Sample records for delayed hsp70 response

  1. Oxalate exposure provokes HSP 70 response in LLC-PK1 cells, a line of renal epithelial cells: protective role of HSP 70 against oxalate toxicity.

    PubMed

    Koul, Sweaty; Huang, Meiyi; Bhat, Sidarth; Maroni, Paul; Meacham, Randall B; Koul, Hari K

    2008-02-01

    We investigated the effects of oxalate on immediate early genes (IEGs) and stress protein HSP 70, commonly induced genes in response to a variety of stresses. LLC-PK1 cells were exposed to oxalate. Gene transcription and translation were monitored by Northern and Western blot analysis. RNA and DNA synthesis were assessed by [(3)H]-uridine and [(3)H]-thymidine incorporation, respectively. Oxalate exposure selectively increased the levels of mRNA encoding IEGs c-myc and c-jun as well as stress protein HSP 70. While expression of c-myc and c-jun was rapid (within 15 min to 2 h) and transient, HSP 70 expression was delayed (approximately 8 h) and stable. Furthermore, oxalate exposure resulted in delayed induction of generalized transcription by 18 h and reinitiation of the DNA synthesis by 24 h of oxalate exposure. Moreover, we show that prior induction of HSP 70 by mild hypertonic exposure protected the cells from oxalate toxicity. To the best of our knowledge this is the first study to demonstrate rapid IEG response and delayed heat-shock response to oxalate toxicity and protective role of HSP 70 against oxalate toxicity to renal epithelial cells. Oxalate, a metabolic end product, induces IEGs c-myc and c-jun and a delayed HSP 70 expression; While IEG expression may regulate additional genetic responses to oxalate, increased HSP 70 expression would serve an early protective role during oxalate stress.

  2. Loss of the Inducible Hsp70 Delays the Inflammatory Response to Skeletal Muscle Injury and Severely Impairs Muscle Regeneration

    PubMed Central

    Howard, Travis M.; Ahn, Bumsoo; Ferreira, Leonardo F.

    2013-01-01

    Skeletal muscle regeneration following injury is a highly coordinated process that involves transient muscle inflammation, removal of necrotic cellular debris and subsequent replacement of damaged myofibers through secondary myogenesis. However, the molecular mechanisms which coordinate these events are only beginning to be defined. In the current study we demonstrate that Heat shock protein 70 (Hsp70) is increased following muscle injury, and is necessary for the normal sequence of events following severe injury induced by cardiotoxin, and physiological injury induced by modified muscle use. Indeed, Hsp70 ablated mice showed a significantly delayed inflammatory response to muscle injury induced by cardiotoxin, with nearly undetected levels of both neutrophil and macrophage markers 24 hours post-injury. At later time points, Hsp70 ablated mice showed sustained muscle inflammation and necrosis, calcium deposition and impaired fiber regeneration that persisted several weeks post-injury. Through rescue experiments reintroducing Hsp70 intracellular expression plasmids into muscles of Hsp70 ablated mice either prior to injury or post-injury, we confirm that Hsp70 optimally promotes muscle regeneration when expressed during both the inflammatory phase that predominates in the first four days following severe injury and the regenerative phase that predominates thereafter. Additional rescue experiments reintroducing Hsp70 protein into the extracellular microenvironment of injured muscles at the onset of injury provides further evidence that Hsp70 released from damaged muscle may drive the early inflammatory response to injury. Importantly, following induction of physiological injury through muscle reloading following a period of muscle disuse, reduced inflammation in 3-day reloaded muscles of Hsp70 ablated mice was associated with preservation of myofibers, and increased muscle force production at later time points compared to WT. Collectively our findings indicate that depending on the nature and severity of muscle injury, therapeutics which differentially target both intracellular and extracellular localized Hsp70 may optimally preserve muscle tissue and promote muscle functional recovery. PMID:23626847

  3. Cardiovascular disease delay in centenarian offspring: role of heat shock proteins.

    PubMed

    Terry, Dellara F; McCormick, Maegan; Andersen, Stacy; Pennington, Jaemi; Schoenhofen, Emily; Palaima, Elizabeth; Bausero, Maria; Ogawa, Kishiko; Perls, Thomas T; Asea, Alexzander

    2004-06-01

    Cardiovascular disease is a major cause of morbidity and mortality of older Americans. We have demonstrated recently that centenarian offspring, when compared with age-matched controls, avoid and/or delay cardiovascular disease and cardiovascular risk factors. Given recent evidence suggesting that higher circulating levels of HSP70 predict the future development of cardiovascular disease in established hypertensives and a recent study demonstrating a decrease in HSP60 and HSP70 with advancing age, we hypothesized that HSP70 levels would be lower in centenarian offspring compared with controls. The circulating serum concentration of HSP70 in 20 centenarian offspring and 9 spousal controls was analyzed using a modified HSP70 ELISA method. Centenarian offspring showed approximately 10-fold lower levels of circulating serum HSP70 compared with spousal controls (P <.001). The exact biological significance of the extremely low levels of circulating serum HSP70 observed in centenarian offspring thus far is not clear. However, circulating HSP has been shown to correlate in diseases or disorders in which there is destruction or damage to target tissues or organs, including cardiovascular diseases and numerous autoimmune disorders. We hypothesize that low levels of circulating serum HSP70 may be an indicator of a healthy state and point to longevity of the host; therefore, our results suggest that levels of circulating serum HSP70 may be a marker for longevity.

  4. Cardiovascular Disease Delay in Centenarian Offspring: Role of Heat Shock Proteins

    PubMed Central

    TERRY, DELLARA F.; McCORMICK, MAEGAN; ANDERSEN, STACY; PENNINGTON, JAEMI; SCHOENHOFEN, EMILY; PALAIMA, ELIZABETH; BAUSERO, MARIA; OGAWA, KISHIKO; PERLS, THOMAS T.; ASEA, ALEXZANDER

    2006-01-01

    Cardiovascular disease is a major cause of morbidity and mortality of older Americans. We have demonstrated recently that centenarian offspring, when compared with age-matched controls, avoid and/or delay cardiovascular disease and cardiovascular risk factors. Given recent evidence suggesting that higher circulating levels of HSP70 predict the future development of cardiovascular disease in established hypertensives and a recent study demonstrating a decrease in HSP60 and HSP70 with advancing age, we hypothesized that HSP70 levels would be lower in centenarian offspring compared with controls. The circulating serum concentration of HSP70 in 20 centenarian offspring and 9 spousal controls was analyzed using a modified HSP70 ELISA method. Centenarian offspring showed approximately 10-fold lower levels of circulating serum HSP70 compared with spousal controls (P < .001). The exact biological significance of the extremely low levels of circulating serum HSP70 observed in centenarian offspring thus far is not clear. However, circulating HSP has been shown to correlate in diseases or disorders in which there is destruction or damage to target tissues or organs, including cardiovascular diseases and numerous autoimmune disorders. We hypothesize that low levels of circulating serum HSP70 may be an indicator of a healthy state and point to longevity of the host; therefore, our results suggest that levels of circulating serum HSP70 may be a marker for longevity. PMID:15247074

  5. The heat shock response in congeneric land snails (Sphincterochila) from different habitats.

    PubMed

    Mizrahi, Tal; Heller, Joseph; Goldenberg, Shoshana; Arad, Zeev

    2012-09-01

    Land snails are subject to daily and seasonal variations in temperature and in water availability, and use heat shock proteins (HSPs) as part of their survival strategy. We used experimental heat stress to test whether adaptation to different habitats affects HSP expression in two closely related Sphincterochila snail species, a desert species, Sphincterochila zonata, and a Mediterranean-type species, Sphincterochila cariosa. Our findings show that in S. cariosa, heat stress caused rapid induction of Hsp70 proteins and Hsp90 in the foot and kidney tissues, whereas the desert-inhabiting species S. zonata displayed delayed induction of Hsp70 proteins in the foot and upregulation of Hsp90 alone in the kidney. Our study suggests that Sphincterochila species use HSPs as part of their survival strategy following heat stress and that adaptation to different habitats results in the development of distinct strategies of HSP expression in response to heat, namely the reduced induction of HSPs in the desert-dwelling species. We suggest that the desert species S. zonata relies on mechanisms and adaptations other than HSP induction, thus avoiding the fitness consequences of continuous HSP upregulation.

  6. Induction of hsp70, hsp60, hsp83 and hsp26 and oxidative stress markers in benzene, toluene and xylene exposed Drosophila melanogaster: Role of ROS generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Mahendra Pratap; Reddy, M.M. Krishna.; Mathur, N.

    2009-03-01

    Exposure to benzene, toluene and xylene in the human population may pose a health risk. We tested a working hypothesis that these test chemicals cause cellular toxicity to a non-target organism, Drosophila melanogaster. Third instar larvae of D. melanogaster transgenic for hsp70, hsp83 and hsp26 and Oregon R{sup +} strain were exposed to 1.0-100.0 mM benzene, toluene and xylene for 2-48 h to examine the heat shock proteins (hsps), ROS generation, anti-oxidant stress markers and developmental end points. The test chemicals elicited a concentration- and time-dependent significant (p < 0.01) induction of the hsps in the exposed organism in themore » order of hsp70 > hsp83 {>=} hsp26 as evident by {beta}-galactosidase activity after 24 h. RT-PCR amplification studies in Oregon R{sup +} larvae revealed a similar induction pattern of these genes along with hsp60 in the order of hsp70 > hsp60 > hsp26 {>=} hsp83. Under similar experimental conditions, a significant induction of ROS generation and oxidative stress markers viz. superoxide dismutase, catalase, glutathione S-transferase, thioredoxin reductase, glutathione, malondialdehyde and protein carbonyl content was observed. Sub-organismal response was propagated towards organismal response i.e., a delay in the emergence of flies and their reproductive performance. While hsp70 was predominantly induced in the organism till 24 h of treatment with the test chemicals, a significant or insignificant regression of Hsp70 after 48 h was concurrent with a significant induction (p < 0.01) of hsp60 > hsp83 {>=} hsp26 in comparison to the former. A significant positive correlation was observed between ROS generation and these hsps in the exposed organism till 24 h and a negative correlation between ROS generation and hsp70 in them after 48 h indicating a modulatory role of ROS in the induction of hsps. The study suggests that among the tested hsps, hsp70 may be used as an early bioindicator of cellular toxicity against benzene, toluene and xylene and D. melanogaster as an alternative animal model for screening the risk posed by environmental chemicals.« less

  7. Structure and function of Hip, an attenuator of the Hsp70 chaperone cycle.

    PubMed

    Li, Zhuo; Hartl, F Ulrich; Bracher, Andreas

    2013-08-01

    The Hsp70-interacting protein, Hip, cooperates with the chaperone Hsp70 in protein folding and prevention of aggregation. Hsp70 interacts with non-native protein substrates in an ATP-dependent reaction cycle regulated by J-domain proteins and nucleotide exchange factors (NEFs). Hip is thought to delay substrate release by slowing ADP dissociation from Hsp70. Here we present crystal structures of the dimerization domain and the tetratricopeptide repeat (TPR) domain of rat Hip. As shown in a cocrystal structure, the TPR core of Hip interacts with the Hsp70 ATPase domain through an extensive interface, to form a bracket that locks ADP in the binding cleft. Hip and NEF binding to Hsp70 are mutually exclusive, and thus Hip attenuates active cycling of Hsp70-substrate complexes. This mechanism explains how Hip enhances aggregation prevention by Hsp70 and facilitates transfer of specific proteins to downstream chaperones or the proteasome.

  8. Recombinant HSP70 and mild heat shock stimulate growth of aged mesenchymal stem cells.

    PubMed

    Andreeva, N V; Zatsepina, O G; Garbuz, D G; Evgen'ev, M B; Belyavsky, A V

    2016-07-01

    Heat shock proteins including the major stress protein HSP70 support intracellular homeostasis and prevent protein damage after a temperature increase and other stressful environmental stimuli, as well as during aging. We have shown earlier that prolonged administration of recombinant human HSP70 to mice exhibiting Alzheimer's-like neurodegeneration as well as during sepsis reduces the clinical manifestations of these pathologies. Herein, we studied the action of recombinant human HSP70 on young and aged mouse mesenchymal stem cells (MSCs) in culture. The results obtained indicate that HSP70 at concentrations of 2 μg/ml and higher significantly stimulates growth of aged but not young MSCs. A similar effect is produced by application of a mild heat shock (42 °C 5 min) to the cells. Importantly, responses of young and aged MSCs to heat shock treatment of various durations differed drastically, and aged MSCs were significantly more sensitive to higher heat stress exposures than the young cells. Western blotting and protein labeling experiments demonstrated that neither mild heat shock nor exogenous HSP70 administration resulted in significant endogenous HSP70 induction in young and aged MSCs, whereas mild heat shock increased HSC70 levels in aged MSCs. The results of this study suggest that the administration of exogenous HSP70 and the application of mild heat stress may produce a certain "rejuvenating" effect on MSCs and possibly other cell types in vivo, and these interventions may potentially be used for life extension by delaying various manifestations of aging at the molecular and cellular level.

  9. PREFERENTIAL SECRETION OF INDUCIBLE HSP70 BY VITILIGO MELANOCYTES UNDER STRESS

    PubMed Central

    Mosenson, Jeffrey A.; Flood, Kelsey; Klarquist, Jared; Eby, Jonathan M.; Koshoffer, Amy; Boissy, Raymond E.; Overbeck, Andreas; C.Tung, Rebecca; Poole, I. Caroline Le

    2014-01-01

    SUMMARY Inducible HSP70 (HSP70i) chaperones peptides from stressed cells, protecting them from apoptosis. Upon extracellular release, HSP70i serves an adjuvant function, enhancing immune responses to bound peptides. We questioned whether HSP70i differentially protects control and vitiligo melanocytes from stress and subsequent immune responses. We compared expression of HSP70i in skin samples, evaluated the viability of primary vitiligo and control melanocytes exposed to bleaching phenols, and measured secreted HSP70i. We determined whether HSP70i traffics to melanosomes to contact immunogenic proteins by cell fractionation, western blotting, electron microscopy and confocal microscopy. Viability of vitiligo and control melanocytes was equally affected under stress. However, vitiligo melanocytes secreted increased amounts of HSP70i in response to MBEH, corroborating with aberrant HSP70i expression in patient skin. Intracellular HSP70i colocalized with melanosomes, and more so in response to MBEH in vitiligo melanocytes. Thus whereas either agent is cytotoxic to melanocytes, MBEH preferentially induces immune responses to melanocytes. PMID:24354861

  10. Heat shock proteins and resistance to desiccation in congeneric land snails.

    PubMed

    Mizrahi, Tal; Heller, Joseph; Goldenberg, Shoshana; Arad, Zeev

    2010-07-01

    Land snails are subject to daily and seasonal variations in temperature and in water availability and depend on a range of behavioral and physiological adaptations for coping with problems of maintaining water, ionic, and thermal balance. Heat shock proteins (HSPs) are a multigene family of proteins whose expression is induced by a variety of stress agents. We used experimental desiccation to test whether adaptation to different habitats affects HSP expression in two closely related Sphincterochila snail species, a desiccation-resistant, desert species Sphincterochila zonata, and a Mediterranean-type, desiccation-sensitive species Sphincterochila cariosa. We examined the HSP response in the foot, hepatopancreas, and kidney tissues of snails exposed to normothermic desiccation. Our findings show variations in the HSP response in both timing and magnitude between the two species. The levels of endogenous Hsp72 in S. cariosa were higher in all the examined tissues, and the induction of Hsp72, Hsp74, and Hsp90 developed earlier than in S. zonata. In contrary, the induction of sHSPs (Hsp25 and Hsp30) was more pronounced in S. zonata compared to S. cariosa. Our results suggest that land snails use HSPs as part of their survival strategy during desiccation and as important components of the aestivation mechanism in the transition from activity to dormancy. Our study underscores the distinct strategy of HSP expression in response to desiccation, namely the delayed induction of Hsp70 and Hsp90 together with enhanced induction of sHSPs in the desert-dwelling species, and suggests that evolution in harsh environments will result in selection for reduced Hsp70 expression.

  11. Hsp70 Regulates Immune Response in Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Mansilla, M. José; Costa, Carme; Eixarch, Herena; Tepavcevic, Vanja; Castillo, Mireia; Martin, Roland; Lubetzki, Catherine; Aigrot, Marie-Stéphane; Montalban, Xavier; Espejo, Carmen

    2014-01-01

    Heat shock protein (Hsp)70 is one of the most important stress-inducible proteins. Intracellular Hsp70 not only mediates chaperone-cytoprotective functions but can also block multiple steps in the apoptosis pathway. In addition, Hsp70 is actively released into the extracellular milieu, thereby promoting innate and adaptive immune responses. Thus, Hsp70 may be a critical molecule in multiple sclerosis (MS) pathogenesis and a potential target in this disease due to its immunological and cytoprotective functions. To investigate the role of Hsp70 in MS pathogenesis, we examined its immune and cytoprotective roles using both in vitro and in vivo experimental procedures. We found that Hsp70.1-deficient mice were more resistant to developing experimental autoimmune encephalomyelitis (EAE) compared with their wild-type (WT) littermates, suggesting that Hsp70.1 plays a critical role in promoting an effective myelin oligodendrocyte glycoprotein (MOG)-specific T cell response. Conversely, Hsp70.1-deficient mice that developed EAE showed an increased level of autoreactive T cells to achieve the same production of cytokines compared with the WT mice. Although a neuroprotective role of HSP70 has been suggested, Hsp70.1-deficient mice that developed EAE did not exhibit increased demyelination compared with the control mice. Accordingly, Hsp70 deficiency did not influence the vulnerability to apoptosis of oligodendrocyte precursor cells (OPCs) in culture. Thus, the immunological role of Hsp70 may be relevant in EAE, and specific therapies down-regulating Hsp70 expression may be a promising approach to reduce the early autoimmune response in MS patients. PMID:25153885

  12. Tumor induces muscle wasting in mice through releasing extracellular Hsp70 and Hsp90.

    PubMed

    Zhang, Guohua; Liu, Zhelong; Ding, Hui; Zhou, Yong; Doan, Hoang Anh; Sin, Ka Wai Thomas; Zhu, Zhiren J; Flores, Rene; Wen, Yefei; Gong, Xing; Liu, Qingyun; Li, Yi-Ping

    2017-09-19

    Cachexia, characterized by muscle wasting, is a major contributor to cancer-related mortality. However, the key cachexins that mediate cancer-induced muscle wasting remain elusive. Here, we show that tumor-released extracellular Hsp70 and Hsp90 are responsible for tumor's capacity to induce muscle wasting. We detected high-level constitutive release of Hsp70 and Hsp90 associated with extracellular vesicles (EVs) from diverse cachexia-inducing tumor cells, resulting in elevated serum levels in mice. Neutralizing extracellular Hsp70/90 or silencing Hsp70/90 expression in tumor cells abrogates tumor-induced muscle catabolism and wasting in cultured myotubes and in mice. Conversely, administration of recombinant Hsp70 and Hsp90 recapitulates the catabolic effects of tumor. In addition, tumor-released Hsp70/90-expressing EVs are necessary and sufficient for tumor-induced muscle wasting. Further, Hsp70 and Hsp90 induce muscle catabolism by activating TLR4, and are responsible for elevation of circulating cytokines. These findings identify tumor-released circulating Hsp70 and Hsp90 as key cachexins causing muscle wasting in mice.Cachexia affects many cancer patients causing weight loss and increasing mortality. Here, the authors identify extracellular Hsp70 and Hsp90, either in soluble form or secreted as part of exosomes from tumor cells, to be responsible for tumor induction of cachexia.

  13. Antibody responses to the chlamydial heat shock proteins hsp60 and hsp70 are H-2 linked.

    PubMed Central

    Zhong, G; Brunham, R C

    1992-01-01

    The effects of both H-2 and non-H-2 genes on antibody responses to two Chlamydia trachomatis heat shock proteins (hsp60 and hsp70) were investigated. These chlamydial proteins are homologs of Escherichia coli GroEL (hsp60) and DnaK (hsp70) and are highly sequence conserved between bacterial and mammalian sources. Antibody responses among 17 different strains of mice immunized with C. trachomatis serovar B and serovar C elementary bodies were evaluated by immunoblot, radioimmunoprecipitation and enzyme-linked immunosorbent assay. Antibody responses to the two proteins displayed host genetic restriction. Of six distinctive H-2 haplotypes, only H-2d generated high antibody responses to hsp70. Five of the six H-2 haplotypes, i.e., H-2a, H-2d, H-2k, H-2q, and H-2s, produced high antibody responses to hsp60. Only the H-2b-bearing strain had low antibody responses to hsp60. By using congenic and H-2 recombinant strains, the genes responsible for regulating antibody responses to hsp70 and hsp60 were mapped to the K-IA region of the H-2 locus. In F1 hybrid crosses between high and low responders, high responses to hsp60 and hsp70 were dominant traits. Other genes outside the H-2 locus also influenced antibody responses to hsp60 and hsp70, since inbred strains of identical H-2 but different background genes displayed variable antibody responses to the proteins. The genetic control of murine immune responses to C. trachomatis hsp60, a putative chlamydial immunopathologic antigen, suggests that a similar genetic mechanism may also exist in humans, and this observation may help to explain the observed variability in the spectrum of chlamydial diseases seen in humans. Images PMID:1639484

  14. A Drosophila heat shock response represents an exception rather than a rule amongst Diptera species.

    PubMed

    Zatsepina, O G; Przhiboro, A A; Yushenova, I A; Shilova, V; Zelentsova, E S; Shostak, N G; Evgen'ev, M B; Garbuz, D G

    2016-08-01

    Heat shock protein 70 (Hsp70) is the major player that underlies adaptive response to hyperthermia in all organisms studied to date. We investigated patterns of Hsp70 expression in larvae of dipteran species collected from natural populations of species belonging to four families from different evolutionary lineages of the order Diptera: Stratiomyidae, Tabanidae, Chironomidae and Ceratopogonidae. All investigated species showed a Hsp70 expression pattern that was different from the pattern in Drosophila. In contrast to Drosophila, all of the species in the families studied were characterized by high constitutive levels of Hsp70, which was more stable than that in Drosophila. When Stratiomyidae Hsp70 proteins were expressed in Drosophila cells, they became as short-lived as the endogenous Hsp70. Interestingly, three species of Ceratopogonidae and a cold-water species of Chironomidae exhibited high constitutive levels of Hsp70 mRNA and high basal levels of Hsp70. Furthermore, two species of Tabanidae were characterized by significant constitutive levels of Hsp70 and highly stable Hsp70 mRNA. In most cases, heat-resistant species were characterized by a higher basal level of Hsp70 than more thermosensitive species. These data suggest that different trends were realized during the evolution of the molecular mechanisms underlying the regulation of the responses of Hsp70 genes to temperature fluctuations in the studied families. © 2016 The Royal Entomological Society.

  15. Transcription of four Rhopalosiphum padi (L.) heat shock protein genes and their responses to heat stress and insecticide exposure.

    PubMed

    Li, Yuting; Zhao, Qi; Duan, Xinle; Song, Chunman; Chen, Maohua

    2017-03-01

    The bird cherry-oat aphid, Rhopalosiphum padi (L.), a worldwide destructive pest, is more heat tolerant than other wheat aphids, and it has developed resistance to different insecticides. Heat shock proteins (HSPs) play an important role in coping with environmental stresses. To investigate Hsp transcriptional responses to heat and insecticide stress, four full-length Hsp genes from R. padi (RpHsp60, RpHsc70, RpHsp70-1, and RpHsp70-2) were cloned. Four RpHsps were expressed during all R. padi developmental stages, but at varying levels. The mRNA levels of RpHsps were increased under thermal stress and reached maximal induction at a lower temperature (36°C) in the alate morph than in the apterous morph (37°C or 38°C). RpHsp expressions under heat stress suggest that RpHsp70-1 and RpHsp70-2 are inducible in both apterous and alate morphs, RpHsc70 is only heat-inducible in apterous morph, and RpHsp60 exhibits poor sensitivity to heat stress. The pretreatment at 37°C significantly increase both the survival rate and the RpHsps expression level of R. padi at subsequent lethal temperature. Under exposure to two sublethal concentrations (LC 10 and LC 30 ) of beta-cypermethrin, both RpHsp70-1 and RpHsp70-2 expressions were induced and reached a maximum 24h after exposure. In contrast, expression of RpHsp60 was not induced by either sublethal concentration of beta-cypermethrin. Moreover, the responses of RpHsp70-1 and RpHsp70-2 to heat shock were more sensitive than those to beta-cypermethrin. These results suggest that induction of RpHsp expression is related to thermal tolerance, and that RpHsp70-1 and RpHsp70-2 are the primary genes involved in the response to both heat and pesticide stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Genome-wide analysis of the Hsp70 family genes in pepper (Capsicum annuum L.) and functional identification of CaHsp70-2 involvement in heat stress.

    PubMed

    Guo, Meng; Liu, Jin-Hong; Ma, Xiao; Zhai, Yu-Fei; Gong, Zhen-Hui; Lu, Ming-Hui

    2016-11-01

    Hsp70s function as molecular chaperones and are encoded by a multi-gene family whose members play a crucial role in plant response to stress conditions, and in plant growth and development. Pepper (Capsicum annuum L.) is an important vegetable crop whose genome has been sequenced. Nonetheless, no overall analysis of the Hsp70 gene family is reported in this crop plant to date. To assess the functionality of Capsicum annuum Hsp70 (CaHsp70) genes, pepper genome database was analyzed in this research. A total of 21 CaHsp70 genes were identified and their characteristics were also described. The promoter and transcript expression analysis revealed that CaHsp70s were involved in pepper growth and development, and heat stress response. Ectopic expression of a cytosolic gene, CaHsp70-2, regulated expression of stress-related genes and conferred increased thermotolerance in transgenic Arabidopsis. Taken together, our results provide the basis for further studied to dissect CaHsp70s' function in response to heat stress as well as other environmental stresses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Hsp70 protects from stroke in atrial fibrillation patients by preventing thrombosis without increased bleeding risk.

    PubMed

    Allende, Mikel; Molina, Eva; Guruceaga, Elisabet; Tamayo, Ibai; González-Porras, José Ramón; Gonzalez-López, Tomás José; Toledo, Estefanía; Rabal, Obdulia; Ugarte, Ana; Roldán, Vanesa; Rivera, José; Oyarzabal, Julen; Montes, Ramón; Hermida, José

    2016-06-01

    Atrial fibrillation (AF) is a major risk factor for cardio-embolic stroke. Anticoagulant drugs are effective in preventing AF-related stroke. However, the high frequency of anticoagulant-associated major bleeding is a major concern. This study sought to identify new targets to develop safer antithrombotic therapies. Here, microarray analysis in peripheral blood cells in eight patients with AF and stroke and eight AF subjects without stroke brought to light a stroke-related gene expression pattern. HSPA1B, which encodes for heat-shock protein 70 kDa (Hsp70), was the most differentially expressed gene. This gene was down-regulated in stroke subjects, a finding confirmed further in an independent AF cohort of 200 individuals. Hsp70 knock-out mice subjected to different thrombotic challenges developed thrombosis significantly earlier than their wild-type (WT) counterparts. Remarkably, the tail bleeding time was unchanged. Accordingly, both TRC051384 and tubastatin A, i.e. two Hsp70 inducers via different pathways, delayed thrombus formation in WT mice, the tail bleeding time still being unaltered. Most interestingly, Hsp70 inducers did not increase the bleeding risk even when aspirin was concomitantly administered. Hsp70 induction was associated with an increased vascular thrombomodulin expression and higher circulating levels of activated protein C upon thrombotic stimulus. Hsp70 induction is a novel approach to delay thrombus formation with minimal bleeding risk, and is especially promising for treating AF patients and in other situations where there is also a major bleeding hazard. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  18. High mobility group protein DSP1 negatively regulates HSP70 transcription in Crassostrea hongkongensis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Zongyu; Xu, Delin; Cui, Miao

    2016-06-10

    HSP70 acts mostly as a molecular chaperone and plays important roles in facilitating the folding of nascent peptides as well as the refolding or degradation of the denatured proteins. Under stressed conditions, the expression level of HSP70 is upregulated significantly and rapidly, as is known to be achieved by various regulatory factors controlling the transcriptional level. In this study, a high mobility group protein DSP1 was identified by DNA-affinity purification from the nuclear extracts of Crassostrea hongkongensis using the ChHSP70 promoter as a bait. The specific interaction between the prokaryotically expressed ChDSP1 and the FITC-labeled ChHSP70 promoter was confirmed bymore » EMSA analysis. ChDSP1 was shown to negatively regulate ChHSP70 promoter expression by Luciferase Reporter Assay in the heterologous HEK293T cells. Both ChHSP70 and ChDSP1 transcriptions were induced by either thermal or CdCl{sub 2} stress, while the accumulated expression peaks of ChDSP1 were always slightly delayed when compared with that of ChHSP70. This indicates that ChDSP1 is involved, very likely to exert its suppressive role, in the recovery of the ChHSP70 expression from the induced level to its original state. This study is the first to report negative regulator of HSP70 gene transcription, and provides novel insights into the mechanisms controlling heat shock protein expression. -- Highlights: •HMG protein ChDSP1 shows affinity to ChHSP70 promoter in Crassostrea hongkongensis. •ChDSP1 negatively regulates ChHSP70 transcription. •ChHSP70 and ChDSP1 transcriptions were coordinately induced by thermal/Cd stress. •ChDSP1 may contribute to the recovery of the induced ChHSP70 to its original state. •This is the first report regarding negative regulator of HSP70 transcription.« less

  19. The role of HSP70 in mediating age-dependent mortality in sepsis

    PubMed Central

    McConnell, Kevin W.; Fox, Amy C.; Clark, Andrew T.; Chang, Nai-Yuan Nicholas; Dominguez, Jessica A.; Farris, Alton B.; Buchman, Timothy G.; Hunt, Clayton R.; Coopersmith, Craig M.

    2011-01-01

    Sepsis is primarily a disease of the aged, with increased incidence and mortality occurring in aged hosts. Heat shock protein (HSP) 70 plays an important role in both healthy aging and the stress response to injury. The purpose of this study was to determine the role of HSP70 in mediating mortality and the host inflammatory response in aged septic hosts. Sepsis was induced in both young (6–12week old) and aged (16–17 month old) HSP70−/− and wild type (WT) mice to determine if HSP70 modulated outcome in an age-dependent fashion. Young HSP70−/− and WT mice subjected to cecal ligation and puncture (CLP), Pseudomonas aeruginosa pneumonia or Streptococcus pneumoniae pneumonia had no differences in mortality, suggesting HSP70 does not mediate survival in young septic hosts. In contrast, mortality was higher in aged HSP70−/− mice than aged WT mice subjected to CLP (p=0.01), suggesting HSP70 mediates mortality in sepsis in an age-dependent fashion. Compared to WT mice, aged septic HSP70−/− mice had increased gut epithelial apoptosis and pulmonary inflammation. In addition, HSP70−/−mice had increased systemic levels of TNF-α, IL-6, IL-10 and IL-1β compared to WT mice. These data demonstrate that HSP70 is a key determinant of mortality in aged but not young hosts in sepsis. HSP70 may play a protective role in an age-dependent response to sepsis by preventing excessive gut apoptosis and both pulmonary and systemic inflammation. PMID:21296977

  20. Dietary supplementation of L-glutamine and L-glutamate in broiler chicks subjected to delayed placement.

    PubMed

    Zulkifli, I; Shakeri, M; Soleimani, A F

    2016-12-01

    This study was conducted to investigate the effect of dietary glutamine (Gln) + glutamic acid (Glu) supplementation on growth performance and physiological stress response in broiler chickens subjected to 24 h delay in placement. Equal number of day-old broiler chicks were assigned to either immediate placement or with 24 h delay in placement with no access to feed and water. Chicks from each placement group were fed either standard starter diet (control) or standard starter diet +1% AminoGut (AG; mixture of 10% Gln and 10% Glu) from 1 to 21 d. Blood and duodenal samples were collected at 21 d for analysis of serum levels of ceruloplasmin (CER), ovotransferin (OVT) and α-1 acid glycoprotein (AGP), duodenal heat shock protein (HSP) 70 expression, and villi length and crypt depth. Results showed that delayed placement for 24 h was detrimental to weight gain during the starter phase (1 to 21 d) but not thereafter. AG supplementation was not able to eliminate that reduction in weight gain and feed intake during the starter stage. However, the observed enhancement in villi length and crypt depth at d 21 resulted in improvement of FCR and weight gain during the finisher stage (22 to 42 d) and consequently the overall period (1 to 42 d). Broiler chickens supplemented with AG also showed lower mortality rate, and higher AGP, OVT, CER, and HSP 70 expression compared to their control counterparts. Based on AGP, OVT, CER, and HSP 70 expression, there is no indication that delayed placement was physiologically stressful to the broiler chickens at 21 d of age. © 2016 Poultry Science Association Inc.

  1. Dynamics of Heat Shock Protein 70 Serum Levels As a Predictor of Clinical Response in Non-Small-Cell Lung Cancer and Correlation with the Hypoxia-Related Marker Osteopontin

    PubMed Central

    Ostheimer, Christian; Gunther, Sophie; Bache, Matthias; Vordermark, Dirk; Multhoff, Gabriele

    2017-01-01

    Hypoxia mediates resistance to radio(chemo)therapy (RT) by stimulating the synthesis of hypoxia-related genes, such as osteopontin (OPN) and stress proteins, including the major stress-inducible heat shock protein 70 (Hsp70). Apart from its intracellular localization, Hsp70 is also present on the plasma membrane of viable tumor cells that actively release it in lipid vesicles with biophysical characteristics of exosomes. Exosomal Hsp70 contributes to radioresistance while Hsp70 derived from dying tumor cells can serve as a stimulator of immune cells. Given these opposing traits of extracellular Hsp70 and the unsatisfactory outcome of locally advanced lung tumors, we investigated the role of Hsp70 in the plasma of patients with advanced, non-metastasized non-small-cell lung cancer (NSCLC) before (T1) and 4–6 weeks after RT (T2) in relation to OPN as potential biomarkers for clinical response. Plasma levels of Hsp70 correlate with those of OPN at T1, and high OPN levels are significantly associated with a decreased overall survival (OS). Due to a therapy-induced reduction in viable tumor mass after RT Hsp70 plasma levels dropped significantly at T2 (p = 0.016). However, with respect to the immunostimulatory capacity of Hsp70 derived from dying tumor cells, patients with higher post-therapeutic Hsp70 levels showed a significantly better response to RT (p = 0.034) than those with lower levels at T2. In summary, high OPN plasma levels at T1 are indicative for poor OS, whereas elevated post-therapeutic Hsp70 plasma levels together with a drop of Hsp70 between T1 and T2, successfully predict favorable responses to RT. Monitoring the dynamics of Hsp70 in NSCLC patients before and after RT can provide additional predictive information for clinical outcome and therefore might allow a more rapid therapy adaptation. PMID:29093708

  2. EGFR-TKI-induced HSP70 degradation and BER suppression facilitate the occurrence of the EGFR T790 M resistant mutation in lung cancer cells.

    PubMed

    Cao, Xiang; Zhou, Yi; Sun, Hongfang; Xu, Miao; Bi, Xiaowen; Zhao, Zhihui; Shen, Binghui; Wan, Fengyi; Hong, Zhuan; Lan, Lei; Luo, Lan; Guo, Zhigang; Yin, Zhimin

    2018-06-28

    Non-small cell lung cancer (NSCLC) patients harboring EGFR-activating mutations initially respond to EGFR tyrosine kinase inhibitors (EGFR-TKIs) and have shown favorable outcomes. However, acquired drug resistance to EGFR-TKIs develops in almost all patients mainly due to the EGFR T790 M mutation. Here, we show that treatment with low-dose EGFR-TKI results in the emergence of the EGFR T790 M mutation and in the reduction of HSP70 protein levels in HCC827 cells. Erlotinib treatment inhibits HSP70 phosphorylation at tyrosine 41 and increases HSP70 ubiquitination, resulting in HSP70 degradation. We show that EGFR-TKI treatment causes increased DNA damage and enhanced gene mutation rates, which are secondary to the EGFR-TKI-induced reduction of HSP70 protein. Importantly, HSP70 overexpression delays the occurrence of Erlotinib-induced EGFR T790 M mutation. We further demonstrate that HSP70 interacts with multiple enzymes in the base excision repair (BER) pathway and promotes not only the efficiency but also the fidelity of BER. Collectively, our findings show that EGFR-TKI treatment facilitates gene mutation and the emergence of EGFR T790 M secondary mutation by the attenuation of BER via induction of HSP70 protein degradation. Copyright © 2018. Published by Elsevier B.V.

  3. Activation of p38 MAPK participates in brain ischemic tolerance induced by limb ischemic preconditioning by up-regulating HSP 70.

    PubMed

    Sun, Xiao-Cai; Xian, Xiao-Hui; Li, Wen-Bin; Li, Li; Yan, Cai-Zhen; Li, Qing-Jun; Zhang, Min

    2010-08-01

    This study investigates whether activation of p38 MAPK by the up-regulation of HSP 70 participates in the induction of brain ischemic tolerance by limb ischemic preconditioning (LIP). Western blot and immunohistochemical assays indicated that p38 MAPK activation occurred earlier than HSP 70 induction in the CA1 region of the hippocampus after LIP. P-p38 MAPK expression was up-regulated at 6h and reached its peak 12h after LIP, while HSP 70 expression was not significantly increased until 1 day and peaked 2 days after LIP. Neuropathological evaluation by thionin staining showed that quercetin (4 ml/kg, 50mg/kg, intraperitoneal injection), an inhibitor of HSP 70, blocked the protective effect of LIP against delayed neuronal death that is normally induced by lethal brain ischemic insult, indicating that HSP 70 participates in the induction of brain ischemic tolerance by LIP. Furthermore, SB 203580, an inhibitor of HSP 70, inhibited HSP 70 activation in the CA1 region of the hippocampus induced by LIP either with or without the presence of subsequent brain ischemic insult. Based on the above results, it can be concluded that activation of p38 MAPK participates in the brain ischemic tolerance induced by LIP at least partly by the up-regulation of HSP 70 expression. (c) 2010 Elsevier Inc. All rights reserved.

  4. Expression of hsrω-RNAi transgene prior to heat shock specifically compromises accumulation of heat shock-induced Hsp70 in Drosophila melanogaster.

    PubMed

    Singh, Anand K; Lakhotia, Subhash C

    2016-01-01

    A delayed organismic lethality was reported in Drosophila following heat shock when developmentally active and stress-inducible noncoding hsrω-n transcripts were down-regulated during heat shock through hs-GAL4-driven expression of the hsrω-RNAi transgene, despite the characteristic elevation of all heat shock proteins (Hsp), including Hsp70. Here, we show that hsrω-RNAi transgene expression prior to heat shock singularly prevents accumulation of Hsp70 in all larval tissues without affecting transcriptional induction of hsp70 genes and stability of their transcripts. Absence of the stress-induced Hsp70 accumulation was not due to higher levels of Hsc70 in hsrω-RNAi transgene-expressing tissues. Inhibition of proteasomal activity during heat shock restored high levels of the induced Hsp70, suggesting very rapid degradation of the Hsp70 even during the stress when hsrω-RNAi transgene was expressed ahead of heat shock. Unexpectedly, while complete absence of hsrω transcripts in hsrω (66) homozygotes (hsrω-null) did not prevent high accumulation of heat shock-induced Hsp70, hsrω-RNAi transgene expression in hsrω-null background blocked Hsp70 accumulation. Nonspecific RNAi transgene expression did not affect Hsp70 induction. These observations reveal that, under certain conditions, the stress-induced Hsp70 can be selectively and rapidly targeted for proteasomal degradation even during heat shock. In the present case, the selective degradation of Hsp70 does not appear to be due to down-regulation of the hsrω-n transcripts per se; rather, this may be an indirect effect of the expression of hsrω-RNAi transgene whose RNA products may titrate away some RNA-binding proteins which may also be essential for stability of the induced Hsp70.

  5. Characterization of heat shock protein 70 transcript from Nilaparvata lugens (Stål): Its response to temperature and insecticide stresses.

    PubMed

    Lu, Kai; Chen, Xia; Liu, Wenting; Zhang, Zhichao; Wang, Ying; You, Keke; Li, Yue; Zhang, Rongbin; Zhou, Qiang

    2017-10-01

    The brown planthopper, Nilaparvata lugens, possesses a strong adaptability to extreme temperature and insecticide stresses. Heat shock proteins (Hsps) are highly conserved molecular chaperones and play a pivotal role in response to various environmental stresses in insects. However, little is known about the response of Hsps to stresses in N. lugens. In the present study, an inducible Hsp70 (NlHsp70) was isolated from this insect and transcriptional expression patterns of NlHsp70 under temperature and insecticide stresses were analyzed. The full-length of NlHsp70 was 2805bp with an open reading frame (ORF) of 1896bp, showing high homology to its counterparts in other species. Expression of NlHsp70 was not altered by heat shock for 1h, nor following recovery from thermal stress. Conversely, decreased expression of NlHsp70 was observed in response to cold shock. In addition, the expression of NlHsp70 increased after imidacloprid exposure. RNA interference experiment combined with insecticide injury assay also demonstrated that NlHsp70 was essential for resistance against insecticide exposure. These observations indicated that NlHsp70 was an important gene involved in the resistance or tolerance to environmental stresses in N. lugens. Interestingly, weak changes in mRNA expression levels of two thermal-inducible Hsp genes, NlHsp90 and NlHsc70 were observed in imidacloprid-exposed N. lugens adults, suggesting that different Hsps may respond differential to the extreme temperature and insecticide stresses. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Triggers of the HSP70 stress response: environmental responses and laboratory manipulation in an Antarctic marine invertebrate (Nacella concinna)

    PubMed Central

    Peck, Lloyd S.

    2009-01-01

    The Antarctic limpet, Nacella concinna, exhibits the classical heat shock response, with up-regulation of duplicated forms of the inducible heat shock protein 70 (HSP70) gene in response to experimental manipulation of seawater temperatures. However, this response only occurs in the laboratory at temperatures well in excess of any experienced in the field. Subsequent environmental sampling of inter-tidal animals also showed up-regulation of these genes, but at temperature thresholds much lower than those required to elicit a response in the laboratory. It was hypothesised that this was a reflection of the complexity of the stresses encountered in the inter-tidal region. Here, we describe a further series of experiments comprising both laboratory manipulation and environmental sampling of N. concinna. We investigate the expression of HSP70 gene family members (HSP70A, HSP70B, GRP78 and HSC70) in response to a further suite of environmental stressors: seasonal and experimental cold, freshwater, desiccation, chronic heat and periodic emersion. Lowered temperatures (−1.9°C and −1.6°C), generally produced a down-regulation of all HSP70 family members, with some up-regulation of HSC70 when emerging from the winter period and increasing sea temperatures. There was no significant response to freshwater immersion. In response to acute and chronic heat treatments plus simulated tidal cycles, the data showed a clear pattern. HSP70A showed a strong but very short-term response to heat whilst the duplicated HSP70B also showed heat to be a trigger, but had a more sustained response to complex stresses. GRP78 expression indicates that it was acting as a generalised stress response under the experimental conditions described here. HSC70 was the major chaperone invoked in response to long-term stresses of varying types. These results provide intriguing clues not only to the complexity of HSP70 gene expression in response to environmental change but also insights into the stress response of a non-model species. PMID:19404777

  7. Triggers of the HSP70 stress response: environmental responses and laboratory manipulation in an Antarctic marine invertebrate (Nacella concinna).

    PubMed

    Clark, Melody S; Peck, Lloyd S

    2009-11-01

    The Antarctic limpet, Nacella concinna, exhibits the classical heat shock response, with up-regulation of duplicated forms of the inducible heat shock protein 70 (HSP70) gene in response to experimental manipulation of seawater temperatures. However, this response only occurs in the laboratory at temperatures well in excess of any experienced in the field. Subsequent environmental sampling of inter-tidal animals also showed up-regulation of these genes, but at temperature thresholds much lower than those required to elicit a response in the laboratory. It was hypothesised that this was a reflection of the complexity of the stresses encountered in the inter-tidal region. Here, we describe a further series of experiments comprising both laboratory manipulation and environmental sampling of N. concinna. We investigate the expression of HSP70 gene family members (HSP70A, HSP70B, GRP78 and HSC70) in response to a further suite of environmental stressors: seasonal and experimental cold, freshwater, desiccation, chronic heat and periodic emersion. Lowered temperatures (-1.9 degrees C and -1.6 degrees C), generally produced a down-regulation of all HSP70 family members, with some up-regulation of HSC70 when emerging from the winter period and increasing sea temperatures. There was no significant response to freshwater immersion. In response to acute and chronic heat treatments plus simulated tidal cycles, the data showed a clear pattern. HSP70A showed a strong but very short-term response to heat whilst the duplicated HSP70B also showed heat to be a trigger, but had a more sustained response to complex stresses. GRP78 expression indicates that it was acting as a generalised stress response under the experimental conditions described here. HSC70 was the major chaperone invoked in response to long-term stresses of varying types. These results provide intriguing clues not only to the complexity of HSP70 gene expression in response to environmental change but also insights into the stress response of a non-model species.

  8. The role of heat shock protein 70 in mediating age-dependent mortality in sepsis.

    PubMed

    McConnell, Kevin W; Fox, Amy C; Clark, Andrew T; Chang, Nai-Yuan Nicholas; Dominguez, Jessica A; Farris, Alton B; Buchman, Timothy G; Hunt, Clayton R; Coopersmith, Craig M

    2011-03-15

    Sepsis is primarily a disease of the aged, with increased incidence and mortality occurring in aged hosts. Heat shock protein (HSP) 70 plays an important role in both healthy aging and the stress response to injury. The purpose of this study was to determine the role of HSP70 in mediating mortality and the host inflammatory response in aged septic hosts. Sepsis was induced in both young (6- to 12-wk-old) and aged (16- to 17-mo-old) HSP70(-/-) and wild-type (WT) mice to determine whether HSP70 modulated outcome in an age-dependent fashion. Young HSP70(-/-) and WT mice subjected to cecal ligation and puncture, Pseudomonas aeruginosa pneumonia, or Streptococcus pneumoniae pneumonia had no differences in mortality, suggesting HSP70 does not mediate survival in young septic hosts. In contrast, mortality was higher in aged HSP70(-/-) mice than aged WT mice subjected to cecal ligation and puncture (p = 0.01), suggesting HSP70 mediates mortality in sepsis in an age-dependent fashion. Compared with WT mice, aged septic HSP70(-/-) mice had increased gut epithelial apoptosis and pulmonary inflammation. In addition, HSP70(-/-) mice had increased systemic levels of TNF-α, IL-6, IL-10, and IL-1β compared with WT mice. These data demonstrate that HSP70 is a key determinant of mortality in aged, but not young hosts in sepsis. HSP70 may play a protective role in an age-dependent response to sepsis by preventing excessive gut apoptosis and both pulmonary and systemic inflammation.

  9. Variation of heat shock protein gene expression in the brain of cold-induced pulmonary hypertensive chickens.

    PubMed

    Hassanpour, H; Khosravi Alekoohi, Z; Madreseh, S; Bahadoran, S; Nasiri, L

    2016-10-01

    Quantitative real-time PCR was carried out to evaluate gene expression of heat shock proteins (HSP) (HSP27, HSP56, HSP60, HSP70, HSP90 and ubiquitin) in the brain (hindbrain, midbrain, forebrain) of chickens with cold-induced pulmonary hypertension. The ratio of the right ventricle to the total ventricle (index of pulmonary hypertension in chickens) was increased in the cold-induced pulmonary hypertensive chickens at 42 d of age compared with control. The HSP genes were expressed in the three parts of the brain in the two experimental groups. In the hindbrain of cold-induced pulmonary hypertensive chickens, the relative gene expression of HSP27, HSP60, HSP70 and HSP90 was decreased while gene expression of HSP56 and ubiquitin was increased compared with controls. In the midbrain of cold induced-pulmonary hypertensive chickens, the expression of HSP56, HSP60, HSP70 and ubiquitin genes was increased compared with controls while HSP27 and HSP90 were decreased. In the forebrain of cold induced-pulmonary hypertensive chickens, the expression of HSP56, HSP60, HSP70 and ubiquitin genes was increased while the expression of the HSP27 gene was decreased compared with controls. It is concluded that overexpression of HSPs in the forebrain and midbrain probably delays the pathological process of cold stress whereas diminished expression of HSP genes in the hindbrain may affect the normal function of brain centres in this area to exacerbate pulmonary hypertension.

  10. Molecular analysis of Hsp70 mechanisms in plants and their function in response to stress.

    PubMed

    Usman, Magaji G; Rafii, Mohd Y; Martini, Mohammad Y; Yusuff, Oladosu A; Ismail, Mohd R; Miah, Gous

    2017-04-01

    Studying the strategies of improving abiotic stress tolerance is quite imperative and research under this field will increase our understanding of response mechanisms to abiotic stress such as heat. The Hsp70 is an essential regulator of protein having the tendency to maintain internal cell stability like proper folding protein and breakdown of unfolded proteins. Hsp70 holds together protein substrates to help in movement, regulation, and prevent aggregation under physical and or chemical pressure. However, this review reports the molecular mechanism of heat shock protein 70 kDa (Hsp70) action and its structural and functional analysis, research progress on the interaction of Hsp70 with other proteins and their interaction mechanisms as well as the involvement of Hsp70 in abiotic stress responses as an adaptive defense mechanism.

  11. Fine particulate matter potentiates type 2 diabetes development in high-fat diet-treated mice: stress response and extracellular to intracellular HSP70 ratio analysis.

    PubMed

    Goettems-Fiorin, Pauline Brendler; Grochanke, Bethânia Salamoni; Baldissera, Fernanda Giesel; Dos Santos, Analu Bender; Homem de Bittencourt, Paulo Ivo; Ludwig, Mirna Stela; Rhoden, Claudia Ramos; Heck, Thiago Gomes

    2016-12-01

    Exposure to fine particulate matter (PM 2.5 ) air pollution is a risk factor for type 2 diabetes (T2DM). We argue whether the potentiating effect of PM 2.5 over the development of T2DM in high-fat diet (HFD)-fed mice would be related to modification in cell stress response, particularly in antioxidant defenses and 70-kDa heat shock proteins (HSP70) status. Male mice were fed standard chow or HFD for 12 weeks and then randomly exposed to daily nasotropic instillation of PM 2.5 for additional 12 weeks under the same diet schedule, divided into four groups (n = 14-15 each): Control, PM 2.5 , HFD, and HFD + PM 2.5 were evaluated biometric and metabolic profiles of mice, and cellular stress response (antioxidant defense and HSP70 status) of metabolic tissues. Extracellular to intracellular HSP70 ratio ([eHSP72]/[iHSP70]), viz. H-index, was then calculated. HFD + PM 2.5 mice presented a positive correlation between adiposity, increased body weight and glucose intolerance, and increased glucose and triacylglycerol plasma levels. Pancreas exhibited lower iHSP70 expression, accompanied by 3.7-fold increase in the plasma to pancreas [eHSP72]/[iHSP70] ratio. Exposure to PM 2.5 markedly potentiated metabolic dysfunction in HFD-treated mice and promoted relevant alteration in cell stress response assessed by [eHSP72]/[iHSP70], a relevant biomarker of chronic low-grade inflammatory state and T2DM risk.

  12. Natural variation in resistance to desiccation and heat shock protein expression in the land snail Theba pisana along a climatic gradient.

    PubMed

    Mizrahi, Tal; Goldenberg, Shoshana; Heller, Joseph; Arad, Zeev

    2015-01-01

    Land snails frequently encounter desiccating conditions, and their survival depends on a suite of morphological, physiological, and molecular adaptations to the specific microhabitat. Strategies of survival can be determined by integrating information from various levels of biological organization. In this study, we used a combination of physiological parameters related to water economy and molecular factors (stress protein expression) to investigate the strategies of survival adopted by seven populations of the Mediterranean-type land snail Theba pisana from different habitats. We analyzed water compartmentalization during aestivation and used experimental desiccation to compare desiccation resistance. We also measured the endogenous levels of heat shock proteins (HSPs) Hsp72, Hsp74, and Hsp90 under nonstress conditions and analyzed the HSP response to desiccation in two populations that differed mostly in their resistance to desiccation. We revealed significant intraspecific differences in resistance to desiccation that seem to be determined by the speed of recruitment of the water-preserving mechanisms. The ability to cope with desiccating conditions was correlated with habitat temperature but not with the rainfall gradient, implying that in the coastal region, temperature is likely to have a major impact on desiccation resistance rather than precipitation. Also, higher desiccation resistance was correlated with higher constitutive levels of Hsp74 in the foot tissue. HSPs were upregulated during desiccation, but the response was delayed and was milder in the most resistant population compared to the most susceptible one. Our study suggests that T. pisana populations from warmer habitats were more resistant to desiccation and developed distinct strategies of HSP expression for survival, namely, the maintenance of high constitutive levels of Hsp70 together with a delayed and limited response to stress.

  13. Ethanol increases HSP70 concentrations in honeybee (Apis mellifera L.) brain tissue.

    PubMed

    Hranitz, John M; Abramson, Charles I; Carter, Richard P

    2010-05-01

    Previous research on the honeybee ethanol model established how acute ethanol exposure altered function at different levels of organization: behavior and learning, ecology, and physiology. The purpose of this study was to evaluate whether ethanol doses that affect honeybee behavior also induce a significant stress response, measured by heat shock protein 70 (HSP70) concentrations, in honeybee brain tissues. Experiment 1 examined how pretreatment handling influenced brain HSP70 concentrations in three pretreatment groups of bees; immediately after being collected, after being harnessed and fed, and after 22-24h in a harness. HSP70 concentrations did not differ among pretreatment groups within replicates, although we observed significantly different HSP70 concentrations between the two replicates. Experiment 2 investigated the relationship between ethanol dose and brain HSP70 concentrations. Bees were placed in seven experimental groups, the three pretreatment groups as in Experiment 1 and four ethanol-fed groups. Bees in ethanol treatments were fed 1.5M sucrose (control) and 1.5M sucrose-ethanol solutions containing 2.5, 5, and 10% ethanol, allowed to sit for 4h, and dissected brains were assayed for HSP70. We observed ethanol-induced increases in honeybee brain HSP70 concentrations from the control group through the 5% ethanol group. Only bees in the 5% ethanol group had HSP70 concentrations significantly higher than the control group. The inverted U-shaped ethanol dose-HSP70 concentration response curve indicated that ingestion of 2.5% ethanol and 5% ethanol stimulated the stress response, whereas ingestion of 10% ethanol inhibited the stress response. Doses that show maximum HSP70 concentration (5% ethanol) or HSP70 inhibition (10% ethanol) correspond to those (> or =5% ethanol) that also impaired honeybees in previous studies. We conclude that acute ethanol intoxication by solutions containing > or =5% ethanol causes significant ethanol-induced stress in brain tissue that impairs honeybee behavior and associative learning. 2010 Elsevier Inc. All rights reserved.

  14. Therapeutic efficacy of tumor-derived heat shock protein 70 immunotherapy combining interleukin-2 on tumor-bearing mice.

    PubMed

    Fu, Qingguo; Meng, Fandong; Shen, Xiaodong; Guo, Renxuan

    2003-02-01

    To investigate the therapeutic efficacy of compound immunotherapy of tumor-derived heat shock protein 70 (HSP70) and interleukin-2 (IL-2) on tumor-bearing mice, and to provide reference for translating this strategy to human cancer. Cell culture, techniques for protein extraction and purification, SDS-PAGE, Western blot and capillary electrophoresis for HSP70 detection and purity analysis, and animal experiments were used. Mice were treated with HSP70 5 or 10 microg and IL-2 50 kU, 100 kU or 2 kU (maintaining dosage) at previously designated intervals. Both the mono-administration of either HSP70 or IL-2 and the compound immunotherapy of HSP70 and IL-2 obviously inhibited the growth of the implanted tumor and prolonged the life span of the mice to different extents. However, long periods of tumor-free survival (over 90 days) were demonstrated only in HSP70 10 micro g group, HSP70 10 microg-IL-2 50 kU group, and HSP70 10 microg-IL-2 100 kU group (40%, 40%, 60% respectively). On the other hand, none of the mice in the rest groups achieved long-term survival. Statistical significance was apparent in comparison with the groups without long period survival (P < 0.025 - 0.05). Our research revealed that tumor-derived HSP70 immunotherapy was much more effective than IL-2 alone. And in compound immunotherapy, HSP70 was the main factor in delaying or eradicating the tumors. The proper combination of HSP70 and IL-2 (10 microg HSP70 and 100 kU IL-2 in this experimental mouse model) clearly enhanced the immunotherapy efficacy which indicated that the specific immunotherapy as a main part of tumor immunotherapy assisted by cytokine immunotherapy would be a promising strategy in cancer treatment.

  15. Transcriptome, expression, and activity analyses reveal a vital heat shock protein 70 in the stress response of stony coral Pocillopora damicornis.

    PubMed

    Zhang, Yidan; Zhou, Zhi; Wang, Lingui; Huang, Bo

    2018-02-12

    Coral bleaching occurs worldwide with increasing frequencies and intensities, which is caused by the stress response of stony coral to environmental change, especially increased sea surface temperature. In the present study, transcriptome, expression, and activity analyses were employed to illustrate the underlying molecular mechanisms of heat shock protein 70 (HSP70) in the stress response of coral to environmental changes. The domain analyses of assembled transcripts revealed 30 HSP70 gene contigs in stony coral Pocillopora damicornis. One crucial HSP70 (PdHSP70) was observed, whose expressions were induced by both elevated temperature and ammonium after expression difference analysis. The complete complementary DNA (cDNA) sequence of PdHSP70 was identified, which encoded a polypeptide of 650 amino acids with a molecular weight of 71.93 kDa. The deduced amino acid sequence of PdHSP70 contained a HSP70 domain (from Pro8 to Gly616), and it shared the highest similarity (95%) with HSP70 from Stylophora pistillata. The expression level of PdHSP70 gene increased significantly at 12 h, and returned to the initial level at 24 h after the stress of high temperature (32 °C). The cDNA fragment encoding the mature peptide of PdHSP70 was recombined and expressed in the prokaryotic expression system. The ATPase activity of recombinant PdHSP70 protein was determined, and it did not change significantly in a wide range of temperature from 25 to 40 °C. These results collectively suggested that PdHSP70 was a vital heat shock protein 70 in the stony coral P. damicornis, whose mRNA expression could be induced by diverse environmental stress and whose activity could remain stable under heat stress. PdHSP70 might be involved in the regulation of the bleaching owing to heat stress in the stony coral P. damicornis.

  16. A small molecule inhibitor for ATPase activity of Hsp70 and Hsc70 enhances the immune response to protein antigens

    NASA Astrophysics Data System (ADS)

    Baek, Kyung-Hwa; Zhang, Haiying; Lee, Bo Ryeong; Kwon, Young-Guen; Ha, Sang-Jun; Shin, Injae

    2015-12-01

    The ATPase activities of Hsp70 and Hsc70 are known to be responsible for regulation of various biological processes. However, little is known about the roles of Hsp70 and Hsc70 in modulation of immune responses to antigens. In the present study, we investigated the effect of apoptozole (Az), a small molecule inhibitor of Hsp70 and Hsc70, on immune responses to protein antigens. The results show that mice administered with both protein antigen and Az produce more antibodies than those treated with antigen alone, showing that Az enhances immune responses to administered antigens. Treatment of mice with Az elicits production of antibodies with a high IgG2c/IgG1 ratio and stimulates the release of Th1 and Th2-type cytokines, suggesting that Az activates the Th1 and Th2 immune responses. The observations made in the present study suggest that inhibition of Hsp70 and Hsc70 activities could be a novel strategy designing small molecule-based adjuvants in protein vaccines.

  17. Functional analysis of the Hikeshi-like protein and its interaction with HSP70 in Arabidopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koizumi, Shinya; Ohama, Naohiko; Mizoi, Junya

    2014-07-18

    Highlights: • HKL, a Hikeshi homologous gene is identified in Arabidopsis. • HKL interacts with two HSP70 isoforms and regulates the subcellular localization of HSC70-1. • The two HSP70 translocate into nucleus in response to heat stress. • Overexpression of HKL confers thermotolerance in transgenic plants. - Abstract: Heat shock proteins (HSPs) refold damaged proteins and are an essential component of the heat shock response. Previously, the 70 kDa heat shock protein (HSP70) has been reported to translocate into the nucleus in a heat-dependent manner in many organisms. In humans, the heat-induced translocation of HSP70 requires the nuclear carrier proteinmore » Hikeshi. In the Arabidopsis genome, only one gene encodes a protein with high homology to Hikeshi, and we named this homolog Hikeshi-like (HKL) protein. In this study, we show that two Arabidopsis HSP70 isoforms accumulate in the nucleus in response to heat shock and that HKL interacts with these HSP70s. Our histochemical analysis revealed that HKL is predominantly expressed in meristematic tissues, suggesting the potential importance of HKL during cell division in Arabidopsis. In addition, we show that HKL regulates HSP70 localization, and HKL overexpression conferred thermotolerance to transgenic Arabidopsis plants. Our results suggest that HKL plays a positive role in the thermotolerance of Arabidopsis plants and cooperatively interacts with HSP70.« less

  18. Th1 stimulatory proteins of Leishmania donovani: comparative cellular and protective responses of rTriose phosphate isomerase, rProtein disulfide isomerase and rElongation factor-2 in combination with rHSP70 against visceral leishmaniasis.

    PubMed

    Jaiswal, Anil Kumar; Khare, Prashant; Joshi, Sumit; Kushawaha, Pramod Kumar; Sundar, Shyam; Dube, Anuradha

    2014-01-01

    In visceral leishmaniasis, the recovery from the disease is always associated with the generation of Th1-type of cellular responses. Based on this, we have previously identified several Th1-stimulatory proteins of Leishmania donovani -triose phosphate isomerase (TPI), protein disulfide isomerase (PDI) and elongation factor-2 (EL-2) etc. including heat shock protein 70 (HSP70) which induced Th1-type of cellular responses in both cured Leishmania patients/hamsters. Since, HSPs, being the logical targets for vaccines aimed at augmenting cellular immunity and can be early targets in the immune response against intracellular pathogens; they could be exploited as vaccine/adjuvant to induce long-term immunity more effectively. Therefore, in this study, we checked whether HSP70 can further enhance the immunogenicity and protective responses of the above said Th1-stimulatory proteins. Since, in most of the studies, immunogenicity of HSP70 of L. donovani was assessed in native condition, herein we generated recombinant HSP70 and tested its potential to stimulate immune responses in lymphocytes of cured Leishmania infected hamsters as well as in the peripheral blood mononuclear cells (PBMCs) of cured patients of VL either individually or in combination with above mentioned recombinant proteins. rLdHSP70 alone elicited strong cellular responses along with remarkable up-regulation of IFN-γ and IL-12 cytokines and extremely lower level of IL-4 and IL-10. Among the various combinations, rLdHSP70 + rLdPDI emerged as superior one augmenting improved cellular responses followed by rLdHSP70 + rLdEL-2. These combinations were further evaluated for its protective potential wherein rLdHSP70 + rLdPDI again conferred utmost protection (∼80%) followed by rLdHSP70 + rLdEL-2 (∼75%) and generated a strong cellular immune response with significant increase in the levels of iNOS transcript as well as IFN-γ and IL-12 cytokines which was further supported by the high level of IgG2 antibody in vaccinated animals. These observations indicated that vaccine(s) based on combination of HSP70 with Th1-stimulatory protein(s) may be a viable proposition against intracellular pathogens.

  19. Th1 Stimulatory Proteins of Leishmania donovani: Comparative Cellular and Protective Responses of rTriose Phosphate Isomerase, rProtein Disulfide Isomerase and rElongation Factor-2 in Combination with rHSP70 against Visceral Leishmaniasis

    PubMed Central

    Jaiswal, Anil Kumar; Khare, Prashant; Joshi, Sumit; Kushawaha, Pramod Kumar; Sundar, Shyam; Dube, Anuradha

    2014-01-01

    In visceral leishmaniasis, the recovery from the disease is always associated with the generation of Th1-type of cellular responses. Based on this, we have previously identified several Th1-stimulatory proteins of Leishmania donovani -triose phosphate isomerase (TPI), protein disulfide isomerase (PDI) and elongation factor-2 (EL-2) etc. including heat shock protein 70 (HSP70) which induced Th1-type of cellular responses in both cured Leishmania patients/hamsters. Since, HSPs, being the logical targets for vaccines aimed at augmenting cellular immunity and can be early targets in the immune response against intracellular pathogens; they could be exploited as vaccine/adjuvant to induce long-term immunity more effectively. Therefore, in this study, we checked whether HSP70 can further enhance the immunogenicity and protective responses of the above said Th1-stimulatory proteins. Since, in most of the studies, immunogenicity of HSP70 of L. donovani was assessed in native condition, herein we generated recombinant HSP70 and tested its potential to stimulate immune responses in lymphocytes of cured Leishmania infected hamsters as well as in the peripheral blood mononuclear cells (PBMCs) of cured patients of VL either individually or in combination with above mentioned recombinant proteins. rLdHSP70 alone elicited strong cellular responses along with remarkable up-regulation of IFN-γ and IL-12 cytokines and extremely lower level of IL-4 and IL-10. Among the various combinations, rLdHSP70 + rLdPDI emerged as superior one augmenting improved cellular responses followed by rLdHSP70 + rLdEL-2. These combinations were further evaluated for its protective potential wherein rLdHSP70 + rLdPDI again conferred utmost protection (∼80%) followed by rLdHSP70 + rLdEL-2 (∼75%) and generated a strong cellular immune response with significant increase in the levels of iNOS transcript as well as IFN-γ and IL-12 cytokines which was further supported by the high level of IgG2 antibody in vaccinated animals. These observations indicated that vaccine(s) based on combination of HSP70 with Th1-stimulatory protein(s) may be a viable proposition against intracellular pathogens. PMID:25268700

  20. Intracellular and extracellular expression of the major inducible 70kDa heat shock protein in experimental ischemia-reperfusion injury of the spinal cord.

    PubMed

    Awad, Hamdy; Suntres, Zacharias; Heijmans, John; Smeak, Daniel; Bergdall-Costell, Valerie; Christofi, Fievos L; Magro, Cynthia; Oglesbee, Michael

    2008-08-01

    Inflammatory responses exacerbate ischemia-reperfusion (IR) injury of spinal cord, although understanding of mediators is incomplete. The major inducible 70kDa heat shock protein (hsp70) is induced by ischemia and extracellular hsp70 (e-hsp70) can modulate inflammatory responses, but there is no published information regarding e-hsp70 levels in the cerebrospinal fluid (CSF) or serum as part of any neurological disease state save trauma. The present work addresses this deficiency by examining e-hsp70 in serum and CSF of dogs in an experimental model of spinal cord IR injury. IR injury of spinal cord caused hind limb paraplegia within 2-3 h that was correlated to lumbosacral poliomalacia with T cell infiltrates at 3 d post-ischemia. In this context, we showed a 5.2-fold elevation of e-hsp70 in CSF that was induced by ischemia and was sustained for the following 3 d observation interval. Plasma e-hsp70 levels were unaffected by IR injury, indicating e-hsp70 release from within the central nervous system. A putative source of this e-hsp70 was ependymal cells in the ischemic penumbra, based upon elevated i-hsp70 levels detected within these cells. Results warrant further investigation of e-hsp70's potential to modulate spinal cord IR injury.

  1. HSP70: therapeutic potential in acute and chronic cardiac disease settings.

    PubMed

    Bernardo, Bianca C; Weeks, Kate L; Patterson, Natalie L; McMullen, Julie R

    2016-12-01

    Heat shock proteins are a family of proteins that are produced by cells in response to exposure to stressful conditions. The best studied heat shock protein is HSP70, which is known to act as a molecular chaperone to maintain cellular homeostasis and inhibit protein aggregation in response to stress. While early animal studies suggested that increasing HSP70 in the heart (using a transgenic, gene transfer or pharmacological approach) provided cardiac protection against acute cardiac stress, recent studies have found no benefit of increasing HSP70 in mouse models of chronic cardiac stress. As HSP70 has been considered a potential therapeutic target, it is important to comprehensively assess HSP70 therapies in preclinical models of acute and chronic cardiac disease.

  2. HSP70 and heat shock factor 1 cooperate to repress Ras-induced transcriptional activation of the c-fos gene.

    PubMed

    He, H; Chen, C; Xie, Y; Asea, A; Calderwood, S K

    2000-11-01

    Heat shock protein 70 (HSP70) is a molecular chaperone involved in protein folding and resistance to the deleterious effects of stress. Here we show that HSP70 suppresses transcription of c-fos, an early response gene that is a key component of the ubiquitous AP-1 transcription factor complex. HSP70 repressed Ras-induced c-fos transcription only in the presence of functional heat shock factor1 (HSF1). This suggests that HSP70 functions as a corepressor with HSF1 to inhibit c-fos gene transcription. Therefore, besides its known function in the stress response, HSP70 also has the property of a corepressor and combines with HSF1 to antagonize Fos expression and may thus impact multiple aspects of cell regulation.

  3. Cloning and expression analysis of a HSP70 gene from Pacific abalone (Haliotis discus hannai).

    PubMed

    Cheng, Peizhou; Liu, Xiao; Zhang, Guofan; He, Jianguo

    2007-01-01

    Heat shock protein 70 (HSP70), the primary member of HSPs that are responsive of thermal stress, is found in all multicellular organisms and functions mostly as molecular chaperon. The inducible HSP70 cDNA cloned from Pacific abalone (Haliotis discus hannai) using rapid amplification of cDNA ends (RACE), was highly homologous to other HSP70 genes. The full-length cDNA of the Pacific abalone HSP70 was 2631bp, consisting of a 5'-terminal untranslated region (UTR) of 90bp, a 3'-terminal UTR of 573bp with a canonical polyadenylation signal sequence AATAAA and a poly (A) tail, and an open reading frame of 1968bp. The HSP70 cDNA encoded a polypeptide of 655 amino acids with an ATPase domain of 382 amino acids, the substrate peptide binding domain of 161 amino acids and a C-terminus domain of 112 amino acids. The temporal expression of HSP70 was measured by semi-quantitative RT-PCR after heat shock and bacterial challenge. Challenge of Pacific abalone with heat shock or the pathogenic bacteria Vibrio anguillarum resulted in a dramatic increase in the expression of HSP70 mRNA level in muscle, followed by a recovery to normal level after 96h. Unlike the muscle, the levels of HSP70 expression in gills reached the top at 12h and maintained a relatively high level compared with the control after thermal and bacterial challenge. The upregulated mRNA expression of HSP70 in the abalone following heat shock and infection response indicates that the HSP70 gene is inducible and involved in immune response.

  4. Noradrenaline and alpha-adrenergic signaling induce the hsp70 gene promoter in mollusc immune cells.

    PubMed

    Lacoste, A; De Cian, M C; Cueff, A; Poulet, S A

    2001-10-01

    Expression of heat shock proteins (hsp) is a homeostatic mechanism induced in both prokaryotic and eukaryotic cells in response to metabolic and environmental insults. A growing body of evidence suggests that in mammals, the hsp response is integrated with physiological responses through neuroendocrine signaling. In the present study, we have examined the effect of noradrenaline (NA) on the hsp70 response in mollusc immune cells. Oyster and abalone hemocytes transfected with a gene construct containing a gastropod hsp70 gene promoter linked to the luciferase reporter-gene were exposed to physiological concentrations of NA, or to various alpha- and beta-adrenoceptor agonists and antagonists. Results show that NA and alpha-adrenergic stimulations induced the expression of luciferase in transfected mollusc immunocytes. Furthermore, exposure of hemocytes to NA or to the alpha-adrenoceptor agonist phenylephrine (PE) resulted in the expression of the inducible isoform of the hsp70 protein. Pertussis toxin (PTX), the phospholipase C (PLC) inhibitor U73122, the protein kinase C (PKC) inhibitor calphostin C, the Ca(2+)-dependent PKC inhibitor Gö 6976 and the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor LY294002 blocked the PE-mediated induction of the hsp70 gene promoter. These results suggest that alpha-adrenergic signaling induces the transcriptionnal upregulation of hsp70 in mollusc hemocytes through a PTX-sensitive G-protein, PLC, Ca(2+)-dependent PKC and PI 3-kinase. Thus, a functional link exists between neuroendocrine signaling and the hsp70 response in mollusc immune cells.

  5. Enhanced antitumor immunity of nanoliposome-encapsulated heat shock protein 70 peptide complex derived from dendritic tumor fusion cells.

    PubMed

    Zhang, Yunfei; Luo, Wen; Wang, Yucai; Chen, Jun; Liu, Yunyan; Zhang, Yong

    2015-06-01

    Tumor-derived heat shock proteins peptide complex (HSP.PC-Tu) has been regarded as a promising antitumor agent. However, inadequate immunogenicity and low bioavailability limit the clinical uses of this agent. In a previous study, we first produced an improved HSP70.PC-based vaccine purified from dendritic cell (DC)-tumor fusion cells (HSP70.PC-Fc) which had increased immunogenicity due to enhanced antigenic tumor peptides compared to HSP70.PC-Tu. In order to increase the bioavailability of HSP70.PC-Fc, the peptide complex was encapsulated with nanoliposomes (NL-HSP70.PC-Fc) in this study. After encapsulation, the tumor immunogenicity was observed using various assays. It was demonstrated that the NL-HSP70.PC-Fc has acceptable stability. The in vivo antitumor immune response was increased with regard to T-cell activation, CTL response and tumor therapy efficiency compared to that of HSP70.PC-Fc. In addition, it was shown that DC maturation was improved by NL-HSP70.PC-Fc, which added to the antitumor immunity. The results obtained for NL-HSP70.PC-Fc, which improved immunogenicity and increases the bioavailability of HSP70.PC, may represent superior heat shock proteins (HSPs)-based tumor vaccines. Such vaccines deserve further investigation and may provide a preclinical rationale to translate findings into early phase trials for patients with breast tumors.

  6. Amino-modified polystyrene nanoparticles affect signalling pathways of the sea urchin (Paracentrotus lividus) embryos.

    PubMed

    Pinsino, Annalisa; Bergami, Elisa; Della Torre, Camilla; Vannuccini, Maria Luisa; Addis, Piero; Secci, Marco; Dawson, Kenneth A; Matranga, Valeria; Corsi, Ilaria

    2017-03-01

    Polystyrene nanoparticles have been shown to pose serious risk to marine organisms including sea urchin embryos based on their surface properties and consequently behaviour in natural sea water. The aim of this study is to investigate the toxicity pathways of amino polystyrene nanoparticles (PS-NH 2 , 50 nm) in Paracentrotus lividus embryos in terms of development and signalling at both protein and gene levels. Two sub-lethal concentrations of 3 and 4 μg/mL of PS-NH 2 were used to expose sea urchin embryos in natural sea water (PS-NH 2 as aggregates of 143 ± 5 nm). At 24 and 48 h post-fertilisation (hpf) embryonic development was monitored and variations in the levels of key proteins involved in stress response and development (Hsp70, Hsp60, MnSOD, Phospho-p38 Mapk) as well as the modulation of target genes (Pl-Hsp70, Pl-Hsp60, Pl-Cytochrome b, Pl-p38 Mapk, Pl-Caspase 8, Pl-Univin) were measured. At 48 hpf various striking teratogenic effects were observed such as the occurrence of cells/masses randomly distributed, severe skeletal defects and delayed development. At 24 hpf a significant up-regulation of Pl-Hsp70, Pl-p38 Mapk, Pl-Univin and Pl-Cas8 genes was found, while at 48 hpf only for Pl-Univin was observed. Protein profile showed different patterns as a significant increase of Hsp70 and Hsp60 only after 48 hpf compared to controls. Conversely, P-p38 Mapk protein significantly increased at 24 hpf and decreased at 48 hpf. Our findings highlight that PS-NH 2 are able to disrupt sea urchin embryos development by modulating protein and gene profile providing new understandings into the signalling pathways involved.

  7. Expression of Hsp70 reveals significant differences between fin regeneration and inflammation in Paramisgurnus dabryanus.

    PubMed

    Li, Li; Wang, Linlin; He, Jingya; Chang, Zhongjie

    2017-05-01

    Hsp70 is the most strongly induced in response to various cellular stresses and a good candidate for investigating its role in tissue injury. We firstly cloned full-length cDNA of hsp70 from Paramisgurnus dabryanus (PdHsp70) by RACE method (GenBank: KP402408.1). Then regeneration and inflammation of fin were established by amputation and scratch respectively. Quantitative RT-PCR detected the PdHsp70 began to increase rapidly its expression at 1 days post amputation (dpa) and reached the peak at 2 dpa during fin regeneration. Its expression was also up-regulated at 2 days post scratch (dps) of inflammation but still significant weaker in comparison with it in regenerated fin at 2 dpa. Next, immunohistochemistry analysis of PdHsp70 showed that PdHsp70 located mainly in the deeper epidermis of regenerated fin and was stronger than its expression in the scratched inflammatory fin which was involved in whole epidermal. SDS-PAGE and Western blotting confirmed that the PdHsp70 protein expressed efficiently in Escherichia coli BL21. These findings have implied that PdHsp70 are implicated in different regulation of regeneration and inflammation in response to injury stimulation. During the regeneration, it is involved in the formation of wound epidermis by mediating cellular protection whereas it can modulate inflammatory by activating the innate immune response. Copyright © 2017. Published by Elsevier Ltd.

  8. Down-regulation of heat-shock protein 70 (HSP-70) correlated with responsiveness to neoadjuvant aromatase inhibitor therapy in breast cancer patients.

    PubMed

    Yiu, Christopher C P; Chanplakorn, Niramol; Chan, Monica S M; Loo, Wings T Y; Chow, Louis W C; Toi, Masakazu; Sasano, Hironobu

    2010-09-01

    Aromatase inhibitor (AI) has been established as an effective endocrine therapy in estrogen receptor (ER)-positive postmenopausal breast cancer patients. Our recent proteomic analysis demonstrated that ten proteins were significantly altered in their expression levels before and after the therapy in the patients receiving neoadjuvant AI. Among these newly identified proteins, heat-shock protein 70 (HSP-70) was the most significantly correlated with both clinical and pathological responses. Therefore, in this study, we further evaluated the significance of this HSP-70 alteration using immunohistochemistry. A total of 32 patients treated with neoadjuvant exemestane or letrozole in whom pre- and post-treatment tumor tissues were available were included. Immunohistochemical evaluation of ER, progesterone receptor (PgR), Her-2, Ki-67 and HSP-70 was performed. Results obtained were compared to both clinical and biological responses of the patients. The majority of the patients responded to treatment (16 patients with partial response, 14 with stable disease and 2 with progressive disease). The means of ER, Ki-67 and HSP-70 were significantly different between treatment responders and non-responders. Decrement of HSP-70 and Ki-67 after AI treatment and pretreatment Ki-67 labeling index of >10% tumor cells were significantly associated with clinical responsiveness to AI treatment (p<0.0001). There was a significant positive correlation between changes of HSP-70 and Ki-67 before and after the therapy. Decrement of HSP-70 in breast carcinoma cells plays important roles in therapeutic mechanisms of AIs through suppressing tumor cell proliferation in breast cancer patients.

  9. Cold acclimation increases levels of some heat shock protein and sirtuin isoforms in threespine stickleback.

    PubMed

    Teigen, Laura E; Orczewska, Julieanna I; McLaughlin, Jessica; O'Brien, Kristin M

    2015-10-01

    Molecular chaperones [heat shock proteins (HSPs)] increase in response to rapid changes in temperatures, but long-term acclimation to cold temperature may also warrant elevations in HSPs. In fishes, cold acclimation increases mitochondrial density and oxidative stress in some tissues, which may increase demand for HSPs. We hypothesized that levels of HSPs, as well as sirtuins (SIRTs), NAD-dependent deacetylases that mediate changes in metabolism and responses to oxidative stress (including increases in HSPs), would increase during cold acclimation of threespine stickleback (Gasterosteus aculeatus). Transcript levels of hsp70, hsc70, hsp60 and hsp90-α, sirts1-4, as well as protein levels of HSP60, HSP90 and HSC70 were quantified in liver and pectoral adductor muscle of stickleback during cold acclimation from 20 °C to 8 °C. In liver, cold acclimation stimulated a transient increase in mRNA levels of hsp60 and hsc70. Transcript levels of sirt1 and sirt2 also increased in response to cold acclimation and remained elevated. In pectoral muscle, mRNA levels of hsp60, hsp90-α, hsc70 and sirt1 all transiently increased in response to cold acclimation, while levels of sirts2-4 remained constant or declined. Similar to transcript levels, protein levels of HSC70 increased in both liver and pectoral muscle. Levels of HSP90 also increased in liver after 4 weeks at 8 °C. HSP60 remained unchanged in both tissues, as did HSP90 in pectoral muscle. Our results indicate that while both HSPs and SIRTs increase in response to cold acclimation in stickleback, the response is tissue and isoform specific, likely reflecting differences in metabolism and oxidative stress. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Using Lymphocyte and Plasma Hsp70 as Biomarkers for Assessing Coke Oven Exposure among Steel Workers

    PubMed Central

    Yang, Xiaobo; Zheng, Jinping; Bai, Yun; Tian, Fengjie; Yuan, Jing; Sun, Jianya; Liang, Huashan; Guo, Liang; Tan, Hao; Chen, Weihong; Tanguay, Robert M.; Wu, Tangchun

    2007-01-01

    Background Hsp70, an early-response protein induced when organisms are confronted with simple or complicated environmental stresses, can act as either a cellular protector or a danger signal. Objectives The goal of this study was to evaluate levels of lymphocyte and/or plasma Hsp70 as biomarkers for assessing exposure response to complex coke oven emissions (COEs). Methods We recruited 101 coke oven workers and determined levels of polycyclic aromatic hydrocarbon (PAH) exposure, urinary 1-hydroxypyrene (1-OHP), genotoxic damage by comet assay and micronuclei test, and other markers of damage, including plasma malondialdehyde (MDA) and lactate dehydrogenase (LDH). These were compared to levels of lymphocyte (intra-cellular) and plasma (extracellular) Hsp70 using Western blots and enzyme-linked immunosorbent assays (ELISA), respectively. Results We observed a COEs-related dose-dependent increase in levels of DNA damage, micronuclei rate, MDA concentration, and LDH activity. Lymphocyte Hsp70 levels increased in the intermediate-exposure group (1.39 ± 0.88) but decreased in the high-exposure group (1.10 ± 0.55), compared with the low-exposure group. In contrast, plasma Hsp70 levels progressively increased as the dose of exposure increased. Negative correlations were seen between lymphocyte Hsp70 levels and olive tail moment and LDH activity in the intermediate- and high-exposure groups. However, we observed positive correlations between plasma Hsp70 levels and LDH activity in the low and intermediate groups. Conclusions In workers exposed to COEs, high lymphocyte Hsp70 levels may provide protection and high plasma Hsp70 levels may serve as a danger marker. Larger validation studies are needed to establish the utility of Hsp70 as a response marker. PMID:18007987

  11. Characterization of CaHsp70-1, a Pepper Heat-Shock Protein Gene in Response to Heat Stress and Some Regulation Exogenous Substances in Capsicum annuum L.

    PubMed Central

    Guo, Meng; Zhai, Yu-Fei; Lu, Jin-Ping; Chai, Lin; Chai, Wei-Guo; Gong, Zhen-Hui; Lu, Ming-Hui

    2014-01-01

    Pepper (Capsicum annuum L.) is sensitive to heat stress (HS). Heat shock proteins 70 (Hsp70s) play a crucial role in protecting plant cells against HS and control varies characters in different plants. However, CaHsp70-1 gene was not well characterized in pepper. In this study, CaHsp70-1 was cloned from the pepper thermotolerant line R9, which encoded a protein of 652 amino acids, with a molecular weight of 71.54 kDa and an isoelectric point of 5.20. CaHsp70-1 belongs to the cytosolic Hsp70 subgroup, and best matched with tomato SlHsp70. CaHsp70-1 was highly induced in root, stem, leaf and flower in R9 with HS treatment (40 °C for 2 h). In both thermosensitive line B6 and thermotolerant line R9, CaHsp70-1 significantly increased after 0.5 h of HS (40 °C), and maintained in a higher level after 4 h HS. The expression of CaHsp70-1 induced by CaCl2, H2O2 and putrescine (Put) under HS were difference between B6 and R9 lines. The different expression patterns may be related to the differences in promoters of CaHsp70-1 from the two lines. These results suggest that CaHsp70-1 as a member of cytosolic Hsp70 subgroup, may be involved in HS defense response via a signal transduction pathway contained Ca2+, H2O2 and Put. PMID:25356507

  12. HSP70 and heat shock factor 1 cooperate to repress Ras-induced transcriptional activation of the c-fos gene

    PubMed Central

    He, Haiying; Chen, Changmin; Xie, Yue; Asea, Alexzander; Calderwood, Stuart K.

    2000-01-01

    Heat shock protein 70 (HSP70) is a molecular chaperone involved in protein folding and resistance to the deleterious effects of stress. Here we show that HSP70 suppresses transcription of c-fos, an early response gene that is a key component of the ubiquitous AP-1 transcription factor complex. HSP70 repressed Ras-induced c-fos transcription only in the presence of functional heat shock factor1 (HSF1). This suggests that HSP70 functions as a corepressor with HSF1 to inhibit c-fos gene transcription. Therefore, besides its known function in the stress response, HSP70 also has the property of a corepressor and combines with HSF1 to antagonize Fos expression and may thus impact multiple aspects of cell regulation. PMID:11189444

  13. Expression of hsp 27, hsp 60, hsc 70, and hsp 70 stress response genes in cultured human urothelial cells (UROtsa) exposed to lethal and sublethal concentrations of sodium arsenite.

    PubMed

    Rossi, Michael R; Somji, Seema; Garrett, Scott H; Sens, Mary Ann; Nath, Joginder; Sens, Donald A

    2002-12-01

    The stress response is one mechanism that the bladder urothelium could potentially employ to protect itself from cellular damage after exposure to arsenic and, in so doing, influence the shape of the dose-response curve at low concentrations of exposure to this environmental pollutant. In the present study, we used the cultured human urothelial cell line UROtsa, a model of human urothelium, to determine the expression of heat shock proteins hsp 27, hsp 60, hsc 70, and hsp 70 after acute and extended exposure of the cells to lethal and sublethal levels of sodium arsenite (NaAsO2). Acute exposure was modeled by exposing confluent cultures of UROtsa cells to 100 micro M NaAsO2 for 4 hr followed by a 48-hr recovery period. Extended exposure was modeled by exposing confluent UROtsa cells to 1, 4, and 8 micro M NaAsO2 for 16 days, with the highest concentration producing cell death by 4 days of exposure. The expression of hsp 27, hsp 60, hsc 70, and hsp 70 mRNA and protein was determined by reverse-transcription polymerase chain reaction and Western analysis. Cell viability was determined by the MTT [(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. The results demonstrated that the expression of hsp 27, hsp 60, and hsc 70 mRNA and protein were not consistently increased by either acute or extended exposure to NaAsO2. In contrast, hsp 70 expression was induced by NaAsO2 after both acute and extended exposure. The degree and duration of the induction of the hsp 70 protein in the extended time course of exposure to NaAsO2 correlated directly with UROtsa cell cytotoxicity. The substantial level of basal expression of hsp 27, hsp 60, and hsc 70 shown previously in human bladder urothelium, coupled with the inducible expression of hsp 70, could provide the human urothelium with a mechanism to withstand and recover from a low level of arsenite exposure.

  14. Functional analysis of HSPA1A and HSPA8 in parturition.

    PubMed

    Geng, Junnan; Li, Huanan; Huang, Cong; Chai, Jin; Zheng, Rong; Li, Fenge; Jiang, Siwen

    2017-01-29

    Many factors are involved in parturition, such as apoptosis, inflammatory mediators, and hormones. Previous studies indicated that HSP70 directly or indirectly regulates apoptosis, inflammatory immune response and hormone stimulus. To gain new insights into molecular mechanism underlying HSP70 for regulating parturition, we overexpressed and knocked down two representative members of HSP70 (HSPA1A and HSPA8) through transfection of their recombinant plasmid and si-RNA separately in WISH (human amniotic epithelial) cells. The expression changes of several pathways' marker genes were investigated by Western blotting and quantitative real-time PCR (qRT-PCR). Results showed extreme expression changes in the genes of IL-8 and ESR2. HSP70 was found to stimulate estrogen response by regulating ESR2 through ERK1/2 after treating WISH cells with the special phosphorylation inhibitor of ERK1/2 and analyzing the changes of E2 concentration by ELISA. HSP70 was also observed to contribute to preterm birth after administering the special inhibitor of HSP70-PFT-μ with LPS-induced preterm birth mouse model. Overall, HSP70 induces parturition through stimulating immune inflammatory and estrogen response. The balanced HSP70 expression could ensure a smooth parturition, while the imbalanced expression may cause a pathological state like preterm. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Hsp70 enhances presentation of FMDV antigen to bovine CD4+ T cells in vitro

    PubMed Central

    McLaughlin, Kerry; Seago, Julian; Robinson, Lucy; Kelly, Charles; Charleston, Bryan

    2010-01-01

    Foot-and-mouth disease virus (FMDV) is the causative agent of a highly contagious acute vesicular disease affecting cloven-hoofed animals, including cattle, sheep and pigs. The current vaccine induces a rapid humoral response, but the duration of the protective antibody response is variable, possibly associated with a variable specific CD4+ T cell response. We investigated the use of heat shock protein 70 (Hsp70) as a molecular chaperone to target viral antigen to the Major Histocompatibility Complex (MHC) class II pathway of antigen presenting cells and generate enhanced MHC II-restricted CD4+ T cell responses in cattle. Monocytes and CD4+ T cells from FMDV vaccinated cattle were stimulated in vitro with complexes of Hsp70 and FMDV peptide, or peptide alone. Hsp70 was found to consistently improve the presentation of a 25-mer FMDV peptide to CD4+ T cells, as measured by T cell proliferation. Complex formation was required for the enhanced effects and Hsp70 alone did not stimulate proliferation. This study provides further evidence that Hsp70:peptide complexes can enhance antigen-specific CD4+ T cell responses in vitro for an important pathogen of livestock. PMID:20167197

  16. Conserved effects of salinity acclimation on thermal tolerance and hsp70 expression in divergent populations of threespine stickleback (Gasterosteus aculeatus).

    PubMed

    Metzger, David C H; Healy, Timothy M; Schulte, Patricia M

    2016-10-01

    In natural environments, organisms must cope with complex combinations of abiotic stressors. Here, we use threespine stickleback (Gasterosteus aculeatus) to examine how changes in salinity affect tolerance of high temperatures. Threespine stickleback inhabit a range of environments that vary in both salinity and thermal stability making this species an excellent system for investigating interacting stressors. We examined the effects of environmental salinity on maximum thermal tolerance (CTMax) and 70 kDa heat shock protein (hsp70) gene expression using divergent stickleback ecotypes from marine and freshwater habitats. In both ecotypes, the CTMax of fish acclimated to 20 ppt was significantly higher compared to fish acclimated to 2 ppt. The effect of salinity acclimation on the expression of hsp70-1 and hsp70-2 was similar in both the marine and freshwater stickleback ecotype. There were differences in the expression profiles of hsp70-1 and hsp70-2 during heat shock, with hsp70-2 being induced earlier and to a higher level compared to hsp70-1. These data suggest that the two hsp70 isoforms may have functionally different roles in the heat shock response. Lastly, acute salinity challenge coupled with heat shock revealed that the osmoregulatory demands experienced during the heat shock response have a larger effect on the hsp70 expression profile than does the acclimation salinity.

  17. Antarctic marine molluscs do have an HSP70 heat shock response.

    PubMed

    Clark, Melody S; Fraser, Keiron P P; Peck, Lloyd S

    2008-01-01

    The success of any organism depends not only on niche adaptation but also the ability to survive environmental perturbation from homeostasis, a situation generically described as stress. Although species-specific mechanisms to combat "stress" have been described, the production of heat shock proteins (HSPs), such as HSP70, is universally described across all taxa. Members of the HSP70 gene family comprising the constitutive (HSC70) and inducible (HSP70) members, plus GRP78 (glucose-regulated protein, 78 kDa), a related HSP70 family member, were cloned using degenerate polymerase chain reaction (PCR) from two evolutionary divergent Antarctic marine molluscs (Laternula elliptica and Nacella concinna), a bivalve and a gastropod, respectively. The expression of the HSP70 family members was surveyed via quantitative PCR after an acute 2-h heat shock experiment. Both species demonstrated significant up-regulation of HSP70 gene expression in response to increased temperatures. However, the temperature level at which these responses were induced varied with the species (+6-8 degrees C for L. elliptica and +8-10 degrees C for N. concinna) compared to their natural environmental temperature). L. elliptica also showed tissue-specific expression of the genes under study. Previous work on Antarctic fish has shown that they lack the classical heat shock response, with the inducible form of HSP70 being permanently expressed with an expression not further induced under higher temperature regimes. This study shows that this is not the case for other Antarctic animals, with the two molluscs showing an inducible heat shock response, at a level probably set during their temperate evolutionary past.

  18. Membrane-bound heat shock proteins facilitate the uptake of dying cells and cross-presentation of cellular antigen.

    PubMed

    Zhu, Haiyan; Fang, Xiaoyun; Zhang, Dongmei; Wu, Weicheng; Shao, Miaomiao; Wang, Lan; Gu, Jianxin

    2016-01-01

    Heat shock proteins (HSPs) were originally identified as stress-responsive proteins and serve as molecular chaperones in different intracellular compartments. Translocation of HSPs to the cell surface and release of HSPs into the extracellular space have been observed during the apoptotic process and in response to a variety of cellular stress. Here, we report that UV irradiation and cisplatin treatment rapidly induce the expression of membrane-bound Hsp60, Hsp70, and Hsp90 upstream the phosphatidylserine exposure. Membrane-bound Hsp60, Hsp70 and Hsp90 could promote the release of IL-6 and IL-1β as well as DC maturation by the evaluation of CD80 and CD86 expression. On the other hand, Hsp60, Hsp70 and Hsp90 on cells could facilitate the uptake of dying cells by bone marrow-derived dendritic cells. Lectin-like oxidized LDL receptor-1 (LOX-1), as a common receptor for Hsp60, Hsp70, and Hsp90, is response for their recognition and mediates the uptake of dying cells. Furthermore, membrane-bound Hsp60, Hsp70 and Hsp90 could promote the cross-presentation of OVA antigen from E.G7 cells and inhibition of the uptake of dying cells by LOX-1 decreases the cross-presentation of cellular antigen. Therefore, the rapid exposure of HSPs on dying cells at the early stage allows for the recognition by and confers an activation signal to the immune system.

  19. Pattern of heat shock factor and heat shock protein expression in lymphocytes of bipolar patients: increased HSP70-glucocorticoid receptor heterocomplex.

    PubMed

    Bei, E S; Salpeas, V; Alevizos, B; Anagnostara, C; Pappa, D; Moutsatsou, P

    2013-11-01

    Bipolar disorder (BD), a stress-related disease, is characterized by altered glucocorticoid receptor (GR) signalling. Stress response includes activation of heat shock factor (HSF) and subsequent heat shock protein (HSP) synthesis which regulate GR folding and function. The objective of this study was to investigate the possible role of HSFs, HSPs and their interaction with GR in BD. We applied immunoprecipitation, SDS-PAGE/Western blot analysis and electrophoretic mobility shift assay (EMSA) in lymphocytes (whole cell or nuclear extracts) from BD patients and healthy subjects and determined the HSPs (HSP90 and HSP70), the heterocomplexes HSP90-GR and HSP70-GR, the HSFs (HSF1 and HSF4) as well as the HSF-DNA binding. The HSP70-GR heterocomplex was elevated (p < 0.05) in BD patients vs healthy subjects, and nuclear HSP70 was reduced (p ≤ 0.01) in bipolar manic patients. Protein levels of HSF1, HSF4, HSP90, HSP90-GR heterocomplex, and HSF-DNA binding remained unaltered in BD patients vs healthy subjects. The corresponding effect sizes (ES) indicated a large ES for HSP70-GR, HSP70, HSF-DNA binding and HSF4, and a medium ES for HSP90, HSF1 and HSP90-GR between healthy subjects and bipolar patients. Significant correlations among HSFs, HSPs, GR and HSP70-GR heterocomplex were observed in healthy subjects, which were abrogated in bipolar patients. The higher interaction between GR and HSP70 and the disturbances in the relations among heat shock response parameters and GR as observed in our BD patients may provide novel insights into the contribution of these factors in BD aetiopathogenesis. Copyright © 2013. Published by Elsevier Ltd.

  20. HSP70 in human polymorphonuclear and mononuclear leukocytes: comparison of the protein content and transcriptional activity of HSPA genes.

    PubMed

    Boyko, Anna A; Azhikina, Tatyana L; Streltsova, Maria A; Sapozhnikov, Alexander M; Kovalenko, Elena I

    2017-01-01

    Cell-type specific variations are typical for the expression of different members of the HSP70 family. In circulating immune cells, HSP70 proteins interact with units of signaling pathways involved in the immune responses and may promote cell survival in sites of inflammation. In this work, we compared basal HSP70 expression and stress-induced HSP70 response in polymorphonuclear and mononuclear human leukocytes. The intracellular content of inducible and constitutive forms of HSP70 was analyzed in relation to the transcriptional activity of HSPA genes. Hyperthermia was used as the stress model for induction of HSP70 synthesis in the cells. Our results demonstrated that granulocytes (mainly neutrophils) and mononuclear cells differ significantly by both basal HSP70 expression and levels of HSP70 induction under hyperthermia. The differences were observed at the levels of HSPA gene transcription and intracellular HSP70 content. The expression of constitutive Hsс70 protein was much higher in mononuclear cells consisting of monocytes and lymphocytes than in granulocytes. At the same time, intact neutrophils showed increased expression of inducible Hsp70 protein compared to mononuclear cells. Heat treatment induced additional expression of HSPA genes in leukocytes. The most pronounced increase in the expression was observed in polymorphonuclear and mononuclear leukocytes for HSPA1A/B. However, in granulocytes, the induction of the transcription of the HSPA8 gene encoding the Hsc70 protein was significantly higher than in mononuclear cells. These variations in transcriptional activity of HSPA genes and intracellular HSP70 content in different populations of leukocytes may reflect specified requirements for the chaperone activity in the cells with a distinct functional role in the immune system.

  1. Structural Basis of J Cochaperone Binding and Regulation of Hsp70

    PubMed Central

    Jiang, Jianwen; Maes, E. Guy; Taylor, Alex B; Wang, Liping; Hinck, Andrew P; Lafer, Eileen M; Sousa, Rui

    2007-01-01

    The many protein processing reactions of the ATP-hydrolyzing Hsp70s are regulated by J cochaperones, which contain J domains that stimulate Hsp70 ATPase activity and accessory domains that present protein substrates to Hsp70s. We report the structure of a J domain complexed with a J responsive portion of a mammalian Hsp70. The J domain activates ATPase activity by directing the linker that connects the Hsp70 nucleotide binding domain (NBD) and substrate binding domain (SBD) towards a hydrophobic patch on the NBD surface. Binding of the J domain to Hsp70 displaces the SBD from the NBD, which may allow the SBD flexibility to capture diverse substrates. Unlike prokaryotic Hsp70, the SBD and NBD of the mammalian chaperone interact in the ADP state. Thus, while both nucleotides and J cochaperones modulate Hsp70 NBD:linker and NBD:SBD interactions, the intrinsic persistence of those interactions differs in different Hsp70s and this may optimize their activities for different cellular roles. PMID:17996706

  2. Isolation and characterization of a cDNA encoding a heat shock protein 70 from a sterile mutant of Ulva pertusa (Ulvales, Chlorophyta).

    PubMed

    Tominaga, Hiroshi; Coury, Daniel Adam; Amano, Hideomi; Kakinuma, Makoto

    2010-03-01

    Synthesis and accumulation of molecular chaperones are universal responses found in all cellular organisms when exposed to a variety of unfavorable conditions. Heat shock protein 70 (Hsp70), which is one of the major classes of molecular chaperones, plays a particularly important role in cellular stress responses, and the Hsp70 system is the most intensely studied in higher plants and algae. Therefore, we isolated and characterized a cDNA clone encoding Hsp70 from a sterile strain of Ulva pertusa (Ulvales, Chlorophyta). The sterile U. pertusa Hsp70 (UpHsp70) cDNA consisted of 2,272 nucleotides and had an open reading frame encoding a polypeptide of 663 amino acid (AA) residues with a molecular mass of 71.7 kDa. Amino acid alignment and phylogenetic analysis of Hsp70s from other organisms showed that UpHsp70 was more similar to cytoplasmic Hsp70s from green algae and higher plants (> or =75%) than to those from other algae and microorganisms. Southern blot analysis indicated that the sterile U. pertusa genome had at least four cytoplasmic Hsp70-encoding genes. UpHsp70 mRNA levels were significantly affected by diurnal changes, rapidly increased by high-temperature stress, and gradually increased by exposure to copper, cadmium, and lead. These results suggest that UpHsp70 plays particularly important roles in adaptation to high-temperature conditions and diurnal changes, and is potentially involved in tolerance to heavy metal toxicity.

  3. Functional evaluation of Heat Shock Proteins 70 (HSP70/HSC70) on Rhodnius prolixus (Hemiptera, Reduviidae) physiological responses associated with feeding and starvation.

    PubMed

    Paim, Rafaela M M; Araujo, Ricardo N; Leis, Miguel; Sant'anna, Mauricio R V; Gontijo, Nelder F; Lazzari, Claudio R; Pereira, Marcos H

    2016-10-01

    Blood-sucking vectors must overcome thermal stress caused by intake of proportionally large amounts of warm blood from their hosts. In response to this, Heat Shock Proteins (HSPs) such as the widely studied HSP70 family (the inducible HSP70 and the cognate form HSC70, known for their role in preserving essential cellular functions) are rapidly up-regulated in their tissues. The triatomine Rhodnius prolixus is an important vector of Trypanosoma cruzi, the causative pathogen of Chagas' disease, and is also a model organism for studying insect biology and physiology. In this work, we observed that the expression of Rhodnius prolixus HSP70 was rapidly up-regulated in response to thermal shocks (0 °C and 40 °C) and also during the first hours after feeding on blood. HSP70/HSC70 RNAi knockdown elicited important alterations in R. prolixus physiological responses triggered by blood meal and starvation. HSP70/HSC70 knockdown insects showed lower resistance to prolonged starvation in comparison to appropriate controls, dying between 32 and 40 days after dsRNA injection. After blood feeding, the physiological effects of HSP70/HSC70 knockdown were more prominent and the insects died even earlier, within 14-20 days after feeding (21-27 days after dsRNA injection). These bugs showed impaired blood processing and digestion, reduced energetic metabolism and the midgut immune responses were compromised. Our findings suggest that HSP70/HSC70 depletion affected R. prolixus in starvation or fed conditions. After feeding, the arrival of blood in the digestive tract of knockdown insects fails to activate essential signaling pathways involved in blood processing, producing several alterations in their physiological processes enough to generate a premature death. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Expression of stress response HSP70 gene in Asian paddle crabs, Charybdis japonica, exposure to endocrine disrupting chemicals, bisphenol A (BPA) and 4-nonylphenol (NP)

    NASA Astrophysics Data System (ADS)

    Park, Kiyun; Kwak, Ihn-Sil

    2013-06-01

    The Asian paddle crab, Charybdis japonica, is a potential bio-indicator reflecting marine sediment toxicity as well as a commercially important species living along coastal areas in Korea. This study investigated its stress response by looking at the heat shock protein (HSP70) gene of C. japonica when the organism is exposed to bisphenol A (BPA) and 4-nonylphenol (NP). We characterized partial sequence of HSP70 as the stressresponse gene of C. japonica. The nucleotide sequence of C. japonica HSP70 is over 90% homologous with the corresponding gene of other crabs. Phylogenetic tree analysis revealed a close relationship between C. japonica HSP70 and HSP70 in other species of lobster and shrimps. HSP70 mRNA transcripts were detected in all the examined tissues of C. japonica, with the highest level in gills, the organ that most frequently came into contact with the external BPA or NP-laden water. As no reference data were available for C. japonica crab exposure, the BPA and NP 24-h LC50 values have not been previously determined. The expression of the C. japonica HSP70 gene to various BPA or NP concentrations during short and longer times was assessed. Gene expression was significantly induced in concentration- and time-dependent manners after BPA or NP exposures. These results support the postulation that crab C. japonica HSP70 could be a potential stress response molecular marker to monitor marine ecosystems.

  5. Heat shock proteins 70 and 90 from Clonorchis sinensis induce Th1 response and stimulate antibody production.

    PubMed

    Chung, Eun Joo; Jeong, Young-Il; Lee, Myoung-Ro; Kim, Yu Jung; Lee, Sang-Eun; Cho, Shin-Hyeong; Lee, Won-Ja; Park, Mi-Yeoun; Ju, Jung-Won

    2017-03-01

    Heat shock proteins (HSPs) are found in all prokaryotes and most compartments of eukaryotic cells. Members of the HSP family mediate immune responses to tissue damage or cellular stress. However, little is known about the immune response induced by the oriental liver fluke, Clonorchis sinensis, even though this organism is carcinogenic to humans. We address this issue in the present study in mouse bone marrow dendritic cells (mBMDCs), using recombinant HSP70 and 90 from C. sinensis (rCsHSP70 and rCsHSP90). rCsHSP70 and rCsHSP90 were produced in an E. coli system. Purified recombinant proteins were treated in BMDCs isolated from C57BL/6 mice. T cells were isolated from Balb/c mice and co-cultured with activated mBMDCs. Expression of surface molecules was measured by flow cytometry and cytokine secretion was quantified using ELISA. C57BL/6 mice were divided into four groups, including peptide alone, peptide/Freund's adjuvant, peptide/CsHSP70, peptide/CsHSP90, and were immunized intraperitoneally three times. Two weeks after final immunization, antibodies against peptide were measured using ELISA. Both proteins induced a dose-dependent upregulation in major histocompatibility complex and co-stimulatory molecule expression and increased secretion of pro-inflammatory cytokines including interleukin (IL)-1β, -6, and -12p70 and tumor necrosis factor-α in mBMDCs. Furthermore, when allogenic T cells were incubated with mBMDCs activated by rCsHSP70 and rCsHSP90, the helper T cell (Th)1 cytokine interferon-γ was up-regulated whereas the level of the Th2 cytokine IL-4 was unchanged. These results indicate that rCsHSPs predominantly induce a Th1 response. Over and above these results, we also demonstrated that the production of peptide-specific antibodies can be activated after immunization via in vitro peptide binding with rCsHSP70 or rCsHSP90. This study showed for the first time that the HSP or HSP/peptide complexes of C. sinensis could be considered as a more effective vaccine against C. sinensis infection as results of the activator of host immune response as well as the adjuvant for antigenic peptide conjugate to induce peptide-specific antibody response in mice.

  6. Phloretin increases the anti-tumor efficacy of intratumorally delivered heat-shock protein 70 kDa (HSP70) in a murine model of melanoma.

    PubMed

    Abkin, Sergey V; Ostroumova, Olga S; Komarova, Elena Y; Meshalkina, Darya A; Shevtsov, Maxim A; Margulis, Boris A; Guzhova, Irina V

    2016-01-01

    Recombinant HSP70 chaperone exerts a profound anticancer effect when administered intratumorally. This action is based on the ability of HSP70 to penetrate tumor cells and extract its endogenous homolog. To enhance the efficacy of HSP70 cycling, we employed phloretin, a flavonoid that enhances the pore-forming activity of the chaperone on artificial membranes. Phloretin increased the efficacy of HSP70 penetration in B16 mouse melanoma cells and K-562 human erythroblasts; this was accompanied with increased transport of the endogenous HSP70 to the plasma membrane. Importantly, treatment with HSP70 combined with phloretin led to the elevation of cell sensitivity to cytotoxic lymphocytes by 16-18 % compared to treatment with the chaperone alone. The incubation of K-562 cells with biotinylated HSP70 and phloretin increased the amount of the chaperone released from cells, suggesting that chaperone cycling could trigger a specific anti-tumor response. We studied the effect of the combination of HSP70 and phloretin using B16 melanoma and a novel method of HSP70-gel application. We found that the addition of phloretin to the gel reduced tumor weight almost fivefold compared with untreated mice, while the life span of the animals extended from 25 to 39 days. The increased survival was corroborated by the activation of innate and adaptive immunity; interestingly, HSP70 was more active in induction of CD8+ cell-mediated toxicity and γIFN production while phloretin contributed largely to the CD56+ cell response. In conclusion, the combination of HSP70 with phloretin could be a novel treatment for efficient immunotherapy of intractable cancers such as skin melanoma.

  7. Molecular cloning and characterization of a HSP70 gene from Schistosoma japonicum.

    PubMed

    Yang, Jie; Yang, Linlin; Lv, Zhiyue; Wang, Juan; Zhang, Qixian; Zheng, Huanqin; Wu, Zhongdao

    2012-05-01

    Schistosoma japonicum is the pathogen responsible for schistosomiasis japonica, one of the major infectious diseases targeted for prevention nationally in China. Expression of heat shock proteins (HSPs) following stress plays a very important biological role in many organisms including S. japonicum. Among the HSP family, the 70-kDa HSPs are most responsible for intracellular chaperone and extracellular immunoregulatory functions. Based on the published sequences in GenBank/EMBL (AF044412.1), open reading frame belonging to HSP70 protein corresponds to a full-length cDNA containing an open reading frame of 1,947 bp encoded of 648 amino acids was identified as HSP70 from schistosome. In this study, the coding region that we named rSj648/hsp70 was amplified from S. japonicum adult worm cDNA library, and the recombinant protein was expressed in vector pET32a(+) and purified using a Ni-NTA purification system. The target protein rSj648/hsp70 was determined by matrix-assisted laser desorption/ionization mass spectrometer after thrombin digestion and dialysis. Reverse transcriptase polymerase chain reaction and Western blotting analysis confirmed that Sj648/hsp70 could be expressed in the eggs, normal cercariae, ultraviolet-attenuated cercariae (UVAC), and adult worms of S. japonicum. Real-time quantitative PCR analysis indicated that Sj648/hsp70 was expressed significantly higher in eggs than that in cercariae and adult worms, and the expression in UVAC was higher than that in normal cercariae. A thermotolerance assay showed that rSj648/hsp70 could protect Escherichia coli cells from heat damage. The detection of specific antibody levels by indirect enzyme-linked immunosorbent assay demonstrated that mice immunized with rSj648/hsp70 induced higher level of specific anti-rSj648/hsp70 IgG1 compared with those vaccinated with adjuvant alone, indicating that rSj648/hsp70 was able to elicit Th2-type bias immune response. Our results suggest that Sj648/hsp70 might be an important molecule in parasite-host interaction and display potential roles in mice immunoregulation system.

  8. Effective immunotherapy of rat glioblastoma with prolonged intratumoral delivery of exogenous heat shock protein Hsp70.

    PubMed

    Shevtsov, Maxim A; Pozdnyakov, Alexander V; Mikhrina, Anastasia L; Yakovleva, Ludmila Y; Nikolaev, Boris P; Dobrodumov, Anatolii V; Komarova, Elena Y; Meshalkina, Darya A; Ischenko, Alexander M; Pitkin, Emil; Guzhova, Irina V; Margulis, Boris A

    2014-11-01

    Chaperone Hsp70 can activate adaptive immunity suggesting its possible application as an antitumor vaccine. To assess the therapeutic capacity of Hsp70 we administered purified chaperone into a C6 glioblastoma brain tumor and explored the viability and tumor size as well as interferon gamma (IFNγ) production and cytotoxicity of lymphocytes in the treated animals. Targeted intratumoral injection of Hsp70 resulted in its distribution within the area of glioblastoma, and caused significant inhibition of tumor progression as confirmed by magnetic resonance imaging. The delay in tumor growth corresponded to the prolonged survival of tumor-bearing animals of up to 31 days versus 20 days in control. Continuous administration of Hsp70 with an osmotic pump increased survival even further (39 days). Therapeutic efficacy was associated with infiltration to glioblastoma of NK cells (Ly-6c+) and T lymphocytes (CD3+, CD4+ and CD8+) as well as with an increase in the activity of NK cells (granzyme B production) and CD8+ T lymphocytes as shown by IFNγ ELISPOT assay. Furthermore, we found that Hsp70 treatment caused concomitantly, with a tenfold elevated IFNγ production, an increase in anti-C6 tumor cytotoxicity of lymphocytes. In conclusion, continuous intratumoral delivery of Hsp70 demonstrates high therapeutic potential and therefore could be applied in the treatment of glioblastoma. © 2014 UICC.

  9. Differential response of heat shock proteins to uphill and downhill exercise in heart, skeletal muscle, lung and kidney tissues.

    PubMed

    Lollo, Pablo C B; Moura, Carolina S; Morato, Priscila N; Amaya-Farfan, Jaime

    2013-01-01

    Running on a horizontal plane is known to increase the concentration of the stress biomarker heat-shock protein (HSP), but no comparison of the expression of HSP70 has yet been established between the uphill (predominantly concentric) and downhill (predominantly eccentric) muscle contractions exercise. The objective of the study was to investigate the relationships between eccentric and concentric contractions on the HSP70 response of the lung, kidney, gastrocnemius, soleus and heart. Twenty-four male Wistar weanling rats were divided into four groups: non-exercised and three different grades of treadmill exercise groups: horizontal, uphill (+7%) and downhill (-7% of inclination). At the optimal time-point of six hours after the exercise, serum uric acid, creatine kinase (CK) and lactate dehydrogenase (LDH) were determined by standard methods and HSP70 by the Western blot analysis. HSP70 responds differently to different types of running. For kidney, heart, soleus and gastrocnemius, the HSP70 expression increased, 230, 180, 150 and 120% respectively of the reference (horizontal). When the contraction was concentric (uphill) and compared to downhill the increase in response of HSP70 was greater in 80% for kidney, 75% for gastrocnemius, 60% for soleus and 280% for the heart. Uric acid was about 50% higher (0.64 ± 0.03 mg·dL(-1)) in the uphill group as compared to the horizontal or downhill groups. Similarly, the activities of serum CK and LDH were both 100% greater for both the uphill and downhill groups as compared to the horizontal group (2383 ± 253 and 647.00 ± 73 U/L, respectively). The responsiveness of HSP70 appeared to be quite different depending on the type of tissue, suggesting that the impact of exercise was not restricted to the muscles, but extended to the kidney tissue. The uphill exercise increases HSP70 beyond the eccentric type and the horizontal running was a lower HSP70 responsive stimulus. Key PointsExercise can induce increases in HSP70 in the lung, kidney and heart, and in the soleus and gastrocnemius muscles, probably due to systemic alterations such as hypoxia, increase in temperature and the production of free radicals.Predominantly concentric contractions (running uphill), seem to be the most efficient way of increasing the HSP70 concentrations in the different tissues, followed by eccentric contraction (downhill) and lastly the concentric-eccentric cycle (horizontal).The energy demand, already known to influence HSP70, appears not to be the only factor responsible for the response of these proteins, considering that for the kidney and the soleus muscle, downhill running was more efficient in raising the HSP70 response than horizontal running.Future research should explore the mechanisms by which the eccentric, concentric and eccentric-concentric contractions are capable of influencing the responses of the heat shock proteins, opening possibilities for increasing the levels of these proteins in desirable situations, such as to protect against excess free radicals or injuries.

  10. Characterizing functional differences in sea anemone Hsp70 isoforms using budding yeast.

    PubMed

    Waller, Shawn J; Knighton, Laura E; Crabtree, Lenora M; Perkins, Abigail L; Reitzel, Adam M; Truman, Andrew W

    2018-04-25

    Marine organisms experience abiotic stressors such as fluctuations in temperature, UV radiation, salinity, and oxygen concentration. Heat shock proteins (HSPs) assist in the response of cells to these stressors by refolding and maintaining the activity of damaged proteins. The well-conserved Hsp70 chaperone family is essential for cell viability as well as the response to stress. Organisms possess a variety of Hsp70 isoforms that differ slightly in amino acid sequence, yet very little is known about their functional relevance. In this study, we undertook analysis of three principal Hsp70 isoforms NvHsp70A, B, and D from the starlet sea anemone Nematostella vectensis. The functionality of Hsp70 isoforms in the starlet sea anemone was assessed through transcriptional analysis and by heterologous expression in budding yeast Saccharomyces cerevisiae. Interestingly, these isoforms were found to not only differ in expression under stress but also appear to have functional differences in their ability to mediate the cellular stress program. These results contribute to an understanding of Hsp70 isoform specificity, their shared and unique roles in response to acute and chronic environmental stress, and the potential basis of local adaptation in populations of N. vectensis.

  11. Targeting Hsp70: A possible therapy for cancer

    PubMed Central

    Kumar, Sanjay; Stokes, James; Singh, Udai P.; Gunn, Karyn Scissum; Acharya, Arbind; Manne, Upender; Mishra, Manoj

    2017-01-01

    In all organisms, heat-shock proteins (HSPs) provide an ancient defense system. These proteins act as molecular chaperones by assisting proper folding and refolding of misfolded proteins and aid in the elimination of old and damaged cells. HSPs include Hsp100, Hsp90, Hsp70, Hsp40, and small HSPs. Through its substrate-binding domains, Hsp70 interacts with wide spectrum of molecules, ranging from unfolded to natively folded and aggregated proteins, and provides cytoprotective role against various cellular stresses. Under pathophysiological conditions, the high expression of Hsp70 allows cells to survive with lethal injuries. Increased Hsp70, by interacting at several points on apoptotic signaling pathways, leads to inhibition of apoptosis. Elevated expression of Hsp70 in cancer cells may be responsible for tumorigenesis and for tumor progression by providing resistance to chemotherapy. In contrast, inhibition or knockdown of Hsp70 reduces the size of tumors and can cause their complete regression. Moreover, extracellular Hsp70 acts as an immunogen that participates in cross presentation of MHC-I molecules. The goals of this review are to examine the roles of Hsp70 in cancer and to present strategies targeting Hsp70 in the development of cancer therapeutics. PMID:26898980

  12. Light interference as a possible stressor altering HSP70 and its gene expression levels in brain and hepatic tissues of golden spiny mice.

    PubMed

    Ashkenazi, Lilach; Haim, Abraham

    2012-11-15

    Light at night and light interference (LI) disrupt the natural light:dark cycle, causing alterations at physiological and molecular levels, partly by suppressing melatonin (MLT) secretion at night. Heat shock proteins (HSPs) can be activated in response to environmental changes. We assessed changes in gene expression and protein level of HSP70 in brain and hepatic tissues of golden spiny mice (Acomys russatus) acclimated to LI for two (SLI), seven (MLI) and 21 nights (LLI). The effect of MLT treatment on LI-mice was also assessed. HSP70 levels increased in brain and hepatic tissues after SLI, whereas after MLI and LLI, HSP70 decreased to control levels. Changes in HSP70 levels as a response to MLT occurred after SLI only in hepatic tissue. However, hsp70 expression following SLI increased in brain tissue, but not in hepatic tissue. MLT treatment and SLI caused a decrease in hsp70 levels in brain tissue and an increase in hsp70 in hepatic tissue. SLI acclimation elicited a stress response in A. russatus, as expressed by increased HSP70 levels and gene expression. Longer acclimation decreases protein and gene expression to their control levels. We conclude that for brain and hepatic tissues of A. russatus, LI is a short-term stressor. Our results also revealed that A. russatus can acclimate to LI, possibly because of its circadian system plasticity, which allows it to behave both as a nocturnal and as a diurnal rodent. To the best of our knowledge, this is the first study showing the effect of LI as a stressor at the cellular level, by activating HSP70.

  13. Antarctic marine molluscs do have an HSP70 heat shock response

    PubMed Central

    Fraser, Keiron P. P.; Peck, Lloyd S.

    2008-01-01

    The success of any organism depends not only on niche adaptation but also the ability to survive environmental perturbation from homeostasis, a situation generically described as stress. Although species-specific mechanisms to combat “stress” have been described, the production of heat shock proteins (HSPs), such as HSP70, is universally described across all taxa. Members of the HSP70 gene family comprising the constitutive (HSC70) and inducible (HSP70) members, plus GRP78 (glucose-regulated protein, 78 kDa), a related HSP70 family member, were cloned using degenerate polymerase chain reaction (PCR) from two evolutionary divergent Antarctic marine molluscs (Laternula elliptica and Nacella concinna), a bivalve and a gastropod, respectively. The expression of the HSP70 family members was surveyed via quantitative PCR after an acute 2-h heat shock experiment. Both species demonstrated significant up-regulation of HSP70 gene expression in response to increased temperatures. However, the temperature level at which these responses were induced varied with the species (+6–8°C for L. elliptica and +8–10°C for N. concinna) compared to their natural environmental temperature). L. elliptica also showed tissue-specific expression of the genes under study. Previous work on Antarctic fish has shown that they lack the classical heat shock response, with the inducible form of HSP70 being permanently expressed with an expression not further induced under higher temperature regimes. This study shows that this is not the case for other Antarctic animals, with the two molluscs showing an inducible heat shock response, at a level probably set during their temperate evolutionary past. PMID:18347940

  14. Hsp70 gene expansions in the scallop Patinopecten yessoensis and their expression regulation after exposure to the toxic dinoflagellate Alexandrium catenella.

    PubMed

    Cheng, Jie; Xun, Xiaogang; Kong, Yifan; Wang, Shuyue; Yang, Zhihui; Li, Yajuan; Kong, Dexu; Wang, Shi; Zhang, Lingling; Hu, Xiaoli; Bao, Zhenmin

    2016-11-01

    Heat shock protein 70 (Hsp70s) family members are present in virtually all living organisms and perform a fundamental role against different types of environmental stressors and pathogenic organisms. Marine bivalves live in highly dynamic environments and may accumulate paralytic shellfish toxins (PSTs), a class of well-known neurotoxins closely associated with harmful algal blooms (HABs). Here, we provide a systematic analysis of Hsp70 genes (PyHsp70s) in the genome of Yesso scallop (Patinopecten yessoensis), an important aquaculture species in China, through in silico analysis using transcriptome and genome databases. Phylogenetic analyses indicated extensive expansion of Hsp70 genes from the Hspa12 sub-family in the Yesso scallop and also the bivalve lineages, with gene duplication events before or after the split between the Yesso scallop and the Pacific oyster. In addition, we determined the expression patterns of PyHsp70s after exposure to Alexandrium catenella, the dinoflagellate producing PSTs. Our results confirmed the inducible expression patterns of PyHsp70s under PSTs stress, and the responses to the toxic stress may have arisen through the adaptive recruitment of tandem duplication of Hsp70 genes. These findings provide a thorough overview of the evolution and modification of the Hsp70 family, which will gain insights into the functional characteristics of scallop Hsp70 genes in response to different stresses. Copyright © 2016. Published by Elsevier Ltd.

  15. Identification of cDNAs encoding HSP70 and HSP90 in the abalone Haliotis tuberculata: Transcriptional induction in response to thermal stress in hemocyte primary culture.

    PubMed

    Farcy, Emilie; Serpentini, Antoine; Fiévet, Bruno; Lebel, Jean-Marc

    2007-04-01

    Heat-shock proteins are a multigene family of proteins whose expression is induced by a variety of stress factors. This work reports the cloning and sequencing of HSP70 and HSP90 cDNAs in the gastropod Haliotis tuberculata. The deduced amino acid sequences of both HSP70 and HSP90 from H. tuberculata shared a high degree of homology with their homologues in other species, including typical eukaryotic HSP70 and HSP90 signature sequences. We examined their transcription expression pattern in abalone hemocytes exposed to thermal stress. Real-time PCR analysis indicated that both HSP70 and HSP90 mRNA were expressed in control animals but rapidly increased after heat-shock.

  16. Different Relationship between hsp70 mRNA and hsp70 Levels in the Heat Shock Response of Two Salmonids with Dissimilar Temperature Preference

    PubMed Central

    Lewis, Mario; Götting, Miriam; Anttila, Katja; Kanerva, Mirella; Prokkola, Jenni M.; Seppänen, Eila; Kolari, Irma; Nikinmaa, Mikko

    2016-01-01

    The heat shock response (HSR) refers to the rapid production of heat shock proteins (hsps) in response to a sudden increase in temperature. Its regulation by heat shock factors is a good example of how gene expression is transcriptionally regulated by environmental stresses. In contrast, little is known about post-transcriptional regulation of the response. The heat shock response is often used to characterize the temperature tolerance of species with the rationale that whenever the response sets on, a species is approaching its lethal temperature. It has commonly been considered that an increase in hsp mRNA gives an accurate indication that the same happens to the protein level, but this need not be the case. With climate change, understanding the effects of temperature on gene expression of especially polar organisms has become imperative to evaluate how both biodiversity and commercially important species respond, since temperature increases are expected to be largest in polar areas. Here we studied the HSR of two phylogenetically related Arctic species, which differ in their temperature tolerance with Arctic charr having lower maximally tolerated temperature than Atlantic salmon. Arctic charr acclimated to 15°C and exposed to 7°C temperature increase for 30 min showed both an increase in hsp70 mRNA and hsp70 whereas in salmon only hsp70 mRNA increased. Our results indicate that the temperature for transcriptional induction of hsp can be different from the one required for a measurable change in inducible hsp level. The species with lower temperature tolerance, Arctic charr, are experiencing temperature stress already at the higher acclimation temperature, 15°C, as their hsp70 mRNA and hsp70 levels were higher, and they grow less than fish at 8°C (whereas for salmon the opposite is true). Consequently, charr experience more drastic heat shock than salmon. Although further studies are needed to establish the temperature range and length of exposure where hsp mRNA and hsp level are disconnected, the observation suggests that by measuring both hsp mRNA and hsp level, one can evaluate if a species is approaching the higher end of its temperature tolerance, and thus evaluate the vulnerability of an organism to the challenges imposed by elevated water temperature. PMID:27872596

  17. The stress-induced heat shock protein 70.3 expression is regulated by a dual-component mechanism involving alternative polyadenylation and HuR.

    PubMed

    Kraynik, Stephen M; Gabanic, Andrew; Anthony, Sarah R; Kelley, Melissa; Paulding, Waltke R; Roessler, Anne; McGuinness, Michael; Tranter, Michael

    2015-06-01

    Heat shock protein 70.3 (Hsp70.3) expression increases in response to cellular stress and plays a cytoprotective role. We have previously shown that Hsp70.3 expression is controlled through coordinated post-transcriptional regulation by miRNAs and alternative polyadenylation (APA), and APA-mediated shortening of the Hsp70.3 3'-UTR facilitates increased protein expression. A stress-induced increase in Hsp70.3 mRNA and protein expression is accompanied by alternative polyadenylation (APA)-mediated truncation of the 3'UTR of the Hsp70.3 mRNA transcript. However, the role that APA plays in stress-induced expression of Hsp70.3 remains unclear. Our results show that APA-mediated truncation of the Hsp70.3 3'UTR increases protein expression through enhanced polyribosome loading. Additionally, we demonstrate that the RNA binding protein HuR, which has been previously shown to play a role in mediating APA, is necessary for heat shock mediated increase in Hsp70.3 mRNA and protein. However, it is somewhat surprising to note that HuR does not play a role in APA of the Hsp70.3 mRNA, and these two regulatory events appear to be mutually exclusive regulators of Hsp70.3 expression. These results not only provide important insight to the regulation of stress response genes following heat shock, but also contribute an enhanced understanding of how alternative polyadenylation contributes to gene regulation. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Heat shock response and mammal adaptation to high elevation (hypoxia).

    PubMed

    Wang, Xiaolin; Xu, Cunshuan; Wang, Xiujie; Wang, Dongjie; Wang, Qingshang; Zhang, Baochen

    2006-10-01

    The mammal's high elevation (hypoxia) adaptation was studied by using the immunological and the molecular biological methods to understand the significance of Hsp (hypoxia) adaptation in the organic high elevation, through the mammal heat shock response. (1) From high elevation to low elevation (natural hypoxia): Western blot and conventional RT-PCR and real-time fluorescence quota PCR were adopted. Expression difference of heat shock protein of 70 (Hsp70) and natural expression of brain tissue of Hsp70 gene was determined in the cardiac muscle tissue among the different elevation mammals (yak). (2) From low elevation to high elevation (hypoxia induction): The mammals (domestic rabbits) from the low elevation were sent directly to the areas with different high elevations like 2300, 3300 and 5000 m above sea level to be raised for a period of 3 weeks before being slaughtered and the genetic inductive expression of the brain tissue of Hsp70 was determined with RT-PCR. The result indicated that all of the mammals at different elevations possessed their heat shock response gene. Hsp70 of the high elevation mammal rose abruptly under stress and might be induced to come into being by high elevation (hypoxia). The speedy synthesis of Hsp70 in the process of heat shock response is suitable to maintain the cells' normal physiological functions under stress. The Hsp70 has its threshold value. The altitude of 5000 m above sea level is the best condition for the heat shock response, and it starts to reduce when the altitude is over 6000 m above sea level. The Hsp70 production quantity and the cell hypoxia bearing capacity have their direct ratio.

  19. Prevention of UVB Radiation-induced Epidermal Damage by Expression of Heat Shock Protein 70*

    PubMed Central

    Matsuda, Minoru; Hoshino, Tatsuya; Yamashita, Yasuhiro; Tanaka, Ken-ichiro; Maji, Daisuke; Sato, Keizo; Adachi, Hiroaki; Sobue, Gen; Ihn, Hironobu; Funasaka, Yoko; Mizushima, Tohru

    2010-01-01

    Irradiation with UV light, especially UVB, causes epidermal damage via the induction of apoptosis, inflammatory responses, and DNA damage. Various stressors, including UV light, induce heat shock proteins (HSPs) and the induction, particularly that of HSP70, provides cellular resistance to such stressors. The anti-inflammatory activity of HSP70, such as its inhibition of nuclear factor kappa B (NF-κB), was recently revealed. These in vitro results suggest that HSP70 protects against UVB-induced epidermal damage. Here we tested this idea by using transgenic mice expressing HSP70 and cultured keratinocytes. Irradiation of wild-type mice with UVB caused epidermal damage such as induction of apoptosis, which was suppressed in transgenic mice expressing HSP70. UVB-induced apoptosis in cultured keratinocytes was suppressed by overexpression of HSP70. Irradiation of wild-type mice with UVB decreased the cutaneous level of IκB-α (an inhibitor of NF-κB) and increased the infiltration of leukocytes and levels of pro-inflammatory cytokines and chemokines in the epidermis. These inflammatory responses were suppressed in transgenic mice expressing HSP70. In vitro, the overexpression of HSP70 suppressed the expression of pro-inflammatory cytokines and chemokines and increased the level of IκB-α in keratinocytes irradiated with UVB. UVB induced an increase in cutaneous levels of cyclobutane pyrimidine dimers and 8-hydroxy-2′-deoxyguanosine, both of which were suppressed in transgenic mice expressing HSP70. This study provides genetic evidence that HSP70 protects the epidermis from UVB-induced radiation damage. The findings here also suggest that the protective action of HSP70 is mediated by anti-apoptotic, anti-inflammatory, and anti-DNA damage effects. PMID:20018843

  20. Larval excretory-secretory products from the parasite Schistosoma mansoni modulate HSP70 protein expression in defence cells of its snail host, Biomphalaria glabrata

    PubMed Central

    Zahoor, Zahida; Davies, Angela J.; Kirk, Ruth S.; Rollinson, David

    2010-01-01

    Synthesis of heat shock proteins (HSPs) following cellular stress is a response shared by many organisms. Amongst the HSP family, the ∼70 kDa HSPs are the most evolutionarily conserved with intracellular chaperone and extracellular immunoregulatory functions. This study focused on the effects of larval excretory-secretory products (ESPs) from the parasite Schistosoma mansoni on HSP70 protein expression levels in haemocytes (defence cells) from its snail intermediate host Biomphalaria glabrata. S. mansoni larval stage ESPs are known to interfere with haemocyte physiology and behaviour. Haemocytes from two different B. glabrata strains, one which is susceptible to S. mansoni infection and one which is resistant, both showed reduced HSP70 protein levels following 1 h challenge with S. mansoni ESPs when compared to unchallenged controls; however, the reduction observed in the resistant strain was less marked. The decline in intracellular HSP70 protein persisted for at least 5 h in resistant snail haemocytes only. Furthermore, in schistosome-susceptible snails infected by S. mansoni for 35 days, haemocytes possessed approximately 70% less HSP70. The proteasome inhibitor, MG132, partially restored HSP70 protein levels in ESP-challenged haemocytes, demonstrating that the decrease in HSP70 was in part due to intracellular degradation. The extracellular signal-regulated kinase (ERK) signalling pathway appears to regulate HSP70 protein expression in these cells, as the mitogen-activated protein-ERK kinase 1/2 (MEK1/2) inhibitor, U0126, significantly reduced HSP70 protein levels. Disruption of intracellular HSP70 protein expression in B. glabrata haemocytes by S. mansoni ESPs may be a strategy employed by the parasite to manipulate the immune response of the intermediate snail host. PMID:20182834

  1. Larval excretory-secretory products from the parasite Schistosoma mansoni modulate HSP70 protein expression in defence cells of its snail host, Biomphalaria glabrata.

    PubMed

    Zahoor, Zahida; Davies, Angela J; Kirk, Ruth S; Rollinson, David; Walker, Anthony John

    2010-09-01

    Synthesis of heat shock proteins (HSPs) following cellular stress is a response shared by many organisms. Amongst the HSP family, the approximately 70 kDa HSPs are the most evolutionarily conserved with intracellular chaperone and extracellular immunoregulatory functions. This study focused on the effects of larval excretory-secretory products (ESPs) from the parasite Schistosoma mansoni on HSP70 protein expression levels in haemocytes (defence cells) from its snail intermediate host Biomphalaria glabrata. S. mansoni larval stage ESPs are known to interfere with haemocyte physiology and behaviour. Haemocytes from two different B. glabrata strains, one which is susceptible to S. mansoni infection and one which is resistant, both showed reduced HSP70 protein levels following 1 h challenge with S. mansoni ESPs when compared to unchallenged controls; however, the reduction observed in the resistant strain was less marked. The decline in intracellular HSP70 protein persisted for at least 5 h in resistant snail haemocytes only. Furthermore, in schistosome-susceptible snails infected by S. mansoni for 35 days, haemocytes possessed approximately 70% less HSP70. The proteasome inhibitor, MG132, partially restored HSP70 protein levels in ESP-challenged haemocytes, demonstrating that the decrease in HSP70 was in part due to intracellular degradation. The extracellular signal-regulated kinase (ERK) signalling pathway appears to regulate HSP70 protein expression in these cells, as the mitogen-activated protein-ERK kinase 1/2 (MEK1/2) inhibitor, U0126, significantly reduced HSP70 protein levels. Disruption of intracellular HSP70 protein expression in B. glabrata haemocytes by S. mansoni ESPs may be a strategy employed by the parasite to manipulate the immune response of the intermediate snail host.

  2. Differential modulatory effects of morphine on acute and chronic stress induced neurobehavioral and cellular markers in rats.

    PubMed

    Joshi, Jagdish C; Ray, Arunabha; Gulati, Kavita

    2014-04-15

    The present study evaluated the effects of morphine treatments on elevated plus maze test parameters, oxidative stress markers and Hsp70 expression in normal and stressed rats. Acute and chronic stress caused neurobehavioral suppression, altered prooxidant-antioxidant balance and increased Hsp70 expression in brain homogenates in a differential manner. Morphine (1 and 5mg/kg) attenuated RS induced anxiogenesis, changes in MDA and GSH but further enhanced Hsp70 expression. Similar anxiolytic and Hsp70 enhancing effects were seen after morphine in normal rats (no RS). Exposure to chronic RS did not elicit any appreciable neurobehavioral response in EPM but enhanced MDA, lowered GSH and exaggerated the Hsp70 expression. Pretreatment with morphine did not affect the neurobehavioral response to chronic RS, but reverted the GSH and Hsp70 expression. The results suggest that morphine differentially influences acute and chronic stress induced changes in anxiety behavior and complex interactions between oxidative stress markers and Hsp70 expression which may contribute to these effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Potential Response to Selection of HSP70 as a Component of Innate Immunity in the Abalone Haliotis rufescens

    PubMed Central

    Brokordt, Katherina B.; González, Roxana C.; Farías, William J.; Winkler, Federico M.

    2015-01-01

    Assessing components of the immune system may reflect disease resistance. In some invertebrates, heat shock proteins (HSPs) are immune effectors and have been described as potent activators of the innate immune response. Several diseases have become a threat to abalone farming worldwide; therefore, increasing disease resistance is considered to be a long-term goal for breeding programs. A trait will respond to selection only if it is determined partially by additive genetic variation. The aim of this study was to estimate the heritability (h 2) and the additive genetic coefficient of variation (CV A) of HSP70 as a component of innate immunity of the abalone Haliotis rufescens, in order to assess its potential response to selection. These genetic components were estimated for the variations in the intracellular (in haemocytes) and extracellular (serum) protein levels of HSP70 in response to an immunostimulant agent in 60 full-sib families of H. rufescens. Levels of HSP70 were measured twice in the same individuals, first when they were young and again when they were pre-harvest adults, to estimate the repeatability (R), the h 2 and the potential response to selection of these traits at these life stages. High HSP70 levels were observed in abalones subjected to immunostimulation in both the intracellular and extracellular haemolymph fractions. This is the first time that changes in serum levels of HSP70 have been reported in response to an immune challenge in molluscs. HSP70 levels in both fractions and at both ages showed low h 2 and R, with values that were not significantly different from zero. However, HSP70 induced levels had a CV A of 13.3–16.2% in young adults and of 2.7–8.1% in pre-harvest adults. Thus, despite its low h 2, HSP70 synthesis in response to an immune challenge in red abalone has the potential to evolve through selection because of its large phenotypic variation and the presence of additive genetic variance, especially in young animals. PMID:26529324

  4. Potential Response to Selection of HSP70 as a Component of Innate Immunity in the Abalone Haliotis rufescens.

    PubMed

    Brokordt, Katherina B; González, Roxana C; Farías, William J; Winkler, Federico M

    2015-01-01

    Assessing components of the immune system may reflect disease resistance. In some invertebrates, heat shock proteins (HSPs) are immune effectors and have been described as potent activators of the innate immune response. Several diseases have become a threat to abalone farming worldwide; therefore, increasing disease resistance is considered to be a long-term goal for breeding programs. A trait will respond to selection only if it is determined partially by additive genetic variation. The aim of this study was to estimate the heritability (h2) and the additive genetic coefficient of variation (CVA) of HSP70 as a component of innate immunity of the abalone Haliotis rufescens, in order to assess its potential response to selection. These genetic components were estimated for the variations in the intracellular (in haemocytes) and extracellular (serum) protein levels of HSP70 in response to an immunostimulant agent in 60 full-sib families of H. rufescens. Levels of HSP70 were measured twice in the same individuals, first when they were young and again when they were pre-harvest adults, to estimate the repeatability (R), the h2 and the potential response to selection of these traits at these life stages. High HSP70 levels were observed in abalones subjected to immunostimulation in both the intracellular and extracellular haemolymph fractions. This is the first time that changes in serum levels of HSP70 have been reported in response to an immune challenge in molluscs. HSP70 levels in both fractions and at both ages showed low h2 and R, with values that were not significantly different from zero. However, HSP70 induced levels had a CVA of 13.3-16.2% in young adults and of 2.7-8.1% in pre-harvest adults. Thus, despite its low h2, HSP70 synthesis in response to an immune challenge in red abalone has the potential to evolve through selection because of its large phenotypic variation and the presence of additive genetic variance, especially in young animals.

  5. Bacterial Hsp70 (DnaK) and mammalian Hsp70 interact differently with lipid membranes.

    PubMed

    Lopez, Victor; Cauvi, David M; Arispe, Nelson; De Maio, Antonio

    2016-07-01

    The cellular response to stress is orchestrated by the expression of a family of proteins termed heat shock proteins (hsp) that are involved in the stabilization of basic cellular processes to preserve cell viability and homeostasis. The bulk of hsp function occurs within the cytosol and subcellular compartments. However, some hsp have also been found outside cells released by an active mechanism independent of cell death. Extracellular hsp act as signaling molecules directed at activating a systemic response to stress. The export of hsp requires the translocation from the cytosol into the extracellular milieu across the plasma membrane. We have proposed that membrane insertion is the initial step in this export process. We investigated the interaction of the major inducible hsp from mammalian (Hsp70) and bacterial (DnaK) species with liposomes. We found that mammalian Hsp70 displayed a high specificity for negatively charged phospholipids, such as phosphatidyl serine, whereas DnaK interacted with all lipids tested regardless of the charge. Both proteins were inserted into the lipid bilayer as demonstrated by resistance to acid or basic washes that was confirmed by partial protection from proteolytic cleavage. Several regions of mammalian Hsp70 were inserted into the membrane with a small portion of the N-terminus end exposed to the outer phase of the liposome. In contrast, the N-terminus end of DnaK was inserted into the membrane, exposing the C-terminus end outside the liposome. Mammalian Hsp70 was found to make high oligomeric complexes upon insertion into the membranes whereas DnaK only formed dimers within the lipid bilayer. These observations suggest that both Hsp70s interact with lipids, but mammalian Hsp70 displays a high degree of specificity and structure as compared with the bacterial form.

  6. The Roles of Heat Shock Proteins 70 and 90 in Exopalaemon carinicauda After WSSV and Vibrio anguillarum Challenges

    NASA Astrophysics Data System (ADS)

    Li, Jitao; Li, Jian; Duan, Yafei; Chen, Ping; Liu, Ping

    2018-04-01

    Heat shock proteins (HSPs), such as HSP70 and HSP90, are a suite of highly conserved proteins produced in all cellular organisms when they are exposed to stresses. In aquatic animals, they have been proved to play important roles in response to environmental pollutants and particularly in the non-specific immune responses to pathogen infections. In the present study, the expression profiles of HSP70 and HSP90 genes in hemocytes and hepatopancreas from the ridgetail white prawn Exopalaemon carinicauda infected with WSSV and Vibrio anguillarum were detected using reverse transcription polymerase chain reaction (RT-PCR). After WSSV challenge, the expression level of HSP 70 gene transcripts in the hemocytes and hepatopancreas increased to peak level at 6 h and 48 h, respectively. HSP90 gene transcripts in hemocytes and hepatopancreas were up-regulated significantly at 12 h and 6 h, respectively. During V. anguillarum challenge, the mRNA content of HSP70 gene in hemocytes and hepatopancreas increased significantly at 12 h and 6 h post-infection, respectively. The expression level of HSP90 gene both in hemocytes and hepatopancreas were up-regulated in the first 3 h. The expression patterns of HSP70 and HSP90 genes in hemocytes and hepatopancreas showed temporal and spatial differences after challenged with WSSV and V. anguillarum. The results suggested that HSPs might be involved in immune responses to pathogens challenge in E. carinicauda.

  7. The roles of heat shock proteins 70 and 90 in Exopalaemon carinicauda after WSSV and Vibrio anguillarum challenges

    NASA Astrophysics Data System (ADS)

    Li, Jitao; Li, Jian; Duan, Yafei; Chen, Ping; Liu, Ping

    2017-12-01

    Heat shock proteins (HSPs), such as HSP70 and HSP90, are a suite of highly conserved proteins produced in all cellular organisms when they are exposed to stresses. In aquatic animals, they have been proved to play important roles in response to environmental pollutants and particularly in the non-specific immune responses to pathogen infections. In the present study, the expression profiles of HSP70 and HSP90 genes in hemocytes and hepatopancreas from the ridgetail white prawn Exopalaemon carinicauda infected with WSSV and Vibrio anguillarum were detected using reverse transcription polymerase chain reaction (RT-PCR). After WSSV challenge, the expression level of HSP 70 gene transcripts in the hemocytes and hepatopancreas increased to peak level at 6 h and 48 h, respectively. HSP90 gene transcripts in hemocytes and hepatopancreas were up-regulated significantly at 12 h and 6 h, respectively. During V. anguillarum challenge, the mRNA content of HSP70 gene in hemocytes and hepatopancreas increased significantly at 12 h and 6 h post-infection, respectively. The expression level of HSP90 gene both in hemocytes and hepatopancreas were up-regulated in the first 3 h. The expression patterns of HSP70 and HSP90 genes in hemocytes and hepatopancreas showed temporal and spatial differences after challenged with WSSV and V. anguillarum. The results suggested that HSPs might be involved in immune responses to pathogens challenge in E. carinicauda.

  8. Targeting Hsp70: A possible therapy for cancer.

    PubMed

    Kumar, Sanjay; Stokes, James; Singh, Udai P; Scissum Gunn, Karyn; Acharya, Arbind; Manne, Upender; Mishra, Manoj

    2016-04-28

    In all organisms, heat-shock proteins (HSPs) provide an ancient defense system. These proteins act as molecular chaperones by assisting proper folding and refolding of misfolded proteins and aid in the elimination of old and damaged cells. HSPs include Hsp100, Hsp90, Hsp70, Hsp40, and small HSPs. Through its substrate-binding domains, Hsp70 interacts with wide spectrum of molecules, ranging from unfolded to natively folded and aggregated proteins, and provides cytoprotective role against various cellular stresses. Under pathophysiological conditions, the high expression of Hsp70 allows cells to survive with lethal injuries. Increased Hsp70, by interacting at several points on apoptotic signaling pathways, leads to inhibition of apoptosis. Elevated expression of Hsp70 in cancer cells may be responsible for tumorigenesis and for tumor progression by providing resistance to chemotherapy. In contrast, inhibition or knockdown of Hsp70 reduces the size of tumors and can cause their complete regression. Moreover, extracellular Hsp70 acts as an immunogen that participates in cross presentation of MHC-I molecules. The goals of this review are to examine the roles of Hsp70 in cancer and to present strategies targeting Hsp70 in the development of cancer therapeutics. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. OLA1 protects cells in heat shock by stabilizing HSP70

    PubMed Central

    Mao, R-F; Rubio, V; Chen, H; Bai, L; Mansour, O C; Shi, Z-Z

    2013-01-01

    The heat-shock response is an evolutionarily conserved cellular defense mechanism against environmental stresses, characterized by the rapid synthesis of heat-shock proteins (HSPs). HSP70, a highly inducible molecular chaperone, assists in refolding or clearance of damaged proteins, thereby having a central role in maintaining intracellular homeostasis and thermotolerance. To date, induction of HSP70 expression has been described extensively at the transcriptional level. However, post-translational regulation of HSP70, such as protein stability, is only partially understood. In this study, we investigated the role of OLA1 (Obg-like ATPase 1), a previously uncharacterized cytosolic ATPase, in regulating the turnover of HSP70. Downregulation of OLA1 in mammalian cells by either RNAi or targeted gene disruption results in reduced steady-state levels of HSP70, impaired HSP70 induction by heat, and functionally, increased cellular sensitivity to heat shock. Conversely, overexpression of OLA1 correlates with elevated HSP70 protein levels and improved thermal resistance. Protein–protein interaction assays demonstrated that binding of OLA1 to the HSP70 carboxyl terminus variable domain hinders the recruitment of CHIP (C-terminus of Hsp70-binding protein), an E3 ubiquitin ligase for HSP70, and thus prevents HSP70 from the CHIP-mediated ubiquitination. These findings suggest a novel molecular mechanism by which OLA1 stabilizes HSP70, leading to upregulation of HSP70 as well as increased survival during heat shock. PMID:23412384

  10. Neurotherapeutic activity of the recombinant heat shock protein Hsp70 in a model of focal cerebral ischemia in rats.

    PubMed

    Shevtsov, Maxim A; Nikolaev, Boris P; Yakovleva, Ludmila Y; Dobrodumov, Anatolii V; Dayneko, Anastasiy S; Shmonin, Alexey A; Vlasov, Timur D; Melnikova, Elena V; Vilisov, Alexander D; Guzhova, Irina V; Ischenko, Alexander M; Mikhrina, Anastasiya L; Galibin, Oleg V; Yakovenko, Igor V; Margulis, Boris A

    2014-01-01

    Recombinant 70 kDa heat shock protein (Hsp70) is an antiapoptotic protein that has a cell protective activity in stress stimuli and thus could be a useful therapeutic agent in the management of patients with acute ischemic stroke. The neuroprotective and neurotherapeutic activity of recombinant Hsp70 was explored in a model of experimental stroke in rats. Ischemia was produced by the occlusion of the middle cerebral artery for 45 minutes. To assess its neuroprotective capacity, Hsp70, at various concentrations, was intravenously injected 20 minutes prior to ischemia. Forty-eight hours after ischemia, rats were sacrificed and brain tissue sections were stained with 2% triphenyl tetrazolium chloride. Preliminary treatment with Hsp70 significantly reduced the ischemic zone (optimal response at 2.5 mg/kg). To assess Hsp70's neurotherapeutic activity, we intravenously administered Hsp70 via the tail vein 2 hours after reperfusion (2 hours and 45 minutes after ischemia). Rats were then kept alive for 72 hours. The ischemic region was analyzed using a high-field 11 T MRI scanner. Administration of the Hsp70 decreased the infarction zone in a dose-dependent manner with an optimal (threefold) therapeutic response at 5 mg/kg. Long-term treatment of the ischemic rats with Hsp70 formulated in alginate granules with retarded release of protein further reduced the infarct volume in the brain as well as apoptotic area (annexin V staining). Due to its high neurotherapeutic potential, prolonged delivery of Hsp70 could be useful in the management of acute ischemic stroke.

  11. Molecular cloning and sequence analysis of heat shock proteins 70 (HSP70) and 90 (HSP90) and their expression analysis when exposed to benzo(a)pyrene in the clam Ruditapes philippinarum.

    PubMed

    Liu, Tong; Pan, Luqing; Cai, Yuefeng; Miao, Jingjing

    2015-01-25

    HSP70 and HSP90 are the most important heat shock proteins (HSPs), which play the key roles in the cell as molecular chaperones and may involve in metabolic detoxification. The present research has obtained full-length cDNAs of genes HSP70 and HSP90 from the clam Ruditapes philippinarum and studied the transcriptional responses of the two genes when exposed to benzo(a)pyrene (BaP). The full-length RpHSP70 cDNA was 2336bp containing a 5' untranslated region (UTR) of 51bp, a 3' UTR of 335bp and an open reading frame (ORF) of 1950bp encoding 650 amino acid residues. The full-length RpHSP90 cDNA was 2839bp containing a 107-bp 5' UTR, a 554-bp 3' UTR and a 2178-bp ORF encoding 726 amino acid residues. The deduced amino acid sequences of RpHSP70 and RpHSP90 shared the highest identity with the sequences of Paphia undulata, and the phylogenetic trees showed that the evolutions of RpHSP70 and RpHSP90 were almost in accord with the evolution of species. The RpHSP70 and RpHSP90 mRNA expressions were detected in all tested tissues in the adult clams (digestive gland, gill, adductor muscle and mantle) and the highest mRNA expression level was observed in the digestive gland compared to other tissues. Quantitative real-time RT-PCR analysis revealed that mRNA expression levels of the clam RpHSP70, RpHSP90 and other xenobiotic metabolizing enzymes (XMEs) (AhR, DD, GST, GPx) in the digestive gland of R. philippinarum were induced by benzo(a)pyrene (BaP) and the absolute expression levels of these genes showed a temporal and dose-dependent response. The results suggested that RpHSP70 and RpHSP90 were involved in the metabolic detoxification of BaP in the clam R. philippinarum. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Compound A, a Selective Glucocorticoid Receptor Modulator, Enhances Heat Shock Protein Hsp70 Gene Promoter Activation

    PubMed Central

    Beck, Ilse M.; Drebert, Zuzanna J.; Hoya-Arias, Ruben; Bahar, Ali A.; Devos, Michael; Clarisse, Dorien; Desmet, Sofie; Bougarne, Nadia; Ruttens, Bart; Gossye, Valerie; Denecker, Geertrui; Lievens, Sam; Bracke, Marc; Tavernier, Jan; Declercq, Wim; Gevaert, Kris; Berghe, Wim Vanden; Haegeman, Guy; De Bosscher, Karolien

    2013-01-01

    Compound A possesses glucocorticoid receptor (GR)-dependent anti-inflammatory properties. Just like classical GR ligands, Compound A can repress NF-κB-mediated gene expression. However, the monomeric Compound A-activated GR is unable to trigger glucocorticoid response element-regulated gene expression. The heat shock response potently activates heat shock factor 1 (HSF1), upregulates Hsp70, a known GR chaperone, and also modulates various aspects of inflammation. We found that the selective GR modulator Compound A and heat shock trigger similar cellular effects in A549 lung epithelial cells. With regard to their anti-inflammatory mechanism, heat shock and Compound A are both able to reduce TNF-stimulated IκBα degradation and NF-κB p65 nuclear translocation. We established an interaction between Compound A-activated GR and Hsp70, but remarkably, although the presence of the Hsp70 chaperone as such appears pivotal for the Compound A-mediated inflammatory gene repression, subsequent novel Hsp70 protein synthesis is uncoupled from an observed CpdA-induced Hsp70 mRNA upregulation and hence obsolete in mediating CpdA’s anti-inflammatory effect. The lack of a Compound A-induced increase in Hsp70 protein levels in A549 cells is not mediated by a rapid proteasomal degradation of Hsp70 or by a Compound A-induced general block on translation. Similar to heat shock, Compound A can upregulate transcription of Hsp70 genes in various cell lines and BALB/c mice. Interestingly, whereas Compound A-dependent Hsp70 promoter activation is GR-dependent but HSF1-independent, heat shock-induced Hsp70 expression alternatively occurs in a GR-independent and HSF1-dependent manner in A549 lung epithelial cells. PMID:23935933

  13. The exported chaperone Hsp70-x supports virulence functions for Plasmodium falciparum blood stage parasites

    PubMed Central

    Charnaud, Sarah C.; Dixon, Matthew W. A.; Nie, Catherine Q.; Chappell, Lia; Sanders, Paul R.; Nebl, Thomas; Hanssen, Eric; Berriman, Matthew; Chan, Jo-Anne; Blanch, Adam J.; Beeson, James G.; Rayner, Julian C.; Przyborski, Jude M.; Tilley, Leann; Crabb, Brendan S.

    2017-01-01

    Malaria is caused by five different Plasmodium spp. in humans each of which modifies the host erythrocyte to survive and replicate. The two main causes of malaria, P. falciparum and P. vivax, differ in their ability to cause severe disease, mainly due to differences in the cytoadhesion of infected erythrocytes (IE) in the microvasculature. Cytoadhesion of P. falciparum in the brain leads to a large number of deaths each year and is a consequence of exported parasite proteins, some of which modify the erythrocyte cytoskeleton while others such as PfEMP1 project onto the erythrocyte surface where they bind to endothelial cells. Here we investigate the effects of knocking out an exported Hsp70-type chaperone termed Hsp70-x that is present in P. falciparum but not P. vivax. Although the growth of Δhsp70-x parasites was unaffected, the export of PfEMP1 cytoadherence proteins was delayed and Δhsp70-x IE had reduced adhesion. The Δhsp70-x IE were also more rigid than wild-type controls indicating changes in the way the parasites modified their host erythrocyte. To investigate the cause of this, transcriptional and translational changes in exported and chaperone proteins were monitored and some changes were observed. We propose that PfHsp70-x is not essential for survival in vitro, but may be required for the efficient export and functioning of some P. falciparum exported proteins. PMID:28732045

  14. Modulatory effects of mycobacterial heat-shock protein 70 in DNA vaccination against lymphoma.

    PubMed

    Liso, Arcangelo; Benedetti, Roberta; Fagioli, Marta; Mariano, Angela; Falini, Brunangelo

    2005-01-01

    Pathogen-derived molecules are danger signals and are able to activate innate immunity that in turn controls and regulates generation of adaptive immune responses. Mycobacterium tuberculosis heat shock protein 70 (myc HSP70) has been shown to exert a potent adjuvant effect in vaccination against both infectious agents and solid tumors. Here we explore the use of myc HSP70, as an adjuvant, in DNA vaccination against lymphoma. We describe the effects of vaccination using myc HSP70 encoding plasmid (pHSP70) co-injected with idiotype encoding plasmid (pId), in the 38C13 murine lymphoma model. We dissect mechanisms of anti-tumor immune response and compared efficacy with that of other DNA vaccination strategies. We show that myc HSP70 plasmid prolongs survival of immunized mice challenged with a high number (2000) of tumor cells. The magnitude of the anti-tumor effect is comparable to that obtained using granulocyte-macrophage colony-stimulating factor (GM-CSF) in the same setting. Moreover, HSP-induced protection is independent from the generation of IgG1 and IgG2a antibodies. Instead, anti-idiotype antibodies of IgG2b subclass develop after vaccination with pHSP as well as with pId and Id-GM-CSF fusion plasmid (pId-GM). Co-injection of HSP70 and Id plasmids induces a specific pattern of anti-idiotype immune response able to improve survival of immunized mice.

  15. Interaction of temperature and salinity on the expression of immunity factors in different tissues of juvenile turbot Scophthalmus maximus based on response surface methodology

    NASA Astrophysics Data System (ADS)

    Huang, Zhihui; Ma, Aijun; Wang, Xin'an; Lei, Jilin; Li, Weiye; Wang, Ting; Yang, Zhi; Qu, Jiangbo

    2015-01-01

    Central Composite Design (CCD) and response surface methodology were used in the experiment to examine the combined effect of temperature (16-28°C) and salinity (18-42) on Hsp70 and IgM genes expression levels in turbot ( Scophthalmus maximus) liver and kidney. The results showed that the coefficients of determination ( R 2 =0.965 2 for liver Hsp70, 0.972 9 for kidney Hsp70, 0.921 for liver IgM and 0.962 1 for kidney IgM) and probability values ( P<0.01) were significant for the regression model. The interactive effect between temperature and salinity on liver Hsp70, kidney Hsp70 and liver IgM were not significant ( P>0.05), while the interactive effect between temperature and salinity on kidney IgM was significant ( P<0.01). The model equation could be used in practice for forecasting Hsp70 and IgM genes expression levels in the liver and kidney of juvenile turbot via applying statistical optimization of the response of interest, at which the maximum liver Hsp70, kidney Hsp70, liver IgM and kidney IgM of 1.48, 1.49, 2.48, and 1.38, respectively, were reached. The present model may be valuable in assessing the feasibility of turbot farming at different geographic locations and, furthermore, could be a useful reference for scientists studying the immunity of turbot.

  16. Expression of HSP 70 and its mRNAS during ischemia-reperfusion in the rat bladder.

    PubMed

    Saito, Motoaki; Tominaga, Lika; Nanba, Eiji; Kinoshita, Yukako; Housi, Daisuke; Miyagawa, Ikuo; Satoh, Keisuke

    2004-08-27

    HSP 70 is an important protein that repairs damaged tissue after injury. In the present study, we investigated the expression of HSP 70 and its mRNAs during ischemia-reperfusion in the rat bladder. Rat abdominal aorta was clamped with a small clip to induce ischemia-reperfusion injury in the bladder dome. Male Wistar rats, 8 weeks old, were divided into six groups: controls, 30-min ischemia, 30-min ischemia and 30-, 60-minute, 1- and 7-day reperfusion, groups A, B, C, D, E, and F, respectively. In functional studies, contractile responses to carbachol were measured in these groups. The expression of HSP 70-1/2 mRNAs was quantified using a real-time PCR method, and that of HSP 70 proteins was measured using ELISA in the bladders. In the functional study, Emax values of carbachol to bladders in the A, B, C, D, E and F groups were 9.3 +/- 1.3, 7.9 +/- 1.7, 4.3 +/- 0.8, 4.2 +/- 0.7, 4.5 +/- 0.6, and 8.1 +/- 1.2 g/mm2, respectively. In the control group, the expression of HSP 70-1/2 mRNA was detected, and the expression of HSP 70-1 mRNAs was significantly higher than that of HSP 70-2 mRNAs in each group. The expression of HSP 70-1 mRNA increased in groups B and C, but decreased in groups D, E, and F. The expression of HSP 70-2 mRNA in group C was significantly higher than that of groups A, D, E, and F. The expression of HSP 70-1/2 mRNAs after 1 day or 1 week of reperfusion was similar to control levels. The expression of HSP 70 proteins was increased shortly after the expression of their mRNAs. The expression of HSP 70 after 1 day or 1 week of reperfusion was almost identical to control levels. Our data indicate that contractile responses of the bladder were decreased by ischemia reperfusion, and that expression of HSP 70 and its mRNAs appeared to increase after a short period of the insult.

  17. Characterizing HSF1 Binding and Post-Translational Modifications of hsp70 Promoter in Cultured Cortical Neurons: Implications in the Heat-Shock Response

    PubMed Central

    Gómez, Andrea V.; Córdova, Gonzalo; Munita, Roberto; Parada, Guillermo E.; Barrios, Álvaro P.; Cancino, Gonzalo I.; Álvarez, Alejandra R.; Andrés, María E.

    2015-01-01

    Causes of lower induction of Hsp70 in neurons during heat shock are still a matter of debate. To further inquire into the mechanisms regulating Hsp70 expression in neurons, we studied the activity of Heat Shock Factor 1 (HSF1) and histone posttranslational modifications (PTMs) at the hsp70 promoter in rat cortical neurons. Heat shock induced a transient and efficient translocation of HSF1 to neuronal nuclei. However, no binding of HSF1 at the hsp70 promoter was detected while it bound to the hsp25 promoter in cortical neurons during heat shock. Histone PTMs analysis showed that the hsp70 promoter harbors lower levels of histone H3 and H4 acetylation in cortical neurons compared to PC12 cells under basal conditions. Transcriptomic profiling data analysis showed a predominant usage of cryptic transcriptional start sites at hsp70 gene in the rat cerebral cortex, compared with the whole brain. These data support a weaker activation of hsp70 canonical promoter. Heat shock increased H3Ac at the hsp70 promoter in PC12 cells, which correlated with increased Hsp70 expression while no modifications occurred at the hsp70 promoter in cortical neurons. Increased histone H3 acetylation by Trichostatin A led to hsp70 mRNA and protein induction in cortical neurons. In conclusion, we found that two independent mechanisms maintain a lower induction of Hsp70 in cortical neurons. First, HSF1 fails to bind specifically to the hsp70 promoter in cortical neurons during heat shock and, second, the hsp70 promoter is less accessible in neurons compared to non-neuronal cells due to histone deacetylases repression. PMID:26053851

  18. Heat Shock Protein 70: Roles in Multiple Sclerosis

    PubMed Central

    Mansilla, María José; Montalban, Xavier; Espejo, Carmen

    2012-01-01

    Heat shock proteins (HSP) have long been considered intracellular chaperones that possess housekeeping and cytoprotective functions. Consequently, HSP overexpression was proposed as a potential therapy for neurodegenerative diseases characterized by the accumulation or aggregation of abnormal proteins. Recently, the discovery that cells release HSP with the capacity to trigger proinflammatory as well as immunoregulatory responses has focused attention on investigating the role of HSP in chronic inflammatory autoimmune diseases such as multiple sclerosis (MS). To date, the most relevant HSP is the inducible Hsp70, which exhibits both cytoprotectant and immunoregulatory functions. Several studies have presented contradictory evidence concerning the involvement of Hsp70 in MS or experimental autoimmune encephalomyelitis (EAE), the MS animal model. In this review, we dissect the functions of Hsp70 and discuss the controversial data concerning the role of Hsp70 in MS and EAE. PMID:22669475

  19. Acclimation-dependent expression of heat shock protein 70 in Pacific abalone ( Haliotis discus hannai Ino) and its acute response to thermal exposure

    NASA Astrophysics Data System (ADS)

    Li, Jiaqi; He, Qingguo; Sun, Hui; Liu, Xiao

    2012-01-01

    Heat shock protein 70 (Hsp70) is one important member of heat shock protein (Hsp) family that is responsible for various stresses, especially thermal stress. Here we examined the response of Hsp70 gene to both chronic and acute thermal exposure in Pacific abalone ( Haliotis discus hannai Ino). For the chronic exposure, abalones were maintained at 8, 12, 20, and 30°C for four months and their mRNA levels were measured. The highest mRNA level of Hsp70 gene relative to actin gene was detected in the 30°C-acclimated group, followed by the 8°C-acclimated group and then the 12°C- and 20°C-acclimated groups. After the long-term acclimation, gills from each of the above acclimation groups were dissected and exposed to different temperatures between 8°C and 38°C for 30 min. Hsp70 expression in gills acclimated to different temperatures responded differentially to the same temperature exposure. The incubation temperature that induced maximum Hsp70 mRNA expression was higher in the higher temperature acclimation groups than lower temperature groups. Pacific abalones could alter the expression pattern of Hsp70 gene according to environmental thermal conditions, through which they deal with the stress of thermal variations.

  20. Molecular cloning and expression analysis of five heat shock protein 70 (HSP70) family members in Lateolabrax maculatus with Vibrio harveyi infection.

    PubMed

    Han, Ying-Li; Hou, Cong-Cong; Du, Chen; Zhu, Jun-Quan

    2017-01-01

    Heat shock proteins 70 (HSP70s) are molecular chaperones that aid in protection against environmental stress. In this study, we cloned and characterized five members of the HSP70 family (designated as HSPa1a, HSC70-1, HSC70-2, HSPa4 and HSPa14) from Lateolabrax maculatus using rapid amplification cDNA ends (RACE). Multiple sequence alignment and structural analysis revealed that all members of the HSP70 family had a conserved domain architecture, with some distinguishing features unique to each HSP70. Quantitative real-time (qPCR) analysis revealed that all members of the HSP70 family were ubiquitously and differentially expressed in all major types of tissues, including testicular tissue. This indicated that HSP70s have vital and conserved biological functions, and may also function in the development of germinal cells. The expression of mRNA of the five HSP70 family members mRNA expression was significantly increased in the head kidney, intestine and gill after Vibrio harveyi challenge, suggesting that HSP70s play an important role in the immune response. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Histological, ultrastructural and heat shock protein 70 (HSP70) responses to heat stress in the sea cucumber Apostichopus japonicus.

    PubMed

    Xu, Dongxue; Sun, Lina; Liu, Shilin; Zhang, Libin; Yang, Hongsheng

    2015-08-01

    The aquaculture industry for Apostichopus japonicus has suffered severe economic and resource losses due to high temperature in recent summers. There is increasing concern about the effect of high temperature on this species. Histological, ultrastructural and HSP70 responses to heat stress were investigated in the intestine of A. japonicus. Tissue degradation was observed in muscular, submucosal and mucosal layers, with significant decrease in plicae circulares of the mucosal layer. Ultrastructural damage intensified with increasing stress time, and indicators of cell apoptosis were evident after 192 h heat stress. Immunostaining showed HSP70 mainly in mucosa and serosa, with faint staining in non-stressed individuals (the control group) and denser staining under stress (the 6, 48 and 192 h groups). Western blot detection confirmed ocurrence of HSP70 in all groups and significant up-regulation under stress. The rapid and persistent response of HSP70 implies its critical role in the heat shock response of A. japonicus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. A furoviral replicase recruits host HSP70 to membranes for viral RNA replication

    PubMed Central

    Yang, Jian; Zhang, Fen; Cai, Nian-Jun; Wu, Ne; Chen, Xuan; Li, Jing; Meng, Xiang-Feng; Zhu, Tong-Quan; Chen, Jian-Ping; Zhang, Heng-Mu

    2017-01-01

    Many host factors have been identified to be involved in viral infection. However, although furoviruses cause important diseases of cereals worldwide, no host factors have yet been identified that interact with furoviral genes or participate in the viral infection cycle. In this study, both TaHSP70 and NbHSP70 were up-regulated in Chinese wheat mosaic furovirus (CWMV)-infected plants. Their overexpression and inhibition were correlated with the accumulation of viral genomic RNAs, suggesting that the HSP70 genes could be necessary for CWMV infection. The subcellular distributions of TaHSP70 and NbHSP70 were significantly affected by CWMV infection or by infiltration of RNA1 alone. Further assays showed that the viral replicase encoded by CWMV RNA1 interacts with both TaHSP70 and NbHSP70 in vivo and vitro and that its region aa167–333 was responsible for the interaction. Subcellular assays showed that the viral replicase could recruit both TaHSP70 and NbHSP70 from the cytoplasm or nucleus to the granular aggregations or inclusion-like structures on the intracellular membrane system, suggesting that both HSP70s may be recruited into the viral replication complex (VRC) to promote furoviral replication. This is the first host factor identified to be involved in furoviral infection, which extends the list and functional scope of HSP70 chaperones. PMID:28367995

  3. Heat shock protein 70 from a thermotolerant Diptera species provides higher thermoresistance to Drosophila larvae than correspondent endogenous gene.

    PubMed

    Shilova, V Y; Zatsepina, O G; Garbuz, D G; Funikov, S Y; Zelentsova, E S; Schostak, N G; Kulikov, A M; Evgen'ev, M B

    2018-02-01

    Heat shock proteins (Hsp70s) from two Diptera species that drastically differ in their heat shock response and longevity were investigated. Drosophila melanogaster is characterized by the absence of Hsp70 and other hsps under normal conditions and the dramatic induction of hsp synthesis after temperature elevation. The other Diptera species examined belongs to the Stratiomyidae family (Stratiomys singularior) and exhibits high levels of inducible Hsp70 under normal conditions coupled with a thermotolerant phenotype and much longer lifespan. To evaluate the impact of hsp70 genes on thermotolerance and longevity, we made use of a D. melanogaster strain that lacks all hsp70 genes. We introduced single copies of either S. singularior or D. melanogaster hsp70 into this strain and monitored the obtained transgenic flies in terms of thermotolerance and longevity. We developed transgenic strains containing the S. singularior hsp70 gene under control of a D. melanogaster hsp70 promoter. Although these adult flies did synthesize the corresponding mRNA after heat shock, they were not superior to the flies containing a single copy of D. melanogaster hsp70 in thermotolerance and longevity. By contrast, Stratiomyidae Hsp70 provided significantly higher thermotolerance at the larval stage in comparison with endogenous Hsp70. © 2017 The Royal Entomological Society.

  4. In Vivo Suppression of Heat Shock Protein (HSP)27 and HSP70 Accelerates DMBA-Induced Skin Carcinogenesis by Inducing Antigenic Unresponsiveness to the Initiating Carcinogenic Chemical.

    PubMed

    Yusuf, Nabiha; Nasti, Tahseen H; Ahmad, Israr; Chowdhury, Sanim; Mohiuddin, Hasan; Xu, Hui; Athar, Mohammad; Timares, Laura; Elmets, Craig A

    2015-05-15

    Heat shock proteins (HSPs) are constitutively expressed in murine skin. HSP27 is present in the epidermis, and HSP70 can be found in both the epidermis and dermis. The purpose of this study was to investigate the role of these proteins in cutaneous chemical carcinogenesis and to determine whether their effects on cell-mediated immune function were a contributing factor. In vivo inhibition of HSP27 and HSP70 produced a reduction in the T cell-mediated immune response to 7,12-dimethylbenz(a)anthracene (DMBA) and benzo(a)pyrene in C3H/HeN mice and resulted in a state of Ag-specific tolerance. When mice were pretreated with anti-HSP27 and anti-HSP70 Abs in vivo prior to subjecting them to a standard two-stage DMBA/12-O-tetradecanoylphorbol-13-acetate cutaneous carcinogenesis protocol, the percentage of mice with tumors was much greater (p < 0.05) in anti-HSP27- and HSP70-pretreated animals compared with mice pretreated with control Ab. Similar results were obtained when the data were evaluated as the cumulative number of tumors per group. Mice pretreated with HSP27 and HSP70 Abs developed more H-ras mutations and fewer DMBA-specific cytotoxic T lymphocytes. These findings indicate that in mice HSP27 and HSP70 play a key role in the induction of cell-mediated immunity to carcinogenic polyaromatic hydrocarbons. Bolstering the immune response to carcinogenic polyaromatic hydrocarbons may be an effective method for prevention of the tumors that they produce. Copyright © 2015 by The American Association of Immunologists, Inc.

  5. Cloning HSP70 and HSP90 genes of kaluga (Huso dauricus) and the effects of temperature and salinity stress on their gene expression.

    PubMed

    Peng, Guogan; Zhao, Wen; Shi, Zhenguang; Chen, Huirong; Liu, Yang; Wei, Jie; Gao, Fengying

    2016-03-01

    The genes encoding HSP70 and HSP90 proteins were isolated from kaluga by homologous cloning and rapid amplification of complementary DNA (cDNA) ends (RACE). HSP70 (GenBank accession no. KP050541) and HSP90 (GenBank accession no. KP050542) cDNAs were composed of 2275 and 2718 bp and encoded polypeptides of 650 and 725 amino acids, respectively. Basic Local Alignment Search Tool (BLAST) analysis showed that HSP70 and HSP90 of kaluga shared high identities with those of Acipenser ruthenus, Acipenser schrenckii, and Acipenser baerii (98-99 %). Fluorescent real-time RT-PCR under unstressed conditions revealed that HSP70 and HSP90 were expressed in 11 different tissues of kaluga. Messenger RNA (mRNA) expressions of both HSP70 and HSP90 were highest in the intestine and lowest in the muscle. In addition, the patterns of mRNA expression of HSP70 and HSP90 were similar, although the level of expression was more in HSP90 than in HSP70 (P < 0.05).We also analyzed patterns of HSP70 and HSP90 expression in the muscle, gill, and liver of kaluga under different combinations of temperature and salinity stress, including temperatures of 4,10, 25, and 28 °C at 0 ppt salinity, and salinities of 10, 20, 30, and 40 ppt at 16 °C, where 16 °C at 0 ppt (parts per thousand) served as the control. We found that levels of mRNA expression of both HSP70 and HSP90 were highest at 4 °C in the muscle, gill, and liver and changed little with salinity stress. These results increase understanding of the mechanisms of stress response of cold freshwater fish.

  6. In contrast to conventional inactivated influenza vaccines, 4xM2e.HSP70c fusion protein fully protected mice against lethal dose of H1, H3 and H9 influenza A isolates circulating in Iran

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebrahimi, Seyyed Mahmoud, E-mail: smebrahimi@shirazu.ac.ir; Research Center of Virus and Vaccine, Baqiyatallah University of Medical Science, P.O.Box 14155-3651, Tehran; Dabaghian, Mehran

    Ideal vaccines against influenza viruses should elicit not only a humoral response, but also a cellular response. Mycobacterium tuberculosis HSP70 (mHSP70) have been found to promote immunogenic APCs function, elicit a strong cytotoxic T lymphocyte (CTL) response, and prevent the induction of tolerance. Moreover, it showed linkage of antigens to the C-terminus of mHSP70 (mHSP70c) can represent them as vaccines resulted in more potent, protective antigen specific responses in the absence of adjuvants or complex formulations. Hence, recombinant fusion protein comprising C-terminus of mHSP70 genetically fused to four tandem repeats of the ectodomain of the conserved influenza matrix protein M2more » (M2e) was expressed in Escherichia coli, purified under denaturing condition, refolding, and then confirmed by SDS-PAGE, respectively. The recombinant fusion protein, 4xM2e.HSP70c, retained its immunogenicity and displayed the protective epitope of M2e by ELISA and FITC assays. A prime-boost administration of 4xM2e.HSP70c formulated in F105 buffer by intramuscular route in mice (Balb/C) provided full protection against lethal dose of mouse-adapted H1N1, H3N2, or H9N2 influenza A isolates from Iran compared to 0-33.34% survival rate of challenged unimmunized and immunized mice with the currently in use conventional vaccines designated as control groups. However, protection induced by immunization with 4xM2e.HSP70c failed to prevent weight loss in challenged mice; they experienced significantly lower weight loss, clinical symptoms and higher lung viral clearance in comparison with protective effects of conventional influenza vaccines in challenged mice. These data demonstrate that C-terminal domain of mHSP70 can be a superior candidate to deliver the adjuvant function in M2e-based influenza A vaccine in order to provide significant protection against multiple influenza A virus strains.« less

  7. HSP70 production patterns in coastal and estuarine organisms facing increasing temperatures

    NASA Astrophysics Data System (ADS)

    Madeira, D.; Narciso, L.; Cabral, H. N.; Vinagre, C.; Diniz, M. S.

    2012-10-01

    Heat shock proteins are important components in the cellular defense against proteotoxic stress. This work aimed to reveal HSP70 (hsc70 plus hsp70) expression patterns in several marine species (fish, crabs and shrimps) within a community along a temperature gradient and at the upper thermal limit. The organisms were collected in the Tagus estuary and adjacent shore (in Cabo Raso), Portugal. Exposure trials were performed using the critical thermal maximum (CTMax) method in order to recreate a stress gradient of ecological relevance. Protein analysis was performed using an enzyme linked immunosorbent assay (ELISA). Organisms within each community (estuary, coast; subtidal, intertidal, supratidal) responded in several different ways: no change in HSP70 levels, an increase in HSP70 levels, or increases and decreases in HSP70 levels. These patterns of response occurred independently of taxa, CTMax and habitat type. Magnitude of expression relates to the habitat's thermal conditions. Species from highly variable and hot habitats i.e. intertidal/supratidal zone, and living in greater shore heights produce higher amounts of HSP70. Demersal and subtidal species inhabit colder and more stable waters thus they seem to have a slower heat shock response. No clear pattern was observed for species of the same group (fish, crabs and shrimps) or congeneric species. HSP70 expression showed high intraspecific variability potentially due to genetic traits, environmental traits and condition status.

  8. Brain tumor magnetic targeting and biodistribution of superparamagnetic iron oxide nanoparticles linked with 70-kDa heat shock protein study by nonlinear longitudinal response

    NASA Astrophysics Data System (ADS)

    Shevtsov, Maxim A.; Nikolaev, Boris P.; Ryzhov, Vyacheslav A.; Yakovleva, Ludmila Y.; Dobrodumov, Anatolii V.; Marchenko, Yaroslav Y.; Margulis, Boris A.; Pitkin, Emil; Guzhova, Irina V.

    2015-08-01

    Brain tumor targeting efficiency and biodistribution of the superparamagnetic nanoparticles conjugated with heat shock protein Hsp70 (SPION-Hsp70) were evaluated in experimental glioma model. Synthesized conjugates were characterized using the method of longitudinal nonlinear response of magnetic nanoparticles to a weak ac magnetic field with measurements of second harmonic of magnetization (NLR-M2). Cellular interaction of magnetic conjugates was analyzed in 9L glioma cell culture. The biodistribution of the nanoparticles and their accumulation in tumors was assessed by the latter approach as well. The efficacy of Hsp70-conjugates for contrast enhancement in the orthotopic model of 9L glioma was assessed by MR imaging (11 T). Magnetic nanoparticles conjugated with Hsp70 had the relaxivity properties of the MR-negative contrast agents. Morphological observation and cell viability test demonstrated good biocompatibility of Hsp70-conjugates. Analysis of the T2-weighted MR scans in tumor-bearing rats demonstrated the high efficacy of Hsp70-conjugates in contrast enhancement of the glioma in comparison to non-conjugated nanoparticles. High contrast enhancement of the glioma was provided by the accumulation of the SPION-Hsp70 particles in the glioma tissue (as shown by the histological assay). Biodistribution analysis by NLR-M2 measurements evidenced the many-fold increase (~40) in the tumor-to-normal brain uptake ratio in the Hsp70-conjugates treated animals. Biodistribution pattern of Hsp70-decorated nanoparticles differed from that of non-conjugated SPIONs. Coating of the magnetic nanoparticles with Hsp70 protein enhances the tumor-targeting ability of the conjugates that could be applied in the MR imaging of the malignant brain tumors.

  9. The molecular chaperone Hsp70 promotes the proteolytic removal of oxidatively damaged proteins by the proteasome

    PubMed Central

    Reeg, Sandra; Jung, Tobias; Castro, José P.; Davies, Kelvin J.A.; Henze, Andrea; Grune, Tilman

    2016-01-01

    One hallmark of aging is the accumulation of protein aggregates, promoted by the unfolding of oxidized proteins. Unraveling the mechanism by which oxidized proteins are degraded may provide a basis to delay the early onset of features, such as protein aggregate formation, that contribute to the aging phenotype. In order to prevent aggregation of oxidized proteins, cells recur to the 20S proteasome, an efficient turnover proteolysis complex. It has previously been shown that upon oxidative stress the 26S proteasome, another form, dissociates into the 20S form. A critical player implicated in its dissociation is the Heat Shock Protein 70 (Hsp70), which promotes an increase in free 20S proteasome and, therefore, an increased capability to degrade oxidized proteins. The aim of this study was to test whether or not Hsp70 is involved in cooperating with the 20S proteasome for a selective degradation of oxidatively damaged proteins. Our results demonstrate that Hsp70 expression is induced in HT22 cells as a result of mild oxidative stress conditions. Furthermore, Hsp70 prevents the accumulation of oxidized proteins and directly promotes their degradation by the 20S proteasome. In contrast the expression of the Heat shock cognate protein 70 (Hsc70) was not changed in recovery after oxidative stress and Hsc70 has no influence on the removal of oxidatively damaged proteins. We were able to demonstrate in HT22 cells, in brain homogenates from 129/SV mice and in vitro, that there is an increased interaction of Hsp70 with oxidized proteins, but also with the 20S proteasome, indicating a role of Hsp70 in mediating the interaction of oxidized proteins with the 20S proteasome. Thus, our data clearly implicate an involvement of Hsp70 oxidatively damaged protein degradation by the 20S proteasome. PMID:27498116

  10. The molecular chaperone Hsp70 promotes the proteolytic removal of oxidatively damaged proteins by the proteasome.

    PubMed

    Reeg, Sandra; Jung, Tobias; Castro, José P; Davies, Kelvin J A; Henze, Andrea; Grune, Tilman

    2016-10-01

    One hallmark of aging is the accumulation of protein aggregates, promoted by the unfolding of oxidized proteins. Unraveling the mechanism by which oxidized proteins are degraded may provide a basis to delay the early onset of features, such as protein aggregate formation, that contribute to the aging phenotype. In order to prevent aggregation of oxidized proteins, cells recur to the 20S proteasome, an efficient turnover proteolysis complex. It has previously been shown that upon oxidative stress the 26S proteasome, another form, dissociates into the 20S form. A critical player implicated in its dissociation is the Heat Shock Protein 70 (Hsp70), which promotes an increase in free 20S proteasome and, therefore, an increased capability to degrade oxidized proteins. The aim of this study was to test whether or not Hsp70 is involved in cooperating with the 20S proteasome for a selective degradation of oxidatively damaged proteins. Our results demonstrate that Hsp70 expression is induced in HT22 cells as a result of mild oxidative stress conditions. Furthermore, Hsp70 prevents the accumulation of oxidized proteins and directly promotes their degradation by the 20S proteasome. In contrast the expression of the Heat shock cognate protein 70 (Hsc70) was not changed in recovery after oxidative stress and Hsc70 has no influence on the removal of oxidatively damaged proteins. We were able to demonstrate in HT22 cells, in brain homogenates from 129/SV mice and in vitro, that there is an increased interaction of Hsp70 with oxidized proteins, but also with the 20S proteasome, indicating a role of Hsp70 in mediating the interaction of oxidized proteins with the 20S proteasome. Thus, our data clearly implicate an involvement of Hsp70 oxidatively damaged protein degradation by the 20S proteasome. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Induction of hsp70, hsp90, and catalase activity in planarian Dugesia japonica exposed to cadmium.

    PubMed

    Zhang, Xiufang; Mo, Yehua; Zhou, Luming; Wang, Yinan; Wang, Zhongchen; Zhao, Bosheng

    2016-08-01

    The hsp70 and hsp90 expression patterns and catalase (CAT) activity in the freshwater planaria Dugesia japonica exposed to cadmium (Cd) under laboratory conditions were investigated. Planaria were exposed to a range of Cd concentrations (0-150 μg Cd/L) for 24 h. The expression levels of hsp70 and hsp90 were determined by relative quantitative real-time polymerase chain reaction. Within the overall dose range in the experiment, the expression level of hsp70 and the activity of CAT in D. japonica were altered significantly. Hsp70 was induced in D. japonica upon Cd exposure concentrations as low as 9.375 μg Cd/L. No significant effect on the expression level of hsp90 was observed. Our findings demonstrated that stress gene hsp70, but not hsp90, was responsive to Cd contamination in D. japonica CAT activity was significantly induced at concentrations of 18.75, 37.5, and 75 μg Cd/L after 24-h exposure. We recommend that the use of hsp70 as a biomarker should be complemented by evidence of changes in other parameters, such as CAT activity, in D. japonica. © The Author(s) 2014.

  12. Cloning of three heat shock protein genes (HSP70, HSP90α and HSP90β) and their expressions in response to thermal stress in loach (Misgurnus anguillicaudatus) fed with different levels of vitamin C.

    PubMed

    Yan, Jie; Liang, Xiao; Zhang, Yin; Li, Yang; Cao, Xiaojuan; Gao, Jian

    2017-07-01

    Heat shock protein 70 (HSP70) and 90 (HSP90) are the most broadly studied proteins in HSP families. They play key roles in cells as molecular chaperones, in response to stress conditions such as thermal stress. In this study, full-length cDNA sequences of HSP70, HSP90α and HSP90β from loach Misgurnus anguillicaudatus were cloned. The full-length cDNA of HSP70 in loach was 2332bp encoding 644 amino acids, while HSP90α and HSP90β were 2586bp and 2678bp in length, encoding 729 and 727 amino acids, respectively. The deduced amino acid sequences of HSP70 in loach shared the highest identity with those of Megalobrama amblycephala and Cyprinus carpio. The deduced amino acid sequences of HSP90α and HSP90β in loach both shared the highest identity with those of M. amblycephala. Their mRNA tissue expression results showed that the maximum expressions of HSP70, HSP90α and HSP90β were respectively present in the intestine, brain and kidney of loach. Quantitative real-time PCR was employed to analyze the temporal expressions of HSP70, HSP90α and HSP90β in livers of loaches fed with different levels of vitamin C under thermal stress. Expression levels of the three HSP genes in loach fed the diet without vitamin C supplemented at 0 h of thermal stress were significantly lower than those at 2 h, 6 h, 12 h and 24 h of thermal stress. It indicated that expressions of the three HSP genes were sensitive to thermal stress in loach. The three HSP genes in loaches fed with 1000 mg/kg vitamin C expressed significantly lower than other vitamin C groups at many time points of thermal stress, suggesting 1000 mg/kg dietary vitamin C might decrease the body damages caused by the thermal stress. This study will be of value for further studies into thermal stress tolerance in loach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Molecular cloning, expression pattern, and chemical analysis of heat shock protein 70 (HSP70) in the mudskipper Boleophthalmus pectinirostris: Evidence for its role in regulating spermatogenesis.

    PubMed

    Han, Ying-Li; Yang, Wan-Xi; Long, Ling-Li; Sheng, Zhang; Zhou, Yang; Zhao, Yong-Qiang; Wang, You-Fa; Zhu, Jun-Quan

    2016-01-10

    Heat shock protein 70 (HSP70) is molecular chaperone that is important for reproductive biological processes. In this study, a full length HSP70 from the mudskipper (Boleophthalmus pectinirostris) was characterized. It was found to contain: a 108 bp 5'-untranslated region, a 208 bp 3'-untranslated region, and a 1953 bp open reading frame, which encodes a protein of 650 amino acids with a theoretical molecular weight of 71.1 kDa and an isoelectric point of 5.17. RT-PCR analysis revealed that HSP70 was ubiquitously expressed in all major tissues with differential expression levels. This suggests that HSP70 has vital and conserved biological functions. HSP70 was localized mainly in the cytoplasm of germinal cells, indicating an important role of this protein during spermatogenesis. In response to heat stress, the testes presented abnormal morphology in connective tissues, in which HSP70 immunoreactivity was not observed. HSP70 mRNA expression in the gill, liver, and testes was significantly increased, which suggests that HSP70 plays an important role in protection against heat stress. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Acute exercise boosts cell proliferation and the heat shock response in lymphocytes: correlation with cytokine production and extracellular-to-intracellular HSP70 ratio.

    PubMed

    Heck, Thiago Gomes; Scomazzon, Sofia Pizzato; Nunes, Patrícia Renck; Schöler, Cinthia Maria; da Silva, Gustavo Stumpf; Bittencourt, Aline; Faccioni-Heuser, Maria Cristina; Krause, Mauricio; Bazotte, Roberto Barbosa; Curi, Rui; Homem de Bittencourt, Paulo Ivo

    2017-03-01

    Exercise stimulates immune responses, but the appropriate "doses" for such achievements are unsettled. Conversely, in metabolic tissues, exercise improves the heat shock (HS) response, a universal cytoprotective response to proteostasis challenges that are centred on the expression of the 70-kDa family of intracellular heat shock proteins (iHSP70), which are anti-inflammatory. Concurrently, exercise triggers the export of HSP70 towards the extracellular milieu (eHSP70), where they work as pro-inflammatory cytokines. As the HS response is severely compromised in chronic degenerative diseases of inflammatory nature, we wondered whether acute exercise bouts of different intensities could alter the HS response of lymphocytes from secondary lymphoid organs and whether this would be related to immunoinflammatory responses. Adult male Wistar rats swam for 20 min at low, moderate, high or strenuous intensities as per an overload in tail base. Controls remained at rest under the same conditions. Afterwards, mesenteric lymph node lymphocytes were assessed for the potency of the HS response (42 °C for 2 h), NF-κB binding activity, mitogen-stimulated proliferation and cytokine production. Exercise stimulated cell proliferation in an "inverted-U" fashion peaking at moderate load, which was paralleled by suppression of NF-κB activation and nuclear location, and followed by enhanced HS response in relation to non-exercised animals. Comparative levels of eHSP70 to iHSP70 (H-index) matched IL-2/IL-10 ratios. We conclude that exercise, in a workload-dependent way, stimulates immunoinflammatory performance of lymphocytes of tissues far from the circulation and this is associated with H-index of stress response, which is useful to assess training status and immunosurveillance balance.

  15. Inner ear supporting cells protect hair cells by secreting HSP70

    PubMed Central

    May, Lindsey A.; Kramarenko, Inga I.; Brandon, Carlene S.; Voelkel-Johnson, Christina; Roy, Soumen; Truong, Kristy; Francis, Shimon P.; Monzack, Elyssa L.; Lee, Fu-Shing; Cunningham, Lisa L.

    2013-01-01

    Mechanosensory hair cells are the receptor cells of hearing and balance. Hair cells are sensitive to death from exposure to therapeutic drugs with ototoxic side effects, including aminoglycoside antibiotics and cisplatin. We recently showed that the induction of heat shock protein 70 (HSP70) inhibits ototoxic drug–induced hair cell death. Here, we examined the mechanisms underlying the protective effect of HSP70. In response to heat shock, HSP70 was induced in glia-like supporting cells but not in hair cells. Adenovirus-mediated infection of supporting cells with Hsp70 inhibited hair cell death. Coculture with heat-shocked utricles protected nonheat-shocked utricles against hair cell death. When heat-shocked utricles from Hsp70–/– mice were used in cocultures, protection was abolished in both the heat-shocked utricles and the nonheat-shocked utricles. HSP70 was detected by ELISA in the media surrounding heat-shocked utricles, and depletion of HSP70 from the media abolished the protective effect of heat shock, suggesting that HSP70 is secreted by supporting cells. Together our data indicate that supporting cells mediate the protective effect of HSP70 against hair cell death, and they suggest a major role for supporting cells in determining the fate of hair cells exposed to stress. PMID:23863716

  16. Leptin downregulates heat shock protein-70 (HSP-70) gene expression in chicken liver and hypothalamus.

    PubMed

    Figueiredo, Denise; Gertler, Arieh; Cabello, Gérard; Decuypere, Eddy; Buyse, Johan; Dridi, Sami

    2007-07-01

    Heat shock protein (HSP)-70 is expressed in normal and stressed cells but is highly stress-inducible. Although leptin has long been suggested to be involved in the regulation of stress response, its interaction with the HSP-70 gene is still unknown, under both unstressed and stressed conditions. The present study has aimed to investigate the effect of leptin on HSP-70 gene expression in normal chicken liver, hypothalamus, and muscle. Continuous infusion of recombinant chicken leptin (8 mug/kg per hour) at a constant rate of 3 ml/h for 6 h in 3-week-old broiler chickens significantly (P < 0.05) decreased food intake and HSP-70 mRNA levels in liver and hypothalamus, but not in muscle. In an attempt to discriminate between the effect of leptin and of leptin-reduced food intake on HSP-70 gene expression, we also evaluated the effect of food deprivation on the same cellular responses in two broiler chicken lines genetically selected for low (LL) or high (FL) abdominal fat pad size. Food deprivation for 16 h did not affect HSP-70 gene expression in any of the studied tissues indicating that the effect of leptin was independent of the inhibition of food intake. Regardless of the nutritional status, HSP-70 mRNA levels were significantly (P < 0.05) higher in the hypothalamus of FL compared with LL chickens consistent with higher mRNA levels for hypothalamic corticotropin-releasing factor. To assess, whether the effects of leptin were direct or indirect, we carried out in vitro studies. Leptin treatments did not affect HSP-70 mRNA levels in a leghorn male hepatoma cell line or quail myoblast cell line suggesting that the effect of leptin on HSP-70 gene expression is mediated through the central nervous system. Furthermore, HSP-70 gene expression was gender-dependent with significantly (P < 0.05) higher levels in male than in female chickens.

  17. A Recombinant Trivalent Fusion Protein F1-LcrV-HSP70(II) Augments Humoral and Cellular Immune Responses and Imparts Full Protection against Yersinia pestis.

    PubMed

    Verma, Shailendra K; Batra, Lalit; Tuteja, Urmil

    2016-01-01

    Plague is one of the most dangerous infections in humans caused by Yersinia pestis, a Gram-negative bacterium. Despite of an overwhelming research success, no ideal vaccine against plague is available yet. It is well established that F1/LcrV based vaccine requires a strong cellular immune response for complete protection against plague. In our earlier study, we demonstrated that HSP70(II) of Mycobacterium tuberculosis modulates the humoral and cellular immunity of F1/LcrV vaccine candidates individually as well as in combinations in a mouse model. Here, we made two recombinant constructs caf1-lcrV and caf1-lcrV-hsp70(II). The caf1 and lcrV genes of Y. pestis and hsp70 domain II of M. tuberculosis were amplified by polymerase chain reaction. Both the recombinant constructs caf1-lcrV and caf1-lcrV-hsp70(II) were cloned in pET28a vector and expressed in Escherichia coli. The recombinant fusion proteins F1-LcrV and F1-LcrV-HSP70(II) were purified using Ni-NTA columns and formulated with alum to evaluate the humoral and cell mediated immune responses in mice. The protective efficacies of F1-LcrV and F1-LcrV-HSP70(II) were determined following challenge of immunized mice with 100 LD50 of Y. pestis through intraperitoneal route. Significant differences were noticed in the titers of IgG and it's isotypes, i.e., IgG1, IgG2b, and IgG3 in anti- F1-LcrV-HSP70(II) sera in comparison to anti-F1-LcrV sera. Similarly, significant differences were also noticed in the expression levels of IL-2, IFN-γ and TNF-α in splenocytes of F1-LcrV-HSP(II) immunized mice in comparison to F1-LcrV. Both F1-LcrV and F1-LcrV-HSP70(II) provided 100% protection. Our research findings suggest that F1-LcrV fused with HSP70 domain II of M. tuberculosis significantly enhanced the humoral and cellular immune responses in mouse model.

  18. Slower skeletal muscle phenotypes are critical for constitutive expression of Hsp70 in overloaded rat plantaris muscle.

    PubMed

    O'Neill, David E T; Aubrey, F Kris; Zeldin, David A; Michel, Robin N; Noble, Earl G

    2006-03-01

    Heat shock protein 72 (Hsp70) is constitutively expressed in rat hindlimb muscles, reportedly in proportion to their content of type I myosin heavy chain. This distribution pattern has been suggested to result from the higher recruitment and activity of such muscles and/or a specific relationship between myosin phenotype and Hsp70 content. To differentiate between these possibilities, the fiber-specific distribution of Hsp70 was examined in male Sprague-Dawley rat plantaris under control conditions, following a fast-to-slow phenotypic shift in response to surgically induced overload (O) and in response to O when the phenotypic shift was prevented by 3,5,3'-triiodo-dl-thyronine administration. Constitutive expression of Hsp70 was restricted to type I and IIa fibers in plantaris from control rats, and this fiber-specific pattern of expression was maintained following O of up to 28 days, although Hsp70 content in the O muscle doubled. When O (for 40 days) of the plantaris was combined with 3,5,3'-triiodo-dl-thyronine administration, despite typical hypertrophy in the overloaded plantaris, prevention of the normal phenotypic transformation also blocked the increased expression of Hsp70 observed in euthyroid controls. Collectively, these data suggest that chronic changes in constitutive expression of Hsp70 with altered contractile activity appear critically dependent on fast-to-slow phenotypic remodeling.

  19. Heat shock proteins (Hsp70) and water content in the estivating Mediterranean Grunt Snail (Cantareus apertus).

    PubMed

    Reuner, Andy; Brümmer, Franz; Schill, Ralph O

    2008-09-01

    Pulmonate land snails often are able to estivate to survive dry hot seasons were water and food are scarce. The aperture of the shell is closed with an epiphragm, and metabolism is depressed to approximately one fourth of basal metabolism. We investigated a molecular aspect of estivation focussing on the heat shock protein 70 (Hsp70) stress response during estivation in the Mediterranean Grunt Snail Cantareus apertus. Sequences of a new inducible hsp70 and of actin are presented and expression of the hsp70 gene as well as Hsp70 protein content was measured in estivating animals. Both Hsp70 protein and mRNA do not show a significant change from the control, although there is a trend that hsp70 mRNA is less abundant in estivating specimens. After heat shock, the expression of hsp70 increased and a higher Hsp70 protein content was detected. Water relations were also investigated. After a period of 6 months in the dormant state, the snails contained 14% less water than active ones, implying a constricted protection against desiccation, compared to the desert snail Sphincterochila zonata, and a Mediterranean-type water economy.

  20. Double-stranded RNA-dependent protein kinase (pkr) is essential for thermotolerance, accumulation of HSP70, and stabilization of ARE-containing HSP70 mRNA during stress.

    PubMed

    Zhao, Meijuan; Tang, Dan; Lechpammer, Stanislav; Hoffman, Alexander; Asea, Alexzander; Stevenson, Mary Ann; Calderwood, Stuart K

    2002-11-15

    We have investigated the role of the double-stranded RNA-dependent protein kinase gene (pkr) in the regulation of the heat shock response. We show that the pkr gene is essential for efficient activation of the heat shock response and that pkr disruption profoundly inhibits heat shock protein 70 (HSP70) synthesis and blocks the development of thermotolerance. Despite these profound effects, pkr disruption did not markedly affect the activation of heat shock factor 1 by heat and did not reduce the rate of transcription of the HSP70 gene after heat shock. However, despite the lack of effect of pkr disruption on HSP70 gene transcription, we found a significant decrease in the expression of HSP70 mRNA in pkr-/- cells after heat shock. Kinetic studies of mRNA turnover suggested a block in the thermal stabilization of HSP70 mRNA in pkr-/- cells. As the thermal stabilization of HSP70 mRNA is thought to involve cis-acting A+U rich (ARE) elements in the 3'-untranslated region (UTR), we examined a potential role for pkr in this process. We found that a reporter beta-galactosidase mRNA destabilized by introduction of a functional ARE into the 3'-UTR became stabilized by heat but only in cells containing an intact pkr gene. Our studies suggest therefore that pkr plays a significant role in the stabilization of mRNA species containing ARE destruction sequences in the 3'-UTR and through this mechanism, contributes to the regulation of the heat shock response and other processes.

  1. Clonogenicity of human leukemic cells protected from cell-lethal agents by heat shock protein 70

    PubMed Central

    Bases, Robert

    2005-01-01

    Pretreatment of human leukemia THP-1 cells with heat shock protein Hsp70 (Hsp70) protected them from the cell-lethal effects of the topoisomerase II inhibitor, lucanthone and from ionizing radiation. Cell viability was scored in clonogenic assays of single cells grown in liquid medium containing 0.5% methyl cellulose. Colonies were observed and rapidly scored after staining with the tetrazolium salt, 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl tetrazolium bromide. The frequency of abasic sites in the deoxyribonucleic acid (DNA) of THP-1 cells was reduced when these cells were treated with Hsp70. Hsp70 is presumed to have protected the cells by promoting repair of cell DNA, in agreement with previous studies that showed that Hsp70 enhanced base excision repair by purified enzymes. The shoulders of radiation dose-response curves were enhanced by pretreatment of cells with Hsp70 and, importantly, were reduced when cells were transfected with ribonucleic acid designed to silence Hsp70. Hsp70 influenced repair of sublethal damage after radiation. PMID:15832946

  2. HSP70 from the Antarctic sea urchin Sterechinus neumayeri: molecular characterization and expression in response to heat stress.

    PubMed

    González-Aravena, Marcelo; Calfio, Camila; Mercado, Luis; Morales-Lange, Byron; Bethke, Jorn; De Lorgeril, Julien; Cárdenas, César A

    2018-03-27

    Heat stress proteins are implicated in stabilizing and refolding denatured proteins in vertebrates and invertebrates. Members of the Hsp70 gene family comprise the cognate heat shock protein (Hsc70) and inducible heat shock protein (Hsp70). However, the cDNA sequence and the expression of Hsp70 in the Antarctic sea urchin are unknown. We amplified and cloned a transcript sequence of 1991 bp from the Antarctic sea urchin Sterechinus neumayeri, experimentally exposed to heat stress (5  and 10 °C for 1, 24 and 48 h). RACE-PCR and qPCR were employed to determine Hsp70 gene expression, while western blot and ELISA methods were used to determine protein expression. The sequence obtained from S. neumayeri showed high identity with Hsp70 members. Several Hsp70 family features were identified in the deduced amino acid sequence and they indicate that the isolated Hsp70 is related to the cognate heat shock protein type. The corresponding 70 kDa protein, called Sn-Hsp70, was immune detected in the coelomocytes and the digestive tract of S. neumayeri using a monospecific polyclonal antibody. We showed that S. neumayeri do not respond to acute heat stress by up-regulation of Sn-Hsp70 at transcript and protein level. Furthermore, the Sn-Hsp70 protein expression was not induced in the digestive tract. Our results provide the first molecular evidence that Sn-Hsp70 is expressed constitutively and is non-induced by heat stress in S. neumayeri.

  3. Anti-hypoxia effect of adenovirus-mediated expression of heat shock protein 70 (HSP70) on primary cultured neurons.

    PubMed

    Hu, Dan; Chen, Fuqiang; Guan, Chun; Yang, Fangfang; Qu, Yan

    2013-09-01

    Heat shock protein 70 (HSP70) has attracted great attention recently in hypoxia injury because of its close link to the recovery after hypoxic-ischemic damage in organs. However, the cellular mechanism underlying its protective roles remains unclear. In this study, we developed a recombinant adenovirus containing HSP70-GFP (vAd-HSP70-GFP) and studied the effect of virus-mediated expression of exogenous HSP70 gene on neurons in response to hypoxia-reoxygenation injury. Virus-mediated expression of HSP70 was detected as early as 24 hr and lasted until 10 days after infection. Neurons with 48 hr vAd-HSP70-GFP infection were exposed to 0, 0.5, 1, 2, 3, or 4 hr hypoxia followed by 1 hr reoxygenation. The mRNA and protein levels of HSP70 in neurons exposed to different lengths of hypoxia were compared by using RT-PCR and Western blotting (WB). The 1-hr hypoxia exposure showed the most significant increases in the HSP70 mRNA and protein level compared with other exposure durations. MTT assay showed that HSP70 overexpression significantly increased the neuronal viability, accompanied by decreased lactate dehydrogenase (LDH) activity in the culture medium after hypoxia-reoxygenation. Neurons with vAd-HSP70-GFP exhibited increased levels of mitochondrial cytochrome C (Cyt-C) and decreased levels of cytoplasmic Cyt-C compared with vAd-GFP-infected cells. These results suggest a neuroprotective role of exogenous HSP70 against hypoxia-reoxygenation injury, possibly via preventing initiation of mitochondrial apoptosis. Copyright © 2013 Wiley Periodicals, Inc.

  4. Heat shock protein responses to aging and proteotoxicity in the olfactory bulb

    PubMed Central

    Posimo, Jessica M.; Mason, Daniel M.; Broeren, Matthew T.; Heinemann, Scott D.; Wipf, Peter; Brodsky, Jeffrey L.; Leak, Rehana K.

    2015-01-01

    The olfactory bulb is one of the most vulnerable brain regions in age-related proteinopathies. Proteinopathic stress is mitigated by the heat shock protein (Hsp) family of chaperones. Here we describe age-related decreases in Hsc70 in the olfactory bulb of the female rat and higher levels of Hsp70 and Hsp25 in middle and old age than at 2-4 months. In order to model proteotoxic and oxidative stress in the olfactory bulb, primary olfactory bulb cultures were treated with the proteasome inhibitors lactacystin and MG132 or the pro-oxidant paraquat. Toxin-induced increases were observed in Hsp70, Hsp25, and Hsp32. In order to determine the functional consequences of the increase in Hsp70, we attenuated Hsp70 activity with two mechanistically distinct inhibitors. The Hsp70 inhibitors greatly potentiated the toxicity of sublethal lactacystin or MG132 but not of paraquat. Although ubiquitinated protein levels were unchanged with aging in vivo or with sublethal MG132 in vitro, there was a large, synergistic increase in ubiquitinated proteins when proteasome and Hsp70 functions were simultaneously inhibited. Our study suggests that olfactory bulb cells rely heavily on Hsp70 chaperones to maintain homeostasis during mild proteotoxic, but not oxidative insults, and that Hsp70 prevents the accrual of ubiquitinated proteins in these cells. PMID:25640060

  5. Chronic hypoxia stress-induced differential modulation of heat-shock protein 70 and presynaptic proteins.

    PubMed

    Fei, Guanghe; Guo, Conghui; Sun, Hong-Shuo; Feng, Zhong-Ping

    2007-01-01

    Chronic hypoxia exposure can cause neurobehavioral dysfunction, but the underlying cellular and molecular mechanisms remain unclear. Here, we found that adult Lymnaea stagnalis snails maintained in low O(2) (approximately 5%) for 4 days developed slowed reactions to light stimuli, and reduced righting movement. Semiquantitative immunoblotting analyses showed that hypoxia exposure induced increased expression of heat-shock protein (HSP)70 in ganglion preparations, and suppressed expression of the presynaptic proteins syntaxin I, synaptic vesicle protein 2 (SV2) and synaptotagmin I. Detailed time course analyses showed that an early moderate increase developed within 6 h, preceding a substantial up-regulation of HSP70 after 4 days; an early reduction of syntaxin I in the first 24 h; a delayed reduction of synaptotagmin I after 4 days; and a biphasic change in SV2. Using a double-stranded RNA interference approach, we demonstrated that preventing the hypoxia inducible HSP70 enhanced down-regulation of syntaxin and synaptotagmin, and aggravated motor and sensory suppression. Co-immunoprecipitation analysis revealed an interaction between HSP70 and syntaxin. We have thus provided the first evidence that early induction of HSP70 by chronic hypoxia is critical for maintaining expression levels of presynaptic proteins. These findings implicate a new molecular mechanism underlying chronic hypoxia-induced neurobehavioral adaptation and impairment.

  6. Cloning of heat shock protein genes (hsp70, hsc70 and hsp90) and their expression in response to larval diapause and thermal stress in the wheat blossom midge, Sitodiplosis mosellana.

    PubMed

    Cheng, Weining; Li, Dan; Wang, Yue; Liu, Yang; Zhu-Salzman, Keyan

    2016-12-01

    Sitodiplosis mosellana Géhin, one of the most important pests of wheat, undergoes obligatory diapause as a larva to survive unfavorable temperature extremes during hot summers and cold winters. To explore the potential roles of heat shock proteins (hsp) in this process, we cloned full-length cDNAs of hsp70, hsc70 and hsp90 from S. mosellana larvae, and examined their expression in response to diapause and short-term temperature stresses. Three hsps included all signature sequences of corresponding protein family and EEVD motifs. They showed high homology to their counterparts in other species, and the phylogenetic analysis of hsp90 was consistent with the known classification of insects. Expression of hsp70 and hsp90 were highly induced by diapause, particularly pronounced during summer and winter. Interestingly, hsp70 was more strongly expressed in summer than in winter whereas hsp90 displayed the opposite pattern. Abundance of hsc70 mRNA was comparable prior to and during diapauses and was highly up-regulated when insects began to enter the stage of post-diapause quiescence. Heat-stressed over-summering larvae (⩾30°C) or cold-stressed over-wintering larvae (⩽0°C) could further elevate expression of these three genes, but temperature extremes i.e. as high as 45°C or as low as -15°C failed to trigger such expression patterns. Notably, hsp70 was most sensitive to heat stress and hsp90 was most sensitive to cold stress. These results suggested that hsp70 and hsp90 play key roles in diapause maintenance and thermal stress; the former may be more prominent contributor to heat tolerance and the latter for cold tolerance. In contrast, hsc70 most likely is involved in developmental transition from diapause to post-diapause quiescence, and thus may serve as a molecular marker to predict diapause termination. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Hsp70- and p53-reponses after heat treatment and/or X-irradiation mediate the susceptibility of hematopoietic cells to undergo apoptosis.

    PubMed

    Nijhuis, E H A; Poot, A A; Feijen, J; Vermes, I

    2008-02-01

    The effect of heat treatment in combination with X-irradiation was examined with regard to expression of p53, a tumor suppressor gene product, and Hsp70, a heat-shock protein, in association with the occurrence of programmed cell death (apoptosis). Three hematopoietic cell lines (HSB2, HL60 and Kasumi-1), which differ in p53 status, were exposed to 42.5 degrees C during one hour and/or X-radiation (total dose 8 Gy). After exposure, both mRNA and protein expression levels of Hsp70 and p53 were investigated by real-time PCR (polymerase chain reaction) and Western blotting. Apoptosis was simultaneously analyzed by observation of cell morphology as well as flowcytometric determination of Annexin V binding to phosphatidylserine and propidium iodide exclusion. Both HL60 and HSB2 cell lines with a low p53 status and a quick response to heat treatment with Hsp70 over-expression are less susceptible to heat-induced apoptosis compared to Kasumi-1 cells with wild-type p53 protein and no Hsp70 response. The combination of first applying X-irradiation followed by heat treatment resulted in the most effective induction of apoptosis due to impairment of the Hsp70 response in all three cell lines. These results indicate that the Hsp70 response and p53 status mediate the susceptibility of hematopoietic cells to undergo heat-induced apoptosis. Therefore, these parameters can be used as markers to predict the effectiveness of hyperthermia in cancer treatment.

  8. Mechanism underlying berberine's effects on HSP70/TNFα under heat stress: Correlation with the TATA boxes.

    PubMed

    Jiang, Jing-Fei; Lei, Fan; Yuan, Zhi-Yi; Wang, Yu-Gang; Wang, Xin-Pei; Yan, Xiao-Jin; Yu, Xuan; Xing, Dong-Ming; DU, Li-Jun

    2017-03-01

    Heat stress can stimulate an increase in body temperature, which is correlated with increased expression of heat shock protein 70 (HSP70) and tumor necrosis factor α (TNFα). The exact mechanism underlying the HSP70 and TNFα induction is unclear. Berberine (BBR) can significantly inhibit the temperature rise caused by heat stress, but the mechanism responsible for the BBR effect on HSP70 and TNFα signaling has not been investigated. The aim of the present study was to explore the relationship between the expression of HSP70 and TNFα and the effects of BBR under heat conditions, using in vivo and in vitro models. The expression levels of HSP70 and TNFα were determined using RT-PCR and Western blotting analyses. The results showed that the levels of HSP70 and TNFα were up-regulated under heat conditions (40 °C). HSP70 acted as a chaperone to maintain TNFα homeostasis with rising the temperature, but knockdown of HSP70 could not down-regulate the level of TNFα. Furthermore, TNFα could not influence the expression of HSP70 under normal and heat conditions. BBR targeted both HSP70 and TNFα by suppressing their gene transcription, thereby decreasing body temperature under heat conditions. In conclusion, BBR has a potential to be developed as a therapeutic strategy for suppressing the thermal effects in hot environments. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  9. Preinduction of heat shock protein 70 protects mice against post-infection irritable bowel syndrome via NF-κB and NOS/NO signaling pathways.

    PubMed

    Zhou, Xuchun; Dong, Liwei; Yang, Bo; He, Zhoutao; Chen, Yiyao; Deng, Taozhi; Huang, Baili; Lan, Cheng

    2015-12-01

    This study aimed to investigate the protective effects of preinduction of heat shock protein 70 (HSP70) on Trichinella spiralis infection-induced post-infectious irritable bowel syndrome (PI-IBS) in mice. Trichinella spiralis infection significantly reduced HSP70 abundance, ileal villus height and crypt depth, expression of tight junctions, serum lysine and arginine concentrations, and ileal SCL7A6 and SCL7A7 mRNA levels, induced inflammatory response, and activated NF-κB signaling pathway. Meanwhile, the heat treatment upregulated HSP70 expression, and then reversed intestinal dysfunction and inflammatory response. Preinduction of HSP70 enhanced serum arginine and intestinal SCL7A7 expression and inhibited NF-κB activation compared with PI-IBS model. Treatment with pyrrolidine dithiocarbamate (PDTC, an NF-κB inhibitor) and N-nitro-L-arginine methyl ester hydrochloride (L-NAME, a nitric oxide synthase inhibitor, NOS) further demonstrated that preinduction of HSP70 might inhibit NF-κB and activated NOS/nitric oxide (NO) signaling pathways. In conclusion, preinduction of HSP70 by heat treatment may confer beneficial effects on Trichinella spiralis infection-induced PI-IBS in mice, and the protective effect of HSP70 may be associated with inhibition of NF-κB and stimulation of NOS/NO signaling pathways.

  10. Changes in lymphocyte HSP70 levels in women handball players throughout 1 year of training: the role of estrogen levels.

    PubMed

    Weber, Maria Helena; da Rocha, Ricardo Fagundes; Schnorr, Carlos Eduardo; Schröder, Rafael; Moreira, José Cláudio Fonseca

    2012-09-01

    Heat shock protein 70 (HSP70) is a chaperone that maintains protein conformation during heat stress. It has recently been observed that HSP70 may be released from cells in response to increased energy demand (e.g., exercise) and/or oxidative stress. Since HSP70 levels should change in response to athletic training, we have investigated whether blood HSP70 levels in young women handball players change over a complete training season. Thirty women handball players (12-24 years old) were divided into low (≥30 pg mL(-1)) (LE) and normal (30-330 pg mL(-1)) (NE) estradiol groups. HSP70 levels in lymphocytes and plasma and blood redox parameters were evaluated over 1 year (2009), with sampling at the beginning, middle, and end of the season. We observed no changes in superoxide dismutase activity or protein carbonyl or extracellular HSP70 levels, while catalase activity increased at the middle of the season in the NE group, and the thiobarbituric acid species levels in both groups were higher at the beginning of the season than at the middle or end. The lymphocyte HSP70 content was higher at the middle and end than at the beginning of the season in the NE group and also higher in the LE group than in the NE group at the beginning of the season. These results suggest that plasma estradiol levels may play an important role in exercise training and that the intracellular HSP70 content, a biomarker for inflammation, is affected by both estradiol levels and exercise-induced oxidative stress.

  11. The molecular chaperone HSP70 binds to and stabilizes NOD2, an important protein involved in Crohn disease.

    PubMed

    Mohanan, Vishnu; Grimes, Catherine Leimkuhler

    2014-07-04

    Microbes are detected by the pathogen-associated molecular patterns through specific host pattern recognition receptors. Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is an intracellular pattern recognition receptor that recognizes fragments of the bacterial cell wall. NOD2 is important to human biology; when it is mutated it loses the ability to respond properly to bacterial cell wall fragments. To determine the mechanisms of misactivation in the NOD2 Crohn mutants, we developed a cell-based system to screen for protein-protein interactors of NOD2. We identified heat shock protein 70 (HSP70) as a protein interactor of both wild type and Crohn mutant NOD2. HSP70 has previously been linked to inflammation, especially in the regulation of anti-inflammatory molecules. Induced HSP70 expression in cells increased the response of NOD2 to bacterial cell wall fragments. In addition, an HSP70 inhibitor, KNK437, was capable of decreasing NOD2-mediated NF-κB activation in response to bacterial cell wall stimulation. We found HSP70 to regulate the half-life of NOD2, as increasing the HSP70 level in cells increased the half-life of NOD2, and down-regulating HSP70 decreased the half-life of NOD2. The expression levels of the Crohn-associated NOD2 variants were less compared with wild type. The overexpression of HSP70 significantly increased NOD2 levels as well as the signaling capacity of the mutants. Thus, our study shows that restoring the stability of the NOD2 Crohn mutants is sufficient for rescuing the ability of these mutations to signal the presence of a bacterial cell wall ligand. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. The Molecular Chaperone HSP70 Binds to and Stabilizes NOD2, an Important Protein Involved in Crohn Disease*

    PubMed Central

    Mohanan, Vishnu; Grimes, Catherine Leimkuhler

    2014-01-01

    Microbes are detected by the pathogen-associated molecular patterns through specific host pattern recognition receptors. Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is an intracellular pattern recognition receptor that recognizes fragments of the bacterial cell wall. NOD2 is important to human biology; when it is mutated it loses the ability to respond properly to bacterial cell wall fragments. To determine the mechanisms of misactivation in the NOD2 Crohn mutants, we developed a cell-based system to screen for protein-protein interactors of NOD2. We identified heat shock protein 70 (HSP70) as a protein interactor of both wild type and Crohn mutant NOD2. HSP70 has previously been linked to inflammation, especially in the regulation of anti-inflammatory molecules. Induced HSP70 expression in cells increased the response of NOD2 to bacterial cell wall fragments. In addition, an HSP70 inhibitor, KNK437, was capable of decreasing NOD2-mediated NF-κB activation in response to bacterial cell wall stimulation. We found HSP70 to regulate the half-life of NOD2, as increasing the HSP70 level in cells increased the half-life of NOD2, and down-regulating HSP70 decreased the half-life of NOD2. The expression levels of the Crohn-associated NOD2 variants were less compared with wild type. The overexpression of HSP70 significantly increased NOD2 levels as well as the signaling capacity of the mutants. Thus, our study shows that restoring the stability of the NOD2 Crohn mutants is sufficient for rescuing the ability of these mutations to signal the presence of a bacterial cell wall ligand. PMID:24790089

  13. Snail phenotypic variation and stress proteins: do different heat response strategies contribute to Waddington's widget in field populations?

    PubMed

    Köhler, Heinz-R; Lazzara, Raimondo; Dittbrenner, Nils; Capowiez, Yvan; Mazzia, Christophe; Triebskorn, Rita

    2009-03-15

    On the basis of studies with laboratory strains of Drosophila and Arabidopsis, it has been hypothesized that potential buffers to the expression of phenotypic morphological variation, such as Hsp90 and possibly Hsp70, represent important components of Waddington's widget, which may confer capacitive evolution. As studies on field populations of living organisms to test this hypothesis are lacking, we tested whether a heat response strategy involving high stress protein levels is associated with low morphological variation and vice versa, using four natural populations of Mediterranean pulmonate snails. In response to 8 hr of elevated temperatures, a population of Xeropicta derbentina with uniform shell pigmentation pattern showed remarkably high Hsp70 but low Hsp90 levels. In contrast, a highly variable population of Cernuella virgata kept both Hsp90 and Hsp70 levels low when held at diverse though environmentally relevant temperatures. Two other populations (Theba pisana and another X. derbentina population) with intermediate variation in shell pigmentation pattern were also intermediate in inducing Hsp70, though Hsp90 was maintained at a low level. The observed correlation of stress protein levels and coloration pattern variation provide the first indirect evidence for an association of stress proteins with Waddington's widget under natural conditions.

  14. Drinking a hot blood meal elicits a protective heat shock response in mosquitoes.

    PubMed

    Benoit, Joshua B; Lopez-Martinez, Giancarlo; Patrick, Kevin R; Phillips, Zachary P; Krause, Tyler B; Denlinger, David L

    2011-05-10

    The mosquito's body temperature increases dramatically when it takes a blood meal from a warm-blooded, vertebrate host. By using the yellow fever mosquito, Aedes aegypti, we demonstrate that this boost in temperature following a blood meal prompts the synthesis of heat shock protein 70 (Hsp70). This response, elicited by the temperature of the blood meal, is most robust in the mosquito's midgut. When RNA interference is used to suppress expression of hsp70, protein digestion of the blood meal is impaired, leading to production of fewer eggs. We propose that Hsp70 protects the mosquito midgut from the temperature stress incurred by drinking a hot blood meal. Similar increases in hsp70 were documented immediately after blood feeding in two other mosquitoes (Culex pipiens and Anopheles gambiae) and the bed bug, Cimex lectularius, suggesting that this is a common protective response in blood-feeding arthropods.

  15. Organochlorine pesticide, endosulfan induced cellular and organismal response in Drosophila melanogaster.

    PubMed

    Sharma, Anurag; Mishra, M; Shukla, A K; Kumar, R; Abdin, M Z; Chowdhuri, D Kar

    2012-06-30

    The effect of endosulfan (0.02-2.0μgmL(-1)) to Drosophila melanogaster (Oregon R(+)) at the cellular and organismal levels was examined. Third instar larvae of D. melanogaster and the strains transgenic for hsp70, hsp83 and hsp26 were exposed to endosulfan through food for 12-48h to examine the heat shock proteins (hsps), reactive oxygen species (ROS) generation, anti-oxidant stress markers and xenobiotic metabolism enzymes. We observed a concentration- and time-dependent significant induction of only small hsps (hsp23>hsp22) in the exposed organism in concurrence with a significant induction of ROS generation, oxidative stress and xenobiotic metabolism markers. Sub-organismal response was to be propagated towards organismal response, i.e., delay in the emergence of flies and decreased locomotor behaviour. Organisms with diminished locomotion also exhibited significantly lowered acetylcholinesterase activity. A significant positive correlation observed among ROS generation and different cellular endpoints (small hsps, oxidative stress markers, cytochrome P450 activities) in the exposed organism indicate a modulatory role of ROS in endosulfan-mediated cellular toxicity. The study thus suggests that the adverse effects of endosulfan in exposed Drosophila are manifested both at cellular and organismal levels and recommends Drosophila as an alternative animal model for screening the risk caused by environmental chemicals. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. The Role of Inducible Hsp70, and Other Heat Shock Proteins, in Adaptive Complex of Cold Tolerance of the Fruit Fly (Drosophila melanogaster)

    PubMed Central

    Štětina, Tomáš; Koštál, Vladimír; Korbelová, Jaroslava

    2015-01-01

    Background The ubiquitous occurrence of inducible Heat Shock Proteins (Hsps) up-regulation in response to cold-acclimation and/or to cold shock, including massive increase of Hsp70 mRNA levels, often led to hasty interpretations of its role in the repair of cold injury expressed as protein denaturation or misfolding. So far, direct functional analyses in Drosophila melanogaster and other insects brought either limited or no support for such interpretations. In this paper, we analyze the cold tolerance and the expression levels of 24 different mRNA transcripts of the Hsps complex and related genes in response to cold in two strains of D. melanogaster: the wild-type and the Hsp70- null mutant lacking all six copies of Hsp70 gene. Principal Findings We found that larvae of both strains show similar patterns of Hsps complex gene expression in response to long-term cold-acclimation and during recovery from chronic cold exposures or acute cold shocks. No transcriptional compensation for missing Hsp70 gene was seen in Hsp70- strain. The cold-induced Hsps gene expression is most probably regulated by alternative splice variants C and D of the Heat Shock Factor. The cold tolerance in Hsp70- null mutants was clearly impaired only when the larvae were exposed to severe acute cold shock. No differences in mortality were found between two strains when the larvae were exposed to relatively mild doses of cold, either chronic exposures to 0°C or acute cold shocks at temperatures down to -4°C. Conclusions The up-regulated expression of a complex of inducible Hsps genes, and Hsp70 mRNA in particular, is tightly associated with cold-acclimation and cold exposure in D. melanogaster. Genetic elimination of Hsp70 up-regulation response has no effect on survival of chronic exposures to 0°C or mild acute cold shocks, while it negatively affects survival after severe acute cold shocks at temperaures below -8°C. PMID:26034990

  17. The Role of Inducible Hsp70, and Other Heat Shock Proteins, in Adaptive Complex of Cold Tolerance of the Fruit Fly (Drosophila melanogaster).

    PubMed

    Štětina, Tomáš; Koštál, Vladimír; Korbelová, Jaroslava

    2015-01-01

    The ubiquitous occurrence of inducible Heat Shock Proteins (Hsps) up-regulation in response to cold-acclimation and/or to cold shock, including massive increase of Hsp70 mRNA levels, often led to hasty interpretations of its role in the repair of cold injury expressed as protein denaturation or misfolding. So far, direct functional analyses in Drosophila melanogaster and other insects brought either limited or no support for such interpretations. In this paper, we analyze the cold tolerance and the expression levels of 24 different mRNA transcripts of the Hsps complex and related genes in response to cold in two strains of D. melanogaster: the wild-type and the Hsp70- null mutant lacking all six copies of Hsp70 gene. We found that larvae of both strains show similar patterns of Hsps complex gene expression in response to long-term cold-acclimation and during recovery from chronic cold exposures or acute cold shocks. No transcriptional compensation for missing Hsp70 gene was seen in Hsp70- strain. The cold-induced Hsps gene expression is most probably regulated by alternative splice variants C and D of the Heat Shock Factor. The cold tolerance in Hsp70- null mutants was clearly impaired only when the larvae were exposed to severe acute cold shock. No differences in mortality were found between two strains when the larvae were exposed to relatively mild doses of cold, either chronic exposures to 0°C or acute cold shocks at temperatures down to -4°C. The up-regulated expression of a complex of inducible Hsps genes, and Hsp70 mRNA in particular, is tightly associated with cold-acclimation and cold exposure in D. melanogaster. Genetic elimination of Hsp70 up-regulation response has no effect on survival of chronic exposures to 0°C or mild acute cold shocks, while it negatively affects survival after severe acute cold shocks at temperatures below -8°C.

  18. Heat-shock response in a molluscan cell line: characterization of the response and cloning of an inducible HSP70 cDNA.

    PubMed

    Laursen, J R; di Liu, H; Wu, X J; Yoshino, T P

    1997-11-01

    Sublethal heat-shock of cells of the Bge (Biomphalaria glabrata embryonic) snail cell line resulted in increased or new expression of metabolically labeled polypeptides of approximately 21.5, 41, 70, and 74 kDa molecular mass. Regulation of this response appeared to be at the transcriptional level since a similar protein banding pattern was seen upon SDS-PAGE/fluorographic analysis of polypeptides produced by in vitro translation of total RNA from cells subjected to heat shock. Using a yeast (Saccharomyces cerevisiae) 70-kDa heat-shock protein (HSP70) probe to screen a cDNA library from heat-treated Bge cells, we isolated a full-length cDNA clone encoding a putative Bge HSP70. The cDNA was 2453 bp in length and contained an open reading frame of 1908 bp encoding a 636-amino-acid polypeptide with calculated molecular mass of 70,740 Da. Comparison of a conserved region of 209 amino acid residues revealed > 80% identity between the deduced amino acid sequence of Bge HSP70 and that of yeast (81%), the human blood fluke Schistosoma mansoni (for which B. glabrata serves as intermediate host) (81%), Drosophila (81%), human (84%), and the marine gastropod Aplysia californica (88%, 90%). In addition to the extensive sharing of sequence homology, the identification of several eukaryotic HSP70 signature sequences and an N-linked glycosylation site characteristic of cytoplasmic HSPs strongly support the identity of the Bge cDNA as encoding an authentic HSP70. Results of a Northern blot analysis, using Bge HSP70 clone-specific probes, indicated that gene expression was heat inducible and not constitutively expressed. This is the first reported sequence of an inducible HSP70 from cells originating from a freshwater gastropod and provides a first step in the development of a genetic transformation system for molluscs of medical importance.

  19. Molecular Cloning and mRNA Expression of Heat Shock Protein Genes and Their Response to Cadmium Stress in the Grasshopper Oxya chinensis.

    PubMed

    Zhang, Yuping; Liu, Yaoming; Zhang, Jianzhen; Guo, Yaping; Ma, Enbo

    2015-01-01

    Heat shock proteins (Hsps) are highly conserved molecular chaperones that are synthesized in response to stress. In this study, we cloned the full-length sequences of the Grp78 (glucose-regulated protein 78), Hsp70, Hsp90, and Hsp40 genes from the Chinese rice grasshopper Oxya chinensis. The full-length cDNA sequences of OcGrp78, OcHsp70, OcHsp90, and OcHsp40 contain open reading frames of 1947, 1920, 2172, and 1042 bp that encode proteins of 649, 640, 724, and 347 amino acids, respectively. Fluorescent real-time quantitative PCR (RT-qPCR) was performed to quantify the relative transcript levels of these Hsp genes in different tissues and developmental stages. The mRNAs encoding these four Hsp genes were present at all developmental stages and in all tissues examined but were expressed at varying levels. Additionally, we investigated the mRNA expression profiles of these four Hsps in O. chinensis subjected to Cadmium (Cd) stress. OcGrp78, OcHsp70, OcHsp90, and OcHsp40 mRNA expression was induced under acute Cd stress; the levels reached a maximum within a short time (6 h), were reduced significantly at 12 h, and were lowered to or below control levels by 48 h. Regarding induction efficiency, OcHsp70 was the most sensitive gene to acute Cd stress. Chronic Cd exposure showed that dietary Cd treatment induced increased OcGrp78, OcHsp90, and OcHsp40 expression. However, dietary Cd induced a significant reduction of OcHsp70 expression. In the period tested, no significant difference in the mortality of the grasshoppers was observed. Our results suggest that these four Hsps genes, especially OcHsp70, are sensitive to acute Cd stress and could be used as molecular markers for toxicology studies. However, our results also indicate that OcHsp70 is not suitable for use as a molecular marker of chronic Cd contamination.

  20. A 70-Kilodalton Recombinant Heat Shock Protein of Candida albicans Is Highly Immunogenic and Enhances Systemic Murine Candidiasis

    PubMed Central

    Bromuro, Carla; La Valle, Roberto; Sandini, Silvia; Urbani, Francesca; Ausiello, Clara M.; Morelli, Luisella; Fé d’ostiani, Cristiana; Romani, Luigina; Cassone, Antonio

    1998-01-01

    The 70-kDa recombinant Candida albicans heat shock protein (CaHsp70) and its 21-kDa C-terminal and 28-kDa N-terminal fragments (CaHsp70-Cter and CaHsp70-Nter, respectively) were studied for their immunogenicity, including proinflammatory cytokine induction in vitro and in vivo, and protection in a murine model of hematogenous candidiasis. The whole protein and its two fragments were strong inducers of both antibody (Ab; immunoglobulin G1 [IgG1] and IgG2b were the prevalent isotypes) and cell-mediated immunity (CMI) responses in mice. CaHsp70 preparations were also recognized as CMI targets by peripheral blood mononuclear cells of healthy human subjects. Inoculation of CaHsp70 preparations into immunized mice induced rapid production of interleukin-6 (IL-6) and tumor necrosis factor alpha, peaking at 2 to 5 h and declining within 24 h. CaHsp70 and CaHsp70-Cter also induced gamma interferon (IFN-γ), IL-12, and IL-10 but not IL-4 production by CD4+ lymphocytes cocultured with splenic accessory cells from nonimmunized mice. In particular, the production of IFN-γ was equal if not superior to that induced in the same cells by whole, heat-inactivated fungal cells or the mitogenic lectin concanavalin A. In immunized mice, however, IL-4 but not IL-12 was produced in addition to IFN-γ upon in vitro stimulation of CD4+ cells with CaHsp70 and CaHsp70-Cter. These animals showed a decreased median survival time compared to nonimmunized mice, and their mortality was strictly associated with organ invasion by fungal hyphae. Their enhanced susceptibility was attributable to the immunization state, as it did not occur in congenitally athymic nude mice, which were unable to raise either Ab or CMI responses to CaHsp70 preparations. Together, our data demonstrate the elevated immunogenicity of CaHsp70, with which, however, no protection against but rather some enhancement of Candida infection seemed to occur in the mouse model used. PMID:9573102

  1. Response of heat shock protein genes of the oriental fruit moth under diapause and thermal stress reveals multiple patterns dependent on the nature of stress exposure.

    PubMed

    Zhang, Bo; Peng, Yu; Zheng, Jincheng; Liang, Lina; Hoffmann, Ary A; Ma, Chun-Sen

    2016-07-01

    Heat shock protein gene (Hsp) families are thought to be important in thermal adaptation, but their expression patterns under various thermal stresses have still been poorly characterized outside of model systems. We have therefore characterized Hsp genes and their stress responses in the oriental fruit moth (OFM), Grapholita molesta, a widespread global orchard pest, and compared patterns of expression in this species to that of other insects. Genes from four Hsp families showed variable expression levels among tissues and developmental stages. Members of the Hsp40, 70, and 90 families were highly expressed under short exposures to heat and cold. Expression of Hsp40, 70, and Hsc70 family members increased in OFM undergoing diapause, while Hsp90 was downregulated. We found that there was strong sequence conservation of members of large Hsp families (Hsp40, Hsp60, Hsp70, Hsc70) across taxa, but this was not always matched by conservation of expression patterns. When the large Hsps as well as small Hsps from OFM were compared under acute and ramping heat stress, two groups of sHsps expression patterns were apparent, depending on whether expression increased or decreased immediately after stress exposure. These results highlight potential differences in conservation of function as opposed to sequence in this gene family and also point to Hsp genes potentially useful as bioindicators of diapause and thermal stress in OFM.

  2. Organization and evolution of hsp70 clusters strikingly differ in two species of Stratiomyidae (Diptera) inhabiting thermally contrasting environments.

    PubMed

    Garbuz, David G; Yushenova, Irina A; Zatsepina, Olga G; Przhiboro, Andrey A; Bettencourt, Brian R; Evgen'ev, Michael B

    2011-03-22

    Previously, we described the heat shock response in dipteran species belonging to the family Stratiomyidae that develop in thermally and chemically contrasting habitats including highly aggressive ones. Although all species studied exhibit high constitutive levels of Hsp70 accompanied by exceptionally high thermotolerance, we also detected characteristic interspecies differences in heat shock protein (Hsp) expression and survival after severe heat shock. Here, we analyzed genomic libraries from two Stratiomyidae species from thermally and chemically contrasting habitats and determined the structure and organization of their hsp70 clusters. Although the genomes of both species contain similar numbers of hsp70 genes, the spatial distribution of hsp70 copies differs characteristically. In a population of the eurytopic species Stratiomys singularior, which exists in thermally variable and chemically aggressive (hypersaline) conditions, the hsp70 copies form a tight cluster with approximately equal intergenic distances. In contrast, in a population of the stenotopic Oxycera pardalina that dwells in a stable cold spring, we did not find hsp70 copies in tandem orientation. In this species, the distance between individual hsp70 copies in the genome is very large, if they are linked at all. In O. pardalina we detected the hsp68 gene located next to a hsp70 copy in tandem orientation. Although the hsp70 coding sequences of S. singularior are highly homogenized via conversion, the structure and general arrangement of the hsp70 clusters are highly polymorphic, including gross aberrations, various deletions in intergenic regions, and insertion of incomplete Mariner transposons in close vicinity to the 3'-UTRs. The hsp70 gene families in S. singularior and O. pardalina evolved quite differently from one another. We demonstrated clear evidence of homogenizing gene conversion in the S. singularior hsp70 genes, which form tight clusters in this species. In the case of the other species, O. pardalina, we found no clear trace of concerted evolution for the dispersed hsp70 genes. Furthermore, in the latter species we detected hsp70 pseudogenes, representing a hallmark of the birth-and-death process.

  3. Organization and evolution of hsp70 clusters strikingly differ in two species of Stratiomyidae (Diptera) inhabiting thermally contrasting environments

    PubMed Central

    2011-01-01

    Background Previously, we described the heat shock response in dipteran species belonging to the family Stratiomyidae that develop in thermally and chemically contrasting habitats including highly aggressive ones. Although all species studied exhibit high constitutive levels of Hsp70 accompanied by exceptionally high thermotolerance, we also detected characteristic interspecies differences in heat shock protein (Hsp) expression and survival after severe heat shock. Here, we analyzed genomic libraries from two Stratiomyidae species from thermally and chemically contrasting habitats and determined the structure and organization of their hsp70 clusters. Results Although the genomes of both species contain similar numbers of hsp70 genes, the spatial distribution of hsp70 copies differs characteristically. In a population of the eurytopic species Stratiomys singularior, which exists in thermally variable and chemically aggressive (hypersaline) conditions, the hsp70 copies form a tight cluster with approximately equal intergenic distances. In contrast, in a population of the stenotopic Oxycera pardalina that dwells in a stable cold spring, we did not find hsp70 copies in tandem orientation. In this species, the distance between individual hsp70 copies in the genome is very large, if they are linked at all. In O. pardalina we detected the hsp68 gene located next to a hsp70 copy in tandem orientation. Although the hsp70 coding sequences of S. singularior are highly homogenized via conversion, the structure and general arrangement of the hsp70 clusters are highly polymorphic, including gross aberrations, various deletions in intergenic regions, and insertion of incomplete Mariner transposons in close vicinity to the 3'-UTRs. Conclusions The hsp70 gene families in S. singularior and O. pardalina evolved quite differently from one another. We demonstrated clear evidence of homogenizing gene conversion in the S. singularior hsp70 genes, which form tight clusters in this species. In the case of the other species, O. pardalina, we found no clear trace of concerted evolution for the dispersed hsp70 genes. Furthermore, in the latter species we detected hsp70 pseudogenes, representing a hallmark of the birth-and-death process. PMID:21426536

  4. A novel Hsp70 inhibitor prevents cell intoxication with the actin ADP-ribosylating Clostridium perfringens iota toxin

    PubMed Central

    Ernst, Katharina; Liebscher, Markus; Mathea, Sebastian; Granzhan, Anton; Schmid, Johannes; Popoff, Michel R.; Ihmels, Heiko; Barth, Holger; Schiene-Fischer, Cordelia

    2016-01-01

    Hsp70 family proteins are folding helper proteins involved in a wide variety of cellular pathways. Members of this family interact with key factors in signal transduction, transcription, cell-cycle control, and stress response. Here, we developed the first Hsp70 low molecular weight inhibitor specifically targeting the peptide binding site of human Hsp70. After demonstrating that the inhibitor modulates the Hsp70 function in the cell, we used the inhibitor to show for the first time that the stress-inducible chaperone Hsp70 functions as molecular component for entry of a bacterial protein toxin into mammalian cells. Pharmacological inhibition of Hsp70 protected cells from intoxication with the binary actin ADP-ribosylating iota toxin from Clostridium perfringens, the prototype of a family of enterotoxins from pathogenic Clostridia and inhibited translocation of its enzyme component across cell membranes into the cytosol. This finding offers a starting point for novel therapeutic strategies against certain bacterial toxins. PMID:26839186

  5. Adenoviral transfer of HSP-70 into pulmonary epithelium ameliorates experimental acute respiratory distress syndrome.

    PubMed

    Weiss, Yoram G; Maloyan, Alina; Tazelaar, John; Raj, Nichelle; Deutschman, Clifford S

    2002-09-01

    The acute respiratory distress syndrome (ARDS) provokes three pathologic processes: unchecked inflammation, interstitial/alveolar protein accumulation, and destruction of pulmonary epithelial cells. The highly conserved heat shock protein HSP-70 can limit all three responses but is not appropriately expressed in the lungs after cecal ligation and double puncture (2CLP), a clinically relevant model of ARDS. We hypothesize that restoring expression of HSP-70 using adenovirus-mediated gene therapy will limit pulmonary pathology following 2CLP. We administered a vector containing the porcine HSP-70 cDNA driven by a CMV promoter (AdHSP) into the lungs of rats subjected to 2CLP or sham operation. Administration of AdHSP after either sham operation or 2CLP increased HSP-70 protein expression in lung tissue, as determined by immunohistochemistry and Western blot hybridization. Administration of AdHSP significantly attenuated interstitial and alveolar edema and protein exudation and dramatically decreased neutrophil accumulation, relative to a control adenovirus. CLP-associated mortality at 48 hours was reduced by half. Modulation of HSP-70 production reduces pathologic changes and may improve outcome in experimental ARDS.

  6. Molecular cloning and expression of two heat-shock protein genes (HSC70/HSP70) from Prenant's schizothoracin (Schizothorax prenanti).

    PubMed

    Li, Jiuxuan; Zhang, Haibin; Zhang, Xiuyue; Yang, Shiyong; Yan, Taiming; Song, Zhaobin

    2015-04-01

    Through the RT-PCR and rapid amplification of cDNA ends, two complementary deoxyribonucleic acid (cDNA) clones encoding heat-shock cognate 70 (HSC70, designated Sp-HSC70) and inducible heat-shock protein 70 (HSP70, designated Sp-HSP70) were isolated from the liver of Prenant's schizothoracin (Schizothorax prenanti). The cDNAs were 2344- and 2292-bp in length and contained 1950- and 1932-bp open reading frames, encoded proteins of 649 and 643 amino acids, respectively. Amino acid sequence analysis indicated that both Sp-HSC70 and Sp-HSP70 contained three signature sequences of HSP70 family, two partial overlapping bipartite nuclear localization signal sequences (an ATP-binding site motif, a bipartite nuclear targeting signal), and a cytoplasmic characteristic motif EEVD. Homology analysis revealed that Sp-HSC70 and Sp-HSP70 shared 77.5% identity and Sp-HSC70 shared more than 81.1% identity with the known HSC70s of other vertebrates, while Sp-HSP70 shared more than 77.5 % identity with the known HSP70s of other vertebrates. Fluorescent real-time quantitative RT-PCR showed that Sp-HSC70 and Sp-HSP70 mRNAs were found in all tested tissues, including blood, brain, heart, liver, spleen, head kidney, white muscle, skin, gonad, hypophysis, red muscle, and gill. The Sp-HSC70 and Sp-HSP70 mRNA expression level in blood and head kidney displayed a significant increase in vibrio-challenged group with the bacterium Aeromonas hydrophila at 24 h post-infection compared to a control group. Temporally, there was a clear time-dependent expression pattern of Sp-HSC70 or Sp-HSP70 gene after bacterial challenge, and the expression of Sp-HSC70 and Sp-HSP70 mRNAs reached a maximum level at 12 and 6 h post-challenge, respectively. Both returned to control level after 7 × 24 h. The results suggest that Sp-HSC70 and Sp-HSP70 genes may play important roles in mediating the immune responses of A. hydrophila-related diseases in the Prenant's schizothoracin.

  7. Regulation of HSP70 gene expression during the life cycle of the parasitic helminth Schistosoma mansoni.

    PubMed

    Neumann, S; Ziv, E; Lantner, F; Schechter, I

    1993-03-01

    Analyses of RNA from different developmental stages of Schistosoma mansoni showed stage-specific expression of heat-shock protein 70 (hsp70), which is regulated by a developmental program and by stress. The developmental program, common to hsp70 and other genes (e.g. paramyosin), refers to constitutive expression in miracidia sporocyst and adult worm but not in cercariae, and to the termination of hsp70 gene transcription during sporocyst/cercaria transformation. Stress induction, specific to hsp70, refers to transient accumulation of high levels of hsp70 mRNA during cercariae/schistosomula transformation and in adult worms after heat shock (42 degrees C). Cercariae/schistosomula transformation can be visualized as a physiological stress involving shifts in temperature (23-37 degrees C) and in salt concentration (from water to isotonic medium), as well as removal of tails from cercariae to yield isolated bodies that transform into schistosomula. It was found that temperature is an important factor, but not sufficient for strong induction of the hsp70 genes of schistosomula. Tail removal is an obligatory step for full induction of the hsp70 genes of schistosomula, in response to a temperature shift from 23-37 degrees C. The hsp70 genes in cercariae and isolated tails do not respond to stimuli (salt and temperature increases) that strongly activate the genes in isolated bodies (i.e., schistosomula). We speculate that the hsp70 genes in intact cercariae are not inducible because the tails can produce inhibitory signals that diffuse to the bodies and suppress their hsp70 genes. This hypothesis is useful to explain the termination of hsp70 gene transcription during sporocyst/cercaria transformation by the inhibitory effect of the growing tail.

  8. Evaluation of molecular chaperons Hsp72 and neuropeptide Y as characteristic markers of adaptogenic activity of plant extracts.

    PubMed

    Asea, Alexzander; Kaur, Punit; Panossian, Alexander; Wikman, Karl Georg

    2013-11-15

    We have previously demonstrated that ADAPT-232, a fixed combination of adaptogenic substances derived from Eleutherococcus senticosus root extract, Schisandra chinensis berry extract, Rhodiola rosea root extract stimulated the expression and release of neuropeptide Y (NPY) and molecular chaperone Hsp72 from isolated human neurolgia cells. Both of these mediators of stress response are known to play an important role in regulation of neuroendocrine system and immune response. We further demonstrated that ADAPT-232 induced release of Hsp70 is mediated by NPY, suggesting an existence of NPY-mediated pathway of activation of Hsp72 release into the blood circulation system. The objective of this study was to determine whether this pathway is common for adaptogens and whether NPY and/or Hsp72 can be considered as necessary specific biomarkers for adaptogenic activity. The release of NPY and Hsp72 from neuroglia cells in response to treatment with various plant extracts (n=23) including selected validated adaptogens, partly validated adaptogens, claimed but negligibly validated adaptogens and some other plant extracts affecting neuroendocrine and immune systems but never considered as adaptogens was measured using high throughput ELISA techniques. We demonstrated that adaptogens, e.g. R. rosea, S. chinensis and E. senticosus stimulate both NPY and Hsp70 release from neuroblastoma cells, while tonics and stimulants have no significant effect on NPY in this in vitro test. In the groups of partly validated adaptogens the effect of Panax ginseng and Withania somnifera was not statistically significant both on NPY and Hsp70 release, while the activating effect of Bryonia alba and Rhaponticum cartamoides was significant only on Hsp70. In contrast, all tested non-adaptogens, such as antiinflammatoty plant extracts Matricaria recutita, Pelargonium sidoides, Hedera helix and Vitis vinifera significantly inhibit Hsp70 release and have no influence on NPY release from neuroblastoma cells. These experiments were further validated using primary human neurons and confirmed that adaptogens activate the release of both NPY and Hsp70, while tested non adaptogens were inactive in NPY assay and inhibit the release of Hsp70. Taken together, our data demonstrates for the first time that neuropeptide Y and heat shock protein Hsp70 can be used as molecular biomarkers for adaptogenic activity. Copyright © 2013 Elsevier GmbH. All rights reserved.

  9. Effect of vibrational stress and spaceflight on regulation of heat shock proteins hsp70 and hsp27 in human lymphocytes (Jurkat)

    NASA Technical Reports Server (NTRS)

    Cubano, L. A.; Lewis, M. L.

    2001-01-01

    Heat shock protein levels are increased in cells as a result of exposure to stress. To determine whether heat shock protein regulation could be used to evaluate stress in cells during spaceflight, the response of Jurkat cells to spaceflight and simulated space shuttle launch vibration was investigated by evaluating hsp70 and hsp27 gene expression. Gene expression was assessed by reverse transcription-polymerase chain reaction using mRNA extracted from vibrated, nonvibrated, space-flown, and ground control cells. Results indicate that mechanical stresses of vibration and low gravity do not up-regulate the mRNA for hsp70, although the gene encoding hsp27 is up-regulated by spaceflight but not by vibration. In ground controls, the mRNA for hsp70 and hsp27 increased with time in culture. We conclude that hsp70 gene expression is a useful indicator of stress related to culture density but is not an indicator of the stresses of launch vibration or microgravity. Up-regulation of hsp27 gene expression in microgravity is a new finding.

  10. Effect of vibrational stress and spaceflight on regulation of heat shock proteins hsp70 and hsp27 in human lymphocytes (Jurkat).

    PubMed

    Cubano, L A; Lewis, M L

    2001-05-01

    Heat shock protein levels are increased in cells as a result of exposure to stress. To determine whether heat shock protein regulation could be used to evaluate stress in cells during spaceflight, the response of Jurkat cells to spaceflight and simulated space shuttle launch vibration was investigated by evaluating hsp70 and hsp27 gene expression. Gene expression was assessed by reverse transcription-polymerase chain reaction using mRNA extracted from vibrated, nonvibrated, space-flown, and ground control cells. Results indicate that mechanical stresses of vibration and low gravity do not up-regulate the mRNA for hsp70, although the gene encoding hsp27 is up-regulated by spaceflight but not by vibration. In ground controls, the mRNA for hsp70 and hsp27 increased with time in culture. We conclude that hsp70 gene expression is a useful indicator of stress related to culture density but is not an indicator of the stresses of launch vibration or microgravity. Up-regulation of hsp27 gene expression in microgravity is a new finding.

  11. Pulse duration determines levels of Hsp70 induction in tissues following laser irradiation

    NASA Astrophysics Data System (ADS)

    Mackanos, Mark A.; Contag, Christopher H.

    2011-07-01

    Induction of heat shock protein (Hsp) expression correlates with cytoprotection, reduced tissue damage, and accelerated healing in animal models. Since Hsps are transcriptionally activated in response to stress, they can act as stress indicators in burn injury or surgical procedures that produce heat and thermal change. A fast in vivo readout for induction of Hsp transcription in tissues would allow for the study of these proteins as therapeutic effect mediators and reporters of thermal stress/damage. We used a transgenic reporter mouse in which a luciferase expression is controlled by the regulatory region of the inducible 70 kilodalton (kDa) Hsp as a rapid readout of cellular responses to laser-mediated thermal stress/injury in mouse skin. We assessed the pulse duration dependence of the Hsp70 expression after irradiation with a CO2 laser at 10.6 μm in wavelength over a range of 1000 to 1 ms. Hsp70 induction varied with changes in laser pulse durations and radiant exposures, which defined the ranges at which thermal activation of Hsp70 can be used to protect cells from subsequent stress, and reveals the window of thermal stress that tissues can endure.

  12. Exogenous heat shock protein HSP70 reduces response of human neuroblastoma cells to lipopolysaccharide.

    PubMed

    Yurinskaya, M M; Funikov, S Y; Evgen'ev, M B; Vinokurov, M G

    2016-07-01

    The effect of exogenous heat shock protein HSP70 and lipopolysaccharide (LPS) on the production of reactive oxygen species (ROS), TNFα secretion, and mRNA expression by human neuroblastoma SK-N-SH cells. It was shown that exogenous HSP70 protects neuroblastoma cells from the action of LPS. The protection mechanism of HSP70 includes a reduction in the production of ROS and TNFα and a decrease in the expression of TLR4 and IL-1β mRNA in SK-N-SH cells induced by LPS.

  13. Induction of hsp70 by the herbicide oxyfluorfen (Goal) in the Egyptian Nile fish, Oreochromis niloticus.

    PubMed

    Hassanein, H M; Banhawy, M A; Soliman, F M; Abdel-Rehim, S A; Müller, W E; Schröder, H C

    1999-07-01

    This paper deals with the expression of the biomarker hsp70 in the liver and kidney of the freshwater fish Oreochromis niloticus following exposure to the herbicide oxyfluorfen (Goal). Fishes were exposed to three concentrations, the 96-h LC50 (3 mg/L), the 96-h (1/2)LC50 (1.5 mg/L), and the 96-h (1/4)LC50 (0.75 mg/L) of oxyfluorfen for 6, 15, and 24 days, respectively, and samples were taken at three different time periods for each concentration. The livers responded to the herbicide by an induction of the expression of both the constitutive (hsp75; Mr 75 kDa) and the inducible (hsp73; Mr 73 kDa) hsp70 proteins. In kidney, the herbicide induced a time-dependent increase in the expression of the constitutive hsp70 (hsp75) as well, but the inducible hsp70 (hsp73) required much longer incubation periods to reach maximal levels (15 and 24 days). Our results suggest that expression of hsp70 in fish is a sensitive indicator of cellular responses to herbicide exposure in the aquatic environment.

  14. The Effect of Diazoxide Upon Heat Shock Protein and Physiological Response to Hemorrhagic Shock and Cerebral Stroke

    DTIC Science & Technology

    2006-06-16

    ischemic kidney model [121]. Photothrombic brain injury elicits the expression of HSP70 and HSP27 . HSP70 expression as early as one hour post-trauma...delineated the area of necrosis at 24 hours post-thrombic injury in ipsilateral cortex. HSP27 expression also was found to be upregulated and in fact...more globally expressed in the entire ipsilateral cerebral cortex, primarily in astrocytes [122]. 25 HSP25 and HSP27 Research demonstrates

  15. Sickle Cell Vaso-occlusive Crisis Induces the Release of Circulating Serum Heat Shock Protein-70

    PubMed Central

    Adewoye, Adeboye H.; Klings, Elizabeth S.; Farber, Harrison W.; Palaima, Elizabeth; Bausero, Maria A.; McMahon, Lillian; Odhiambo, Adam; Surinder, Safaya; Yoder, Mark; Steinberg, Martin H.; Asea, Alexzander

    2006-01-01

    Inflammation may play an important role in the pathophysiology of sickle cell disease (SCD), and recent studies have identified the 70-kDa heat shock protein (Hsp70) as an important mediator of inflammatory responses. Here we demonstrate a significant increase in circulating serum Hsp70 level in SCD during vaso-occlusive crisis (VOC) as compared with baseline steady-state levels (P < 0.05) and a significant increase in Hsp70 levels in SCD at baseline compared with normal controls (P < 0.05). Taken together, these results indicate that circulating serum Hsp70 might be a marker for VOC in SCD. PMID:15726596

  16. Sickle cell vaso-occlusive crisis induces the release of circulating serum heat shock protein-70.

    PubMed

    Adewoye, Adeboye H; Klings, Elizabeth S; Farber, Harrison W; Palaima, Elizabeth; Bausero, Maria A; McMahon, Lillian; Odhiambo, Adam; Surinder, Safaya; Yoder, Mark; Steinberg, Martin H; Asea, Alexzander

    2005-03-01

    Inflammation may play an important role in the pathophysiology of sickle cell disease (SCD), and recent studies have identified the 70-kDa heat shock protein (Hsp70) as an important mediator of inflammatory responses. Here we demonstrate a significant increase in circulating serum Hsp70 level in SCD during vaso-occlusive crisis (VOC) as compared with baseline steady-state levels (P <0.05) and a significant increase in Hsp70 levels in SCD at baseline compared with normal controls (P <0.05). Taken together, these results indicate that circulating serum Hsp70 might be a marker for VOC in SCD.

  17. Regulation of the heat shock response under anoxia in the turtle, Trachemys scripta elegans.

    PubMed

    Krivoruchko, Anastasia; Storey, Kenneth B

    2010-03-01

    The effects of 20 h of anoxic submergence in cold water and 5 h of aerobic recovery on the heat shock response were analyzed in four organs of the anoxia-tolerant turtle Trachemys scripta elegans. Immunoblotting was used to analyze levels of active and inactive forms of the heat shock transcription factor 1 (HSF1), nuclear translocation of HSF1, and the levels of six heat shock proteins (HSPs). PCR was also used to retrieve the turtle HSF1 nucleotide sequence; its deduced amino acid sequence showed 97% identity with chicken HSF1. White skeletal muscle showed a strong fivefold increase in the amount of active HSF1 under anoxic conditions as well as an 80% increase in nuclear localization. This was accompanied by upregulation of five HSPs by 1.8- to 2.9-fold: Hsp25, Hsp40, Hsp70, Hsc70, and Hsp90, the latter two remained elevated after 5 h of aerobic recovery. Kidney and liver showed little change in active HSF1 content during anoxia and recovery, but a significant increase in the nuclear localization of HSF1 during anoxia. This supported enhanced expression of three HSPs in kidney (Hsp40, Hsc70, and Hsp90) and four in liver (Hsp40, Hsp60, Hsp70, Hsc70). Heart displayed a strong increase in active HSF1 during anoxia and recovery (6.6- to 6.8-fold higher than control) and increased nuclear localization but heart HSP levels did not rise. The data demonstrate organ-specific regulation of HSPs during anoxia exposure and aerobic recovery in T. s. elegans and suggest that the heat shock response is an important aspect of cytoprotection during facultative anaerobiosis, particularly with regard to underwater hibernation of turtles in cold water.

  18. Molecular cloning and functional analysis of the drought tolerance gene MsHSP70 from alfalfa (Medicago sativa L.).

    PubMed

    Li, Zhenyi; Long, Ruicai; Zhang, Tiejun; Wang, Zhen; Zhang, Fan; Yang, Qingchuan; Kang, Junmei; Sun, Yan

    2017-03-01

    Heat shock proteins (HSPs) are a ubiquitously expressed class of protective proteins that play a key role in plant response to stressful conditions. This study aimed to characterize and investigate the function of an HSP gene in alfalfa (Medicago sativa). MsHSP70, which contains a 2028-bp open reading frame, was identified through homology cloning. MsHSP70 shares high sequence identity (94.47%) with HSP70 from Medicago truncatula. Expression analysis of MsHSP70 in alfalfa organs revealed a relatively higher expression level in aerial organs such as flowers, stems and leaves than in roots. MsHSP70 was induced by heat shock, abscisic acid (ABA) and hydrogen peroxide. Transgenic Arabidopsis seedlings overexpressing MsHSP70 were hyposensitive to polyethylene glycol (PEG) and ABA treatments, suggesting that exogenous expression of MsHSP70 enhanced Arabidopsis tolerance to these stresses. Examination of physiological indexes related to drought and ABA stress demonstrated that in comparison with non-transgenic plants, T3 transgenic Arabidopsis plants had an increased proline content, higher superoxide dismutase (SOD) activity, and decreased malondialdehyde (MDA) content. Furthermore, higher relative water content (RWC) was detected in transgenic plants compared with non-transgenic plants under drought stress. These findings clearly indicate that molecular manipulation of MsHSP70 in plants can have substantial effects on stress tolerance.

  19. The expression of DAMP proteins HSP70 and cancer-testis antigen SPAG9 in peripheral blood of patients with HCC and lung cancer.

    PubMed

    Ren, Biqiong; Luo, Shudi; Xu, Fei; Zou, Guoying; Xu, Guofeng; He, Junyu; Huang, Yiran; Zhu, Haowen; Li, Yong

    2017-03-01

    There are different views of how the immune system participates in the reaction to cancer. Here, we evaluated expression of DAMP proteins HSP70 and cancer-testis antigen SPAG9 in patients with hepatocellular carcinoma (HCC) and lung cancer to explore tumor immunity. Our analysis showed that levels of HSP70 and SPAG9 antibody were significantly higher in the serum of lung cancer and HCC patients than in the serum of healthy subjects (P < 0.001), but there were no differences in levels of HSP70 antibody in patients and controls. Levels of serum SPAG9 antibody in newly diagnosed lung cancer patients were significantly higher than in treated lung cancer patients (P < 0.05), but there were no differences in levels of HSP70 or HSP70 antibody. Levels of serum HSP70 and SPAG9 antibody, but not HSP70 antibody, were also higher in hepatitis/cirrhosis patients than in healthy subjects (P = 0.005, P < 0.001). Levels of serum SPAG9 antibody were significantly higher in HCC patients than in hepatitis/cirrhosis patients, but there were no differences in HSP70 or HSP70 antibody levels. Finally, levels of serum HSP70 and SPAG9 antibody were significantly higher in HCC patients than in lung cancer patients (P < 0.05, P < 0.001). These results indicate that cancer-testis antigen SPAG9 induces a strong humoral immune response in cancer patients but HSP70 does not. These results show that SPAG9 has potential as a tumor-specific biomarker.

  20. Heat shock proteins (Hsp 70) response is not systematic to cell stress: case of the mycotoxin ochratoxin A.

    PubMed

    Hassen, Wafa; Ayed-Boussema, Imen; Bouslimi, Amel; Bacha, Hassen

    2007-12-05

    Ochratoxin A (OTA) is a mycotoxin routinely detected in improperly stored animal and human food supplies as well as in human sera worldwide. OTA has multiple toxic effects; however, the most prominent is nephrotoxicity. Thus, OTA is involved in the pathogenesis of human nephropathy in Balkan areas. In this study, we address the question of the appropriate functioning of the basal cellular defense mechanisms, after exposure to OTA, which, up to now, has not been investigated satisfactorily. In this context, we have monitored the effect of OTA on (i) the inhibition of cell viability, (ii) the oxidative damage using the GSH depletion, (iii) the inhibition of protein synthesis through the incorporation of [(3)H] Leucine and (iv) the induction of Hsp 70 gene expression as a parameter of cytotoxicity, oxidative damage and particularly as a protective and adaptative response. This study was conducted using the Human Hep G2 hepatocytes and monkey kidney Vero cells under exposure conditions ranging from non-cytotoxic to sub-lethal. Our results clearly showed that OTA inhibits cell proliferation, strongly reduces protein synthesis and induces the decrease of GSH in concentration-dependent manner in both Hep G2 and Vero cells. However, although cytotoxicity and oxidative damage (main inducers of Hsp expression) occur, no change was observed in Hsp 70 level under the multiple tested conditions. Inhibition of protein synthesis could not explain the absence of Hsp 70 response since concentrations, which did not influence protein synthesis, also failed to display the expected Hsp 70 response. Our data are consistent with recently published reports where considerable differences were noticed in the ability of relevant toxicants to induce Hsp. These results raised doubt about the universal character of Hsp induction which seems to be more complex than originally envisioned. It could be concluded that Hsp 70 induction is not systematic to cell stress.

  1. Detection of 70 kDa heat shock protein in the saliva of dairy cows.

    PubMed

    Lamy, Elsa; Jurkovich, Viktor; Rodrigues, Lénia; Geraldo, Ana; Cachucho, Liliana; Silva, Flávio; Matos, Catarina; Capela E Silva, Fernando; Pinheiro, Cristina; Könyves, László; Bakony, Mikolt; Pereira, Alfredo

    2017-08-01

    This Research Communication describes, for the first time, the detection of HSP70 in saliva of dairy cows. Thermal stress is a major environmental stress that limits animal growth, metabolism, and productivity. The cellular response to heat stress involves the synthesis of heat shock proteins (HSPs), presumably to protect the functional stability of cells at increasing temperatures. HSP70 has been found to be present in cattle blood serum and may also be present in other secretory fluids, such as saliva, as already observed in humans. The aim of this study was to detect heat shock protein HSP70 in bovine saliva. Saliva samples were taken from higher- (n = 5) and lower milk producing (n = 5) Holstein-Friesian cows in summer and in winter for the detection of HSP70. HSP70 concentrations were assayed using the ELISA technique. Salivary HSP70 concentrations ranged from 0·524 to 12·174 ng/ml in cows. Higher salivary HSP70 concentrations were significantly associated with higher milk production and higher environmental temperature, but not with rectal temperature.

  2. Heat shock protein defenses in the neo- and allocortex of the telencephalon

    PubMed Central

    Posimo, Jessica M.; Weilnau, Justin N.; Gleixner, Amanda M.; Broeren, Matthew T.; Weiland, Nicole L.; Brodsky, Jeffrey L.; Wipf, Peter; Leak, Rehana K.

    2015-01-01

    The telencephalic allocortex develops protein inclusions before the neocortex in many age-related proteinopathies. One major defense mechanism against proteinopathic stress is the heat shock protein (Hsp) network. We therefore contrasted Hsp defenses in stressed primary neo- and allocortical cells. Neocortical neurons were more resistant to the proteasome inhibitor MG132 than neurons from three allocortical subregions: entorhinal cortex, piriform cortex, and hippocampus. However, allocortical neurons exhibited higher MG132-induced increases in Hsp70 and Hsc70. MG132-treated allocortical neurons also exhibited greater levels of protein ubiquitination. Inhibition of Hsp70/Hsc70 activity synergistically exacerbated MG132 toxicity in allocortical neurons more than neocortical neurons, suggesting that the allocortex is more reliant on these Hsp defenses. In contrast, astrocytes harvested from neo- or allocortex did not differ in their response to Hsp70/Hsc70 inhibition. Consistent with the idea that chaperones are maximally engaged in allocortical neurons, an increase in Hsp70/Hsc70 activity was protective only in neocortical neurons. Finally, the levels of select Hsps were altered in neocortex and allocortex in vivo with aging. PMID:25771395

  3. Western blot immunoassay for HSP-70 antibodies in idiopathic tinnitus: a preliminary report.

    PubMed

    Savastano, Marina; Celadin, Marilena; Pittoni, Marina; Plebani, Mario; Marioni, Gino

    2006-03-01

    Our preliminary study investigated the role of nonspecific immunologic tests and immunoassay for heat shock protein 70 (HSP-70) in supporting the possibility of an autoimmune inner ear process determining idiopathic tinnitus. Thirty-six consecutive patients with idiopathic tinnitus without other otologic or autoimmune diseases and 20 healthy blood donor subjects underwent determinations of circulating immune complexes (CICs) and other nonspecific immunologic factors and immunoassay for HSP-70. The mean CIC values were 4.2 microg/mL in the tinnitus patients and 0.9 microg/mL in the control group (p = .012). Thirteen of the 36 tinnitus patients and none of the control group were HSP-70-positive. Ten of the 13 HSP-70-positive patients had CIC values higher than normal. In the tinnitus group, the mean CIC values were 6.9 microg/mL and 2.6 microg/mL in the HSP-70-positive and -negative subgroups, respectively (p = .024). It may be hypothesized that in a significant number of cases, idiopathic tinnitus could be induced by immune response to inner ear-specific HSP-70.

  4. Differential expression of hsp70 stress proteins in human endothelial cells exposed to heat shock and hydrogen peroxide.

    PubMed

    Jornot, L; Mirault, M E; Junod, A F

    1991-09-01

    The potential role of oxidative stress conditions in the induction of heat shock proteins was studied in human umbilical vein endothelial cells. We compared the effects of temperature (43 to 45 degrees C), exposure to hydrogen peroxide (H2O2) and oxygen metabolites generated by the enzyme system hypoxanthine-xanthine oxidase (O2- plus H2O2), as well as exposure to 95% O2, on the expression of the major 70-kD heat shock proteins (hsp70). Northern blot analysis indicated that: (1) heat shock induced a rapid and marked increase in hsp70 mRNA levels that reached a maximum during recovery from a 30-min exposure to 45 degrees C; (2) treatment with a 5-mM H2O2 bolus or 50 mU/ml xanthine oxidase also increased hsp70 mRNA levels but to a lesser extent than heat shock (about 10 and 25 times less, respectively); (3) no change was detected after a 5-day exposure to 95% O2. Nuclear run on transcription data and kinetics of mRNA decay in the presence of actinomycin D indicated that the observed increase in hsp70 mRNA levels in both heat-shocked and H2O2-treated cells was mainly due to a transcriptional induction. The kinetics of hsp70 synthesis correlated with the accumulation of hsp70 mRNA. Two-dimensional gel electrophoresis and immunologic analysis of these heat shock proteins revealed a series of at least five distinct hsp70 isoforms induced in heat-shocked cells, whereas only a specific subset of these proteins, mainly one acidic isoform, was induced in very low amounts in response to H2O2 treatment. These results clearly indicate that the endothelial cell responses to oxidative stress and heat shock differ in both qualitative and quantitative terms in respect to hsp70 induction. They also suggest that the intensity of this response to oxidative stress conditions may vary depending on the nature of the oxidative challenge.

  5. An inducible HSP70 gene from the midge Chironomus dilutus: Characterization and transcription profile under environmental stress

    USGS Publications Warehouse

    Karouna-Renier, N. K.; Rao, K.R.

    2009-01-01

    In the present study, we identified and characterized an inducible heat shock protein 70 (HSP70) from the midge Chironomus dilutus and investigated the transcriptional profile of the gene under baseline and environmentally stressful conditions. Using real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), we observed increased expression of CD-HSP70-1 in response to both heat shock and copper stress. We also investigated the expression of this gene during midge development. All C. dilutus developmental stages expressed CD-HSP70-1 under normal conditions, although at extremely low levels. Phylogenetic analysis of the amino acid sequence demonstrated distinct clustering of this gene with inducible HSP70s from other insect species. ?? 2008 The Authors.

  6. Significance of serum antibodies against HSP 60 and HSP 70 for the diagnostic of infectious diseases.

    PubMed

    Bleotu, Coralia; Chifiriuc, Mariana Carmen; Pircalabioru, Gratiela; Berteşteanu, Şerban Vifor Gabriel; Grigore, Raluca; Ruta, Simona Maria; Lazar, Veronica

    2014-01-01

    Heat shock proteins (HSP) represent important antigenic targets for the immune response, playing an important role in the pathology and infectious diseases control. The purpose of this work was to investigate the levels of HSP60 and HSP70 specific antibodies in the bloodstream of patients with different bacterial infections and cancer, in order to evaluate their potential role as diagnosis markers of different infectious diseases. Detection of specific anti-HSP 60 and HSP 70 serum levels was performed by ELISA. Statistical analysis of data by multivariate logistic regression was performed using GraphPadPrism software and statistical tests based on chi-square and Student t-test. High levels of anti-HSP60 were found in patients with localized infections, while the levels of anti- HSP70 were higher in the group with generalized infections. The serum levels of both anti-HSP 60 and anti-HSP70 were significantly increased in patients with Gram-negative bacterial infections, as compared with patients harbouring infections produced by Gram-positive and fungal strains, demonstrating their potential use as additional diagnosis and prognosis markers in infections with this etiology.

  7. Expression of inducible heat shock proteins Hsp27 and Hsp70 in the visual pathway of rats subjected to various models of retinal ganglion cell injury.

    PubMed

    Chidlow, Glyn; Wood, John P M; Casson, Robert J

    2014-01-01

    Inducible heat shock proteins (Hsps) are upregulated in the central nervous system in response to a wide variety of injuries. Surprisingly, however, no coherent picture has emerged regarding the magnitude, duration and cellular distribution of inducible Hsps in the visual system following injury to retinal ganglion cells (RGCs). The current study sought, therefore, to achieve the following two objectives. The first aim of this study was to systematically characterise the patterns of Hsp27 and -70 expression in the retina and optic nerve in four discrete models of retinal ganglion cell (RGC) degeneration: axonal injury (ON crush), somato-dendritic injury (NMDA-induced excitotoxicity), chronic hypoperfusion (bilateral occlusion of the carotid arteris) and experimental glaucoma. The second aim was to document Hsp27 and -70 expression in the optic tract, the subcortical retinorecipient areas of the brain, and the visual cortex during Wallerian degeneration of RGC axons. Hsp27 was robustly upregulated in the retina in each injury paradigm, with the chronic models, 2VO and experimental glaucoma, displaying a more persistent Hsp27 transcriptional response than the acute models. Hsp27 expression was always associated with astrocytes and with a subset of RGCs in each of the models excluding NMDA. Hsp27 was present within astrocytes of the optic nerve/optic tract in control rats. During Wallerian degeneration, Hsp27 was upregulated in the optic nerve/optic tract and expressed de novo by astrocytes in the lateral geniculate nucleus and the stratum opticum of the superior colliculus. Conversely, the results of our study indicate Hsp70 was minimally induced in any of the models of injury, either in the retina, or in the optic nerve/optic tract, or in the subcortical, retinorecipient areas of the brain. The findings of the present study augment our understanding of the involvement of Hsp27 and Hsp70 in the response of the visual system to RGC degeneration.

  8. Effect of handling, confinement and crowding in HSP70 production in Pachygrapsus marmoratus, a model species for climate change experiments

    NASA Astrophysics Data System (ADS)

    Vinagre, Catarina; Madeira, Diana; Narciso, Luís; Cabral, Henrique N.; Diniz, Mário S.

    2012-08-01

    The aim of this study was to investigate the effect of handling, confinement and crowding on HSP70 production in an intertidal crab. HSP70 has been widely used as a biochemical indicator of thermal stress; however studies on the effect of experimental conditions and handling on HSP70 expression are very scarce. The response of marbled crab, Pachygrapsus marmoratus, collected in the Portuguese coast, was investigated through an experiment in captivity, where 42 juveniles (10-19 mm of carapace width) were confined in an experimental container (60 × 42 × 10 cm) and exposed to three treatments: 1) increasing temperatures and periodic handling, 2) only to periodic handling and 3) no handling, for 12 h. The objective of this work was to investigate whether the HSP70 production measured in an increasing temperature experiment is a response to temperature alone or whether manipulation, confinement and crowding during the experiment also increase HSP70 production. Three individuals were sampled after t = 0, t = 4, t = 6, t = 8, t = 10 and t = 12 h, for the quantification of HSP70 production in the hemolymph, in the three trials. It was concluded that while temperature has a significant effect on HSP70 production, periodic handling does not, nor does confinement to the experimental container or crowding. It can thus be concluded that experimental conditions and handling are not parasitic variables in experiments with this species considering increasing temperatures. P. marmoratus can thus be used as a model species in climate warming experiments involving handling, confinement and crowding.

  9. Co-expression of heat shock protein (HSP) 40 and HSP70 in Pinctada martensii response to thermal, low salinity and bacterial challenges.

    PubMed

    Li, Jun; Zhang, Yuehuan; Liu, Ying; Zhang, Yang; Xiao, Shu; Yu, Ziniu

    2016-01-01

    Heat shock protein (HSP) 40 proteins are a family of molecular chaperones that bind to HSP70 through their J-domain and regulate the function of HSP70 by stimulating its adenosine triphosphatase activity. In the present study, a HSP40 homolog named PmHSP40 was cloned from the hemocytes of pearl oyster Pinctada martensii using EST and rapid amplification of cDNA ends (RACE) techniques. The full-length cDNA of PmHSP40 was 1251 bp in length, which included a 5' untranslated region (UTR) of 75 bp, an open reading frame (ORF) of a 663 bp, and a 3' UTR of 513 bp. The deduced amino acid sequence of PmHSP40 contains a J domain in the N-terminus. In response to thermal and low salinity stress challenges, the expression of PmHSP40 in hemocytes and the gill were inducible in a time-dependent manner. After bacterial challenge, PmHSP40 transcripts in hemocytes increased and peaked at 6 h post injection. In the gill, PmHSP40 expression increased, similar to expression in hemocytes; however, transcript expression of PmHSP40 was significantly up-regulated at 12 h post injection. Furthermore, the transcripts of PmHSP70 showed similar kinetics as that of PmHSP40, with highest induction during thermal, low salinity stress and bacterial challenges. Altogether these results demonstrate that PmHSP40 is an inducible protein under thermal, low salinity and bacterial challenges, suggesting its involvement in both environmental and biological stresses, and in the innate immunity of the pearl oyster. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Kinetics of plasma heat shock protein HSP-70 release in coronary artery surgery: on-pump versus off-pump.

    PubMed

    Pizon, M T; Gburek, T; Pizon, M; Sztefko, K

    2006-12-01

    Heat shock protein HSP-70 is known as protective chaperone molecule synthetized in response following ischemia and stress agents. It is detected in the myocardium and endothelium as well as in the circulation. Damaged as well as viable but exposed to stress cells contribute to the release of HSP-70 into the circulation. The aim of the study was to investigate if cardiopulmonary bypss (CPB) leads to more circulating HSP-70, on the basis of comparison dynamics of plasma concentration HSP-70 in 8 men undergoing procedures with the use of CPB (coronary artery bypass grafting, CABG group) and 8 men undergoing off-pump surgery (OPCAB group). Blood samples were taken preoperatively, twice intraoperatively, immediately after surgical procedure (1 h) and 24-hours thereafter. The concentration of plasma HSP-70 was measured by means of immunoassay. The derived results were compared statistically with the frequency of incidence postoperative atrial fibrillation (AF). In CABG group was observed continuous gradual increase of plasma HSP-70 concentration during the operation with the peak 1 h after surgery (P<0.01), in striking contrast to OPCAB group, in which was detected small, but non statistically significant increase of HSP-70 1 h after operation. Significantly more of circulating HSP-70 it was detected in CABG group during the operation and 1 h after surgery (CABG vs OPCAB, respectively P<0.015 and P<0.028). In both groups among patients witch AF it was found higher postoperative values of circulating HSP-70 compared with the non-AF group (P=0.0415). The use of CPB leads to significant more release of HSP-70 into the circulation. According to our findings high plasma concentration of HSP-70 may be the measure of operative cellular stress, ischemia or injury and may be related with greater onset of postoperative AF. High circulating HSP-70 levels is connected with higher incidence of postoperative AF after open heart surgery.

  11. Convergent evolution of heat-inducibility during subfunctionalization of the Hsp70 gene family

    PubMed Central

    2013-01-01

    Background Heat-shock proteins of the 70 kDa family (Hsp70s) are essential chaperones required for key cellular functions. In eukaryotes, four subfamilies can be distinguished according to their function and localisation in different cellular compartments: cytosol, endoplasmic reticulum, mitochondria and chloroplasts. Generally, multiple cytosol-type Hsp70s can be found in metazoans that show either constitutive expression and/or stress-inducibility, arguing for the evolution of different tasks and functions. Information about the hsp70 copy number and diversity in microbial eukaryotes is, however, scarce, and detailed knowledge about the differential gene expression in most protists is lacking. Therefore, we have characterised the Hsp70 gene family of Paramecium caudatum to gain insight into the evolution and differential heat stress response of the distinct family members in protists and to investigate the diversification of eukaryotic hsp70s focusing on the evolution of heat-inducibility. Results Eleven putative hsp70 genes could be detected in P. caudatum comprising homologs of three major Hsp70-subfamilies. Phylogenetic analyses revealed five evolutionarily distinct Hsp70-groups, each with a closer relationship to orthologous sequences of Paramecium tetraurelia than to another P. caudatum Hsp70-group. These highly diverse, paralogous groups resulted from duplications preceding Paramecium speciation, underwent divergent evolution and were subject to purifying selection. Heat-shock treatments were performed to test for differential expression patterns among the five Hsp70-groups as well as for a functional conservation within Paramecium. These treatments induced exceptionally high mRNA up-regulations in one cytosolic group with a low basal expression, indicative for the major heat inducible hsp70s. All other groups showed comparatively high basal expression levels and moderate heat-inducibility, signifying constitutively expressed genes. Comparative EST analyses for P. tetraurelia hsp70s unveiled a corresponding expression pattern, which supports a functionally conserved evolution of the Hsp70 gene family in Paramecium. Conclusions Our analyses suggest an independent evolution of the heat-inducible cytosol-type hsp70s in Paramecium and in its close relative Tetrahymena, as well as within higher eukaryotes. This result indicates convergent evolution during hsp70 subfunctionalization and implies that heat-inducibility evolved several times during the course of eukaryotic evolution. PMID:23433225

  12. Evidence for hSNM1B/Apollo functioning in the HSP70 mediated DNA damage response.

    PubMed

    Anders, Marco; Mattow, Jens; Digweed, Martin; Demuth, Ilja

    2009-06-01

    The hSNM1B/Apollo protein is involved in the cellular response to DNA-damage as well as in the maintenance of telomeres during S-phase. TRF2 has been shown to interact physically with hSNM1B. As a core component of shelterin, TRF2 functions in organization and protection of telomeres. However, TRF2 was also shown to have a role in the early DNA-damage response, suggesting that hSNM1B and TRF2 cooperate in this dual function. Here we have used Tandem-Affinity-Purification in combination with mass spectrometry to identify additional binding partners of hSNM1B. This revealed HSC70, HSP72, HSP60 and beta-Tubulin to be hSNM1B-interactors. We have confirmed the interaction of hSNM1B and HSP70 in co-immunoprecipitation assays and found that hSNM1B binds to a C-terminal fragment of HSP72, known to contain the substrate binding domain. Depletion of HSP72 in human fibroblasts resulted in a significant reduction of nuclear hSNM1B foci. We also found the phosphorylation of CHK1 at serine 317 to be attenuated in response to UVC irradiation as a consequence of hSNM1B depletion, a result which extends our previous findings on the DNA-damage response function of hSNM1B. HSP70 chaperones have been implicated in the maintenance of genome stability and their expression is often aberrant in cancer. Our results presented here, suggest that the role in genome stability might not be specific to HSP70 but rather can be attributed, at least in part, to hSNM1B. This, together with its stimulating effect on ATM and ATR substrate phosphorylation in response to DNA-damage qualify hSNM1B as a putative target in cancer therapy.

  13. A hitchhiker's guide to the human Hsp70 family

    PubMed Central

    Tavaria, Michael; Gabriele, Tim; Kola, Ismail; Anderson, Robin L.

    1996-01-01

    The human Hsp70 family encompasses at least 11 genes which encode a group of highly related proteins. These proteins include both cognate and highly inducible members, at least some of which act as molecular chaperones. The location of cognate Hsp70s within all the major subcellular compartments is an indication of the importance of these proteins. The expression of several inducible Hsp70 genes is also an indication of the importance of these proteins in the stres response. The existence of multiple genes and protein isoforms has created confusion in the identification and naming of particular family members. We have compiled, from the literature, a list of genes and genetic loci and produced a two-dimensional protein map of the known human Hsp70 family members. This will enable researchers in the field to quickly and reliably identify human Hsp70s. We have also devised a more rational nomenclature for these genes and gene products which, subject to general acceptance, could be extended to Hsp70 families from other species. PMID:9222585

  14. Albumin stimulates renal tubular inflammation through an HSP70-TLR4 axis in mice with early diabetic nephropathy

    PubMed Central

    Jheng, Huei-Fen; Tsai, Pei-Jane; Chuang, Yi-Lun; Shen, Yi-Ting; Tai, Ting-An; Chen, Wen-Chung; Chou, Chuan-Kai; Ho, Li-Chun; Tang, Ming-Jer; Lai, Kuei-Tai A.; Sung, Junne-Ming; Tsai, Yau-Sheng

    2015-01-01

    ABSTRACT Increased urinary albumin excretion is not simply an aftermath of glomerular injury, but is also involved in the progression of diabetic nephropathy (DN). Whereas Toll-like receptors (TLRs) are incriminated in the renal inflammation of DN, whether and how albumin is involved in the TLR-related renal inflammatory response remains to be clarified. Here, we showed that both TLR2 and TLR4, one of their putative endogenous ligands [heat shock protein 70 (HSP70)] and nuclear factor-κB promoter activity were markedly elevated in the kidneys of diabetic mice. A deficiency of TLR4 but not of TLR2 alleviated albuminuria, tubulointerstitial fibrosis and inflammation induced by diabetes. The protection against renal injury in diabetic Tlr4−/− mice was associated with reduced tubular injuries and preserved cubilin levels, rather than amelioration of glomerular lesions. In vitro studies revealed that albumin, a stronger inducer than high glucose (HG), induced the release of HSP70 from proximal tubular cells. HSP70 blockade ameliorated albumin-induced inflammatory mediators. HSP70 triggered the production of inflammatory mediators in a TLR4-dependent manner. Moreover, HSP70 inhibition in vivo ameliorated diabetes-induced albuminuria, inflammatory response and tubular injury. Finally, we found that individuals with DN had higher levels of TLR4 and HSP70 in the dilated tubules than non-diabetic controls. Thus, activation of the HSP70-TLR4 axis, stimulated at least in part by albumin, in the tubular cell is a newly identified mechanism associated with induction of tubulointerstitial inflammation and aggravation of pre-existing microalbuminuria in the progression of DN. PMID:26398934

  15. The Role of HSP70 Heat Shock Proteins in the Pathogenesis and Treatment of Inflammatory Bowel Diseases.

    PubMed

    Samborski, Paweł; Grzymisławski, Marian

    2015-01-01

    Heat shock proteins (HSPs) represent an important element in the body's defense against various damaging factors. The probably also play an important role in the pathogenesis and treatment of several diseases, including autoimmune pathology and neoplasms. Recently, several investigators have focused their attention on the involvement of the HSP70 protein family in the morbid process of inflammatory bowel diseases (IBD). The HSP70 family of is represented by two distinct forms of protein, the HSP72 protein (also known as the HSP70.1 protein), the expression of which is clearly increased in conditions of stress; and the HSP73 (or HSC73) protein, which manifests stable expression. HSP70 proteins are present in the colorectal epithelium. In patients with inflammatory bowel diseases, their expression in significantly increased during the active stage of the disease. In experimental studies, overexpression of HSP70 was found to prevent the development of inflammatory process in the large intestinal mucosa provoked by various damaging factors. In physiological conditions, various mechanisms are considered to be responsible for an increased expression of HSP70. One of them involves lymphocyte activity and the production of cytokines (mainly IL-2). Another suggested mechanism involves the presence of bacteria in the large intestine, including both physiological flora (Lactobacillus GG, Bacteroides fragilis) and pathogenic bacteria (Salmonella, Escherichia coli). HSP70 expression is probably also increased by physical activity. There is also a potential for pharmacological stimulation of HSP70 expression, linked (for example) to geranylgeranylacetone, polaprezinc and mesalazine. Thus, augmentation of HSP70 expression may become a new element in IBD therapy.

  16. Expression of AeaHsp26 and AeaHsp83 in Aedes aegypti (Diptera: Culicidae) Larvae and Pupae in Response to Heat Shock Stress

    DTIC Science & Technology

    2010-05-01

    23C) (Table 4, Fig. 3C). Discussion HSPs such as Hsp90, Hsp70, and Hsp27 are induced in response to avarietyofphysiological environmental stresses...and resistance to oxidative stress, although the function of neurola expression between Hsp26 and Hsp27 is different (Liao et al. 2008...Overexpression of either Hsp26 or Hsp27 in- creases stress resistance andextends themean lifespan by 30% in transgenic Drosophila (Wang et al. 2004). Although

  17. Influence of Hsp70 and HLA-E on the killing of leukemic blasts by cytokine/Hsp70 peptide-activated human natural killer (NK) cells.

    PubMed

    Stangl, Stefan; Gross, Catharina; Pockley, Alan G; Asea, Alexzander A; Multhoff, Gabriele

    2008-01-01

    This study compared the effects of the human 70-kDa stress protein (Hsp70) peptide, TKDNNLLGRFELSG (TKD), proinflammatory cytokines, or a combination of both on the repertoire of receptors expressed by human natural killer (NK) cells and their capacity to kill human CX colon carcinoma cells, K562 erythroleukemic cells, and leukemic blasts from two patients with acute myelogenous leukemia. Low-dose interleukin (IL) 2/IL-15 and TKD increase the expression density of activatory (NKG2D, NKp30, NKp44, NKp46, CD94/NKG2C) and inhibitory (CD94/NKG2A) receptors on NK cells. Concomitantly, IL-2/TKD treatment enhances the cytotoxicity of NK cells (as reflected by their secretion of granzyme B) against Hsp70 membrane-positive and human leukocyte antigen (HLA)-E membrane-negative (Hsp70(+)/HLA-E(-)) CX(+) and K562 cells. However, it had no effect on the responsiveness to Hsp70(-)/HLA-E(-) CX(-) cells over that induced by IL-2 alone. The cytotoxicity of IL-2/TKD-activated, purified NK cells and peripheral blood mononuclear cells against Hsp70(+)/HLA-E(+) leukemic blasts was weaker than that against Hsp70(+)/HLA-E(-) K562 cells. Hsp70-blocking and HLA-E transfection experiments confirmed membrane-bound Hsp70 as being a recognition/activatory ligand for NK cells, as cytotoxicity was reduced by the presence of the anti-Hsp70 monoclonal antibody cmHsp70.2 and by inhibiting Hsp70 synthesis using short interference ribonucleic acid. HLA-E was confirmed as an inhibitory ligand, as the extent of NK cell-mediated lysis of K562 cell populations that had been transfected with HLA-E(R) or HLA-E(G) alleles was dependent on the proportion of HLA-E-expressing cells. These findings indicate that Hsp70 (as an activatory molecule) and HLA-E (as an inhibitory ligand) expression influence the susceptibility of leukemic cells to the cytolytic activities of cytokine/TKD-activated NK cells.

  18. Escherichia coli-induced temporal and differential secretion of heat-shock protein 70 and interleukin-1β by human fetal membranes in a two-compartment culture system.

    PubMed

    Osorio-Caballero, M; Perdigón-Palacio, C; García-López, G; Flores-Herrera, O; Olvera-Sánchez, S; Morales-Méndez, I; Sosa-González, I; Acevedo, J F; Guzmán-Grenfell, A M; Molina-Hernández, A; Díaz, N F; Flores-Herrera, H

    2015-03-01

    Escherichia coli is recognized as an etiological bacteria associated with chorioamnionitis and the preterm premature rupture of fetal membranes. This pathological condition induces pro-inflammatory cytokines and degradative metalloproteinases, which are considered biological markers secreted in an acute stage of infection. Heat-shock proteins (HSPs) are an important component of the innate immunity response and are found in different pathological conditions. They have not been previously measured in human fetal membranes in response to infectious conditions. We hypothesized that the choriodecidual tissue and amniotic epithelium secreted temporal and differential Hsp-60, Hsp-70, and interleukin (IL)-1β mediated by E. coli infection. Fetal membranes were mounted in a two-compartment culture system and infected with two passes of live E. coli at different doses (10², 10⁴, 10⁵, and 10⁶ colony-forming units (CFU)/mL) and intervals of incubation (3, 6, and 24 h). The culture medium was collected, and Hsp-60, Hsp-70, and IL-1β were assessed using the enzyme-linked immunosorbent assay (ELISA) method. After 3 and 6 h of infection, E. coli induced an increase in Hsp-70 secretion in the choriodecidual tissue. However, after 24 h of incubation, Hsp-70 was downregulated and we observed an increase in IL-1β secretion. By contrast, E. coli induced a lower Hsp-60 secretion in the amnion compared to Hsp-70. Human fetal membranes responded actively to E. coli infection, with an increase in Hsp-70 during the first hours of infection. After 24 h, there was an increase in the liberation of IL-1β. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Ste20-like kinase, SLK, activates the heat shock factor 1 - Hsp70 pathway.

    PubMed

    Cybulsky, Andrey V; Guillemette, Julie; Papillon, Joan

    2016-09-01

    Expression and activation of SLK increases during renal ischemia-reperfusion injury. When highly expressed, SLK signals via c-Jun N-terminal kinase and p38 to induce apoptosis, and it exacerbates apoptosis induced by ischemia-reperfusion injury. Overexpression of SLK in glomerular epithelial cells (GECs)/podocytes in vivo induces injury and proteinuria. In response to various stresses, cells enhance expression of chaperones or heat shock proteins (e.g. Hsp70), which are involved in the folding and maturation of newly synthesized proteins, and can refold denatured or misfolded proteins. We address the interaction of SLK with the heat shock factor 1 (HSF1)-Hsp70 pathway. Increased expression of SLK in GECs (following transfection) induced HSF1 transcriptional activity. Moreover, HSF1 transcriptional activity was increased by in vitro ischemia-reperfusion injury (chemical anoxia/recovery) and heat shock, and in both instances was amplified further by SLK overexpression. HSF1 binds to promoters of target genes, such as Hsp70 and induces their transcription. By analogy to HSF1, SLK stimulated Hsp70 expression. Hsp70 was also enhanced by anoxia/recovery and was further amplified by SLK overexpression. Induction of HSF1 and Hsp70 was dependent on the kinase activity of SLK, and was mediated via polo-like kinase-1. Transfection of constitutively active HSF1 enhanced Hsp70 expression and inhibited SLK-induced apoptosis. Conversely, the proapoptotic action of SLK was augmented by HSF1 shRNA, or the Hsp70 inhibitor, pifithrin-μ. In conclusion, increased expression/activity of SLK activates the HSF1-Hsp70 pathway. Hsp70 attenuates the primary proapoptotic effect of SLK. Modulation of chaperone expression may potentially be harnessed as cytoprotective therapy in renal cell injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Heat Shock Protein 70 Enhances Mucosal Immunity against Human Norovirus When Coexpressed from a Vesicular Stomatitis Virus Vector

    PubMed Central

    Ma, Yuanmei; Duan, Yue; Wei, Yongwei; Liang, Xueya; Niewiesk, Stefan; Oglesbee, Michael

    2014-01-01

    ABSTRACT Human norovirus (NoV) accounts for 95% of nonbacterial gastroenteritis worldwide. Currently, there is no vaccine available to combat human NoV as it is not cultivable and lacks a small-animal model. Recently, we demonstrated that recombinant vesicular stomatitis virus (rVSV) expressing human NoV capsid protein (rVSV-VP1) induced strong immunities in mice (Y. Ma and J. Li, J. Virol. 85:2942–2952, 2011). To further improve the safety and efficacy of the vaccine candidate, heat shock protein 70 (HSP70) was inserted into the rVSV-VP1 backbone vector. A second construct was generated in which the firefly luciferase (Luc) gene was inserted in place of HSP70 as a control for the double insertion. The resultant recombinant viruses (rVSV-HSP70-VP1 and rVSV-Luc-VP1) were significantly more attenuated in cell culture and viral spread in mice than rVSV-VP1. At the inoculation dose of 1.0 × 106 PFU, rVSV-HSP70-VP1 triggered significantly higher vaginal IgA than rVSV-VP1 and significantly higher fecal and vaginal IgA responses than rVSV-Luc-VP1, although serum IgG and T cell responses were similar. At the inoculation dose of 5.0 × 106 PFU, rVSV-HSP70-VP1 stimulated significantly higher T cell, fecal, and vaginal IgA responses than rVSV-VP1. Fecal and vaginal IgA responses were also significantly increased when combined vaccination of rVSV-VP1 and rVSV-HSP70 was used. Collectively, these data indicate that (i) insertion of an additional gene (HSP70 or Luc) into the rVSV-VP1 backbone further attenuates the VSV-based vaccine in vitro and in vivo, thus improving the safety of the vaccine candidate, and (ii) HSP70 enhances the human NoV-specific mucosal and T cell immunities triggered by a VSV-based human NoV vaccine. IMPORTANCE Human norovirus (NoV) is responsible for more than 95% of acute nonbacterial gastroenteritis worldwide. Currently, there is no vaccine for this virus. Development of a live attenuated vaccine for human NoV has not been possible because it is uncultivable. Thus, a live vector-based vaccine may provide an alternative vaccine strategy. In this study, we developed a vesicular stomatitis virus (VSV)-based human NoV vaccine candidate. We constructed rVSV-HSP70-VP1, coexpressing heat shock protein (HSP70) and capsid (VP1) genes of human NoV, and rVSV-Luc-VP1, coexpressing firefly luciferase (Luc) and VP1 genes. We found that VSVs with a double gene insertion were significantly more attenuated than VSV with a single VP1 insertion (rVSV-VP1). Furthermore, we found that coexpression or coadministration of HSP70 from VSV vector significantly enhanced human NoV-specific mucosal immunity. Collectively, we developed an improved live vectored vaccine candidate for human NoV which will be useful for future clinical studies. PMID:24574391

  1. Increased expression of Hsp70 and Hsp90 mRNA as biomarkers of thermal stress in loggerhead turtle embryos (Caretta Caretta).

    PubMed

    Tedeschi, J N; Kennington, W J; Berry, O; Whiting, S; Meekan, M; Mitchell, N J

    2015-01-01

    The survival and viability of sea turtle embryos is dependent upon favourable nest temperatures throughout the incubation period. Consequently, future generations of sea turtles may be at risk from increasing nest temperatures due to climate change, but little is known about how embryos respond to heat stress. Heat shock genes are likely to be important in this process because they code for proteins that prevent cellular damage in response to environmental stressors. This study provides the first evidence of an expression response in the heat shock genes of embryos of loggerhead sea turtles (Caretta caretta) exposed to realistic and near-lethal temperatures (34°C and 36°C) for 1 or 3 hours. We investigated changes in Heat shock protein 60 (Hsp60), Hsp70, and Hsp90 mRNA in heart (n=24) and brain tissue (n=29) in response to heat stress. Under the most extreme treatment (36°C, 3h), Hsp70 increased mRNA expression by a factor of 38.8 in heart tissue and 15.7 in brain tissue, while Hsp90 mRNA expression increased by a factor of 98.3 in heart tissue and 14.7 in brain tissue. Hence, both Hsp70 and Hsp90 are useful biomarkers for assessing heat stress in the late-stage embryos of sea turtles. The method we developed can be used as a platform for future studies on variation in the thermotolerance response from the clutch to population scale, and can help us anticipate the resilience of reptile embryos to extreme heating events. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Transgenic expression of the Trichoderma harzianum hsp70 gene increases Arabidopsis resistance to heat and other abiotic stresses.

    PubMed

    Montero-Barrientos, Marta; Hermosa, Rosa; Cardoza, Rosa E; Gutiérrez, Santiago; Nicolás, Carlos; Monte, Enrique

    2010-05-15

    The ability of some Trichoderma strains, a biological control agent, to overcome extreme environmental conditions has previously been reported and related to heat-shock proteins (HSPs). These proteins are induced environmentally and are involved in important processes, acting as molecular chaperones in all organisms. In a previous study, we demonstrated, by overexpression, that the Trichoderma harzianum hsp70 gene conferred tolerance to heat and other abiotic stresses to this fungus. In this work, we investigate the function of the T. harzianum T34 hsp70 gene in Arabidopsis thaliana. We analyze transgenic plant responses under adverse environmental conditions and the expression levels of a set of seven stress genes, using quantitative RT-PCR. As expected, transgenic plants expressing the T. harzianum hsp70 gene exhibited enhanced tolerance to heat stress. In addition, they did not show growth inhibition and, after heat pre-treatment, transgenic seedlings were more tolerant to osmotic, salt and oxidative stresses with respect to the wild-type behavior. Transgenic lines also had increased transcript levels of the Na(+)/H(+) exchanger 1 (SOS1) and ascorbate peroxidase 1 (APX1) genes, involved in salt and oxidative stress responses, respectively. However, the heat-shock factor (HSF) and four HSP genes tested were down-regulated in 35S:hsp70 plants. Overall, our results indicate that hsp70 confers tolerance to heat and other abiotic stresses and that the fungal HSP70 protein acts as a negative regulator of the HSF transcriptional activity in Arabidopsis. (c) 2009 Elsevier GmbH. All rights reserved.

  3. Stress Proteins and Initiation of Immune Response: Chaperokine activity of Hsp72

    PubMed Central

    Asea, Alexzander

    2006-01-01

    From its original description as solely an intracellular molecular chaperone, heat shock proteins have now been shown to function as initiators of the host's immune response. Although the exact mechanism by which intracellular heat shock proteins leave cells is still incompletely understood, recent work from several labs suggest that heat shock proteins are released by both passive (necrotic) and active (physiological) mechanisms. Binding to specific surface receptors is a prerequisite for the initiation of an immune response. To date, several cell surface proteins have been described as the receptor for seventy kilo-Dalton heat shock protein (Hsp70) including Toll-like receptors 2 and 4 with their cofactor CD14, the scavenger receptor CD36, the low-density lipoprotein receptor-related protein CD91, the C-type lectin receptor LOX-1, and another member of the scavenger super-family SR-A plus the co-stimulatory molecule, CD40. Binding of Hsp70 to these surface receptors specifically activates intracellular signaling cascades, which in turn exert immunoregulatory effector functions; a process known as the chaperokine activity of Hsp70. This review will highlight recent advances in understanding the mechanism by which Hsp70 initiates the host's immune response. PMID:16385842

  4. Stress proteins and initiation of immune response: chaperokine activity of hsp72.

    PubMed

    Asea, Alexzander

    2005-01-01

    From its original description as solely an intracellular molecular chaperone, heat shock proteins have now been shown to function as initiators of the host's immune response. Although the exact mechanism by which intracellular heat shock proteins leave cells is still incompletely understood, recent work from several labs suggest that heat shock proteins are released by both passive (necrotic) and active (physiological) mechanisms. Binding to specific surface receptors is a prerequisite for the initiation of an immune response. To date, several cell surface proteins have been described as the receptor for seventy kilo-Dalton heat shock protein (Hsp70) including Toll-like receptors 2 and 4 with their cofactor CD14, the scavenger receptor CD36, the low-density lipoprotein receptor-related protein CD91, the C-type lectin receptor LOX-1, and another member of the scavenger super-family SR-A plus the co-stimulatory molecule, CD40. Binding of Hsp70 to these surface receptors specifically activates intracellular signaling cascades, which in turn exert immunoregulatory effector functions; a process known as the chaperokine activity of Hsp70. This review will highlight recent advances in understanding the mechanism by which Hsp70 initiates the host's immune response.

  5. Hsp70 suppresses apoptosis of BRL cells by regulating the expression of Bcl-2, cytochrome C, and caspase 8/3.

    PubMed

    Kong, Fanzhi; Wang, Hui; Guo, Jingru; Peng, Mengling; Ji, Hong; Yang, Huanmin; Liu, Binrun; Wang, Jianfa; Zhang, Xu; Li, Shize

    2016-05-01

    During cold stress, liver cells undergo apoptotic injury as a result of oxidative stress. Heat shock 70 kDa protein (Hsp70) is a protein involved in modulating a variety of physiological processes, including stress responses, proliferation, and apoptosis. In addition, Hsp70 regulates apoptotic signaling pathways in different manners, promoting or suppressing apoptosis. In this study, we investigated the effects of Hsp70 overexpression on hydrogen peroxide (H2O2)-induced apoptosis of Buffalo rat liver (BRL) cells and the underlying mechanisms of these effects. Our results show that in comparison with the control group, Hsp70 overexpression displayed increased protein levels of Bcl-2, and decreased cytochrome c (Cyt c), cleaved caspase 3, and cleaved caspase 8, but no apparent differences were found in levels of Bax. Furthermore, Hsp70 overexpression significantly suppresses the amount of apoptotic cells. Such findings indicate that overexpression of Hsp70 inhibits H2O2-mediated activation of caspase 8 and caspase 3, upregulates the expression of Bcl-2 which is a known anti-apoptotic protein, and decreases the release of Cyt c from the mitochondria into the cytoplasm, collectively decreasing cell apoptosis.

  6. Transcriptional Activation of c3 and hsp70 as Part of the Immune Response of Acropora millepora to Bacterial Challenges

    PubMed Central

    Brown, Tanya; Bourne, David; Rodriguez-Lanetty, Mauricio

    2013-01-01

    The impact of disease outbreaks on coral physiology represents an increasing concern for the fitness and resilience of reef ecosystems. Predicting the tolerance of corals to disease relies on an understanding of the coral immune response to pathogenic interactions. This study explored the transcriptional response of two putative immune genes (c3 and c-type lectin) and one stress response gene (hsp70) in the reef building coral, Acropora millepora challenged for 48 hours with bacterial strains, Vibrio coralliilyticus and Alteromonas sp. at concentrations of 106 cells ml-1. Coral fragments challenged with V. coralliilyticus appeared healthy while fragments challenged with Alteromonas sp. showed signs of tissue lesions after 48 hr. Coral-associated bacterial community profiles assessed using denaturing gradient gel electrophoresis changed after challenge by both bacterial strains with the Alteromonas sp. treatment demonstrating the greatest community shift. Transcriptional profiles of c3 and hsp70 increased at 24 hours and correlated with disease signs in the Alteromonas sp. treatment. The expression of hsp70 also showed a significant increase in V. coralliilyticus inoculated corals at 24 h suggesting that even in the absence of disease signs, the microbial inoculum activated a stress response in the coral. C-type lectin did not show a response to any of the bacterial treatments. Increase in gene expression of c3 and hsp70 in corals showing signs of disease indicates their potential involvement in immune and stress response to microbial challenges. PMID:23861754

  7. The stress protein level under clinorotation in context of the seedling developmental program and the stress response

    NASA Astrophysics Data System (ADS)

    Kozeko, Lyudmyla; Kordyum, Elizabeth

    2006-09-01

    Heat-shock proteins (HSP70 and HSP90) are present in plant cells under the normal growth conditions. At the same time, a variety of environmental disruptions results in their rapid synthesis as a substantial part of adaptation. HSP amounts can be indicative of a cellular stress level. Altered gravity (clinorotation) is unnatural for plants, so it may be a kind of stress. The aim of this study was to analyze the influence of horizontal clinorotation on the HSP70 and HSP90 level during seedling development. Pea (Pisum sativum L.) seedlings grown for 3 days from seed imbibitions in stationary control and under slow clinorotation (2 rpm) are used for this investigation. Western blot analysis indicated that HSP70 and HSP90 were abundant in the embryos of dry seeds and their amount decreased significantly during seed germination. But under horizontal clinorotation, their level in seedlings remained higher compared to the control. Furthermore, a comparison of the influence of horizontal and vertical clinorotation on the HSP level was carried out. On the ELISA data, HSP70 and HSP90 amounts in the 3-day old seedlings were higher after horizontal clinorotation than after vertical. The obtained data show an increased HSP70 and HSP90 level in pea seedlings under clinorotation. Both, rotation and change in the cell position relatively to a gravity vector affect the HSP level.

  8. Major role of HSP70 as a paracrine inducer of cytokine production in human oxidized LDL treated macrophages.

    PubMed

    Svensson, Per-Arne; Asea, Alexzander; Englund, Mikael C O; Bausero, Maria A; Jernås, Margareta; Wiklund, Olov; Ohlsson, Bertil G; Carlsson, Lena M S; Carlsson, Björn

    2006-03-01

    Lipid accumulation and inflammation are key hallmarks of the atherosclerotic plaque and macrophage uptake of oxidized low-density lipoprotein (oxLDL) is believed to drive these processes. Initial experiments show that supernatants from oxLDL treated macrophages could induce IL-1beta production in naïve macrophages. To search for potential paracrine mediators that could mediate this effect a DNA microarray scan of oxLDL treated human macrophages was performed. This analysis revealed that oxLDL induced activation of heat shock protein (HSP) expression. HSPs have been implicated in the development of atherosclerosis, but the exact mechanisms for this is unclear. Extracellular heat shock protein 70 (HSP70) has been shown to elicit a pro-inflammatory cytokine response in monocytes and could therefore be a potential paracrine pro-inflammatory mediator. After 24 h of oxLDL treatment there was a significant increase of HSP70 concentrations in supernatants from oxLDL treated macrophages (oxLDLsup) compared to untreated controls (P<0.05). OxLDLsup could induce both interleukin (IL)-1beta and IL-12 secretion in naïve macrophages. We also demonstrate that the effect of oxLDLsup on cytokine production and release could be blocked by inhibition of HSP70 transcription or secretion or by the use of HSP70 neutralizing antibodies. This suggests that extracellular HSP70 can mediate pro-inflammatory changes in macrophages in response to oxLDL.

  9. Major role of HSP70 as a paracrine inducer of cytokine production in human oxidized LDL treated macrophages

    PubMed Central

    Svensson, Per-Arne; Asea, Alexzander; Englund, Mikael C.O.; Bausero, Maria A.; Jernås, Margareta; Wiklund, Olov; Ohlsson, Bertil G.; Carlsson, Lena M.S.; Carlsson, Björn

    2006-01-01

    Lipid accumulation and inflammation are key hallmarks of the atherosclerotic plaque and macrophage uptake of oxidized low-density lipoprotein (oxLDL) is believed to drive these processes. Initial experiments show that supernatants from oxLDL treated macrophages could induce IL-1β production in naïve macrophages. To search for potential paracrine mediators that could mediate this effect a DNA microarray scan of oxLDL treated human macrophages was performed. This analysis revealed that oxLDL induced activation of heat shock protein (HSP) expression. HSPs have been implicated in the development of atherosclerosis, but the exact mechanisms for this is unclear. Extracellular heat shock protein 70 (HSP70) has been shown to elicit a pro-inflammatory cytokine response in monocytes and could therefore be a potential paracrine pro-inflammatory mediator. After 24 h of oxLDL treatment there was a significant increase of HSP70 concentrations in supernatants from oxLDL treated macrophages (oxLDLsup) compared to untreated controls (P < 0.05). OxLDLsup could induce both interleukin (IL)-1β and IL-12 secretion in naïve macrophages. We also demonstrate that the effect of oxLDLsup on cytokine production and release could be blocked by inhibition of HSP70 transcription or secretion or by the use of HSP70 neutralizing antibodies. This suggests that extracellular HSP70 can mediate pro-inflammatory changes in macrophages in response to oxLDL. PMID:15993884

  10. Expression dynamics of HSP70 during chronic heat stress in Tharparkar cattle.

    PubMed

    Bharati, Jaya; Dangi, S S; Chouhan, V S; Mishra, S R; Bharti, M K; Verma, V; Shankar, O; Yadav, V P; Das, K; Paul, A; Bag, S; Maurya, V P; Singh, G; Kumar, P; Sarkar, M

    2017-06-01

    Six male Tharparkar cattle aged 2-3 years were selected for the study. The animals were acclimatized in the psychrometric chamber at thermoneutral zone (TNZ) for 15 days and then exposed to 42 °C temperature up to 23 days followed by 12 days of recovery period. Physiological responses were estimated, and peripheral blood mononuclear cells (PBMCs) were isolated at TNZ on day 1, day 5, and day 12; after 6 h of heat stress exposure on day 16 to day 20, day 25, day 30, day 32, day 34, day 36, and day 38; and a recovery period on day 45 and day 50. The PBMCs were cultured to study the effect of thermal challenge on HSP70 messenger RNA (mRNA) expression pattern at different temperature-time combinations. The mRNA and protein expression of HSP70 in PBMCs along with serum extracellular HSP70 (eHSP70) was increased (P < 0.05) and showed two peaks on day 17 and day 32 (2nd and 17th days of thermal challenge, respectively). The HSP70 mRNA expression was increased (P < 0.05) in a temperature- and time-dependent manner in heat stress challenge treatment as compared to control in cultured PBMCs. HSP70 expression was found to be higher (P < 0.05) after 10 days of heat exposure (corresponds to chronic heat stress) as compared to the first 5 days of heat stress (corresponds to short-term heat stress) and control period at TNZ. The present findings indicate that HSP70 is possibly involved in heat stress adaptive response in Tharparkar cattle and the biphasic expression pattern may be providing a second window of protection during chronic heat stress.

  11. Cucumber Necrosis Virus Recruits Cellular Heat Shock Protein 70 Homologs at Several Stages of Infection

    PubMed Central

    Alam, Syed Benazir

    2015-01-01

    ABSTRACT RNA viruses often depend on host factors for multiplication inside cells due to the constraints of their small genome size and limited coding capacity. One such factor that has been exploited by several plant and animal viruses is heat shock protein 70 (HSP70) family homologs which have been shown to play roles for different viruses in viral RNA replication, viral assembly, disassembly, and cell-to-cell movement. Using next generation sequence analysis, we reveal that several isoforms of Hsp70 and Hsc70 transcripts are induced to very high levels during cucumber necrosis virus (CNV) infection of Nicotiana benthamiana and that HSP70 proteins are also induced by at least 10-fold. We show that HSP70 family protein homologs are co-opted by CNV at several stages of infection. We have found that overexpression of Hsp70 or Hsc70 leads to enhanced CNV genomic RNA, coat protein (CP), and virion accumulation, whereas downregulation leads to a corresponding decrease. Hsc70-2 was found to increase solubility of CNV CP in vitro and to increase accumulation of CNV CP independently of viral RNA replication during coagroinfiltration in N. benthamiana. In addition, virus particle assembly into virus-like particles in CP agroinfiltrated plants was increased in the presence of Hsc70-2. HSP70 was found to increase the targeting of CNV CP to chloroplasts during infection, reinforcing the role of HSP70 in chloroplast targeting of host proteins. Hence, our findings have led to the discovery of a highly induced host factor that has been co-opted to play multiple roles during several stages of the CNV infection cycle. IMPORTANCE Because of the small size of its RNA genome, CNV is dependent on interaction with host cellular components to successfully complete its multiplication cycle. We have found that CNV induces HSP70 family homologs to a high level during infection, possibly as a result of the host response to the high levels of CNV proteins that accumulate during infection. Moreover, we have found that CNV co-opts HSP70 family homologs to facilitate several aspects of the infection process such as viral RNA, coat protein and virus accumulation. Chloroplast targeting of the CNV CP is also facilitated, which may aid in CNV suppression of host defense responses. Several viruses have been shown to induce HSP70 during infection and others to utilize HSP70 for specific aspects of infection such as replication, assembly, and disassembly. We speculate that HSP70 may play multiple roles in the infection processes of many viruses. PMID:26719261

  12. Validation of hsp70 stress gene expression as a marker of metal effects in Deroceras reticulatum (Pulmonata): Correlation with demographic parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koehler, H.R.; Eckwert, H.; Rahman, B.

    1998-11-01

    The presence of a stress gene comprising a motif homologous to the hsp70 consensus sequence was proven for the grey garden slug, Deroceras reticulatum (Mueller). The induction of stress gene transcription (including mRNA stability) and the accumulation of the corresponding stress protein, Hsp70, was quantified in slugs exposed to cadmium- or zinc-enriched food for 2 to 3 weeks. To validate the suitability of these two aspects of the cellular stress response to act as early-warning markers for metal effects on life-history parameters, fecundity, offspring number, longevity, and mortality of slugs were recorded in life-cycle experiments. Quantitative reverse transcription-polymerase chain reactionmore » and a standardized immunoblotting technique revealed higher sensitivity of changes in hsp70 transcription than stress protein accumulation in response to both metals. The elevation of the hsp70-mRNA level caused by short-term (14 d) metal exposure coincided with both diminished fecundity and reduced offspring production due to chronic metal exposure in terms of threshold concentrations for cadmium effects. As well, accumulation of Hsp70 after 3 weeks of exposure can be considered an early-warning signal for increased mortality when cadmium or zinc exposure is throughout the entire lifetime of the slugs.« less

  13. HSP27, 70 and 90, anti-apoptotic proteins, in clinical cancer therapy (Review).

    PubMed

    Wang, Xiaoxia; Chen, Meijuan; Zhou, Jing; Zhang, Xu

    2014-07-01

    Among the heat shock proteins (HSP), HSP27, HSP70 and HSP90 are the most studied stress-inducible HSPs, and are induced in response to a wide variety of physiological and environmental insults, thus allowing cells to survive to lethal conditions based on their powerful cytoprotective functions. Different functions of HSPs have been described to explain their cytoprotective functions, including their most basic role as molecular chaperones, that is to regulate protein folding, transport, translocation and assembly, especially helping in the refolding of misfolded proteins, as well as their anti-apoptotic properties. In cancer cells, the expression and/or activity of the three HSPs is abnormally high, and is associated with increased tumorigenicity, metastatic potential of cancer cells and resistance to chemotherapy. Associating with key apoptotic factors, they are powerful anti-apoptotic proteins, having the capacity to block the cell death process at different levels. Altogether, the properties suggest that HSP27, HSP70 and HSP90 are appropriate targets for modulating cell death pathways. In this review, we summarize the role of HSP90, HSP70 and HSP27 in apoptosis and the emerging strategies that have been developed for cancer therapy based on the inhibition of the three HSPs.

  14. Long acting propranolol and HSP-70 rich tumor lysate reduce tumor growth and enhance immune response against fibrosarcoma in Balb/c mice.

    PubMed

    Khalili, Ahmad; Hassan, Zuhair Muhammad; Shahabi, Shahram; Pourfathollah, Ali Akbar; Ostad, Seyed Nasser; Noori, Shokoofe; Mahdavi, Mehdi; Haybar, Habib; Langroudi, Ladan

    2013-06-01

    Noradrenaline (NA), the principal neurotransmitter released from sympathetic nerve terminals, influences T-cell maturation, not only directly in developing T cells, but also indirectly, by acting on the thymic nonlymphoid cells. In vitro and in vivo studies have demonstrated the anti-proliferative, anti-migratory, anti-angiogenic and cytotoxic properties of propranolol, β-AR blocker, against various cancers. To evaluate the effect of propranolol on efficacy of HSP-70 rich lysate vaccine in immunotherapy of fibrosarcoma. Mouse fibrosarcoma WEHI-164 cells were used to immunize tumor-bearing mice with or without propranolol and HSP-70. Splenocytes proliferation, cytotoxicity activity of the splenocytes, naturally occurring CD4+ CD25high T-reg cells and IFN-γ and IL-4 secretion as well as tumor size, were assessed to describe the anti-tumor immune response. A significant increase in the level of IFN-γ in the mice vaccinated with WEHI-164 cells enriched with HSP-70 and co-treated with propranolol was observed compared to controls. However, HSP enrichment or propranolol treatment alone did not enhance the immune response as measured by the level of IFN-γ. Likewise, a decrease in tumor growth in the test group (p<0.01) and a significant increase in CTL activity (p<0.05) was observed. HSP enriched vaccine shows anti-tumor activity, probably due to the modulation of immune responses.

  15. Heat shock protein 70 gene polymorphisms' influence on the electrophysiology of long QT syndrome.

    PubMed

    Ali, Altaf; Qureshi, Sameera F; Medikare, Veronica; Venkateshwari, Ananthapur; Calambur, Narsimhan; Rao, Hygriv; Jayakrishnan, M P; Shenthar, Jayaprakash; Thangaraj, Kumarasamy; Nallari, Pratibha

    2016-03-01

    Long QT syndrome (LQTS) is a rare cardiac disorder caused due to mutations in genes encoding ion channels responsible for generation of electrical impulses. The heat shock protein (HSP)-70 gene, expressed under conditions of stress, plays a cardioprotective role when overexpressed and helps in the proper folding of the nascent proteins synthesized by the cellular machinery. We aimed to identify the role played by HSP-70 gene polymorphisms in the pathogenesis of LQTS. Study included 49 LQTS patients, 71 family members, and 219 healthy individuals recruited from an ethnically matched population. Genotyping of the single-nucleotide polymorphisms (SNPs) rs1043618 (HSP-70-1, +190G/C), rs1061581 (HSP-70-2, +1267A/G), and rs2227956 (HSP-70-hom, +2437T/C) was performed by PCR-RFLP analysis, and the results were analyzed statistically at 95 % confidence interval and p ≤ 0. 05. The "C" allele of HSP-70-1 (+190G/C) and "G" allele of HSP-70-2 (+1267A/G) showed strong association with LQTS phenotype. The haplotype group C-G-T consisting of two risk alleles was significantly associated with the disease condition. Multifactor dimensionality reduction analysis further substantiated that the three-allele model influences the outcome of the phenotype highlighting the effect of modifiers in the etiology of LQTS. As HSP-70 influences the channel assembly and maturation/trafficking of the ion channel proteins, the alleles C of the HSP-70-1 and G of the HSP-70-2 loci and the haplotype group C-G-T could be considered a diagnostic biomarker in the identification of the LQTS phenotype with a potential to affect the progression and modification of the disease phenotype.

  16. Heat shock protein 70 (Hsp70) interacts with the Notch1 intracellular domain and contributes to the activity of Notch signaling in myelin-reactive CD4 T cells.

    PubMed

    Juryńczyk, Maciej; Lewkowicz, Przemysław; Domowicz, Małgorzata; Mycko, Marcin P; Selmaj, Krzysztof W

    2015-10-15

    Notch receptors (Notch1-4) are involved in the differentiation of CD4 T cells and the development of autoimmunity. Mechanisms regulating Notch signaling in CD4 T cells are not fully elucidated. In this study we investigated potential crosstalk between Notch pathway molecules and heat shock protein 70 (Hsp70), the major intracellular chaperone involved in the protein transport during immune responses and other stress conditions. Using Hsp70(-/-) mice we found that Hsp70 is critical for up-regulation of NICD1 and induction of Notch target genes in Jagged1- and Delta-like1-stimulated CD4 T cells. Co-immunoprecipitation analysis of wild-type CD4 T cells stimulated with either Jagged1 or Delta-like1 showed a direct interaction between NICD1 and Hsp70. Both molecules co-localized within the nucleus of CD4 T cells stimulated with Notch ligands. Molecular interaction and nuclear colocalization of NICD1 and Hsp70 were also detected in CD4 T cells reactive against myelin oligodendrocyte glycoprotein (MOG)35-55, which showed Hsp70-dependent up-regulation of both NICD1 and Notch target genes. In conclusion, we demonstrate for the first time that Hsp70 interacts with NICD1 and contributes to the activity of Notch signaling in CD4 T cells. Interaction between Hsp70 and NICD1 may represent a novel mechanism regulating Notch signaling in activated CD4 T cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Molecular cloning, characterization and expression of heat shock protein 70 gene from the oyster Crassostrea hongkongensis responding to thermal stress and exposure of Cu(2+) and malachite green.

    PubMed

    Zhang, Zhanhui; Zhang, Qizhong

    2012-04-15

    Heat shock protein 70 (HSP70) acts mostly as a molecular chaperone and plays a key role in the process of protecting cells by facilitating the folding of nascent peptides and the cellular stress response. The cDNA of the oyster Crassostrea hongkongensis hsp70 (designated chhsp70) was cloned with the techniques of homological cloning and rapid amplification of cDNA ends (RACE). The full-length chhsp70 cDNA was 2251bp, consisting of a 130bp 5'-UTR, 216bp 3'-UTR with a canonical polyadenylation signal sequence AATAAA and a poly (A) tail, and an open reading frame of 1905bp, which encoded a polypeptide of 634 amino acids. Three classical HSP signature motifs were detected in ChHSP70, i.e., DLGTT-S-V, IFDLGGGTFDVSIL and VVLVGGSTRIPKIQK. BLAST analysis revealed that the ChHSP70 shared high identity with other bivalve HSP70. The phylogenetic analysis indicated that the ChHSP70 was a member of the HSP70 family. The chhsp70 mRNA transcripts were quantified by fluorescent real time RT-PCR under both unstressed and stressed conditions, i. e., heat shock and exposure to Cu(2+) and malachite green. Basal expression level was similar in mantle, gill, digestive gland, and heart, but higher in muscle than that in the others. A similar trend showed that the chhsp70 mRNA expression significantly increased at 3-6h, then dropped and returned to control level at 24h in the five tissues and organs mentioned above after heat shock. A clearly time-dependent expression pattern of chhsp70 mRNA in digestive gland and gill of the oyster was observed after exposure of Cu(2+) and malachite green. In the two tissues, the chhsp70 mRNA level reached the maximum at 6h after malachite green exposure and on day 4 after Cu(2+) exposure, and then decreased progressively to the control level. The results indicated that ChHSP70 of the oyster is an inducible protein, and plays an important role in response to the Cu(2+) and malachite green polluted stress, so chhsp70 might be used as a potential molecular biomarker of above pollutants. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Hierarchical functional specificity of cytosolic heat shock protein 70 (Hsp70) nucleotide exchange factors in yeast.

    PubMed

    Abrams, Jennifer L; Verghese, Jacob; Gibney, Patrick A; Morano, Kevin A

    2014-05-09

    Heat shock protein 70 (Hsp70) molecular chaperones play critical roles in protein homeostasis. In the budding yeast Saccharomyces cerevisiae, cytosolic Hsp70 interacts with up to three types of nucleotide exchange factors (NEFs) homologous to human counterparts: Sse1/Sse2 (Heat shock protein 110 (Hsp110)), Fes1 (HspBP1), and Snl1 (Bag-1). All three NEFs stimulate ADP release; however, it is unclear why multiple distinct families have been maintained throughout eukaryotic evolution. In this study we investigate NEF roles in Hsp70 cell biology using an isogenic combinatorial collection of NEF deletion mutants. Utilizing well characterized model substrates, we find that Sse1 participates in most Hsp70-mediated processes and is of particular importance in protein biogenesis and degradation, whereas Fes1 contributes to a minimal extent. Surprisingly, disaggregation and resolubilization of thermally denatured firefly luciferase occurred independently of NEF activity. Simultaneous deletion of SSE1 and FES1 resulted in constitutive activation of heat shock protein expression mediated by the transcription factor Hsf1, suggesting that these two factors are important for modulating stress response. Fes1 was found to interact in vivo preferentially with the Ssa family of cytosolic Hsp70 and not the co-translational Ssb homolog, consistent with the lack of cold sensitivity and protein biogenesis phenotypes for fes1Δ cells. No significant consequence could be attributed to deletion of the minor Hsp110 SSE2 or the Bag homolog SNL1. Together, these lines of investigation provide a comparative analysis of NEF function in yeast that implies Hsp110 is the principal NEF for cytosolic Hsp70, making it an ideal candidate for therapeutic intervention in human protein folding disorders.

  19. ROS production, intracellular HSP70 levels and their relationship in human neutrophils: effects of age.

    PubMed

    Kovalenko, Elena I; Boyko, Anna A; Semenkov, Victor F; Lutsenko, Gennady V; Grechikhina, Maria V; Kanevskiy, Leonid M; Azhikina, Tatyana L; Telford, William G; Sapozhnikov, Alexander M

    2014-12-15

    ROS production and intracellular HSP70 levels were measured in human neutrophils for three age groups: young (20-59 years), elders (60-89 years) and nonagenarians (90 years and older). Elders showed higher levels of spontaneous intracellular ROS content compared with young and nonagenarian groups, which had similar intracellular ROS levels. Zymosan-induced (non-spontaneous) extracellular ROS levels were also similar for young and nonagenarians but were lower in elders. However, spontaneous extracellular ROS production increased continuously with age. Correlation analysis revealed positive relationships between HSP70 levels and zymosan-stimulated ROS production in the elder group. This was consistent with a promoting role for HSP70 in ROS-associated neutrophils response to pathogens. No positive correlation between ROS production and intracellular HSP70 levels was found for groups of young people and nonagenarians. In contrast, significant negative correlations of some ROS and HSP70 characteriscics were found for neutrophils from young people and nonagenarians. The observed difference in ROS and HSP70 correlations in elders and nonagenarians might be associated with an increased risk of mortality in older individuals less than 90 years old.

  20. Expression of Inducible Heat Shock Proteins Hsp27 and Hsp70 in the Visual Pathway of Rats Subjected to Various Models of Retinal Ganglion Cell Injury

    PubMed Central

    Chidlow, Glyn; Wood, John P. M.; Casson, Robert J.

    2014-01-01

    Inducible heat shock proteins (Hsps) are upregulated in the central nervous system in response to a wide variety of injuries. Surprisingly, however, no coherent picture has emerged regarding the magnitude, duration and cellular distribution of inducible Hsps in the visual system following injury to retinal ganglion cells (RGCs). The current study sought, therefore, to achieve the following two objectives. The first aim of this study was to systematically characterise the patterns of Hsp27 and −70 expression in the retina and optic nerve in four discrete models of retinal ganglion cell (RGC) degeneration: axonal injury (ON crush), somato-dendritic injury (NMDA-induced excitotoxicity), chronic hypoperfusion (bilateral occlusion of the carotid arteris) and experimental glaucoma. The second aim was to document Hsp27 and −70 expression in the optic tract, the subcortical retinorecipient areas of the brain, and the visual cortex during Wallerian degeneration of RGC axons. Hsp27 was robustly upregulated in the retina in each injury paradigm, with the chronic models, 2VO and experimental glaucoma, displaying a more persistent Hsp27 transcriptional response than the acute models. Hsp27 expression was always associated with astrocytes and with a subset of RGCs in each of the models excluding NMDA. Hsp27 was present within astrocytes of the optic nerve/optic tract in control rats. During Wallerian degeneration, Hsp27 was upregulated in the optic nerve/optic tract and expressed de novo by astrocytes in the lateral geniculate nucleus and the stratum opticum of the superior colliculus. Conversely, the results of our study indicate Hsp70 was minimally induced in any of the models of injury, either in the retina, or in the optic nerve/optic tract, or in the subcortical, retinorecipient areas of the brain. The findings of the present study augment our understanding of the involvement of Hsp27 and Hsp70 in the response of the visual system to RGC degeneration. PMID:25535743

  1. Characterization of four heat-shock protein genes from Nile tilapia (Oreochromis niloticus) and demonstration of the inducible transcriptional activity of Hsp70 promoter.

    PubMed

    Zhang, Lili; Sun, Chengfei; Ye, Xing; Zou, Shuming; Lu, Maixin; Liu, Zhigang; Tian, Yuanyuan

    2014-02-01

    Heat-shock proteins (Hsps), known as stress proteins and extrinsic chaperones, play important roles in the folding, translocation, and refolding/degradation of proteins. In this study, we identified four Hsps in Nile tilapia (Oreochromis niloticus), which display conserved Hsp characteristics in their predicted amino acid sequences. Further analyses on the structures, homology, and phylogenetics revealed that the four Hsps belong to Hsp70 family. One of them does not contain introns and is named Hsp70, while all the other three contain introns and are named Hsc70-1, Hsc70-2, and Hsc70-3. Expressions of the four Hsp proteins were observed in all examined tissues. Six hours after infection of Streptococcus agalactiae in Nile tilapia, the expression of Hsp70 was significantly increased in the liver, head kidney, spleen and gill, while Hsc70s' expression was unchanged in all examined tissues except the head kidney that showed significantly reduced expression of both Hsc70-2 and Hsc70-3. These results suggest that Hsp70 may participate in the defense against S. agalactiae infection. We then isolated the promoter of Hsp70 gene and inserted it into the donor plasmid of Tgf2 transposon system containing green fluorescent protein (GFP) gene. The plasmid was microinjected into zebrafish embryos, where the expression of GFP was induced by heat shock, S. agalactiae immersion challenge, indicating that the isolated Hsp70 promoter has transcriptional activity and is inducible by both heat shock and bacterial challenge. This promoter may facilitate the future construction of disease-resistant transgenic fish. The work also contributes to the further study of immune response of tilapia after bacterial infection.

  2. Inhibition of endogenous heat shock protein 70 attenuates inducible nitric oxide synthase induction via disruption of heat shock protein 70/Na(+) /H(+) exchanger 1-Ca(2+) -calcium-calmodulin-dependent protein kinase II/transforming growth factor β-activated kinase 1-nuclear factor-κB signals in BV-2 microglia.

    PubMed

    Huang, Chao; Lu, Xu; Wang, Jia; Tong, Lijuan; Jiang, Bo; Zhang, Wei

    2015-08-01

    Inducible nitric oxide synthase (iNOS) critically contributes to inflammation and host defense. The inhibition of heat shock protein 70 (Hsp70) prevents iNOS induction in lipopolysaccharide (LPS)-stimulated macrophages. However, the role and mechanism of endogenous Hsp70 in iNOS induction in microglia remains unclear. This study addresses this issue in BV-2 microglia, showing that Hsp70 inhibition or knockdown prevents LPS-induced iNOS protein expression and nitric oxide production. Real-time PCR experiments showed that LPS-induced iNOS mRNA transcription was blocked by Hsp70 inhibition. Further studies revealed that the inhibition of Hsp70 attenuated LPS-stimulated nuclear translocation and phosphorylation of nuclear factor (NF)-κB as well as the degradation of inhibitor of κB (IκB)-α and phosphorylation of IκB kinase β (IKKβ). This prevention effect of Hsp70 inhibition on IKKβ-NF-κB activation was found to be dependent on the Ca(2+) /calcium-calmodulin-dependent protein kinase II (CaMKII)/transforming growth factor β-activated kinase 1 (TAK1) signals based on the following observations: 1) chelation of intracellular Ca(2+) or inhibition of CaMKII reduced LPS-induced increases in TAK1 phosphorylation and 2) Hsp70 inhibition reduced LPS-induced increases in CaMKII/TAK1 phosphorylation, intracellular pH value, [Ca(2+) ]i , and CaMKII/TAK1 association. Mechanistic studies showed that Hsp70 inhibition disrupted the association between Hsp70 and Na(+) /H(+) exchanger 1 (NHE1), which is an important exchanger responsible for Ca(2+) influx in LPS-stimulated cells. These studies demonstrate that the inhibition of endogenous Hsp70 attenuates the induction of iNOS, which likely occurs through the disruption of NHE1/Hsp70-Ca(2+) -CaMKII/TAK1-NF-κB signals in BV-2 microglia, providing further insight into the functions of Hsp70 in the CNS. © 2015 Wiley Periodicals, Inc.

  3. Heat shock protein 70 (Hsp70)-stimulated deoxycytidine deaminases from a human lymphoma cell but not the activation-induced cytidine deaminase (AID) from Ramos 6.4 human Burkitt's lymphoma cells

    PubMed Central

    2010-01-01

    Deoxycytidine deaminase enzyme activity was reduced in lysates of human leukemic THP1 cells 24 h after transfection with siRNA designed to inhibit cell synthesis of heat shock protein 70 (Hsp70)1a and Hsp701b. The cytidine deaminase enzyme activity from the cell lysates was purified from an affinity column which contained bound single-stranded oligodeoxycytidylic acid. Deficient enzyme activity in certain elution fractions from the siRNA-transfected cells was restored by including recombinant HSP 70 in the assays. Enzyme activity in some other fractions was increased after siRNA transfection. Activation-induced cytidine deaminase (AID) is a central factor in the immune response. A more specific assay for AID was used to study the influence of Hsp70 on AID activity. Unlike Hsp70's ability to stimulate certain enzymes of DNA base excision repair and other cytidine deaminases, it had little effect on AID activity in vitro, or was weakly inhibitory. PMID:20680536

  4. Muscle fiber type-specific response of Hsp70 expression in human quadriceps following acute isometric exercise.

    PubMed

    Tupling, A R; Bombardier, E; Stewart, R D; Vigna, C; Aqui, A E

    2007-12-01

    To investigate the time course of fiber type-specific heat shock protein 70 (Hsp70) expression in human skeletal muscle after acute exercise, 10 untrained male volunteers performed single-legged isometric knee extensor exercise at 60% of their maximal voluntary contraction (MVC) with a 50% duty cycle (5-s contraction and 5-s relaxation) for 30 min. Muscle biopsies were collected from the vastus lateralis before (Pre) exercise in the rested control leg (C) and immediately after exercise (Post) in the exercised leg (E) only and on recovery days 1 (R1), 2 (R2), 3 (R3), and 6 (R6) from both legs. As demonstrated by Western blot analysis, whole muscle Hsp70 content was unchanged (P > 0.05) immediately after exercise (Pre vs. Post), was increased (P < 0.05) by approximately 43% at R1, and remained elevated throughout the entire recovery period in E only. Hsp70 expression was also assessed in individual muscle fiber types I, IIA, and IIAX/IIX by immunohistochemistry. There were no fiber type differences (P > 0.05) in basal Hsp70 expression. Immediately after exercise, Hsp70 expression was increased (P < 0.05) in type I fibers by approximately 87% but was unchanged (P > 0.05) in type II fibers (Pre vs. Post). At R1 and throughout recovery, Hsp70 content in E was increased above basal levels (P < 0.05) in all fiber types, but Hsp70 expression was always highest (P < 0.05) in type I fibers. Hsp70 content in C was not different from Pre at any time throughout recovery. Glycogen depletion was observed at Post in all type II, but not type I, fibers, suggesting that the fiber type differences in exercise-induced Hsp70 expression were not related to glycogen availability. These results demonstrate that the time course of exercise-induced Hsp70 expression in human skeletal muscle is fiber type specific.

  5. 4-Phenylbutyrate stimulates Hsp70 expression through the Elp2 component of elongator and STAT-3 in cystic fibrosis epithelial cells.

    PubMed

    Suaud, Laurence; Miller, Katelyn; Panichelli, Ashley E; Randell, Rachel L; Marando, Catherine M; Rubenstein, Ronald C

    2011-12-30

    Sodium 4-phenylbutyrate (4PBA) corrects trafficking of ΔF508-CFTR in Cystic Fibrosis (CF) epithelia, which is hypothesized to, at least in part, result from increased expression of Hsp70 (stress-induced 70 kDa heat shock protein). To identify other 4PBA-regulated proteins that may promote correction of ΔF508 trafficking, we performed differential display RT-PCR on mRNA from IB3-1 CF bronchiolar epithelial cells treated for 0-24 h with 1 mM 4PBA. In this screen, a STAT-3 (signal transducer and activator of transcription-3)-interacting protein, StIP-1 that regulates STAT-3 activation had transiently increased expression. StIP-1 is identical to Elongator protein 2 (Elp2), a component of the Elongator complex that regulates RNA polymerase II. Previous studies have suggested that Elongator regulates Hsp70 mRNA transcription, and that the Hsp70 promoter contains functional STAT-3-binding sites. We therefore tested the hypothesis that 4PBA increases Hsp70 expression by an Elongator- and STAT-3-dependent mechanism. 4PBA treatment of IB3-1 CF bronchiolar epithelial cells caused transiently increased expression of Hsp70 protein, as well as Elp2 protein and mRNA. Elp2 depletion by transfection of small interfering RNAs, reduced both Elp2 and Hsp70 protein expression. 4PBA also caused transient activation of STAT-3, and increased abundance of nuclear proteins that bind to the STAT-3-responsive element of the Hsp70 promoter. Luciferase reporter assays demonstrated that both Elp2 overexpression and 4PBA increase Hsp70 promoter activity, while Elp2 depletion blocked the ability of 4PBA to stimulate Hsp70 promoter activity. Together, these data suggest that Elp2 and STAT-3 mediate, at least in part, the stimulation of Hsp70 expression by 4PBA.

  6. 4-Phenylbutyrate Stimulates Hsp70 Expression through the Elp2 Component of Elongator and STAT-3 in Cystic Fibrosis Epithelial Cells*

    PubMed Central

    Suaud, Laurence; Miller, Katelyn; Panichelli, Ashley E.; Randell, Rachel L.; Marando, Catherine M.; Rubenstein, Ronald C.

    2011-01-01

    Sodium 4-phenylbutyrate (4PBA) corrects trafficking of ΔF508-CFTR in Cystic Fibrosis (CF) epithelia, which is hypothesized to, at least in part, result from increased expression of Hsp70 (stress-induced 70 kDa heat shock protein). To identify other 4PBA-regulated proteins that may promote correction of ΔF508 trafficking, we performed differential display RT-PCR on mRNA from IB3-1 CF bronchiolar epithelial cells treated for 0–24 h with 1 mm 4PBA. In this screen, a STAT-3 (signal transducer and activator of transcription-3)-interacting protein, StIP-1 that regulates STAT-3 activation had transiently increased expression. StIP-1 is identical to Elongator protein 2 (Elp2), a component of the Elongator complex that regulates RNA polymerase II. Previous studies have suggested that Elongator regulates Hsp70 mRNA transcription, and that the Hsp70 promoter contains functional STAT-3-binding sites. We therefore tested the hypothesis that 4PBA increases Hsp70 expression by an Elongator- and STAT-3-dependent mechanism. 4PBA treatment of IB3-1 CF bronchiolar epithelial cells caused transiently increased expression of Hsp70 protein, as well as Elp2 protein and mRNA. Elp2 depletion by transfection of small interfering RNAs, reduced both Elp2 and Hsp70 protein expression. 4PBA also caused transient activation of STAT-3, and increased abundance of nuclear proteins that bind to the STAT-3-responsive element of the Hsp70 promoter. Luciferase reporter assays demonstrated that both Elp2 overexpression and 4PBA increase Hsp70 promoter activity, while Elp2 depletion blocked the ability of 4PBA to stimulate Hsp70 promoter activity. Together, these data suggest that Elp2 and STAT-3 mediate, at least in part, the stimulation of Hsp70 expression by 4PBA. PMID:22069317

  7. Hsp70 in the atrial neuroendocrine units of the snail, Achatina fulica.

    PubMed

    Martynova, M G; Bystrova, O A; Shabelnikov, S V; Margulis, B A; Prokofjeva, D S

    2007-04-01

    Heat shock proteins (Hsps) are evolutionary conserved peptides well known as molecular chaperones and stress proteins. Elevated levels of extracellular Hsps in blood plasma have been observed during the stress responses and some diseases. Information on the cellular sources of extracellular Hsps and mechanisms regulating their release is still scanty. Here we showed the presence and localization of Hsp70 in the neuroendocrine system in the atrium of the snail, Achatina fulica. The occurrence of the peptide in snail atrium lysate was detected by Western blot analysis. Immunoperoxidase and immunogold staining demonstrated that Hsp70-immunoreactivity is mainly confined to the peculiar atrial neuroendocrine units which are formed by nerve fibers tightly contacted with large granular cells. Immunolabelling intensity differed in morphologically distinct types of secretory granules in the granular cells. The pictures of exocytosis of Hsp70-immunolabeled granules from the granular cells were observed. In nerve bundles, axon profiles with Hsp70-immunoreactive and those with non-immunoreactive neurosecretory granules were found. In addition, Hsp70-like material was also revealed in the granules of glia-interstitial cells that accompanied nerve fibers. Our findings provide an immuno-morphological basis for a role of Hsp70 in the functioning of the neuroendocrine system in the snail heart, and show that the atrial granular cells are a probable source of extracellular Hsp70 in the snail hemolymph.

  8. Biochemical changes in response to intensive resistance exercise training in the elderly.

    PubMed

    Bautmans, Ivan; Njemini, Rose; Vasseur, Sabine; Chabert, Hans; Moens, Lisa; Demanet, Christian; Mets, Tony

    2005-01-01

    It is assumed that low-grade inflammation, characterized by increased circulating IL-6 and TNF-alpha, is related to the development of sarcopenia. Physical exercise, especially high intensity resistance training, has been shown to be effective in restoring the strength deficit in the elderly. Intensive exercise is accompanied by significant release of IL-6 and TNF-alpha into the blood circulation, but does not result in muscle wasting. Exercise-induced changes in heat-shock protein (Hsp), responsible for cellular protection during stressful situations, might interfere with the acute phase reaction and muscle adaptation. To investigate if intensive strength training in elderly persons induces changes in Hsp70 expression, and if these changes are related to changes in the acute phase reaction or muscle adaptation. 31 elderly persons (aged 68.4+/-5.4 years) performed 6 weeks' intensive strength training. At baseline and after 6 weeks, muscle strength, functional performance (physical activity profile, 6-min walk, 30- second chair stand, grip strength, chair sit & reach and back scratch), linear isokinetic leg extension, circulating IL-6, TNF-alpha, IL-10 and TGF-beta, and Hsp70 in monocytes (M) and lymphocytes (L) immediately after sampling (IAS), after incubation at 37 and 42 degrees C were determined. In 12 participants, cytokines were determined in untrained and trained conditions before and after a single training session. After 6 weeks' training, muscle strength and functional performance improved significantly, together with decreased Hsp70 IAS and Hsp70 37 degrees C and increased Hsp70 42 degrees C (all p<0.05). Strength gains correlated positively with baseline Hsp70 37 degrees C and training-induced changes of Hsp70 42 degrees C in M and L. In an untrained condition, training induced an increase of IL-6 (p<0.05) and a tendency of IL-10 to decrease (p=0.06). In a trained condition the decrease of IL-10 disappeared. Baseline physical activity and 6-min walk distance correlated negatively with circulating IL-6 (p<0.05); except for a negative correlation between TGF-beta and Hsp70 37 degrees C L (p<0.05), no significant relationships were found between cytokines and Hsp70. After the training program, Hsp70 37 degrees C was negatively related to circulating TNF-alpha, IL-10 and TGF-beta. Strength training in the elderly induces changes in Hsp70 expression, associated to strength gains and circulating cytokines. Copyright (c) 2005 S. Karger AG, Basel.

  9. Immunogenicity of HSP-70, KMP-11 and PFR-2 leishmanial antigens in the experimental model of canine visceral leishmaniasis.

    PubMed

    Carrillo, Eugenia; Crusat, Martín; Nieto, Javier; Chicharro, Carmen; Thomas, Maria del Carmen; Martínez, Enrique; Valladares, Basilio; Cañavate, Carmen; Requena, Jose María; López, Manuel Carlos; Alvar, Jorge; Moreno, Javier

    2008-03-28

    Zoonotic visceral leishmaniasis (ZVL) is a parasitic disease caused by Leishmania infantum/L. chagasi that is emerging as an important medical and veterinary problem. Dogs are the domestic reservoir for this parasite and, therefore, the main target for controlling the transmission to humans. In the present work, we have evaluated the immunogenicity of the Leishmania infantum heat shock protein (HSP)-70, paraflagellar rod protein (PFR)-2 and kinetoplastida membrane protein (KMP)-11 recombinant proteins in dogs experimentally infected with the parasite. We have shown that peripheral blood mononuclear cells (PBMC) from experimentally infected dogs proliferated in response to these recombinant antigens and against the soluble leishmanial antigen (SLA). We have also quantified the mRNA expression level of the cytokines induced in PBMC upon stimulation with the HSP-70, PFR-2 and KMP-11 proteins. These recombinant proteins induced an up-regulation of IFN-gamma. HSP-70 and PFR-2 also produced an increase of the TNF-alpha transcripts abundance. No measurable induction of IL-10 was observed and low levels of IL-4 mRNA were produced in response to the three mentioned recombinant antigens. Serum levels of specific antibodies against HSP-70, PFR-2 and KMP-11 recombinant proteins were also determined in these animals. Our study showed that HSP-70, KMP-11 and PFR-2 proteins are recognized by infected canines. Furthermore, these antigens produce a Th1-type immune response, suggesting that they may be involved in protection. The identification as vaccine candidates of Leishmania antigens that elicit appropriate immune responses in the canine model is a key step in the rational approach to generate a vaccine for canine visceral leishmaniasis.

  10. Overexpression of Three Heat Shock Proteins Protects Monochamus alternatus (Coleoptera: Cerambycidae) From Thermal Stress

    PubMed Central

    Cai, Ziling; Chen, Jingxiang; Cheng, Jie

    2017-01-01

    Abstract Ambient temperature is an important factor limiting the abundance and distribution of insects, and heat shock protein (Hsp) gene expression is sensitive to extremes of cold and heat. In order to explore the role of Hsps during thermal stress and development in Monochamus alternatus Hope (Coleoptera: Cerambycidae), we cloned and characterized full-length Hsp genes, including MaHsp60, MaHsp70, and MaHsp90. M. alternatus were exposed to different temperatures (−15, −5, 5, 15, 25, 35, and 40℃) for 1 h and was allowed to recover at 25℃ for 1 h. Following the treatments, we investigated the expression of the Hsps by quantitative real-time polymerase chain reaction. In third instar larvae, MaHsp60, MaHsp70, and MaHsp90 expression was upregulated in response to cold and heat, but the three Hsps were especially sensitive to heat, specifically at 35℃ and 40℃. After heating M. alternatus to 35℃, the expression of MaHsp60, MaHsp70, and MaHsp90 was higher than at 5℃ and 25℃ in nearly all developmental stages. MaHsp60, MaHsp70, and MaHsp90 expression was highest in later pupal, early adult, and early adult stages, respectively. These results suggest that compared with normal ambient temperatures, thermal stress could induce high expression of the three Hsps.

  11. Environmental endocrine disruption in decapod crustacean larvae: hormone titers, cytochrome P450, and stress protein responses to heptachlor exposure.

    PubMed

    Snyder, M J; Mulder, E P

    2001-11-12

    A variety of enzymes and other proteins are produced by organisms in response to xenobiotic exposures. Cytochrome P450s (CYP) are one of the major phase I-type classes of detoxification enzymes found in terrestrial and aquatic organisms ranging from bacteria to vertebrates. One of the primary functions of stress proteins (HSPs) is to aid in the recovery of damaged proteins by chaperoning their refolding. These and other biomarkers of xenobiotic exposure and resulting effects have not been studied in crustacean larvae. This information is of potential importance for environmental management and risk assessment. In this work, we have given Homarus americanus larvae single 24 h exposures to the cyclodiene pesticide heptachlor, a known environmental endocrine disruptor (EDC) on different days of the 1st larval instar. We followed these larvae during the first larval stage for effects on timing of ecdysis to 2nd stage, ecdysteroid molting hormone titers, and alterations in the levels of cytochrome P450 CYP45 and HSP70 proteins. Delays in ecdysis were correlated with alterations in ecdysteroid levels. This result provides clues that this pesticide may function as an environmental endocrine disruptor in crustaceans. CYP45 and HSP70 levels were significantly elevated for several days following heptachlor exposure. The elevation in HSP70 was prolonged depending on the day of pesticide exposure and this was directly related to the increase in mortality. These results demonstrate the utility of these measurements as potential biomarkers in crustacean larval developmental toxicology and EDC effects research.

  12. Stress proteins hsp60 and hsp70 in three species of amphipods exposed to cadmium, diazinon, dieldrin and fluoranthene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werner, I.; Nagel, R.

    1997-11-01

    To investigate the use of stress proteins hsp60 and hsp70 as sublethal biomarkers for contaminant exposure in sediments, two infaunal (Ampelisca abdita, estuarine; Rhepoxynius abronius, marine) and one epifaunal (Hyalella azteca, freshwater) amphipod species were exposed for 24 h to solutions of the heavy metal cadmium, the pesticides diazinon and dieldrin, and the polycyclic aromatic hydrocarbon fluoranthene. All three species are routinely used in standard sediment toxicity tests. Analysis of hsp60 and hsp70 was performed using western blotting techniques with subsequent comparative quantification by densitometry. Results demonstrated compound and species-specific induction of stress protein synthesis. Whereas one member of themore » hsp70 protein family showed the most sensitive response to xenobiotic compounds in H. azteca, several members of the hsp60 protein family were the main proteins induced in A. abdita and R. abronius. Sensitivity of the detected stress protein response was highest in H. azteca with significant effects at concentrations 110-, 50-, >1,000-, and >1-fold lower than LC50 values for cadmium, diazinon, dieldrin, and fluoranthene, respectively. The corresponding values were >5 (cadmium), 0.7 (diazinon), >1 (dieldrin), and 2.9 (fluoranthene) for A. abdita, and >2 (cadmium), 3.1 (diazinon), > 100 (dieldrin), and >2.9 (fluoranthene) for R. abronius.« less

  13. Phenotypic Plasticity of HSP70s Gene Expression during Diapause: Signs of Evolutionary Responses to Cold Stress among Soybean Pod Borer Populations (Leguminivora glycinivorella) in Northeast of China

    PubMed Central

    Han, Lanlan; Fan, Dong; Zhao, Kuijun

    2014-01-01

    The soybean pod borer (Leguminivora glycinivorella Matsumura) successfully survives the winter because of its high expression of 70-kDa heat shock proteins (HSP70s) during its overwintering diapause. The amount of HSP70s is different under different environmental stresses. In this study, inducible heat shock protein 70 and its constitutive heat shock cognate 70 were cloned by RT-PCR and RACE. These genes were named Lg-hsp70 and Lg-hsc70, respectively. Gene transcription and protein expression after cold stress treatment (5°C to −5°C) were analyzed by western blotting and by qRT-PCR for four populations that were sampled in the northeast region of China, including Shenyang, Gongzhuling, Harbin and Heihe, when the soybean pod borer was in diapause. As the cold shock temperature decreased, the levels of Lg-HSP70s were significantly up-regulated. The amount of cold-induced Lg-HSP70s was highest in the southernmost population (Shenyang, 41°50′N) and lowest in the northernmost population (Heihe, 50°22′N). These results support the hypothesis that the soybean pod borer in the northeast region of China displays phenotypic plasticity, and the accumulation of Lg-HSP70s is a strategy for overcoming environmental stress. These results also suggest that the induction of HSP70 synthesis, which is a complex physiological adaptation, can evolve quickly and inherit stability. PMID:25330365

  14. Molecular characteristics of the HSP70 gene and its differential expression in female and male golden apple snails (Pomacea canaliculata) under temperature stimulation.

    PubMed

    Song, Hong-Mei; Mu, Xi-Dong; Gu, Dang-En; Luo, Du; Yang, Ye-Xin; Xu, Meng; Luo, Jian-Ren; Zhang, Jia-En; Hu, Yin-Chang

    2014-07-01

    Heat-shock protein 70 (HSP70) is one of the most important heat-shock proteins that helps organisms to modulate stress response via over-expression. The HSP70 gene from Pomacea canaliculata was cloned using the RACE approach; the gene is 2,767 bp in length and contains an open reading frame of 1,932 bp, which is encoded by a polypeptide of 643 amino acids. BLAST analysis showed that the predicted amino acid sequence of the P. canaliculata HSP70 gene shared a relatively high similarity with that of other known eukaryotic species that display conserved HSP characteristics. The phylogeny demonstrated a separate clustering of the apple snail HSP70 with other constitutive members from other mollusk species. Quantitative real-time RT-PCR was used to detect the differential expression of HSP70 in both sexes of P. canaliculata at different temperature conditions. These results showed that HSP70 transcript levels decreased slightly under cold shock and increased significantly under heat-shock conditions in both sexes compared to normal temperatures (26 °C). Under cold-shock treatment, the sex effect was not significant. With heat treatment, HSP70 expression could be induced at 36 °C in both females and males, and it peaked at 42 and 39 °C in females and males, respectively. In addition, a clear time-dependent HSP70 expression pattern of the apple snail exposed to the same high temperature (36 °C) was observed at different time points. The maximal induction of HSP70 expression appeared at 12 and 48 h in males and females after heat shock, respectively. The maximal induction in females was significantly higher compared to males under heat stimulus. Taken together, these results strongly suggested that males were more susceptible to heat than females and provided useful molecular information for the ecological adaptability of P. canaliculata against extreme environmental stress.

  15. Intracellular proteins produced by mammalian cells in response to environmental stress

    NASA Technical Reports Server (NTRS)

    Goochee, Charles F.; Passini, Cheryl A.

    1988-01-01

    The nature of the response of mammalian cells to environmental stress is examined by reviewing results of studies where cultured mouse L cells and baby hamster kidney cells were exposed to heat shock and the synthesis of heat-shock proteins and stress-response proteins (including HSP70, HSC70, HSP90, ubiquitin, and GRP70) in stressed and unstressed cells was evaluated using 2D-PAGE. The intracellular roles of the individual stress response proteins are discussed together with the regulation of the stress response system.

  16. Synergistic skin heat shock protein expression in response to combined laser treatment with a diode laser and ablative fractional lasers.

    PubMed

    Paasch, Uwe; Sonja, Grunewald; Haedersdal, Merete

    2014-06-01

    Diode laser-based skin heating has been shown to minimise scars by interfering with wound healing responses through the induction of heat shock proteins (HSP). HSP are also induced after ablative fractional laser (AFXL) wound healing. AFXL itself is highly recommended for scar treatment. Therefore, the sequential combination of both modalities may produce superior outcomes. The aim of this study was to examine the pretreatment effects of a diode laser before AFXL on wound healing responses in terms of HSP up-regulation in an in vitro model. Immediate responses and responses on days 1, 3 or 6 post-procedure were studied in an in vitro porcine skin model (n = 240). Untreated samples served as control. Immunohistochemical investigation (Hsp70) was performed in all untreated controls, diode laser-, AFXL-, and in diode laser + AFXL-treated samples. Hsp70 was shown to be up-regulated by all interventions between days 1 and 6 after interventions. The largest effect was caused by the combination of a diode laser and an AFXL procedure. Diode laser exposure induces a skin HSP response that can be further enhanced by sequential AFXL treatment. Clinical studies are necessary to investigate the dose response of HSP on scar formation and refine suitable laser exposure settings.

  17. HSP90, HSPA8, HIF-1 alpha and HSP70-2 polymorphisms in breast cancer: a case-control study.

    PubMed

    Zagouri, Flora; Sergentanis, Theodoros N; Gazouli, Maria; Tsigginou, Alexandra; Dimitrakakis, Constantine; Papaspyrou, Irene; Eleutherakis-Papaiakovou, Evaggelos; Chrysikos, Dimosthenis; Theodoropoulos, George; Zografos, George C; Antsaklis, Aris; Dimopoulos, Athanassios-Meletios; Papadimitriou, Christos A

    2012-12-01

    This case control study aims to investigate the role of HSP90 Gln488His (C > G), HSP70-2 P1/P2, HIF-1 alpha C1772T and HSPA8 intronic 1541-1542delGT polymorphisms as potential risk factors and/or prognostic markers for breast cancer. 113 consecutive incident cases of histologically confirmed ductal breast cancer and 124 healthy cases were recruited. The above mentioned polymorphisms were genotyped; multivariate logistic regression was performed. HSP90 GG (His/His) genotype was associated with elevated breast cancer risk. Similarly, the allele dose-response model pointed to increase in breast cancer risk per G allele. HSP70-2 P1/P2, HSPA8 intronic 1541-1542delGT and HIF-1 alpha polymorphisms were not associated with breast cancer risk, as evidenced by the dose-response allele models. The positive association between HSP90 G allele and breast cancer risk seemed to pertain to both premenopausal and postmenopausal women. With respect to survival analysis, none of the aforementioned polymorphisms was associated with either disease-free survival or overall survival. HSP90α Gln488His polymorphism seems to be a risk factor for breast cancer. On the other hand, our study did not point to excess risk conferred by HSPA8 1541-1542delGT, Hsp70-2 P1/P2 and HIF-1α C1772T.

  18. Peripheral T-Cell Reactivity to Heat Shock Protein 70 and Its Cofactor GrpE from Tropheryma whipplei Is Reduced in Patients with Classical Whipple's Disease

    PubMed Central

    Trotta, Lucia; Weigt, Kathleen; Schinnerling, Katina; Geelhaar-Karsch, Anika; Oelkers, Gerrit; Biagi, Federico; Corazza, Gino Roberto; Allers, Kristina; Schneider, Thomas; Erben, Ulrike

    2017-01-01

    ABSTRACT Classical Whipple's disease (CWD) is characterized by the lack of specific Th1 response toward Tropheryma whipplei in genetically predisposed individuals. The cofactor GrpE of heat shock protein 70 (Hsp70) from T. whipplei was previously identified as a B-cell antigen. We tested the capacity of Hsp70 and GrpE to elicit specific proinflammatory T-cell responses. Peripheral mononuclear cells from CWD patients and healthy donors were stimulated with T. whipplei lysate or recombinant GrpE or Hsp70 before levels of CD40L, CD69, perforin, granzyme B, CD107a, and gamma interferon (IFN-γ) were determined in T cells by flow cytometry. Upon stimulation with total bacterial lysate or recombinant GrpE or Hsp70 of T. whipplei, the proportions of activated effector CD4+ T cells, determined as CD40L+ IFN-γ+, were significantly lower in patients with CWD than in healthy controls; CD8+ T cells of untreated CWD patients revealed an enhanced activation toward unspecific stimulation and T. whipplei-specific degranulation, although CD69+ IFN-γ+ CD8+ T cells were reduced upon stimulation with T. whipplei lysate and recombinant T. whipplei-derived proteins. Hsp70 and its cofactor GrpE are immunogenic in healthy individuals, eliciting effective responses against T. whipplei to control bacterial spreading. The lack of specific T-cell responses against these T. whipplei-derived proteins may contribute to the pathogenesis of CWD. PMID:28559404

  19. Peripheral T-Cell Reactivity to Heat Shock Protein 70 and Its Cofactor GrpE from Tropheryma whipplei Is Reduced in Patients with Classical Whipple's Disease.

    PubMed

    Trotta, Lucia; Weigt, Kathleen; Schinnerling, Katina; Geelhaar-Karsch, Anika; Oelkers, Gerrit; Biagi, Federico; Corazza, Gino Roberto; Allers, Kristina; Schneider, Thomas; Erben, Ulrike; Moos, Verena

    2017-08-01

    Classical Whipple's disease (CWD) is characterized by the lack of specific Th1 response toward Tropheryma whipplei in genetically predisposed individuals. The cofactor GrpE of heat shock protein 70 (Hsp70) from T. whipplei was previously identified as a B-cell antigen. We tested the capacity of Hsp70 and GrpE to elicit specific proinflammatory T-cell responses. Peripheral mononuclear cells from CWD patients and healthy donors were stimulated with T. whipplei lysate or recombinant GrpE or Hsp70 before levels of CD40L, CD69, perforin, granzyme B, CD107a, and gamma interferon (IFN-γ) were determined in T cells by flow cytometry. Upon stimulation with total bacterial lysate or recombinant GrpE or Hsp70 of T. whipplei , the proportions of activated effector CD4 + T cells, determined as CD40L + IFN-γ + , were significantly lower in patients with CWD than in healthy controls; CD8 + T cells of untreated CWD patients revealed an enhanced activation toward unspecific stimulation and T. whipplei -specific degranulation, although CD69 + IFN-γ + CD8 + T cells were reduced upon stimulation with T. whipplei lysate and recombinant T. whipplei -derived proteins. Hsp70 and its cofactor GrpE are immunogenic in healthy individuals, eliciting effective responses against T. whipplei to control bacterial spreading. The lack of specific T-cell responses against these T. whipplei -derived proteins may contribute to the pathogenesis of CWD. Copyright © 2017 American Society for Microbiology.

  20. Chaperokine-induced signal transduction pathways.

    PubMed

    Asea, Alexzander

    2003-01-01

    A turning point in understanding the function of heat shock proteins (HSP) on components of the immune system has now begun. From their original description as intracellular molecular chaperones of naïve, aberrantly folded or mutated proteins and primarily involved in cytoprotection in response to stressful stimuli, in recent years, new functions of HSP have been revealed. Strong evidence now exists demonstrating that the seventy-kDa heat shock protein (HSP70) exits mammalian cells not only following necrotic cell death but also by a process involving its active release in response to stresses including cytokines, acute psychological stress and exercise. The released extracellular HSP70 interacts with cells of the immune system and exerts immunoregulatory effects--known as the chaperokine activity of HSP70. The chaperokine activity of HSP70 is mediated in part by utilizing surface receptors for both Toll-like receptor-2 (TLR2; receptor for Gram-positive bacteria) and TLR4 (receptor for Gram-negative bacteria) in a CD14-dependent fashion. These findings suggest an important role for heat shock proteins in host protection against pathogenic infection. This review will briefly discuss chaperokine-induced signaling and its relevance to infection and exercise.

  1. Chaperokine-Induced Signal Transduction Pathways

    PubMed Central

    Asea, Alexzander

    2007-01-01

    A turning point in understanding the function of heat shock proteins (HSP) on components of the immune system has now begun. From their original description as intracellular molecular chaperones of naïve, aberrantly folded or mutated proteins and primarily involved in cytoprotection in response to stressful stimuli, in recent years, new functions of HSP have been revealed. Strong evidence now exists demonstrating that the seventy-kDa heat shock protein (HSP70) exits mammalian cells not only following necrotic cell death but also by a process involving its active release in response to stresses including cytokines, acute psychological stress and exercise. The released extracellular HSP70 interacts with cells of the immune system and exerts immunoregulatory effects - known as the chaperokine activity of HSP70. The chaperokine activity of HSP70 is mediated in part by utilizing surface receptors for both Toll-like receptor-2 (TLR2; receptor for Gram-positive bacteria) and TLR4 (receptor for Gram-negative bacteria) in a CD14-dependent fashion. These findings suggest an important role for heat shock proteins in host protection against pathogenic infection. This review will briefly discuss chaperokine-induced signaling and its relevance to infection and exercise. PMID:14686091

  2. Rapid, transient, and dose-dependent expression of Hsp70 messenger RNA in the rat brain after morphine treatment

    PubMed Central

    Ammon-Treiber, Susanne; Grecksch, Gisela; Stumm, Ralf; Riechert, Uta; Tischmeyer, Helga; Reichenauer, Anke; Höllt, Volker

    2004-01-01

    Induction of Hsp70 in the brain has been reported after intake of drugs of abuse like amphetamine and lysergic acid diethylamide. In this investigation, gene expression of Hsp70 and other heat shock genes in the rat brain was studied in response to morphine. Twenty milligrams per kilogram morphine intraperitoneally resulted in a marked induction of Hsp70 messenger RNA (mRNA) expression in the frontal cortex with a maximum increase of 13.2-fold after 2 hours. A moderate increase of Hsp27 mRNA expression (6.7-fold) could be observed after 4 hours, whereas mRNA expression of Hsp90 and of the constitutive Hsc70 did not exceed a mean factor of 1.8-fold during the 24 hours interval. The increase in Hsp70 mRNA was dose dependent, showing a significant elevation after doses ranging from 10 to 50 mg/kg morphine. In situ hybridization revealed enhanced Hsp70 mRNA expression mainly in cortical areas, in the hippocampus, in the paraventricular and supraoptic nuclei of the hypothalamus, in the locus coeruleus, as well in the pineal body. The double in situ hybridization technique revealed increased Hsp70 mRNA expression mainly in VGLUT1-positive neurons and to a lesser extent in olig1-positive oligodendroglia. Immunohistochemistry revealed a marked increase of Hsp70 protein in neuronal cells and blood vessels after 12 hours. In contrast to animal experiments, morphine did not increase Hsp70 mRNA expression in vitro in μ-opioid receptor (MOR1)–expressing human embryonic kidney 293 cells, suggesting no direct MOR1-mediated cellular effect. To exclude a body temperature–related morphine effect on Hsp70 mRNA expression, the temperature was recorded. Five to 20 mg/kg resulted in hyperthermia (maximum 40.6°), whereas a high dose (50 mg/kg) that produced the highest mRNA induction, showed a clear hypothermia (minimum 37.2°C). These findings argue against the possibility that Hsp70 induction by morphine is caused by its effect on body temperature. It may be speculated that increased expression of Hsp70 after morphine application protects brain structures against potentially hazardous effects of opiates. PMID:15497504

  3. Vitamin D receptor-modulated Hsp70/AT1 expression may protect the kidneys of SHRs at the structural and functional levels.

    PubMed

    García, Isabel Mercedes; Altamirano, Liliana; Mazzei, Luciana; Fornés, Miguel; Cuello-Carrión, Fernando Darío; Ferder, León; Manucha, Walter

    2014-07-01

    Previous hypertension studies have shown that low levels of vitamin D are linked to elevated renin-angiotensin system. The heat shock protein 70 regulates signaling pathways for cellular oxidative stress responses. Hsp70 has been shown to protect against angiotensin II-induced hypertension and exert a cytoprotective effect. Here, we wanted to evaluate whether the vitamin D receptor (VDR) associated with Hsp70/AT1 expression may be involved in the mechanism by which paricalcitol provides renal protection in spontaneously hypertensive rats (SHRs). One-month-old female SHRs were treated for 4 months with vehicle, paricalcitol, enalapril, or a combination of both paricalcitol and enalapril. The following were determined: blood pressure; biochemical parameters; fibrosis; apoptosis; mitochondrial morphology; and VDR, AT1 receptor, and Hsp70 expression in the renal cortex. Blood pressure was markedly reduced by enalapril or the combination but not by paricalcitol alone. However, VDR activation, enalapril or combination, prevented fibrosis, the number of TUNEL-positive apoptotic cells, mitochondrial damage, and NADPH oxidase activity in SHRs. Additionally, high AT1 receptor expression, like low Hsp70 expression (immunohistochemical/immunofluorescence studies), was reversed in the renal cortices of paricalcitol- and/or enalapril-treated animals (SHRs), and these changes were most marked in the combination therapy group. Finally, all of the recovery parameters were consistent with an improvement in VDR expression. Data suggest that Hsp70/AT1 modulated by VDR is involved in the mechanism by which paricalcitol provides renal protection in SHRs. We propose that low AT1 expression through VDR induction could be a consequence of the heat shock response Hsp70-mediated cell protection.

  4. Reactive oxygen species generated by a heat shock protein (Hsp) inducing product contributes to Hsp70 production and Hsp70-mediated protective immunity in Artemia franciscana against pathogenic vibrios.

    PubMed

    Baruah, Kartik; Norouzitallab, Parisa; Linayati, Linayati; Sorgeloos, Patrick; Bossier, Peter

    2014-10-01

    The cytoprotective role of heat shock protein (Hsp70) described in a variety of animal disease models, including vibriosis in farmed aquatic animals, suggests that new protective strategies relying upon the use of compounds that selectively turn on Hsp genes could be developed. The product Tex-OE® (hereafter referred to as Hspi), an extract from the skin of the prickly pear fruit, Opuntia ficus indica, was previously shown to trigger Hsp70 synthesis in a non-stressful situation in a variety of animals, including in a gnotobiotically (germ-free) cultured brine shrimp Artemia franciscana model system. This model system offers great potential for carrying out high-throughput, live-animal screens of compounds that have health benefit effects. By using this model system, we aimed to disclose the underlying cause behind the induction of Hsp70 by Hspi in the shrimp host, and to determine whether the product affects the shrimp in inducing resistance towards pathogenic vibrios. We provide unequivocal evidences indicating that during the pretreatment period with Hspi, there is an initial release of reactive oxygen species (hydrogen peroxide and/or superoxide anion), generated by the added product, in the rearing water and associated with the host. The reactive molecules generated are the triggering factors responsible for causing Hsp70 induction within Artemia. We have also shown that Hspi acts prophylactically at an optimum dose regimen to confer protection against pathogenic vibrios. This salutary effect was associated with upregulation of two important immune genes, prophenoloxidase and transglutaminase of the innate immune system. These findings suggest that inducers of stress protein (e.g. Hsp70) are potentially important modulator of immune responses and might be exploited to confer protection to cultured shrimp against Vibrio infection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Physical activity, muscle, and the HSP70 response.

    PubMed

    Kilgore, J L; Musch, T I; Ross, C R

    1998-06-01

    Selye (1936) described how organisms react to various external stimuli (i.e., stressors). These reactions generally follow a programmed series of events and help the organism adapt to the imposed stress. The heat shock response is a common cellular reaction to external stressors, including physical activity. A characteristic set of proteins is synthesised shortly after the organism is exposed to stress. Researchers have not determined how heat shock proteins affect the exercise response. However, their role in adaptation to exercise and training might be inferred, since the synthetic patterns correlate well with the stress adaptation syndrome that Selye described. This review addresses the 70 kilodalton heat shock protein family (HSP70), the most strongly induced heat shock proteins. This paper provides an overview of the general heat shock response and a brief review of literature on HSP70 function, structure, regulation, and potential applications. Potential applications in health, exercise, and medicine are provided.

  6. Lysosomal Rerouting of Hsp70 Trafficking as a Potential Immune Activating Tool for Targeting Melanoma

    PubMed Central

    Juhász, Kata; Thuenauer, Roland; Spachinger, Andrea; Duda, Ernő; Horváth, Ibolya; Vígh, László; Sonnleitner, Alois; Balogi, Zsolt

    2013-01-01

    Tumor specific cell surface localization and release of the stress inducible heat shock protein 70 (Hsp70) stimulate the immune system against cancer cells. A key immune stimulatory function of tumor-derived Hsp70 has been exemplified with the murine melanoma cell model, B16 overexpressing exogenous Hsp70. Despite the therapeutic potential mechanism of Hsp70 transport to the surface and release remained poorly understood. We investigated principles of Hsp70 trafficking in B16 melanoma cells with low and high level of Hsp70. In cells with low level of Hsp70 apparent trafficking of Hsp70 was mediated by endosomes. Excess Hsp70 triggered a series of changes such as a switch of Hsp70 trafficking from endosomes to lysosomes and a concomitant accumulation of Hsp70 in lysosomes. Moreover, lysosomal rerouting resulted in an elevated concentration of surface Hsp70 and enabled active release of Hsp70. In fact, hyperthermia, a clinically applicable approach triggered immediate active lysosomal release of soluble Hsp70 from cells with excess Hsp70. Furthermore, excess Hsp70 enabled targeting of internalized surface Hsp70 to lysosomes, allowing in turn heat-induced secretion of surface Hsp70. Altogether, we show that excess Hsp70 expressed in B16 melanoma cells diverts Hsp70 trafficking from endosomes to lysosomes, thereby supporting its surface localization and lysosomal release. Controlled excess-induced lysosomal rerouting and secretion of Hsp70 is proposed as a promising tool to stimulate anti-tumor immunity targeting melanoma. PMID:22920897

  7. Heat-shock protein 70 (Hsp70) expression in four limpets of the genus Lottia: interspecific variation in constitutive and inducible synthesis correlates with in situ exposure to heat stress.

    PubMed

    Dong, Yunwei; Miller, Luke P; Sanders, Jon G; Somero, George N

    2008-10-01

    Limpets of the genus Lottia occupy a broad vertical distribution on wave-exposed rocky shores, a range that encompasses gradients in the frequency and severity of thermal and desiccation stress brought on by aerial emersion. Using western blot analysis of levels of heat-shock protein 70 (Hsp70), we examined the heat-shock responses of four Lottia congeners: Lottia scabra and L. austrodigitalis, which occur in the high-intertidal zone, and L. pelta and L. scutum, which are restricted to the low- and mid-intertidal zones. Our results suggest distinct strategies of Hsp70 expression in limpets occupying different heights and orientations in the rocky intertidal zone. In freshly field-collected animals and in specimens acclimated at ambient temperature ( approximately 14 degrees C) for 14 days, the two high-intertidal species had higher constitutive levels of Hsp70 than the low- and mid-intertidal species. During aerial exposure to high temperatures, the two low-shore species and L. austrodigitalis exhibited an onset of Hsp70 expression at 28 degrees C; no induction of Hsp70 occurred in L. scabra. Our findings suggest that high-intertidal congeners of Lottia employ a "preparative defense" strategy involving maintenance of high constitutive levels of Hsp70 in their cells as a mechanism for protection against periods of extreme and unpredictable heat stress.

  8. Characterization and SNP variation analysis of a HSP70 gene from miiuy croaker and its expression as related to bacterial challenge and heat shock.

    PubMed

    Wei, Tao; Sun, Yuena; Shi, Ge; Wang, Rixin; Xu, Tianjun

    2012-09-01

    Heat shock proteins (HSPs) play crucial roles in the immune response of vertebrates. In order to study immune defense mechanism of heat shock protein gene in miiuy croaker (Miichthys miiuy), a cDNA encoding heat shock protein 70 (designated Mimi-HSP70) gene was cloned from miiuy croaker. The cDNA was 2195 bp in length, consisting of an open reading frame (ORF) of 1917 bp encoding a polypeptide of 638 amino acids with estimated molecular mass of 70.3 kDa and theoretical isoelectric point of 5.55. Genomic DNA structure analysis revealed that the Mimi-HSP70 gene contain no introns in coding region and four SNPs with 373 C/T, 789 G/A, 1005 C/T, and 1185 G/A were detected by direct sequencing of 20 samples from six different populations. BLAST analysis, structure comparison and phylogenetic analysis indicated that Mimi-HSP70 should be an inducible cytosolic member of the HSP70 family. The deduced amino acid sequence of Mimi-HSP70 had 82.4%-92.2% identity with those of vertebrate. A real-time quantitative RT-PCR demonstrated that the HSP70 gene was ubiquitously expressed in ten normal tissues. Under different temperature shock stress, the expression of Mimi-HSP70 gene in miiuy croaker increased at first and then decreased with the rise of temperature, finally, reached a maximum level in liver, spleen and kidney tissues. Infection of miiuy croaker with Vibrio anguillarum resulted in significant changes expression of Mimi-HSP70 gene in the immune-related tissues. These results indicated that expression analysis of Mimi-HSP70 gene provide theoretical basis to further study the mechanism of anti-adverseness in the miiuy croaker. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Coordinated Post-transcriptional Regulation of Hsp70.3 Gene Expression by MicroRNA and Alternative Polyadenylation*

    PubMed Central

    Tranter, Michael; Helsley, Robert N.; Paulding, Waltke R.; McGuinness, Michael; Brokamp, Cole; Haar, Lauren; Liu, Yong; Ren, Xiaoping; Jones, W. Keith

    2011-01-01

    Heat shock protein 70 (Hsp70) is well documented to possess general cytoprotective properties in protecting the cell against stressful and noxious stimuli. We have recently shown that expression of the stress-inducible Hsp70.3 gene in the myocardium in response to ischemic preconditioning is NF-κB-dependent and necessary for the resulting late phase cardioprotection against a subsequent ischemia/reperfusion injury. Here we show that the Hsp70.3 gene product is subject to post-transcriptional regulation through parallel regulatory processes involving microRNAs and alternative polyadenylation of the mRNA transcript. First, we show that cardiac ischemic preconditioning of the in vivo mouse heart results in decreased levels of two Hsp70.3-targeting microRNAs: miR-378* and miR-711. Furthermore, an ischemic or heat shock stimulus induces alternative polyadenylation of the expressed Hsp70.3 transcript that results in the accumulation of transcripts with a shortened 3′-UTR. This shortening of the 3′-UTR results in the loss of the binding site for the suppressive miR-378* and thus renders the alternatively polyadenylated transcript insusceptible to miR-378*-mediated suppression. Results also suggest that the alternative polyadenylation-mediated shortening of the Hsp70.3 3′-UTR relieves translational suppression observed in the long 3′-UTR variant, allowing for a more robust increase in protein expression. These results demonstrate alternative polyadenylation of Hsp70.3 in parallel with ischemic or heat shock-induced up-regulation of mRNA levels and implicate the importance of this process in post-transcriptional control of Hsp70.3 expression. PMID:21757701

  10. Differential GFP expression patterns induced by different heavy metals in Tg(hsp70:gfp) transgenic medaka (Oryzias latipes).

    PubMed

    Ng, Grace Hwee Boon; Xu, Hongyan; Pi, Na; Kelly, Barry C; Gong, Zhiyuan

    2015-06-01

    Heat shock protein 70 (Hsp70) is one of the most widely used biomarker for monitoring environment perturbations in biological systems. To facilitate the analysis of hsp70 expression as a biomarker, we generated a Tg(hsp70:gfp) transgenic medaka line in which green fluorescence protein (GFP) reporter gene was driven by the medaka hsp70 promoter. Here, we characterized Tg(hsp70:gfp) medaka for inducible GFP expression by seven environment-relevant heavy metals, including mercury, arsenic, lead, cadmium, copper, chromium, and zinc. We found that four of them (mercury, arsenic, lead, and cadmium) induced GFP expression in multiple and different organs. In general, the liver, kidney, gut, and skin are among the most frequent organs to show induced GFP expression. In contrast, no detectable GFP induction was observed to copper, chromium, or zinc, indicating that the transgenic line was not responsive to all heavy metals. RT-qPCR determination of hsp70 mRNA showed similar induction and non-induction by these metals, which also correlated with the levels of metal uptake in medaka exposed to these metals. Our observations suggested that these heavy metals have different mechanisms of toxicity and/or differential bioaccumulation in various organs; different patterns of GFP expression induced by different metals may be used to determine or exclude metals in water samples tested. Furthermore, we also tested several non-metal toxicants such as bisphenol A, 2,3,7,8-tetrachlorodibenzo-p-dioxin, 4-introphenol, and lindane; none of them induced significant GFP expression in Tg(hsp70:gfp) medaka, further suggesting that the inducibility of Tg(hsp70:gfp) for GFP expression is specific to a subset of heavy metals.

  11. Expression of HSP70 genes in skin of zebu (Tharparkar) and crossbred (Karan Fries) cattle during different seasons under tropical climatic conditions.

    PubMed

    Maibam, Uttarani; Hooda, O K; Sharma, P S; Mohanty, A K; Singh, S V; Upadhyay, R C

    2017-01-01

    Skin is most important environmental interface providing a protective envelope to animals. It's always under the influence of both internal and external stressors. Heat shock proteins (HSP) are highly conserved stress proteins which play crucial roles in environmental stress tolerance and thermal adaptation. Present study was planned to observe the relative mRNA expression of inducible (HSP70.1 and HSP70.2) and constitutive (HSP70.8) HSP in skin of zebu (Tharparkar) and crossbred (Karan Fries) cattle during different seasons. Skin biopsies were collected from rump region of each animal, aseptically during winter, spring and summer season. Quantitative real time polymerase chain reaction was performed to examine the gene expression of constitutive (HSP70.8) and inducible (HSP70.1 and HSP70.2) HSP in skin of both the breeds during different seasons. Present study observed higher expression of both constitutive and inducible HSP genes in both the breeds during summer and winter than spring season, but magnitude of increase was higher during summer than winter. During summer season, expression pattern of HSPs in skin showed breed differences, where constitutive HSP expression was higher in Tharparkar than Karan Fries and that of inducible HSP was higher in Karan Fries than Tharparkar. Hence, present study suggested that HSP may be conveniently used as biomarkers for assessing protective response of skin against heat stress in zebu and crossbred cattle. Variation in expression between breeds is associated with their heat tolerance and thermal adaptability. In summary, skin of zebu cattle (Tharparkar) is more resistant to summer stress than crossbred (Karan Fries), providing greater protection against heat stress during summer season. Superior skin protective mechanism of zebu (Tharparkar) than crossbred (Karan-Fries) cattle against heat stress may contribute to superior adaptability of zebu cattle to tropical climatic conditions than crossbreed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The Exported Chaperone PfHsp70x Is Dispensable for the Plasmodium falciparum Intraerythrocytic Life Cycle.

    PubMed

    Cobb, David W; Florentin, Anat; Fierro, Manuel A; Krakowiak, Michelle; Moore, Julie M; Muralidharan, Vasant

    2017-01-01

    Export of parasite proteins into the host erythrocyte is essential for survival of Plasmodium falciparum during its asexual life cycle. While several studies described key factors within the parasite that are involved in protein export, the mechanisms employed to traffic exported proteins within the host cell are currently unknown. Members of the Hsp70 family of chaperones, together with their Hsp40 cochaperones, facilitate protein trafficking in other organisms, and are thus likely used by P. falciparum in the trafficking of its exported proteins. A large group of Hsp40 proteins is encoded by the parasite and exported to the host cell, but only one Hsp70, P. falciparum Hsp70x (PfHsp70x), is exported with them. PfHsp70x is absent in most Plasmodium species and is found only in P. falciparum and closely related species that infect apes. Herein, we have utilized clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 genome editing in P. falciparum to investigate the essentiality of PfHsp70x. We show that parasitic growth was unaffected by knockdown of PfHsp70x using both the dihydrofolate reductase (DHFR)-based destabilization domain and the glmS ribozyme system. Similarly, a complete gene knockout of PfHsp70x did not affect the ability of P. falciparum to proceed through its intraerythrocytic life cycle. The effect of PfHsp70x knockdown/knockout on the export of proteins to the host red blood cell (RBC), including the critical virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1), was tested, and we found that this process was unaffected. These data show that although PfHsp70x is the sole exported Hsp70, it is not essential for the asexual development of P. falciparum . IMPORTANCE Half of the world's population lives at risk for malaria. The intraerythrocytic life cycle of Plasmodium spp. is responsible for clinical manifestations of malaria; therefore, knowledge of the parasite's ability to survive within the erythrocyte is needed to combat the deadliest agent of malaria, P. falciparum . An outstanding question in the field is how P. falciparum undertakes the essential process of trafficking its proteins within the host cell. In most organisms, chaperones such as Hsp70 are employed in protein trafficking. Of the Plasmodium species causing human disease, the chaperone PfHsp70x is unique to P. falciparum , and it is the only parasite protein of its kind exported to the host (S. Külzer et al., Cell Microbiol 14:1784-1795, 2012). This has placed PfHsp70x as an ideal target to inhibit protein trafficking and kill the parasite. However, we show that PfHsp70x is not required for export of parasite effectors and it is not essential for parasite survival inside the RBC.

  13. Age-related changes in HSP25 expression in basal ganglia and cortex of F344/BN rats

    PubMed Central

    Gupte, Anisha A.; Morris, Jill K.; Zhang, Hongyu; Bomhoff, Gregory L.; Geiger, Paige C.; Stanford, John A.

    2010-01-01

    Normal aging is associated with chronic oxidative stress. In the basal ganglia, oxidative stress may contribute to the increased risk of Parkinson's disease in the elderly. Neurons are thought to actively utilize compensatory defense mechanisms, such as heat shock proteins (HSPs), to protect from persisting stress. Despite their protective role, little is known about HSP expression in the aging basal ganglia. The purpose of this study was to examine HSP expression in striatum, substantia nigra, globus pallidus and cortex in 6-, 18- and 30-month-old Fischer 344/Brown Norway rats. We found robust age-related increases in phosphorylated and total HSP25 in each brain region studied. Conversely, HSP72 (the inducible form of HSP70) was reduced with age, but only in the striatum. p38 MAPK, a protein implicated in activating HSP25, did not change with age, nor did HSC70 (the constitutive form of HSP70), or HSP60. These results suggest that HSP25 is especially responsive to age-related stress in the basal ganglia. PMID:20144690

  14. Effects of cadmium on MAPK signalling pathways and HSP70 expression in a human trophoblast cell line.

    PubMed

    Valbonesi, P; Ricci, L; Franzellitti, S; Biondi, C; Fabbri, E

    2008-08-01

    The aim of this work was to provide a greater insight into the possible effects of Cd on signal transduction and stress-related pathways in reproductive tissues. Cd is a known placental toxin in both animals and humans. Our experiments were designed to study the influence of Cd on MAPK (ERK1/2, JNK1/2 and p38MAPK) activation in the extravillous trophoblast cell line, HTR-8/SVneo, used as an experimental model. We also studied the HSP70 response in cells exposed to Cd, since these proteins may have an important role in conferring protection and tolerance against teratogenic concentrations of the metal. The effects of Cd were compared with those of a well-known toxic agent, H2O2. The metal triggered MAPK activation in a dose- and time-dependent manner. At 30 microM Cd, stimulations of about 300%, 550% and 250% were observed for ERK1/2, JNK1/2, and p38MAPK, respectively. Phosphorylation of ERK1/2 and JNK1/2 was significantly induced after a 1-h exposure to 30 microM Cd, while that of p38MAPK occurred only after 8h. Similarly, H2O2 caused dose- and time-dependent activation of MAPK pathways. Cd potently stimulated HSP70 expression and that of related genes HSP70 A, B and C. H2O2 did not increase HSP70 and HSP70 A and B expression, while temporarily increasing HSP70C transcript levels. In conclusion, Cd triggers different stress responses in trophoblast cells involving HSP70 and SAPK, and also enhances ERK1/2 phosphorylation. Since MAPK dependent pathways play a crucial role during pregnancy, non-physiological activation by Cd exposure may disrupt normal functions in trophoblast cells.

  15. Comparative analysis of the interaction of HSPs in dendritic cells, macrophages, RGM-1 cells infected by Helicobacter pylori

    PubMed Central

    Yao, Yongliang; Wu, Jianhong; Gu, Tao; Cheng, Yang; Li, Guangxin

    2016-01-01

    Helicobacter pylori may cause chronic gastritis, even gastric cancer, however, antigen-presenting cells (APCs) are most important immune cells involved in the induction and expression of the underlying inflammatory responses to resist H. pylori. To study the interaction of HSPs in dendritic cells (DCs), macrophages and RGM-1 cells infected with H. pylori, HSP-27, HSP-60, HSP-70 and HSP-90 proteins were analyzed in the mucosa tissue or serum of gastritis patients caused by H. pylori, and in cell supernatant of DCs, macrophages, RGM-1 infected by H. pylori, or in above host cells. We found that HSP-27, HSP-60, HSP-70 and HSP-90 decreased in gastric epithelial cells, but increased significantly in DCs, macrophages. Meanwhile, inflammation associated proteins iNOS-2 and COX-2 were participated in the expression of HSPs in the process of host cells defensing against H. pylori infection. These findings contribute to understand the functions of HSP-27, HSP-60, HSP-70 and HSP-90 in H. pylori infection APCs and gastric epithelial cells indicating that HSPs would be diagnostic markers for H. pylori infection. PMID:27830002

  16. Hsp25 and Hsp70 in rodent tumors treated with doxorubicin and lovastatin

    PubMed Central

    Ciocca, Daniel R.; Rozados, Viviana R.; Carrión, F. Darío Cuello; Gervasoni, Silvia I.; Matar, Pablo; Scharovsky, O. Graciela

    2003-01-01

    Heat shock protein 27 (Hsp27) and Hsp70 have been involved in resistance to anticancer drugs in human breast cancer cells growing in vitro and in vivo. In this study, we examined the expression of Hsp25 (the rodent homologue to human Hsp27) and Hsp70 in 3 different rodent tumors (a mouse breast carcinoma, a rat sarcoma, and a rat lymphoma maintained by subcutaneous passages) treated in vivo with doxorubicin (DOX) and lovastatin (LOV). All tumors showed massive cell death under control untreated conditions, and this massive death increased after cytotoxic drug administration. In this study, we show that this death was due to classic apoptosis. The tumors also showed isolated apoptotic cells between viable tumor cells, and this occurred more significantly in the lymphoma. The tumor type that was more resistant to cell death was the sarcoma, and this was found in sarcomas growing both under control conditions and after cytotoxic drug administration. Moreover, sarcomas showed the highest expression levels of Hsp25 in the viable tumor cells growing under untreated conditions, and these levels increased after DOX and LOV administration. After drug treatment, only sarcoma tumor cells showed a significant increase in Hsp70. In other words, sarcomas were the tumors with lower cell death, displayed a competent Hsp70 and Hsp25 response with nuclear translocation, and had the highest levels of Hsp25. In sarcomas, Hsp25 and Hsp70 were found in viable tumor cells located around the blood vessels, and these areas showed the most resistant tumor cell phenotype after chemotherapy. In addition, Hsp25 expression was found in endothelial cells as unique feature revealed only in lymphomas. In conclusion, our study shows that each tumor type has unique features regarding the expression of Hsp25 and Hsp70 and that these proteins seem to be implicated in drug resistance mainly in sarcomas, making these model systems important to perform more mechanistic studies on the role of Hsps in resistance to certain cytotoxic drugs. PMID:12820652

  17. An in vitro model to consider the effect of 2 mM glutamine and KNK437 on endotoxin-stimulated release of heat shock protein 70 and inflammatory mediators.

    PubMed

    Marino, Luise V; Pathan, Nazima; Meyer, Rosan W; Wright, Victoria J; Habibi, Parviz

    2016-03-01

    Glutamine has been shown to promote the release of heat shock protein 70 (HSP70) both within experimental in vitro models of sepsis and in adults with septic shock. This study aimed to investigate the effects of 2 mM glutamine and an inhibitor of HSP70 (KNK437) on the release of HSP70 and inflammatory mediators in healthy adult volunteers. An in vitro whole blood endotoxin stimulation assay was used. The addition of 2 mM glutamine significantly increased HSP70 levels over time (P < 0.05). HSP70 release had a positive correlation at 4 h with IL-1 β (r = 0.51, P = 0.03) and an inverse correlation with TNF-α (r = -0.56, P = 0.02) and IL-8 levels (r = -0.52, P = 0.03), and there were no significant correlations between HSP70 and IL6 or IL-10 or glutamine. Glutamine supplementation significantly (P < 0.05) attenuated the release of IL-10 at 4 h and IL-8 at 24 h, compared with conditions without glutamine. In endotoxin-stimulated blood there were no significant differences in the release of IL-6, TNF-α, and IL-1 β with glutamine supplementation at 4 and 24 h. However, glutamine supplementation (2 mM) appeared to attenuate the release of inflammatory mediators (IL-1 β, IL-6, TNF-α), although this effect was not statistically significant. The addition of KNK437, a HSP70 inhibitor, significantly diminished HSP70 release, which resulted in lower levels of inflammatory mediators (P < 0.05). Glutamine supplementation promotes HSP70 release in an experimental model of sepsis. After the addition of KNK437, the effects of glutamine on HSP70 and inflammatory mediator release appear to be lost, suggesting that HSP70 in part orchestrates the inflammatory mediator response to sepsis. The clinical implications require further investigation. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Akt/FOXO3a signaling modulates the endothelial stress response through regulation of heat shock protein 70 expression.

    PubMed

    Kim, Hyo-Soo; Skurk, Carsten; Maatz, Henrike; Shiojima, Ichiro; Ivashchenko, Yuri; Yoon, Suk-Won; Park, Young-Bae; Walsh, Kenneth

    2005-06-01

    To identify new antiapoptotic targets of the PI3K-Akt signaling pathway in endothelial cells, adenovirus-mediated Akt1 gene transfer and oligonucleotide microarrays were used to examine Akt-regulated transcripts. DNA microarray analysis revealed that HSP70 expression underwent the greatest fold activation of 12,532 transcripts examined in human umbilical vein endothelial cells (HUVEC) transduced with constitutively active Akt1. Akt1 gene transfer increased HSP70 transcript expression by 24.8-fold as determined by quantitative PCR and promoted a dose-dependent up-regulation of HSP70 protein as determined by Western immunoblot analysis. Gene transfer of FOXO3a, a downstream target of Akt in endothelial cells, significantly suppressed both basal and stress-induced HSP70 protein expression. FOXO3a induced caspase-9-dependent apoptosis in HUVEC, and cotransduction with Ad-HSP70 rescued endothelial cells from FOXO3a-induced apoptosis under basal and stress conditions. Our results identify HSP70 as a new antiapoptotic target of Akt-FOXO3a signaling in endothelial cells that controls viability through modulation of the stress-induced intrinsic cell death pathway.

  19. Monitoring the change of mitochondrial morphology and its metabolism of the breast cancer cells with the treatment of Hsp70 inhibitor during heat shock by fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Yu, Biying; Yang, Hongqin; Zhang, Xiaoman; Li, Hui

    2016-10-01

    Heat shock (HS) is one of the best-studied exogenous cellular stresses, and all cellular compartments and metabolic processes are involved in HS response. The heat shock proteins (Hsps) expression enhanced during HS mainly localized in subcellular compartments, such as cytosol, endoplasmic reticulum and mitochandria. The major inducible heat shock protein 70 (Hsp70) modulate cellular homeostasis and promote cellular survival by blocking a caspase independent cell death through its association with apoptosis inducing factor. Mitochondria as the critical elements of HS response that participate in key metabolic reactions, and the changes in mitochonrial morphology may impact on mitochondrial metabolism. In this paper, the changes of mitorchondrial morphology in breast cancer cell have been monitored in real time after heat shock (43 °) by the fluorescence imaging, and the influence of Hsp70 inhibitor on mitochandrial structures have also been investigated. Then the information of mitochondrial metabolism which can be characterized by the level of the mitochondrial membrane potential has also been obtained wihout/with the treatment of Hsp70 inhibitor. Our data indicated that the mitochandrial morphology were related with the mitochandrial membrane potential, and the mitochandrial membrane potential was influenced significantly with the treatment of Hsp70 inhibitor during HS.

  20. Chromosomal inversions promote genomic islands of concerted evolution of Hsp70 genes in the Drosophila subobscura species subgroup.

    PubMed

    Puig Giribets, Marta; García Guerreiro, María Pilar; Santos, Mauro; Ayala, Francisco J; Tarrío, Rosa; Rodríguez-Trelles, Francisco

    2018-02-07

    Heat-shock (HS) assays to understand the connection between standing inversion variation and evolutionary response to climate change in Drosophila subobscura found that "warm-climate" inversion O 3+4 exhibits non-HS levels of Hsp70 protein like those of "cold-climate" O ST after HS induction. This was unexpected, as overexpression of Hsp70 can incur multiple fitness costs. To understand the genetic basis of this finding, we have determined the genomic sequence organization of the Hsp70 family in four different inversions, including O ST , O 3+4 , O 3+4+8 and O 3+4+16 , using as outgroups the remainder of the subobscura species subgroup, namely Drosophila madeirensis and Drosophila guanche. We found (i) in all the assayed lines, the Hsp70 family resides in cytological locus 94A and consists of only two genes, each with four HS elements (HSEs) and three GAGA sites on its promoter. Yet, in O ST , the family is comparatively more compact; (ii) the two Hsp70 copies evolve in concert through gene conversion, except in D. guanche; (iii) within D. subobscura, the rate of concerted evolution is strongly structured by inversion, being higher in O ST than in O 3+4 ; and (iv) in D. guanche, the two copies accumulated multiple differences, including a newly evolved "gap-type" HSE2. The absence of concerted evolution in this species may be related to a long-gone-unnoticed observation that it lacks Hsp70 HS response, perhaps because it has evolved within a narrow thermal range in an oceanic island. Our results point to a previously unrealized link between inversions and concerted evolution, with potentially major implications for understanding genome evolution. © 2018 John Wiley & Sons Ltd.

  1. UV Radiation and Visible Light Induce hsp70 Gene Expression in the Antarctic Psychrophilic Ciliate Euplotes focardii.

    PubMed

    Fulgentini, Lorenzo; Passini, Valerio; Colombetti, Giuliano; Miceli, Cristina; La Terza, Antonietta; Marangoni, Roberto

    2015-08-01

    The psychrophilic ciliate Euplotes focardii inhabits the shallow marine coastal sediments of Antarctica, where, over millions of years of evolution, it has reached a strict molecular adaptation to such a constant-temperature environment (about -2 °C). This long evolution at sub-zero temperatures has made E. focardii unable to respond to heat stress with the activation of its heat shock protein (hsp) 70 genes. These genes can, however, be expressed in response to other stresses, like the oxidative one, thus indicating that the molecular adaptation has exclusively altered the heat stress signaling pathways, while it has preserved hsp70 gene activation in response to other environmental stressors. Since radiative stress has proved to be affine to oxidative stress in several organisms, we investigated the capability of UV radiation to induce hsp70 transcription. E. focardii cell cultures were exposed to several different irradiation regimes, ranging from visible only to a mixture of visible, UV-A and UV-B. The irradiation values of each spectral band have been set to be comparable with those recorded in a typical Antarctic spring. Using Northern blot analysis, we measured the expression level of hsp70 immediately after irradiation (0-h-labeled samples), 1 h, and 2 h from the end of the irradiation. Surprisingly, our results showed that besides UV radiation, the visible light was also able to induce hsp70 expression in E. focardii. Moreover, spectrophotometric measurements have revealed no detectable endogenous pigments in E. focardii, making it difficult to propose a possible explanation for the visible light induction of its hsp70 genes. Further research is needed to conclusively clarify this point.

  2. Characterising the KMP-11 and HSP-70 recombinant antigens' humoral immune response profile in chagasic patients.

    PubMed

    Flechas, Ivonne D; Cuellar, Adriana; Cucunubá, Zulma M; Rosas, Fernando; Velasco, Víctor; Steindel, Mario; Thomas, María del Carmen; López, Manuel Carlos; González, John Mario; Puerta, Concepción Judith

    2009-11-25

    Antigen specificity and IgG subclass could be significant in the natural history of Chagas' disease. The relationship between the different stages of human Chagas' disease and the profiles of total IgG and its subclasses were thus analysed here; they were directed against a crude T. cruzi extract and three recombinant antigens: the T. cruzi kinetoplastid membrane protein-11 (rKMP-11), an internal fragment of the T. cruzi HSP-70 protein 192-433, and the entire Trypanosoma rangeli HSP-70 protein. Seventeen Brazilian acute chagasic patients, 50 Colombian chronic chagasic patients (21 indeterminate and 29 cardiopathic patients) and 30 healthy individuals were included. Total IgG and its subtypes directed against the above-mentioned recombinant antigens were determined by ELISA tests. The T. cruzi KMP-11 and T. rangeli HSP-70 recombinant proteins were able to distinguish both acute from chronic chagasic patients and infected people from healthy individuals. Specific antibodies to T. cruzi crude antigen in acute patients came from IgG3 and IgG4 subclasses whereas IgG1 and IgG3 were the prevalent isotypes in indeterminate and chronic chagasic patients. By contrast, the specific prominent antibodies in all disease stages against T. cruzi KMP-11 and T. rangeli HSP-70 recombinant antigens were the IgG1 subclass. T. cruzi KMP-11 and the T. rangeli HSP-70 recombinant proteins may be explored together in the immunodiagnosis of Chagas' disease. Polarising the IgG1 subclass of the IgG response to T. cruzi KMP-11 and T. rangeli HSP-70 recombinant proteins could have important biological effects, taking into account that this is a complement fixing antibody.

  3. Nonablative skin rejuvenation devices and the role of heat shock protein 70: results of a human skin explant model

    NASA Astrophysics Data System (ADS)

    Helbig, Doris; Moebius, Anne; Simon, Jan C.; Paasch, Uwe

    2010-05-01

    Nonablative thermal laser therapy with a 1540-nm laser induces controlled, spatially determined thermal damage, allowing subsequent collagen remodeling while preserving the epidermis. A photorejuvenation effect using nonthermal nonablative stimulation of cells with low energy and narrow band light has been termed photomodulation. Light emitting diodes (LEDs) are narrow band emitters that lead to photomodulation via stimulation of mitochondrial cell organelles. In a previous study, we demonstrated in a human skin explant model that heat shock protein 70 (HSP70) plays a pivotal role in the initiation of skin remodeling after ablative fractional photothermolysis. To test its importance in nonablative laser therapy and photomodulation, the spatio-temporal expression of HSP70 is investigated in response to a 1540-nm laser treatment and six different LED therapies. An Er:glass laser is used with a 1-Hz repetition rate, 30-J/cm2 fluence, and a hand piece with a 2-mm spot size. Nonthermal nonablative treatment is performed using two LED (LEDA SCR red light: 635 nm, 40 to 120 W/cm2, 40 to 120 J/cm2 LEDA SCR yellow light: 585 nm, 16 to 35 W/cm2, 20 to 100 J/cm2 spot size 16×10 cm). Immediate responses as well as responses 1, 3, or 7 days postprocedure are studied; untreated skin explants serve as control. Immunohistochemical investigation (HSP70) is performed in all native, nontreated, and Er:glass laser- or LED-treated samples (n=175). Nonablative laser therapy leads to a clear time-dependent induction of epidermally expressed HSP70, peaking between one to three days post-treatment. In contrast, none of the various LED treatments up-regulated the HSP70 expression in our skin explant model. HSP70 is up-regulated by nonablative but thermal laser devices, but does not seem to play a significant role in the induction of skin remodeling induced by photomodulation. The maximum of HSP70 expression is reached later after Er:glass laser intervention compared to ablative fractional (AFP) treatment.

  4. Contribution of anti-Hsp70.1 IgG antibody levels to the diagnostic certainty of clinically suspected ocular toxoplasmosis.

    PubMed

    Chumpitazi, Bernabé F F; Bouillet, Laurence; Fricker-Hidalgo, Hélène; Lacharme, Tiffany; Romanet, Jean-Paul; Massot, Christian; Chiquet, Christophe; Pelloux, Hervé

    2010-11-01

    Laboratory diagnosis of ocular toxoplasmosis, the major cause of posterior uveitis worldwide, can be improved. Heat shock protein (Hsp) 70 is involved in cellular infection by Toxoplasma gondii but also in the immune response to this parasite. The authors postulate that infected patients may exhibit serum IgG anti-Hsp70.1 antibodies and that determining the presence of these antibodies could improve the diagnosis of suspected ocular toxoplasmosis. This retrospective case-control study included 26 laboratory-confirmed cases of ocular toxoplasmosis (group A), 41 clinically suspected cases (group B), and 67 currently healthy blood donors who were chronically infected with T. gondii (group C). Laboratory and clinical data were analyzed according to the ocular presentation and Goldmann-Witmer's coefficient. Serum and aqueous humor were sampled at the time of uveitis. Serum anti-Hsp70.1 antibody levels were obtained by ELISA. The probability of ocular toxoplasmosis was estimated by a logistic regression analysis that combined data from serum IgG anti-Hsp70.1 and aqueous-humor IgG anti-T. gondii antibody levels. Serum IgG anti-Hsp70.1 antibody levels were significantly increased in groups A and B when compared to the levels in control group C (P ≤ 0.0034). These levels correlated with the retinal lesion size (r = 0.301; P < 0.0349). Logistic probability and anti-Hsp70.1 antibodies in sera confirmed that 10 of 23 cases in group B were true ocular toxoplasmosis. Anti-Hsp70 may play a role in the immunopathogenesis of ocular Toxoplasma infection. This study showed that the anti-Hsp70.1 antibody and the logistic probability test can confirm clinically suspected ocular toxoplasmosis.

  5. Hsp70 expression in thermally stressed Ostrea edulis, a commercially important oyster in Europe

    PubMed Central

    Piano, Annamaria; Asirelli, Christian; Caselli, Federico; Fabbri, Elena

    2002-01-01

    Synthesis of heat shock proteins (Hsps) in response to elevated temperatures and other denaturing agents is a common feature of prokaryotic and eukaryotic cells. The heat-induced expression of Hsp70 family members in the gills and mantle of Ostrea edulis, a highly valued fisheries resource inhabiting primarily estuarine environments, has been studied. O edulis is exposed to a variety of natural and anthropogenic stresses in the environment. Two isoforms of about 72 kDa and 77 kDa were constitutively present in unstressed organisms, reflecting the housekeeping function performed by these proteins under normal circumstances. Their expression in animals undergoing thermal stress was highly variable, and on the average, little change occurred under different experimental conditions. A third isoform of about 69 kDa was induced in both tissues after exposure to ≥32°C; its synthesis was detected within 4 hours of poststress recovery at 15°C, reaching the maximum expression after 24 hours in the gills and after 48 hours in the mantle and declining thereafter. Hsp69 expression was low at 38°C, a temperature lethal for about 50% of the individuals tested. Densitometric analysis of Western blots revealed that Hsp69 was mostly responsible for the significant heat-induced overexpression of Hsp70s in O edulis. Comparison with heat shock responses in tissues of Crassostrea gigas indicated a similar pattern of Hsp70 expression. In this organism, however, Hsp69 was induced after exposure to ≥38°C. We conclude that tissue expression of Hsp69 in O edulis, and possibly other bivalves, is an early sign of thermal stress; determining whether these changes also correlate with other major environmental stresses is the goal of ongoing studies. PMID:12482201

  6. Exposure to 2.45 GHz electromagnetic fields elicits an HSP-related stress response in rat hippocampus.

    PubMed

    Yang, Xue-Sen; He, Gen-Lin; Hao, Yu-Tong; Xiao, Yang; Chen, Chun-Hai; Zhang, Guang-Bin; Yu, Zheng-Ping

    2012-07-01

    The issue of possible neurobiological effects of the electromagnetic field (EMF) exposure is highly controversial. To determine whether electromagnetic field exposure could act as an environmental stimulus capable of producing stress responses, we employed the hippocampus, a sensitive target of electromagnetic radiation, to assess the changes in its stress-related gene and protein expression after EMF exposure. Adult male Sprague-Dawley rats with body restrained were exposed to a 2.45 GHz EMF at a specific absorption rate (SAR) of 6 W/kg or sham conditions. cDNA microarray was performed to examine the changes of gene expression involved in the biological effects of electromagnetic radiation. Of 2048 candidate genes, 23 upregulated and 18 downregulated genes were identified. Of these differential expression genes, two heat shock proteins (HSP), HSP27 and HSP70, are notable because expression levels of both proteins are increased in the rat hippocampus. Result from immunocytochemistry revealed that EMF caused intensive staining for HSP27 and HSP70 in the hippocampus, especially in the pyramidal neurons of cornu ammonis 3 (CA3) and granular cells of dentate gyrus (DG). The gene and protein expression profiles of HSP27 and HSP70 were further confirmed by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Our data provide direct evidence that exposure to electromagnetic fields elicits a stress response in the rat hippocampus. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Mitochondrial heat shock protein (Hsp) 70 and Hsp10 cooperate in the formation of Hsp60 complexes.

    PubMed

    Böttinger, Lena; Oeljeklaus, Silke; Guiard, Bernard; Rospert, Sabine; Warscheid, Bettina; Becker, Thomas

    2015-05-01

    Mitochondrial Hsp70 (mtHsp70) mediates essential functions for mitochondrial biogenesis, like import and folding of proteins. In these processes, the chaperone cooperates with cochaperones, the presequence translocase, and other chaperone systems. The chaperonin Hsp60, together with its cofactor Hsp10, catalyzes folding of a subset of mtHsp70 client proteins. Hsp60 forms heptameric ring structures that provide a cavity for protein folding. How the Hsp60 rings are assembled is poorly understood. In a comprehensive interaction study, we found that mtHsp70 associates with Hsp60 and Hsp10. Surprisingly, mtHsp70 interacts with Hsp10 independently of Hsp60. The mtHsp70-Hsp10 complex binds to the unassembled Hsp60 precursor to promote its assembly into mature Hsp60 complexes. We conclude that coupling to Hsp10 recruits mtHsp70 to mediate the biogenesis of the heptameric Hsp60 rings. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Hsp70 and lipid peroxide levels following heat stress in Xeropicta derbentina (Krynicki 1836) (Gastropoda, Pulmonata) with regard to different colour morphs.

    PubMed

    Dieterich, A; Troschinski, S; Schwarz, S; Di Lellis, M A; Henneberg, A; Fischbach, U; Ludwig, M; Gärtner, U; Triebskorn, R; Köhler, H-R

    2015-01-01

    Terrestrial snails which live under dry and hot conditions need efficient mechanisms of adaptation to counteract the problems of desiccation and over-heating. A profoundly heat tolerant snail species is the Mediterranean Xeropicta derbentina, exhibiting different shell colour morphs ranging from pale white to darkly banded. Considering that dark-pigmented snails are believed to have a disadvantage due to faster heating, we investigated possible differences in the stress markers Hsp70 and lipid peroxideation between four pre-defined colour morphs which were exposed to different temperatures for eight hours. The highest Hsp70 levels were observed in response to 38-40 °C. Levels decreased when this temperature was exceeded. Snails of a pre-defined colour category 3 (with a large black band at the umbilicus side of the shell) showed the most prominent Hsp70 response. Lipid peroxideation levels also showed a maximum at 38 °C but displayed a second peak at rather high temperatures at which the Hsp70 level already had decreased (45-48 °C). Particularly pure white snails (category 1) and the most pigmented ones (category 4) were found to have different levels of lipid peroxidation at 38 °C and 45 °C compared to the other morphs. A hypothesis involving a combined two-phase defence mechanism, to which both, the Hsp70 protection system and the antioxidant defence system, may contribute, is discussed.

  9. Hsp70 Forms Antiparallel Dimers Stabilized by Post-translational Modifications to Position Clients for Transfer to Hsp90

    PubMed Central

    Morgner, Nina; Schmidt, Carla; Beilsten-Edmands, Victoria; Ebong, Ima-obong; Patel, Nisha A.; Clerico, Eugenia M.; Kirschke, Elaine; Daturpalli, Soumya; Jackson, Sophie E.; Agard, David; Robinson, Carol V.

    2015-01-01

    Summary Protein folding in cells is regulated by networks of chaperones, including the heat shock protein 70 (Hsp70) system, which consists of the Hsp40 cochaperone and a nucleotide exchange factor. Hsp40 mediates complex formation between Hsp70 and client proteins prior to interaction with Hsp90. We used mass spectrometry (MS) to monitor assemblies formed between eukaryotic Hsp90/Hsp70/Hsp40, Hop, p23, and a client protein, a fragment of the glucocorticoid receptor (GR). We found that Hsp40 promotes interactions between the client and Hsp70, and facilitates dimerization of monomeric Hsp70. This dimerization is antiparallel, stabilized by post-translational modifications (PTMs), and maintained in the stable heterohexameric client-loading complex Hsp902Hsp702HopGR identified here. Addition of p23 to this client-loading complex induces transfer of GR onto Hsp90 and leads to expulsion of Hop and Hsp70. Based on these results, we propose that Hsp70 antiparallel dimerization, stabilized by PTMs, positions the client for transfer from Hsp70 to Hsp90. PMID:25921532

  10. Interspecific- and acclimation-induced variation in levels of heat-shock proteins 70 (hsp70) and 90 (hsp90) and heat-shock transcription factor-1 (HSF1) in congeneric marine snails (genus Tegula): implications for regulation of hsp gene expression.

    PubMed

    Tomanek, Lars; Somero, George N

    2002-03-01

    In our previous studies of heat-shock protein (hsp) expression in congeneric marine gastropods of the genus Tegula, we observed interspecific and acclimation-induced variation in the temperatures at which heat-shock gene expression is induced (T(on)). To investigate the factors responsible for these inter- and intraspecific differences in T(on), we tested the predictions of the 'cellular thermometer' model for the transcriptional regulation of hsp expression. According to this model, hsps not active in chaperoning unfolded proteins bind to a transcription factor, heat-shock factor-1 (HSF1), thereby reducing the levels of free HSF1 that are available to bind to the heat-shock element, a regulatory element upstream of hsp genes. Under stress, hsps bind to denatured proteins, releasing HSF1, which can now activate hsp gene transcription. Thus, elevated levels of heat-shock proteins of the 40, 70 and 90 kDa families (hsp 40, hsp70 and hsp90, respectively) would be predicted to elevate T(on). Conversely, elevated levels of HSF1 would be predicted to decrease T(on). Following laboratory acclimation to 13, 18 and 23 degrees C, we used solid-phase immunochemistry (western analysis) to quantify endogenous levels of two hsp70 isoforms (hsp74 and hsp72), hsp90 and HSF1 in the low- to mid-intertidal species Tegula funebralis and in two subtidal to low-intertidal congeners, T. brunnea and T. montereyi. We found higher endogenous levels of hsp72 (a strongly heat-induced isoform) at 13 and 18 degrees C in T. funebralis in comparison with T. brunnea and T. montereyi. However, T. funebralis also had higher levels of HSF1 than its congeners. The higher levels of HSF1 in T. funebralis cannot, within the framework of the cellular thermometer model, account for the higher T(on) observed for this species, although they may explain why T. funebralis is able to induce the heat-shock response more rapidly than T. brunnea. However, the cellular thermometer model does appear to explain the cause of the increases in T(on) that occurred during warm acclimation of the two subtidal species, in which warm acclimation was accompanied by increased levels of hsp72, hsp74 and hsp90, whereas levels of HSF1 remained stable. T. funebralis, which experiences greater heat stress than its subtidal congeners, consistently had higher ratios of hsp72 to hsp74 than its congeners, although the sum of levels of the two isoforms was similar for all three species except at the highest acclimation temperature (23 degrees C). The ratio of hsp72 to hsp74 may provide a more accurate estimate of environmental heat stress than the total concentrations of both hsp70 isoforms.

  11. Crohn's Disease Variants of Nod2 Are Stabilized by the Critical Contact Region of Hsp70.

    PubMed

    Schaefer, Amy K; Wastyk, Hannah C; Mohanan, Vishnu; Hou, Ching-Wen; Lauro, Mackenzie L; Melnyk, James E; Burch, Jason M; Grimes, Catherine L

    2017-08-29

    Nod2 is a cytosolic, innate immune receptor responsible for binding to bacterial cell wall fragments such as muramyl dipeptide (MDP). Upon binding, subsequent downstream activation of the NF-κB pathway leads to an immune response. Nod2 mutations are correlated with an increased susceptibility to Crohn's disease (CD) and ultimately result in a misregulated immune response. Previous work had demonstrated that Nod2 interacts with and is stabilized by the molecular chaperone Hsp70. In this work, it is shown using purified protein and in vitro biochemical assays that the critical Nod2 CD mutations (G908R, R702W, and 1007fs) preserve the ability to bind bacterial ligands. A limited proteolysis assay and luciferase reporter assay reveal regions of Hsp70 that are capable of stabilizing Nod2 and rescuing CD mutant activity. A minimal 71-amino acid subset of Hsp70 that stabilizes the CD-associated variants of Nod2 and restores a proper immune response upon activation with MDP was identified. This work suggests that CD-associated Nod2 variants could be stabilized in vivo with a molecular chaperone.

  12. Specific Genetic Immunotherapy Induced by Recombinant Vaccine Alpha-Fetoprotein-Heat Shock Protein 70 Complex

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoping; Lin, Huanping; Wang, Qiaoxia

    Purposes: To construct a recombinant vaccine alpha-fetoprotein (AFP)-heat shock protein (HSP70) complex, and study its ability to induce specific CTL response and its protective effect against AFP-producing tumor. Material/Methods: A recombinant vaccine was constructed by conjugating mouse alpha-fetoprotein to heat shock protein 70. By way of intracutaneous injection, mice were primed and boosted with recombinant vaccine mAFP/HSP70, whereas single mAFP or HSP70 injection as controls. The ELISPOT and ELISA were used to measure the frequency of cells producing the cytokine IFN-γ in splenocytes and the level of anti-AFP antibody of serum from immunized mice respectively. In vivo tumor challenge were carried out to assess the immune effect of the recombinant vaccine. Results: By recombinant mAFP/HSP70 vaccine immunization, the results of ELISPOT and ELISA showed that the number of splenic cells producing IFN-γ and the level of anti-AFP antibody of serum were significantly higher in mAFP/HSP70 group than those in mAFP and HSP70 groups (108.50±11.70 IFN-γ spots/106 cells vs 41.60±10.40 IFN-γ spots/106 cells, 7.32±3.14 IFN-γ spots/106 cells, P<0.01; 156.32±10.42 μg/mL vs 66.52±7.35 μg/mL, 5.73±2.89 μg/mL, P<0.01). The tumor volume in mAFP/HSP70 group was significantly smaller than that in mAFP and HSP70 groups (42.44±7.14 mm3 vs 392.23±12.46 mm3, 838.63±13.84 mm3, P<0.01). Conclusions: The study further confirmed the function of heat shock protein 70's immune adjuvant. Sequential immunization with recombinant mAFP/HSP70 vaccine could generate effective antitumor immunity on AFP-producing tumor. The recombined mAFP/HSP70 vaccine may be suitable for serving as an immunotherapy for hepatocellular carcinoma.

  13. Identification and Characterization of a Novel Human Methyltransferase Modulating Hsp70 Protein Function through Lysine Methylation*

    PubMed Central

    Jakobsson, Magnus E.; Moen, Anders; Bousset, Luc; Egge-Jacobsen, Wolfgang; Kernstock, Stefan; Melki, Ronald; Falnes, Pål Ø.

    2013-01-01

    Hsp70 proteins constitute an evolutionarily conserved protein family of ATP-dependent molecular chaperones involved in a wide range of biological processes. Mammalian Hsp70 proteins are subject to various post-translational modifications, including methylation, but for most of these, a functional role has not been attributed. In this study, we identified the methyltransferase METTL21A as the enzyme responsible for trimethylation of a conserved lysine residue found in several human Hsp70 (HSPA) proteins. This enzyme, denoted by us as HSPA lysine (K) methyltransferase (HSPA-KMT), was found to catalyze trimethylation of various Hsp70 family members both in vitro and in vivo, and the reaction was stimulated by ATP. Furthermore, we show that HSPA-KMT exclusively methylates 70-kDa proteins in mammalian protein extracts, demonstrating that it is a highly specific enzyme. Finally, we show that trimethylation of HSPA8 (Hsc70) has functional consequences, as it alters the affinity of the chaperone for both the monomeric and fibrillar forms of the Parkinson disease-associated protein α-synuclein. PMID:23921388

  14. The expression of heat shock proteins 70 and 90 in pea seedlings under simulated microgravity conditions

    NASA Astrophysics Data System (ADS)

    Kozeko, L.

    Microgravity is an abnormal and so stress factor for plants. Expression of known stress-related genes is appeared to implicate in the cell response to different kinds of stress. Heat shock proteins HSP70 and HSP90 are present in plant cells under the normal growth conditions and their quantity increases during stress. The effect of simulated microgravity on expression of HSP70 and HSP90 was studied in etiolated Pisum sativum seedlings grown on the horizontal clinostat (2 rpm) from seed germination for 3 days. Seedlings were also subjected to two other types of stressors: vertical clinorotatoin (2 rpm) and 2 h temperature elevation (40°C). HSPs' level was measured by ELISA. The quantity of both HSPs increased more than in three times in the seedlings on the horizontal clinostat in comparison with the stationary 1 g control. Vertical clinorotation also increased HSPs' level but less at about 20% than horizontal one. These effects were comparable with the influence of temperature elevation. The data presented suggest that simulated microgravity upregulate HSP70 and HSP90 expression. The increased HSPs' level might evidence the important functional role of these proteins in plant adaptation to microgravity. We are currently investigating the contribution of constitutive or inducible forms of the HSPs in this stress response.

  15. Role and mechanism of the Hsp70 molecular chaperone machines in bacterial pathogens.

    PubMed

    Ghazaei, Ciamak

    2017-03-01

    Heat shock proteins are highly conserved, stress-inducible, ubiquitous proteins that maintain homeostasis in both eukaryotes and prokaryotes. Hsp70 proteins belong to the heat shock protein family and enhance bacterial survival in hostile environments. Hsp70, known as DnaK in prokaryotes, supports numerous processes such as the assembly and disassembly of protein complexes, the refolding of misfolded and clustered proteins, membrane translocation and the regulation of regulatory proteins. The chaperone-based activity of Hsp70 depends on dynamic interactions between its two domains, known as the ATPase domain and the substrate-binding domain. It also depends on interactions between these domains and other co-chaperone molecules such as the Hsp40 protein family member DnaJ and nucleotide exchange factors. DnaJ is the primary chaperone that interacts with nascent polypeptide chains and functions to prevent their premature release from the ribosome and misfolding before it is targeted by DnaK. Adhesion of bacteria to host cells is mediated by both host and bacterial Hsp70. Following infection of the host, bacterial Hsp70 (DnaK) is in a position to initiate bacterial survival processes and trigger an immune response by the host. Any mutations in the dnaK gene have been shown to decrease the viability of bacteria inside the host. This review will give insights into the structure and mechanism of Hsp70 and its role in regulating the protein activity that contributes to pathogenesis.

  16. Prostaglandin E synthase interacts with inducible heat shock protein 70 after heat stress in bovine primary dermal fibroblast cells.

    PubMed

    Richter, Constanze; Viergutz, Torsten; Schwerin, Manfred; Weitzel, Joachim M

    2015-01-01

    Exposure to heat stress in dairy cows leads to undesired side effects that are reflected by complex alterations in endocrine parameters, such as reduced progesterone, estradiol, and thyroid hormone concentrations. These endocrine maladaptation leads to failure to resume cyclicity, a poor uterine environment and inappropriate immune responses in postpartum dairy cows. Prostaglandins (PG's) are lipid mediators, which serve as signal molecules in response to various external stimuli as well as to cell-specific internal signal molecules. A central role in PG synthesis plays prostaglandin E synthase (PGES) that catalyzes the isomerization of PGH2 to PGE2 .The present study was conducted to investigate heat stress associated PGES expression. Expression of PGES and inducible heat shock protein 70 (HSP70), as a putative chaperonic protein, was studied in bovine primary fibroblasts under different heat shock conditions. Bovine primary fibroblasts produce PGE2 at homoiothermical norm temperature (38.5°C in bovine), but reduce PGE2 production rates under extreme heat stress (at 45°C for 6 h). By contrast, PGE2 production rates are maintained after a milder heat stress (at 41.5°C for 6 h). PGE2 synthesis is abolished by application of cyclooxygenase inhibitor indomethacin, indicating de novo synthesis. Heat stress increases HSP70 but not PGES protein concentrations. HSP70 physically interacts with PGES and the PGES-HSP70 complex did not dissociate upon heat stress at 45°C even after returning the cells to 37°C. The PGE2 production negatively correlates with the portion of PGES-HSP70 complex. These results suggest a protein interaction between HSP70 and PGES in dermal fibroblast cells. Blockage of PGES protein by HSP70 seems to interfere with the regulatory processes essential for cellular adaptive protection. © 2014 International Society for Advancement of Cytometry. © 2014 International Society for Advancement of Cytometry.

  17. Novel Entropically Driven Conformation-specific Interactions with Tomm34 Protein Modulate Hsp70 Protein Folding and ATPase Activities*

    PubMed Central

    Durech, Michal; Trcka, Filip; Man, Petr; Blackburn, Elizabeth A.; Hernychova, Lenka; Dvorakova, Petra; Coufalova, Dominika; Kavan, Daniel; Vojtesek, Borivoj; Muller, Petr

    2016-01-01

    Co-chaperones containing tetratricopeptide repeat (TPR) domains enable cooperation between Hsp70 and Hsp90 to maintain cellular proteostasis. Although the details of the molecular interactions between some TPR domains and heat shock proteins are known, we describe a novel mechanism by which Tomm34 interacts with and coordinates Hsp70 activities. In contrast to the previously defined Hsp70/Hsp90-organizing protein (Hop), Tomm34 interaction is dependent on the Hsp70 chaperone cycle. Tomm34 binds Hsp70 in a complex process; anchorage of the Hsp70 C terminus by the TPR1 domain is accompanied by additional contacts formed exclusively in the ATP-bound state of Hsp70 resulting in a high affinity entropically driven interaction. Tomm34 induces structural changes in determinants within the Hsp70-lid subdomain and modulates Hsp70/Hsp40-mediated refolding and Hsp40-stimulated Hsp70 ATPase activity. Because Tomm34 recruits Hsp90 through its TPR2 domain, we propose a model in which Tomm34 enables Hsp70/Hsp90 scaffolding and influences the Hsp70 chaperone cycle, providing an additional role for co-chaperones that contain multiple TPR domains in regulating protein homeostasis. PMID:26944342

  18. KU675, a Concomitant Heat-Shock Protein Inhibitor of Hsp90 and Hsc70 that Manifests Isoform Selectivity for Hsp90α in Prostate Cancer Cells

    PubMed Central

    Liu, Weiya; Vielhauer, George A.; Zhao, Huiping; Ghosh, Suman; Brown, Douglas; Lee, Eugene

    2015-01-01

    The 90-kDa heat-shock protein (Hsp90) assists in the proper folding of numerous mutated or overexpressed signal transduction proteins that are involved in cancer. Inhibiting Hsp90 consequently is an attractive strategy for cancer therapy as the concomitant degradation of multiple oncoproteins may lead to effective antineoplastic agents. Here we report a novel C-terminal Hsp90 inhibitor, designated KU675, that exhibits potent antiproliferative and cytotoxic activity along with client protein degradation without induction of the heat-shock response in both androgen-dependent and -independent prostate cancer cell lines. In addition, KU675 demonstrates direct inhibition of Hsp90 complexes as measured by the inhibition of luciferase refolding in prostate cancer cells. In direct binding studies, the internal fluorescence signal of KU675 was used to determine the binding affinity of KU675 to recombinant Hsp90α, Hsp90β, and Hsc70 proteins. The binding affinity (Kd) for Hsp90α was determined to be 191 μM, whereas the Kd for Hsp90β was 726 μM, demonstrating a preference for Hsp90α. Western blot experiments with four different prostate cancer cell lines treated with KU675 supported this selectivity by inducing the degradation of Hsp90α-dependent client proteins. KU675 also displayed binding to Hsc70 with a Kd value at 76.3 μM, which was supported in cellular by lower levels of Hsc70-specific client proteins on Western blot analyses. Overall, these findings suggest that KU675 is an Hsp90 C-terminal inhibitor, as well as a dual inhibitor of Hsc70, and may have potential use for the treatment of cancer. PMID:25939977

  19. Cadmium in vivo exposure alters stress response and endocrine-related genes in the freshwater snail Physa acuta. New biomarker genes in a new model organism.

    PubMed

    Martínez-Paz, Pedro; Morales, Mónica; Sánchez-Argüello, Paloma; Morcillo, Gloria; Martínez-Guitarte, José Luis

    2017-01-01

    The freshwater snail Physa acuta is a sensitive organism to xenobiotics that is appropriate for toxicity testing. Cadmium (Cd) is a heavy metal with known toxic effects on several organisms, which include endocrine disruption and activation of the cellular stress responses. There is scarce genomic information on P. acuta; hence, in this work, we identify several genes related to the hormonal system, the stress response and the detoxification system to evaluate the effects of Cd. The transcriptional activity of the endocrine-related genes oestrogen receptor (ER), oestrogen-related receptor (ERR), and retinoid X receptor (RXR), the heat shock proteins genes hsp70 and hsp90 and a metallothionein (MT) gene was analysed in P. acuta exposed to Cd. In addition, the hsp70 and hsp90 genes were also evaluated after heat shock treatment. Real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis showed that Cd presence induced a significant increase in the mRNA levels of ER, ERR and RXR, suggesting a putative mode of action that could explain the endocrine disruptor activity of this heavy metal at the molecular level on Gastropoda. Moreover, the hsp70 gene was upregulated after 24-h Cd treatment, but the hsp90 gene expression was not affected. In contrast, the hsp70 and hsp90 genes were strongly upregulated during heat shock response. Finally, the MT gene expression showed a non-significant variability after Cd exposure. In conclusion, this study provides, for the first time, information about the effects of Cd on the endocrine system of Gastropoda at the molecular level and offers new putative biomarker genes that could be useful in ecotoxicological studies, risk assessment and bioremediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effect of transportation stress on heat shock protein 70 concentration and mRNA expression in heart and kidney tissues and serum enzyme activities and hormone concentrations of pigs.

    PubMed

    Yu, Hong; Bao, En-Dong; Zhao, Ru-Qian; Lv, Qiong-Xia

    2007-11-01

    To determine the enzymatic and hormonal responses, heat shock protein 70 (Hsp70) production, and Hsp70 mRNA expression in heart and kidney tissues of transport-stressed pigs. 24 pigs (mean weight, 20 +/- 1 kg). Pigs were randomly placed into groups of 12 each. One group was transported for 2 hours. The other group was kept under normal conditions and used as control pigs. Sera were used to detect triiodothyronine, thyroxine, and cortisol concentrations and alanine aminotransferase, aspartate aminotransferase, and creatine kinase activities. The heart and kidneys of anesthetized pigs were harvested and frozen in liquid nitrogen for quantification of Hsp70 and Hsp70 mRNA. No significant differences were detected in serum alanine aminotransferase activity and triiodothyronine and cortisol concentrations between groups; however, the serum creatine kinase and aspartate aminotransferase activities and thyroxine concentrations were higher in transported pigs. Densitometric readings of western blots revealed that the amount of Hsp70 in heart and kidney tissues was significantly higher in transported pigs, compared with control pigs. Results of fluorescence quantitative real-time PCR assay revealed that the Hsp70 mRNA transcription in heart tissue, but not kidney tissue, was significantly higher in transported pigs, compared with control pigs. Transportation imposed a severe stress on pigs that was manifested as increased serum activities of aspartate aminotransferase and creatine kinase and increased amounts of Hsp70 and Hsp70 mRNA expression in heart and kidney tissues. Changes in serum enzyme activities were related to the tissue damage of transport-stressed pigs.

  1. Select pyrimidinones inhibit the propagation of the malarial parasite, Plasmodium falciparum

    PubMed Central

    Chiang, Annette N.; Valderramos, Juan-Carlos; Balachandran, Raghavan; Chovatiya, Raj J.; Mead, Brian P.; Schneider, Corinne; Bell, Samantha L.; Klein, Michael G.; Huryn, Donna M.; Chen, Xiaojiang S.; Day, Billy W.; Fidock, David A.; Wipf, Peter; Brodsky, Jeffrey L.

    2009-01-01

    Plasmodium falciparum, the Apicomplexan parasite that is responsible for the most lethal forms of human malaria, is exposed to radically different environments and stress factors during its complex lifecycle. In any organism, Hsp70 chaperones are typically associated with tolerance to stress. We therefore reasoned that inhibition of P. falciparum Hsp70 chaperones would adversely affect parasite homeostasis. To test this hypothesis, we measured whether pyrimidinone-amides, a new class of Hsp70 modulators, could inhibit the replication of the pathogenic P. falciparum stages in human red blood cells. Nine compounds with IC50 values from 30 nM to 1.6 μM were identified. Each compound also altered the ATPase activity of purified P. falciparum Hsp70 in single-turnover assays, although higher concentrations of agents were required than was necessary to inhibit P. falciparum replication. Varying effects of these compounds on Hsp70s from other organisms were also observed. Together, our data indicate that pyrimidinone-amides constitute a novel class of anti-malarial agents. PMID:19195901

  2. Heat shock protein (Hsp) 70 is an activator of the Hsp104 motor.

    PubMed

    Lee, Jungsoon; Kim, Ji-Hyun; Biter, Amadeo B; Sielaff, Bernhard; Lee, Sukyeong; Tsai, Francis T F

    2013-05-21

    Heat shock protein (Hsp) 104 is a ring-forming, protein-remodeling machine that harnesses the energy of ATP binding and hydrolysis to drive protein disaggregation. Although Hsp104 is an active ATPase, the recovery of functional protein requires the species-specific cooperation of the Hsp70 system. However, like Hsp104, Hsp70 is an active ATPase, which recognizes aggregated and aggregation-prone proteins, making it difficult to differentiate the mechanistic roles of Hsp104 and Hsp70 during protein disaggregation. Mapping the Hsp70-binding sites in yeast Hsp104 using peptide array technology and photo-cross-linking revealed a striking conservation of the primary Hsp70-binding motifs on the Hsp104 middle-domain across species, despite lack of sequence identity. Remarkably, inserting a Strep-Tactin binding motif at the spatially conserved Hsp70-binding site elicits the Hsp104 protein disaggregating activity that now depends on Strep-Tactin but no longer requires Hsp70/40. Consistent with a Strep-Tactin-dependent activation step, we found that full-length Hsp70 on its own could activate the Hsp104 hexamer by promoting intersubunit coordination, suggesting that Hsp70 is an activator of the Hsp104 motor.

  3. Heritability of hsp70 expression in the beetle Tenebrio molitor: Ontogenetic and environmental effects.

    PubMed

    Lardies, Marco A; Arias, María Belén; Poupin, María Josefina; Bacigalupe, Leonardo D

    2014-08-01

    Ectotherms constitute the vast majority of terrestrial biodiversity and are especially likely to be vulnerable to climate warming because their basic physiological functions such as locomotion, growth, and reproduction are strongly influenced by environmental temperature. An integrated view about the effects of global warming will be reached not just establishing how the increase in mean temperature impacts the natural populations but also establishing the effects of the increase in temperature variance. One of the molecular responses that are activated in a cell under a temperature stress is the heat shock protein response (HSP). Some studies that have detected consistent differences among thermal treatments and ontogenetic stages in HSP70 expression have assumed that these differences had a genetic basis and consequently expression would be heritable. We tested for changes in quantitative genetic parameters of HSP70 expression in a half-sib design where individuals of the beetle Tenebrio molitor were maintained in constant and varying thermal environments. We estimated heritability of HSP70 expression using a linear mixed modelling approach in different ontogenetic stages. Expression levels of HSP70 were consistently higher in the variable environment and heritability estimates were low to moderate. The results imply that within each ontogenetic stage additive genetic variance was higher in the variable environment and in adults compared with constant environment and larvae stage, respectively. We found that almost all the genetic correlations across ontogenetic stages and environment were positive. These suggest that directional selection for higher levels of expression in one environment will result in higher expression levels of HSP70 on the other environment for the same ontogenetic stage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. The small-molecule kinase inhibitor D11 counteracts 17-AAG-mediated up-regulation of HSP70 in brain cancer cells

    PubMed Central

    Schaefer, Susanne; Svenstrup, Tina H.

    2017-01-01

    Many types of cancer express high levels of heat shock proteins (HSPs) that are molecular chaperones regulating protein folding and stability ensuring protection of cells from potentially lethal stress. HSPs in cancer cells promote survival, growth and spreading even in situations of growth factors deprivation by associating with oncogenic proteins responsible for cell transformation. Hence, it is not surprising that the identification of potent inhibitors of HSPs, notably HSP90, has been the primary research focus, in recent years. Exposure of cancer cells to HSP90 inhibitors, including 17-AAG, has been shown to cause resistance to chemotherapeutic treatment mostly attributable to induction of the heat shock response and increased cellular levels of pro-survival chaperones. In this study, we show that treatment of glioblastoma cells with 17-AAG leads to HSP90 inhibition indicated by loss of stability of the EGFR client protein, and significant increase in HSP70 expression. Conversely, co-treatment with the small-molecule kinase inhibitor D11 leads to suppression of the heat shock response and inhibition of HSF1 transcriptional activity. Beside HSP70, Western blot and differential mRNA expression analysis reveal that combination treatment causes strong down-regulation of the small chaperone protein HSP27. Finally, we demonstrate that incubation of cells with both agents leads to enhanced cytotoxicity and significantly high levels of LC3-II suggesting autophagy induction. Taken together, results reported here support the notion that including D11 in future treatment regimens based on HSP90 inhibition can potentially overcome acquired resistance induced by the heat shock response in brain cancer cells. PMID:28542269

  5. The Macrophage Activation Induced by Bacillus thuringiensis Cry1Ac Protoxin Involves ERK1/2 and p38 Pathways and the Interaction with Cell-Surface-HSP70.

    PubMed

    Rubio-Infante, Nestor; Ilhuicatzi-Alvarado, Damaris; Torres-Martínez, Marilu; Reyes-Grajeda, Juan Pablo; Nava-Acosta, Raúl; González-González, Edith; Moreno-Fierros, Leticia

    2018-01-01

    Here, we aimed to further characterize the mechanisms involved in protoxin (p) Cry1Ac-induced macrophage activation. We demonstrated that pCry1Ac induces MAPK ERK1/2, p38, and JNK phosphorylation in RAW264.7 macrophages. Because MAPK activation is mainly triggered via ligand-receptor interactions, we focused on the identification of potential pCry1Ac-receptor proteins. Flow cytometry and confocal analysis showed specific saturable pCry1Ac-binding to the macrophage surface and evidenced its internalization via the clathrin-pathway. We performed immunoprecipitation assays and identified by MALDI-TOF-TOF several possible pCry1Ac-binding proteins, such as heat shock proteins (HSPs), vimentin, α-enolase, and actin; whose interaction and presence was confirmed, respectively, by ligand blot and Western blot assays. We also detected cell-surface (cs) pCry1Ac-HSP70 colocalization, so HSP70 was chosen for further characterization. Co-immunoprecipitation with HSP70 antibodies followed by Western blot confirmed the pCry1Ac-HSP70 interaction. Furthermore, pretreatment of RAW264.7 cells with HSP70 antibodies reduced pCry1Ac-induced ERK1 phosphorylation and MCP-1 production; thus suggest the functional participation of csHSP70 in pCry1Ac-induced macrophage activation. csHSP70 also was evaluated in peritoneal-cavity (PerC) macrophages of untreated BALB/c mice, interestingly it was found that the predominant population namely large-peritoneal-macrophages (LPM) displayed csHSP70 + hi. Furthermore, the dynamics of PerC macrophage subsets, LPM, and small-peritoneal macrophages (SPM) were evaluated in response to in vivo pCry1Ac stimuli in presence or not of phenylethynesulfonamide (PES) a functional HSP70 inhibitor. It was found that pCry1Ac increased the proportion of SPM CD11b + F4/80 + lowMHCII + csHSP70 + low and markedly reduced the amount of LPM CD11b + F4/80 + hiMHCII-csHSP70 + hi; while PES, partially suppressed this pCry1Ac-induced effect, further suggesting the participation of HSP70 in macrophage activation process. J. Cell. Biochem. 119: 580-598, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Stress, and pathogen response gene expression in modeled microgravity

    NASA Technical Reports Server (NTRS)

    Sundaresan, Alamelu; Pellis, Neal R.

    2006-01-01

    Purpose: Immune suppression in microgravity has been well documented. With the advent of human exploration and long-term space travel, the immune system of the astronaut must be optimally maintained. It is important to investigate the expression patterns of cytokine genes, because they are directly related to immune response. Heat shock proteins (HSPs), also called stress proteins, are a group of proteins that are present in the cells of every life form. These proteins are induced when a cell responds to stressors such as heat, cold and oxygen deprivation. Microgravity is another stressor that may regulate HSPs. Heat shock proteins trigger immune response through activities that occur both inside the cell (intracellular) and outside the cell (extracellular). Knowledge about these two gene groups could lead to establishment of a blueprint of the immune response and adaptation-related genes in the microgravity environment. Methods: Human peripheral blood cells were cultured in 1g (T flask) and modeled microgravity (MMG, rotating-wall vessel) for 24 and 72 hours. Cell samples were collected and subjected to gene array analysis using the Affymetrix HG_U95 array. Data was collected and subjected to a two-way analysis of variance. The genes related to immune and stress responses were analyzed. Results and Conclusions: HSP70 was up-regulated by more than two fold in microgravity culture, while HSP90 was significantly down-regulated. HSP70 is not typically expressed in all kinds of cells, but it is expressed at high levels in stress conditions. HSP70 participates in translation, protein translocation, proteolysis and protein folding, suppressing aggregation and reactivating denatured proteins. Increased serum HSP70 levels correlate with a better outcome for heat-stroke or severe trauma patients. At the same time, elevated serum levels of HSP70 have been detected in patients with peripheral or renal vascular disease. HSP90 has been identified in the cytosol, nucleus and endoplasmic reticulum, and exists in many tissue types. HSP90 associates with actin filaments in certain conditions and aids cell motility. The down-regulation of HSP90 could lead to deleterious effects in the lymphocytes, thereby contributing to suppressed immune function in microgravity. Interleukins such as IL 1 alpha, IL11 receptor chain alpha, IL7R, and IL4R were significantly down regulated in modeled microgravity. Further analysis of the genes involved in immune response at the protein level may provide a basis for prophylactic and countermeasure strategies to augment the human immune system for space exploration.

  7. Geographic variation in thermal tolerance and strategies of heat shock protein expression in the land snail Theba pisana in relation to genetic structure.

    PubMed

    Mizrahi, Tal; Goldenberg, Shoshana; Heller, Joseph; Arad, Zeev

    2016-03-01

    Land snails are exposed to conditions of high ambient temperature and low humidity, and their survival depends on a suite of morphological, behavioral, physiological, and molecular adaptations to the specific microhabitat. We tested in six populations of the land snail Theba pisana whether adaptations to different habitats affect their ability to cope with thermal stress and their strategies of heat shock protein (HSP) expression. Levels of Hsp70 and Hsp90 in the foot tissue were measured in field-collected snails and after acclimation to laboratory conditions. Snails were also exposed to various temperatures (32 up to 54 °C) for 2 h and HSP messenger RNA (mRNA) levels were measured in the foot tissue and survival was determined. To test whether the physiological and molecular data are related to genetic parameters, we analyzed T. pisana populations using partial sequences of nuclear and mitochondrial DNA ribosomal RNA genes. We show that populations collected from warmer habitats were more thermotolerant and had higher constitutive levels of Hsp70 isoforms in the foot tissue. Quantitative real-time polymerase chain reaction (PCR) analysis indicated that hsp70 and hsp90 mRNA levels increased significantly in response to thermal stress, although the increase in hsp70 mRNA was larger compared to hsp90 and its induction continued up to higher temperatures. Generally, warm-adapted populations had higher temperatures of maximal induction of hsp70 mRNA synthesis and higher upper thermal limits to HSP mRNA synthesis. Our study suggests that Hsp70 in the foot tissue of T. pisana snails may have important roles in determining stress resistance, while Hsp90 is more likely implicated in signal transduction processes that are activated by stress. In the phylogenetic analysis, T. pisana haplotypes were principally divided into two major clades largely corresponding to the physiological ability to withstand stress, thus pointing to genetically fixed tolerance.

  8. Daily and seasonal changes in heat exposure and the Hsp70 level of individuals from a field population of Xeropicta derbentina (Krynicki 1836) (Pulmonata, Hygromiidae) in Southern France.

    PubMed

    Dieterich, A; Fischbach, U; Ludwig, M; Di Lellis, M A; Troschinski, S; Gärtner, U; Triebskorn, R; Köhler, H-R

    2013-07-01

    The Mediterranean land snail Xeropicta derbentina forms huge populations in Southern France. In order to characterize heat exposure and the induction of the 70-kD heat shock protein (Hsp70) response system during the life cycle of this snail, a selected population from the Vaucluse area, Provence, was investigated encompassing the issues of morphological life cycle parameters (shell size and colouration), the daily courses of heat exposure at different heights above the ground, of shell temperature, and that of the individual Hsp70 levels. The study covered all four seasons of the year 2011. Snails were found to be annual, reaching their final size in August. The shell colouration pattern showed high variation in juveniles (spring) with a strong tendency towards becoming uniformly white at old age in autumn. In all seasons, ambient air temperature decreased with increasing distance from the ground surface during daytime while remaining constantly low in the night. Overall, the Hsp70 level of individuals followed the ambient temperature during diurnal and seasonal variations. Correlation analysis revealed a positive association of individual shell temperature and Hsp70 level for the most part of the life cycle of the snails until late summer, whereas a negative correlation was found for aged animals indicating senescence effects on the capacity of the stress response system.

  9. Developmental expression of Hsp90, Hsp70 and HSF during morphogenesis in the vetigastropod Haliotis asinina.

    PubMed

    Gunter, Helen M; Degnan, Bernard M

    2007-08-01

    Heat shock proteins (Hsps) have dual functions, participating in both the stress response and a broad range of developmental processes. At physiological temperatures, it has been demonstrated in deuterostomes (vertebrates) and ecdysozoans (insects) that Hsps are expressed in tissues that are undergoing differentiation and morphogenesis. Here we investigate the developmental expression of Hsp70, Hsp90 and their regulatory transcription factor heat shock transcription factor (HSF) in the marine gastropod Haliotis asinina, a representative of the 3rd major lineage of bilaterian animals, the Lophotrochozoa. HasHsp70, HasHsp90 and HasHSF are maternally expressed in H. asinina and are progressively restricted to the micromere lineage during cleavage. During larval morphogenesis, they are expressed in unique and overlapping patterns in the prototroch, foot, and mantle. Hsp expression peaked in these tissues during periods of cell differentiation and morphogenesis, returning to lower levels after morphogenesis was complete. These patterns of Hsp and HSF expression in H. asinina are akin to those observed in ecdysozoans and deuterostomes, with Hsps being activated in cells and tissues undergoing morphogenesis.

  10. Hsp70 displaces small heat shock proteins from aggregates to initiate protein refolding.

    PubMed

    Żwirowski, Szymon; Kłosowska, Agnieszka; Obuchowski, Igor; Nillegoda, Nadinath B; Piróg, Artur; Ziętkiewicz, Szymon; Bukau, Bernd; Mogk, Axel; Liberek, Krzysztof

    2017-03-15

    Small heat shock proteins (sHsps) are an evolutionary conserved class of ATP-independent chaperones that protect cells against proteotoxic stress. sHsps form assemblies with aggregation-prone misfolded proteins, which facilitates subsequent substrate solubilization and refolding by ATP-dependent Hsp70 and Hsp100 chaperones. Substrate solubilization requires disruption of sHsp association with trapped misfolded proteins. Here, we unravel a specific interplay between Hsp70 and sHsps at the initial step of the solubilization process. We show that Hsp70 displaces surface-bound sHsps from sHsp-substrate assemblies. This Hsp70 activity is unique among chaperones and highly sensitive to alterations in Hsp70 concentrations. The Hsp70 activity is reflected in the organization of sHsp-substrate assemblies, including an outer dynamic sHsp shell that is removed by Hsp70 and a stable core comprised mainly of aggregated substrates. Binding of Hsp70 to the sHsp/substrate core protects the core from aggregation and directs sequestered substrates towards refolding pathway. The sHsp/Hsp70 interplay has major impact on protein homeostasis as it sensitizes substrate release towards cellular Hsp70 availability ensuring efficient refolding of damaged proteins under favourable folding conditions. © 2017 The Authors.

  11. Syntenic conservation of HSP70 genes in cattle and humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grosz, M.D.; Womack, J.E.; Skow, L.C.

    1992-12-01

    A phage library of bovine genomic DNA was screened for hybridization with a human HSP70 cDNA probe, and 21 positive plaques were identified and isolated. Restriction mapping and blot hybridization analysis of DNA from the recombinant plaques demonstrated that the cloned DNAs were derived from three different regions of the bovine genome. Ore region contains two tandemly arrayed HSP70 sequences, designated HSP70-1 and HSP70-2, separated by approximately 8 kb of DNA. Single HSP70 sequences, designated HSP70-3 and HSP70-4, were found in two other genomic regions. Locus-specific probes of unique flanking sequences from representative HSP70 clones were hybridized to restriction endonuclease-digestedmore » DNA from bovine-hamster and bovine-mouse somatic cell hybrid panels to determine the chromosomal location of the HSP70 sequences. The probe for the tandemly arrayed HSP70-1 and HSP70-2 sequences mapped to bovine chromosome 23, syntenic with glyoxalase 1, 21 steroid hydroxylase, and major histocompatibility class I loci. HSP70-3 sequences mapped to bovine chromosome 10, syntenic with nucleoside phosphorylase and murine osteosarcoma viral oncogene (v-fos), and HSP70-4 mapped to bovine syntenic group U6, syntenic with amylase 1 and phosphoglucomutase 1. On the basis of these data, the authors propose that bovine HSP70-1,2 are homologous to human HSPA1 and HSPA1L on chromosome 6p21.3, bovine HSP70-3 is the homolog of an unnamed human HSP70 gene on chromosome 14q22-q24, and bovine HSP70-4 is homologous to one of the human HSPA-6,-7 genes on chromosome 1. 34 refs., 2 figs., 1 tab.« less

  12. Heat shock protein 70 as a biomarker of heat stress in a simulated hot cockpit.

    PubMed

    Kumar, Yadunanda; Chawla, Anuj; Tatu, Utpal

    2003-07-01

    Fighter pilots are frequently exposed to high temperatures during high-speed low-level flight. Heat strain can result in temporary impairment of cognitive functions and when severe, loss of consciousness and consequent loss of life and equipment. Induction of stress proteins is a highly conserved stress response mechanism from bacteria to humans. Induced stress protein levels are known to be cytoprotective and have been correlated with stress tolerance. Although many studies on the heat shock response mechanisms have been performed in cell culture and animal model systems, there is very limited information on stress protein induction in human subjects. Heat shock proteins (Hsp), especially Hsp70, may be induced in human subjects exposed to high temperatures in a hot cockpit designed to simulate heat stress experienced in low flying sorties. Six healthy volunteers were subjected to heat stress at 55 degrees C in a high temperature cockpit simulator for a period of 1 h at 30% humidity. Physiological parameters such as oral and skin temperatures, heart rate, and sweat rate were monitored regularly during this time. The level of Hsp70 in leukocytes was examined before and after the heat exposure in each subject. Hsp70 was found to be significantly induced in all the six subjects exposed to heat stress. The level of induced Hsp70 appears to correlate with other strain indicators such as accumulative circulatory strain and Craig's modified index. The usefulness of Hsp70 as a molecular marker of heat stress in humans is discussed.

  13. Optimizing heat shock protein expression induced by prostate cancer laser therapy through predictive computational models

    NASA Astrophysics Data System (ADS)

    Rylander, Marissa N.; Feng, Yusheng; Zhang, Yongjie; Bass, Jon; Stafford, Roger J.; Hazle, John D.; Diller, Kenneth R.

    2006-07-01

    Thermal therapy efficacy can be diminished due to heat shock protein (HSP) induction in regions of a tumor where temperatures are insufficient to coagulate proteins. HSP expression enhances tumor cell viability and imparts resistance to chemotherapy and radiation treatments, which are generally employed in conjunction with hyperthermia. Therefore, an understanding of the thermally induced HSP expression within the targeted tumor must be incorporated into the treatment plan to optimize the thermal dose delivery and permit prediction of the overall tissue response. A treatment planning computational model capable of predicting the temperature, HSP27 and HSP70 expression, and damage fraction distributions associated with laser heating in healthy prostate tissue and tumors is presented. Measured thermally induced HSP27 and HSP70 expression kinetics and injury data for normal and cancerous prostate cells and prostate tumors are employed to create the first HSP expression predictive model and formulate an Arrhenius damage model. The correlation coefficients between measured and model predicted temperature, HSP27, and HSP70 were 0.98, 0.99, and 0.99, respectively, confirming the accuracy of the model. Utilization of the treatment planning model in the design of prostate cancer thermal therapies can enable optimization of the treatment outcome by controlling HSP expression and injury.

  14. Induction of Hsp 70 in Vero cells in response to mycotoxins cytoprotection by sub-lethal heat shock and by Vitamin E.

    PubMed

    El Golli, Emna; Hassen, Wafa; Bouslimi, Amel; Bouaziz, Chayma; Ladjimi, M Moncef; Bacha, Hassen

    2006-10-10

    This paper analysed the toxicity mechanisms of several mycotoxins using Hsp 70 expression, cytoprotection of Vero cells by sub-lethal heat shock (sub-LHS) and Vitamin E. Our aim was (i) to determine whether Citrinin (CTN), Zearalenone (ZEN) and T2 toxin (T2) could induce the expression of Hsp 70, (ii) to check whether or not elevated levels of Hsp and Vitamin E pre-treatment could provide cytoprotection from these mycotoxins, and finally (iii) to emphasize the eventual involvement of oxidative stress on mycotoxin's toxicity. Our study demonstrated that the three examined mycotoxins induced Hsp 70 expression in a dose-dependent manner. A cytoprotective effect of Hsp 70 was obtained when Vero cells were exposed to sub-lethal heat shock followed by a 12h recovery prior to mycotoxins treatment and evidenced by a reduction of their cytolethality. This cytoprotection suggested that Hsp 70 might constitute an important cellular defence mechanism. A cytoprotective action was also obtained although at lesser extent, when cells were pre-treated with an antioxidant agent, the Vitamin E before mycotoxins treatment. This Vitamin E cytoprotection evoked the involvement of oxidative stress in mycotoxins induced toxicity, which was further, confirmed by the reduction of Hsp 70 expression when cells were pre-treated with Vitamin E prior to mycotoxins. Our data clearly shows that oxidative stress is certainly involved in the toxicity of the three studied mycotoxins, Citrinin, Zearalenone and T2 toxin and may therefore constitutes a relevant part in their toxicities; however, at variable extent from one mycotoxin to another.

  15. [Construction and expression of HSV-2gD-Hsp70 fusion protein gene].

    PubMed

    Fan, Jian-Yong; Yang, Hui-Lan; Wang, Ying; Guan, Lei

    2006-11-01

    To construct and express Hsp70-HSV2gD fusion protein. Genes of Hsp70 and HSV-2gD were subcloned into vectors pGEX-4T-1 respectively. After confirmed by DNA sequence analysis, the recombinant plasmids pGEX-4T-HSP-gD was transformed into E. coli DH5alpha and induced to express with IPTG. The expressed protein was characterized by SDS-PAGE and Western blot after purified. BALB/c mice were immunized with fusion proteins respectively via intra-m uscular injection. The proliferation of spleen lymphocytes, the level of y-IFN in culture and anti-HSV-2gD IgG antibody in serum was detected was detected. The expressed protein was analyzed by SDS-PAGE after induced with IPTG, which showed a new band with an apparent molecular mass corresponding to the predicted size (118 kD). Western Blotting analysis demonstrates that the purified Hsp70-HSV2gD fusion protein had specific binding activity. The stimulation indexes of spleen lymphocytes, the level of gamma-IFN in culture and anti-HSV-2gD IgG antibody in serum of GST-Hsp70-gD group was obviously higher than that of other groups (P < 0.05 respectively). The successful expression of the Hsp70-HSV2gD fusion protein, which can induce immune responses, laid a solid foundation for its further research.

  16. Heat Shock Protein 70 Prevents Hyperoxia-Induced Disruption of Lung Endothelial Barrier via Caspase-Dependent and AIF-Dependent Pathways

    PubMed Central

    Kondrikov, Dmitry; Fulton, David; Dong, Zheng; Su, Yunchao

    2015-01-01

    Exposure of pulmonary artery endothelial cells (PAECs) to hyperoxia results in a compromise in endothelial monolayer integrity, an increase in caspase-3 activity, and nuclear translocation of apoptosis-inducing factor (AIF), a marker of caspase-independent apoptosis. In an endeavor to identify proteins involved in hyperoxic endothelial injury, we found that the protein expression of heat-shock protein 70 (Hsp70) was increased in hyperoxic PAECs. The hyperoxia-induced Hsp70 protein expression is from hspA1B gene. Neither inhibition nor overexpression of Hsp70 affected the first phase barrier disruption of endothelial monolayer. Nevertheless, inhibition of Hsp70 by using the Hsp70 inhibitor KNK437 or knock down Hsp70 using siRNA exaggerated and overexpression of Hsp70 prevented the second phase disruption of lung endothelial integrity. Moreover, inhibition of Hsp70 exacerbated and overexpression of Hsp70 prevented hyperoxia-induced apoptosis, caspase-3 activation, and increase in nuclear AIF protein level in PAECs. Furthermore, we found that Hsp70 interacted with AIF in the cytosol in hyperoxic PAECs. Inhibition of Hsp70/AIF association by KNK437 correlated with increased nuclear AIF level and apoptosis in KNK437-treated PAECs. Finally, the ROS scavenger NAC prevented the hyperoxia-induced increase in Hsp70 expression and reduced the interaction of Hsp70 with AIF in hyperoxic PAECs. Together, these data indicate that increased expression of Hsp70 plays a protective role against hyperoxia-induced lung endothelial barrier disruption through caspase-dependent and AIF-dependent apoptotic pathways. Association of Hsp70 with AIF prevents AIF nuclear translocation, contributing to the protective effect of Hsp70 on hyperoxia-induced endothelial apoptosis. The hyperoxia-induced increase in Hsp70 expression and Hsp70/AIF interaction is contributed to ROS formation. PMID:26066050

  17. [Microinjections of heat shock protein 70 kDa into the nucleus reticularis pontis oralis induce inhibition of rapid eye movement sleep in pigeons].

    PubMed

    Gusel'nikova, E A; Pastukhov, Iu F

    2008-03-01

    Recently it was indicated that microinjections of heat shock proteins 70 kDa (Hsp70) into the third ventricle of brain in pigeons results in an increase in the duration of slow wave sleep and a decrease in somato-visceral indices. It is suggested that Hsp70 effect may be related to GABA(A) receptors activation in the preoptic area of the hypothalamus. However, what transmitter mechanisms of activation are related to the removal effect (in 2-3 hrs) of rapid eye movement sleep inhibition still remains poorly understood. To solve this problem in the present study, microinjections of Hsp70 into the Nucleus reticularis pontis oralis (NRPO) were done. It is well known that cholinergic neurons of the NRPO are crucial for rapid eye movement sleep generation. The data show that Hsp70 produces more early (for first two hrs) a decrease in number of episodes and total time of rapid eye movement sleep, a diminution of electroencephalogram (EEG) power spectra in the 9-14 Hz band, a decrease in contractile muscle activity and brain temperature. It is suggested that Hsp70 effects are realized due to activation of GABA(A) receptors in the NRPO and induced inhibition of cholinergic mechanisms of rapid eye movement sleep triggering. The microinjections of Hsp70 into the NRPO increase the slow wave sleep total time with long latency (for 8-12 hrs). This effect may be related to influence of Hsp70 on neurons population, which are responsible for slow wave sleep maintenance outside the NRPO.

  18. TAAR 6 and HSP-70 variations associated with bipolar disorder.

    PubMed

    Pae, Chi-Un; Drago, Antonio; Mandelli, Laura; De Ronchi, Diana; Serretti, Alessandro

    2009-11-20

    We report on the impact of a set of variations located in the HSP-70 (heat shock protein 70) and TAAR6 (trace amine associated receptors 6 gene) in a sample of bipolar patients. Holding a diagnosis of BPD was the first outcome measure. Response to pharmacotreatment in bipolar patients was the secondary outcome measure. One hundred seventy-one bipolar patients and 288 controls were enrolled for the study. Patients were administered HAM-D, YMRS and CGI at baseline and discharge by independent psychiatrists blind to genotypes. As a result, homozygosis at rs2075799 (HSP-70) was found to be more represented in controls than in cases (p=0.000009). The investigated variations did not show impact on treatment outcome. This study provides preliminary evidence that HSP-70 may play a role in the disrupted mechanisms that lead to BPD. Further confirmatory analyses in this direction are mandatory.

  19. Engagement of Components of DNA-Break Repair Complex and NFκB in Hsp70A1A Transcription Upregulation by Heat Shock.

    PubMed

    Hazra, Joyita; Mukherjee, Pooja; Ali, Asif; Poddar, Soumita; Pal, Mahadeb

    2017-01-01

    An involvement of components of DNA-break repair (DBR) complex including DNA-dependent protein kinase (DNA-PK) and poly-ADP-ribose polymerase 1 (PARP-1) in transcription regulation in response to distinct cellular signalling has been revealed by different laboratories. Here, we explored the involvement of DNA-PK and PARP-1 in the heat shock induced transcription of Hsp70A1A. We find that inhibition of both the catalytic subunit of DNA-PK (DNA-PKc), and Ku70, a regulatory subunit of DNA-PK holo-enzyme compromises transcription of Hsp70A1A under heat shock treatment. In immunoprecipitation based experiments we find that Ku70 or DNA-PK holoenzyme associates with NFκB. This NFκB associated complex also carries PARP-1. Downregulation of both NFκB and PARP-1 compromises Hsp70A1A transcription induced by heat shock treatment. Alteration of three bases by site directed mutagenesis within the consensus κB sequence motif identified on the promoter affected inducibility of Hsp70A1A transcription by heat shock treatment. These results suggest that NFκB engaged with the κB motif on the promoter cooperates in Hsp70A1A activation under heat shock in human cells as part of a DBR complex including DNA-PK and PARP-1.

  20. Recombinant heat shock protein 70 functional peptide and alpha-fetoprotein epitope peptide vaccine elicits specific anti-tumor immunity.

    PubMed

    Wang, Xiao-Ping; Wang, Qiao-Xia; Lin, Huan-Ping; Xu, Bing; Zhao, Qian; Chen, Kun

    2016-11-01

    Alpha-fetoprotein (AFP) is a marker of hepatocellular carcinoma (HCC) and serves as a target for immunotherapy. However, current treatments targeting AFP are not reproducible and do not provide complete protection against cancer. This issue may be solved by developing novel therapeutic vaccines with enhanced immunogenicity that could effectively target AFP-expressing tumors. In this study, we report construction of a therapeutic peptide vaccine by linking heat shock protein 70 (HSP70) functional peptide to the AFP epitope to obtain HSP70-P/AFP-P. This novel peptide was administered into BALB/c mice to observe the effects. Quantification of AFP-specific CD8 + T cells that secrete IFN-γ in these mice via ELISPOT revealed the synergistic effects of HSP70-P/AFP-P with increased numbers of AFP-specific CD8 + T cells. Similarly, ELISA analysis showed increased granzyme B and perforin released by natural killer cells. Moreover, in vitro cytotoxic T-lymphocyte assays and in vivo tumor preventive experiments clearly showed the higher antitumor effects of HSP70-P/AFP-P against AFP-expressing tumors. These results show that treatment of BALB/c mice with HSP70-P/AFP-P induced stronger T-cells responses and improved protective immunity. Our data suggest that HSP70-P/AFP-P may be used as a therapeutic approach in the treatment of AFP-expressing cancers.

  1. REGULATION OF INFLAMMATORY TRANSCRIPTION FACTORS BY HEAT SHOCK PROTEIN 70 IN PRIMARY CULTURED ASTROCYTES EXPOSED TO OXYGEN–GLUCOSE DEPRIVATION

    PubMed Central

    KIM, J. Y.; YENARI, M. A.; LEE, J. E.

    2018-01-01

    Inflammation is an important event in ischemic injury. These immune responses begin with the expression of pro-inflammatory genes modulating transcription factors, such as nuclear factor-κB (NF-κB), activator protein-1 (AP-1), and signal transducers and activator of transcription-1 (STAT-1). The 70-kDa heat shock protein (Hsp70) can both induce and arrest inflammatory reactions and lead to improved neurological outcome in experimental brain injury and ischemia. Since Hsp70 are induced under heat stress, we investigated the link between Hsp70 neuroprotection and phosphorylation of inhibitor of κB (IκB), c-Jun N-terminal kinases (JNK) and p38 through co-immunoprecipitation and enzyme-linked immunosorbent assay (ELISA) assay. Transcription factors and pro-inflammatory genes were quantified by immunoblotting, electrophoretic-mobility shift assay and reverse transcription-polymerase chain reaction assays. The results showed that heat stress led to Hsp70 overexpression which rendered neuroprotection after ischemia-like injury. Overexpression Hsp70 also interrupts the phosphorylation of IκB, JNK and p38 and bluntsDNA binding of their transcription factors (NF-κB, AP-1 and STAT-1), effectively downregulating the expression of pro-inflammatory genes inheat-pretreatedastrocytes. Takentogether, these results suggest that overexpression of Hsp70 may protect against brain ischemia via an anti-inflammatory mechanism by interrupting the phosphorylation of upstream of transcription factors. PMID:25485480

  2. Association of plasma IL-6 and Hsp70 with HRV at different levels of PAHs metabolites.

    PubMed

    Ye, Jian; Zhu, Rui; He, Xiaosheng; Feng, Yingying; Yang, Liangle; Zhu, Xiaoyan; Deng, Qifei; Wu, Tangchun; Zhang, Xiaomin

    2014-01-01

    Exposure to polycyclic aromatic hydrocarbons (PAHs) is associated with reduced heart rate variability (HRV), a strong predictor of cardiovascular diseases, but the mechanism is not well understood. We hypothesized that PAHs might induce systemic inflammation and stress response, contributing to altered cardiac autonomic function. HRV indices were measured using a 3-channel digital Holter monitor in 800 coke oven workers. Plasma levels of interleukin-6 (IL-6) and heat shock protein 70 (Hsp70) were determined using ELISA. Twelve urinary PAHs metabolites (OH-PAHs) were measured by gas chromatography-mass spectrometry. We found that significant dose-dependent relationships between four urinary OH-PAHs and IL-6 (all Ptrend<0.05); and an increase in quartiles of IL-6 was significantly associated with a decrease in total power (TP) and low frequency (LF) (Ptrend = 0.014 and 0.006, respectively). In particular, elevated IL-6 was associated in a dose-dependent manner with decreased TP and LF in the high-PAHs metabolites groups (all Ptrend<0.05), but not in the low-PAHs metabolites groups. No significant association between Hsp70 and HRV in total population was found after multivariate adjustment. However, increased Hsp70 was significantly associated with elevated standard deviation of NN intervals (SDNN), TP and LF in the low-PAHs metabolites groups (all Ptrend<0.05). We also observed that both IL-6 and Hsp70 significantly interacted with multiple PAHs metabolites in relation to HRV. In coke oven workers, increased IL-6 was associated with a dose-response decreased HRV in the high-PAHs metabolites groups, whereas increase of Hsp70 can result in significant dose-related increase in HRV in the low-PAHs metabolites groups.

  3. Association of Plasma IL-6 and Hsp70 with HRV at Different Levels of PAHs Metabolites

    PubMed Central

    He, Xiaosheng; Feng, Yingying; Yang, Liangle; Zhu, Xiaoyan; Deng, Qifei; Wu, Tangchun; Zhang, Xiaomin

    2014-01-01

    Background Exposure to polycyclic aromatic hydrocarbons (PAHs) is associated with reduced heart rate variability (HRV), a strong predictor of cardiovascular diseases, but the mechanism is not well understood. Objectives We hypothesized that PAHs might induce systemic inflammation and stress response, contributing to altered cardiac autonomic function. Methods HRV indices were measured using a 3-channel digital Holter monitor in 800 coke oven workers. Plasma levels of interleukin-6 (IL-6) and heat shock protein 70 (Hsp70) were determined using ELISA. Twelve urinary PAHs metabolites (OH-PAHs) were measured by gas chromatography-mass spectrometry. Results We found that significant dose-dependent relationships between four urinary OH-PAHs and IL-6 (all P trend<0.05); and an increase in quartiles of IL-6 was significantly associated with a decrease in total power (TP) and low frequency (LF) (P trend = 0.014 and 0.006, respectively). In particular, elevated IL-6 was associated in a dose-dependent manner with decreased TP and LF in the high-PAHs metabolites groups (all P trend<0.05), but not in the low-PAHs metabolites groups. No significant association between Hsp70 and HRV in total population was found after multivariate adjustment. However, increased Hsp70 was significantly associated with elevated standard deviation of NN intervals (SDNN), TP and LF in the low-PAHs metabolites groups (all P trend<0.05). We also observed that both IL-6 and Hsp70 significantly interacted with multiple PAHs metabolites in relation to HRV. Conclusions In coke oven workers, increased IL-6 was associated with a dose-response decreased HRV in the high-PAHs metabolites groups, whereas increase of Hsp70 can result in significant dose-related increase in HRV in the low-PAHs metabolites groups. PMID:24722336

  4. Xenon treatment attenuates early renal allograft injury associated with prolonged hypothermic storage in rats.

    PubMed

    Zhao, Hailin; Yoshida, Akira; Xiao, Wei; Ologunde, Rele; O'Dea, Kieran P; Takata, Masao; Tralau-Stewart, Catherine; George, Andrew J T; Ma, Daqing

    2013-10-01

    Prolonged hypothermic storage elicits severe ischemia-reperfusion injury (IRI) to renal grafts, contributing to delayed graft function (DGF) and episodes of acute immune rejection and shortened graft survival. Organoprotective strategies are therefore needed for improving long-term transplant outcome. The aim of this study is to investigate the renoprotective effect of xenon on early allograft injury associated with prolonged hypothermic storage. Xenon exposure enhanced the expression of heat-shock protein 70 (HSP-70) and heme oxygenase 1 (HO-1) and promoted cell survival after hypothermia-hypoxia insult in human proximal tubular (HK-2) cells, which was abolished by HSP-70 or HO-1 siRNA. In the brown Norway to Lewis rat renal transplantation, xenon administered to donor or recipient decreased the renal tubular cell death, inflammation, and MHC II expression, while delayed graft function (DGF) was therefore reduced. Pathological changes associated with acute rejection, including T-cell, macrophage, and fibroblast infiltration, were also decreased with xenon treatment. Donors or recipients treated with xenon in combination with cyclosporin A had prolonged renal allograft survival. Xenon protects allografts against delayed graft function, attenuates acute immune rejection, and enhances graft survival after prolonged hypothermic storage. Furthermore, xenon works additively with cyclosporin A to preserve post-transplant renal function.

  5. EFFECTS OF PCBS SORBED TO ALGAL PASTE AND SEDIMENTS ON THE STRESS PROTEIN RESPONSE (HSP70 FAMILY) IN THE EASTERN OYSTER, CRASSOSTREA VIRGINICA. (R825349)

    EPA Science Inventory

    Abstract

    This study examined the stress protein response (HSP70 family) of reproductively inactive oysters fed 0.7 g algal paste containing 0, 0.35 and 3.5 small mu, Greekg polychlorinate...

  6. Evolutionary Conservation and Emerging Functional Diversity of the Cytosolic Hsp70:J Protein Chaperone Network of Arabidopsis thaliana.

    PubMed

    Verma, Amit K; Diwan, Danish; Raut, Sandeep; Dobriyal, Neha; Brown, Rebecca E; Gowda, Vinita; Hines, Justin K; Sahi, Chandan

    2017-06-07

    Heat shock proteins of 70 kDa (Hsp70s) partner with structurally diverse Hsp40s (J proteins), generating distinct chaperone networks in various cellular compartments that perform myriad housekeeping and stress-associated functions in all organisms. Plants, being sessile, need to constantly maintain their cellular proteostasis in response to external environmental cues. In these situations, the Hsp70:J protein machines may play an important role in fine-tuning cellular protein quality control. Although ubiquitous, the functional specificity and complexity of the plant Hsp70:J protein network has not been studied. Here, we analyzed the J protein network in the cytosol of Arabidopsis thaliana and, using yeast genetics, show that the functional specificities of most plant J proteins in fundamental chaperone functions are conserved across long evolutionary timescales. Detailed phylogenetic and functional analysis revealed that increased number, regulatory differences, and neofunctionalization in J proteins together contribute to the emerging functional diversity and complexity in the Hsp70:J protein network in higher plants. Based on the data presented, we propose that higher plants have orchestrated their "chaperome," especially their J protein complement, according to their specialized cellular and physiological stipulations. Copyright © 2017 Verma et al.

  7. Role of Hsp-70 responses in cold acclimation of HUVEC-12 cells.

    PubMed

    Guan, Hao; Hu, Dahai; Zhao, Zhijing; Cai, Weixia; Zhou, Qin; Yang, Ximing; Yan, Ying; Zhu, Xiongxiang

    2015-01-01

    Endothelial recovery is a central feature of tissues after frostbite injuries. Thermo tolerance plays an important role in protecting cells against injury after frozen and thawing. The present study aimed to quantitatively assess the injury of human umbilical vein endothelial cells HUVEC-12 after repeated low temperature. Pretreatments (HUVEC-12) cells were repeatedly exposed to cold (1°C/min decrement to -20°C). Their proliferation, death, apoptosis, and protein and mRNA expressions of HSP70 were determined. Endothelial cells after repeated cold exposures were more resistant to apoptosis and necrosis than normal cells. The expressions of HSP70 in cells after repeated cold exposures were significantly higher than in normal HUVEC-12 cells (P < 0.05). Cold acclimation may induce the expression of HSP-70 which plays a protective role in the temperature tolerance.

  8. Characterization of the small heat shock protein Hsp27 gene in Chironomus riparius (Diptera) and its expression profile in response to temperature changes and xenobiotic exposures.

    PubMed

    Martínez-Paz, Pedro; Morales, Mónica; Martín, Raquel; Martínez-Guitarte, José Luis; Morcillo, Gloria

    2014-07-01

    Small heat shock proteins constitute the most diverse and least conserved group within the large family of heat shock proteins, which play a crucial role in cell response to environmental insults. Chironomus riparius larvae are widely used in environmental research for testing pollutant toxicity in sediments and freshwater environments. Different genes, such as Hsp70, Hsc70, Hsp90, and Hsp40, have been identified in this species as sensitive biomarkers for xenobiotics, but small Hsps genes remain largely unknown. In this study, the Hsp27 has been characterized in C. riparius and its transcriptional response evaluated under several environmental stimuli. The Hsp27 gene was mapped by FISH on polytene chromosomes at region I-C4 and was found to encode a 195 aa protein, which contains an α-crystallin domain bounded by three conserved regions. This protein shows homology with Drosophila melanogaster HSP27, Ceratitis capitata HSP27, and Sarcophaga crassipalpis HSP25. Real-time reverse transcriptase-polymerase chain reaction analysis showed that heat shock (35 °C) and cadmium dramatically upregulate this gene. Moreover, exposures to triclosan and bisphenol A were able to significantly increase mRNA levels. However, neither nonylphenol nor tributyltin altered Hsp27 gene expression. The transcriptional activity of Hsp27 gene was modulated during cold stress. Interestingly, cold shock (4 °C) significantly reduced Hsp27 transcripts, but this gene was significantly overexpressed during the recovery time at the normal growing temperature. These results show that the Hsp27 gene is sensitive to different environmental stimuli, including endocrine-disrupting pollutants, suggesting its potential as a suitable biomarker for ecotoxicological studies in aquatic systems.

  9. [Expressions of heat shock protein (HSP) family HSP 60, 70 and 90alpha in colorectal cancer tissues and their correlations to pathohistological characteristics].

    PubMed

    Zhang, Wen-Li; Gao, Xue-Qin; Han, Jin-Xiang; Wang, Guo-Qiang; Yue, Long-Tao

    2009-06-01

    Colorectal cancer is the third common malignant tumor in the world. Heat shock protein (HSP) family has been reported to play an important role in carcinogenesis of various cancers. However, little is known about expressions of HSP60,HSP70 and HSP90alpha in colorectal cancer. This study was to investigate expressions of HSP 60, 70 and 90alpha, and analyzed their correlations to pathohistologic characteristics in colorectal cancer. Colorectal cancer tissues and adjacent normal tissues 2 cm away from the tumor focus were collected from 49 patients. Expressions of HSP60, HSP70 and HSP90alpha mRNA were detected by RT-PCR. The protein expressions of HSP60, HSP70 and HSP90alpha were determined by immunohistochemistry and western blot. The mRNA and protein levels of HSP60, HSP70 and HSP90alpha, as well as their positive rates were significantly increased in tumor tissues compared with those in para-cancerous tissues. The overexpression rates of HSP60, HSP70 and HSP90alpha were also significantly higher in the colorectal cancer tissues than those in the corresponding para-cancerous tissues. The positive and overexpression rates of HSP60, HSP70 and HSP90alpha in well, moderately and poorly differentiated colorectal cancer were not significantly different. HSP60, HSP70 and HSP90alpha may play important roles in the pathogenesis of colorectal cancer, although they are not correlated with the pathological grading.

  10. Hyper-O-GlcNAcylation inhibits the induction of heat shock protein 70 (Hsp 70) by sodium arsenite in HeLa cells.

    PubMed

    Miura, Yuri; Sato, Takatoshi; Sakurai, Yoko; Sakai, Ryo; Hiraoka, Wakako; Endo, Tamao

    2014-01-01

    O-Linked β-N-acetylglucosamine-modification (O-GlcNAcylation) is a reversible, post-translational, and regulatory modification of nuclear, mitochondrial, and cytoplasmic proteins that is responsive to cellular stress. However, the role of O-GlcNAcylation in the induction of heat shock proteins (Hsps) by arsenite remains unclear. We used O-(2-acetamido-2-deoxy-D-glucopyranosylidene) amino N-phenyl carbamate (PUGNAc), an inhibitor of O-GlcNAcase, and glucosamine (GlcN), an enhancer of the hexosamine biosynthesis pathway, or O-GlcNAc transferase (OGT) short interfering RNA (siRNA) to enhance or suppress cellular O-GlcNAcylation levels, respectively, in HeLa cells. The exposure to arsenite increased O-GlcNAcylation and Hsp 70 levels in HeLa cells. However, the pre-treatment with PUGNAc or GlcN, which enhanced O-GlcNAcylation levels, decreased the arsenite-induced expression of Hsp 70. The pre-treatment with OGT siRNA, which suppressed O-GlcNAcylation levels, did not affect the induction of Hsp 70. We then examined the effects of O-GlcNAcylation on the nuclear translocation and phosphorylation of heat shock factor 1 (HSF1), and found that neither the nuclear translocation nor phosphorylation of HSF1 was regulated by O-GlcNAcylation. Finally, Hsp 70 mRNA expression was induced by arsenite, whereas the addition of PUGNAc slightly suppressed its induction. These results indicate that O-GlcNAcylation is related to arsenite-induced Hsp 70 expression, and demonstrated that hyper-O-GlcNAcylation inhibited the induction of Hsp 70 via transcriptional factors instead of HSF1.

  11. Heat Shock Protein-70 Expression in Vitiligo and its Relation to the Disease Activity.

    PubMed

    Doss, Reham William; El-Rifaie, Abdel-Aziz A; Abdel-Wahab, Amr M; Gohary, Yasser M; Rashed, Laila A

    2016-01-01

    Vitiligo is a progressive depigmenting disorder characterized by the loss of functional melanocytes from the epidermis. The etiopathogenesis of vitiligo is still unclear. Heat shock proteins (HSPs) are prime candidates to connect stress to the skin. HSPs were found to be implicated in autoimmune diseases such as rheumatoid arthritis and other skin disorders as psoriasis. The aim of this study was to map the level of HSP-70 in vitiligo lesions to declare its role in the pathogenesis and activity of vitiligo. The study included thirty patients with vitiligo and 30 age- and sex-matched healthy controls. Vitiligo patients were divided as regards to the disease activity into highly active, moderately active, and inactive vitiligo groups. Skin biopsies were taken from the lesional and nonlesional skin of patients and from the normal skin of the controls. HSP-70 messenger RNA (mRNA) expression was estimated using quantitative real-time polymerase chain reaction. Our analysis revealed a significantly higher expression of HSP-70 mRNA in lesional skin biopsies from vitiligo patients compared to nonlesional skin biopsies from vitiligo patients (P < 0.001) and compared to skin biopsies from healthy controls (P < 0.001). The level of HSP-70 was not found to be correlated with age, sex, or disease duration. The expression of HSP-70 was correlated with the disease activity and patients with active vitiligo showed higher mean HSP-70 level compared to those with inactive disease. HSP-70 plays a role in the pathogenesis of vitiligo and may enhance the immune response in active disease.

  12. Leishmania infantum HSP70-II null mutant as candidate vaccine against leishmaniasis: a preliminary evaluation.

    PubMed

    Carrión, Javier; Folgueira, Cristina; Soto, Manuel; Fresno, Manuel; Requena, Jose M

    2011-07-27

    Visceral leishmaniasis is the most severe form of leishmaniasis and no effective vaccine exists. The use of live attenuated vaccines is emerging as a promising vaccination strategy. In this study, we tested the ability of a Leishmania infantum deletion mutant, lacking both HSP70-II alleles (ΔHSP70-II), to provide protection against Leishmania infection in the L. major-BALB/c infection model. Administration of the mutant line by either intraperitoneal, intravenous or subcutaneous route invariably leads to the production of high levels of NO and the development in mice of type 1 immune responses, as determined by analysis of anti-Leishmania IgG subclasses. In addition, we have shown that ΔHSP70-II would be a safe live vaccine as immunodeficient SCID mice, and hamsters (Mesocricetus auratus), infected with mutant parasites did not develop any sign of pathology. The results suggest that the ΔHSP70-II mutant is a promising and safe vaccine, but further studies in more appropriate animal models (hamsters and dogs) are needed to appraise whether this attenuate mutant would be useful as vaccine against visceral leishmaniasis.

  13. Conserved structure and expression of hsp70 paralogs in teleost fishes.

    PubMed

    Metzger, David C H; Hemmer-Hansen, Jakob; Schulte, Patricia M

    2016-06-01

    The cytosolic 70KDa heat shock proteins (Hsp70s) are widely used as biomarkers of environmental stress in ecological and toxicological studies in fish. Here we analyze teleost genome sequences to show that two genes encoding inducible hsp70s (hsp70-1 and hsp70-2) are likely present in all teleost fish. Phylogenetic and synteny analyses indicate that hsp70-1 and hsp70-2 are distinct paralogs that originated prior to the diversification of the teleosts. The promoters of both genes contain a TATA box and conserved heat shock elements (HSEs), but unlike mammalian HSP70s, both genes contain an intron in the 5' UTR. The hsp70-2 gene has undergone tandem duplication in several species. In addition, many other teleost genome assemblies have multiple copies of hsp70-2 present on separate, small, genomic scaffolds. To verify that these represent poorly assembled tandem duplicates, we cloned the genomic region surrounding hsp70-2 in Fundulus heteroclitus and showed that the hsp70-2 gene copies that are on separate scaffolds in the genome assembly are arranged as tandem duplicates. Real-time quantitative PCR of F. heteroclitus genomic DNA indicates that four copies of the hsp70-2 gene are likely present in the F. heteroclitus genome. Comparison of expression patterns in F. heteroclitus and Gasterosteus aculeatus demonstrates that hsp70-2 has a higher fold increase than hsp70-1 following heat shock in gill but not in muscle tissue, revealing a conserved difference in expression patterns between isoforms and tissues. These data indicate that ecological and toxicological studies using hsp70 as a biomarker in teleosts should take this complexity into account. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Heat shock protein 70 secretion by neonatal tracheal tissue during mechanical ventilation: association with indices of tissue function and modeling.

    PubMed

    Chong, Euming; Dysart, Kevin C; Chidekel, Aaron; Locke, Robert; Shaffer, Thomas H; Miller, Thomas L

    2009-04-01

    Mechanical ventilation (MV) of the neonatal airway alters mechanical properties and activates tissue-modeling pathways. Heat shock protein (HSP70) is a marker of tissue injury and modulates inflammation, which may influence subsequent pulmonary tissue modeling by matrix metalloproteinases (MMPs). HSP70 secretion is up-regulated in MV airway tissues and associated with changes in airway elasticity and secretion of MMPs. Proximal tracheal segments were isolated in 13 newborn lambs and were either MV for 4 h or SHAM. At baseline and hourly, tracheal segments were flushed and tracheal elasticity was determined. Tracheal wash fluid was assayed for HSP70 by ELISA and for MMPs by substrate zymography. HSP70 secretion increased from baseline to a peak at 1 h in both groups (p < 0.01), greater in the MV group (p < 0.05), and returned to baseline values by 2 h. This response was in contrast to the progressive decrease in tracheal elasticity (p < 0.05). The HSP70 elevation pattern was noted in MMP-2, but beyond 1 h, MMP-2 returned to baseline values in MV group but remained elevated in SHAM (p < 0.05). HSP70 secretion is associated with the degree of biophysical tracheal injury as well as the time course of MMP-2 secretion by tracheal tissues.

  15. Food availability is expressed through physiological stress indicators in nestling white ibis: A food supplementation experiment

    USGS Publications Warehouse

    Herring, G.; Cook, Mark I.; Gawlik, D.E.; Call, Erynn M.

    2011-01-01

    Physiological responses to environmental stress such as adrenocortical hormones and cellular stress proteins have recently emerged as potentially powerful tools for investigating physiological effects of avian food limitation. However, little is known about the physiological stress responses of free-living nestling birds to environmental variation in food availability. We experimentally tested how hydrologically mediated changes in food availability affect the physiological stress responses of juvenile white ibises Eudocimus albus in a fluctuating wetland. We provided supplementary food to free-living nestlings during 2years with contrasting hydrologic and food availability conditions, and used plasma (PCORT) and faecal (FCORT) corticosterone and heat shock proteins (HSP60 and HSP70) from first-hatched (A-nestlings) and second-hatched (B-nestlings) to detect relatively short- to long-term responses to food limitation. Nestling physiological stress responses were relatively low in all treatments during the year with optimal food availability, but PCORT, FCORT and HSP60 levels increased during the poor food year. FCORT and HSP60 responses were clearly due to nutritional condition as elevated concentrations were evident primarily in control nestlings. Significant year by hatch order interactions for both FCORT and HSP60 revealed that these increases were largely incurred by B-nestlings. FCORT and HSP60 responses were also well developed early in neonatal development and remained elevated for the duration of the experiment suggesting a chronic stress response. PCORT and HSP70 were less informative stress responses. The nutritionally mediated increases in FCORT and HSP60 provide compelling evidence that white ibis nestlings can be physiologically affected by environmental food levels. FCORT and HSP60 are effective indicators of nutritional mediated stress for nestling white ibises and potentially for other species prone to capture or handling stress. ?? 2010 The Authors. Functional Ecology ?? 2010 British Ecological Society.

  16. Peripheral blood mononuclear cells: a potential cellular system to understand differential heat shock response across native cattle (Bos indicus), exotic cattle (Bos taurus), and riverine buffaloes (Bubalus bubalis) of India.

    PubMed

    Kishore, Amit; Sodhi, Monika; Kumari, Parvesh; Mohanty, A K; Sadana, D K; Kapila, Neha; Khate, K; Shandilya, Umesh; Kataria, R S; Mukesh, M

    2014-09-01

    Circulating leukocytes can be used as an effective model to understand the heat stress response of different cattle types and buffaloes. This investigation aimed to determine the temporal profile of HSPs (HSP40, HSP60, HSP70, and HSP90) expression in circulating peripheral blood mononuclear cells (PBMCs) of Murrah buffaloes, Holstein-Friesian (HF), and Sahiwal cows in response to sublethal heat shock at 42 °C. The viability data indicated HF PBMCs to be the most affected to the heat shock, whereas Sahiwal PBMCs were least affected, indicating its better survivability during the heat stress condition. The qRT-PCR expression data showed significant increase in mRNA expression of the analyzed HSPs genes after heat stimuli to the PBMCs under in vitro condition. In each case, the HSPs were most upregulated at 2 h after the heat stress. Among the HSPs, HSP70 was relatively more expressed followed by HSP60 indicating the action of molecular chaperones to stabilize the native conformation of proteins. However, PBMCs from different cattle types and buffaloes showed difference in the extent of transcriptional response. The level of expression of HSPs throughout the time period of heat stress was highest in buffaloes, followed by HF and Sahiwal cows. The higher abundance of HSP70 mRNA at each time point after heat stress showed prolonged effect of heat stress in HF PBMCs. The data presented here provided initial evidence of transcriptional differences in PBMCs of different cattle types and buffaloes and warrant further research.

  17. KU675, a Concomitant Heat-Shock Protein Inhibitor of Hsp90 and Hsc70 that Manifests Isoform Selectivity for Hsp90α in Prostate Cancer Cells.

    PubMed

    Liu, Weiya; Vielhauer, George A; Holzbeierlein, Jeffrey M; Zhao, Huiping; Ghosh, Suman; Brown, Douglas; Lee, Eugene; Blagg, Brian S J

    2015-07-01

    The 90-kDa heat-shock protein (Hsp90) assists in the proper folding of numerous mutated or overexpressed signal transduction proteins that are involved in cancer. Inhibiting Hsp90 consequently is an attractive strategy for cancer therapy as the concomitant degradation of multiple oncoproteins may lead to effective antineoplastic agents. Here we report a novel C-terminal Hsp90 inhibitor, designated KU675, that exhibits potent antiproliferative and cytotoxic activity along with client protein degradation without induction of the heat-shock response in both androgen-dependent and -independent prostate cancer cell lines. In addition, KU675 demonstrates direct inhibition of Hsp90 complexes as measured by the inhibition of luciferase refolding in prostate cancer cells. In direct binding studies, the internal fluorescence signal of KU675 was used to determine the binding affinity of KU675 to recombinant Hsp90α, Hsp90β, and Hsc70 proteins. The binding affinity (Kd) for Hsp90α was determined to be 191 μM, whereas the Kd for Hsp90β was 726 μM, demonstrating a preference for Hsp90α. Western blot experiments with four different prostate cancer cell lines treated with KU675 supported this selectivity by inducing the degradation of Hsp90α -: dependent client proteins. KU675 also displayed binding to Hsc70 with a Kd value at 76.3 μM, which was supported in cellular by lower levels of Hsc70-specific client proteins on Western blot analyses. Overall, these findings suggest that KU675 is an Hsp90 C-terminal inhibitor, as well as a dual inhibitor of Hsc70, and may have potential use for the treatment of cancer. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  18. Yeast Two-Hybrid and One-Hybrid Screenings Identify Regulators of hsp70 Gene Expression.

    PubMed

    Saito, Youhei; Nakagawa, Takanobu; Kakihana, Ayana; Nakamura, Yoshia; Nabika, Tomomi; Kasai, Michihiro; Takamori, Mai; Yamagishi, Nobuyuki; Kuga, Takahisa; Hatayama, Takumi; Nakayama, Yuji

    2016-09-01

    The mammalian stress protein Hsp105β, which is specifically expressed during mild heat shock and localizes to the nucleus, induces the major stress protein Hsp70. In the present study, we performed yeast two-hybrid and one-hybrid screenings to identify the regulators of Hsp105β-mediated hsp70 gene expression. Six and two proteins were detected as Hsp105β- and hsp70 promoter-binding proteins, respectively. A luciferase reporter gene assay revealed that hsp70 promoter activation is enhanced by the transcriptional co-activator AF9 and splicing mediator SNRPE, but suppressed by the coiled-coil domain-containing protein CCDC127. Of these proteins, the knockdown of SNRPE suppressed the expression of Hsp70 irrespective of the presence of Hsp105β, indicating that SNRPE essentially functions as a transcriptional activator of hsp70 gene expression. The overexpression of HSP70 in tumor cells has been associated with cell survival and drug resistance. We here identified novel regulators of Hsp70 expression in stress signaling and also provided important insights into Hsp70-targeted anti-cancer therapy. J. Cell. Biochem. 117: 2109-2117, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Insights into Hsp70 Chaperone Activity from a Crystal Structure of the Yeast Hsp110 Sse1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu,Q.; Hendrickson, W.

    2007-01-01

    Classic Hsp70 chaperones assist in diverse processes of protein folding and translocation, and Hsp110s had seemed by sequence to be distant relatives within an Hsp70 superfamily. The 2.4 Angstroms resolution structure of Sse1 with ATP shows that Hsp110s are indeed Hsp70 relatives, and it provides insight into allosteric coupling between sites for ATP and polypeptide-substrate binding in Hsp70s. Subdomain structures are similar in intact Sse1(ATP) and in the separate Hsp70 domains, but conformational dispositions are radically different. Interfaces between Sse1 domains are extensive, intimate, and conservative in sequence with Hsp70s. We propose that Sse1(ATP) may be an evolutionary vestige ofmore » the Hsp70(ATP) state, and an analysis of 64 mutant variants in Sse1 and three Hsp70 homologs supports this hypothesis. An atomic-level understanding of Hsp70 communication between ATP and substrate-binding domains follows. Requirements on Sse1 for yeast viability are in keeping with the distinct function of Hsp110s as nucleotide exchange factors.« less

  20. Polymorphisms in genes coding for HSP-70 are associated with gastric cancer and duodenal ulcer in a population at high risk of gastric cancer in Costa Rica.

    PubMed

    Ferrer-Ferrer, Maura; Malespín-Bendaña, Wendy; Ramírez, Vanessa; González, María Isabel; Carvajal, Adriana; Une, Clas

    2013-08-01

    Costa Rica has among the highest incidence and mortality rates for gastric cancer worldwide. The reasons for this are largely unknown. Polymorphisms of inflammatory response genes including genes encoding heat shock proteins (HSP) have been shown to be associated with the risk of gastric cancer in some populations. This study addresses the possible association between the HSP70-2 +1267 and HSP70-Hom +2437 polymorphisms and the risk of developing gastric cancer in a high-risk population in Costa Rica. DNA from 39 individuals diagnosed with gastric cancer, 79 healthy controls, 55 individuals with chronic gastritis and 52 individuals with duodenal ulcer was genotyped for the polymorphisms HSP70-2 +1267 and HSP70-Hom +2437 by RFLP. Logistic regression analysis was used to determine possible associations with the diagnoses and lineal regression analysis to determine associations with blood pepsinogen (PGs) levels as measured by serology. The GA genotype of HSP70-2 was associated with increased risk of gastric cancer (OR = 3.42; 95% CI = 1.27-9.21; p = 0.015) and duodenal ulcer (OR = 2.57; 95% CI = 1.03-6.36; p = 0.042) as compared to the GG genotype. Persons with C carrier genotypes of HSP70-Hom were significantly less susceptible to gastric cancer than those with the TT genotype (OR = 0.29; 95% CI = 0.09-0.87; p = 0.027). The C carrier genotype was associated with lower PGI concentrations but none of the polymorphisms were associated with PGI/PGII. Polymorphisms of HSP70 genes are associated with the development of gastric cancer and duodenal ulcers in a population at high risk for gastric cancer in Costa Rica. Copyright © 2013 IMSS. Published by Elsevier Inc. All rights reserved.

  1. Experimental immunization with anti-rheumatic bacterial extract OM-89 induces T cell responses to heat shock protein (hsp)60 and hsp70; modulation of peripheral immunological tolerance as its possible mode of action in the treatment of rheumatoid arthritis (RA)

    PubMed Central

    BLOEMENDAL, A; VAN DER ZEE, R; RUTTEN, V P M G; VAN KOOTEN, P J S; FARINE, J C; VAN EDEN, W

    1997-01-01

    OM-89 is a bacterial (Escherichia coli) extract used for oral administration in the treatment of RA. Given the evidence that immunity to bacterial heat shock antigens plays a critical role in the immunomodulation of arthritis and possibly inflammation in general, the purpose of the present studies was to evaluate the presence and immunogenicity of hsp in OM-89. Furthermore, we studied the effects of OM-89 in an experimental arthritis, where hsp are known to have a critical significance in disease development. In rats immunization with OM-89 was found to lead to proliferative T cell responses to hsp60 and hsp70 of both E. coli and mycobacterial origin. Conversely, immunization with hsp antigens was also found to induce T cell reactivity specific for OM-89. Based on this and the antigen specificity analysis of specific T cell lines, hsp70 (DnaK) turned out to be one of the major immunogenic constituents of OM-89. Parenteral immunization with OM-89 was found to reduce resistance to adjuvant arthritis (AA), whereas oral administration was found to protect against AA. Given the arthritis-inhibitory effect of oral OM-89 in AA, it is possible that peripheral tolerance is induced at the level of regulatory T cells with specificity for hsp. This may also constitute a mode of action for OM-89 as an arthritis-suppressive oral drug. PMID:9353151

  2. Schistosoma mansoni infection of juvenile Biomphalaria glabrata induces a differential stress response between resistant and susceptible snails.

    PubMed

    Ittiprasert, Wannaporn; Nene, Rahul; Miller, André; Raghavan, Nithya; Lewis, Fred; Hodgson, Jacob; Knight, Matty

    2009-11-01

    Schistosomes develop successfully in susceptible snails but are encapsulated and killed in resistant ones. Mechanism(s) shaping these outcomes involves the parasites ability to evade the snail's defenses. RNA analysis from resistant (BS-90), non-susceptible (LAC2) and susceptible (NMRI) juvenile Biomphalaria glabrata to Schistosoma mansoni revealed that stress-related genes, heat shock protein 70 (Hsp 70) and reverse transcriptase (RT), were dramatically co-induced early in susceptible snails, but not in resistant/non-susceptible ones. These transcripts were, however, down regulated upon exposure to irradiated parasites although penetration behavior of irradiated vs. normal parasites were the same, indicating that Hsp 70 and RT regulation was elicited by infection and not injury. Understanding molecular events involved in stress response transcriptional regulation of Hsp 70 in juvenile snails could pave a way towards the identification of genes involved in schistosome/snail interactions.

  3. Heat-shock protein 70 (Hsp70) as a biochemical stress indicator: an experimental field test in two congeneric intertidal gastropods (genus: Tegula).

    PubMed

    Tomanek, Lars; Sanford, Eric

    2003-12-01

    Although previous studies have demonstrated that heat-shock protein 70 (Hsp70) can be induced by environmental stress, little is known about natural variation in this response over short time scales. We examined how Hsp70 levels varied over days to weeks in two intertidal snail species of the genus Tegula: Sampling was conducted both under naturally changing environmental conditions and in different vertical zones on a rocky shore. The subtidal to low-intertidal T. brunnea was transplanted into shaded and unshaded mid-intertidal cages to assess temporal variation in Hsps under conditions of increased stress. For comparison, the low to mid-intertidal T. funebralis was transplanted into mid-intertidal cages, within this species' natural zone of occurrence. Snails were sampled every 3 to 4 days for one month, and endogenous levels of two Hsp70-kDa family members (Hsp72 and Hsp74) were quantified using solid-phase immunochemistry. Following periods of midday low tides, levels of Hsps increased greatly in transplanted T. brunnea but not in T. funebralis. Levels of Hsps increased less in T. brunnea transplanted to shaded cages than to unshaded cages, suggesting that prolonged emersion and reduction in feeding time per se are factors that are only mildly stressful. Upregulated levels of Hsps returned to base levels within days. In unmanipulated snails collected from their natural zones, Hsp levels showed little change with thermal variation, indicating that these species did not experience thermally stressful conditions during this study. However, under common conditions in the mid-intertidal zone, Hsp70 levels reflected the different thermal sensitivities of the physiological systems of these two species.

  4. Hsp70-1: upregulation via selective phosphorylation of heat shock factor 1 during coxsackieviral infection and promotion of viral replication via the AU-rich element.

    PubMed

    Qiu, Ye; Ye, Xin; Hanson, Paul J; Zhang, Huifang Mary; Zong, Jeff; Cho, Brian; Yang, Decheng

    2016-03-01

    Coxsackievirus B3 (CVB3) is the primary pathogen of viral myocarditis. Upon infection, CVB3 exploits the host cellular machineries, such as chaperone proteins, to benefit its own infection cycles. Inducible heat shock 70-kDa proteins (Hsp70s) are chaperone proteins induced by various cellular stress conditions. The internal ribosomal entry site (IRES) within Hsp70 mRNA allows Hsp70 to be translated cap-independently during CVB3 infection when global cap-dependent translation is compromised. The Hsp70 protein family contains two major members, Hsp70-1 and Hsp70-2. This study showed that Hsp70-1, but not Hsp70-2, was upregulated during CVB3 infection both in vitro and in vivo. Then a novel mechanism of Hsp70-1 induction was revealed in which CaMKIIγ is activated by CVB3 replication and leads to phosphorylation of heat shock factor 1 (HSF1) specifically at Serine 230, which enhances Hsp70-1 transcription. Meanwhile, phosphorylation of Ser230 induces translocation of HSF1 from the cytoplasm to nucleus, thus blocking the ERK1/2-mediated phosphorylation of HSF1 at Ser307, a negative regulatory process of Hsp70 transcription, further contributing to Hsp70-1 upregulation. Finally, we demonstrated that Hsp70-1 upregulation, in turn, stabilizes CVB3 genome via the AU-rich element (ARE) harbored in the 3' untranslated region of CVB3 genomic RNA.

  5. Chaperone roles for TMAO and HSP70 during hyposmotic stress in the spiny dogfish shark (Squalus acanthias).

    PubMed

    MacLellan, Robyn J; Tunnah, Louise; Barnett, David; Wright, Patricia A; MacCormack, Tyson; Currie, Suzanne

    2015-10-01

    Salinity decreases are experienced by many marine elasmobranchs. To understand how these fishes cope with hyposmotic stress on a cellular level, we used the spiny dogfish shark (Squalus acanthias) as a model to test whether a reciprocal relationship exists between the cell's two primary protein protection mechanisms, the chemical (e.g., trimethylamine oxide, TMAO) and molecular (e.g., heat shock protein 70, HSP70) chaperone systems. This relationship is interesting given that many elasmobranchs are expected to gain water and lose osmolytes, chemical chaperones, and ions as they osmoconform to new, lowered salinity. Dogfish were cannulated for repeated blood sampling and exposed to 70% seawater (SW) for 48 h. These hyposmotic conditions had no effect on red blood cell (RBC) and white muscle TMAO concentrations, and did not result in HSP70 induction or signs of protein damage (i.e., increased ubiquitin), suggesting that TMAO levels were sufficiently protective in these tissues. However, in the gill, we observed a significant decrease in TMAO concentration and a significant induction of HSP70 as well as signs of protein damage. In the face of this cellular stress response, gill Na(+)/K(+)-ATPase (NKA) activity significantly increased during hyposmotic conditions, as expected. We suggest that this functional preservation in the gill is partly the result of HSP70 induction with lowered salinity. We conclude a reciprocal relationship between TMAO and HSP70 in the gills of dogfish as a result of in vivo hyposmotic stress. When osmotically induced protein damage surpasses the protective capacity of remaining TMAO, HSP70 is induced to preserve tissue and organismal function.

  6. Assessing laser-tissue damage with bioluminescent imaging

    NASA Astrophysics Data System (ADS)

    Wilmink, Gerald J.; Opalenik, Susan R.; Beckham, Josh T.; Davidson, Jeffrey M.; Jansen, Eric D.

    2006-07-01

    Effective medical laser procedures are achieved by selecting laser parameters that minimize undesirable tissue damage. Traditionally, human subjects, animal models, and monolayer cell cultures have been used to study wound healing, tissue damage, and cellular effects of laser radiation. Each of these models has significant limitations, and consequently, a novel skin model is needed. To this end, a highly reproducible human skin model that enables noninvasive and longitudinal studies of gene expression was sought. In this study, we present an organotypic raft model (engineered skin) used in combination with bioluminescent imaging (BLI) techniques. The efficacy of the raft model was validated and characterized by investigating the role of heat shock protein 70 (hsp70) as a sensitive marker of thermal damage. The raft model consists of human cells incorporated into an extracellular matrix. The raft cultures were transfected with an adenovirus containing a murine hsp70 promoter driving transcription of luciferase. The model enables quantitative analysis of spatiotemporal expression of proteins using BLI. Thermal stress was induced on the raft cultures by means of a constant temperature water bath or with a carbon dioxide (CO2) laser (λ=10.6 µm, 0.679 to 2.262 W/cm2, cw, unfocused Gaussian beam, ωL=4.5 mm, 1 min exposure). The bioluminescence was monitored noninvasively with an IVIS 100 Bioluminescent Imaging System. BLI indicated that peak hsp70 expression occurs 4 to 12 h after exposure to thermal stress. A minimum irradiance of 0.679 W/cm2 activated the hsp70 response, and a higher irradiance of 2.262 W/cm2 was associated with a severe reduction in hsp70 response due to tissue ablation. Reverse transcription polymerase chain reaction demonstrated that hsp70 mRNA levels increased with prolonged heating exposures. Enzyme-linked immunosorbent protein assays confirmed that luciferase was an accurate surrogate for hsp70 intracellular protein levels. Hematoxylin and eosin stains verified the presence of the thermally denatured tissue regions. Immunohistochemical analyses confirmed that maximal hsp70 expression occurred at a depth of 150 µm. Bioluminescent microscopy was employed to corroborate these findings. These results indicate that quantitative BLI in engineered tissue equivalents provides a powerful model that enables sequential gene expression studies. Such a model can be used as a high throughput screening platform for laser-tissue interaction studies.

  7. Ha-ras(val12) induces HSP70b transcription via the HSE/HSF1 system, but HSP70b expression is suppressed in Ha-ras(val12)-transformed cells.

    PubMed

    Stanhill, A; Levin, V; Hendel, A; Shachar, I; Kazanov, D; Arber, N; Kaminski, N; Engelberg, D

    2006-03-09

    Heat shock proteins (Hsps) are overexpressed in many tumors, but are downregulated in some tumors. To check for a direct effect of Ha-Ras(val12) on HSP70 transcription, we transiently expressed the oncoprotein in Rat1 fibroblasts and monitored its effect on HSP70b promoter-driven reporter gene. We show that expression of Ha-Ras(val12) induced this promoter. Promoter analysis via systematic deletions and point mutations revealed that Ha-Ras(val12) induces HSP70b transcription via heat shock elements (HSEs). Also, Ha-Ras(val12) induction of HSE-mediated transcription was dramatically reduced in HSF1-/- cells. Yet, residual effect of Ha-Ras(val12) that was still measured in HSF1-/- cells suggests that some of the Ha-Ras(val12) effect is Hsf1-independent. When HSF1-/- cells, stably expressing Ha-Ras(val12), were grown on soft agar only small colonies were formed suggesting a role for heat shock factor 1 (Hsf1) in Ha-Ras(val12)-mediated transformation. Although Ha-ras(Val12) seems to be an inducer of HSP70's expression, we found that in Ha-ras(Val12-)transformed fibroblasts expression of this gene is suppressed. This suppression is correlated with higher sensitivity of Ha-ras(val12)-transformed cells to heat shock. We suggest that Ha-ras(Val12) is involved in Hsf1 activation, thereby inducing the cellular protective response. Cells that repress this response are perhaps those that acquire the capability to further proliferate and become transformed clones.

  8. Therapeutic inducers of the HSP70/HSP110 protect mice against traumatic brain injury.

    PubMed

    Eroglu, Binnur; Kimbler, Donald E; Pang, Junfeng; Choi, Justin; Moskophidis, Demetrius; Yanasak, Nathan; Dhandapani, Krishnan M; Mivechi, Nahid F

    2014-09-01

    Traumatic brain injury (TBI) induces severe harm and disability in many accident victims and combat-related activities. The heat-shock proteins Hsp70/Hsp110 protect cells against death and ischemic damage. In this study, we used mice deficient in Hsp110 or Hsp70 to examine their potential requirement following TBI. Data indicate that loss of Hsp110 or Hsp70 increases brain injury and death of neurons. One of the mechanisms underlying the increased cell death observed in the absence of Hsp110 and Hsp70 following TBI is the increased expression of reactive oxygen species-induced p53 target genes Pig1, Pig8, and Pig12. To examine whether drugs that increase the levels of Hsp70/Hsp110 can protect cells against TBI, we subjected mice to TBI and administered Celastrol or BGP-15. In contrast to Hsp110- or Hsp70i-deficient mice that were not protected following TBI and Celastrol treatment, there was a significant improvement of wild-type mice following administration of these drugs during the first week following TBI. In addition, assessment of neurological injury shows significant improvement in contextual and cued fear conditioning tests and beam balance in wild-type mice that were treated with Celastrol or BGP-15 following TBI compared to TBI-treated mice. These studies indicate a significant role of Hsp70/Hsp110 in neuronal survival following TBI and the beneficial effects of Hsp70/Hsp110 inducers toward reducing the pathological consequences of TBI. Our data indicate that loss of Hsp110 or Hsp70 in mice increases brain injury following TBI. (a) One of the mechanisms underlying the increased cell death observed in the absence of these Hsps following TBI is the increased expression of ROS-induced p53 target genes known as Pigs. In addition, (b) using drugs (Celastrol or BGP-15) to increase Hsp70/Hsp110 levels protect cells against TBI, suggesting the beneficial effects of Hsp70/Hsp110 inducers to reduce the pathological consequences of TBI. © 2014 International Society for Neurochemistry.

  9. Steroid resistance in COPD is associated with impaired molecular chaperone Hsp90 expression by pro-inflammatory lymphocytes.

    PubMed

    Hodge, Greg; Roscioli, Eugene; Jersmann, Hubertus; Tran, Hai B; Holmes, Mark; Reynolds, Paul N; Hodge, Sandra

    2016-10-21

    Corticosteroid resistance is a major barrier to effective treatment of COPD. We have shown that the resistance is associated with decreased expression of glucocorticoid receptor (GCR) by senescent CD28nullCD8+ pro-inflammatory lymphocytes in peripheral blood of COPD patients. GCR must be bound to molecular chaperones heat shock proteins (Hsp) 70 and Hsp90 to acquire a high-affinity steroid binding conformation, and traffic to the nucleus. We hypothesized a loss of Hsp70/90 from these lymphocytes may further contribute to steroid resistance in COPD. Blood was collected from COPD (n = 10) and aged-matched controls (n = 10). To assess response to steroids, cytotoxic mediators, intracellular pro-inflammatory cytokines, CD28, GCR, Hsp70 and Hsp90 were determined in T and NKT-like cells in the presence of ± 10 μM prednisolone and 2.5 ng/mL cyclosporine A (binds to GCR-Hsp70/90 complex) using flow cytometry, western blot and fluorescence microscopy. A loss of expression of Hsp90 and GCR from CD28null CD8+ T and NKT-like cells in COPD was noted (Hsp70 unchanged). Loss of Hsp90 expression correlated with the percentage of CD28null CD8+ T and NKT-like cells producing IFNγ or TNFα in all subjects (eg, COPD: R = -0.763, p = 0.007 for T-cell IFNγ). Up-regulation of Hsp90 and associated decrease in pro-inflammatory cytokine production was found in CD28nullCD8+ T and NKT-like cells in the presence of 10 μM prednisolone and 2.5 ng/mL cyclosporine A. Loss of Hsp90 from cytotoxic/pro-inflammatory CD28nullCD8+ T and NKT-like cells could contribute to steroid resistance in COPD. Combination prednisolone and low-dose cyclosporine A therapy inhibits these pro-inflammatory cells and may reduce systemic inflammation in COPD.

  10. Heat-shock protein 70-2 (HSP70-2) expression in bladder urothelial carcinoma is associated with tumour progression and promotes migration and invasion.

    PubMed

    Garg, Manoj; Kanojia, Deepika; Seth, Amlesh; Kumar, Rajive; Gupta, Anju; Surolia, Avadhesha; Suri, Anil

    2010-01-01

    Testis specific heat-shock protein 70-2 (HSP70-2), a member of HSP70 chaperone family, is essential for the growth of spermatocytes and cancer cells. We investigated the association of HSP70-2 expression with clinical behaviour and progression of urothelial carcinoma of bladder. We assessed the HSP70-2 expression by RT-PCR and HSP70-2 protein expression by immunofluorescence, flow cytometry, immunohistochemistry and Western blotting in urothelial carcinoma patient specimens and HTB-1, UMUC-3, HTB-9, HTB-2 and normal human urothelial cell lines. Further, to investigate the role of HSP70-2 in bladder tumour development, HSP70-2 was silenced in the high-grade invasive HTB-1 and UMUC-3 cells. The malignant properties of urothelial carcinoma cells were examined using colony formation, migration assay, invasion assay in vitro and tumour growth in vivo. Our RT-PCR analysis and immunohistochemistry analysis revealed that HSP70-2 was expressed in both moderate to well-differentiated and high-grade invasive urothelial carcinoma cell lines studied and not in normal human urothelial cells. In consistence with these results, HSP70-2 expression was also observed in superficially invasive (70%) and muscle-invasive (90%) patient's tumours. Furthermore, HSP70-2 knockdown significantly suppressed cellular motility and invasion ability. An in vivo xenograft study showed that inhibition of HSP70-2 significantly suppressed tumour growth. In conclusion, our data suggest that the HSP70-2 expression is associated with early spread and progression of urothelial carcinoma of bladder cancer and that HSP70-2 can be the potential therapeutic target for bladder urothelial carcinoma.

  11. Genetic variation in heat shock protein 70 is associated with septic shock: narrowing the association to a specific haplotype.

    PubMed

    Kee, C; Cheong, K Y; Pham, K; Waterer, G W; Temple, S E L

    2008-12-01

    Heat shock protein 70 (HSP70) plays a major role in immune responses. Polymorphisms within the gene have been associated with development of septic shock. This study refines the region of the HSP70 gene associated with development of septic shock and confirms its functionality. Subjects (n = 31) were grouped into one of three haplotypes based on their HSPA1B-179C>T and HSPA1B1267A>G genotypes. Mononuclear cells from these subjects were stimulated with heat-killed bacteria (10(7 )colony-forming units/mL Escherichia coli or Streptococcus pneumoniae) for 8 and 21 h. HSP70 and tumour necrosis factor (TNF) mRNA and protein levels were measured by reverse transcriptase-polymerase chain reaction and ELISA, respectively. The HSPA1B-179*C:1267*A haplotype was associated with significantly lower levels of HSPA1B mRNA and protein and higher production of TNF mRNA and protein compared to the other haplotypes. Induction of HSP70 was TNF independent. These results suggest that the HSPA1B-179C>T:1267A>G haplotype is functional and may explain the association of the HSP70 gene with development of septic shock.

  12. Imbalance of Hsp70 family variants fosters tau accumulation.

    PubMed

    Jinwal, Umesh K; Akoury, Elias; Abisambra, Jose F; O'Leary, John C; Thompson, Andrea D; Blair, Laura J; Jin, Ying; Bacon, Justin; Nordhues, Bryce A; Cockman, Matthew; Zhang, Juan; Li, Pengfei; Zhang, Bo; Borysov, Sergiy; Uversky, Vladimir N; Biernat, Jacek; Mandelkow, Eckhard; Gestwicki, Jason E; Zweckstetter, Markus; Dickey, Chad A

    2013-04-01

    Dysfunctional tau accumulation is a major contributing factor in tauopathies, and the heat-shock protein 70 (Hsp70) seems to play an important role in this accumulation. Several reports suggest that Hsp70 proteins can cause tau degradation to be accelerated or slowed, but how these opposing activities are controlled is unclear. Here we demonstrate that highly homologous variants in the Hsp70 family can have opposing effects on tau clearance kinetics. When overexpressed in a tetracycline (Tet)-based protein chase model, constitutive heat shock cognate 70 (Hsc70) and inducible Hsp72 slowed or accelerated tau clearance, respectively. Tau synergized with Hsc70, but not Hsp72, to promote microtubule assembly at nearly twice the rate of either Hsp70 homologue in reconstituted, ATP-regenerating Xenopus extracts supplemented with rhodamine-labeled tubulin and human recombinant Hsp72 and Hsc70. Nuclear magnetic resonance spectroscopy with human recombinant protein revealed that Hsp72 had greater affinity for tau than Hsc70 (I/I0 ratio difference of 0.3), but Hsc70 was 30 times more abundant than Hsp72 in human and mouse brain tissue. This indicates that the predominant Hsp70 variant in the brain is Hsc70, suggesting that the brain environment primarily supports slower tau clearance. Despite its capacity to clear tau, Hsp72 was not induced in the Alzheimer's disease brain, suggesting a mechanism for age-associated onset of the disease. Through the use of chimeras that blended the domains of Hsp72 and Hsc70, we determined that the reason for these differences between Hsc70 and Hsp72 with regard to tau clearance kinetics lies within their C-terminal domains, which are essential for their interactions with substrates and cochaperones. Hsp72 but not Hsc70 in the presence of tau was able to recruit the cochaperone ubiquitin ligase CHIP, which is known to facilitate the ubiquitination of tau, describing a possible mechanism of how the C-termini of these homologous Hsp70 variants can differentially regulate tau triage. Thus, efforts to promote Hsp72 expression and inhibit Hsc70 could be therapeutically relevant for tauopathies.

  13. BAG3 Is a Modular, Scaffolding Protein that physically Links Heat Shock Protein 70 (Hsp70) to the Small Heat Shock Proteins.

    PubMed

    Rauch, Jennifer N; Tse, Eric; Freilich, Rebecca; Mok, Sue-Ann; Makley, Leah N; Southworth, Daniel R; Gestwicki, Jason E

    2017-01-06

    Small heat shock proteins (sHsps) are a family of ATP-independent molecular chaperones that are important for binding and stabilizing unfolded proteins. In this task, the sHsps have been proposed to coordinate with ATP-dependent chaperones, including heat shock protein 70 (Hsp70). However, it is not yet clear how these two important components of the chaperone network are linked. We report that the Hsp70 co-chaperone, BAG3, is a modular, scaffolding factor to bring together sHsps and Hsp70s. Using domain deletions and point mutations, we found that BAG3 uses both of its IPV motifs to interact with sHsps, including Hsp27 (HspB1), αB-crystallin (HspB5), Hsp22 (HspB8), and Hsp20 (HspB6). BAG3 does not appear to be a passive scaffolding factor; rather, its binding promoted de-oligomerization of Hsp27, likely by competing for the self-interactions that normally stabilize large oligomers. BAG3 bound to Hsp70 at the same time as Hsp22, Hsp27, or αB-crystallin, suggesting that it might physically bring the chaperone families together into a complex. Indeed, addition of BAG3 coordinated the ability of Hsp22 and Hsp70 to refold denatured luciferase in vitro. Together, these results suggest that BAG3 physically and functionally links Hsp70 and sHsps. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. [Joint effects of water temperature and salinity on the expression of gill Hsp70 gene in Pinctada martensii (Dunker)].

    PubMed

    Wang, Ya-Nan; Wang, Hui; Zhu, Xiao-Wen; Luo, Ming-Ming; Liu, Zhi-Gang; Du, Xiao-Dong

    2012-12-01

    By using central composite experimental design and response surface method, the joint effects of water temperature (16-40 degrees C) and salinity (10-50) on the expression of gill Hsp70 gene in Pinctada martensii (Dunker) were studied under laboratory conditions. The results showed that the linear and quadratic effects of temperature on the expression of gill Hsp70 gene were significant, the linear effect of salinity was not significant, while the quadratic effect of salinity was significant. The interactive effect of temperature and salinity was not significant, and the effect of temperature was greater than that of salinity. The model equation of the gill Hsp70 gene expression was established, with the R2, Adj. R2, and Pred. R2 as high as 98.7%, 97.4%, and 89.2%, respectively, suggesting that the overarching predictive capability of the model was very satisfactory, and could be practicably applied for prediction. Through the optimization of the model, the expression of the gill Hsp70 gene reached its minimum (0.5276) when the temperature was 26.78 degrees C and the salinity was 29.33, with the desirability value being 98%. These experimental results could offer theoretical reference for the high expression of gill Hsp70 gene in P. martensii, the maintenance of cell internal environment stability, and the enhancement of P. martensii stress resistance.

  15. Unraveling the CHIP:Hsp70 complex as an information processor for protein quality control.

    PubMed

    VanPelt, Jamie; Page, Richard C

    2017-02-01

    The CHIP:Hsp70 complex stands at the crossroads of the cellular protein quality control system. Hsp70 facilitates active refolding of misfolded client proteins, while CHIP directs ubiquitination of misfolded client proteins bound to Hsp70. The direct competition between CHIP and Hsp70 for the fate of misfolded proteins leads to the question: how does the CHIP:Hsp70 complex execute triage decisions that direct misfolded proteins for either refolding or degradation? The current body of literature points toward action of the CHIP:Hsp70 complex as an information processor that takes inputs in the form of client folding state, dynamics, and posttranslational modifications, then outputs either refolded or ubiquitinated client proteins. Herein we examine the CHIP:Hsp70 complex beginning with the structure and function of CHIP and Hsp70, followed by an examination of recent studies of the interactions and dynamics of the CHIP:Hsp70 complex. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Vaccination with a Leishmania infantum HSP70-II null mutant confers long-term protective immunity against Leishmania major infection in two mice models

    PubMed Central

    Solana, José Carlos; Ramírez, Laura; Corvo, Laura; de Oliveira, Camila Indiani; Barral-Netto, Manoel; Requena, José María

    2017-01-01

    Background The immunization with genetically attenuated Leishmania cell lines has been associated to the induction of memory and effector T cell responses against Leishmania able to control subsequent challenges. A Leishmania infantum null mutant for the HSP70-II genes has been described, possessing a non-virulent phenotype. Methodology/Principal findings The L. infantum attenuated parasites (LiΔHSP70-II) were inoculated in BALB/c (intravenously and subcutaneously) and C57BL/6 (subcutaneously) mice. An asymptomatic infection was generated and parasites diminished progressively to become undetectable in most of the analyzed organs. However, inoculation resulted in the long-term induction of parasite specific IFN-γ responses able to control the disease caused by a challenge of L. major infective promastigotes. BALB/c susceptible mice showed very low lesion development and a drastic decrease in parasite burdens in the lymph nodes draining the site of infection and internal organs. C57BL/6 mice did not show clinical manifestation of disease, correlated to the rapid migration of Leishmania specific IFN-γ producing T cells to the site of infection. Conclusion/Significance Inoculation of the LiΔHSP70-II attenuated line activates mammalian immune system for inducing moderate pro-inflammatory responses. These responses are able to confer long-term protection in mice against the infection of L. major virulent parasites. PMID:28558043

  17. Sulfatide-Hsp70 Interaction Promotes Hsp70 Clustering and Stabilizes Binding to Unfolded Protein

    PubMed Central

    Harada, Yoichiro; Sato, Chihiro; Kitajima, Ken

    2015-01-01

    The 70-kDa heat shock protein (Hsp70), one of the major stress-inducible molecular chaperones, is localized not only in the cytosol, but also in extracellular milieu in mammals. Hsp70 interacts with various cell surface glycolipids including sulfatide (3'-sulfogalactosphingolipid). However, the molecular mechanism, as well as the biological relevance, underlying the glycolipid-Hsp70 interaction is unknown. Here we report that sulfatide promotes Hsp70 oligomerization through the N-terminal ATPase domain, which stabilizes the binding of Hsp70 to unfolded protein in vitro. We find that the Hsp70 oligomer has apparent molecular masses ranging from 440 kDa to greater than 669 kDa. The C-terminal peptide-binding domain is dispensable for the sulfatide-induced oligomer formation. The oligomer formation is impaired in the presence of ATP, while the Hsp70 oligomer, once formed, is unable to bind to ATP. These results suggest that sulfatide locks Hsp70 in a high-affinity state to unfolded proteins by clustering the peptide-binding domain and blocking the binding to ATP that induces the dissociation of Hsp70 from protein substrates. PMID:25989600

  18. Imaging of Hsp70-positive tumors with cmHsp70.1 antibody-conjugated gold nanoparticles

    PubMed Central

    Gehrmann, Mathias K; Kimm, Melanie A; Stangl, Stefan; Schmid, Thomas E; Noël, Peter B; Rummeny, Ernst J; Multhoff, Gabriele

    2015-01-01

    Real-time imaging of small tumors is still one of the challenges in cancer diagnosis, prognosis, and monitoring of clinical outcome. Targeting novel biomarkers that are selectively expressed on a large variety of different tumors but not normal cells has the potential to improve the imaging capacity of existing methods such as computed tomography. Herein, we present a novel technique using cmHsp70.1 monoclonal antibody-conjugated spherical gold nanoparticles for quantification of the targeted uptake of gold nanoparticles into membrane Hsp70-positive tumor cells. Upon binding, cmHsp70.1-conjugated gold nanoparticles but not nanoparticles coupled to an isotype-matched IgG1 antibody or empty nanoparticles are rapidly taken up by highly malignant Hsp70 membrane-positive mouse tumor cells. After 24 hours, the cmHsp70.1-conjugated gold nanoparticles are found to be enriched in the perinuclear region. Specificity for membrane Hsp70 was shown by using an Hsp70 knockout tumor cell system. Toxic side effects of the cmHsp70.1-conjugated nanoparticles are not observed at a concentration of 1–10 µg/mL. Experiments are ongoing to evaluate whether cmHsp70.1 antibody-conjugated gold nanoparticles are suitable for the detection of membrane-Hsp70-positive tumors in vivo. PMID:26392771

  19. Effect of Hypergravity on the Level of Heat Shock Proteins 70 and 90 in Pea Seedlings

    NASA Astrophysics Data System (ADS)

    Kozeko, Liudmyla; Kordyum, Elizabeth

    2009-01-01

    Exposure to hypergravity induces significant changes in gene expression of plants which are indicative of stress conditions. A substantial part of the general stress response is up-regulation of heat shock proteins (Hsp) which function as molecular chaperones. The objective of this research was to test the possible changes in the Hsp70 and Hsp90 level in response to short-term hypergravity exposure. In this study 5-day-old etiolated pea seedlings were exposed to centrifuge-induced hypergravity (3-14 g) for 15 min and 1 h and a part of the seedlings was sampled at 1.5 and 24 h after the exposures. Western blot analysis showed time-dependent changes in Hsp70 and Hsp90 levels: an increase under hypergravity and a tendency towards recovery of the normal content during re-adaptation. The quantity and time of their expression was correlated with the g-force level. These data suggest that short-term hypergravity acts as a stress which could increase the risk of protein denaturation and aggregation. Molecular chaperons induced during the stress may have an essential role in counteracting this risk.

  20. Heat shock protein 72: release and biological significance during exercise.

    PubMed

    Whitham, Martin; Fortes, Matthew Benjamin

    2008-01-01

    The cumulative stressors of exercise manifest themselves at a cellular level by threatening the protein homeostasis of the cell. In these conditions, Heat Shock Proteins (HSP) are synthesised to chaperone mis-folded and denatured proteins. As such, the intracellular HSP response is thought to aid cell survival in the face of otherwise lethal cellular stress. Recently, the inducible isoform of the 70 Kda heat shock protein family, Hsp72 has been detected in the extracellular environment. Furthermore, the release of this protein into the circulation has been shown to occur in response to a range of exercise bouts. The present review summarises the current research on the exercise Hsp72 response, the possible mediators and mechanisms of extracellular (e)Hsp72 release, and the possible biological significance of this systemic response. In particular, the possible role of eHsp72 in the modulation of immunity during exercise is discussed.

  1. [Effects of heat shock protein 70-2 gene polymorphisms on the transcription of HSP 70-2 mRNA and the translation of HSP 70 protein in lung cancer].

    PubMed

    Lu, Hao-quan; Wang, Yu-zhen; Sun, Peng-hui; Liang, Shou-pei; Li, Jie; Wang, Xiao-long; Xu, Dong; Yao, Wu; Wu, Yi-ming; Zhou, Fang

    2012-05-01

    This study aimed to investigate the effects of gene polymorphism of heat shock protein 70-2 (HSP 70-2) 1267A/G on the mRNA level HSP 70-2 mRNA and the protein level HSP 70 in human lung cancer. Forty six lung cancer patients diagnosed histopathologically between February and August 2008 from a hospital in zhengzhou were enrolled as the subjects in this study. Gene polymorphism of HSP 70-2 1276A/G in 46 patients with lung cancer was detected by PCR-RFLP. The mRNA levels of HSP 70-2 mRNA and the protein levels of HSP 70 in lung tissue and para-cancerous tissues of these subjects were determined by RT-PCR and Western blotting respectively. The expression levels of HSP 70-2 mRNA (1.02 ± 0.30) and HSP 70 protein (0.44 ± 0.12) in the lung cancer tissues was significantly higher than that in para-cancerous tissues (0.19 ± 0.04, 0.12 ± 0.02). The relative levels of HSP 70-2 mRNA in the subjects with AA genotype (1.32 ± 0.22) were significantly higher than the patients with AG genotype or GG genotype (0.95 ± 0.17, 0.70 ± 0.16) at the site of 1267 (A/G) (P < 0.01); however, the relative protein levels of HSP 70 were 0.47 ± 0.13 (AA genotype), 0.42 ± 0.11 (AG genotype), 0.45 ± 0.11 (GG genotype), respectively, which showed no statistically significant difference (P > 0.05). The polymorphism of HSP 70-2 1267 (A/G) is highly associated with the transcription level of HSP 70-2 mRNA, but not with the expression level of HSP 70 protein.

  2. Ionizing radiation improves glioma-specific targeting of superparamagnetic iron oxide nanoparticles conjugated with cmHsp70.1 monoclonal antibodies (SPION-cmHsp70.1)

    NASA Astrophysics Data System (ADS)

    Shevtsov, Maxim A.; Nikolaev, Boris P.; Ryzhov, Vyacheslav A.; Yakovleva, Ludmila Y.; Marchenko, Yaroslav Y.; Parr, Marina A.; Rolich, Valerij I.; Mikhrina, Anastasiya L.; Dobrodumov, Anatolii V.; Pitkin, Emil; Multhoff, Gabriele

    2015-12-01

    The stress-inducible 72 kDa heat shock protein Hsp70 is known to be expressed on the membrane of highly aggressive tumor cells including high-grade gliomas, but not on the corresponding normal cells. Membrane Hsp70 (mHsp70) is rapidly internalized into tumor cells and thus targeting of mHsp70 might provide a promising strategy for theranostics. Superparamagnetic iron oxide nanoparticles (SPIONs) are contrast negative agents that are used for the detection of tumors with MRI. Herein, we conjugated the Hsp70-specific antibody (cmHsp70.1) which is known to recognize mHsp70 to superparamagnetic iron nanoparticles to assess tumor-specific targeting before and after ionizing irradiation. In vitro experiments demonstrated the selectivity of SPION-cmHsp70.1 conjugates to free and mHsp70 in different tumor cell types (C6 glioblastoma, K562 leukemia, HeLa cervix carcinoma) in a dose-dependent manner. High-resolution MRI (11 T) on T2-weighted images showed the retention of the conjugates in the C6 glioma model. Accumulation of SPION-cmHsp70.1 nanoparticles in the glioma resulted in a nearly 2-fold drop of values in comparison to non-conjugated SPIONs. Biodistribution analysis using NLR-M2 measurements showed a 7-fold increase in the tumor-to-background (normal brain) uptake ratio of SPION-cmHsp70.1 conjugates in glioma-bearing rats in comparison to SPIONs. This accumulation within Hsp70-positive glioma was further enhanced after a single dose (10 Gy) of ionizing radiation. Elevated accumulation of the magnetic conjugates in the tumor due to radiosensitization proves the combination of radiotherapy and application of Hsp70-targeted agents in brain tumors.The stress-inducible 72 kDa heat shock protein Hsp70 is known to be expressed on the membrane of highly aggressive tumor cells including high-grade gliomas, but not on the corresponding normal cells. Membrane Hsp70 (mHsp70) is rapidly internalized into tumor cells and thus targeting of mHsp70 might provide a promising strategy for theranostics. Superparamagnetic iron oxide nanoparticles (SPIONs) are contrast negative agents that are used for the detection of tumors with MRI. Herein, we conjugated the Hsp70-specific antibody (cmHsp70.1) which is known to recognize mHsp70 to superparamagnetic iron nanoparticles to assess tumor-specific targeting before and after ionizing irradiation. In vitro experiments demonstrated the selectivity of SPION-cmHsp70.1 conjugates to free and mHsp70 in different tumor cell types (C6 glioblastoma, K562 leukemia, HeLa cervix carcinoma) in a dose-dependent manner. High-resolution MRI (11 T) on T2-weighted images showed the retention of the conjugates in the C6 glioma model. Accumulation of SPION-cmHsp70.1 nanoparticles in the glioma resulted in a nearly 2-fold drop of values in comparison to non-conjugated SPIONs. Biodistribution analysis using NLR-M2 measurements showed a 7-fold increase in the tumor-to-background (normal brain) uptake ratio of SPION-cmHsp70.1 conjugates in glioma-bearing rats in comparison to SPIONs. This accumulation within Hsp70-positive glioma was further enhanced after a single dose (10 Gy) of ionizing radiation. Elevated accumulation of the magnetic conjugates in the tumor due to radiosensitization proves the combination of radiotherapy and application of Hsp70-targeted agents in brain tumors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06521f

  3. The 70 kDa Heat Shock Protein Assists during the Repair of Chilling Injury in the Insect, Pyrrhocoris apterus

    PubMed Central

    Koštál, Vladimír; Tollarová-Borovanská, Michaela

    2009-01-01

    Background The Pyrrhocoris apterus (Insecta: Heteroptera) adults attain high levels of cold tolerance during their overwintering diapause. Non-diapause reproducing adults, however, lack the capacity to express a whole array of cold-tolerance adaptations and show relatively low survival when exposed to sub-zero temperatures. We assessed the competence of non-diapause males of P. apterus for responding to heat- and cold-stresses by up-regulation of 70 kDa heat shock proteins (Hsps) and the role of Hsps during repair of heat- and cold-induced injury. Principal Findings The fragments of P. apterus homologues of Hsp70 inducible (PaHsp70) and cognate forms (PaHsc70) were cloned and sequenced. The abundance of mRNA transcripts for the inducible form (qPCR) and corresponding protein (Western blotting) were significantly up-regulated in response to high and low temperature stimuli. In the cognate form, mRNA was slightly up-regulated in response to both stressors but very low or no up-regulation of protein was apparent after heat- or cold-stress, respectively. Injection of 695 bp-long Pahsp70 dsRNA (RNAi) caused drastic suppression of the heat- and cold-stress-induced Pahsp70 mRNA response and the up-regulation of corresponding protein was practically eliminated. Our RNAi predictably prevented recovery from heat shock and, in addition, negatively influenced repair of chilling injuries caused by cold stress. Cold tolerance increased when the insects were first exposed to a mild heat shock, in order to trigger the up-regulation of PaHsp70, and subsequently exposed to cold stress. Conclusion Our results suggest that accumulation of PaHsp70 belongs to a complex cold tolerance adaptation in the insect Pyrrhocoris apterus. PMID:19229329

  4. Molecular Chaperone Hsp70/Hsp90 Prepares the Mitochondrial Outer Membrane Translocon Receptor Tom71 for Preprotein Loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jingzhi; Qian, Xinguo; Hu, Junbin

    2010-11-03

    The preproteins targeted to the mitochondria are transported through the translocase of the outer membrane complex. Tom70/Tom71 is a major surface receptor of the translocase of the outer membrane complex for mitochondrial preproteins. The preproteins are escorted to Tom70/Tom71 by molecular chaperones Hsp70 and Hsp90. Here we present the high resolution crystal structures of Tom71 and the protein complexes between Tom71 and the Hsp70/Hsp90 C terminus. The crystal structures indicate that Tom70/Tom71 may exhibit two distinct states. In the closed state, the N-terminal domain of Tom70/Tom71 partially blocks the preprotein-binding pocket. In the open state, the N-terminal domain moves away,more » and the preprotein-binding pocket is fully exposed. The complex formation between the C-terminal EEVD motif of Hsp70/Hsp90 and Tom71 could lock Tom71 in the open state where the preprotein-binding pocket of Tom71 is ready to receive preproteins. The interactions between Hsp70/Hsp90 and Tom71 N-terminal domain generate conformational changes that may increase the volume of the preprotein-binding pocket. The complex formation of Hsp70/Hsp90 and Tom71 also generates significant domain rearrangement within Tom71, which may position the preprotein-binding pocket closer to Hsp70/Hsp90 to facilitate the preprotein transfer from the molecular chaperone to Tom71. Therefore, molecular chaperone Hsp70/Hsp90 may function to prepare the mitochondrial outer membrane receptor Tom71 for preprotein loading.« less

  5. Comparative baseline levels of mercury, Hsp 70 and Hsp 60 in subsistence fish from the Yukon-Kuskokwim delta region of Alaska.

    PubMed

    Duffy, L K; Scofield, E; Rodgers, T; Patton, M; Bowyer, R T

    1999-10-01

    In subsistence fish; northern pike (Esox lucius), burbot (Lota lota), whitefish (Coregonus nelsoni), grayling (Thymallus arcticus) and sheefish (Stenodus lencichthys), we determined the Hsp 60 and Hsp 70 levels in 31 samples from adult fish gills. A dot-blot analysis using antibodies to either Hsp 70 or Hsp 60 showed the average Hsp 70 concentration was 9.1 microg/mg protein, while the average Hsp 60 concentration was 147.4 microg/mg protein. Mercury levels in muscle tissue in these fish averaged 0.382 ppm. Using a subset of samples (n = 24), we determined that the major component in the muscle of Alaskan subsistence fish was methyl mercury. No correlation was observed between Hsp 60 or Hsp 70 expression in gill tissue and mercury concentrations in muscle tissue. Hsp 60 and Hsp 70 protein levels in the gills were correlated.

  6. Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells.

    PubMed

    Noessner, Elfriede; Gastpar, Robert; Milani, Valeria; Brandl, Anna; Hutzler, Peter J S; Kuppner, Maria C; Roos, Miriam; Kremmer, Elisabeth; Asea, Alexzander; Calderwood, Stuart K; Issels, Rolf D

    2002-11-15

    Our study demonstrates that tumor-derived heat shock protein (HSP)70 chaperones a tyrosinase peptide and mediates its transfer to human immature dendritic cells (DCs) by receptor-dependent uptake. Human tumor-derived HSP70 peptide complexes (HSP70-PC) thus have the immunogenic potential to instruct DCs to cross-present endogenously expressed, nonmutated, and tumor antigenic peptides that are shared among tumors of the melanocytic lineage for T cell recognition. T cell stimulation by HSP70-instructed DCs is dependent on the Ag bound to HSP70 in that only DCs incubated with HSP70-PC purified from tyrosinase-positive (HSP70-PC/tyr(+)) but not from tyrosinase-negative (HSP70-PC/tyr(-)) melanoma cells resulted in the specific activation of the HLA-A*0201-restricted tyrosinase peptide-specific cytotoxic T cell clone. HSP70-PC-mediated T cell stimulation is very efficient, delivering the tyrosinase peptide at concentrations as low as 30 ng/ml of HSP70-PC for T cell recognition. Receptor-dependent binding of HSP70-PC and active cell metabolism are prerequisites for MHC class I-restricted cross-presentation and T cell stimulation. T cell stimulation does not require external DC maturation signals (e.g., exogenously added TNF-alpha), suggesting that signaling DC maturation is an intrinsic property of the HSP70-PC itself and related to receptor-mediated binding. The cross-presentation of a shared human tumor Ag together with the exquisite efficacy are important new aspects for HSP70-based immunotherapy in clinical anti-cancer vaccination strategies, and suggest a potential extension of HSP70-based vaccination protocols from a patient-individual treatment modality to its use in an allogeneic setting.

  7. Tumor-derived inducible heat-shock protein 70 (HSP70) is an essential component of anti-tumor immunity.

    PubMed

    Dodd, K; Nance, S; Quezada, M; Janke, L; Morrison, J B; Williams, R T; Beere, H M

    2015-03-05

    The anti-apoptotic function and tumor-associated expression of heat-shock protein 70 (HSP70) is consistent with HSP70 functioning as a survival factor to promote tumorigenesis. However, its immunomodulatory activities to induce anti-tumor immunity predict the suppression of tumor growth. Using the Hsp70.1/3(-/-)(Hsp70(-/-)) mouse model, we observed that tumor-derived HSP70 was neither required for cellular transformation nor for in vivo tumor growth. Hsp70(-/-) murine embryonic fibroblasts (MEFs) were transformed by E1A/Ras and generated tumors in immunodeficient hosts as efficiently as wild-type (WT) transformants. Comparison of Bcr-Abl-mediated transformation of WT and Hsp70(-/-) bone marrow and progression of B-cell leukemogenesis in vivo revealed no differences in disease onset or survival rates, and Eμ-Myc-driven lymphoma in Hsp70(-/-) mice was phenotypically indistinguishable from that in WT Eμ-Myc mice. However, Hsp70(-/-) E1A/Ras MEFs generated significantly larger tumors than their WT counterparts in C57BL/6 J immune-competent hosts. Concurrent with this was a reduction in intra-tumoral infiltration of innate and adaptive immune cells, including macrophages and CD8(+) T cells. Evaluation of several potential mechanisms revealed an HSP70-chemokine-like activity to promote cellular migration. These observations support a role for tumor-derived HSP70 in facilitating anti-tumor immunity to limit tumor growth and highlight the potential consequences of anti-HSP70 therapy as an efficacious anti-cancer strategy.

  8. Hsp70 and Hsp90 Multichaperone Complexes Sequentially Regulate Thiazide-sensitive Cotransporter Endoplasmic Reticulum-associated Degradation and Biogenesis*

    PubMed Central

    Donnelly, Bridget F.; Needham, Patrick G.; Snyder, Avin C.; Roy, Ankita; Khadem, Shaheen; Brodsky, Jeffrey L.; Subramanya, Arohan R.

    2013-01-01

    The thiazide-sensitive NaCl cotransporter (NCC) is the primary mediator of salt reabsorption in the distal convoluted tubule and is a key determinant of the blood pressure set point. Given its complex topology, NCC is inefficiently processed and prone to endoplasmic reticulum (ER)-associated degradation (ERAD), although the mechanisms governing this process remain obscure. Here, we identify factors that impact the ER quality control of NCC. Analyses of NCC immunoprecipitates revealed that the cotransporter formed complexes with the core chaperones Hsp90, Hsp70, and Hsp40. Disruption of Hsp90 function accelerated NCC degradation, suggesting that Hsp90 promotes NCC folding. In addition, two cochaperones, the C terminus of Hsp70-interacting protein (CHIP) and the Hsp70/Hsp90 organizer protein, were associated with NCC. Although CHIP, an E3 ubiquitin ligase, promoted NCC ubiquitination and ERAD, the Hsp70/Hsp90 organizer protein stabilized NCC turnover, indicating that these two proteins differentially remodel the core chaperone systems to favor cotransporter degradation and biogenesis, respectively. Adjusting the folding environment in mammalian cells via reduced temperature enhanced NCC biosynthetic trafficking, increased Hsp90-NCC interaction, and diminished binding to Hsp70. In contrast, cotransporters harboring disease-causing mutations that impair NCC biogenesis failed to escape ERAD as efficiently as the wild type protein when cells were incubated at a lower temperature. Instead, these mutants interacted more strongly with Hsp70, Hsp40, and CHIP, consistent with a role for the Hsp70/Hsp40 system in selecting misfolded NCC for ERAD. Collectively, these observations indicate that Hsp70 and Hsp90 comprise two functionally distinct ER quality control checkpoints that sequentially monitor NCC biogenesis. PMID:23482560

  9. Extracts Obtained from Pterocarpus angolensis DC and Ziziphus mucronata Exhibit Antiplasmodial Activity and Inhibit Heat Shock Protein 70 (Hsp70) Function.

    PubMed

    Zininga, Tawanda; Anokwuru, Chinedu P; Sigidi, Muendi T; Tshisikhawe, Milingoni P; Ramaite, Isaiah I D; Traoré, Afsatou N; Hoppe, Heinrich; Shonhai, Addmore; Potgieter, Natasha

    2017-07-28

    Malaria parasites are increasingly becoming resistant to currently used antimalarial therapies, therefore there is an urgent need to expand the arsenal of alternative antimalarial drugs. In addition, it is also important to identify novel antimalarial drug targets. In the current study, extracts of two plants, Pterocarpus angolensis and Ziziphus mucronata were obtained and their antimalarial functions were investigated. Furthermore, we explored the capability of the extracts to inhibit Plasmodium falciparum heat shock protein 70 (Hsp70) function. Heat shock protein 70 (Hsp70) are molecular chaperones whose function is to facilitate protein folding. Plasmodium falciparum the main agent of malaria, expresses two cytosol-localized Hsp70s: PfHsp70-1 and PfHsp70-z. The PfHsp70-z has been reported to be essential for parasite survival, while inhibition of PfHsp70-1 function leads to parasite death. Hence both PfHsp70-1 and PfHsp70-z are potential antimalarial drug targets. Extracts of P. angolensis and Z. mucronata inhibited the basal ATPase and chaperone functions of the two parasite Hsp70s. Furthermore, fractions of P. angolensis and Z. mucronata inhibited P. falciparum 3D7 parasite growth in vitro. The extracts obtained in the current study exhibited antiplasmodial activity as they killed P. falciparum parasites maintained in vitro. In addition, the findings further suggest that some of the compounds in P. angolensis and Z. mucronata may target parasite Hsp70 function.

  10. Stability of the cancer target DDIAS is regulated by the CHIP/HSP70 pathway in lung cancer cells

    PubMed Central

    Won, Kyoung-Jae; Im, Joo-Young; Kim, Bo-Kyung; Ban, Hyun Seung; Jung, Young-Jin; Jung, Kyeong Eun; Won, Misun

    2017-01-01

    DNA damage-induced apoptosis suppressor (DDIAS) rescues lung cancer cells from apoptosis in response to DNA damage. DDIAS is transcriptionally activated by NFATc1 and EGF-mediated ERK5/MEF2B, leading to cisplatin resistance and cell invasion. Therefore, DDIAS is suggested as a therapeutic target for lung cancer. Here, we report that DDIAS stability is regulated by E3 U-box ubiquitin ligase carboxyl terminus of HSP70-interacting protein (CHIP)-mediated proteasomal degradation. We first isolated CHIP as an interacting partner of DDIAS by yeast two-hybrid screening. CHIP physically associated with both the N- and C-terminal regions of DDIAS, targeting it for proteasomal degradation and reducing the DDIAS half-life. CHIP overexpression analyses indicated that the tetratrico peptide repeat (TPR) domain and the U-box are required for DDIAS ubiquitination. It is likely that HSP70-bound DDIAS is recruited to the CHIP E3 ligase via the TPR domain, suggesting DDIAS as a client protein of HSP70. In addition, CHIP overexpression in lung cancer cells expressing high DDIAS levels induced significant growth inhibition by enhancing DDIAS degradation. Furthermore, simultaneous CHIP overexpression and DNA damage agent treatment caused a substantial increase in the apoptosis of lung cancer cells. Taken together, these findings indicate that the stability of the DDIAS protein is regulated by CHIP/HSP70-mediated proteasomal degradation and that CHIP overexpression stimulates the apoptosis of lung cancer cells in response to DNA-damaging agents. PMID:28079882

  11. Stability of the cancer target DDIAS is regulated by the CHIP/HSP70 pathway in lung cancer cells.

    PubMed

    Won, Kyoung-Jae; Im, Joo-Young; Kim, Bo-Kyung; Ban, Hyun Seung; Jung, Young-Jin; Jung, Kyeong Eun; Won, Misun

    2017-01-12

    DNA damage-induced apoptosis suppressor (DDIAS) rescues lung cancer cells from apoptosis in response to DNA damage. DDIAS is transcriptionally activated by NFATc1 and EGF-mediated ERK5/MEF2B, leading to cisplatin resistance and cell invasion. Therefore, DDIAS is suggested as a therapeutic target for lung cancer. Here, we report that DDIAS stability is regulated by E3 U-box ubiquitin ligase carboxyl terminus of HSP70-interacting protein (CHIP)-mediated proteasomal degradation. We first isolated CHIP as an interacting partner of DDIAS by yeast two-hybrid screening. CHIP physically associated with both the N- and C-terminal regions of DDIAS, targeting it for proteasomal degradation and reducing the DDIAS half-life. CHIP overexpression analyses indicated that the tetratrico peptide repeat (TPR) domain and the U-box are required for DDIAS ubiquitination. It is likely that HSP70-bound DDIAS is recruited to the CHIP E3 ligase via the TPR domain, suggesting DDIAS as a client protein of HSP70. In addition, CHIP overexpression in lung cancer cells expressing high DDIAS levels induced significant growth inhibition by enhancing DDIAS degradation. Furthermore, simultaneous CHIP overexpression and DNA damage agent treatment caused a substantial increase in the apoptosis of lung cancer cells. Taken together, these findings indicate that the stability of the DDIAS protein is regulated by CHIP/HSP70-mediated proteasomal degradation and that CHIP overexpression stimulates the apoptosis of lung cancer cells in response to DNA-damaging agents.

  12. Targeting HSP70 and GRP78 in canine osteosarcoma cells in combination with doxorubicin chemotherapy.

    PubMed

    Asling, Jonathan; Morrison, Jodi; Mutsaers, Anthony J

    2016-11-01

    Heat shock proteins (HSPs) are molecular chaperones subdivided into several families based on their molecular weight. Due to their cytoprotective roles, these proteins may help protect cancer cells against chemotherapy-induced cell death. Investigation into the biologic activity of HSPs in a variety of cancers including primary bone tumors, such as osteosarcoma (OSA), is of great interest. Both human and canine OSA tumor samples have aberrant production of HSP70. This study assessed the response of canine OSA cells to inhibition of HSP70 and GRP78 by the ATP-mimetic VER-155008 and whether this treatment strategy could sensitize cells to doxorubicin chemotherapy. Single-agent VER-155008 treatment decreased cellular viability and clonogenic survival and increased apoptosis in canine OSA cell lines. However, combination schedules with doxorubicin after pretreatment with VER-155008 did not improve inhibition of cellular viability, apoptosis, or clonogenic survival. Treatment with VER-155008 prior to chemotherapy resulted in an upregulation of target proteins HSP70 and GRP78 in addition to the co-chaperone proteins Herp, C/EBP homologous transcription protein (CHOP), and BAG-1. The increased GRP78 was more cytoplasmic in location compared to untreated cells. Single-agent treatment also revealed a dose-dependent reduction in activated and total Akt. Based on these results, targeting GRP78 and HSP70 may have biologic activity in canine osteosarcoma. Further studies are required to determine if and how this strategy may impact the response of osteosarcoma cells to chemotherapy.

  13. Intranasal Pretreatment with Z-Ligustilide, the Main Volatile Component of Rhizoma Chuanxiong, Confers Prophylaxis against Cerebral Ischemia via Nrf2 and HSP70 Signaling Pathways.

    PubMed

    Li, Juan; Yu, Jie; Ma, Hui; Yang, Na; Li, Li; Zheng, Ding-Ding; Wu, Ming-Xia; Zhao, Zhi-Long; Qi, Hong-Yi

    2017-03-01

    Z-Ligustilide (Z-LIG) is a major component in Rhizoma Chuanxiong, which has been traditionally used as a health food supplement for the prevention of cerebrovascular disease in China. This study investigates the ability of intranasal Z-LIG pretreatment to enhance protection against neuronal damage in rats with middle cerebral artery occlusion (MCAO) and the role of cellular stress response mechanisms Nrf2 and HSP70. Z-LIG significantly mitigated infarct volume, neurological dysfunction, blood-brain barrier disruption, and brain edema (p < 0.01). Moreover, Z-LIG prevented the loss of collagen IV, occludin, and ZO-1 (p < 0.05) and decreased MMP-2 and -9 levels (p < 0.01). Meanwhile, Z-LIG up-regulated NQO1 and HSP70. Notably, blockage of Nrf2-driven transcription or down-regulation of HSP70 remarkably attenuated the preventive effect of Z-LIG (p < 0.05). Together, intranasal delivery of Z-LIG enhanced protection against ischemic injury via Nrf2 and HSP70 signaling pathways and has prophylactic potential in the population at high risk of stroke.

  14. Leishmania infantum HSP70-II null mutant as candidate vaccine against leishmaniasis: a preliminary evaluation

    PubMed Central

    2011-01-01

    Background Visceral leishmaniasis is the most severe form of leishmaniasis and no effective vaccine exists. The use of live attenuated vaccines is emerging as a promising vaccination strategy. Results In this study, we tested the ability of a Leishmania infantum deletion mutant, lacking both HSP70-II alleles (ΔHSP70-II), to provide protection against Leishmania infection in the L. major-BALB/c infection model. Administration of the mutant line by either intraperitoneal, intravenous or subcutaneous route invariably leads to the production of high levels of NO and the development in mice of type 1 immune responses, as determined by analysis of anti-Leishmania IgG subclasses. In addition, we have shown that ΔHSP70-II would be a safe live vaccine as immunodeficient SCID mice, and hamsters (Mesocricetus auratus), infected with mutant parasites did not develop any sign of pathology. Conclusions The results suggest that the ΔHSP70-II mutant is a promising and safe vaccine, but further studies in more appropriate animal models (hamsters and dogs) are needed to appraise whether this attenuate mutant would be useful as vaccine against visceral leishmaniasis. PMID:21794145

  15. Assessment of thermal stress adaptation by monitoring Hsp70 and MnSOD in the freshwater gastropod, Bellamya bengalensis (Lamark 1882).

    PubMed

    Dutta, Sangita Maiti; Mustafi, Soumyajit Banerjee; Raha, Sanghamitra; Chakraborty, Susanta Kumar

    2014-12-01

    Expression of the stress biomarkers 70-kDa heat shock proteins (Hsp70) and manganese superoxide dismutase (MnSOD) was measured as the molecular basis of adaptive response against increased experimental temperatures (32-40 °C for a span of 24-72 h) on the fresh water molluscan species, Bellamya bengalensis (Lamark 1882). The experimental snail specimens were collected during summer and winter seasons from two contrasting wetlands: an ecorestored (free from human interference) site (SI) and other experiencing anthropogenic stresses (SII). The mortality rate of the B. bengalensis and the immunoblotting of MnSOD and Hsp70 of their digestive glands were performed at regular intervals during the period of heat stress. The SI provided a lower stress environment based on physicochemical parameters such as pH, dissolved oxygen (DO), biological oxygen demand (BOD), chemical oxygen demand (COD), and alkalinity for the survival of test species, although both sites experienced mortality due to thermal stresses. The parity in protein expressions displayed a uniform mode of adaptive impact to temperature elevations in both field and laboratory exposure. The Hsp70 expression was minimal at lower thermal stress, but increased with a rise in temperature. It is very likely that higher Hsp70 levels are not directly related to survival or adaptation. In contrast, MnSOD levels appeared to be an indicator of adaptive responses vis-a-vis survival of the animals. So, the expression levels of a universal free radical scavenger like MnSOD are recognized as a potential biomarker in a bioindicator species like Bellamya.

  16. Diversity of cytosolic HSP70 Heat Shock Protein from decapods and their phylogenetic placement within Arthropoda.

    PubMed

    Baringou, Stephane; Rouault, Jacques-Deric; Koken, Marcel; Hardivillier, Yann; Hurtado, Luis; Leignel, Vincent

    2016-10-10

    The 70kDa heat shock proteins (HSP70) are considered the most conserved members of the HSP family. These proteins are primordial to the cell, because of their implications in many cellular pathways (e. g., development, immunity) and also because they minimize the effects of multiple stresses (e. g., temperature, pollutants, salinity, radiations). In the cytosol, two ubiquitous HSP70s with either a constitutive (HSC70) or an inducible (HSP70) expression pattern are found in all metazoan species, encoded by 5 or 6 genes (Drosophila melanogaster or yeast and human respectively). The cytosolic HSP70 protein family is considered a major actor in environmental adaptation, and widely used in ecology as an important biomarker of environmental stress. Nevertheless, the diversity of cytosolic HSP70 remains unclear amongst the Athropoda phylum, especially within decapods. Using 122 new and 311 available sequences, we carried out analyses of the overall cytosolic HSP70 diversity in arthropods (with a focus on decapods) and inferred molecular phylogenies. Overall structural and phylogenetic analyses showed a surprisingly high diversity in cytosolic HSP70 and revealed the existence of several unrecognised groups. All crustacean HSP70 sequences present signature motifs and molecular weights characteristic of non-organellar HSP70, with multiple specific substitutions in the protein sequence. The cytosolic HSP70 family in arthropods appears to be constituted of at least three distinct groups (annotated as A, B and C), which comprise several subdivisions, including both constitutive and inducible forms. Group A is constituted by several classes of Arthropods, while group B and C seem to be specific to Malacostraca and Hexapoda/Chelicerata, respectively. The HSP70 organization appeared much more complex than previously suggested, and far beyond a simple differentiation according to their expression pattern (HSC70 versus HSP70). This study proposes a new classification of cytosolic HSP70 and an evolutionary model of the distinct forms amongst the Arthropoda phylum. The observed differences between HSP70 groups will probably have to be linked to distinct interactions with co-chaperones or other co-factors. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Molecular cloning, characterization and expression analysis of HSP60, HSP70 and HSP90 in the golden apple snail, Pomacea canaliculata.

    PubMed

    Xu, Yipeng; Zheng, Guowan; Dong, Shengzhang; Liu, Guangfu; Yu, Xiaoping

    2014-12-01

    The golden apple snail, Pomacea canaliculata, has strong tolerance to high temperature, facilitating its invasion in East and Southeast Asia. In the present study, three cDNAs encoding heat shock proteins (PocaHSP60, PocaHSP70, PocaHSP90) in P. canaliculata were cloned and characterized. The PocaHSP60 cDNA was 2447 bp, containing an ORF encoding a polypeptide of 574 amino acids. The PocaHSP70 cDNA was 2644 bp, containing an ORF encoding a polypeptide of 643 amino acids. The PocaHSP90 cDNA was 2546 bp, containing an ORF encoding a polypeptide of 726 amino acids. Genomic DNA analysis showed that PocaHSP60 had 11 introns in the coding region and PocaHSP90 had 7 introns but PocaHSP70 had no one. The expression changes of these three PocaHSPs in the gill, digestive gland, kidney and foot muscle of P. canaliculata exposed to high and low temperature were investigated. The results of quantitative PCR and western blotting showed that the expression level of PocaHSP90 was much higher than PocaHSP60 and PocaHSP70 at room temperature, and PocaHSP70 expression level was the lowest among them. Afterheat shock, PocaHSP70 expression increased rapidly, much more significantly than PocaHSP90 expression, and the effect of heat shock on the expression of PocaHSP70 and PocaHSP90 in the different tissues of P. canaliculata was not the same. Unlike PocaHSP70 and PocaHSP90, PocaHSP60 expression seemed not to be affected by heat shock, because its expression was moderately induced only in the foot muscle. However, cool shock had little effect on the expression change of above three PocaHSPs. These results indicated that HSPs might be related to the thermal resistance of P. canaliculata.

  18. Targeted gene disruption of Hsp70-2 results in failed meiosis, germ cell apoptosis, and male infertility.

    PubMed Central

    Dix, D J; Allen, J W; Collins, B W; Mori, C; Nakamura, N; Poorman-Allen, P; Goulding, E H; Eddy, E M

    1996-01-01

    In addition to the five 70-kDa heat shock proteins (HSP70) common to germ cells and somatic tissues of mammals, spermatogenic cells synthesize HSP70-2 during meiosis. To determine if this unique stress protein has a critical role in meiosis, we used gene-targeting techniques to disrupt Hsp70-2 in mice. Male mice homozygous for the mutant allele (Hsp70-2 -/-) did not synthesize HSP70-2, lacked postmeiotic spermatids and mature sperm, and were infertile. However, neither meiosis nor fertility was affected in female Hsp70-2 -/- mice. We previously found that HSP70-2 is associated with synaptonemal complexes in the nucleus of meiotic spermatocytes from mice and hamsters. While synaptonemal complexes assembled in Hsp70-2 -/- spermatocytes, structural abnormalities became apparent in these cells by late prophase, and development rarely progressed to the meiotic divisions. Furthermore, analysis of nuclei and genomic DNA indicated that the failure of meiosis in Hsp70-2 -/- mice was coincident with a dramatic increase in spermatocyte apoptosis. These results suggest that HSP70-2 participates in synaptonemal complex function during meiosis in male germ cells and is linked to mechanisms that inhibit apoptosis. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8622925

  19. Hsp70 Protein Complexes as Drug Targets

    PubMed Central

    Assimon, Victoria A.; Gillies, Anne T.; Rauch, Jennifer N.; Gestwicki, Jason E.

    2013-01-01

    Heat shock protein 70 (Hsp70) plays critical roles in proteostasis and is an emerging target for multiple diseases. However, competitive inhibition of the enzymatic activity of Hsp70 has proven challenging and, in some cases, may not be the most productive way to redirect Hsp70 function. Another approach is to inhibit Hsp70’s interactions with important co-chaperones, such as J proteins, nucleotide exchange factors (NEFs) and tetratricopeptide repeat (TPR) domain-containing proteins. These co-chaperones normally bind Hsp70 and guide its many diverse cellular activities. Complexes between Hsp70 and co-chaperones have been shown to have specific functions, such as pro-folding, pro-degradation and pro-trafficking. Thus, a promising strategy may be to block protein-protein interactions between Hsp70 and its co-chaperones or to target allosteric sites that disrupt these contacts. Such an approach might shift the balance of Hsp70 complexes and re-shape the proteome and it has the potential to restore healthy proteostasis. In this review, we discuss specific challenges and opportunities related to those goals. By pursuing Hsp70 complexes as drug targets, we might not only develop new leads for therapeutic development, but also discover new chemical probes for use in understanding Hsp70 biology. PMID:22920901

  20. Effects of heated hydrotherapy on muscle HSP70 and glucose metabolism in old and young vervet monkeys.

    PubMed

    Kavanagh, Kylie; Davis, Ashely T; Jenkins, Kurt A; Flynn, D Mickey

    2016-07-01

    Increasing heat shock protein 70 (HSP70) in aged and/or insulin-resistant animal models confers benefits to healthspan and lifespan. Heat application to increase core temperature induces HSPs in metabolically important tissues, and preliminary human and animal data suggest that heated hydrotherapy is an effective method to achieve increased HSPs. However, safety concerns exist, particularly in geriatric medicine where organ and cardiovascular disease commonly will preexist. We evaluated young vervet monkeys compared to old, insulin-resistant vervet monkeys (Chlorocebus aethiops sabaeus) in their core temperatures, glucose tolerance, muscle HSP70 level, and selected safety biomarkers after 10 sessions of hot water immersions administered twice weekly. Hot water immersion robustly induced the heat shock response in muscles. We observed that heat-treated old and young monkeys have significantly higher muscle HSP70 than control monkeys and treatment was without significant adverse effects on organ or cardiovascular health. Heat therapy improved pancreatic responses to glucose challenge and tended to normalize glucose excursions. A trend for worsened blood pressure and glucose values in the control monkeys and improved values in heat-treated monkeys were seen to support further investigation into the safety and efficacy of this intervention for metabolic syndrome or diabetes in young or old persons unable to exercise.

  1. Increasing heat storage by wearing extra clothing during upper body exercise up-regulates heat shock protein 70 but does not modify the cytokine response.

    PubMed

    Leicht, Christof A; Papanagopoulos, Aris; Haghighat, Sam; Faulkner, Steve H

    2017-09-01

    Plasma heat shock protein 70 (HSP70) concentrations rise during heat stress, which can independently induce cytokine production. Upper body exercise normally results in modest body temperature elevations. The aim of this study was to investigate the impacts of additional clothing on the body temperature, cytokine and HSP70 responses during this exercise modality. Thirteen males performed 45-min constant-load arm cranking at 63% maximum aerobic power (62 ± 7%V̇O 2peak ) in either a non-permeable whole-body suit (intervention, INT) or shorts and T-shirt (control, CON). Exercise resulted in a significant increase of IL-6 and IL-1ra plasma concentrations (P < 0.001), with no difference between conditions (P > 0.19). The increase in HSP70 from pre to post was only significant for INT (0.12 ± 0.11ng∙mL -1 , P < 0.01 vs. 0.04 ± 0.18 ng∙mL -1 , P = 0.77). Immediately following exercise, T core was elevated by 0.46 ± 0.29 (INT) and 0.37 ± 0.23ºC (CON), respectively (P < 0.01), with no difference between conditions (P = 0.16). The rise in mean T skin (2.88 ± 0.50 and 0.30 ± 0.89ºC, respectively) and maximum heat storage (3.24 ± 1.08 and 1.20 ± 1.04 J∙g -1 , respectively) was higher during INT (P < 0.01). Despite large differences in heat storage between conditions, the HSP70 elevations during INT, even though significant, were very modest. Possibly, the T core elevations were too low to induce a more pronounced HSP70 response to ultimately affect cytokine production.

  2. The 86-kilodalton antigen from Schistosoma mansoni is a heat-shock protein homologous to yeast HSP-90.

    PubMed

    Johnson, K S; Wells, K; Bock, J V; Nene, V; Taylor, D W; Cordingley, J S

    1989-08-01

    We report the sequence of a cDNA clone encoding an 86-kDa polypeptide antigen (p86) from Schistosoma mansoni. Fusion proteins made in Escherichia coli are recognized by human infection sera. The reading frame of this antigen is highly homologous to those of the large heat-shock proteins of Saccharomyces cerevisiae (HSP90) and Drosophila melanogaster (HSP83). mRNA encoding p86 increases in response to heat shock of adult worms, as does HSP70. Comparisons of the sequences of HSP70 and HSP83 homologues show that these two families of heat-shock proteins are not significantly related except for the last four amino acid residues, which are Glu-Glu-Val-Asp in every case. This sequence is not found at the carboxy terminus of any other protein in the current databases.

  3. Impact of DBP on histology and expression of HSP 70 in gill and liver tissue of Cyprinus carpio.

    PubMed

    Agus, Hizlan H; Erkmen, Belda; Sümer, Sibel; Sepici-Dinçel, Aylin; Erkoç, Figen

    2015-09-01

    Di-n-butyl phthalate (DBP) widely used plasticizer in the plastic industry, affects regulation of the endocrine system and causes toxicity in animals. In the present study, the aim was to study the toxic effects/damages of DBP exposure using Hsp70 levels and histopathological changes in Carp liver and gill. Hsp70 expression levels were assessed as specific biomarker of in vivo ecotoxicological stress. Carp (Cyprinus carpio) were exposed to sub-lethal concentration of DBP (di-n-butyl phthalate, 1 mg/L) for 4, 24 and 96 h. Gill and liver tissues were evaluated histopathologically and RNA quantifications for Hsp70 expression levels were carried out using a two-step real-time RT-PCR. In liver, a rapid but non-significant increase in mRNA levels in the first 4 h was observed. mRNA levels significantly increased up to 2-3 fold after 24 and 96 h (p < 0.05). However, irregular mRNA level changes were also recorded: Gill specific and time-dependent regulation of Hsp70 expression were 4-5 fold inhibition after 4 and 24 h (p < 0.05), then increased up to 4 fold after 96 h (p < 0.05). Histopathological findings support altered transcription results as: Epithelial lifting, hyperplasia, fusion of secondary lamellae, telangiectasis, passive hyperemia and hydropic degeneration. Significant alterations of Hsp70 levels were likely due to a tissue specific response against chemical stress, cellular damage and lesions due to DBP. Carp was found to be a suitable experimental model for toxicology, and Hsp70 mRNA levels are reliable, specific biomarkers.

  4. Lanthanum Element Induced Imbalance of Mineral Nutrients, HSP 70 Production and DNA-Protein Crosslink, Leading to Hormetic Response of Cell Cycle Progression in Root Tips of Vicia faba L. seedlings.

    PubMed

    Wang, Chengrun; Shi, Cuie; Liu, Ling; Wang, Chen; Qiao, Wei; Gu, Zhimang; Wang, Xiaorong

    2012-01-01

    The effects and mechanisms of rare earth elements on plant growth have not been extensively characterized. In the current study, Vicia faba L. seedlings were cultivated in lanthanum (La)-containing solutions for 10 days to investigate the possible effects and mechanisms of La on cell proliferation and root lengthening in roots. The results showed that increasing La levels resulted in abnormal calcium (Ca), Ferrum (Fe) or Potassium (K) contents in the roots. Flow cytometry analysis revealed G1/S and S/G2 arrests in response to La treatments in the root tips. Heat shock protein 70 (HSP 70) production showed a U-shaped dose response to increasing La levels. Consistent with its role in cell cycle regulation, HSP 70 fluctuated in parallel with the S-phase ratios and proliferation index. Furthermore, DNA-protein crosslinks (DPCs) enhanced at higher La concentrations, perhaps involved in blocking cell progression. Taken together, these data provide important insights into the hormetic effects and mechanisms of REE(s) on plant cell proliferation and growth.

  5. Differential expression pattern of heat shock protein 70 gene in tissues and heat stress phenotypes in goats during peak heat stress period.

    PubMed

    Rout, P K; Kaushik, R; Ramachandran, N

    2016-07-01

    It has been established that the synthesis of heat shock protein 70 (Hsp70) is temperature-dependent. The Hsp70 response is considered as a cellular thermometer in response to heat stress and other stimuli. The variation in Hsp70 gene expression has been positively correlated with thermotolerance in Drosophila melanogaster, Caenorhabditis elegans, rodents and human. Goats have a wide range of ecological adaptability due to their anatomical and physiological characteristics; however, the productivity of the individual declines during thermal stress. The present study was carried out to analyze the expression of heat shock proteins in different tissues and to contrast heat stress phenotypes in response to chronic heat stress. The investigation has been carried out in Jamunapari, Barbari, Jakhrana and Sirohi goats. These breeds differ in size, coat colour and production performance. The heat stress assessment in goats was carried out at a temperature humidity index (THI) ranging from 85.36-89.80 over the period. Phenotyping for heat stress susceptibility was carried out by combining respiration rate (RR) and heart rate (HR). Based on the distribution of RR and HR over the breeds in the population, individual animals were recognized as heat stress-susceptible (HSS) and heat stress-tolerant (HST). Based on their physiological responses, the selected animals were slaughtered for tissue collection during peak heat stress periods. The tissue samples from different organs such as liver, spleen, heart, testis, brain and lungs were collected and stored at -70 °C for future use. Hsp70 concentrations were analyzed from tissue extract with ELISA. mRNA expression levels were evaluated using the SYBR green method. Kidney, liver and heart had 1.5-2.0-fold higher Hsp70 concentrations as compared to other organs in the tissue extracts. Similarly, the gene expression pattern of Hsp70 in different organs indicated that the liver, spleen, brain and kidney exhibited 5.94, 4.96, 5.29 and 2.63-fold higher expression than control. Liver and brain tissues showed the highest gene expression at mRNA levels as compared to kidney, spleen and heart. HST individuals had higher levels of mRNA level expression than HSS individuals in all breeds. The Sirohi breed showed the highest (6.3-fold) mRNA expression levels as compared to the other three breeds, indicating the better heat stress regulation activity in the breed.

  6. Metazoan Hsp70 machines use Hsp110 to power protein disaggregation.

    PubMed

    Rampelt, Heike; Kirstein-Miles, Janine; Nillegoda, Nadinath B; Chi, Kang; Scholz, Sebastian R; Morimoto, Richard I; Bukau, Bernd

    2012-11-05

    Accumulation of aggregation-prone misfolded proteins disrupts normal cellular function and promotes ageing and disease. Bacteria, fungi and plants counteract this by solubilizing and refolding aggregated proteins via a powerful cytosolic ATP-dependent bichaperone system, comprising the AAA+ disaggregase Hsp100 and the Hsp70-Hsp40 system. Metazoa, however, lack Hsp100 disaggregases. We show that instead the Hsp110 member of the Hsp70 superfamily remodels the human Hsp70-Hsp40 system to efficiently disaggregate and refold aggregates of heat and chemically denatured proteins in vitro and in cell extracts. This Hsp110 effect relies on nucleotide exchange, not on ATPase activity, implying ATP-driven chaperoning is not required. Knock-down of nematode Caenorhabditis elegans Hsp110, but not an unrelated nucleotide exchange factor, compromises dissolution of heat-induced protein aggregates and severely shortens lifespan after heat shock. We conclude that in metazoa, Hsp70-Hsp40 powered by Hsp110 nucleotide exchange represents the crucial disaggregation machinery that reestablishes protein homeostasis to counteract protein unfolding stress.

  7. Changes on lipid peroxidation,enzymatic activities and gene expression in planarian (Dugesia japonica) following exposure to perfluorooctanoic acid.

    PubMed

    Yuan, Zuoqing; Miao, Zili; Gong, Xiaoning; Zhao, Baoying; Zhang, Yuanyuan; Ma, Hongdou; Zhang, Jianyong; Zhao, Bosheng

    2017-11-01

    We investigated perfluorooctanoic acid (PFOA)-induced stress response in planarians. We administered different concentrations of PFOA to planarians for up to 10 d. PFOA exposure resulted in significant concentration-dependent elevations in lipid peroxidation, glutathione S-transferase and caspase-3 protease activities, and a significant decline in glutathione peroxidase activities compared with control groups. Exposure to PFOA significantly up-regulated the heat shock proteins hsp70 and hsp90, and p53, and down-regulated hsp40 compared with controls. PFOA exposure also increased HSP70 protein levels, as demonstrated by western blot analysis. These alterations indicated that PFOA exposure induced a stress response and affected the regulation of oxidative stress, enzymatic activities and gene expression. These results suggest that these sensitive parameters, together with other biomarkers, could be used for evaluating toxicity, for ecological risk assessment of PFOA in freshwaters. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Transport stress induces heart damage in newly hatched chicks via blocking the cytoprotective heat shock response and augmenting nitric oxide production.

    PubMed

    Sun, F; Zuo, Y-Z; Ge, J; Xia, J; Li, X-N; Lin, J; Zhang, C; Xu, H-L; Li, J-L

    2018-04-20

    Transport stress affects the animal's metabolism and psychological state. As a pro-survival pathway, the heat shock response (HSR) protects healthy cells from stressors. However, it is unclear whether the HSR plays a role in transport stress-induced heart damage. To evaluate the effects of transport stress on heart damage and HSR protection, newly hatched chicks were treated with transport stress for 2 h, 4 h and 8 h. Transport stress caused decreases in body weight and increases in serum creatine kinase (CK) activity, nitric oxide (NO) content in heart tissue, cardiac nitric oxide syntheses (NOS) activity and NOS isoforms transcription. The mRNA expression of heat shock factors (HSFs, including HSF1-3) and heat shock proteins (HSPs, including HSP25, HSP40, HSP47, HSP60, HSP70, HSP90 and HSP110) in the heart of 2 h transport-treated chicks was upregulated. After 8 h of transport stress in chicks, the transcription levels of the same HSPs and HSF2 were reduced in the heart. It was also found that the changes in the HSP60, HSP70 and HSP90 protein levels had similar tendencies. These results suggested that transport stress augmented NO generation through enhancing the activity of NOS and the transcription of NOS isoforms. Therefore, this study provides new evidence that transport stress induces heart damage in the newly hatched chicks by blocking the cytoprotective HSR and augmenting NO production.

  9. Systematic Proteomic Identification of the Heat Shock Proteins (Hsp) that Interact with Estrogen Receptor Alpha (ERα) and Biochemical Characterization of the ERα-Hsp70 Interaction.

    PubMed

    Dhamad, Ahmed E; Zhou, Zhenqi; Zhou, Jianhong; Du, Yuchun

    2016-01-01

    Heat shock proteins (Hsps) are known to associate with estrogen receptors (ER) and regulate ER-mediated cell proliferation. Historically, the studies in this area have focused on Hsp90. However, some critical aspects of the Hsp-ERα interactions remain unclear. For example, we do not know which Hsps are the major or minor ERα interactants and whether or not different Hsp isoforms associate equally with ERα. In the present study, through a quantitative proteomic method we found that 21 Hsps and 3 Hsp cochaperones were associated with ERα in human 293T cells that were cultured in a medium containing necessary elements for cell proliferation. Four Hsp70s (Hsp70-1, Hsc70, Grp75, and Grp78) were the most abundant Hsps identified to associate with ERα, followed by two Hsp90s (Hsp90α and Hsp90β) and three Hsp110s (Hsp105, HspA4, and HspA4L). Hsp90α was found to be 2-3 times more abundant than Hsp90β in the ERα-containing complexes. Among the reported Hsp cochaperones, we detected prostaglandin E synthase 3 (p23), peptidyl-prolyl cis-trans isomerase FKBP5 (FKBP51), and E3 ubiquitin-protein ligase CHIP (CHIP). Studies with the two most abundant ERα-associated Hsps, Hsp70-1 and Hsc70, using human breast cancer MCF7 cells demonstrate that the two Hsps interacted with ERα in both the cytoplasm and nucleus when the cells were cultured in a medium supplemented with fetal bovine serum and phenol red. Interestingly, the ERα-Hsp70-1/Hsc70 interactions were detected only in the cytoplasm but not in the nucleus under hormone starvation conditions, and stimulation of the starved cells with 17β-estradiol (E2) did not change this. In addition, E2-treatment weakened the ERα-Hsc70 interaction but had no effect on the ERα-Hsp70-1 interaction. Further studies showed that significant portions of Hsp70-1 and Hsc70 were associated with transcriptionally active chromatin and inactive chromatin, and the two Hsps interacted with ERα in both forms of the chromatins in MCF7 cells.

  10. Up-regulation of heat shock proteins is essential for cold survival during insect diapause

    PubMed Central

    Rinehart, Joseph P.; Li, Aiqing; Yocum, George D.; Robich, Rebecca M.; Hayward, Scott A. L.; Denlinger, David L.

    2007-01-01

    Diapause, the dormancy common to overwintering insects, evokes a unique pattern of gene expression. In the flesh fly, most, but not all, of the fly's heat shock proteins (Hsps) are up-regulated. The diapause up-regulated Hsps include two members of the Hsp70 family, one member of the Hsp60 family (TCP-1), at least four members of the small Hsp family, and a small Hsp pseudogene. Expression of an Hsp70 cognate, Hsc70, is uninfluenced by diapause, and Hsp90 is actually down-regulated during diapause, thus diapause differs from common stress responses that elicit synchronous up-regulation of all Hsps. Up-regulation of the Hsps begins at the onset of diapause, persists throughout the overwintering period, and ceases within hours after the fly receives the signal to reinitiate development. The up-regulation of Hsps appears to be common to diapause in species representing diverse insect orders including Diptera, Lepidoptera, Coleoptera, and Hymenoptera as well as in diapauses that occur in different developmental stages (embryo, larva, pupa, adult). Suppressing expression of Hsp23 and Hsp70 in flies by using RNAi did not alter the decision to enter diapause or the duration of diapause, but it had a profound effect on the pupa's ability to survive low temperatures. We thus propose that up-regulation of Hsps during diapause is a major factor contributing to cold-hardiness of overwintering insects. PMID:17522254

  11. Identification, Characterization and Expression Profiling of Stress-Related Genes in Easter Lily (Lilium formolongi)

    PubMed Central

    Howlader, Jewel; Park, Jong-In; Robin, Arif Hasan Khan; Sumi, Kanij Rukshana; Nou, Ill-Sup

    2017-01-01

    Biotic and abiotic stresses are the major causes of crop loss in lily worldwide. In this study, we retrieved 12 defense-related expressed sequence tags (ESTs) from the NCBI database and cloned, characterized, and established seven of these genes as stress-induced genes in Lilium formolongi. Using rapid amplification of cDNA ends PCR (RACE-PCR), we successfully cloned seven full-length mRNA sequences from L. formolongi line Sinnapal lily. Based on the presence of highly conserved characteristic domains and phylogenetic analysis using reference protein sequences, we provided new nomenclature for the seven nucleotide and protein sequences and submitted them to GenBank. The real-time quantitative PCR (qPCR) relative expression analysis of these seven genes, including LfHsp70-1, LfHsp70-2, LfHsp70-3, LfHsp90, LfUb, LfCyt-b5, and LfRab, demonstrated that they were differentially expressed in all organs examined, possibly indicating functional redundancy. We also investigated the qPCR relative expression levels under two biotic and four abiotic stress conditions. All seven genes were induced by Botrytis cinerea treatment, and all genes except LfHsp70-3 and LfHsp90 were induced by Botrytis elliptica treatment; these genes might be associated with disease tolerance mechanisms in L. formolongi. In addition, LfHsp70-1, LfHsp70-2, LfHsp70-3, LfHsp90, LfUb, and LfCyt-b5 were induced by heat treatment, LfHsp70-1, LfHsp70-2, LfHsp70-3, LfHsp90, and LfCyt-b5 were induced by cold treatment, and LfHsp70-1, LfHsp70-2, LfHsp70-3, LfHsp90, LfCy-b5, and LfRab were induced by drought and salt stress, indicating their likely association with tolerance to these stress conditions. The stress-induced candidate genes identified in this study provide a basis for further functional analysis and the development of stress-resistant L. formolongi cultivars.

  12. Targeting the testis-specific heat-shock protein 70-2 (HSP70-2) reduces cellular growth, migration, and invasion in renal cell carcinoma cells.

    PubMed

    Singh, Swarnendra; Suri, Anil

    2014-12-01

    Renal cell carcinoma (RCC) represents one of the most resistant tumors to radiotherapy and chemotherapy. Current therapies for the RCC patients are limited owing to lack of diagnosis and therapeutic treatments. Testis-specific heat-shock protein 70-2 (HSP70-2), a member of HSP70 chaperone family, has been shown to be associated with various cancers. In the present study, we investigated the putative role of HSP70-2 in various malignant properties of the RCC cells. HSP70-2 messenger RNA (mRNA) and protein expression was investigated in A704, ACHN, and Caki-1 cells derived from the RCC patients. We assessed the expression of HSP70-2 gene and protein by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting, respectively. The expression of HSP70-2 protein was further validated by performing indirect immunofluorescence (IIF) and flow cytometry. The malignant properties of high-grade invasive A704 and Caki-1 cells, such as cellular proliferation, colony formation, migration, invasion, and wound healing, were evaluated by silencing the expression of HSP70-2 gene in these cells. Statistical significance was defined using Student's t test. Our RT-PCR and Western blotting data showed the expression of HSP70-2 in all RCC cells. Our results showed that HSP70-2 was predominantly expressed in cytoplasm and found to be colocalized with endoplasmic reticulum, mitochondria, Golgi body, and plasma membrane but not the nuclear envelope. Knockdown of HSP70-2 expression with specific short hairpin RNA (shRNA) demonstrated significant reduction in cell growth and colony formation. Further, a marked reduction in cell migration and invasion was also observed, indicating the potential role of HSP70-2 in metastasis. Collectively, our data suggest that HSP70-2 plays a key role in cancerous growth and invasive potential of RCC cells. Thus, HSP70-2 could serve as a novel potential therapeutic target for the RCC.

  13. Conformational Activation of Argonaute by Distinct yet Coordinated Actions of the Hsp70 and Hsp90 Chaperone Systems.

    PubMed

    Tsuboyama, Kotaro; Tadakuma, Hisashi; Tomari, Yukihide

    2018-05-17

    Loading of small RNAs into Argonaute, the core protein in RNA silencing, requires the Hsp70/Hsp90 chaperone machinery. This machinery also activates many other clients, including steroid hormone receptors and kinases, but how their structures change during chaperone-dependent activation remains unclear. Here, we utilized single-molecule Förster resonance energy transfer (smFRET) to probe the conformational changes of Drosophila Ago2 mediated by the chaperone machinery. We found that empty Ago2 exists in various closed conformations. The Hsp70 system (Hsp40 and Hsp70) and the Hsp90 system (Hop, Hsp90, and p23) together render Ago2 into an open, active form. The Hsp70 system, but not the Hsp90 system alone, is sufficient for Ago2 to partially populate the open form. Instead, the Hsp90 system is required to extend the dwell time of Ago2 in the open state, which must be transiently primed by the Hsp70 system. Our data uncover distinct and coordinated actions of the chaperone machinery, where the Hsp70 system expands the structural ensembles of Ago2 and the Hsp90 system captures and stabilizes the active form. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. From hatching to dispatching: the multiple cellular roles of the Hsp70 molecular chaperone machinery.

    PubMed

    Meimaridou, Eirini; Gooljar, Sakina B; Chapple, J Paul

    2009-01-01

    Molecular chaperones are best recognized for their roles in de novo protein folding and the cellular response to stress. However, many molecular chaperones, and in particular the Hsp70 chaperone machinery, have multiple diverse cellular functions. At the molecular level, chaperones are mediators of protein conformational change. To facilitate conformational change of client/substrate proteins, in manifold contexts, chaperone power must be closely regulated and harnessed to specific cellular locales--this is controlled by cochaperones. This review considers specialized functions of the Hsp70 chaperone machinery mediated by its cochaperones. We focus on vesicular trafficking, protein degradation and a potential role in G protein-coupled receptor processing.

  15. Adaptive capability as indicated by behavioral and physiological responses, plasma HSP70 level, and PBMC HSP70 mRNA expression in Osmanabadi goats subjected to combined (heat and nutritional) stressors.

    PubMed

    Shilja, Shaji; Sejian, V; Bagath, M; Mech, A; David, C G; Kurien, E K; Varma, Girish; Bhatta, Raghavendra

    2016-09-01

    A study was conducted to assess the impact of heat and nutritional stress simultaneously on the adaptive capability as indicated by behavioral and physiological responses, plasma heat shock protein 70 (HSP70) level, and peripheral blood mononuclear cells (PBMC) HSP70 gene expression in goats. Twenty-four adult Osmanabadi bucks (average body weight (BW) 16.0 kg) were used in the present study. The bucks were divided into four groups viz., C (n = 6; control), HS (n = 6; heat stress), NS (n = 6; nutritional stress), and CS (n = 6; combined stress). The study was conducted for a period of 45 days. C and HS bucks had ad libitum access to their feed while NS and CS bucks were under restricted feed (30 % intake of C bucks) to induce nutritional stress. The HS and CS bucks were exposed to solar radiation for 6 h a day between 10:00 a.m. and 4:00 p.m. to induce heat stress. The data was analyzed using repeated measures analysis of variance. The standing time differed significantly (P < 0.01) between ad libitum fed groups (C and HS) and restricted feeding groups (NS and CS). The highest (P < 0.01) lying time was recorded in the CS group while the lowest in the C and HS groups. The highest (P < 0.01) drinking frequency was also recorded in the CS group. Water intake recorded was significantly (P < 0.01) higher in both the HS and CS groups. The highest respiration rate (RR), pulse rate (PR), and rectal temperature (RT) during the afternoon were also recorded in the CS group. Further, skin temperature of the head, flank, and scrotum during the afternoon was also higher (P < 0.01) in the CS group. In addition, both plasma HSP70 concentration and PBMC HSP70 messenger RNA (mRNA) transcript expression were also significantly (P < 0.01) higher in the CS group. It can be concluded from this study that when two stressors occur simultaneously, they may have severe impact on adaptive capabilities of Osmanabadi bucks as compared to that would occur individually. Further, the study indicated that lying time, drinking frequency, RR, RT, plasma HSP70, and PBMC HSP70 gene expression may act as ideal biological markers for assessing the impact of CS on adaptive capabilities in bucks.

  16. Adaptive capability as indicated by behavioral and physiological responses, plasma HSP70 level, and PBMC HSP70 mRNA expression in Osmanabadi goats subjected to combined (heat and nutritional) stressors

    NASA Astrophysics Data System (ADS)

    Shilja, Shaji; Sejian, V.; Bagath, M.; Mech, A.; David, C. G.; Kurien, E. K.; Varma, Girish; Bhatta, Raghavendra

    2016-09-01

    A study was conducted to assess the impact of heat and nutritional stress simultaneously on the adaptive capability as indicated by behavioral and physiological responses, plasma heat shock protein 70 (HSP70) level, and peripheral blood mononuclear cells (PBMC) HSP70 gene expression in goats. Twenty-four adult Osmanabadi bucks (average body weight (BW) 16.0 kg) were used in the present study. The bucks were divided into four groups viz., C ( n = 6; control), HS ( n = 6; heat stress), NS ( n = 6; nutritional stress), and CS ( n = 6; combined stress). The study was conducted for a period of 45 days. C and HS bucks had ad libitum access to their feed while NS and CS bucks were under restricted feed (30 % intake of C bucks) to induce nutritional stress. The HS and CS bucks were exposed to solar radiation for 6 h a day between 10:00 a.m. and 4:00 p.m. to induce heat stress. The data was analyzed using repeated measures analysis of variance. The standing time differed significantly ( P < 0.01) between ad libitum fed groups (C and HS) and restricted feeding groups (NS and CS). The highest ( P < 0.01) lying time was recorded in the CS group while the lowest in the C and HS groups. The highest ( P < 0.01) drinking frequency was also recorded in the CS group. Water intake recorded was significantly ( P < 0.01) higher in both the HS and CS groups. The highest respiration rate (RR), pulse rate (PR), and rectal temperature (RT) during the afternoon were also recorded in the CS group. Further, skin temperature of the head, flank, and scrotum during the afternoon was also higher ( P < 0.01) in the CS group. In addition, both plasma HSP70 concentration and PBMC HSP70 messenger RNA (mRNA) transcript expression were also significantly ( P < 0.01) higher in the CS group. It can be concluded from this study that when two stressors occur simultaneously, they may have severe impact on adaptive capabilities of Osmanabadi bucks as compared to that would occur individually. Further, the study indicated that lying time, drinking frequency, RR, RT, plasma HSP70, and PBMC HSP70 gene expression may act as ideal biological markers for assessing the impact of CS on adaptive capabilities in bucks.

  17. Ammonia stress under high environmental ammonia induces Hsp70 and Hsp90 in the mud eel, Monopterus cuchia.

    PubMed

    Hangzo, Hnunlalliani; Banerjee, Bodhisattwa; Saha, Shrabani; Saha, Nirmalendu

    2017-02-01

    The obligatory air-breathing mud eel (Monopterus cuchia) is frequently being challenged with high environmental ammonia (HEA) exposure in its natural habitats. The present study investigated the possible induction of heat shock protein 70 and 90 (hsp70, hsc70, hsp90α and hsp90β) genes and more expression of Hsp70 and Hsp90 proteins under ammonia stress in different tissues of the mud eel after exposure to HEA (50 mM NH 4 Cl) for 14 days. HEA resulted in significant accumulation of toxic ammonia in different body tissues and plasma, which was accompanied with the stimulation of oxidative stress in the mud eel as evidenced by more accumulation of malondialdehyde (MDA) and hydrogen peroxide (H 2 O 2 ) during exposure to HEA. Further, hyper-ammonia stress led to significant increase in the levels of mRNA transcripts for inducible hsp70 and hsp90α genes and also their translated proteins in different tissues probably as a consequence of induction of hsp70 and hsp90α genes in the mud eel. However, hyper-ammonia stress was neither associated with any significant alterations in the levels of mRNA transcripts for constitutive hsc70 and hsp90β genes nor their translated proteins in any of the tissues studied. More abundance of Hsp70 and Hsp90α proteins might be one of the strategies adopted by the mud eel to defend itself from the ammonia-induced cellular damages under ammonia stress. Further, this is the first report of ammonia-induced induction of hsp70 and hsp90α genes under hyper-ammonia stress in any freshwater air-breathing teleost.

  18. Unrestrained AMPylation targets cytosolic chaperones and activates the heat shock response

    PubMed Central

    Truttmann, Matthias C.; Zheng, Xu; Hanke, Leo; Damon, Jadyn R.; Grootveld, Monique; Krakowiak, Joanna; Pincus, David; Ploegh, Hidde L.

    2017-01-01

    Protein AMPylation is a conserved posttranslational modification with emerging roles in endoplasmic reticulum homeostasis. However, the range of substrates and cell biological consequences of AMPylation remain poorly defined. We expressed human and Caenorhabditis elegans AMPylation enzymes—huntingtin yeast-interacting protein E (HYPE) and filamentation-induced by cyclic AMP (FIC)-1, respectively—in Saccharomyces cerevisiae, a eukaryote that lacks endogenous protein AMPylation. Expression of HYPE and FIC-1 in yeast induced a strong cytoplasmic Hsf1-mediated heat shock response, accompanied by attenuation of protein translation, massive protein aggregation, growth arrest, and lethality. Overexpression of Ssa2, a cytosolic heat shock protein (Hsp)70, was sufficient to partially rescue growth. In human cell lines, overexpression of active HYPE similarly induced protein aggregation and the HSF1-dependent heat shock response. Excessive AMPylation also abolished HSP70-dependent influenza virus replication. Our findings suggest a mode of Hsp70 inactivation by AMPylation and point toward a role for protein AMPylation in the regulation of cellular protein homeostasis beyond the endoplasmic reticulum. PMID:28031489

  19. Effects of Thermal Stress on the mRNA Expression of SOD, HSP90, and HSP70 in the Spotted Sea Bass ( Lateolabrax maculatus)

    NASA Astrophysics Data System (ADS)

    Shin, Moon-Kyeong; Park, Ho-Ra; Yeo, Won-Jun; Han, Kyung-Nam

    2018-03-01

    The aim of this study was to elucidate the molecular mechanisms underlying the thermal stress response in the spotted sea bass ( Lateolabrax maculatus). Spotted sea basses were exposed to 4 different water temperatures (20, 22, 24, and 28°C) in increasing increments of 2°C/h from 18°C (control) for different time periods (0, 6, 12, 24, 48, 72, and 96 h). Subsequently, 3 tissues (liver, muscle, and gill) were isolated, and the levels of SOD, HSP90, and HSP70 mRNA were assessed. SOD mRNA expression was maintained at baseline levels of control fish at all water temperatures in the liver, while muscle and gill tissue showed an increase followed by a decrease over each certain time with higher water temperature. HSP90 mRNA expression increased in the liver at ≤ 24°C over time, but maintained baseline expression at 28°C. In muscle, HSP90 mRNA expression gradually increased at all water temperatures, but increased and then decreased at ≥ 24°C in gill tissue. HSP70 mRNA expression exhibited an increase and then a decrease in liver tissue at 28°C, but mainly showed similar expression patterns to HSP90 in all tissues. These results suggest the activity of a defense mechanism using SOD, HSP90, and HSP70 in the spotted sea bass upon rapid increases in water temperature, where the expression of these genes indicated differences between tissues in the extent of the defense mechanisms. Also, these results indicate that high water temperature and long-term thermal stress exposure can inhibit physiological defense mechanisms.

  20. Modulatory effects of arginine, glutamine and branched-chain amino acids on heat shock proteins, immunity and antioxidant response in exercised rats.

    PubMed

    Moura, Carolina Soares; Lollo, Pablo Christiano Barboza; Morato, Priscila Neder; Risso, Eder Muller; Amaya-Farfan, Jaime

    2017-09-20

    Heat shock proteins (HSPs) are endogenous proteins whose function is to maintain the cell's tolerance to insult, and glutamine supplementation is known to increase HSP expression during intense exercise. Since few studies have addressed the possibility that supplementation with other amino acids could have similar effects to that of glutamine, our objective was to evaluate the effects of leucine, valine, isoleucine and arginine as potential stimulators of HSPs 25, 60, 70 and 90 in rats subjected to acute exercise as a stressing factor. The immune markers, antioxidant system, blood parameters, glycogen and amino acid profile responses were also assessed. Male Wistar rats were divided into seven groups: control (rest, without gavage), vehicle (water), l-leucine, l-isoleucine, l-valine, l-arginine and l-glutamine. Except for the control, all animals were exercised and received every amino acid by oral gavage. Arginine supplementation up-regulated muscle HSP70 and HSP90 and serum HSP70, however, none of the amino acids affected the HSP25. All amino acids increased exercise-induced HSP60 expression, except for valine. Antioxidant enzymes were reduced by exercise, but both glutamine and arginine restored glutathione peroxidase, while isoleucine and valine restored superoxide dismutase. Exercise reduced monocyte, platelet, lymphocyte and erythrocyte levels, while leucine stimulated immune response, preserved the levels of the lymphocytes and increased leukocytes and maintained platelets at control levels. Plasma and muscle amino acid profiles showed specific metabolic features. The data suggest that the tissue-protecting effects of arginine could proceed by enhancing specific HSPs in the body.

  1. Thermotolerance and heat acclimation may share a common mechanism in humans

    PubMed Central

    Gillum, Trevor; Dokladny, Karol; Bedrick, Edward; Schneider, Suzanne; Moseley, Pope

    2011-01-01

    Thermotolerance and heat acclimation are key adaptation processes that have been hitherto viewed as separate phenomena. Here, we provide evidence that these processes may share a common basis, as both may potentially be governed by the heat shock response. We evaluated the effects of a heat shock response-inhibitor (quercetin; 2,000 mg/day) on established markers of thermotolerance [gastrointestinal barrier permeability, plasma TNF-α, IL-6, and IL-10 concentrations, and leukocyte heat shock protein 70 (HSP70) content]. Heat acclimation reduced body temperatures, heart rate, and physiological strain during exercise/heat stress) in male subjects (n = 8) completing a 7-day heat acclimation protocol. These same subjects completed an identical protocol under placebo supplementation (placebo). Gastrointestinal barrier permeability and TNF-α were increased on the 1st day of exercise/heat stress in quercetin; no differences in these variables were reported in placebo. Exercise HSP70 responses were increased, and plasma cytokines (IL-6, IL-10) were decreased on the 7th day of heat acclimation in placebo; with concomitant reductions in exercise body temperatures, heart rate, and physiological strain. In contrast, gastrointestinal barrier permeability remained elevated, HSP70 was not increased, and IL-6, IL-10, and exercise body temperatures were not reduced on the 7th day of heat acclimation in quercetin. While exercise heart rate and physiological strain were reduced in quercetin, this occurred later in exercise than with placebo. Consistent with the concept that thermotolerance and heat acclimation are related through the heat shock response, repeated exercise/heat stress increases cytoprotective HSP70 and reduces circulating cytokines, contributing to reductions in cellular and systemic markers of heat strain. Exercising under a heat shock response-inhibitor prevents both cellular and systemic heat adaptations. PMID:21613575

  2. The nucleotide exchange factor MGE exerts a key function in the ATP-dependent cycle of mt-Hsp70-Tim44 interaction driving mitochondrial protein import.

    PubMed Central

    Schneider, H C; Westermann, B; Neupert, W; Brunner, M

    1996-01-01

    Import of preproteins into the mitochondrial matrix is driven by the ATP-dependent interaction of mt-Hsp70 with the peripheral inner membrane import protein Tim44 and the preprotein in transit. We show that Mge1p, a co-chaperone of mt-Hsp70, plays a key role in the ATP-dependent import reaction cycle in yeast. Our data suggest a cycle in which the mt-Hsp70-Tim44 complex forms with ATP: Mge1p promotes assembly of the complex in the presence of ATP. Hydrolysis of ATP by mt-Hsp70 occurs in complex with Tim44. Mge1p is then required for the dissociation of the ADP form of mt-Hsp70 from Tim44 after release of inorganic phosphate but before release of ADP. ATP hydrolysis and complex dissociation are accompanied by tight binding of mt-Hsp70 to the preprotein in transit. Subsequently, the release of mt-Hsp70 from the polypeptide chain is triggered by Mge1p which promotes release of ADP from mt-Hsp70. Rebinding of ATP to mt-Hsp70 completes the reaction cycle. Images PMID:8918457

  3. Carboxy terminus of heat shock protein (HSP) 70-interacting protein (CHIP) inhibits HSP70 in the heart.

    PubMed

    Zhao, Bijun; Sun, Guocheng; Feng, Guanli; Duan, Weixun; Zhu, Xiaoling; Chen, Shaoyang; Hou, Lichao; Jin, Zhenxiao; Yi, Dinghua

    2012-12-01

    Heat shock protein (HSP) 70 plays a critical role in protecting the heart from various stressor-induced cell injuries; the mechanism remains to be further understood. The present study aims to elucidate the effect of a probiotics-derived protein, LGG-derived protein p75 (LGP), in alleviating the ischemia/reperfusion (I/R)-induced heart injury. We treated rats with the I/R with or without preadministration with LGP. The levels of HSP70 and carboxy terminus of HSP70-interacting protein (CHIP) in the heart tissue were assessed by enzyme-linked immunosorbent assay (ELISA) and Western blotting. The effect of CHIP on suppression of HSP70 and the effect of LGP on suppression of CHIP were investigated with an I/R rat model and a cell culture model. The results showed that I/R-induced infarction in the heart could be alleviated by pretreatment with LGP. HSP70 was detected in naïve rat heart tissue extracts. I/R treatment significantly suppressed the level of HSP70 and increased the levels of CHIP in the heart. A complex of CHIP/HSP70 was detected in heart tissue extracts. The addition of recombinant CHIP to culture inhibited HSP70 in heart cells. LGP was bound CHIP in heart cells and prevented the CHIP from binding HSP70. In summary, I/R can suppress HSP70 and increase CHIP in heart cells. CHIP can suppress HSP70 that can be prevented by pretreatment with LGP. The results imply that CHIP may be a potential target in the prevention of I/R-induced heart cell injury.

  4. A novel hsp110-related gene, apg-1, that is abundantly expressed in the testis responds to a low temperature heat shock rather than the traditional elevated temperatures.

    PubMed

    Kaneko, Y; Nishiyama, H; Nonoguchi, K; Higashitsuji, H; Kishishita, M; Fujita, J

    1997-01-31

    We isolated a novel hsp110-related gene, apg-1, from a testis cDNA library. The apg-1 transcripts were constitutively expressed in the testicular germ cells and, in some degree, most tissues examined. In a mouse TAMA26 Sertoli cell line, apg-1 transcripts were induced in 2 h by a temperature shift from 32 to 39 degrees C, but not by a shift from 37 to 42 degrees C, the traditional heat stress, or a shift from 32 to 42 degrees C. The heat response pattern of hsp110 expression was similar to that of apg-1. Although induction of a hsp70 transcript was observed in 2 h by a shift from 32 to 39 degrees C, the induction was more apparent by a shift from 37 to 42 degrees C or from 32 to 42 degrees C. Essentially similar differential response patterns were observed among these genes in NIH/3T3 fibroblasts as well. The nuclear run-on assay and the native gel mobility shift assay demonstrated that, by the 32 to 39 degrees C temperature shift, the apg-1 gene was transcriptionally activated, and heat shock factor 1 bound to the heat shock elements in the 5'-flanking region of the apg-1 gene. These results demonstrated that expressions of apg-1, hsp110, and hsp70 could be heat-induced at a temperature lower than the traditional elevated temperatures in somatic cells of both testis and nontestis origin and suggest that the mechanisms regulating the transcript levels of apg-1 and hsp110 are different from those of hsp70. Furthermore, the constitutive expression in germ cells suggests that APG-1 plays a specific role in spermatogenesis as well as in stress response.

  5. Encapsulated Hsp70 decreases endotoxin-induced production of ROS and TNFα in human phagocytes.

    PubMed

    Yurinskaya, M M; Kochetkova, O Yu; Shabarchina, L I; Antonova, O Yu; Suslikov, A V; Evgen'ev, M B; Vinokurov, M G

    2017-01-01

    Human heat shock protein Hsp70 was experimentally inserted into polyelectrolyte microcapsules. Encapsulated recombinant Hsp70 was studied in terms of its effects on neutrophil apoptosis, the production of reactive oxygen species, and the secretion of tumor necrosis factor alpha by promonocytic THP-1 cells. It was found that encapsulated Hsp70 effectively inhibits neutrophil apoptosis, unlike free exogenous protein used in solution. In THP-1 cells, encapsulated and free Hsp70 reduced LPS-induced tumor necrosis factor alpha production with a similar efficiency. Encapsulated Hsp70 reduces LPS-induced reactive oxygen species production by neutrophils in the course of its release from the microcapsules but not as much as free Hsp70. Thus, the polyelectrolyte microcapsules can be used as containers for the effective delivery of Hsp70 to neutrophils and monocytes to significantly improve the functioning of the innate immune system.

  6. The Prognostic Significance of Hsp70/Hsp90 Expression in Breast Cancer: A Systematic Review and Meta-analysis.

    PubMed

    Dimas, Dionysios Th; Perlepe, Christina D; Sergentanis, Theodoros N; Misitzis, Ioannis; Kontzoglou, Konstantinos; Patsouris, Efstratios; Kouraklis, Gregory; Psaltopoulou, Theodora; Nonni, Afroditi

    2018-03-01

    Studies have focused on heat shock protein (Hsp) inhibitors as potential treatment agents in breast cancer, with controversial results. Adopting a pathophysiological perspective, this systematic review aims to synthesize the evidence examining the association between Hsp70/Hsp90 expression and breast cancer prognosis, as well as prognosis-related clinicopathological indices. Secondarily, changes in Hsp70/Hsp90 expression in the continuum of breast neoplasia were assessed. Hsp70/Hsp90 expression was approached globally, quantified by means of immunohistochemistry, western blot or PCR. This study was performed in accordance with the PRISMA guidelines. Relevant studies were sought in PubMed, up to December 31, 2015. A total of 23 eligible studies were identified (7,288 breast cancer cases). High Hsp90 expre s sion was associated with worse overall survival (pooled RR=1.48, 95%CI=1.21-1.82) and marginally with worse disease-free survival. High Hsp70 expression also correlated with worse disease-free survival (pooled RR=1.77, 95%CI=1.71-2.82). Hsp70 intense expression correlated with ER positivity (pooled OR=3.51, 95%CI=1.31-9.40) and PR positivity (pooled OR=2.48, 95%CI=1.39-4.44). No significant associations were noted between Hsp70/Hsp90 expression and clinicopathological variables including histological grade, tumor size, nodal metastasis or patient age at diagnosis. No clear pattern emerged for Hsp70/Hsp90 expression along the breast neoplasia continuum. This systematic review and meta-analysis highlights the prognostic role of Hsp90 and Hsp70 expression in breast cancer. Further high-quality studies, with detailed reporting are needed to provide epidemiological evidence complementing the findings of ongoing clinical trials on Hsp inhibitors. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  7. Heat shock protein expression in relation to reproductive cycle in land snails: Implications for survival.

    PubMed

    Mizrahi, Tal; Heller, Joseph; Goldenberg, Shoshana; Arad, Zeev

    2011-10-01

    Land snails are subject to daily and seasonal variations in temperature and in water availability and use heat shock proteins (HSPs) as part of their survival strategy. We tested whether the reproductive cycle of land snails affects the endogenous levels of HSPs, and their involvement in the reproductive process. We examined HSP levels in the foot tissue of two Sphincterochila species, S. cariosa and S. zonata, before and after laying eggs, and analyzed the albumen gland (reproductive organ) of both species and eggs of S. cariosa for the presence and quantity of various HSPs. Our study shows reduction in the expression level of Hsp70 isoforms and Hsp90 in S. zonata foot and of Hsp74 in S. cariosa foot during the period preceding egg laying compared to the post-reproductive stage. Hsp70 isoforms and Hsp25 were highly expressed in both large albumen glands and in freshly laid eggs of S. cariosa, whereas large albumen glands of S. zonata expressed mainly Hsp70 isoforms. We conclude that a trade-off between survival and fertility is responsible for the expression level of HSPs in the foot tissue of Sphincterochila snails. Our study shows that HSPs are involved in the reproductive process. We propose that parental provision of HSPs may be part of a "be prepared" strategy of Sphincterochila snails, and that HSPs may play important roles in the survival strategy of land snails during the early life stages. Our observations also highlight the importance of the reproductive status in study of whole organisms, especially when assessing the HSP response to stress. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Heat Shock Protein 70 Modulates Influenza A Virus Polymerase Activity*

    PubMed Central

    Manzoor, Rashid; Kuroda, Kazumichi; Yoshida, Reiko; Tsuda, Yoshimi; Fujikura, Daisuke; Miyamoto, Hiroko; Kajihara, Masahiro; Kida, Hiroshi; Takada, Ayato

    2014-01-01

    The role of heat shock protein 70 (Hsp70) in virus replication has been discussed for many viruses. The known suppressive role of Hsp70 in influenza virus replication is based on studies conducted in cells with various Hsp70 expression levels. In this study, we determined the role of Hsp70 in influenza virus replication in HeLa and HEK293T cells, which express Hsp70 constitutively. Co-immunoprecipitation and immunofluorescence studies revealed that Hsp70 interacted with PB2 or PB1 monomers and PB2/PB1 heterodimer but not with the PB1/PA heterodimer or PB2/PB1/PA heterotrimer and translocated into the nucleus with PB2 monomers or PB2/PB1 heterodimers. Knocking down Hsp70 resulted in reduced virus transcription and replication activities. Reporter gene assay, immunofluorescence assay, and Western blot analysis of nuclear and cytoplasmic fractions from infected cells demonstrated that the increase in viral polymerase activity during the heat shock phase was accompanied with an increase in Hsp70 and viral polymerases levels in the nuclei, where influenza virus replication takes place, whereas a reduction in viral polymerase activity was accompanied with an increase in cytoplasmic relocation of Hsp70 along with viral polymerases. Moreover, significantly higher levels of viral genomic RNA (vRNA) were observed during the heat shock phase than during the recovery phase. Overall, for the first time, these findings suggest that Hsp70 may act as a chaperone for influenza virus polymerase, and the modulatory effect of Hsp70 appears to be a sequel of shuttling of Hsp70 between nuclear and cytoplasmic compartments. PMID:24474693

  9. Heat shock protein 70-2 (HSP70-2) is a novel therapeutic target for colorectal cancer and is associated with tumor growth.

    PubMed

    Jagadish, Nirmala; Parashar, Deepak; Gupta, Namita; Agarwal, Sumit; Suri, Vaishali; Kumar, Rajive; Suri, Vitusha; Sadasukhi, Trilok Chand; Gupta, Anju; Ansari, Abdul S; Lohiya, Nirmal Kumar; Suri, Anil

    2016-07-29

    Colorectal cancer (CRC) is the third leading cause of cancer related deaths worldwide both in men and women. Our recent studies have indicated an association of heat shock protein 70-2 (HSP70-2) with bladder urothelial carcinoma. In the present study, we investigated the association of HSP70-2 with various malignant properties of colorectal cancer cells and clinic-pathological features of CRC in clinical specimens. HSP70-2 mRNA and protein was investigated expression by RT-PCR, immunohistochemistry, immunofluorescence, flow cytometry and Western blotting in CRC clinical specimens and COLO205 and HCT116 cell lines. Plasmid-based gene silencing approach was employed to study the association of HSP70-2 with various malignant properties of COLO205 and HCT116 cells in in vitro and with tumor progression in in vivo COLO205 human xenograft mice model. HSP70-2 expression was detected in 78 % of CRC patients irrespective of various stages and grades by RT-PCR and IHC. Our analysis further revealed that HSP70-2 expression was detected in both COLO205 and HCT116 cell lines. Ablation of HSP70-2 expression resulted in reduced cellular growth, colony forming ability, migratory and invasive ability of CRC cells. In addition, ablation of HSP70-2 expression showed significant reduction in tumor growth in COLO205 human xenograft in in vivo mouse model. Collectively, our results indicate that HSP70-2 is associated with CRC clinical specimens. In addition, down regulation of HSP70-2 expression reduces cellular proliferation and tumor growth indicating that HSP70-2 may be a potential therapeutic target for CRC treatment.

  10. Identification of the divergent calmodulin binding motif in yeast Ssb1/Hsp75 protein and in other HSP70 family members.

    PubMed

    Heinen, R C; Diniz-Mendes, L; Silva, J T; Paschoalin, V M F

    2006-11-01

    Yeast soluble proteins were fractionated by calmodulin-agarose affinity chromatography and the Ca2+/calmodulin-binding proteins were analyzed by SDS-PAGE. One prominent protein of 66 kDa was excised from the gel, digested with trypsin and the masses of the resultant fragments were determined by MALDI/MS. Twenty-one of 38 monoisotopic peptide masses obtained after tryptic digestion were matched to the heat shock protein Ssb1/Hsp75, covering 37% of its sequence. Computational analysis of the primary structure of Ssb1/Hsp75 identified a unique potential amphipathic alpha-helix in its N-terminal ATPase domain with features of target regions for Ca2+/calmodulin binding. This region, which shares 89% similarity to the experimentally determined calmodulin-binding domain from mouse, Hsc70, is conserved in near half of the 113 members of the HSP70 family investigated, from yeast to plant and animals. Based on the sequence of this region, phylogenetic analysis grouped the HSP70s in three distinct branches. Two of them comprise the non-calmodulin binding Hsp70s BIP/GR78, a subfamily of eukaryotic HSP70 localized in the endoplasmic reticulum, and DnaK, a subfamily of prokaryotic HSP70. A third heterogeneous group is formed by eukaryotic cytosolic HSP70s containing the new calmodulin-binding motif and other cytosolic HSP70s whose sequences do not conform to those conserved motif, indicating that not all eukaryotic cytosolic Hsp70s are target for calmodulin regulation. Furthermore, the calmodulin-binding domain found in eukaryotic HSP70s is also the target for binding of Bag-1 - an enhancer of ADP/ATP exchange activity of Hsp70s. A model in which calmodulin displaces Bag-1 and modulates Ssb1/Hsp75 chaperone activity is discussed.

  11. A Protective Hsp70-TLR4 Pathway in Lethal Oxidant Lung Injury

    PubMed Central

    Zhang, Yi; Zhang, Xuchen; Shan, Peiying; Hunt, Clayton R.; Pandita, Tej K.; Lee, Patty J.

    2013-01-01

    Administering high levels of inspired oxygen, or hyperoxia, is commonly used as a life-sustaining measure in critically ill patients. However, prolonged exposures can exacerbate respiratory failure. Our previous study showed that toll-like receptor 4 (TLR4) confers protection against hyperoxia-induced lung injury and mortality. Hsp70 has potent cytoprotective properties and has been described as a TLR4 ligand in cell lines. We sought to elucidate the relationship between TLR4 and Hsp70 in hyperoxia-induced lung injury in vitro and in vivo and to define the signaling mechanisms involved. Wild type, TLR4−/− and Trif−/− (a TLR4 adapter protein) murine lung endothelial cells (MLEC) were exposed to hyperoxia. We found markedly elevated levels of intracellular and secreted Hsp70 from mice lung and MLEC after hyperoxia. We confirmed that Hsp70 and TLR4 co-immunoprecipitate in lung tissue and MLEC. Hsp70-mediated NFκB activation appears to depend upon TLR4. In the absence of TLR4, Hsp70 loses its protective effects in endothelial cells. Furthermore, these protective properties of Hsp70 are TLR4 adapter Trif-dependent, MyD88-independent. Hsp70-deficient mice have increased mortality during hyperoxia and lung-targeted adenoviral delivery of Hsp70 effectively rescues both Hsp70-deficient and wild type mice. Our studies are the first to define an Hsp70-TLR4-Trif cytoprotective axis in the lung and endothelial cells. This pathway is a potential therapeutic target against a range of oxidant-induced lung injuries. PMID:23817427

  12. Targeting Allosteric Control Mechanisms in Heat Shock Protein 70 (Hsp70).

    PubMed

    Li, Xiaokai; Shao, Hao; Taylor, Isabelle R; Gestwicki, Jason E

    2016-01-01

    Heat shock protein 70 (Hsp70) is a molecular chaperone that plays critical roles in protein homeostasis. Hsp70's chaperone activity is coordinated by intra-molecular interactions between its two domains, as well as inter-molecular interactions between Hsp70 and its co-chaperones. Each of these contacts represents a potential opportunity for the development of chemical inhibitors. To illustrate this concept, we review three classes of recently identified molecules that bind distinct pockets on Hsp70. Although all three compounds share the ability to interrupt core biochemical functions of Hsp70, they stabilize different conformers. Accordingly, each compound appears to interrupt a specific subset of inter- and intra-molecular interactions. Thus, an accurate definition of an Hsp70 inhibitor may require a particularly detailed understanding of the molecule's binding site and its effects on protein-protein interactions.

  13. Small interfering RNA mediated Poly (ADP-ribose) Polymerase-1 inhibition upregulates the heat shock response in a murine fibroblast cell line

    PubMed Central

    2011-01-01

    Poly (ADP-ribose) polymerase-1 (PARP-1) is a highly conserved multifunctional enzyme, and its catalytic activity is stimulated by DNA breaks. The activation of PARP-1 and subsequent depletion of nicotinamide adenine dinucleotide (NAD+) and adenosine triphosphate (ATP) contributes to significant cytotoxicity in inflammation of various etiologies. On the contrary, induction of heat shock response and production of heat shock protein 70 (HSP-70) is a cytoprotective defense mechanism in inflammation. Recent data suggests that PARP-1 modulates the expression of a number of cellular proteins at the transcriptional level. In this study, small interfering RNA (siRNA) mediated PARP-1 knockdown in murine wild-type fibroblasts augmented heat shock response as compared to untreated cells (as evaluated by quantitative analysis of HSP-70 mRNA and HSP-70 protein expression). These events were associated with increased DNA binding of the heat shock factor-1 (HSF-1), the major transcription factor of the heat shock response. Co-immunoprecipitation experiments in nuclear extracts of the wild type cells demonstrated that PARP-1directly interacted with HSF-1. These data demonstrate that, in wild type fibroblasts, PARP-1 plays a pivotal role in modulating the heat shock response both through direct interaction with HSF-1 and poly (ADP-ribosylation). PMID:21345219

  14. Non-Lethal Heat Shock of the Asian Green Mussel, Perna viridis, Promotes Hsp70 Synthesis, Induces Thermotolerance and Protects Against Vibrio Infection.

    PubMed

    Aleng, Nor Afiqah; Sung, Yeong Yik; MacRae, Thomas H; Abd Wahid, Mohd Effendy

    2015-01-01

    Mild heat stress promotes thermotolerance and protection against several different stresses in aquatic animals, consequences correlated with the accumulation of heat shock protein 70 (Hsp70). The purpose of this study was to determine if non-lethal heat shock (NLHS) of the Asian green mussel, Perna viridis, an aquatic species of commercial value, promoted the production of Hsp70 and enhanced its resistance to stresses. Initially, the LT50 and LHT for P. viridis were determined to be 42°C and 44°C, respectively, with no heat shock induced death of mussels at 40°C or less. Immunoprobing of western blots revealed augmentation of constitutive (PvHsp70-1) and inducible (PvHsp70-2) Hsp70 in tissue from adductor muscle, foot, gill and mantel of P. viridis exposed to 38°C for 30 min followed by 6 h recovery, NLHS conditions for this organism. Characterization by liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed that PvHsp70-1 and PvHsp70-2 respectively corresponded most closely to Hsp70 from P. viridis and Mytilus galloprovincialis. Priming of adult mussels with NLHS promoted thermotolerance and increased resistance to V. alginolyticus. The induction of Hsp70 in parallel with enhanced thermotolerance and improved protection against V. alginolyticus, suggests Hsp70 functions in P. viridis as a molecular chaperone and as a stimulator of the immune system.

  15. Serum Heat Shock Protein 70 Level as a Biomarker of Exceptional Longevity

    PubMed Central

    Terry, Dellara F.; Wyszynski, Diego F.; Nolan, Vikki G.; Atzmon, Gil; Schoenhofen, Emily A.; Pennington, JaeMi Y.; Andersen, Stacy L.; Wilcox, Marsha A.; Farrer, Lindsay A.; Barzilai, Nir; Baldwin, Clinton T.; Asea, Alexzander

    2006-01-01

    Heat shock proteins are highly conserved proteins that, when produced intracellularly, protect stress exposed cells. In contrast, extracellular Hsp70 has been shown to have both protective and deleterious effects. In this study, we assessed heat shock protein 70 (Hsp70) for its potential role in human longevity. Because of the importance of HSP to disease processes, cellular protection, and inflammation, we hypothesized that: (1) Hsp70 levels in centenarians and centenarian offspring are different from controls and (2) alleles in genes associated with Hsp70 explain these differences. In this cross-sectional study, we assessed serum Hsp70 levels from participants enrolled in either the New England Centenarian Study (NECS) or the Longevity Genes Project (LGP): 87 centenarians (from LGP), 93 centenarian offspring (from NECS), and 126 controls (43 from NECS, 83 from LGP). We also examined genotypic and allelic frequencies of polymorphisms in HSP70-A1A and HSP70-A1B in 347 centenarians (266 from the NECS, 81 from the LGP), 260 NECS centenarian offspring, and 238 controls (NECS: 53 spousal controls and 106 septuagenarian offspring controls; LGP: 79 spousal controls). The adjusted mean serum Hsp70 levels (ng/mL) for the NECS centenarian offspring, LGP centenarians, LGP spousal controls, and NECS controls were 1.05, 1.13, 3.05, 6.93, respectively, suggesting that a low serum Hsp70 level is associated with longevity; however, no genetic associations were found with two SNPs within two hsp70 genes. PMID:17027907

  16. Imaging Heat Shock Protein 90 (Hsp90) Activity in Hormone-Refractory Prostate Cancer

    DTIC Science & Technology

    2011-01-01

    according to the approximate relative molecular weights of their encoded proteins, including HSP10, HSP27 , HSP40, HSP60, HSP70, HSP90 and HSP110...theHSPcohort,which recognizesdenaturedproteins through the holding properties of HSP27 , HSP70 and HSP90, and subsequently refolds them with the aid of

  17. Heat shock protein 70.1 (Hsp70.1) affects neuronal cell fate by regulating lysosomal acid sphingomyelinase.

    PubMed

    Zhu, Hong; Yoshimoto, Tanihiro; Yamashima, Tetsumori

    2014-10-03

    The inducible expression of heat shock protein 70.1 (Hsp70.1) plays cytoprotective roles in its molecular chaperone function. Binding of Hsp70 to an endolysosomal phospholipid, bis(monoacylglycero)phosphate (BMP), has been recently shown to stabilize lysosomal membranes by enhancing acid sphingomyelinase (ASM) activity in cancer cells. Using the monkey experimental paradigm, we have reported that calpain-mediated cleavage of oxidized Hsp70.1 causes neurodegeneration in the hippocampal cornu ammonis 1 (CA1), whereas expression of Hsp70.1 in the motor cortex without calpain activation contributes to neuroprotection. However, the molecular mechanisms of the lysosomal destabilization/stabilization determining neuronal cell fate have not been elucidated. To elucidate whether regulation of lysosomal ASM could affect the neuronal fate, we analyzed Hsp70.1-BMP binding and ASM activity by comparing the motor cortex and the CA1. We show that Hsp70.1 being localized at the lysosomal membrane, lysosomal lipid BMP levels, and the lipid binding domain of Hsp70.1 are crucial for Hsp70.1-BMP binding. In the postischemic motor cortex, Hsp70.1 being localized at the lysosomal membrane could bind to BMP without calpain activation and decreased BMP levels, resulting in increasing ASM activity and lysosomal stability. However, in the postischemic CA1, calpain activation and a concomitant decrease in the lysosomal membrane localization of Hsp70.1 and BMP levels may diminish Hsp70.1-BMP binding, resulting in decreased ASM activity and lysosomal rupture with leakage of cathepsin B into the cytosol. A TUNEL assay revealed the differential neuronal vulnerability between the CA1 and the motor cortex. These results suggest that regulation of ASM activation in vivo by Hsp70.1-BMP affects lysosomal stability and neuronal survival or death after ischemia/reperfusion. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Roles of intramolecular and intermolecular interactions in functional regulation of the Hsp70 J-protein co-chaperone sis1

    DOE PAGES

    Yu, Hyun Young; Ziegelhoffer, Thomas; Osipiuk, Jerzy; ...

    2015-02-13

    Unlike other Hsp70 molecular chaperones, those of the eukaryotic cytosol have four residues, EEVD, at their C-termini. EEVD(Hsp70) binds adaptor proteins of the Hsp90 chaperone system and mitochondrial membrane preprotein receptors, thereby facilitating processing of Hsp70-bound clients through protein folding and translocation pathways. Among J-protein co-chaperones functioning in these pathways Sis1 is unique, as it also binds the EEVD(Hsp70) motif. However, little is known about the role of the Sis1:EEVD(Hsp70) interaction. We found that deletion of EEVD(Hsp70) abolished the ability of Sis1, but not the ubiquitous J-protein Ydj1, to partner with Hsp70 in in vitro protein refolding. Sis1 co-chaperone activitymore » with Hsp70ΔEEVD was restored upon substitution of a glutamic acid of the J-domain. Structural analysis revealed that this key glutamic acid, which is not present in Ydj1, forms a salt bridge with an arginine of the immediately adjacent glycine-rich region. Thus, restoration of Sis1 in vitro activity suggests that intramolecular interaction(s) between the J-domain and glycine-rich region controls co-chaperone activity, which is optimal only when Sis1 interacts with the EEVD(Hsp70) motif. Yet, we found that disruption of the Sis1:EEVD(Hsp70) interaction enhances the ability of Sis1 to substitute for Ydj1 in vivo. Our results are consistent with the idea that interaction of Sis1 with EEVD(Hsp70) minimizes transfer of Sis1-bound clients to Hsp70s that are primed for client transfer to folding and translocation pathways by their preassociation with EEVD-binding adaptor proteins. Finally, these interactions may be one means by which cells triage Ydj1- and Sis1-bound clients to productive and quality control pathways, respectively.« less

  19. Roles of Intramolecular and Intermolecular Interactions in Functional Regulation of the Hsp70 J-protein Co-Chaperone Sis1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Hyun Young; Ziegelhoffer, Thomas; Osipiuk, Jerzy

    2015-04-01

    Unlike other Hsp70 molecular chaperones, those of the eukaryotic cytosol have four residues, EEVD, at heir C-termini. EEVD(Hsp70) binds adaptor proteins of the Hsp90 chaperone system and mitochondrial membrane preprotein receptors, thereby facilitating processing of Hsp70-bound clients through protein folding and translocation pathways. Among J-protein co-chaperones functioning in these pathways, Sis1 is unique, as it also binds the EEVD(Hsp70) motif. However, little is known about the role of the Sis1:EEVD(Hsp70) interaction. We found that deletion of EEVD(Hsp70) abolished the ability of Sis1, but not the ubiquitous J-protein Ydj1, to partner with Hsp70 in in vitro protein refolding. Sis1 co-chaperone activitymore » with Hsp70ΔEEVD was restored upon substitution of a glutamic acid of the J-domain. Structural analysis revealed that this key glutamic acid, which is not present in Ydj1, forms a salt bridge with an arginine of the immediately adjacent glycine-rich region. Thus, restoration of Sis1 in vitro activity suggests that intramolecular interactions between the J-domain and glycine-rich region control co-chaperone activity, which is optimal only when Sis1 interacts with the EEVD(Hsp70) motif. However, we found that disruption of the Sis1:EEVD(Hsp70) interaction enhances the ability of Sis1 to substitute for Ydj1 in vivo. Our results are consistent with the idea that interaction of Sis1 with EEVD(Hsp70) minimizes transfer of Sis1-bound clients to Hsp70s that are primed for client transfer to folding and translocation pathways by their preassociation with EEVD binding adaptor proteins. These interactions may be one means by which cells triage Ydj1- and Sis1-bound clients to productive and quality control pathways, respectively.« less

  20. Roles of intramolecular and intermolecular interactions in functional regulation of the Hsp70 J-protein co-chaperone Sis1.

    PubMed

    Yu, Hyun Young; Ziegelhoffer, Thomas; Osipiuk, Jerzy; Ciesielski, Szymon J; Baranowski, Maciej; Zhou, Min; Joachimiak, Andrzej; Craig, Elizabeth A

    2015-04-10

    Unlike other Hsp70 molecular chaperones, those of the eukaryotic cytosol have four residues, EEVD, at their C-termini. EEVD(Hsp70) binds adaptor proteins of the Hsp90 chaperone system and mitochondrial membrane preprotein receptors, thereby facilitating processing of Hsp70-bound clients through protein folding and translocation pathways. Among J-protein co-chaperones functioning in these pathways, Sis1 is unique, as it also binds the EEVD(Hsp70) motif. However, little is known about the role of the Sis1:EEVD(Hsp70) interaction. We found that deletion of EEVD(Hsp70) abolished the ability of Sis1, but not the ubiquitous J-protein Ydj1, to partner with Hsp70 in in vitro protein refolding. Sis1 co-chaperone activity with Hsp70∆EEVD was restored upon substitution of a glutamic acid of the J-domain. Structural analysis revealed that this key glutamic acid, which is not present in Ydj1, forms a salt bridge with an arginine of the immediately adjacent glycine-rich region. Thus, restoration of Sis1 in vitro activity suggests that intramolecular interactions between the J-domain and glycine-rich region control co-chaperone activity, which is optimal only when Sis1 interacts with the EEVD(Hsp70) motif. However, we found that disruption of the Sis1:EEVD(Hsp70) interaction enhances the ability of Sis1 to substitute for Ydj1 in vivo. Our results are consistent with the idea that interaction of Sis1 with EEVD(Hsp70) minimizes transfer of Sis1-bound clients to Hsp70s that are primed for client transfer to folding and translocation pathways by their preassociation with EEVD binding adaptor proteins. These interactions may be one means by which cells triage Ydj1- and Sis1-bound clients to productive and quality control pathways, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Roles of Intramolecular and Intermolecular Interactions in Functional Regulation of the Hsp70 J-protein Co-chaperone Sis1

    PubMed Central

    Yu, Hyun Young; Ziegelhoffer, Thomas; Osipiuk, Jerzy; Ciesielski, Szymon J.; Baranowski, Maciej; Zhou, Min; Joachimiak, Andrzej; Craig, Elizabeth A.

    2015-01-01

    Unlike other Hsp70 molecular chaperones, those of the eukaryotic cytosol have four residues, EEVD, at their C-termini. EEVD(Hsp70) binds adaptor proteins of the Hsp90 chaperone system and mitochondrial membrane preprotein receptors, thereby facilitating processing of Hsp70-bound clients through protein folding and translocation pathways. Among J-protein co-chaperones functioning in these pathways Sis1 is unique, as it also binds the EEVD(Hsp70) motif. However, little is known about the role of the Sis1:EEVD(Hsp70) interaction. We found that deletion of EEVD(Hsp70) abolished the ability of Sis1, but not the ubiquitous J-protein Ydj1, to partner with Hsp70 in in vitro protein refolding. Sis1 co-chaperone activity with Hsp70ΔEEVD was restored upon substitution of a glutamic acid of the J-domain. Structural analysis revealed that this key glutamic acid, which is not present in Ydj1, forms a salt bridge with an arginine of the immediately adjacent glycine-rich region. Thus, restoration of Sis1 in vitro activity suggests that intramolecular interaction(s) between the J-domain and glycine-rich region controls co-chaperone activity, which is optimal only when Sis1 interacts with the EEVD(Hsp70) motif. Yet, we found that disruption of the Sis1:EEVD(Hsp70) interaction enhances the ability of Sis1 to substitute for Ydj1 in vivo. Our results are consistent with the idea that interaction of Sis1 with EEVD(Hsp70) minimizes transfer of Sis1-bound clients to Hsp70s that are primed for client transfer to folding and translocation pathways by their preassociation with EEVD-binding adaptor proteins. These interactions may be one means by which cells triage Ydj1- and Sis1-bound clients to productive and quality control pathways, respectively. PMID:25687964

  2. Alternative modes of client binding enable functional plasticity of Hsp70

    NASA Astrophysics Data System (ADS)

    Mashaghi, Alireza; Bezrukavnikov, Sergey; Minde, David P.; Wentink, Anne S.; Kityk, Roman; Zachmann-Brand, Beate; Mayer, Matthias P.; Kramer, Günter; Bukau, Bernd; Tans, Sander J.

    2016-11-01

    The Hsp70 system is a central hub of chaperone activity in all domains of life. Hsp70 performs a plethora of tasks, including folding assistance, protection against aggregation, protein trafficking, and enzyme activity regulation, and interacts with non-folded chains, as well as near-native, misfolded, and aggregated proteins. Hsp70 is thought to achieve its many physiological roles by binding peptide segments that extend from these different protein conformers within a groove that can be covered by an ATP-driven helical lid. However, it has been difficult to test directly how Hsp70 interacts with protein substrates in different stages of folding and how it affects their structure. Moreover, recent indications of diverse lid conformations in Hsp70-substrate complexes raise the possibility of additional interaction mechanisms. Addressing these issues is technically challenging, given the conformational dynamics of both chaperone and client, the transient nature of their interaction, and the involvement of co-chaperones and the ATP hydrolysis cycle. Here, using optical tweezers, we show that the bacterial Hsp70 homologue (DnaK) binds and stabilizes not only extended peptide segments, but also partially folded and near-native protein structures. The Hsp70 lid and groove act synergistically when stabilizing folded structures: stabilization is abolished when the lid is truncated and less efficient when the groove is mutated. The diversity of binding modes has important consequences: Hsp70 can both stabilize and destabilize folded structures, in a nucleotide-regulated manner; like Hsp90 and GroEL, Hsp70 can affect the late stages of protein folding; and Hsp70 can suppress aggregation by protecting partially folded structures as well as unfolded protein chains. Overall, these findings in the DnaK system indicate an extension of the Hsp70 canonical model that potentially affects a wide range of physiological roles of the Hsp70 system.

  3. Larvae of related Diptera species from thermally contrasting habitats exhibit continuous up-regulation of heat shock proteins and high thermotolerance.

    PubMed

    Garbuz, David G; Zatsepina, Olga G; Przhiboro, Andrey A; Yushenova, Irina; Guzhova, Irina V; Evgen'ev, Michael B

    2008-11-01

    A population of Stratiomys japonica, a species belonging to the family Stratiomyidae (Diptera), common name 'soldier flies', occurs in a hot volcanic spring, which is apparently among the most inhospitable environments for animals because of chemical and thermal conditions. Larvae of this species, which naturally often experience temperatures more than 40 degrees C, have constitutively high concentrations of the normally inducible heat-shock protein Hsp70, but very low level of corresponding mRNA. Larvae of three other species of the same family, Stratiomys singularior, Nemotelus bipunctatus and Oxycera pardalina, are confined to different type semi-aquatic habitats with contrasting thermal regime. However, all of them shared the same pattern of Hsp70 expression. Interestingly, heat-shock treatment of S. japonica larvae activates heat-shock factor and significantly induces Hsp70 synthesis, whereas larvae of O. pardalina, a species from constant cold environment, produce significantly less Hsp70 in response to heat shock. Adults of the four species also exhibit lower, but detectable levels of Hsp70 without heat shock. Larvae of all species studied have very high tolerance to temperature stress in comparison with other Diptera species investigated, probably representing an inherent adaptive feature of all Stratiomyidae enabling successful colonization of highly variable and extreme habitats.

  4. GENOMIC INSTABILITY AND ENHANCED RADIOSENSITIVITY IN HSP70.1- AND HSP70.3-DEFICIENT MICE

    EPA Science Inventory



    Abstract

    Heat shock proteins (HSPs) are highly conserved among all organisms from prokaryotes to eukaryotes. In mice, the HSP genes Hsp70.1 and Hsp70.3 are induced by both endogenous and exogenous stressors, such as heat and toxicants. In order to determine wheth...

  5. Influence of encapsulated heat shock protein HSP70 on the basic functional properties of blood phagocytes.

    PubMed

    Kochetkova, O Yu; Yurinskaya, M M; Evgen'ev, M B; Zatsepina, O G; Shabarchina, L I; Suslikov, A V; Tikhonenko, S A; Vinokurov, M G

    2015-11-01

    Microencapsulated heat shock proteins HSP 70 were studied in terms of their effects on neutrophil apoptosis, production of reactive oxygen species, and secretion of TNF-α by human neurtrophils and monocytes. Encapsulated HSP70 inhibited neutrophil apoptosis by 65% as compared to the effect of nonencapsulated HSP70; TNF-α production by the promonocytic THP-1 cells was similarly inhibited by the non-encapsulated and encapsulated HSP70. Thus, the polyelectrolyte micromolecules can be used as containers for effective delivery of HSP70 up to neutrophils and monocytes to correct the innate immunity functions.

  6. Investigating hsp Gene Expression in Liver of Channa striatus under Heat Stress for Understanding the Upper Thermal Acclimation

    PubMed Central

    Purohit, Gopal Krishna; Mahanty, Arabinda; Suar, Mrutyunjay; Sharma, Anil Prakash; Mohanty, Bimal Prasanna

    2014-01-01

    Changes in hsp gene expression profiles in murrel Channa striatus experimentally exposed to temperature stress (36°C) for 4, 15, and 30 days were investigated; fish collected from aquaculture ponds and maintained in laboratory at the pond temperature (25 ± 1°C) served as control. Channa collected from a hot spring runoff (36°C) was included in the study to examine the hsp profiles beyond 30 days of exposure. Gene expression analyses of a battery of hsps in liver tissues were carried out by quantitative RT-PCR and protein expressions were analyzed by immunoblotting. hsps could be grouped into three clusters based on similarity in response to heat stress: hsp70, hsp78, and hsp60, whose transcript level continued to increase with duration of exposure; hsp90 and hsp110 that increased to a much higher level and then decreased; hsp27 and hsp47 that did not significantly vary as compared to control. The results suggest that Hsp70, Hsp78, and Hsp60 are involved in thermal acclimation and long term survival at high temperature. Fish living in the hot spring runoff appears to continuously express hsps that can be approximated by long term induction of hsps in farmed fish if temperature of their environment is raised to 36°C. PMID:25003111

  7. Investigating hsp gene expression in liver of Channa striatus under heat stress for understanding the upper thermal acclimation.

    PubMed

    Purohit, Gopal Krishna; Mahanty, Arabinda; Suar, Mrutyunjay; Sharma, Anil Prakash; Mohanty, Bimal Prasanna; Mohanty, Sasmita

    2014-01-01

    Changes in hsp gene expression profiles in murrel Channa striatus experimentally exposed to temperature stress (36°C) for 4, 15, and 30 days were investigated; fish collected from aquaculture ponds and maintained in laboratory at the pond temperature (25 ± 1°C) served as control. Channa collected from a hot spring runoff (36°C) was included in the study to examine the hsp profiles beyond 30 days of exposure. Gene expression analyses of a battery of hsps in liver tissues were carried out by quantitative RT-PCR and protein expressions were analyzed by immunoblotting. hsps could be grouped into three clusters based on similarity in response to heat stress: hsp70, hsp78, and hsp60, whose transcript level continued to increase with duration of exposure; hsp90 and hsp110 that increased to a much higher level and then decreased; hsp27 and hsp47 that did not significantly vary as compared to control. The results suggest that Hsp70, Hsp78, and Hsp60 are involved in thermal acclimation and long term survival at high temperature. Fish living in the hot spring runoff appears to continuously express hsps that can be approximated by long term induction of hsps in farmed fish if temperature of their environment is raised to 36°C.

  8. Investigating the underlying mechanism of Saccharomyces cerevisiae in response to ethanol stress employing RNA-seq analysis.

    PubMed

    Li, Ruoyun; Xiong, Guotong; Yuan, Shukun; Wu, Zufang; Miao, Yingjie; Weng, Peifang

    2017-11-03

    Saccharomyces cerevisiae has been widely used for wine fermentation and bio-fuels production. A S. cerevisiae strain Sc131 isolated from tropical fruit shows good fermentation properties and ethanol tolerance, exhibiting significant potential in Chinese bayberry wine fermentation. In this study, RNA-sequence and RT-qPCR was used to investigate the transcriptome profile of Sc131 in response to ethanol stress. Scanning Electron Microscopy were carried out to observe surface morphology of yeast cells. Totally, 937 genes were identified differential expressed, including 587 up-regulated and 350 down-regulated genes, after 4-h ethanol stress (10% v/v). Transcriptomic analysis revealed that, most genes involved in regulating filamentous growth or pseudohyphal growth were significantly up-regulated in response to ethanol stress. The complex protein quality control machineries, Hsp90/Hsp70 and Hsp104/Hsp70/Hsp40 based chaperone system combining with ubiquitin-proteasome proteolytic pathway were both activated to recognize and degrade misfolding proteins. Genes related to biosynthesis and metabolism of two well-known stress-responsive substances trehalose and ergosterol were generally up-regulated, while genes associated with amino acids biosynthesis and metabolism processes were differentially expressed. Moreover, thiamine was also important in response to ethanol stress. This research may promote the potential applications of Sc131 in the fermentation of Chinese bayberry wine.

  9. Thermoprotection of synaptic transmission in a Drosophila heat shock factor mutant is accompanied by increased expression of Hsp83 and DnaJ-1.

    PubMed

    Neal, Scott J; Karunanithi, Shanker; Best, Adrienne; So, Anthony Ken-Choy; Tanguay, Robert M; Atwood, Harold L; Westwood, J Timothy

    2006-05-16

    In Drosophila larvae, acquired synaptic thermotolerance after heat shock has previously been shown to correlate with the induction of heat shock proteins (Hsps) including HSP70. We tested the hypothesis that synaptic thermotolerance would be significantly diminished in a temperature-sensitive strain (Drosophila heat shock factor mutant hsf4), which has been reported not to be able to produce inducible Hsps in response to heat shock. Contrary to our hypothesis, considerable thermoprotection was still observed at hsf4 larval synapses after heat shock. To investigate the cause of this thermoprotection, we conducted DNA microarray experiments to identify heat-induced transcript changes in these organisms. Transcripts of the hsp83, dnaJ-1 (hsp40), and glutathione-S-transferase gstE1 genes were significantly upregulated in hsf4 larvae after heat shock. In addition, increases in the levels of Hsp83 and DnaJ-1 proteins but not in the inducible form of Hsp70 were detected by Western blot analysis. The mode of heat shock administration differentially affected the relative transcript and translational changes for these chaperones. These results indicate that the compensatory upregulation of constitutively expressed Hsps, in the absence of the synthesis of the major inducible Hsp, Hsp70, could still provide substantial thermoprotection to both synapses and the whole organism.

  10. A Cytosolic Relay of Heat Shock Proteins HSP70-1A and HSP90β Monitors the Folding Trajectory of the Serotonin Transporter*

    PubMed Central

    El-Kasaby, Ali; Koban, Florian; Sitte, Harald H.; Freissmuth, Michael; Sucic, Sonja

    2014-01-01

    Mutations in the C terminus of the serotonin transporter (SERT) disrupt folding and export from the endoplasmic reticulum. Here we examined the hypothesis that a cytosolic heat shock protein relay was recruited to the C terminus to assist folding of SERT. This conjecture was verified by the following observations. (i) The proximal portion of the SERT C terminus conforms to a canonical binding site for DnaK/heat shock protein of 70 kDa (HSP70). A peptide covering this segment stimulated ATPase activity of purified HSP70-1A. (ii) A GST fusion protein comprising the C terminus of SERT pulled down HSP70-1A. The interaction between HSP70-1A and SERT was visualized in live cells by Förster resonance energy transfer: it was restricted to endoplasmic reticulum-resident transporters and enhanced by an inhibitor that traps HSP70-1A in its closed state. (iv) Co-immunoprecipitation confirmed complex formation of SERT with HSP70-1A and HSP90β. Consistent with an HSP relay, co-chaperones (e.g. HSC70-HSP90-organizing protein) were co-immunoprecipitated with the stalled mutants SERT-R607A/I608A and SERT-P601A/G602A. (v) Depletion of HSP90β by siRNA or its inhibition increased the cell surface expression of wild type SERT and SERT-F604Q. In contrast, SERT-R607A/I608A and SERT-P601A/G602A were only rendered susceptible to inhibition of HSP70 and HSP90 by concomitant pharmacochaperoning with noribogaine. (vi) In JAR cells, inhibition of HSP90 also increased the levels of SERT, indicating that endogenously expressed transporter was also susceptible to control by HSP90β. These findings support the concept that the folding trajectory of SERT is sampled by a cytoplasmic chaperone relay. PMID:25202009

  11. A novel electrochemical immunosensor based on PG for early screening of depression markers-heat shock protein 70.

    PubMed

    Sun, Bolu; Cai, Jinying; Li, Wuyan; Gou, Xiaodan; Gou, Yuqiang; Li, Dai; Hu, Fangdi

    2018-07-15

    In this study, a novel electrochemical immunosensor for early screening of depression markers-heat shock protein 70 (HSP70) was successfully developed based on the porous graphene (PG) with huge specific surface area and excellent structure. Benefiting from the strong adsorption and good bioactivity of PG which was initially prepared via a simple pyrolysis process, a variety of heat shock protein70 (HSP70) can be firmly loaded on the PG to construct the basic electrode (HSP70/PG/GCE),which was characterized by the cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), respectively. Due to the HSP70 fixed on the surface of basic electrode and the HSP70 in the samples can competitively combine with the horseradish peroxidase labeled human HSP 70 antibody (HRP-Strept-Biotin-Ab). As a result, it presented a negative correlation between the concentration of HSP70 in samples and the detection signal of the proposed electrochemical immunosensor (HRP-Strept-Biotin-Ab-HSP70/PG/GCE) in the test liquid. The application of PG with excellent electrical conductivity in construction of immunosensor remarkably improved the sensitivity of the immunosensor for detection of HSP70. The proposed immunosensor demonstrated a wide linear range of 0.0448 ~ 100 ng/mL with a low detection limit of 0.02 ng/mL at 3σ. Moreover, the proposed immunosensor could be applied for the sensitive and efficient detection of HSP70 in real samples with good precision, acceptable stability, reproducibility and satisfactory results. Therefore, the HSP70 immunosensor provides a novel and convenient method for early clinical screening of depression markers-heat shock protein 70. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. The study of the relationship between aberrant expression of hot shock protein 70 (HSP70) and spontaneous abortion.

    PubMed

    Peng, Y-B; Liu, H; Huang, S-H; Lai, H; Zhou, Q; Luo, Y; Zhang, Z-Y; Xi, B-R; Ouyang, X

    2017-02-01

    The present study is aimed to explore the relationship between aberrant expression of heat shock protein 70 (HSP) and spontaneous abortion. 50 patients with spontaneous abortion and 50 patients with induced abortion were continuously selected based on the nearest matching principle, and the proportion of age and gestational age was 1:1. The decidual tissues were obtained, and the cell apoptosis was determined by TUNEL assay. Further, the expression of HSP70 was assayed by immune-histochemical staining, and the expression of HSP70 mRNA was detected by the RT-PCR approach. Apoptosis rate, HSP70 expression and HSP70 mRNA expression in the observation group were significantly higher than the control group. HSP70 might induce apoptosis so as to cause spontaneous abortion.

  13. HSP70 peptidembearing and peptide-negative preparations act as chaperokines.

    PubMed

    Asea, A; Kabingu, E; Stevenson, M A; Calderwood, S K

    2000-11-01

    We recently elucidated a novel function for the 70-kDa heat shock protein (HSP70) as a chaperone and a cytokine, a chaperokine in human monocytes. Here we show that peptide-bearing and peptide-negative HSP70 preparations isolated from EMT6 mammary adenocarcinoma cells (EMT6-HSP70) act as chaperokines when admixed with murine splenocytes. EMT6-HSP70 bound with high affinity to the surface of splenocytes recovered from naive BALB/c mice. The [Ca2+]i inhibitor BAPTA dose dependently inhibited HSP70- but not LPS-induced NF-kappaB activity and subsequent augmentation of proinflammatory cytokine TNF-alpha, IL-1beta, and IL-6 production. Taken together, these results suggest that presence of peptide in the HSP70 preparation is not required for spontaneous activation of cells of the innate immune system.

  14. HSP70 peptide-bearing and peptide-negative preparations act as chaperokines

    PubMed Central

    Asea, Alexzander; Kabingu, Edith; Stevenson, Mary Ann; Calderwood, Stuart K.

    2000-01-01

    We recently elucidated a novel function for the 70-kDa heat shock protein (HSP70) as a chaperone and a cytokine, a chaperokine in human monocytes. Here we show that peptide-bearing and peptide-negative HSP70 preparations isolated from EMT6 mammary adenocarcinoma cells (EMT6-HSP70) act as chaperokines when admixed with murine splenocytes. EMT6-HSP70 bound with high affinity to the surface of splenocytes recovered from naive BALB/c mice. The [Ca2+]i inhibitor BAPTA dose dependently inhibited HSP70- but not LPS-induced NF-κB activity and subsequent augmentation of proinflammatory cytokine TNF-α, IL-1β, and IL-6 production. Taken together, these results suggest that presence of peptide in the HSP70 preparation is not required for spontaneous activation of cells of the innate immune system. PMID:11189447

  15. Sequential folding of UmuC by the Hsp70 and Hsp60 chaperone complexes of Escherichia coli.

    PubMed

    Petit, M A; Bedale, W; Osipiuk, J; Lu, C; Rajagopalan, M; McInerney, P; Goodman, M F; Echols, H

    1994-09-23

    Replication-blocking lesions generate a signal in Escherichia coli that leads to the induction of the multigene SOS response. Among the SOS-induced genes are umuD and umuC, whose products are necessary for the increased mutation rate in induced bacteria. The mutations are likely to result from replication across the DNA lesion, and such a bypass event has been reconstituted in vitro (Rajagopalan, M., L, C., Woodgate, R., O'Donnel, M., Goodman, M. F., Echols, H. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 10777-10781). In this work, we show that the chaperone proteins promote the proper folding of UmuC protein in vitro. We treated purified and inactive UmuC with Hsp70 and Hsp60. After Hsp70 treatment, the DNA binding activity of UmuC was recovered, but the ability to promote replication across DNA lesions was not. However, lesion bypass activity was recovered upon further treatment with Hsp60. The biological significance of such a folding pathway for UmuC protein is strengthened by in vivo evidence for a role of DnaK in UV-induced mutagenesis.

  16. Targeting Allosteric Control Mechanisms in Heat Shock Protein 70 (Hsp70)

    PubMed Central

    Li, Xiaokai; Shao, Hao; Taylor, Isabelle R.; Gestwicki, Jason E.

    2017-01-01

    Heat shock protein 70 (Hsp70) is a molecular chaperone that plays critical roles in protein homeostasis. Hsp70’s chaperone activity is coordinated by intra-molecular interactions between its two domains, as well as inter-molecular interactions between Hsp70 and its co-chaperones. Each of these contacts represents a potential opportunity for the development of chemical inhibitors. To illustrate this concept, we review three classes of recently identified molecules that bind distinct pockets on Hsp70. Although all three compounds share the ability to interrupt core biochemical functions of Hsp70, they stabilize different conformers. Accordingly, each compound appears to interrupt a specific subset of inter- and intra-molecular interactions. Thus, an accurate definition of an Hsp70 inhibitor may require a particularly detailed understanding of the molecule’s binding site and its effects on protein-protein interactions. PMID:27072701

  17. [Anti-heat shock protein 70 (anti - Hsp 70) antibodies in alcohol use disorder patients].

    PubMed

    Michalak, Sławomir; Piorunek, Tomasz; Lenart-Jankowska, Danuta; Osztynowicz, Krystyna; Kozubski, Wojciech

    2012-01-01

    The expression of the most important chaperone protein - Hsp70 and autoimmunity directed against it is a risk factor of cardiovascular diseases, increased in subjects with alcohol use disorder (AUD). The aim of the study was to evaluate the level of anti-Hsp 70 protein antibodies (anti-Hsp 70) in sera of AUD patients during abstinence period. Material and methods. The study included 54 subjects with AUD diagnosed basing on DSM IV criteria. In the studied group clinimetric evaluation was performed, plasma lipids, basic transketolase activity in erythrocytes (TK), thiamine pyrophosphate (TPP) activation of transketolase and the level of anti-Hsp 70 antibodies were evaluated as well. Results. In AUD subjects anti-Hsp 70 level was decreased during abstinence period. During first month of abstinency it correlated negatively with total cholesterol concentration (rS=-0.8857, p=0.0188) and the percentage of TPP stimulation (rS=-0.5960, p<0.05), and during 6 months of abstinence with HDL cholesterol (rS=-0.6848, p=0.0289). After 1 year of abstinence anti-Hsp 70 correlated positively with basic TK activity (rS=0.9550, p=0.0008). Sex is an independent factor influencing anti-Hsp 70 level in AUD subjects (B=60.9469, p=0.0435). In multiple regression model including results of clinimetric evaluation and its effect on the level of anti-Hsp 70 antibodies in AUD patients during 1 month of abstinency anti-Hsp 70 correlated with TWEAK scale score (BETA=-1.4543, p=0.0144) and AUDIT score (BETA-=1.2255, p=0.0224). In 2-6 months of abstinency anti-Hsp 70 correlated with TWEAK score (BETA=1.1110, p=0.0418). After 1 year of abstinency anti-Hsp 70 correlated with AUDIT score (BETA=-1.2161, p=0.0210). Conclusion. The autoimmune reaction against Hsp 70 is decreased during abstinency in AUD patients. Its relation with plasma lipids and thiamine deficiency may lead to increased risk of cardiovascular disorders. TWEAK and AUDIT scoring seem to be most useful for clinimetric evaluation in the context of the role of anti-Hsp 70 antibodies.

  18. Urine heat shock protein 70 levels as a marker of urinary tract infection in children.

    PubMed

    Yilmaz, Alev; Yildirim, Zeynep Yuruk; Emre, Sevinc; Gedikbasi, Asuman; Yildirim, Tarik; Dirican, Ahmet; Ucar, Evren Onay

    2016-09-01

    Heat shock proteins (HSPs) are a multi-family group of proteins which are upregulated by the cell in response to exposure to hazardous (stress) factors, including infectious agents, to prevent changes in protein structure. The aim of our study was to assess whether urine levels of the 70-kDa family of HSPs (HSP70s) increase in children with urinary tract infection (UTI) and to determine the optimal urine (u) HSP70 cut-off level to predict UTI in children. Forty patients with symptomatic UTI (UTI group), 30 healthy children (control group), 21 asymptomatic patients with proven bacterial contamination in their urine culture (contamination group) and 30 patients with fever caused by other infections (non-UTI infection group) were enrolled in the study. Random urine samples were obtained for measurement of HSP70 and creatinine (Cr) from all groups. Urine was collected prior to the treatment of UTI at the time of presentation and after treatment. Urine HSP70 levels were measured by enzyme-linked immunosorbent analysis. A dimercaptosuccinic acid (DMSA) scan was performed at 5-7 days after presentation in UTI group to distinguish patients with acute pyelonephritis from those with cystitis; based on this scan, no patients had acute pyelonephritis. Patients were classified with pyelonephritis in the presence of all of the following signs: axillary fever of ≥39 °C, leukocytosis and positivity for C-reactive protein. The mean urine HSP70:Cr ratio (uHSP70/Cr) prior to treatment was significantly higher in the UTI group (449.86 ± 194.33 pg/mg) than in the control, contamination and non-UTI infection groups (39.93 ± 47.61, 32.43 ± 9.09 and 45.14 ± 19.76, respectively; p = 0.0001). Using a cut-off of 158 pg/mg uHSP70/Cr for the prediction of UTI, the sensitivity and specificity of the assay were 100 and 100 %, respectively (area under the time-concentration curve = 1). The uHSP70/Cr was highest in the patients with clinical pyelonephritis (p = 0.001). Mean uHSP70/Cr after treatment decreased to 60.68 ± 51.11 pg/mg in UTI group (p = 0 .0001). Our findings suggest that elevated uHSP70/Cr may be a useful biomarker for the prediction of UTI in children, with a high sensitivity and specificity, and that they may help to distinguish UTI from other infections as well as bacterial contamination of the urine.

  19. The expression and correlation of Hsp 70 and Hsp 27 in serous middle ear effusion fluids of pediatric patients-a preliminary study.

    PubMed

    Min, Hyun Jin; Choe, Ji Won; Chang, Moon Young; Kim, Kyung Soo; Lee, Sei Young; Mun, Seog-Kyun

    2017-10-01

    Several cytokines and innate immune-associated molecules are present in middle ear effusions, but damage-associated molecular patterns (DAMPs) in middle ear effusion have not been studied. Therefore, we evaluated the role of heat shock proteins (Hsps) in the development of otitis media with effusion (OME). Serous middle ear effusions from 22 pediatric patients who were diagnosed with OME and underwent ventilation tube insertion from June 2015 to March 2017 were evaluated in our study. The levels of Hsp 90, 70, 27, IL-8, and TNF-α in effusion fluids were evaluated by enzyme-linked immunosorbent assays. The associations between the levels of these molecules and the degree of tympanic membrane inflammation were statistically evaluated. Finally, the relationships among these molecules were also evaluated. Hsp 70 and Hsp 27 were detected in all middle ear effusions, but Hsp 90 was detected in only five effusion fluid samples. IL-8 was also detected in all middle ear effusions, but TNF-α was detected in only four effusion fluid samples. When we compared the degree of tympanic membrane inflammation with the levels of Hsp 70, Hsp 27, and IL-8, which were detected in all effusion fluids, we could not find statistical significance. However, Hsp 70, Hsp 27, and IL-8 were significantly associated with each other (p < 0.05). Hsp 70 and Hsp 27 were expressed in middle ear effusions. Furthermore, the levels of Hsp 70 and Hsp 27 were positively correlated with each other, and were also positively associated with the neutrophil chemoattractant, IL-8. Our findings suggested that Hsp 70 and Hsp 27 might be involved in the pathophysiology of pediatric OME. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Heat shock protein 70-2 and tumor necrosis factor-α gene polymorphisms in Chinese children with Henoch-Schönlein purpura.

    PubMed

    Ding, Gui-Xia; Wang, Chen-Hu; Che, Ruo-Chen; Guan, Wan-Zhen; Yuan, Yang-Gang; Su, Min; Zhang, Ai-Hua; Huang, Song-Ming

    2016-02-01

    Henoch-Schönlein purpura (HSP) or IgA-associated vasculitis is related to immune disturbances. Polymorphisms of the heat shock protein 70-2 gene (HSP70-2) and the tumor necrosis factor-a gene (TNF-α) are known to be associated with immune diseases. The purpose of this study was to investigate the likely association of HSP70-2 (+1267A/G) and TNF-α (+308A/G) gene polymorphisms with HSP in children. The polymerase chain reaction restriction fragment length polymorphism method was used to detect the HSP70-2 and TNF-α polymorphisms in 205 cases of children with HSP and 53 controls; and the association of these polymorphisms with HSP and HSP nephritis (HSPN) was analyzed. The G/G genotypic frequencies at the +1267A/G position of HSP70-2 in the HSP group (22.9%) were significantly higher than those in the healthy control group (9.4%) (χ(2)=4.764, P<0.05). The frequencies of the A/A, A/G and G/G genotypes of HSP70-2 in patients in the nephritis-free group and the HSPN group showed no statistically significant difference. The A/A genotype frequency at the +308G/A position of TNF-α in the HSP group was 8.3%, which was higher than that in the control group (χ(2)=6.447, P<0.05). The A allele frequency of TNF-α in the HSP group was higher than that in the control group, with a statistically significant difference (χ(2)=7.241, P<0.05). The HSP70-2 (+1267A/G) and TNF-α (+308G/A) gene polymorphisms were associated with HSP in children. The G/G homozygosity of HSP70-2 and the A/A homozygosity of TNF-α may be genetic predisposing factors for HSP.

  1. Cloning of HSP90, expression and localization of HSP70/90 in different tissues including lactating/non-lactating yak (Bos grunniens) breast tissue.

    PubMed

    Liu, Penggang; Yu, Sijiu; Cui, Yan; He, Junfeng; Yu, Chuan; Wen, Zexing; Pan, Yangyang; Yang, Kun; Song, Liangli; Yang, Xue

    2017-01-01

    The aim of this study is to investigate the expression and localization of HSP70/90 in different tissues and explore the regulation effects of HSP70/90 at lactation period of female yaks. HSP90 mRNA was cloned from the heart samples of female yaks, Quantitative real-time (qRT-PCR), Western blotting (WB), immunohistochemistry and immunofluorescence assays were utilized to analyze the expressions of HSP70/90 mRNA and protein in different tissues. Sequence analysis showed that HSP90 is a conserved molecular chaperone of female yaks. The qRT-PCR, WB results showed that the expressions of HSP70/90 mRNA and protein were significantly different in different tissues, and 3-fold higher expression during the lactation period than the non-lactation period of breast tissue (P < 0.01). Immunohistochemistry and immunofluorescence assays results showed that HSP70/90 were located in the cardiac muscle cells, cerebellar medulla, theca cells lining at the reproductive system, and the mammary epithelia of the breasts. In addition, the expression level of HSP70 was higher than those of HSP90 in all examined tissues. Therefore, our results strongly suggest that the expression and localization of HSP70/90 could provide significant evidence to further research in tissue specific expression, and lactation function of female yaks.

  2. Antioxidant defence and stress protein induction following heat stress in the Mediterranean snail Xeropicta derbentina.

    PubMed

    Troschinski, Sandra; Dieterich, Andreas; Krais, Stefanie; Triebskorn, Rita; Köhler, Heinz-R

    2014-12-15

    The Mediterranean snail Xeropicta derbentina (Pulmonata, Hygromiidae), being highly abundant in Southern France, has the need for efficient physiological adaptations to desiccation and over-heating posed by dry and hot environmental conditions. As a consequence of heat, oxidative stress manifests in these organisms, which, in turn, leads to the formation of reactive oxygen species (ROS). In this study, we focused on adaptations at the biochemical level by investigation of antioxidant defences and heat shock protein 70 (Hsp70) induction, both essential mechanisms of the heat stress response. We exposed snails to elevated temperature (25, 38, 40, 43 and 45°C) in the laboratory and measured the activity of the antioxidant enzymes catalase (CAT) and glutathione peroxidase (GPx), determined the Hsp70 level and quantified lipid peroxidation. In general, we found a high constitutive level of CAT activity in all treatments, which may be interpreted as a permanent protection against ROS, i.e. hydrogen peroxide. CAT and GPx showed temperature-dependent activity: CAT activity was significantly increased in response to high temperatures (43 and 45°C), whereas GPx exhibited a significantly increased activity at 40°C, probably in response to high levels of lipid peroxides that occurred in the 38°C treatment. Hsp70 showed a maximum induction at 40°C, followed by a decrease at higher temperatures. Our results reveal that X. derbentina possesses a set of efficient mechanisms to cope with the damaging effects of heat. Furthermore, we demonstrated that, besides the well-documented Hsp70 stress response, antioxidant defence plays a crucial role in the snails' competence to survive extreme temperatures. © 2014. Published by The Company of Biologists Ltd.

  3. Nuclear Heat Shock Response and Novel Nuclear Domain 10 Reorganization in Respiratory Syncytial Virus-Infected A549 Cells Identified by High-Resolution Two-Dimensional Gel Electrophoresis

    PubMed Central

    Brasier, Allan R.; Spratt, Heidi; Wu, Zheng; Boldogh, Istvan; Zhang, Yuhong; Garofalo, Roberto P.; Casola, Antonella; Pashmi, Jawad; Haag, Anthony; Luxon, Bruce; Kurosky, Alexander

    2004-01-01

    The pneumovirus respiratory syncytial virus (RSV) is a leading cause of epidemic respiratory tract infection. Upon entry, RSV replicates in the epithelial cytoplasm, initiating compensatory changes in cellular gene expression. In this study, we have investigated RSV-induced changes in the nuclear proteome of A549 alveolar type II-like epithelial cells by high-resolution two-dimensional gel electrophoresis (2DE). Replicate 2D gels from uninfected and RSV-infected nuclei were compared for changes in protein expression. We identified 24 different proteins by peptide mass fingerprinting after matrix-assisted laser desorption ionization-time of flight mass spectrometry (MS), whose average normalized spot intensity was statistically significant and differed by ±2-fold. Notable among the proteins identified were the cytoskeletal cytokeratins, RNA helicases, oxidant-antioxidant enzymes, the TAR DNA binding protein (a protein that associates with nuclear domain 10 [ND10] structures), and heat shock protein 70- and 60-kDa isoforms (Hsp70 and Hsp60, respectively). The identification of Hsp70 was also validated by liquid chromatography quadropole-TOF tandem MS (LC-MS/MS). Separate experiments using immunofluorescence microscopy revealed that RSV induced cytoplasmic Hsp70 aggregation and nuclear accumulation. Data mining of a genomic database showed that RSV replication induced coordinate changes in Hsp family proteins, including the 70, 70-2, 90, 40, and 40-3 isoforms. Because the TAR DNA binding protein associates with ND10s, we examined the effect of RSV infection on ND10 organization. RSV induced a striking dissolution of ND10 structures with redistribution of the component promyelocytic leukemia (PML) and speckled 100-kDa (Sp100) proteins into the cytoplasm, as well as inducing their synthesis. Our findings suggest that cytoplasmic RSV replication induces a nuclear heat shock response, causes ND10 disruption, and redistributes PML and Sp100 to the cytoplasm. Thus, a high-resolution proteomics approach, combined with immunofluorescence localization and coupled with genomic response data, yielded unexpected novel insights into compensatory nuclear responses to RSV infection. PMID:15479789

  4. Necroptotic cancer cells-mimicry nanovaccine boosts anti-tumor immunity with tailored immune-stimulatory modality.

    PubMed

    Kang, Ting; Huang, Yukun; Zhu, Qianqian; Cheng, Hao; Pei, Yuanyuan; Feng, Jingxian; Xu, Minjun; Jiang, Gan; Song, Qingxiang; Jiang, Tianze; Chen, Hongzhuan; Gao, Xiaoling; Chen, Jun

    2018-05-01

    Recent breakthroughs in cancer immunotherapy offer new paradigm-shifting therapeutic options for combating cancer. Personalized therapeutic anti-cancer vaccines training T cells to directly fight against tumor cells endogenously offer tremendous benefits in working synergistically with immune checkpoint inhibitors. Biomimetic nanotechnology offers a versatile platform to boost anticancer immunity by efficiently co-delivering optimized immunogenic antigen materials and adjuvants to antigen presenting cells (APC). Necroptotic tumor cells can release danger associated molecule patterns (DAMPs) like heat shock proteins, being more immunogenic than naïve tumor cells. Here, nano-size "artificial necroptotic cancer cell" (αHSP70p-CM-CaP) composing of phospholipid bilayer and a phosphate calcium core was designed as a flexible vaccine platform for co-delivering cancer membrane proteins (CM), DAMPs signal-augmenting element α-helix HSP70 functional peptide (αHSP70p) and CpG to both natural killer (NK) cells and APC. Mechanically, immunogenic B16OVA tumor cells membrane-associated antigens and αHSP70p were reconstituted in artificial outer phospholipid bilayer membrane via one-step hydration and CpG encapsulated in the phosphate calcium core. The resulted αHSP70p-CM-CaP exhibited 30 nm in diameter with the immunogenic membrane proteins reserved in the particles to produce synergistic effect on bone marrow derived dendritic cells maturation and antigen-presentation. Following αHSP70p-CM-CaP vaccination, efficient lymph node trafficking and multi-epitope-T cells response was observed in mice. Vitally, αHSP70p-CM-CaP was also able to induce expansion of IFN-γ-expressing CD8 + T cells and NKG2D + NK cells subsets. Most promisingly, αHSP70p-CM-CaP vaccination led to the killing of target cells and tumor regression in vivo when combined with anti-PD-1 antibody treatment on mice B16OVA melanoma models. Altogether, we demonstrated proof-of-concept evidence for the feasibility, capability and safety of a nanovaccine platform towards efficient personalized anticancer application. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Erianthus arundinaceus HSP70 (EaHSP70) Acts as a Key Regulator in the Formation of Anisotropic Interdigitation in Sugarcane (Saccharum spp. hybrid) in Response to Drought Stress.

    PubMed

    Augustine, Sruthy Maria; Cherian, Anoop V; Syamaladevi, Divya P; Subramonian, N

    2015-12-01

    Plant growth during abiotic stress is a long sought-after trait especially in crop plants in the context of global warming and climate change. Previous studies on leaf epidermal cells have revealed that during normal growth and development, adjacent cells interdigitate anisotropically to form cell morphological patterns known as interlocking marginal lobes (IMLs), involving the cell wall-cell membrane-cortical actin continuum. IMLs are growth-associated cell morphological changes in which auxin-binding protein (ABP), Rho GTPases and actin are known to play important roles. In the present study, we investigated the formation of IMLs under drought stress and found that Erianthus arundinaceus, a drought-tolerant wild relative of sugarcane, develops such growth-related cell morphological patterns under drought stress. Using confocal microscopy, we showed an increasing trend in cortical F-actin intensity in drought-tolerant plants with increasing soil moisture stress. In order to check the role of drought tolerance-related genes in IML formation under soil moisture stress, we adopted a structural data mining strategy and identified indirect connections between the ABPs and heat shock proteins (HSPs). Initial experimental evidence for this connection comes from the high transcript levels of HSP70 observed in drought-stressed Erianthus, which developed anisotropic interdigitation, i.e. IMLs. Subsequently, by overexpressing the E. arundinaceus HSP70 gene (EaHSP70) in sugarcane (Saccharum spp. hybrid), we confirm the role of HSP70 in the formation of anisotropic interdigitation under drought stress. Taken together, our results suggest that EaHSP70 acts as a key regulator in the formation of anisotropic interdigitation in drought-tolerant plants (Erianthus and HSP70 transgenic sugarcane) under moisture stress in an actin-mediated pathway. The possible biological significance of the formation of drought-associated interlocking marginal lobes (DaIMLs) in sugarcane plants upon drought stress is discussed. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Trophoblast survival signaling during human placentation requires HSP70 activation of MMP2-mediated HBEGF shedding.

    PubMed

    Jain, Chandni V; Jessmon, Philip; Barrak, Charbel T; Bolnick, Alan D; Kilburn, Brian A; Hertz, Michael; Armant, D Randall

    2017-10-01

    Survival of trophoblast cells in the low oxygen environment of human placentation requires metalloproteinase-mediated shedding of HBEGF and downstream signaling. A matrix metalloproteinase (MMP) antibody array and quantitative RT-PCR revealed upregulation of MMP2 post-transcriptionally in human first trimester HTR-8/SVneo trophoblast cells and placental villous explants exposed to 2% O 2 . Specific MMP inhibitors established the requirement for MMP2 in HBEGF shedding and upregulation. Because α-amanitin inhibited the upregulation of HBEGF, differentially expressed genes were identified by next-generation sequencing of RNA from trophoblast cells cultured at 2% O 2 for 0, 1, 2 and 4 h. Nine genes, all containing HIF-response elements, were upregulated at 1 h, but only HSPA6 (HSP70B') remained elevated at 2-4 h. The HSP70 chaperone inhibitor VER 155008 blocked upregulation of both MMP2 and HBEGF at 2% O 2 , and increased apoptosis. However, both HBEGF upregulation and apoptosis were rescued by exogenous MMP2. Proximity ligation assays demonstrated interactions between HSP70 and MMP2, and between MMP2 and HBEGF, supporting the concept that MMP2-mediated shedding of HBEGF, initiated by HSP70, contributes to trophoblast survival at the low O 2 concentrations encountered during the first trimester, and is essential for successful pregnancy outcomes. Trophoblast survival during human placentation, when oxygenation is minimal, required HSP70 activity, which mediated MMP2 accumulation and the transactivation of anti-apoptotic ERBB signaling by HBEGF shedding.

  7. Low heat-shock thresholds in wild Antarctic inter-tidal limpets (Nacella concinna).

    PubMed

    Clark, Melody S; Geissler, Paul; Waller, Catherine; Fraser, Keiron P P; Barnes, David K A; Peck, Lloyd S

    2008-01-01

    Heat shock proteins (HSPs) are a family of genes classically used to measure levels of organism stress. We have previously identified two HSP70 genes (HSP70A and HSP70B) in sub-tidal populations of the Antarctic limpet (Nacella concinna). These genes are up-regulated in response to increased seawater temperatures of 15 degrees C or more during acute heat shock experiments, temperatures that have very little basis when considering the current Antarctic ecology of these animals. Therefore, the question was posed as to whether these animals could express HSP70 genes when subjected to more complex environmental conditions, such as those that occur in the inter-tidal. Inter-tidal limpets were collected on three occasions in different weather conditions at South Cove, Rothera Point, over a complete tidal cycle, and the expression levels of the HSP70 genes were measured. Both genes showed relative up-regulation of gene expression over the period of the tidal cycle. The average foot temperature of these animals was 3.3 degrees C, far below that of the acute heat shock experiments. These experiments demonstrate that the temperature and expression levels of HSP production in wild animals cannot be accurately extrapolated from experimentally induced treatments, especially when considering the complexity of stressors in the natural environment. However, experimental manipulation can provide molecular markers for identifying stress in Antarctic molluscs, provided it is accompanied by environmental validation, as demonstrated here.

  8. Development of a microarray-based assay for efficient testing of new HSP70/DnaK inhibitors.

    PubMed

    Mohammadi-Ostad-Kalayeh, Sona; Hrupins, Vjaceslavs; Helmsen, Sabine; Ahlbrecht, Christin; Stahl, Frank; Scheper, Thomas; Preller, Matthias; Surup, Frank; Stadler, Marc; Kirschning, Andreas; Zeilinger, Carsten

    2017-12-15

    A facile method for testing ATP binding in a highly miniaturized microarray environment using human HSP70 and DnaK from Mycobacterium tuberculosis as biological targets is reported. Supported by molecular modelling studies we demonstrate that the position of the fluorescence label on ATP has a strong influence on the binding to human HSP70. Importantly, the label has to be positioned on the adenine ring and not to the terminal phosphate group. Unlabelled ATP displaced bound Cy5-ATP from HSP70 in the micromolar range. The affinity of a well-known HSP70 inhibitor VER155008 for the ATP binding site in HSP70 was determined, with a EC 50 in the micromolar range, whereas reblastin, a HSP90-inhibitor, did not compete for ATP in the presence of HSP70. The applicability of the method was demonstrated by screening a small compound library of natural products. This unraveled that terphenyls rickenyl A and D, recently isolated from cultures of the fungus Hypoxylon rickii, are inhibitors of HSP70. They compete with ATP for the chaperone in the range of 29 µM (Rickenyl D) and 49 µM (Rickenyl A). Furthermore, the microarray-based test system enabled protein-protein interaction analysis using full-length HSP70 and HSP90 proteins. The labelled full-length human HSP90 binds with a half-maximal affinity of 5.5 µg/ml (∼40 µM) to HSP70. The data also demonstrate that the microarray test has potency for many applications from inhibitor screening to target-oriented interaction studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Seasonal variations of cellular stress response in the heart and gastrocnemius muscle of the water frog (Pelophylax ridibundus).

    PubMed

    Feidantsis, Konstantinos; Anestis, Andreas; Vasara, Eleni; Kyriakopoulou-Sklavounou, Pasqualina; Michaelidis, Basile

    2012-08-01

    The present study aimed to investigate the seasonal cellular stress response in the heart and the gastrocnemius muscle of the amphibian Pelophylax ridibundus (former name Rana ridibunda) during an 8 month acclimatization period in the field. Processes studied included heat shock protein expression and protein kinase activation. The cellular stress response was addressed through the expression of Hsp70 and Hsp90 and the phosphorylation of stress-activated protein kinases and particularly p38 mitogen-activated protein kinase (p38 MAPK), the extracellular signal-regulated kinases (ERK-1/2) and c-Jun N-terminal kinases (JNK1/2/3). Due to a general metabolic depression during winter hibernation, the induction of Hsp70 and Hsp90 and the phosphorylation of p38 MAPK, JNKs and ERKs are retained at low levels of expression in the examined tissues of P. ridibundus. Recovery from hibernation induces increased levels of the specific proteins, probably providing stamina to the animals during their arousal. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Lanthanum Element Induced Imbalance of Mineral Nutrients, HSP 70 Production and DNA-Protein Crosslink, Leading to Hormetic Response of Cell Cycle Progression in Root Tips of Vicia faba L. seedlings

    PubMed Central

    Wang, Chengrun; Shi, Cuie; Liu, Ling; Wang, Chen; Qiao, Wei; Gu, Zhimang; Wang, Xiaorong

    2011-01-01

    The effects and mechanisms of rare earth elements on plant growth have not been extensively characterized. In the current study, Vicia faba L. seedlings were cultivated in lanthanum (La)-containing solutions for 10 days to investigate the possible effects and mechanisms of La on cell proliferation and root lengthening in roots. The results showed that increasing La levels resulted in abnormal calcium (Ca), Ferrum (Fe) or Potassium (K) contents in the roots. Flow cytometry analysis revealed G1/S and S/G2 arrests in response to La treatments in the root tips. Heat shock protein 70 (HSP 70) production showed a U-shaped dose response to increasing La levels. Consistent with its role in cell cycle regulation, HSP 70 fluctuated in parallel with the S-phase ratios and proliferation index. Furthermore, DNA-protein crosslinks (DPCs) enhanced at higher La concentrations, perhaps involved in blocking cell progression. Taken together, these data provide important insights into the hormetic effects and mechanisms of REE(s) on plant cell proliferation and growth. PMID:22423233

  11. Modification of N6-methyladenosine RNA methylation on heat shock protein expression.

    PubMed

    Yu, Jiayao; Li, Yi; Wang, Tian; Zhong, Xiang

    2018-01-01

    This study was conducted to investigate effect of N6-methyladenosine (m6A) RNA methylation on Heat shock proteins (HSPs) and dissect the profile of HSP RNA methylation. The results showed that m6A methyltransferases METTL3 mRNA was decreased in responses to heat shock stress in HepG2 cells, but m6A-specific binding protein YTHDF2 mRNA was upregulated in a manner similar to HSP70 induction. Immunofluorescence staining showed that the majority of YTHDF2 was present in the cytosol, however, nearly all YTHDF2 translocated from the cytosol into the nucleus after heat shock. METTL3 knockdown significantly changed HSP70, HSP60, and HSP27 mRNA expression in HepG2 cells using siRNA, however, mRNA lifetime was not impacted. Silence of YTHDF2 using siRNA did not change expression of HSP70, but significantly increased HSP90, HSP60, and HSPB1 mRNA expression. In addition, m6A-seq revealed that HSP m6A methylation peaks are mainly enriched on exons and around stop codons, and shows a unique distribution profile in the 5'UTR and 3'UTR. Knockdown of METTL3 changed the methylation patterns of HSPs transcript. In conclusion, m6A RNA methylation regulates HSP gene expression. Differential expression of HSPs modulated by m6A may depend on the m6A site and abundance of the target gene. This finding provides insights into new regulatory mechanisms of HSPs in normal and stress situations.

  12. Serum heat shock protein 70 level as a biomarker of exceptional longevity.

    PubMed

    Terry, Dellara F; Wyszynski, Diego F; Nolan, Vikki G; Atzmon, Gil; Schoenhofen, Emily A; Pennington, JaeMi Y; Andersen, Stacy L; Wilcox, Marsha A; Farrer, Lindsay A; Barzilai, Nir; Baldwin, Clinton T; Asea, Alexzander

    2006-11-01

    Heat shock proteins are highly conserved proteins that, when produced intracellularly, protect stress exposed cells. In contrast, extracellular heat shock protein 70 (Hsp70) has been shown to have both protective and deleterious effects. In this study, we assessed heat shock protein 70 for its potential role in human longevity. Because of the importance of HSP to disease processes, cellular protection, and inflammation, we hypothesized that: (1) Hsp70 levels in centenarians and centenarian offspring are different from controls and (2) alleles in genes associated with Hsp70 explain these differences. In this cross-sectional study, we assessed serum Hsp70 levels from participants enrolled in either the New England Centenarian Study (NECS) or the Longevity Genes Project (LGP): 87 centenarians (from LGP), 93 centenarian offspring (from NECS), and 126 controls (43 from NECS, 83 from LGP). We also examined genotypic and allelic frequencies of polymorphisms in HSP70-A1A and HSP70-A1B in 347 centenarians (266 from the NECS, 81 from the LGP), 260 NECS centenarian offspring, and 238 controls (NECS: 53 spousal controls and 106 septuagenarian offspring controls; LGP: 79 spousal controls). The adjusted mean serum Hsp70 levels (ng/mL) for the NECS centenarian offspring, LGP centenarians, LGP spousal controls, and NECS controls were 1.05, 1.13, 3.07, 6.93, respectively, suggesting that a low serum Hsp70 level is associated with longevity; however, no genetic associations were found with two SNPs within two hsp70 genes.

  13. Expression of cellular protective proteins SIRT1, HSP70 and SOD2 correlates with age and is significantly higher in NK cells of the oldest seniors.

    PubMed

    Kaszubowska, Lucyna; Foerster, Jerzy; Kaczor, Jan Jacek; Schetz, Daria; Ślebioda, Tomasz Jerzy; Kmieć, Zbigniew

    2017-01-01

    NK cells are key effector lymphocytes of innate immunity provided with constitutive cytolytic activity, however, their role in human ageing is not entirely understood. The study aimed to analyze the expression of proteins involved in cellular stress response sirtuin 1 (SIRT1), heat shock protein 70 (HSP70) and manganese superoxide dismutase (SOD2) in non-stimulated NK cells of the oldest seniors ( n  = 25; aged over 85; mean age 88 years) and compare with NK cells of the old ( n  = 30; aged under 85; mean age 76 years) and the young ( n  = 32; mean age 21 years) to find potential relationships between the level of expression of these proteins in NK cells and longevity. The concentration of carbonyl groups and 8-isoprostanes in NK cell lysates reflecting the level of oxidative stress was also measured. The group of the oldest seniors differed from the other age groups by significantly higher percentage of NK cells expressing SIRT1, HSP70 and SOD2. The concentration of both carbonyl groups and 8-isoprostanes in NK cell extracts remained within the normal range in all age groups. The percentage of NK cells with the expression of, respectively, SIRT1, HSP70 and SOD2 correlated positively with age. Some correlations between expression levels of particular protective proteins SIRT1, HSP70 and SOD2 were observed in the study population. The increased expression of cellular protective proteins SIRT1, HSP70 and SOD2 in NK cells of the oldest seniors seems to correspond to longevity and the observed correlations may suggest the involvement of these proteins in establishing NK cell homeostasis specific for healthy ageing process.

  14. A potential antiapoptotic regulation: The interaction of heat shock protein 70 and apoptosis-inducing factor mitochondrial 1 during heat stress and aestivation in sea cucumber.

    PubMed

    Wang, Shasha; Li, Xingke; Chen, Muyan; Storey, Kenneth B; Wang, Tianming

    2018-05-28

    The sea cucumber (Apostichopus japonicus) has become a good model organism for studying environmentally induced aestivation in marine invertebrates. A characteristic feature of aestivation in this species is the degeneration of the intestine. In the current study, we hypothesized that energy conservation and cytoprotective strategies need to be coordinated in the intestine to ensure long-term survival during aestivation, and there was potential relationship between heat shock protein 70 (HSP70) and apoptosis-inducing factor mitochondrial 1 (AIFM1) during extreme environmental stress. AIFM1 is a bifunctional flavoprotein that is involved in the caspase-independent activation of apoptosis. The gene and protein expression profiles of AjAIFM1 and AjHSP70 in intestinal tissue during aestivation were analyzed and results showed an inverse correlation between them, AjAIFM1 being suppressed during aestivation whereas AjHSP70 was strongly upregulated. Comparable responses were also seen when intestinal cells were isolated and analyzed in vitro for responses to heat stress at 25°C (a water temperature typical during aestivation), compared with 15°C control cells. Combined with co-immunoprecipitation studies in vivo and in vitro, our results suggested that AjHSP70 protein may have potential interaction with AjAIFM1. To determine the influence of heat stress on apoptotic rate of intestinal cells, we also assessed the DNA fragmentation by terminal deoxynucleotide transferase-mediated dUTP nick-end labeling assay, and results also supported a potential antiapoptotic response in sea cucumber during heat stress. This type of cytoprotective mechanism could be used to preserve the existing cellular components during long-term aestivation in sea cucumber. © 2018 Wiley Periodicals, Inc.

  15. Chaperone-assisted protein aggregate reactivation: Different solutions for the same problem.

    PubMed

    Aguado, Alejandra; Fernández-Higuero, José Angel; Moro, Fernando; Muga, Arturo

    2015-08-15

    The oligomeric AAA+ chaperones Hsp104 in yeast and ClpB in bacteria are responsible for the reactivation of aggregated proteins, an activity essential for cell survival during severe stress. The protein disaggregase activity of these members of the Hsp100 family is linked to the activity of chaperones from the Hsp70 and Hsp40 families. The precise mechanism by which these proteins untangle protein aggregates remains unclear. Strikingly, Hsp100 proteins are not present in metazoans. This does not mean that animal cells do not have a disaggregase activity, but that this activity is performed by the Hsp70 system and a representative of the Hsp110 family instead of a Hsp100 protein. This review describes the actual view of Hsp100-mediated aggregate reactivation, including the ATP-induced conformational changes associated with their disaggregase activity, the dynamics of the oligomeric assembly that is regulated by its ATPase cycle and the DnaK system, and the tight allosteric coupling between the ATPase domains within the hexameric ring complexes. The lack of homologs of these disaggregases in metazoans has suggested that they might be used as potential targets to develop antimicrobials. The current knowledge of the human disaggregase machinery and the role of Hsp110 are also discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. A role of carboxy-terminal region of Toxoplasma gondii-heat shock protein 70 in enhancement of T. gondii infection in mice

    PubMed Central

    Mun, Hye-Seong; Norose, Kazumi; Aosai, Fumie; Chen, Mei

    2000-01-01

    We investigated the role of recombinant Toxoplasma gondii heat shock protein (rT.g.HSP) 70-full length, rT.g.HSP70-NH2-terminal region, or rT.g.HSP70-carboxy-terminal region in prophylactic immunity in C57BL/6 mice perorally infected with Fukaya cysts of T. gondii. At 3, 4, 5, and 6 weeks after infection, the number of T. gondii in the brain tissue of each mouse was measured by quantitative competitive-polymerase chain reaction (QC-PCR) targeting the surface antigen (SAG) 1 gene. Immunization with rT.g.HSP70-full length or rT.g.HSP70-carboxy-terminal region increased the number of T.gondii in the brain tissue after T. gondii infection, whereas immunization with rT.g.HSP70-NH2-terminal region did not. These results suggest that T.g.HSP70-carboxy-terminal region as well as T.g.HSP70-full length may induce deleterious effects on the protective immunity of mice infected with a cyst-forming T. gondii strain, Fukaya. PMID:10905074

  17. Identification of HSP70-inducing activity in Arnica montana extract and purification and characterization of HSP70-inducers.

    PubMed

    Usui, Keiko; Ikeda, Tsuyoshi; Horibe, Yuumi; Nakao, Mitsuyoshi; Hoshino, Tatsuya; Mizushima, Tohru

    2015-04-01

    The expression of heat shock proteins (HSPs), particularly HSP70, is receiving considerable attention in the field of cosmetics, particularly given our recent report that ultraviolet-induced melanin production, skin damage and wrinkle formation were all suppressed in transgenic mice expressing HSP70. In the present study, we searched for HSP70-inducers from a library of herbal extracts that have already been approved as quasi-pharmaceutical products in Japan. We selected an ethanol extract of Arnica montana (A. montana), based on its high HSP70-inducing activity and low cytotoxicity. Cell viability was determined by MTT method and expression of HPS70 was monitored by immunoblotting analysis. From the extract, we purified and identified eight sesquiterpene lactones (AM1-8) as HSP70-inducers, among which AM-2 (helenalin 2-methylbutyrate) was selected due to its good HSP70-inducing properties and low cytotoxicity. Treatment of cultured mouse melanoma cells with AM-2 or A. montana extract up-regulated the expression of HSP70 in a dose-dependent manner. This treatment also activated heat shock factor-1, a transcription factor for hsp genes. Furthermore, pre-treatment of cells with AM-2 or A. montana extract decreased melanin production and expression and activity of tyrosinase. These results suggest that AM-2 and A. montana extract could be beneficial for use in hypopigmenting cosmetics as a consequence of their stimulatory effects on HSP70 expression. Copyright © 2015 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. FLZ Attenuates α-Synuclein-Induced Neurotoxicity by Activating Heat Shock Protein 70.

    PubMed

    Bao, Xiu-Qi; Wang, Xiao-Liang; Zhang, Dan

    2017-01-01

    Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. The pathology of PD is caused by progressive degeneration of dopaminergic neurons and is characterized by the presence of intracellular inclusions known as Lewy bodies, composed mainly of α-synuclein. Heat shock proteins (HSPs) are crucial in protein quality control in cells. HSP70 in particular prevents the aggregation of protein aggregation, such as α-synuclein, providing a degree of protection against PD. The compound FLZ has been shown to protect several PD models in previous studies and was reported as an HSP inducer to protect against MPP + -induced neurotoxicity, but the mechanism remains unclear. In this study, we investigated the effects of FLZ-mediated HSP70 induction in α-synuclein transgenic mice and cells. FLZ treatment alleviated motor dysfunction and improved dopaminergic neuronal function in α-synuclein transgenic mice. HSP70 protein expression and transcriptional activity were increased by FLZ treatment, eliciting a reduction of α-synuclein aggregation and associated toxicity. The inhibition of HSP70 by quercetin or HSP70 siRNA markedly attenuated the neuroprotective effects of FLZ, confirming that FLZ exerted a neuroprotective effect through HSP70. We revealed that FLZ directly bound to and increased the expression of Hip, a cochaperone of HSP70, which in turn enhanced HSP70 activity. In conclusion, we defined a critical role for HSP70 and its cochaperones activated by FLZ in preventing neurodegeneration and proposed that targeting the HSP70 system may represent a potential therapy for α-synuclein-related diseases, such as PD.

  19. Suppression of Melanin Production by Expression of HSP70*

    PubMed Central

    Hoshino, Tatsuya; Matsuda, Minoru; Yamashita, Yasuhiro; Takehara, Masaya; Fukuya, Masayo; Mineda, Kazutaka; Maji, Daisuke; Ihn, Hironobu; Adachi, Hiroaki; Sobue, Gen; Funasaka, Yoko; Mizushima, Tohru

    2010-01-01

    Skin hyperpigmentation disorders due to abnormal melanin production induced by ultraviolet (UV) irradiation are both a clinical and cosmetic problem. UV irradiation stimulates melanin production in melanocytes by increasing intracellular cAMP. Expression of heat shock proteins (HSPs), especially HSP70, is induced by various stressors, including UV irradiation, to provide cellular resistance to such stressors. In this study we examined the effect of expression of HSP70 on melanin production both in vitro and in vivo. 3-Isobutyl-1-methylxanthine (IBMX), a cAMP-elevating agent, stimulated melanin production in cultured mouse melanoma cells, and this stimulation was suppressed in cells overexpressing HSP70. IBMX-dependent transcriptional activation of the tyrosinase gene was also suppressed in HSP70-overexpressing cells. Expression of microphthalmia-associated transcription factor (MITF), which positively regulates transcription of the tyrosinase gene, was up-regulated by IBMX; however, this up-regulation was not suppressed in HSP70-overexpressing cells. On the other hand, immunoprecipitation and immunostaining analyses revealed a physical interaction between and co-localization of MITF and HSP70, respectively. Furthermore, the transcription of tyrosinase gene in nuclear extract was inhibited by HSP70. In vivo, UV irradiation of wild-type mice increased the amount of melanin in the basal layer of the epidermis, and this increase was suppressed in transgenic mice expressing HSP70. This study provides the first evidence of an inhibitory effect of HSP70 on melanin production both in vitro and in vivo. This effect seems to be mediated by modulation of MITF activity through a direct interaction between HSP70 and MITF. PMID:20177067

  20. Plasmodium falciparum Hop (PfHop) Interacts with the Hsp70 Chaperone in a Nucleotide-Dependent Fashion and Exhibits Ligand Selectivity.

    PubMed

    Zininga, Tawanda; Makumire, Stanely; Gitau, Grace Wairimu; Njunge, James M; Pooe, Ofentse Jacob; Klimek, Hanna; Scheurr, Robina; Raifer, Hartmann; Prinsloo, Earl; Przyborski, Jude M; Hoppe, Heinrich; Shonhai, Addmore

    2015-01-01

    Heat shock proteins (Hsps) play an important role in the development and pathogenicity of malaria parasites. One of the most prominent functions of Hsps is to facilitate the folding of other proteins. Hsps are thought to play a crucial role when malaria parasites invade their host cells and during their subsequent development in hepatocytes and red blood cells. It is thought that Hsps maintain proteostasis under the unfavourable conditions that malaria parasites encounter in the host environment. Although heat shock protein 70 (Hsp70) is capable of independent folding of some proteins, its functional cooperation with heat shock protein 90 (Hsp90) facilitates folding of some proteins such as kinases and steroid hormone receptors into their fully functional forms. The cooperation of Hsp70 and Hsp90 occurs through an adaptor protein called Hsp70-Hsp90 organising protein (Hop). We previously characterised the Hop protein from Plasmodium falciparum (PfHop). We observed that the protein co-localised with the cytosol-localised chaperones, PfHsp70-1 and PfHsp90 at the blood stages of the malaria parasite. In the current study, we demonstrated that PfHop is a stress-inducible protein. We further explored the direct interaction between PfHop and PfHsp70-1 using far Western and surface plasmon resonance (SPR) analyses. The interaction of the two proteins was further validated by co-immunoprecipitation studies. We observed that PfHop and PfHsp70-1 associate in the absence and presence of either ATP or ADP. However, ADP appears to promote the association of the two proteins better than ATP. In addition, we investigated the specific interaction between PfHop TPR subdomains and PfHsp70-1/ PfHsp90, using a split-GFP approach. This method allowed us to observe that TPR1 and TPR2B subdomains of PfHop bind preferentially to the C-terminus of PfHsp70-1 compared to PfHsp90. Conversely, the TPR2A motif preferentially interacted with the C-terminus of PfHsp90. Finally, we observed that recombinant PfHop occasionally eluted as a protein species of twice its predicted size, suggesting that it may occur as a dimer. We conducted SPR analysis which suggested that PfHop is capable of self-association in presence or absence of ATP/ADP. Overall, our findings suggest that PfHop is a stress-inducible protein that directly associates with PfHsp70-1 and PfHsp90. In addition, the protein is capable of self-association. The findings suggest that PfHop serves as a module that brings these two prominent chaperones (PfHsp70-1 and PfHsp90) into a functional complex. Since PfHsp70-1 and PfHsp90 are essential for parasite growth, findings from this study are important towards the development of possible antimalarial inhibitors targeting the cooperation of these two chaperones.

  1. The NS5A-binding heat shock proteins HSC70 and HSP70 play distinct roles in the hepatitis C viral life cycle.

    PubMed

    Khachatoorian, Ronik; Ganapathy, Ekambaram; Ahmadieh, Yasaman; Wheatley, Nicole; Sundberg, Christopher; Jung, Chun-Ling; Arumugaswami, Vaithilingaraja; Raychaudhuri, Santanu; Dasgupta, Asim; French, Samuel W

    2014-04-01

    We previously identified HSP70 and HSC70 in complex with NS5A in a proteomic screen. Here, coimmunoprecipitation studies confirmed NS5A/HSC70 complex formation during infection, and immunofluorescence studies showed NS5A and HSC70 to colocalize. Unlike HSP70, HSC70 knockdown did not decrease viral protein levels. Rather, intracellular infectious virion assembly was significantly impaired by HSC70 knockdown. We also discovered that both HSC70 nucleotide binding and substrate binding domains directly bind NS5A whereas only the HSP70 nucleotide binding domain does. Knockdown of both HSC70 and HSP70 demonstrated an additive reduction in virus production. This data suggests that HSC70 and HSP70 play discrete roles in the viral life cycle. Investigation of these different functions may facilitate developing of novel strategies that target host proteins to treat HCV infection. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Interleukin-17A-Deficient Mice Are Highly Susceptible to Toxoplasma gondii Infection Due to Excessively Induced T. gondii HSP70 and Interferon Gamma Production.

    PubMed

    Moroda, Masataka; Takamoto, Masaya; Iwakura, Yoichiro; Nakayama, Jun; Aosai, Fumie

    2017-12-01

    Interleukin17A (IL-17A) is known to be involved in the host defense against pathogens and the pathogenesis of autoimmune diseases. Previously, we showed that excessive amounts of interferon gamma (IFN-γ) play an important role in the pathogenesis of the lethal effects of Toxoplasma gondii by inducing anaphylactic responses. In the study described in this report, we examined the effects of IL-17A deficiency on murine host defense against oral T. gondii infection. IL-17A-deficient C57BL/6 (B6) mice exhibited higher rates of mortality than wild-type (WT) mice during the acute phase of T. gondii infection. CD4 + T cells in the mesenteric lymph nodes (mLNs) and ileum of T. gondii -infected IL-17A-deficient mice produced higher levels of IFN-γ than did those of WT mice. In addition, the level of T. gondii HSP70 ( T.g HSP70) expression was also significantly increased in the ileum, mLNs, liver, and spleen of infected IL-17A-deficient mice compared with that in WT mice. These elevated levels of expression of T.g HSP70 and IFN-γ in infected IL-17A-deficient mice were presumably linked to the IL-17A defect since they decreased to WT levels after treatment with recombinant IL-17A. Furthermore, IL-17A-deficient mice were highly susceptible to the anaphylactic effect of T.g HSP70, and the survival of IL-17A-deficient mice during the acute phase was improved by treatment with an anti- T.g HSP70 monoclonal antibody. These results suggest that IL-17A plays an important role in host survival against T. gondii infection by protecting the host from an anaphylactic reaction via the downregulation of T.g HSP70 and IFN-γ production. Copyright © 2017 American Society for Microbiology.

  3. Combinatory effects of temperature stress and nonionic organic pollutants on stress protein (hsp70) gene expression in the freshwater sponge Ephydatia fluviatilis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, W.E.G.; Koziol, C.; Dapper, J.

    1995-07-01

    This is the first documentation of a heat shock protein (hsp) response in sponges. Subjecting the freshwater sponge Ephydatia fluviatilis to temperature stress (18 to 33 C; 2 h) resulted in an increased expression (>10 times) of the M{sub r}70,000 (hsp70). The induction of hsp70 could be demonstrated on the level of gene expression and by quantification of the hsp70 protein. Temperature stress also resulted in a 25% reduction of sponge cell proliferation. A mixture of nonionic organic compound was extracted from water from the polluted Schwarzbach River (S. Hesse, Germany) by adsorption onto XAD-7 resin. Concentrations of this Schwarzbachmore » River water extract at two and four items ambient levels resulted in decreases in cell proliferation by 53.6 and 99.4%, respectively. However, when cells were exposed to these levels of the Schwarzbach River water extract directly following a temperature stress (33 C for 2 h), cell proliferation was less affected by the extract than the absence of the temperature stress. In addition, the combination of temperature stress and exposure to the Schwarzbach River water extract resulted in higher levels of hsp70 than were observed for each stressor by itself. Northern and Western blotting as well as precipitation assay confirmed the interaction between heat treatment and exposure to different amounts of nonionic organic pollutants on the level of mRNA and protein expression of hsp70. From these data the authors conclude that a sublethal treatment of sponge with heat results in a higher tolerance of the animals to chemical stressors. These results are relevant to the real-world situation where organisms are often exposed simultaneously to a variety of stressors, in contrast to many laboratory exposures that aim to elucidate the effects of individual stressors.« less

  4. Increased circulating heat shock protein 70 (HSPA1A) levels in gestational diabetes mellitus: a pilot study.

    PubMed

    Garamvölgyi, Zoltán; Prohászka, Zoltán; Rigó, János; Kecskeméti, András; Molvarec, Attila

    2015-07-01

    Recent data indicate that serum Hsp70 (HSPA1A) levels are increased in type 1 and 2 diabetes mellitus. However, there is no report in the literature on circulating Hsp70 levels in gestational diabetes mellitus. In this pilot study, we measured serum Hsp70 levels in 11 pregnant women with pregestational diabetes, 38 women with gestational diabetes, and 40 healthy pregnant women with ELISA. Plasma glucose levels, serum insulin concentrations, HbA1c values, and the Homeostatic Model Assessment-Insulin Resistance (HOMA-IR) index were also determined. According to our results, serum Hsp70 concentrations were significantly higher in women with pregestational and gestational diabetes mellitus than in healthy pregnant women. In addition, pregestational diabetic women had significantly higher Hsp70 levels than those with gestational diabetes. Furthermore, in the group of women with gestational diabetes mellitus, serum Hsp70 levels showed a significant positive correlation with HbA1c values. However, there was no other relationship between clinical features and metabolic parameters of the study subjects and their serum Hsp70 levels in either study group. In conclusion, we demonstrated for the first time in the literature that serum Hsp70 levels are increased and correlate with HbA1c values in women with gestational diabetes mellitus. Nevertheless, further studies are needed to determine whether circulating Hsp70 plays a causative role in the pathogenesis of gestational diabetes or elevated serum Hsp70 levels are only consequences of the disease.

  5. secHsp70 as a tool to approach amyloid-β42 and other extracellular amyloids.

    PubMed

    De Mena, Lorena; Chhangani, Deepak; Fernandez-Funez, Pedro; Rincon-Limas, Diego E

    2017-07-03

    Self-association of amyloidogenic proteins is the main pathological trigger in a wide variety of neurodegenerative disorders. These aggregates are deposited inside or outside the cell due to hereditary mutations, environmental exposures or even normal aging. Cumulative evidence indicates that the heat shock chaperone Hsp70 possesses robust neuroprotection against various intracellular amyloids in Drosophila and mouse models. However, its protective role against extracellular amyloids was largely unknown as its presence outside the cells is very limited. Our recent manuscript in PNAS revealed that an engineered form of secreted Hsp70 (secHsp70) is highly protective against toxicity induced by extracellular deposition of the amyloid-β42 (Aβ42) peptide. In this Extra View article, we extend our analysis to other members of the heat shock protein family. We created PhiC31-based transgenic lines for human Hsp27, Hsp40, Hsp60 and Hsp70 and compared their activities in parallel against extracellular Aβ42. Strikingly, only secreted Hsp70 exhibits robust protection against Aβ42-triggered toxicity in the extracellular milieu. These observations indicate that the ability of secHsp70 to suppress Aβ42 insults is quite unique and suggest that targeted secretion of Hsp70 may represent a new therapeutic approach against Aβ42 and other extracellular amyloids. The potential applications of this engineered chaperone are discussed.

  6. Expression analysis of HSP70 in the testis of Octopus tankahkeei under thermal stress.

    PubMed

    Long, Ling-Li; Han, Ying-Li; Sheng, Zhang; Du, Chen; Wang, You-Fa; Zhu, Jun-Quan

    2015-09-01

    The gene encoding heat shock protein 70 (HSP70) was identified in Octopus tankahkeei by homologous cloning and rapid amplification of cDNA ends (RACE). The full-length cDNA (2471 bp) consists of a 5'-untranslated region (UTR) (89 bp), a 3'-UTR (426 bp), and an open reading frame (1956 bp) that encodes 651 amino acid residues with a predicted molecular mass of 71.8 kDa and an isoelectric point of 5.34. Based on the amino acid sequence analysis and multiple sequence alignment, this cDNA is a member of cytoplasmic hsp70 subfamily of the hsp70 family and was designated as ot-hsp70. Tissue expression analysis showed that HSP70 expression is highest in the testes when all examined organs were compared. Immunohistochemistry analysis, together with hematoxylin-eosin staining, revealed that the HSP70 protein was expressed in all spermatogenic cells, but not in fibroblasts. In addition, O. tankahkeei were heat challenged by exposure to 32 °C seawater for 2 h, then returned to 13 °C for various recovery time (0-24 h). Relative expression of ot-hsp70 mRNA in the testes was measured at different time points post-challenge by quantitative real-time PCR. A clear time-dependent mRNA expression of ot-hsp70 after thermal stress indicates that the HSP70 gene is inducible. Ultrastructural changes of the heat-stressed testis were observed by transmission electron microscopy. We suggest that HSP70 plays an important role in spermatogenesis and testis protection against thermal stress in O. tankahkeei. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Combined effect of tumor necrosis factor (TNF)-alpha and heat shock protein (HSP)-70 in reducing apoptotic injury in hypoxia: a cell culture study.

    PubMed

    Goel, Gunjan; Guo, Miao; Ding, Jamie; Dornbos, David; Ali, Ahmer; Shenaq, Mohammed; Guthikonda, Murali; Ding, Yuchuan

    2010-10-15

    Studies have demonstrated neuroprotective effects of either TNF-alpha or HSP-70 in ischemia/reperfusion injury following exercise. However, the protective mechanisms involving combined effect of the two proteins, particularly in neuronal apoptosis, remain unclear. This study aims to elucidate the beneficial role of TNF-alpha and HSP-70 in the regulation of apoptotic proteins and ERK signaling in hypoxic injury. Cortical neurons from 20 Sprague-Dawley rat embryos were isolated and cultured in five groups with or without pretreatment with recombinant TNF-alpha, HSP-70 protein or both prior to hypoxic conditions: (1) control; (2) control/hypoxia; (3) TNF-alpha/hypoxia; (4) HSP-70/hypoxia and (5) TNF-alpha/HSP-70/hypoxia. Western blotting was used to detect pro- and anti-apoptotic proteins, including Bax, AIF, Bcl-xL, Bcl-2, and pERK1/2 protein. TNF-alpha and HSP-70 significantly (p<0.05) reduced the levels of pro-apoptotic proteins, Bax and AIF. Also, pretreatment of hypoxic brain tissue with TNF-alpha and HSP-70 significantly (p<0.05) enhanced the levels of anti-apoptotic protein, Bcl-xL. TNF-alpha and HSP-70 together increased Bcl-2 levels by 70%. Hypoxia caused a significant (p<0.05) increase in ERK1/2 phosphorylation levels by 224%. The most effective inhibition of ERK levels was obtained by the combined administration of TNF-alpha and HSP-70. This study suggested that TNF-alpha and HSP-70 together enhance the decrease in pro-apoptotic protein levels and the increase in anti-apoptotic protein levels in the event of neuronal hypoxia through ERK1/2 signal transduction. 2010. Published by Elsevier Ireland Ltd.

  8. Mitochondrial-type hsp70 genes of the amitochondriate protists, Giardia intestinalis, Entamoeba histolytica and two microsporidians☆

    PubMed Central

    Arisue, Nobuko; Sánchez, Lidya B.; Weiss, Louis M.; Müller, Miklós; Hashimoto, Tetsuo

    2011-01-01

    Genes encoding putative mitochondrial-type heat shock protein 70 (mit-hsp70) were isolated and sequenced from amitochondriate protists, Giardia intestinalis, Entamoeba histolytica, and two microsporidians, Encephalitozoon hellem and Glugea plecoglossi. The deduced mit-hsp70 sequences were analyzed by sequence alignments and phylogenetic reconstructions. The mit-hsp70 sequence of these four amitochondriate protists were divergent from other mit-hsp70 sequences of mitochondriate eukaryotes. However, all of these sequences were clearly located within a eukaryotic mitochondrial clade in the tree including various type hsp70 sequences, supporting the emerging notion that none of these amitochondriate lineages are primitively amitochodrial, but lost their mitochondria secondarily in their evolutionary past. PMID:11880223

  9. [Study on construction and immune protective effect of recombinant nucleic acid vaccine of Toxoplasma gondii].

    PubMed

    Wei, Qing-Kuan

    2012-04-01

    To construct the polyvalent recombinant nucleic acid vaccine of Toxoplasma gondii and measure its protective immune effect. The gene of heat shock protein (HSP70) was amplified by PCR and inserted into the recombinant plasmid of pcDNA3-ROP2-p30 to construct recombinant polyvalent nucleic vaccine (pcDNA3-ROP2-p30-Hsp70). BALB/c mice were immunized with the constructed recombinant nucleic vaccine. CD4+ and CD8+ in the splenic lymphocytes and the lymphocytes in anticoagulant whole blood, the immune indices such as antibodies (IgG, IgM and IgA) and IFN-gamma, TNF, IL-2, IL-4, IL-12 in serum and splenic lymphocytes culture medium were detected, along with the challenge experiment. The protective immune responses that caused by the vaccine was measured by detecting the changes of immune indices of mice and the challenge experiment. 916 bp fragment of HSP70 gene was amplified by PCR. The recombinant polyvalent nucleic vaccine pcDNA3-ROP2-p30-HSP70 that included the whole open reading frame sequence of HSP gene was successfully constructed. The immunization results also showed this polyvalent nucleic vaccine could induce strong cellular and humoral responses by the detection of higher antibody titer in the experimental mice group, the increasing proliferation of CD4+ and CD8+ cells with significant deviations among the groups (F(CD4+) = 45.00, F(CD8+) = 15.01, all P < 0.01) and the apparent up-regulated levels of several cytokines IFN-gamma, IL-2 and IL-12 in serum and cultural supernatant of spleen cells, with more striking effect in serum. As a result of the challenge experiment, the immunized mice showed a longer survival time. The recombinant nucleic acid vaccine pcDNA3-ROP2-p30-HSP70 possesses a strong immunogenicity and is able to induce an immune protection.

  10. Gene expression of Hsp70, Hsp90 and Hsp110 families in normal palate and cleft palate during mouse embryogenesis.

    PubMed

    Zhu, Yongfei; Ren, Chuanlu; Wan, Xuying; Zhu, Yuping; Zhu, Jiangbo; Zhou, Hongyuan; Zhang, Tianbao

    2013-11-01

    Most previous studies focused on a small number of heat shock proteins (Hsps) and their relationships with embryogenesis, and the actual roles of these Hsps in normal and abnormal embryonic development remain unclear. It was found in the present systemic study that except for Grp170, whose expression was not detectable at GD18, all 19 Hsps of Hsp70, Hsp90 and Hsp110 families were expressed in the normal development of embryonic palate tissue in mice, but their expression patterns varied with different Hsps, presenting as a correlation with the developmental phases. In the treatment group by all-trans retinoic acid (atRA), the messenger RNA (mRNA) abundance of HspA1A, HspA1L, HspA8, HspA9, HspA12A, HspA12B, HspA13, HspA14, Hsp90AA1, Hsp90AB1, Grp94, Trap1, Hsp105, Hsp110 and Grp170 was higher in the palates at GD11 (the beginning of palate development), the mRNA abundance of HspA1A, HspA12A and HspA12B was higher at GD18 (before birth) and an mRNA expression peak of HspA1L, HspA8, HspA9, Hsp90AA1, Grp94, Hsp110 and Grp170 was observed at GD17. The mRNA abundance of most genes in atRA-induced cleft palates of the treatment group was different from that of the control group. Grp78, HspA14 and Hsp105 were closely associated with the normal palate development and cleft palate in mouse embryo, possibly as palate development-related genes. Except Grp170, the other genes may be closely associated with the development of mouse palates through participating in the stress response process and/or the antiapoptosis process.

  11. Geographic variation in responses of European yellow dung flies to thermal stress.

    PubMed

    Bauerfeind, Stephanie S; Sørensen, Jesper G; Loeschcke, Volker; Berger, David; Broder, E Dale; Geiger, Madeleine; Ferrari, Manuela; Blanckenhorn, Wolf U

    2018-04-01

    Climatic conditions can be very heterogeneous even over small geographic scales, and are believed to be major determinants of the abundance and distribution of species and populations. Organisms are expected to evolve in response to the frequency and magnitude of local thermal extremes, resulting in local adaptation. Using replicate yellow dung fly (Scathophaga stercoraria; Diptera: Scathophagidae) populations from cold (northern Europe) and warm climates (southern Europe), we compared 1) responses to short-term heat and cold shocks in both sexes, 2) heat shock protein (Hsp70) expression in adults and eggs, and 3) female reproductive traits when facing short-term heat stress during egg maturation. Contrary to expectations, thermal traits showed minor geographic differentiation, with weak evidence for greater heat resistance of southern flies but no differentiation in cold resistance. Hsp70 protein expression was little affected by heat stress, indicating systemic rather than induced regulation of the heat stress response, possibly related to this fly group's preference for cold climes. In contrast, sex differences were pronounced: males (which are larger) endured hot temperatures longer, while females featured higher Hsp70 expression. Heat stress negatively affected various female reproductive traits, reducing first clutch size, overall reproductive investment, egg lipid content, and subsequent larval hatching. These responses varied little across latitude but somewhat among populations in terms of egg size, protein content, and larval hatching success. Several reproductive parameters, but not Hsp70 expression, exhibited heritable variation among full-sib families. Rather than large-scale clinal geographic variation, our study suggests some local geographic population differentiation in the ability of yellow dung flies to buffer the impact of heat stress on reproductive performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Expression and prognostic examination of heat shock proteins (HSP 27, HSP 70, and HSP 90) in medulloblastoma.

    PubMed

    Hauser, Péter; Hanzély, Zoltán; Jakab, Zsuzsanna; Oláh, Lászlóné; Szabó, Erika; Jeney, András; Schuler, Dezso; Fekete, Gyoörgy; Bognár, László; Garami, Miklós

    2006-07-01

    Expression of heat shock proteins (HSPs) is of prognostic significance in several tumor types. HSP expression levels were determined in medulloblastomas and tested whether HSPs expression was associated with prognostic parameters. Expression of antiapoptotic HSP 27, HSP 70, and HSP 90 was investigated by immunohistochemistry, on paraffin-embedded sections from 65 patients. Expression of HSPs was validated on internal vascular controls and by Western blotting analysis. Sample evaluation was based on the estimated percentage of HSP positive tumor cells. For survival analysis Kaplan-Meier method, for statistical analysis chi2 test, univariate analysis, and log rank test were applied. Expression of HSPs varied in medulloblastomas. On the basis of the average expression rate of HSPs, at HSP 27 and HSP 90 with a 10% cut off, and at HSP 70 with a 70% cut off 2 groups were created. The amount of expression of any of the HSP types was not significantly associated with known prognostic factors (age of patient, extent of resection, presence of metastasis) and histologic subtype. After an average follow-up period of 4.30 years, no significant difference was observed in survival depending on the expression of HSP 27 or HSP 70 or HSP 90. The high expression of HSPs indicates that these proteins are potential therapeutic targets.

  13. BAG3 Expression in Glioblastoma Cells Promotes Accumulation of Ubiquitinated Clients in an Hsp70-dependent Manner*

    PubMed Central

    Gentilella, Antonio; Khalili, Kamel

    2011-01-01

    Disposal of damaged proteins and protein aggregates is a prerequisite for the maintenance of cellular homeostasis and impairment of this disposal can lead to a broad range of pathological conditions, most notably in brain-associated disorders including Parkinson and Alzheimer diseases, and cancer. In this respect, the Protein Quality Control (PQC) pathway plays a central role in the clearance of damaged proteins. The Hsc/Hsp70-co-chaperone BAG3 has been described as a new and critical component of the PQC in several cellular contexts. For example, the expression of BAG3 in the rodent brain correlates with the engagement of protein degradation machineries in response to proteotoxic stress. Nevertheless, little is known about the molecular events assisted by BAG3. Here we show that ectopic expression of BAG3 in glioblastoma cells leads to the activation of an HSF1-driven stress response, as attested by transcriptional activation of BAG3 and Hsp70. BAG3 overexpression determines an accumulation of ubiquitinated proteins and this event requires the N-terminal region, WW domain of BAG3 and the association of BAG3 with Hsp70. The ubiquitination mainly occurs on BAG3-client proteins and the inhibition of proteasomal activity results in a further accumulation of ubiquitinated clients. At the cellular level, overexpression of BAG3 in glioblastoma cell lines, but not in non-glial cells, results in a remarkable decrease in colony formation capacity and this effect is reverted when the binding of BAG3 to Hsp70 is impaired. These observations provide the first evidence for an involvement of BAG3 in the ubiquitination and turnover of its partners. PMID:21233200

  14. Brief embryonic cadmium exposure induces a stress response and cell death in the developing olfactory system followed by long-term olfactory deficits in juvenile zebrafish.

    PubMed

    Blechinger, Scott R; Kusch, Robin C; Haugo, Kristine; Matz, Carlyn; Chivers, Douglas P; Krone, Patrick H

    2007-10-01

    The toxic effects of cadmium and other metals have been well established. A primary target of these metals is known to be the olfactory system, and fish exposed to a number of different waterborne metals display deficiencies in olfaction. Importantly, exposure over embryonic/larval development periods can cause deficits in chemosensory function in juvenile fish, but the specific cell types affected are unknown. We have previously characterized a transgenic zebrafish strain expressing the green fluorescent protein (eGFP) gene linked to the hsp70 gene promoter, and shown it to be a useful tool for examining cell-specific toxicity in living embryos and larvae. Here we show that the hsp70/eGFP transgene is strongly and specifically upregulated within the olfactory sensory neurons (OSNs) of transgenic zebrafish larvae following a brief 3-h exposure to water-borne cadmium. This molecular response was closely correlated to an endpoint for tissue damage within the olfactory placode, namely cell death. Furthermore, cadmium-induced olfactory cytotoxicity in zebrafish larvae gives rise to more permanent effects. Juvenile zebrafish briefly exposed to cadmium during early larval development display deficits in olfactory-dependent predator avoidance behaviors 4-6 weeks after a return to clean water. Lateral line neuromasts of exposed zebrafish larvae also activate both the endogenous hsp70 gene and the hsp70/eGFP transgene. The data reveal that even a very brief exposure period that gives rise to cell death within the developing olfactory placode results in long-term deficits in olfaction, and that hsp70/eGFP may serve as an effective indicator of sublethal cadmium exposure in sensory cells.

  15. Brief embryonic cadmium exposure induces a stress response and cell death in the developing olfactory system followed by long-term olfactory deficits in juvenile zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blechinger, Scott R.; Toxicology Group, University of Saskatchewan, Saskatoon, Saskatchewan; Kusch, Robin C.

    2007-10-01

    The toxic effects of cadmium and other metals have been well established. A primary target of these metals is known to be the olfactory system, and fish exposed to a number of different waterborne metals display deficiencies in olfaction. Importantly, exposure over embryonic/larval development periods can cause deficits in chemosensory function in juvenile fish, but the specific cell types affected are unknown. We have previously characterized a transgenic zebrafish strain expressing the green fluorescent protein (eGFP) gene linked to the hsp70 gene promoter, and shown it to be a useful tool for examining cell-specific toxicity in living embryos and larvae.more » Here we show that the hsp70/eGFP transgene is strongly and specifically upregulated within the olfactory sensory neurons (OSNs) of transgenic zebrafish larvae following a brief 3-h exposure to water-borne cadmium. This molecular response was closely correlated to an endpoint for tissue damage within the olfactory placode, namely cell death. Furthermore, cadmium-induced olfactory cytotoxicity in zebrafish larvae gives rise to more permanent effects. Juvenile zebrafish briefly exposed to cadmium during early larval development display deficits in olfactory-dependent predator avoidance behaviors 4-6 weeks after a return to clean water. Lateral line neuromasts of exposed zebrafish larvae also activate both the endogenous hsp70 gene and the hsp70/eGFP transgene. The data reveal that even a very brief exposure period that gives rise to cell death within the developing olfactory placode results in long-term deficits in olfaction, and that hsp70/eGFP may serve as an effective indicator of sublethal cadmium exposure in sensory cells.« less

  16. Sperm sorting procedure induces a redistribution of Hsp70 but not Hsp60 and Hsp90 in boar spermatozoa.

    PubMed

    Spinaci, Marcella; Volpe, Sara; Bernardini, Chiara; de Ambrogi, Marco; Tamanini, Carlo; Seren, Eraldo; Galeati, Giovanna

    2006-01-01

    Heat shock proteins, besides their protective function against stresses, have been recently indicated as key factors for sperm fertilizing ability. Since sexing sperm by high-speed flow-cytometry subjects them to different physical, mechanical, and chemical stresses, the present study was designed to verify, by immunofluorescence and Western blot, whether the sorting procedure induces any modification in the amount and cellular distribution of heat shock proteins 60, 70, and 90 (Hsp60, Hsp70, Hsp90). Immunolocalization and Western blot quantification of both Hsp60 and Hsp90 did not reveal differences between unsorted and sorted semen. On the contrary, a redistribution of Hsp70 immunoreactivity from the equatorial subsegment toward the equator of sperm cells was recorded after sorting; this relocation suggests capacitation-like changes of sperm membrane. This modification seems to be caused mainly by incubation with Hoechst 33342, while both passage of sperm through flow cytometer and laser beam represent only minor stimuli. A further Hsp70 redistribution seems to be due to the final steps of sperm sorting, charging, and deflection of drops, and to the dilution during collection. On the other hand, staining procedure and mechanical stress seem to be the factors most injurious to sperm viability. Moreover, Hsp70 relocation was deeply influenced by the storage method. In fact, storing sexed spermatozoa, after centrifugation, in a small volume in presence of seminal plasma induced a reversion of Hsp70 redistribution, while storage in the diluted catch fluid of collection tubes caused Hsp70 relocation in most sorted spermatozoa.

  17. Heat shock response and metabolic stress in the tropical estuarine copepod Pseudodiaptomus annandalei converge at its upper thermal optimum.

    PubMed

    Low, Joyce S Y; Chew, Li Lee; Ng, Ching Ching; Goh, Hao Chin; Lehette, Pascal; Chong, Ving Ching

    2018-05-01

    Heat shock response (HSR), in terms of transcription regulation of two heat shock proteins genes hsp70 and hsp90), was analysed in a widespread tropical copepod Pseudodiaptomus annandalei. The mRNA transcripts of both genes were quantified after copepods at a salinity of 20 underwent an acclimation process involving an initial acclimation temperature of 29 °C, followed by gradual thermal ramping to the target exposure temperature range of 24-36 °C. The respective cellular HSR and organismal metabolism, measured by respiratory activity at exposure temperatures, were compared. The fold change in mRNA expression for both hsp70 and hsp90 (8-9 fold) peaks at 32 °C, which is very close to 32.4 °C, the upper thermal optimum for respiration in the species. Unexpectedly, the modelled HSR curves peak at only 3 °C (hsp90) and 3.5 °C (hsp70) above the mean water temperature (29.32 °C) of the copepod in the field. We propose that copepods in tropical waters adopt a preparative HSR strategy, early at the upper limit of its thermal optimum, due to the narrow thermal range of its habitat thus precluding substantial energy demand at higher temperatures. However, the model suggests that the species could survive to at least 36 °C with short acclimation time. Nevertheless, the significant overlap between its thermal range of hsp synthesis and the narrow temperature range of its habitat also suggests that any unprecedented rise in sea temperature would have a detrimental effect on the species. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. A cytosolic relay of heat shock proteins HSP70-1A and HSP90β monitors the folding trajectory of the serotonin transporter.

    PubMed

    El-Kasaby, Ali; Koban, Florian; Sitte, Harald H; Freissmuth, Michael; Sucic, Sonja

    2014-10-17

    Mutations in the C terminus of the serotonin transporter (SERT) disrupt folding and export from the endoplasmic reticulum. Here we examined the hypothesis that a cytosolic heat shock protein relay was recruited to the C terminus to assist folding of SERT. This conjecture was verified by the following observations. (i) The proximal portion of the SERT C terminus conforms to a canonical binding site for DnaK/heat shock protein of 70 kDa (HSP70). A peptide covering this segment stimulated ATPase activity of purified HSP70-1A. (ii) A GST fusion protein comprising the C terminus of SERT pulled down HSP70-1A. The interaction between HSP70-1A and SERT was visualized in live cells by Förster resonance energy transfer: it was restricted to endoplasmic reticulum-resident transporters and enhanced by an inhibitor that traps HSP70-1A in its closed state. (iv) Co-immunoprecipitation confirmed complex formation of SERT with HSP70-1A and HSP90β. Consistent with an HSP relay, co-chaperones (e.g. HSC70-HSP90-organizing protein) were co-immunoprecipitated with the stalled mutants SERT-R607A/I608A and SERT-P601A/G602A. (v) Depletion of HSP90β by siRNA or its inhibition increased the cell surface expression of wild type SERT and SERT-F604Q. In contrast, SERT-R607A/I608A and SERT-P601A/G602A were only rendered susceptible to inhibition of HSP70 and HSP90 by concomitant pharmacochaperoning with noribogaine. (vi) In JAR cells, inhibition of HSP90 also increased the levels of SERT, indicating that endogenously expressed transporter was also susceptible to control by HSP90β. These findings support the concept that the folding trajectory of SERT is sampled by a cytoplasmic chaperone relay. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Induction of HSP70 promotes DeltaF508 CFTR trafficking.

    PubMed

    Choo-Kang, L R; Zeitlin, P L

    2001-07-01

    The DeltaF508 cystic fibrosis transmembrane conductance regulator (CFTR) is a temperature-sensitive trafficking mutant that is detected as an immature 160-kDa form (band B) in gel electrophoresis. The goal of this study was to test the hypothesis that HSP70, a member of the 70-kDa heat shock protein family, promotes DeltaF508 CFTR processing to the mature 180-kDa form (band C). Both pharmacological and genetic techniques were used to induce HSP70. IB3-1 cells were treated with sodium 4-phenylbutyrate (4PBA) to promote maturation of DeltaF508 CFTR to band C. A dose-dependent increase in band C and total cellular HSP70 was observed. Under these conditions, HSP70-CFTR complexes were increased and 70-kDa heat shock cognate protein-CFTR complexes were decreased. Increased DeltaF508 CFTR maturation was also seen after transfection with an HSP70 expression plasmid and exposure to glutamine, an inducer of HSP70. With immunofluorescence techniques, the increased appearance of CFTR band C correlated with CFTR distribution beyond the perinuclear regions. These data suggest that induction of HSP70 promotes DeltaF508 CFTR maturation and trafficking.

  20. Glutamine's protection against cellular injury is dependent on heat shock factor-1.

    PubMed

    Morrison, Angela L; Dinges, Martin; Singleton, Kristen D; Odoms, Kelli; Wong, Hector R; Wischmeyer, Paul E

    2006-06-01

    Glutamine (GLN) has been shown to protect cells, tissues, and whole organisms from stress and injury. Enhanced expression of heat shock protein (HSP) has been hypothesized to be responsible for this protection. To date, there are no clear mechanistic data confirming this relationship. This study tested the hypothesis that GLN-mediated activation of the HSP pathway via heat shock factor-1 (HSF-1) is responsible for cellular protection. Wild-type HSF-1 (HSF-1(+/+)) and knockout (HSF-1(-/-)) mouse fibroblasts were used in all experiments. Cells were treated with GLN concentrations ranging from 0 to 16 mM and exposed to heat stress injury in a concurrent treatment model. Cell viability was assayed with phenazine methosulfate plus tetrazolium salt, HSP-70, HSP-25, and nuclear HSF-1 expression via Western blot analysis, and HSF-1/heat shock element (HSE) binding via EMSA. GLN significantly attenuated heat-stress induced cell death in HSF-1(+/+) cells in a dose-dependent manner; however, the survival benefit of GLN was lost in HSF-1(-/-) cells. GLN led to a dose-dependent increase in HSP-70 and HSP-25 expression after heat stress. No inducible HSP expression was observed in HSF-1(-/-) cells. GLN increased unphosphorylated HSF-1 in the nucleus before heat stress. This was accompanied by a GLN-mediated increase in HSF-1/HSE binding and nuclear content of phosphorylated HSF-1 after heat stress. This is the first demonstration that GLN-mediated cellular protection after heat-stress injury is related to HSF-1 expression and cellular capacity to activate an HSP response. Furthermore, the mechanism of GLN-mediated protection against injury appears to involve an increase in nuclear HSF-1 content before stress and increased HSF-1 promoter binding and phosphorylation.

  1. Regulation of Hsp27 and Hsp70 expression in human and mouse skin construct models by caveolae following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Adrienne T.; Hayden, Patrick J.; Casillas, Robert P.

    Dermal exposure to the vesicant sulfur mustard causes marked inflammation and tissue damage. Basal keratinocytes appear to be a major target of sulfur mustard. In the present studies, mechanisms mediating skin toxicity were examined using a mouse skin construct model and a full-thickness human skin equivalent (EpiDerm-FT{sup TM}). In both systems, administration of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide (CEES, 100-1000 {mu}M) at the air surface induced mRNA and protein expression of heat shock proteins 27 and 70 (Hsp27 and Hsp70). CEES treatment also resulted in increased expression of caveolin-1, the major structural component of caveolae. Immunohistochemistry revealedmore » that Hsp27, Hsp70 and caveolin-1 were localized in basal and suprabasal layers of the epidermis. Caveolin-1 was also detected in fibroblasts in the dermal component of the full thickness human skin equivalent. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that Hsp27 and Hsp70 were localized in caveolae. Treatment of mouse keratinocytes with filipin III or methyl-{beta}-cyclodextrin, which disrupt caveolar structure, markedly suppressed CEES-induced Hsp27 and Hsp70 mRNA and protein expression. CEES treatment is known to activate JNK and p38 MAP kinases; in mouse keratinocytes, inhibition of these enzymes suppressed CEES-induced expression of Hsp27 and Hsp70. These data suggest that MAP kinases regulate Hsp 27 and Hsp70; moreover, caveolae-mediated regulation of heat shock protein expression may be important in the pathophysiology of vesicant-induced skin toxicity.« less

  2. Regulation of Hsp27 and Hsp70 expression in human and mouse skin construct models by caveolae following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide

    PubMed Central

    Black, Adrienne T.; Hayden, Patrick J.; Casillas, Robert P.; Heck, Diane E.; Gerecke, Donald R.; Sinko, Patrick J.; Laskin, Debra L.; Laskin, Jeffrey D.

    2012-01-01

    Dermal exposure to the vesicant sulfur mustard causes marked inflammation and tissue damage. Basal keratinocytes appear to be a major target of sulfur mustard. In the present studies, mechanisms mediating skin toxicity were examined using a mouse skin construct model and a full-thickness human skin equivalent (EpiDerm-FTTM). In both systems, administration of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide (CEES, 100–1000 µM) at the air surface induced mRNA and protein expression of heat shock proteins 27 and 70 (Hsp27 and Hsp70). CEES treatment also resulted in increased expression of caveolin-1, the major structural component of caveolae. Immunohistochemistry revealed that Hsp27, Hsp70 and caveolin-1 were localized in basal and suprabasal layers of the epidermis. Caveolin-1 was also detected in fibroblasts in the dermal component of the full thickness human skin equivalent. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that Hsp27 and Hsp70 were localized in caveolae. Treatment of mouse keratinocytes with filipin III or methyl-β-cyclodextrin, which disrupt caveolar structure, markedly suppressed CEES-induced Hsp27 and Hsp70 mRNA and protein expression. CEES treatment is known to activate JNK and p38 MAP kinases; in mouse keratinocytes, inhibition of these enzymes suppressed CEES-induced expression of Hsp27 and Hsp70. These data suggest that MAP kinases regulate Hsp 27 and Hsp70; moreover, caveolae-mediated regulation of heat shock protein expression may be important in the pathophysiology of vesicant-induced skin toxicity. PMID:21457723

  3. Specific Binding of Tetratricopeptide Repeat Proteins to Heat Shock Protein 70 (Hsp70) and Heat Shock Protein 90 (Hsp90) Is Regulated by Affinity and Phosphorylation.

    PubMed

    Assimon, Victoria A; Southworth, Daniel R; Gestwicki, Jason E

    2015-12-08

    Heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90) require the help of tetratricopeptide repeat (TPR) domain-containing cochaperones for many of their functions. Each monomer of Hsp70 or Hsp90 can interact with only a single TPR cochaperone at a time, and each member of the TPR cochaperone family brings distinct functions to the complex. Thus, competition for TPR binding sites on Hsp70 and Hsp90 appears to shape chaperone activity. Recent structural and biophysical efforts have improved our understanding of chaperone-TPR contacts, focusing on the C-terminal EEVD motif that is present in both chaperones. To better understand these important protein-protein interactions on a wider scale, we measured the affinity of five TPR cochaperones, CHIP, Hop, DnaJC7, FKBP51, and FKBP52, for the C-termini of four members of the chaperone family, Hsc70, Hsp72, Hsp90α, and Hsp90β, in vitro. These studies identified some surprising selectivity among the chaperone-TPR pairs, including the selective binding of FKBP51/52 to Hsp90α/β. These results also revealed that other TPR cochaperones are only able to weakly discriminate between the chaperones or between their paralogs. We also explored whether mimicking phosphorylation of serine and threonine residues near the EEVD motif might impact affinity and found that pseudophosphorylation had selective effects on binding to CHIP but not other cochaperones. Together, these findings suggest that both intrinsic affinity and post-translational modifications tune the interactions between the Hsp70 and Hsp90 proteins and the TPR cochaperones.

  4. Regulation of Hsp27 and Hsp70 expression in human and mouse skin construct models by caveolae following exposure to the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide.

    PubMed

    Black, Adrienne T; Hayden, Patrick J; Casillas, Robert P; Heck, Diane E; Gerecke, Donald R; Sinko, Patrick J; Laskin, Debra L; Laskin, Jeffrey D

    2011-06-01

    Dermal exposure to the vesicant sulfur mustard causes marked inflammation and tissue damage. Basal keratinocytes appear to be a major target of sulfur mustard. In the present studies, mechanisms mediating skin toxicity were examined using a mouse skin construct model and a full-thickness human skin equivalent (EpiDerm-FT™). In both systems, administration of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide (CEES, 100-1000μM) at the air surface induced mRNA and protein expression of heat shock proteins 27 and 70 (Hsp27 and Hsp70). CEES treatment also resulted in increased expression of caveolin-1, the major structural component of caveolae. Immunohistochemistry revealed that Hsp27, Hsp70 and caveolin-1 were localized in basal and suprabasal layers of the epidermis. Caveolin-1 was also detected in fibroblasts in the dermal component of the full thickness human skin equivalent. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that Hsp27 and Hsp70 were localized in caveolae. Treatment of mouse keratinocytes with filipin III or methyl-β-cyclodextrin, which disrupt caveolar structure, markedly suppressed CEES-induced Hsp27 and Hsp70 mRNA and protein expression. CEES treatment is known to activate JNK and p38 MAP kinases; in mouse keratinocytes, inhibition of these enzymes suppressed CEES-induced expression of Hsp27 and Hsp70. These data suggest that MAP kinases regulate Hsp 27 and Hsp70; moreover, caveolae-mediated regulation of heat shock protein expression may be important in the pathophysiology of vesicant-induced skin toxicity. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Acetylcholinesterase (AChE) and heat shock proteins (Hsp70) of gypsy moth (Lymantria dispar L.) larvae in response to long-term fluoranthene exposure.

    PubMed

    Mrdaković, Marija; Ilijin, Larisa; Vlahović, Milena; Matić, Dragana; Gavrilović, Anja; Mrkonja, Aleksandra; Perić-Mataruga, Vesna

    2016-09-01

    Polycyclic aromatic hydrocarbons (PAHs) may affect biochemical and physiological processes in living organisms, thus impairing fitness related traits and influencing their populations. This imposes the need for providing early-warning signals of pollution. Our study aimed to examine changes in the activity of acetylcholinesterase (AChE) and the concentration of heat shock proteins (Hsp70) in homogenates of brain tissues of fifth instar gypsy moth (Lymantria dispar L.) larvae, exposed to the ubiquitous PAH, fluoranthene, supplemented to the rearing diet. Significantly increased activity of AChE in larvae fed on the diets with high fluoranthene concentrations suggests the necessity for elucidation of the role of AChE in these insects when exposed to PAH pollution. Significant induction of Hsp70 in gypsy moth larvae reared on the diets containing low fluoranthene concentrations, indicate that changes in the level of Hsp70 might be useful as an indicator of pollution in this widespread forest species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Validation of Heat Shock Protein 70 as a Tumor-Specific Biomarker for Monitoring the Outcome of Radiation Therapy in Tumor Mouse Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayer, Christine; Liebhardt, Michael E.; Schmid, Thomas E.

    2014-03-01

    Purpose: Tumor cells, in contrast to normal cells, frequently overexpress heat shock protein 70 (Hsp70) in the cytosol, present it on their cell surface, and actively release it. Therefore, soluble Hsp70 (sHsp70) was investigated as a potential tumor biomarker for monitoring the outcome of radiation therapy. Methods and Materials: Plasma from mice bearing membrane Hsp70 (mHsp70)-positive FaDu human squamous cell carcinoma of the head and neck and spontaneous pancreatic ductal adenocarcinoma (PDAC) was investigated. A cohort of mice with FaDu tumors (0.32 cm{sup 3}) was irradiated with 30 Gy, and plasma was collected 24 hours after irradiation, after the tumors had shrunk tomore » 50% of their starting volume and after complete remission. sHsp70 levels in the plasma were quantified by enzyme-linked immunosorbent assay. Results: sHsp70 levels were significantly higher in the blood of tumor-bearing mice than that of control animals. A correlation between increasing sHsp70 plasma levels and tumor volume in the range of 0.01 cm{sup 3} to 0.66 cm{sup 3} was observed. Radiation-induced regression of the tumors was associated with significantly decreased sHsp70 levels, which returned to the level of control animals after complete remission. Conclusion: We propose sHsp70 as an innovative biomarker for detecting tumors and for monitoring the clinical outcome of radiation therapy in cancer patients.« less

  7. Expression of heat shock proteins (HSPs) in Aedes aegypti (L) and Aedes albopictus (Skuse) (Diptera: Culicidae) larvae in response to thermal stress.

    PubMed

    Sivan, Arun; Shriram, Ananganallur Nagarajan; Muruganandam, Nagarajan; Thamizhmani, Ramanathan

    2017-03-01

    Climatic changes are responsible, to a certain extent for the occurrence and spread of arboviral pathogens world over. Temperature is one of the important abiotic factors influencing the physiological processes of mosquitoes. Several genes of heat shock protein (HSP) families are known to be expressed in mosquitoes, which aid in overcoming stress induced by elevated temperature. In order to understand expression of HSP family genes in the Andaman population of Aedes aegypti and Aedes albopictus, we used quantitative real-time polymerase chain reaction (qPCR) to examine expression levels of HSPs in response to thermal stress under laboratory and in actual field conditions. HSP genes AeaHsp26, AeaHsp83 and AeaHsc70 were examined by comparing relative transcript expression levels at 31°C, 33°C, 34°C, 37°C and 39°C respectively. Enhanced up-regulation of HSPs was evident in third instar larvae of Ae. aegypti with rise in water temperatures (31°C, 33°C, 34°C) in the containers in the nature and thermally stressed (37°C and 39°C) in laboratory conditions. In Ae. albopictus up-regulation of HSPs was observed in field conditions at 34°C only and when thermally treated at 37°C, while down regulation was evident in larvae subjected to thermal stress in laboratory at 39°C. Data on expression levels revealed that larvae of Ae. aegypti was tolerant to thermal stress, while Ae. albopictus larvae was sensitive to heat shock treatment. Statistical analysis indicated that AeaHsp83 genes were significantly up-regulated in Ae. aegypti larvae after 360min exposure to high temperature (39°C). The difference in expression levels of AeaHsp26, AeaHsc70 and AeaHsp83 genes in Ae. albopictus larvae was statistically significant between different exposure temperatures. All of these genes were significantly up-regulated at 37°C. These results indicate that AeaHsp26, AeaHsc70 and AeaHsp83 are important markers of stress and perhaps function as proteins conferring protection and enhance survival of the Andaman population of both the Aedine species. Biological implications of these findings could impact the vector competencies. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Hsp70-Bag3 interactions regulate cancer-related signaling networks.

    PubMed

    Colvin, Teresa A; Gabai, Vladimir L; Gong, Jianlin; Calderwood, Stuart K; Li, Hu; Gummuluru, Suryaram; Matchuk, Olga N; Smirnova, Svetlana G; Orlova, Nina V; Zamulaeva, Irina A; Garcia-Marcos, Mikel; Li, Xiaokai; Young, Z T; Rauch, Jennifer N; Gestwicki, Jason E; Takayama, Shinichi; Sherman, Michael Y

    2014-09-01

    Bag3, a nucleotide exchange factor of the heat shock protein Hsp70, has been implicated in cell signaling. Here, we report that Bag3 interacts with the SH3 domain of Src, thereby mediating the effects of Hsp70 on Src signaling. Using several complementary approaches, we established that the Hsp70-Bag3 module is a broad-acting regulator of cancer cell signaling by modulating the activity of the transcription factors NF-κB, FoxM1, Hif1α, the translation regulator HuR, and the cell-cycle regulators p21 and survivin. We also identified a small-molecule inhibitor, YM-1, that disrupts the Hsp70-Bag3 interaction. YM-1 mirrored the effects of Hsp70 depletion on these signaling pathways, and in vivo administration of this drug was sufficient to suppress tumor growth in mice. Overall, our results defined Bag3 as a critical factor in Hsp70-modulated signaling and offered a preclinical proof-of-concept that the Hsp70-Bag3 complex may offer an appealing anticancer target. ©2014 American Association for Cancer Research.

  9. Hsp70-Bag3 interactions regulate cancer-related signaling networks

    PubMed Central

    Colvin, T.A.; Gabai, V.L.; Gong, J.; Calderwood, S.K.; Li, H.; Gummuluru, S.; Matchuk, O.N; Smirnova, S.G; Orlova, N.V; Zamulaeva, I.A; Garcia-Marcos, M.; Li, X.; Young, Z.T.; Rauch, J.N.; Gestwicki, J.E.; Takayama, S.; Sherman, M.Y.

    2014-01-01

    Bag3, a nucleotide exchange factor of the heat shock protein Hsp70, has been implicated in cell signaling. Here we report that Bag3 interacts with the SH3 domain of Src, thereby mediating the effects of Hsp70 on Src signaling. Using several complementary approaches, we established that the Hsp70-Bag3 module is a broad-acting regulator of cancer cell signaling, including by modulating the activity of the transcription factors NF-kB, FoxM1 and Hif1α, the translation regulator HuR and the cell cycle regulators p21 and survivin. We also identified a small molecule inhibitor, YM-1, that disrupts Hsp70-Bag3 interaction. YM-1 mirrored the effects of Hsp70 depletion on these signaling pathways, and in vivo administration of this drug was sufficient to suppress tumor growth in mice. Overall, our results defined Bag3 as a critical factor in Hsp70-modulated signaling and offered a preclinical proof-of-concept that the Hsp70-Bag3 complex may offer an appealing anti-cancer target. PMID:24994713

  10. CD36 signaling inhibits the translation of heat shock protein 70 induced by oxidized low density lipoprotein through activation of peroxisome proliferators-activated receptor γ

    PubMed Central

    Lee, Kyoung-Jin; Ha, Eun-Soo; Kim, Min-Kyoung; Lee, Sang-Hoon; Suh, Jae Sung; Lee, Sun-Hee; Park, Kyeong Han; Park, Jeong Hyun; Kim, Dae Joong; Kang, Dongmin; Kim, Byung-Chul; Jeoung, Dooil; Kim, Young-Kyoun; Kim, Ho-Dirk

    2008-01-01

    Oxidized LDL (OxLDL), a causal factor in atherosclerosis, induces the expression of heat shock proteins (Hsp) in a variety of cells. In this study, we investigated the role of CD36, an OxLDL receptor, and peroxisome proliferator-activated receptor γ (PPARγ) in OxLDL-induced Hsp70 expression. Overexpression of dominant-negative forms of CD36 or knockdown of CD36 by siRNA transfection increased OxLDL-induced Hsp70 protein expression in human monocytic U937 cells, suggesting that CD36 signaling inhibits Hsp70 expression. Similar results were obtained by the inhibition of PPARγ activity or knockdown of PPARγ expression. In contrast, overexpression of CD36, which is induced by treatment of MCF-7 cells with troglitazone, decreased Hsp70 protein expression induced by OxLDL. Interestingly, activation of PPARγ through a synthetic ligand, ciglitazone or troglitazone, decreased the expression levels of Hsp70 protein in OxLDL-treated U937 cells. However, major changes in Hsp70 mRNA levels were not observed. Cycloheximide studies demonstrate that troglitazone attenuates Hsp70 translation but not Hsp70 protein stability. PPARγ siRNA transfection reversed the inhibitory effects of troglitazone on Hsp70 translation. These results suggest that CD36 signaling may inhibit stress-induced gene expression by suppressing translation via activation of PPARγ in monocytes. These findings reveal a new molecular basis for the anti-inflammatory effects of PPARγ. PMID:19116451

  11. The human escort protein Hep binds to the ATPase domain of mitochondrial hsp70 and regulates ATP hydrolysis.

    PubMed

    Zhai, Peng; Stanworth, Crystal; Liu, Shirley; Silberg, Jonathan J

    2008-09-19

    Hsp70 escort proteins (Hep) have been implicated as essential for maintaining the function of yeast mitochondrial hsp70 molecular chaperones (mtHsp70), but the role that escort proteins play in regulating mammalian chaperone folding and function has not been established. We present evidence that human mtHsp70 exhibits limited solubility due to aggregation mediated by its ATPase domain and show that human Hep directly enhances chaperone solubility through interactions with this domain. In the absence of Hep, mtHsp70 was insoluble when expressed in Escherichia coli, as was its isolated ATPase domain and a chimera having this domain fused to the peptide-binding domain of HscA, a soluble monomeric chaperone. In contrast, these proteins all exhibited increased solubility when expressed in the presence of Hep. In vitro studies further revealed that purified Hep regulates the interaction of mtHsp70 with nucleotides. Full-length mtHsp70 exhibited slow intrinsic ATP hydrolysis activity (6.8+/-0.2 x 10(-4) s(-1)) at 25 degrees C, which was stimulated up to 49-fold by Hep. Hep also stimulated the activity of the isolated ATPase domain, albeit to a lower maximal extent (11.5-fold). In addition, gel-filtration studies showed that formation of chaperone-escort protein complexes inhibited mtHsp70 self-association, and they revealed that Hep binding to full-length mtHsp70 and its isolated ATPase domain is strongest in the absence of nucleotides. These findings provide evidence that metazoan escort proteins regulate the catalytic activity and solubility of their cognate chaperones, and they indicate that both forms of regulation arise from interactions with the mtHsp70 ATPase domain.

  12. The Human Escort Protein Hep Binds to the ATPase Domain of Mitochondrial Hsp70 and Regulates ATP Hydrolysis*

    PubMed Central

    Zhai, Peng; Stanworth, Crystal; Liu, Shirley; Silberg, Jonathan J.

    2008-01-01

    Hsp70 escort proteins (Hep) have been implicated as essential for maintaining the function of yeast mitochondrial hsp70 molecular chaperones (mtHsp70), but the role that escort proteins play in regulating mammalian chaperone folding and function has not been established. We present evidence that human mtHsp70 exhibits limited solubility due to aggregation mediated by its ATPase domain and show that human Hep directly enhances chaperone solubility through interactions with this domain. In the absence of Hep, mtHsp70 was insoluble when expressed in Escherichia coli, as was its isolated ATPase domain and a chimera having this domain fused to the peptide-binding domain of HscA, a soluble monomeric chaperone. In contrast, these proteins all exhibited increased solubility when expressed in the presence of Hep. In vitro studies further revealed that purified Hep regulates the interaction of mtHsp70 with nucleotides. Full-length mtHsp70 exhibited slow intrinsic ATP hydrolysis activity (6.8 ± 0.2 × 10-4 s-1) at 25 °C, which was stimulated up to 49-fold by Hep. Hep also stimulated the activity of the isolated ATPase domain, albeit to a lower maximal extent (11.5-fold). In addition, gel-filtration studies showed that formation of chaperone-escort protein complexes inhibited mtHsp70 self-association, and they revealed that Hep binding to full-length mtHsp70 and its isolated ATPase domain is strongest in the absence of nucleotides. These findings provide evidence that metazoan escort proteins regulate the catalytic activity and solubility of their cognate chaperones, and they indicate that both forms of regulation arise from interactions with the mtHsp70 ATPase domain. PMID:18632665

  13. HSP-70 mitigates LPS/SKI-induced cell damage by increasing sphingosine kinase 1 (SK1).

    PubMed

    Ding, Xuan Z; Feng, Xiao R; Borschel, Richard H; Nikolich, Mikeljon P; Feng, Jie; Li, Yan S; Hoover, David L

    2010-06-01

    Heat shock proteins (HSPs) are potent protectors of cellular integrity against environmental stresses, including toxic microbial products. To investigate the mechanism of HSP-70 cell protection against bacterial lipopolysaccharide (LPS), we established a stable HSP-70 gene-transfected RAW 264.7 murine macrophage model of LPS-induced cell death. Bacterial LPS increases the activity of sphingosine kinase 1 (SK1), which catalyzes formation of sphingosine-1-phosphate (S1P). S1P functions as a critical signal for initiation and maintenance of diverse aspects of immune cell activation and function. When mouse macrophages were incubated with Escherichia coli LPS (1 microg/ml) and sphingosine kinase inhibitor (SKI, 5 microM), 90% of cells died. Neither LPS nor SKI alone at these doses damaged the cells. The LPS/SKI-induced cell death was partially reversed by overexpression of HSP-70 in gene-transfected macrophages. The specificity of HSP-70 in this reversal was demonstrated by transfection of HSP-70-specific siRNA. Down-regulation of HSP-70 expression after transfection of siRNA specific for HSP-70 was associated with increased LPS/SKI-induced cell damage. Overexpression of human or murine HSP-70 (HSPA1A and Hspa1a, respectively) increased both cellular SK1 mRNA and protein levels. Cellular heat shock also increased SK1 protein. These studies confirm the importance of SK1 as a protective moiety in LPS-induced cell injury and demonstrate that HSP-70-mediated protection from cells treated with LPS/SKI is accompanied by upregulating expression of SK1. HSP-70-mediated increases in SK1 and consequent increased levels of S1P may also play a role in protection of cells from other processes that lead to programmed cell death. Published by Elsevier Inc.

  14. Role of Hsp-70 in triptolide-mediated cell death of neuroblastoma.

    PubMed

    Antonoff, Mara B; Chugh, Rohit; Skube, Steven J; Dudeja, Vikas; Borja-Cacho, Daniel; Clawson, Kimberly A; Vickers, Selwyn M; Saluja, Ashok K

    2010-09-01

    Our recent work demonstrated that treatment of neuroblastoma with triptolide causes apoptotic cell death in vitro and decreases tumor size in vivo. Triptolide therapy has been associated with reduced expression of Hsp-70, suggesting a mechanism of cell killing involving Hsp-70 inhibition. The principal objective of this study was to investigate the role of Hsp-70 in triptolide-mediated cell death in neuroblastoma. Neuroblastoma cells were transfected with Hsp-70-specific siRNA. Viability, caspase activity, and phosphatidylserine externalization were subsequently measured. An orthotopic, syngeneic murine tumor model was developed, and randomized mice received daily injections of triptolide or vehicle. At 21 d, mice were sacrificed. Immunohistochemisty was used to characterize Hsp-70 levels in residual tumors, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was performed to identify cells undergoing apoptosis. Targeted silencing of Hsp-70 with siRNA significantly decreased cellular viability, augmented caspase-3 activity, and resulted in increased annexin-V staining. These effects parallel those findings obtained following treatment with triptolide. Residual tumors from triptolide-treated mice showed minimal staining with Hsp-70 immunohistochemistry, while control tumors stained prominently. Tumors from treated mice demonstrated marked staining with the TUNEL assay, while control tumors showed no evidence of apoptosis. Use of siRNA to suppress Hsp-70 expression in neuroblastoma resulted in apoptotic cell death, similar to the effects of triptolide. Residual tumors from triptolide-treated mice expressed decreased levels of Hsp-70 and demonstrated significant apoptosis. These findings support the hypothesis that Hsp-70 inhibition plays a significant role in triptolide-mediated neuroblastoma cell death. Copyright 2010 Elsevier Inc. All rights reserved.

  15. Expression of Selected Ginkgo biloba Heat Shock Protein Genes After Cold Treatment Could Be Induced by Other Abiotic Stress

    PubMed Central

    Cao, Fuliang; Cheng, Hua; Cheng, Shuiyuan; Li, Linling; Xu, Feng; Yu, Wanwen; Yuan, Honghui

    2012-01-01

    Heat shock proteins (HSPs) play various stress-protective roles in plants. In this study, three HSP genes were isolated from a suppression subtractive hybridization (SSH) cDNA library of Ginkgo biloba leaves treated with cold stress. Based on the molecular weight, the three genes were designated GbHSP16.8, GbHSP17 and GbHSP70. The full length of the three genes were predicted to encode three polypeptide chains containing 149 amino acids (Aa), 152 Aa, and 657 Aa, and their corresponding molecular weights were predicted as follows: 16.67 kDa, 17.39 kDa, and 71.81 kDa respectively. The three genes exhibited distinctive expression patterns in different organs or development stages. GbHSP16.8 and GbHSP70 showed high expression levels in leaves and a low level in gynoecia, GbHSP17 showed a higher transcription in stamens and lower level in fruit. This result indicates that GbHSP16.8 and GbHSP70 may play important roles in Ginkgo leaf development and photosynthesis, and GbHSP17 may play a positive role in pollen maturation. All three GbHSPs were up-regulated under cold stress, whereas extreme heat stress only caused up-regulation of GbHSP70, UV-B treatment resulted in up-regulation of GbHSP16.8 and GbHSP17, wounding treatment resulted in up-regulation of GbHSP16.8 and GbHSP70, and abscisic acid (ABA) treatment caused up-regulation of GbHSP70 primarily. PMID:22754330

  16. Antimicrobial activity and mechanism of action of a novel cationic α-helical octadecapeptide derived from heat shock protein 70 of rice.

    PubMed

    Taniguchi, Masayuki; Ikeda, Atsuo; Nakamichi, Shun-Ichi; Ishiyama, Yohei; Saitoh, Eiichi; Kato, Tetsuo; Ochiai, Akihito; Tanaka, Takaaki

    2013-10-01

    Hsp70(241-258), an octadecapeptide derived from the heat shock protein 70 (Hsp70) of rice (Oryza sativa L. japonica), is a novel cationic α-helical antimicrobial peptide (AMP) that contains four lysine, two arginine, and two histidine residues. The antimicrobial activity of Hsp70(241-258) against Porphyromonas gingivalis, a periodontal pathogen, and Candida albicans, an opportunistic fungal pathogen, was quantitatively evaluated using a chemiluminescence method that measures ATP derived from viable cells. The 50% growth-inhibitory concentrations of Hsp70(241-258) against P. gingivalis and C. albicans cells were 63 μM and 70 μM, respectively. Hsp70(241-258) had little or no hemolytic activity even at 1mM, and showed negligible cytotoxicity up to 300 μM. The degrees of calcein leakage from large unilamellar vesicles, which mimic the membranes of Gram-negative bacteria, and 3,3'-dipropylthiadicarbocyanine iodide release from P. gingivalis cells induced by the addition of Hsp70(241-258) increased in a concentration-dependent manner. When Hsp70(241-258) was added to calcein-acetoxymethyl ester-loaded C. albicans cells, calcein release from the cells increased in a concentration-dependent manner. Flow cytometric analysis also showed that the percentages of C. albicans cells stained with propidium iodide, a DNA-intercalating dye, increased as the concentration of Hsp70(241-258) added was increased. Therefore, Hsp70(241-258) appears to exhibit antimicrobial activity against P. gingivalis and C. albicans through membrane disruption. These results suggest that Hsp70(241-258) could be useful as a safe and potent AMP against P. gingivalis and C. albicans in many fields of health care, especially in the control of oral infections. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Seasonal variations of cellular stress response of the gilthead sea bream (Sparus aurata).

    PubMed

    Feidantsis, Konstantinos; Antonopoulou, Efthimia; Lazou, Antigone; Pörtner, Hans O; Michaelidis, Basile

    2013-07-01

    The present study aimed to investigate the seasonal cellular stress response in vital organs, like the heart, the liver, the whole blood and the skeletal (red and white) muscles of the Mediterranean fish Sparus aurata during a 1-year acclimatization period in the field, in two examined depths (0-2 m and 10-12 m). Processes studied included heat shock protein expression and protein kinase activation. Molecular responses were addressed through the expression of Hsp70 and Hsp90, the phosphorylation of stress-activated protein kinases and particularly p38 mitogen-activated protein kinase (p38 MAPK), the extracellular signal-regulated kinases (ERK-1/2) and c-Jun N-terminal kinases (JNK1/2/3). The induction of Hsp70 and Hsp90 and the phosphorylation of p38 MAPK, JNKs and ERKs in the examined five tissues of the gilthead sea bream indicated a cellular stress response under the prism of a seasonal pattern which was characterized by distinct tissue specificity. Specifically, Hsp induction and MAPK activation occurred before peak summer water temperatures, with no further increases in their levels despite increases in water temperatures. Moreover, although water temperature did not vary significantly with depth of immersion, significant effects of depth on cellular stress response were observed, probably caused by different light regime. The expression and the activation of these certain proteins can be used as tools to define the extreme thermal limits of the gilthead sea bream.

  18. The Potential Coordination of the Heat-Shock Proteins and Antioxidant Enzyme Genes of Aphidius gifuensis in Response to Thermal Stress

    PubMed Central

    Kang, Zhi-Wei; Liu, Fang-Hua; Liu, Xiang; Yu, Wen-Bo; Tan, Xiao-Ling; Zhang, Shi-Ze; Tian, Hong-Gang; Liu, Tong-Xian

    2017-01-01

    Aphidius gifuensis is one of the most important aphid natural enemies and has been successfully used to control Myzys persicae and other aphid species. High temperature in summer is one of the key barriers for the application of A. gifuensis in the field and greenhouse. In this work, we investigated the biological performance of A. gifuensis and the response of heat-shock proteins and antioxidant enzymes under high temperature. The results showed that A. gifuensis could not survive at 40°C and female exhibited a higher survival in 35°C. Furthermore, the short term exposure to high temperature negatively affected the performance of A. gifuensis especially parasitism efficiency. Under short-term heating, the expression of AgifsHSP, Agifl(2)efl, AgifHSP70, AgifHSP70-4 and AgifHSP90 showed an increased trend, whereas AgifHSP10 initially increased and then decreased. In 35°C, the expressions of Agifl(2)efl, AgifHSP70-4 and AgifHSP90 in female were higher than those in male, whereas the expression of AgifHSP70 exhibited an opposite trend. Besides the HSPs, we also quantified the expression levels of 11 antioxidant enzyme genes: AgifPOD, AgifSOD1, AgifSOD2, AgifSOD3, AgifCAT1, AgifCAT2, AgifGST1, AgifGST2, AgifGST3, AgifGST4 and AgifGST5. We found that the sex-specific expression of AgifSOD2, AgifSOD3, AgifPOD, AgifGST1 and AgifGST3 were highly consistent with sex-specific heat shock survival rates at 35°C. Furthermore, when the temperature was above 30°C, the activities of GST, SOD, CAT and POD were significantly increased; however, there was no significant difference of the CAT activity between the male and female at 35°C. Collectively, all of these results suggested that the protection of thermal damage is coordinated by HSPs and antioxidant enzymes in A. gifuensis. Based on the heat tolerance abilities of many aphid natural enemies, we also discussed an integrated application strategy of many aphid enemies in summer. PMID:29234290

  19. HSP86 and HSP84 exhibit cellular specificity of expression and co-precipitate with an HSP70 family member in the murine testis

    NASA Technical Reports Server (NTRS)

    Gruppi, C. M.; Wolgemuth, D. J.

    1993-01-01

    This study extends to the protein level our previous observations, which had established the stage and cellular specificity of expression of hsp86 and hsp84 in the murine testis in the absence of exogenous stress. Immunoblot analysis was used to demonstrate that HSP86 protein was present throughout testicular development and that its levels increased with the appearance of differentiating germ cells. HSP86 was most abundant in the germ cell population and was present at significantly lower levels in the somatic cells. By contrast, the HSP84 protein was detected in the somatic cells of the testis rather than in germ cells. The steady-state levels of HSP86 and HSP84 paralleled the pattern of the expression of their respective mRNAs, suggesting that regulation at the level of translation was not a major mechanism controlling hsp90 gene expression in testicular cells. Immunoprecipitation analysis revealed that a 70-kDa protein coprecipitated with the HSP86/HSP84 proteins in testicular homogenates. This protein was identified as an HSP70 family member by immunoblot analysis, suggesting that HSP70 and HSP90 family members interact in testicular cells.

  20. Crystal Structures of the ATPase Domains of Four Human Hsp70 Isoforms: HSPA1L/Hsp70-hom, HSPA2/Hsp70-2, HSPA6/Hsp70B', and HSPA5/BiP/GRP78

    PubMed Central

    Wisniewska, Magdalena; Karlberg, Tobias; Lehtiö, Lari; Johansson, Ida; Kotenyova, Tetyana; Moche, Martin; Schüler, Herwig

    2010-01-01

    The 70-kDa heat shock proteins (Hsp70) are chaperones with central roles in processes that involve polypeptide remodeling events. Hsp70 proteins consist of two major functional domains: an N-terminal nucleotide binding domain (NBD) with ATPase activity, and a C-terminal substrate binding domain (SBD). We present the first crystal structures of four human Hsp70 isoforms, those of the NBDs of HSPA1L, HSPA2, HSPA5 and HSPA6. As previously with Hsp70 family members, all four proteins crystallized in a closed cleft conformation, although a slight cleft opening through rotation of subdomain IIB was observed for the HSPA5-ADP complex. The structures presented here support the view that the NBDs of human Hsp70 function by conserved mechanisms and contribute little to isoform specificity, which instead is brought about by the SBDs and by accessory proteins. Enhanced version This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1. PMID:20072699

  1. Crystal structures of the ATPase domains of four human Hsp70 isoforms: HSPA1L/Hsp70-hom, HSPA2/Hsp70-2, HSPA6/Hsp70B', and HSPA5/BiP/GRP78.

    PubMed

    Wisniewska, Magdalena; Karlberg, Tobias; Lehtiö, Lari; Johansson, Ida; Kotenyova, Tetyana; Moche, Martin; Schüler, Herwig

    2010-01-11

    The 70-kDa heat shock proteins (Hsp70) are chaperones with central roles in processes that involve polypeptide remodeling events. Hsp70 proteins consist of two major functional domains: an N-terminal nucleotide binding domain (NBD) with ATPase activity, and a C-terminal substrate binding domain (SBD). We present the first crystal structures of four human Hsp70 isoforms, those of the NBDs of HSPA1L, HSPA2, HSPA5 and HSPA6. As previously with Hsp70 family members, all four proteins crystallized in a closed cleft conformation, although a slight cleft opening through rotation of subdomain IIB was observed for the HSPA5-ADP complex. The structures presented here support the view that the NBDs of human Hsp70 function by conserved mechanisms and contribute little to isoform specificity, which instead is brought about by the SBDs and by accessory proteins. This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.

  2. Additive effects of inflammation and stress reaction on Toll-like receptor 4-mediated growth of endometriotic stromal cells.

    PubMed

    Khan, Khaleque Newaz; Kitajima, Michio; Inoue, Tsuneo; Tateishi, Seiko; Fujishita, Akira; Nakashima, Masahiro; Masuzaki, Hideaki

    2013-10-01

    Is there any combined effect between inflammation and stress reaction on Toll-like receptor 4 (TLR4)-mediated growth of endometriotic cells? A combined effect of local inflammation and stress reaction in the pelvic environment may be involved in TLR4-mediated growth of endometriotic stromal cells. In endometriosis, higher endotoxin levels in the menstrual fluid (MF) and peritoneal fluid (PF) and higher tissue concentrations of human heat shock protein 70 (HSP70) in the eutopic and ectopic endometria promote TLR4-mediated growth of endometriotic cells. This is a case-controlled research study with prospective collection and retrospective evaluation of sera, MF, PF and endometrial tissues from 43 women with and 20 women without endometriosis. PF was collected from 43 women with endometriosis and 20 control women during laparoscopy. Sera and endometrial biopsy specimens were collected from a proportion of these women. MF was collected from a separate population of 20 women with endometriosis and 15 control women. HSP70 concentrations in sera, MF, PF and in culture media were measured by ELISA. Gene expression of HSP70 by endometrial cells in response to lipopolysaccharide (LPS) was examined by qRT-PCR. The individual and combined effects of LPS and HSP70 on the secretion of interleukin-6 (IL-6) and tumor necrosis factor α (TNFα) by PF-derived macrophages (M[Symbol: see text]) were examined by ELISA, while their effects on endometrial cell proliferation were examined by bromodeoxyuridine and [(3)H]-thymidine incorporation assay. Concentrations of HSP70 were maximal in MF, intermediate in PF and the lowest in sera. In MF and PF, HSP70 levels were higher in women with endometriosis than in controls. LPS stimulated gene expression and secretion of HSP70 by eutopic endometrial stromal cells (ESCs) and this effect was abrogated after pretreatment of cells with an anti-TLR4 antibody. This effect was significantly higher for ESCs derived from women with endometriosis than for ESCs from control women. Exogenous treatment with either HSP70 or LPS significantly stimulated the production of IL-6 and TNFα by M[Symbol: see text] and promoted the proliferation of ESCs, and a significant additive effect between LPS and HSP70 was observed. While individual treatment with either polymyxin B, an LPS antagonist, or anti-HSP70 antibody was unable to suppress the combined effects of LPS and HSP70 on cytokine secretion or ESC proliferation, pretreatment of cells with the anti-TLR4 antibody was able to significantly suppress their combined effects. Further studies are needed to examine the mutual role between other secondary inflammatory mediators and endogenous stress proteins in promoting pelvic inflammation and growth of endometriotic stromal cells. Our findings suggest that endotoxin and HSP70 are mutually involved in a stress reaction and in inflammation. A combined effect between local inflammation and a stress reaction in pelvic environment may be involved in TLR4-mediated growth of endometriotic cells. Since endometriosis is a multi-factorial disease, it is difficult to explain uniformly its growth regulation by a single factor. Our findings may provide some new insights in understanding the physiopathology or pathogenesis of endometriosis and may hold new therapeutic potential. This work was supported by Grants-in-Aid for Scientific Research (grant no. 16591671 and 18591837) from the Ministry of Education, Sports, Culture, Science and Technology of Japan (to K.N.K.). There is no conflict of interest related to this study. Not applicable.

  3. Methyl CpG level at distal part of heat-shock protein promoter HSP70 exhibits epigenetic memory for heat stress by modulating recruitment of POU2F1-associated nucleosome-remodeling deacetylase (NuRD) complex.

    PubMed

    Kisliouk, Tatiana; Cramer, Tomer; Meiri, Noam

    2017-05-01

    Depending on its stringency, exposure to heat in early life leads to either resilience or vulnerability to heat stress later in life. We hypothesized that epigenetic alterations in genes belonging to the cell proteostasis pathways are attributed to long-term responses to heat stress. Epigenetic regulation of the mRNA expression of the molecular chaperone heat-shock protein (HSP) 70 (HSPA2) was evaluated in the chick hypothalamus during the critical period of thermal-control establishment on day 3 post-hatch and during heat challenge on day 10. Both the level and duration of HSP70 expression during heat challenge a week after heat conditioning were more pronounced in chicks conditioned under harsh versus mild temperature. Analyzing different segments of the promoter in vitro indicated that methylation of a distal part altered its transcriptional activity. In parallel, DNA-methylation level of this segment in vivo was higher in harsh- compared to mild-heat-conditioned chicks. Hypermethylation of the HSP70 promoter in high-temperature-conditioned chicks was accompanied by a reduction in both POU Class 2 Homeobox 1 (POU2F1) binding and recruitment of the nucleosome remodeling deacetylase (NuRD) chromatin-remodeling complex. As a result, histone H3 acetylation levels at the HSP70 promoter were higher in harsh-temperature-conditioned chicks than in their mild-heat-conditioned counterparts. These results suggest that methylation level of a distal part of the HSP70 promoter and POU2F1 recruitment may reflect heat-stress-related epigenetic memory and may be useful in differentiating between individuals that are resilient or vulnerable to stress. © 2017 International Society for Neurochemistry.

  4. Plasmodium falciparum-Infected Erythrocytes Induce Granzyme B by NK Cells through Expression of Host-Hsp70

    PubMed Central

    Böttger, Evelyn; Multhoff, Gabriele; Kun, Jürgen F. J.; Esen, Meral

    2012-01-01

    In the early immune response to Plasmodium falciparum-infected erythrocytes (iRBC), Natural Killer (NK) cells are activated, which suggests an important role in innate anti-parasitic immunity. However, it is not well understood whether NK cells directly recognize iRBC or whether stimulation of NK cells depends mainly on activating signals from accessory cells through cell-to-cell contact or soluble factors. In the present study, we investigated the influence of membrane-bound host Heat shock protein (Hsp) 70 in triggering cytotoxicity of NK cells from malaria-naïve donors or the cell line NK92 against iRBC. Hsp70 and HLA-E membrane expression on iRBC and potential activatory NK cell receptors (NKG2C, CD94) were assessed by flow cytometry and immunoblot. Upon contact with iRBC, Granzyme B (GzmB) production and release was initiated by unstimulated and Hsp70-peptide (TKD) pre-stimulated NK cells, as determined by Western blot, RT-PCR and ELISPOT analysis. Eryptosis of iRBC was determined by Annexin V-staining. Our results suggest that presence of Hsp70 and absence of HLA-E on the membrane of iRBC prompt the infected host cells to become targets for NK cell-mediated cytotoxicity, as evidenced by impaired parasite development. Contact of iRBC with NK cells induced release of GzmB. We propose that following GzmB uptake, iRBC undergo eryptosis via a perforin-independent, GzmB-mediated mechanism. Since NK activity toward iRBC could be specifically enhanced by TKD peptide and abrogated to baseline levels by blocking Hsp70 exposure, we propose TKD as an innovative immunostimulatory agent to be tested as an adjunct to anti-parasitic treatments in vivo. PMID:22438997

  5. Plasmodium falciparum-infected erythrocytes induce granzyme B by NK cells through expression of host-Hsp70.

    PubMed

    Böttger, Evelyn; Multhoff, Gabriele; Kun, Jürgen F J; Esen, Meral

    2012-01-01

    In the early immune response to Plasmodium falciparum-infected erythrocytes (iRBC), Natural Killer (NK) cells are activated, which suggests an important role in innate anti-parasitic immunity. However, it is not well understood whether NK cells directly recognize iRBC or whether stimulation of NK cells depends mainly on activating signals from accessory cells through cell-to-cell contact or soluble factors. In the present study, we investigated the influence of membrane-bound host Heat shock protein (Hsp) 70 in triggering cytotoxicity of NK cells from malaria-naïve donors or the cell line NK92 against iRBC. Hsp70 and HLA-E membrane expression on iRBC and potential activatory NK cell receptors (NKG2C, CD94) were assessed by flow cytometry and immunoblot. Upon contact with iRBC, Granzyme B (GzmB) production and release was initiated by unstimulated and Hsp70-peptide (TKD) pre-stimulated NK cells, as determined by Western blot, RT-PCR and ELISPOT analysis. Eryptosis of iRBC was determined by Annexin V-staining. Our results suggest that presence of Hsp70 and absence of HLA-E on the membrane of iRBC prompt the infected host cells to become targets for NK cell-mediated cytotoxicity, as evidenced by impaired parasite development. Contact of iRBC with NK cells induced release of GzmB. We propose that following GzmB uptake, iRBC undergo eryptosis via a perforin-independent, GzmB-mediated mechanism. Since NK activity toward iRBC could be specifically enhanced by TKD peptide and abrogated to baseline levels by blocking Hsp70 exposure, we propose TKD as an innovative immunostimulatory agent to be tested as an adjunct to anti-parasitic treatments in vivo.

  6. Low heat shock thresholds in wild Antarctic inter-tidal limpets (Nacella concinna)

    PubMed Central

    Geissler, Paul; Waller, Catherine; Fraser, Keiron P. P.; Barnes, David K. A.; Peck, Lloyd S.

    2008-01-01

    Heat shock proteins (HSPs) are a family of genes classically used to measure levels of organism stress. We have previously identified two HSP70 genes (HSP70A and HSP70B) in sub-tidal populations of the Antarctic limpet (Nacella concinna). These genes are up-regulated in response to increased seawater temperatures of 15°C or more during acute heat shock experiments, temperatures that have very little basis when considering the current Antarctic ecology of these animals. Therefore, the question was posed as to whether these animals could express HSP70 genes when subjected to more complex environmental conditions, such as those that occur in the inter-tidal. Inter-tidal limpets were collected on three occasions in different weather conditions at South Cove, Rothera Point, over a complete tidal cycle, and the expression levels of the HSP70 genes were measured. Both genes showed relative up-regulation of gene expression over the period of the tidal cycle. The average foot temperature of these animals was 3.3°C, far below that of the acute heat shock experiments. These experiments demonstrate that the temperature and expression levels of HSP production in wild animals cannot be accurately extrapolated from experimentally induced treatments, especially when considering the complexity of stressors in the natural environment. However, experimental manipulation can provide molecular markers for identifying stress in Antarctic molluscs, provided it is accompanied by environmental validation, as demonstrated here. Electronic supplementary material The online version of this article (doi:10.1007/s12192-008-0015-7) contains supplementary material, which is available to authorized users. PMID:18347941

  7. De novo characterisation of the greenlip abalone transcriptome (Haliotis laevigata) with a focus on the heat shock protein 70 (HSP70) family.

    PubMed

    Shiel, Brett P; Hall, Nathan E; Cooke, Ira R; Robinson, Nicholas A; Strugnell, Jan M

    2015-02-01

    Abalone (Haliotis) are economically important molluscs for fisheries and aquaculture industries worldwide. Despite this, genomic resources for abalone and molluscs are still limited. Here we present a description and functional annotation of the greenlip abalone (Haliotis laevigata) transcriptome. We present a focused analysis on the heat shock protein 70 (HSP70) family of genes with putative functions affecting temperature stress and immunity. A total of ~38 million paired end Illumina reads were obtained, resulting in a Trinity assembly of 222,172 contigs with minimum length of 200 base pairs and maximum length of 33 kilobases. The 20,702 contigs were annotated with gene descriptions by BLAST. We created a program to maximise the number of functionally annotated genes, and over 10,000 contigs were assigned Gene ontologies (GO terms). By using CateGOrizer, immunity related GO terms for stressors such as heat, hypoxia, oxidative stress and wounding received the highest counts. Twenty-six contigs with homology to the HSP70 family of genes were identified. Ninety-one putative single-nucleotide polymorphisms were observed in the abalone HSP70 contigs. Eleven of these were considered non-synonymous. The annotated transcriptome described in this study will be a useful basis for future work investigating the genetic response of abalone to stress.

  8. Circulating heat shock proteins in women with a history of recurrent vulvovaginitis.

    PubMed Central

    Giraldo, P C; Ribeiro-Filho, A D; Simões, J A; Neuer, A; Feitosa, S B; Witkin, S S

    1999-01-01

    OBJECTIVE: Predisposing factors influencing recurrences of bacterial vaginosis (BV) or vaginitis from Candida remain unidentified for most women. As a component of studies to determine host susceptibility factors to genital tract infections in women, we measured expression of the 60-kDa and 70-kDa heat shock proteins (hsp60 and hsp70, respectively) in the circulation of women with or without a history of recurrent BV or candidal vaginitis and with or without a current lower genital tract infection. Heat shock protein expression is associated with a down-regulation of pro-inflammatory immune responses that would inhibit microbial infection. METHOD: The investigators measured hsp60 and hsp70, antibodies to these proteins, the pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha), and the anti-inflammatory cytokine interleukin-10 (IL-10) in sera by ELISA. The study population consisted of 100 women who attended a gynecology clinic in Campinas, Brazil. Of those, 55 had a history of recurrent vulvovaginitis (RV), while 45 were controls with no such history. Only women who were asymptomatic for at least 1 month were studied. RESULTS: Although all were asymptomatic, clinical and microbiological examination revealed that five of the women with a history of RV and two controls had a current candidal vaginal infection; 16 RV patients and 12 controls had BV; and six RV patients had both BV and candidiasis. Twenty-eight RV patients and 31 controls had no clinical or microbiological detectable vaginal infection. Among the RV patients, hsp60 and hsp70 were more prevalent in those with current BV (40.9% and 50.0%, respectively) or a candidal infection (45.5% and 54.5%) than in women with no current infection (21.4% and 17.9%). In the women with no history of RV, BV was not associated with a high prevalence of hsp60 (8.3%) or hsp70 (8.3%). Interleukin-10 and TNF were not more prevalent in vaginitis patients or controls with a current candidal infection or BV than in uninfected subjects. CONCLUSION: The high prevalence of circulating hsp60 and hsp70 in women with a history of RV and current BV or vaginal candidiasis, but not in women with no history of RV, suggests that differences in heat shock protein induction may be related to susceptibility to recurrent vaginal infections. PMID:10371470

  9. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4.

    PubMed

    Asea, Alexzander; Rehli, Michael; Kabingu, Edith; Boch, Jason A; Bare, Olivia; Auron, Philip E; Stevenson, Mary Ann; Calderwood, Stuart K

    2002-04-26

    Recent studies have initiated a paradigm shift in the understanding of the function of heat shock proteins (HSP). It is now clear that HSP can and do exit mammalian cells, interact with cells of the immune system, and exert immunoregulatory effects. We recently demonstrated that exogenously added HSP70 possesses potent cytokine activity, with the ability to bind with high affinity to the plasma membrane, elicit a rapid intracellular Ca(2+) flux, activate NF-kappaB, and up-regulate the expression of pro-inflammatory cytokines in human monocytes. Here for the first time, we report that HSP70-induced proinflammatory cytokine production is mediated via the MyD88/IRAK/NF-kappaB signal transduction pathway and that HSP70 utilizes both TLR2 (receptor for Gram-positive bacteria) and TLR4 (receptor for Gram-negative bacteria) to transduce its proinflammatory signal in a CD14-dependent fashion. These studies now pave the way for the development of highly effective pharmacological or molecular tools that will either up-regulate or suppress HSP70-induced functions in conditions where HSP70 effects are desirable (cancer) or disorders where HSP70 effects are undesirable (arthritis and arteriosclerosis).

  10. Intraspecific variation in cellular and biochemical heat response strategies of Mediterranean Xeropicta derbentina [Pulmonata, Hygromiidae].

    PubMed

    Troschinski, Sandra; Di Lellis, Maddalena A; Sereda, Sergej; Hauffe, Torsten; Wilke, Thomas; Triebskorn, Rita; Köhler, Heinz-R

    2014-01-01

    Dry and hot environments challenge the survival of terrestrial snails. To minimize overheating and desiccation, physiological and biochemical adaptations are of high importance for these animals. In the present study, seven populations of the Mediterranean land snail species Xeropicta derbentina were sampled from their natural habitat in order to investigate the intraspecific variation of cellular and biochemical mechanisms, which are assigned to contribute to heat resistance. Furthermore, we tested whether genetic parameters are correlated with these physiological heat stress response patterns. Specimens of each population were individually exposed to elevated temperatures (25 to 52°C) for 8 h in the laboratory. After exposure, the health condition of the snails' hepatopancreas was examined by means of qualitative description and semi-quantitative assessment of histopathological effects. In addition, the heat-shock protein 70 level (Hsp70) was determined. Generally, calcium cells of the hepatopancreas were more heat resistant than digestive cells - this phenomenon was associated with elevated Hsp70 levels at 40°C.We observed considerable variation in the snails' heat response strategy: Individuals from three populations invested much energy in producing a highly elevated Hsp70 level, whereas three other populations invested energy in moderate stress protein levels - both strategies were in association with cellular functionality. Furthermore, one population kept cellular condition stable despite a low Hsp70 level until 40°C exposure, whereas prominent cellular reactions were observed above this thermal limit. Genetic diversity (mitochondrial cytochrome c oxidase subunit I gene) within populations was low. Nevertheless, when using genetic indices as explanatory variables in a multivariate regression tree (MRT) analysis, population structure explained mean differences in cellular and biochemical heat stress responses, especially in the group exposed to 40°C. Our study showed that, even in similar habitats within a close range, populations of the same species use different stress response strategies that all rendered survival possible.

  11. Intraspecific Variation in Cellular and Biochemical Heat Response Strategies of Mediterranean Xeropicta derbentina [Pulmonata, Hygromiidae

    PubMed Central

    Troschinski, Sandra; Di Lellis, Maddalena A.; Sereda, Sergej; Hauffe, Torsten; Wilke, Thomas; Triebskorn, Rita; Köhler, Heinz-R.

    2014-01-01

    Dry and hot environments challenge the survival of terrestrial snails. To minimize overheating and desiccation, physiological and biochemical adaptations are of high importance for these animals. In the present study, seven populations of the Mediterranean land snail species Xeropicta derbentina were sampled from their natural habitat in order to investigate the intraspecific variation of cellular and biochemical mechanisms, which are assigned to contribute to heat resistance. Furthermore, we tested whether genetic parameters are correlated with these physiological heat stress response patterns. Specimens of each population were individually exposed to elevated temperatures (25 to 52°C) for 8 h in the laboratory. After exposure, the health condition of the snails' hepatopancreas was examined by means of qualitative description and semi-quantitative assessment of histopathological effects. In addition, the heat-shock protein 70 level (Hsp70) was determined. Generally, calcium cells of the hepatopancreas were more heat resistant than digestive cells - this phenomenon was associated with elevated Hsp70 levels at 40°C.We observed considerable variation in the snails' heat response strategy: Individuals from three populations invested much energy in producing a highly elevated Hsp70 level, whereas three other populations invested energy in moderate stress protein levels - both strategies were in association with cellular functionality. Furthermore, one population kept cellular condition stable despite a low Hsp70 level until 40°C exposure, whereas prominent cellular reactions were observed above this thermal limit. Genetic diversity (mitochondrial cytochrome c oxidase subunit I gene) within populations was low. Nevertheless, when using genetic indices as explanatory variables in a multivariate regression tree (MRT) analysis, population structure explained mean differences in cellular and biochemical heat stress responses, especially in the group exposed to 40°C. Our study showed that, even in similar habitats within a close range, populations of the same species use different stress response strategies that all rendered survival possible. PMID:24475158

  12. Calreticulin exposure by malignant blasts correlates with robust anticancer immunity and improved clinical outcome in AML patients

    PubMed Central

    Fucikova, Jitka; Truxova, Iva; Hensler, Michal; Becht, Etienne; Kasikova, Lenka; Moserova, Irena; Vosahlikova, Sarka; Klouckova, Jana; Church, Sarah E.; Cremer, Isabelle; Kepp, Oliver; Kroemer, Guido; Galluzzi, Lorenzo; Salek, Cyril

    2016-01-01

    Cancer cell death can be perceived as immunogenic by the host only when malignant cells emit immunostimulatory signals (so-called “damage-associated molecular patterns,” DAMPs), as they die in the context of failing adaptive responses to stress. Accumulating preclinical and clinical evidence indicates that the capacity of immunogenic cell death to (re-)activate an anticancer immune response is key to the success of various chemo- and radiotherapeutic regimens. Malignant blasts from patients with acute myeloid leukemia (AML) exposed multiple DAMPs, including calreticulin (CRT), heat-shock protein 70 (HSP70), and HSP90 on their plasma membrane irrespective of treatment. In these patients, high levels of surface-exposed CRT correlated with an increased proportion of natural killer cells and effector memory CD4+ and CD8+ T cells in the periphery. Moreover, CRT exposure on the plasma membrane of malignant blasts positively correlated with the frequency of circulating T cells specific for leukemia-associated antigens, indicating that ecto-CRT favors the initiation of anticancer immunity in patients with AML. Finally, although the levels of ecto-HSP70, ecto-HSP90, and ecto-CRT were all associated with improved relapse-free survival, only CRT exposure significantly correlated with superior overall survival. Thus, CRT exposure represents a novel powerful prognostic biomarker for patients with AML, reflecting the activation of a clinically relevant AML-specific immune response. PMID:27802968

  13. Germ cell-specific heat shock protein 70-2 is expressed in cervical carcinoma and is involved in the growth, migration, and invasion of cervical cells.

    PubMed

    Garg, Manoj; Kanojia, Deepika; Saini, Shikha; Suri, Sushma; Gupta, Anju; Surolia, Avadhesha; Suri, Anil

    2010-08-15

    Cervical cancer is a major cause of death among women worldwide, and the most cases are reported in the least developed countries. Recently, a study on DNA microarray gene expression analysis demonstrated the overexpression of heat shock protein 70-2 (HSP70-2) in cervical carcinoma cells (HeLa). The objective of the current study was to evaluate the association between HSP70-2 expression in cervical carcinogenesis and its potential role in various malignant properties that result in disease progression. HSP70-2 expression was examined in various cervical cancer cell lines with different origins and in clinical cervical cancer specimens by reverse transcriptase-polymerase chain reaction (RT-PCR), flow cytometry, and immunohistochemistry (IHC) analyses. A plasmid-based, short-hairpin RNA approach was used specifically to knock down the expression of HSP70-2 in cervical tumor cells in vitro and in vivo to examine the role of HSP70-2 on various malignant properties. RT-PCR and IHC analyses revealed HSP70-2 expression in 86% of cervical cancer specimens. Furthermore, knockdown of HSP70-2 expression significantly reduced cellular growth, colony formation, migration, and invasion in vitro and reduced tumor growth in vivo. A significant association of HSP70-2 gene and protein expression was observed among the various tumor stages (P=.046) and different grades (P=.006), suggesting that HSP70-2 expression may be an indicator of disease progression. The current findings suggested that HSP70-2 may play an important role in disease progression in cervical carcinogenesis. Patients who had early stage disease and low-grade tumors had HSP70-2 expression, supporting its potential role in early detection and aggressive treatment modalities for cervical cancer management. Copyright (c) 2010 American Cancer Society.

  14. Interactive effects of nutrition, reproductive state and pollution on molecular stress responses of mussels, Mytilus galloprovincialis Lamarck, 1819.

    PubMed

    González-Fernández, Carmen; Albentosa, Marina; Sokolova, Inna

    2017-10-01

    Marine bivalves including mussels Mytilus galloprovincialis are commonly used as sentinels for pollution monitoring and ecosystem health assessment in the coastal zones. Use of biomarkers to assess the pollution effects assumes that the effects of pollutants on the biomarkers exceed the natural background variability; yet this assumption has rarely been tested. We exposed mussels at different reproductive stages and nutritive states to two concentrations of a polycyclic aromatic hydrocarbon (fluoranthene, 3 and 60 μg L -1 ) for three weeks. Expression levels of the molecular biomarkers related to the detoxification and general stress response [cytochrome P450 oxidase (CYP450), glutathione S-transferases (GST-α; GST-S1; GST-S2), the multixenobiotic resistance protein P-glycoprotein (PgP), metallothioneins (MT10 and MT20), heat shock proteins (HSP22, HSP70-2; HSP70-3; HSP70-4), as well as mRNA expression of two reproduction-related genes, vitellogenin (Vitel) and vitelline coat lysin M7 (VCLM7)] were measured. The mussels' nutrition and reproductive state affected the baseline mRNA levels of molecular biomarkers and modulated the transcriptional responses of biomarker genes to the pollutant exposure. Thus, mussel physiological state could act as a confounding factor in the evaluation of the response of pollution through molecular biomarkers. The biomarker baseline levels must be determined across a range of physiological states to enable the use of biomarkers in monitoring programs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The effects of icariin on the expression of HIF-1α, HSP-60 and HSP-70 in PC12 cells suffered from oxygen-glucose deprivation-induced injury.

    PubMed

    Mo, Zhen-Tao; Li, Wen-Na; Zhai, Yu-Rong; Gao, Shu-Ying

    2017-12-01

    The effects of icariin, a chief constituent of flavonoids from Epimedium brevicornum Maxim (Berberidaceae), on the levels of HIF-1α, HSP-60 and HSP-70 remain unknown. To explore the effects of icariin on the levels of HSP-60, HIF-1α and HSP-70 neuron-specific enolase (NSE) and cell viability. PC12 cells were treated with icariin (10 -7 , 10 -6 or 10 -5  mol/L) for 3 h (1 h before oxygen-glucose deprivation (OGD) plus 2 h OGD). HSP-60, HIF-1α, HSP-70 and NSE were measured using enzyme-linked immunosorbent assay (ELISA). Cell viability was determined by metabolic 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. After 2 h OGD, levels of HIF-1α, HSP-60, HSP-70 and NSE were increased significantly (HIF-1α: 33.3 ± 1.9 ng/L, HSP-60: 199 ± 16 ng/L, HSP-70: 195 ± 17 ng/L, NSE: 1487 ± 125 ng/L), and cell viability was significantly decreased (0.26 ± 0.03), while icariin (10 -7 , 10 -6 , or 10 -5  mol/L) significantly reduced the contents of HIF-1α, HSP-60, HSP-70 and NSE (HIF-1α: 14.1 ± 1.4, 22.6 ± 1.8, 15.7 ± 2.1, HSP-60: 100 ± 12, 89 ± 6, 113 ± 11, HSP-70: 139 ± 9, 118 ± 7, 95 ± 9 and NSE: 1121 ± 80, 1019 ± 52, 731 ± 88), and improved cell viability (0.36 ± 0.03, 0.38 ± 0.04, 0.37 ± 0.03) in OGD-treated PC12 cells. These results indicate that the protective mechanisms of icariin against OGD-induced injury may be related to down-regulating the expression of HIF-1α, HSP-60 and HSP-70.

  16. Heat shock protein 70 inhibits cardiomyocyte necroptosis through repressing autophagy in myocardial ischemia/reperfusion injury.

    PubMed

    Liu, Xiaojuan; Zhang, Chao; Zhang, Chi; Li, Jingjing; Guo, Wanwan; Yan, Daliang; Yang, Chen; Zhao, Jianhua; Xia, Tian; Wang, Yuqing; Xu, Rong; Wu, Xiang; Shi, Jiahai

    2016-06-01

    Irreversible damage of cardiac function arisen from myocardial ischemia/reperfusion injury (MIRI) leads to an emerging challenge in the treatments of cardiac ischemic diseases. Molecular chaperone heat shock protein 70 (HSP70) attenuates heat-stimulated cell autophagy, apoptosis, and damage in the heart. Under specific conditions, autophagy may, directly or indirectly, induce cell death including necroptosis. Whether HSP70 inhibits cardiomyocyte necroptosis via suppressing autophagy during MIRI is unknown. In our study, HSP70 expression was opposite to necroptosis marker RIP1 and autophagy marker LC3A/B expression after myocardial ischemia/reperfusion (MIR) in vivo. Furthermore, in vitro primary rat cardiomyocytes mimicked MIRI by hypoxia/reoxygenation (H/R) treatment. Knockdown of HSP70 expression promoted cardiomyocyte autophagy and necroptosis following H/R treatment, while the increase tendency was downregulated by autophagy inhibitor 3-MA, showing that autophagy-induced necroptosis could be suppressed by HSP70. In summary, HSP70 downregulates cardiomyocyte necroptosis through suppressing autophagy during myocardial IR, revealing the novel protective mechanism of HSP70 and supplying a novel molecular target for the treatment of heart ischemic diseases.

  17. Hsp70/J-protein machinery from Glossina morsitans morsitans, vector of African trypanosomiasis

    PubMed Central

    Bentley, Stephen J.

    2017-01-01

    Tsetse flies (Glossina spp.) are the sole vectors of the protozoan parasites of the genus Trypanosoma, the causative agents of African Trypanosomiasis. Species of Glossina differ in vector competence and Glossina morsitans morsitans is associated with transmission of Trypanosoma brucei rhodesiense, which causes an acute and often fatal form of African Trypanosomiasis. Heat shock proteins are evolutionarily conserved proteins that play critical roles in proteostasis. The activity of heat shock protein 70 (Hsp70) is regulated by interactions with its J-protein (Hsp40) co-chaperones. Inhibition of these interactions are emerging as potential therapeutic targets. The assembly and annotation of the G. m. morsitans genome provided a platform to identify and characterize the Hsp70s and J-proteins, and carry out an evolutionary comparison to its well-studied eukaryotic counterparts, Drosophila melanogaster and Homo sapiens, as well as Stomoxys calcitrans, a comparator species. In our study, we identified 9 putative Hsp70 proteins and 37 putative J-proteins in G. m. morsitans. Phylogenetic analyses revealed three evolutionarily distinct groups of Hsp70s, with a closer relationship to orthologues from its blood-feeding dipteran relative Stomoxys calcitrans. G. m. morsitans also lacked the high number of heat inducible Hsp70s found in D. melanogaster. The potential localisations, functions, domain organisations and Hsp70/J-protein partnerships were also identified. A greater understanding of the heat shock 70 (Hsp70) and J-protein (Hsp40) families in G. m. morsitans could enhance our understanding of the cell biology of the tsetse fly. PMID:28902917

  18. Assessment of heat shock protein (HSP60, HSP72, HSP90, and HSC70) expression in cultured limbal stem cells following air lifting

    PubMed Central

    Mohammadi, Parvaneh; Daryadel, Arezoo; Baharvand, Hossein

    2010-01-01

    Objectives The aim of this study is to create an ex vivo model to examine the expression of major heat-shock protein (HSP) families; HSP60, HSP72, and HSP90, and heat-shock cognate 70 (HCS70) at the mRNA and protein level in differentiating corneal cells from limbal stem cells (LSC) following air exposure. Methods Limbal biopsies taken from cadaveric normal human limbus were cultivated as explants on human amniotic membrane (HAM) and plastic dish (PD). Corneal differentiation was induced by air lifting for 16 days. The expression of putative LSC markers (P63 and ATP-binding cassette G2 [ABCG2]), corneal markers (keratin 3 [K3/12] and connexin 43 [CX43]), and HSP60, HSP72, HSP90, and HSC70 were tested by RT–PCR, immunofluorescence, and flow cytometry pre- and post-air exposure. Fresh limbal and corneal tissues were used as control groups. Results Air lifting induced corneal differentiation with a decrease in the number of P63+ cells and an increase in the number of K3+/CX43+ cells, which characterized transient amplifying cells (TACs). Moreover, denuded HAM provided a superior niche for LSC proliferation and phenotype maintenance in vitro. Additionally, we have evidence that expressions of HSC70 as well as HSP72 were enhanced through corneal differentiation and HSP90 post-air lifting in vitro and in vivo. HSP60, however, was not detected in either LSC or corneal cells, in vivo and in vitro. Conclusions These results suggest that corneal differentiation following air exposure may regulate HSP72 and HSC70 expression. In addition, HSP72 and HSP90 may protect LSC and corneal cells against oxidative stress. PMID:20806039

  19. Heat shock protein expression enhances heat tolerance of reptile embryos

    PubMed Central

    Gao, Jing; Zhang, Wen; Dang, Wei; Mou, Yi; Gao, Yuan; Sun, Bao-Jun; Du, Wei-Guo

    2014-01-01

    The role of heat shock proteins (HSPs) in heat tolerance has been demonstrated in cultured cells and animal tissues, but rarely in whole organisms because of methodological difficulties associated with gene manipulation. By comparing HSP70 expression patterns among representative species of reptiles and birds, and by determining the effect of HSP70 overexpression on embryonic development and hatchling traits, we have identified the role of HSP70 in the heat tolerance of amniote embryos. Consistent with their thermal environment, and high incubation temperatures and heat tolerance, the embryos of birds have higher onset and maximum temperatures for induced HSP70 than do reptiles, and turtles have higher onset and maximum temperatures than do lizards. Interestingly, the trade-off between benefits and costs of HSP70 overexpression occurred between life-history stages: when turtle embryos developed at extreme high temperatures, HSP70 overexpression generated benefits by enhancing embryo heat tolerance and hatching success, but subsequently imposed costs by decreasing heat tolerance of surviving hatchlings. Taken together, the correlative and causal links between HSP70 and heat tolerance provide, to our knowledge, the first unequivocal evidence that HSP70 promotes thermal tolerance of embryos in oviparous amniotes. PMID:25080340

  20. A Bipartite Interaction between Hsp70 and CHIP Regulates Ubiquitination of Chaperoned Client Proteins

    DOE PAGES

    Zhang, Huaqun; Amick, Joseph; Chakravarti, Ritu; ...

    2015-02-12

    The ubiquitin ligase CHIP plays an important role in cytosolic protein quality control by ubiquitinating proteins chaperoned by Hsp70/Hsc70 and Hsp90, thereby targeting such substrate proteins for degradation. We present a 2.91 Å resolution structure of the tetratricopeptide repeat (TPR) domain of CHIP in complex with the α-helical lid subdomain and unstructured tail of Hsc70. Surprisingly, the CHIP-TPR interacts with determinants within both the Hsc70-lid subdomain and the C-terminal PTIEEVD motif of the tail, exhibiting an atypical mode of interaction between chaperones and TPR domains. Here, we demonstrate that the interaction between CHIP and the Hsc70-lid subdomain is required formore » proper ubiquitination of Hsp70/Hsc70 or Hsp70/Hsc70-bound substrate proteins. Posttranslational modifications of the Hsc70 lid and tail disrupt key contacts with the CHIP-TPR and may regulate CHIP-mediated ubiquitination. Our study shows how CHIP docks onto Hsp70/Hsc70 and defines a bipartite mode of interaction between TPR domains and their binding partners.« less

  1. Switching assay as a novel approach for specific antigen- antibody interaction analysis using magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Parr, M.; Illarionov, R.; Marchenko, Y.; Yakovleva, L.; Nikolaev, B.; Ischenko, A.; Shevtsov, M.

    2016-08-01

    Switching assay was applied for the detection of antigen-antibody interaction between 70-kDa heat shock protein (Hsp70) and anti-Hsp70 monoclonal antibodies in water solutions using conjugates with magnetic iron oxide nanoparticles (MNPs). Hsp70 is a ubiquitous intracellular protein that plays a crucial role in cancerogenesis and many other pathologies. Detection of the Hsp70 level in the biological fluids might have a prognostic and diagnostic value in clinic. The developed switch assay for the detection of Hsp70 demonstrated high sensitivity for antigen-antibody interaction analysis thus proving its potential for further preclinical and clinical studies.

  2. [Determination of mRNA-transcripts and heat shock proteins HSP70 and HSP90 in retina of the adult Spanish Ribbed Newt Pleurodeles waltl].

    PubMed

    Avdonin, P P; Markitantova, Yu V; Poplinskaya, V A; Grigoryan, E N

    2013-01-01

    Expression of genes and heat shock proteins in normal intact retina of the Spanish Ribbed Newt Pleurodeles waltl was studied using polymerase chain reaction, Western blot hybridization, and immunohistochemistry. It was shown that the proteins HSP70 and HSP90, as well as their encoding transcripts of relevant genes, are constitutively expressed in eye tissues. These proteins were distributed differentially, and they were characterized by expression of different levels in the retina: HSP70 dominated in the external retina, while HSP90 dominated in the internal one, in particular, in Muller glial cells and the optic nerve. Transcripts and heat shock proteins HSP70 and HSP90 were also found in the retinal pigment epithelium and eye growth zone.

  3. Mutations in the substrate binding site of human heat-shock protein 70 indicate specific interaction with HLA-DR outside the peptide binding groove

    PubMed Central

    Rohrer, Karin M; Haug, Markus; Schwörer, Daniela; Kalbacher, Hubert; Holzer, Ursula

    2014-01-01

    Heat-shock protein 70 (Hsp70)–peptide complexes are involved in MHC class I-and II-restricted antigen presentation, enabling enhanced activation of T cells. As shown previously, mammalian cytosolic Hsp70 (Hsc70) molecules interact specifically with HLA-DR molecules. This interaction might be of significance as Hsp70 molecules could transfer bound antigenic peptides in a ternary complex into the binding groove of HLA-DR molecules. The present study provides new insights into the distinct interaction of Hsp70 with HLA-DR molecules. Using a quantitative binding assay, it could be demonstrated that a point mutation of amino acids alanine 406 and valine 438 in the substrate binding pocket led to reduced peptide binding compared with the wild-type Hsp70 whereas HLA-DR binding remains unaffected. The removal of the C-terminal lid neither altered the substrate binding capacity nor the Hsp70 binding characteristics to HLA-DR. A truncated variant lacking the nucleotide binding domain showed no binding interactions with HLA-DR. Furthermore, the truncated ATPase subunit of constitutively expressed Hsc70 revealed similar binding affinities to HLA-DR compared with the complete Hsc70. Hence, it can be assumed that the Hsp70–HLA-DR interaction takes place outside the peptide binding groove and is attributed to the ATPase domain of HSP70 molecules. The Hsp70-chaperoned peptides might thereby be directly transferred into the binding groove of HLA-DR, so enabling enhanced presentation of the peptide on antigen-presenting cells and leading to an improved proliferation of responding T cells as shown previously. PMID:24428437

  4. Functional Organization of hsp70 Cluster in Camel (Camelus dromedarius) and Other Mammals

    PubMed Central

    Garbuz, David G.; Astakhova, Lubov N.; Zatsepina, Olga G.; Arkhipova, Irina R.; Nudler, Eugene; Evgen'ev, Michael B.

    2011-01-01

    Heat shock protein 70 (Hsp70) is a molecular chaperone providing tolerance to heat and other challenges at the cellular and organismal levels. We sequenced a genomic cluster containing three hsp70 family genes linked with major histocompatibility complex (MHC) class III region from an extremely heat tolerant animal, camel (Camelus dromedarius). Two hsp70 family genes comprising the cluster contain heat shock elements (HSEs), while the third gene lacks HSEs and should not be induced by heat shock. Comparison of the camel hsp70 cluster with the corresponding regions from several mammalian species revealed similar organization of genes forming the cluster. Specifically, the two heat inducible hsp70 genes are arranged in tandem, while the third constitutively expressed hsp70 family member is present in inverted orientation. Comparison of regulatory regions of hsp70 genes from camel and other mammals demonstrates that transcription factor matches with highest significance are located in the highly conserved 250-bp upstream region and correspond to HSEs followed by NF-Y and Sp1 binding sites. The high degree of sequence conservation leaves little room for putative camel-specific regulatory elements. Surprisingly, RT-PCR and 5′/3′-RACE analysis demonstrated that all three hsp70 genes are expressed in camel's muscle and blood cells not only after heat shock, but under normal physiological conditions as well, and may account for tolerance of camel cells to extreme environmental conditions. A high degree of evolutionary conservation observed for the hsp70 cluster always linked with MHC locus in mammals suggests an important role of such organization for coordinated functioning of these vital genes. PMID:22096537

  5. Long-Term Overexpression of Hsp70 Does Not Protect against Cardiac Dysfunction and Adverse Remodeling in a MURC Transgenic Mouse Model with Chronic Heart Failure and Atrial Fibrillation

    PubMed Central

    Bernardo, Bianca C.; Sapra, Geeta; Patterson, Natalie L.; Cemerlang, Nelly; Kiriazis, Helen; Ueyama, Tomomi; Febbraio, Mark A.; McMullen, Julie R.

    2015-01-01

    Previous animal studies had shown that increasing heat shock protein 70 (Hsp70) using a transgenic, gene therapy or pharmacological approach provided cardiac protection in models of acute cardiac stress. Furthermore, clinical studies had reported associations between Hsp70 levels and protection against atrial fibrillation (AF). AF is the most common cardiac arrhythmia presenting in cardiology clinics and is associated with increased rates of heart failure and stroke. Improved therapies for AF and heart failure are urgently required. Despite promising observations in animal studies which targeted Hsp70, we recently reported that increasing Hsp70 was unable to attenuate cardiac dysfunction and pathology in a mouse model which develops heart failure and intermittent AF. Given our somewhat unexpected finding and the extensive literature suggesting Hsp70 provides cardiac protection, it was considered important to assess whether Hsp70 could provide protection in another mouse model of heart failure and AF. The aim of the current study was to determine whether increasing Hsp70 could attenuate adverse cardiac remodeling, cardiac dysfunction and episodes of arrhythmia in a mouse model of heart failure and AF due to overexpression of Muscle-Restricted Coiled-Coil (MURC). Cardiac function and pathology were assessed in mice at approximately 12 months of age. We report here, that chronic overexpression of Hsp70 was unable to provide protection against cardiac dysfunction, conduction abnormalities, fibrosis or characteristic molecular markers of the failing heart. In summary, elevated Hsp70 may provide protection in acute cardiac stress settings, but appears insufficient to protect the heart under chronic cardiac disease conditions. PMID:26660322

  6. Long-Term Overexpression of Hsp70 Does Not Protect against Cardiac Dysfunction and Adverse Remodeling in a MURC Transgenic Mouse Model with Chronic Heart Failure and Atrial Fibrillation.

    PubMed

    Bernardo, Bianca C; Sapra, Geeta; Patterson, Natalie L; Cemerlang, Nelly; Kiriazis, Helen; Ueyama, Tomomi; Febbraio, Mark A; McMullen, Julie R

    2015-01-01

    Previous animal studies had shown that increasing heat shock protein 70 (Hsp70) using a transgenic, gene therapy or pharmacological approach provided cardiac protection in models of acute cardiac stress. Furthermore, clinical studies had reported associations between Hsp70 levels and protection against atrial fibrillation (AF). AF is the most common cardiac arrhythmia presenting in cardiology clinics and is associated with increased rates of heart failure and stroke. Improved therapies for AF and heart failure are urgently required. Despite promising observations in animal studies which targeted Hsp70, we recently reported that increasing Hsp70 was unable to attenuate cardiac dysfunction and pathology in a mouse model which develops heart failure and intermittent AF. Given our somewhat unexpected finding and the extensive literature suggesting Hsp70 provides cardiac protection, it was considered important to assess whether Hsp70 could provide protection in another mouse model of heart failure and AF. The aim of the current study was to determine whether increasing Hsp70 could attenuate adverse cardiac remodeling, cardiac dysfunction and episodes of arrhythmia in a mouse model of heart failure and AF due to overexpression of Muscle-Restricted Coiled-Coil (MURC). Cardiac function and pathology were assessed in mice at approximately 12 months of age. We report here, that chronic overexpression of Hsp70 was unable to provide protection against cardiac dysfunction, conduction abnormalities, fibrosis or characteristic molecular markers of the failing heart. In summary, elevated Hsp70 may provide protection in acute cardiac stress settings, but appears insufficient to protect the heart under chronic cardiac disease conditions.

  7. Heat shock protein 70 stimulation of the deoxyribonucleic acid base excision repair enzyme polymerase β

    PubMed Central

    Mendez, Frances; Kozin, Elliott; Bases, Robert

    2003-01-01

    Base excision repair (BER) of damaged deoxyribonucleic acid (DNA) is a multistep process during which potentially lethal abasic sites temporarily exist. Repair of these lesions is greatly stimulated by heat shock protein 70 (Hsp70), which enhances strand incision and removal of the abasic sites by human apurinic-apyrimidinic endonuclease (HAP1). The resulting single-strand gaps must then be filled in. Here, we show that Hsp70 and its 48- and 43-kDa N-terminal domains greatly stimulated filling in the single-strand gaps by DNA polymerase β, a novel finding that extends the role of Hsps in DNA repair. Incorporation of deoxyguanosine monophosphate (dGMP) to fill in single-strand gaps in DNA phagemid pBKS by DNA polymerase β was stimulated by Hsp70. Truncated proteins derived from the C-terminus of Hsp70 as well as unrelated proteins were less effective, but proteins derived from the N-terminus of Hsp70 remained efficient stimulators of DNA polymerase β repair of DNA single-strand gaps. In agreement with these results, repair of a gap in a 30-bp oligonucleotide by polymerase β also was strongly stimulated by Hsp70 although not by a truncated protein from the C-terminus of Hsp70. Sealing of the repaired site in the oligonucleotide by human DNA ligase 1 was not specifically stimulated by Hsp-related proteins. Results presented here now implicate and extend the role of Hsp70 as a partner in the enzymatic repair of damaged DNA. The participation of Hsp70 jointly with base excision enzymes improves repair efficiency by mechanisms that are not yet understood. PMID:14627201

  8. Heat shock protein 70 negatively regulates the heat-shock-induced suppression of the I{kappa}B/NF-{kappa}B cascade by facilitating I{kappa}B kinase renaturation and blocking its further denaturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kyoung-Hee; Lee, Choon-Taek; Kim, Young Whan

    2005-07-01

    Heat shock (HS) treatment has been previously shown to suppress the I{kappa}B/nuclear factor-{kappa}B (NF-{kappa}B) cascade by denaturing, and thus inactivating I{kappa}B kinase (IKK). HS is characterized by the induction of a group of heat shock proteins (HSPs). However, their role in the HS-induced suppression of the I{kappa}B/NF-{kappa}B cascade is unclear. Adenovirus-mediated HSP70 overexpression was found not to suppress the TNF-{alpha}-induced activation of the I{kappa}B/NF-{kappa}B pathway, thus suggesting that HSP70 is unlikely to suppress this pathway. When TNF-{alpha}-induced activation of the I{kappa}B/NF-{kappa}B pathway was regained 24 h after HS, HSP70 was found to be highly up-regulated. Moreover, blocking HSP70 induction delayedmore » TNF-{alpha}-induced I{kappa}B{alpha} degradation and the resolubilization of IKK. In addition, HSP70 associated physically with IKK, suggesting that HSP70 is involved in the recovery process via molecular chaperone effect. Adenovirus-mediated HSP70 overexpression prior to HS blocked the I{kappa}B{alpha} stabilizing effect of HS by suppressing IKK insolubilization. Moreover, the up-regulation of endogenous HSP70 by preheating, suppressed this subsequent HS-induced IKK insolubilization, and this effect was abrogated by blocking HSP70 induction. These findings indicate that HSP70 accumulates during HS and negatively regulates the HS-induced suppression of the I{kappa}B/NF-{kappa}B cascade by facilitating the renaturation of IKK and blocking its further denaturation.« less

  9. Diagnostic yield of heat shock protein 70 (HSP-70) and anti-HSP-70 in Behcet-induced uveitis.

    PubMed

    Sahebari, M; Hashemzadeh, K; Mahmoudi, M; Saremi, Z; Mirfeizi, Z

    2013-06-01

    Heat shock proteins (HSPs) are intracellular proteins with pro- and anti-inflammatory actions, playing an important role in the pathogenesis of Behcet's disease (BD). Diagnosis of BD uveitis in early stages is still problematic, thus this study was undertaken to determine diagnostic values of serum HSP- and anti-HSP-70 in BD uveitis. Serum levels of HSP- and anti-HSP-70 were measured in 53 patients with BD (26 with and 27 without uveitis). In control group, 25 age- and sex-matched idiopathic uveitis patients were enrolled consecutively. Both groups had no medical problems save uveitis at the time of sampling. Confounders like medications were analysed subsequently. HSP- and anti-HSP-70 values were measured by commercial ELISA kits. Data were analysed by spss 11.5 and medcalc 11.5.1 software. The Mean HSP-70 serum levels were different among aforementioned subgroups (P = 0.001, anova). They were elevated in BD uveitis compared with BD without uveitis (4.84 ± 4.21 versus 2.24 ± 2.08 ng/ml; P = 0.045). HSP-70 in sera of BD uveitis was also higher than that parameter in patients with idiopathic uveitis (4.84 ± 4.21 versus 2.37 ± 3.30 ng/ml; P = 0.001; cut-off point value 1.0 9 ng/ml, 95% CI 0.61-0.86, P = 0.0002, ß = 0.06). However, there was not any statistical difference among those groups in the serum anti-HSP-70 levels (P = 0.63, anova). Multiple regression analysis demonstrated that among different confounders, only prednisolone increases and BD uveitis decreases HSP-70 levels independently. This prospective cross-sectional study suggested that HSP-70 serum level is impressed over the course of BD uveitis, and it could be utilized to diagnose or predict developing it. © 2013 The Authors. Scandinavian Journal of Immunology © 2013 Blackwell Publishing Ltd.

  10. Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells.

    PubMed

    Gastpar, Robert; Gehrmann, Mathias; Bausero, Maria A; Asea, Alexzander; Gross, Catharina; Schroeder, Josef A; Multhoff, Gabriele

    2005-06-15

    Detergent-soluble membrane vesicles are actively released by human pancreas (Colo-/Colo+) and colon (CX-/CX+) carcinoma sublines, differing in their capacity to present heat shock protein 70 (Hsp70)/Bag-4 on their plasma membranes. Floating properties, acetylcholine esterase activity, and protein composition characterized them as exosomes. An enrichment of Rab-4 documented their intracellular transport route from early endosomes to the plasma membrane. After solubilization, comparable amounts of cytosolic proteins, including tubulin, Hsp70, Hsc70, and Bag-4, but not ER-residing Grp94 and calnexin, were detectable in tumor-derived exosomes. However, with respect to the exosomal surface, only Colo+/CX+ but not Colo-/CX- derived exosomes were Hsp70 membrane positive. Therefore, concomitant with an up-regulated cell surface density of activation markers, migration and Hsp70 reactivity of natural killer (NK) cells was stimulated selectively by Hsp70/Bag-4 surface-positive exosomes, but not by their negative counterparts and tumor cell lysates. Moreover, the exosome-mediated lytic activity of NK cells was blockable by Hsp70-specific antibody. As already shown for TKD stimulation, NK cells preincubated with Hsp70 surface-positive exosomes initiated apoptosis in tumors through granzyme B release. In summary, our data provide an explanation how Hsp70 reactivity in NK cells is induced by tumor-derived exosomes.

  11. Heat Shock Protein 70 Surface-Positive Tumor Exosomes Stimulate Migratory and Cytolytic Activity of Natural Killer Cells

    PubMed Central

    Gastpar, Robert; Gehrmann, Mathias; Bausero, Maria A.; Asea, Alexzander; Gross, Catharina; Schroeder, Josef A.

    2006-01-01

    Detergent-soluble membrane vesicles are actively released by human pancreas (Colo−/Colo+) and colon (CX−/CX+) carcinoma sublines, differing in their capacity to present heat shock protein 70 (Hsp70)/Bag-4 on their plasma membranes. Floating properties, acetylcholine esterase activity, and protein composition characterized them as exosomes. An enrichment of Rab-4 documented their intracellular transport route from early endosomes to the plasma membrane. After solubilization, comparable amounts of cytosolic proteins, including tubulin, Hsp70, Hsc70, and Bag-4, but not ER-residing Grp94 and calnexin, were detectable in tumor-derived exosomes. However, with respect to the exosomal surface, only Colo+/CX+ but not Colo−/CX exosomes were Hsp70 membrane derived positive. Therefore, concomitant with an up-regulated cell surface density of activation markers, migration and Hsp70 reactivity of natural killer (NK) cells was stimulated selectively by Hsp70/Bag-4 surface-positive exosomes, but not by their negative counterparts and tumor cell lysates. Moreover, the exosome-mediated lytic activity of NK cells was blockable by Hsp70-specific antibody. As already shown for TKD stimulation, NK cells preincubated with Hsp70 surface-positive exosomes initiated apoptosis in tumors through granzyme B release. In summary, our data provide an explanation how Hsp70 reactivity in NK cells is induced by tumor-derived exosomes. PMID:15958569

  12. Selective activation of human heat shock gene transcription by nitrosourea antitumor drugs mediated by isocyanate-induced damage and activation of heat shock transcription factor.

    PubMed Central

    Kroes, R A; Abravaya, K; Seidenfeld, J; Morimoto, R I

    1991-01-01

    Treatment of cultured human tumor cells with the chloroethylnitrosourea antitumor drug 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) selectively induces transcription and protein synthesis of a subset of the human heat shock or stress-induced genes (HSP90 and HSP70) with little effect on other stress genes or on expression of the c-fos, c-myc, or beta-actin genes. The active component of BCNU and related compounds appears to be the isocyanate moiety that causes carbamoylation of proteins and nucleic acids. Transcriptional activation of the human HSP70 gene by BCNU is dependent on the heat shock element and correlates with the level of heat shock transcription factor and its binding to the heat shock element in vivo. Unlike activation by heat or heavy metals, BCNU-mediated activation is strongly dependent upon new protein synthesis. This suggests that BCNU-induced, isocyanate-mediated damage to newly synthesized protein(s) may be responsible for activation of the heat shock transcription factor and increased transcription of the HSP90 and HSP70 genes. Images PMID:2052560

  13. The growth transformation of human B cells involves superinduction of hsp70 and hsp90.

    PubMed

    Cheung, R K; Dosch, H M

    1993-04-01

    Epstein-Barr virus (EBV) is a latent human herpes virus associated with a range of malignant and non-malignant disorders. EBV binds to CD21 virus receptors on B lymphocytes and growth transforms these cells; in susceptible (e.g., immunodeficient) hosts such cells rapidly expand into fatal lymphomas. Virus binding and infection trigger a cascade of cellular events which are transformation prerequisite and analogous to non-oncogenic cell activation events but which differ in several quantitative or qualitative respects. Unique trans-membrane Ca2+ currents, Na+/H+ exchange, as well as tyrosine phosphorylation and p56lck-gene induction suggest that even early on the transformation process has oncogenic specificity. In this report we describe that two additional cellular gene families, the stress proteins hsp70 and hsp90, are coordinately induced at mRNA and protein levels and, quite different from hsp induction by thermal stress, this induction is dependent on EBV-induced trans-membrane Ca2+ currents. Blockade of hsp induction prevents transformation. The kinetics and induction prerequisites set this response well apart from reported responses to thermal or viral stress protein induction. Like p56lck-, hsp induction is purely a post-receptor binding event and not dependent on expression of any viral gene. The induction kinetics, with a peak at approximately 12-16 hr and subsequent decline to control levels, considerably extend the chronological map of elements in the CD21-dependent branch of the transformation pathway and suggest a specific role of induced hsp different from the cell cycle-related functions observed in other cell systems.

  14. NK cells of the oldest seniors represent constant and resistant to stimulation high expression of cellular protective proteins SIRT1 and HSP70.

    PubMed

    Kaszubowska, Lucyna; Foerster, Jerzy; Kaczor, Jan Jacek; Schetz, Daria; Ślebioda, Tomasz Jerzy; Kmieć, Zbigniew

    2018-01-01

    Natural killer cells (NK cells) are cytotoxic lymphocytes of innate immunity that reveal some immunoregulatory properties, however, their role in the process of ageing is not completely understood. The study aimed to analyze the expression of proteins involved in cellular stress response: sirtuin 1 (SIRT1), heat shock protein 70 (HSP70) and manganese superoxide dismutase (SOD2) in human NK cells with reference to the process of ageing. Non-stimulated and stimulated with IL-2, LPS or PMA with ionomycin cells originated from peripheral blood samples of: seniors aged over 85 ('the oldest'; n  = 25; 88.5 ± 0.5 years, mean ± SEM), seniors aged under 85 ('the old'; n  = 30; 75.6 ± 0.9 years) and the young ( n  = 31; 20.9 ± 0.3 years). The relationships between the levels of expression of cellular protective proteins in the studied population were also analyzed. The concentrations of carbonyl groups and 8-isoprostanes, markers of oxidative stress, in both stimulated and non-stimulated cultured NK cells were measured to assess the level of the oxidative stress in the cells. The oldest seniors varied from the other age groups by significantly higher expression of SIRT1 and HSP70 both in non-stimulated and stimulated NK cells. These cells also appeared to be resistant to further stimulations with IL-2, LPS or PMA with ionomycin. Highly positive correlations between SIRT1 and intracellular HSP70 in both stimulated and non-stimulated NK cells were observed. SOD2 presented low expression in non-stimulated cells, whereas its sensitivity to stimulation increased with age of donors. High positive correlations between SOD2 and surface HSP70 were observed. We found that the markers of oxidative stress in NK cells did not change with ageing. The oldest seniors revealed well developed adaptive stress response in NK cells with increased, constant levels of SIRT1 and intracellular HSP70. They presented also very high positive correlations between expression of these cellular protective proteins both in stimulated and non-stimulated cells. These phenomena may contribute to the long lifespan of this group of elderly. Interestingly, in NK cells SOD2 revealed a distinct role in cellular stress response since it showed sensitivity to stimulation increasing with age of participants. These observations provide novel data concerning the role of NK cells in the process of ageing.

  15. Design of optimal hyperthermia protocols for prostate cancer by controlling HSP expression through computer modeling (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Rylander, Marissa N.; Feng, Yusheng; Diller, Kenneth; Bass, J.

    2005-04-01

    Heat shock proteins (HSP) are critical components of a complex defense mechanism essential for preserving cell survival under adverse environmental conditions. It is inevitable that hyperthermia will enhance tumor tissue viability, due to HSP expression in regions where temperatures are insufficient to coagulate proteins, and would likely increase the probability of cancer recurrence. Although hyperthermia therapy is commonly used in conjunction with radiotherapy, chemotherapy, and gene therapy to increase therapeutic effectiveness, the efficacy of these therapies can be substantially hindered due to HSP expression when hyperthermia is applied prior to these procedures. Therefore, in planning hyperthermia protocols, prediction of the HSP response of the tumor must be incorporated into the treatment plan to optimize the thermal dose delivery and permit prediction of overall tissue response. In this paper, we present a highly accurate, adaptive, finite element tumor model capable of predicting the HSP expression distribution and tissue damage region based on measured cellular data when hyperthermia protocols are specified. Cubic spline representations of HSP27 and HSP70, and Arrhenius damage models were integrated into the finite element model to enable prediction of the HSP expression and damage distribution in the tissue following laser heating. Application of the model can enable optimized treatment planning by controlling of the tissue response to therapy based on accurate prediction of the HSP expression and cell damage distribution.

  16. Cloning of human cDNAs for Apg-1 and Apg-2, members of the Hsp110 family, and chromosomal assignment of their genes.

    PubMed

    Nonoguchi, K; Itoh, K; Xue, J H; Tokuchi, H; Nishiyama, H; Kaneko, Y; Tatsumi, K; Okuno, H; Tomiwa, K; Fujita, J

    1999-09-03

    In mice, the Hsp110/SSE family is composed of the heat shock protein (Hsp)110/105, Apg-1 and Apg-2. In humans, however, only the Hsp110/105 homolog has been identified as a member, and two cDNAs, Hsp70RY and HS24/p52, potentially encoding proteins structurally similar to, but smaller than, mouse Apg-2 have been reported. To clarify the membership of Hsp110 family in humans, we isolated Apg-1 and Apg-2 cDNAs from a human testis cDNA library. The human Apg-1 was 100% and 91.8% identical in length and amino acid (aa) sequence, respectively, to mouse Apg-1. Human Apg-2 was one aa shorter than and 95.5% identical in sequence to mouse Apg-2. In ECV304, human endothelial cells Apg-1 but not Apg-2 transcripts were induced in 2 h by a temperature shift from 32 degrees C to 39 degrees C. As found in mice, the response was stronger than that to a 37-42 degrees C shift. The human Apg-1 and Apg-2 genes were mapped to the chromosomal loci 4q28 and 5q23.3-q31.1, respectively, by fluorescence in-situ hybridization. We isolated cDNA and genomic clones encompassing the region critical for the difference between Apg-2 and HS24/p52. Although the primer sets used were derived from the sequences common to both cDNAs, all cDNA and genomic clones corresponded to Apg-2. Using a similar approach, the relationship between Apg-2 and Hsp70RY was assessed, and no clone corresponding to Hsp70RY was obtained. These results demonstrated that the Hsp110 family consists of at least three members, Apg-1, Apg-2 and Hsp110 in humans as well as in mice. The significance of HS24/p52 and Hsp70RY cDNAs previously reported remains to be determined.

  17. Serum HSP70

    PubMed Central

    Dutta, Sudhir K.; Girotra, Mohit; Singla, Montish; Dutta, Anand; Stephen, F. Otis; Nair, Padmanabhan P.; Merchant, Nipun B.

    2014-01-01

    Objectives Heat shock protein 70 (HSP70) is overexpressed in human pancreatic cancer cell lines. To determine if serum HSP70 levels are elevated in patients with pancreatic cancer and can function as a biomarker for early detection of pancreatic cancer. Methods Study subjects were divided into 3 groups: histologically proven pancreatic cancer (PC; n = 23), chronic pancreatitis (CP; n = 12), and matched normal control subjects (C; n = 10). Serum HSP70 levels were determined using a novel immunoelectrophoresis method developed and validated by the authors. Significance of difference between the groups was analyzed with analysis of variance (ANOVA). Receiver operating characteristic (ROC) curve analysis was performed to discriminate patients with pancreatic cancer from normal controls. Results The mean ± SE serum HSP70 levels in the PC, CP, and C groups were 1.68 ± 0.083 ng/mL, 0.40 ± 0.057 ng/mL, and 0.04 ng/mL, respectively. Serum HSP70 levels in the PC group were significantly higher compared with either the CP or C groups (P < 0.01). The sensitivity and specificity of elevated serum HSP70 in the PC group was 74% and 90%, respectively. Conclusions Serum HSP70 levels are significantly increased in patients with pancreatic cancer and may be useful as an additional biomarker for the detection of pancreatic cancer. PMID:22158074

  18. Heat adaptation from regular hot water immersion decreases proinflammatory responses, HSP70 expression, and physical heat stress.

    PubMed

    Yang, Fwu-Lin; Lee, Chia-Chi; Subeq, Yi-Maun; Lee, Chung-Jen; Ke, Chun-Yen; Lee, Ru-Ping

    2017-10-01

    Hot-water immersion (HWI) is a type of thermal therapy for treating various diseases. In our study, the physiological responses to occasional and regular HWI have been explored. The rats were divided into a control group, occasional group (1D), and regular group (7D). The 1D and 7D groups received 42°C during 15mins HWI for 1 and 7 days, respectively. The blood samples were collected for proinflammatory cytokines examinations, the heart, liver and kidney were excised for subsequent IHC analysis to measure the level of heat shock protein 70 (HSP70). The results revealed that the body temperature increased significantly during HWI on Day 3 and significantly declined on Days 6 and 7. For the 7D group, body weight, heart rate, hematocrit, platelet, osmolarity, and lactate level were lower than those in the 1D group. Furthermore, the levels of granulocyte counts, tumor necrosis factor-α, and interleukin-6 were lower in the 7D group than in the 1D group. The induction of HSP70 in the 1D group was higher than in the other groups. Physiological responses to occasional HWI are disadvantageous because of heat stress. However, adaptation to heat from regular HWI resulted in decreased proinflammatory responses and physical heat stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Expression of cytoprotective proteins, heat shock protein 70and metallothioneins, in tissues ofOstrea edulis exposed to heat andheavy metals

    PubMed Central

    Piano, Annamaria; Valbonesi, Paola; Fabbri, Elena

    2004-01-01

    Heat shock proteins (Hsps) are constitutively expressed in cells and involved in protein folding, assembly, degradation, intracellular localization, etc, acting as molecular chaperones. However, their overexpression represents a ubiquitous molecular mechanism to cope with stress. Hsps are classified into families, and among them the Hsp70 family appears to be the most evolutionary preserved and distributed in animals. In this study, the expression of Hsp70 and the related messenger ribonucleic acid (mRNA) has been studied in Ostrea edulis after exposure to heat and heavy metals; moreover, levels of metallothioneins (MTs), another class of stress-induced proteins, have contemporaneously been assessed in the same animals. Thermal stress caused the expression of a 69-kDa inducible isoform in gills of O edulis but not in the digestive gland. Northern dot blot analysis confirmed that the transcription of Hsp69-mRNA occurs within 3 hours of stress recovery after oyster exposure at 32 and 35°C. Hsp69-mRNA transcripts were not present in the gills of animals exposed to 38°C after 3 hours of poststress recovery, but they were detected after 24 hours. The expression of the 69-kDa protein in O edulis exposed to 38°C was rather low or totally absent, suggesting that the biochemical machinery at the base of the heat shock response is compromised. Together with the expected increase in MT content, the oysters exposed to Cd showed a significant enhancement of Hsp70, although there was no clear appearance of Hsp69. Interestingly, the levels of MT were significantly increased in the tissues of individuals exposed to thermal stress. Unlike oysters, heat did not provoke the expression of inducible Hsp isoforms in Mytilus galloprovincialis, Tapes philippinarum, and Scapharca inaequivalvis, although it significantly enhanced the expression of constitutive proteins of the 70-kDa family. The expression of newly synthesized Hsp70 isoforms does not seem therefore a common feature in bivalves exposed to thermal stress. PMID:15497500

  20. Heat shock proteins HSP70 and MRJ cooperatively regulate cell adhesion and migration through urokinase receptor.

    PubMed

    Lin, Yuli; Peng, Nana; Zhuang, Hongqin; Zhang, Di; Wang, Yao; Hua, Zi-Chun

    2014-08-30

    The urokinase-type plasminogen activator receptor (uPAR) is an important regulator of ECM proteolysis, cell-ECM interactions and cell signaling. uPAR and heat shock proteins HSP70 and MRJ (DNAJB6) have been implicated in tumor growth and metastasis. We have reported recently that MRJ (DNAJB6, a heat shock protein) can interact with uPAR and enhance cell adhesion. Here, we identified another heat shock protein HSP70 as a novel uPAR-interacting protein. We performed co-immunoprecipitation in human embryonic kidney (HEK) 293 and colon cancer HCT116 cells as well as immunofluorence assays in HEK293 cells stably transfected with uPAR to investigate the association of suPAR with HSP70/MRJ. To understand the biological functions of the triple complex of suPAR/HSP70/MRJ, we determined whether HSP70 and/or MRJ regulated uPAR-mediated cell invasion, migration, adhesion to vitronectin and MAPK pathway in two pair of human tumor cells (uPAR negative HEK293 cells vs HEK293 cells stably transfected with uPAR and HCT116 cells stably transfected with antisense-uPAR vs HCT116 mock cells transfected with vector only) using transwell assay, wound healing assay, quantitative RT-PCR analyzing mmp2 and mmp9 transcription levels, cell adhesion assay and Western blotting assay. HSP70 and MRJ formed a triple complex with uPAR and over-expression of MRJ enhanced the interaction between HSP70 and uPAR, while knockdown of MRJ decreased soluble uPAR in HCT116 cells (P < 0.05) and reduced the formation of the triple complex, suggesting that MRJ may act as an uPAR-specific adaptor protein to link uPAR to HSP70. Further experiments showed that knockdown of HSP70 and/or MRJ by siRNA inhibited uPAR-mediated cell adhesion to vitronectin as well as suppressed cell invasion and migration. Knockdown of HSP70 and/or MRJ inhibited expression of invasion related genes mmp2 and mmp9. Finally, HSP70 and/or MRJ up-regulated phosphorylation levels of ERK1/2 and FAK suggesting MAPK pathway was involved. All the biological function experiments in cell level showed an additive effect when HSP70 and MRJ were regulated simultaneously indicating their collaborated regulation effects on uPAR. These findings may offer a novel insight into the interactions between uPAR and HSP70/MRJ and their functions in cell adhesion and migration may provide more understanding of the roles in regulating cancer metastasis.

Top