changes underlying this memory occur in the accessory olfactory bulb, depend upon vaginocervical stimulation at mating and involve changes at the reciprocal synapses between mitral and granule cells. However, the action of vaginocervical stimulation on the reciprocal interactions between mitral and granule cells remains to be elucidated. We have examined the effects of vaginocervical stimulation on paired-pulse depression of amygdala-evoked field potentials recorded in the external plexiform layer of the accessory olfactory bulb (AOB) and the single-unit activity of mitral cells antidromically stimulated from the amygdala in urethane-anaesthetized female mice. Artificial vaginocervical stimulation reduced paired-pulse depression (considered to be due to feedback inhibition of the mitral cell dendrites from the granule cells via reciprocal dendrodendritic synapses) recorded in the AOB external plexiform layer. As would be expected from this result, vaginocervical stimulation also enhanced the spontaneous activity of a proportion of the mitral cells tested. These results suggest that vaginocervical stimulation reduces dendrodendritic feedback inhibition to mitral cells and enhances their activity.
Stuttering Inhibition via Altered Auditory Feedback during Scripted Telephone Conversations
ERIC Educational Resources Information Center
Hudock, Daniel; Kalinowski, Joseph
2014-01-01
Background: Overt stuttering is inhibited by approximately 80% when people who stutter read aloud as they hear an altered form of their speech feedback to them. However, levels of stuttering inhibition vary from 60% to 100% depending on speaking situation and signal presentation. For example, binaural presentations of delayed auditory feedback…
Differential Effects of Oral and Written Corrective Feedback in the ESL Classroom
ERIC Educational Resources Information Center
Sheen, Younghee
2010-01-01
This article examines whether there is any difference between the effect of oral and written corrective feedback (CF) on learners' accurate use of English articles. To this end, the current research presents the results of a quasi-experimental study with a pretest, immediate-posttest, delayed-posttest design, using 12 intact intermediate…
Delayed Instructional Feedback May Be More Effective, but Is This Contrary to Learners' Preferences?
ERIC Educational Resources Information Center
Lefevre, David; Cox, Benita
2017-01-01
This research investigates learners' preferences for the timing of feedback provided to multiple-choice questions within technology-based instruction, hitherto an area of little empirical attention. Digital materials are undergoing a period of renewed prominence within online learning and multiple-choice questions remain a common component. There…
Corrective Feedback, Spoken Accuracy and Fluency, and the Trade-Off Hypothesis
ERIC Educational Resources Information Center
Chehr Azad, Mohammad Hassan; Farrokhi, Farahman; Zohrabi, Mohammad
2018-01-01
The current study was an attempt to investigate the effects of different corrective feedback (CF) conditions on Iranian EFL learners' spoken accuracy and fluency (AF) and the trade-off between them. Consequently, four pre-intermediate intact classes were randomly selected as the control, delayed explicit metalinguistic CF, extensive recast, and…
Learning and Control Model of the Arm for Loading
NASA Astrophysics Data System (ADS)
Kim, Kyoungsik; Kambara, Hiroyuki; Shin, Duk; Koike, Yasuharu
We propose a learning and control model of the arm for a loading task in which an object is loaded onto one hand with the other hand, in the sagittal plane. Postural control during object interactions provides important points to motor control theories in terms of how humans handle dynamics changes and use the information of prediction and sensory feedback. For the learning and control model, we coupled a feedback-error-learning scheme with an Actor-Critic method used as a feedback controller. To overcome sensory delays, a feedforward dynamics model (FDM) was used in the sensory feedback path. We tested the proposed model in simulation using a two-joint arm with six muscles, each with time delays in muscle force generation. By applying the proposed model to the loading task, we showed that motor commands started increasing, before an object was loaded on, to stabilize arm posture. We also found that the FDM contributes to the stabilization by predicting how the hand changes based on contexts of the object and efferent signals. For comparison with other computational models, we present the simulation results of a minimum-variance model.
Tong, Shao Cheng; Li, Yong Ming; Zhang, Hua-Guang
2011-07-01
In this paper, two adaptive neural network (NN) decentralized output feedback control approaches are proposed for a class of uncertain nonlinear large-scale systems with immeasurable states and unknown time delays. Using NNs to approximate the unknown nonlinear functions, an NN state observer is designed to estimate the immeasurable states. By combining the adaptive backstepping technique with decentralized control design principle, an adaptive NN decentralized output feedback control approach is developed. In order to overcome the problem of "explosion of complexity" inherent in the proposed control approach, the dynamic surface control (DSC) technique is introduced into the first adaptive NN decentralized control scheme, and a simplified adaptive NN decentralized output feedback DSC approach is developed. It is proved that the two proposed control approaches can guarantee that all the signals of the closed-loop system are semi-globally uniformly ultimately bounded, and the observer errors and the tracking errors converge to a small neighborhood of the origin. Simulation results are provided to show the effectiveness of the proposed approaches.
Impact of Carbohydrate Restriction on Healthy Adolescent Development.
Richmond, Hannah M; Duriancik, David M
2017-09-01
Carbohydrate-restricted diets are known for their impact on weight loss; however, research is still required to determine if low-carbohydrate diets are safe for adolescents. Carbohydrates directly stimulate an insulin response, and studies have recently shown that insulin and binding to respective insulin receptors (IRs) are critical in Kisspeptin (Kiss1) neuronal development. These neurons directly stimulate gonadotropin-releasing hormone, which activates the pituitary-gonadal axis during puberty. This information suggests that carbohydrate restriction may delay pubertal development in adolescents due to the impact on insulin and Kiss1 transcription. Studies have observed disturbed insulin metabolism in Type I Diabetics leading to delayed puberty, along with overfeeding stimulating early pubertal onset. Additionally, recent clinical trials bred female mice with IR deletions on Kiss1 neurons and observed delayed vaginal opening and estrus. Current animal research suggests low carbohydrate intake may delay pubertal onset, however additional research is required to determine outcome in human subjects. Copyright© of YS Medical Media ltd.
NASA Astrophysics Data System (ADS)
Huang, Dongmei; Xu, Wei
2017-11-01
In this paper, the combination of the cubic nonlinearity and time delay is proposed to improve the performance of a piecewise-smooth (PWS) system with negative stiffness. Dynamical properties, feedback control performance and symmetry-breaking bifurcation are mainly considered for a PWS system with negative stiffness under nonlinear position and velocity feedback control. For the free vibration system, the homoclinic-like orbits are firstly derived. Then, the amplitude-frequency response of the controlled system is obtained analytically in aspect of the Lindstedt-Poincaré method and the method of multiple scales, which is also verified through the numerical results. In this regard, a softening-type behavior, which directly leads to the multi-valued responses, is illustrated over the negative position feedback. Especially, the five-valued responses in which three branches of them are stable are found. And complex multi-valued characteristics are also observed in the force-amplitude responses. Furthermore, for explaining the effectiveness of feedback control, the equivalent damping and stiffness are also introduced. Sensitivity of the system response to the feedback gain and time delay is comprehensively considered and interesting dynamical properties are found. Relatively, from the perspective of suppressing the maximum amplitude and controlling the resonance stability, the selection of the feedback parameters is discussed. Finally, the symmetry-breaking bifurcation and chaotic motion are considered.
Three degree-of-freedom force feedback control for robotic mating of umbilical lines
NASA Technical Reports Server (NTRS)
Fullmer, R. Rees
1988-01-01
The use of robotic manipulators for the mating and demating of umbilical fuel lines to the Space Shuttle Vehicle prior to launch is investigated. Force feedback control is necessary to minimize the contact forces which develop during mating. The objective is to develop and demonstrate a working robotic force control system. Initial experimental force control tests with an ASEA IRB-90 industrial robot using the system's Adaptive Control capabilities indicated that control stability would by a primary problem. An investigation of the ASEA system showed a 0.280 second software delay between force input commands and the output of command voltages to the servo system. This computational delay was identified as the primary cause of the instability. Tests on a second path into the ASEA's control computer using the MicroVax II supervisory computer show that time delay would be comparable, offering no stability improvement. An alternative approach was developed where the digital control system of the robot was disconnected and an analog electronic force controller was used to control the robot's servosystem directly, allowing the robot to use force feedback control while in rigid contact with a moving three-degree-of-freedom target. An alternative approach was developed where the digital control system of the robot was disconnected and an analog electronic force controller was used to control the robot's servo system directly. This method allowed the robot to use force feedback control while in rigid contact with moving three degree-of-freedom target. Tests on this approach indicated adequate force feedback control even under worst case conditions. A strategy to digitally-controlled vision system was developed. This requires switching between the digital controller when using vision control and the analog controller when using force control, depending on whether or not the mating plates are in contact.
NASA Astrophysics Data System (ADS)
Andreev, R. B.; Butylkin, V. S.; Evtiushkin, V. A.; Fisher, P. S.; Khabarov, V. V.
1983-03-01
The threshold of stimulated Raman scattering was lowered by filling an optical delay line with hydrogen. Pumping was by a tunable neodymium laser. Lens-prism combinations were used as phase correctors in the delay line. The dependences of the energy of the Stokes component on the pump energy determined experimentally for different numbers of transits through the delay line were compared with the results of a calculation allowing for the losses in the components of this line. When the frequency conversion was by a factor of at least 2 and the tuning range was wide (tens of percent), the optimal performance was obtained from the optical delay line when total-internal-reflection prisms and lenses were combined in a single component and oriented at the Brewster angle.
NASA Astrophysics Data System (ADS)
Andreev, R. B.; Butylkin, V. S.; Evtyushkin, V. A.; Fisher, P. S.; Khabarov, V. V.
1983-03-01
The threshold of stimulated Raman scattering was lowered by filling an optical delay line with hydrogen. Pumping was by a tunable neodymium laser. Lens-prism combinations were used as phase correctors in the delay line. The dependences of the energy of the Stokes component on the pump energy determined experimentally for different numbers of transits through the delay line were compared with the results of a calculation allowing for the losses in the components of this line. When the frequency conversion was by a factor of at least 2 and the tuning range was wide (tens of percent), the optimal performance was obtained from the optical delay line when total-internal-reflection prisms and lenses were combined in a single component and oriented at the Brewster angle.
Emergence of resonant mode-locking via delayed feedback in quantum dot semiconductor lasers.
Tykalewicz, B; Goulding, D; Hegarty, S P; Huyet, G; Erneux, T; Kelleher, B; Viktorov, E A
2016-02-22
With conventional semiconductor lasers undergoing external optical feedback, a chaotic output is typically observed even for moderate levels of the feedback strength. In this paper we examine single mode quantum dot lasers under strong optical feedback conditions and show that an entirely new dynamical regime is found consisting of spontaneous mode-locking via a resonance between the relaxation oscillation frequency and the external cavity repetition rate. Experimental observations are supported by detailed numerical simulations of rate equations appropriate for this laser type. The phenomenon constitutes an entirely new mode-locking mechanism in semiconductor lasers.
Germany, Enrique I; Pino, Esteban J; Aqueveque, Pablo E
2016-08-01
This paper presents the development of a myoelectric prosthetic hand based on a 3D printed model. A myoelectric control strategy based on artificial neural networks is implemented on a microcontroller for online position estimation. Position estimation performance achieves a correlation index of 0.78. Also a study involving transcutaneous electrical stimulation was performed to provide tactile feedback. A series of stimulations with controlled parameters were tested on five able-body subjects. A single channel stimulator was used, positioning the electrodes 8 cm on the wrist over the ulnar and median nerve. Controlling stimulation parameters such as intensity, frequency and pulse width, the subjects were capable of distinguishing different sensations over the palm of the hand. Three main sensations where achieved: tickling, pressure and pain. Tickling and pressure were discretized into low, moderate and high according to the magnitude of the feeling. The parameters at which each sensation was obtained are further discussed in this paper.
Wang, Leimin; Shen, Yi; Sheng, Yin
2016-04-01
This paper is concerned with the finite-time robust stabilization of delayed neural networks (DNNs) in the presence of discontinuous activations and parameter uncertainties. By using the nonsmooth analysis and control theory, a delayed controller is designed to realize the finite-time robust stabilization of DNNs with discontinuous activations and parameter uncertainties, and the upper bound of the settling time functional for stabilization is estimated. Finally, two examples are provided to demonstrate the effectiveness of the theoretical results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Detecting delay in visual feedback of an action as a monitor of self recognition.
Hoover, Adria E N; Harris, Laurence R
2012-10-01
How do we distinguish "self" from "other"? The correlation between willing an action and seeing it occur is an important cue. We exploited the fact that this correlation needs to occur within a restricted temporal window in order to obtain a quantitative assessment of when a body part is identified as "self". We measured the threshold and sensitivity (d') for detecting a delay between movements of the finger (of both the dominant and non-dominant hands) and visual feedback as seen from four visual perspectives (the natural view, and mirror-reversed and/or inverted views). Each trial consisted of one presentation with minimum delay and another with a delay of between 33 and 150 ms. Participants indicated which presentation contained the delayed view. We varied the amount of efference copy available for this task by comparing performances for discrete movements and continuous movements. Discrete movements are associated with a stronger efference copy. Sensitivity to detect asynchrony between visual and proprioceptive information was significantly higher when movements were viewed from a "plausible" self perspective compared with when the view was reversed or inverted. Further, we found differences in performance between dominant and non-dominant hand finger movements across the continuous and single movements. Performance varied with the viewpoint from which the visual feedback was presented and on the efferent component such that optimal performance was obtained when the presentation was in the normal natural orientation and clear efferent information was available. Variations in sensitivity to visual/non-visual temporal incongruence with the viewpoint in which a movement is seen may help determine the arrangement of the underlying visual representation of the body.
NASA Astrophysics Data System (ADS)
Meng, Xin-You; Wu, Yu-Qian
In this paper, a delayed differential algebraic phytoplankton-zooplankton-fish model with taxation and nonlinear fish harvesting is proposed. In the absence of time delay, the existence of singularity induced bifurcation is discussed by regarding economic interest as bifurcation parameter. A state feedback controller is designed to eliminate singularity induced bifurcation. Based on Liu’s criterion, Hopf bifurcation occurs at the interior equilibrium when taxation is taken as bifurcation parameter and is more than its corresponding critical value. In the presence of time delay, by analyzing the associated characteristic transcendental equation, the interior equilibrium loses local stability when time delay crosses its critical value. What’s more, the direction of Hopf bifurcation and stability of the bifurcating periodic solutions are investigated based on normal form theory and center manifold theorem, and nonlinear state feedback controller is designed to eliminate Hopf bifurcation. Furthermore, Pontryagin’s maximum principle has been used to obtain optimal tax policy to maximize the benefit as well as the conservation of the ecosystem. Finally, some numerical simulations are given to demonstrate our theoretical analysis.
Suppression of Spontaneous Gas Oscillations by Acoustic Self-Feedback
NASA Astrophysics Data System (ADS)
Biwa, Tetsushi; Sawada, Yoshiki; Hyodo, Hiroaki; Kato, Soichiro
2016-10-01
This paper demonstrates a method of acoustical self-feedback to suppress spontaneous gas oscillations such as those observed in combustors of gas-turbine engines. Whereas a conventional feedback system consists of electromechanical devices, the present method achieves acoustical self-feedback with a hollow tube that connects two positions of the oscillation system. A model oscillator of combustion-driven gas oscillations is designed and built to demonstrate the applicability of the self-feedback concept. Stability analysis through measurements of Q values (quality factor) of oscillations shows that the desired delay time and gain are obtained when the tube length is equal to the odd integer times half the wavelength of the anticipated acoustic oscillations.
Cho, Woosang; Sabathiel, Nikolaus; Ortner, Rupert; Lechner, Alexander; Irimia, Danut C; Allison, Brendan Z; Edlinger, Guenter; Guger, Christoph
2016-06-13
Conventional therapies do not provide paralyzed patients with closed-loop sensorimotor integration for motor rehabilitation. Paired associative stimulation (PAS) uses brain-computer interface (BCI) technology to monitor patients' movement imagery in real-time, and utilizes the information to control functional electrical stimulation (FES) and bar feedback for complete sensorimotor closed loop. To realize this approach, we introduce the recoveriX system, a hardware and software platform for PAS. After 10 sessions of recoveriX training, one stroke patient partially regained control of dorsiflexion in her paretic wrist. A controlled group study is planned with a new version of the recoveriX system, which will use a new FES system and an avatar instead of bar feedback.
Feedback Reduces the Metacognitive Benefit of Tests
ERIC Educational Resources Information Center
Kornell, Nate; Rhodes, Matthew G.
2013-01-01
Testing long-term memory has dual benefits: It enhances learning and it helps learners discriminate what they know from what they do not know. The latter benefit, known as delayed judgment of learning (dJOL) effect, has been well documented, but in prior research participants have not been provided with test feedback. Yet when people study they…
Beyond the Bottom of the Foot: Topographic Organization of the Foot Dorsum in Walking.
Klarner, Taryn; Pearcey, Gregory E P; Sun, Yao; Barss, Trevor S; Kaupp, Chelsea; Munro, Bridget; Frank, Nick; Zehr, E Paul
2017-12-01
Sensory feedback from the foot dorsum during walking has only been studied globally by whole nerve stimulation. Stimulating the main nerve innervating the dorsal surface produces a functional stumble corrective response that is phase-dependently modulated. We speculated that effects evoked by activation of discrete skin regions on the foot dorsum would be topographically organized, as with the foot sole. Nonnoxious electrical stimulation was delivered to five discrete locations on the dorsal surface of the foot during treadmill walking. Muscle activity from muscles acting at the ankle, knee, hip, and shoulder were recorded along with ankle, knee, and hip kinematics and kinetic information from forces under the foot. All data were sorted on the basis of stimulus occurrence in 12 step cycle phases, before being averaged together within a phase for subsequent analysis. Results reveal dynamic changes in reflex amplitudes and kinematics that are site specific and phase dependent. Most responses from discrete sites on the foot dorsum were seen in the swing phase suggesting function to conform foot trajectory to maintain stability of the moving limb. In general, responses from lateral stimulation differed from medial stimulation, and effects were largest from stimulation at the distal end of the foot at the metatarsals; that is, in anatomical locations where actual impact with an object in the environment is most likely during swing. Responses to stimulation extend to include muscles at the hip and shoulder. We reveal that afferent feedback from specific cutaneous locations on the foot dorsum influences stance and swing phase corrective responses. This emphasizes the critical importance of feedback from the entire foot surface in locomotor control and has application for rehabilitation after neurological injury and in footwear development.
The Effects of Methylphenidate on Discounting of Delayed Rewards in ADHD
Shiels, Keri; Hawk, Larry W.; Reynolds, Brady; Mazzullo, Rebecca; Rhodes, Jessica; Pelham, William E.; Waxmonsky, James G.; Gangloff, Brian P.
2010-01-01
Impulsivity is a central component of attention-deficit/hyperactivity disorder (ADHD). Delay discounting, or a preference for smaller, immediate rewards over larger, delayed rewards is considered an important aspect of impulsivity, and delay-related impulsivity has been emphasized in etiological models of ADHD. The current study examined whether stimulant medication, an effective treatment for ADHD, reduces discounting of delayed experiential and hypothetical rewards among 49 children (age 9–12 years) with ADHD. Following a practice day, participants completed a 3-day double-blind placebo-controlled acute medication assessment. Active doses were long-acting methylphenidate (Concerta), with the nearest equivalents of 0.3 and 0.6 mg/kg TID immediate-release methylphenidate. On each testing day, participants completed experiential (real-world money in real time) and hypothetical discounting tasks. Relative to placebo, methylphenidate reduced discounting of delayed experiential rewards, but not hypothetical rewards. Broadly consistent with etiological models that emphasize delay-related impulsivity among children with ADHD, these findings provide initial evidence that stimulant medication reduces delay discounting among those with the disorder. The present results also draw attention to task parameters that may influence the sensitivity of various delay discounting measures to medication effects. PMID:19803628
Rapid feedback processing in human nucleus accumbens and motor thalamus.
Schüller, Thomas; Gruendler, Theo O J; Jocham, Gerhard; Klein, Tilmann A; Timmermann, Lars; Visser-Vandewalle, Veerle; Kuhn, Jens; Ullsperger, Markus
2015-04-01
The nucleus accumbens (NAcc) and thalamus are integral parts in models of feedback processing. Deep brain stimulation (DBS) has been successfully employed to alleviate symptoms of psychiatric conditions including obsessive-compulsive disorder (OCD) and Tourette's syndrome (TS). Common target structures are the NAcc and the ventral anterior and ventro-lateral nuclei (VA/VL) of the thalamus, for OCD and TS, respectively. The feedback related negativity (FRN) is an event-related potential associated with feedback processing reflecting posterior medial frontal cortex (pMFC) activity. Here we report on three cases where we recorded scalp EEG and local field potentials (LFP) from externalized electrodes located in the NAcc or thalamus (VA/VL) while patients engaged in a modified time estimation task, known to engage feedback processing and elicit the FRN. Additionally, scalp EEG were recorded from 29 healthy participants (HP) engaged in the same task. The signal in all structures (pMFC, NAcc, and thalamus) was differently modulated by positive and negative feedback. LFP activity in the NAcc showed a biphasic time course after positive feedback during the FRN time interval. Negative feedback elicited a much weaker and later response. In the thalamus a monophasic modulation was recorded during the FRN time interval. Again, this modulation was more pronounced after positive performance feedback compared to negative feedback. In channels outside the target area no modulation was observed. The surface-FRN was reliably elicited on a group level in HP and showed no significant difference following negative feedback between patients and HP. German Clinical Trial Register: Neurocognitive specification of dysfunctions within basal ganglia-cortex loops and their therapeutic modulation by deep brain stimulation in patients with obsessive compulsive disorder and Tourette syndrome, http://www.drks.de/DRKS00005316. Copyright © 2015 Elsevier Ltd. All rights reserved.
Finite time synchronization of memristor-based Cohen-Grossberg neural networks with mixed delays.
Chen, Chuan; Li, Lixiang; Peng, Haipeng; Yang, Yixian
2017-01-01
Finite time synchronization, which means synchronization can be achieved in a settling time, is desirable in some practical applications. However, most of the published results on finite time synchronization don't include delays or only include discrete delays. In view of the fact that distributed delays inevitably exist in neural networks, this paper aims to investigate the finite time synchronization of memristor-based Cohen-Grossberg neural networks (MCGNNs) with both discrete delay and distributed delay (mixed delays). By means of a simple feedback controller and novel finite time synchronization analysis methods, several new criteria are derived to ensure the finite time synchronization of MCGNNs with mixed delays. The obtained criteria are very concise and easy to verify. Numerical simulations are presented to demonstrate the effectiveness of our theoretical results.
Li, Jiarong; Jiang, Haijun; Hu, Cheng; Yu, Zhiyong
2018-03-01
This paper is devoted to the exponential synchronization, finite time synchronization, and fixed-time synchronization of Cohen-Grossberg neural networks (CGNNs) with discontinuous activations and time-varying delays. Discontinuous feedback controller and Novel adaptive feedback controller are designed to realize global exponential synchronization, finite time synchronization and fixed-time synchronization by adjusting the values of the parameters ω in the controller. Furthermore, the settling time of the fixed-time synchronization derived in this paper is less conservative and more accurate. Finally, some numerical examples are provided to show the effectiveness and flexibility of the results derived in this paper. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zheng, Mingwen; Li, Lixiang; Peng, Haipeng; Xiao, Jinghua; Yang, Yixian; Zhang, Yanping; Zhao, Hui
2018-01-01
This paper mainly studies the globally fixed-time synchronization of a class of coupled neutral-type neural networks with mixed time-varying delays via discontinuous feedback controllers. Compared with the traditional neutral-type neural network model, the model in this paper is more general. A class of general discontinuous feedback controllers are designed. With the help of the definition of fixed-time synchronization, the upper right-hand derivative and a defined simple Lyapunov function, some easily verifiable and extensible synchronization criteria are derived to guarantee the fixed-time synchronization between the drive and response systems. Finally, two numerical simulations are given to verify the correctness of the results.
2018-01-01
This paper mainly studies the globally fixed-time synchronization of a class of coupled neutral-type neural networks with mixed time-varying delays via discontinuous feedback controllers. Compared with the traditional neutral-type neural network model, the model in this paper is more general. A class of general discontinuous feedback controllers are designed. With the help of the definition of fixed-time synchronization, the upper right-hand derivative and a defined simple Lyapunov function, some easily verifiable and extensible synchronization criteria are derived to guarantee the fixed-time synchronization between the drive and response systems. Finally, two numerical simulations are given to verify the correctness of the results. PMID:29370248
Photonic integrated circuits unveil crisis-induced intermittency.
Karsaklian Dal Bosco, Andreas; Akizawa, Yasuhiro; Kanno, Kazutaka; Uchida, Atsushi; Harayama, Takahisa; Yoshimura, Kazuyuki
2016-09-19
We experimentally investigate an intermittent route to chaos in a photonic integrated circuit consisting of a semiconductor laser with time-delayed optical feedback from a short external cavity. The transition from a period-doubling dynamics to a fully-developed chaos reveals a stage intermittently exhibiting these two dynamics. We unveil the bifurcation mechanism underlying this route to chaos by using the Lang-Kobayashi model and demonstrate that the process is based on a phenomenon of attractor expansion initiated by a particular distribution of the local Lyapunov exponents. We emphasize on the crucial importance of the distribution of the steady-state solutions introduced by the time-delayed feedback on the existence of this intermittent dynamics.
Zha, Wenting; Zhai, Junyong; Fei, Shumin
2013-07-01
This paper investigates the problem of output feedback stabilization for a class of high-order feedforward nonlinear systems with time-varying input delay. First, a scaling gain is introduced into the system under a set of coordinate transformations. Then, the authors construct an observer and controller to make the nominal system globally asymptotically stable. Based on homogeneous domination approach and Lyapunov-Krasovskii functional, it is shown that the closed-loop system can be rendered globally asymptotically stable by the scaling gain. Finally, two simulation examples are provided to illustrate the effectiveness of the proposed scheme. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
Frequent external-focus feedback enhances motor learning.
Wulf, Gabriele; Chiviacowsky, Suzete; Schiller, Eduardo; Avila, Luciana Toaldo Gentilini
2010-01-01
The present study examined the hypothesis that feedback inducing an external focus of attention enhances motor learning if it is provided frequently (i.e., 100%) rather than less frequently. Children (10- to 12-year-olds) practiced a soccer throw-in task and were provided feedback about movement form. The feedback statements, provided either after every (100%) or every third (33%) practice trial, were similar in content but induced either an internal focus (body-movement related) or external focus (movement-effect related). The results demonstrated that learning of the movement form was enhanced by external-focus feedback after every trial (100%) relative to external-focus feedback after every third trial (33%) or internal-focus feedback (100%, 33%), as demonstrated by immediate and delayed transfer tests without feedback. There was no difference between the two internal-focus feedback groups. These findings indicate that the attentional focus induced by feedback is an important factor in determining the effectiveness of different feedback frequencies. We argue that the informational properties of feedback cannot sufficiently account for these and related findings, and suggest that the attentional role of feedback be given greater consideration in future studies.
Mobarhan, Milad Hobbi; Halnes, Geir; Martínez-Cañada, Pablo; Hafting, Torkel; Fyhn, Marianne; Einevoll, Gaute T
2018-05-01
Visually evoked signals in the retina pass through the dorsal geniculate nucleus (dLGN) on the way to the visual cortex. This is however not a simple feedforward flow of information: there is a significant feedback from cortical cells back to both relay cells and interneurons in the dLGN. Despite four decades of experimental and theoretical studies, the functional role of this feedback is still debated. Here we use a firing-rate model, the extended difference-of-Gaussians (eDOG) model, to explore cortical feedback effects on visual responses of dLGN relay cells. For this model the responses are found by direct evaluation of two- or three-dimensional integrals allowing for fast and comprehensive studies of putative effects of different candidate organizations of the cortical feedback. Our analysis identifies a special mixed configuration of excitatory and inhibitory cortical feedback which seems to best account for available experimental data. This configuration consists of (i) a slow (long-delay) and spatially widespread inhibitory feedback, combined with (ii) a fast (short-delayed) and spatially narrow excitatory feedback, where (iii) the excitatory/inhibitory ON-ON connections are accompanied respectively by inhibitory/excitatory OFF-ON connections, i.e. following a phase-reversed arrangement. The recent development of optogenetic and pharmacogenetic methods has provided new tools for more precise manipulation and investigation of the thalamocortical circuit, in particular for mice. Such data will expectedly allow the eDOG model to be better constrained by data from specific animal model systems than has been possible until now for cat. We have therefore made the Python tool pyLGN which allows for easy adaptation of the eDOG model to new situations.
Impacts of selected stimulation patterns on the perception threshold in electrocutaneous stimulation
2011-01-01
Background Consistency is one of the most important concerns to convey stable artificially induced sensory feedback. However, the constancy of perceived sensations cannot be guaranteed, as the artificially evoked sensation is a function of the interaction of stimulation parameters. The hypothesis of this study is that the selected stimulation parameters in multi-electrode cutaneous stimulation have significant impacts on the perception threshold. Methods The investigated parameters included the stimulated location, the number of active electrodes, the number of pulses, and the interleaved time between a pair of electrodes. Biphasic, rectangular pulses were applied via five surface electrodes placed on the forearm of 12 healthy subjects. Results Our main findings were: 1) the perception thresholds at the five stimulated locations were significantly different (p < 0.0001), 2) dual-channel simultaneous stimulation lowered the perception thresholds and led to smaller variance in perception thresholds compared to single-channel stimulation, 3) the perception threshold was inversely related to the number of pulses, and 4) the perception threshold increased with increasing interleaved time when the interleaved time between two electrodes was below 500 μs. Conclusions To maintain a consistent perception threshold, our findings indicate that dual-channel simultaneous stimulation with at least five pulses should be used, and that the interleaved time between two electrodes should be longer than 500 μs. We believe that these findings have implications for design of reliable sensory feedback codes. PMID:21306616
The effect of visual-motion time-delays on pilot performance in a simulated pursuit tracking task
NASA Technical Reports Server (NTRS)
Miller, G. K., Jr.; Riley, D. R.
1977-01-01
An experimental study was made to determine the effect on pilot performance of time delays in the visual and motion feedback loops of a simulated pursuit tracking task. Three major interrelated factors were identified: task difficulty either in the form of airplane handling qualities or target frequency, the amount and type of motion cues, and time delay itself. In general, the greater the task difficulty, the smaller the time delay that could exist without degrading pilot performance. Conversely, the greater the motion fidelity, the greater the time delay that could be tolerated. The effect of motion was, however, pilot dependent.
Reconstruction of ensembles of coupled time-delay systems from time series.
Sysoev, I V; Prokhorov, M D; Ponomarenko, V I; Bezruchko, B P
2014-06-01
We propose a method to recover from time series the parameters of coupled time-delay systems and the architecture of couplings between them. The method is based on a reconstruction of model delay-differential equations and estimation of statistical significance of couplings. It can be applied to networks composed of nonidentical nodes with an arbitrary number of unidirectional and bidirectional couplings. We test our method on chaotic and periodic time series produced by model equations of ensembles of diffusively coupled time-delay systems in the presence of noise, and apply it to experimental time series obtained from electronic oscillators with delayed feedback coupled by resistors.
Long microwave delay fiber-optic link for radar testing
NASA Astrophysics Data System (ADS)
Newberg, I. L.; Gee, C. M.; Thurmond, G. D.; Yen, H. W.
1990-05-01
A long fiberoptic delay line is used as a radar repeater to improve radar testing capabilities. The first known generation of 152 microsec delayed ideal target at X-band (10 GHz) frequencies having the phase stability and signal-to-noise ratio (SNR) needed for testing modern high-resolution Doppler radars is demonstrated with a 31.6-km experimental externally modulated fiberoptic link with a distributed-feedback (DFB) laser. The test application, link configuration, and link testing are discussed.
Lipitz-Snyderman, Allison; Kale, Minal; Robbins, Laura; Pfister, David; Fortier, Elizabeth; Pocus, Valerie; Chimonas, Susan; Weingart, Saul N
2018-01-01
Objective Relatively little attention has been devoted to the role of communication between physicians as a mechanism for individual and organisational learning about diagnostic delays. This study’s objective was to elicit physicians’ perceptions about and experiences with communication among physicians regarding diagnostic delays in cancer. Design, setting, participants Qualitative analysis based on seven focus groups. Fifty-one physicians affiliated with three New York-based academic medical centres participated, with six to nine subjects per group. We used content analysis to identify commonalities among primary care physicians and specialists (ie, medical and surgical oncologists). Primary outcome measure Perceptions and experiences with physician-to-physician communication about delays in cancer diagnosis. Results Our analysis identified five major themes: openness to communication, benefits of communication, fears about giving and receiving feedback, infrastructure barriers to communication and overcoming barriers to communication. Subjects valued communication about cancer diagnostic delays, but they had many concerns and fears about providing and receiving feedback in practice. Subjects expressed reluctance to communicate if there was insufficient information to attribute responsibility, if it would have no direct benefit or if it would jeopardise their existing relationships. They supported sensitive approaches to conveying information, as they feared eliciting or being subject to feelings of incompetence or shame. Subjects also cited organisational barriers. They offered suggestions that might facilitate communication about delays. Conclusions Addressing the barriers to communication among physicians about diagnostic delays is needed to promote a culture of learning across specialties and institutions. Supporting open and honest discussions about diagnostic delays may help build safer health systems. PMID:28655713
The use of a Mentoring-Based Conference as a Research Career Stimulation Strategy
Interian, Alejandro; Escobar, Javier I.
2009-01-01
Introduction Across healthcare, US minority populations including Latinos face disparities in risk for disease, clinical outcomes, and quality of care. The discourse related to disparity problems has often highlighted the need to increase the number of minority scientists so that the productivity of research focusing on minority populations is expanded. As a result, a group of Latino mental health researchers collaborated to develop a national network of senior mentors that participated in annual mentoring-oriented conferences. A cost-effective program was developed to stimulate the entry of new investigators into the field and provide mentoring with a focus on Latino mental health issues. Method A conference-platform was used as the career stimulation strategy. Annual conferences were held (2002 – 2006) that emphasized the showcasing of new investigators' work, pairing new investigators with senior researchers, and a feedback-oriented environment. Quantitative data were used to track new investigator career progress (i.e., publications, research grants), while qualitative data were used to assess all attendees' feedback, which was provided via conference feedback questionnaires. Results The feedback questionnaires revealed high levels of satisfaction with the conference, noting most highly the interactive, friendly, and nurturing conference format. Career tracking data indicated that nearly half of the new investigators participants published their work in peer-reviewed journals, and that about one-third of were successful in obtaining research funding. Conclusions These mentoring conferences appear to be an effective tool for stimulating the research careers of new investigators engaged in Latino mental health research. PMID:19881428
NASA Technical Reports Server (NTRS)
Gaillard, J. P.
1981-01-01
The possibility to use an electrotactile stimulation in teleoperation and to observe the interpretation of such information as a feedback to the operator was investigated. It is proposed that visual feedback is more informative than an electrotactile one; and that complex electrotactile feedback slows down both the motor decision and motor response processes, is processed as an all or nothing signal, and bypasses the receptive structure and accesses directly in a working memory where information is sequentially processed and where memory is limited in treatment capacity. The electrotactile stimulation is used as an alerting signal. It is suggested that the visual dominance effect is the result of the advantage of both a transfer function and a sensory memory register where information is pretreated and memorized for a short time. It is found that dividing attention has an effect on the acquisition of the information but not on the subsequent decision processes.
Instrumentation to Record Evoked Potentials for Closed-Loop Control of Deep Brain Stimulation
Kent, Alexander R.; Grill, Warren M.
2012-01-01
Closed-loop deep brain stimulation (DBS) systems offer promise in relieving the clinical burden of stimulus parameter selection and improving treatment outcomes. In such a system, a feedback signal is used to adjust automatically stimulation parameters and optimize the efficacy of stimulation. We explored the feasibility of recording electrically evoked compound action potentials (ECAPs) during DBS for use as a feedback control signal. A novel instrumentation system was developed to suppress the stimulus artifact and amplify the small magnitude, short latency ECAP response during DBS with clinically relevant parameters. In vitro testing demonstrated the capabilities to increase the gain by a factor of 1,000x over a conventional amplifier without saturation, reduce distortion of mock ECAP signals, and make high fidelity recordings of mock ECAPs at latencies of only 0.5 ms following DBS pulses of 50 to 100 μs duration. Subsequently, the instrumentation was used to make in vivo recordings of ECAPs during thalamic DBS in cats, without contamination by the stimulus artifact. The signal characteristics were similar across three experiments, suggesting common neural activation patterns. The ECAP recordings enabled with this novel instrumentation may provide insight into the type and spatial extent of neural elements activated during DBS, and could serve as feedback control signals for closed-loop systems. PMID:22255894
PEMF as treatment for delayed healing of foot and ankle arthrodesis.
Saltzman, Charles; Lightfoot, Andrew; Amendola, Annunziato
2004-11-01
Arthrodesis is the most common surgical treatment for foot and ankle arthritis. In adults, these procedures are associated with a 5% to 10% rate of nonunion. Pulsed electromagnetic field (PEMF) stimulation was approved by the Federal Drug Administration (FDA) for treatment of delayed unions after long-bone fractures and joint arthrodesis. The purpose of this study was to examine the results of PEMF treatment for delayed healing after foot and ankle arthrodesis. Three hundred and thirty-four foot and ankle arthrodeses were done. Nineteen resulted in delayed unions that were treated with a protocol of immobilization, limited weightbearing, and PEMF stimulation for a median of 7 (range 5 to 27) months. All patients were followed clinically and radiographically. The use of PEMF, immobilization, and limited weightbearing to treat delayed union after foot and ankle arthrodesis was successful in 5 of 19 (26%) patients. Of the other 14 patients with nonunions, nine had revision surgery with autogenous grafting, continued immobilization, and PEMF stimulation. Seven of these eventually healed at a median of 5.5 (range 2 to 26) months and two did not heal. One patient had a below-knee amputation, and four refused further treatment. The protocol of PEMF, immobilization, and limited weightbearing had a relatively low success rate in this group of patients. We no longer use this protocol alone to treat delayed union after foot and ankle arthrodesis.
Time-delayed feedback technique for suppressing instabilities in time-periodic flow
NASA Astrophysics Data System (ADS)
Shaabani-Ardali, Léopold; Sipp, Denis; Lesshafft, Lutz
2017-11-01
A numerical method is presented that allows to compute time-periodic flow states, even in the presence of hydrodynamic instabilities. The method is based on filtering nonharmonic components by way of delayed feedback control, as introduced by Pyragas [Phys. Lett. A 170, 421 (1992), 10.1016/0375-9601(92)90745-8]. Its use in flow problems is demonstrated here for the case of a periodically forced laminar jet, subject to a subharmonic instability that gives rise to vortex pairing. The optimal choice of the filter gain, which is a free parameter in the stabilization procedure, is investigated in the context of a low-dimensional model problem, and it is shown that this model predicts well the filter performance in the high-dimensional flow system. Vortex pairing in the jet is efficiently suppressed, so that the unstable periodic flow state in response to harmonic forcing is accurately retrieved. The procedure is straightforward to implement inside any standard flow solver. Memory requirements for the delayed feedback control can be significantly reduced by means of time interpolation between checkpoints. Finally, the method is extended for the treatment of periodic problems where the frequency is not known a priori. This procedure is demonstrated for a three-dimensional cubic lid-driven cavity in supercritical conditions.
Periodic, Quasi-periodic and Chaotic Dynamics in Simple Gene Elements with Time Delays
Suzuki, Yoko; Lu, Mingyang; Ben-Jacob, Eshel; Onuchic, José N.
2016-01-01
Regulatory gene circuit motifs play crucial roles in performing and maintaining vital cellular functions. Frequently, theoretical studies of gene circuits focus on steady-state behaviors and do not include time delays. In this study, the inclusion of time delays is shown to entirely change the time-dependent dynamics for even the simplest possible circuits with one and two gene elements with self and cross regulations. These elements can give rise to rich behaviors including periodic, quasi-periodic, weak chaotic, strong chaotic and intermittent dynamics. We introduce a special power-spectrum-based method to characterize and discriminate these dynamical modes quantitatively. Our simulation results suggest that, while a single negative feedback loop of either one- or two-gene element can only have periodic dynamics, the elements with two positive/negative feedback loops are the minimalist elements to have chaotic dynamics. These elements typically have one negative feedback loop that generates oscillations, and another unit that allows frequent switches among multiple steady states or between oscillatory and non-oscillatory dynamics. Possible dynamical features of several simple one- and two-gene elements are presented in details. Discussion is presented for possible roles of the chaotic behavior in the robustness of cellular functions and diseases, for example, in the context of cancer. PMID:26876008
Periodic, Quasi-periodic and Chaotic Dynamics in Simple Gene Elements with Time Delays
NASA Astrophysics Data System (ADS)
Suzuki, Yoko; Lu, Mingyang; Ben-Jacob, Eshel; Onuchic, José N.
2016-02-01
Regulatory gene circuit motifs play crucial roles in performing and maintaining vital cellular functions. Frequently, theoretical studies of gene circuits focus on steady-state behaviors and do not include time delays. In this study, the inclusion of time delays is shown to entirely change the time-dependent dynamics for even the simplest possible circuits with one and two gene elements with self and cross regulations. These elements can give rise to rich behaviors including periodic, quasi-periodic, weak chaotic, strong chaotic and intermittent dynamics. We introduce a special power-spectrum-based method to characterize and discriminate these dynamical modes quantitatively. Our simulation results suggest that, while a single negative feedback loop of either one- or two-gene element can only have periodic dynamics, the elements with two positive/negative feedback loops are the minimalist elements to have chaotic dynamics. These elements typically have one negative feedback loop that generates oscillations, and another unit that allows frequent switches among multiple steady states or between oscillatory and non-oscillatory dynamics. Possible dynamical features of several simple one- and two-gene elements are presented in details. Discussion is presented for possible roles of the chaotic behavior in the robustness of cellular functions and diseases, for example, in the context of cancer.
Finite-Time Stabilization and Adaptive Control of Memristor-Based Delayed Neural Networks.
Wang, Leimin; Shen, Yi; Zhang, Guodong
Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.
NASA Astrophysics Data System (ADS)
Vidybida, Alexander; Shchur, Olha
We consider a class of spiking neuronal models, defined by a set of conditions typical for basic threshold-type models, such as the leaky integrate-and-fire or the binding neuron model and also for some artificial neurons. A neuron is fed with a Poisson process. Each output impulse is applied to the neuron itself after a finite delay Δ. This impulse acts as being delivered through a fast Cl-type inhibitory synapse. We derive a general relation which allows calculating exactly the probability density function (pdf) p(t) of output interspike intervals of a neuron with feedback based on known pdf p0(t) for the same neuron without feedback and on the properties of the feedback line (the Δ value). Similar relations between corresponding moments are derived. Furthermore, we prove that the initial segment of pdf p0(t) for a neuron with a fixed threshold level is the same for any neuron satisfying the imposed conditions and is completely determined by the input stream. For the Poisson input stream, we calculate that initial segment exactly and, based on it, obtain exactly the initial segment of pdf p(t) for a neuron with feedback. That is the initial segment of p(t) is model-independent as well. The obtained expressions are checked by means of Monte Carlo simulation. The course of p(t) has a pronounced peculiarity, which makes it impossible to approximate p(t) by Poisson or another simple stochastic process.
Brain-Computer Interfaces With Multi-Sensory Feedback for Stroke Rehabilitation: A Case Study.
Irimia, Danut C; Cho, Woosang; Ortner, Rupert; Allison, Brendan Z; Ignat, Bogdan E; Edlinger, Guenter; Guger, Christoph
2017-11-01
Conventional therapies do not provide paralyzed patients with closed-loop sensorimotor integration for motor rehabilitation. This work presents the recoveriX system, a hardware and software platform that combines a motor imagery (MI)-based brain-computer interface (BCI), functional electrical stimulation (FES), and visual feedback technologies for a complete sensorimotor closed-loop therapy system for poststroke rehabilitation. The proposed system was tested on two chronic stroke patients in a clinical environment. The patients were instructed to imagine the movement of either the left or right hand in random order. During these two MI tasks, two types of feedback were provided: a bar extending to the left or right side of a monitor as visual feedback and passive hand opening stimulated from FES as proprioceptive feedback. Both types of feedback relied on the BCI classification result achieved using common spatial patterns and a linear discriminant analysis classifier. After 10 sessions of recoveriX training, one patient partially regained control of wrist extension in her paretic wrist and the other patient increased the range of middle finger movement by 1 cm. A controlled group study is planned with a new version of the recoveriX system, which will have several improvements. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Rhodes, Matthew G; Tauber, Sarah K
2011-11-01
The current study examined the degree to which predictions of memory performance made immediately or at a delay are sensitive to confidently held memory illusions. Participants studied unrelated pairs of words and made judgements of learning (JOLs) for each item, either immediately or after a delay. Half of the unrelated pairs (deceptive items; e.g., nurse-dollar) had a semantically related competitor (e.g., doctor) that was easily accessible when given a test cue (e.g., nurse-do_ _ _r) and half had no semantically related competitor (control items; e.g., subject-dollar). Following the study phase, participants were administered a cued recall test. Results from Experiment 1 showed that memory performance was less accurate for deceptive compared with control items. In addition, delaying judgement improved the relative accuracy of JOLs for control items but not for deceptive items. Subsequent experiments explored the degree to which the relative accuracy of delayed JOLs for deceptive items improved as a result of a warning to ensure that retrieved memories were accurate (Experiment 2) and corrective feedback regarding the veracity of information retrieved prior to making a JOL (Experiment 3). In all, these data suggest that delayed JOLs may be largely insensitive to memory errors unless participants are provided with feedback regarding memory accuracy.
Language Delays and Child Depressive Symptoms: the Role of Early Stimulation in the Home.
Herman, Keith C; Cohen, Daniel; Owens, Sarah; Latimore, Tracey; Reinke, Wendy M; Burrell, Lori; McFarlane, Elizabeth; Duggan, Anne
2016-07-01
The present study investigated the role of early stimulation in the home and child language delays in the emergence of depressive symptoms. Data were from a longitudinal study of at-risk children in Hawaii (n = 587). Low learning stimulation in the home at age 3 and language delays in first grade both significantly increased risk for child depressive symptoms in third grade. Structural equation modeling supported the hypothesized path models from home learning environment at age 3 to depressive symptoms in third grade controlling for a host of correlated constructs (maternal depression, child temperament, and child internalizing symptoms). Total language skills in the first grade mediated the effect of home learning environment on depressive symptoms. The study and findings fit well with a nurturing environment perspective. Implications for understanding the etiology of child depression and for designing interventions and prevention strategies are discussed.
The Effects of a Local Negative Feedback Function between Choice and Relative Reinforcer Rate
ERIC Educational Resources Information Center
Davison, Michael; Elliffe, Douglas; Marr, M. Jackson
2010-01-01
Four pigeons were trained on two-key concurrent variable-interval schedules with no changeover delay. In Phase 1, relative reinforcers on the two alternatives were varied over five conditions from 0.1 to 0.9. In Phases 2 and 3, we instituted a molar feedback function between relative choice in an interreinforcer interval and the probability of…
ERIC Educational Resources Information Center
Van Stan, Jarrad H.; Mehta, Daryush D.; Sternad, Dagmar; Petit, Robert; Hillman, Robert E.
2017-01-01
Purpose: Ambulatory voice biofeedback has the potential to significantly improve voice therapy effectiveness by targeting carryover of desired behaviors outside the therapy session (i.e., retention). This study applies motor learning concepts (reduced frequency and delayed, summary feedback) that demonstrate increased retention to ambulatory voice…
ERIC Educational Resources Information Center
Stefanou, Charis; Revesz, Andrea
2015-01-01
This article reports on a classroom-based study that investigated the effectiveness of direct written corrective feedback in relation to learner differences in grammatical sensitivity and knowledge of metalanguage. The study employed a pretest-posttest-delayed posttest design with two treatment sessions. Eighty-nine Greek English as a foreign…
Carpenter, Shana K; Sachs, Riebana E; Martin, Beth; Schmidt, Kristian; Looft, Ruxandra
2012-02-01
In the present study, introductory-level German students read a simplified story and learned the meanings of new German words by reading English translations in marginal glosses versus trying to infer (i.e., guess) their translations. Students who inferred translations were given feedback in English or in German, or no feedback at all. Although immediate retention of new vocabulary was better for students who used marginal glosses, students who inferred word meanings and then received English feedback forgot fewer translations over time. Plausible but inaccurate inferences (i.e., those that made sense in the context) were more likely to be corrected by students who received English feedback as compared with German feedback, providing support for the beneficial effects of mediating information. Implausible inaccurate inferences, however, were more likely to be corrected on the delayed vocabulary test by students who received German feedback as compared with English feedback, possibly because of the additional contextual support provided by German feedback.
Fuller, Sawyer Buckminster; Straw, Andrew D.; Peek, Martin Y.; Murray, Richard M.; Dickinson, Michael H.
2014-01-01
Flies and other insects use vision to regulate their groundspeed in flight, enabling them to fly in varying wind conditions. Compared with mechanosensory modalities, however, vision requires a long processing delay (~100 ms) that might introduce instability if operated at high gain. Flies also sense air motion with their antennae, but how this is used in flight control is unknown. We manipulated the antennal function of fruit flies by ablating their aristae, forcing them to rely on vision alone to regulate groundspeed. Arista-ablated flies in flight exhibited significantly greater groundspeed variability than intact flies. We then subjected them to a series of controlled impulsive wind gusts delivered by an air piston and experimentally manipulated antennae and visual feedback. The results show that an antenna-mediated response alters wing motion to cause flies to accelerate in the same direction as the gust. This response opposes flying into a headwind, but flies regularly fly upwind. To resolve this discrepancy, we obtained a dynamic model of the fly’s velocity regulator by fitting parameters of candidate models to our experimental data. The model suggests that the groundspeed variability of arista-ablated flies is the result of unstable feedback oscillations caused by the delay and high gain of visual feedback. The antenna response drives active damping with a shorter delay (~20 ms) to stabilize this regulator, in exchange for increasing the effect of rapid wind disturbances. This provides insight into flies’ multimodal sensory feedback architecture and constitutes a previously unknown role for the antennae. PMID:24639532
Generation of chaotic radiation in a driven traveling wave tube amplifier with time-delayed feedback
NASA Astrophysics Data System (ADS)
Marchewka, Chad; Larsen, Paul; Bhattacharjee, Sudeep; Booske, John; Sengele, Sean; Ryskin, Nikita; Titov, Vladimir
2006-01-01
The application of chaos in communications and radar offers new and interesting possibilities. This article describes investigations on the generation of chaos in a traveling wave tube (TWT) amplifier and the experimental parameters responsible for sustaining stable chaos. Chaos is generated in a TWT amplifier when it is made to operate in a highly nonlinear regime by recirculating a fraction of the TWT output power back to the input in a delayed feedback configuration. A driver wave provides a constant external force to the system making it behave like a forced nonlinear oscillator. The effects of the feedback bandwidth, intensity, and phase are described. The study illuminates the different transitions to chaos and the effect of parameters such as the frequency and intensity of the driver wave. The detuning frequency, i.e., difference frequency between the driver wave and the natural oscillation of the system, has been identified as being an important physical parameter for controlling evolution to chaos. Among the observed routes to chaos, besides the more common period doubling, a new route called loss of frequency locking occurs when the driving frequency is adjacent to a natural oscillation mode. The feedback bandwidth controls the nonlinear dynamics of the system, particularly the number of natural oscillation modes. A computational model has been developed to simulate the experiments and reasonably good agreement is obtained between them. Experiments are described that demonstrate the feasibility of chaotic communications using two TWTs, where one is operated as a driven chaotic oscillator and the other as a time-delayed, open-loop amplifier.
Dominov, J A; Stenzler, L; Lee, S; Schwarz, J J; Leisner, S; Howell, S H
1992-01-01
Both cytokinin (N6-benzyladenine [BA]) and auxin (2,4-dichlorophenoxyacetic acid [2,4-D]) stimulate the accumulation of an mRNA, represented by the cDNA pLS216, in Nicotiana plumbaginifolia suspension culture cells. The kinetics of RNA accumulation were different for the two hormones; however, the response to both was transient, and the magnitude of the response was dose dependent. Runoff transcription experiments demonstrated that the transient appearance of the RNA could be accounted for by feedback regulation of transcription and not by the induction of an RNA degradation system. The feedback mechanism appeared to desensitize the cells to further exposure of the hormone. In particular, cells became refractory to the subsequent addition of 2,4-D after the initial RNA accumulation response subsided. A very different response was observed when the second hormone was added to cells that had been desensitized to the first hormone. Under such conditions, BA produced a heightened response in cells desensitized to 2,4-D and vice versa. These findings support a model in which cytokinin further enhances the auxin response or prevents its feedback inhibition. The hormone-induced RNA accumulation was blocked by the protein kinase inhibitor staurosporin. On the other hand, the protein phosphatase inhibitor okadaic acid stimulated expression, and, in particular, okadaic acid was able to stimulate RNA accumulation in cells desensitized to auxin. This suggests that hormone activation involves phosphorylation of critical proteins on the hormone signaling pathway, whereas feedback inhibition may involve dephosphorylation of these proteins. The sequence of pLS216 is similar to genes in other plants that are stimulated by multiple agonists such as auxins, elicitors, and heavy metals, and to the gene encoding the stringent starvation protein in Escherichia coli. It is proposed that this gene family in various plants be called multiple stimulus response (msr) genes. PMID:1498603
NASA Technical Reports Server (NTRS)
Leonard, J. I.
1985-01-01
A mathematical model of the erythropoiesis on total red blood cell mass is presented. The loss of red cell mass has been a consistent finding during space flight. Computer simulation of this phenomenon required a model that could account for oxygen transport, red cell production, and red cell destruction. The elements incorporated into the feedback regulation loop of the model are based on the accepted concept that erythrocyte production is governed by the balance between oxygen supply and demand in the body. The mechanisms and pathways of the control circuit include oxygenation of hemoglobin and oxygenation of tissues by blood transport and diffusional processes. Other features of the model include a variable oxygen-hemoglobin affinity, and time delays which represent time for erythropoietin (erythrocyte-stimulating hormone) distribution in plasma, and time for maturation of the erythrocytes in bone marrow.
Generation of wideband chaos with suppressed time-delay signature by delayed self-interference.
Wang, Anbang; Yang, Yibiao; Wang, Bingjie; Zhang, Beibei; Li, Lei; Wang, Yuncai
2013-04-08
We demonstrate experimentally and numerically a method using the incoherent delayed self-interference (DSI) of chaotic light from a semiconductor laser with optical feedback to generate wideband chaotic signal. The results show that, the DSI can eliminate the domination of laser relaxation oscillation existing in the chaotic laser light and therefore flatten and widen the power spectrum. Furthermore, the DSI depresses the time-delay signature induced by external cavity modes and improves the symmetry of probability distribution by more than one magnitude. We also experimentally show that this DSI signal is beneficial to the random number generation.
Bubbling in delay-coupled lasers.
Flunkert, V; D'Huys, O; Danckaert, J; Fischer, I; Schöll, E
2009-06-01
We theoretically study chaos synchronization of two lasers which are delay coupled via an active or a passive relay. While the lasers are synchronized, their dynamics is identical to a single laser with delayed feedback for a passive relay and identical to two delay-coupled lasers for an active relay. Depending on the coupling parameters the system exhibits bubbling, i.e., noise-induced desynchronization, or on-off intermittency. We associate the desynchronization dynamics in the coherence collapse and low-frequency fluctuation regimes with the transverse instability of some of the compound cavity's antimodes. Finally, we demonstrate how, by using an active relay, bubbling can be suppressed.
Temprana, Silvio G.; Mongiat, Lucas A.; Yang, Sung M.; Trinchero, Mariela F.; Alvarez, Diego D.; Kropff, Emilio; Giacomini, Damiana; Beltramone, Natalia; Lanuza, Guillermo M.; Schinder, Alejandro F.
2014-01-01
SUMMARY Developing granule cells (GCs) of the adult dentate gyrus undergo a critical period of enhanced activity and synaptic plasticity before becoming mature. The impact of developing GCs on the activity of preexisting dentate circuits remains unknown. Here we combine optogenetics, acute slice electrophysiology, and in vivo chemogenetics to activate GCs at different stages of maturation to study the recruitment of local target networks. We show that immature (four-week-old) GCs can efficiently drive distal CA3 targets, but poorly activate proximal interneurons responsible for feedback inhibition (FBI). As new GCs transition towards maturity, they reliably recruit GABAergic feedback loops that restrict spiking of neighbor GCs, a mechanism that would promote sparse coding. Such inhibitory loop impinges only weakly in new cohorts of young GCs. A computational model reveals that the delayed coupling of new GCs to FBI could be crucial to achieve a fine-grain representation of novel inputs in the dentate gyrus. PMID:25533485
Temprana, Silvio G; Mongiat, Lucas A; Yang, Sung M; Trinchero, Mariela F; Alvarez, Diego D; Kropff, Emilio; Giacomini, Damiana; Beltramone, Natalia; Lanuza, Guillermo M; Schinder, Alejandro F
2015-01-07
Developing granule cells (GCs) of the adult dentate gyrus undergo a critical period of enhanced activity and synaptic plasticity before becoming mature. The impact of developing GCs on the activity of preexisting dentate circuits remains unknown. Here we combine optogenetics, acute slice electrophysiology, and in vivo chemogenetics to activate GCs at different stages of maturation to study the recruitment of local target networks. We show that immature (4-week-old) GCs can efficiently drive distal CA3 targets but poorly activate proximal interneurons responsible for feedback inhibition (FBI). As new GCs transition toward maturity, they reliably recruit GABAergic feedback loops that restrict spiking of neighbor GCs, a mechanism that would promote sparse coding. Such inhibitory loop impinges only weakly in new cohorts of young GCs. A computational model reveals that the delayed coupling of new GCs to FBI could be crucial to achieve a fine-grain representation of novel inputs in the dentate gyrus. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pandey, Saurabh; Majhi, Somanath; Ghorai, Prasenjit
2017-07-01
In this paper, the conventional relay feedback test has been modified for modelling and identification of a class of real-time dynamical systems in terms of linear transfer function models with time-delay. An ideal relay and unknown systems are connected through a negative feedback loop to bring the sustained oscillatory output around the non-zero setpoint. Thereafter, the obtained limit cycle information is substituted in the derived mathematical equations for accurate identification of unknown plants in terms of overdamped, underdamped, critically damped second-order plus dead time and stable first-order plus dead time transfer function models. Typical examples from the literature are included for the validation of the proposed identification scheme through computer simulations. Subsequently, the comparisons between estimated model and true system are drawn through integral absolute error criterion and frequency response plots. Finally, the obtained output responses through simulations are verified experimentally on real-time liquid level control system using Yokogawa Distributed Control System CENTUM CS3000 set up.
Chai, Guohong; Zhang, Dingguo; Zhu, Xiangyang
2017-05-01
Cutaneous electrical stimulation can provide tactile feedback for upper-limb amputees through somatotopic feedback (SF) or non-somatotopic feedback (NF). The SF delivers electrotactile stimulus to projection finger maps (PFMs) on the stumps of amputees, which outperforms NF that transfers stimulus to other human intact skin areas in general. However, the SF areas on stumps are very limited and often occupied by electromyography (EMG) sensors in application of myoelectric prosthesis. This work aims at improving NF performance on human upper arms through user training with electrotactile stimulation. The experiments were conducted over seven consecutive days on nine able-bodied subjects and two forearm amputees. The performance measures of NF/SF included the correct identification rates (CIR s ), the response time and the NASA-TLX questionnaire. The between-day CIR s on NF sites increased logarithmically with a mean course of 3-day rapid-improving phase and plateaued in the relative-steady phase. The response time and NASA-TLX scores could also rapidly reduce to the comparable levels of the SF areas during the same mean period of 3-day rapid-improving phase, respectively. These results indicated that the performance of NF could be highly improved to the equivalent level as that of SF through 3-day electrotactile training, which we named as "3-day effect". It provides important insights that intact skin areas without phantom sensations can effectively replace SF sites to transfer tactile feedback after continuous user training, which validates effectiveness of non-invasive interfaces of tactile feedback for upper-limb amputees in practice.
The effect of chronic intracortical microstimulation on the electrode-tissue interface.
Chen, Kevin H; Dammann, John F; Boback, Jessica L; Tenore, Francesco V; Otto, Kevin J; Gaunt, Robert A; Bensmaia, Sliman J
2014-04-01
Somatosensation is critical for effective object manipulation, but current upper limb prostheses do not provide such feedback to the user. For individuals who require use of prosthetic limbs, this lack of feedback transforms a mundane task into one that requires extreme concentration and effort. Although vibrotactile motors and sensory substitution devices can be used to convey gross sensations, a direct neural interface is required to provide detailed and intuitive sensory feedback. The viability of intracortical microstimulation (ICMS) as a method to deliver feedback depends in part on the long-term reliability of implanted electrodes used to deliver the stimulation. The objective of the present study is to investigate the effects of chronic ICMS on the electrode-tissue interface. We stimulate the primary somatosensory cortex of three Rhesus macaques through chronically implanted electrodes for 4 h per day over a period of six months, with different electrodes subjected to different regimes of stimulation. We measure the impedance and voltage excursion as a function of time and of ICMS parameters. We also test the sensorimotor consequences of chronic ICMS by having animals grasp and manipulate small treats. We show that impedance and voltage excursion both decay with time but stabilize after 10-12 weeks. The magnitude of this decay is dependent on the amplitude of the ICMS and, to a lesser degree, the duration of individual pulse trains. Furthermore, chronic ICMS does not produce any deficits in fine motor control. The results suggest that chronic ICMS has only a minor effect on the electrode-tissue interface and may thus be a viable means to convey sensory feedback in neuroprosthetics.
1999-01-01
might increase their arousal or lead to orgasm , such as direct clitoral 10 stimulation . Poor sexual skills might also lead to frequent sexual failure and... orgasm . However, cessation of stimulation during the plateau or excitement phases results in eventual return to pre- stimulation levels. The orgasmic ...access to the physical and psychological stimulation that would normally produce heightened sexual arousal and "spontaneous" erection. This interference
Liu, Jianbo; Khalil, Hassan K; Oweiss, Karim G
2011-10-01
In bi-directional brain-machine interfaces (BMIs), precisely controlling the delivery of microstimulation, both in space and in time, is critical to continuously modulate the neural activity patterns that carry information about the state of the brain-actuated device to sensory areas in the brain. In this paper, we investigate the use of neural feedback to control the spatiotemporal firing patterns of neural ensembles in a model of the thalamocortical pathway. Control of pyramidal (PY) cells in the primary somatosensory cortex (S1) is achieved based on microstimulation of thalamic relay cells through multiple-input multiple-output (MIMO) feedback controllers. This closed loop feedback control mechanism is achieved by simultaneously varying the stimulation parameters across multiple stimulation electrodes in the thalamic circuit based on continuous monitoring of the difference between reference patterns and the evoked responses of the cortical PY cells. We demonstrate that it is feasible to achieve a desired level of performance by controlling the firing activity pattern of a few "key" neural elements in the network. Our results suggest that neural feedback could be an effective method to facilitate the delivery of information to the cortex to substitute lost sensory inputs in cortically controlled BMIs.
Peer group reflection helps clinical teachers to critically reflect on their teaching.
Boerboom, Tobias B B; Jaarsma, Debbie; Dolmans, Diana H J M; Scherpbier, Albert J J A; Mastenbroek, Nicole J J M; Van Beukelen, Peter
2011-01-01
Student evaluations can help clinical teachers to reflect on their teaching skills and find ways to improve their teaching. Studies have shown that the mere presentation of student evaluations is not a sufficient incentive for teachers to critically reflect on their teaching. We evaluated and compared the effectiveness of two feedback facilitation strategies that were identical except for a peer reflection meeting. In this study, 54 clinical teachers were randomly assigned to two feedback strategies. In one strategy, a peer reflection was added as an additional step. All teachers completed a questionnaire evaluating the strategy that they had experienced. We analysed the reflection reports and the evaluation questionnaire. Both strategies stimulated teachers to reflect on feedback and formulate alternative actions for their teaching practice. The teachers who had participated in the peer reflection meeting showed deeper critical reflection and more concrete plans to change their teaching. All feedback strategies were considered effective by the majority of the teachers. Strategies with student feedback and self-assessment stimulated reflection on teaching and helped clinical teachers to formulate plans for improvement. A peer reflection meeting seemed to enhance reflection quality. Further research should establish whether it can have lasting effects on teaching quality.
Fun Games and Activities for Pronunciation and Phonetics Classes at Universities.
ERIC Educational Resources Information Center
Makarova, Veronica
Class activities and games designed to stimulate student interest and provide feedback in English-as-a-Second-Language (ESOL) pronunciation and phonetics are described. They are intended to address specific challenges of a typical Japanese, ESOL classroom--low student motivation and inadequate feedback--and to supplement conventional language…
A basic understanding of the endocrinology of the hypothalamic-pituitary-thyroid (HPT) axis of anuran larvae is necessary for predicting the consequences of HPT perturbation by thyroid-disrupting chemicals (TDCs) on the whole organism. This project examined negative feedback con...
High-frequency chaotic dynamics enabled by optical phase-conjugation
Mercier, Émeric; Wolfersberger, Delphine; Sciamanna, Marc
2016-01-01
Wideband chaos is of interest for applications such as random number generation or encrypted communications, which typically use optical feedback in a semiconductor laser. Here, we show that replacing conventional optical feedback with phase-conjugate feedback improves the chaos bandwidth. In the range of achievable phase-conjugate mirror reflectivities, the bandwidth increase reaches 27% when compared with feedback from a conventional mirror. Experimental measurements of the time-resolved frequency dynamics on nanosecond time-scales show that the bandwidth enhancement is related to the onset of self-pulsing solutions at harmonics of the external-cavity frequency. In the observed regime, the system follows a chaotic itinerancy among these destabilized high-frequency external-cavity modes. The recorded features are unique to phase-conjugate feedback and distinguish it from the long-standing problem of time-delayed feedback dynamics. PMID:26739806
Ding, Xiaoshuai; Cao, Jinde; Zhao, Xuan; Alsaadi, Fuad E
2017-08-01
This paper is concerned with the drive-response synchronization for a class of fractional-order bidirectional associative memory neural networks with time delays, as well as in the presence of discontinuous activation functions. The global existence of solution under the framework of Filippov for such networks is firstly obtained based on the fixed-point theorem for condensing map. Then the state feedback and impulsive controllers are, respectively, designed to ensure the Mittag-Leffler synchronization of these neural networks and two new synchronization criteria are obtained, which are expressed in terms of a fractional comparison principle and Razumikhin techniques. Numerical simulations are presented to validate the proposed methodologies.
Delayed-feedback chimera states: Forced multiclusters and stochastic resonance
NASA Astrophysics Data System (ADS)
Semenov, V.; Zakharova, A.; Maistrenko, Y.; Schöll, E.
2016-07-01
A nonlinear oscillator model with negative time-delayed feedback is studied numerically under external deterministic and stochastic forcing. It is found that in the unforced system complex partial synchronization patterns like chimera states as well as salt-and-pepper-like solitary states arise on the route from regular dynamics to spatio-temporal chaos. The control of the dynamics by external periodic forcing is demonstrated by numerical simulations. It is shown that one-cluster and multi-cluster chimeras can be achieved by adjusting the external forcing frequency to appropriate resonance conditions. If a stochastic component is superimposed to the deterministic external forcing, chimera states can be induced in a way similar to stochastic resonance, they appear, therefore, in regimes where they do not exist without noise.
Arai, A; Silberg, J; Lynch, G
1995-12-18
Extracellular reflections of IPSPs were examined in two distinct circuitries in field CA1 of the hippocampus. Stimulation in the stratum radiatum in the presence of AMPA receptor antagonists elicited positive potentials in the same stratum that were eliminated by picrotoxin, a blocker of GABAA receptors. Laminar profile analysis revealed that the response was maximal in the stratum radiatum at a point well distal to the pyramidal cell body layer and had a negative reflection in the stratum oriens. These field IPSPs presumably mediate the feedforward inhibition normally activated by the Schaffer-commissural projections to field CA1. Stimulation of the alveus produced an antidromic response followed by a much slower positive potential in recordings collected in the pyramidal cell layer. The latter response was suppressed by AMPA receptor antagonists or picrotoxin, as expected for disynaptic, recurrent (feedback) inhibition. The laminar profile for the feedback field IPSPs had its maximum near the pyramidal cell layer and its negative dipole in the stratum radiatum. Feedforward IPSPs were inhibited by about 50% if they were preceded within 200 ms by a priming pulse while feedback IPSPs were reduced by less than 20% under comparable conditions. The refractory effect was minimally dependent on stimulation intensity but was strongly affected by an antagonist of GABAB receptors. Attempts to modify IPSPs in the s. radiatum with long trains of low frequency stimulation or with theta-burst stimulation were not successful, suggesting that GABAergic synapses do not have the plasticities found in their glutamatergic counterparts. These results indicate that interneurons contacted by the extrinsic afferents of hippocampus form GABAergic synapses that differ in terms of spatial location and functional properties from the synapses generated by interneurons innervated by the recurrent collaterals of the pyramidal cells. The findings also suggest that repetitive afferent activity, while reducing the influence of dendritic IPSPs on excitatory input, will leave feedback suppression of cell spiking largely intact.
Integrated and flexible multichannel interface for electrotactile stimulation
NASA Astrophysics Data System (ADS)
Štrbac, Matija; Belić, Minja; Isaković, Milica; Kojić, Vladimir; Bijelić, Goran; Popović, Igor; Radotić, Milutin; Došen, Strahinja; Marković, Marko; Farina, Dario; Keller, Thierry
2016-08-01
Objective. The aim of the present work was to develop and test a flexible electrotactile stimulation system to provide real-time feedback to the prosthesis user. The system requirements were to accommodate the capabilities of advanced multi-DOF myoelectric hand prostheses and transmit the feedback variables (proprioception and force) using intuitive coding, with high resolution and after minimal training. Approach. We developed a fully-programmable and integrated electrotactile interface supporting time and space distributed stimulation over custom designed flexible array electrodes. The system implements low-level access to individual stimulation channels as well as a set of high-level mapping functions translating the state of a multi-DoF prosthesis (aperture, grasping force, wrist rotation) into a set of predefined dynamic stimulation profiles. The system was evaluated using discrimination tests employing spatial and frequency coding (10 able-bodied subjects) and dynamic patterns (10 able-bodied and 6 amputee subjects). The outcome measure was the success rate (SR) in discrimination. Main results. The more practical electrode with the common anode configuration performed similarly to the more usual concentric arrangement. The subjects could discriminate six spatial and four frequency levels with SR >90% after a few minutes of training, whereas the performance significantly deteriorated for more levels. The dynamic patterns were intuitive for the subjects, although amputees showed lower SR than able-bodied individuals (86% ± 10% versus 99% ± 3%). Significance. The tests demonstrated that the system was easy to setup and apply. The design and resolution of the multipad electrode was evaluated. Importantly, the novel dynamic patterns, which were successfully tested, can be superimposed to transmit multiple feedback variables intuitively and simultaneously. This is especially relevant for closing the loop in modern multifunction prostheses. Therefore, the proposed system is convenient for practical applications and can be used to implement sensory perception training and/or closed-loop control of myoelectric prostheses, providing grasping force and proprioceptive feedback.
NASA Astrophysics Data System (ADS)
Ferrari, F. A. S.; Viana, R. L.; Reis, A. S.; Iarosz, K. C.; Caldas, I. L.; Batista, A. M.
2018-04-01
The cerebral cortex plays a key role in complex cortical functions. It can be divided into areas according to their function (motor, sensory and association areas). In this paper, the cerebral cortex is described as a network of networks (cortex network), we consider that each cortical area is composed of a network with small-world property (cortical network). The neurons are assumed to have bursting properties with the dynamics described by the Rulkov model. We study the phase synchronization of the cortex network and the cortical networks. In our simulations, we verify that synchronization in cortex network is not homogeneous. Besides, we focus on the suppression of neural phase synchronization. Synchronization can be related to undesired and pathological abnormal rhythms in the brain. For this reason, we consider the delayed feedback control to suppress the synchronization. We show that delayed feedback control is efficient to suppress synchronous behavior in our network model when an appropriate signal intensity and time delay are defined.
PD-like controller for delayed bilateral teleoperation of wheeled robots
NASA Astrophysics Data System (ADS)
Slawiñski, E.; Mut, V.; Santiago, D.
2016-08-01
This paper proposes a proportional derivative (PD)-like controller applied to the delayed bilateral teleoperation of wheeled robots with force feedback in face of asymmetric and varying-time delays. In contrast to bilateral teleoperation of manipulator robots, in these systems, there is a mismatch between the models of the master and slave (mobile robot), problem that is approached in this work, where the system stability is analysed. From this study, it is possible to infer the control parameters, depending on the time delay, necessary to assure stability. Finally, the performance of the delayed teleoperation system is evaluated through tests where a human operator drives a 3D simulator as well as a mobile robot for pushing objects.
Sharp conditions for global stability of Lotka-Volterra systems with distributed delays
NASA Astrophysics Data System (ADS)
Faria, Teresa
We give a criterion for the global attractivity of a positive equilibrium of n-dimensional non-autonomous Lotka-Volterra systems with distributed delays. For a class of autonomous Lotka-Volterra systems, we show that such a criterion is sharp, in the sense that it provides necessary and sufficient conditions for the global asymptotic stability independently of the choice of the delay functions. The global attractivity of positive equilibria is established by imposing a diagonal dominance of the instantaneous negative feedback terms, and relies on auxiliary results showing the boundedness of all positive solutions. The paper improves and generalizes known results in the literature, namely by considering systems with distributed delays rather than discrete delays.
Nataraj, Raviraj; Audu, Musa L.; Triolo, Ronald J.
2017-01-01
This paper reviews the field of feedback control for neuroprosthesis systems that restore advanced standing function to individuals with spinal cord injury. Investigations into closed-loop control of standing by functional neuromuscular stimulation (FNS) have spanned three decades. The ultimate goal for FNS standing control systems is to facilitate hands free standing and enabling the user to perform manual functions at self-selected leaning positions. However, most clinical systems for home usage currently only provide basic upright standing using preprogrammed stimulation patterns. To date, online modulation of stimulation to produce advanced standing functions such as balance against postural disturbances or the ability to assume leaning postures have been limited to simulation and laboratory investigations. While great technological advances have been made in biomechanical sensing and interfaces for neuromuscular stimulation, further progress is still required for finer motor control by FNS. Another major challenge is the development of sophisticated control schemes that produce the necessary postural adjustments, adapt against accelerating muscle fatigue, and consider volitional actions of the intact upper-body of the user. Model-based development for novel control schemes are proven and sensible approaches to prototype and test the basic operating efficacy of potentially complex and multi-faceted control systems. The major considerations for further innovation of such systems are summarized in this paper prior to describing the evolution of closed-loop FNS control of standing from previous works. Finally, necessary emerging technologies to for implementing FNS feedback control systems for standing are identified. These technological advancements include novel electrodes that more completely and selectively activate paralyzed musculature and implantable sensors and stimulation modules for flexible neuroprosthesis system deployment. PMID:28215399
Nataraj, Raviraj; Audu, Musa L; Triolo, Ronald J
2017-04-01
This paper reviews the field of feedback control for neuroprosthesis systems that restore advanced standing function to individuals with spinal cord injury. Investigations into closed-loop control of standing by functional neuromuscular stimulation (FNS) have spanned three decades. The ultimate goal for FNS standing control systems is to facilitate hands free standing and enabling the user to perform manual functions at self-selected leaning positions. However, most clinical systems for home usage currently only provide basic upright standing using preprogrammed stimulation patterns. To date, online modulation of stimulation to produce advanced standing functions such as balance against postural disturbances or the ability to assume leaning postures have been limited to simulation and laboratory investigations. While great technological advances have been made in biomechanical sensing and interfaces for neuromuscular stimulation, further progress is still required for finer motor control by FNS. Another major challenge is the development of sophisticated control schemes that produce the necessary postural adjustments, adapt against accelerating muscle fatigue, and consider volitional actions of the intact upper-body of the user. Model-based development for novel control schemes are proven and sensible approaches to prototype and test the basic operating efficacy of potentially complex and multi-faceted control systems. The major considerations for further innovation of such systems are summarized in this paper prior to describing the evolution of closed-loop FNS control of standing from previous works. Finally, necessary emerging technologies to for implementing FNS feedback control systems for standing are identified. These technological advancements include novel electrodes that more completely and selectively activate paralyzed musculature and implantable sensors and stimulation modules for flexible neuroprosthesis system deployment. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Adaptive deep brain stimulation in advanced Parkinson disease.
Little, Simon; Pogosyan, Alex; Neal, Spencer; Zavala, Baltazar; Zrinzo, Ludvic; Hariz, Marwan; Foltynie, Thomas; Limousin, Patricia; Ashkan, Keyoumars; FitzGerald, James; Green, Alexander L; Aziz, Tipu Z; Brown, Peter
2013-09-01
Brain-computer interfaces (BCIs) could potentially be used to interact with pathological brain signals to intervene and ameliorate their effects in disease states. Here, we provide proof-of-principle of this approach by using a BCI to interpret pathological brain activity in patients with advanced Parkinson disease (PD) and to use this feedback to control when therapeutic deep brain stimulation (DBS) is delivered. Our goal was to demonstrate that by personalizing and optimizing stimulation in real time, we could improve on both the efficacy and efficiency of conventional continuous DBS. We tested BCI-controlled adaptive DBS (aDBS) of the subthalamic nucleus in 8 PD patients. Feedback was provided by processing of the local field potentials recorded directly from the stimulation electrodes. The results were compared to no stimulation, conventional continuous stimulation (cDBS), and random intermittent stimulation. Both unblinded and blinded clinical assessments of motor effect were performed using the Unified Parkinson's Disease Rating Scale. Motor scores improved by 66% (unblinded) and 50% (blinded) during aDBS, which were 29% (p = 0.03) and 27% (p = 0.005) better than cDBS, respectively. These improvements were achieved with a 56% reduction in stimulation time compared to cDBS, and a corresponding reduction in energy requirements (p < 0.001). aDBS was also more effective than no stimulation and random intermittent stimulation. BCI-controlled DBS is tractable and can be more efficient and efficacious than conventional continuous neuromodulation for PD. Copyright © 2013 American Neurological Association.
Relationships between the intensity and duration of Peltier heat stimulation and pain magnitude
Vierck, Charles J.; Mauderli, Andre P.; Riley, Joseph L.
2013-01-01
Ramp-and-hold heat stimulation with a Peltier thermode is a standard procedure for quantitative sensory testing of human pain sensitivity. Because myelinated and unmyelinated nociceptive afferents respond preferentially to changing and steady temperatures, respectively, ramp-and-hold heat stimulation could assess processing of input from A-delta nociceptors early and C nociceptors late during prolonged thermal stimulation. In order to evaluate the progression from dynamic change to a steady temperature during prolonged Peltier stimulation, recordings of temperatures at the probe-skin interface were obtained. First, recordings of temperature during contact-and-hold stimulation (solenoid powered delivery of a preheated thermode to the skin) provided an evaluation of heat dissipation from the beginning of stimulation, uncontaminated by ramping. The heat sink effect lasted up to 8 sec. and accounted in part for substantial increases in pain intensity as a combined function of durations from 1–16 sec. and stimulus intensities from 43°C to 59°. Recordings during longer periods of stimulation showed that Peltier stimulation generated feedback oscillations in temperature for up to 75 sec that were tracked by subjects’ continuous ratings of pain. During 120 sec. trials, sensitization of pain was observed over 45 seconds after the oscillations subsided. In contrast, sensitization was not observed during 130.5 sec. of stimulation with alternately increasing and decreasing temperatures that maintained a target eVAS rating of 35. Thus, long duration stimulation can be utilized to evaluate sensitization, presumably of C nociception, when not disrupted by oscillations inherent to feedback control of Peltier stimulation. PMID:23423165
Relationships between the intensity and duration of Peltier heat stimulation and pain magnitude.
Vierck, Charles J; Mauderli, Andre P; Riley, Joseph L
2013-03-01
Ramp-and-hold heat stimulation with a Peltier thermode is a standard procedure for quantitative sensory testing of human pain sensitivity. Because myelinated and unmyelinated nociceptive afferents respond preferentially to changing and steady temperatures, respectively, ramp-and-hold heat stimulation could assess processing of input from A-delta nociceptors early and C nociceptors late during prolonged thermal stimulation. In order to evaluate the progression from dynamic change to a steady temperature during prolonged Peltier stimulation, recordings of temperatures at the probe-skin interface were obtained. First, recordings of temperature during contact-and-hold stimulation (solenoid powered delivery of a preheated thermode to the skin) provided an evaluation of heat dissipation from the beginning of stimulation, uncontaminated by ramping. The heat-sink effect lasted up to 8 s and accounted in part for a slow increase in pain intensity for stimulus durations of 1-16 s and stimulus intensities of 43-59 °C. Recordings during longer periods of stimulation showed that feedback-controlled Peltier stimulation generated oscillations in temperature that were tracked for up to 75 s by subjects' continuous ratings of pain. During 120-s trials, sensitization of pain was observed over 45 s after the oscillations subsided. Thus, long-duration stimulation can be utilized to evaluate sensitization, presumably of C nociception, when not disrupted by oscillations in thermode temperature (e.g., those inherent to feedback control of Peltier stimulation). In contrast, sensitization was not observed during 130.5 s of stimulation with alternately increasing and decreasing temperatures that repeatedly activated A-delta nociceptors.
NASA Astrophysics Data System (ADS)
Li, Shanshan; Zhang, Guoshan; Wang, Jiang; Chen, Yingyuan; Deng, Bin
2018-02-01
This paper proposes that modified two-compartment Pinsky-Rinzel (PR) neural model can be used to develop the simple form of central pattern generator (CPG). The CPG is called as 'half-central oscillator', which constructed by two inhibitory chemical coupled PR neurons with time delay. Some key properties of PR neural model related to CPG are studied and proved to meet the requirements of CPG. Using the simple CPG network, we first study the relationship between rhythmical output and key factors, including ambient noise, sensory feedback signals, morphological character of single neuron as well as the coupling delay time. We demonstrate that, appropriate intensity noise can enhance synchronization between two coupled neurons. Different output rhythm of CPG network can be entrained by sensory feedback signals. We also show that the morphology of single neuron has strong effect on the output rhythm. The phase synchronization indexes decrease with the increase of morphology parameter's difference. Through adjusting coupled delay time, we can get absolutely phase synchronization and antiphase state of CPG. Those results of simulation show the feasibility of PR neural model as a valid CPG as well as the emergent behaviors of the particularly CPG.
Lipitz-Snyderman, Allison; Kale, Minal; Robbins, Laura; Pfister, David; Fortier, Elizabeth; Pocus, Valerie; Chimonas, Susan; Weingart, Saul N
2017-11-01
Relatively little attention has been devoted to the role of communication between physicians as a mechanism for individual and organisational learning about diagnostic delays. This study's objective was to elicit physicians' perceptions about and experiences with communication among physicians regarding diagnostic delays in cancer. Qualitative analysis based on seven focus groups. Fifty-one physicians affiliated with three New York-based academic medical centres participated, with six to nine subjects per group. We used content analysis to identify commonalities among primary care physicians and specialists (ie, medical and surgical oncologists). Perceptions and experiences with physician-to-physician communication about delays in cancer diagnosis. Our analysis identified five major themes: openness to communication, benefits of communication, fears about giving and receiving feedback, infrastructure barriers to communication and overcoming barriers to communication. Subjects valued communication about cancer diagnostic delays, but they had many concerns and fears about providing and receiving feedback in practice. Subjects expressed reluctance to communicate if there was insufficient information to attribute responsibility, if it would have no direct benefit or if it would jeopardise their existing relationships. They supported sensitive approaches to conveying information, as they feared eliciting or being subject to feelings of incompetence or shame. Subjects also cited organisational barriers. They offered suggestions that might facilitate communication about delays. Addressing the barriers to communication among physicians about diagnostic delays is needed to promote a culture of learning across specialties and institutions. Supporting open and honest discussions about diagnostic delays may help build safer health systems. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Using Neurological Feedback to Enhance Resilience and Recuperation
2011-04-01
well-being, stress management and experience, and physiological markers of stress, anxiety and depression. During the upcoming symposium the...health and well-being, stress management and experience, and physiological markers of stress, anxiety and depression. During the upcoming symposium the...120 seconds are necessary to calculate reliable HRV information. This implies that feedback based on this method is always delayed and can not be used
Essential fatty acid deficiency delays the onset of puberty in the female rat.
Smith, S S; Neuringer, M; Ojeda, S R
1989-09-01
This study assessed the effect of a dietary deficiency in the essential fatty acids (EFA) linoleic and linolenic acids on the onset of female puberty. EFA deficiency was produced in female rats by means of a semipurified diet and was biochemically documented by analyzing serum and erythrocyte fatty acid levels of more than 30 fatty acids, including all members of the n-6 and n-3 series. Levels of linoleic acid (18:2 n-6) and all n-6 derivatives, particularly arachidonic acid, were strikingly reduced. A less pronounced but clear-cut decrease in n-3 fatty acids, including docosahexaenoic acid (22:6 n-3) was also found. The times of puberty and first ovulation, as assessed by the ages at vaginal opening and first diestrus, were significantly delayed in EFA-deficient rats. The mechanisms underlying this delay appear to reside at both hypothalamic and ovarian sites. Simulation of preovulatory plasma estradiol (E2) levels via implantation of E2-containing Silastic capsules evoked a LH surge 30 h later in control juvenile rats, but not in EFA-deficient animals, indicating a delay in the development of the hypothalamic component of E2-positive feedback in the latter group. This delay appears to be due at least in part to reduced prostaglandin E2 (PGE2) synthesis, as the ability of the neurotransmitter norepinephrine to induce PGE2 release from median eminence nerve terminals was markedly reduced in EFA-deficient rats compared with that in controls. The decrease in hypothalamic PGE2 release was related to the EFA deficiency and not to reduced PG synthase activity, as determined by HPLC analysis of PG synthase products derived from exogenous [14C]arachidonic acid. Basal and hCG-stimulated PGE2 synthesis was also compromised in ovaries from EFA-deficient rats. Depressed gonadal function resulting from the EFA deficiency was further evidenced by a reduced gonadotropin receptor content, a blunted E2 response to hCG in vitro, and an increase in mean serum FSH levels. These results suggest that the delay in puberty resulting from EFA deficiency is due to a reduced availability of arachidonic acid for synthesis of bioactive metabolites. This results in delayed development of both the hypothalamic and ovarian components of the reproductive axis.
Jenkins, Lawrence C.; Mulhall, John P.
2016-01-01
Delayed orgasm/anorgasmia defined as the persistent or recurrent difficulty, delay in, or absence of attaining orgasm after sufficient sexual stimulation, which causes personal distress. Delayed orgasm and anorgasmia are associated with significant sexual dissatisfaction. A focused medical history can shed light on the potential etiologies; which include: medications, penile sensation loss, endocrinopathies, penile hyperstimulation and psychological etiologies, amongst others. Unfortunately, there are no excellent pharmacotherapies for delayed orgasm/anorgasmia, and treatment revolves largely around addressing potential causative factors and psychotherapy. PMID:26439762
Gravitropism in higher plant shoots. I - A role for ethylene
NASA Technical Reports Server (NTRS)
Wheeler, Raymond M.; Salisbury, Frank B.
1981-01-01
Two inhibitors of ethylene synthesis, Co(2+) and aminoethoxyvinylglycine (AVG), and two inhibitors of ethylene action, Ag(+) and CO2, are shown to delay the gravitropic response of cocklebur (Xanthium strumarium L.), tomato (Lycopersicon esculentum Mill.), and castor bean (Ricinus communis L.) stems. Gentle shaking on a mechanical shaker does not inhibit the gravitropic response, but vigorous hand shaking for 120 seconds delays the response somewhat. AVG and Ag(+) further delay the response of mechanically stimulated plants. AVG retards the storage of bending energy but not of stimulus. In gravitropism, graviperception may first stimulate ethylene evolution, which may then influence bending directly, or responses involving ethylene could be more indirect.
Leshikar, Eric D.; Leach, Ryan C.; McCurdy, Matthew P.; ...
2017-10-19
Prior work demonstrates that application of transcranial direct current stimulation (tDCS) improves memory. In this study, we investigated tDCS effects on face-name associative memory using both recall and recognition tests. Participants encoded face-name pairs under either active (1.5 mA) or sham (.1 mA) stimulation applied to the scalp adjacent to the left dorsolateral prefrontal cortex (dlPFC), an area known to support associative memory. Participants’ memory was then tested after study (day one) and then again after a 24-h delay (day two), to assess both immediate and delayed stimulation effects on memory. Results indicated that active relative to sham stimulation ledmore » to substantially improved recall (more than 50%) at both day one and day two. Recognition memory performance did not differ between stimulation groups at either time point. These results suggest that stimulation at encoding improves memory performance by enhancing memory for details that enable a rich recollective experience, but that these improvements are evident only under some testing conditions, especially those that rely on recollection. Altogether, stimulation of the dlPFC could have led to recall improvement through enhanced encoding from stimulation or from carryover effects of stimulation that influenced retrieval processes, or both.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leshikar, Eric D.; Leach, Ryan C.; McCurdy, Matthew P.
Prior work demonstrates that application of transcranial direct current stimulation (tDCS) improves memory. In this study, we investigated tDCS effects on face-name associative memory using both recall and recognition tests. Participants encoded face-name pairs under either active (1.5 mA) or sham (.1 mA) stimulation applied to the scalp adjacent to the left dorsolateral prefrontal cortex (dlPFC), an area known to support associative memory. Participants’ memory was then tested after study (day one) and then again after a 24-h delay (day two), to assess both immediate and delayed stimulation effects on memory. Results indicated that active relative to sham stimulation ledmore » to substantially improved recall (more than 50%) at both day one and day two. Recognition memory performance did not differ between stimulation groups at either time point. These results suggest that stimulation at encoding improves memory performance by enhancing memory for details that enable a rich recollective experience, but that these improvements are evident only under some testing conditions, especially those that rely on recollection. Altogether, stimulation of the dlPFC could have led to recall improvement through enhanced encoding from stimulation or from carryover effects of stimulation that influenced retrieval processes, or both.« less
NASA Astrophysics Data System (ADS)
Efimov, Denis; Schiffer, Johannes; Ortega, Romeo
2016-05-01
Motivated by the problem of phase-locking in droop-controlled inverter-based microgrids with delays, the recently developed theory of input-to-state stability (ISS) for multistable systems is extended to the case of multistable systems with delayed dynamics. Sufficient conditions for ISS of delayed systems are presented using Lyapunov-Razumikhin functions. It is shown that ISS multistable systems are robust with respect to delays in a feedback. The derived theory is applied to two examples. First, the ISS property is established for the model of a nonlinear pendulum and delay-dependent robustness conditions are derived. Second, it is shown that, under certain assumptions, the problem of phase-locking analysis in droop-controlled inverter-based microgrids with delays can be reduced to the stability investigation of the nonlinear pendulum. For this case, corresponding delay-dependent conditions for asymptotic phase-locking are given.
Feedforward/feedback control synthesis for performance and robustness
NASA Technical Reports Server (NTRS)
Wie, Bong; Liu, Qiang
1990-01-01
Both feedforward and feedback control approaches for uncertain dynamical systems are investigated. The control design objective is to achieve a fast settling time (high performance) and robustness (insensitivity) to plant modeling uncertainty. Preshapong of an ideal, time-optimal control input using a 'tapped-delay' filter is shown to provide a rapid maneuver with robust performance. A robust, non-minimum-phase feedback controller is synthesized with particular emphasis on its proper implementation for a non-zero set-point control problem. The proposed feedforward/feedback control approach is robust for a certain class of uncertain dynamical systems, since the control input command computed for a given desired output does not depend on the plant parameters.
Dual-learning systems during speech category learning
Chandrasekaran, Bharath; Yi, Han-Gyol; Maddox, W. Todd
2013-01-01
Dual-systems models of visual category learning posit the existence of an explicit, hypothesis-testing ‘reflective’ system, as well as an implicit, procedural-based ‘reflexive’ system. The reflective and reflexive learning systems are competitive and neurally dissociable. Relatively little is known about the role of these domain-general learning systems in speech category learning. Given the multidimensional, redundant, and variable nature of acoustic cues in speech categories, our working hypothesis is that speech categories are learned reflexively. To this end, we examined the relative contribution of these learning systems to speech learning in adults. Native English speakers learned to categorize Mandarin tone categories over 480 trials. The training protocol involved trial-by-trial feedback and multiple talkers. Experiment 1 and 2 examined the effect of manipulating the timing (immediate vs. delayed) and information content (full vs. minimal) of feedback. Dual-systems models of visual category learning predict that delayed feedback and providing rich, informational feedback enhance reflective learning, while immediate and minimally informative feedback enhance reflexive learning. Across the two experiments, our results show feedback manipulations that targeted reflexive learning enhanced category learning success. In Experiment 3, we examined the role of trial-to-trial talker information (mixed vs. blocked presentation) on speech category learning success. We hypothesized that the mixed condition would enhance reflexive learning by not allowing an association between talker-related acoustic cues and speech categories. Our results show that the mixed talker condition led to relatively greater accuracies. Our experiments demonstrate that speech categories are optimally learned by training methods that target the reflexive learning system. PMID:24002965
NASA Astrophysics Data System (ADS)
Koo, Min-Sung; Choi, Ho-Lim
2018-01-01
In this paper, we consider a control problem for a class of uncertain nonlinear systems in which there exists an unknown time-varying delay in the input and lower triangular nonlinearities. Usually, in the existing results, input delays have been coupled with feedforward (or upper triangular) nonlinearities; in other words, the combination of lower triangular nonlinearities and input delay has been rare. Motivated by the existing controller for input-delayed chain of integrators with nonlinearity, we show that the control of input-delayed nonlinear systems with two particular types of lower triangular nonlinearities can be done. As a control solution, we propose a newly designed feedback controller whose main features are its dynamic gain and non-predictor approach. Three examples are given for illustration.
Peer Feedback Practice in EFL Tertiary Writing Classes
ERIC Educational Resources Information Center
Nguyen, Ha Thi
2016-01-01
Peer feedback plays a pivotal role in stimulating students' participation in L2 writing, which has the potential to develop students' writing skills. The concept of metacognition has also been examined to facilitate learner writers in their learning process. As such, this study drawing upon the concept of metacognition explores the implementation…
Issues and Agency: Postgraduate Student and Tutor Experiences with Written Feedback
ERIC Educational Resources Information Center
Sanchez, Hugo Santiago; Dunworth, Katie
2015-01-01
This paper examines the issues which postgraduate students and tutors experienced as they engaged in receiving, providing and requesting feedback, as well as the strategies which they adopted as they sought resolution of these issues. The study employed a case study approach, using data obtained from semi-structured and stimulated recall…
Inducing Mind Sets in Self-Regulated Learning with Motivational Information
ERIC Educational Resources Information Center
Martens, R.; de Brabander, C.; Rozendaal, J.; Boekaerts, M.; van der Leeden, R.
2010-01-01
The way students perceive a learning climate (e.g. controlling or stimulating) is significantly influenced by feedback and assessment. However, at present much is unclear about the relation between feedback and motivational state. More specifically, the interplay with student characteristics is unclear. Since there is a strong increase of group…
Chaos and Robustness in a Single Family of Genetic Oscillatory Networks
Fu, Daniel; Tan, Patrick; Kuznetsov, Alexey; Molkov, Yaroslav I.
2014-01-01
Genetic oscillatory networks can be mathematically modeled with delay differential equations (DDEs). Interpreting genetic networks with DDEs gives a more intuitive understanding from a biological standpoint. However, it presents a problem mathematically, for DDEs are by construction infinitely-dimensional and thus cannot be analyzed using methods common for systems of ordinary differential equations (ODEs). In our study, we address this problem by developing a method for reducing infinitely-dimensional DDEs to two- and three-dimensional systems of ODEs. We find that the three-dimensional reductions provide qualitative improvements over the two-dimensional reductions. We find that the reducibility of a DDE corresponds to its robustness. For non-robust DDEs that exhibit high-dimensional dynamics, we calculate analytic dimension lines to predict the dependence of the DDEs’ correlation dimension on parameters. From these lines, we deduce that the correlation dimension of non-robust DDEs grows linearly with the delay. On the other hand, for robust DDEs, we find that the period of oscillation grows linearly with delay. We find that DDEs with exclusively negative feedback are robust, whereas DDEs with feedback that changes its sign are not robust. We find that non-saturable degradation damps oscillations and narrows the range of parameter values for which oscillations exist. Finally, we deduce that natural genetic oscillators with highly-regular periods likely have solely negative feedback. PMID:24667178
Optimization and evaluation of a proportional derivative controller for planar arm movement.
Jagodnik, Kathleen M; van den Bogert, Antonie J
2010-04-19
In most clinical applications of functional electrical stimulation (FES), the timing and amplitude of electrical stimuli have been controlled by open-loop pattern generators. The control of upper extremity reaching movements, however, will require feedback control to achieve the required precision. Here we present three controllers using proportional derivative (PD) feedback to stimulate six arm muscles, using two joint angle sensors. Controllers were first optimized and then evaluated on a computational arm model that includes musculoskeletal dynamics. Feedback gains were optimized by minimizing a weighted sum of position errors and muscle forces. Generalizability of the controllers was evaluated by performing movements for which the controller was not optimized, and robustness was tested via model simulations with randomly weakened muscles. Robustness was further evaluated by adding joint friction and doubling the arm mass. After optimization with a properly weighted cost function, all PD controllers performed fast, accurate, and robust reaching movements in simulation. Oscillatory behavior was seen after improper tuning. Performance improved slightly as the complexity of the feedback gain matrix increased. Copyright 2009 Elsevier Ltd. All rights reserved.
Optimization and evaluation of a proportional derivative controller for planar arm movement
Jagodnik, Kathleen M.; van den Bogert, Antonie J.
2013-01-01
In most clinical applications of functional electrical stimulation (FES), the timing and amplitude of electrical stimuli have been controlled by open-loop pattern generators. The control of upper extremity reaching movements, however, will require feedback control to achieve the required precision. Here we present three controllers using proportional derivative (PD) feedback to stimulate six arm muscles, using two joint angle sensors. Controllers were first optimized and then evaluated on a computational arm model that includes musculoskeletal dynamics. Feedback gains were optimized by minimizing a weighted sum of position errors and muscle forces. Generalizability of the controllers was evaluated by performing movements for which the controller was not optimized, and robustness was tested via model simulations with randomly weakened muscles. Robustness was further evaluated by adding joint friction and doubling the arm mass. After optimization with a properly weighted cost function, all PD controllers performed fast, accurate, and robust reaching movements in simulation. Oscillatory behavior was seen after improper tuning. Performance improved slightly as the complexity of the feedback gain matrix increased. PMID:20097345
Resquín, Francisco; Gonzalez-Vargas, Jose; Ibáñez, Jaime; Brunetti, Fernando; Pons, José Luis
2016-01-01
Hybrid robotic systems represent a novel research field, where functional electrical stimulation (FES) is combined with a robotic device for rehabilitation of motor impairment. Under this approach, the design of robust FES controllers still remains an open challenge. In this work, we aimed at developing a learning FES controller to assist in the performance of reaching movements in a simple hybrid robotic system setting. We implemented a Feedback Error Learning (FEL) control strategy consisting of a feedback PID controller and a feedforward controller based on a neural network. A passive exoskeleton complemented the FES controller by compensating the effects of gravity. We carried out experiments with healthy subjects to validate the performance of the system. Results show that the FEL control strategy is able to adjust the FES intensity to track the desired trajectory accurately without the need of a previous mathematical model. PMID:27990245
Wang, Leimin; Zeng, Zhigang; Ge, Ming-Feng; Hu, Junhao
2018-05-02
This paper deals with the stabilization problem of memristive recurrent neural networks with inertial items, discrete delays, bounded and unbounded distributed delays. First, for inertial memristive recurrent neural networks (IMRNNs) with second-order derivatives of states, an appropriate variable substitution method is invoked to transfer IMRNNs into a first-order differential form. Then, based on nonsmooth analysis theory, several algebraic criteria are established for the global stabilizability of IMRNNs under proposed feedback control, where the cases with both bounded and unbounded distributed delays are successfully addressed. Finally, the theoretical results are illustrated via the numerical simulations. Copyright © 2018 Elsevier Ltd. All rights reserved.
Comparison of Motor Inhibition in Variants of the Instructed-Delay Choice Reaction Time Task
Quoilin, Caroline; Lambert, Julien; Jacob, Benvenuto; Klein, Pierre-Alexandre; Duque, Julie
2016-01-01
Using instructed-delay choice reaction time (RT) paradigms, many previous studies have shown that the motor system is transiently inhibited during response preparation: motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) over the primary motor cortex are typically suppressed during the delay period. This effect has been observed in both selected and non-selected effectors, although MEP changes in selected effectors have been more inconsistent across task versions. Here, we compared changes in MEP amplitudes in three different variants of an instructed-delay choice RT task. All variants required participants to choose between left and right index finger movements but the responses were either provided “in the air” (Variant 1), on a regular keyboard (Variant 2), or on a response device designed to control from premature responses (Variant 3). The task variants also differed according to the visual layout (more concrete in Variant 3) and depending on whether participants received a feedback of their performance (absent in Variant 1). Behavior was globally comparable between the three variants of the task although the propensity to respond prematurely was highest in Variant 2 and lowest in Variant 3. MEPs elicited in a non-selected hand were similarly suppressed in the three variants of the task. However, significant differences emerged when considering MEPs elicited in the selected hand: these MEPs were suppressed in Variants 1 and 3 whereas they were often facilitated in Variant 2, especially in the right dominant hand. In conclusion, MEPs elicited in selected muscles seem to be more sensitive to small variations to the task design than those recorded in non-selected effectors, probably because they reflect a complex combination of inhibitory and facilitatory influences on the motor output system. Finally, the use of a standard keyboard seems to be particularly inappropriate because it encourages participants to respond promptly with no means to control for premature responses, probably increasing the relative amount of facilitatory influences at the time motor inhibition is probed. PMID:27579905
Comparison of Motor Inhibition in Variants of the Instructed-Delay Choice Reaction Time Task.
Quoilin, Caroline; Lambert, Julien; Jacob, Benvenuto; Klein, Pierre-Alexandre; Duque, Julie
2016-01-01
Using instructed-delay choice reaction time (RT) paradigms, many previous studies have shown that the motor system is transiently inhibited during response preparation: motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) over the primary motor cortex are typically suppressed during the delay period. This effect has been observed in both selected and non-selected effectors, although MEP changes in selected effectors have been more inconsistent across task versions. Here, we compared changes in MEP amplitudes in three different variants of an instructed-delay choice RT task. All variants required participants to choose between left and right index finger movements but the responses were either provided "in the air" (Variant 1), on a regular keyboard (Variant 2), or on a response device designed to control from premature responses (Variant 3). The task variants also differed according to the visual layout (more concrete in Variant 3) and depending on whether participants received a feedback of their performance (absent in Variant 1). Behavior was globally comparable between the three variants of the task although the propensity to respond prematurely was highest in Variant 2 and lowest in Variant 3. MEPs elicited in a non-selected hand were similarly suppressed in the three variants of the task. However, significant differences emerged when considering MEPs elicited in the selected hand: these MEPs were suppressed in Variants 1 and 3 whereas they were often facilitated in Variant 2, especially in the right dominant hand. In conclusion, MEPs elicited in selected muscles seem to be more sensitive to small variations to the task design than those recorded in non-selected effectors, probably because they reflect a complex combination of inhibitory and facilitatory influences on the motor output system. Finally, the use of a standard keyboard seems to be particularly inappropriate because it encourages participants to respond promptly with no means to control for premature responses, probably increasing the relative amount of facilitatory influences at the time motor inhibition is probed.
Serum thyroid hormone (TH) concentrations in anuran larvae rise rapidly during metamorphosis. Such a rise in an adult anuran would inevitably trigger a negative feedback response resulting in decreased synthesis and secretion of thyroid-stimulating hormone (TSH) by the pituitary....
Chang, Su-Youne; Kimble, Christopher J.; Kim, Inyong; Paek, Seungleal B.; Kressin, Kenneth R.; Boesche, Joshua B.; Whitlock, Sidney V.; Eaker, Diane R.; Kasasbeh, Aimen; Horne, April E.; Blaha, Charles D.; Bennet, Kevin E.; Lee, Kendall H.
2014-01-01
Object Conventional deep brain stimulation (DBS) devices continue to rely on an open-loop system in which stimulation is independent of functional neural feedback. The authors previously proposed that as the foundation of a DBS “smart” device, a closed-loop system based on neurochemical feedback, may have the potential to improve therapeutic outcomes. Alterations in neurochemical release are thought to be linked to the clinical benefit of DBS, and fast-scan cyclic voltammetry (FSCV) has been shown to be effective for recording these evoked neurochemical changes. However, the combination of FSCV with conventional DBS devices interferes with the recording and identification of the evoked analytes. To integrate neurochemical recording with neurostimulation, the authors developed the Mayo Investigational Neuromodulation Control System (MINCS), a novel, wirelessly controlled stimulation device designed to interface with FSCV performed by their previously described Wireless Instantaneous Neurochemical Concentration Sensing System (WINCS). Methods To test the functionality of these integrated devices, various frequencies of electrical stimulation were applied by MINCS to the medial forebrain bundle of the anesthetized rat, and striatal dopamine release was recorded by WINCS. The parameters for FSCV in the present study consisted of a pyramidal voltage waveform applied to the carbon-fiber microelectrode every 100 msec, ramping between −0.4 V and +1.5 V with respect to an Ag/AgCl reference electrode at a scan rate of either 400 V/sec or 1000 V/sec. The carbon-fiber microelectrode was held at the baseline potential of −0.4 V between scans. Results By using MINCS in conjunction with WINCS coordinated through an optic fiber, the authors interleaved intervals of electrical stimulation with FSCV scans and thus obtained artifact-free wireless FSCV recordings. Electrical stimulation of the medial forebrain bundle in the anesthetized rat by MINCS elicited striatal dopamine release that was time-locked to stimulation and increased progressively with stimulation frequency. Conclusions Here, the authors report a series of proof-of-principle tests in the rat brain demonstrating MINCS to be a reliable and flexible stimulation device that, when used in conjunction with WINCS, performs wirelessly controlled stimulation concurrent with artifact-free neurochemical recording. These findings suggest that the integration of neurochemical recording with neurostimulation may be a useful first step toward the development of a closed-loop DBS system for human application. PMID:24116724
Full Duplex, Spread Spectrum Radio System
NASA Technical Reports Server (NTRS)
Harvey, Bruce A.
2000-01-01
The goal of this project was to support the development of a full duplex, spread spectrum voice communications system. The assembly and testing of a prototype system consisting of a Harris PRISM spread spectrum radio, a TMS320C54x signal processing development board and a Zilog Z80180 microprocessor was underway at the start of this project. The efforts under this project were the development of multiple access schemes, analysis of full duplex voice feedback delays, and the development and analysis of forward error correction (FEC) algorithms. The multiple access analysis involved the selection between code division multiple access (CDMA), frequency division multiple access (FDMA) and time division multiple access (TDMA). Full duplex voice feedback analysis involved the analysis of packet size and delays associated with full loop voice feedback for confirmation of radio system performance. FEC analysis included studies of the performance under the expected burst error scenario with the relatively short packet lengths, and analysis of implementation in the TMS320C54x digital signal processor. When the capabilities and the limitations of the components used were considered, the multiple access scheme chosen was a combination TDMA/FDMA scheme that will provide up to eight users on each of three separate frequencies. Packets to and from each user will consist of 16 samples at a rate of 8,000 samples per second for a total of 2 ms of voice information. The resulting voice feedback delay will therefore be 4 - 6 ms. The most practical FEC algorithm for implementation was a convolutional code with a Viterbi decoder. Interleaving of the bits of each packet will be required to offset the effects of burst errors.
Zouari, Farouk; Ibeas, Asier; Boulkroune, Abdesselem; Cao, Jinde; Mehdi Arefi, Mohammad
2018-06-01
This study addresses the issue of the adaptive output tracking control for a category of uncertain nonstrict-feedback delayed incommensurate fractional-order systems in the presence of nonaffine structures, unmeasured pseudo-states, unknown control directions, unknown actuator nonlinearities and output constraints. Firstly, the mean value theorem and the Gaussian error function are introduced to eliminate the difficulties that arise from the nonaffine structures and the unknown actuator nonlinearities, respectively. Secondly, the immeasurable tracking error variables are suitably estimated by constructing a fractional-order linear observer. Thirdly, the neural network, the Razumikhin Lemma, the variable separation approach, and the smooth Nussbaum-type function are used to deal with the uncertain nonlinear dynamics, the unknown time-varying delays, the nonstrict feedback and the unknown control directions, respectively. Fourthly, asymmetric barrier Lyapunov functions are employed to overcome the violation of the output constraints and to tune online the parameters of the adaptive neural controller. Through rigorous analysis, it is proved that the boundedness of all variables in the closed-loop system and the semi global asymptotic tracking are ensured without transgression of the constraints. The principal contributions of this study can be summarized as follows: (1) based on Caputo's definitions and new lemmas, methods concerning the controllability, observability and stability analysis of integer-order systems are extended to fractional-order ones, (2) the output tracking objective for a relatively large class of uncertain systems is achieved with a simple controller and less tuning parameters. Finally, computer-simulation studies from the robotic field are given to demonstrate the effectiveness of the proposed controller. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yilmaz, Ergin; Baysal, Veli; Ozer, Mahmut; Perc, Matjaž
2016-02-01
We study the effects of an autapse, which is mathematically described as a self-feedback loop, on the propagation of weak, localized pacemaker activity across a Newman-Watts small-world network consisting of stochastic Hodgkin-Huxley neurons. We consider that only the pacemaker neuron, which is stimulated by a subthreshold periodic signal, has an electrical autapse that is characterized by a coupling strength and a delay time. We focus on the impact of the coupling strength, the network structure, the properties of the weak periodic stimulus, and the properties of the autapse on the transmission of localized pacemaker activity. Obtained results indicate the existence of optimal channel noise intensity for the propagation of the localized rhythm. Under optimal conditions, the autapse can significantly improve the propagation of pacemaker activity, but only for a specific range of the autaptic coupling strength. Moreover, the autaptic delay time has to be equal to the intrinsic oscillation period of the Hodgkin-Huxley neuron or its integer multiples. We analyze the inter-spike interval histogram and show that the autapse enhances or suppresses the propagation of the localized rhythm by increasing or decreasing the phase locking between the spiking of the pacemaker neuron and the weak periodic signal. In particular, when the autaptic delay time is equal to the intrinsic period of oscillations an optimal phase locking takes place, resulting in a dominant time scale of the spiking activity. We also investigate the effects of the network structure and the coupling strength on the propagation of pacemaker activity. We find that there exist an optimal coupling strength and an optimal network structure that together warrant an optimal propagation of the localized rhythm.
Xu, J; Chen, J D Z
2008-03-01
The aim of this study was to investigate the effects of short-pulse intestinal electrical stimulation (IES) on duodenal distention-induced delayed gastric emptying and vomiting in dogs and its possible mechanisms. The study was performed in 12 dogs with jejunal electrodes and a duodenal cannula in three separate experiments to investigate the effects of IES on duodenal distension (DD)-induced delayed gastric emptying and discomfort signs, vagal efferent activity, and jejunal tone. We found that: (i) IES significantly accelerated gastric emptying of liquid delayed by distension (18.05 +/- 4.06%vs. 7.18 +/- 1.99%, P = 0.036 at 60 min). (ii) IES significantly reduced vomiting and discomfort/pain induced by distension. The average signs score was 15.33 +/- 1.37 during distension which decreased to 6.50 +/- 0.91 (P = 0.0002) with IES. (iii) IES did not change vagal afferent activity, which was assessed by the spectral analysis of the heart rate variability. (iv) IES decreased jejunal tone. In conclusion, IES with parameters commonly used in gastric electrical stimulation for nausea and vomiting associated with gastroparesis improves DD-induced delayed gastric emptying and prevents DD-induced vomiting and discomfort signs. Further studies are warranted to investigate the therapeutic potential of IES for gastrointestinal symptoms associated with disturbances in motility and sensory function in small intestine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Chinmaya; López, José Manuel; Azencott, Robert
Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemicalmore » Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.« less
Feedback and efficient behavior
2017-01-01
Feedback is an effective tool for promoting efficient behavior: it enhances individuals’ awareness of choice consequences in complex settings. Our study aims to isolate the mechanisms underlying the effects of feedback on achieving efficient behavior in a controlled environment. We design a laboratory experiment in which individuals are not aware of the consequences of different alternatives and, thus, cannot easily identify the efficient ones. We introduce feedback as a mechanism to enhance the awareness of consequences and to stimulate exploration and search for efficient alternatives. We assess the efficacy of three different types of intervention: provision of social information, manipulation of the frequency, and framing of feedback. We find that feedback is most effective when it is framed in terms of losses, that it reduces efficiency when it includes information about inefficient peers’ behavior, and that a lower frequency of feedback does not disrupt efficiency. By quantifying the effect of different types of feedback, our study suggests useful insights for policymakers. PMID:28430787
NASA Astrophysics Data System (ADS)
Cai, Xiushan; Meng, Lingxin; Zhang, Wei; Liu, Leipo
2018-03-01
We establish robustness of the predictor feedback control law to perturbations appearing at the system input for affine nonlinear systems with time-varying input delay and additive disturbances. Furthermore, it is shown that it is inverse optimal with respect to a differential game problem. All of the stability and inverse optimality proofs are based on the infinite-dimensional backstepping transformation and an appropriate Lyapunov functional. A single-link manipulator subject to input delays and disturbances is given to illustrate the validity of the proposed method.
Hybrid function projective synchronization in complex dynamical networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Qiang; Wang, Xing-yuan, E-mail: wangxy@dlut.edu.cn; Hu, Xiao-peng
2014-02-15
This paper investigates hybrid function projective synchronization in complex dynamical networks. When the complex dynamical networks could be synchronized up to an equilibrium or periodic orbit, a hybrid feedback controller is designed to realize the different component of vector of node could be synchronized up to different desired scaling function in complex dynamical networks with time delay. Hybrid function projective synchronization (HFPS) in complex dynamical networks with constant delay and HFPS in complex dynamical networks with time-varying coupling delay are researched, respectively. Finally, the numerical simulations show the effectiveness of theoretical analysis.
A flow-control mechanism for distributed systems
NASA Technical Reports Server (NTRS)
Maitan, J.
1991-01-01
A new approach to the rate-based flow control in store-and-forward networks is evaluated. Existing methods display oscillations in the presence of transport delays. The proposed scheme is based on the explicit use of an embedded dynamic model of a store-and-forward buffer in a controller's feedback loop. It is shown that the use of the model eliminates the oscillations caused by the transport delays. The paper presents simulation examples and assesses the applicability of the scheme in the new generation of high-speed photonic networks where transport delays must be considered.
NASA Astrophysics Data System (ADS)
Tang, Xianhua; Cao, Daomin; Zou, Xingfu
We consider a periodic Lotka-Volterra competition system without instantaneous negative feedbacks (i.e., pure-delay systems) x(t)=x(t)[r(t)-∑j=1na(t)x(t-τ(t))], i=1,2,…,n. We establish some 3/2-type criteria for global attractivity of a positive periodic solution of the system, which generalize the well-known Wright's 3/2 criteria for the autonomous delay logistic equation, and thereby, address the open problem proposed by both Kuang [Y. Kuang, Global stability in delayed nonautonomous Lotka-Volterra type systems without saturated equilibria, Differential Integral Equations 9 (1996) 557-567] and Teng [Z. Teng, Nonautonomous Lotka-Volterra systems with delays, J. Differential Equations 179 (2002) 538-561].
Transfer of learning on a spatial memory task between the blind and sighted people.
Akpinar, Selcuk; Popović, Stevo; Kirazci, Sadettin
2012-12-01
The purpose of this study was to analyze the effect of two different types of feedback on a spatial memory task between the blind and blindfolded-sighted participants. Participants tried to estimate the predetermined distance by using their dominant hands. Both blind and blindfolded-sighted groups were randomly divided into two feedback subgroups as "100% frequency" and "10% bandwidth". The score of the participants was given verbally to the participants as knowledge of results (KR). The target distance was set as 60 cm. Sixty acquisition trials were performed in 4 sets each including 15 repetition afterwards immediate and delayed retention tests were undertaken. Moreover, 24 hours past the delayed retention test, the participants completed 15 no-KR trials as a transfer test (target distance was 30 cm). The results of the statistical analyses revealed no significant differences for both acquisition and retention tests. However, a significant difference was found at transfer test. 100% frequency blind group performed significantly less accurate than all other groups. As a result, it can be concluded that different types of feedback have similar effect on spatial memory task used in this study. However, types of feedback can change the performance of accuracy on transferring this skill among the blind.
Predictive Coding in Area V4: Dynamic Shape Discrimination under Partial Occlusion
Choi, Hannah; Pasupathy, Anitha; Shea-Brown, Eric
2018-01-01
The primate visual system has an exquisite ability to discriminate partially occluded shapes. Recent electrophysiological recordings suggest that response dynamics in intermediate visual cortical area V4, shaped by feedback from prefrontal cortex (PFC), may play a key role. To probe the algorithms that may underlie these findings, we build and test a model of V4 and PFC interactions based on a hierarchical predictive coding framework. We propose that probabilistic inference occurs in two steps. Initially, V4 responses are driven solely by bottom-up sensory input and are thus strongly influenced by the level of occlusion. After a delay, V4 responses combine both feedforward input and feedback signals from the PFC; the latter reflect predictions made by PFC about the visual stimulus underlying V4 activity. We find that this model captures key features of V4 and PFC dynamics observed in experiments. Specifically, PFC responses are strongest for occluded stimuli and delayed responses in V4 are less sensitive to occlusion, supporting our hypothesis that the feedback signals from PFC underlie robust discrimination of occluded shapes. Thus, our study proposes that area V4 and PFC participate in hierarchical inference, with feedback signals encoding top-down predictions about occluded shapes. PMID:29566355
Hyldstrup, L; Christiansen, C; Nielsen, M D; Transbøl, I
1984-06-01
Hormonal changes after arginine-induced growth hormone stimulation and subsequent testosterone treatment were examined in 5 patients classified as having male delayed puberty. All the patients responded well to growth hormone stimulation and a significant negative correlation was found between the delay in height age and the maximal growth hormone response, r = 0.80, P less than 0.05. The testosterone treatment did not alter this pattern. Changes in PTH, 25OHD, 24.25(OH)2D, and 1.25(OH)2D were examined at 24 h after the infusion. The results showed significant reductions in PTH (P less than 0.05) and 24.25 (OH)2D (P less than 0.05) and a possible increase in 1.25(OH)2D, whereas 25OHD remained unchanged. These results may support the conception of growth hormone as a common denominator of growth and bone metabolism.
Resurgence of oscillation in coupled oscillators under delayed cyclic interaction
NASA Astrophysics Data System (ADS)
Bera, Bidesh K.; Majhi, Soumen; Ghosh, Dibakar
2017-07-01
This paper investigates the emergence of amplitude death and revival of oscillations from the suppression states in a system of coupled dynamical units interacting through delayed cyclic mode. In order to resurrect the oscillation from amplitude death state, we introduce asymmetry and feedback parameter in the cyclic coupling forms as a result of which the death region shrinks due to higher asymmetry and lower feedback parameter values for coupled oscillatory systems. Some analytical conditions are derived for amplitude death and revival of oscillations in two coupled limit cycle oscillators and corresponding numerical simulations confirm the obtained theoretical results. We also report that the death state and revival of oscillations from quenched state are possible in the network of identical coupled oscillators. The proposed mechanism has also been examined using chaotic Lorenz oscillator.
Wang, Leimin; Shen, Yi; Zhang, Guodong
2016-10-01
This paper is concerned with the synchronization problem for a class of switched neural networks (SNNs) with time-varying delays. First, a new crucial lemma which includes and extends the classical exponential stability theorem is constructed. Then by using the lemma, new algebraic criteria of ψ -type synchronization (synchronization with general decay rate) for SNNs are established via the designed nonlinear feedback control. The ψ -type synchronization which is in a general framework is obtained by introducing a ψ -type function. It contains exponential synchronization, polynomial synchronization, and other synchronization as its special cases. The results of this paper are general, and they also complement and extend some previous results. Finally, numerical simulations are carried out to demonstrate the effectiveness of the obtained results.
Unraveling mirror properties in time-delayed quantum feedback scenarios
NASA Astrophysics Data System (ADS)
Faulstich, Fabian M.; Kraft, Manuel; Carmele, Alexander
2018-06-01
We derive in the Heisenberg picture a widely used phenomenological coupling element to treat feedback effects in quantum optical platforms. Our derivation is based on a microscopic Hamiltonian, which describes the mirror-emitter dynamics based on a dielectric, a mediating fully quantized electromagnetic field and a single two-level system in front of the dielectric. The dielectric is modelled as a system of identical two-state atoms. The Heisenberg equation yields a system of describing differential operator equations, which we solve in the Weisskopf-Wigner limit. Due to a finite round-trip time between emitter and dielectric, we yield delay differential operator equations. Our derivation motivates and justifies the typical phenomenologicalassumed coupling element and allows, furthermore, a generalization to a variety of mirrors, such as dissipative mirrors or mirrors with gain dynamics.
Shanechi, Maryam M.; Williams, Ziv M.; Wornell, Gregory W.; Hu, Rollin C.; Powers, Marissa; Brown, Emery N.
2013-01-01
Real-time brain-machine interfaces (BMI) have focused on either estimating the continuous movement trajectory or target intent. However, natural movement often incorporates both. Additionally, BMIs can be modeled as a feedback control system in which the subject modulates the neural activity to move the prosthetic device towards a desired target while receiving real-time sensory feedback of the state of the movement. We develop a novel real-time BMI using an optimal feedback control design that jointly estimates the movement target and trajectory of monkeys in two stages. First, the target is decoded from neural spiking activity before movement initiation. Second, the trajectory is decoded by combining the decoded target with the peri-movement spiking activity using an optimal feedback control design. This design exploits a recursive Bayesian decoder that uses an optimal feedback control model of the sensorimotor system to take into account the intended target location and the sensory feedback in its trajectory estimation from spiking activity. The real-time BMI processes the spiking activity directly using point process modeling. We implement the BMI in experiments consisting of an instructed-delay center-out task in which monkeys are presented with a target location on the screen during a delay period and then have to move a cursor to it without touching the incorrect targets. We show that the two-stage BMI performs more accurately than either stage alone. Correct target prediction can compensate for inaccurate trajectory estimation and vice versa. The optimal feedback control design also results in trajectories that are smoother and have lower estimation error. The two-stage decoder also performs better than linear regression approaches in offline cross-validation analyses. Our results demonstrate the advantage of a BMI design that jointly estimates the target and trajectory of movement and more closely mimics the sensorimotor control system. PMID:23593130
Activity in children with ADHD during waiting situations in the classroom: a pilot study.
Antrop, Inge; Buysse, Ann; Roeyers, Herbert; Van Oost, Paulette
2005-03-01
According to the optimal stimulation theory and the delay aversion hypothesis, children with attention deficit hyperactivity disorder (ADHD) experience difficulties when they are confronted with low levels of stimulation and delay, respectively. This study investigated the activity level of children with ADHD during waiting situations in the classroom. Three series of hypothesis were made: (1) with respect to the comparison between waiting and non-waiting intervals, (2) with respect to the effects of non-temporal stimulation, and (3) with respect to the effects of temporal stimulation on behaviour during waiting. The activity level of 14 children with ADHD and 14 control children between the ages of 6 and 11 years was observed during two non-waiting class situations and three waiting situations: without any stimulation, in the presence of nontemporal stimulation and in the presence of temporal stimulation. Both groups of children obtained higher activity scores for all behavioural dimensions during waiting compared with non-waiting situations. The results further revealed additive effects of waiting and diagnostic group on behaviour. Additional nontemporal stimulation during waiting affected the behaviour of all children for most behavioural characteristics. For noisiness, additive effects were also found for diagnostic group and either non-temporal stimulation or temporal stimulation. For restlessness, a trend for an interaction effect between diagnostic group and nontemporal stimulation was found. The findings have clear implications for school observations within an assessment protocol.
Illusory Reversal of Causality between Touch and Vision has No Effect on Prism Adaptation Rate.
Tanaka, Hirokazu; Homma, Kazuhiro; Imamizu, Hiroshi
2012-01-01
Learning, according to Oxford Dictionary, is "to gain knowledge or skill by studying, from experience, from being taught, etc." In order to learn from experience, the central nervous system has to decide what action leads to what consequence, and temporal perception plays a critical role in determining the causality between actions and consequences. In motor adaptation, causality between action and consequence is implicitly assumed so that a subject adapts to a new environment based on the consequence caused by her action. Adaptation to visual displacement induced by prisms is a prime example; the visual error signal associated with the motor output contributes to the recovery of accurate reaching, and a delayed feedback of visual error can decrease the adaptation rate. Subjective feeling of temporal order of action and consequence, however, can be modified or even reversed when her sense of simultaneity is manipulated with an artificially delayed feedback. Our previous study (Tanaka et al., 2011; Exp. Brain Res.) demonstrated that the rate of prism adaptation was unaffected when the subjective delay of visual feedback was shortened. This study asked whether subjects could adapt to prism adaptation and whether the rate of prism adaptation was affected when the subjective temporal order was illusory reversed. Adapting to additional 100 ms delay and its sudden removal caused a positive shift of point of simultaneity in a temporal order judgment experiment, indicating an illusory reversal of action and consequence. We found that, even in this case, the subjects were able to adapt to prism displacement with the learning rate that was statistically indistinguishable to that without temporal adaptation. This result provides further evidence to the dissociation between conscious temporal perception and motor adaptation.
... is lack of or delay in sexual climax (orgasm) even though sexual stimulation is sufficient and the woman is sexually aroused ... therapies are helpful. The amount and type of stimulation required for orgasm varies greatly from woman to woman. Most women ...
Hellrung, Lydia; Dietrich, Anja; Hollmann, Maurice; Pleger, Burkhard; Kalberlah, Christian; Roggenhofer, Elisabeth; Villringer, Arno; Horstmann, Annette
2018-02-01
Real-time fMRI neurofeedback is a feasible tool to learn the volitional regulation of brain activity. So far, most studies provide continuous feedback information that is presented upon every volume acquisition. Although this maximizes the temporal resolution of feedback information, it may be accompanied by some disadvantages. Participants can be distracted from the regulation task due to (1) the intrinsic delay of the hemodynamic response and associated feedback and (2) limited cognitive resources available to simultaneously evaluate feedback information and stay engaged with the task. Here, we systematically investigate differences between groups presented with different variants of feedback (continuous vs. intermittent) and a control group receiving no feedback on their ability to regulate amygdala activity using positive memories and feelings. In contrast to the feedback groups, no learning effect was observed in the group without any feedback presentation. The group receiving intermittent feedback exhibited better amygdala regulation performance when compared with the group receiving continuous feedback. Behavioural measurements show that these effects were reflected in differences in task engagement. Overall, we not only demonstrate that the presentation of feedback is a prerequisite to learn volitional control of amygdala activity but also that intermittent feedback is superior to continuous feedback presentation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jeong-Eun; Woo, Seon Rang; Department of Biochemistry, College of Medicine, Korea University, Seoul 136-705
Research highlights: {yields} Paclitaxel serves as a stimulator of chromosomal fusion in cells in which telomeres are dysfunctional. {yields} Typical fusions involve p-arms, but paclitaxel-induced fusions occur between both q- and p-arms. {yields} Paclitaxel-stimulated fusions in cells in which telomeres are dysfunctional evoke prolonged G2/M cell cycle arrest and delay multinucleation. {yields} Upon telomere erosion, paclitaxel promotes chromosomal instability and subsequent apoptosis. {yields} Chromosomal fusion enhances paclitaxel chemosensitivity under telomere dysfunction. -- Abstract: The anticancer effect of paclitaxel is attributable principally to irreversible promotion of microtubule stabilization and is hampered upon development of chemoresistance by tumor cells. Telomere shortening, andmore » eventual telomere erosion, evoke chromosomal instability, resulting in particular cellular responses. Using telomerase-deficient cells derived from mTREC-/-p53-/- mice, here we show that, upon telomere erosion, paclitaxel propagates chromosomal instability by stimulating chromosomal end-to-end fusions and delaying the development of multinucleation. The end-to-end fusions involve both the p- and q-arms in cells in which telomeres are dysfunctional. Paclitaxel-induced chromosomal fusions were accompanied by prolonged G2/M cell cycle arrest, delayed multinucleation, and apoptosis. Telomere dysfunctional cells with mutlinucleation eventually underwent apoptosis. Thus, as telomere erosion proceeds, paclitaxel stimulates chromosomal fusion and instability, and both apoptosis and chemosensitization eventually develop.« less
Rougier, P
2004-04-01
The visual feedback technique (VFB) is recognized by several studies as a valuable tool for re-establishing the balance functions. However, one former study has highlighted the fact that the increased control induced by this technique infer both favourable (the amplitudes of the horizontal motions of the centre of gravity (CoG(h)) are diminished) and unfavourable features (the vertical difference between the CoG(h) motions and centre of pressure (CoP) trajectories are enhanced). One means to decrease these CoP-CoG(v) motions is to delay their display on the screen of the monitor. To assess these behavioural effects, 16 healthy adults were evaluated with various delays from 0 to 1200 ms. CoP displacements, measured through a force platform, were decomposed into two elementary motions: CoG(h) and the difference CoP-CoG(v). A fractional Brownian motion modelling of these motions allowed to determine from which distance and for how long the corrective process takes over and to what extent the motion is controlled. Compared to the VFB real time condition, increasing the delay induces some effects mainly on the CoP-CoG(v) motions which are largely diminished, the most striking effect appearing for delays exceeding 600 ms. Despite the lower forces these reduced amplitudes infer to control body sways, the amplitudes of the CoG(h) motions tend to increase slightly. Considered as a whole, whilst retaining the beneficial aspects of VFB without delay and significantly suppressing the unfavourable features, the data suggests that the method of delaying the screen display optimises the VFB technique.
Nataraj, Raviraj; Audu, Musa L; Triolo, Ronald J
2012-05-06
The purpose of this study was to determine the comparative effectiveness of feedback control systems for maintaining standing balance based on joint kinematics or total body center of mass (COM) acceleration, and assess their clinical practicality for standing neuroprostheses after spinal cord injury (SCI). In simulation, controller performance was measured according to the upper extremity effort required to stabilize a three-dimensional model of bipedal standing against a variety of postural disturbances. Three cases were investigated: proportional-derivative control based on joint kinematics alone, COM acceleration feedback alone, and combined joint kinematics and COM acceleration feedback. Additionally, pilot data was collected during external perturbations of an individual with SCI standing with functional neuromuscular stimulation (FNS), and the resulting joint kinematics and COM acceleration data was analyzed. Compared to the baseline case of maximal constant muscle excitations, the three control systems reduced the mean upper extremity loading by 51%, 43% and 56%, respectively against external force-pulse perturbations. Controller robustness was defined as the degradation in performance with increasing levels of input errors expected with clinical deployment of sensor-based feedback. At error levels typical for body-mounted inertial sensors, performance degradation due to sensor noise and placement were negligible. However, at typical tracking error levels, performance could degrade as much as 86% for joint kinematics feedback and 35% for COM acceleration feedback. Pilot data indicated that COM acceleration could be estimated with a few well-placed sensors and efficiently captures information related to movement synergies observed during perturbed bipedal standing following SCI. Overall, COM acceleration feedback may be a more feasible solution for control of standing with FNS given its superior robustness and small number of inputs required.
2012-01-01
Background The purpose of this study was to determine the comparative effectiveness of feedback control systems for maintaining standing balance based on joint kinematics or total body center of mass (COM) acceleration, and assess their clinical practicality for standing neuroprostheses after spinal cord injury (SCI). Methods In simulation, controller performance was measured according to the upper extremity effort required to stabilize a three-dimensional model of bipedal standing against a variety of postural disturbances. Three cases were investigated: proportional-derivative control based on joint kinematics alone, COM acceleration feedback alone, and combined joint kinematics and COM acceleration feedback. Additionally, pilot data was collected during external perturbations of an individual with SCI standing with functional neuromuscular stimulation (FNS), and the resulting joint kinematics and COM acceleration data was analyzed. Results Compared to the baseline case of maximal constant muscle excitations, the three control systems reduced the mean upper extremity loading by 51%, 43% and 56%, respectively against external force-pulse perturbations. Controller robustness was defined as the degradation in performance with increasing levels of input errors expected with clinical deployment of sensor-based feedback. At error levels typical for body-mounted inertial sensors, performance degradation due to sensor noise and placement were negligible. However, at typical tracking error levels, performance could degrade as much as 86% for joint kinematics feedback and 35% for COM acceleration feedback. Pilot data indicated that COM acceleration could be estimated with a few well-placed sensors and efficiently captures information related to movement synergies observed during perturbed bipedal standing following SCI. Conclusions Overall, COM acceleration feedback may be a more feasible solution for control of standing with FNS given its superior robustness and small number of inputs required. PMID:22559852
A vibratory stimulation-based inhibition system for nocturnal bruxism: a clinical report.
Watanabe, T; Baba, K; Yamagata, K; Ohyama, T; Clark, G T
2001-03-01
For the single subject tested to date, the bruxism-contingent vibratory-feedback system for occlusal appliances effectively inhibited bruxism without inducing substantial sleep disturbance. Whether the reduction in bruxism would continue if the device no longer provided feedback and whether the force levels applied are optimal to induce suppression remain to be determined.
iSELF: The Development of an Internet-Tool for Self-Evaluation and Learner Feedback
ERIC Educational Resources Information Center
Theunissen, Nicolet; Stubbé, Hester
2014-01-01
This paper describes the theoretical basis and development of the iSELF: an Internet-tool for Self-Evaluation and Learner Feedback to stimulate self-directed learning in ubiquitous learning environments. In ubiquitous learning, learners follow their own trails of interest, scaffolded by coaches, peers and tools for thinking and learning.…
How Do Teachers and Learners Perceive Corrective Feedback in the Japanese Language Classroom?
ERIC Educational Resources Information Center
Yoshida, Reiko
2010-01-01
This study examined Japanese language teachers' and learners' perceptions of corrective feedback (CF), focusing on the cases in which the learners responded to the teachers' CF. Data were collected from the second-year course of an Australian university for 1 semester by classroom observation and audio recording and stimulated recall interviews.…
Scratch This! The IF-AT as a Technique for Stimulating Group Discussion and Exposing Misconceptions
ERIC Educational Resources Information Center
Cotner, Sehoya; Baepler, Paul; Kellerman, Anne
2008-01-01
Frequent and immediate feedback is critical for learning and retaining content as well as developing effective learning teams (Michaelson, Knight, and Fink 2004). The Immediate Feedback Assessment Technique (IF-AT) provides a single and efficient way for learners to self-assess their progress in a course and to structure significant small-group…
The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson's disease.
Tinkhauser, Gerd; Pogosyan, Alek; Little, Simon; Beudel, Martijn; Herz, Damian M; Tan, Huiling; Brown, Peter
2017-04-01
Adaptive deep brain stimulation uses feedback about the state of neural circuits to control stimulation rather than delivering fixed stimulation all the time, as currently performed. In patients with Parkinson's disease, elevations in beta activity (13-35 Hz) in the subthalamic nucleus have been demonstrated to correlate with clinical impairment and have provided the basis for feedback control in trials of adaptive deep brain stimulation. These pilot studies have suggested that adaptive deep brain stimulation may potentially be more effective, efficient and selective than conventional deep brain stimulation, implying mechanistic differences between the two approaches. Here we test the hypothesis that such differences arise through differential effects on the temporal dynamics of beta activity. The latter is not constantly increased in Parkinson's disease, but comes in bursts of different durations and amplitudes. We demonstrate that the amplitude of beta activity in the subthalamic nucleus increases in proportion to burst duration, consistent with progressively increasing synchronization. Effective adaptive deep brain stimulation truncated long beta bursts shifting the distribution of burst duration away from long duration with large amplitude towards short duration, lower amplitude bursts. Critically, bursts with shorter duration are negatively and bursts with longer duration positively correlated with the motor impairment off stimulation. Conventional deep brain stimulation did not change the distribution of burst durations. Although both adaptive and conventional deep brain stimulation suppressed mean beta activity amplitude compared to the unstimulated state, this was achieved by a selective effect on burst duration during adaptive deep brain stimulation, whereas conventional deep brain stimulation globally suppressed beta activity. We posit that the relatively selective effect of adaptive deep brain stimulation provides a rationale for why this approach could be more efficacious than conventional continuous deep brain stimulation in the treatment of Parkinson's disease, and helps inform how adaptive deep brain stimulation might best be delivered. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved.
The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease
Tinkhauser, Gerd; Pogosyan, Alek; Little, Simon; Beudel, Martijn; Herz, Damian M.; Tan, Huiling
2017-01-01
Abstract Adaptive deep brain stimulation uses feedback about the state of neural circuits to control stimulation rather than delivering fixed stimulation all the time, as currently performed. In patients with Parkinson’s disease, elevations in beta activity (13–35 Hz) in the subthalamic nucleus have been demonstrated to correlate with clinical impairment and have provided the basis for feedback control in trials of adaptive deep brain stimulation. These pilot studies have suggested that adaptive deep brain stimulation may potentially be more effective, efficient and selective than conventional deep brain stimulation, implying mechanistic differences between the two approaches. Here we test the hypothesis that such differences arise through differential effects on the temporal dynamics of beta activity. The latter is not constantly increased in Parkinson’s disease, but comes in bursts of different durations and amplitudes. We demonstrate that the amplitude of beta activity in the subthalamic nucleus increases in proportion to burst duration, consistent with progressively increasing synchronization. Effective adaptive deep brain stimulation truncated long beta bursts shifting the distribution of burst duration away from long duration with large amplitude towards short duration, lower amplitude bursts. Critically, bursts with shorter duration are negatively and bursts with longer duration positively correlated with the motor impairment off stimulation. Conventional deep brain stimulation did not change the distribution of burst durations. Although both adaptive and conventional deep brain stimulation suppressed mean beta activity amplitude compared to the unstimulated state, this was achieved by a selective effect on burst duration during adaptive deep brain stimulation, whereas conventional deep brain stimulation globally suppressed beta activity. We posit that the relatively selective effect of adaptive deep brain stimulation provides a rationale for why this approach could be more efficacious than conventional continuous deep brain stimulation in the treatment of Parkinson’s disease, and helps inform how adaptive deep brain stimulation might best be delivered. PMID:28334851
Selective Activation of the Deep Layers of the Human Primary Visual Cortex by Top-Down Feedback.
Kok, Peter; Bains, Lauren J; van Mourik, Tim; Norris, David G; de Lange, Floris P
2016-02-08
In addition to bottom-up input, the visual cortex receives large amounts of feedback from other cortical areas [1-3]. One compelling example of feedback activation of early visual neurons in the absence of bottom-up input occurs during the famous Kanizsa illusion, where a triangular shape is perceived, even in regions of the image where there is no bottom-up visual evidence for it. This illusion increases the firing activity of neurons in the primary visual cortex with a receptive field on the illusory contour [4]. Feedback signals are largely segregated from feedforward signals within each cortical area, with feedforward signals arriving in the middle layer, while top-down feedback avoids the middle layers and predominantly targets deep and superficial layers [1, 2, 5, 6]. Therefore, the feedback-mediated activity increase in V1 during the perception of illusory shapes should lead to a specific laminar activity profile that is distinct from the activity elicited by bottom-up stimulation. Here, we used fMRI at high field (7 T) to empirically test this hypothesis, by probing the cortical response to illusory figures in human V1 at different cortical depths [7-14]. We found that, whereas bottom-up stimulation activated all cortical layers, feedback activity induced by illusory figures led to a selective activation of the deep layers of V1. These results demonstrate the potential for non-invasive recordings of neural activity with laminar specificity in humans and elucidate the role of top-down signals during perceptual processing. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lu, Jianbo; Li, Dewei; Xi, Yugeng
2013-07-01
This article is concerned with probability-based constrained model predictive control (MPC) for systems with both structured uncertainties and time delays, where a random input delay and multiple fixed state delays are included. The process of input delay is governed by a discrete-time finite-state Markov chain. By invoking an appropriate augmented state, the system is transformed into a standard structured uncertain time-delay Markov jump linear system (MJLS). For the resulting system, a multi-step feedback control law is utilised to minimise an upper bound on the expected value of performance objective. The proposed design has been proved to stabilise the closed-loop system in the mean square sense and to guarantee constraints on control inputs and system states. Finally, a numerical example is given to illustrate the proposed results.
Persistent Memory in Single Node Delay-Coupled Reservoir Computing.
Kovac, André David; Koall, Maximilian; Pipa, Gordon; Toutounji, Hazem
2016-01-01
Delays are ubiquitous in biological systems, ranging from genetic regulatory networks and synaptic conductances, to predator/pray population interactions. The evidence is mounting, not only to the presence of delays as physical constraints in signal propagation speed, but also to their functional role in providing dynamical diversity to the systems that comprise them. The latter observation in biological systems inspired the recent development of a computational architecture that harnesses this dynamical diversity, by delay-coupling a single nonlinear element to itself. This architecture is a particular realization of Reservoir Computing, where stimuli are injected into the system in time rather than in space as is the case with classical recurrent neural network realizations. This architecture also exhibits an internal memory which fades in time, an important prerequisite to the functioning of any reservoir computing device. However, fading memory is also a limitation to any computation that requires persistent storage. In order to overcome this limitation, the current work introduces an extended version to the single node Delay-Coupled Reservoir, that is based on trained linear feedback. We show by numerical simulations that adding task-specific linear feedback to the single node Delay-Coupled Reservoir extends the class of solvable tasks to those that require nonfading memory. We demonstrate, through several case studies, the ability of the extended system to carry out complex nonlinear computations that depend on past information, whereas the computational power of the system with fading memory alone quickly deteriorates. Our findings provide the theoretical basis for future physical realizations of a biologically-inspired ultrafast computing device with extended functionality.
Persistent Memory in Single Node Delay-Coupled Reservoir Computing
Pipa, Gordon; Toutounji, Hazem
2016-01-01
Delays are ubiquitous in biological systems, ranging from genetic regulatory networks and synaptic conductances, to predator/pray population interactions. The evidence is mounting, not only to the presence of delays as physical constraints in signal propagation speed, but also to their functional role in providing dynamical diversity to the systems that comprise them. The latter observation in biological systems inspired the recent development of a computational architecture that harnesses this dynamical diversity, by delay-coupling a single nonlinear element to itself. This architecture is a particular realization of Reservoir Computing, where stimuli are injected into the system in time rather than in space as is the case with classical recurrent neural network realizations. This architecture also exhibits an internal memory which fades in time, an important prerequisite to the functioning of any reservoir computing device. However, fading memory is also a limitation to any computation that requires persistent storage. In order to overcome this limitation, the current work introduces an extended version to the single node Delay-Coupled Reservoir, that is based on trained linear feedback. We show by numerical simulations that adding task-specific linear feedback to the single node Delay-Coupled Reservoir extends the class of solvable tasks to those that require nonfading memory. We demonstrate, through several case studies, the ability of the extended system to carry out complex nonlinear computations that depend on past information, whereas the computational power of the system with fading memory alone quickly deteriorates. Our findings provide the theoretical basis for future physical realizations of a biologically-inspired ultrafast computing device with extended functionality. PMID:27783690
NASA Astrophysics Data System (ADS)
Wilson, J. Adam; Walton, Léo M.; Tyler, Mitch; Williams, Justin
2012-08-01
This article describes a new method of providing feedback during a brain-computer interface movement task using a non-invasive, high-resolution electrotactile vision substitution system. We compared the accuracy and movement times during a center-out cursor movement task, and found that the task performance with tactile feedback was comparable to visual feedback for 11 participants. These subjects were able to modulate the chosen BCI EEG features during both feedback modalities, indicating that the type of feedback chosen does not matter provided that the task information is clearly conveyed through the chosen medium. In addition, we tested a blind subject with the tactile feedback system, and found that the training time, accuracy, and movement times were indistinguishable from results obtained from subjects using visual feedback. We believe that BCI systems with alternative feedback pathways should be explored, allowing individuals with severe motor disabilities and accompanying reduced visual and sensory capabilities to effectively use a BCI.
Changes in complex spike activity during classical conditioning
Rasmussen, Anders; Jirenhed, Dan-Anders; Wetmore, Daniel Z.; Hesslow, Germund
2014-01-01
The cerebellar cortex is necessary for adaptively timed conditioned responses (CRs) in eyeblink conditioning. During conditioning, Purkinje cells acquire pause responses or “Purkinje cell CRs” to the conditioned stimuli (CS), resulting in disinhibition of the cerebellar nuclei (CN), allowing them to activate motor nuclei that control eyeblinks. This disinhibition also causes inhibition of the inferior olive (IO), via the nucleo-olivary pathway (N-O). Activation of the IO, which relays the unconditional stimulus (US) to the cortex, elicits characteristic complex spikes in Purkinje cells. Although Purkinje cell activity, as well as stimulation of the CN, is known to influence IO activity, much remains to be learned about the way that learned changes in simple spike firing affects the IO. In the present study, we analyzed changes in simple and complex spike firing, in extracellular Purkinje cell records, from the C3 zone, in decerebrate ferrets undergoing training in a conditioning paradigm. In agreement with the N-O feedback hypothesis, acquisition resulted in a gradual decrease in complex spike activity during the conditioned stimulus, with a delay that is consistent with the long N-O latency. Also supporting the feedback hypothesis, training with a short interstimulus interval (ISI), which does not lead to acquisition of a Purkinje cell CR, did not cause a suppression of complex spike activity. In contrast, observations that extinction did not lead to a recovery in complex spike activity and the irregular patterns of simple and complex spike activity after the conditioned stimulus are less conclusive. PMID:25140129
Pfordresher, Peter Q; Mantell, James T
2012-01-01
We report an experiment that tested whether effects of altered auditory feedback (AAF) during piano performance differ from its effects during singing. These effector systems differ with respect to the mapping between motor gestures and pitch content of auditory feedback. Whereas this action-effect mapping is highly reliable during phonation in any vocal motor task (singing or speaking), mapping between finger movements and pitch occurs only in limited situations, such as piano playing. Effects of AAF in both tasks replicated results previously found for keyboard performance (Pfordresher, 2003), in that asynchronous (delayed) feedback slowed timing whereas alterations to feedback pitch increased error rates, and the effect of asynchronous feedback was similar in magnitude across tasks. However, manipulations of feedback pitch had larger effects on singing than on keyboard production, suggesting effector-specific differences in sensitivity to action-effect mapping with respect to feedback content. These results support the view that disruption from AAF is based on abstract, effector independent, response-effect associations but that the strength of associations differs across effector systems. Copyright © 2011. Published by Elsevier B.V.
Recurrent, Delayed Hemorrhage Associated with Edoxaban after Deep Brain Stimulation Lead Placement
Garber, Sarah T.; Schrock, Lauren E.; House, Paul A.
2013-01-01
Factor-Xa inhibitors like edoxaban have been shown to have comparable or superior rates of stroke and systemic embolization prevention to warfarin while exhibiting lower clinically significant bleeding rates. The authors report a case of a man who presented with delayed, recurrent intracranial hemorrhage months after successful deep brain stimulator placement for Parkinson disease while on edoxaban for atrial fibrillation. Further reports on the use of novel anticoagulants after intracranial surgery are acutely needed to help assess the true relative risk they pose. PMID:23365773
He, Wangli; Qian, Feng; Han, Qing-Long; Cao, Jinde
2012-10-01
This paper investigates the problem of master-slave synchronization of two delayed Lur'e systems in the presence of parameter mismatches. First, by analyzing the corresponding synchronization error system, synchronization with an error level, which is referred to as quasi-synchronization, is established. Some delay-dependent quasi-synchronization criteria are derived. An estimation of the synchronization error bound is given, and an explicit expression of error levels is obtained. Second, sufficient conditions on the existence of feedback controllers under a predetermined error level are provided. The controller gains are obtained by solving a set of linear matrix inequalities. Finally, a delayed Chua's circuit is chosen to illustrate the effectiveness of the derived results.
Non-predictor control of a class of feedforward nonlinear systems with unknown time-varying delays
NASA Astrophysics Data System (ADS)
Koo, Min-Sung; Choi, Ho-Lim
2016-08-01
This paper generalises the several recent results on the control of feedforward time-delay nonlinear systems. First, in view of system formulation, there are unknown time-varying delays in both states and main control input. Also, the considered nonlinear system has extended feedforward nonlinearities. Second, in view of control solution, our proposed controller is a non-predictor feedback controller whereas smith-predictor type controllers are used in the several existing results. Moreover, our controller does not need any information on the unknown delays except their upper bounds. Thus, our result has certain merits in both system formulation and control solution perspective. The analysis and example are given for clear illustration.
Impact of the Supervisor Feedback Environment on Creative Performance: A Moderated Mediation Model.
Zhang, Jian; Gong, Zhenxing; Zhang, Shuangyu; Zhao, Yujia
2017-01-01
Studies on the relationship between feedback and creative performance have only focused on the feedback-self and have underestimated the value of the feedback environment. Building on Self Determined Theory, the purpose of this article is to examine the relationship among feedback environment, creative personality, goal self-concordance and creative performance. Hierarchical regression analysis of a sample of 162 supervisor-employee dyads from nine industry firms. The results indicate that supervisor feedback environment is positively related to creative performance, the relationship between the supervisor feedback environment and creative performance is mediated by goal self-concordance perfectly and moderated by creative personality significantly. The mediation effort of goal self-concordance is significantly influenced by creative personality. The implication of improving employees' creative performance is further discussed. The present study advances several perspectives of previous studies, echoes recent suggestions that organizations interested in stimulating employee creativity might profitably focus on developing work contexts that support it.
Simultaneous tDCS-fMRI Identifies Resting State Networks Correlated with Visual Search Enhancement.
Callan, Daniel E; Falcone, Brian; Wada, Atsushi; Parasuraman, Raja
2016-01-01
This study uses simultaneous transcranial direct current stimulation (tDCS) and functional MRI (fMRI) to investigate tDCS modulation of resting state activity and connectivity that underlies enhancement in behavioral performance. The experiment consisted of three sessions within the fMRI scanner in which participants conducted a visual search task: Session 1: Pre-training (no performance feedback), Session 2: Training (performance feedback given), Session 3: Post-training (no performance feedback). Resting state activity was recorded during the last 5 min of each session. During the 2nd session one group of participants underwent 1 mA tDCS stimulation and another underwent sham stimulation over the right posterior parietal cortex. Resting state spontaneous activity, as measured by fractional amplitude of low frequency fluctuations (fALFF), for session 2 showed significant differences between the tDCS stim and sham groups in the precuneus. Resting state functional connectivity from the precuneus to the substantia nigra, a subcortical dopaminergic region, was found to correlate with future improvement in visual search task performance for the stim over the sham group during active stimulation in session 2. The after-effect of stimulation on resting state functional connectivity was measured following a post-training experimental session (session 3). The left cerebellum Lobule VIIa Crus I showed performance related enhancement in resting state functional connectivity for the tDCS stim over the sham group. The ability to determine the relationship that the relative strength of resting state functional connectivity for an individual undergoing tDCS has on future enhancement in behavioral performance has wide ranging implications for neuroergonomic as well as therapeutic, and rehabilitative applications.
Nearly-octave wavelength tuning of a continuous wave fiber laser
Zhang, Lei; Jiang, Huawei; Yang, Xuezong; Pan, Weiwei; Cui, Shuzhen; Feng, Yan
2017-01-01
The wavelength tunability of conventional fiber lasers are limited by the bandwidth of gain spectrum and the tunability of feedback mechanism. Here a fiber laser which is continuously tunable from 1 to 1.9 μm is reported. It is a random distributed feedback Raman fiber laser, pumped by a tunable Yb doped fiber laser. The ultra-wide wavelength tunability is enabled by the unique property of random distributed feedback Raman fiber laser that both stimulated Raman scattering gain and Rayleigh scattering feedback are available at any wavelength. The dispersion property of the gain fiber is used to control the spectral purity of the laser output. PMID:28198414
Arfin, Scott K; Sarpeshkar, Rahul
2012-02-01
In this paper, we present a novel energy-efficient electrode stimulator. Our stimulator uses inductive storage and recycling of energy in a dynamic power supply. This supply drives an electrode in an adiabatic fashion such that energy consumption is minimized. It also utilizes a shunt current-sensor to monitor and regulate the current through the electrode via feedback, thus enabling flexible and safe stimulation. Since there are no explicit current sources or current limiters, wasteful energy dissipation across such elements is naturally avoided. The dynamic power supply allows efficient transfer of energy both to and from the electrode and is based on a DC-DC converter topology that we use in a bidirectional fashion in forward-buck or reverse-boost modes. In an exemplary electrode implementation intended for neural stimulation, we show how the stimulator combines the efficiency of voltage control and the safety and accuracy of current control in a single low-power integrated-circuit built in a standard .35 μm CMOS process. This stimulator achieves a 2x-3x reduction in energy consumption as compared to a conventional current-source-based stimulator operating from a fixed power supply. We perform a theoretical analysis of the energy efficiency that is in accord with experimental measurements. This theoretical analysis reveals that further improvements in energy efficiency may be achievable with better implementations in the future. Our electrode stimulator could be widely useful for neural, cardiac, retinal, cochlear, muscular and other biomedical implants where low power operation is important.
Carroll, S M; Heilman, S J; Stremel, R W; Tobin, G R; Barker, J H
1997-04-01
Ischemia of the distal portion of the latissimus dorsi muscle occurs in muscle transfer for cardiomyoplasty and reduces distal muscle contractility and thus the mechanical effectiveness of cardiomyoplasty. We hypothesized that muscle function would be improved by a vascular delay procedure that increases distal muscle perfusion of the latissimus dorsi muscle. The latissimus dorsi muscles of 10 adult mongrel dogs were subjected to a vascular delay procedure on one side and a sham procedure on the other. Following 10 days of vascular delay, muscle perfusion was measured with a laser-Doppler perfusion imager before and after elevation of the muscles as flaps based only on their thoracodorsal neurovascular pedicles. The muscles were wrapped and sutured around silicone chambers (simulating cardiomyoplasty), a stimulating electrode was placed around each thoracodorsal nerve, and the muscles were stimulated to contract in both rhythmic and tetanic fashion. Circumferential (distal and middle latissimus dorsi muscle function) force generation and fatigue rates were measured independently. Circumferential muscle force, circumferential and longitudinal fatigue rate, and distal, middle, and overall perfusion were significantly (p < 0.05) improved in delayed muscle compared with nondelayed muscle. We found that a vascular delay procedure and a 10-day delay adaptation period significantly improve latissimus dorsi muscle flap perfusion and function, particularly in the distal and middle portions of the muscle. Delay should be considered as a means of improving the clinical outcome in cardiomyoplasty.
Delayed orgasm and anorgasmia.
Jenkins, Lawrence C; Mulhall, John P
2015-11-01
Delayed orgasm/anorgasmia defined as the persistent or recurrent difficulty, delay in, or absence of attaining orgasm after sufficient sexual stimulation, which causes personal distress. Delayed orgasm and anorgasmia are associated with significant sexual dissatisfaction. A focused medical history can shed light on the potential etiologies, which include medications, penile sensation loss, endocrinopathies, penile hyperstimulation, and psychological etiologies. Unfortunately, there are no excellent pharmacotherapies for delayed orgasm/anorgasmia, and treatment revolves largely around addressing potential causative factors and psychotherapy. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
2004-01-01
rather 37 than an active participant. This distractibility interferes with the physical and psychological stimulation needed for heightened sexual... stimulation or intercourse, how often did you have the feeling of orgasm or climax? 0 = No sexual stimulation /intercourse 1 = Almost never/never 2...arousal and orgasm . The DSM-IV (1994) was the first revision to include a category for drug induced sexual dysfunction (Segraves, 2002). Erectile
McClelland, Jessica; Kekic, Maria; Campbell, Iain C; Schmidt, Ulrike
2016-03-01
This case series examined the therapeutic potential of repetitive transcranial magnetic stimulation in five women with enduring anorexia nervosa. Participants received ~20 sessions of neuronavigated high-frequency repetitive transcranial magnetic stimulation to the left dorsolateral prefrontal cortex. Body mass index, eating disorder (ED) symptoms and mood were assessed pre-treatment and post-treatment, at 6-month and 12-month follow-up (FU). Qualitative feedback regarding the intervention was obtained from participants and carers. From pre-treatment to post-treatment, ED and affective symptoms improved significantly, and body mass index remained stable. Further improvements in ED symptoms/mood were seen at 6-month FU with 3/5 and 2/5 participants deemed 'recovered' on the Eating Disorders Examination Questionnaire and Depression, Anxiety and Stress Scale, respectively. However, most participants had lost some weight, and therapeutic effects on psychopathology had waned by 12-month FU. Qualitative feedback regarding the intervention was encouraging. Repetitive transcranial magnetic stimulation was well tolerated, and preliminary evidence is provided for its therapeutic potential in anorexia nervosa. Copyright © 2015 John Wiley & Sons, Ltd and Eating Disorders Association.
Salchow, Christina; Valtin, Markus; Seel, Thomas; Schauer, Thomas
2016-06-13
Functional Electrical Stimulation via electrode arrays enables the user to form virtual electrodes (VEs) of dynamic shape, size, and position. We developed a feedback-control-assisted manual search strategy which allows the therapist to conveniently and continuously modify VEs to find a good stimulation area. This works for applications in which the desired movement consists of at least two degrees of freedom. The virtual electrode can be moved to arbitrary locations within the array, and each involved element is stimulated with an individual intensity. Meanwhile, the applied global stimulation intensity is controlled automatically to meet a predefined angle for one degree of freedom. This enables the therapist to concentrate on the remaining degree(s) of freedom while changing the VE position. This feedback-control-assisted approach aims to integrate the user's opinion and the patient's sensation. Therefore, our method bridges the gap between manual search and fully automatic identification procedures for array electrodes. Measurements in four healthy volunteers were performed to demonstrate the usefulness of our concept, using a 24-element array to generate wrist and hand extension.
Force-reflection and shared compliant control in operating telemanipulators with time delay
NASA Technical Reports Server (NTRS)
Kim, Won S.; Hannaford, Blake; Bejczy, Antal K.
1992-01-01
The performance of an advanced telemanipulation system in the presence of a wide range of time delays between a master control station and a slave robot is quantified. The contemplated applications include multiple satellite links to LEO, geosynchronous operation, spacecraft local area networks, and general-purpose computer-based short-distance designs. The results of high-precision peg-in-hole tasks performed by six test operators indicate that task performance decreased linearly with introduced time delays for both kinesthetic force feedback (KFF) and shared compliant control (SCC). The rate of this decrease was substantially improved with SCC compared to KFF. Task performance at delays above 1 s was not possible using KFF. SCC enabled task performance for such delays, which are realistic values for ground-controlled remote manipulation of telerobots in space.
Eberle, Henry; Nasuto, Slawomir J; Hayashi, Yoshikatsu
2018-03-01
We present a novel way of using a dynamical model for predictive tracking control that can adapt to a wide range of delays without parameter update. This is achieved by incorporating the paradigm of anticipating synchronization (AS), where a 'slave' system predicts a 'master' via delayed self-feedback. By treating the delayed output of the plant as one half of a 'sensory' AS coupling, the plant and an internal dynamical model can be synchronized such that the plant consistently leads the target's motion. We use two simulated robotic systems with differing arrangements of the plant and internal model ('parallel' and 'serial') to demonstrate that this form of control adapts to a wide range of delays without requiring the parameters of the controller to be changed.
Biomimetic NMES controller for arm movements supported by a passive exoskeleton.
Ferrante, S; Ambrosini, E; Ferrigno, G; Pedrocchi, A
2012-01-01
The European Project MUltimodal Neuroprosthesis for Daily Upper limb Support (MUNDUS) aims at the development of an assistive platform for recovering direct interaction capability during daily life activities based on arm reaching and hand functions. Within this project the present study is focused on the design of a biomimetic controller able to modulate the neuromuscular electrical stimulation needed to perform reaching movements supported by a commercial passive exoskeleton for weight relief. Once defined the activities of daily life to be supported by the MUNDUS system, an experimental campaign on healthy subjects was carried out to identify the repeatable kinematics and muscular solution adopted during the target movements. The kinematics resulted to be highly stereotyped, a root mean squared error lower than 5° was found between all the trajectories obtained by healthy subjects in the same movement. A principal component analysis was performed on the EMG signals: less than 5 components explained more than the 85% of the signal variance. This result suggested that the muscular strategy adopted by healthy subjects was stereotyped and can be replicated by a biomimetic NMES controller. The controller was based on a time-delay artificial neural network which mapped the dynamic and non-linear relationship between kinematics and EMG activations to determine the stimulation timing. The stimulation levels reproduced the same scaling factors found between muscles in the stereotyped strategy. The controller was tested on 2 healthy subjects and though it was a feedforward controller, it showed good accuracy in reaching the desired target positions. The integration of a feedback controller is foreseen to ensure the complete accomplishment of the task and to compensate for unpredictable conditions such as muscular fatigue.
NASA Astrophysics Data System (ADS)
Wang, Tong; Ding, Yongsheng; Zhang, Lei; Hao, Kuangrong
2016-08-01
This paper considered the synchronisation of continuous complex dynamical networks with discrete-time communications and delayed nodes. The nodes in the dynamical networks act in the continuous manner, while the communications between nodes are discrete-time; that is, they communicate with others only at discrete time instants. The communication intervals in communication period can be uncertain and variable. By using a piecewise Lyapunov-Krasovskii function to govern the characteristics of the discrete communication instants, we investigate the adaptive feedback synchronisation and a criterion is derived to guarantee the existence of the desired controllers. The globally exponential synchronisation can be achieved by the controllers under the updating laws. Finally, two numerical examples including globally coupled network and nearest-neighbour coupled networks are presented to demonstrate the validity and effectiveness of the proposed control scheme.
The impact of short-term heat storage on the ice-albedo feedback loop
NASA Astrophysics Data System (ADS)
Polashenski, C.; Wright, N.; Perovich, D. K.; Song, A.; Deeb, E. J.
2016-12-01
The partitioning of solar energy in the ice-ocean-atmosphere environment is a powerful control over Arctic sea ice mass balance. Ongoing transitions of the sea ice toward a younger, thinner state are enhancing absorption of solar energy and contributing to further declines in sea ice in a classic ice-albedo feedback. Here we investigate the solar energy balance over shorter timescales. In particular, we are concerned with short term delays in the transfer of absorbed solar energy to the ice caused by heat storage in the upper ocean. By delaying the realization of ice melt, and hence albedo decline, heat storage processes effectively retard the intra-season ice-albedo feedback. We seek to quantify the impact and variability of such intra-season storage delays on full season energy absorption. We use in-situ data collected from Arctic Observing Network (AON) sea ice sites, synthesized with the results of imagery processed from high resolution optical satellites, and basin-scale remote sensing products to approach the topic. AON buoys are used to monitor the storage and flux of heat, while satellite imagery allows us to quantify the evolution of surrounding ice conditions and predict the aggregate scale solar absorption. We use several test sites as illustrative cases and demonstrate that temporary heat storage can have substantial impacts on seasonal energy absorption and ice loss. A companion to this work is presented by N. Wright at this meeting.
Ren, Xi; Valle-Inclán, Fernando; Tukaiev, Sergii; Hackley, Steven A
2017-07-01
According to reinforcement learning theory, dopamine-dependent anticipatory processes play a critical role in learning from action outcomes such as feedback or reward. To better understand outcome anticipation, we examined variation in slow cortical potentials and assessed their changes over the course of motor-skill acquisition. Healthy young adults learned a series of precisely timed, key press sequences. Feedback was delivered at a delay of either 2.5 or 8 s, to encourage use of either the striatally mediated, habit learning system or the hippocampus-dependent, episodic memory system, respectively. During the 2.5-s delay, the stimulus-preceding negativity (SPN) was shown to decline in amplitude across trials, confirming previous results from a perceptual categorization task (Morís, Luque, & Rodríguez-Fornells, 2013). This falsifies the hypothesis that SPN reflects specific outcome predictions, on the assumption that the ability to make such predictions should improve as a task is mastered. An SPN was also evident during the 8-s delay, but it increased in amplitude across trials. At the conclusion of the 8-s but not the 2.5-s prefeedback interval, a reversed-polarity lateralized readiness potential (LRP) was noted. It was suggested that this might indicate maintenance of an action representation for comparison with the feedback display. If so, this would constitute the first direct psychophysiological evidence for a popular hypothetical construct in quantitative models of reinforcement learning, the so-called eligibility trace. © 2017 Society for Psychophysiological Research.
ERIC Educational Resources Information Center
Polio, Charlene; Gass, Susan; Chapin, Laura
2006-01-01
Implicit negative feedback has been shown to facilitate SLA, and the extent to which such feedback is given is related to a variety of task and interlocutor variables. The background of a native speaker (NS), in terms of amount of experience in interactions with nonnative speakers (NNSs), has been shown to affect the quantity of implicit negative…
NASA Astrophysics Data System (ADS)
D'Alonzo, M.; Engels, L. F.; Controzzi, M.; Cipriani, C.
2018-02-01
Objective. Grasping and manipulation control critically depends on tactile feedback. Without this feedback, the ability for fine control of a prosthesis is limited in upper limb amputees. Early studies have shown that non-invasive electro-cutaneous stimulation (ES) can induce referred sensations that are spread to a wider and/or more distant area, with respect to the electrodes. Building on this, we sought to exploit this effect to provide somatotopically matched sensory feedback to people with partial hand (digital) amputations. Approach. For the first time, this work investigated the possibility of inducing referred sensations in the digits by activating the palmar nerves. Specifically, we electrically stimulated 18 sites on the palm of non-amputees to evaluate the effects of sites and stimulation parameters on modality, magnitude, and location of the evoked sensations. We performed similar tests with partial hand amputees by testing those sites that had most consistently elicited referred sensations in non-amputees. Main results. We demonstrated referred sensations in non-amputees from all stimulation sites in one form or another. Specifically, the stimulation of 16 of the 18 sites gave rise to reliable referred sensations. Amputees experienced referred sensations to unimpaired digits, just like non-amputees, but we were unable to evoke referred sensations in their missing digits: none of them reported sensations that extended beyond the tip of the stump. Significance. The possibility of eliciting referred sensations on the digits may be exploited in haptic systems for providing touch sensations without obstructing the fingertips or their movements. The study also suggests that the phenomenon of referred sensations through ES may not be exploited for partial hand prostheses, and it invites researchers to explore alternative approaches. Finally, the results seem to confirm previous studies suggesting that the stumps in partial hand amputees partially acquire the role of the missing fingertips, physiologically and cognitively.
Design strategies for dynamic closed-loop optogenetic neurocontrol in vivo
NASA Astrophysics Data System (ADS)
Bolus, M. F.; Willats, A. A.; Whitmire, C. J.; Rozell, C. J.; Stanley, G. B.
2018-04-01
Objective. Controlling neural activity enables the possibility of manipulating sensory perception, cognitive processes, and body movement, in addition to providing a powerful framework for functionally disentangling the neural circuits that underlie these complex phenomena. Over the last decade, optogenetic stimulation has become an increasingly important and powerful tool for understanding neural circuit function, owing to the ability to target specific cell types and bidirectionally modulate neural activity. To date, most stimulation has been provided in open-loop or in an on/off closed-loop fashion, where previously-determined stimulation is triggered by an event. Here, we describe and demonstrate a design approach for precise optogenetic control of neuronal firing rate modulation using feedback to guide stimulation continuously. Approach. Using the rodent somatosensory thalamus as an experimental testbed for realizing desired time-varying patterns of firing rate modulation, we utilized a moving average exponential filter to estimate firing rate online from single-unit spiking measured extracellularly. This estimate of instantaneous rate served as feedback for a proportional integral (PI) controller, which was designed during the experiment based on a linear-nonlinear Poisson (LNP) model of the neuronal response to light. Main results. The LNP model fit during the experiment enabled robust closed-loop control, resulting in good tracking of sinusoidal and non-sinusoidal targets, and rejection of unmeasured disturbances. Closed-loop control also enabled manipulation of trial-to-trial variability. Significance. Because neuroscientists are faced with the challenge of dissecting the functions of circuit components, the ability to maintain control of a region of interest in spite of changes in ongoing neural activity will be important for disambiguating function within networks. Closed-loop stimulation strategies are ideal for control that is robust to such changes, and the employment of continuous feedback to adjust stimulation in real-time can improve the quality of data collected using optogenetic manipulation.
Network interactions underlying mirror feedback in stroke: A dynamic causal modeling study.
Saleh, Soha; Yarossi, Mathew; Manuweera, Thushini; Adamovich, Sergei; Tunik, Eugene
2017-01-01
Mirror visual feedback (MVF) is potentially a powerful tool to facilitate recovery of disordered movement and stimulate activation of under-active brain areas due to stroke. The neural mechanisms underlying MVF have therefore been a focus of recent inquiry. Although it is known that sensorimotor areas can be activated via mirror feedback, the network interactions driving this effect remain unknown. The aim of the current study was to fill this gap by using dynamic causal modeling to test the interactions between regions in the frontal and parietal lobes that may be important for modulating the activation of the ipsilesional motor cortex during mirror visual feedback of unaffected hand movement in stroke patients. Our intent was to distinguish between two theoretical neural mechanisms that might mediate ipsilateral activation in response to mirror-feedback: transfer of information between bilateral motor cortices versus recruitment of regions comprising an action observation network which in turn modulate the motor cortex. In an event-related fMRI design, fourteen chronic stroke subjects performed goal-directed finger flexion movements with their unaffected hand while observing real-time visual feedback of the corresponding (veridical) or opposite (mirror) hand in virtual reality. Among 30 plausible network models that were tested, the winning model revealed significant mirror feedback-based modulation of the ipsilesional motor cortex arising from the contralesional parietal cortex, in a region along the rostral extent of the intraparietal sulcus. No winning model was identified for the veridical feedback condition. We discuss our findings in the context of supporting the latter hypothesis, that mirror feedback-based activation of motor cortex may be attributed to engagement of a contralateral (contralesional) action observation network. These findings may have important implications for identifying putative cortical areas, which may be targeted with non-invasive brain stimulation as a means of potentiating the effects of mirror training.
Hakami, A; Santamore, W P; Stremel, R W; Tobin, G; Hjortdal, V E
1999-08-01
Dynamic aortomyoplasty using Latissimus Dorsi muscle (LDM) has been shown to improve myocardial function. However, systematic examination of the effects of stimulation parameters on aortic wrap function has not been done. Thus, the present study measures the direct effect of stimulation voltage, pulse train duration, frequency of the pulses, and the duration of the stimulation delay from R wave on the aortic wrap function. In eight female goats, the left LDM was wrapped around the descending aorta. The muscle was then subjected to electrical stimulation, altering frequency of stimulation pulses (16.6, 20, 25, 33 and 50 Hz), amplitude (2, 4, 6, 8 and 10 V), and number of pulses (2, 4, 6, 8 and 10 pulses) in a train stimulation. Left ventricular, aortic pressure, and pressure generated by LDM on aorta (wrap pressure) was measured. The changes in hemodynamic parameters mentioned above were calculated and compared for different stimulation parameters during unassisted and assisted cardiac cycles. Aortomyoplasty counterpulsation using LDM provided significant improvement in wrap pressure (78 mmHg +/- 2), aortic diastolic pressure, and changes in aortic diastolic pressure from 2 to 4 V (P < 0.05). Further increase in amplitude did not make any significant improvements of the above mentioned parameters. Significant augmentation of wrap pressure (82 mmHg +/- 2), aortic diastolic pressure (79 mmHg +/- 3) and changes in aortic diastolic pressure (12 mmHg +/- 1) occurred at 6 pulses (P < 0.05). Other changes in number of pulses did not show any significant improvements. Significant improvement of wrap pressure (80 mmHg +/- 2), aortic diastolic pressure (73 mmHg +/- 3) and changes in aortic diastolic pressure (12 mmHg +/- 1) was observed with a frequency of 33 Hz. To examine a wide range of delays from the onset of the QRS complex to LDM stimulation, stimulation was delivered randomly. The exact delay was determined from the ECG signal and superimposed LDM stimulation pulses. In this study we present a new measurement, wrap pressure. We also present that in aortomyoplasty using LDM, the most significant improvement in wrap pressure, aortic diastolic pressure and changes in aortic diastolic pressure occurs when the stimulation consists of an amplitude of 4 V, a frequency of 33 Hz and a train stimulation of 6 pulses.
Stability analysis of dynamic collaboration model with control signals on two lanes
NASA Astrophysics Data System (ADS)
Li, Zhipeng; Zhang, Run; Xu, Shangzhi; Qian, Yeqing; Xu, Juan
2014-12-01
In this paper, the influence of control signals on the stability of two-lane traffic flow is mainly studied by applying control theory with lane changing behaviors. We present the two-lane dynamic collaboration model with lateral friction and the expressions of feedback control signals. What is more, utilizing the delayed feedback control theory to the two-lane dynamic collaboration model with control signals, we investigate the stability of traffic flow theoretically and the stability conditions for both lanes are derived with finding that the forward and lateral feedback signals can improve the stability of traffic flow while the backward feedback signals cannot achieve it. Besides, direct simulations are conducted to verify the results of theoretical analysis, which shows that the feedback signals have a significant effect on the running state of two vehicle groups, and the results are same with the theoretical analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abi Salloum, Bachir; Steckler, Teresa L.; Herkimer, Carol
Bisphenol-A (BPA), a polymer used in plastics manufacturing, and methoxychlor (MXC), a pesticide, are endocrine disrupting compounds with estrogenic and anti-androgenic properties. Prenatal BPA or MXC treatment induces reproductive defects in sheep with BPA causing prepubertal luteinizing hormone (LH) hypersecretion and dampening of periovulatory LH surges and MXC lengthening follicular phase and delaying the LH surge. In this study, we addressed the underlying neuroendocrine defects by testing the following hypotheses: 1) prenatal BPA, but not MXC reduces sensitivity to estradiol and progesterone negative feedback, 2) prenatal BPA, but not MXC increases pituitary responsiveness to gonadotropin releasing hormone (GnRH), and 3)more » prenatal BPA dampens LH surge response to estradiol positive feedback challenge while prenatal MXC delays the timing of the LH surge. Pregnant sheep were treated with either 1) 5 mg/kg/day BPA (produces approximately twice the level found in human circulation, n = 8), 2) 5 mg/kg/day MXC (the lowest observed effect level stated in the EPA National Toxicology Program's Report; n = 6), or 3) vehicle (cotton seed oil: C: n = 6) from days 30 to 90 of gestation. Female offspring of these ewes were ovariectomized at 21 months of age and tested for progesterone negative, estradiol negative, estradiol positive feedback sensitivities and pituitary responsiveness to GnRH. Results revealed that sensitivity to all 3 feedbacks as well as pituitary responsiveness to GnRH were not altered by either of the prenatal treatments. These findings suggest that the postpubertal reproductive defects seen in these animals may have stemmed from ovarian defects and the steroidal signals emanating from them. - Highlights: ► Prenatal BPA/MXC does not affect reproductive neuroendocrine steroid feedbacks. ► Prenatal BPA or MXC treatment failed to alter pituitary sensitivity to GnRH. ► LH excess in BPA-treated sheep may be due to reduced ovarian feedback signals.« less
Investigation of a Nonlinear Control System
NASA Technical Reports Server (NTRS)
Flugge-Lotz, I; Taylor, C F; Lindberg, H E
1958-01-01
A discontinuous variation of coefficients of the differential equation describing the linear control system before nonlinear elements are added is studied in detail. The nonlinear feedback is applied to a second-order system. Simulation techniques are used to study performance of the nonlinear control system and to compare it with the linear system for a wide variety of inputs. A detailed quantitative study of the influence of relay delays and of a transport delay is presented.
Optogenetic feedback control of neural activity
Newman, Jonathan P; Fong, Ming-fai; Millard, Daniel C; Whitmire, Clarissa J; Stanley, Garrett B; Potter, Steve M
2015-01-01
Optogenetic techniques enable precise excitation and inhibition of firing in specified neuronal populations and artifact-free recording of firing activity. Several studies have suggested that optical stimulation provides the precision and dynamic range requisite for closed-loop neuronal control, but no approach yet permits feedback control of neuronal firing. Here we present the ‘optoclamp’, a feedback control technology that provides continuous, real-time adjustments of bidirectional optical stimulation in order to lock spiking activity at specified targets over timescales ranging from seconds to days. We demonstrate how this system can be used to decouple neuronal firing levels from ongoing changes in network excitability due to multi-hour periods of glutamatergic or GABAergic neurotransmission blockade in vitro as well as impinging vibrissal sensory drive in vivo. This technology enables continuous, precise optical control of firing in neuronal populations in order to disentangle causally related variables of circuit activation in a physiologically and ethologically relevant manner. DOI: http://dx.doi.org/10.7554/eLife.07192.001 PMID:26140329
Vibrotactile Feedback for Brain-Computer Interface Operation
Cincotti, Febo; Kauhanen, Laura; Aloise, Fabio; Palomäki, Tapio; Caporusso, Nicholas; Jylänki, Pasi; Mattia, Donatella; Babiloni, Fabio; Vanacker, Gerolf; Nuttin, Marnix; Marciani, Maria Grazia; Millán, José del R.
2007-01-01
To be correctly mastered, brain-computer interfaces (BCIs) need an uninterrupted flow of feedback to the user. This feedback is usually delivered through the visual channel. Our aim was to explore the benefits of vibrotactile feedback during users' training and control of EEG-based BCI applications. A protocol for delivering vibrotactile feedback, including specific hardware and software arrangements, was specified. In three studies with 33 subjects (including 3 with spinal cord injury), we compared vibrotactile and visual feedback, addressing: (I) the feasibility of subjects' training to master their EEG rhythms using tactile feedback; (II) the compatibility of this form of feedback in presence of a visual distracter; (III) the performance in presence of a complex visual task on the same (visual) or different (tactile) sensory channel. The stimulation protocol we developed supports a general usage of the tactors; preliminary experimentations. All studies indicated that the vibrotactile channel can function as a valuable feedback modality with reliability comparable to the classical visual feedback. Advantages of using a vibrotactile feedback emerged when the visual channel was highly loaded by a complex task. In all experiments, vibrotactile feedback felt, after some training, more natural for both controls and SCI users. PMID:18354734
Safavynia, Seyed A.
2012-01-01
Recent evidence suggests that complex spatiotemporal patterns of muscle activity can be explained with a low-dimensional set of muscle synergies or M-modes. While it is clear that both spatial and temporal aspects of muscle coordination may be low dimensional, constraints on spatial versus temporal features of muscle coordination likely involve different neural control mechanisms. We hypothesized that the low-dimensional spatial and temporal features of muscle coordination are independent of each other. We further hypothesized that in reactive feedback tasks, spatially fixed muscle coordination patterns—or muscle synergies—are hierarchically recruited via time-varying neural commands based on delayed task-level feedback. We explicitly compared the ability of spatially fixed (SF) versus temporally fixed (TF) muscle synergies to reconstruct the entire time course of muscle activity during postural responses to anterior-posterior support-surface translations. While both SF and TF muscle synergies could account for EMG variability in a postural task, SF muscle synergies produced more consistent and physiologically interpretable results than TF muscle synergies during postural responses to perturbations. Moreover, a majority of SF muscle synergies were consistent in structure when extracted from epochs throughout postural responses. Temporal patterns of SF muscle synergy recruitment were well-reconstructed by delayed feedback of center of mass (CoM) kinematics and reproduced EMG activity of multiple muscles. Consistent with the idea that independent and hierarchical low-dimensional neural control structures define spatial and temporal patterns of muscle activity, our results suggest that CoM kinematics are a task variable used to recruit SF muscle synergies for feedback control of balance. PMID:21957219
Adaptive optimal stochastic state feedback control of resistive wall modes in tokamaks
NASA Astrophysics Data System (ADS)
Sun, Z.; Sen, A. K.; Longman, R. W.
2006-01-01
An adaptive optimal stochastic state feedback control is developed to stabilize the resistive wall mode (RWM) instability in tokamaks. The extended least-square method with exponential forgetting factor and covariance resetting is used to identify (experimentally determine) the time-varying stochastic system model. A Kalman filter is used to estimate the system states. The estimated system states are passed on to an optimal state feedback controller to construct control inputs. The Kalman filter and the optimal state feedback controller are periodically redesigned online based on the identified system model. This adaptive controller can stabilize the time-dependent RWM in a slowly evolving tokamak discharge. This is accomplished within a time delay of roughly four times the inverse of the growth rate for the time-invariant model used.
Adaptive Optimal Stochastic State Feedback Control of Resistive Wall Modes in Tokamaks
NASA Astrophysics Data System (ADS)
Sun, Z.; Sen, A. K.; Longman, R. W.
2007-06-01
An adaptive optimal stochastic state feedback control is developed to stabilize the resistive wall mode (RWM) instability in tokamaks. The extended least square method with exponential forgetting factor and covariance resetting is used to identify the time-varying stochastic system model. A Kalman filter is used to estimate the system states. The estimated system states are passed on to an optimal state feedback controller to construct control inputs. The Kalman filter and the optimal state feedback controller are periodically redesigned online based on the identified system model. This adaptive controller can stabilize the time dependent RWM in a slowly evolving tokamak discharge. This is accomplished within a time delay of roughly four times the inverse of the growth rate for the time-invariant model used.
RF-powered BIONs for stimulation and sensing.
Loeb, G E; Richmond, F J R; Singh, J; Peck, R A; Tan, W; Zou, Q; Sachs, N
2004-01-01
Virtually all bodily functions are controlled by electrical signals in nerves and muscles. Electrical stimulation can restore missing signals but this has been difficult to achieve practically because of limitations in the bioelectric interfaces. Wireless, injectable microdevices are versatile, robust and relatively inexpensive to implant in a variety of sites and applications. Several variants are now in clinical use or under development to perform stimulation and/or sensing functions and to operate autonomously or with continuous coordination and feedback control.
Corticofugal modulation of time-domain processing of biosonar information in bats.
Yan, J; Suga, N
1996-08-23
The Jamaican mustached bat has delay-tuned neurons in the inferior colliculus, medial geniculate body, and auditory cortex. The responses of these neurons to an echo are facilitated by a biosonar pulse emitted by the bat when the echo returns with a particular delay from a target located at a particular distance. Electrical stimulation of cortical delay-tuned neurons increases the delay-tuned responses of collicular neurons tuned to the same echo delay as the cortical neurons and decreases those of collicular neurons tuned to different echo delays. Cortical neurons improve information processing in the inferior colliculus by way of the corticocollicular projection.
The Effects of a Local Negative Feedback Function between Choice and Relative Reinforcer Rate
Davison, Michael; Elliffe, Douglas; Marr, M. Jackson
2010-01-01
Four pigeons were trained on two-key concurrent variable-interval schedules with no changeover delay. In Phase 1, relative reinforcers on the two alternatives were varied over five conditions from .1 to .9. In Phases 2 and 3, we instituted a molar feedback function between relative choice in an interreinforcer interval and the probability of reinforcers on the two keys ending the next interreinforcer interval. The feedback function was linear, and was negatively sloped so that more extreme choice in an interreinforcer interval made it more likely that a reinforcer would be available on the other key at the end of the next interval. The slope of the feedback function was −1 in Phase 2 and −3 in Phase 3. We varied relative reinforcers in each of these phases by changing the intercept of the feedback function. Little effect of the feedback functions was discernible at the local (interreinforcer interval) level, but choice measured at an extended level across sessions was strongly and significantly decreased by increasing the negative slope of the feedback function. PMID:21451748
Describing-function analysis of a ripple regulator with slew-rate limits and time delays
NASA Technical Reports Server (NTRS)
Wester, Gene W.
1990-01-01
The effects of time delays and slew-rate limits on the steady-state operating points and performance of a free-running ripple regulator are evaluated using describing-function analysis. The describing function of an ideal comparator (no time delays or slew rate limits) has no phase shift and is independent of frequency. It is found that turn-on delay and turn-off delay have different effects on gain and phase and cannot be combined. Comparator hysteresis affects both gain and phase; likewise, time delays generally affect both gain and phase. It is found that the effective time delay around the feedback loop is one half the sum of turn-on and turn-off delays, regardless of whether the delays are caused by storage time or slew rate limits. Expressions are formulated for the switching frequency, switch duty ratio, dc output, and output ripple. For the case of no hysteresis, a simple, graphical solution for the switching frequency is possible, and the resulting switching frequency is independent of first-order variations of input or load.
The effects of perceived USB-delay for sensor and embedded system development.
Du, J; Kade, D; Gerdtman, C; Ozcan, O; Linden, M
2016-08-01
Perceiving delay in computer input devices is a problem which gets even more eminent when being used in healthcare applications and/or in small, embedded systems. Therefore, the amount of delay found as acceptable when using computer input devices was investigated in this paper. A device was developed to perform a benchmark test for the perception of delay. The delay can be set from 0 to 999 milliseconds (ms) between a receiving computer and an available USB-device. The USB-device can be a mouse, a keyboard or some other type of USB-connected input device. Feedback from performed user tests with 36 people form the basis for the determination of time limitations for the USB data processing in microprocessors and embedded systems without users' noticing the delay. For this paper, tests were performed with a personal computer and a common computer mouse, testing the perception of delays between 0 and 500 ms. The results of our user tests show that perceived delays up to 150 ms were acceptable and delays larger than 300 ms were not acceptable at all.
Linear-phase delay filters for ultra-low-power signal processing in neural recording implants.
Gosselin, Benoit; Sawan, Mohamad; Kerherve, Eric
2010-06-01
We present the design and implementation of linear-phase delay filters for ultra-low-power signal processing in neural recording implants. We use these filters as low-distortion delay elements along with an automatic biopotential detector to perform integral waveform extraction and efficient power management. The presented delay elements are realized employing continuous-time OTA-C filters featuring 9th-order equiripple transfer functions with constant group delay. Such analog delay enables processing neural waveforms with reduced overhead compared to a digital delay since it does not requires sampling and digitization. It uses an allpass transfer function for achieving wider constant-delay bandwidth than all-pole does. Two filters realizations are compared for implementing the delay element: the Cascaded structure and the Inverse follow-the-leader feedback filter. Their respective strengths and drawbacks are assessed by modeling parasitics and non-idealities of OTAs, and by transistor-level simulations. A budget of 200 nA is used in both filters. Experimental measurements with the chosen filter topology are presented and discussed.
High-frequency rTMS on DLPFC increases prosocial attitude in case of decision to support people.
Balconi, Michela; Canavesio, Ylenia
2014-02-01
Engaging in prosocial behavior was explored in the present research, by investigating the role of dorsolateral prefrontal cortex (DLPFC) in modulation of intention to support other people and of emotional attuning as it was expressed by facial feedback (electromiography, EMG). High-frequency rTMS was applied on DLPFC to 25 subjects when they were required to choose to directly intervene or not to support other people in emotionally valenced social situations (cooperative, noncooperative, conflictual, neutral contexts). Two control conditions were included in the experimental design to control the simple stimulation effect (sham condition with absence of TMS stimulation) and the location effect (control site condition with Pz stimulation). In comparison with sham and control condition, rTMS stimulation induced increased prosocial behavior in all the emotional situations. Moreover, as a function of valence, zygomatic (for positive situations) and corrugators (for negative situations) muscle activity was increased, with significant effect by DLPFC stimulation which induced a "facilitation effect". In addition, negative situations showed a higher rTMS impact for both behavioral and EMG responsiveness. Finally, prosocial behavior was found to be predicted (regression analysis) by EMG variations, as a function of the negative versus positive valence. The prefrontal circuit was suggested to support emotional responsiveness and facial feedback in order to facilitate the prosocial behavior.
Finite-dimensional modeling of network-induced delays for real-time control systems
NASA Technical Reports Server (NTRS)
Ray, Asok; Halevi, Yoram
1988-01-01
In integrated control systems (ICS), a feedback loop is closed by the common communication channel, which multiplexes digital data from the sensor to the controller and from the controller to the actuator along with the data traffic from other control loops and management functions. Due to asynchronous time-division multiplexing in the network access protocols, time-varying delays are introduced in the control loop, which degrade the system dynamic performance and are a potential source of instability. The delayed control system is represented by a finite-dimensional, time-varying, discrete-time model which is less complex than the existing continuous-time models for time-varying delays; this approach allows for simpler schemes for analysis and simulation of the ICS.
H∞ control problem of linear periodic piecewise time-delay systems
NASA Astrophysics Data System (ADS)
Xie, Xiaochen; Lam, James; Li, Panshuo
2018-04-01
This paper investigates the H∞ control problem based on exponential stability and weighted L2-gain analyses for a class of continuous-time linear periodic piecewise systems with time delay. A periodic piecewise Lyapunov-Krasovskii functional is developed by integrating a discontinuous time-varying matrix function with two global terms. By applying the improved constraints to the stability and L2-gain analyses, sufficient delay-dependent exponential stability and weighted L2-gain criteria are proposed for the periodic piecewise time-delay system. Based on these analyses, an H∞ control scheme is designed under the considerations of periodic state feedback control input and iterative optimisation. Finally, numerical examples are presented to illustrate the effectiveness of our proposed conditions.
NASA Astrophysics Data System (ADS)
Baryshev, V. I.; Golikova, E. G.; Duraev, V. P.; Kuchinskiĭ, V. I.; Kizhaev, K. Yu; Kuksenkov, D. V.; Portnoĭ, E. L.; Smirnitskiĭ, V. B.
1988-11-01
A study was made of stimulated emission from mesa-stripe distributed-feedback lasers in the form of double heterostructures with separate electron and optical confinement. A diffraction grating with a period Λ = 0.46 μm, formed on the surface of the upper waveguide layer by holographic lithography, ensured distributed feedback in the second order. The threshold current for cw operation at room temperature was 35-70 mA, the shift of the emission wavelength with temperature was ~ 0.08 nm/K, and the feedback coefficient deduced from the width of a "Bragg gap" was 110-150 cm- 1.
Stick balancing with reflex delay in case of parametric forcing
NASA Astrophysics Data System (ADS)
Insperger, Tamas
2011-04-01
The effect of parametric forcing on a PD control of an inverted pendulum is analyzed in the presence of feedback delay. The stability of the time-periodic and time-delayed system is determined numerically using the first-order semi-discretization method in the 5-dimensional parameter space of the pendulum's length, the forcing frequency, the forcing amplitude, the proportional and the differential gains. It is shown that the critical length of the pendulum (that can just be balanced against the time-delay) can significantly be decreased by parametric forcing even if the maximum forcing acceleration is limited. The numerical analysis showed that the critical stick length about 30 cm corresponding to the unforced system with reflex delay 0.1 s can be decreased to 18 cm with keeping maximum acceleration below the gravitational acceleration.
Nasuto, Slawomir J.; Hayashi, Yoshikatsu
2018-01-01
We present a novel way of using a dynamical model for predictive tracking control that can adapt to a wide range of delays without parameter update. This is achieved by incorporating the paradigm of anticipating synchronization (AS), where a ‘slave’ system predicts a ‘master’ via delayed self-feedback. By treating the delayed output of the plant as one half of a ‘sensory’ AS coupling, the plant and an internal dynamical model can be synchronized such that the plant consistently leads the target’s motion. We use two simulated robotic systems with differing arrangements of the plant and internal model (‘parallel’ and ‘serial’) to demonstrate that this form of control adapts to a wide range of delays without requiring the parameters of the controller to be changed. PMID:29657750