NASA Astrophysics Data System (ADS)
Wang, Yunong; Cheng, Rongjun; Ge, Hongxia
2017-08-01
In this paper, a lattice hydrodynamic model is derived considering not only the effect of flow rate difference but also the delayed feedback control signal which including more comprehensive information. The control method is used to analyze the stability of the model. Furthermore, the critical condition for the linear steady traffic flow is deduced and the numerical simulation is carried out to investigate the advantage of the proposed model with and without the effect of flow rate difference and the control signal. The results are consistent with the theoretical analysis correspondingly.
How Do Health Care Providers Diagnose Precocious Puberty and Delayed Puberty?
... NICHD Research Information Find a Study More Information Pharmacology Condition Information NICHD Research Information Find a Study ... organs and blood flow in real time An MRI (magnetic resonance imaging) scan of the brain and ...
Economy with the time delay of information flow—The stock market case
NASA Astrophysics Data System (ADS)
Miśkiewicz, Janusz
2012-02-01
Any decision process requires information about the past and present state of the system, but in an economy acquiring data and processing it is an expensive and time-consuming task. Therefore, the state of the system is often measured over some legal interval, analysed after the end of well defined time periods and the results announced much later before any strategic decision is envisaged. The various time delay roles have to be crucially examined. Here, a model of stock market coupled with an economy is investigated to emphasise the role of the time delay span on the information flow. It is shown that the larger the time delay the more important the collective behaviour of agents since one observes time oscillations in the absolute log-return autocorrelations.
Bipartite consensus for multi-agent systems with antagonistic interactions and communication delays
NASA Astrophysics Data System (ADS)
Guo, Xing; Lu, Jianquan; Alsaedi, Ahmed; Alsaadi, Fuad E.
2018-04-01
This paper studies the consensus problems over signed digraphs with arbitrary finite communication delays. For the considered system, the information flow is directed and only locally delayed information can be used for each node. We derive that bipartite consensus of this system can be realized when the associated signed digraph is strongly connected. Furthermore, for structurally balanced networks, this paper studies the pinning partite consensus for the considered system. we design a pinning scheme to pin any one agent in the signed network, and obtain that the network achieves pinning bipartite consensus with any initial conditions. Finally, two examples are provided to demonstrate the effectiveness of our main results.
Peltonen, Laura-Maria; McCallum, Louise; Siirala, Eriikka; Haataja, Marjaana; Lundgrén-Laine, Heljä; Salanterä, Sanna; Lin, Frances
2015-01-01
The literature shows that delayed admission to the intensive care unit (ICU) and discharge delays from the ICU are associated with increased adverse events and higher costs. Identifying factors related to delays will provide information to practice improvements, which contribute to better patient outcomes. The aim of this integrative review was to explore the incidence of patients' admission and discharge delays in critical care and to identify organisational factors associated with these delays. Seven studies were included. The major findings are as follows: (1) explanatory research about discharge delays is scarce and one study on admission delays was found, (2) delays are a common problem mostly due to organisational factors, occurring in 38% of admissions and 22–67% of discharges, and (3) redesigning care processes by improving information management and coordination between units and interdisciplinary teams could reduce discharge delays. In conclusion, patient outcomes can be improved through efficient and safe care processes. More exploratory research is needed to identify factors that contribute to admission and discharge delays to provide evidence for clinical practice improvements. Shortening delays requires an interdisciplinary and multifaceted approach to the whole patient flow process. Conclusions should be made with caution due to the limited number of articles included in this review. PMID:26558286
Kawasaki, Masahiro; Uno, Yutaka; Mori, Jumpei; Kobata, Kenji; Kitajo, Keiichi
2014-01-01
Electroencephalogram (EEG) phase synchronization analyses can reveal large-scale communication between distant brain areas. However, it is not possible to identify the directional information flow between distant areas using conventional phase synchronization analyses. In the present study, we applied transcranial magnetic stimulation (TMS) to the occipital area in subjects who were resting with their eyes closed, and analyzed the spatial propagation of transient TMS-induced phase resetting by using the transfer entropy (TE), to quantify the causal and directional flow of information. The time-frequency EEG analysis indicated that the theta (5 Hz) phase locking factor (PLF) reached its highest value at the distant area (the motor area in this study), with a time lag that followed the peak of the transient PLF enhancements of the TMS-targeted area at the TMS onset. Phase-preservation index (PPI) analyses demonstrated significant phase resetting at the TMS-targeted area and distant area. Moreover, the TE from the TMS-targeted area to the distant area increased clearly during the delay that followed TMS onset. Interestingly, the time lags were almost coincident between the PLF and TE results (152 vs. 165 ms), which provides strong evidence that the emergence of the delayed PLF reflects the causal information flow. Such tendencies were observed only in the higher-intensity TMS condition, and not in the lower-intensity or sham TMS conditions. Thus, TMS may manipulate large-scale causal relationships between brain areas in an intensity-dependent manner. We demonstrated that single-pulse TMS modulated global phase dynamics and directional information flow among synchronized brain networks. Therefore, our results suggest that single-pulse TMS can manipulate both incoming and outgoing information in the TMS-targeted area associated with functional changes.
DOT National Transportation Integrated Search
2016-07-01
Current Advanced Traveler Information Systems (ATIS) allow travelers to change their route, mode, departure time, route choice or destination to avoid delays and congestions, which results in improved traffic flow. This means higher vehicle speed, lo...
NASA Technical Reports Server (NTRS)
Comstock, James R., Jr.; Ghatas, Rania W.; Consiglio, Maria C.; Chamberlain, James P.; Hoffler, Keith D.
2016-01-01
This study evaluated the effects of Communications Delays and Winds on Air Traffic Controller ratings of acceptability of horizontal miss distances (HMDs) for encounters between UAS and manned aircraft in a simulation of the Dallas-Ft. Worth East-side airspace. Fourteen encounters per hour were staged in the presence of moderate background traffic. Seven recently retired controllers with experience at DFW served as subjects. Guidance provided to the UAS pilots for maintaining a given HMD was provided by information from self-separation algorithms displayed on the Multi-Aircraft Simulation System. Winds tested did not affect the acceptability ratings. Communications delays tested included 0, 400, 1200, and 1800 msec. For longer communications delays, there were changes in strategy and communications flow that were observed and reported by the controllers. The aim of this work is to provide useful information for guiding future rules and regulations applicable to flying UAS in the NAS.
Delayed clarification: information, clarification and ethical decisions in critical care in Norway.
Bunch, E H
2000-12-01
Following the analysis of about 150 hours of field observation on a critical care unit in Norway a theory was generated to explain the actual ethical decision-making process. This was grounded in the empirical reality of physicians, nurses and family. The core theme in this study was a delayed clarification in assessing the prognosis of accident victims with neurosurgical traumas. The physicians, nurses and family had to wait for the clinical picture to clarify, during which time there was an exchange and emergence of information. Exchanging information, a subprocess to delayed clarification, involved a continuous flow of collecting and dispersing information about the clinical status of the patient. The nurses engaged in two useful strategies: grading information to family when the patient prognosis was poor, and providing grieving strategies for themselves, colleagues and family members. The core variable, delayed clarification has three dimensions: clinical, psychological and ethical. The nurses participated in the decision-making process to discontinue treatment as passive participants, they did not engage in collegial deliberations with the physicians. Ethical dilemmas were end of life questions, resource allocations, and questions of justice and organ transplants.
... flow of urine. For more information, see “Kegel Exercises for Your Pelvic Muscles.” Delay urination: Some people who have urge ... Info Sugar and Sugar Substitutes Exercise and Fitness Exercise Basics ... and Teens Pregnancy and Childbirth Women Men Seniors Your Health Resources ...
Noise Effects Upon a Simple Timing Channel
1990-12-21
used to quantify the resulting information flow across the chan- nel. Possible Trojan Horse strategies are also discussed. 14. SUBJECT TERMS 15. NUMBER...performed by a program referred to as a Trojan Horse . The Trojan Horse has the ability to instigate the delaying procedure to low, read high’s file. code it...and pass it through this delaying procedure. Such a means of communication between high and low, with or without the Trojan Horse in place, will be
BOLD delay times using group delay in sickle cell disease
NASA Astrophysics Data System (ADS)
Coloigner, Julie; Vu, Chau; Bush, Adam; Borzage, Matt; Rajagopalan, Vidya; Lepore, Natasha; Wood, John
2016-03-01
Sickle cell disease (SCD) is an inherited blood disorder that effects red blood cells, which can lead to vasoocclusion, ischemia and infarct. This disease often results in neurological damage and strokes, leading to morbidity and mortality. Functional Magnetic Resonance Imaging (fMRI) is a non-invasive technique for measuring and mapping the brain activity. Blood Oxygenation Level-Dependent (BOLD) signals contain also information about the neurovascular coupling, vascular reactivity, oxygenation and blood propagation. Temporal relationship between BOLD fluctuations in different parts of the brain provides also a mean to investigate the blood delay information. We used the induced desaturation as a label to profile transit times through different brain areas, reflecting oxygen utilization of tissue. In this study, we aimed to compare blood flow propagation delay times between these patients and healthy subjects in areas vascularized by anterior, middle and posterior cerebral arteries. In a group comparison analysis with control subjects, BOLD changes in these areas were found to be almost simultaneous and shorter in the SCD patients, because of their increased brain blood flow. Secondly, the analysis of a patient with a stenosis on the anterior cerebral artery indicated that signal of the area vascularized by this artery lagged the MCA signal. These findings suggest that sickle cell disease causes blood propagation modifications, and that these changes could be used as a biomarker of vascular damage.
Peeling Away Timing Error in NetFlow Data
NASA Astrophysics Data System (ADS)
Trammell, Brian; Tellenbach, Bernhard; Schatzmann, Dominik; Burkhart, Martin
In this paper, we characterize, quantify, and correct timing errors introduced into network flow data by collection and export via Cisco NetFlow version 9. We find that while some of these sources of error (clock skew, export delay) are generally implementation-dependent and known in the literature, there is an additional cyclic error of up to one second that is inherent to the design of the export protocol. We present a method for correcting this cyclic error in the presence of clock skew and export delay. In an evaluation using traffic with known timing collected from a national-scale network, we show that this method can successfully correct the cyclic error. However, there can also be other implementation-specific errors for which insufficient information remains for correction. On the routers we have deployed in our network, this limits the accuracy to about 70ms, reinforcing the point that implementation matters when conducting research on network measurement data.
Thuemmler, Christoph; Morris, Carole
2005-01-01
Recent audits within our hospital suggest that especially during peak phases the patient flow from our acute admission units downstream into hospital beds is not directed in the most efficient way and patients may be placed inappropriately. This inevitably causes time delays and potentially increases the risk of malpractice as patients have to spend an extended period of time in admission areas with a high workload and very busy staff. Using latest information technology, such as wireless local area networks and handheld devices, can improve the efficiency of patient management and can increase the quality of care by helping to avoid unnecessary treatment delays in overcrowded admission areas.
NASA Astrophysics Data System (ADS)
Davis, L. C.
2016-06-01
Wirelessly connected vehicles that exchange information about traffic conditions can reduce delays caused by congestion. At a 2-to-1 lane reduction, the improvement in flow past a bottleneck due to traffic with a random mixture of 40% connected vehicles is found to be 52%. Control is based on connected-vehicle-reported velocities near the bottleneck. In response to indications of congestion the connected vehicles, which are also adaptive cruise control vehicles, reduce their speed in slowdown regions. Early lane changes of manually driven vehicles from the terminated lane to the continuous lane are induced by the slowing connected vehicles. Self-organized congestion at the bottleneck is thus delayed or eliminated, depending upon the incoming flow magnitude. For the large majority of vehicles, travel times past the bottleneck are substantially reduced. Control is responsible for delaying the onset of congestion as the incoming flow increases. Adaptive cruise control increases the flow out of the congested state at the bottleneck. The nature of the congested state, when it occurs, appears to be similar under a variety of conditions. Typically 80-100 vehicles are approximately equally distributed between the lanes in the 500 m region prior to the end of the terminated lane. Without the adaptive cruise control capability, connected vehicles can delay the onset of congestion but do not increase the asymptotic flow past the bottleneck. Calculations are done using the Kerner-Klenov three-phase theory, stochastic discrete-time model for manual vehicles. The dynamics of the connected vehicles is given by a conventional adaptive cruise control algorithm plus commanded deceleration. Because time in the model for manual vehicles is discrete (one-second intervals), it is assumed that the acceleration of any vehicle immediately in front of a connected vehicle is constant during the time interval, thereby preserving the computational simplicity and speed of a discrete-time model.
Communication in diagnostic radiology: meeting the challenges of complexity.
Larson, David B; Froehle, Craig M; Johnson, Neil D; Towbin, Alexander J
2014-11-01
As patients and information flow through the imaging process, value is added step-by-step when information is acquired, interpreted, and communicated back to the referring clinician. However, radiology information systems are often plagued with communication errors and delays. This article presents theories and recommends strategies to continuously improve communication in the complex environment of modern radiology. Communication theories, methods, and systems that have proven their effectiveness in other environments can serve as models for radiology.
Manage Your Cash for Success! A Guide for Beginning School Business Officials.
ERIC Educational Resources Information Center
Johnson, Donald R.
2000-01-01
A cash-flow plan allows districts lead time for investing, borrowing, reducing or delaying expenditures, expanding revenue sources, informing the community, and avoiding surprises. Planners should identify type, timing, and amount of revenues and expenditures and then compare revenues and expenditures to determine (and accommodate) shortfalls or…
Delay Banking for Managing Air Traffic
NASA Technical Reports Server (NTRS)
Green, Steve
2008-01-01
Delay banking has been invented to enhance air-traffic management in a way that would increase the degree of fairness in assigning arrival, departure, and en-route delays and trajectory deviations to aircraft impacted by congestion in the national airspace system. In delay banking, an aircraft operator (airline, military, general aviation, etc.) would be assigned a numerical credit when any of their flights are delayed because of an air-traffic flow restriction. The operator could subsequently bid against other operators competing for access to congested airspace to utilize part or all of its accumulated credit. Operators utilize credits to obtain higher priority for the same flight, or other flights operating at the same time, or later, in the same airspace, or elsewhere. Operators could also trade delay credits, according to market rules that would be determined by stakeholders in the national airspace system. Delay banking would be administered by an independent third party who would use delay banking automation to continually monitor flights, allocate delay credits, maintain accounts of delay credits for participating airlines, mediate bidding and the consumption of credits of winning bidders, analyze potential transfers of credits within and between operators, implement accepted transfers, and ensure fair treatment of all participating operators. A flow restriction can manifest itself in the form of a delay in assigned takeoff time, a reduction in assigned airspeed, a change in the position for the aircraft in a queue of all aircraft in a common stream of traffic (e.g., similar route), a change in the planned altitude profile for an aircraft, or change in the planned route for the aircraft. Flow restrictions are typically imposed to mitigate traffic congestion at an airport or in a region of airspace, particularly congestion due to inclement weather, or the unavailability of a runway or region of airspace. A delay credit would be allocated to an operator of a flight that has accepted, or upon which was imposed, a flow restriction. The amount of the credit would increase with the amount of delay caused by the flow restriction, the exact amount depending on which of several candidate formulas is eventually chosen. For example, according to one formula, there would be no credit for a delay smaller than some threshold value (e.g., 30 seconds) and the amount of the credit for a longer delay would be set at the amount of the delay minus the threshold value. Optionally, the value of a delay credit could be made to decay with time according to a suitable formula (e.g., an exponential decay). Also, optionally, a transaction charge could be assessed against the value of a delay credit that an operator used on a flight different from the one for which the delay originated or that was traded with a different operator. The delay credits accumulated by a given airline could be utilized in various ways. For example, an operator could enter a bid for priority handling in a new flow restriction that impacts one or more of the operator s flights; if the bid were unsuccessful, all or a portion of the credit would be returned to the bidder. If the bid pertained to a single aircraft that was in a queue, delay credits could be consumed in moving the aircraft to an earlier position within the queue. In the case of a flow restriction involving a choice of alternate routes, planned altitude profile, aircraft spacing, or other non-queue flow restrictions, delay credits could be used to bid for an alternative assignment.
Correlations and flow of information between the New York Times and stock markets
NASA Astrophysics Data System (ADS)
García-Medina, Andrés; Sandoval, Leonidas; Bañuelos, Efraín Urrutia; Martínez-Argüello, A. M.
2018-07-01
We use Random Matrix Theory (RMT) and information theory to analyze the correlations and flow of information between 64,939 news from The New York Times and 40 world financial indices during 10 months along the period 2015-2016. The set of news is quantified and transformed into daily polarity time series using tools from sentiment analysis. The results show that a common factor influences the world indices and news, which even share the same dynamics. Furthermore, the global correlation structure is found to be preserved when adding white noise, what indicates that correlations are not due to sample size effects. Likewise, we find a considerable amount of information flowing from news to world indices for some specific delay. This is of practical interest for trading purposes. Our results suggest a deep relationship between news and world indices, and show a situation where news drive world market movements, giving a new evidence to support behavioral finance as the current economic paradigm.
Interaction of Airspace Partitions and Traffic Flow Management Delay with Weather
NASA Technical Reports Server (NTRS)
Lee, Hak-Tae; Chatterji, Gano B.; Palopo, Kee
2011-01-01
The interaction of partitioning the airspace and delaying flights in the presence of convective weather is explored to study how re-partitioning the airspace can help reduce congestion and delay. Three approaches with varying complexities are employed to compute the ground delays.In the first approach, an airspace partition of 335 high-altitude sectors that is based on clear weather day traffic is used. Routes are then created to avoid regions of convective weather. With traffic flow management, this approach establishes the baseline with per-flight delay of 8.4 minutes. In the second approach, traffic flow management is used to select routes and assign departure delays such that only the airport capacity constraints are met. This results in 6.7 minutes of average departure delay. The airspace is then partitioned with a specific capacity. It is shown that airspace-capacity-induced delay can be reduced to zero ata cost of 20percent more sectors for the examined scenario.
A novel downlink scheduling strategy for traffic communication system based on TD-LTE technology.
Chen, Ting; Zhao, Xiangmo; Gao, Tao; Zhang, Licheng
2016-01-01
There are many existing classical scheduling algorithms which can obtain better system throughput and user equality, however, they are not designed for traffic transportation environment, which cannot consider whether the transmission performance of various information flows could meet comprehensive requirements of traffic safety and delay tolerance. This paper proposes a novel downlink scheduling strategy for traffic communication system based on TD-LTE technology, which can perform two classification mappings for various information flows in the eNodeB: firstly, associate every information flow packet with traffic safety importance weight according to its relevance to the traffic safety; secondly, associate every traffic information flow with service type importance weight according to its quality of service (QoS) requirements. Once the connection is established, at every scheduling moment, scheduler would decide the scheduling order of all buffers' head of line packets periodically according to the instant value of scheduling importance weight function, which calculated by the proposed algorithm. From different scenario simulations, it can be verified that the proposed algorithm can provide superior differentiated transmission service and reliable QoS guarantee to information flows with different traffic safety levels and service types, which is more suitable for traffic transportation environment compared with the existing popularity PF algorithm. With the limited wireless resource, information flow closed related to traffic safety will always obtain priority scheduling right timely, which can help the passengers' journey more safe. Moreover, the proposed algorithm cannot only obtain good flow throughput and user fairness which are almost equal to those of the PF algorithm without significant differences, but also provide better realtime transmission guarantee to realtime information flow.
NASA Technical Reports Server (NTRS)
Comstock, James R., Jr.; Ghatas, Rania W.; Consiglio, Maria C.; Chamberlain, James P.; Hoffler, Keith D.
2015-01-01
This study evaluated the effects of communications delays and winds on air traffic controller ratings of acceptability of horizontal miss distances (HMDs) for encounters between Unmanned Aircraft Systems (UAS) and manned aircraft in a simulation of the Dallas-Ft. Worth (DFW) airspace. Fourteen encounters per hour were staged in the presence of moderate background traffic. Seven recently retired controllers with experience at DFW served as subjects. Guidance provided to the UAS pilots for maintaining a given HMD was provided by information from Detect and Avoid (DAA) self-separation algorithms (Stratway+) displayed on the Multi-Aircraft Control System. This guidance consisted of amber "bands" on the heading scale of the UAS navigation display indicating headings that would result in a loss of well clear between the UAS and nearby traffic. Winds tested were successfully handled by the DAA algorithms and did not affect the controller acceptability ratings of the HMDs. Voice communications delays for the UAS were also tested and included one-way delay times of 0, 400, 1200, and 1800 msec. For longer communications delays, there were changes in strategy and communications flow that were observed and reported by the controllers. The aim of this work is to provide useful information for guiding future rules and regulations applicable to flying UAS in the NAS. Information from this study will also be of value to the Radio Technical Commission for Aeronautics (RTCA) Special Committee 228 - Minimum Performance Standards for UAS.
Geochemistry of the Mattole River in Northern California
Kennedy, Vance C.; Malcolm, Ronald L.
1977-01-01
The chemical composition of streams can vary greatly with changing discharge during storm runoff. These chemical changes are related to the pathways of various water parcels from the time they fall as rain until they enter the stream, and to the interactions between water and sediment during transport downstream. In order to understand better the chemical variations during storms, an extensive investigation was made of the Mattole River, a chemically clean coastal stream in Mendocino County, California. The Mattole drains a topographically mature basin of 620 sw km which has relief of about 1200 m, a long summer dry season, and mean annual rainfall of about 2300 mm. The stream flow is composed of seasonally varying proportions of four flow components, namely, surface runoff, quick-return flow (rainfall having brief and intimate contact with the soil before entering the surface drainage), delayed-return flow, and base runoff. Each component is identified by its characteristic chemistry and by the time delay between rainfall and entrance into the stream. Information is also presented on rain chemistry, adsorption reactions of suspended sediments in the fresh and brackish environments, and compositional variation of river sediments with particle size. (Woodard-USGS)
The Web 2.0 concept of urban disaster information in Taipei city: Mobile application development
NASA Astrophysics Data System (ADS)
Tsai, Yuan-Fan; Chan, Chun-Hsiang; Wang, Han; Pan, Yun-Xing; Lin, Gine-Jie
2014-05-01
In recent years, due to the global warming and global climate anomaly, more and more disasters appear such as flood and debris flow. The disasters always cause loss of life and property. However, the cross-aged invention, smart phone, makes our life more conveniently for delivering lots of information instantly. This study uses Eclipse as the development platform, and designs the urban disaster information mobile Application (APP) which is for debris flow and flood in Taipei city area. In this study, an urban disaster information APP, Taipei Let You Know, has successfully developed under android development environment, combined disaster indicators and the warming value of disaster. In order to ameliorate official information delay problem, this APP not only shows official information, but also offers a WEB 2.0 platform for public users to upload all disaster information instantly. As the result, the losses of life and property can decrease, and the disaster information delivery can be faster and more accurate by utilizing this APP in the future.
Loading-rate-independent delay of catastrophic avalanches in a bulk metallic glass
Chen, S. H.; Chan, K. C.; Wang, G.; ...
2016-02-25
The plastic flow of bulk metallic glasses (BMGs) is characterized by intermittent bursts of avalanches, and this trend results in disastrous failures of BMGs. In the present work, a double-side-notched BMG specimen is designed, which exhibits chaotic plastic flows consisting of several catastrophic avalanches under the applied loading. The disastrous shear avalanches have, then, been delayed by forming a stable plastic-flow stage in the specimens with tailored distances between the bottoms of the notches, where the distribution of a complex stress field is acquired. Differing from the conventional compressive testing results, such a delaying process is independent of loading rate.more » The statistical analysis shows that in the specimens with delayed catastrophic failures, the plastic flow can evolve to a critical dynamics, making the catastrophic failure more predictable than the ones with chaotic plastic flows. Lastly, the findings are of significance in understanding the plastic-flow mechanisms in BMGs and controlling the avalanches in relating solids.« less
Gowers, S. A. N.; Hamaoui, K.; Cunnea, P.; Anastasova, S.; Curto, V. F.; Vadgama, P.; Yang, G.-Z.; Papalois, V.; Drakakis, E. M.; Fotopoulou, C.; Weber, S. G.
2018-01-01
This paper presents the use of tubing to store clinical microdialysis samples for delayed analysis with high temporal resolution, offering an alternative to traditional discrete offline microdialysis sampling. Samples stored in this way were found to be stable for up to 72 days at –80 °C. Examples of how this methodology can be applied to glucose and lactate measurement in a wide range of in vivo monitoring experiments are presented. This paper presents a general model, which allows for an informed choice of tubing parameters for a given storage time and flow rate avoiding high back pressure, which would otherwise cause the microdialysis probe to leak, while maximising temporal resolution. PMID:29336454
A project management system for the X-29A flight test program
NASA Technical Reports Server (NTRS)
Stewart, J. F.; Bauer, C. A.
1983-01-01
The project-management system developed for NASA's participation in the X-29A aircraft development program is characterized from a theoretical perspective, as an example of a system appropriate to advanced, highly integrated technology projects. System-control theory is applied to the analysis of classical project-management techniques and structures, which are found to be of closed-loop multivariable type; and the effects of increasing project complexity and integration are evaluated. The importance of information flow, sampling frequency, information holding, and delays is stressed. The X-29A system is developed in four stages: establishment of overall objectives and requirements, determination of information processes (block diagrams) definition of personnel functional roles and relationships, and development of a detailed work-breakdown structure. The resulting system is shown to require a greater information flow to management than conventional methods. Sample block diagrams are provided.
Modeling and Performance Optimization of Large-Scale Data-Communication Networks.
1981-06-01
IT-17, no. 1, pp. 71-76, 1971. 12. Y. Ho, M. Kastner, and E. Wong, "Teams, market signalling, and information theory," IEEE Trans. Automat. Contr...modifies the flow assignment to satisfy end-to-end delay constraints. 3.2.1 Rationale for Min-Hop Strategr The Min-Hop algorithm proposed in this...Prentice-Hall, 1980. Ho, Y., M. Kostner and E. Wong, "Teams, market signalling, and information theory," IEEE Trans. Automat. Contr., vol. AC-23, pp
Hooper, Stuart B; Crossley, Kelly J; Zahra, Valerie A; van Vonderen, Jeroen; Moxham, Alison; Gill, Andrew W; Kluckow, Martin; Te Pas, Arjan B; Wallace, Euan M; Polglase, Graeme R
2017-07-01
While delayed umbilical cord clamping (UCC) is thought to facilitate placental to infant blood transfusion, the physiological factors regulating flow in the umbilical arteries and veins during delayed UCC is unknown. We investigated the effects of gravity, by changing fetal height relative to the placenta, and ventilation on umbilical blood flows and the cardiovascular transition during delayed UCC at birth. Catheters and flow probes were implanted into preterm lambs (128 days) prior to delivery to measure pulmonary, carotid, umbilical artery (UaBF) and umbilical venous (UvBF) blood flows. Lambs were placed either 10 cm below or 10 cm above the ewe. Ventilation commenced 2-3 min before UCC and continued for 30 min after UCC. Gravity reduced umbilical and cerebral flows when lambs were placed below the midline, but the reduction in UaBF and UvBF was similar. Ventilation during delayed UCC reduced UvBF and UaBF by similar amounts, irrespective of the lamb's position, such that flows into and out of the placenta remained balanced. The effects of ventilation on umbilical flows were much greater than the effects of gravity, but no net placental to lamb blood transfusion could be detected under any condition. Cardiovascular parameters, cerebral oxygen kinetics and final blood volumes were similar in both groups 5 min after UCC. Gravity caused small transient effects on umbilical and cerebral flow, but given changes were similar in umbilical arteries and veins, no net placental transfusion was detected. Ventilation during delayed UCC has a markedly greater influence on cardiovascular function in the newborn. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Engineering fluidic delays in paper-based devices using laser direct-writing.
He, P J W; Katis, I N; Eason, R W; Sones, C L
2015-10-21
We report the use of a new laser-based direct-write technique that allows programmable and timed fluid delivery in channels within a paper substrate which enables implementation of multi-step analytical assays. The technique is based on laser-induced photo-polymerisation, and through adjustment of the laser writing parameters such as the laser power and scan speed we can control the depth and/or the porosity of hydrophobic barriers which, when fabricated in the fluid path, produce controllable fluid delay. We have patterned these flow delaying barriers at pre-defined locations in the fluidic channels using either a continuous wave laser at 405 nm, or a pulsed laser operating at 266 nm. Using this delay patterning protocol we generated flow delays spanning from a few minutes to over half an hour. Since the channels and flow delay barriers can be written via a common laser-writing process, this is a distinct improvement over other methods that require specialist operating environments, or custom-designed equipment. This technique can therefore be used for rapid fabrication of paper-based microfluidic devices that can perform single or multistep analytical assays.
Real Time Metrics and Analysis of Integrated Arrival, Departure, and Surface Operations
NASA Technical Reports Server (NTRS)
Sharma, Shivanjli; Fergus, John
2017-01-01
A real time dashboard was developed in order to inform and present users notifications and integrated information regarding airport surface operations. The dashboard is a supplement to capabilities and tools that incorporate arrival, departure, and surface air-traffic operations concepts in a NextGen environment. As trajectory-based departure scheduling and collaborative decision making tools are introduced in order to reduce delays and uncertainties in taxi and climb operations across the National Airspace System, users across a number of roles benefit from a real time system that enables common situational awareness. In addition to shared situational awareness the dashboard offers the ability to compute real time metrics and analysis to inform users about capacity, predictability, and efficiency of the system as a whole. This paper describes the architecture of the real time dashboard as well as an initial set of metrics computed on operational data. The potential impact of the real time dashboard is studied at the site identified for initial deployment and demonstration in 2017; Charlotte-Douglas International Airport. Analysis and metrics computed in real time illustrate the opportunity to provide common situational awareness and inform users of metrics across delay, throughput, taxi time, and airport capacity. In addition, common awareness of delays and the impact of takeoff and departure restrictions stemming from traffic flow management initiatives are explored. The potential of the real time tool to inform the predictability and efficiency of using a trajectory-based departure scheduling system is also discussed.
Understanding Preprocedure Patient Flow in IR.
Zafar, Abdul Mueed; Suri, Rajeev; Nguyen, Tran Khanh; Petrash, Carson Cope; Fazal, Zanira
2016-08-01
To quantify preprocedural patient flow in interventional radiology (IR) and to identify potential contributors to preprocedural delays. An administrative dataset was used to compute time intervals required for various preprocedural patient-flow processes. These time intervals were compared across on-time/delayed cases and inpatient/outpatient cases by Mann-Whitney U test. Spearman ρ was used to assess any correlation of the rank of a procedure on a given day and the procedure duration to the preprocedure time. A linear-regression model of preprocedure time was used to further explore potential contributing factors. Any identified reason(s) for delay were collated. P < .05 was considered statistically significant. Of the total 1,091 cases, 65.8% (n = 718) were delayed. Significantly more outpatient cases started late compared with inpatient cases (81.4% vs 45.0%; P < .001, χ(2) test). The multivariate linear regression model showed outpatient status, length of delay in arrival, and longer procedure times to be significantly associated with longer preprocedure times. Late arrival of patients (65.9%), unavailability of physicians (18.4%), and unavailability of procedure room (13.0%) were the three most frequently identified reasons for delay. The delay was multifactorial in 29.6% of cases (n = 213). Objective measurement of preprocedural IR patient flow demonstrated considerable waste and highlighted high-yield areas of possible improvement. A data-driven approach may aid efficient delivery of IR care. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.
Glow Discharge Plasma Demonstrated for Separation Control in the Low-Pressure Turbine
NASA Technical Reports Server (NTRS)
Ashpis, David e.; Hultgren, Lennart S.
2004-01-01
Flow separation in the low-pressure turbine (LPT) is a major barrier that limits further improvements of aerodynamic designs of turbine airfoils. The separation is responsible for performance degradation, and it prevents the design of highly loaded airfoils. The separation can be delayed, reduced, or eliminated completely if flow control techniques are used. Successful flow control technology will enable breakthrough improvements in gas turbine performance and design. The focus of this research project was the development and experimental demonstration of active separation control using glow discharge plasma (GDP) actuators in flow conditions simulating the LPT. The separation delay was shown to be successful, laying the foundation for further development of the technologies to practical application in the LPT. In a fluid mechanics context, the term "flow control" means a technology by which a very small input results in a very large effect on the flow. In this project, the interest is to eliminate or delay flow separation on LPT airfoils by using an active flow control approach, in which disturbances are dynamically inserted into the flow, they interact with the flow, and they delay separation. The disturbances can be inserted using a localized, externally powered, actuating device, examples are acoustic, pneumatic, or mechanical devices that generate vibrations, flow oscillations, or pulses. A variety of flow control devices have been demonstrated in recent years in the context of the external aerodynamics of aircraft wings and airframes, where the incoming flow is quiescent or of a very low turbulence level. However, the flow conditions in the LPT are significantly different because there are high levels of disturbances in the incoming flow that are characterized by high free-stream turbulence intensity. In addition, the Reynolds number, which characterizes the viscous forces in the flow and is related to the flow speed, is very low in the LPT passages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lancaster, S.; Fette, B.; Busler, L.
This report describes the public outreach plan on the implementation of ramp meters along the Katy Freeway in Houston, Generally, ramp metering is neither beloved nor understood by the public. To gain public awareness, acceptance, compliance and continued support, ramp metering operations should be reinforced by a strong, ongoing public information and outreach campaign that communicates the need for and benefits of the program. Because the term `ramp metering` exhibits restrictions on the public, the phrase `Flow Signals` was developed to better describe the benefits of ramp metering; enhanced flow of traffic, fewer bottlenecks, and fewer trip delays. The logo,more » `Go with the Flow Houston,` and a graphic identity were developed to help communicate the theme throughout the various media where both the primary and secondary messages are intended to reach 15 different audiences. These media will include: a PSA, both static and changeable message signs, a brochure, Internet web site information, letters to specific audience and media relations efforts.« less
Chen, Guangxiang; Lei, Du; Ren, Jiechuan; Zuo, Panli; Suo, Xueling; Wang, Danny J J; Wang, Meiyun; Zhou, Dong; Gong, Qiyong
2016-07-04
The cerebral haemodynamic status of idiopathic generalized epilepsy (IGE) is a very complicated process. Little attention has been paid to cerebral blood flow (CBF) alterations in IGE detected by arterial spin labelling (ASL) perfusion magnetic resonance imaging (MRI). However, the selection of an optimal delay time is difficult for single-delay ASL. Multi-delay multi-parametric ASL perfusion MRI overcomes the limitations of single-delay ASL. We applied multi-delay multi-parametric ASL perfusion MRI to investigate the patterns of postictal cerebral perfusion in IGE patients with absence seizures. A total of 21 IGE patients with absence seizures and 24 healthy control subjects were enrolled. IGE patients exhibited prolonged arterial transit time (ATT) in the left superior temporal gyrus. The mean CBF of IGE patients was significantly increased in the left middle temporal gyrus, left parahippocampal gyrus and left fusiform gyrus. Prolonged ATT in the left superior temporal gyrus was negatively correlated with the age at onset in IGE patients. This study demonstrated that cortical dysfunction in the temporal lobe and fusiform gyrus may be related to epileptic activity in IGE patients with absence seizures. This information can play an important role in elucidating the pathophysiological mechanism of IGE from a cerebral haemodynamic perspective.
Decoding complex flow-field patterns in visual working memory.
Christophel, Thomas B; Haynes, John-Dylan
2014-05-01
There has been a long history of research on visual working memory. Whereas early studies have focused on the role of lateral prefrontal cortex in the storage of sensory information, this has been challenged by research in humans that has directly assessed the encoding of perceptual contents, pointing towards a role of visual and parietal regions during storage. In a previous study we used pattern classification to investigate the storage of complex visual color patterns across delay periods. This revealed coding of such contents in early visual and parietal brain regions. Here we aim to investigate whether the involvement of visual and parietal cortex is also observable for other types of complex, visuo-spatial pattern stimuli. Specifically, we used a combination of fMRI and multivariate classification to investigate the retention of complex flow-field stimuli defined by the spatial patterning of motion trajectories of random dots. Subjects were trained to memorize the precise spatial layout of these stimuli and to retain this information during an extended delay. We used a multivariate decoding approach to identify brain regions where spatial patterns of activity encoded the memorized stimuli. Content-specific memory signals were observable in motion sensitive visual area MT+ and in posterior parietal cortex that might encode spatial information in a modality independent manner. Interestingly, we also found information about the memorized visual stimulus in somatosensory cortex, suggesting a potential crossmodal contribution to memory. Our findings thus indicate that working memory storage of visual percepts might be distributed across unimodal, multimodal and even crossmodal brain regions. Copyright © 2014 Elsevier Inc. All rights reserved.
Ehgoetz Martens, Kaylena A; Ellard, Colin G; Almeida, Quincy J
2015-03-01
Although dopaminergic replacement therapy is believed to improve sensory processing in PD, while delayed perceptual speed is thought to be caused by a predominantly cholinergic deficit, it is unclear whether sensory-perceptual deficits are a result of corrupt sensory processing, or a delay in updating perceived feedback during movement. The current study aimed to examine these two hypotheses by manipulating visual flow speed and dopaminergic medication to examine which influenced distance estimation in PD. Fourteen PD and sixteen HC participants were instructed to estimate the distance of a remembered target by walking to the position the target formerly occupied. This task was completed in virtual reality in order to manipulate the visual flow (VF) speed in real time. Three conditions were carried out: (1) BASELINE: VF speed was equal to participants' real-time movement speed; (2) SLOW: VF speed was reduced by 50 %; (2) FAST: VF speed was increased by 30 %. Individuals with PD performed the experiment in their ON and OFF state. PD demonstrated significantly greater judgement error during BASELINE and FAST conditions compared to HC, although PD did not improve their judgement error during the SLOW condition. Additionally, PD had greater variable error during baseline compared to HC; however, during the SLOW conditions, PD had significantly less variable error compared to baseline and similar variable error to HC participants. Overall, dopaminergic medication did not significantly influence judgement error. Therefore, these results suggest that corrupt processing of sensory information is the main contributor to sensory-perceptual deficits during movement in PD rather than delayed updating of sensory feedback.
Arrival Metering Precision Study
NASA Technical Reports Server (NTRS)
Prevot, Thomas; Mercer, Joey; Homola, Jeffrey; Hunt, Sarah; Gomez, Ashley; Bienert, Nancy; Omar, Faisal; Kraut, Joshua; Brasil, Connie; Wu, Minghong, G.
2015-01-01
This paper describes the background, method and results of the Arrival Metering Precision Study (AMPS) conducted in the Airspace Operations Laboratory at NASA Ames Research Center in May 2014. The simulation study measured delivery accuracy, flight efficiency, controller workload, and acceptability of time-based metering operations to a meter fix at the terminal area boundary for different resolution levels of metering delay times displayed to the air traffic controllers and different levels of airspeed information made available to the Time-Based Flow Management (TBFM) system computing the delay. The results show that the resolution of the delay countdown timer (DCT) on the controllers display has a significant impact on the delivery accuracy at the meter fix. Using the 10 seconds rounded and 1 minute rounded DCT resolutions resulted in more accurate delivery than 1 minute truncated and were preferred by the controllers. Using the speeds the controllers entered into the fourth line of the data tag to update the delay computation in TBFM in high and low altitude sectors increased air traffic control efficiency and reduced fuel burn for arriving aircraft during time based metering.
Champagne, Allen A; Bhogal, Alex A; Coverdale, Nicole S; Mark, Clarisse I; Cook, Douglas J
2017-12-05
Redistribution of blood flow across different brain regions, arising from the vasoactive nature of hypercapnia, can introduce errors when examining cerebrovascular reactivity (CVR) response delays. In this study, we propose a novel analysis method to characterize hemodynamic delays in the blood oxygen level dependent (BOLD) response to hypercapnia, and hyperoxia, as a way to provide insight into transient differences in vascular reactivity between cortical regions, and across tissue depths. A pseudo-continuous arterial spin labeling sequence was used to acquire BOLD and cerebral blood flow simultaneously in 19 healthy adults (12 F; 20 ± 2 years) during boxcar CO 2 and O 2 gas inhalation paradigms. Despite showing distinct differences in hypercapnia-induced response delay times (P < 0.05; Bonferroni corrected), grey matter regions showed homogenous hemodynamic latencies (P > 0.05) once calibrated for bolus arrival time derived using non-vasoactive hyperoxic gas challenges. Longer hypercapnic temporal delays were observed as the depth of the white matter tissue increased, although no significant differences in response lag were found during hyperoxia across tissue depth, or between grey and white matter. Furthermore, calibration of hypercapnic delays using hyperoxia revealed that deeper white matter layers may be more prone to dynamic redistribution of blood flow, which introduces response lag times ranging between 1 and 3 s in healthy subjects. These findings suggest that the combination of hypercapnic and hyperoxic gas-inhalation MRI can be used to distinguish between differences in CVR that arise as a result of delayed stimulus arrival time (due to the local architecture of the cerebrovasculature), or preferential blood flow distribution. Calibrated response delays to hypercapnia provide important insights into cerebrovascular physiology, and may be used to correct response delays associated with vascular impairment. Copyright © 2017. Published by Elsevier Inc.
Cerebral blood flow in humans following resuscitation from cardiac arrest
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohan, S.L.; Mun, S.K.; Petite, J.
1989-06-01
Cerebral blood flow was measured by xenon-133 washout in 13 patients 6-46 hours after being resuscitated from cardiac arrest. Patients regaining consciousness had relatively normal cerebral blood flow before regaining consciousness, but all patients who died without regaining consciousness had increased cerebral blood flow that appeared within 24 hours after resuscitation (except in one patient in whom the first measurement was delayed until 28 hours after resuscitation, by which time cerebral blood flow was increased). The cause of the delayed-onset increase in cerebral blood flow is not known, but the increase may have adverse effects on brain function and maymore » indicate the onset of irreversible brain damage.« less
Mapping patient flow in a regional Australian emergency department: a model driven approach.
Martin, Mary; Champion, Robert; Kinsman, Leigh; Masman, Kevin
2011-04-01
Unified Modelling Language (UML) models of the patient journey in a regional Australian emergency department (ED) were used to develop an accurate, complete representation of ED processes and drive the collection of comprehensive quantitative and qualitative service delivery and patient treatment data as an evidence base for hospital service planning. The focus was to identify bottle-necks that contribute to over-crowding. Data was collected entirely independently of the routine hospital data collection system. The greatest source of delay in patient flow was the waiting time from a bed request to exit from the ED for hospital admission. It represented 61% of the time that these patients occupied ED cubicles. The physical layout of the triage area was identified as counterproductive to efficient triaging, and the results of investigations were often observed to be available for some time before clinical staff became aware. The use of independent primary data to construct UML models of the patient journey was effective in identifying sources of delay in patient flow, and aspects of ED activity that could be improved. The findings contributed to recent department re-design and informed an initiative to develop a business intelligence system for predicting impending occurrence of access block. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghijsen, Michael T.; Tromberg, Bruce J.
2017-03-01
Affixed Transmission Speckle Analysis (ATSA) is a method recently developed to measure blood flow that is based on laser speckle imaging miniaturized into a clip-on form factor the size of a pulse-oximeter. Measuring at a rate of 250 Hz, ATSA is capable or obtaining the cardiac waveform in blood flow data, referred to as the Speckle-Plethysmogram (SPG). ATSA is also capable of simultaneously measuring the Photoplethysmogram (PPG), a more conventional signal related to light intensity. In this work we present several novel algorithms for extracting physiologically relevant information from the combined SPG-PPG waveform data. First we show that there is a slight time-delay between the SPG and PPG that can be extracted computationally. Second, we present a set of frequency domain algorithms that measure harmonic content on pulse-by-pulse basis for both the SPG and PPG. Finally, we apply these algorithms to data obtained from a set of subjects including healthy controls and individuals with heightened cardiovascular risk. We hypothesize that the time-delay and frequency content are correlated with cardiovascular health; specifically with vascular stiffening.
Variable cycle control model for intersection based on multi-source information
NASA Astrophysics Data System (ADS)
Sun, Zhi-Yuan; Li, Yue; Qu, Wen-Cong; Chen, Yan-Yan
2018-05-01
In order to improve the efficiency of traffic control system in the era of big data, a new variable cycle control model based on multi-source information is presented for intersection in this paper. Firstly, with consideration of multi-source information, a unified framework based on cyber-physical system is proposed. Secondly, taking into account the variable length of cell, hysteresis phenomenon of traffic flow and the characteristics of lane group, a Lane group-based Cell Transmission Model is established to describe the physical properties of traffic flow under different traffic signal control schemes. Thirdly, the variable cycle control problem is abstracted into a bi-level programming model. The upper level model is put forward for cycle length optimization considering traffic capacity and delay. The lower level model is a dynamic signal control decision model based on fairness analysis. Then, a Hybrid Intelligent Optimization Algorithm is raised to solve the proposed model. Finally, a case study shows the efficiency and applicability of the proposed model and algorithm.
A flow-control mechanism for distributed systems
NASA Technical Reports Server (NTRS)
Maitan, J.
1991-01-01
A new approach to the rate-based flow control in store-and-forward networks is evaluated. Existing methods display oscillations in the presence of transport delays. The proposed scheme is based on the explicit use of an embedded dynamic model of a store-and-forward buffer in a controller's feedback loop. It is shown that the use of the model eliminates the oscillations caused by the transport delays. The paper presents simulation examples and assesses the applicability of the scheme in the new generation of high-speed photonic networks where transport delays must be considered.
A modeling study on the influence of blood flow regulation on skin temperature pulsations
NASA Astrophysics Data System (ADS)
Tang, Yanliang; Mizeva, Irina; He, Ying
2017-04-01
Nowadays together with known optic techniques of microcirculation blood flow monitoring, skin temperature measurements are developed as well. In this paper, a simple one-dimensional bioheat transfer model was developed to analyse the heat wave transport in biological tissue, where an arteriole vessel with pulsatile blood is located. The simulated results show that the skin temperature oscillation amplitudes attenuate with the increase of blood flow oscillation frequency which gives the same tendency as that in the experiments. The parameter analyses further show that the amplitude of oscillation is also influenced by oscillation amplitude of blood and effective thermal conductivity. When oscillation amplitude of blood flow and effective thermal conductivity increase, the amplitude of skin temperature oscillation increases nonlinearly. Variation of effective thermal convective influence to the time delay of the thermal wave on the skin surface and distort it. Combination of two measurement techniques: one for estimation blood flow oscillations in the microvessels and other to the skin temperature measurement can produce additional information about the skin properties.
Turbulent cascades in foreign exchange markets
NASA Astrophysics Data System (ADS)
Ghashghaie, S.; Breymann, W.; Peinke, J.; Talkner, P.; Dodge, Y.
1996-06-01
THE availability of high-frequency data for financial markets has made it possible to study market dynamics on timescales of less than a day1. For foreign exchange (FX) rates Müller et al.2 have shown that there is a net flow of information from long to short timescales: the behaviour of long-term traders (who watch the markets only from time to time) influences the behaviour of short-term traders (who watch the markets continuously). Motivated by this hierarchical feature, we have studied FX market dynamics in more detail, and report here an analogy between these dynamics and hydrodynamic turbulence3-8. Specifically, the relationship between the probability density of FX price changes (δx) and the time delay (δt) (Fig. la) is much the same as the relationship between the probability density of the velocity differences (δv) of two points in a turbulent flow and their spatial separation δr (Fig. 1b). Guided by this similarity we claim that there is an information cascade in FX market dynamics that corresponds to the energy cascade in hydrodynamic turbulence. On the basis of this analogy we can now rationalize the statistics of FX price differences at different time delays, which is important for, for example, option pricing. The analogy also provides a conceptual framework for understanding the short-term dynamics of speculative markets.
Zhou, Peng-Li; Wu, Gang; Han, Xin-Wei; Bi, Yong-Hua; Zhang, Wen-Guang; Wu, Zheng-Yang
2017-06-01
To compare the results of computed tomography venography (CTV) with a fixed and a flexible delayed scan time for Budd-Chiari syndrome (BCS) with inferior vena cava (IVC) obstruction. A total of 209 consecutive BCS patients with IVC obstruction underwent either a CTV with a fixed delayed scan time of 180s (n=87) or a flexible delayed scan time for good image quality according to IVC blood flow in color Doppler ultrasonography (n=122). The IVC blood flow velocity was measured using a color Doppler ultrasound prior to CT scan. Image quality was classified as either good, moderate, or poor. Image quality, surrounding structures and the morphology of the IVC obstruction were compared between the two groups using a χ 2 -test or paired or unpaired t-tests as appropriate. Inter-observer agreement was assessed using Kappa statistics. There was no significant difference in IVC blood flow velocity between the two groups. Overall image quality, surrounding structures and IVC obstruction morphology delineation on the flexible delayed scan time of CTV images were rated better relative to those obtained by fixed delayed scan time of CTV images (p<0.001). Evaluation of CTV data sets was significantly facilitated with flexible delayed scan time of CTV. There were no significant differences in Kappa statistics between Group A and Group B. The flexible delayed scan time of CTV was associated with better detection and more reliable characterization of BCS with IVC obstruction compared to a fixed delayed scan time. Copyright © 2017 Elsevier B.V. All rights reserved.
System for sensing droplet formation time delay in a flow cytometer
Van den Engh, Ger; Esposito, Richard J.
1997-01-01
A droplet flow cytometer system which includes a system to optimize the droplet formation time delay based on conditions actually experienced includes an automatic droplet sampler which rapidly moves a plurality of containers stepwise through the droplet stream while simultaneously adjusting the droplet time delay. Through the system sampling of an actual substance to be processed can be used to minimize the effect of the substances variations or the determination of which time delay is optimal. Analysis such as cell counting and the like may be conducted manually or automatically and input to a time delay adjustment which may then act with analysis equipment to revise the time delay estimate actually applied during processing. The automatic sampler can be controlled through a microprocessor and appropriate programming to bracket an initial droplet formation time delay estimate. When maximization counts through volume, weight, or other types of analysis exists in the containers, the increment may then be reduced for a more accurate ultimate setting. This may be accomplished while actually processing the sample without interruption.
NASA Astrophysics Data System (ADS)
Watanabe, Jobu
2009-09-01
Mutual information can be given a directional sense by introducing a time lag in one of the variables. In an author's previous study, to investigate the network dynamics of human brain regions, lagged transinformation (LTI) was introduced using time delayed mutual information. The LTI makes it possible to quantify the time course of dynamic information transfer between regions in the temporal domain. The LTI was applied to functional magnetic resonance imaging (fMRI) data involved in neural processing of the transformation and comparison from three-dimensional (3D) visual information to a two-dimensional (2D) location to calculate directed information flows between the activated brain regions. In the present study, for more precise estimation of LTI, Kalman filter smoothing was applied to the same fMRI data. Because the smoothing method exploits the full length of the time series data for the estimation, its application increases the precision. Large information flows were found from the bilateral prefrontal cortices to the parietal cortices. The results suggest that information of the 3D images stored as working memory was retrieved and transferred from the prefrontal cortices to the parietal cortices for comparison with information of the 2D images.
Stroboscopic visual training improves information encoding in short-term memory.
Appelbaum, L Gregory; Cain, Matthew S; Schroeder, Julia E; Darling, Elise F; Mitroff, Stephen R
2012-11-01
The visual system has developed to transform an undifferentiated and continuous flow of information into discrete and manageable representations, and this ability rests primarily on the uninterrupted nature of the input. Here we explore the impact of altering how visual information is accumulated over time by assessing how intermittent vision influences memory retention. Previous work has shown that intermittent, or stroboscopic, visual training (i.e., practicing while only experiencing snapshots of vision) can enhance visual-motor control and visual cognition, yet many questions remain unanswered about the mechanisms that are altered. In the present study, we used a partial-report memory paradigm to assess the possible changes in visual memory following training under stroboscopic conditions. In Experiment 1, the memory task was completed before and immediately after a training phase, wherein participants engaged in physical activities (e.g., playing catch) while wearing either specialized stroboscopic eyewear or transparent control eyewear. In Experiment 2, an additional group of participants underwent the same stroboscopic protocol but were delayed 24 h between training and assessment, so as to measure retention. In comparison to the control group, both stroboscopic groups (immediate and delayed retest) revealed enhanced retention of information in short-term memory, leading to better recall at longer stimulus-to-cue delays (640-2,560 ms). These results demonstrate that training under stroboscopic conditions has the capacity to enhance some aspects of visual memory, that these faculties generalize beyond the specific tasks that were trained, and that trained improvements can be maintained for at least a day.
A feedback control model for network flow with multiple pure time delays
NASA Technical Reports Server (NTRS)
Press, J.
1972-01-01
A control model describing a network flow hindered by multiple pure time (or transport) delays is formulated. Feedbacks connect each desired output with a single control sector situated at the origin. The dynamic formulation invokes the use of differential difference equations. This causes the characteristic equation of the model to consist of transcendental functions instead of a common algebraic polynomial. A general graphical criterion is developed to evaluate the stability of such a problem. A digital computer simulation confirms the validity of such criterion. An optimal decision making process with multiple delays is presented.
Delay of Transition Using Forced Damping
NASA Technical Reports Server (NTRS)
Exton, Reginald J.
2014-01-01
Several experiments which have reported a delay of transition are analyzed in terms of the frequencies of the induced disturbances generated by different flow control elements. Two of the experiments employed passive stabilizers in the boundary layer, one leading-edge bluntness, and one employed an active spark discharge in the boundary layer. It is found that the frequencies generated by the various elements lie in the damping region of the associated stability curve. It is concluded that the creation of strong disturbances in the damping region stabilizes the boundary-layer and delays the transition from laminar to turbulent flow.
Evaluation of Swift Start TCP in Long-Delay Environment
NASA Technical Reports Server (NTRS)
Lawas-Grodek, Frances J.; Tran, Diepchi T.
2004-01-01
This report presents the test results of the Swift Start algorithm in single-flow and multiple-flow testbeds under the effects of high propagation delays, various slow bottlenecks, and small queue sizes. Although this algorithm estimates capacity and implements packet pacing, the findings were that in a heavily congested link, the Swift Start algorithm will not be applicable. The reason is that the bottleneck estimation is falsely influenced by timeouts induced by retransmissions and the expiration of delayed acknowledgment (ACK) timers, thus causing the modified Swift Start code to fall back to regular transmission control protocol (TCP).
NASA Astrophysics Data System (ADS)
Ibrahim, M. F.; Suparno
2018-04-01
Supply Chain Management (SCM) has to be considered in the company in order to improve the sustainability and competitiveness. SCM executed to integrating any companies on the supply chain in a way of coordinating the flow of goods, information, and financial. Permissible delay in payment is one of the coordination ways with allowing the costumers delay the payments to a vendor in some certain periods without any interest charges. In the supply chain system, drop-shipping player already familiar in this era. In drop-shipping internet retailing, the supplier will hold supplies and also carry out physical distribution service on behalf of drop-shipper. Drop-shipper will just focus on selling, on the other hand, their supplier will be responsible for the physical process. Generally, drop-shipper have information of the customer demands better than the distributor. But, it is also unrare when the drop-shipper send the estimation of demands which bigger than their own estimation in order to maximize their own interest, so they hope supplies of the distributor will always enough to accommodate their demands. Contributions in this research will be focused on integration of three echelons supply chain, which are the supplier, manufacturer, distributor, and drop-shipper. With considering delay in payment on first and second echelons, and also the contract penalty on third echelon. The problem on this research will be modeled in some kind of cases which can represent the problem of real supply chain system. Sensitivity analysis will be done on certain significant variables toward the changes of total supply chain cost. Coordination with delay in payment success to integrate supply chain. Contract penalty plan success to maintain the profit of distributor and drop-shipper.
Effect of Unsaturated Flow on Delayed Response of Unconfined Aquifiers to Pumping
NASA Astrophysics Data System (ADS)
Tartakovsky, G.; Neuman, S. P.
2005-12-01
A new analytical solution is presented for the delayed response process characterizing flow to a partially penetrating well in an unconfined aquifer. The new solution generalizes that of Neuman [1972, 1974] by accounting for unsaturated flow above the water table. Axially symmetric three-dimensional flow in the unsaturated zone is described by a linearized version of Richards' equation in which hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value (defining the interface between the saturated and unsaturated zones). Unsaturated soil properties are characterized by an exponent κ having the dimension of inverse length and a dimensionless exponent κD = κb where b is initial saturated thickness. Our treatment of the unsaturated zone is similar to that of Kroszynski and Dagan [1975] who however have ignored internal (artesian) aquifer storage. It has been suggested by Boulton [1954, 1963, 1970] and Neuman [1972, 1974], and is confirmed by our solution, that internal storage is required to reproduce the early increase in drawdown characterizing delayed response to pumping in typical aquifers. According to our new solution such aquifers are characterized by relatively large κ_ D values, typically 10 or larger; in the limit as κD tends to infinity (the soil unsaturated water retention capacity becomes insignificant and/or aquifer thickness become large), unsaturated flow becomes unimportant and our solution reduces to that of Neuman. In typical cases corresponding to κD larger than or equal to 10, unsaturated flow is found to have little impact on early and late dimensionless time behaviors of drawdown measured wholly or in part at some distance below the water table; unsaturated flow causes drawdown to increase slightly at intermediate dimensionless time values that represent transition from an early artesian dominated to a late water-table dominated flow regime. The increase in drawdown during this transition period is caused by delayed drainage from the unsaturated zone, whose relatively small effect is superimposed on the more pronounced phenomenon of delay in water table decline relative to artesian head drops below it. Delayed drainage from the unsaturated zone becomes less and less important as κD increases; as it approaches infinity, this effect dies out completely and drawdown is controlled entirely by delayed decline in the water table. The unsaturated zone has major impact on drawdown at intermediate time, and significant impact at early and late times, in the atypical case of small κD values (1 or less), becoming the dominant factor as κD approaches zero (the soil water retention capacity becomes very large and/or saturated thickness becomes insignificant).
Autoignition characteristics of aircraft-type fuels
NASA Technical Reports Server (NTRS)
Spadaccini, L. J.; Tevelde, J. A.
1980-01-01
The ignition delay characteristics of Jet A, JP 4, no. 2 diesel, cetane and an experimental referee broad specification (ERBS) fuel in air at inlet temperatures up to 1000 K, pressures of 10, 15, 20, 25 and 30 atm, and fuel air equivalence ratios of 0.3, 0.5, 0.7 and 1.0 were mapped. Ignition delay times in the range of 1 to 50 msec at freestream flow velocities ranging from 20 to 100 m/sec were obtained using a continuous flow test apparatus which permitted independent variation and evaluation of the effect of temperature, pressure, flow rate, and fuel/air ratio. The ignition delay times for all fuels tested appeared to correlate with the inverse of pressure and the inverse exponent of temperature. With the exception of pure cetane, which had the shortest ignition delay times, the differences between the fuels tested did not appear to be significant. The apparent global activation energies for the typical gas turbine fuels ranged from 38 to 40 kcal/mole, while the activation energy determined for cetane was 50 kcal/mole. In addition, the data indicate that for lean mixtures, ignition delay times decrease with increasing equivalence ratio. It was also noted that physical (apparatus dependent) phenomena, such as mixing (i.e., length and number of injection sites) and airstream cooling (due to fuel heating, vaporization and convective heat loss) can have an important effect on the ignition delay.
NASA Astrophysics Data System (ADS)
Haney, M. M.; Patrick, M. R.; Anderson, K. R.
2016-12-01
A cyclic pattern of ground deformation, called a deflation-inflation (DI) cycle, is commonly observed at Kilauea Volcano, Hawai`i. These cycles are an important part of Kilauea's eruptive activity because they directly influence the level of the summit lava lake as well as the effusion rate (and resulting lava flow hazard) at the East Rift Zone eruption site at Pu`u `O`o. DI events normally span several days, and are measured both at the summit and at Pu`u `O`o cone (20 km distance). Signals appear first at the summit and are then observed at Pu`u `O`o after an apparent delay of between 0.5 and 10 hours, which has been previously interpreted as reflecting magma transport time. We propose an alternate explanation, in which the apparent delay is an artifact of buffering by the small magma reservoir thought to exist at Pu`u `O`o. Simple Poiseuille flow modeling demonstrates that this apparent delay can be reproduced by the changing balance of inflow (from the summit) and outflow (to surface lava flows) at the Pu`u `O`o magma reservoir. The apparent delay is sensitive to the geometry of the conduit leaving Pu`u `O`o, feeding surface lava flows. We demonstrate how the reservoir buffering is quantitatively equivalent to a causal low-pass filter, which explains both the apparent delay as well as the smoothed, skewed nature of the signal at Pu`u `O`o relative to the summit. By comparing summit and Pu`u `O`o ground tilt signals over an extended time period, it may be possible to constrain the changing geometry of the shallow magmatic system through time.
Atigui, Moufida; Marnet, Pierre-Guy; Ayeb, Naziha; Khorchani, Touhami; Hammadi, Mohamed
2014-11-01
We studied the effects of changes in the milking routine (lack or presence of 30-s prestimulation, 0 or 1, 2 or 4-min delay between preparation and cluster attachment) and environmental perturbation (unusual loud sounds capable of frightening animals just after stall entry or during the course of milking) on milk removal and milking-related behaviour in dairy dromedary camels. A 30-s prestimulation decreased incidence of bimodal milk flow curves and increased occurrence of the best milk ejection patterns with higher milk flow but had limited effect on milk production in our well-trained animals within a good machine milking setting. However, unusual sounds heard from the beginning of milking or even after milk ejection caused inhibition or disruption of milk removal and modification of camels' behaviour. Milk ejection was significantly delayed (1·58±0·17 min), residual milk increased over 40% of total milk yield and average and peak milk flow rates were significantly lowered when unusual noises were heard from the beginning of milking. These environmental perturbations increased signs of vigilance and the number of attempts to escape the milking parlour. Delaying cluster attachment for over 1 min after the end of udder preparation caused serious milk losses. Up to 62% of total milk was withheld in the udder when the delay reached 4 min. Average and peak milk flow rates also decreased significantly with delayed milking. Signs of vigilance and attempts to escape from the milking parlour appeared when camels waited for over 2 min. After a 4-min delay, camels showed signs of acute stress. Defaecation prior to milk ejection (solid faeces) and rumination during milking can be used to assess camels' milk ejection during milking. Animal welfare and milking efficiency can be ensured when camels are pre-stimulated, milked in calm conditions and with cluster attachment within a maximum of a 1-min delay after stimulation.
Interaction Between Strategic and Local Traffic Flow Controls
NASA Technical Reports Server (NTRS)
Grabbe, Son; Sridhar, Banavar; Mukherjee, Avijit; Morando, Alexander
2010-01-01
The loosely coordinated sets of traffic flow management initiatives that are operationally implemented at the national- and local-levels have the potential to under, over, and inconsistently control flights. This study is designed to explore these interactions through fast-time simulations with an emphasis on identifying inequitable situations in which flights receive multiple uncoordinated delays. Two operationally derived scenarios were considered in which flights arriving into the Dallas/Fort Worth International Airport were first controlled at the national-level, either with a Ground Delay Program or a playbook reroute. These flights were subsequently controlled at the local level. The Traffic Management Advisor assigned them arrival scheduling delays. For the Ground Delay Program scenarios, between 51% and 53% of all arrivals experience both pre-departure delays from the Ground Delay Program and arrival scheduling delays from the Traffic Management Advisor. Of the subset of flights that received multiple delays, between 5.7% and 6.4% of the internal departures were first assigned a pre-departure delay by the Ground Delay Program, followed by a second pre-departure delay as a result of the arrival scheduling. For the playbook reroute scenario, Dallas/Fort Worth International Airport arrivals were first assigned pre-departure reroutes based on the MW_2_DALLAS playbook plan, and were subsequently assigned arrival scheduling delays by the Traffic Management Advisor. Since the airport was operating well below capacity when the playbook reroute was in effect, only 7% of the arrivals were observed to receive both rerouting and arrival scheduling delays. Findings from these initial experiments confirm field observations that Ground Delay Programs operated in conjunction with arrival scheduling can result in inequitable situations in which flights receive multiple uncoordinated delays.
Experimental Study of Flow Through Carotid Aneurysms
NASA Astrophysics Data System (ADS)
Masoomi, Faezeh; Mejia-Alvarez, Ricardo
2017-11-01
There is evidence that traditional endovascular techniques like coiling are not effective for treatment of wide-neck cerebral aneurysms. Flow Diverter Stents (FDS) have emerged as promising devices for treating complex aneurysms since they enable treatment of aneurysms that were considered untreatable before. Recent studies suggest a number of associated risks with FDS, including in-stent thrombosis, perianeurysmal edema, delayed hemorrhage, and perforator occlusions. Chong et al. simulated hemodynamic behavior using patient-specific data. From their study, it is possible to infer that the standard deviation of energy loss could be a good predictor for intervention success. The aim of this study is to investigate the flow in models of cerebral aneurysms before and after FDS insertion using PIV. These models will be based on actual clinical studies and will be fabricated with advanced additive manufacturing techniques. These data will then be used to explore flow parameters that could inform the likelihood of post-intervention aneurysm rupture, and help determine FDS designs that better suit any particular patient before its procedure.
Global characteristics of stream flow seasonality and variability
Dettinger, M.D.; Diaz, Henry F.
2000-01-01
Monthly stream flow series from 1345 sites around the world are used to characterize geographic differences in the seasonality and year-to-year variability of stream flow. Stream flow seasonality varies regionally, depending on the timing of maximum precipitation, evapotranspiration, and contributions from snow and ice. Lags between peaks of precipitation and stream flow vary smoothly from long delays in high-latitude and mountainous regions to short delays in the warmest sectors. Stream flow is most variable from year to year in dry regions of the southwest United States and Mexico, the Sahel, and southern continents, and it varies more (relatively) than precipitation in the same regions. Tropical rivers have the steadiest flows. El Nin??o variations are correlated with stream flow in many parts of the Americas, Europe, and Australia. Many stream flow series from North America, Europe, and the Tropics reflect North Pacific climate, whereas series from the eastern United States, Europe, and tropical South America and Africa reflect North Atlantic climate variations.
Delayed soil thawing affects root and shoot functioning and growth in Scots pine.
Repo, Tapani; Lehto, Tarja; Finér, Leena
2008-10-01
In boreal regions, soil can remain frozen after the start of the growing season. We compared relationships between root characteristics and water relations in Scots pine (Pinus sylvestris L.) saplings subjected to soil frost treatments before and during the first week of the growing period in a controlled environment experiment. Delayed soil thawing delayed the onset of sap flow or totally blocked it if soil thawing lagged the start of the growing period by 7 days. This effect was reflected in the electrical impedance of needles and trunks and in the relative electrolyte leakage of needles. Prolonged soil frost reduced or completely inhibited root growth. In unfrozen soil, limited trunk sap flow was observed despite unfavorable aboveground growing conditions (low temperature, low irradiance, short photoperiod). Following the earliest soil thaw, sap flow varied during the growing season, depending on light and temperature conditions, phenological stage of the plant and the amount of live needles in the canopy. The results suggest that delayed soil thawing can reduce tree growth, and if prolonged, it can be lethal.
NASA Astrophysics Data System (ADS)
Ishibashi, Yoshihiro; Fukui, Minoru
2018-03-01
The effect of the probabilistic delayed start on the one-dimensional traffic flow is investigated on the basis of several models. Analogy with the degeneracy of the states and its resolution, as well as that with the mathematical procedures adopted for them, is utilized. The perturbation is assumed to be proportional to the probability of the delayed start, and the perturbation function is determined so that imposed conditions are fulfilled. The obtained formulas coincide with those previously derived on the basis of the mean-field analyses of the Nagel-Schreckenberg and Fukui-Ishibashi models, and reproduce the cellular automaton simulation results.
Differing Air Traffic Controller Responses to Similar Trajectory Prediction Errors
NASA Technical Reports Server (NTRS)
Mercer, Joey; Hunt-Espinosa, Sarah; Bienert, Nancy; Laraway, Sean
2016-01-01
A Human-In-The-Loop simulation was conducted in January of 2013 in the Airspace Operations Laboratory at NASA's Ames Research Center. The simulation airspace included two en route sectors feeding the northwest corner of Atlanta's Terminal Radar Approach Control. The focus of this paper is on how uncertainties in the study's trajectory predictions impacted the controllers ability to perform their duties. Of particular interest is how the controllers interacted with the delay information displayed in the meter list and data block while managing the arrival flows. Due to wind forecasts with 30-knot over-predictions and 30-knot under-predictions, delay value computations included errors of similar magnitude, albeit in opposite directions. However, when performing their duties in the presence of these errors, did the controllers issue clearances of similar magnitude, albeit in opposite directions?
Pneumatic shutoff and time-delay valve operates at controlled rate
NASA Technical Reports Server (NTRS)
Horning, J. L.; Tomlinson, L. E.
1966-01-01
Shutoff and time delay valve, which incorporates a metering spool that moves at constant velocity under pneumatic pressure and spring compression, increases fluid-flow area at a uniform rate. Diaphragm areas, control cavity volume, and bleed-orifice size may be varied to give any desired combination of time delay and spool travel time.
Combustion heater for oil shale
Mallon, R.; Walton, O.; Lewis, A.E.; Braun, R.
1983-09-21
A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650 to 700/sup 0/C for use as a process heat source.
Combustion heater for oil shale
Mallon, Richard G.; Walton, Otis R.; Lewis, Arthur E.; Braun, Robert L.
1985-01-01
A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.
Time-delayed feedback technique for suppressing instabilities in time-periodic flow
NASA Astrophysics Data System (ADS)
Shaabani-Ardali, Léopold; Sipp, Denis; Lesshafft, Lutz
2017-11-01
A numerical method is presented that allows to compute time-periodic flow states, even in the presence of hydrodynamic instabilities. The method is based on filtering nonharmonic components by way of delayed feedback control, as introduced by Pyragas [Phys. Lett. A 170, 421 (1992), 10.1016/0375-9601(92)90745-8]. Its use in flow problems is demonstrated here for the case of a periodically forced laminar jet, subject to a subharmonic instability that gives rise to vortex pairing. The optimal choice of the filter gain, which is a free parameter in the stabilization procedure, is investigated in the context of a low-dimensional model problem, and it is shown that this model predicts well the filter performance in the high-dimensional flow system. Vortex pairing in the jet is efficiently suppressed, so that the unstable periodic flow state in response to harmonic forcing is accurately retrieved. The procedure is straightforward to implement inside any standard flow solver. Memory requirements for the delayed feedback control can be significantly reduced by means of time interpolation between checkpoints. Finally, the method is extended for the treatment of periodic problems where the frequency is not known a priori. This procedure is demonstrated for a three-dimensional cubic lid-driven cavity in supercritical conditions.
Xu, Nan; Spreng, R Nathan; Doerschuk, Peter C
2017-01-01
Resting-state functional MRI (rs-fMRI) is widely used to noninvasively study human brain networks. Network functional connectivity is often estimated by calculating the timeseries correlation between blood-oxygen-level dependent (BOLD) signal from different regions of interest (ROIs). However, standard correlation cannot characterize the direction of information flow between regions. In this paper, we introduce and test a new concept, prediction correlation, to estimate effective connectivity in functional brain networks from rs-fMRI. In this approach, the correlation between two BOLD signals is replaced by a correlation between one BOLD signal and a prediction of this signal via a causal system driven by another BOLD signal. Three validations are described: (1) Prediction correlation performed well on simulated data where the ground truth was known, and outperformed four other methods. (2) On simulated data designed to display the "common driver" problem, prediction correlation did not introduce false connections between non-interacting driven ROIs. (3) On experimental data, prediction correlation recovered the previously identified network organization of human brain. Prediction correlation scales well to work with hundreds of ROIs, enabling it to assess whole brain interregional connectivity at the single subject level. These results provide an initial validation that prediction correlation can capture the direction of information flow and estimate the duration of extended temporal delays in information flow between regions of interest ROIs based on BOLD signal. This approach not only maintains the high sensitivity to network connectivity provided by the correlation analysis, but also performs well in the estimation of causal information flow in the brain.
A model for integrating elementary neural functions into delayed-response behavior.
Gisiger, Thomas; Kerszberg, Michel
2006-04-01
It is well established that various cortical regions can implement a wide array of neural processes, yet the mechanisms which integrate these processes into behavior-producing, brain-scale activity remain elusive. We propose that an important role in this respect might be played by executive structures controlling the traffic of information between the cortical regions involved. To illustrate this hypothesis, we present a neural network model comprising a set of interconnected structures harboring stimulus-related activity (visual representation, working memory, and planning), and a group of executive units with task-related activity patterns that manage the information flowing between them. The resulting dynamics allows the network to perform the dual task of either retaining an image during a delay (delayed-matching to sample task), or recalling from this image another one that has been associated with it during training (delayed-pair association task). The model reproduces behavioral and electrophysiological data gathered on the inferior temporal and prefrontal cortices of primates performing these same tasks. It also makes predictions on how neural activity coding for the recall of the image associated with the sample emerges and becomes prospective during the training phase. The network dynamics proves to be very stable against perturbations, and it exhibits signs of scale-invariant organization and cooperativity. The present network represents a possible neural implementation for active, top-down, prospective memory retrieval in primates. The model suggests that brain activity leading to performance of cognitive tasks might be organized in modular fashion, simple neural functions becoming integrated into more complex behavior by executive structures harbored in prefrontal cortex and/or basal ganglia.
Characterization of Days Based On Analysis of National Airspace System Performance Metrics
NASA Technical Reports Server (NTRS)
Chatterji, Gano B.; Musaffar, Bassam; Meyn, Larry A.; Quon, Leighton K.
2006-01-01
Days of operations in the National Airspace System can be described in term of traffic demand, runway conditions, equipment outages, and surface and enroute weather conditions. These causes manifest themselves in terms of departure delays, arrival delays, enroute delays and traffic flow management delays, Traffic flow management initiatives such as, ground stops, ground delay programs, miles-in-trail restrictions, rerouting and airborne holding are imposed to balance the air traffic demand with respect to the available capacity, In order to maintain operational efficiency of the National Airspace System, the Federal Aviation Administration (FAA) maintains delay sad other statistics in the Air Traffic Operations Network (OPSNET) and the Aviation System Performance Metrics (ASPM) databases. OPSNET data includes reportable delays of fifteen minutes ox more experienced by Instrument Flight Rule (IFR) flights. Numbers of aircraft affected by departure delays, enroute delays, arrival delays and traffic flow delays are recorded in the OPSNET data. ASPM data consist of number of actual departures, number of canceled departures, percentage of on time departures, percentage of on time gate arrivals, taxi-out delays. taxi-in delays, gate delays, arrival delays and block delays. Surface conditions at the major U.S. airports are classified in terms of Instrument Meteorological Condition (IMC) and Visual Meteorological Condition (VMC) as a function of the time of the day in the ASPM data. The main objective of this paper is to use OPSNET and ASPM data to classify the days in the datasets into few distinct groups, where each group is separated from the other groups in terms of a distance metric. The motivations for classifying the days are two-fold, 1) to enable selection of days of traffic with particular operational characteristics for concept evaluation using system-wide simulation systems such as the National Aeronautics and Space Administration's Airspace Concepts Evaluation Tool (ACES) and 2) to enable evaluation of a given day with respect to the characteristics of the classified groups. The first part of the paper is devoted to the analysis of major trends seen in the OPSNET and ASPM data. The second part of the paper is devoted to describing features or measures derived from the OPSNET and ASPM data that are suitable for characterizing days, and the classification algorithm used for grouping the days. Finally, the method for evaluating the characteristics of a given day with respect to the properties of the groups is described.
NASA Astrophysics Data System (ADS)
Liao, Q.; Tchelepi, H.; Zhang, D.
2015-12-01
Uncertainty quantification aims at characterizing the impact of input parameters on the output responses and plays an important role in many areas including subsurface flow and transport. In this study, a sparse grid collocation approach, which uses a nested Kronrod-Patterson-Hermite quadrature rule with moderate delay for Gaussian random parameters, is proposed to quantify the uncertainty of model solutions. The conventional stochastic collocation method serves as a promising non-intrusive approach and has drawn a great deal of interests. The collocation points are usually chosen to be Gauss-Hermite quadrature nodes, which are naturally unnested. The Kronrod-Patterson-Hermite nodes are shown to be more efficient than the Gauss-Hermite nodes due to nestedness. We propose a Kronrod-Patterson-Hermite rule with moderate delay to further improve the performance. Our study demonstrates the effectiveness of the proposed method for uncertainty quantification through subsurface flow and transport examples.
Apparatus for and method of monitoring for breached fuel elements
Gross, K.C.; Strain, R.V.
1981-04-28
This invention teaches improved apparatus for the method of detecting a breach in cladded fuel used in a nuclear reactor. The detector apparatus uses a separate bypass loop for conveying part of the reactor coolant away from the core, and at least three separate delayed-neutron detectors mounted proximate this detector loop. The detectors are spaced apart so that the coolant flow time from the core to each detector is different, and these differences are known. The delayed-neutron activity at the detectors is a function of the delay time after the reaction in the fuel until the coolant carrying the delayed-neutron emitter passes the respective detector. This time delay is broken down into separate components including an isotopic holdup time required for the emitter to move through the fuel from the reaction to the coolant at the breach, and two transit times required for the emitter now in the coolant to flow from the breach to the detector loop and then via the loop to the detector.
Miwa, Yoshimasa; Li, Chen; Ge, Qi-Wei; Matsuno, Hiroshi; Miyano, Satoru
2010-01-01
Parameter determination is important in modeling and simulating biological pathways including signaling pathways. Parameters are determined according to biological facts obtained from biological experiments and scientific publications. However, such reliable data describing detailed reactions are not reported in most cases. This prompted us to develop a general methodology of determining the parameters of a model in the case of that no information of the underlying biological facts is provided. In this study, we use the Petri net approach for modeling signaling pathways, and propose a method to determine firing delay times of transitions for Petri net models of signaling pathways by introducing stochastic decision rules. Petri net technology provides a powerful approach to modeling and simulating various concurrent systems, and recently have been widely accepted as a description method for biological pathways. Our method enables to determine the range of firing delay time which realizes smooth token flows in the Petri net model of a signaling pathway. The availability of this method has been confirmed by the results of an application to the interleukin-1 induced signaling pathway.
Miwa, Yoshimasa; Li, Chen; Ge, Qi-Wei; Matsuno, Hiroshi; Miyano, Satoru
2011-01-01
Parameter determination is important in modeling and simulating biological pathways including signaling pathways. Parameters are determined according to biological facts obtained from biological experiments and scientific publications. However, such reliable data describing detailed reactions are not reported in most cases. This prompted us to develop a general methodology of determining the parameters of a model in the case of that no information of the underlying biological facts is provided. In this study, we use the Petri net approach for modeling signaling pathways, and propose a method to determine firing delay times of transitions for Petri net models of signaling pathways by introducing stochastic decision rules. Petri net technology provides a powerful approach to modeling and simulating various concurrent systems, and recently have been widely accepted as a description method for biological pathways. Our method enables to determine the range of firing delay time which realizes smooth token flows in the Petri net model of a signaling pathway. The availability of this method has been confirmed by the results of an application to the interleukin-1 induced signaling pathway.
Experiments on Extinction of Fires by Airblast; Flame Displacement as an Extinction Mechanism.
1980-05-01
commonly resumed active flaming after delays ranging from minutes to hours.) ~* Therefore, these flow fields are independent of the postive -phase dura- tion...pronounced and apparently very sensitive to location. Even a small perturbation intro- duced into the flow immediately in front of the fire may allow it to...configurations are needed. Acquisition of such data may be delayed , however, until a suitable thermal radiation source can be provided for use with the
Chang, Chun-Hui
2017-07-01
The basolateral complex of the amygdala receives inputs from neocortical areas, including the medial prefrontal cortex and lateral orbitofrontal cortex. Earlier studies have shown that lateral orbitofrontal cortex activation exerts an inhibitory gating on medial prefrontal cortex-amygdala information flow. Here we examined the individual role of GABAA and GABAB receptors in this process. In vivo extracellular single-unit recordings were done in anesthetized rats. We searched amygdala neurons that fire in response to medial prefrontal cortex activation, tested lateral orbitofrontal cortex gating at different delays (lateral orbitofrontal cortex-medial prefrontal cortex delays: 25, 50, 100, 250, 500, and 1000 milliseconds), and examined differential contribution of GABAA and GABAB receptors with iontophoresis. Relative to baseline, lateral orbitofrontal cortex stimulation exerted an inhibitory modulatory gating on the medial prefrontal cortex-amygdala pathway and was effective up to a long delay of 500 ms (long-delay latencies at 100, 250, and 500 milliseconds). Moreover, blockade of intra-amygdala GABAA receptors with bicuculline abolished the lateral orbitofrontal cortex inhibitory gating at both short- (25 milliseconds) and long-delay (100 milliseconds) intervals, while blockade of GABAB receptors with saclofen reversed the inhibitory gating at long delay (100 milliseconds) only. Among the majority of the neurons examined (8 of 9), inactivation of either GABAA or GABAB receptors during baseline did not change evoked probability per se, suggesting that local feed-forward inhibitory mechanism is pathway specific. Our results suggest that the effect of lateral orbitofrontal cortex inhibitory modulatory gating was effective up to 500 milliseconds and that intra-amygdala GABAA and GABAB receptors differentially modulate the short- and long-delay lateral orbitofrontal cortex inhibitory gating on the medial prefrontal cortex-amygdala pathway. © The Author 2017. Published by Oxford University Press on behalf of CINP.
Phased charging and discharging in capacitive desalinatio
Stadermann, Michael; Qu, Yatian; Santiago, Juan G.; Hemmatifar, Ali
2017-09-12
A system combines complete, ultra-thin cells into a monolithic and robust framework necessary for desalination applications which yields orders of magnitude faster desalination. The electrode pairs are located so that a flow of feed water flows through or around the electrode pairs with the flow perpendicular to sequentially applied electric potentials. The system is controlled to charge the series of electrode pairs sequentially or phased. That means the charging of the second electrode pair is delayed with regard to the charging of the first electrode pair and the charging of a third electrode pair is delayed with respect to the charging of the second electrode pair.
Computer Simulation Shows the Effect of Communication on Day of Surgery Patient Flow.
Taaffe, Kevin; Fredendall, Lawrence; Huynh, Nathan; Franklin, Jennifer
2015-07-01
To improve patient flow in a surgical environment, practitioners and academicians often use process mapping and simulation as tools to evaluate and recommend changes. We used simulations to help staff visualize the effect of communication and coordination delays that occur on the day of surgery. Perioperative services staff participated in tabletop exercises in which they chose the delays that were most important to eliminate. Using a day-of-surgery computer simulation model, the elimination of delays was tested and the results were shared with the group. This exercise, repeated for multiple groups of staff, provided an understanding of not only the dynamic events taking place, but also how small communication delays can contribute to a significant loss in efficiency and the ability to provide timely care. Survey results confirmed these understandings. Copyright © 2015 AORN, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pittaway, Jeff; Archer, Norm
Medical interventions are often delayed or erroneous when information needed for diagnosing or prescribing is missing or unavailable. In support of increased information flows, the healthcare industry has invested substantially in standards intended to specify, routinize, and make uniform the type and format of medical information in clinical healthcare information systems such as Electronic Medical Record systems (EMRs). However, fewer than one in four Canadian physicians have adopted EMRs. Deeper analysis illustrates that physicians may perceive value in standardized EMRs when they need to exchange information in highly structured situations among like participants and like environments. However, standards present restrictive barriers to practitioners when they face equivocal situations, unforeseen contingencies, or exchange information across different environments. These barriers constitute a compelling explanation for at least part of the observed low EMR adoption rates. Our recommendations to improve the perceived value of standardized clinical information systems espouse re-conceptualizing the role of standards to embrace greater flexibility in some areas.
Flight Departure Delay and Rerouting Under Uncertainty in En Route Convective Weather
NASA Technical Reports Server (NTRS)
Mukherjee, Avijit; Grabbe, Shon; Sridhar, Banavar
2011-01-01
Delays caused by uncertainty in weather forecasts can be reduced by improving traffic flow management decisions. This paper presents a methodology for traffic flow management under uncertainty in convective weather forecasts. An algorithm for assigning departure delays and reroutes to aircraft is presented. Departure delay and route assignment are executed at multiple stages, during which, updated weather forecasts and flight schedules are used. At each stage, weather forecasts up to a certain look-ahead time are treated as deterministic and flight scheduling is done to mitigate the impact of weather on four-dimensional flight trajectories. Uncertainty in weather forecasts during departure scheduling results in tactical airborne holding of flights. The amount of airborne holding depends on the accuracy of forecasts as well as the look-ahead time included in the departure scheduling. The weather forecast look-ahead time is varied systematically within the experiments performed in this paper to analyze its effect on flight delays. Based on the results, longer look-ahead times cause higher departure delays and additional flying time due to reroutes. However, the amount of airborne holding necessary to prevent weather incursions reduces when the forecast look-ahead times are higher. For the chosen day of traffic and weather, setting the look-ahead time to 90 minutes yields the lowest total delay cost.
Airport Network Flow Simulator
DOT National Transportation Integrated Search
1978-10-01
The Airport Network Flow Simulator is a FORTRAN IV simulation of the flow of air traffic in the nation's 600 commercial airports. It calculates for any group of selected airports: (a) the landing and take-off (Type A) delays; and (b) the gate departu...
Perturbation and Stability Analysis of the Multi-Anticipative Intelligent Driver Model
NASA Astrophysics Data System (ADS)
Chen, Xi-Qun; Xie, Wei-Jun; Shi, Jing; Shi, Qi-Xin
This paper discusses three kinds of IDM car-following models that consider both the multi-anticipative behaviors and the reaction delays of drivers. Here, the multi-anticipation comes from two ways: (1) the driver is capable of evaluating the dynamics of several preceding vehicles, and (2) the autonomous vehicles can obtain the velocity and distance information of several preceding vehicles via inter-vehicle communications. In this paper, we study the stability of homogeneous traffic flow. The linear stability analysis indicates that the stable region will generally be enlarged by the multi-anticipative behaviors and reduced by the reaction delays. The temporal amplification and the spatial divergence of velocities for local perturbation are also studied, where the results further prove this conclusion. Simulation results also show that the multi-anticipative behaviors near the bottleneck will lead to a quicker backwards propagation of oscillations.
An analysis of landing rates and separations at the Dallas/Fort Worth International Airport
NASA Technical Reports Server (NTRS)
Ballin, Mark G.; Erzberger, Heinz
1996-01-01
Advanced air traffic management systems such as the Center/TRACON Automation System (CTAS) should yield a wide range of benefits, including reduced aircraft delays and controller workload. To determine the traffic-flow benefits achievable from future terminal airspace automation, live radar information was used to perform an analysis of current aircraft landing rates and separations at the Dallas/Fort Worth International Airport. Separation statistics that result when controllers balance complex control procedural constraints in order to maintain high landing rates are presented. In addition, the analysis estimates the potential for airport capacity improvements by determining the unused landing opportunities that occur during rush traffic periods. Results suggest a large potential for improving the accuracy and consistency of spacing between arrivals on final approach, and they support earlier simulation findings that improved air traffic management would increase capacity and reduce delays.
Time-delayed chameleon: Analysis, synchronization and FPGA implementation
NASA Astrophysics Data System (ADS)
Rajagopal, Karthikeyan; Jafari, Sajad; Laarem, Guessas
2017-12-01
In this paper we report a time-delayed chameleon-like chaotic system which can belong to different families of chaotic attractors depending on the choices of parameters. Such a characteristic of self-excited and hidden chaotic flows in a simple 3D system with time delay has not been reported earlier. Dynamic analysis of the proposed time-delayed systems are analysed in time-delay space and parameter space. A novel adaptive modified functional projective lag synchronization algorithm is derived for synchronizing identical time-delayed chameleon systems with uncertain parameters. The proposed time-delayed systems and the synchronization algorithm with controllers and parameter estimates are then implemented in FPGA using hardware-software co-simulation and the results are presented.
Torres-Tirado, David; Knabb, Maureen; Castaño, Irene; Patrón-Soberano, Araceli; De Las Peñas, Alejandro; Rubio, Rafael
2016-01-01
Candida glabrata (CG) is an opportunistic fungal pathogen that initiates infection by binding to host cells via specific lectin-like adhesin proteins. We have previously shown the importance of lectin-oligosaccharide binding in cardiac responses to flow and agonists. Because of the lectinic-oligosaccharide nature of CG binding, we tested the ability of CG to alter the agonist- and flow-induced changes in cardiac function in isolated perfused guinea pig hearts. Both transmission and scanning electron microscopy showed strong attachment of CG to the coronary endothelium, even after extensive washing. CG shifted the coronary flow vs. auricular-ventricular (AV) delay relationship upward, indicating that greater flow was required to achieve the same AV delay. This effect was completely reversed with mannose, partially reversed with galactose and N-acetylgalactosamine, but hyaluronan had no effect. Western blot analysis was used to determine binding of CG to isolated coronary endothelial luminal membrane (CELM) receptors, and the results indicate that flow-sensitive CELM receptors, ANG II type I, α-adrenergic 1A receptor, endothelin-2, and VCAM-1 bind to CG. In addition, CG inhibited agonist-induced effects of bradykinin, angiotensin, and phenylephrine on AV delay, coronary perfusion pressure, and left ventricular pressure. Mannose reversed the inhibitory effects of CG on the agonist responses. These results suggest that CG directly binds to flow-sensitive CELM receptors via lectinic-oligosaccharide interactions with mannose and disrupts the lectin-oligosaccharide binding necessary for flow-induced cardiac responses. Copyright © 2016 the American Physiological Society.
Intraventricular flow alterations due to dyssynchronous wall motion
NASA Astrophysics Data System (ADS)
Pope, Audrey M.; Lai, Hong Kuan; Samaee, Milad; Santhanakrishnan, Arvind
2015-11-01
Roughly 30% of patients with systolic heart failure suffer from left ventricular dyssynchrony (LVD), in which mechanical discoordination of the ventricle walls leads to poor hemodynamics and suboptimal cardiac function. There is currently no clear mechanistic understanding of how abnormalities in septal-lateral (SL) wall motion affects left ventricle (LV) function, which is needed to improve the treatment of LVD using cardiac resynchronization therapy. We use an experimental flow phantom with an LV physical model to study mechanistic effects of SL wall motion delay on LV function. To simulate mechanical LVD, two rigid shafts were coupled to two segments (apical and mid sections) along the septal wall of the LV model. Flow through the LV model was driven using a piston pump, and stepper motors coupled to the above shafts were used to locally perturb the septal wall segments relative to the pump motion. 2D PIV was used to examine the intraventricular flow through the LV physical model. Alterations to SL delay results in a reduction in the kinetic energy (KE) of the flow field compared to synchronous SL motion. The effect of varying SL motion delay from 0% (synchronous) to 100% (out-of-phase) on KE and viscous dissipation will be presented. This research was supported by the Oklahoma Center for Advancement of Science and Technology (HR14-022).
Turbulent pipe flows subjected to temporal decelerations
NASA Astrophysics Data System (ADS)
Jeong, Wongwan; Lee, Jae Hwa
2016-11-01
Direct numerical simulations of temporally decelerating turbulent pipe flows were performed to examine effects of temporal decelerations on turbulence. The simulations were started with a fully developed turbulent pipe flow at a Reynolds number, ReD =24380, based on the pipe radius (R) and the laminar centerline velocity (Uc 0). Three different temporal decelerations were imposed to the initial flow with f= | d Ub / dt | =0.00127, 0.00625 and 0.025, where Ub is the bulk mean velocity. Comparison of Reynolds stresses and turbulent production terms with those for steady flow at a similar Reynolds number showed that turbulence is highly intensified with increasing f due to delay effects. Furthermore, inspection of the Reynolds shear stress profiles showed that strong second- and fourth-quadrant Reynolds shear stresses are greatly increased, while first- and third-quadrant components are also increased. Decomposition of streamwise Reynolds normal stress with streamwise cutoff wavelength (λx) 1 R revealed that the turbulence delay is dominantly originated from delay of strong large-scale turbulent structures in the outer layer, although small-scale motions throughout the wall layer adjusted more rapidly to the temporal decelerations. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A1A2057031).
Xu, Nan; Spreng, R. Nathan; Doerschuk, Peter C.
2017-01-01
Resting-state functional MRI (rs-fMRI) is widely used to noninvasively study human brain networks. Network functional connectivity is often estimated by calculating the timeseries correlation between blood-oxygen-level dependent (BOLD) signal from different regions of interest (ROIs). However, standard correlation cannot characterize the direction of information flow between regions. In this paper, we introduce and test a new concept, prediction correlation, to estimate effective connectivity in functional brain networks from rs-fMRI. In this approach, the correlation between two BOLD signals is replaced by a correlation between one BOLD signal and a prediction of this signal via a causal system driven by another BOLD signal. Three validations are described: (1) Prediction correlation performed well on simulated data where the ground truth was known, and outperformed four other methods. (2) On simulated data designed to display the “common driver” problem, prediction correlation did not introduce false connections between non-interacting driven ROIs. (3) On experimental data, prediction correlation recovered the previously identified network organization of human brain. Prediction correlation scales well to work with hundreds of ROIs, enabling it to assess whole brain interregional connectivity at the single subject level. These results provide an initial validation that prediction correlation can capture the direction of information flow and estimate the duration of extended temporal delays in information flow between regions of interest ROIs based on BOLD signal. This approach not only maintains the high sensitivity to network connectivity provided by the correlation analysis, but also performs well in the estimation of causal information flow in the brain. PMID:28559793
"Glitch Logic" and Applications to Computing and Information Security
NASA Technical Reports Server (NTRS)
Stoica, Adrian; Katkoori, Srinivas
2009-01-01
This paper introduces a new method of information processing in digital systems, and discusses its potential benefits to computing and information security. The new method exploits glitches caused by delays in logic circuits for carrying and processing information. Glitch processing is hidden to conventional logic analyses and undetectable by traditional reverse engineering techniques. It enables the creation of new logic design methods that allow for an additional controllable "glitch logic" processing layer embedded into a conventional synchronous digital circuits as a hidden/covert information flow channel. The combination of synchronous logic with specific glitch logic design acting as an additional computing channel reduces the number of equivalent logic designs resulting from synthesis, thus implicitly reducing the possibility of modification and/or tampering with the design. The hidden information channel produced by the glitch logic can be used: 1) for covert computing/communication, 2) to prevent reverse engineering, tampering, and alteration of design, and 3) to act as a channel for information infiltration/exfiltration and propagation of viruses/spyware/Trojan horses.
Mortality in patients with TIMI 3 flow after PCI in relation to time delay to reperfusion.
Vichova, Teodora; Maly, Marek; Ulman, Jaroslav; Motovska, Zuzana
2016-03-01
Percutaneous coronary intervention (PCI) performed within 12 h from symptom onset enables complete blood flow restoration in infarct-related artery in 90% of patients. Nevertheless, even with complete restoration of epicardial blood flow in culprit vessel (postprocedural Thrombolysis in Myocardial Infarction (TIMI) flow grade 3), myocardial perfusion at tissue level may be insufficient. We hypothesized that the outcome of patients with STEMI/bundle branch block (BBB)-myocardial infarction and post-PCI TIMI 3 flow is related to the time to reperfusion. Observational study based on a retrospective analysis of population of 635 consecutive patients with STEMI/BBB-MI and post-PCI TIMI 3 flow from January 2009 to December 2011 (mean age 63 years, 69.6% males). Mortality of patients was evaluated in relation to the time from symptom onset to reperfusion. A total of 83 patients (13.07%) with postprocedural TIMI 3 flow after PCI had died at 1-year follow-up. Median TD in patients who survived was 3.92 h (iqr 5.43), in patients who died 6.0 h (iqr 11.42), P = 0.004. Multiple logistic regression analysis identified time delay ≥ 9 h as significantly related to 1-year mortality of patients with STEMI/BBB-MI and post-PCI TIMI 3 flow (OR 1.958, P = 0.026). Other significant variables associated with mortality in multivariate regression analysis were: left ventricle ejection fraction < 30% (P = 0.006), age > 65 years (P < 0.001), Killip class >2 (P <0.001), female gender (P = 0.019), and creatinine clearance < 30 mL/min (P < 0.001). Time delay to reperfusion is significantly related to 1-year mortality of patients with STEMI/BBB-MI and complete restoration of epicardial blood flow in culprit vessel after PCI.
The effects of surface topography control using liquid crystal elastomers on bodies in flow
NASA Astrophysics Data System (ADS)
Settle, Michael; Guin, Tyler; Beblo, Richard; White, Timothy; Reich, Gregory
2018-03-01
Surface topography control has use across many applications including delayed separation of flow via selective boundary-layer tripping. Recently, advances with liquid crystal elastomers (LCE) have been leveraged for controlled, repeatable, out-of-plane deformations that could enable these topographical changes. An aligned LCE deforms when heated, associated with a loss in order. Circumferential patterns fabricated through the thickness of the LCE film yield a predictable conical out-of-plane deformation that can control surface topography. This study focuses on the experimental investigation of LCE behavior for flow control. Initially, the deformations of LCE samples 1/2" in diameter and 50 µm thick were characterized using Digital Image Correlation under uniform positive and negative gauge pressures at various temperatures. Surface topography showed strong dependence on boundary conditions, sample dimensions, and pattern location relative to the applied boundary conditions, informing adjustment of the LCE of the chemistry to produce higher modulus and glassy materials. As an initial demonstration of the ability to control flow, Then, to demonstrate the potential for flow control, 3D printed cylinders with varying arrangements of representative topographical features were characterized in a wind tunnel with Particle Image Velocimetry. Results showed that features with a maximum deflection height of 1.5 mm in a two-row arrangement can form an asymmetric wake about a 73 mm diameter cylinder that reduces drag while generating lift. These results inform subsequent investigation of active LCE elements on a cylinder that are currently under examination.
Impact of Probabilistic Weather on Flight Routing Decisions
NASA Technical Reports Server (NTRS)
Sheth, Kapil; Sridhar, Banavar; Mulfinger, Daniel
2006-01-01
Flight delays in the United States have been found to increase year after year, along with the increase in air traffic. During the four-month period from May through August of 2005, weather related delays accounted for roughly 70% of all reported delays, The current weather prediction in tactical (within 2 hours) timeframe is at manageable levels, however, the state of forecasting weather for strategic (2-6 hours) timeframe is still not dependable for long-term planning. In the absence of reliable severe weather forecasts, the decision-making for flights longer than two hours is challenging. This paper deals with an approach of using probabilistic weather prediction for Traffic Flow Management use, and a general method using this prediction for estimating expected values of flight length and delays in the National Airspace System (NAS). The current state-of-the-art convective weather forecasting is employed to aid the decision makers in arriving at decisions for traffic flow and flight planing. The six-agency effort working on the Next Generation Air Transportation System (NGATS) have considered weather-assimilated decision-making as one of the principal foci out of a list of eight. The weather Integrated Product Team has considered integrated weather information and improved aviation weather forecasts as two of the main efforts (Ref. 1, 2). Recently, research has focused on the concept of operations for strategic traffic flow management (Ref. 3) and how weather data can be integrated for improved decision-making for efficient traffic management initiatives (Ref. 4, 5). An overview of the weather data needs and benefits of various participants in the air traffic system along with available products can be found in Ref. 6. Previous work related to use of weather data in identifying and categorizing pilot intrusions into severe weather regions (Ref. 7, 8) has demonstrated a need for better forecasting in the strategic planning timeframes and moving towards a probabilistic description of weather (Ref. 9). This paper focuses on. specified probability in a local region for flight intrusion/deviation decision-making. The process uses a probabilistic weather description, implements that in a air traffic assessment system to study trajectories of aircraft crossing a cut-off probability contour. This value would be useful for meteorologists in creating optimum distribution profiles for severe weather, Once available, the expected values of flight path and aggregate delays are calculated for efficient operations. The current research, however, does not deal with the issue of multiple cell encounters, as well as echo tops, and will be a topic of future work.
Migratory behavior of adult sea lamprey and cumulative passage performance through four fishways
Castro-Santos, Theodore R.; Shi, Xiaotao; Haro, Alexander
2017-01-01
This article describes a study of PIT-tagged sea lamprey (Petromyzon marinus) ascending four fishways comprising three designs at two dams on the Connecticut River, USA. Migration between dams was rapid (median migration rate = 23 km·day−1). Movement through the fishways was much slower, however (median = 0.02–0.33 km·day−1). Overall delay at dams was substantial (median = 13.6–14.6 days); many fish failed to pass (percent passage ranged from 29% to 55%, depending on fishway), and repeated passage attempts compounded delay for both passers and failers. Cox regression revealed that fishway entry rates were influenced by flow, temperature, and diel cycle, with most lampreys entering at night and at elevated flows, but with no apparent effect of sex or length. Overall delay was influenced by slow movement through the fishways, but repeated failures were the primary factor determining delay. These data suggest that although some lamprey were able to pass fishways, they did so with difficulty, and delays incurred as they attempted to pass may act to limit their distribution within their native range.
Lutz, Barry; Liang, Tinny; Fu, Elain; Ramachandran, Sujatha; Kauffman, Peter; Yager, Paul
2013-07-21
Lateral flow tests (LFTs) are an ingenious format for rapid and easy-to-use diagnostics, but they are fundamentally limited to assay chemistries that can be reduced to a single chemical step. In contrast, most laboratory diagnostic assays rely on multiple timed steps carried out by a human or a machine. Here, we use dissolvable sugar applied to paper to create programmable flow delays and present a paper network topology that uses these time delays to program automated multi-step fluidic protocols. Solutions of sucrose at different concentrations (10-70% of saturation) were added to paper strips and dried to create fluidic time delays spanning minutes to nearly an hour. A simple folding card format employing sugar delays was shown to automate a four-step fluidic process initiated by a single user activation step (folding the card); this device was used to perform a signal-amplified sandwich immunoassay for a diagnostic biomarker for malaria. The cards are capable of automating multi-step assay protocols normally used in laboratories, but in a rapid, low-cost, and easy-to-use format.
Lutz, Barry; Liang, Tinny; Fu, Elain; Ramachandran, Sujatha; Kauffman, Peter; Yager, Paul
2013-01-01
Lateral flow tests (LFTs) are an ingenious format for rapid and easy-to-use diagnostics, but they are fundamentally limited to assay chemistries that can be reduced to a single chemical step. In contrast, most laboratory diagnostic assays rely on multiple timed steps carried out by a human or a machine. Here, we use dissolvable sugar applied to paper to create programmable flow delays and present a paper network topology that uses these time delays to program automated multi-step fluidic protocols. Solutions of sucrose at different concentrations (10-70% of saturation) were added to paper strips and dried to create fluidic time delays spanning minutes to nearly an hour. A simple folding card format employing sugar delays was shown to automate a four-step fluidic process initiated by a single user activation step (folding the card); this device was used to perform a signal-amplified sandwich immunoassay for a diagnostic biomarker for malaria. The cards are capable of automating multi-step assay protocols normally used in laboratories, but in a rapid, low-cost, and easy-to-use format. PMID:23685876
Real Time Metrics and Analysis of Integrated Arrival, Departure, and Surface Operations
NASA Technical Reports Server (NTRS)
Sharma, Shivanjli; Fergus, John
2017-01-01
To address the Integrated Arrival, Departure, and Surface (IADS) challenge, NASA is developing and demonstrating trajectory-based departure automation under a collaborative effort with the FAA and industry known Airspace Technology Demonstration 2 (ATD-2). ATD-2 builds upon and integrates previous NASA research capabilities that include the Spot and Runway Departure Advisor (SARDA), the Precision Departure Release Capability (PDRC), and the Terminal Sequencing and Spacing (TSAS) capability. As trajectory-based departure scheduling and collaborative decision making tools are introduced in order to reduce delays and uncertainties in taxi and climb operations across the National Airspace System, users of the tools across a number of roles benefit from a real time system that enables common situational awareness. A real time dashboard was developed to inform and present users notifications and integrated information regarding airport surface operations. The dashboard is a supplement to capabilities and tools that incorporate arrival, departure, and surface air-traffic operations concepts in a NextGen environment. In addition to shared situational awareness, the dashboard offers the ability to compute real time metrics and analysis to inform users about capacity, predictability, and efficiency of the system as a whole. This paper describes the architecture of the real time dashboard as well as an initial proposed set of metrics. The potential impact of the real time dashboard is studied at the site identified for initial deployment and demonstration in 2017: Charlotte-Douglas International Airport (CLT). The architecture of implementing such a tool as well as potential uses are presented for operations at CLT. Metrics computed in real time illustrate the opportunity to provide common situational awareness and inform users of system delay, throughput, taxi time, and airport capacity. In addition, common awareness of delays and the impact of takeoff and departure restrictions stemming from traffic flow management initiatives are explored. The potential of the real time tool to inform users of the predictability and efficiency of using a trajectory-based departure scheduling system is also discussed.
NASA Technical Reports Server (NTRS)
McKinzie, Daniel J., Jr.
1996-01-01
A vane oscillating about a fixed point at the inlet to a two-dimensional 20 deg rearward-facing ramp proved effective in delaying the detachment of a turbulent boundary layer. Flow-field, surface static pressure, and smoke-wire flow visualization measurements were made. Surface pressure coefficient distributions revealed that two different effects occurred with axial distance along the ramp surface. The surface pressure coefficient varied as a complex function of the vane oscillation frequency and its trailing edge displacement amplitude; that is, it varied as a function of the vane oscillation frequency throughout the entire range of frequencies covered during the test, but it varied over only a limited range of the trailing edge displacement amplitudes covered.The complexity of these findings prompted a detailed investigation, the results of which revealed a combination of phenomena that explain qualitatively how the mechanically generated, periodic, sinusoidal perturbing signal produced by the oscillating vane reacts with the fluid flow to delay the detachment of a turbulent boundary layer experiencing transitory detachment.
The Airport Network Flow Simulator.
DOT National Transportation Integrated Search
1976-05-01
The impact of investment at an individual airport is felt through-out the National Airport System by reduction of delays at other airports in the the system. A GPSS model was constructed to simulate the propagation of delays through a nine-airport sy...
Method and apparatus for measuring flow velocity using matched filters
Raptis, Apostolos C.
1983-01-01
An apparatus and method for measuring the flow velocities of individual phase flow components of a multiphase flow utilizes matched filters. Signals arising from flow noise disturbance are extracted from the flow, at upstream and downstream locations. The signals are processed through pairs of matched filters which are matched to the flow disturbance frequency characteristics of the phase flow component to be measured. The processed signals are then cross-correlated to determine the transit delay time of the phase flow component between sensing positions.
Nuclear reactor with internal thimble-type delayed neutron detection system
Gross, Kenny C.; Poloncsik, John; Lambert, John D. B.
1990-01-01
This invention teaches improved apparatus for the method of detecting a breach in cladded fuel used in a nuclear reactor. The detector apparatus is located in the primary heat exchanger which conveys part of the reactor coolant past at least three separate delayed-neutron detectors mounted in this heat exchanger. The detectors are spaced apart such that the coolant flow time from the core to each detector is different, and these differences are known. The delayed-neutron activity at the detectors is a function of the delay time after the reaction in the fuel until the coolant carrying the delayed-neutron emitter passes the respective detector. This time delay is broken down into separate components including an isotopic holdup time required for the emitter to move through the fuel from the reaction to the coolant at the breach, and two transit times required for the emitter now in the coolant to flow from the breach to the detector loop and then via the loop to the detector. At least two of these time components are determined during calibrated operation of the reactor. Thereafter during normal reactor operation, repeated comparisons are made by the method of regression approximation of the third time component for the best-fit line correlating measured delayed-neutron activity against activity that is approximated according to specific equations. The equations use these time-delay components and known parameter values of the fuel and of the part and emitting daughter isotopes.
Theory and applications survey of decentralized control methods
NASA Technical Reports Server (NTRS)
Athans, M.
1975-01-01
A nonmathematical overview is presented of trends in the general area of decentralized control strategies which are suitable for hierarchical systems. Advances in decentralized system theory are closely related to advances in the so-called stochastic control problem with nonclassical information pattern. The basic assumptions and mathematical tools pertaining to the classical stochastic control problem are outlined. Particular attention is devoted to pitfalls in the mathematical problem formulation for decentralized control. Major conclusions are that any purely deterministic approach to multilevel hierarchical dynamic systems is unlikely to lead to realistic theories or designs, that the flow of measurements and decisions in a decentralized system should not be instantaneous and error-free, and that delays in information exchange in a decentralized system lead to reasonable approaches to decentralized control. A mathematically precise notion of aggregating information is not yet available.
NASA Astrophysics Data System (ADS)
Vatansever, Sezen; Gümüş, Zeynep H.; Erman, Burak
2016-11-01
K-Ras is the most frequently mutated oncogene in human cancers, but there are still no drugs that directly target it in the clinic. Recent studies utilizing dynamics information show promising results for selectively targeting mutant K-Ras. However, despite extensive characterization, the mechanisms by which K-Ras residue fluctuations transfer allosteric regulatory information remain unknown. Understanding the direction of information flow can provide new mechanistic insights for K-Ras targeting. Here, we present a novel approach -conditional time-delayed correlations (CTC) - using the motions of all residue pairs of a protein to predict directionality in the allosteric regulation of the protein fluctuations. Analyzing nucleotide-dependent intrinsic K-Ras motions with the new approach yields predictions that agree with the literature, showing that GTP-binding stabilizes K-Ras motions and leads to residue correlations with relatively long characteristic decay times. Furthermore, our study is the first to identify driver-follower relationships in correlated motions of K-Ras residue pairs, revealing the direction of information flow during allosteric modulation of its nucleotide-dependent intrinsic activity: active K-Ras Switch-II region motions drive Switch-I region motions, while α-helix-3L7 motions control both. Our results provide novel insights for strategies that directly target mutant K-Ras.
Flow visualization study of the HiMAT RPRV
NASA Technical Reports Server (NTRS)
Lorincz, D. J.
1980-01-01
Water tunnel studies were performed to qualitatively define the flow field of the highly maneuverable aircraft technology remotely piloted research vehicle (HiMAT RPRV). Particular emphasis was placed on defining the vortex flows generated at high angles of attack. The flow visualization tests were conducted in the Northrop water tunnel using a 1/15 scale model of the HiMAT RPRV. Flow visualization photographs were obtained for angles of attack up to 40 deg and sideslip angles up to 5 deg. The HiMAT model was investigated in detail to determine the canard and wing vortex flow field development, vortex paths, and vortex breakdown characteristics as a function of angle of attack and sideslip. The presence of the canard caused the wing vortex to form further outboard and delayed the breakdown of the wing vortex to higher angles of attack. An increase in leading edge camber of the maneuver configuration delayed both the formation and the breakdown of the wing and canard vortices. Additional tests showed that the canard vortex was sensitive to variations in inlet mass flow ratio and canard flap deflection angle.
The influence of filtering and downsampling on the estimation of transfer entropy
Florin, Esther; von Papen, Michael; Timmermann, Lars
2017-01-01
Transfer entropy (TE) provides a generalized and model-free framework to study Wiener-Granger causality between brain regions. Because of its nonparametric character, TE can infer directed information flow also from nonlinear systems. Despite its increasing number of applications in neuroscience, not much is known regarding the influence of common electrophysiological preprocessing on its estimation. We test the influence of filtering and downsampling on a recently proposed nearest neighborhood based TE estimator. Different filter settings and downsampling factors were tested in a simulation framework using a model with a linear coupling function and two nonlinear models with sigmoid and logistic coupling functions. For nonlinear coupling and progressively lower low-pass filter cut-off frequencies up to 72% false negative direct connections and up to 26% false positive connections were identified. In contrast, for the linear model, a monotonic increase was only observed for missed indirect connections (up to 86%). High-pass filtering (1 Hz, 2 Hz) had no impact on TE estimation. After low-pass filtering interaction delays were significantly underestimated. Downsampling the data by a factor greater than the assumed interaction delay erased most of the transmitted information and thus led to a very high percentage (67–100%) of false negative direct connections. Low-pass filtering increases the number of missed connections depending on the filters cut-off frequency. Downsampling should only be done if the sampling factor is smaller than the smallest assumed interaction delay of the analyzed network. PMID:29149201
Itskovitz, J; Goetzman, B W; Rudolph, A M
1982-01-01
The responses of fetal heart rate and blood pressure to a transient reduction in uterine blood flow were studied in normoxemic and chronically hypoxemic lambs. In normoxemic fetuses, a reduction in uterine blood flow, if prolonged sufficiently, produced reflex bradycardia mediated through chemoreceptors and was associated with a decrease in carotid arterial PO2 to below 20 torr. The bradycardia was associated with a marked decrease in left ventricular output as measured by electromagnetic flowmeter; both were abolished by atropine. In chronically hypoxemic fetuses, a reduction in uterine blood flow produced a delayed deceleration of the heart rate which consisted of three components: reflex bradycardia due to chemoreceptor stimulation; baroreceptor-mediated reflex bradycardia which involved the slow and late recovery of the heart rate; and nonreflex bradycardia which was probably secondary to hypoxic myocardial depression. Quantitative analysis revealed a relationship between the components of delayed deceleration and the status of fetal oxygenation prior to the reduction in uterine blood flow. The lower the carotid arterial PO2, the shorter was the delay in the onset of bradycardia, the greater the decrease in heart rate, and the more prolonged the duration of bradycardia. The conclusion is that the response of fetal heart rate to a transient reduction in uterine blood flow is related to the duration of the reduction and to the status of fetal oxygenation prior to the decrease in uterine blood flow.
NASA Technical Reports Server (NTRS)
Nowak, Michael A.; Wilms, Joern; Vaughan, Brian A.; Dove, James B.; Begelman, Mitchell C.
1999-01-01
We have recently shown that a 'sphere + disk' geometry Compton corona model provides a good description of Rossi X-ray Timing Explorer (RXTE) observations of the hard/low state of Cygnus X-1. Separately, we have analyzed the temporal data provided by RXTE. In this paper we consider the implications of this timing analysis for our best-fit 'sphere + disk' Comptonization models. We focus our attention on the observed Fourier frequency-dependent time delays between hard and soft photons. We consider whether the observed time delays are: created in the disk but are merely reprocessed by the corona; created by differences between the hard and soft photon diffusion times in coronae with extremely large radii; or are due to 'propagation' of disturbances through the corona. We find that the time delays are most likely created directly within the corona; however, it is currently uncertain which specific model is the most likely explanation. Models that posit a large coronal radius [or equivalently, a large Advection Dominated Accretion Flow (ADAF) region] do not fully address all the details of the observed spectrum. The Compton corona models that do address the full spectrum do not contain dynamical information. We show, however, that simple phenomenological propagation models for the observed time delays for these latter models imply extremely slow characteristic propagation speeds within the coronal region.
Considerations Relative to the Use of Canes by Blind Travelers in Air Carrier Aircraft Cabins,
1980-07-01
considera- tion of the potential of the canes to inflict injury to passengers or damage to evacuation slides. ’ Hardman Model 9750-2 3 TEST RESULTS...Figure 2. The slope of a line through the points in these plots repre- sents the flow rate of the subjects through the exit. Any discontinuity in...occur in the same way. In many cases there was a discrete delay between only two subjects, with the same flow rate resuming after the delay. In other
Perfusion information extracted from resting state functional magnetic resonance imaging.
Tong, Yunjie; Lindsey, Kimberly P; Hocke, Lia M; Vitaliano, Gordana; Mintzopoulos, Dionyssios; Frederick, Blaise deB
2017-02-01
It is widely known that blood oxygenation level dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) is an indirect measure for neuronal activations through neurovascular coupling. The BOLD signal is also influenced by many non-neuronal physiological fluctuations. In previous resting state (RS) fMRI studies, we have identified a moving systemic low frequency oscillation (sLFO) in BOLD signal and were able to track its passage through the brain. We hypothesized that this seemingly intrinsic signal moves with the blood, and therefore, its dynamic patterns represent cerebral blood flow. In this study, we tested this hypothesis by performing Dynamic Susceptibility Contrast (DSC) MRI scans (i.e. bolus tracking) following the RS scans on eight healthy subjects. The dynamic patterns of sLFO derived from RS data were compared with the bolus flow visually and quantitatively. We found that the flow of sLFO derived from RS fMRI does to a large extent represent the blood flow measured with DSC. The small differences, we hypothesize, are largely due to the difference between the methods in their sensitivity to different vessel types. We conclude that the flow of sLFO in RS visualized by our time delay method represents the blood flow in the capillaries and veins in the brain.
Analysis and improvement measures of flight delay in China
NASA Astrophysics Data System (ADS)
Zang, Yuhang
2017-03-01
Firstly, this paper establishes the principal component regression model to analyze the data quantitatively, based on principal component analysis to get the three principal component factors of flight delays. Then the least square method is used to analyze the factors and obtained the regression equation expression by substitution, and then found that the main reason for flight delays is airlines, followed by weather and traffic. Aiming at the above problems, this paper improves the controllable aspects of traffic flow control. For reasons of traffic flow control, an adaptive genetic queuing model is established for the runway terminal area. This paper, establish optimization method that fifteen planes landed simultaneously on the three runway based on Beijing capital international airport, comparing the results with the existing FCFS algorithm, the superiority of the model is proved.
Preliminary Evaluation of BIM-based Approaches for Schedule Delay Analysis
NASA Astrophysics Data System (ADS)
Chou, Hui-Yu; Yang, Jyh-Bin
2017-10-01
The problem of schedule delay commonly occurs in construction projects. The quality of delay analysis depends on the availability of schedule-related information and delay evidence. More information used in delay analysis usually produces more accurate and fair analytical results. How to use innovative techniques to improve the quality of schedule delay analysis results have received much attention recently. As Building Information Modeling (BIM) technique has been quickly developed, using BIM and 4D simulation techniques have been proposed and implemented. Obvious benefits have been achieved especially in identifying and solving construction consequence problems in advance of construction. This study preforms an intensive literature review to discuss the problems encountered in schedule delay analysis and the possibility of using BIM as a tool in developing a BIM-based approach for schedule delay analysis. This study believes that most of the identified problems can be dealt with by BIM technique. Research results could be a fundamental of developing new approaches for resolving schedule delay disputes.
NASA Astrophysics Data System (ADS)
Sugioka, Hideyuki
2016-08-01
The standard theory of induced-charge electro-osmosis (ICEO) often overpredicts experimental values of ICEO velocities. Using a nonsteady direct multiphysics simulation technique based on the coupled Poisson-Nernst-Planck and Stokes equations for an electrolyte around a conductive cylinder subject to an ac electric field, we find that a phase delay effect concerning an ion response provides a fundamental mechanism for electrokinetic suppression. A surprising aspect of our findings is that the phase delay effect occurs even at much lower frequencies (e.g., 50 Hz) than the generally believed charging frequency of an electric double layer (typically, 1 kHz) and it can decrease the electrokinetic velocities in one to several orders. In addition, we find that the phase delay effect may also cause a change in the electrokinetic flow directions (i.e., flow reversal) depending on the geometrical conditions. We believe that our findings move toward a more complete understanding of complex experimental nonlinear electrokinetic phenomena.
Dynamic PIV measurement of a compressible flow issuing from an airbag inflator nozzle
NASA Astrophysics Data System (ADS)
Lee, Sang Joon; Jang, Young Gil; Kim, Seok; Kim, Chang Soo
2006-12-01
Among many equipment for passenger safety, the air bag system is the most fundamental and effective device for an automobile. The inflator housing is a main part of the curtain-type air bag system, which supplies high-pressure gases in pumping up the air bag-curtain which is increasingly being adapted in deluxe cars for protecting passengers from the danger of side clash. However, flow information on the inflator housing is very limited. In this study, we measure the instantaneous velocity fields of a high-speed compressible flow issuing from the exit nozzle of an inflator housing using a dynamic PIV system. From the velocity field data measured at a high frame-rate, we evaluate the variation of the mass flow rate with time. The dynamic PIV system consists of a high-repetition Nd:YLF laser, a high-speed CMOS camera, and a delay generator. The flow images are taken at 4000 fps with synchronization of the trigger signal for inflator ignition. From the instantaneous velocity field data of flow ejecting from the airbag inflator housing at the initial stage, we can see a flow pattern of broken shock wave front and its downward propagation. The flow ejecting from the inflator housing is found to have very high velocity fluctuations, with the maximum velocity at about 700 m/s. The time duration of the high-speed flow is very short, and there is no perceptible flow after 100 ms.
Delay times of a LiDAR-guided precision sprayer control system
USDA-ARS?s Scientific Manuscript database
Accurate flow control systems in triggering sprays against detected targets are needed for precision variable-rate sprayer development. System delay times due to the laser-sensor data buffer, software operation, and hydraulic-mechanical component response were determined for a control system used fo...
Shear Wave Splitting Inversion in a Complex Crust
NASA Astrophysics Data System (ADS)
Lucas, A.
2015-12-01
Shear wave splitting (SWS) inversion presents a method whereby the upper crust can be interrogated for fracture density. It is caused when a shear wave traverses an area of anisotropy, splits in two, with each wave experiencing a different velocity resulting in an observable separation in arrival times. A SWS observation consists of the first arrival polarization direction and the time delay. Given the large amount of data common in SWS studies, manual inspection for polarization and time delay is considered prohibitively time intensive. All automated techniques used can produce high amounts of observations falsely interpreted as SWS. Thus introducing error into the interpretation. The technique often used for removing these false observations is to manually inspect all SWS observations defined as high quality by the automated routine, and remove false identifications. We investigate the nature of events falsely identified compared to those correctly identified. Once this identification is complete we conduct a inversion for crack density from SWS time delay. The current body of work on linear SWS inversion utilizes an equation that defines the time delay between arriving shear waves with respect to fracture density. This equation makes the assumption that no fluid flow occurs as a result of the passing shear wave, a situation called squirt flow. We show that the assumption is not applicable in all geological situations. When it is not true, its use in an inversion produces a result which is negatively affected by the assumptions. This is shown to be the case at the test case of 6894 SWS observations gathered in a small area at Puna geothermal field, Hawaii. To rectify this situation, a series of new time delay formulae, applicable to linear inversion, are derived from velocity equations presented in literature. The new formula use a 'fluid influence parameter' which indicates the degree to which squirt flow is influencing the SWS. It is found that accounting for squirt flow better fits the data and is more applicable. The fluid influence factor that best describes the data can be identified prior to solving the inversion. Implementing this formula in a linear inversion has a significantly improved fit to the time delay observations than that of the current methods.
Queues with Choice via Delay Differential Equations
NASA Astrophysics Data System (ADS)
Pender, Jamol; Rand, Richard H.; Wesson, Elizabeth
Delay or queue length information has the potential to influence the decision of a customer to join a queue. Thus, it is imperative for managers of queueing systems to understand how the information that they provide will affect the performance of the system. To this end, we construct and analyze two two-dimensional deterministic fluid models that incorporate customer choice behavior based on delayed queue length information. In the first fluid model, customers join each queue according to a Multinomial Logit Model, however, the queue length information the customer receives is delayed by a constant Δ. We show that the delay can cause oscillations or asynchronous behavior in the model based on the value of Δ. In the second model, customers receive information about the queue length through a moving average of the queue length. Although it has been shown empirically that giving patients moving average information causes oscillations and asynchronous behavior to occur in U.S. hospitals, we analytically and mathematically show for the first time that the moving average fluid model can exhibit oscillations and determine their dependence on the moving average window. Thus, our analysis provides new insight on how operators of service systems should report queue length information to customers and how delayed information can produce unwanted system dynamics.
Method and apparatus for measuring flow velocity using matched filters
Raptis, A.C.
1983-09-06
An apparatus and method for measuring the flow velocities of individual phase flow components of a multiphase flow utilizes matched filters. Signals arising from flow noise disturbance are extracted from the flow, at upstream and downstream locations. The signals are processed through pairs of matched filters which are matched to the flow disturbance frequency characteristics of the phase flow component to be measured. The processed signals are then cross-correlated to determine the transit delay time of the phase flow component between sensing positions. 8 figs.
National Airspace System Delay Estimation Using Weather Weighted Traffic Counts
NASA Technical Reports Server (NTRS)
Chatterji, Gano B.; Sridhar, Banavar
2004-01-01
Assessment of National Airspace System performance, which is usually measured in terms of delays resulting from the application of traffic flow management initiatives in response to weather conditions, volume, equipment outages and runway conditions, is needed both for guiding flow control decisions during the day of operations and for post operations analysis. Comparison of the actual delay, resulting from the traffic flow management initiatives, with the expected delay, based on traffic demand and other conditions, provides the assessment of the National Airspace System performance. This paper provides a method for estimating delay using the expected traffic demand and weather. In order to identify the cause of delays, 517 days of National Airspace System delay data reported by the Federal Aviation Administration s Operations Network were analyzed. This analysis shows that weather is the most important causal factor for delays followed by equipment and runway delays. Guided by these results, the concept of weather weighted traffic counts as a measure of system delay is described. Examples are given to show the variation of these counts as a function of time of the day. The various datasets, consisting of aircraft position data, enroute severe weather data, surface wind speed and visibility data, reported delay data and number of aircraft handled by the Centers data, and their sources are described. The procedure for selecting reference days on which traffic was minimally impacted by weather is described. Different traffic demand on each reference day of the week, determined by analysis of 42 days of traffic and delay data, was used as the expected traffic demand for each day of the week. Next, the method for computing the weather weighted traffic counts using the expected traffic demand, derived from reference days, and the expanded regions around severe weather cells is discussed. It is shown via a numerical example that this approach improves the dynamic range of the weather weighted traffic counts considerably. Time histories of these new weather weighted traffic counts are used for synthesizing two statistical features, six histogram features and six time domain features. In addition to these enroute weather features, two surface weather features of number of major airports in the United States with high mean winds and low mean visibility are also described. A least squares procedure for establishing a functional relation between the features, using combinations of these features, and system delays is explored using 36 days of data. Best correlations between the estimated delays using the functional relation and the actual delays provided by the Operations Network are obtained with two different combinations of features: 1) six time domain features of weather weighted traffic counts plus two surface weather features, and 2) six histogram features and mean of weather weighted traffic counts along with the two surface weather features. Correlation coefficient values of 0.73 and 0.83 were found in these two instances.
Probe for production and measurement of acute mitral regurgitant flow in dog.
Kléber, A G; Simon, R; Rutishauser, W
1976-02-01
A probe for production and measurement of acute mitral regurgitation in dogs is described. It consists of a tube that is introduced into the mitral valve through the left atrial appendage. Regurgitant flow through the tube is measured by an electromagnetic device. Variation of flow and zero flow are achieved by narrowing or occluding the tube with a rubber cuff. In animals weighing 30-50 kg, the probe does not produce significant mitral stenosis and the mitral leaflets fit closely around the probe during ventricular systole. The instantaneous relationship between mitral regurgitant flow (MRF) and the gradient between left ventricular and left atrial pressure shows a marked delay of MRF at the beginning and end of regurgitation. This delay can be attributed to some extent to electrical phase lag and to the small movement of the probe relative to the mitral valve during the cardiac cycle. Measurement of regurgitant stroke volume is affected by this movement only to a small extent.
Data Mining for Understanding and Impriving Decision-Making Affecting Ground Delay Programs
NASA Technical Reports Server (NTRS)
Kulkarni, Deepak; Wang, Yao Xun; Sridhar, Banavar
2013-01-01
The continuous growth in the demand for air transportation results in an imbalance between airspace capacity and traffic demand. The airspace capacity of a region depends on the ability of the system to maintain safe separation between aircraft in the region. In addition to growing demand, the airspace capacity is severely limited by convective weather. During such conditions, traffic managers at the FAA's Air Traffic Control System Command Center (ATCSCC) and dispatchers at various Airlines' Operations Center (AOC) collaborate to mitigate the demand-capacity imbalance caused by weather. The end result is the implementation of a set of Traffic Flow Management (TFM) initiatives such as ground delay programs, reroute advisories, flow metering, and ground stops. Data Mining is the automated process of analyzing large sets of data and then extracting patterns in the data. Data mining tools are capable of predicting behaviors and future trends, allowing an organization to benefit from past experience in making knowledge-driven decisions. The work reported in this paper is focused on ground delay programs. Data mining algorithms have the potential to develop associations between weather patterns and the corresponding ground delay program responses. If successful, they can be used to improve and standardize TFM decision resulting in better predictability of traffic flows on days with reliable weather forecasts. The approach here seeks to develop a set of data mining and machine learning models and apply them to historical archives of weather observations and forecasts and TFM initiatives to determine the extent to which the theory can predict and explain the observed traffic flow behaviors.
Unconfined aquifer response to infiltration basins and shallow pump tests
NASA Astrophysics Data System (ADS)
Ostendorf, David W.; DeGroot, Don J.; Hinlein, Erich S.
2007-05-01
SummaryWe measure and model the unsteady, axisymmetric response of an unconfined aquifer to delayed, arbitrary recharge. Water table drainage follows the initial elastic aquifer response, as modeled for uniform, instantaneous recharge by Zlotnik and Ledder [Zlotnik, V., Ledder, G., 1992. Groundwater flow in a compressible unconfined aquifer with uniform circular recharge. Water Resources Research 28(6), 1619-1630] and delayed drainage by Moench [Moench, A.F., 1995. Combining the Neuman and Boulton models for flow to a well in an unconfined aquifer. Ground Water 33(3), 378-384]. We extend their analyses with a convolution integral that models the delayed response of an aquifer to infiltration from a circular infiltration basin. The basin routes the hydrograph to the water table with a decay constant dependent on a Brooks and Corey [Brooks, R.H., Corey, A.T., 1966. Properties of porous media affecting fluid flow. Journal of the Irrigation and Drainage Division ASCE 92(2), 61-88] unsaturated permeability exponent. The resulting closed form model approaches Neuman's [Neuman, S.P., 1972. Theory of flow in unconfined aquifers considering delayed response of the water table. Water Resources Research 8(4), 1031-1045] partially penetrating pump test equation for a small source radius, instantaneous, uniform drainage and a shallow screen section. Irrigation pump data at a well characterized part of the Plymouth-Carver Aquifer in southeastern Massachusetts calibrate the small source model, while infiltration data from the closed drainage system of State Route 25 calibrate the infiltration basin model. The calibrated permeability, elasticity, specific yield, and permeability exponent are plausible and consistent for the pump and infiltration data sets.
Study on Effects of the Stochastic Delay Probability for 1d CA Model of Traffic Flow
NASA Astrophysics Data System (ADS)
Xue, Yu; Chen, Yan-Hong; Kong, Ling-Jiang
Considering the effects of different factors on the stochastic delay probability, the delay probability has been classified into three cases. The first case corresponding to the brake state has a large delay probability if the anticipant velocity is larger than the gap between the successive cars. The second one corresponding to the following-the-leader rule has intermediate delay probability if the anticipant velocity is equal to the gap. Finally, the third case is the acceleration, which has minimum delay probability. The fundamental diagram obtained by numerical simulation shows the different properties compared to that by the NaSch model, in which there exist two different regions, corresponding to the coexistence state, and jamming state respectively.
Taghva, Alexander; Song, Dong; Hampson, Robert E.; Deadwyler, Sam A.; Berger, Theodore W.
2013-01-01
BACKGROUND Identification of functional dependence among neurons is a necessary component in both the rational design of neural prostheses as well as in the characterization of network physiology. The objective of this article is to provide a tutorial for neurosurgeons regarding information theory, specifically time-delayed mutual information, and to compare time-delayed mutual information, an information theoretic quantity based on statistical dependence, with cross-correlation, a commonly used metric for this task in a preliminary analysis of rat hippocampal neurons. METHODS Spike trains were recorded from rats performing delayed nonmatch-to-sample task using an array of electrodes surgically implanted into the hippocampus of each hemisphere of the brain. In addition, spike train simulations of positively correlated neurons, negatively correlated neurons, and neurons correlated by nonlinear functions were generated. These were evaluated by time-delayed mutual information (MI) and cross-correlation. RESULTS Application of time-delayed MI to experimental data indicated the optimal bin size for information capture in the CA3-CA1 system was 40 ms, which may provide some insight into the spatiotemporal nature of encoding in the rat hippocampus. On simulated data, time-delayed MI showed peak values at appropriate time lags in positively correlated, negatively correlated, and complexly correlated data. Cross-correlation showed peak and troughs with positively correlated and negatively correlated data, but failed to capture some higher order correlations. CONCLUSIONS Comparison of time-delayed MI to cross-correlation in identification of functionally dependent neurons indicates that the methods are not equivalent. Time-delayed MI appeared to capture some interactions between CA3-CA1 neurons at physiologically plausible time delays missed by cross-correlation. It should be considered as a method for identification of functional dependence between neurons and may be useful in the development of neural prosthetics. PMID:22120279
Taghva, Alexander; Song, Dong; Hampson, Robert E; Deadwyler, Sam A; Berger, Theodore W
2012-12-01
Identification of functional dependence among neurons is a necessary component in both the rational design of neural prostheses as well as in the characterization of network physiology. The objective of this article is to provide a tutorial for neurosurgeons regarding information theory, specifically time-delayed mutual information, and to compare time-delayed mutual information, an information theoretic quantity based on statistical dependence, with cross-correlation, a commonly used metric for this task in a preliminary analysis of rat hippocampal neurons. Spike trains were recorded from rats performing delayed nonmatch-to-sample task using an array of electrodes surgically implanted into the hippocampus of each hemisphere of the brain. In addition, spike train simulations of positively correlated neurons, negatively correlated neurons, and neurons correlated by nonlinear functions were generated. These were evaluated by time-delayed mutual information (MI) and cross-correlation. Application of time-delayed MI to experimental data indicated the optimal bin size for information capture in the CA3-CA1 system was 40 ms, which may provide some insight into the spatiotemporal nature of encoding in the rat hippocampus. On simulated data, time-delayed MI showed peak values at appropriate time lags in positively correlated, negatively correlated, and complexly correlated data. Cross-correlation showed peak and troughs with positively correlated and negatively correlated data, but failed to capture some higher order correlations. Comparison of time-delayed MI to cross-correlation in identification of functionally dependent neurons indicates that the methods are not equivalent. Time-delayed MI appeared to capture some interactions between CA3-CA1 neurons at physiologically plausible time delays missed by cross-correlation. It should be considered as a method for identification of functional dependence between neurons and may be useful in the development of neural prosthetics. Copyright © 2012 Elsevier Inc. All rights reserved.
Parametric study on laminar flow for finite wings at supersonic speeds
NASA Technical Reports Server (NTRS)
Garcia, Joseph Avila
1994-01-01
Laminar flow control has been identified as a key element in the development of the next generation of High Speed Transports. Extending the amount of laminar flow over an aircraft will increase range, payload, and altitude capabilities as well as lower fuel requirements, skin temperature, and therefore the overall cost. A parametric study to predict the extent of laminar flow for finite wings at supersonic speeds was conducted using a computational fluid dynamics (CFD) code coupled with a boundary layer stability code. The parameters investigated in this study were Reynolds number, angle of attack, and sweep. The results showed that an increase in angle of attack for specific Reynolds numbers can actually delay transition. Therefore, higher lift capability, caused by the increased angle of attack, as well as a reduction in viscous drag, due to the delay in transition, can be expected simultaneously. This results in larger payload and range.
NASA Astrophysics Data System (ADS)
Xu, Ke-Jun; Luo, Qing-Lin; Wang, Gang; Liu, San-Shan; Kang, Yi-Bo
2010-07-01
Digital signal processing methods have been applied to vortex flowmeter for extracting the useful information from noisy output of the vortex flow sensor. But these approaches are unavailable when the power of the mechanical vibration noise is larger than that of the vortex flow signal. In order to solve this problem, an antistrong-disturbance signal processing method is proposed based on frequency features of the vortex flow signal and mechanical vibration noise for the vortex flowmeter with single sensor. The frequency bandwidth of the vortex flow signal is different from that of the mechanical vibration noise. The autocorrelation function can represent bandwidth features of the signal and noise. The output of the vortex flow sensor is processed by the spectrum analysis, filtered by bandpass filters, and calculated by autocorrelation function at the fixed delaying time and at τ =0 to obtain ratios. The frequency corresponding to the minimal ratio is regarded as the vortex flow frequency. With an ultralow-power microcontroller, a digital signal processing system is developed to implement the antistrong-disturbance algorithm, and at the same time to ensure low-power and two-wire mode for meeting the requirement of process instrumentation. The water flow-rate calibration and vibration test experiments are conducted, and the experimental results show that both the algorithm and system are effective.
Xu, Ke-Jun; Luo, Qing-Lin; Wang, Gang; Liu, San-Shan; Kang, Yi-Bo
2010-07-01
Digital signal processing methods have been applied to vortex flowmeter for extracting the useful information from noisy output of the vortex flow sensor. But these approaches are unavailable when the power of the mechanical vibration noise is larger than that of the vortex flow signal. In order to solve this problem, an antistrong-disturbance signal processing method is proposed based on frequency features of the vortex flow signal and mechanical vibration noise for the vortex flowmeter with single sensor. The frequency bandwidth of the vortex flow signal is different from that of the mechanical vibration noise. The autocorrelation function can represent bandwidth features of the signal and noise. The output of the vortex flow sensor is processed by the spectrum analysis, filtered by bandpass filters, and calculated by autocorrelation function at the fixed delaying time and at tau=0 to obtain ratios. The frequency corresponding to the minimal ratio is regarded as the vortex flow frequency. With an ultralow-power microcontroller, a digital signal processing system is developed to implement the antistrong-disturbance algorithm, and at the same time to ensure low-power and two-wire mode for meeting the requirement of process instrumentation. The water flow-rate calibration and vibration test experiments are conducted, and the experimental results show that both the algorithm and system are effective.
Failure to comply with CMS' new enrollment procedures could impact physicians' cash flow.
Duffy, Erin M
2007-01-01
The Centers for Medicare and Medicaid Services (CMS) has instituted big changes in its enrollment procedures that could have a major impact on physician groups that fail to comply with CMS' new requirements. First, tick ... tick ... tick ... time is quickly running out on the chance to obtain, and implement into the flow of your practice, a National Provider Identification number (NPI). The bad news is that the requirement to get an NPI is statutory, meaning it's not going to go away. Second, CMS revamped its Medicare provider enrollment processes in an attempt to reduce enrollment application processing delays. Unfortunately, rather than expedite the enrollment process, CMS' new regulations had the over-all effect of causing even more delays and backlogs in the enrollment process. Providers who do not have an NPI by the required deadline risk potential compliance penalties and payment delays. Therefore, not having an NPI or a Medicare Provider Number can have serious consequences on providers' ability to provide care as well as their bottom line (think cash flow!).
NASA Astrophysics Data System (ADS)
Liao, Qinzhuo; Zhang, Dongxiao; Tchelepi, Hamdi
2017-06-01
In numerical modeling of subsurface flow and transport problems, formation properties may not be deterministically characterized, which leads to uncertainty in simulation results. In this study, we propose a sparse grid collocation method, which adopts nested quadrature rules with delay and transformation to quantify the uncertainty of model solutions. We show that the nested Kronrod-Patterson-Hermite quadrature is more efficient than the unnested Gauss-Hermite quadrature. We compare the convergence rates of various quadrature rules including the domain truncation and domain mapping approaches. To further improve accuracy and efficiency, we present a delayed process in selecting quadrature nodes and a transformed process for approximating unsmooth or discontinuous solutions. The proposed method is tested by an analytical function and in one-dimensional single-phase and two-phase flow problems with different spatial variances and correlation lengths. An additional example is given to demonstrate its applicability to three-dimensional black-oil models. It is found from these examples that the proposed method provides a promising approach for obtaining satisfactory estimation of the solution statistics and is much more efficient than the Monte-Carlo simulations.
Shehab, Sajad; Allida, Sabine M; Davidson, Patricia M; Newton, Phillip J; Robson, Desiree; Jansz, Paul C; Hayward, Christopher S
Right ventricular failure after left ventricular assist device (LVAD) implantation is associated with high mortality. Management remains limited to pharmacologic therapy and temporary mechanical support. Delayed right ventricular assist device (RVAD) support after LVAD implantation is associated with poorer outcomes. With the advent of miniaturized, durable, continuous flow ventricular assist device systems, chronic RVAD and biventricular assist device (BiVAD) support has been used with some success. The purpose of this study was to assess combined BiVAD and LVAD with delayed RVAD support within a four-elemental mock circulatory loop (MCL) simulating the human cardiovascular system. Our hypothesis was that delayed continuous flow RVAD (RVAD) would produce similar hemodynamic and flow parameters to those of initial BiVAD support. Using the MCL, baseline biventricular heart failure with elevated right and left filling pressures with low cardiac output was simulated. The addition of LVAD within a biventricular configuration improved cardiac output somewhat, but was associated with persistent right heart failure with elevated right-sided filling pressures. The addition of an RVAD significantly improved LVAD outputs and returned filling pressures to normal throughout the circulation. In conclusion, RVAD support successfully restored hemodynamics and flow parameters of biventricular failure supported with isolated LVAD with persistent elevated right atrial pressure.
Representing delayed force feedback as a combination of current and delayed states.
Avraham, Guy; Mawase, Firas; Karniel, Amir; Shmuelof, Lior; Donchin, Opher; Mussa-Ivaldi, Ferdinando A; Nisky, Ilana
2017-10-01
To adapt to deterministic force perturbations that depend on the current state of the hand, internal representations are formed to capture the relationships between forces experienced and motion. However, information from multiple modalities travels at different rates, resulting in intermodal delays that require compensation for these internal representations to develop. To understand how these delays are represented by the brain, we presented participants with delayed velocity-dependent force fields, i.e., forces that depend on hand velocity either 70 or 100 ms beforehand. We probed the internal representation of these delayed forces by examining the forces the participants applied to cope with the perturbations. The findings showed that for both delayed forces, the best model of internal representation consisted of a delayed velocity and current position and velocity. We show that participants relied initially on the current state, but with adaptation, the contribution of the delayed representation to adaptation increased. After adaptation, when the participants were asked to make movements with a higher velocity for which they had not previously experienced with the delayed force field, they applied forces that were consistent with current position and velocity as well as delayed velocity representations. This suggests that the sensorimotor system represents delayed force feedback using current and delayed state information and that it uses this representation when generalizing to faster movements. NEW & NOTEWORTHY The brain compensates for forces in the body and the environment to control movements, but it is unclear how it does so given the inherent delays in information transmission and processing. We examined how participants cope with delayed forces that depend on their arm velocity 70 or 100 ms beforehand. After adaptation, participants applied opposing forces that revealed a partially correct representation of the perturbation using the current and the delayed information. Copyright © 2017 the American Physiological Society.
Towards enhancing and delaying disturbances in free shear flows
NASA Technical Reports Server (NTRS)
Criminale, W. O.; Jackson, T. L.; Lasseigne, D. G.
1994-01-01
The family of shear flows comprising the jet, wake, and the mixing layer are subjected to perturbations in an inviscid incompressible fluid. By modeling the basic mean flows as parallel with piecewise linear variations for the velocities, complete and general solutions to the linearized equations of motion can be obtained in closed form as functions of all space variables and time when posed as an initial value problem. The results show that there is a continuous as well as the discrete spectrum that is more familiar in stability theory and therefore there can be both algebraic and exponential growth of disturbances in time. These bases make it feasible to consider control of such flows. To this end, the possibility of enhancing the disturbances in the mixing layer and delaying the onset in the jet and wake is investigated. It is found that growth of perturbations can be delayed to a considerable degree for the jet and the wake but, by comparison, cannot be enhanced in the mixing layer. By using moving coordinates, a method for demonstrating the predominant early and long time behavior of disturbances in these flows is given for continuous velocity profiles. It is shown that the early time transients are always algebraic whereas the asymptotic limit is that of an exponential normal mode. Numerical treatment of the new governing equations confirm the conclusions reached by use of the piecewise linear basic models. Although not pursued here, feedback mechanisms designed for control of the flow could be devised using the results of this work.
Initiation characteristics of wedge-induced oblique detonation waves in turbulence flows
NASA Astrophysics Data System (ADS)
Yu, Moyao; Miao, Shikun
2018-06-01
The initiation features of wedge-induced oblique detonation waves (ODWs) in supersonic turbulence flows are studied with numerical simulations based on the SST k-ω model. The results show that the ignition delays are smaller in turbulence flows which results in a decrease in the initiation lengths of ODWs, and the initiation length decreases with the increase of the turbulence intensity. The effects of turbulence on the initiation limits of ODWs are analyzed with the energetic limit and the kinetic limit. It is shown that the initiation limit is not affected by the energetic limit, but affected by the kinetic limit. Because the ignition delay decreases in a turbulence flow, the kinetic limit is more easily to be fulfilled. Therefore, the initiation limit decreases with the increase of the turbulence intensity, that is to say, ODWs in strongly turbulent flows are more easily to be initiated. Besides, the transition structures of ODWs are investigated and the results show that for the same inflow condition, transition structures of ODWs in strongly turbulent flows are smooth while it is abrupt in an inviscid or slightly turbulent flow, and the reasons are discussed.
Goldberg, Robert J; Osganian, Stavroula; Zapka, Jane; Mitchell, Paul; Bittner, Vera; Daya, Mo; Luepker, Russell
2002-01-01
Patient-associated delay in seeking medical care in persons with acute coronary disease is receiving increasing importance given the time-dependent benefits associated with myocardial reperfusion therapies. We examined the extent of concordance between self-reported information about prehospital delay provided by patients to hospital staff at the time of hospitalization for coronary disease compared with information obtained from a telephone interview approximately 2 months following hospital discharge. The sample included 316 patients with acute myocardial infarction or unstable angina at 43 hospitals who had delay time information available from both data sources. The extent of agreement between the medical record and telephone accounts of delay was 47% in the total study sample, 53% in patients with acute myocardial infarction, and 40% in patients with unstable angina. These results suggest that a telephone interview carried out several months following hospitalization for acute coronary disease may not provide sufficiently reliable information about prehospital delay. Copyright 2002 S. Karger AG, Basel
Delays in the operating room: signs of an imperfect system.
Wong, Janice; Khu, Kathleen Joy; Kaderali, Zul; Bernstein, Mark
2010-06-01
Delays in the operating room have a negative effect on its efficiency and the working environment. In this prospective study, we analyzed data on perioperative system delays. One neurosurgeon prospectively recorded all errors, including perioperative delays, for consecutive patients undergoing elective procedures from May 2000 to February 2009. We analyzed the prevalence, causes and impact of perioperative system delays that occurred in one neurosurgeon's practice. A total of 1531 elective surgical cases were performed during the study period. Delays were the most common type of error (33.6%), and more than half (51.4%) of all cases had at least 1 delay. The most common cause of delay was equipment failure. The first cases of the day and cranial cases had more delays than subsequent cases and spinal cases, respectively. A delay in starting the first case was associated with subsequent delays. Delays frequently occur in the operating room and have a major effect on patient flow and resource utilization. Thorough documentation of perioperative delays provides a basis for the development of solutions for improving operating room efficiency and illustrates the principles underlying the causes of operating room delays across surgical disciplines.
Storm water infiltration in a monitored green roof for hydrologic restoration.
Palla, A; Sansalone, J J; Gnecco, I; Lanza, L G
2011-01-01
The objectives of this study are to provide detailed information about green roof performance in the Mediterranean climate (retained volume, peak flow reduction, runoff delay) and to identify a suitable modelling approach for describing the associated hydrologic response. Data collected during a 13-month monitoring campaign and a seasonal monitoring campaign (September-December 2008) at the green roof experimental site of the University of Genova (Italy) are presented together with results obtained in quantifying the green roof hydrologic performance. In order to examine the green roof hydrologic response, the SWMS_2D model, that solves the Richards' equation for two-dimensional saturated-unsaturated water flow, has been implemented. Modelling results confirm the suitability of the SWMS_2D model to properly describe the hydrologic response of the green roofs. The model adequately reproduces the hydrographs; furthermore, the predicted soil water content profile generally matches the observed values along a vertical profile where measurements are available.
Ignition of a Droplet of Composite Liquid Fuel in a Vortex Combustion Chamber
NASA Astrophysics Data System (ADS)
Valiullin, T. R.; Vershinina, K. Yu; Glushkov, D. O.; Strizhak, P. A.
2017-11-01
Experimental study results of a droplet ignition and combustion were obtained for coal-water slurry containing petrochemicals (CWSP) prepared from coal processing waste, low-grade coal and waste petroleum products. A comparative analysis of process characteristics were carried out in different conditions of fuel droplet interaction with heated air flow: droplet soars in air flow in a vortex combustion chamber, droplet soars in ascending air flow in a cone-shaped combustion chamber, and droplet is placed in a thermocouple junction and motionless in air flow. The size (initial radii) of CWSP droplet was varied in the range of 0.5-1.5 mm. The ignition delay time of fuel was determined by the intensity of the visible glow in the vicinity of the droplet during CWSP combustion. It was established (under similar conditions) that ignition delay time of CWSP droplets in the combustion chamber is lower in 2-3.5 times than similar characteristic in conditions of motionless droplet placed in a thermocouple junction. The average value of ignition delay time of CWSP droplet is 3-12 s in conditions of oxidizer temperature is 600-850 K. Obtained experimental results were explained by the influence of heat and mass transfer processes in the droplet vicinity on ignition characteristics in different conditions of CWSP droplet interaction with heated air flow. Experimental results are of interest for the development of combustion technology of promising fuel for thermal power engineering.
A hierarchical framework for air traffic control
NASA Astrophysics Data System (ADS)
Roy, Kaushik
Air travel in recent years has been plagued by record delays, with over $8 billion in direct operating costs being attributed to 100 million flight delay minutes in 2007. Major contributing factors to delay include weather, congestion, and aging infrastructure; the Next Generation Air Transportation System (NextGen) aims to alleviate these delays through an upgrade of the air traffic control system. Changes to large-scale networked systems such as air traffic control are complicated by the need for coordinated solutions over disparate temporal and spatial scales. Individual air traffic controllers must ensure aircraft maintain safe separation locally with a time horizon of seconds to minutes, whereas regional plans are formulated to efficiently route flows of aircraft around weather and congestion on the order of every hour. More efficient control algorithms that provide a coordinated solution are required to safely handle a larger number of aircraft in a fixed amount of airspace. Improved estimation algorithms are also needed to provide accurate aircraft state information and situational awareness for human controllers. A hierarchical framework is developed to simultaneously solve the sometimes conflicting goals of regional efficiency and local safety. Careful attention is given in defining the interactions between the layers of this hierarchy. In this way, solutions to individual air traffic problems can be targeted and implemented as needed. First, the regional traffic flow management problem is posed as an optimization problem and shown to be NP-Hard. Approximation methods based on aggregate flow models are developed to enable real-time implementation of algorithms that reduce the impact of congestion and adverse weather. Second, the local trajectory design problem is solved using a novel slot-based sector model. This model is used to analyze sector capacity under varying traffic patterns, providing a more comprehensive understanding of how increased automation in NextGen will affect the overall performance of air traffic control. The dissertation also provides solutions to several key estimation problems that support corresponding control tasks. Throughout the development of these estimation algorithms, aircraft motion is modeled using hybrid systems, which encapsulate both the discrete flight mode of an aircraft and the evolution of continuous states such as position and velocity. The target-tracking problem is posed as one of hybrid state estimation, and two new algorithms are developed to exploit structure specific to aircraft motion, especially near airports. First, discrete mode evolution is modeled using state-dependent transitions, in which the likelihood of changing flight modes is dependent on aircraft state. Second, an estimator is designed for systems with limited mode changes, including arrival aircraft. Improved target tracking facilitates increased safety in collision avoidance and trajectory design problems. A multiple-target tracking and identity management algorithm is developed to improve situational awareness for controllers about multiple maneuvering targets in a congested region. Finally, tracking algorithms are extended to predict aircraft landing times; estimated time of arrival prediction is one example of important decision support information for air traffic control.
The Application of Simulation Methods to Intra-Airport Landside Problems.
DOT National Transportation Integrated Search
1975-09-01
This report describes methods of analyzing the flow of people through the airport landside, which is defined as extending between the airport boundary and the arrival/departure gates. Passenger delay for specified flow and holding values is taken as ...
NASA Astrophysics Data System (ADS)
Larsson, David; Spühler, Jeannette H.; Günyeli, Elif; Weinkauf, Tino; Hoffman, Johan; Colarieti-Tosti, Massimiliano; Winter, Reidar; Larsson, Matilda
2017-03-01
Echocardiography is the most commonly used image modality in cardiology, assessing several aspects of cardiac viability. The importance of cardiac hemodynamics and 4D blood flow motion has recently been highlighted, however such assessment is still difficult using routine echo-imaging. Instead, combining imaging with computational fluid dynamics (CFD)-simulations has proven valuable, but only a few models have been applied clinically. In the following, patient-specific CFD-simulations from transthoracic dobutamin stress echocardiography have been used to analyze the left ventricular 4D blood flow in three subjects: two with normal and one with reduced left ventricular function. At each stress level, 4D-images were acquired using a GE Vivid E9 (4VD, 1.7MHz/3.3MHz) and velocity fields simulated using a presented pathway involving endocardial segmentation, valve position identification, and solution of the incompressible Navier-Stokes equation. Flow components defined as direct flow, delayed ejection flow, retained inflow, and residual volume were calculated by particle tracing using 4th-order Runge-Kutta integration. Additionally, systolic and diastolic average velocity fields were generated. Results indicated no major changes in average velocity fields for any of the subjects. For the two subjects with normal left ventricular function, increased direct flow, decreased delayed ejection flow, constant retained inflow, and a considerable drop in residual volume was seen at increasing stress. Contrary, for the subject with reduced left ventricular function, the delayed ejection flow increased whilst the retained inflow decreased at increasing stress levels. This feasibility study represents one of the first clinical applications of an echo-based patient-specific CFD-model at elevated stress levels, and highlights the potential of using echo-based models to capture highly transient flow events, as well as the ability of using simulation tools to study clinically complex phenomena. With larger patient studies planned for the future, and with the possibility of adding more anatomical features into the model framework, the current work demonstrates the potential of patient-specific CFD-models as a tool for quantifying 4D blood flow in the heart.
Delay functions in trip assignment for transport planning process
NASA Astrophysics Data System (ADS)
Leong, Lee Vien
2017-10-01
In transportation planning process, volume-delay and turn-penalty functions are the functions needed in traffic assignment to determine travel time on road network links. Volume-delay function is the delay function describing speed-flow relationship while turn-penalty function is the delay function associated to making a turn at intersection. The volume-delay function used in this study is the revised Bureau of Public Roads (BPR) function with the constant parameters, α and β values of 0.8298 and 3.361 while the turn-penalty functions for signalized intersection were developed based on uniform, random and overflow delay models. Parameters such as green time, cycle time and saturation flow were used in the development of turn-penalty functions. In order to assess the accuracy of the delay functions, road network in areas of Nibong Tebal, Penang and Parit Buntar, Perak was developed and modelled using transportation demand forecasting software. In order to calibrate the models, phase times and traffic volumes at fourteen signalised intersections within the study area were collected during morning and evening peak hours. The prediction of assigned volumes using the revised BPR function and the developed turn-penalty functions show close agreement to actual recorded traffic volume with the lowest percentage of accuracy, 80.08% and the highest, 93.04% for the morning peak model. As for the evening peak model, they were 75.59% and 95.33% respectively for lowest and highest percentage of accuracy. As for the yield left-turn lanes, the lowest percentage of accuracy obtained for the morning and evening peak models were 60.94% and 69.74% respectively while the highest percentage of accuracy obtained for both models were 100%. Therefore, can be concluded that the development and utilisation of delay functions based on local road conditions are important as localised delay functions can produce better estimate of link travel times and hence better planning for future scenarios.
Air Traffic Control Response to Delays: A System Study of Newark International Airport
NASA Technical Reports Server (NTRS)
Evans, Antony D.; Clarke, John-Paul
2002-01-01
Airport delays are a significant problem in the United States air transportation system. Between 1999 and 2000 the number of flights delayed increased by 20 percent despite only a 0.4% increase in total operations. Newark International Airport (EWR), one of New York City's primary airports, is one of the airports in the United States most impacted by delays. Newark had the highest percentage of operations delayed in 1999, and was second only to LaGuardia Airport in 2000. Nearly 85% of delays at Newark are caused by adverse weather impacting an airport that may be characterized as having limited capacity and a very full schedule. Although Newark is heavily impacted by weather, delays have not increased significantly since 1998. This indicates that the airlines, air traffic control (ATC), and the Port Authority of New York and New Jersey have successfully adapted. On June 29, 2000, a research team from MIT visited Newark airport to assess the effectiveness of any adaptations made, and to collect data on airline and ATC departure operations, and of the national and local weather affecting the airport. Airline and ATC personnel were also interviewed. Results of this study indicate that airspace capacity limitations downstream of the airport are a primary flow constraint at the airport, and that these constraints are the source of most surface delays. A number of tactical ATC responses to delays were examined, including the application of restrictions, re-routing with the help of the National Playbook, and the use of decision-aiding tools such as the Dynamic Spacing Program (DSP) and the Integrated Terminal Weather System (ITWS). Improved interfacility communications and further utilization of runway 11-29 were identified as other tactical responses to delays, whilst the formation of the Air Traffic Control System Command Center and the New York Airspace redesign were identified as thekey strategic ATC responses to delays. Particularly the New York airspace redesign has great potential to reduce delays at the airport. Because delays at Newark are caused by downstream flow constraints, the responses at the airport can be applied to other airports as delays from downstream constraints increase. Such an increase in delays system wide from downstream constraints is inevitable as the system becomes more congested.
Kyriacou, Andreas; Li Kam Wa, Matthew E; Pabari, Punam A; Unsworth, Beth; Baruah, Resham; Willson, Keith; Peters, Nicholas S; Kanagaratnam, Prapa; Hughes, Alun D; Mayet, Jamil; Whinnett, Zachary I; Francis, Darrel P
2013-08-10
In atrial fibrillation (AF), VV optimization of biventricular pacemakers can be examined in isolation. We used this approach to evaluate internal validity of three VV optimization methods by three criteria. Twenty patients (16 men, age 75 ± 7) in AF were optimized, at two paced heart rates, by LVOT VTI (flow), non-invasive arterial pressure, and ECG (minimizing QRS duration). Each optimization method was evaluated for: singularity (unique peak of function), reproducibility of optimum, and biological plausibility of the distribution of optima. The reproducibility (standard deviation of the difference, SDD) of the optimal VV delay was 10 ms for pressure, versus 8 ms (p=ns) for QRS and 34 ms (p<0.01) for flow. Singularity of optimum was 85% for pressure, 63% for ECG and 45% for flow (Chi(2)=10.9, p<0.005). The distribution of pressure optima was biologically plausible, with 80% LV pre-excited (p=0.007). The distributions of ECG (55% LV pre-excitation) and flow (45% LV pre-excitation) optima were no different to random (p=ns). The pressure-derived optimal VV delay is unaffected by the paced rate: SDD between slow and fast heart rate is 9 ms, no different from the reproducibility SDD at both heart rates. Using non-invasive arterial pressure, VV delay optimization by parabolic fitting is achievable with good precision, satisfying all 3 criteria of internal validity. VV optimum is unaffected by heart rate. Neither QRS minimization nor LVOT VTI satisfy all validity criteria, and therefore seem weaker candidate modalities for VV optimization. AF, unlinking interventricular from atrioventricular delay, uniquely exposes resynchronization concepts to experimental scrutiny. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Palopo, Kee; Lee, Hak-Tae; Chatterji, Gano
2011-01-01
The concept of re-partitioning the airspace into a new set of sectors for allocating capacity rather than delaying flights to comply with the capacity constraints of a static set of sectors is being explored. The reduction in delay, a benefit, achieved by this concept needs to be greater than the cost of controllers and equipment needed for the additional sectors. Therefore, tradeoff studies are needed for benefits assessment of this concept.
Corticofugal modulation of time-domain processing of biosonar information in bats.
Yan, J; Suga, N
1996-08-23
The Jamaican mustached bat has delay-tuned neurons in the inferior colliculus, medial geniculate body, and auditory cortex. The responses of these neurons to an echo are facilitated by a biosonar pulse emitted by the bat when the echo returns with a particular delay from a target located at a particular distance. Electrical stimulation of cortical delay-tuned neurons increases the delay-tuned responses of collicular neurons tuned to the same echo delay as the cortical neurons and decreases those of collicular neurons tuned to different echo delays. Cortical neurons improve information processing in the inferior colliculus by way of the corticocollicular projection.
NASA Astrophysics Data System (ADS)
Albers, D. J.; Hripcsak, George
2012-03-01
This paper addresses how to calculate and interpret the time-delayed mutual information (TDMI) for a complex, diversely and sparsely measured, possibly non-stationary population of time-series of unknown composition and origin. The primary vehicle used for this analysis is a comparison between the time-delayed mutual information averaged over the population and the time-delayed mutual information of an aggregated population (here, aggregation implies the population is conjoined before any statistical estimates are implemented). Through the use of information theoretic tools, a sequence of practically implementable calculations are detailed that allow for the average and aggregate time-delayed mutual information to be interpreted. Moreover, these calculations can also be used to understand the degree of homo or heterogeneity present in the population. To demonstrate that the proposed methods can be used in nearly any situation, the methods are applied and demonstrated on the time series of glucose measurements from two different subpopulations of individuals from the Columbia University Medical Center electronic health record repository, revealing a picture of the composition of the population as well as physiological features.
High-Speed Boundary-Layer Transition: Study of Stationary Crossflow Using Spectral Analysis
NASA Astrophysics Data System (ADS)
McGuire, Patrick Joseph
Crossflow instability is primary cause of boundary-layer transition on swept wings used in high-speed applications. Delaying the downstream location of transition would drastically reduce the viscous drag over the wing surface, and subsequently improves the overall aircraft efficiency. By studying the development of instability growth rates and how they interact with the surroundings, researchers can control the crossflow transition location. Experiments on the 35° swept-wing model were performed in the NASA Langley 20-Inch Supersonic Wind Tunnel with Mach 2.0 flow conditions and 20 μm tall discrete roughness elements (DRE) with varying spacing placed along the leading edge. Fluorene was used as the sublimating chemical in the surface flow visualization technique to observe the transition front and stationary crossflow vortex patterns in the laminar flow region. Spatial spectral decomposition was completed on high-resolution images of sublimating chemical runs using a newly developed image processing technique. Streamwise evolution of the vortex track wavelengths within the laminar boundary-layer region was observed. The spectral information was averaged to produce dominant modes present throughout the laminar region.
NASA Astrophysics Data System (ADS)
Magri, Fabien; Möller, Sebastian; Inbar, Nimrod; Siebert, Christian; Möller, Peter; Rosenthal, Eliyahu; Kühn, Michael
2015-04-01
It has been shown that thermal convection in faults can also occur for subcritical Rayleigh conditions. This type of convection develops after a certain period and is referred to as "delayed convection" (Murphy, 1979). The delay in the onset is due to the heat exchange between the damage zone and the surrounding units that adds a thermal buffer along the fault walls. Few numerical studies investigated delayed thermal convection in fractured zones, despite it has the potential to transport energy and minerals over large spatial scales (Tournier, 2000). Here 3D numerical simulations of thermally driven flow in faults are presented in order to investigate the impact of delayed convection on deep fluid processes at basin-scale. The Tiberias Basin (TB), in the Jordan Rift Valley, serves as study area. The TB is characterized by upsurge of deep-seated hot waters along the faulted shores of Lake Tiberias and high temperature gradient that can locally reach 46 °C/km, as in the Lower Yarmouk Gorge (LYG). 3D simulations show that buoyant flow ascend in permeable faults which hydraulic conductivity is estimated to vary between 30 m/yr and 140 m/yr. Delayed convection starts respectively at 46 and 200 kyrs and generate temperature anomalies in agreement with observations. It turned out that delayed convective cells are transient. Cellular patterns that initially develop in permeable units surrounding the faults can trigger convection also within the fault plane. The combination of these two convective modes lead to helicoidal-like flow patterns. This complex flow can explain the location of springs along different fault traces of the TB. Besides being of importance for understanding the hydrogeological processes of the TB (Magri et al., 2015), the presented simulations provide a scenario illustrating fault-induced 3D cells that could develop in any geothermal system. References Magri, F., Inbar, N., Siebert, C., Rosenthal, E., Guttman, J., Möller, P., 2015. Transient simulations of large-scale hydrogeological processes causing temperature and salinity anomalies in the Tiberias Basin. Journal of Hydrology, 520(0), 342-355. Murphy, H.D., 1979. Convective instabilities in vertical fractures and faults. Journal of Geophysical Research: Solid Earth, 84(B11), 6121-6130. Tournier, C., Genthon, P., Rabinowicz, M., 2000. The onset of natural convection in vertical fault planes: consequences for the thermal regime in crystalline basementsand for heat recovery experiments. Geophysical Journal International, 140(3), 500-508.
NASA Astrophysics Data System (ADS)
Sun, Dihua; Chen, Dong; Zhao, Min; Liu, Weining; Zheng, Linjiang
2018-07-01
In this paper, the general nonlinear car-following model with multi-time delays is investigated in order to describe the reactions of vehicle to driving behavior. Platoon stability and string stability criteria are obtained for the general nonlinear car-following model. Burgers equation and Korteweg de Vries (KdV) equation and their solitary wave solutions are derived adopting the reductive perturbation method. We investigate the properties of typical optimal velocity model using both analytic and numerical methods, which estimates the impact of delays about the evolution of traffic congestion. The numerical results show that time delays in sensing relative movement is more sensitive to the stability of traffic flow than time delays in sensing host motion.
Phase Resetting Reveals Network Dynamics Underlying a Bacterial Cell Cycle
Lin, Yihan; Li, Ying; Crosson, Sean; Dinner, Aaron R.; Scherer, Norbert F.
2012-01-01
Genomic and proteomic methods yield networks of biological regulatory interactions but do not provide direct insight into how those interactions are organized into functional modules, or how information flows from one module to another. In this work we introduce an approach that provides this complementary information and apply it to the bacterium Caulobacter crescentus, a paradigm for cell-cycle control. Operationally, we use an inducible promoter to express the essential transcriptional regulatory gene ctrA in a periodic, pulsed fashion. This chemical perturbation causes the population of cells to divide synchronously, and we use the resulting advance or delay of the division times of single cells to construct a phase resetting curve. We find that delay is strongly favored over advance. This finding is surprising since it does not follow from the temporal expression profile of CtrA and, in turn, simulations of existing network models. We propose a phenomenological model that suggests that the cell-cycle network comprises two distinct functional modules that oscillate autonomously and couple in a highly asymmetric fashion. These features collectively provide a new mechanism for tight temporal control of the cell cycle in C. crescentus. We discuss how the procedure can serve as the basis for a general approach for probing network dynamics, which we term chemical perturbation spectroscopy (CPS). PMID:23209388
Phase resetting reveals network dynamics underlying a bacterial cell cycle.
Lin, Yihan; Li, Ying; Crosson, Sean; Dinner, Aaron R; Scherer, Norbert F
2012-01-01
Genomic and proteomic methods yield networks of biological regulatory interactions but do not provide direct insight into how those interactions are organized into functional modules, or how information flows from one module to another. In this work we introduce an approach that provides this complementary information and apply it to the bacterium Caulobacter crescentus, a paradigm for cell-cycle control. Operationally, we use an inducible promoter to express the essential transcriptional regulatory gene ctrA in a periodic, pulsed fashion. This chemical perturbation causes the population of cells to divide synchronously, and we use the resulting advance or delay of the division times of single cells to construct a phase resetting curve. We find that delay is strongly favored over advance. This finding is surprising since it does not follow from the temporal expression profile of CtrA and, in turn, simulations of existing network models. We propose a phenomenological model that suggests that the cell-cycle network comprises two distinct functional modules that oscillate autonomously and couple in a highly asymmetric fashion. These features collectively provide a new mechanism for tight temporal control of the cell cycle in C. crescentus. We discuss how the procedure can serve as the basis for a general approach for probing network dynamics, which we term chemical perturbation spectroscopy (CPS).
Aanes, Magne; Kippersund, Remi Andre; Lohne, Kjetil Daae; Frøysa, Kjell-Eivind; Lunde, Per
2017-08-01
Transit-time flow meters based on guided ultrasonic wave propagation in the pipe spool have several advantages compared to traditional inline ultrasonic flow metering. The extended interrogation field, obtained by continuous leakage from guided waves traveling in the pipe wall, increases robustness toward entrained particles or gas in the flow. In reflective-path guided-wave ultrasonic flow meters (GW-UFMs), the flow equations are derived from signals propagating solely in the pipe wall and from signals passing twice through the fluid. In addition to the time-of-flight (TOF) through the fluid, the fluid path experiences an additional time delay upon reflection at the opposite pipe wall due to specular and non-specular reflections. The present work investigates the influence of these reflections on the TOF in a reflective-path GW-UFM as a function of transducer separation distance at zero flow conditions. Two models are used to describe the signal propagation through the system: (i) a transient full-wave finite element model, and (ii) a combined plane-wave and ray-tracing model. The study shows that a range-dependent time delay is associated with the reflection of the fluid path, introducing transmitter-receiver distance dependence. Based on these results, the applicability of the flow equations derived using model (ii) is discussed.
Magnetic transit-time flowmeter
Forster, George A.
1976-07-06
The flow rate of a conducting fluid in a stream is determined by disposing two permanent-magnet flowmeters in the stream, one downstream of the other. Flow of the conducting fluid causes the generation of both d-c and a-c electrical signals, the a-c comprising flow noise. Measurement of the time delay between similarities in the a-c signals by cross-correlation methods provides a measure of the rate of flow of the fluid.
Modified Beer-Lambert law for blood flow.
Baker, Wesley B; Parthasarathy, Ashwin B; Busch, David R; Mesquita, Rickson C; Greenberg, Joel H; Yodh, A G
2014-11-01
We develop and validate a Modified Beer-Lambert law for blood flow based on diffuse correlation spectroscopy (DCS) measurements. The new formulation enables blood flow monitoring from temporal intensity autocorrelation function data taken at single or multiple delay-times. Consequentially, the speed of the optical blood flow measurement can be substantially increased. The scheme facilitates blood flow monitoring of highly scattering tissues in geometries wherein light propagation is diffusive or non-diffusive, and it is particularly well-suited for utilization with pressure measurement paradigms that employ differential flow signals to reduce contributions of superficial tissues.
Perfecting patient flow in the surgical setting.
Amato-Vealey, Elaine J; Fountain, Patricia; Coppola, Deborah
2012-07-01
Reduced surgical efficiency and productivity, delayed patient discharges, and prolonged use of hospital resources are the results of an OR that is unable to move patients to the postanesthesia care unit or other patient units. A primary reason for perioperative patient flow delay is the lack of hospital beds to accommodate surgical patients, which consequently causes backups of patients currently in the surgical suite. In one facility, implementing Six Sigma methodology helped to improve OR patient flow by identifying ways that frontline staff members could work more intelligently and more efficiently, and with less stress to streamline workflow and eliminate redundancy and waste in ways that did not necessitate reducing the number of employees. The results were improved employee morale, job satisfaction and safety, and an enhanced patient experience. Copyright © 2012 AORN, Inc. Published by Elsevier Inc. All rights reserved.
Drag reducing properties of microalgal exopolymers.
Ramus, J; Kenney, B E; Shaughnessy, E J
1989-01-25
Dilute aqueous solutions of polymers released by marine phytoplankton (microalgae) were shown to effectively reduce drag in capillary pipe flow. Tests were performed in a capillary turbulent flow viscometer which extruded small samples under high pressures. In all, 22 species were screened, and the products of one chlorophyte and four rhodophyte species proved especially effective. The viscoelastic polymers produced by these species delayed the transition from laminar to turbulent flow to significantly higher Re. In general, polymeric regime segments come off the maximum drag reduction asymptote at characteristic retro-onset points, and come to lie approximately parallel to, but displaced upwards from the Prandtl-von Karman line. The delay to transition was shown to be dependent on additive polymer concentration, capillary diameter, and temperature. Ionic concentration, ionic composition, or pH had little effect on drag reducing properties.
DOT National Transportation Integrated Search
2008-12-01
Traffic congestion in the Washington, DC area, especially congestion on our freeways, costs our residents every day : in terms of wasted time, fuel, and increased air pollution. Highway studies have determined that once traffic volumes : exceed the c...
DOT National Transportation Integrated Search
1976-08-01
This report contains a functional design for the simulation of a future automation concept in support of the ATC Systems Command Center. The simulation subsystem performs airport airborne arrival delay predictions and computes flow control tables for...
Studies of lava flows in the Tharsis region of Mars using SHARAD
NASA Astrophysics Data System (ADS)
Simon, Molly N.; Carter, Lynn M.; Campbell, Bruce A.; Phillips, Roger J.; Mattei, Stefania
2014-11-01
The Tharsis region of Mars is covered in volcanic flows that can stretch for tens to hundreds of kilometers. Radar measurements of the dielectric properties of these flows can provide information regarding their composition and density. SHARAD (shallow radar), a sounding radar on the Mars Reconnaissance Orbiter, detects basal interfaces beneath flows in some areas of Tharsis northwest and west of Ascraeus Mons, with additional detections south of Pavonis Mons. Comparisons with 12.6 cm ground-based radar images suggest that SHARAD detects basal interfaces primarily in dust or regolith-mantled regions. We use SHARAD data to estimate the real relative permittivity of the flows by comparing the measured time delay of returns from the subsurface with altimetry measurements of the flow heights relative to the surrounding plains. In cases where the subsurface interface is visible at different depths, spanning tens of meters, it is also possible to measure the loss tangent (tan δ) of the material. The permittivity values calculated range from 7.6 to 11.6, with an average of 9.6, while the mean loss tangent values range from 7.8 × 10-3 to 2.9 × 10-2 with an average of 1.0 × 10-2. These permittivity and loss tangent estimates for the flows northwest of Ascraeus Mons, west of Ascraeus Mons, and south of Pavonis Mons are consistent with the lab-measured values for dense, low-titanium basalt.
Distributed and Centralized Conflict Management Under Traffic Flow Management Constraints
NASA Technical Reports Server (NTRS)
Feron, Eric; Bilimoria, Karl (Technical Monitor)
2001-01-01
The past year's activity has concentrated on the following two activities: (1) Refining and completing our study on the stability of interacting flows of aircraft when they have to resolve conflicts in a decentralized and sequential manner. More specifically, it was felt that some of the modeling assumptions made during previous research (such offset maneuvering models) could be improved to include more realistic models such as heading changes when analyzing interacting flow stability problems. We extended our analysis to achieve this goal. The results of this study have been submitted for presentation at the 2002 American Control Conference; (2) Examining the issues associated with delay propagation across multiple enroute sectors. This study was initiated at NASA in cooperation with Dr. Karl Bilimoria. Considering a set of adjacent sectors, this ongoing study concentrates on the effect of various traffic flow management strategies on the propagation of delays and congestion across sectors. The problem description and findings so far are reported in the attached working paper "Enroute sector buffering capacity."
NASA Astrophysics Data System (ADS)
Cai, Zhonglun; Chen, Peng; Angland, David; Zhang, Xin
2014-03-01
A novel iterative learning control (ILC) algorithm was developed and applied to an active flow control problem. The technique uses pulsed air jets to delay flow separation on a two-element high-lift wing. The ILC algorithm uses position-based pressure measurements to update the actuation. The method was experimentally tested on a wing model in a 0.9 m × 0.6 m low-speed wind tunnel at the University of Southampton. Compressed air and fast switching solenoid valves were used as actuators to excite the flow, and the pressure distribution around the chord of the wing was measured as a feedback control signal for the ILC controller. Experimental results showed that the actuation was able to delay the separation and increase the lift by approximately 10%-15%. By using the ILC algorithm, the controller was able to find the optimum control input and maintain the improvement despite sudden changes of the separation position.
Active Control of Separation from the Slat Shoulder of a Supercritical Airfoil
NASA Technical Reports Server (NTRS)
Pack, LaTunia G.; Schaeffler, Norman W.; Yao, Chung-Sheng; Seifert, Avi
2002-01-01
Active flow control in the form of zero-mass-flux excitation was applied at the slat shoulder of a simplified high-lift airfoil to delay flow separation. The NASA Energy Efficient Transport (EET) supercritical airfoil was equipped with a 15% chord simply hinged leading edge slat and a 25% chord simply hinged trailing edge flap. The cruise configuration data was successfully reproduced, repeating previous experiments. The effects of flap and slat deflection angles on the performance of the airfoil integral parameters were quantified. Detailed flow features were measured as well, in an attempt to identify optimal actuator placement. The measurements included: steady and unsteady model and tunnel wall pressures, wake surveys, arrays of surface hot-films, flow visualization and Particle Image Velocimetry (PIV). High frequency periodic excitation was applied to delay the occurrence of slat stall and improve the maximum lift by 10 to 15%. Low frequency amplitude modulation was used to reduce the oscillatory momentum coefficient by roughly 50% with similar aerodynamic performance.
Delays in using chromatic and luminance information to correct rapid reaches.
Kane, Adam; Wade, Alex; Ma-Wyatt, Anna
2011-09-07
People can use feedback to make online corrections to movements but only if there is sufficient time to integrate the new information and make the correction. A key variable in this process is therefore the speed at which the new information about the target location is coded. Conduction velocities for chromatic signals are lower than for achromatic signals so it may take longer to correct reaches to chromatic stimuli. In addition to this delay, the sensorimotor system may prefer achromatic information over the chromatic information as delayed information may be less valuable when movements are made under time pressure. A down-weighting of chromatic information may result in additional latencies for chromatically directed reaches. In our study, participants made online corrections to reaches to achromatic, (L-M)-cone, and S-cone stimuli. Our chromatic stimuli were carefully adjusted to minimize stimulation of achromatic pathways, and we equated stimuli both in terms of detection thresholds and also by their estimated neural responses. Similar stimuli were used throughout the subjective adjustments and final reaching experiment. Using this paradigm, we found that responses to achromatic stimuli were only slightly faster than responses to (L-M)-cone and S-cone stimuli. We conclude that the sensorimotor system treats chromatic and achromatic information similarly and that the delayed chromatic responses primarily reflect early conduction delays.
Apparatus for and method of monitoring for breached fuel elements
Gross, Kenny C.; Strain, Robert V.
1983-01-01
This invention teaches improved apparatus for the method of detecting a breach in cladded fuel used in a nuclear reactor. The detector apparatus uses a separate bypass loop for conveying part of the reactor coolant away from the core, and at least three separate delayed-neutron detectors mounted proximate this detector loop. The detectors are spaced apart so that the coolant flow time from the core to each detector is different, and these differences are known. The delayed-neutron activity at the detectors is a function of the dealy time after the reaction in the fuel until the coolant carrying the delayed-neutron emitter passes the respective detector. This time delay is broken down into separate components including an isotopic holdup time required for the emitter to move through the fuel from the reaction to the coolant at the breach, and two transit times required for the emitter now in the coolant to flow from the breach to the detector loop and then via the loop to the detector. At least two of these time components are determined during calibrated operation of the reactor. Thereafter during normal reactor operation, repeated comparisons are made by the method of regression approximation of the third time component for the best-fit line correlating measured delayed-neutron activity against activity that is approximated according to specific equations. The equations use these time-delay components and known parameter values of the fuel and of the part and emitting daughter isotopes.
NASA Astrophysics Data System (ADS)
Hendabadi, Sahar; Martinez-Legazpi, Pablo; Benito, Yolanda; Bermejo, Javier; Del Alamo, Juan Carlos; Shadden, Shawn
2013-11-01
Cardiac resynchronization therapy (CRT) is used to help restore coordinated pumping of the ventricles by overcoming delays in electrical conduction due to cardiac disease. This is accomplished by a specialized cardiac pacemaker that is able to adjust the atrioventricular (AV) delay.A major clinical challenge is to adjust the pacing strategy to best coordinate the blood flow mechanics of ventricular filling and ejection. To this end, we have studied the difference in the vortex formation and its evolution inside the left ventricle (LV) for 4 different AV delays in a cohort of patients with implanted pacemakers. A reconstruction algorithm was used to obtain 2D velocity over the apical long-axis view of the LV from color Doppler and B-mode ultrasound data. To study blood transport, we have identified Lagrangian coherent structures to determine moving boundaries of the blood volumes injected to the LV in diastole and ejected to the aorta in systole. In all cases, we have analyzed the differences in filling and ejection patterns and the blood transport during the E-wave and A-wave formation.Finally we have assessed the influence of the AV delay on 2 indices of stasis, direct flow and residence time.The findings shed insight to the optimization of AV delays in patients undergoing CRT. NIH award 5R21HL108268 and grants PIS09/02603 and RD06/0010 from the Plan Nacional de Investigacion Cientifica, Spain.
Streamlining Transportation Corridor Planning Processess: Freight and Traffic Information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franzese, Oscar
2010-08-01
The traffic investigation is one of the most important parts of an Environmental Impact Statement of projects involving the construction of new roadway facilities and/or the improvement of existing ones. The focus of the traffic analysis is on the determination of anticipated traffic flow characteristics of the proposed project, by the application of analytical methods that can be grouped under the umbrella of capacity analysis methodologies. In general, the main traffic parameter used in EISs to describe the quality of traffic flow is the Level of Service (LOS). The current state of the practice in terms of the traffic investigationsmore » for EISs has two main shortcomings. The first one is related to the information that is necessary to conduct the traffic analysis, and specifically to the lack of integration among the different transportation models and the sources of information that, in general, reside in GIS databases. A discussion of the benefits of integrating CRS&SI technologies and the transportation models used in the EIS traffic investigation is included. The second shortcoming is in the presentation of the results, both in terms of the appearance and formatting, as well as content. The presentation of traffic results (current and proposed) is discussed. This chapter also addresses the need of additional data, in terms of content and coverage. Regarding the former, other traffic parameters (e.g., delays) that are more meaningful to non-transportation experts than LOS, as well as additional information (e.g., freight flows) that can impact traffic conditions and safety are discussed. Spatial information technologies can decrease the negative effects of, and even eliminate, these shortcomings by making the relevant information that is input to the models more complete and readily available, and by providing the means to communicate the results in a more clear and efficient manner. The benefits that the application and use of CRS&SI technologies can provide to improve and expedite the traffic investigation part of the EIS process are presented.« less
Yazici, A Ruya; Tuncer, Duygu; Antonson, Sibel; Onen, Alev; Kilinc, Evren
2010-01-01
The aim of this study was to investigate the effect of delayed finishing/polishing on the surface roughness, hardness and gloss of tooth-coloured restorative materials. Four different tooth-coloured restoratives: a flowable resin composite- Tetric Flow, a hybrid resin composite- Venus, a nanohybrid resin composite- Grandio, and a polyacid modified resin composite- Dyract Extra were used. 30 specimens were made for each material and randomly assigned into three groups. The first group was finished/polished immediately and the second group was finished/polished after 24 hours. The remaining 10 specimens served as control. The surface roughness of each sample was recorded using a laser profilometer. Gloss measurements were performed using a small-area glossmeter. Vickers microhardness measurements were performed from three locations on each specimen surface under 100g load and 10s dwell time. Data for surface roughness and hardness were analyzed by Kruskal Wallis test and data for gloss were subjected to one-way ANOVA and Tukey test (P <.05). The smoothest surfaces were obtained under Mylar strip for all materials. While there were no significant differences in surface roughness of immediate and delayed finished/polished Dyract Extra samples, immediately finished/polished Venus and Grandio samples showed significantly higher roughness than the delayed polished samples (P <.05). In Tetric Flow samples, immediately finishing/polishing provided smoother surface than delayed finishing/polishing (P <.05). The highest gloss values were recorded under Mylar strip for all materials. While delayed finishing/polishing resulted in a significantly higher gloss compared to immediate finishing/polishing in Venus samples (P <.05), no differences were observed between delayed or immediate finishing/polishing for the other materials (P>.05). The lowest hardness values were found under Mylar strip. Delayed finishing/polishing significantly increased the hardness of all materials. The effect of delayed finishing/polishing on surface roughness, gloss and hardness appears to be material dependent.
ERIC Educational Resources Information Center
Appelman, Michelle; Vail, Cynthia O.; Lieberman-Betz, Rebecca G.
2014-01-01
The authors of this study evaluated the acquisition of instructive feedback information presented to four kindergarten children with mild delays taught in dyads using a constant time delay (CTD) procedure. They also assessed the learning of observational (dyadic partner) information within this instructional arrangement. A multiple probe design…
Skornitzke, Stephan; Fritz, Franziska; Mayer, Philipp; Koell, Marco; Hansen, Jens; Pahn, Gregor; Hackert, Thilo; Kauczor, Hans-Ulrich; Stiller, Wolfram
2018-05-01
Quantitative evaluation of different bolus tracking trigger delays for acquisition of dual energy (DE) CT iodine maps as an alternative to CT perfusion. Prior to this retrospective analysis of prospectively acquired data, DECT perfusion sequences were dynamically acquired in 22 patients with pancreatic carcinoma using dual source CT at 80/140 kV p with tin filtration. After deformable motion-correction, perfusion maps of blood flow (BF) were calculated from 80 kV p image series of DECT, and iodine maps were calculated for each of the 34 DECT acquisitions per patient. BF and iodine concentrations were measured in healthy pancreatic tissue and carcinoma. To evaluate potential DECT acquisition triggered by bolus tracking, measured iodine concentrations from the 34 DECT acquisitions per patient corresponding to different trigger delays were assessed for correlation to BF and intergroup differences between tissue types depending on acquisition time. Average BF measured in healthy pancreatic tissue and carcinoma was 87.6 ± 28.4 and 38.6 ± 22.2 ml/100 ml min -1 , respectively. Correlation between iodine concentrations and BF was statistically significant for bolus tracking with trigger delay greater than 0 s (r max = 0.89; p < 0.05). Differences in iodine concentrations between healthy pancreatic tissue and carcinoma were statistically significant for DECT acquisitions corresponding to trigger delays of 15-21 s (p < 0.05). An acquisition window between 15 and 21 s after exceeding bolus tracking threshold shows promising results for acquisition of DECT iodine maps as an alternative to CT perfusion measurements of BF. Advances in knowledge: After clinical validation, DECT iodine maps of pancreas acquired using bolus tracking with appropriate trigger delay as determined in this study could offer an alternative quantitative imaging biomarker providing functional information for tumor assessment at reduced patient radiation exposure compared to CT perfusion measurements of BF.
Kocer, Naci; Mondel, Prabath Kumar; Yamac, Elif; Kavak, Ayse; Kizilkilic, Osman; Islak, Civan
2017-11-01
Flow diverters are increasingly used in the treatment of complex and giant intracranial aneurysms. However, they are associated with complications like late aneurysmal rupture. Additionally, flow diverters show focal structural decrease in luminal diameter without any intimal hyperplasia. This resembles a "fish mouth" when viewed en face. In this pilot study, we tested the hypothesis of a possible association between flow diverter fish-mouthing and delayed-type hypersensitivity to its metal constituents. We retrospectively reviewed patient records from our center between May 2010 and November 2015. A total of nine patients had flow diverter fish mouthing. A control group of 25 patients was selected. All study participants underwent prospective patch test to detect hypersensitivity to flow diverter metal constituents. Analysis was performed using logistic regression analysis and Wilcoxon sign rank sum test. Univariate and multivariate analyses were performed to test variables to predict flow diverter fish mouthing. The association between flow diverter fish mouthing and positive patch test was not statistically significant. In multivariate analysis, history of allergy and maximum aneurysm size category was associated with flow diverter fish mouthing. This was further confirmed on Wilcoxon sign rank sum test. The study showed statistically significant association between flow diverter fish mouthing and history of contact allergy and a small aneurysmal size. Further large-scale studies are needed to detect a statistically significant association between flow diverter fish mouthing and patch test. We recommend early and more frequent follow-up imaging in patients with contact allergy to detect flow diverter fish mouthing and its subsequent evolution.
Schmidt, Kevin M.; Hanshaw, M.N.; Howle, James F.; Kean, Jason W.; Staley, Dennis M.; Stock, Jonathan D.; Bawden, Gerald W.
2011-01-01
To investigate rainfall-runoff conditions that generate post-wildfire debris flows, we instrumented and surveyed steep, small watersheds along the tectonically active front of the San Gabriel Mountains, California. Fortuitously, we recorded runoff-generated debris-flows triggered by one spatially restricted convective event with 28 mm of rainfall falling over 62 minutes. Our rain gages, nested hillslope overland-flow sensors and soil-moisture probes, as well as a time series of terrestrial laser scanning (TLS) revealed the effects of the storm. Hillslope overland-flow response, along two ~10-m long flow lines perpendicular to and originating from a drainage divide, displayed only a 10 to 20 minute delay from the onset of rainfall with accumulated totals of merely 5-10 mm. Depth-stratified soil-moisture probes displayed a greater time delay, roughly 20- 30 minutes, indicating that initial overland flow was Hortonian. Furthermore, a downstream channel-monitoring array recorded a pronounced discharge peak generated by the passage of a debris flow after 18 minutes of rainfall. At this time, only four of the eleven hillslope overlandflow sensors confirmed the presence of surface-water flow. Repeat TLS and detailed field mapping using GPS document how patterns of rainsplash, overland-flow scour, and rilling contributed to the generation of meter-scale debris flows. In response to a single small storm, the debris flows deposited irregular levees and lobate terminal snouts on hillslopes and caused widespread erosion of the valley axis with ground surface lowering exceeding 1.5 m.
Influence of cue word perceptual information on metamemory accuracy in judgement of learning.
Hu, Xiao; Liu, Zhaomin; Li, Tongtong; Luo, Liang
2016-01-01
Previous studies have suggested that perceptual information regarding to-be-remembered words in the study phase affects the accuracy of judgement of learning (JOL). However, few have investigated whether the perceptual information in the JOL phase influences JOL accuracy. This study examined the influence of cue word perceptual information in the JOL phase on immediate and delayed JOL accuracy through changes in cue word font size. In Experiment 1, large-cue word pairs had significantly higher mean JOL magnitude than small-cue word pairs in immediate JOLs and higher relative accuracy than small-cue pairs in delayed JOLs, but font size had no influence on recall performance. Experiment 2 increased the JOL time, and mean JOL magnitude did not reliably differ for large-cue compared with small-cue pairs in immediate JOLs. However, the influence on relative accuracy still existed in delayed JOLs. Experiment 3 increased the familiarity of small-cue words in the delayed JOL phase by adding a lexical decision task. The results indicated that cue word font size no longer affected relative accuracy in delayed JOLs. The three experiments in our study indicated that the perceptual information regarding cue words in the JOL phase affects immediate and delayed JOLs in different ways.
Cao, Ruofan; Naivar, Mark A; Wilder, Mark; Houston, Jessica P
2014-01-01
Fluorescence lifetime measurements provide information about the fluorescence relaxation, or intensity decay, of organic fluorophores, fluorescent proteins, and other inorganic molecules that fluoresce. The fluorescence lifetime is emerging in flow cytometry and is helpful in a variety of multiparametric, single cell measurements because it is not impacted by nonlinearity that can occur with fluorescence intensity measurements. Yet time-resolved cytometry systems rely on major hardware modifications making the methodology difficult to reproduce. The motivation of this work is, by taking advantage of the dynamic nature of flow cytometry sample detection and applying digital signal processing methods, to measure fluorescence lifetimes using an unmodified flow cytometer. We collect a new lifetime-dependent parameter, referred to herein as the fluorescence-pulse-delay (FPD), and prove it is a valid representation of the average fluorescence lifetime. To verify we generated cytometric pulses in simulation, with light emitting diode (LED) pulsation, and with true fluorescence measurements of cells and microspheres. Each pulse is digitized and used in algorithms to extract an average fluorescence lifetime inherent in the signal. A range of fluorescence lifetimes is measurable with this approach including standard organic fluorophore lifetimes (∼1 to 22 ns) as well as small, simulated shifts (0.1 ns) under standard conditions (reported herein). This contribution demonstrates how digital data acquisition and signal processing can reveal time-dependent information foreshadowing the exploitation of full waveform analysis for quantification of similar photo-physical events within single cells. © 2014 The Authors. Published by Wiley Periodicals, Inc. PMID:25274073
Nonlinear Time Delayed Feedback Control of Aeroelastic Systems: A Functional Approach
NASA Technical Reports Server (NTRS)
Marzocca, Piergiovanni; Librescu, Liviu; Silva, Walter A.
2003-01-01
In addition to its intrinsic practical importance, nonlinear time delayed feedback control applied to lifting surfaces can result in interesting aeroelastic behaviors. In this paper, nonlinear aeroelastic response to external time-dependent loads and stability boundary for actively controlled lifting surfaces, in an incompressible flow field, are considered. The structural model and the unsteady aerodynamics are considered linear. The implications of the presence of time delays in the linear/nonlinear feedback control and of geometrical parameters on the aeroelasticity of lifting surfaces are analyzed and conclusions on their implications are highlighted.
Measuring Information-Transfer Delays
Wibral, Michael; Pampu, Nicolae; Priesemann, Viola; Siebenhühner, Felix; Seiwert, Hannes; Lindner, Michael; Lizier, Joseph T.; Vicente, Raul
2013-01-01
In complex networks such as gene networks, traffic systems or brain circuits it is important to understand how long it takes for the different parts of the network to effectively influence one another. In the brain, for example, axonal delays between brain areas can amount to several tens of milliseconds, adding an intrinsic component to any timing-based processing of information. Inferring neural interaction delays is thus needed to interpret the information transfer revealed by any analysis of directed interactions across brain structures. However, a robust estimation of interaction delays from neural activity faces several challenges if modeling assumptions on interaction mechanisms are wrong or cannot be made. Here, we propose a robust estimator for neuronal interaction delays rooted in an information-theoretic framework, which allows a model-free exploration of interactions. In particular, we extend transfer entropy to account for delayed source-target interactions, while crucially retaining the conditioning on the embedded target state at the immediately previous time step. We prove that this particular extension is indeed guaranteed to identify interaction delays between two coupled systems and is the only relevant option in keeping with Wiener’s principle of causality. We demonstrate the performance of our approach in detecting interaction delays on finite data by numerical simulations of stochastic and deterministic processes, as well as on local field potential recordings. We also show the ability of the extended transfer entropy to detect the presence of multiple delays, as well as feedback loops. While evaluated on neuroscience data, we expect the estimator to be useful in other fields dealing with network dynamics. PMID:23468850
Laser-Induced Fluorescence Velocity Measurements in Supersonic Underexpanded Impinging Jets
NASA Technical Reports Server (NTRS)
Inman, Jennifer A.; Danehy, Paul M.; Barthel, Brett; Alderfer, David W.; Novak, Robert J.
2010-01-01
We report on an application of nitric oxide (NO) flow-tagging velocimetry to impinging underexpanded jet flows issuing from a Mach 2.6 nozzle. The technique reported herein utilizes a single laser, single camera system to obtain planar maps of the streamwise component of velocity. Whereas typical applications of this technique involve comparing two images acquired at different time delays, this application uses a single image and time delay. The technique extracts velocity by assuming that particular regions outside the jet flowfield have negligible velocity and may therefore serve as a stationary reference against which to measure motion of the jet flowfield. By taking the average of measurements made in 100 single-shot images for each flow condition, streamwise velocities of between -200 and +1,000 m/s with accuracies of between 15 and 50 m/s are reported within the jets. Velocity measurements are shown to explain otherwise seemingly anomalous impingement surface pressure measurements.
NASA Technical Reports Server (NTRS)
Wisler, D. C.; Hilvers, D. E.
1974-01-01
The results of an experimental research program to investigate the potential of improving compressor stall margin by the application of hub treatment are presented. Extensive tuft probing showed that the two-stage, 0.5 radius ratio compressor selected for the test was indeed hub critical. Circumferential groove and baffled wide blade angle slot hub treatments under the stators were tested. Performance measurements were made with total and static pressure probes, wall static pressure taps, flow angle measuring instrumentation and hot film anemometers. Stator hub treatment was not found to be effective in improving compressor stall margin by delaying the point of onset of rotating stall or in modifying compressor performance for any of the configurations tested. Extensive regions of separated flow were observed on the suction surface of the stators near the hub. However, the treatment did not delay the point where flow separation in the stator hub region becomes apparent.
Modified Beer-Lambert law for blood flow
NASA Astrophysics Data System (ADS)
Baker, Wesley B.; Parthasarathy, Ashwin B.; Busch, David R.; Mesquita, Rickson C.; Greenberg, Joel H.; Yodh, A. G.
2015-03-01
The modified Beer-Lambert law is among the most widely used approaches for analysis of near-infrared spectroscopy (NIRS) reflectance signals for measurements of tissue blood volume and oxygenation. Briefly, the modified Beer-Lambert paradigm is a scheme to derive changes in tissue optical properties based on continuous-wave (CW) diffuse optical intensity measurements. In its simplest form, the scheme relates differential changes in light transmission (in any geometry) to differential changes in tissue absorption. Here we extend this paradigm to the measurement of tissue blood flow by diffuse correlation spectroscopy (DCS). In the new approach, differential changes of the intensity temporal auto-correlation function at a single delay-time are related to differential changes in blood flow. The key theoretical results for measurement of blood flow changes in any tissue geometry are derived, and we demonstrate the new method to monitor cerebral blood flow in a pig under conditions wherein the semi-infinite geometry approximation is fairly good. Specifically, the drug dinitrophenol was injected in the pig to induce a gradual 200% increase in cerebral blood flow, as measured with MRI velocity flow mapping and by DCS. The modified Beer-Lambert law for flow accurately recovered these flow changes using only a single delay-time in the intensity auto-correlation function curve. The scheme offers increased DCS measurement speed of blood flow. Further, the same techniques using the modified Beer-Lambert law to filter out superficial tissue effects in NIRS measurements of deep tissues can be applied to the DCS modified Beer-Lambert law for blood flow monitoring of deep tissues.
Ensemble codes involving hippocampal neurons are at risk during delayed performance tests.
Hampson, R E; Deadwyler, S A
1996-11-26
Multielectrode recording techniques were used to record ensemble activity from 10 to 16 simultaneously active CA1 and CA3 neurons in the rat hippocampus during performance of a spatial delayed-nonmatch-to-sample task. Extracted sources of variance were used to assess the nature of two different types of errors that accounted for 30% of total trials. The two types of errors included ensemble "miscodes" of sample phase information and errors associated with delay-dependent corruption or disappearance of sample information at the time of the nonmatch response. Statistical assessment of trial sequences and associated "strength" of hippocampal ensemble codes revealed that miscoded error trials always followed delay-dependent error trials in which encoding was "weak," indicating that the two types of errors were "linked." It was determined that the occurrence of weakly encoded, delay-dependent error trials initiated an ensemble encoding "strategy" that increased the chances of being correct on the next trial and avoided the occurrence of further delay-dependent errors. Unexpectedly, the strategy involved "strongly" encoding response position information from the prior (delay-dependent) error trial and carrying it forward to the sample phase of the next trial. This produced a miscode type error on trials in which the "carried over" information obliterated encoding of the sample phase response on the next trial. Application of this strategy, irrespective of outcome, was sufficient to reorient the animal to the proper between trial sequence of response contingencies (nonmatch-to-sample) and boost performance to 73% correct on subsequent trials. The capacity for ensemble analyses of strength of information encoding combined with statistical assessment of trial sequences therefore provided unique insight into the "dynamic" nature of the role hippocampus plays in delay type memory tasks.
Modified Beer-Lambert law for blood flow
Baker, Wesley B.; Parthasarathy, Ashwin B.; Busch, David R.; Mesquita, Rickson C.; Greenberg, Joel H.; Yodh, A. G.
2014-01-01
We develop and validate a Modified Beer-Lambert law for blood flow based on diffuse correlation spectroscopy (DCS) measurements. The new formulation enables blood flow monitoring from temporal intensity autocorrelation function data taken at single or multiple delay-times. Consequentially, the speed of the optical blood flow measurement can be substantially increased. The scheme facilitates blood flow monitoring of highly scattering tissues in geometries wherein light propagation is diffusive or non-diffusive, and it is particularly well-suited for utilization with pressure measurement paradigms that employ differential flow signals to reduce contributions of superficial tissues. PMID:25426330
Application of the Green's function method for 2- and 3-dimensional steady transonic flows
NASA Technical Reports Server (NTRS)
Tseng, K.
1984-01-01
A Time-Domain Green's function method for the nonlinear time-dependent three-dimensional aerodynamic potential equation is presented. The Green's theorem is being used to transform the partial differential equation into an integro-differential-delay equation. Finite-element and finite-difference methods are employed for the spatial and time discretizations to approximate the integral equation by a system of differential-delay equations. Solution may be obtained by solving for this nonlinear simultaneous system of equations in time. This paper discusses the application of the method to the Transonic Small Disturbance Equation and numerical results for lifting and nonlifting airfoils and wings in steady flows are presented.
Incorporating User Preferences Within an Optimal Traffic Flow Management Framework
NASA Technical Reports Server (NTRS)
Rios, Joseph Lucio; Sheth, Kapil S.; Guiterrez-Nolasco, Sebastian Armardo
2010-01-01
The effectiveness of future decision support tools for Traffic Flow Management in the National Airspace System will depend on two major factors: computational burden and collaboration. Previous research has focused separately on these two aspects without consideration of their interaction. In this paper, their explicit combination is examined. It is shown that when user preferences are incorporated with an optimal approach to scheduling, runtime is not adversely affected. A benefit-cost ratio is used to measure the influence of user preferences on an optimal solution. This metric shows user preferences can be accommodated without inordinately, negatively affecting the overall system delay. Specifically, incorporating user preferences will increase delays proportionally to increased user satisfaction.
Integrated Traffic Flow Management Decision Making
NASA Technical Reports Server (NTRS)
Grabbe, Shon R.; Sridhar, Banavar; Mukherjee, Avijit
2009-01-01
A generalized approach is proposed to support integrated traffic flow management decision making studies at both the U.S. national and regional levels. It can consider tradeoffs between alternative optimization and heuristic based models, strategic versus tactical flight controls, and system versus fleet preferences. Preliminary testing was accomplished by implementing thirteen unique traffic flow management models, which included all of the key components of the system and conducting 85, six-hour fast-time simulation experiments. These experiments considered variations in the strategic planning look-ahead times, the replanning intervals, and the types of traffic flow management control strategies. Initial testing indicates that longer strategic planning look-ahead times and re-planning intervals result in steadily decreasing levels of sector congestion for a fixed delay level. This applies when accurate estimates of the air traffic demand, airport capacities and airspace capacities are available. In general, the distribution of the delays amongst the users was found to be most equitable when scheduling flights using a heuristic scheduling algorithm, such as ration-by-distance. On the other hand, equity was the worst when using scheduling algorithms that took into account the number of seats aboard each flight. Though the scheduling algorithms were effective at alleviating sector congestion, the tactical rerouting algorithm was the primary control for avoiding en route weather hazards. Finally, the modeled levels of sector congestion, the number of weather incursions, and the total system delays, were found to be in fair agreement with the values that were operationally observed on both good and bad weather days.
Robust estimation of pulse wave transit time using group delay.
Meloni, Antonella; Zymeski, Heather; Pepe, Alessia; Lombardi, Massimo; Wood, John C
2014-03-01
To evaluate the efficiency of a novel transit time (Δt) estimation method from cardiovascular magnetic resonance flow curves. Flow curves were estimated from phase contrast images of 30 patients. Our method (TT-GD: transit time group delay) operates in the frequency domain and models the ascending aortic waveform as an input passing through a discrete-component "filter," producing the observed descending aortic waveform. The GD of the filter represents the average time delay (Δt) across individual frequency bands of the input. This method was compared with two previously described time-domain methods: TT-point using the half-maximum of the curves and TT-wave using cross-correlation. High temporal resolution flow images were studied at multiple downsampling rates to study the impact of differences in temporal resolution. Mean Δts obtained with the three methods were comparable. The TT-GD method was the most robust to reduced temporal resolution. While the TT-GD and the TT-wave produced comparable results for velocity and flow waveforms, the TT-point resulted in significant shorter Δts when calculated from velocity waveforms (difference: 1.8±2.7 msec; coefficient of variability: 8.7%). The TT-GD method was the most reproducible, with an intraobserver variability of 3.4% and an interobserver variability of 3.7%. Compared to the traditional TT-point and TT-wave methods, the TT-GD approach was more robust to the choice of temporal resolution, waveform type, and observer. Copyright © 2013 Wiley Periodicals, Inc.
Bie, Yiming; Wang, Yinhai
2017-01-01
To deal with the conflicts between left-turn and through traffic streams and increase the discharge capacity, this paper addresses the pre-signal which is implemented at a signalized intersection. Such an intersection with pre-signal is termed as a tandem intersection. For the tandem intersection, phase swap sorting strategy is deemed as the most effective phasing scheme in view of some exclusive merits, such as easier compliance of drivers, and shorter sorting area. However, a major limitation of the phase swap sorting strategy is not considered in previous studies: if one or more vehicle is left at the sorting area after the signal light turns to red, the capacity of the approach would be dramatically dropped. Besides, previous signal control studies deal with a fixed timing plan that is not adaptive with the fluctuation of traffic flows. Therefore, to cope with these two gaps, this paper firstly takes an in-depth analysis of the traffic flow operations at the tandem intersection. Secondly, three groups of loop detectors are placed to obtain the real-time vehicle information for adaptive signalization. The lane selection behavior in the sorting area is considered to set the green time for intersection signals. With the objective of minimizing the vehicle delay, the signal control parameters are then optimized based on a dynamic programming method. Finally, numerical experiments show that average vehicle delay and maximum queue length can be reduced under all scenarios. PMID:28531198
Medical effects of volcanic eruptions
NASA Astrophysics Data System (ADS)
Baxter, Peter J.
1990-09-01
Excluding famine and tsunamis, most deaths in volcanic eruptions have been from pyroclastic flows and surges (nuées ardentes) and wet debris flows (lahars). Information on the causes of death and injury in eruptions is sparse but the available literature is summarised for the benefit of volcanologists and emergency planners. In nuées, thermal injury may be at least as important as asphyxia in causing immediate deaths. The high temperature of the gases and entrained particles readily causes severe burns to the skin and the air passages and the presence of both types of injury in an individual may combine to increase the delayed mortality risk from respiratory complications or from infection of burns. Trauma from missiles or body displacement is also common, but the role of asphyxiant or irritant gases, and steam, remains unclear. The ratio of dead: injured is much higher than in other natural disasters. At the periphery of a nuée being protected inside buildings which remain intact appears to greatly increase the chances of survival. In lahars, infected wounds and crush injury are the main delayed causes of death, and the scope for preventive measures, other than evacuation, is small. The evidence from Mount St. Helens, 1980, and other major eruptions indicates that, although mortality is high within the main zone of devastation and in the open, emergency planning should concentrate on the periphery of a nuée where preventive measures are feasible and could save many lives in densely populated areas.
Bie, Yiming; Liu, Zhiyuan; Wang, Yinhai
2017-01-01
To deal with the conflicts between left-turn and through traffic streams and increase the discharge capacity, this paper addresses the pre-signal which is implemented at a signalized intersection. Such an intersection with pre-signal is termed as a tandem intersection. For the tandem intersection, phase swap sorting strategy is deemed as the most effective phasing scheme in view of some exclusive merits, such as easier compliance of drivers, and shorter sorting area. However, a major limitation of the phase swap sorting strategy is not considered in previous studies: if one or more vehicle is left at the sorting area after the signal light turns to red, the capacity of the approach would be dramatically dropped. Besides, previous signal control studies deal with a fixed timing plan that is not adaptive with the fluctuation of traffic flows. Therefore, to cope with these two gaps, this paper firstly takes an in-depth analysis of the traffic flow operations at the tandem intersection. Secondly, three groups of loop detectors are placed to obtain the real-time vehicle information for adaptive signalization. The lane selection behavior in the sorting area is considered to set the green time for intersection signals. With the objective of minimizing the vehicle delay, the signal control parameters are then optimized based on a dynamic programming method. Finally, numerical experiments show that average vehicle delay and maximum queue length can be reduced under all scenarios.
Dynamic route guidance strategy in a two-route pedestrian-vehicle mixed traffic flow system
NASA Astrophysics Data System (ADS)
Liu, Mianfang; Xiong, Shengwu; Li, Bixiang
2016-05-01
With the rapid development of transportation, traffic questions have become the major issue for social, economic and environmental aspects. Especially, during serious emergencies, it is very important to alleviate road traffic congestion and improve the efficiency of evacuation to reduce casualties, and addressing these problems has been a major task for the agencies responsible in recent decades. Advanced road guidance strategies have been developed for homogeneous traffic flows, or to reduce traffic congestion and enhance the road capacity in a symmetric two-route scenario. However, feedback strategies have rarely been considered for pedestrian-vehicle mixed traffic flows with variable velocities and sizes in an asymmetric multi-route traffic system, which is a common phenomenon in many developing countries. In this study, we propose a weighted road occupancy feedback strategy (WROFS) for pedestrian-vehicle mixed traffic flows, which considers the system equilibrium to ease traffic congestion. In order to more realistic simulating the behavior of mixed traffic objects, the paper adopted a refined and dynamic cellular automaton model (RDPV_CA model) as the update mechanism for pedestrian-vehicle mixed traffic flow. Moreover, a bounded rational threshold control was introduced into the feedback strategy to avoid some negative effect of delayed information and reduce. Based on comparisons with the two previously proposed strategies, the simulation results obtained in a pedestrian-vehicle traffic flow scenario demonstrated that the proposed strategy with a bounded rational threshold was more effective and system equilibrium, system stability were reached.
Theoretical Prediction of Microgravity Ignition Delay of Polymeric Fuels in Low Velocity Flows
NASA Technical Reports Server (NTRS)
Fernandez-Pello, A. C.; Torero, J. L.; Zhou, Y. Y.; Walther, D.; Ross, H. D.
2001-01-01
A new flammability apparatus and protocol, FIST (Forced Flow Ignition and Flame Spread Test), is under development. Based on the LIFT (Lateral Ignition and Flame Spread Test) protocol, FIST better reflects the environments expected in spacebased facilities. The final objective of the FIST research is to provide NASA with a test methodology that complements the existing protocol and provides a more comprehensive assessment of material flammability of practical materials for space applications. Theoretical modeling, an extensive normal gravity data bank and a few validation space experiments will support the testing methodology. The objective of the work presented here is to predict the ignition delay and critical heat flux for ignition of solid fuels in microgravity at airflow velocities below those induced in normal gravity. This is achieved through the application of a numerical model previously developed of piloted ignition of solid polymeric materials exposed to an external radiant heat flux. The model predictions will provide quantitative results about ignition of practical materials in the limiting conditions expected in space facilities. Experimental data of surface temperature histories and ignition delay obtained in the KC-135 aircraft are used to determine the critical pyrolysate mass flux for ignition and this value is subsequently used to predict the ignition delay and the critical heat flux for ignition of the material. Surface temperature and piloted ignition delay calculations for Polymethylmethacrylate (PMMA) and a Polypropylene/Fiberglass (PP/GL) composite were conducted under both reduced and normal gravity conditions. It was found that ignition delay times are significantly shorter at velocities below those induced by natural convection.
Cauli, Omar; González-Usano, Alba; Cabrera-Pastor, Andrea; Gimenez-Garzó, Carla; López-Larrubia, Pilar; Ruiz-Sauri, Amparo; Hernández-Rabaza, Vicente; Duszczyk, Malgorzata; Malek, Michal; Lazarewicz, Jerzy W; Carratalá, Arturo; Urios, Amparo; Miguel, Alfonso; Torregrosa, Isidro; Carda, Carmen; Montoliu, Carmina; Felipo, Vicente
2014-06-01
Treatment of patients with acute liver failure (ALF) is unsatisfactory and mortality remains unacceptably high. Blocking NMDA receptors delays or prevents death of rats with ALF. The underlying mechanisms remain unclear. Clarifying these mechanisms will help to design more efficient treatments to increase patient's survival. The aim of this work was to shed light on the mechanisms by which blocking NMDA receptors delays rat's death in ALF. ALF was induced by galactosamine injection. NMDA receptors were blocked by continuous MK-801 administration. Edema and cerebral blood flow were assessed by magnetic resonance. The time course of ammonia levels in brain, muscle, blood, and urine; of glutamine, lactate, and water content in brain; of glomerular filtration rate and kidney damage; and of hepatic encephalopathy (HE) and intracranial pressure was assessed. ALF reduces kidney glomerular filtration rate (GFR) as reflected by reduced inulin clearance. GFR reduction is due to both reduced renal perfusion and kidney tubular damage as reflected by increased Kim-1 in urine and histological analysis. Blocking NMDA receptors delays kidney damage, allowing transient increased GFR and ammonia elimination which delays hyperammonemia and associated changes in brain. Blocking NMDA receptors does not prevent cerebral edema or blood-brain barrier permeability but reduces or prevents changes in cerebral blood flow and brain lactate. The data show that dual protective effects of MK-801 in kidney and brain delay cerebral alterations, HE, intracranial pressure increase and death. NMDA receptors antagonists may increase survival of patients with ALF by providing additional time for liver transplantation or regeneration.
Miller, Joseph D; Roy, Sukesh; Slipchenko, Mikhail N; Gord, James R; Meyer, Terrence R
2011-08-01
High-repetition-rate, single-laser-shot measurements are important for the investigation of unsteady flows where temperature and species concentrations can vary significantly. Here, we demonstrate single-shot, pure-rotational, hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps RCARS) thermometry based on a kHz-rate fs laser source. Interferences that can affect nanosecond (ns) and ps CARS, such as nonresonant background and collisional dephasing, are eliminated by selecting an appropriate time delay between the 100-fs pump/Stokes pulses and the pulse-shaped 8.4-ps probe. A time- and frequency-domain theoretical model is introduced to account for rotational-level dependent collisional dephasing and indicates that the optimal probe-pulse time delay is 13.5 ps to 30 ps. This time delay allows for uncorrected best-fit N2-RCARS temperature measurements with ~1% accuracy. Hence, the hybrid fs/ps RCARS approach can be performed with kHz-rate laser sources while avoiding corrections that can be difficult to predict in unsteady flows.
NASA Astrophysics Data System (ADS)
Miller, Joseph D.; Roy, Sukesh; Slipchenko, Mikhail N.; Gord, James R.; Meyer, Terrence R.
2011-08-01
High-repetition-rate, single-laser-shot measurements are important for the investigation of unsteady flows where temperature and species concentrations can vary significantly. Here, we demonstrate single-shot, pure-rotational, hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps RCARS) thermometry based on a kHz-rate fs laser source. Interferences that can affect nanosecond (ns) and ps CARS, such as nonresonant background and collisional dephasing, are eliminated by selecting an appropriate time delay between the 100-fs pump/Stokes pulses and the pulse-shaped 8.4-ps probe. A time- and frequency-domain theoretical model is introduced to account for rotational-level dependent collisional dephasing and indicates that the optimal probe-pulse time delay is 13.5 ps to 30 ps. This time delay allows for uncorrected best-fit N2-RCARS temperature measurements with ~1% accuracy. Hence, the hybrid fs/ps RCARS approach can be performed with kHz-rate laser sources while avoiding corrections that can be difficult to predict in unsteady flows.
NASA Astrophysics Data System (ADS)
Geng, Xi; Shi, Zhiwei; Cheng, Keming; Dong, Hao; Zhao, Qun; Chen, Sinuo
2018-03-01
Plasma-based flow control is one of the most promising techniques for aerodynamic problems, such as delaying the boundary layer transition. The boundary layer’s characteristics induced by AC-DBD plasma actuators and applied by the actuators to delay the boundary layer transition on airfoil at Ma = 0.3 were experimentally investigated. The PIV measurement was used to study the boundary layer’s characteristics induced by the plasma actuators. The measurement plane, which was parallel to the surface of the actuators and 1 mm above the surface, was involved in the test, including the perpendicular plane. The instantaneous results showed that the induced flow field consisted of many small size unsteady vortices which were eliminated by the time average. The subsequent oil-film interferometry skin friction measurement was conducted on a NASA SC(2)-0712 airfoil at Ma = 0.3. The coefficient of skin friction demonstrates that the plasma actuators successfully delay the boundary layer transition and the efficiency is better at higher driven voltage.
Optimisation of a honeybee-colony's energetics via social learning based on queuing delays
NASA Astrophysics Data System (ADS)
Thenius, Ronald; Schmickl, Thomas; Crailsheim, Karl
2008-06-01
Natural selection shaped the foraging-related processes of honeybees in such a way that a colony can react to changing environmental conditions optimally. To investigate this complex dynamic social system, we developed a multi-agent model of the nectar flow inside and outside of a honeybee colony. In a honeybee colony, a temporal caste collects nectar in the environment. These foragers bring their harvest into the colony, where they unload their nectar loads to one or more storer bees. Our model predicts that a cohort of foragers, collecting nectar from a single nectar source, is able to detect changes in quality in other food sources they have never visited, via the nectar processing system of the colony. We identified two novel pathways of forager-to-forager communication. Foragers can gain information about changes in the nectar flow in the environment via changes in their mean waiting time for unloadings and the number of experienced multiple unloadings. This way two distinct groups of foragers that forage on different nectar sources and that never communicate directly can share information via a third cohort of worker bees. We show that this noisy and loosely knotted social network allows a colony to perform collective information processing, so that a single forager has all necessary information available to be able to 'tune' its social behaviour, like dancing or dance-following. This way the net nectar gain of the colony is increased.
Timely response to secure messages from primary care patients.
Rohrer, James E; North, Frederick; Angstman, Kurt B; Oberhelman, Sara S; Meunier, Matthew R
2013-01-01
To assess delays in response to patient secure e-mail messages in primary care. Secure electronic messages are initiated by primary care patients. Timely response is necessary for patient safety and quality. A database of secure messages. A random sample of 353 secure electronic messages initiated by primary care patients treated in 4 clinics. Message not opened after 12 hours or messages not responded to after 36 hours. A total of 8.5% of electronic messages were not opened within 12 hours, and 17.6% did not receive a response in 36 hours. Clinic location, being a clinic employee, and patient sex were not related to delays. Patients older than 50 years were more likely to receive a delayed response (25.7% delayed, P = .013). The risk of both kinds of delays was higher on weekends (P < .001 for both). The e-mail message system resulted in high rates of delayed response. Delays were concentrated on weekends (Friday-Sunday). Reducing delayed responses may require automatic rerouting of messages to message centers staffed 24-7 or other mechanisms to manage this after-hours work flow.
Identification of Communication and Coordination Issues in the US Air Traffic Control System
NASA Technical Reports Server (NTRS)
Davison, Hayley J.; Hansman, R. John
2001-01-01
Today's air traffic control system is approaching the point of saturation, as evidenced by increasing delays across the National Airspace System (NAS). There exists an opportunity to enhance NAS efficiency and reduce delays by improving strategic communication throughout the ATC system. Although several measures have been taken to improve communication (e.g., Collaborative Decision Making tools), communication issues between ATC facilities remain. It is hypothesized that by identifying the key issues plaguing inter-facility strategic communication, steps can be taken to enhance these communications, and therefore ATC system efficiency. In this report, a series of site visits were performed at Boston and New York ATC facilities as well as at the Air Traffic Control System Command Center. The results from these site visits were used to determine the current communication and coordination structure of Traffic Management Coordinators, who hold a pivotal role in inter-facility communications. Several themes emerged from the study, including: ambiguity of organizational structure in the current ATC system, awkward coordination between ATC facilities, information flow issues, organizational culture issues, and negotiation behaviors used to cope with organizational culture issues.
Kamarianakis, Yiannis; Gao, H Oliver
2010-02-15
Collecting and analyzing high frequency emission measurements has become very usual during the past decade as significantly more information with respect to formation conditions can be collected than from regulated bag measurements. A challenging issue for researchers is the accurate time-alignment between tailpipe measurements and engine operating variables. An alignment procedure should take into account both the reaction time of the analyzers and the dynamics of gas transport in the exhaust and measurement systems. This paper discusses a statistical modeling framework that compensates for variable exhaust transport delay while relating tailpipe measurements with engine operating covariates. Specifically it is shown that some variants of the smooth transition regression model allow for transport delays that vary smoothly as functions of the exhaust flow rate. These functions are characterized by a pair of coefficients that can be estimated via a least-squares procedure. The proposed models can be adapted to encompass inherent nonlinearities that were implicit in previous instantaneous emissions modeling efforts. This article describes the methodology and presents an illustrative application which uses data collected from a diesel bus under real-world driving conditions.
NASA Technical Reports Server (NTRS)
Morey, Susan; Prevot, Thomas; Mercer, Joey; Martin, Lynne; Bienert, Nancy; Cabrall, Christopher; Hunt, Sarah; Homola, Jeffrey; Kraut, Joshua
2013-01-01
A human-in-the-loop simulation was conducted to examine the effects of varying levels of trajectory prediction uncertainty on air traffic controller workload and performance, as well as how strategies and the use of decision support tools change in response. This paper focuses on the strategies employed by two controllers from separate teams who worked in parallel but independently under identical conditions (airspace, arrival traffic, tools) with the goal of ensuring schedule conformance and safe separation for a dense arrival flow in en route airspace. Despite differences in strategy and methods, both controllers achieved high levels of schedule conformance and safe separation. Overall, results show that trajectory uncertainties introduced by wind and aircraft performance prediction errors do not affect the controllers' ability to manage traffic. Controller strategies were fairly robust to changes in error, though strategies were affected by the amount of delay to absorb (scheduled time of arrival minus estimated time of arrival). Using the results and observations, this paper proposes an ability to dynamically customize the display of information including delay time based on observed error to better accommodate different strategies and objectives.
Blaya, Joaquin A; Shin, Sonya S; Yagui, Martin J A; Yale, Gloria; Suarez, Carmen; Asencios, Luis; Fraser, Hamish
2007-10-11
We created a web-based laboratory information system, e-Chasqui to connect public laboratories to health centers to improve communication and analysis. After one year, we performed a pre and post assessment of communication delays and found that e-Chasqui maintained the average delay but eliminated delays of over 60 days. Adding digital verification maintained the average delay, but should increase accuracy. We are currently performing a randomized evaluation of the impacts of e-Chasqui.
Albers, D. J.; Hripcsak, George
2012-01-01
A method to estimate the time-dependent correlation via an empirical bias estimate of the time-delayed mutual information for a time-series is proposed. In particular, the bias of the time-delayed mutual information is shown to often be equivalent to the mutual information between two distributions of points from the same system separated by infinite time. Thus intuitively, estimation of the bias is reduced to estimation of the mutual information between distributions of data points separated by large time intervals. The proposed bias estimation techniques are shown to work for Lorenz equations data and glucose time series data of three patients from the Columbia University Medical Center database. PMID:22536009
NASA Technical Reports Server (NTRS)
Bulzan, Dan
2007-01-01
An overview of the emissions related research being conducted as part of the Fundamental Aeronautics Subsonics Fixed Wing Project is presented. The overview includes project metrics, milestones, and descriptions of major research areas. The overview also includes information on some of the emissions research being conducted under NASA Research Announcements. Objective: Development of comprehensive detailed and reduced kinetic mechanisms of jet fuels for chemically-reacting flow modeling. Scientific Challenges: 1) Developing experimental facilities capable of handling higher hydrocarbons and providing benchmark combustion data. 2) Determining and understanding ignition and combustion characteristics, such as laminar flame speeds, extinction stretch rates, and autoignition delays, of jet fuels and hydrocarbons relevant to jet surrogates. 3) Developing comprehensive kinetic models for jet fuels.
Control of Tollmien-Schlichting instabilities by finite distributed wall actuation
NASA Astrophysics Data System (ADS)
Losse, Nikolas R.; King, Rudibert; Zengl, Marcus; Rist, Ulrich; Noack, Bernd R.
2011-06-01
Tollmien-Schlichting waves are one of the key mechanisms triggering the laminar-turbulent transition in a flat-plate boundary-layer flow. By damping these waves and thus delaying transition, skin friction drag can be significantly decreased. In this simulation study, a wall segment is actuated according to a control scheme based on a POD-Galerkin model driven extended Kalman filter for state estimation and a model predictive controller to dampen TS waves by negative superposition based on this information. The setup of the simulation is chosen to resemble actuation with a driven compliant wall, such as a membrane actuator. Most importantly, a method is proposed to integrate such a localized wall actuation into a Galerkin model.
Optimally Repeatable Kinetic Model Variant for Myocardial Blood Flow Measurements with 82Rb PET.
Ocneanu, Adrian F; deKemp, Robert A; Renaud, Jennifer M; Adler, Andy; Beanlands, Rob S B; Klein, Ran
2017-01-01
Purpose. Myocardial blood flow (MBF) quantification with 82 Rb positron emission tomography (PET) is gaining clinical adoption, but improvements in precision are desired. This study aims to identify analysis variants producing the most repeatable MBF measures. Methods. 12 volunteers underwent same-day test-retest rest and dipyridamole stress imaging with dynamic 82 Rb PET, from which MBF was quantified using 1-tissue-compartment kinetic model variants: (1) blood-pool versus uptake region sampled input function (Blood/Uptake-ROI), (2) dual spillover correction (SOC-On/Off), (3) right blood correction (RBC-On/Off), (4) arterial blood transit delay (Delay-On/Off), and (5) distribution volume (DV) constraint (Global/Regional-DV). Repeatability of MBF, stress/rest myocardial flow reserve (MFR), and stress/rest MBF difference (ΔMBF) was assessed using nonparametric reproducibility coefficients (RPC np = 1.45 × interquartile range). Results. MBF using SOC-On, RVBC-Off, Blood-ROI, Global-DV, and Delay-Off was most repeatable for combined rest and stress: RPC np = 0.21 mL/min/g (15.8%). Corresponding MFR and ΔMBF RPC np were 0.42 (20.2%) and 0.24 mL/min/g (23.5%). MBF repeatability improved with SOC-On at stress ( p < 0.001) and tended to improve with RBC-Off at both rest and stress ( p < 0.08). DV and ROI did not significantly influence repeatability. The Delay-On model was overdetermined and did not reliably converge. Conclusion. MBF and MFR test-retest repeatability were the best with dual spillover correction, left atrium blood input function, and global DV.
Mechanism for generation of left isomerism in Ccdc40 mutant embryos
Sugrue, Kelsey F.
2017-01-01
Leftward fluid flow in the mouse node is generated by cilia and is critical for initiating asymmetry of the left-right axis. Coiled-coil domain containing-40 (Ccdc40) plays an evolutionarily conserved role in the assembly of motile cilia and establishment of the left-right axis. Approximately one-third of Ccdc40lnks mutant embryos display situs defects and here we investigate the underlying mechanism. Ccdc40lnks mutants show delayed induction of markers of the left-lateral plate mesoderm (L-LPM) including Lefty1, Lefty2 and Nodal. Consistent with defective cilia motility compromising fluid flow across the node, initiation of asymmetric perinodal Cerberus like-2 (Cerl2) expression is delayed and then randomized. This is followed by delayed and then randomized asymmetric Nodal expression around the node. We propose a model to explain how left isomerism arises in a proportion of Ccdc40lnks mutants. We postulate that with defective motile cilia, Cerl2 expression remains symmetric and Nodal is antagonized equally on both sides of the node. This effectively reduces Nodal activation bilaterally, leading to reduced and delayed activation of Nodal and its antagonists in the LPM. This model is further supported by the failure to establish Nodal expression in the left-LPM with reduced Nodal gene dosage in Ccdc40lnks/lnks;NodalLacZ/+ mutants causing a predominance of right not left isomerism. Together these results suggest a model where cilia generated fluid flow in the node functions to ensure robust Nodal activation and a timely left-sided developmental program in the LPM. PMID:28182636
Code of Federal Regulations, 2013 CFR
2013-07-01
... process equipment associated with the leaking heat exchanger. You must document the basis for the... the repair as soon as practical. (3) Calculate the potential emissions from the leaking heat exchanger... substances) in the cooling water from the leaking heat exchanger by the flow rate of the cooling water from...
Code of Federal Regulations, 2012 CFR
2012-07-01
... process equipment associated with the leaking heat exchanger. You must document the basis for the... the repair as soon as practical. (3) Calculate the potential emissions from the leaking heat exchanger... substances) in the cooling water from the leaking heat exchanger by the flow rate of the cooling water from...
Code of Federal Regulations, 2014 CFR
2014-07-01
... process equipment associated with the leaking heat exchanger. You must document the basis for the... the repair as soon as practical. (3) Calculate the potential emissions from the leaking heat exchanger... substances) in the cooling water from the leaking heat exchanger by the flow rate of the cooling water from...
Code of Federal Regulations, 2010 CFR
2010-07-01
... process equipment associated with the leaking heat exchanger. You must document the basis for the... the repair as soon as practical. (3) Calculate the potential emissions from the leaking heat exchanger... substances) in the cooling water from the leaking heat exchanger by the flow rate of the cooling water from...
Code of Federal Regulations, 2011 CFR
2011-07-01
... process equipment associated with the leaking heat exchanger. You must document the basis for the... the repair as soon as practical. (3) Calculate the potential emissions from the leaking heat exchanger... substances) in the cooling water from the leaking heat exchanger by the flow rate of the cooling water from...
Heintz, Anke; Koch, Thea; Deussen, Andreas
2005-04-01
The mechanisms underlying hypercapnic coronary dilation remain unsettled. This study tests the hypothesis that flow dependent NO production is obligatory for the hypercapnic flow response. In isolated, constant pressure (CP) perfused guinea pig hearts a step change of arterial pCO(2) from 38.6 to 61.4 mm Hg induced a bi-phasic flow response with an early transient (maximum 60 s) and a consecutive persisting flow rise (121.6+/-6.6 (S.D.) % after 10 min). In contrast, when perfused with constant flow (CF), perfusion pressure only transiently (2 min) fell by 7.4+/-4.8 % following the step change of arterial pCO(2). In CP perfused hearts L-NAME (100 micromol/l) specifically abolished the delayed flow rise during hypercapnic acidosis (102.37+/-2.9% after 10 min), whereas the inhibitor had no effect on perfusion pressure response in CF perfused hearts. Under CP perfusion arterial hypercapnia resulted in a transient rise of coronary cGMP release (from 0.69+/-0.35 to 1.12+/-0.68 pmol/ml), which was abolished after L-NAME. Surprisingly, the K(+)ATP channel blocker glibenclamide did not have any significant effect on the hypercapnic flow response but largely blunted reactive hyperemia after a 20 s flow stop. The delayed steady state hypercapnic flow response in guinea pig heart requires intact NO production. The absence of a persisting decrease in coronary resistance under CF perfusion points to an important role of shear stress dependent NO production.
Information Flow Model of Human Extravehicular Activity Operations
NASA Technical Reports Server (NTRS)
Miller, Matthew J.; McGuire, Kerry M.; Feigh, Karen M.
2014-01-01
Future human spaceflight missions will face the complex challenge of performing human extravehicular activity (EVA) beyond the low Earth orbit (LEO) environment. Astronauts will become increasingly isolated from Earth-based mission support and thus will rely heavily on their own decision-making capabilities and onboard tools to accomplish proposed EVA mission objectives. To better address time delay communication issues, EVA characters, e.g. flight controllers, astronauts, etc., and their respective work practices and roles need to be better characterized and understood. This paper presents the results of a study examining the EVA work domain and the personnel that operate within it. The goal is to characterize current and historical roles of ground support, intravehicular (IV) crew and EV crew, their communication patterns and information needs. This work provides a description of EVA operations and identifies issues to be used as a basis for future investigation.
Temporal compression in episodic memory for real-life events.
Jeunehomme, Olivier; Folville, Adrien; Stawarczyk, David; Van der Linden, Martial; D'Argembeau, Arnaud
2018-07-01
Remembering an event typically takes less time than experiencing it, suggesting that episodic memory represents past experience in a temporally compressed way. Little is known, however, about how the continuous flow of real-life events is summarised in memory. Here we investigated the nature and determinants of temporal compression by directly comparing memory contents with the objective timing of events as measured by a wearable camera. We found that episodic memories consist of a succession of moments of prior experience that represent events with varying compression rates, such that the density of retrieved information is modulated by goal processing and perceptual changes. Furthermore, the results showed that temporal compression rates remain relatively stable over one week and increase after a one-month delay, particularly for goal-related events. These data shed new light on temporal compression in episodic memory and suggest that compression rates are adaptively modulated to maintain current goal-relevant information.
A flow cytometric approach to the study of crustacean cellular immunity
Cardenas, W.; Jenkins, J.A.; Dankert, J.R.
2000-01-01
Responses of hemocytes from the crayfish Procambarus zonangulus to stimulation by fungal cell walls (Zymosan A) were measured by flow cytometry. Changes in hemocyte physical characteristics were assessed flow cytometrically using forward- and sidescatter light parameters, and viability was measured by two-color fluorescent staining with calcein-AM and ethidium homodimer 1. The main effects of zymosan A on crayfish hemocytes were reduction in cell size and viability compared to control mixtures (hemocytes in buffer only). Adding diethyldithiocarbamic acid, an inhibitor of phenoloxidase, to hemocyte to zymosan mixtures delayed the time course of cell size reduction and cell death compared to zymosan-positive controls. The inclusion of trypsin inhibitor in reaction mixtures further delayed the reduction in hemocyte size and cell death, thereby indicating that a proteolytic cascade, along with prophenoloxidase activation, played a key role in generating signal molecules which mediate these cellular responses. In addition to traditional methods such as microscopy and protein chemistry, flow cytometry can provide a simple, reproducible, and sensitve method for evaluating invertebrate hemocyte responses to immunological stimuli.
Conversational Flow Promotes Solidarity
Koudenburg, Namkje; Postmes, Tom; Gordijn, Ernestine H.
2013-01-01
Social interaction is fundamental to the development of various aspects of “we-ness”. Previous research has focused on the role the content of interaction plays in establishing feelings of unity, belongingness and shared reality (a cluster of variables referred to as solidarity here). The present paper is less concerned with content, but focuses on the form of social interaction. We propose that the degree to which conversations flow smoothly or not is, of itself, a cue to solidarity. We test this hypothesis in samples of unacquainted and acquainted dyads who communicate via headsets. Conversational flow is disrupted by introducing a delay in the auditory feedback (vs. no delay). Results of three studies show that smoothly coordinated conversations (compared with disrupted conversations and a control condition) increase feelings of belonging and perceptions of group entitativity, independently of conversation content. These effects are driven by the subjective experience of conversational flow. Our data suggest that this process occurs largely beyond individuals' control. We conclude that the form of social interaction is a powerful cue for inferring group solidarity. Implications for the impact of modern communication technology on developing a shared social identity are discussed. PMID:24265683
Conversational flow promotes solidarity.
Koudenburg, Namkje; Postmes, Tom; Gordijn, Ernestine H
2013-01-01
Social interaction is fundamental to the development of various aspects of "we-ness". Previous research has focused on the role the content of interaction plays in establishing feelings of unity, belongingness and shared reality (a cluster of variables referred to as solidarity here). The present paper is less concerned with content, but focuses on the form of social interaction. We propose that the degree to which conversations flow smoothly or not is, of itself, a cue to solidarity. We test this hypothesis in samples of unacquainted and acquainted dyads who communicate via headsets. Conversational flow is disrupted by introducing a delay in the auditory feedback (vs. no delay). Results of three studies show that smoothly coordinated conversations (compared with disrupted conversations and a control condition) increase feelings of belonging and perceptions of group entitativity, independently of conversation content. These effects are driven by the subjective experience of conversational flow. Our data suggest that this process occurs largely beyond individuals' control. We conclude that the form of social interaction is a powerful cue for inferring group solidarity. Implications for the impact of modern communication technology on developing a shared social identity are discussed.
Fluid pressure waves trigger earthquakes
NASA Astrophysics Data System (ADS)
Mulargia, Francesco; Bizzarri, Andrea
2015-03-01
Fluids-essentially meteoric water-are present everywhere in the Earth's crust, occasionally also with pressures higher than hydrostatic due to the tectonic strain imposed on impermeable undrained layers, to the impoundment of artificial lakes or to the forced injections required by oil and gas exploration and production. Experimental evidence suggests that such fluids flow along preferred paths of high diffusivity, provided by rock joints and faults. Studying the coupled poroelastic problem, we find that such flow is ruled by a nonlinear partial differential equation amenable to a Barenblatt-type solution, implying that it takes place in form of solitary pressure waves propagating at a velocity which decreases with time as v ∝ t [1/(n - 1) - 1] with n ≳ 7. According to Tresca-Von Mises criterion, these waves appear to play a major role in earthquake triggering, being also capable to account for aftershock delay without any further assumption. The measure of stress and fluid pressure inside active faults may therefore provide direct information about fault potential instability.
Simulation of three lanes one-way freeway in low visibility weather by possible traffic accidents
NASA Astrophysics Data System (ADS)
Pang, Ming-bao; Zheng, Sha-sha; Cai, Zhang-hui
2015-09-01
The aim of this work is to investigate the traffic impact of low visibility weather on a freeway including the fraction of real vehicle rear-end accidents and road traffic capacity. Based on symmetric two-lane Nagel-Schreckenberg (STNS) model, a cellular automaton model of three-lane freeway mainline with the real occurrence of rear-end accidents in low visibility weather, which considers delayed reaction time and deceleration restriction, was established with access to real-time traffic information of intelligent transportation system (ITS). The characteristics of traffic flow in different visibility weather were discussed via the simulation experiments. The results indicate that incoming flow control (decreasing upstream traffic volume) and inputting variable speed limits (VSL) signal are effective in accident reducing and road actual traffic volume's enhancing. According to different visibility and traffic demand the appropriate control strategies should be adopted in order to not only decrease the probability of vehicle accidents but also avoid congestion.
Cerebral blood flow and oxygenation in infants after birth asphyxia. Clinically useful information?
Greisen, Gorm
2014-10-01
The term 'luxury perfusion' was coined nearly 50 years ago after observation of bright-red blood in the cerebral veins of adults with various brain pathologies. The bright-red blood represents decreased oxygen extraction and hence the perfusion is 'luxurious' compared to oxygen needs. Gradual loss of cellular energy charge during the hours following severe birth asphyxia was observed twenty years later by sequential cranial magnetic resonance spectroscopy. This led to the concept of delayed energy failure that is linked to mitochondrial dysfunction and apoptotic cell death. Abnormally increased perfusion and lack of normal cerebral blood flow regulation are also typically present, but whether the perfusion abnormalities at this secondary stage are detrimental, beneficial, or a mere epiphenomenon remains elusive. In contrast, incomplete reoxygenation of the brain during and following resuscitation is likely to compromise outcome. The clinical value of cerebral oximetry in this context can only be examined in a randomised clinical trial. Copyright © 2014 Elsevier Ltd. All rights reserved.
Self-testing produces superior recall of both familiar and unfamiliar muscle information.
Dobson, John L; Linderholm, Tracy; Yarbrough, Mary Beth
2015-12-01
Dozens of studies have found learning strategies based on the "testing effect" promote greater recall than those that rely solely on reading; however, the advantages of testing are often only observed after a delay (e.g., 2-7 days later). In contrast, our research, which has focused on kinesiology students learning kinesiology information that is generally familiar to them, has consistently demonstrated that testing-based strategies produce greater recall both immediately and after a delay. In an attempt to understand the discrepancies in the literature, the purpose of the present study was to determine if the time-related advantages of a testing-based learning strategy vary with one's familiarity with the to-be-learned information. Participants used both read-only and testing-based strategies to repeatedly study three different sets of information: 1) previously studied human muscle information (familiar information), 2) a mix of previously studied and previously unstudied human muscle information (mixed information), and 3) previously unstudied muscle information that is unique to sharks (unfamiliar information). Learning was evaluated via free recall assessments administered immediately after studying and again after a 1-wk delay and a 3-wk delay. Across those three assessments, the read-only strategy resulted in mean scores of 29.26 ± 1.43, 15.17 ± 1.29, and 5.33 ± 0.77 for the familiar, mixed, and unfamiliar information, respectively, whereas the testing-based strategy produced scores of 34.57 ± 1.58, 16.90 ± 1.31, and 8.33 ± 0.95, respectively. The results indicate that the testing-based strategy produced greater recall immediately and up through the 3-wk delay regardless of the participants' level of familiarity with the muscle information. Copyright © 2015 The American Physiological Society.
The effect of conceptual and contextual familiarity on transfer performance.
Kulasegaram, Kulamakan; Min, Cynthia; Ames, Kimberly; Howey, Elizabeth; Neville, Alan; Norman, Geoffrey
2012-10-01
Applying a previously learned concept to a novel problem is an important but difficult process called transfer. It is suggested that a commonsense analogy aids in transfer by linking novel concepts to familiar ones. How the context of practice affects transfer when learning using analogies is still unclear. This study investigated the effect of a commonsense analogy and context familiarity for transfer of physiological concepts. First year psychology students (n = 24) learned three concepts: Starling's law, Laplace's law, and laminar-turbulent flow. The control group saw standard explanations while the intervention group saw an additional commonsense analogy. The context of learning was the organ system used for two practice clinical cases which differed for all concepts. Testing consisted of 12 new clinical cases. Starling's law cases used the organ system from practice while the other concepts presented in both novel and familiar organ systems. Half of the sample repeated testing after 1 week delay. The outcome was ratings of explanations of cases on a 0-3 scale. The effect of analogy was significant (Mean = 1.24 with, 0.86 without, F(1,22) = 4.26, p < 0.05) but not after delay (means of 1.08 and 0.75 respectively, F = (1,10), p = 0.06) There was significant effect for familiar context (Same = 1.23 (Starling), different = 0.68 (Laplace) and 0.73 (laminar-turbulent flow) (F(2,44) = 5.14, p < 0.01). Laplace's law and laminar turbulent flow cases in the familiar organ system had means of 1.65 and 1.77 respectively compared to novel cases with means of 0.74 and 0.68 (F(1,22) = 35.64, p < 0.0001). Similar effects were observed after delay. There was significant decay in performance after delay for all participants (immediate = 1.17, delayed = 0.91, F = 11.9 (1,10) p < 0.01). Common analogies aid conceptual understanding necessary for transfer. Despite conceptual aids, solving transfer problems is difficult.
Cooke, Alison; Mills, Tracey A; Lavender, Tina
2010-10-01
To identify what factors affect women's decisions to delay childbearing, and to explore women's experiences and their perceptions of associated risks. Systematic procedures were used for search strategy, study selection, data extraction and analysis. Findings were synthesised using an approach developed from meta-ethnography. We included qualitative papers, not confined to geographical area (1980-2009). Databases included CINAHL, MEDLINE, EMBASE, PsycInfo, ASSIA, MIDIRS, British Nursing Index and the National Research Register. We selected qualitative empirical studies exploring the views and experiences of women of advanced maternal age who were childless or primigravidae with a singleton pregnancy or primiparous. Twelve papers fulfilled the selection criteria and were included for synthesis. Women appear to face an issue of 'informed and uninformed decision making'; those who believe they are informed but may not be, those who are not informed and find out they are at risk once pregnant, and those who are well informed but choose to delay pregnancy anyway. Maternity services could provide information to enable informed choice regarding timing of childbearing. Health professionals need to be mindful of the fact that women delay childbearing for various reasons. A strategy of pre-conception education may be beneficial in informing childbearing decisions. Obstetricians and midwives should be sensitive to the fact that women may not be aware of all the risks associated with delayed childbearing. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Analysis of Delayed Sea Breeze Onset for Fort Ord Prescribed Burning Operations
2015-12-01
Gahmberg et al. (2009) provided additional detail to the synoptic flow through the Coriolis effect . All directions are as seen from the sea with...ambient flows left of the offshore direction providing the strongest opposing winds as Coriolis effects provide additional support in the offshore...support the development of the sea breeze due to Coriolis effects , the mesoscale flow at the surface is quite different. The 1600 UTC through 1900
Evidence for chaos in an experimental time series from serrated plastic flow
NASA Astrophysics Data System (ADS)
Venkadesan, S.; Valsakumar, M. C.; Murthy, K. P. N.; Rajasekar, S.
1996-07-01
An experimental time series from a tensile test of an Al-Mg alloy in the serrated plastic flow domain is analyzed for signature of chaos. We employ state space reconstruction by embedding of time delay vectors. The minimum embedding dimension is found to be 4 and the largest Lyapunov exponent is positive, thereby providing prima facie evidence for chaos in an experimental time series of serrated plastic flow data.
Neural Correlates of a Default Response in a Delayed Go/No-Go Task
ERIC Educational Resources Information Center
Kalenscher, Tobias; Gunturkun, Onur; Calabrese, Pasquale; Gehlen, Walter; Kalt, Thomas; Diekamp, Bettina
2005-01-01
Working memory, the ability to temporarily retain task-relevant information across a delay, is frequently investigated using delayed matching-to-sample (DMTS) or delayed Go/No-Go tasks (DGNG). In DMTS tasks, sample cues instruct the animal which type of response has to be executed at the end of a delay. Typically, performance decreases with…
Observation of the avalanche of runaway electrons in air in a strong electric field.
Gurevich, A V; Mesyats, G A; Zybin, K P; Yalandin, M I; Reutova, A G; Shpak, V G; Shunailov, S A
2012-08-24
The generation of an avalanche of runaway electrons is demonstrated for the first time in a laboratory experiment. Two flows of runaway electrons are formed sequentially in an extended air discharge gap at the stage of delay of a pulsed breakdown. The first, picosecond, runaway electron flow is emitted in the cathode region where the field is enhanced. Being accelerated in the gap, this beam generates electrons due to impact ionization. These secondary electrons form a delayed avalanche of runaway electrons if the field is strong enough. The properties of the avalanche correspond to the existing notions about the runaway breakdown in air. The measured current of the avalanche exceeds up to an order the current of the initiating electron beam.
Observation of the Avalanche of Runaway Electrons in Air in a Strong Electric Field
NASA Astrophysics Data System (ADS)
Gurevich, A. V.; Mesyats, G. A.; Zybin, K. P.; Yalandin, M. I.; Reutova, A. G.; Shpak, V. G.; Shunailov, S. A.
2012-08-01
The generation of an avalanche of runaway electrons is demonstrated for the first time in a laboratory experiment. Two flows of runaway electrons are formed sequentially in an extended air discharge gap at the stage of delay of a pulsed breakdown. The first, picosecond, runaway electron flow is emitted in the cathode region where the field is enhanced. Being accelerated in the gap, this beam generates electrons due to impact ionization. These secondary electrons form a delayed avalanche of runaway electrons if the field is strong enough. The properties of the avalanche correspond to the existing notions about the runaway breakdown in air. The measured current of the avalanche exceeds up to an order the current of the initiating electron beam.
Hall, Jonathan; Caputo, Carmela; Chung, Carlos; Holt, Michael; Wang, Yi Yuen
2015-04-01
Pan-hypopituitarism has been reported in patients who are subsequently found to have a cerebral aneurysm and there have been reports of pituitary dysfunction immediately following both surgical and endovascular treatment. The authors report a rare case of delayed pan-hypopituitarism following endovascular treatment of bilateral internal carotid artery aneurysms with coil embolisation and flow-diverting stents.
Synchronizing A Stroboscope With A Video Camera
NASA Technical Reports Server (NTRS)
Rhodes, David B.; Franke, John M.; Jones, Stephen B.; Dismond, Harriet R.
1993-01-01
Circuit synchronizes flash of light from stroboscope with frame and field periods of video camera. Sync stripper sends vertical-synchronization signal to delay generator, which generates trigger signal. Flashlamp power supply accepts delayed trigger signal and sends pulse of power to flash lamp. Designed for use in making short-exposure images that "freeze" flow in wind tunnel. Also used for making longer-exposure images obtained by use of continuous intense illumination.
Thermal Face Protection Delays Finger Cooling and Improves Thermal Comfort during Cold Air Exposure
2011-01-01
code) 2011 Journal Article-Eur Journal of Applied Physiology Thermal face protection delays Fnger cooling and improves thermal comfort during cold air...remains exposed. Facial cooling can decrease finger blood flow, reducing finger temperature (Tf). This study examined whether thermal face protection...limits Wnger cooling and thereby improves thermal comfort and manual dexterity during prolonged cold exposure. Tf was measured in ten volunteers dressed
NASA Astrophysics Data System (ADS)
Wang, Qingyun; Zhang, Honghui; Chen, Guanrong
2012-12-01
We study the effect of heterogeneous neuron and information transmission delay on stochastic resonance of scale-free neuronal networks. For this purpose, we introduce the heterogeneity to the specified neuron with the highest degree. It is shown that in the absence of delay, an intermediate noise level can optimally assist spike firings of collective neurons so as to achieve stochastic resonance on scale-free neuronal networks for small and intermediate αh, which plays a heterogeneous role. Maxima of stochastic resonance measure are enhanced as αh increases, which implies that the heterogeneity can improve stochastic resonance. However, as αh is beyond a certain large value, no obvious stochastic resonance can be observed. If the information transmission delay is introduced to neuronal networks, stochastic resonance is dramatically affected. In particular, the tuned information transmission delay can induce multiple stochastic resonance, which can be manifested as well-expressed maximum in the measure for stochastic resonance, appearing every multiple of one half of the subthreshold stimulus period. Furthermore, we can observe that stochastic resonance at odd multiple of one half of the subthreshold stimulus period is subharmonic, as opposed to the case of even multiple of one half of the subthreshold stimulus period. More interestingly, multiple stochastic resonance can also be improved by the suitable heterogeneous neuron. Presented results can provide good insights into the understanding of the heterogeneous neuron and information transmission delay on realistic neuronal networks.
The option value of delay in health technology assessment.
Eckermann, Simon; Willan, Andrew R
2008-01-01
Processes of health technology assessment (HTA) inform decisions under uncertainty about whether to invest in new technologies based on evidence of incremental effects, incremental cost, and incremental net benefit monetary (INMB). An option value to delaying such decisions to wait for further evidence is suggested in the usual case of interest, in which the prior distribution of INMB is positive but uncertain. of estimating the option value of delaying decisions to invest have previously been developed when investments are irreversible with an uncertain payoff over time and information is assumed fixed. However, in HTA decision uncertainty relates to information (evidence) on the distribution of INMB. This article demonstrates that the option value of delaying decisions to allow collection of further evidence can be estimated as the expected value of sample of information (EVSI). For irreversible decisions, delay and trial (DT) is demonstrated to be preferred to adopt and no trial (AN) when the EVSI exceeds expected costs of information, including expected opportunity costs of not treating patients with the new therapy. For reversible decisions, adopt and trial (AT) becomes a potentially optimal strategy, but costs of reversal are shown to reduce the EVSI of this strategy due to both a lower probability of reversal being optimal and lower payoffs when reversal is optimal. Hence, decision makers are generally shown to face joint research and reimbursement decisions (AN, DT and AT), with the optimal choice dependent on costs of reversal as well as opportunity costs of delay and the distribution of prior INMB.
Real-time energy-saving metro train rescheduling with primary delay identification
Li, Keping; Schonfeld, Paul
2018-01-01
This paper aims to reschedule online metro trains in delay scenarios. A graph representation and a mixed integer programming model are proposed to formulate the optimization problem. The solution approach is a two-stage optimization method. In the first stage, based on a proposed train state graph and system analysis, the primary and flow-on delays are specifically analyzed and identified with a critical path algorithm. For the second stage a hybrid genetic algorithm is designed to optimize the schedule, with the delay identification results as input. Then, based on the infrastructure data of Beijing Subway Line 4 of China, case studies are presented to demonstrate the effectiveness and efficiency of the solution approach. The results show that the algorithm can quickly and accurately identify primary delays among different types of delays. The economic cost of energy consumption and total delay is considerably reduced (by more than 10% in each case). The computation time of the Hybrid-GA is low enough for rescheduling online. Sensitivity analyses further demonstrate that the proposed approach can be used as a decision-making support tool for operators. PMID:29474471
Premixed autoignition in compressible turbulence
NASA Astrophysics Data System (ADS)
Konduri, Aditya; Kolla, Hemanth; Krisman, Alexander; Chen, Jacqueline
2016-11-01
Prediction of chemical ignition delay in an autoignition process is critical in combustion systems like compression ignition engines and gas turbines. Often, ignition delay times measured in simple homogeneous experiments or homogeneous calculations are not representative of actual autoignition processes in complex turbulent flows. This is due the presence of turbulent mixing which results in fluctuations in thermodynamic properties as well as chemical composition. In the present study the effect of fluctuations of thermodynamic variables on the ignition delay is quantified with direct numerical simulations of compressible isotropic turbulence. A premixed syngas-air mixture is used to remove the effects of inhomogeneity in the chemical composition. Preliminary results show a significant spatial variation in the ignition delay time. We analyze the topology of autoignition kernels and identify the influence of extreme events resulting from compressibility and intermittency. The dependence of ignition delay time on Reynolds and turbulent Mach numbers is also quantified. Supported by Basic Energy Sciences, Dept of Energy, United States.
Hydroxyl Tagging Velocimetry in a Mach 2 Flow With a Wall Cavity (Postprint)
2005-01-01
tagging velocimetry (HTV) measurements of velocity were made in a Mach 2 flow with a wall cavity. In the HTV method, ArF excimer laser (193 nm) beams...is tracked by planar laser -induced fluorescence. The grid motion over a fixed time delay yields about 50 velocity vectors of the two-dimensional flow...Mach 2 flow with a wall cavity. In the HTV method, ArF excimer laser (193 nm) beams pass through a humid gas and dissociate H2O into H + OH to form
The interaction evolution model of mass incidents with delay in a social network
NASA Astrophysics Data System (ADS)
Huo, Liang'an; Ma, Chenyang
2017-10-01
Recent years have witnessed rapid development of information technology. Today, modern media is widely used for the purpose of spreading information rapidly and widely. In particular, through micro-blog promotions, individuals tend to express their viewpoints and spread information on the internet, which could easily lead to public opinions. Moreover, government authorities also disseminate official information to guide public opinion and eliminate any incorrect conjecture. In this paper, a dynamical model with two delays is investigated to exhibit the interaction evolution between the public and official opinion fields in network mass incidents. Based on the theory of differential equations, the interaction mechanism between two public opinion fields in a micro-blog environment is analyzed. Two delays are proposed in the model to depict the response delays of public and official opinion fields. Some stable conditions are obtained, which shows that Hopf bifurcation can occur as delays cross critical values. Further, some numerical simulations are carried out to verify theoretical results. Our model indicates that there exists a golden time for government intervention, which should be emphasized given the impact of modern media and inaccurate rumors. If the government releases official information during the golden time, mass incidents on the internet can be controlled effectively.
The timing of umbilical cord clamping at birth: physiological considerations.
Hooper, Stuart B; Binder-Heschl, Corinna; Polglase, Graeme R; Gill, Andrew W; Kluckow, Martin; Wallace, Euan M; Blank, Douglas; Te Pas, Arjan B
2016-01-01
While it is now recognized that umbilical cord clamping (UCC) at birth is not necessarily an innocuous act, there is still much confusion concerning the potential benefits and harms of this common procedure. It is most commonly assumed that delaying UCC will automatically result in a time-dependent net placental-to-infant blood transfusion, irrespective of the infant's physiological state. Whether or not this occurs, will likely depend on the infant's physiological state and not on the amount of time that has elapsed between birth and umbilical cord clamping (UCC). However, we believe that this is an overly simplistic view of what can occur during delayed UCC and ignores the benefits associated with maintaining the infant's venous return and cardiac output during transition. Recent experimental evidence and observations in humans have provided compelling evidence to demonstrate that time is not a major factor influencing placental-to-infant blood transfusion after birth. Indeed, there are many factors that influence blood flow in the umbilical vessels after birth, which depending on the dominating factors could potentially result in infant-to-placental blood transfusion. The most dominant factors that influence umbilical artery and venous blood flows after birth are lung aeration, spontaneous inspirations, crying and uterine contractions. It is still not entirely clear whether gravity differentially alters umbilical artery and venous flows, although the available data suggests that its influence, if present, is minimal. While there is much support for delaying UCC at birth, much of the debate has focused on a time-based approach, which we believe is misguided. While a time-based approach is much easier and convenient for the caregiver, ignoring the infant's physiology during delayed UCC can potentially be counter-productive for the infant.
Strategic Air Traffic Planning Using Eulerian Route Based Modeling and Optimization
NASA Astrophysics Data System (ADS)
Bombelli, Alessandro
Due to a soaring air travel growth in the last decades, air traffic management has become increasingly challenging. As a consequence, planning tools are being devised to help human decision-makers achieve a better management of air traffic. Planning tools are divided into two categories, strategic and tactical. Strategic planning generally addresses a larger planning domain and is performed days to hours in advance. Tactical planning is more localized and is performed hours to minutes in advance. An aggregate route model for strategic air traffic flow management is presented. It is an Eulerian model, describing the flow between cells of unidirectional point-to-point routes. Aggregate routes are created from flight trajectory data based on similarity measures. Spatial similarity is determined using the Frechet distance. The aggregate routes approximate actual well-traveled traffic patterns. By specifying the model resolution, an appropriate balance between model accuracy and model dimension can be achieved. For a particular planning horizon, during which weather is expected to restrict the flow, a procedure for designing airborne reroutes and augmenting the traffic flow model is developed. The dynamics of the traffic flow on the resulting network take the form of a discrete-time, linear time-invariant system. The traffic flow controls are ground holding, pre-departure rerouting and airborne rerouting. Strategic planning--determining how the controls should be used to modify the future traffic flow when local capacity violations are anticipated--is posed as an integer programming problem of minimizing a weighted sum of flight delays subject to control and capacity constraints. Several tests indicate the effectiveness of the modeling and strategic planning approach. In the final, most challenging, test, strategic planning is demonstrated for the six western-most Centers of the 22-Center national airspace. The planning time horizon is four hours long, and there is weather predicted that causes significant delays to the scheduled flights. Airborne reroute options are computed and added to the route model, and it is shown that the predicted delays can be significantly reduced. The test results also indicate the computational feasibility of the approach for a planning problem of this size.
Effectiveness of Flow Control for Alleviation of Twin-Tail Buffet
NASA Technical Reports Server (NTRS)
Sheta, Essam F.; Kandil, Osama A.; Yang, Zhi
1998-01-01
Effectiveness of active flow control for twin- tail buffet alleviation is investigated. Tangen- tial leading-edge blowing (TLEB) and flow suction along the vortex cores (FSVC) of the lead- ing edges of the delta wing are used to delay the vortex breakdown flow upstream of the twin tail. The combined effect of the TLEB and FSVC is also investigated. A parametric study of the effects of the spanwise position of the suction tubes and volumetric suction flow rate on the twin-tail buffet response are also investigated. The TLEB moves the path of leading-edge vortices laterally towards the twin tail, which increases the aero- dynamic damping on the tails. The FSVC effectively delays the breakdown location at high angles of attack. The computational model consists of a sharp-edged delta wing of aspect ratio one and swept-back flexible twin tail with taper ratio of 0.23. This complex multidisciplinary problem is solved sequentially using three sets of equations for the fluid flow, aeroelastic response and grid deformation, on a dynamic multi-block grid structure. The computational model is pitched at 30 deg. angle of attack. The freestream Mach number and Reynolds number are 0.3 and 1.25 million, respectively. The model is investigated for the inboard position of the twin tails, which corresponds to a separation distance between the twin tails of 33% of the wing span.
The flow separation delay in the boundary layer by induced vortices.
Chaudhry, Ishtiaq A; Sultan, Tipu; Siddiqui, Farrukh A; Farhan, M; Asim, M
2017-01-01
A series of experiments involving the particle image velocimetry technique are carried out to analyse the quantitative effectiveness of the synthesized vortical structures towards actual flow separation control. The streamwise vortices are synthesized from the synthetic jet actuator and introduced into the attached and separating boundary layer developed on the flat plate surface. Two types of actuators with different geometrical set-ups are used to analyse the evolution of vortical structures in the near wall region and their impact towards achieving separation delay in the boundary layer. First, a single circular jet is synthesized by varying actuator operating parameters and issued into the boundary layer to evaluate the dynamics of the interaction between the vortical structures and the near wall low momentum fluid in the separated region. Second, an array of jets has been issued into the artificially separated region to assess the effectiveness of various vortical structures towards achieving the reattachment of the separated flow in the streamwise direction.
Performance analysis of a large-grain dataflow scheduling paradigm
NASA Technical Reports Server (NTRS)
Young, Steven D.; Wills, Robert W.
1993-01-01
A paradigm for scheduling computations on a network of multiprocessors using large-grain data flow scheduling at run time is described and analyzed. The computations to be scheduled must follow a static flow graph, while the schedule itself will be dynamic (i.e., determined at run time). Many applications characterized by static flow exist, and they include real-time control and digital signal processing. With the advent of computer-aided software engineering (CASE) tools for capturing software designs in dataflow-like structures, macro-dataflow scheduling becomes increasingly attractive, if not necessary. For parallel implementations, using the macro-dataflow method allows the scheduling to be insulated from the application designer and enables the maximum utilization of available resources. Further, by allowing multitasking, processor utilizations can approach 100 percent while they maintain maximum speedup. Extensive simulation studies are performed on 4-, 8-, and 16-processor architectures that reflect the effects of communication delays, scheduling delays, algorithm class, and multitasking on performance and speedup gains.
Patients with RA in remission on TNF blockers: when and in whom can TNF blocker therapy be stopped?
Saleem, Benazir; Keen, Helen; Goeb, Vincent; Parmar, Rekha; Nizam, Sharmin; Hensor, Elizabeth M A; Churchman, Sarah M; Quinn, Mark; Wakefield, Richard; Conaghan, Philip G; Ponchel, Frederique; Emery, Paul
2010-09-01
Combination therapy with methotrexate (MTX) and tumour necrosis factor (TNF) blockade has increased remission rates in patients with rheumatoid arthritis. However, there are no guidelines regarding cessation of therapy. There is a need for markers predictive of sustained remission following cessation of TNF blocker therapy. Patients in remission (DAS28 <2.6) treated with a TNF blocker and MTX as initial or delayed therapy were recruited. Joints were assessed for grey scale synovitis and power Doppler (PD) activity. Immunological assessment involved advanced six-colour flow cytometry. Of the 47 patients recruited, 27 had received initial treatment and 20 delayed treatment with TNF blocking drugs. Two years after stopping TNF blocker therapy, the main predictor of successful cessation was timing of treatment; 59% of patients in the initial treatment group sustained remission compared with 15% in the delayed treatment group (p=0.003). Within the initial treatment group, secondary analysis showed that the only clinical predictor of successful cessation of treatment was shorter symptom duration before receiving treatment (median 5.5 months vs 9 months; p=0.008). No other clinical features were associated with successful cessation of therapy. Thirty-five per cent of patients had low PD activity but levels were not informative. Several immunological parameters were significantly associated with sustained remission including abnormal differentiation subset of T cells and regulatory T cells. Similar non-significant trends were observed in the delayed treatment group. In patients in remission with low levels of imaging synovitis receiving combination treatment with a TNF blocker and MTX, immunological parameters and short duration of untreated symptoms were associated with successful cessation of TNF blocker therapy.
Chemical Accident Prevention Publications
These include chemical safety alerts, emergency preparedness and prevention advisories, and topical backgrounders. Excess flow valves, protecting workers in ethylene oxide sterilization facilities, reactivity hazards, and delayed coker units are covered.
High rate science data handling on Space Station Freedom
NASA Technical Reports Server (NTRS)
Handley, Thomas H., Jr.; Masline, Richard C.
1990-01-01
A study by NASA's User Information System Working Group for Space Station Freedom (SSF) has determined that the proposed onboard Data Management System, as initially configured, will be incapable of handling the data-generation rates typical of numerous scientific sensor payloads; many of these generate data at rates in excess of 10 Mbps, and there are at least four cases of rates in excess of 300 Mbps. The SSF Working Group has accordingly suggested an alternative conceptual architecture based on technology expected to achieve space-qualified status by 1995. The architecture encompasses recorders with rapid data-ingest capabilities and massive storage capabilities, optical delay lines allowing the recording of only the phenomena of interest, and data flow-compressing image processors.
Dissecting contributions of prefrontal cortex and fusiform face area to face working memory.
Druzgal, T Jason; D'Esposito, Mark
2003-08-15
Interactions between prefrontal cortex (PFC) and stimulus-specific visual cortical association areas are hypothesized to mediate visual working memory in behaving monkeys. To clarify the roles for homologous regions in humans, event-related fMRI was used to assess neural activity in PFC and fusiform face area (FFA) of subjects performing a delay-recognition task for faces. In both PFC and FFA, activity increased parametrically with memory load during encoding and maintenance of face stimuli, despite quantitative differences in the magnitude of activation. Moreover, timing differences in PFC and FFA activation during memory encoding and retrieval implied a context dependence in the flow of neural information. These results support existing neurophysiological models of visual working memory developed in the nonhuman primate.
Comparing Goldstone Solar System Radar Earth-based Observations of Mars with Orbital Datasets
NASA Technical Reports Server (NTRS)
Haldemann, A. F. C.; Larsen, K. W.; Jurgens, R. F.; Slade, M. A.
2005-01-01
The Goldstone Solar System Radar (GSSR) has collected a self-consistent set of delay-Doppler near-nadir radar echo data from Mars since 1988. Prior to the Mars Global Surveyor (MGS) Mars Orbiter Laser Altimeter (MOLA) global topography for Mars, these radar data provided local elevation information, along with radar scattering information with global coverage. Two kinds of GSSR Mars delay-Doppler data exist: low 5 km x 150 km resolution and, more recently, high (5 to 10 km) spatial resolution. Radar data, and non-imaging delay-Doppler data in particular, requires significant data processing to extract elevation, reflectivity and roughness of the reflecting surface. Interpretation of these parameters, while limited by the complexities of electromagnetic scattering, provide information directly relevant to geophysical and geomorphic analyses of Mars. In this presentation we want to demonstrate how to compare GSSR delay-Doppler data to other Mars datasets, including some idiosyncracies of the radar data. Additional information is included in the original extended abstract.
NASA Astrophysics Data System (ADS)
Hordyniec, Paweł; Rohm, Witold; Kapłon, Jan
2017-04-01
Post-fit residuals from Precise Point Positioning (PPP) carry the troposphere information except of multipath and residual antenna Phase Centre Variations (PCVs), when precise satellite orbits and clocks were introduced. Slant total delay (STD) of GNSS signal is a sum of a priori slant hydrostatic delay, estimated wet delay, asymetry introduced by the estimated zenith total delay (ZTD) horizontal gradients and a post-fit residual reduced by the systematic (site-dependant) effect. It was revealed, that application of reduced post-fit residuls to the slant total delays obtained from GNSS data processing increases the discrepancy with slant delays from raytracing (RT) through the Numerical Weather Model (NWM). One of the possible sources of that effect is neglected influence of hydrometeors in raytracing procedures. If the assumption of hydrometeor information existence in the PPP post-fit residuals is correct, we expect the diversity of slant delay discrepancies for satellite-receiver rays pointing or not the hydrometeors. Paper presents the spatial and temporal correlation analysis of the slant delay residuals (GNSS - RT) with hydrometeor phenomena recorded during the COST ES1206 GNSS4SWEC benchmark period (May 5th - June 29th, 2013). It presents the discussion of the results from different GNSS PPP slant delay estimation approaches including coordinates unconstraining or heavy constraining, and the calculation of slant delays with and without ZTD horizontal gradients estimation.
Adaptive Information Dissemination Control to Provide Diffdelay for the Internet of Things.
Liu, Xiao; Liu, Anfeng; Huang, Changqin
2017-01-12
Applications running on the Internet of Things, such as the Wireless Sensor and Actuator Networks (WSANs) platform, generally have different quality of service (QoS) requirements. For urgent events, it is crucial that information be reported to the actuator quickly, and the communication cost is the second factor. However, for interesting events, communication costs, network lifetime and time all become important factors. In most situations, these different requirements cannot be satisfied simultaneously. In this paper, an adaptive communication control based on a differentiated delay (ACCDS) scheme is proposed to resolve this conflict. In an ACCDS, source nodes of events adaptively send various searching actuators routings (SARs) based on the degree of sensitivity to delay while maintaining the network lifetime. For a delay-sensitive event, the source node sends a large number of SARs to actuators to identify and inform the actuators in an extremely short time; thus, action can be taken quickly but at higher communication costs. For delay-insensitive events, the source node sends fewer SARs to reduce communication costs and improve network lifetime. Therefore, an ACCDS can meet the QoS requirements of different events using a differentiated delay framework. Theoretical analysis simulation results indicate that an ACCDS provides delay and communication costs and differentiated services; an ACCDS scheme can reduce the network delay by 11.111%-53.684% for a delay-sensitive event and reduce the communication costs by 5%-22.308% for interesting events, and reduce the network lifetime by about 28.713%.
Adaptive Information Dissemination Control to Provide Diffdelay for the Internet of Things
Liu, Xiao; Liu, Anfeng; Huang, Changqin
2017-01-01
Applications running on the Internet of Things, such as the Wireless Sensor and Actuator Networks (WSANs) platform, generally have different quality of service (QoS) requirements. For urgent events, it is crucial that information be reported to the actuator quickly, and the communication cost is the second factor. However, for interesting events, communication costs, network lifetime and time all become important factors. In most situations, these different requirements cannot be satisfied simultaneously. In this paper, an adaptive communication control based on a differentiated delay (ACCDS) scheme is proposed to resolve this conflict. In an ACCDS, source nodes of events adaptively send various searching actuators routings (SARs) based on the degree of sensitivity to delay while maintaining the network lifetime. For a delay-sensitive event, the source node sends a large number of SARs to actuators to identify and inform the actuators in an extremely short time; thus, action can be taken quickly but at higher communication costs. For delay-insensitive events, the source node sends fewer SARs to reduce communication costs and improve network lifetime. Therefore, an ACCDS can meet the QoS requirements of different events using a differentiated delay framework. Theoretical analysis simulation results indicate that an ACCDS provides delay and communication costs and differentiated services; an ACCDS scheme can reduce the network delay by 11.111%–53.684% for a delay-sensitive event and reduce the communication costs by 5%–22.308% for interesting events, and reduce the network lifetime by about 28.713%. PMID:28085097
ERIC Educational Resources Information Center
Jeneson, Annette; Mauldin, Kristin N.; Hopkins, Ramona O.; Squire, Larry R.
2011-01-01
Patients with hippocampal damage are sometimes impaired at remembering information across delays as short as a few seconds. How are these impairments to be understood? One possibility is that retention of some kinds of information is critically dependent on the hippocampus, regardless of the retention interval and regardless of whether the task…
Stability and sensitivity of ABR flow control protocols
NASA Astrophysics Data System (ADS)
Tsai, Wie K.; Kim, Yuseok; Chiussi, Fabio; Toh, Chai-Keong
1998-10-01
This tutorial paper surveys the important issues in stability and sensitivity analysis of ABR flow control of ATM networks. THe stability and sensitivity issues are formulated in a systematic framework. Four main cause of instability in ABR flow control are identified: unstable control laws, temporal variations of available bandwidth with delayed feedback control, misbehaving components, and interactions between higher layer protocols and ABR flow control. Popular rate-based ABR flow control protocols are evaluated. Stability and sensitivity is shown to be the fundamental issues when the network has dynamically-varying bandwidth. Simulation result confirming the theoretical studies are provided. Open research problems are discussed.
Flow-Tagging Velocimetry for Hypersonic Flows Using Fluorescence of Nitric Oxide
NASA Technical Reports Server (NTRS)
Danehy, P. M.; OByrne, S.; Houwing, A. F. P.
2001-01-01
We investigate a new type of flow-tagging velocimetry technique for hypersonic flows. The technique involves exciting a thin line of nitric oxide molecules with a laser beam and then, after some delay, acquiring an image of the displaced line. One component of velocity is determined from the time of flight. This method is applied to measure the velocity profile in a Mach 8.5 laminar, hypersonic boundary layer in the Australian National Universities T2 free-piston shock tunnel. The velocity is measured with an uncertainty of approximately 2%. Comparison with a CFD simulation of the flow shows reasonable agreement.
Relationship between Weather, Traffic and Delay Based on Empirical Methods
NASA Technical Reports Server (NTRS)
Sridhar, Banavar; Swei, Sean S. M.
2006-01-01
The steady rise in demand for air transportation over the years has put much emphasis on the need for sophisticated air traffic flow management (TFM) within the National Airspace System (NAS). The NAS refers to hardware, software and people, including runways, radars, networks, FAA, airlines, etc., involved in air traffic management (ATM) in the US. One of the metrics that has been used to assess the performance of NAS is the actual delays provided through FAA's Air Traffic Operations Network (OPSNET). The OPSNET delay data includes those reportable delays, i.e. delays of 15 minutes or more experienced by Instrument Flight Rule (IFR) flights, submitted by the FAA facilities. These OPSNET delays are caused by the application of TFM initiatives in response to, for instance, weather conditions, increased traffic volume, equipment outages, airline operations, and runway conditions. TFM initiatives such as, ground stops, ground delay programs, rerouting, airborne holding, and miles-in-trail restrictions, are actions which are needed to control the air traffic demand to mitigate the demand-capacity imbalance due to the reduction in capacity. Consequently, TFM initiatives result in NAS delays. Of all the causes, weather has been identified as the most important causal factor for NAS delays. Therefore, in order to accurately assess the NAS performance, it has become necessary to create a baseline for NAS performance and establish a model which characterizes the relation between weather and NAS delays.
Green roof hydrologic performance and modeling: a review.
Li, Yanling; Babcock, Roger W
2014-01-01
Green roofs reduce runoff from impervious surfaces in urban development. This paper reviews the technical literature on green roof hydrology. Laboratory experiments and field measurements have shown that green roofs can reduce stormwater runoff volume by 30 to 86%, reduce peak flow rate by 22 to 93% and delay the peak flow by 0 to 30 min and thereby decrease pollution, flooding and erosion during precipitation events. However, the effectiveness can vary substantially due to design characteristics making performance predictions difficult. Evaluation of the most recently published study findings indicates that the major factors affecting green roof hydrology are precipitation volume, precipitation dynamics, antecedent conditions, growth medium, plant species, and roof slope. This paper also evaluates the computer models commonly used to simulate hydrologic processes for green roofs, including stormwater management model, soil water atmosphere and plant, SWMS-2D, HYDRUS, and other models that are shown to be effective for predicting precipitation response and economic benefits. The review findings indicate that green roofs are effective for reduction of runoff volume and peak flow, and delay of peak flow, however, no tool or model is available to predict expected performance for any given anticipated system based on design parameters that directly affect green roof hydrology.
Active Flow Control at Low Reynolds Numbers on a NACA 0015 Airfoil
NASA Technical Reports Server (NTRS)
Melton, LaTunia Pack; Hannon, Judith; Yao, Chung-Sheng; Harris, Jerome
2008-01-01
Results from a low Reynolds number wind tunnel experiment on a NACA 0015 airfoil with a 30% chord trailing edge flap tested at deflection angles of 0, 20, and 40 are presented and discussed. Zero net mass flux periodic excitation was applied at the ap shoulder to control flow separation for flap deflections larger than 0. The primary objective of the experiment was to compare force and moment data obtained from integrating surface pressures to data obtained from a 5-component strain-gage balance in preparation for additional three-dimensional testing of the model. To achieve this objective, active flow control is applied at an angle of attack of 6 where published results indicate that oscillatory momentum coefficients exceeding 1% are required to delay separation. Periodic excitation with an oscillatory momentum coefficient of 1.5% and a reduced frequency of 0.71 caused a significant delay of separation on the airfoil with a flap deflection of 20. Higher momentum coefficients at the same reduced frequency were required to achieve a similar level of flow attachment on the airfoil with a flap deflection of 40. There was a favorable comparison between the balance and integrated pressure force and moment results.
NASA Astrophysics Data System (ADS)
Le, Zichun; Suo, Kaihua; Fu, Minglei; Jiang, Ling; Dong, Wen
2012-03-01
In order to minimize the average end to end delay for data transporting in hybrid wireless optical broadband access network, a novel routing algorithm named MSTMCF (minimum spanning tree and minimum cost flow) is devised. The routing problem is described as a minimum spanning tree and minimum cost flow model and corresponding algorithm procedures are given. To verify the effectiveness of MSTMCF algorithm, extensively simulations based on OWNS have been done under different types of traffic source.
On the design of airfoils in which the transition of the boundary layer is delayed
NASA Technical Reports Server (NTRS)
Tani, Itiro
1952-01-01
A method is presented for designing suitable thickness distributions and mean camber lines for airfoils permitting extensive chordwise laminar flow. Wind tunnel and flight tests confirming the existence of laminar flow; possible maintenance of laminar flow by area suction; and the effects of wind tunnel turbulence and surface roughness on the promotion of premature boundary layer transition are discussed. In addition, estimates of profile drag and scale effect on maximum lift of the derived airfoils are made.
Numerical Studies of a Supersonic Fluidic Diverter Actuator for Flow Control
NASA Technical Reports Server (NTRS)
Gokoglu, Suleyman A.; Kuczmarski, Maria A.; Culley, Dennis e.; Raghu, Surya
2010-01-01
The analysis of the internal flow structure and performance of a specific fluidic diverter actuator, previously studied by time-dependent numerical computations for subsonic flow, is extended to include operation with supersonic actuator exit velocities. The understanding will aid in the development of fluidic diverters with minimum pressure losses and advanced designs of flow control actuators. The self-induced oscillatory behavior of the flow is successfully predicted and the calculated oscillation frequencies with respect to flow rate have excellent agreement with our experimental measurements. The oscillation frequency increases with Mach number, but its dependence on flow rate changes from subsonic to transonic to supersonic regimes. The delay time for the initiation of oscillations depends on the flow rate and the acoustic speed in the gaseous medium for subsonic flow, but is unaffected by the flow rate for supersonic conditions
75 FR 13238 - Processed Raspberry Promotion, Research, and Information Order; Delay of Referendum
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-19
... Promotion, Research, and Information Order; Delay of Referendum AGENCY: Agricultural Marketing Service... importers of processed raspberries approve the issuance of the proposed Processed Raspberry Promotion..., Research and Promotion Branch, By, AMS, USDA, Stop 0244, Room 0634-S, 1400 Independence Avenue, SW...
Measuring information transfer in a soft robotic arm.
Nakajima, K; Schmidt, N; Pfeifer, R
2015-05-13
Soft robots can exhibit diverse behaviors with simple types of actuation by partially outsourcing control to the morphological and material properties of their soft bodies, which is made possible by the tight coupling between control, body, and environment. In this paper, we present a method that will quantitatively characterize these diverse spatiotemporal dynamics of a soft body based on the information-theoretic approach. In particular, soft bodies have the ability to propagate the effect of actuation through the entire body, with a certain time delay, due to their elasticity. Our goal is to capture this delayed interaction in a quantitative manner based on a measure called momentary information transfer. We extend this measure to soft robotic applications and demonstrate its power using a physical soft robotic platform inspired by the octopus. Our approach is illustrated in two ways. First, we statistically characterize the delayed actuation propagation through the body as a strength of information transfer. Second, we capture this information propagation directly as local information dynamics. As a result, we show that our approach can successfully characterize the spatiotemporal dynamics of the soft robotic platform, explicitly visualizing how information transfers through the entire body with delays. Further extension scenarios of our approach are discussed for soft robotic applications in general.
Engelmann, Robby; Sellmann, Tina; Köhling, Rüdiger; Müller-Hilke, Brigitte
2017-01-01
Growing clinical and laboratory evidence corroborates a role for the immune system in the pathophysiology of epilepsy. In order to delineate the immune response following pilocarpine-induced status epilepticus (SE) in the mouse, we monitored the kinetics of leukocyte presence in the hippocampus over the period of four weeks. SE was induced following a ramping protocol of pilocarpine injection into 4–5 weeks old C57BL/6 mice. Brains were removed at days 1–4, 14 or 28 after SE, and the hippocampi were analyzed via flow cytometry, via quantitative reverse transcriptase PCR (qRT-PCR) and via immunohistochemistry. Epileptogenesis was confirmed by Timm staining of mossy fiber sprouting in the inner molecular layer of the dentate gyrus. The flow cytometry data revealed a biphasic immune response following pilocarpine-induced SE with a transient increase in activated CD11b+ and F4/80+ macrophages within the first four days replaced by an increase in CD3+ T-lymphocytes around day 28. This delayed T cell response was confirmed via qRT-PCR and via immunohistochemistry. In addition, qRT-PCR data could show that the delayed T cell response was associated with an increased CD8/CD4 ratio indicating a cytotoxic T cell response after SE. Intriguingly, early intervention with mycophenolate mofetil administration on days 0–3 after SE prevented this delayed T cell response. These results show an orchestrated immunological sequela and provide evidence that the delayed T cell response is sensitive to early immunomodulatory intervention. PMID:29182639
Balasubramaniam, Ramesh
2014-01-01
Sensory information from our eyes, skin and muscles helps guide and correct balance. Less appreciated, however, is that delays in the transmission of sensory information between our eyes, limbs and central nervous system can exceed several 10s of milliseconds. Investigating how these time-delayed sensory signals influence balance control is central to understanding the postural system. Here, we investigate how delayed visual feedback and cognitive performance influence postural control in healthy young and older adults. The task required that participants position their center of pressure (COP) in a fixed target as accurately as possible without visual feedback about their COP location (eyes-open balance), or with artificial time delays imposed on visual COP feedback. On selected trials, the participants also performed a silent arithmetic task (cognitive dual task). We separated COP time series into distinct frequency components using low and high-pass filtering routines. Visual feedback delays affected low frequency postural corrections in young and older adults, with larger increases in postural sway noted for the group of older adults. In comparison, cognitive performance reduced the variability of rapid center of pressure displacements in young adults, but did not alter postural sway in the group of older adults. Our results demonstrate that older adults prioritize vision to control posture. This visual reliance persists even when feedback about the task is delayed by several hundreds of milliseconds. PMID:24614576
Hart-Matyas, M; Gareau, A J; Hirsch, G M; Lee, T D G
2015-01-01
Allospecific memory T cells are a recognized threat to the maintenance of solid-organ transplants. Limited information exists regarding the development of alloreactive memory T cells when post-transplant immunosuppression is present. The clinical practice of delaying calcineurin inhibitor (CNI) initiation post-transplant may permit the development of a de novo allospecific memory population. We investigated the development of de novo allospecific memory CD8+ T cells following the introduction of CNI immunosuppression in a murine model using allogeneic cell priming. Recipient mice alloprimed with splenocytes from fully mismatched donors received cyclosporine (CyA), initiated at 0, 2, 6, or 10days post-prime. Splenocytes from recipients were analyzed by flow cytometry or enzyme-linked immunosorbent assay for evidence of memory cell formation. Memory and effector CD8+ T cell development was prevented when CyA was initiated at 0day or 2days post-prime (p<0.001), but not 6days post-prime. Following a boost challenge, these memory CD8+ T cells were capable of producing a similarly sized population of secondary effectors as recipients not treated with CyA (p>0.05). Delaying CyA up to 6days or later post-prime permits the development of functional de novo allospecific memory CD8+ T cells. The development of this potentially detrimental T cell population in patients could be prevented by starting CNI immunosuppression early post-transplant. Copyright © 2014 Elsevier B.V. All rights reserved.
The art and science of flow control
NASA Technical Reports Server (NTRS)
Gad-El-hak, Mohamed
1989-01-01
The ability to actively or passively manipulate a flow field to effect a desired change is of immense technological importance. In this article, methods of control to achieve transition delay, separation postponement, lift enhancement, drag reduction, turbulence augmentation, or noise suppression are considered. Emphasis is placed on external boundary-layer flows although applicability of some of the methods reviewed for internal flows will be mentioned. Attempts will be made to present a unified view of the different methods of control to achieve a variety of end results. Performance penalties associated with a particular method such as cost, complexity, or trade-off will be elaborated.
Impact of delayed information in sub-second complex systems
NASA Astrophysics Data System (ADS)
Manrique, Pedro D.; Zheng, Minzhang; Johnson Restrepo, D. Dylan; Hui, Pak Ming; Johnson, Neil F.
What happens when you slow down the delivery of information in large-scale complex systems that operate faster than the blink of an eye? This question just adopted immediate commercial, legal and political importance following U.S. regulators' decision to allow an intentional 350 microsecond delay to be added in the ultrafast network of financial exchanges. However there is still no scientific understanding available to policymakers of the potential system-wide impact of such delays. Here we take a first step in addressing this question using a minimal model of a population of competing, heterogeneous, adaptive agents which has previously been shown to produce similar statistical features to real markets. We find that while certain extreme system-level behaviors can be prevented by such delays, the duration of others is increased. This leads to a highly non-trivial relationship between delays and system-wide instabilities which warrants deeper empirical investigation. The generic nature of our model suggests there should be a fairly wide class of complex systems where such delay-driven extreme behaviors can arise, e.g. sub-second delays in brain function possibly impacting individuals' behavior, and sub-second delays in navigational systems potentially impacting the safety of driverless vehicles.
Pricing of Claims in Discrete Time with Partial Information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rognlien Dahl, Kristina, E-mail: kristrd@math.uio.no
2013-10-15
We consider the pricing problem of a seller with delayed price information. By using Lagrange duality, a dual problem is derived, and it is proved that there is no duality gap. This gives a characterization of the seller's price of a contingent claim. Finally, we analyze the dual problem, and compare the prices offered by two sellers with delayed and full information respectively.
Performance Analysis of the United States Marine Corps War Reserve Materiel Program Process Flow
2016-12-01
or Less)............41 Figure 21. Tornado Diagram of Expected Delays Using 2016 Inputs ........................42 x Figure 22. Fishbone Diagram of...variability. Using Crystal Ball we produced a Tornado Diagram (similar to a Pareto Chart) in order to tell us where to focus our efforts. The results of...the Tornado Diagram are shown in Figure 21. Figure 21. Tornado Diagram of Expected Delays Using 2016 Inputs Using the results shown in the Tornado
Apparatus for eliminating background interference in fluorescence measurements
Martin, J.C.; Jett, J.H.
1984-01-06
The disclosure is directed to an apparatus for eliminating background interference during fluorescence measurements in a multiple laser flow cytometer. A biological particle stained with fluorescent dyes is excited by a laser. A fluorescence detector detects the fluorescence. The particle scatters light and a gate signal is generated and delayed until the biological particle reaches the next laser. The delayed signal turns on this next laser which excites a different stained component of the same biological particle.
Apparatus for eliminating background interference in fluorescence measurements
Martin, John C.; Jett, James H.
1986-01-01
The disclosure is directed to an apparatus for eliminating background interference during fluorescence measurements in a multiple laser flow cytometer. A biological particle stained with fluorescent dyes is excited by a laser. A fluorescence detector detects the fluorescence. The particle scatters light and a gate signal is generated and delayed until the biological particle reaches the next laser. The delayed signal turns on this next laser, which excites a different stained component of the same biological particle.
Apparatus for eliminating background interference in fluorescence measurements
Martin, J.C.; Jett, J.H.
1986-03-04
The disclosure is directed to an apparatus for eliminating background interference during fluorescence measurements in a multiple laser flow cytometer. A biological particle stained with fluorescent dyes is excited by a laser. A fluorescence detector detects the fluorescence. The particle scatters light and a gate signal is generated and delayed until the biological particle reaches the next laser. The delayed signal turns on this next laser, which excites a different stained component of the same biological particle. 8 figs.
An iteration algorithm for optimal network flows
NASA Astrophysics Data System (ADS)
Woong, C. J.
1983-09-01
A packet switching network has the desirable feature of rapidly handling short (bursty) messages of the type often found in computer communication systems. In evaluating packet switching networks, the average time delay per packet is one of the most important measures of performance. The problem of message routing to minimize time delay is analyzed here using two approaches, called "successive saturation' and "max-slack', for various traffic requirement matrices and networks with fixed topology and link capacities.
Spray, S; Johansson, S E; Radziwon-Balicka, A; Haanes, K A; Warfvinge, K; Povlsen, G K; Kelly, P A T; Edvinsson, L
2017-08-01
Delayed cerebral hypoperfusion is a secondary complication found in the days after transient global cerebral ischaemia that worsens the ischaemic damage inflicted by the initial transient episode of global cerebral ischaemia. A recent study demonstrated increased cerebral vasoconstriction in the large arteries on the brain surface (pial arteries) after global cerebral ischaemia. However, smaller arterioles inside the brain (parenchymal arterioles) are equally important in the regulation of cerebral blood flow and yet their pathophysiology after global cerebral ischaemia is largely unknown. Therefore, we investigated whether increased contractility occurs in the intraparenchymal arterioles. Global cerebral ischaemia was induced in male Wistar rats by bilateral common carotid occlusion for 15 min combined with hypovolaemia. Regional cerebral blood flow was determined by quantitative autoradiography. Intraparenchymal arterioles were isolated and pressurized, and concentration-response curves to endothelin-1 with and without the endothelin B receptor-selective antagonist BQ788 was generated. Endothelin B receptor expression was investigated by quantitative flow cytometry and immunohistochemistry. We observed increased endothelin-1-mediated contractility of parenchymal arterioles correlating with reduced cerebral blood flow of the cortex, hippocampus and caudate nucleus 48 h after global cerebral ischaemia. The increased endothelin-1-mediated contractility was abolished by BQ788, and the vascular smooth muscle cell-specific expression of endothelin B receptors was significantly increased after global cerebral ischaemia. Increased endothelin-1-mediated contractility and expression of endothelin B receptors in the intraparenchymal vasculature contributes to the development of delayed cerebral hypoperfusion after global cerebral ischaemia in combination with vascular changes of the pial vasculature. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.
Hybrid services efficient provisioning over the network coding-enabled elastic optical networks
NASA Astrophysics Data System (ADS)
Wang, Xin; Gu, Rentao; Ji, Yuefeng; Kavehrad, Mohsen
2017-03-01
As a variety of services have emerged, hybrid services have become more common in real optical networks. Although the elastic spectrum resource optimizations over the elastic optical networks (EONs) have been widely investigated, little research has been carried out on the hybrid services of the routing and spectrum allocation (RSA), especially over the network coding-enabled EON. We investigated the RSA for the unicast service and network coding-based multicast service over the network coding-enabled EON with the constraints of time delay and transmission distance. To address this issue, a mathematical model was built to minimize the total spectrum consumption for the hybrid services over the network coding-enabled EON under the constraints of time delay and transmission distance. The model guarantees different routing constraints for different types of services. The immediate nodes over the network coding-enabled EON are assumed to be capable of encoding the flows for different kinds of information. We proposed an efficient heuristic algorithm of the network coding-based adaptive routing and layered graph-based spectrum allocation algorithm (NCAR-LGSA). From the simulation results, NCAR-LGSA shows highly efficient performances in terms of the spectrum resources utilization under different network scenarios compared with the benchmark algorithms.
Athanasopoulos, Georgios I; Carey, Stephen J; Hatfield, John V
2011-07-01
This paper describes the design of a programmable transmit beamformer application-specific integrated circuit (ASIC) with 8 channels for ultrasound imaging systems. The system uses a 20-MHz reference clock. A digital delay-locked loop (DLL) was designed with 50 variable delay elements, each of which provides a clock with different phase from a single reference. Two phase detectors compare the phase difference of the reference clock with the feedback clock, adjusting the delay of the delay elements to bring the feedback clock signal in phase with the reference clock signal. Two independent control voltages for the delay elements ensure that the mark space ratio of the pulses remain at 50%. By combining a 10- bit asynchronous counter with the delays from the DLL, each channel can be programmed to give a maximum time delay of 51 μs with 1 ns resolution. It can also give bursts of up to 64 pulses. Finally, for a single pulse, it can adjust the pulse width between 9 ns and 100 ns by controlling the current flowing through a capacitor in a one-shot circuit, for use with 40-MHz and 5-MHz transducers, respectively.
The time delay in strong gravitational lensing with Gauss-Bonnet correction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Man, Jingyun; Cheng, Hongbo, E-mail: jingyunman@mail.ecust.edu.cn, E-mail: hbcheng@ecust.edu.cn
2014-11-01
The time delay between two relativistic images in the strong gravitational lensing governed by Gauss-Bonnet gravity is studied. We make a complete analytical derivation of the expression of time delay in presence of Gauss-Bonnet coupling. With respect to Schwarzschild, the time delay decreases as a consequence of the shrinking of the photon sphere. As the coupling increases, the second term in the time delay expansion becomes more relevant. Thus time delay in strong limit encodes some new information about geometry in five-dimensional spacetime with Gauss-Bonnet correction.
Encoding of Spatio-Temporal Input Characteristics by a CA1 Pyramidal Neuron Model
Pissadaki, Eleftheria Kyriaki; Sidiropoulou, Kyriaki; Reczko, Martin; Poirazi, Panayiota
2010-01-01
The in vivo activity of CA1 pyramidal neurons alternates between regular spiking and bursting, but how these changes affect information processing remains unclear. Using a detailed CA1 pyramidal neuron model, we investigate how timing and spatial arrangement variations in synaptic inputs to the distal and proximal dendritic layers influence the information content of model responses. We find that the temporal delay between activation of the two layers acts as a switch between excitability modes: short delays induce bursting while long delays decrease firing. For long delays, the average firing frequency of the model response discriminates spatially clustered from diffused inputs to the distal dendritic tree. For short delays, the onset latency and inter-spike-interval succession of model responses can accurately classify input signals as temporally close or distant and spatially clustered or diffused across different stimulation protocols. These findings suggest that a CA1 pyramidal neuron may be capable of encoding and transmitting presynaptic spatiotemporal information about the activity of the entorhinal cortex-hippocampal network to higher brain regions via the selective use of either a temporal or a rate code. PMID:21187899
Driscoll, Molly; Gurka, David
2015-01-01
The fast-paced environment of hospitals contributes to communication failures between health care providers while impacting patient care and patient flow. An effective mechanism for sharing patients' discharge information with health care team members is required to improve patient throughput. The communication of a patient's discharge plan was identified as crucial in alleviating patient flow delays at a tertiary care, academic medical center. By identifying the patients who were expected to be discharged the following day, the health care team could initiate discharge preparations in advance to improve patient care and patient flow. The patients' electronic medical record served to convey dynamic information regarding the patients' discharge status to the health care team via conditional discharge orders. Two neurosciences units piloted a conditional discharge order initiative. Conditional discharge orders were designed in the electronic medical record so that the conditions for discharge were listed in a dropdown menu. The health care team was trained on the conditional discharge order protocol, including when to write them, how to find them in the patients' electronic medical record, and what actions should be prompted by these orders. On average, 24% of the patients discharged had conditional discharge orders written the day before discharge. The average discharge time for patients with conditional discharge orders decreased by 83 minutes (0.06 day) from baseline. Qualitatively, the health care team reported improved workflows with conditional orders. The conditional discharge orders allowed physicians to communicate pending discharges electronically to the multidisciplinary team. The initiative positively impacted patient discharge times and workflows.
Stochastic resonance enhancement of small-world neural networks by hybrid synapses and time delay
NASA Astrophysics Data System (ADS)
Yu, Haitao; Guo, Xinmeng; Wang, Jiang
2017-01-01
The synergistic effect of hybrid electrical-chemical synapses and information transmission delay on the stochastic response behavior in small-world neuronal networks is investigated. Numerical results show that, the stochastic response behavior can be regulated by moderate noise intensity to track the rhythm of subthreshold pacemaker, indicating the occurrence of stochastic resonance (SR) in the considered neural system. Inheriting the characteristics of two types of synapses-electrical and chemical ones, neural networks with hybrid electrical-chemical synapses are of great improvement in neuron communication. Particularly, chemical synapses are conducive to increase the network detectability by lowering the resonance noise intensity, while the information is better transmitted through the networks via electrical coupling. Moreover, time delay is able to enhance or destroy the periodic stochastic response behavior intermittently. In the time-delayed small-world neuronal networks, the introduction of electrical synapses can significantly improve the signal detection capability by widening the range of optimal noise intensity for the subthreshold signal, and the efficiency of SR is largely amplified in the case of pure chemical couplings. In addition, the stochastic response behavior is also profoundly influenced by the network topology. Increasing the rewiring probability in pure chemically coupled networks can always enhance the effect of SR, which is slightly influenced by information transmission delay. On the other hand, the capacity of information communication is robust to the network topology within the time-delayed neuronal systems including electrical couplings.
Persistent spatial information in the frontal eye field during object-based short-term memory.
Clark, Kelsey L; Noudoost, Behrad; Moore, Tirin
2012-08-08
Spatial attention is known to gate entry into visual short-term memory, and some evidence suggests that spatial signals may also play a role in binding features or protecting object representations during memory maintenance. To examine the persistence of spatial signals during object short-term memory, the activity of neurons in the frontal eye field (FEF) of macaque monkeys was recorded during an object-based delayed match-to-sample task. In this task, monkeys were trained to remember an object image over a brief delay, regardless of the locations of the sample or target presentation. FEF neurons exhibited visual, delay, and target period activity, including selectivity for sample location and target location. Delay period activity represented the sample location throughout the delay, despite the irrelevance of spatial information for successful task completion. Furthermore, neurons continued to encode sample position in a variant of the task in which the matching stimulus never appeared in their response field, confirming that FEF maintains sample location independent of subsequent behavioral relevance. FEF neurons also exhibited target-position-dependent anticipatory activity immediately before target onset, suggesting that monkeys predicted target position within blocks. These results show that FEF neurons maintain spatial information during short-term memory, even when that information is irrelevant for task performance.
Tidal Boundary Conditions in SEAWAT
Mulligan, Ann E.; Langevin, Christian; Post, Vincent E.A.
2011-01-01
SEAWAT, a U.S. Geological Survey groundwater flow and transport code, is increasingly used to model the effects of tidal motion on coastal aquifers. Different options are available to simulate tidal boundaries but no guidelines exist nor have comparisons been made to identify the most effective approach. We test seven methods to simulate a sloping beach and a tidal flat. The ocean is represented in one of the three ways: directly using a high hydraulic conductivity (high-K) zone and indirect simulation via specified head boundaries using either the General Head Boundary (GHB) or the new Periodic Boundary Condition (PBC) package. All beach models simulate similar water fluxes across the upland boundary and across the sediment-water interface although the ratio of intertidal to subtidal flow is different at low tide. Simulating a seepage face results in larger intertidal fluxes and influences near-shore heads and salinity. Major differences in flow occur in the tidal flat simulations. Because SEAWAT does not simulate unsaturated flow the water table only rises via flow through the saturated zone. This results in delayed propagation of the rising tidal signal inland. Inundation of the tidal flat is delayed as is flow into the aquifer across the flat. This is severe in the high-K and PBC models but mild in the GHB models. Results indicate that any of the tidal boundary options are fine if the ocean-aquifer interface is steep. However, as the slope of that interface decreases, the high-K and PBC approaches perform poorly and the GHB boundary is preferable.
ERIC Educational Resources Information Center
Davis, Michelle R.
2008-01-01
This article reports that the crisis besetting U.S. and world financial markets is hitting school districts hard, as they struggle to float the bonds needed for capital projects, borrow money to ensure cash flow, and get access to investment funds locked up in troubled institutions. Some schools districts depend heavily on borrowed money to pay…
National Practice Patterns of Obtaining Informed Consent for Stroke Thrombolysis.
Mendelson, Scott J; Courtney, D Mark; Gordon, Elisa J; Thomas, Leena F; Holl, Jane L; Prabhakaran, Shyam
2018-03-01
No standard approach to obtaining informed consent for stroke thrombolysis with tPA (tissue-type plasminogen activator) currently exists. We aimed to assess current nationwide practice patterns of obtaining informed consent for tPA. An online survey was developed and distributed by e-mail to clinicians involved in acute stroke care. Multivariable logistic regression analyses were performed to determine independent factors contributing to always obtaining informed consent for tPA. Among 268 respondents, 36.7% reported always obtaining informed consent and 51.8% reported the informed consent process caused treatment delays. Being an emergency medicine physician (odds ratio, 5.8; 95% confidence interval, 2.9-11.5) and practicing at a nonacademic medical center (odds ratio, 2.1; 95% confidence interval, 1.0-4.3) were independently associated with always requiring informed consent. The most commonly cited cause of delay was waiting for a patient's family to reach consensus about treatment. Most clinicians always or often require informed consent for stroke thrombolysis. Future research should focus on standardizing content and delivery of tPA information to reduce delays. © 2018 American Heart Association, Inc.
Application of CFD codes to the design and development of propulsion systems
NASA Technical Reports Server (NTRS)
Lord, W. K.; Pickett, G. F.; Sturgess, G. J.; Weingold, H. D.
1987-01-01
The internal flows of aerospace propulsion engines have certain common features that are amenable to analysis through Computational Fluid Dynamics (CFD) computer codes. Although the application of CFD to engineering problems in engines was delayed by the complexities associated with internal flows, many codes with different capabilities are now being used as routine design tools. This is illustrated by examples taken from the aircraft gas turbine engine of flows calculated with potential flow, Euler flow, parabolized Navier-Stokes, and Navier-Stokes codes. Likely future directions of CFD applied to engine flows are described, and current barriers to continued progress are highlighted. The potential importance of the Numerical Aerodynamic Simulator (NAS) to resolution of these difficulties is suggested.
Expert system for surveillance and diagnosis of breach fuel elements
Gross, K.C.
1988-01-21
An apparatus and method are disclosed for surveillance and diagnosis of breached fuel elements in a nuclear reactor. A delayed neutron monitoring system provides output signals indicating the delayed neutron activity and age and the equivalent recoil area of a breached fuel element. Sensors are used to provide outputs indicating the status of each component of the delayed neutron monitoring system. Detectors also generate output signals indicating the reactor power level and the primary coolant flow rate of the reactor. The outputs from the detectors and sensors are interfaced with an artificial intelligence-based knowledge system which implements predetermined logic and generates output signals indicating the operability of the reactor. 2 figs.
Expert system for surveillance and diagnosis of breach fuel elements
Gross, Kenny C.
1989-01-01
An apparatus and method are disclosed for surveillance and diagnosis of breached fuel elements in a nuclear reactor. A delayed neutron monitoring system provides output signals indicating the delayed neutron activity and age and the equivalent recoil areas of a breached fuel element. Sensors are used to provide outputs indicating the status of each component of the delayed neutron monitoring system. Detectors also generate output signals indicating the reactor power level and the primary coolant flow rate of the reactor. The outputs from the detectors and sensors are interfaced with an artificial intelligence-based knowledge system which implements predetermined logic and generates output signals indicating the operability of the reactor.
NASA Astrophysics Data System (ADS)
Al Sawaf, Mohamad Basel; Kawanisi, Kiyosi; Kagami, Junya; Bahreinimotlagh, Masoud; Danial, Mochammad Meddy
2017-10-01
The aim of this study is to investigate the scaling exponent properties of mountainous river flow fluctuations by detrended fluctuation analysis (DFA). Streamflow data were collected continuously using Fluvial Acoustic Tomography System (FATS), which is a novel system for measuring continuous streamflow at high-frequency scales. The results revealed that river discharge fluctuations have two scaling regimes and scaling break. In contrast to the Ranting Curve method (RC), the small-scale exponent detected by the FATS is estimated to be 1.02 ± 0.42% less than that estimated by RC. More importantly, the crossover times evaluated from the FATS delayed approximately by 42 ± 21 hr ≈2-3 days than their counterparts estimated by RC. The power spectral density analysis assists our findings. We found that scaling characteristics information evaluated for a river using flux data obtained by RC approach might not be accurately detected, because this classical method assumes that flow in river is steady and depends on constructing a relationship between discharge and water level, while the discharge obtained by the FATS decomposes velocity and depth into two ratings according to the continuity equation. Generally, this work highlights the performance of FATS as a powerful and effective approach for continuous streamflow measurements at high-frequency levels.
Biomimetics and Tubercles on Flippers for Hydrodynamic Flow Control
NASA Astrophysics Data System (ADS)
Fish, Frank E.
2011-11-01
The biomimetic approach seeks to incorporate designs based on biological organisms into engineered technologies. Biomimetics can be used to engineer machines that emulate the performance of organisms, particularly in instances where the organism's performance exceeds current mechanical technology or provides new directions to solve existing problems. The ability to control the flow of water around the body dictates the performance of marine mammals in the aquatic environment. Morphological specializations of marine mammals afford mechanisms for passive flow control. Aside from the design of the body, which minimizes drag, the morphology of the appendages provide hydrodynamic advantages with respect to drag, lift, thrust, and stall. Of particular interest are the pectoral flippers of the humpback whale (Megaptera novaeangliae). These flippers act as wing-like structures to provide hydrodynamic lift for maneuvering. The use of any such wing-like structure in making small radius turns to enhance both agility and maneuverability is constrained by performance associated with stall. Delay of stall can be accomplished passively by modification of the flipper leading edge. The design of the flippers includes prominent leading edge bumps or tubercles. Such a design is exhibited by the leading edge tubercles on the flippers of humpback whales. These novel morphological structures induce a spanwise flow field of separated vortices alternating with regions of accelerated flow. The coupled flow regions maintain areas of attached flow and delay stall to high angles of attack. The morphological features of humpback whales for flow control can be utilized in the biomimetic design of engineered structures and commercial products for increased hydrodynamic performance. Nature retains a store of untouched knowledge, which would be beneficial in advancing technology.
Off-design flow measurements in a centrifugal compressor vaneless diffuser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinarbasi, A.; Johnson, M.W.
1995-10-01
Detailed measurements have been taken of the three-dimensional velocity field within the vaneless diffuser of a backswept low speed centrifugal compressor using hot-wire anemometry. A 16% below and an 11% above design flow rate were used in the present study. Results at both flow rates show how the blade wake mixes out more rapidly than the passage wake. Strong secondary flows inherited from the impeller at the higher flow rate delay the mixing out of the circumferential velocity variations, but at both flow rates these circumferential variations are negligible at the last measurement station. The measured tangential/radial flow angle ismore » used to recommend optimum values for the vaneless space and vane angle for design of a vaned diffuser.« less
Delayed excitatory and inhibitory feedback shape neural information transmission
NASA Astrophysics Data System (ADS)
Chacron, Maurice J.; Longtin, André; Maler, Leonard
2005-11-01
Feedback circuitry with conduction and synaptic delays is ubiquitous in the nervous system. Yet the effects of delayed feedback on sensory processing of natural signals are poorly understood. This study explores the consequences of delayed excitatory and inhibitory feedback inputs on the processing of sensory information. We show, through numerical simulations and theory, that excitatory and inhibitory feedback can alter the firing frequency response of stochastic neurons in opposite ways by creating dynamical resonances, which in turn lead to information resonances (i.e., increased information transfer for specific ranges of input frequencies). The resonances are created at the expense of decreased information transfer in other frequency ranges. Using linear response theory for stochastically firing neurons, we explain how feedback signals shape the neural transfer function for a single neuron as a function of network size. We also find that balanced excitatory and inhibitory feedback can further enhance information tuning while maintaining a constant mean firing rate. Finally, we apply this theory to in vivo experimental data from weakly electric fish in which the feedback loop can be opened. We show that it qualitatively predicts the observed effects of inhibitory feedback. Our study of feedback excitation and inhibition reveals a possible mechanism by which optimal processing may be achieved over selected frequency ranges.
Juncture flow improvement for wing/pylon configurations by using CFD methodology
NASA Technical Reports Server (NTRS)
Gea, Lie-Mine; Chyu, Wei J.; Stortz, Michael W.; Chow, Chuen-Yen
1993-01-01
Transonic flow field around a fighter wing/pylon configuration was simulated by using an implicit upwinding Navier-Stokes flow solver (F3D) and overset grid technology (Chimera). Flow separation and local shocks near the wing/pylon junction were observed in flight and predicted by numerical calculations. A new pylon/fairing shape was proposed to improve the flow quality. Based on numerical results, the size of separation area is significantly reduced and the onset of separation is delayed farther downstream. A smoother pressure gradient is also obtained near the junction area. This paper demonstrates that computational fluid dynamics (CFD) methodology can be used as a practical tool for aircraft design.
Contributory factors to traffic crashes at signalized intersections in Hong Kong.
Wong, S C; Sze, N N; Li, Y C
2007-11-01
Efficient geometric design and signal timing not only improve operational performance at signalized intersections by expanding capacity and reducing traffic delays, but also result in an appreciable reduction in traffic conflicts, and thus better road safety. Information on the incidence of crashes, traffic flow, geometric design, road environment, and traffic control at 262 signalized intersections in Hong Kong during 2002 and 2003 are incorporated into a crash prediction model. Poisson regression and negative binomial regression are used to quantify the influence of possible contributory factors on the incidence of killed and severe injury (KSI) crashes and slight injury crashes, respectively, while possible interventions by traffic flow are controlled. The results for the incidence of slight injury crashes reveal that the road environment, degree of curvature, and presence of tram stops are significant factors, and that traffic volume has a diminishing effect on the crash risk. The presence of tram stops, number of pedestrian streams, road environment, proportion of commercial vehicles, average lane width, and degree of curvature increase the risk of KSI crashes, but the effect of traffic volume is negligible.
An experimental and kinetic modeling study on dimethyl carbonate (DMC) pyrolysis and combustion
Sun, Wenyu; Yang, Bin; Hansen, Nils; ...
2015-12-08
Because of the absence of C–C bonds and the large oxygen content in its molecular structure, dimethyl carbonate (DMC) is a promising oxygenated additive or substitute for hydrocarbon fuels. In order to understand its chemical oxidation and combustion kinetics, flow reactor pyrolysis at different pressures (40, 200 and 1040 mbar) and low-pressure laminar premixed flames with different equivalence ratios (1.0 and 1.5) were investigated. Mole fraction profiles of many reaction intermediates and products were obtained within estimated experimental uncertainties. From theoretical calculations and estimations, a detailed kinetic model for DMC pyrolysis and high-temperature combustion consisting of 257 species and 1563more » reactions was developed. The performance of the kinetic model was then analyzed using detailed chemical composition information, primarily from the present measurements. In addition, it was examined against the chemical structure of an opposed-flow diffusion flame, relying on global combustion properties such as the ignition delay times and laminar burning velocities. Furthermore, these extended comparisons yielded overall satisfactory agreement, demonstrating the applicability of the present model over a wide range of high-temperature conditions.« less
7 CFR 59.202 - Mandatory daily reporting for barrows and gilts.
Code of Federal Regulations, 2010 CFR
2010-01-01
... live weight basis; and (iv) The base price and premiums and discounts paid for carcass characteristics... unavailable due to pricing that is determined on a delayed basis. The packer shall report information on such... reporting day, unless such information is unavailable due to pricing that is determined on a delayed basis...
Whisker row deprivation affects the flow of sensory information through rat barrel cortex.
Jacob, Vincent; Mitani, Akinori; Toyoizumi, Taro; Fox, Kevin
2017-01-01
Whisker trimming causes substantial reorganization of neuronal response properties in barrel cortex. However, little is known about experience-dependent rerouting of sensory processing following sensory deprivation. To address this, we performed in vivo intracellular recordings from layers 2/3 (L2/3), layer 4 (L4), layer 5 regular-spiking (L5RS), and L5 intrinsically bursting (L5IB) neurons and measured their multiwhisker receptive field at the level of spiking activity, membrane potential, and synaptic conductance before and after sensory deprivation. We used Chernoff information to quantify the "sensory information" contained in the firing patterns of cells in response to spared and deprived whisker stimulation. In the control condition, information for flanking-row and same-row whiskers decreased in the order L4, L2/3, L5IB, L5RS. However, after whisker-row deprivation, spared flanking-row whisker information was reordered to L4, L5RS, L5IB, L2/3. Sensory information from the trimmed whiskers was reduced and delayed in L2/3 and L5IB neurons, whereas sensory information from spared whiskers was increased and advanced in L4 and L5RS neurons. Sensory information from spared whiskers was increased in L5IB neurons without a latency change. L5RS cells exhibited the largest changes in sensory information content through an atypical plasticity combining a significant decrease in spontaneous activity and an increase in a short-latency excitatory conductance. Sensory cortical plasticity is usually quantified by changes in evoked firing rate. In this study we quantified plasticity by changes in sensory detection performance using Chernoff information and receiver operating characteristic analysis. We found that whisker deprivation causes a change in information flow within the cortical layers and that layer 5 regular-spiking cells, despite showing only a small potentiation of short-latency input, show the greatest increase in information content for the spared input partly by decreasing their spontaneous activity. Copyright © 2017 the American Physiological Society.
Prognostics for Ground Support Systems: Case Study on Pneumatic Valves
NASA Technical Reports Server (NTRS)
Daigle, Matthew; Goebel, Kai
2011-01-01
Prognostics technologies determine the health (or damage) state of a component or sub-system, and make end of life (EOL) and remaining useful life (RUL) predictions. Such information enables system operators to make informed maintenance decisions and streamline operational and mission-level activities. We develop a model-based prognostics methodology for pneumatic valves used in ground support equipment for cryogenic propellant loading operations. These valves are used to control the flow of propellant, so failures may have a significant impact on launch availability. Therefore, correctly predicting when valves will fail enables timely maintenance that avoids launch delays and aborts. The approach utilizes mathematical models describing the underlying physics of valve degradation, and, employing the particle filtering algorithm for joint state-parameter estimation, determines the health state of the valve and the rate of damage progression, from which EOL and RUL predictions are made. We develop a prototype user interface for valve prognostics, and demonstrate the prognostics approach using historical pneumatic valve data from the Space Shuttle refueling system.
NASA Astrophysics Data System (ADS)
Wang, Zhefu; Wang, Liang; Fu, Song
2017-09-01
Sensitivity analyses and non-linear parabolized stability equations are solved to provide a computational assessment of the potential use of a Dielectric Barrier Discharge (DBD) plasma actuator for a prolonging laminar region in swept Hiemenz flow. The derivative of the kinetic energy with respect to the body force is deduced, and its components in different directions are defined as sensitivity functions. The results of sensitivity analyses and non-linear parabolized stability equations both indicate that the introduction of a body force as the plasma actuator at the bottom of a crossflow vortex can mitigate instability to delay flow transition. In addition, the actuator is more effective when placed more upstream until the neutral point. In fact, if the actuator is sufficiently close to the neutral point, it is likely to act as a strong disturbance over-riding the natural disturbance and dominating transition. Different operating voltages of the DBD actuators are tested, resulting in an optimal practice for transition delay. The results demonstrate that plasma actuators offer great potential for transition control.
Transient-pressure analysis in geothermal steam reservoirs with an immobile vaporizing liquid phase
Moench, A.F.; Atkinson, P.G.
1978-01-01
A finite-difference model for the radial horizontal flow of steam through a porous medium is used to evaluate transient-pressure behavior in the presence of an immobile vaporizing or condensing liquid phase. Graphs of pressure drawdown and buildup in terms of dimensionless pressure and time are obtained for a well discharging steam at a constant mass flow rate for a specified time. The assumptions are made that the steam is in local thermal equilibrium with the reservoir rocks, that temperature changes are due only to phase change, and that effects of vapor-pressure lowering are negligible. Computations show that when a vaporizing liquid phase is present the pressure drawdown exhibits behavior similar to that observed in noncondensable gas reservoirs, but delayed in time. A theoretical analysis allows for the computation of this delay and demonstrates that it is independent of flow geometry. The response that occurs upon pressure buildup is markedly different from that in a noncondensable gas system. This result may provide a diagnostic tool for establishing the existence of phase-change phenomena within a reservoir. ?? 1979.
Dynamics of scroll waves with time-delay propagation in excitable media
NASA Astrophysics Data System (ADS)
Chen, Jiang-Xing; Xiao, Jie; Qiao, Li-Yan; Xu, Jiang-Rong
2018-06-01
Information transmission delay can be widely observed in various systems. Here, we study the dynamics of scroll waves with time-delay propagation among slices in excitable media. Weak time delay induces scroll waves to meander. Through increasing the time delay, we find a series of dynamical transitions. Firstly, the straight filament of a scroll wave becomes twisted. Then, the scroll wave breaks and forms interesting patterns. With long time delay, loosed scroll waves are maintained while their period are greatly decreased. Also, cylinder waves appears. The influences of diffusively coupling strength on the time-delay-induced scroll waves are studied. It is found that the critical time delay characterizing those transitions decreases as the coupling strength is increased. A phase diagram in the diffusive coupling-time delay plane is presented.
Hydroxyl Tagging Velocimetry in Cavity-Piloted Mach 2 Combustor (Postprint)
2006-01-01
combustor with a wall cavity flameholder. In the HTV method, ArF excimer laser (193 nm) beams pass through a humid gas flow and dissociate H2O into H...grid of OH tracked by planar laser -induced fluorescence to yield about 120 velocity vectors of the two-dimensional flow over a fixed time delay...with a wall cavity flameholder. In the HTV method, ArF excimer laser (193 nm) beams pass through a humid gas flow and dissociate H2O into H + OH to
A/R systems reduce delayed and denied reimbursements.
Escobar, Carlos
2007-01-01
The day-to-day benefits of a comprehensive billing and collections system are pro-active and preventive--administrators are increasingly learning that accelerating billings hastens collections and, ultimately, facility profitability. Effective billing and collections management services work closely with the facility, matching nightly "dumps" of patient files with transcripts. This marriage of otherwise disparate data creates a billing unit that reduces errors and ensures no billable procedures are lost. Ultimately, the goal of any medical practice that engages an ASP application or outsource solution is not to sit idly by while allowing a billing company to take control of a practice's revenue stream. The ability to track the billing process from transcript submission to payment provides a facility with all information necessary to manage cash flow, revenues, and even personal and practice financial planning.
Li, Shukai; Yang, Lixing; Gao, Ziyou; Li, Keping
2014-11-01
In this paper, the stabilization strategies of a general nonlinear car-following model with reaction-time delay of the drivers are investigated. The reaction-time delay of the driver is time varying and bounded. By using the Lyapunov stability theory, the sufficient condition for the existence of the state feedback control strategy for the stability of the car-following model is given in the form of linear matrix inequality, under which the traffic jam can be well suppressed with respect to the varying reaction-time delay. Moreover, by considering the external disturbance for the running cars, the robust state feedback control strategy is designed, which ensures robust stability and a smaller prescribed H∞ disturbance attenuation level for the traffic flow. Numerical examples are given to illustrate the effectiveness of the proposed methods. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Imaging the cardiac blood flow during CPR with EBCT in an animal model
NASA Astrophysics Data System (ADS)
Recheis, Wolfgang A.; Schuster, Antonius H.; Pallwein-Prettner, Leo; Kleinsasser, Axel; Loeckinger, Alexander; Hoermann, Christoph; zur Nedden, Dieter
2002-04-01
There are open questions concerning the hemodynamics during cardiopulmonary resuscitation (CPR). The purpose was to evaluate a model of the blood flow during CPR in specified anatomic regions. After cardiac arrest, one intubated swine under full intensive care supervision was scanned during CPR using an automated resuscitation device. CT scans were performed with an EBCT in the 50ms modus at eight levels, therefore covering most of the heart and pulmonary vessels. 50ml contrast agent was administered with 10ml/sec and a delay of five seconds to visualize the contrast agent passage through the heart and pulmonary circulation. The gray-value changes in previously specified ROIs were directly correlated with the resuscitation device position in respect to the thorax. The effects of CPR on the blood flow could be visualized dynamically by quantifying the contrast enhancement. The increase of gray values could be estimated with different delays, depending on the anatomical situation. The inflow and outflow dependent on thumper dynamics could be estimated. At the onset of contrast medium inflow, turbulence could be visualized in the right ventricle, which are caused by the inhomogeneous contrast medium distribution. Triggered EBCT during CPR offers the opportunity to study regional blood flow depending on chest compression.
Metcalfe, Kelly A; Semple, John; Quan, May-Lynn; Holloway, Claire; Wright, Frances; Narod, Steven; Hofer, Stefan; Bagher, Shaghayegh; Zhong, Toni
2017-02-01
Delayed breast reconstruction is an option for women who have undergone mastectomy; however, uptake is low. The purpose of this study was to identify premastectomy and postmastectomy demographic, clinical, and psychosocial predictors of uptake of delayed breast reconstruction in the long-term survivorship period. This was a prospective longitudinal survey study of mastectomy patients in which a repeated measures design was used to evaluate uptake of delayed breast reconstruction. Demographic, clinical, and psychosocial variables were collected before mastectomy and 1 year after mastectomy. Information regarding uptake of delayed breast reconstruction was collected at approximately 6 years after mastectomy. A predictive model was designed using a multivariate logistic regression model and Akiake information criterion stepwise algorithm. Ninety-six mastectomy patients were followed from before mastectomy to 75.2 months after mastectomy, and 35 women (36.5 percent) underwent delayed breast reconstruction. Women who elected for delayed breast reconstruction experienced worsening of body concerns from before mastectomy to 1 year after mastectomy, compared with women who did not elect to undergo delayed breast reconstruction (p = 0.03). Mean scores for psychological distress were significantly worse both before mastectomy and 1 year after mastectomy in women who went on to undergo delayed breast reconstruction compared with those who did not undergo delayed breast reconstruction (p = 0.034 and p = 0.022, respectively). A predictive model for the uptake of delayed breast reconstruction was developed using demographic, clinical, and psychosocial characteristics. The area under the receiver operating characteristic curve was 85 percent, indicating good precision. Women who are experiencing higher levels of distress, anxiety, and body concerns both before and after mastectomy appear to be significantly likely to select delayed breast reconstruction. This may have implications for postreconstruction satisfaction and psychosocial functioning. Risk, III.
Hammond, W.C.; Toomey, D.R.
2003-01-01
We use teleseismic P and S delay times and shear wave splitting measurements to constrain isotropic and anisotropic heterogeneity in the mantle beneath the southern East Pacific Rise (SEPR). The data comprise 462 P and S delay times and 18 shear wave splitting observations recorded during the Mantle Electromagnetic and Tomography (MELT) Experiment. We estimate the mantle melt content (F) and temperature (T) variation from the isotropic velocity variation. Our results indicate that the maximum variation in F beneath our array is between zero and ???1.2%, and maximum variation in T is between zero and ???100 K. We favor an explanation having partial contributions from both T and F. We approximate the seismic anisotropy of the upper mantle with hexagonal symmetry, consistent with the assumption of two dimensionality of mantle flow. Our new tomographic technique uses a nonlinear inversion of P and slow S polarization delay times to simultaneously solve for coupled VP and VS heterogeneity throughout the model and for the magnitude of anisotropy within discrete domains. The domain dimensions and the dip of the anisotropy are fixed for each inversion but are varied in a grid search, obtaining the misfit of the models to the body wave delay data and to split times of vertically propagating S waves. The data misfit and the isotropic heterogeneity are sensitive to domain dimensions and dip of anisotropy. In a region centered beneath the SEPR the best average dip of the hexagonal symmetry axis is horizontal or dipping shallowly (<30??) west. Given the resolution of our data, a subaxial region characterized by vertically aligned symmetry axes may exist but is limited to be <80 km deep. We infer that the mantle flow beneath the SEPR is consistent with shallow asthenospheric return flow from the direction of the South Pacific superswell.
Application of low-dimensional techniques for closed-loop control of turbulent flows
NASA Astrophysics Data System (ADS)
Ausseur, Julie
The groundwork for an advanced closed-loop control of separated shear layer flows is laid out in this document. The experimental testbed for the present investigation is the turbulent flow over a NACA-4412 model airfoil tested in the Syracuse University subsonic wind tunnel at Re=135,000. The specified control objective is to delay separation - or stall - by constantly keeping the flow attached to the surface of the wing. The proper orthogonal decomposition (POD) is shown to he a valuable tool to provide a low-dimensional estimate of the flow state and the first POD expansion coefficient is proposed to he used as the control variable. Other reduced-order techniques such as the modified linear and quadratic stochastic measurement methods (mLSM, mQSM) are applied to reduce the complexity of the flow field and their ability to accurately estimate the flow state from surface pressure measurements alone is examined. A simple proportional feedback control is successfully implemented in real-time using these tools and flow separation is efficiently delayed by over 3 degrees angle of attack. To further improve the quality of the flow state estimate, the implementation of a Kalman filter is foreseen, in which the knowledge of the flow dynamics is added to the computation of the control variable to correct for the potential measurement errors. To this aim, a reduced-order model (ROM) of the flow is developed using the least-squares method to obtain the coefficients of the POD/Galerkin projection of the Navier-Stokes equations from experimental data. To build the training ensemble needed in this experimental procedure, the spectral mLSM is performed to generate time-resolved series of POD expansion coefficients from which temporal derivatives are computed. This technique, which is applied to independent PIV velocity snapshots and time-resolved surface measurements, is able to retrieve the rational temporal evolution of the flow physics in the entire 2-D measurement area. The quality of the spectral measurements is confirmed by the results from both the linear and quadratic dynamical systems. The preliminary results from the linear ROM strengthens the motivation for future control implementation of a linear Kalman filter in this flow.
NASA Astrophysics Data System (ADS)
Audier, P.; Fénot, M.; Bénard, N.; Moreau, E.
2016-02-01
The case presented here deals with plasma flow control applied to a cross-flow configuration, more specifically to a film cooling system. The ability of a plasma dielectric barrier discharge actuator for film cooling effectiveness enhancement is investigated through an experimental set-up, including a film injection from an elongated slot into a thermally uniform cross-flow. Two-dimensional particle image velocimetry and infrared-thermography measurements are performed for three different blowing ratios of M = 0.4, 0.5, and 1. Results show that the effectiveness can be increased when the discharge is switched on, as predicted by the numerical results available in literature. Whatever the blowing ratio, the actuator induces a deflection of the jet flow towards the wall, increases its momentum, and delays its diffusion in the cross-flow.
Stability investigations of relaxing molecular gas flows. Results and perspectives
NASA Astrophysics Data System (ADS)
Grigor'ev, Yurii N.; Ershov, Igor V.
2017-10-01
This article presents results of systematic investigations of a dissipative effect which manifests itself as the growth of hydrodynamic stability and suppression of turbulence in relaxing molecular gas flows. The effect can be a new way for control stability and laminar turbulent transition in aerodynamic flows. The consideration of suppression of inviscid acoustic waves in 2D shear flows is presented. Nonlinear evolution of large-scale vortices and Kelvin — Helmholtz waves in relaxing shear flows are studied. Critical Reynolds numbers in supersonic Couette flows are calculated analytically and numerically within the framework of both classical linear and nonlinear energy hydrodynamic stability theories. The calculations clearly show that the relaxation process can appreciably delay the laminar-turbulent transition. The aim of this article is to show the new dissipative effect, which can be used for flow control and laminarization.
The Delphi Process: Some Assumptions and Some Realities.
ERIC Educational Resources Information Center
Waldron, James S.
The effectiveness of the Delphi Technique is evaluated in terms of immediate and delayed controlled information feedback (feedback within 5 seconds as compared with a 24-hour delay); and the relationships that exist among measures of integrative complexity, estimations about the time of occurrence of future events, and time delay between task…
System for stabilizing cable phase delay utilizing a coaxial cable under pressure
NASA Technical Reports Server (NTRS)
Clements, P. A. (Inventor)
1974-01-01
Stabilizing the phase delay of signals passing through a pressurizable coaxial cable is disclosed. Signals from an appropriate source at a selected frequency, e.g., 100 MHz, are sent through the controlled cable from a first cable end to a second cable end which, electrically, is open or heavily mismatched at 100 MHz, thereby reflecting 100 MHz signals back to the first cable end. Thereat, the phase difference between the reflected-back signals and the signals from the source is detected by a phase detector. The output of the latter is used to control the flow of gas to or from the cable, thereby controlling the cable pressure, which in turn affects the cable phase delay.
Flow Effects on the Flammability Diagrams of Solid Fuels
NASA Technical Reports Server (NTRS)
Cordova, J. L.; Ceamanos, J.; Fernandez-Pello, A. C.; Long, R. T.; Torero, J. L.; Quintiere, J. G.
1997-01-01
A research program is currently underway with the final objective of developing a fundamental understanding of the controlling mechanisms underlying the flammability diagrams of solid combustible materials and their derived fire properties. Given that there is a high possibility of an accidental fire occurring in a space-based facility, understanding the fire properties of materials that will be used in such facilities is of critical importance. With this purpose, the flammability diagrams of the materials, as those produced by the Lateral Ignition and Flame Spread Test (LIFT) apparatus and by a new forced flow device, the Forced Flow Ignition and Flame Spread Test (FIST) apparatus, will be obtained. The specific objective of the program is to apply the new flammability apparatus, which will more accurately reflect the potential ambient conditions of space-based environments, to the characterization of the materials for space applications. This paper presents a parametric study of oxidizer flow effects on the ignition curve of the flammability diagrams of PMMA. The dependence of the ignition delay time on the external radiant flux and either the sample width (LIFT) or the flow velocity (FIST) has been studied. Although preliminary, the results indicate that natural and forced convection flow changes, affect the characteristics of the ignition curves of the flammability diagrams. The major effect on the ignition time appears to be due to convective transfer variations at the fuel surface. At high radiant fluxes or high flow velocities, however, it appears that gas phase processes become increasingly important, affecting the overall ignition delay time. A numerical analysis of the solid fuel heating and pyrolysis has also been developed. The theoretical predictions approximate the experiments well for conditions in which the gas phase induction time is negligible.
Flow Effects on the Flammability Diagrams of Solid Fuels: Microgravity Influence on Ignition Delay
NASA Technical Reports Server (NTRS)
Cordova, J. L.; Walther, D. C.; Fernandez-Pello, A. C.; Steinhaus, T.; Torero, J. L.; Quintere, J. G.; Ross, H. D.
1999-01-01
The possibility of an accidental fire in space-based facilities is a primary concern of space exploration programs. Spacecraft environments generally present low velocity air currents produced by ventilation and heating systems (of the order of 0.1 m/s), and fluctuating oxygen concentrations around that of air due to CO2 removal systems. Recent experiments of flame spread in microgravity show the spread rate to be faster and the limiting oxygen concentration lower than in normal-gravity. To date, there is not a material flammability-testing protocol that specifically addresses issues related to microgravity conditions. The present project (FIST) aims to establish a testing methodology that is suitable for the specific conditions of reduced gravity. The concepts underlying the operation of the LIFT apparatus, ASTM-E 1321-93, have been used to develop the Forced-flow Ignition and flame-Spread Test (FIST). As in the LIFT, the FIST is used to obtain the flammability diagrams of the material, i.e., graphs of ignition delay time and flame spread rate as a function of the externally applied radiant flux, but under forced flow rather than natural convection conditions, and for different oxygen concentrations. Although the flammability diagrams are similar, the flammability properties obtained with the FIST are found to depend on the flow characteristics. A research program is currently underway with the purpose of implementing the FIST as a protocol to characterize the flammability performance of solid materials to be used in microgravity facilities. To this point, tests have been performed with the FIST apparatus in both normal-gravity and microgravity conditions to determine the effects of oxidizer flow characteristics on the flammability diagrams of polymethylmethacrylate (PMMA) fuel samples. The experiments are conducted at reduced gravity in a KC- 135 aircraft following a parabolic flight trajectory that provides up to 25 seconds of low gravity. The objective of the experiments is to obtain data of ignition delay and flame spread rate at low flow velocities (0.1 to 0.2 m/s), which cannot be obtained under normal gravity because of the natural convection induced flows (approx. 0.5 m/s). Due to the limited reduced gravity time, the data can only be obtained for high radiant fluxes, and are consequently limited in scope. These tests do, however, provide insight into the flammability diagram characteristics at low velocity and reduced gravity, and also into the implications of the flow-dependence of the flammability properties under environments similar to those encountered in space facilities.
Bateman, Grant A; Lechner-Scott, Jeannette; Lea, Rodney A
2016-09-22
It has been suggested there is a chronic neurodegenerative disorder, underlying the pathophysiology of multiple sclerosis (MS), which is distinct from the more obvious immune-mediated attack on the white matter. Limited data exists indicating there is an alteration in pulse wave propagation within the craniospinal cavity in MS, similar to the findings in normal pressure hydrocephalus (NPH). It is hypothesized MS may harbor pulse wave encephalopathy. The purpose of this study is to compare blood flow and pulse wave measurements in MS patients with a cohort of NPH patients and control subjects, to test this hypothesis. Twenty patients with MS underwent magnetic resonance (MR) flow quantification techniques. Mean blood flow and stroke volume were measured in the arterial inflow and venous out flow from the sagittal (SSS) and straight sinus (ST). The arteriovenous delay (AVD) was defined. The results were compared with both age-matched controls and NPH patients. In MS there was a 35 % reduction in arteriovenous delay and a 5 % reduction in the percentage of the arterial inflow returning via the sagittal sinus compared to age matched controls. There was an alteration in pulse wave propagation, with a 26 % increase in arterial stroke volume but 30 % reduction in SSS and ST stroke volume. The AVD and blood flow changes were in the same direction to those of NPH patients. There are blood flow and pulsation propagation changes in MS patients which are similar to those of NPH patients. The findings would be consistent with an underlying pulse wave encephalopathy component in MS.
Blood flow speed of the gastric conduit assessed by indocyanine green fluorescence
Koyanagi, Kazuo; Ozawa, Soji; Oguma, Junya; Kazuno, Akihito; Yamazaki, Yasushi; Ninomiya, Yamato; Ochiai, Hiroki; Tachimori, Yuji
2016-01-01
Abstract Anastomotic leakage is considered as an independent risk factor for postoperative mortality after esophagectomy, and an insufficient blood flow in the reconstructed conduit may be a risk factor of anastomotic leakage. We investigated the clinical significance of blood flow visualization by indocyanine green (ICG) fluorescence in the gastric conduit as a means of predicting the leakage of esophagogastric anastomosis after esophagectomy. Forty patients who underwent an esophagectomy with gastric conduit reconstruction were prospectively investigated. ICG fluorescence imaging of the gastric conduit was detected by a near-infrared camera system during esophagectomy and correlated with clinical parameters or surgical outcomes. In 25 patients, the flow speed of ICG fluorescence in the gastric conduit wall was simultaneous with that of the greater curvature vessels (simultaneous group), whereas in 15 patients this was slower than that of the greater curvature vessels (delayed group). The reduced speed of ICG fluorescence stream in the gastric conduit wall was associated with intraoperative blood loss (P = 0.008). Although anastomotic leakage was not found in the simultaneous group, it occurred in 7 patients of the delayed group (P < 0.001). A flow speed of ICG fluorescence in the gastric conduit wall of 1.76 cm/s or less was determined by a receiver operating characteristic (ROC) curve, identified as a significant independent predictor of anastomotic leakage after esophagectomy (P = 0.004). This preliminary study demonstrates that intraoperative evaluation of blood flow speed by ICG fluorescence in the gastric conduit wall is a useful means to predict the risk of anastomotic leakage after esophagectomy. PMID:27472732
He, Feng; Zhao, Lin; Li, Ershuai
2017-01-01
Ethernet-AVB/TSN (Audio Video Bridging/Time-Sensitive Networking) and AFDX (Avionics Full DupleX switched Ethernet) are switched Ethernet technologies, which are both candidates for real-time communication in the context of transportation systems. AFDX implements a fixed priority scheduling strategy with two priority levels. Ethernet-AVB/TSN supports a similar fixed priority scheduling with an additional Credit-Based Shaper (CBS) mechanism. Besides, TSN can support time-triggered scheduling strategy. One direct effect of CBS mechanism is to increase the delay of its flows while decreasing the delay of other priority ones. The former effect can be seen as the shaping restriction and the latter effect can be seen as the shaping benefit from CBS. The goal of this paper is to investigate the impact of CBS on different priority flows, especially on the intermediate priority ones, as well as the effect of CBS bandwidth allocation. It is based on a performance comparison of AVB/TSN and AFDX by simulation in an automotive case study. Furthermore, the shaping benefit is modeled based on integral operation from network calculus perspective. Combing with the analysis of shaping restriction and shaping benefit, some configuration suggestions on the setting of CBS bandwidth are given. Results show that the effect of CBS depends on flow loads and CBS configurations. A larger load of high priority flows in AVB tends to a better performance for the intermediate priority flows when compared with AFDX. Shaping benefit can be explained and calculated according to the changing from the permitted maximum burst. PMID:28531158
Characteristics of traffic flow at nonsignalized T-shaped intersection with U-turn movements.
Fan, Hong-Qiang; Jia, Bin; Li, Xin-Gang; Tian, Jun-Fang; Yan, Xue-Dong
2013-01-01
Most nonsignalized T-shaped intersections permit U-turn movements, which make the traffic conditions of intersection complex. In this paper, a new cellular automaton (CA) model is proposed to characterize the traffic flow at the intersection of this type. In present CA model, new rules are designed to avoid the conflicts among different directional vehicles and eliminate the gridlock. Two kinds of performance measures (i.e., flux and average control delay) for intersection are compared. The impacts of U-turn movements are analyzed under different initial conditions. Simulation results demonstrate that (i) the average control delay is more practical than flux in measuring the performance of intersection, (ii) U-turn movements increase the range and degree of high congestion, and (iii) U-turn movements on the different direction of main road have asymmetrical influences on the traffic conditions of intersection.
Delay-feedback control strategy for reducing CO2 emission of traffic flow system
NASA Astrophysics Data System (ADS)
Zhang, Li-Dong; Zhu, Wen-Xing
2015-06-01
To study the signal control strategy for reducing traffic emission theoretically, we first presented a kind of discrete traffic flow model with relative speed term based on traditional coupled map car-following model. In the model, the relative speed difference between two successive running cars is incorporated into following vehicle's acceleration running equation. Then we analyzed its stability condition with discrete control system stability theory. Third, we designed a delay-feedback controller to suppress traffic jam and decrease traffic emission based on modern controller theory. Last, numerical simulations are made to support our theoretical results, including the comparison of models' stability analysis, the influence of model type and signal control on CO2 emissions. The results show that the temporal behavior of our model is superior to other models, and the traffic signal controller has good effect on traffic jam suppression and traffic CO2 emission, which fully supports the theoretical conclusions.
Carignan, Forest J.
1986-01-21
An electronic ignition system for a gas burner is battery operated. The battery voltage is applied through a DC-DC chopper to a step-up transformer to charge a capacitor which provides the ignition spark. The step-up transformer has a significant leakage reactance in order to limit current flow from the battery during initial charging of the capacitor. A tank circuit at the input of the transformer returns magnetizing current resulting from the leakage reactance to the primary in succeeding cycles. An SCR in the output circuit is gated through a voltage divider which senses current flow through a flame. Once the flame is sensed, further sparks are precluded. The same flame sensor enables a thermopile driven main valve actuating circuit. A safety valve in series with the main gas valve responds to a control pressure thermostatically applied through a diaphragm. The valve closes after a predetermined delay determined by a time delay orifice if the pilot gas is not ignited.
Fuchs, Erich; Gruber, Christian; Reitmaier, Tobias; Sick, Bernhard
2009-09-01
Neural networks are often used to process temporal information, i.e., any kind of information related to time series. In many cases, time series contain short-term and long-term trends or behavior. This paper presents a new approach to capture temporal information with various reference periods simultaneously. A least squares approximation of the time series with orthogonal polynomials will be used to describe short-term trends contained in a signal (average, increase, curvature, etc.). Long-term behavior will be modeled with the tapped delay lines of a time-delay neural network (TDNN). This network takes the coefficients of the orthogonal expansion of the approximating polynomial as inputs such considering short-term and long-term information efficiently. The advantages of the method will be demonstrated by means of artificial data and two real-world application examples, the prediction of the user number in a computer network and online tool wear classification in turning.
76 FR 26787 - Short Sale Reporting Study Required by Dodd-Frank Act Section 417(a)(2)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-09
... benefits and costs be if this real time reporting information were to be made public on a delayed basis..., benefits, and costs be if this real time reporting information were to be made public on a delayed basis... feasibility, benefits, and costs of requiring reporting in real time, either publicly or, in the alternative...
Spot Radiative Ignition and Subsequent Three Dimensional Flame Spread Over Thin Cellulose Fuels
NASA Technical Reports Server (NTRS)
Olson, Sandra L.; Kashiwagi, T.; Kikuchi, M.; Fujita, O.; Ito, K.
1999-01-01
Spontaneous radiative ignition and transition to flame spread over thin cellulose fuel samples was studied aboard the USMP-3 STS-75 Space Shuttle mission, and in three test series in the 10 second Japan Microgravity Center (JAMIC). A focused beam from a tungsten/halogen lamp was used to ignite the center of the fuel sample while an external air flow was varied from 0 to 10 cm/s. Non-piloted radiative ignition of the paper was found to occur more easily in microgravity than in normal gravity. Ignition of the sample was achieved under all conditions studied (shuttle cabin air, 21%-50% O2 in JAMIC), with transition to flame spread occurring for all but the lowest oxygen and flow conditions. While radiative ignition in a quiescent atmosphere was achieved, the flame quickly extinguished in air. The ignition delay time was proportional to the gas-phase mixing time, which is estimated using the inverse flow rate. The ignition delay was a much stronger function of flow at lower oxygen concentrations. After ignition, the flame initially spread only upstream, in a fan-shaped pattern. The fan angle increased with increasing external flow and oxygen concentration from zero angle (tunneling flame spread) at the limiting 0.5 cm/s external air flow, to 90 degrees (semicircular flame spread) for external flows at and above 5 cm/s, and higher oxygen concentrations. The fan angle was shown to be directly related to the limiting air flow velocity. Despite the convective heating from the upstream flame, the downstream flame was inhibited due to the 'oxygen shadow' of the upstream flame for the air flow conditions studied. Downstream flame spread rates in air, measured after upstream flame spread was complete and extinguished, were slower than upstream flame spread rates at the same flow. The quench regime for the transition to flame spread was skewed toward the downstream, due to the augmenting role of diffusion for opposed flow flame spread, versus the canceling effect of diffusion at very low cocurrent flows.
NASA Technical Reports Server (NTRS)
Yoo, Hyo-Sang; Brasil, Connie; Buckley, Nathan; Mohlenbrink, Christoph; Speridakos, Constantine; Parke, Bonny; Hodell, Gita; Lee, Paul U.; Smith, Nancy M.
2017-01-01
This paper introduces NASA's Integrated Demand Management (IDM) concept and presents the results from an early proof-of-concept evaluation and an exploratory experiment. An initial development of the concept was focused on integrating two systems - i.e. the FAA's newly deployed Traffic Flow Management System (TFMS) tool called the Collaborative Trajectory Options Program (CTOP) and the Time-Based Flow Management (TBFM) system with Extended Metering (XM) capabilities to manage projected heavy traffic demand into a capacity-constrained airport. A human-in-the-loop (HITL) simulation experiment was conducted to demonstrate the feasibility of the initial development of the concept by adapting it to an arrival traffic problem at Newark Liberty International Airport (EWR) during clear weather conditions. In this study, the CTOP was utilized to strategically plan the arrival traffic demand by controlling take-off times of both short- and long-haul flights (long-hauls specify aircraft outside TBFM regions and short-hauls specify aircraft within TBFM regions) in a way that results in equitable delays among the groups. Such strategic planning allows less airborne delay to occur within TBFM by feeding manageable long-haul traffic demand while reserving sufficient slots in the overhead streams for the short-haul departures. The manageable traffic demand indicates the TBFM scheduler assigns no more airborne delay than its assigned airspace is capable of absorbing. TBFM then uses its time-based metering capabilities to deliver the desirable throughput by tactically rescheduling the TBFM entered long-haul flights and short-haul departures. Additional research was also performed to explore use of Required Time of Arrival (RTA) capabilities as a potential control mechanism for the airborne flights to improve arrival traffic delivery accuracy of scheduled long-haul traffic demand. The study results show that both short- and long-haul flights received similar ground delays. In addition, there was a noticeable reduction in the total amount of excessive unanticipated last-minute ground delays, i.e. delays that are frequently imposed on the short-haul flight in current day operations due to saturation in the overhead stream, commonly referred to as 'double penalty'. Furthermore, the concept achieved the target throughput while minimizing the expected cost associated with overall delays in arrival traffic. Assessment of the RTA capabilities showed that there was indeed improvement of the scheduled entry times into TBFM regions by using RTA capabilities. However, with respect to reduction in delays incurred within TBFM, there was no observable benefit of improving the precision of long-haul flights entry times.
Analysis of Lean Initiatives in the Production of Naval Aviators
2012-09-01
originated in the 1950s with an engineer named Eji Toyoda, and a production genius Taiichi Ohno at Toyota in Japan. Toyoda and Ohno are credited with...to flow wastes must be eliminated. Taiichi Ohno, the designer of the Toyota Production System, was obsessed with making materials flow and to...pooling between phases or blocks. Producing quality defects . Delays (waiting).–Varying scheduling priorities for students during different blocks of
Transition Delay in a Hypervelocity Boundary Layer using Nonequilibrium CO2 Injection
2008-10-28
flows than for either air or N2 flows. The explanation for this phenomenon lies in the fact that when CO2 is in vibrational and chemical ... chemical non-equilibrium, these relax- ation processes absorb energy from acoustic disturbances whose growth is responsible for transition in high...atmosphere at hypersonic speeds, they must somehow provide for, avoid, or otherwise accommodate the enormous heat-transfer rates to the vehicle engen
Control-based method to identify underlying delays of a nonlinear dynamical system.
Yu, Dongchuan; Frasca, Mattia; Liu, Fang
2008-10-01
We suggest several stationary state control-based delay identification methods which do not require any structural information about the controlled systems and are applicable to systems described by delayed ordinary differential equations. This proposed technique includes three steps: (i) driving a system to a steady state; (ii) perturbing the control signal for shifting the steady state; and (iii) identifying all delays by detecting the time that the system is abruptly drawn out of stationarity. Some aspects especially important for applications are discussed as well, including interaction delay identification, stationary state convergence speed, performance comparison, and the influence of noise on delay identification. Several examples are presented to illustrate the reliability and robustness of all delay identification methods suggested.
Analysis of a Data Communication Network’s Performance under Varying Retransmission Disciplines
1990-09-01
The routing table is updated using delay information transmitted via congestion/routing up- date packets ( CRUP ) or through delay measurement...previous delay, plus or minus a threshold value, a CRUP is generated and flooded over the network. Upon receipt of a CRUP the ROUTING function up- dates...DDN topology is very large, accounting for the time delay for the full network to be updated, whereas adjacent PSN’s receive CRUP packets virtually
Influences on Immunization Decision-Making among US Parents of Young Children.
Chung, Yunmi; Schamel, Jay; Fisher, Allison; Frew, Paula M
2017-12-01
Objectives This study assessed influences on vaccination decisions among parents of young children and examined common vaccination information and advice sources. Methods Using panel samples of parents of children under 7 years, web-based surveys were conducted in 2012 (n = 2603) and 2014 (n = 2518). A vaccine decision-making typology (non-hesitant acceptors, hesitant acceptors, delayers, and refusers) was established and weighted population estimates of potential factors influencing parental vaccination decision (e.g., provider influence, source of information and advice) were computed by year and decision type. Results Delayers and refusers were more likely than acceptors to know someone whose child experienced a severe reaction to a vaccine or delayed/refused vaccine(s). High proportions of delayers (2012: 33.4%, 2014: 33.9%) and refusers (2012: 49.6%, 2014: 58.6%) reported selecting their healthcare provider based on whether the provider would allow them to delay/refuse vaccines. Providers were the most frequently reported trusted vaccine information source among all parents, though more often by acceptors than refusers (2012, 2014: p < 0.01). We found differing patterns of provider advice-seeking and internet as a reliable vaccine information source by group. Among those who had considered delay/refusal, trust in their healthcare provider's advice was the most common reason cited for their decision reversal. Conclusions for Practice Provider trust and communication along with varying degrees of personal-network influences likely contribute to immunization decisions of parents. Vaccine hesitant parents often seek providers amenable to accommodating their vaccine beliefs. Providers may benefit from vaccine communication training as their recommendations may influence hesitant parents to immunize their children.
Carter, Michael J; Ste-Marie, Diane M
2017-03-01
The learning advantages of self-controlled knowledge-of-results (KR) schedules compared to yoked schedules have been linked to the optimization of the informational value of the KR received for the enhancement of one's error-detection capabilities. This suggests that information-processing activities that occur after motor execution, but prior to receiving KR (i.e., the KR-delay interval) may underlie self-controlled KR learning advantages. The present experiment investigated whether self-controlled KR learning benefits would be eliminated if an interpolated activity was performed during the KR-delay interval. Participants practiced a waveform matching task that required two rapid elbow extension-flexion reversals in one of four groups using a factorial combination of choice (self-controlled, yoked) and KR-delay interval (empty, interpolated). The waveform had specific spatial and temporal constraints, and an overall movement time goal. The results indicated that the self-controlled + empty group had superior retention and transfer scores compared to all other groups. Moreover, the self-controlled + interpolated and yoked + interpolated groups did not differ significantly in retention and transfer; thus, the interpolated activity eliminated the typically found learning benefits of self-controlled KR. No significant differences were found between the two yoked groups. We suggest the interpolated activity interfered with information-processing activities specific to self-controlled KR conditions that occur during the KR-delay interval and that these activities are vital for reaping the associated learning benefits. These findings add to the growing evidence that challenge the motivational account of self-controlled KR learning advantages and instead highlights informational factors associated with the KR-delay interval as an important variable for motor learning under self-controlled KR schedules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Chinmaya; López, José Manuel; Azencott, Robert
Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemicalmore » Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-19
... and analyze air traffic delays. Wheels-up and wheels-down times are used in conjunction with departure and arrival times to show the extent of ground delays. Actual elapsed flight time, wheels-down minus wheels- up time, is compared to scheduled elapsed flight time to identify airborne delays. The reporting...
Varga, Nicole L.; Bauer, Patricia J.
2013-01-01
The present research was an investigation of the effect of delay on self-generation and retention of knowledge derived through integration by 6-year-old children. Children were presented with novel facts from passages read aloud to them (stem facts) and tested for self-generation of new knowledge through integration of the facts. In Experiment 1, children integrated the stem facts at Session 1 and retained the self-generated memory traces over 1 week. In Experiment 2, 1-week delays were imposed either between the to-be-integrated facts (between-stem delay) or after the stem facts but before the test (before-test delay). Integration performance was diminished in both conditions. Moreover, memory for individual stem facts was lower in Experiment 2 than in Experiment 1, suggesting that self-generation through integration promoted memory for explicitly taught information. The results indicate the importance of tests for promoting self-generation through integration as well as for retaining newly self-generated and explicitly taught information. PMID:23563162
DL-ReSuMe: A Delay Learning-Based Remote Supervised Method for Spiking Neurons.
Taherkhani, Aboozar; Belatreche, Ammar; Li, Yuhua; Maguire, Liam P
2015-12-01
Recent research has shown the potential capability of spiking neural networks (SNNs) to model complex information processing in the brain. There is biological evidence to prove the use of the precise timing of spikes for information coding. However, the exact learning mechanism in which the neuron is trained to fire at precise times remains an open problem. The majority of the existing learning methods for SNNs are based on weight adjustment. However, there is also biological evidence that the synaptic delay is not constant. In this paper, a learning method for spiking neurons, called delay learning remote supervised method (DL-ReSuMe), is proposed to merge the delay shift approach and ReSuMe-based weight adjustment to enhance the learning performance. DL-ReSuMe uses more biologically plausible properties, such as delay learning, and needs less weight adjustment than ReSuMe. Simulation results have shown that the proposed DL-ReSuMe approach achieves learning accuracy and learning speed improvements compared with ReSuMe.
The Impact of Competing Time Delays in Stochastic Coordination Problems
NASA Astrophysics Data System (ADS)
Korniss, G.; Hunt, D.; Szymanski, B. K.
2011-03-01
Coordinating, distributing, and balancing resources in coupled systems is a complex task as these operations are very sensitive to time delays. Delays are present in most real communication and information systems, including info-social and neuro-biological networks, and can be attributed to both non-zero transmission times between different units of the system and to non-zero times it takes to process the information and execute the desired action at the individual units. Here, we investigate the importance and impact of these two types of delays in a simple coordination (synchronization) problem in a noisy environment. We establish the scaling theory for the phase boundary of synchronization and for the steady-state fluctuations in the synchronizable regime. Further, we provide the asymptotic behavior near the boundary of the synchronizable regime. Our results also imply the potential for optimization and trade-offs in stochastic synchronization and coordination problems with time delays. Supported in part by DTRA, ARL, and ONR.
Making the Traffic Operations Case for Congestion Pricing: Operational Impacts of Congestion Pricing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chin, Shih-Miao; Hu, Patricia S; Davidson, Diane
2011-02-01
Congestion begins when an excess of vehicles on a segment of roadway at a given time, resulting in speeds that are significantly slower than normal or 'free flow' speeds. Congestion often means stop-and-go traffic. The transition occurs when vehicle density (the number of vehicles per mile in a lane) exceeds a critical level. Once traffic enters a state of congestion, recovery or time to return to a free-flow state is lengthy; and during the recovery process, delay continues to accumulate. The breakdown in speed and flow greatly impedes the efficient operation of the freeway system, resulting in economic, mobility, environmentalmore » and safety problems. Freeways are designed to function as access-controlled highways characterized by uninterrupted traffic flow so references to freeway performance relate primarily to the quality of traffic flow or traffic conditions as experienced by users of the freeway. The maximum flow or capacity of a freeway segment is reached while traffic is moving freely. As a result, freeways are most productive when they carry capacity flows at 60 mph, whereas lower speeds impose freeway delay, resulting in bottlenecks. Bottlenecks may be caused by physical disruptions, such as a reduced number of lanes, a change in grade, or an on-ramp with a short merge lane. This type of bottleneck occurs on a predictable or 'recurrent' basis at the same time of day and same day of week. Recurrent congestion totals 45% of congestion and is primarily from bottlenecks (40%) as well as inadequate signal timing (5%). Nonrecurring bottlenecks result from crashes, work zone disruptions, adverse weather conditions, and special events that create surges in demand and that account for over 55% of experienced congestion. Figure 1.1 shows that nonrecurring congestion is composed of traffic incidents (25%), severe weather (15%), work zones, (10%), and special events (5%). Between 1995 and 2005, the average percentage change in increased peak traveler delay, based on hours spent in traffic in a year, grew by 22% as the national average of hours spent in delay grew from 36 hours to 44 hours. Peak delay per traveler grew one-third in medium-size urban areas over the 10 year period. The traffic engineering community has developed an arsenal of integrated tools to mitigate the impacts of congestion on freeway throughput and performance, including pricing of capacity to manage demand for travel. Congestion pricing is a strategy which dynamically matches demand with available capacity. A congestion price is a user fee equal to the added cost imposed on other travelers as a result of the last traveler's entry into the highway network. The concept is based on the idea that motorists should pay for the additional congestion they create when entering a congested road. The concept calls for fees to vary according to the level of congestion with the price mechanism applied to make travelers more fully aware of the congestion externality they impose on other travelers and the system itself. The operational rationales for the institution of pricing strategies are to improve the efficiency of operations in a corridor and/or to better manage congestion. To this end, the objectives of this project were to: (1) Better understand and quantify the impacts of congestion pricing strategies on traffic operations through the study of actual projects, and (2) Better understand and quantify the impacts of congestion pricing strategies on traffic operations through the use of modeling and other analytical methods. Specifically, the project was to identify credible analytical procedures that FHWA can use to quantify the impacts of various congestion pricing strategies on traffic flow (throughput) and congestion.« less
Water quality of flow through cured-in-place pipe (CIPP).
DOT National Transportation Integrated Search
2017-02-01
Though this study did not include replication, the preponderance of the data from field and simulated-field experiments indicates that Curedin- : Place Pipe (CIPP), with some care in enforcing the Caltrans specification and delaying the reintroductio...
Bronner Murrison, L; Ananthakrishnan, R; Swaminathan, A; Auguesteen, S; Krishnan, N; Pai, M; Dowdy, D W
2016-04-01
The diagnosis and treatment of tuberculosis (TB) in India are characterized by heavy private-sector involvement. Delays in treatment remain poorly characterized among patients seeking care in the Indian private sector. To assess delays in TB diagnosis and treatment initiation among patients diagnosed in the private sector, and pathways to care in an urban setting. Cross-sectional survey of 289 consecutive patients diagnosed with TB in the private sector and referred for anti-tuberculosis treatment through a public-private mix program in Chennai from January 2014 to February 2015. Among 212 patients with pulmonary TB, 90% first contacted a formal private provider, and 78% were diagnosed by the first or second provider seen after a median of three visits per provider. Median total delay was 51 days (mean 68). Consulting an informal (rather than formally trained) provider first was associated with significant increases in total delay (absolute increase 22.8 days, 95%CI 6.2-39.5) and in the risk of prolonged delay >90 days (aRR 2.4, 95%CI 1.3-4.4). Even among patients seeking care in the formal (vs. informal) private sector in Chennai, diagnostic delays are substantial. Novel strategies are required to engage private providers, who often serve as the first point of contact.
A twofold quantum delayed-choice experiment in a superconducting circuit
Liu, Ke; Xu, Yuan; Wang, Weiting; Zheng, Shi-Biao; Roy, Tanay; Kundu, Suman; Chand, Madhavi; Ranadive, Arpit; Vijay, Rajamani; Song, Yipu; Duan, Luming; Sun, Luyan
2017-01-01
Wave-particle complementarity lies at the heart of quantum mechanics. To illustrate this mysterious feature, Wheeler proposed the delayed-choice experiment, where a quantum system manifests the wave- or particle-like attribute, depending on the experimental arrangement, which is made after the system has entered the interferometer. In recent quantum delayed-choice experiments, these two complementary behaviors were simultaneously observed with a quantum interferometer in a superposition of being closed and open. We suggest and implement a conceptually different quantum delayed-choice experiment by introducing a which-path detector (WPD) that can simultaneously record and neglect the system’s path information, but where the interferometer itself is classical. Our experiment is realized with a superconducting circuit, where a cavity acts as the WPD for an interfering qubit. Using this setup, we implement the first twofold delayed-choice experiment, which demonstrates that the system’s behavior depends not only on the measuring device’s configuration that can be chosen even after the system has been detected but also on whether we a posteriori erase or mark the which-path information, the latter of which cannot be revealed by previous quantum delayed-choice experiments. Our results represent the first demonstration of both counterintuitive features with the same experimental setup, significantly extending the concept of quantum delayed-choice experiment. PMID:28508079
A twofold quantum delayed-choice experiment in a superconducting circuit.
Liu, Ke; Xu, Yuan; Wang, Weiting; Zheng, Shi-Biao; Roy, Tanay; Kundu, Suman; Chand, Madhavi; Ranadive, Arpit; Vijay, Rajamani; Song, Yipu; Duan, Luming; Sun, Luyan
2017-05-01
Wave-particle complementarity lies at the heart of quantum mechanics. To illustrate this mysterious feature, Wheeler proposed the delayed-choice experiment, where a quantum system manifests the wave- or particle-like attribute, depending on the experimental arrangement, which is made after the system has entered the interferometer. In recent quantum delayed-choice experiments, these two complementary behaviors were simultaneously observed with a quantum interferometer in a superposition of being closed and open. We suggest and implement a conceptually different quantum delayed-choice experiment by introducing a which-path detector (WPD) that can simultaneously record and neglect the system's path information, but where the interferometer itself is classical. Our experiment is realized with a superconducting circuit, where a cavity acts as the WPD for an interfering qubit. Using this setup, we implement the first twofold delayed-choice experiment, which demonstrates that the system's behavior depends not only on the measuring device's configuration that can be chosen even after the system has been detected but also on whether we a posteriori erase or mark the which-path information, the latter of which cannot be revealed by previous quantum delayed-choice experiments. Our results represent the first demonstration of both counterintuitive features with the same experimental setup, significantly extending the concept of quantum delayed-choice experiment.
The influence of blade profile and slots on the performance of a centrifugal impeller
NASA Astrophysics Data System (ADS)
Fowler, H. S.
1980-01-01
As part of the program of studies on centrifugal impellers, the problem of instability at low flows was investigated. The major cause was found to be flow detachment from the impeller vanes. Slotted blades were found to be the most effective means of delaying this detachment, and extending the working range of the blower. Low speed studies were confirmed by a test program on a high speed machine, where it was demonstrated that the improved flow range was accompanied by a general increase of efficiency. The design and placement of the slots is discussed.
Jarus-Dziedzic, Katarzyna; Juniewicz, Henryk; Wroñski, Jerzy; Zub, Wojciech Leslaw; Kasper, Ekkehard; Gowacki, Mariusz; Mierzwa, Janusz
2002-09-01
Patients (n = 127) with aneurysmal subarachnoid hemorrhage (SAH) were examined by transcranial Doppler ultrasonography (TCD) in a prospective study to follow the time course of the posthemorrhagic blood flow velocity in both the middle cerebral artery (MCA) and in the anterior cerebral artery (ACA). Results were analysed to reveal their relationship and predictive use with respect to the occurrence of delayed ischemic deficits. Mean flow velocities (MFV) higher than 120 cm sec(-1) in MCA and 90 cm sec(-1) in ACA were interpreted as indicative for significant vasospasm. In 20 of our 127 patients (16%) a delayed ischemic deficit (DID) was subsequently diagnosed clinically (DID+ group). Patients in the DID+ group can be characterized as those individuals who presented early during the observation period post-SAH with highest values of MFV, a faster increase and longer persistence of pathologically elevated MFV-values (exceeding 120 cm sec(-1) in MCA and 90 cm sec(-1) in ACA). They also show a greater difference in MFV-values if one compares the operated to the nonoperated side. Differences in MFV-values obtained in MCA or ACA were statistically significant (p < 0.05) for DID+ and DID- patients. The daily maximal increase of MFV was found between days 9 and 11 after SAH. In the DID+ group, the maximal MFV was 181 +/- 26 cm sec(-1) in MCA and 119 +/- 14 cm sec(-1) in ACA. In contrast to this, patients in the DID- group were found to present with MFV of 138 +/- 11 cm sec(-1) in MCA and 100 +/- 7 cm sec(-1) in ACA respectively. Delayed ischemic deficits appeared three times more often in DID+ patients than in patients with MFV < 120 cm sec(-1), if they showed a MFV > 120 cm sec(-1) in MCA. If pathological values were obtained in ACA, this ratio increases to about four times, if DID + patients presented with MFV > 90 cm sec(-1) versus patients with MFV < 90 cm sec(-1). Daily monitoring of vasospasm using TCD examination is thus helpful to identify patients at high risk for delayed ischemic deficits. This should allow us to implement further preventive treatment regimens.
Anticipated synchronization in neuronal circuits unveiled by a phase-response-curve analysis
NASA Astrophysics Data System (ADS)
Matias, Fernanda S.; Carelli, Pedro V.; Mirasso, Claudio R.; Copelli, Mauro
2017-05-01
Anticipated synchronization (AS) is a counterintuitive behavior that has been observed in several systems. When AS occurs in a sender-receiver configuration, the latter can predict the future dynamics of the former for certain parameter values. In particular, in neuroscience AS was proposed to explain the apparent discrepancy between information flow and time lag in the cortical activity recorded in monkeys. Despite its success, a clear understanding of the mechanisms yielding AS in neuronal circuits is still missing. Here we use the well-known phase-response-curve (PRC) approach to study the prototypical sender-receiver-interneuron neuronal motif. Our aim is to better understand how the transitions between delayed to anticipated synchronization and anticipated synchronization to phase-drift regimes occur. We construct a map based on the PRC method to predict the phase-locking regimes and their stability. We find that a PRC function of two variables, accounting simultaneously for the inputs from sender and interneuron into the receiver, is essential to reproduce the numerical results obtained using a Hodgkin-Huxley model for the neurons. On the contrary, the typical approximation that considers a sum of two independent single-variable PRCs fails for intermediate to high values of the inhibitory coupling strength of the interneuron. In particular, it loses the delayed-synchronization to anticipated-synchronization transition.
Uniform Data Management and Access to Near Real-Time Seismic Data (Invited)
NASA Astrophysics Data System (ADS)
Casey, R.; Ahern, T. K.; Benson, R. B.; Karstens, R.; Stromme, S.; Trabant, C. M.; Weertman, B. R.
2010-12-01
The IRIS Data Management Center has its ears to the ground, receiving relayed seismic telemetry from all parts of the globe with delay times as little as a few seconds from sensor to data center. This immediacy of always-on geophysical information has spawned a demand for ready access to persistent data streams, quality assurance metrics, and automatic production of data products based on specific triggers. For the last ten years, IRIS DMC has developed an effective near real-time data pipeline that serves the needs of seismic networks needing a central data management system as well as the scientific community that need the ability to monitor and respond to events that occurred only moments before. A number of accessible applications have been developed that provide useful data both through the web and through freely available software. Metrics and products of the raw data are cataloged and managed as a chain of events that occur in near-real time. The technical challenges faced with such a system are general to the data management community. Delayed transmission of packetized data, out of order data transmissions, verification of complete data transmission, and data flow concurrency have all been areas of focus in order to provide the best possible level of service to scientists and educators.
Estimation of contrast agent bolus arrival delays for improved reproducibility of liver DCE MRI
NASA Astrophysics Data System (ADS)
Chouhan, Manil D.; Bainbridge, Alan; Atkinson, David; Punwani, Shonit; Mookerjee, Rajeshwar P.; Lythgoe, Mark F.; Taylor, Stuart A.
2016-10-01
Delays between contrast agent (CA) arrival at the site of vascular input function (VIF) sampling and the tissue of interest affect dynamic contrast enhanced (DCE) MRI pharmacokinetic modelling. We investigate effects of altering VIF CA bolus arrival delays on liver DCE MRI perfusion parameters, propose an alternative approach to estimating delays and evaluate reproducibility. Thirteen healthy volunteers (28.7 ± 1.9 years, seven males) underwent liver DCE MRI using dual-input single compartment modelling, with reproducibility (n = 9) measured at 7 days. Effects of VIF CA bolus arrival delays were assessed for arterial and portal venous input functions. Delays were pre-estimated using linear regression, with restricted free modelling around the pre-estimated delay. Perfusion parameters and 7 days reproducibility were compared using this method, freely modelled delays and no delays using one-way ANOVA. Reproducibility was assessed using Bland-Altman analysis of agreement. Maximum percent change relative to parameters obtained using zero delays, were -31% for portal venous (PV) perfusion, +43% for total liver blood flow (TLBF), +3247% for hepatic arterial (HA) fraction, +150% for mean transit time and -10% for distribution volume. Differences were demonstrated between the 3 methods for PV perfusion (p = 0.0085) and HA fraction (p < 0.0001), but not other parameters. Improved mean differences and Bland-Altman 95% Limits-of-Agreement for reproducibility of PV perfusion (9.3 ml/min/100 g, ±506.1 ml/min/100 g) and TLBF (43.8 ml/min/100 g, ±586.7 ml/min/100 g) were demonstrated using pre-estimated delays with constrained free modelling. CA bolus arrival delays cause profound differences in liver DCE MRI quantification. Pre-estimation of delays with constrained free modelling improved 7 days reproducibility of perfusion parameters in volunteers.
Upper Mantle Responses to India-Eurasia Collision in Indochina, Malaysia, and the South China Sea
NASA Astrophysics Data System (ADS)
Hongsresawat, S.; Russo, R. M.
2016-12-01
We present new shear wave splitting and splitting intensity measurements from SK(K)S phases recorded at seismic stations of the Malaysian National Seismic Network. These results, in conjunction with results from Tibet and Yunnan provide a basis for testing the degree to which Indochina and South China Sea upper mantle fabrics are responses to India-Eurasia collision. Upper mantle fabrics derived from shear wave splitting measurements in Yunnan and eastern Tibet parallel geodetic surface motions north of 26°N, requiring transmission of tractions from upper mantle depths to surface, or consistent deformation boundary conditions throughout the upper 200 km of crust and mantle. Shear wave splitting fast trends and surface velocities diverge in eastern Yunnan and south of 26°N, indicating development of an asthenospheric layer that decouples crust and upper mantle, or corner flow above the subducted Indo-Burma slab. E-W fast shear wave splitting trends southwest of 26°N/104°E indicate strong gradients in any asthenospheric infiltration. Possible upper mantle flow regimes beneath Indochina include development of olivine b-axis anisotropic symmetry due to high strain and hydrous conditions in the syntaxis/Indo-Burma mantle wedge (i.e., southward flow), development of strong upper mantle corner flow in the Indo-Burma wedge with olivine a-axis anisotropic symmetry (i.e., westward flow), and simple asthenospheric flow due to eastward motion of Sundaland shearing underlying asthenosphere. Further south, shear-wave splitting delay times at Malaysian stations vary from 0.5 seconds on the Malay Peninsula to over 2 seconds at stations on Borneo. Splitting fast trends at Borneo stations and Singapore trend NE-SW, but in northern Peninsular Malaysia, the splitting fast polarization direction is NW-SE, parallel to the trend of the Peninsula. Thus, there is a sharp transition from low delay time and NW-SE fast polarization to high delay times and fast polarization directions that parallel the strike of the now-inoperative spreading center in the South China Sea. This transition appears to occur in the central portion of Peninsular Malaysia and may mark the boundary between Tethyan upper mantle extruded from the India-Asia collision zone and supra-subduction upper mantle of the Indonesian arc.
Truett, April A; Letizia, Andrew; Malyangu, Evans; Sinyangwe, Frank; Morales, Brandi N; Crum, Nancy F; Crowe, Suzanne M
2006-02-01
Manual CD4 tests such as Dynal T4 Quant (Dynabeads, Dynal Biotech, Oslo, Norway) are less expensive alternatives to flow cytometry in resource-limited countries. Whereas blood preservatives have proven useful for stabilizing blood samples to allow delayed CD4 testing by flow cytometry, they have not been verified for manual tests. A method for preservation of blood prior to manual CD4 testing is needed for long-distance transport or sample batching. Blood from HIV-positive Zambian military beneficiaries was mixed (1:1) with Cyto-Chex (Streck Laboratories, La Vista, NE) blood preservative, and the blood was stored at refrigerated, ambient, and incubator (37 degrees C) temperatures prior to Dynabeads CD4 testing at 0, 3, 6, and 9 days after collection. Baseline flow cytometry and Dynabeads testing without preservative were performed for comparison. Twenty-seven patient samples were analyzed. Dynabeads vs. flow cytometry had a correlation coefficient (r) of 0.84. There was excellent correlation (r = 0.96) between baseline Dynabeads testing and Cyto-Chex-preserved samples. Refrigerated samples showed strong correlation with baseline Dynabeads (r = 0.93-0.95) on days 3, 6, and 9 without decline in CD4 count (P = 0.73). Samples stored at ambient temperature yielded inferior results (r = 0.76-0.81), with a significant decline in CD4 count by day 3 (P < 0.001). The incubator arm had especially poor correlation (r = 0.30-0.49). Addition of Cyto-Chex to peripheral blood (1:1) adequately preserves refrigerated blood samples for up to 9 days for subsequent testing with Dynabeads CD4 test. Cyto-Chex, however, cannot be recommended for delayed Dynabeads CD4 testing with storage at 37 degrees C or ambient temperatures in tropical areas similar to the site of this study.
A Multi-Technology Communication Platform for Urban Mobile Sensing.
Almeida, Rodrigo; Oliveira, Rui; Luís, Miguel; Senna, Carlos; Sargento, Susana
2018-04-12
A common concern in smart cities is the focus on sensing procedures to provide city-wide information to city managers and citizens. To meet the growing demands of smart cities, the network must provide the ability to handle a large number of mobile sensors/devices, with high heterogeneity and unpredictable mobility, by collecting and delivering the sensed information for future treatment. This work proposes a multi-wireless technology communication platform for opportunistic data gathering and data exchange with respect to smart cities. Through the implementation of a proprietary long-range (LoRa) network and an urban sensor network, our platform addresses the heterogeneity of Internet of Things (IoT) devices while conferring communications in an opportunistic manner, increasing the interoperability of our platform. It implements and evaluates a medium access communication (MAC) protocol for LoRa networks with multiple gateways. It also implements mobile Opportunistic VEhicular (mOVE), a delay-tolerant network (DTN)-based architecture to address the mobility dimension. The platform provides vehicle-to-everything (V2X) communication with support for highly reliable and actionable information flows. Moreover, taking into account the high mobility pattern that a smart city scenario presents, we propose and evaluate two forwarding strategies for the opportunistic sensor network.
Contact rate modulates foraging efficiency in leaf cutting ants.
Bouchebti, S; Ferrere, S; Vittori, K; Latil, G; Dussutour, A; Fourcassié, V
2015-12-21
Lane segregation is rarely observed in animals that move in bidirectional flows. Consequently, these animals generally experience a high rate of head-on collisions during their journeys. Although these collisions have a cost (each collision induces a delay resulting in a decrease of individual speed), they could also have a benefit by promoting information transfer between individuals. Here we explore the impact of head-on collisions in leaf-cutting ants moving on foraging trails by artificially decreasing the rate of head-on collisions between individuals. We show that head-on collisions do not influence the rate of recruitment in these ants but do influence foraging efficiency, i.e. the proportion of ants returning to the nest with a leaf fragment. Surprisingly, both unladen and laden ants returning to the nest participate in the modulation of foraging efficiency: foraging efficiency decreases when the rate of contacts with both nestbound laden or unladen ants decreases. These results suggest that outgoing ants are able to collect information from inbound ants even when these latter do not carry any leaf fragment and that this information can influence their foraging decisions when reaching the end of the trail.
Health Information Management System for Elderly Health Sector: A Qualitative Study in Iran
Sadoughi, Farahnaz; Shahi, Mehraban; Ahmadi, Maryam; Davaridolatabadi, Nasrin
2016-01-01
Background: There are increasing change and development of information in healthcare systems. Given the increase in aging population, managers are in need of true and timely information when making decision. Objectives: The aim of this study was to investigate the current status of the health information management system for the elderly health sector in Iran. Materials and Methods: This qualitative study was conducted in two steps. In the first step, required documents for administrative managers were collected using the data gathering form and observed and reviewed by the researcher. In the second step, using an interview guide, the required information was gathered through interviewing experts and faculty members. The convenience, purposeful and snowball sampling methods were applied to select interviewees and the sampling continued until reaching the data saturation point. Finally, notes and interviews were transcribed and content analysis was used to analyze them. Results: The results of the study showed that there was a health information management system for the elderly health sector in Iran. However, in all primary health care centers the documentation of data was done manually; the data flow was not automated; and the analysis and reporting of data are also manually. Eventually, decision makers are provided with delayed information. Conclusions: It is suggested that the steward of health in Iran, the ministry of health, develops an appropriate infrastructure and finally puts a high priority on the implementation of the health information management system for elderly health sector in Iran. PMID:27186383
Health Information Management System for Elderly Health Sector: A Qualitative Study in Iran.
Sadoughi, Farahnaz; Shahi, Mehraban; Ahmadi, Maryam; Davaridolatabadi, Nasrin
2016-02-01
There are increasing change and development of information in healthcare systems. Given the increase in aging population, managers are in need of true and timely information when making decision. The aim of this study was to investigate the current status of the health information management system for the elderly health sector in Iran. This qualitative study was conducted in two steps. In the first step, required documents for administrative managers were collected using the data gathering form and observed and reviewed by the researcher. In the second step, using an interview guide, the required information was gathered through interviewing experts and faculty members. The convenience, purposeful and snowball sampling methods were applied to select interviewees and the sampling continued until reaching the data saturation point. Finally, notes and interviews were transcribed and content analysis was used to analyze them. The results of the study showed that there was a health information management system for the elderly health sector in Iran. However, in all primary health care centers the documentation of data was done manually; the data flow was not automated; and the analysis and reporting of data are also manually. Eventually, decision makers are provided with delayed information. It is suggested that the steward of health in Iran, the ministry of health, develops an appropriate infrastructure and finally puts a high priority on the implementation of the health information management system for elderly health sector in Iran.
The role of urotensin II and atherosclerotic risk factors in patients with slow coronary flow
Şatıroğlu, Ömer; Emre Durakoğlugil, Murtaza; Çetin, Mustafa; Çiçek, Yüksel; Erdoğan, Turan; Duman, Hakan
2016-01-01
Background Slow coronary flow (SCF) is an angiographic finding characterized with delayed opacification of epicardial coronary arteries without obstructive coronary disease. Urotensin II (UII) is an important vascular peptide, which has an important role in hypertension, coronary artery disease, and vascular remodeling in addition to potent vasoconstrictor effect. Objectives We investigated UII levels, hypertension, and other atherosclerotic risk factors in patients with SCF, a variety of coronary artery disease. Methods We enrolled 14 patients with SCF and 29 subjects with normal coronary arteries without SCF. We compared the UII levels and the atherosclerotic risk factors between patients with SCF and control subjects with normal coronary flow. Results UII concentrations were significantly higher in patients with SCF compared to controls (711.0 ± 19.4 vs. 701.5 ± 27.2 ng/mL, p = 0.006). We detected a positive correlation between SCF and age (r = 0.476, p = 0.001), BMI (r = 0.404, p = .002), UII concentrations (r = 0.422, p = 0.006), and hypertension (r = 0.594, p = 0.001). Conclusion We identified increased UII levels in patients with SCF. We think that UII concentrations may be informative on SCF pathogenesis due to relationship with inflammation, atherosclerosis, and vascular remodeling. PMID:28180005
Improving TCP Network Performance by Detecting and Reacting to Packet Reordering
NASA Technical Reports Server (NTRS)
Kruse, Hans; Ostermann, Shawn; Allman, Mark
2003-01-01
There are many factors governing the performance of TCP-basec applications traversing satellite channels. The end-to-end performance of TCP is known to be degraded by the reordering, delay, noise and asymmetry inherent in geosynchronous systems. This result has been largely based on experiments that evaluate the performance of TCP in single flow tests. While single flow tests are useful for deriving information on the theoretical behavior of TCP and allow for easy diagnosis of problems they do not represent a broad range of realistic situations and therefore cannot be used to authoritatively comment on performance issues. The experiments discussed in this report test TCP s performance in a more dynamic environment with competing traffic flows from hundreds of TCP connections running simultaneously across the satellite channel. Another aspect we investigate is TCP's reaction to bit errors on satellite channels. TCP interprets loss as a sign of network congestion. This causes TCP to reduce its transmission rate leading to reduced performance when loss is due to corruption. We allowed the bit error rate on our satellite channel to vary widely and tested the performance of TCP as a function of these bit error rates. Our results show that the average performance of TCP on satellite channels is good even under conditions of loss as high as bit error rates of 10(exp -5)
Numerical simulations and linear stability analysis of a boundary layer developed on wavy surfaces
NASA Astrophysics Data System (ADS)
Siconolfi, Lorenzo; Camarri, Simone; Fransson, Jens H. M.
2015-11-01
The development of passive methods leading to a laminar to turbulent transition delay in a boundary layer (BL) is a topic of great interest both for applications and academic research. In literature it has been shown that a proper and stable spanwise velocity modulation can reduce the growth rate of Tollmien-Schlichting (TS) waves and delay transition. In this study, we investigate numerically the possibility of obtaining a stabilizing effect of the TS waves through the use of a spanwise sinusoidal modulation of a flat plate. This type of control has been already successfully investigated experimentally. An extensive set of direct numerical simulations is carried out to study the evolution of a BL flow developed on wavy surfaces with different geometric characteristics, and the results will be presented here. Moreover, since this configuration is characterized by a slowly-varying flow field in streamwise direction, a local stability analysis is applied to define the neutral stability curves for the BL flow controlled by this type of wall modifications. These results give the possibility of investigating this control strategy and understanding the effect of the free parameters on the stabilization mechanism.
The tubercles on humpback whales' flippers: application of bio-inspired technology.
Fish, Frank E; Weber, Paul W; Murray, Mark M; Howle, Laurens E
2011-07-01
The humpback whale (Megaptera novaeangliae) is exceptional among the large baleen whales in its ability to undertake aquabatic maneuvers to catch prey. Humpback whales utilize extremely mobile, wing-like flippers for banking and turning. Large rounded tubercles along the leading edge of the flipper are morphological structures that are unique in nature. The tubercles on the leading edge act as passive-flow control devices that improve performance and maneuverability of the flipper. Experimental analysis of finite wing models has demonstrated that the presence of tubercles produces a delay in the angle of attack until stall, thereby increasing maximum lift and decreasing drag. Possible fluid-dynamic mechanisms for improved performance include delay of stall through generation of a vortex and modification of the boundary layer, and increase in effective span by reduction of both spanwise flow and strength of the tip vortex. The tubercles provide a bio-inspired design that has commercial viability for wing-like structures. Control of passive flow has the advantages of eliminating complex, costly, high-maintenance, and heavy control mechanisms, while improving performance for lifting bodies in air and water. The tubercles on the leading edge can be applied to the design of watercraft, aircraft, ventilation fans, and windmills.
A computational study of incipient leading-edge separation on a 65-deg delta wing at M = 1.60
NASA Technical Reports Server (NTRS)
Mcmillin, S. Naomi; Pittman, James L.; Thomas, James L.
1990-01-01
A computational study on a 65-deg delta wing at a freestream Mach number of 1.60 has been conducted by obtaining conical Reynolds-averaged Navier-Stokes solutions on a parametric series of geometries which varied in leading-edge radius and/or circular-arc camber. The computational results showed that increasing leading-edge radius or camber can delay the onset of leading-edge separation on the leeside of a delta wing at a specific angle of attack. Reynolds number was varied from 1 x 10 to the 6th to 5 x 10 to the 6th for a turbulent boundary-layer and was shown to have a minor effect on the effectiveness of leading-edge radius and/or camber in delaying the onset of leading-edge separation. Both laminar and turbulent boundary-layer models were investigated at a Reynolds number of 1 x 10 to the 6th, and the predicted flow pattern was found to change from attached flow for the turbulent boundary-layer model to separated flow for the laminar boundary-layer model. Based upon these results, three wind-tunnel models have been designed to be tested in the Langley Unitary Plan Wind Tunnel.
Nattokinase improves blood flow by inhibiting platelet aggregation and thrombus formation
Jang, Ja-Young; Kim, Tae-Su; Cai, Jingmei; Kim, Jihyun; Kim, Youngeun; Shin, Kyungha; Kim, Kwang Sei; Park, Sung Kyeong; Lee, Sung-Pyo; Choi, Ehn-Kyoung
2013-01-01
The effects of nattokinase on the in vitro platelet aggregation and in vivo thrombosis were investigated in comparison with aspirin. Rabbit platelet-rich plasma was incubated with nattokinase and aggregation inducers collagen and thrombin, and the platelet aggregation rate was analyzed. Nattokinase significantly inhibited both the collagen- and thrombin-induced platelet aggregations. Nattokinase also reduced thromboxane B2 formation from collagen-activated platelets in a concentration-dependent manner. Rats were orally administered with nattokinase for 1 week, and their carotid arteries were exposed. Arterial thrombosis was induced by applying 35% FeCl3-soaked filter paper for 10 min, and the blood flow was monitored with a laser Doppler probe. Nattokinase delayed the FeCl3-induced arterial occlusion in a dose-dependent manner, doubling the occlusion time at 160 mg/kg. In addition, a high dose (500 mg/kg) of nattokinase fully prevented the occlusion, as achieved with aspirin (30 mg/kg). The results indicate that nattokinase extracted from fermented soybean inhibit platelet aggregation by blocking thromboxane formation, and thereby delay thrombosis following oxidative arterial wall injury. Therefore, it is suggested that nattokinase could be a good candidate without adverse effects for the improvement of blood flow. PMID:24396387
Nattokinase improves blood flow by inhibiting platelet aggregation and thrombus formation.
Jang, Ja-Young; Kim, Tae-Su; Cai, Jingmei; Kim, Jihyun; Kim, Youngeun; Shin, Kyungha; Kim, Kwang Sei; Park, Sung Kyeong; Lee, Sung-Pyo; Choi, Ehn-Kyoung; Rhee, Man Hee; Kim, Yun-Bae
2013-12-01
The effects of nattokinase on the in vitro platelet aggregation and in vivo thrombosis were investigated in comparison with aspirin. Rabbit platelet-rich plasma was incubated with nattokinase and aggregation inducers collagen and thrombin, and the platelet aggregation rate was analyzed. Nattokinase significantly inhibited both the collagen- and thrombin-induced platelet aggregations. Nattokinase also reduced thromboxane B2 formation from collagen-activated platelets in a concentration-dependent manner. Rats were orally administered with nattokinase for 1 week, and their carotid arteries were exposed. Arterial thrombosis was induced by applying 35% FeCl3-soaked filter paper for 10 min, and the blood flow was monitored with a laser Doppler probe. Nattokinase delayed the FeCl3-induced arterial occlusion in a dose-dependent manner, doubling the occlusion time at 160 mg/kg. In addition, a high dose (500 mg/kg) of nattokinase fully prevented the occlusion, as achieved with aspirin (30 mg/kg). The results indicate that nattokinase extracted from fermented soybean inhibit platelet aggregation by blocking thromboxane formation, and thereby delay thrombosis following oxidative arterial wall injury. Therefore, it is suggested that nattokinase could be a good candidate without adverse effects for the improvement of blood flow.
Fišer, Jaromír; Zítek, Pavel; Skopec, Pavel; Knobloch, Jan; Vyhlídal, Tomáš
2017-05-01
The purpose of the paper is to achieve a constrained estimation of process state variables using the anisochronic state observer tuned by the dominant root locus technique. The anisochronic state observer is based on the state-space time delay model of the process. Moreover the process model is identified not only as delayed but also as non-linear. This model is developed to describe a material flow process. The root locus technique combined with the magnitude optimum method is utilized to investigate the estimation process. Resulting dominant roots location serves as a measure of estimation process performance. The higher the dominant (natural) frequency in the leftmost position of the complex plane the more enhanced performance with good robustness is achieved. Also the model based observer control methodology for material flow processes is provided by means of the separation principle. For demonstration purposes, the computer-based anisochronic state observer is applied to the strip temperatures estimation in the hot strip finishing mill composed of seven stands. This application was the original motivation to the presented research. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Sugiyama, Atsushi; Takahara, Akira; Yatomi, Yutaka; Satoh, Yoshioki; Nakamura, Yuji; Hashimoto, Keitaro
2003-06-01
Given the limited information, physiological roles of Rho-kinase in the cardiac conduction system and ventricular repolarization process were assessed in comparison with those in the coronary vascular tone. A specific Rho-kinase inhibitor Y-27632 was administered to the nutrient coronary artery of the canine isolated, blood-perfused atrioventricular node preparation under the monitoring of the ventricular monophasic action potentials. Administration of Y-27632 moderately suppressed the atrioventricular nodal conduction, slightly but significantly accelerated the repolarization process, and potently increased the coronary blood flow, whereas it hardly affected the intraventricular conduction. The estimated concentrations of Y-27632 causing the currently observed effects were enough to inhibit Rho-kinase. These results suggest that constitutional Rho-kinase functions to moderately facilitate the atrioventricular nodal conduction, slightly delay ventricular repolarization process, and significantly increase the coronary vascular tone.
Human mobility in an emerging epidemic: a key aspect for response planning
NASA Astrophysics Data System (ADS)
Poletto, Chiara; Bajardi, Paolo; Colizza, Vittoria; Ramasco, Jose J.; Tizzoni, Michele; Vespignani, Alessandro
2010-03-01
Human mobility and interactions represent key ingredients in the spreading dynamics of an infectious disease. The flows of traveling people form a network characterized by complex features, such as strong topological and traffic heterogeneities, that unfolds at different temporal and spatial scales, from short ranges to the global scale. Computational models can be developed that integrate detailed network structures based on demographic and mobility data, in order to simulate the spatial evolution of an epidemic. Focusing on the recent A(H1N1) influenza pandemic as a paradigmatic example, these approaches allow the assessment of the interplay between individual mobility and epidemic dynamics, quantifying the effects of travel restrictions in delaying the epidemic spread and the role of mobility as an additional source of information for the understanding of the early outbreak.
Method and apparatus for the control of fluid dynamic mixing in pulse combustors
Bramlette, T.T.; Keller, J.O.
1992-06-02
In a method and apparatus for controlling total ignition delay time in a pulse combustor, and thus controlling the mixing characteristics of the combustion reactants and the combustion products in the combustor, the total ignition delay time is controlled by adjusting the inlet geometry of the inlet to the combustion chamber. The inlet geometry may be fixed or variable for controlling the mixing characteristics. A feedback loop may be employed to sense actual combustion characteristics, and, in response to the sensed combustion characteristics, the inlet geometry may be varied to obtain the total ignition delay time necessary to achieve the desired combustion characteristics. Various embodiments relate to the varying of the mass flow rate of reactants while holding the radius/velocity ratio constant. 10 figs.
Method and apparatus for the control of fluid dynamic mixing in pulse combustors
Bramlette, T. Tazwell; Keller, Jay O.
1992-06-02
In a method and apparatus for controlling total ignition delay time in a pulse combustor, and thus controlling the mixing characteristics of the combustion reactants and the combustion products in the combustor, the total ignition delay time is controlled by adjusting the inlet geometry of the inlet to the combustion chamber. The inlet geometry may be fixed or variable for controlling the mixing characteristics. A feedback loop may be employed to sense actual combustion characteristics, and, in response to the sensed combustion characteristics, the inlet geometry may be varied to obtain the total ignition delay time necessary to achieve the desired combustion characteristics. Various embodiments relate to the varying of the mass flow rate of reactants while holding the radius/velocity ratio constant.
Gain-scheduling multivariable LPV control of an irrigation canal system.
Bolea, Yolanda; Puig, Vicenç
2016-07-01
The purpose of this paper is to present a multivariable linear parameter varying (LPV) controller with a gain scheduling Smith Predictor (SP) scheme applicable to open-flow canal systems. This LPV controller based on SP is designed taking into account the uncertainty in the estimation of delay and the variation of plant parameters according to the operating point. This new methodology can be applied to a class of delay systems that can be represented by a set of models that can be factorized into a rational multivariable model in series with left/right diagonal (multiple) delays, such as, the case of irrigation canals. A multiple pool canal system is used to test and validate the proposed control approach. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Control of pseudo-shock oscillation in scramjet inlet-isolator using periodical excitation
NASA Astrophysics Data System (ADS)
Su, Wei-Yi; Chen, Yun; Zhang, Feng-Rui; Tang, Piao-Ping
2018-02-01
To suppress the pressure oscillation, stabilize the shock train in the scramjet isolator and delay the hypersonic inlet unstart, flow control using periodic excitation was investigated with unsteady Reynolds averaged Navier-Stokes simulations. The results showed that by injecting air to manipulate the cowl reflected shock wave, the separation bubble induced by it was diminished and the pressure oscillations of the shock train were markedly suppressed. The power spectral density and standard deviation of wall pressure were significantly reduced. The simulations revealed that this active control method can raise the critical back pressure by 17.5% compared with the baseline, which would successfully delay the hypersonic inlet unstarts. The results demonstrated that this active control method is effective in suppressing pressure oscillation and delaying hypersonic inlet unstarts.
NASA Astrophysics Data System (ADS)
Brandt, C.; Thakur, S. C.; Tynan, G. R.
2016-04-01
Complexities of flow patterns in the azimuthal cross-section of a cylindrical magnetized helicon plasma and the corresponding plasma dynamics are investigated by means of a novel scheme for time delay estimation velocimetry. The advantage of this introduced method is the capability of calculating the time-averaged 2D velocity fields of propagating wave-like structures and patterns in complex spatiotemporal data. It is able to distinguish and visualize the details of simultaneously present superimposed entangled dynamics and it can be applied to fluid-like systems exhibiting frequently repeating patterns (e.g., waves in plasmas, waves in fluids, dynamics in planetary atmospheres, etc.). The velocity calculations are based on time delay estimation obtained from cross-phase analysis of time series. Each velocity vector is unambiguously calculated from three time series measured at three different non-collinear spatial points. This method, when applied to fast imaging, has been crucial to understand the rich plasma dynamics in the azimuthal cross-section of a cylindrical linear magnetized helicon plasma. The capabilities and the limitations of this velocimetry method are discussed and demonstrated for two completely different plasma regimes, i.e., for quasi-coherent wave dynamics and for complex broadband wave dynamics involving simultaneously present multiple instabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandt, C.; Max-Planck-Institute for Plasma Physics, Wendelsteinstr. 1, D-17491 Greifswald; Thakur, S. C.
2016-04-15
Complexities of flow patterns in the azimuthal cross-section of a cylindrical magnetized helicon plasma and the corresponding plasma dynamics are investigated by means of a novel scheme for time delay estimation velocimetry. The advantage of this introduced method is the capability of calculating the time-averaged 2D velocity fields of propagating wave-like structures and patterns in complex spatiotemporal data. It is able to distinguish and visualize the details of simultaneously present superimposed entangled dynamics and it can be applied to fluid-like systems exhibiting frequently repeating patterns (e.g., waves in plasmas, waves in fluids, dynamics in planetary atmospheres, etc.). The velocity calculationsmore » are based on time delay estimation obtained from cross-phase analysis of time series. Each velocity vector is unambiguously calculated from three time series measured at three different non-collinear spatial points. This method, when applied to fast imaging, has been crucial to understand the rich plasma dynamics in the azimuthal cross-section of a cylindrical linear magnetized helicon plasma. The capabilities and the limitations of this velocimetry method are discussed and demonstrated for two completely different plasma regimes, i.e., for quasi-coherent wave dynamics and for complex broadband wave dynamics involving simultaneously present multiple instabilities.« less
NASA Astrophysics Data System (ADS)
Liu, Chen; Wang, Jiang; Yu, Haitao; Deng, Bin; Wei, Xile; Tsang, Kaiming; Chan, Wailok
2013-09-01
The combined effects of the information transmission delay and the ratio of the electrical and chemical synapses on the synchronization transitions in the hybrid modular neuronal network are investigated in this paper. Numerical results show that the synchronization of neuron activities can be either promoted or destroyed as the information transmission delay increases, irrespective of the probability of electrical synapses in the hybrid-synaptic network. Interestingly, when the number of the electrical synapses exceeds a certain level, further increasing its proportion can obviously enhance the spatiotemporal synchronization transitions. Moreover, the coupling strength has a significant effect on the synchronization transition. The dominated type of the synapse always has a more profound effect on the emergency of the synchronous behaviors. Furthermore, the results of the modular neuronal network structures demonstrate that excessive partitioning of the modular network may result in the dramatic detriment of neuronal synchronization. Considering that information transmission delays are inevitable in intra- and inter-neuronal networks communication, the obtained results may have important implications for the exploration of the synchronization mechanism underlying several neural system diseases such as Parkinson's Disease.
Design of lane merges at rural freeway construction work zones.
DOT National Transportation Integrated Search
2008-02-01
The goal of this project is to evaluate unconventional lane-drop merge configurations in the vicinity of construction work zones on rural freeways to comparatively assess the conditions of the various designs that impact delay, flow, and safety throu...
Water quality of flow through cured-in-place pipe (CIPP) : final report.
DOT National Transportation Integrated Search
2017-02-01
Though this study did not include replication, the preponderance of the data from field and simulated-field experiments indicates that Curedin-Place : Pipe (CIPP), with some care in enforcing the Caltrans specification and delaying the reintroduction...
Microscopic analysis of traffic flow in inclement weather.
DOT National Transportation Integrated Search
2009-11-01
Weather causes a variety of impacts on the transportation system. An Oak Ridge National Laboratory study estimated the delay experienced by American drivers due to snow, ice, and fog in 1999 at 46 million hours. While severe winter storms, hurricanes...
Interaction of Airspace Partitions and Traffic Flow Management Delay
NASA Technical Reports Server (NTRS)
Palopo, Kee; Chatterji, Gano B.; Lee, Hak-Tae
2010-01-01
To ensure that air traffic demand does not exceed airport and airspace capacities, traffic management restrictions, such as delaying aircraft on the ground, assigning them different routes and metering them in the airspace, are implemented. To reduce the delays resulting from these restrictions, revising the partitioning of airspace has been proposed to distribute capacity to yield a more efficient airspace configuration. The capacity of an airspace partition, commonly referred to as a sector, is limited by the number of flights that an air traffic controller can safely manage within the sector. Where viable, re-partitioning of the airspace distributes the flights over more efficient sectors and reduces individual sector demand. This increases the overall airspace efficiency, but requires additional resources in some sectors in terms of controllers and equipment, which is undesirable. This study examines the tradeoff of the number of sectors designed for a specified amount of traffic in a clear-weather day and the delays needed for accommodating the traffic demand. Results show that most of the delays are caused by airport arrival and departure capacity constraints. Some delays caused by airspace capacity constraints can be eliminated by re-partitioning the airspace. Analyses show that about 360 high-altitude sectors, which are approximately today s operational number of sectors of 373, are adequate for delays to be driven solely by airport capacity constraints for the current daily air traffic demand. For a marginal increase of 15 seconds of average delay, the number of sectors can be reduced to 283. In addition, simulations of traffic growths of 15% and 20% with forecasted airport capacities in the years 2018 and 2025 show that delays will continue to be governed by airport capacities. In clear-weather days, for small increases in traffic demand, increasing sector capacities will have almost no effect on delays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarshar, Mohammad Amin; Swarctz, Christopher; Hunter, Scott Robert
In this paper, the iceophobic properties of superhydrophobic surfaces are investigated under dynamic flow conditions by using a closed loop low-temperature wind tunnel. Superhydrophobic surfaces were prepared by coating the substrates of aluminum and steel plates with nano-structured hydrophobic particles. The superhydrophobic plates along with uncoated control ones were exposed to an air flow of 12 m/s and 20 F accompanying micron-sized water droplets in the icing wind tunnel and the ice formation and accretion were probed by high-resolution CCD cameras. Results show that the superhydrophobic coatings significantly delay the ice formation and accretion even under the dynamic flow conditionmore » of the highly energetic impingement of accelerated super-cooled water droplets. It is found that there is a time scale for this phenomenon (delay of the ice formation) which has a clear correlation with the contact angle hysteresis and the length scale of surface roughness of the superhydrophobic surface samples, being the highest for the plate with the lowest contact angle hysteresis and finer surface roughness. The results suggest that the key parameter for designing iceophobic surfaces is to retain a low contact angle hysteresis (dynamic property) and the non-wetting superhydrophobic state under the hydrodynamic pressure of impinging droplets, rather than to only have a high contact angle (static property), in order to result in efficient anti-icing properties under dynamic conditions such as forced flows.« less
Reconstruction of sound source signal by analytical passive TR in the environment with airflow
NASA Astrophysics Data System (ADS)
Wei, Long; Li, Min; Yang, Debin; Niu, Feng; Zeng, Wu
2017-03-01
In the acoustic design of air vehicles, the time-domain signals of noise sources on the surface of air vehicles can serve as data support to reveal the noise source generation mechanism, analyze acoustic fatigue, and take measures for noise insulation and reduction. To rapidly reconstruct the time-domain sound source signals in an environment with flow, a method combining the analytical passive time reversal mirror (AP-TR) with a shear flow correction is proposed. In this method, the negative influence of flow on sound wave propagation is suppressed by the shear flow correction, obtaining the corrected acoustic propagation time delay and path. Those corrected time delay and path together with the microphone array signals are then submitted to the AP-TR, reconstructing more accurate sound source signals in the environment with airflow. As an analytical method, AP-TR offers a supplementary way in 3D space to reconstruct the signal of sound source in the environment with airflow instead of the numerical TR. Experiments on the reconstruction of the sound source signals of a pair of loud speakers are conducted in an anechoic wind tunnel with subsonic airflow to validate the effectiveness and priorities of the proposed method. Moreover the comparison by theorem and experiment result between the AP-TR and the time-domain beamforming in reconstructing the sound source signal is also discussed.
Ventilatory responses to exercise training in obese adolescents.
Mendelson, Monique; Michallet, Anne-Sophie; Estève, François; Perrin, Claudine; Levy, Patrick; Wuyam, Bernard; Flore, Patrice
2012-10-15
The aim of this study was to examine ventilatory responses to training in obese adolescents. We assessed body composition, pulmonary function and ventilatory responses (among which expiratory flow limitation and operational lung volumes) during progressive cycling exercise in 16 obese adolescents (OB) before and after 12 weeks of exercise training and in 16 normal-weight volunteers. As expected, obese adolescents' resting expiratory reserve volume was lower and inversely correlated with thoraco-abdominal fat mass (r = -0.74, p<0.0001). OB presented lower end expiratory (EELV) and end inspiratory lung volumes (EILV) at rest and during submaximal exercise, and modest expiratory flow limitation. After training, OB increased maximal aerobic performance (+19%) and maximal inspiratory pressure (93.7±31.4 vs. 81.9±28.2 cm H2O, +14%) despite lack of decrease in trunk fat and body weight. Furthermore, EELV and EILV were greater during submaximal exercise (+11% and +9% in EELV and EILV, respectively), expiratory flow limitation delayed but was not accompanied by increased V(T). However, submaximal exertional symptoms (dyspnea and leg discomfort) were significantly decreased (-71.3% and -70.7%, respectively). Our results suggest that exercise training can improve pulmonary function at rest (static inspiratory muscle strength) and exercise (greater operating lung volumes and delayed expiratory flow limitation) but these modifications did not entirely account for improved dyspnea and exercise performance in obese adolescents. Copyright © 2012 Elsevier B.V. All rights reserved.
A finite difference model for free surface gravity drainage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couri, F.R.; Ramey, H.J. Jr.
1993-09-01
The unconfined gravity flow of liquid with a free surface into a well is a classical well test problem which has not been well understood by either hydrologists or petroleum engineers. Paradigms have led many authors to treat an incompressible flow as compressible flow to justify the delayed yield behavior of a time-drawdown test. A finite-difference model has been developed to simulate the free surface gravity flow of an unconfined single phase, infinitely large reservoir into a well. The model was verified with experimental results in sandbox models in the literature and with classical methods applied to observation wells inmore » the Groundwater literature. The simulator response was also compared with analytical Theis (1935) and Ramey et al. (1989) approaches for wellbore pressure at late producing times. The seepage face in the sandface and the delayed yield behavior were reproduced by the model considering a small liquid compressibility and incompressible porous medium. The potential buildup (recovery) simulated by the model evidenced a different- phenomenon from the drawdown, contrary to statements found in the Groundwater literature. Graphs of buildup potential vs time, buildup seepage face length vs time, and free surface head and sand bottom head radial profiles evidenced that the liquid refills the desaturating cone as a flat moving surface. The late time pseudo radial behavior was only approached after exaggerated long times.« less
Estimating Temporal Causal Interaction between Spike Trains with Permutation and Transfer Entropy
Li, Zhaohui; Li, Xiaoli
2013-01-01
Estimating the causal interaction between neurons is very important for better understanding the functional connectivity in neuronal networks. We propose a method called normalized permutation transfer entropy (NPTE) to evaluate the temporal causal interaction between spike trains, which quantifies the fraction of ordinal information in a neuron that has presented in another one. The performance of this method is evaluated with the spike trains generated by an Izhikevich’s neuronal model. Results show that the NPTE method can effectively estimate the causal interaction between two neurons without influence of data length. Considering both the precision of time delay estimated and the robustness of information flow estimated against neuronal firing rate, the NPTE method is superior to other information theoretic method including normalized transfer entropy, symbolic transfer entropy and permutation conditional mutual information. To test the performance of NPTE on analyzing simulated biophysically realistic synapses, an Izhikevich’s cortical network that based on the neuronal model is employed. It is found that the NPTE method is able to characterize mutual interactions and identify spurious causality in a network of three neurons exactly. We conclude that the proposed method can obtain more reliable comparison of interactions between different pairs of neurons and is a promising tool to uncover more details on the neural coding. PMID:23940662
Parush, Avi; Kramer, Chelsea; Foster-Hunt, Tara; Momtahan, Kathryn; Hunter, Aren; Sohmer, Benjamin
2011-06-01
Team Situation Awareness (TSA) is one of the critical factors in effective Operating Room (OR) teamwork and can impact patient safety and quality of care. While previous research showed a relationship between situation awareness, as measured by communication events, and team performance, the implications for developing technology to augment and facilitate TSA were not examined. This research aims to further study situation-related communications in the cardiac OR in order to uncover potential degradation in TSA which may lead to adverse events. The communication loop construct-the full cycle of information flow between the participants in the sequence-was used to assess susceptibility to breakdown. Previous research and the findings here suggest that communication loops that are open, non-directed, or with delayed closure, can be susceptible to information loss. These were quantitatively related to communication indicators of TSA such as questions, replies, and announcements. Taken together, both qualitative and quantitative analyses suggest that a high proportion of TSA-related communication (63%) can be characterized as susceptible to information loss. The findings were then used to derive requirements and design a TSA augmentative display. The design principles and potential benefits of such a display are outlined and discussed. Copyright © 2010 Elsevier Inc. All rights reserved.
Montgomery, Valencia; Harris, Katie; Stabler, Anthony; Lu, Lisa H
2017-05-01
To examine how the duration of time delay between Wechsler Memory Scale (WMS) Logical Memory I and Logical Memory II (LM) affected participants' recall performance. There are 46,146 total Logical Memory administrations to participants diagnosed with either Alzheimer's disease (AD), vascular dementia (VaD), or normal cognition in the National Alzheimer's Disease Coordinating Center's Uniform Data Set. Only 50% of the sample was administered the standard 20-35 min of delay as specified by WMS-R and WMS-III. We found a significant effect of delay time duration on proportion of information retained for the VaD group compared to its control group, which remained after adding LMI raw score as a covariate. There was poorer retention of information with longer delay for this group. This association was not as strong for the AD and cognitively normal groups. A 24.5-min delay was most optimal for differentiating AD from VaD participants (47.7% classification accuracy), an 18.5-min delay was most optimal for differentiating AD versus normal participants (51.7% classification accuracy), and a 22.5-min delay was most optimal for differentiating VaD versus normal participants (52.9% classification accuracy). Considering diagnostic implications, our findings suggest that test administration should incorporate precise tracking of delay periods. We recommend a 20-min delay with 18-25-min range. Poor classification accuracy based on LM data alone is a reminder that story memory performance is only one piece of data that contributes to complex clinical decisions. However, strict adherence to the recommended range yields optimal data for diagnostic decisions. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Alkaline phosphatase in osteoblasts is down-regulated by pulsatile fluid flow
NASA Technical Reports Server (NTRS)
Hillsley, M. V.; Frangos, J. A.
1997-01-01
It is our hypothesis that interstitial fluid flow plays a role in the bone remodeling response to mechanical loading. The fluid flow-induced expression of three proteins (collagen, osteopontin, and alkaline phosphatase) involved in bone remodeling was investigated. Rat calvarial osteoblasts subjected to pulsatile fluid flow at an average shear stress of 5 dyne/cm2 showed decreased alkaline phosphatase (AP) mRNA expression after only 1 hour of flow. After 3 hours of flow, AP mRNA levels had decreased to 30% of stationary control levels and remained at this level for an additional 5 hours of flow. Steady flow (4 dyne/cm2 fluid shear stress), in contrast, resulted in a delayed and less dramatic decrease in AP mRNA expression to 63% of control levels after 8 hours of flow. The reduced AP mRNA expression under pulsatile flow conditions was followed by reduced AP enzyme activity after 24 hours. No changes in collagen or osteopontin mRNA expression were detected over 8 hours of pulsatile flow. This is the first time fluid flow has been shown to affect gene expression in osteoblasts.
NASA Astrophysics Data System (ADS)
Kim, Nayoung; Kim, Hyunseok; Park, Hyungmin
2015-08-01
The present study investigates the effect that rough hydrophobic (or superhydrophobic) surfaces have on the flow separation and subsequent vortex structures in a turbulent wake behind a circular cylinder. The velocity fields were measured using two-dimensional particle image velocimetry in a water tunnel with Reynolds numbers of 0.7-2.3 × 104. The spray-coating of hydrophobic nanoparticles and roughened Teflon was used to produce the rough hydrophobic surfaces, and sandpapers with two different grit sizes were used to sand the Teflon into streamwise and spanwise directions, respectively, in order to examine the effect of the slip direction. The rough hydrophobic surface was found to enhance the turbulence in the flows above the circular cylinder and along the separating shear layers, resulting in a delay of the flow separation and early vortex roll-up in the wake. As a result, the size of the recirculation bubble in the wake was reduced by up to 40%, while the drag reduction of less than 10% is estimated from a wake survey. However, these effects are reversed as the Reynolds number increases. The surface texture normal to the flow direction (spanwise slip) was found to be more effective than that aligned to the flow (streamwise slip), supporting the suggested mechanism. In addition, the superhydrophobic surface is locally applied by varying the installation angle and that applied around the separation point is most effective, indicating that the rough hydrophobic surface directly affects the boundary layer at flow separation. In order to control the flow around a circular cylinder using rough hydrophobic surfaces, it is suggested to have a smaller roughness width, which can stably retain air pockets. In addition, a higher gas fraction and a more uniform distribution of the roughness size are helpful to enhance the performance such as the separation delay and drag reduction.
Monticelli, Francesca; Osorio, Raquel; Toledano, Manuel; Ferrari, Marco; Pashley, David H; Tay, Franklin R
2010-07-01
The sealing properties of a one-step obturation post-placement technique consisting of Resilon-capped fibre post-obturators were compared with a two-step technique based on initial Resilon root filling following by 24h-delayed fibre post-placement. Thirty root segments were shaped to size 40, 0.04 taper and filled with: (1) InnoEndo obturators; (2) Resilon/24h-delayed FibreKor post-cementation. Obturator, root filling and post-cementation procedures were performed using InnoEndo bonding agent/dual-cured root canal sealer. Fluid flow rate through the filled roots was evaluated at 10psi using a computerised fluid filtration model before root resection and after 3 and 9mm apical resections. Fluid flow data were analysed using two-way repeated measures ANOVA and Tukey test to examine the effects of root-filling post-placement techniques and root resection lengths on fluid leakage from the filled canals (alpha=0.05). A significantly greater amount of fluid leakage was observed with the one-step technique when compared with two-step technique. No difference in fluid leakage was observed among intact canals and canals resected at different lengths for both materials. The seal of root canals achieved with the one-step obturator is less effective than separate Resilon root fillings followed by a 24-h delay prior to the fibre post-placement. Incomplete setting of the sealer and restricted relief of polymerisation shrinkage stresses may be responsible for the inferior seal of the one-step root-filling/post-restoration technique. Copyright 2010 Elsevier Ltd. All rights reserved.
Variables affecting the quantitation of CD22 in neoplastic B cells.
Jasper, Gregory A; Arun, Indu; Venzon, David; Kreitman, Robert J; Wayne, Alan S; Yuan, Constance M; Marti, Gerald E; Stetler-Stevenson, Maryalice
2011-03-01
Quantitative flow cytometry (QFCM) is being applied in the clinical flow cytometry laboratory for diagnosis, prognosis, and assessment of patients receiving antibody-based therapy. ABC values and the effect of technical variables on CD22 quantitation in acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL), follicular lymphoma (FCL), hairy cell leukemia (HCL) and normal B cells were studied. The QuantiBrite System® was used to determine the level of CD22 expression (mean antibody bound per cell, ABC) by malignant and normal B cells. The intra-assay variability, number of cells required for precision, effect of delayed processing as well as shipment of peripheral blood specimens (delayed processing and exposure to noncontrolled environments), and the effect of paraformaldehyde fixation on assay results were studied. The QuantiBRITE method of measuring CD22 ABC is precise (median CV 1.6%, 95% confidence interval, 1.2-2.3%) but a threshold of 250 malignant cells is required for reliable CD22 ABC values. Delayed processing and overnight shipment of specimens resulted in significantly different ABC values whereas fixation for up to 12 h had no significant effect. ABC measurements determined that CD22 expression is lower than normal in ALL, CLL, FCL, and MCL but higher than normal in HCL. CD22 expression was atypical in the hematolymphoid malignancies studied and may have diagnostic utility. Technical variables such as cell number analyzed and delayed processing or overnight shipment of specimens impact significantly on the measurement of antigen expression by QFCM in the clinical laboratory. Published 2010 Wiley-Liss, Inc.
Modeling of workflow-engaged networks on radiology transfers across a metro network.
Camorlinga, Sergio; Schofield, Bruce
2006-04-01
Radiology metro networks bear the challenging proposition of interconnecting several hospitals in a region to provide a comprehensive diagnostic imaging service. Consequences of a poorly designed and implemented metro network could cause delays or no access at all when health care providers try to retrieve medical cases across the network. This could translate into limited diagnostic services to patients, resulting in negative impacts to the patients' medical treatment. A workflow-engaged network (WEN) is a new network paradigm. A WEN appreciates radiology workflows and priorities in using the network. A WEN greatly improves the network performance by guaranteeing that critical image transfers experience minimal delay. It adjusts network settings to ensure the application's requirements are met. This means that high-priority image transfers will have guaranteed and known delay times, whereas lower-priority traffic will have increased delays. This paper introduces a modeling to understand the benefits that WEN brings to a radiology metro network. The modeling uses actual data patterns and flows found in a hospital metro region. The workflows considered are based on the Integrating the Healthcare Enterprise profiles. This modeling has been applied to metropolitan workflows of a health region. The modeling helps identify the kind of metro network that supports data patterns and flows in a metro area. The results of the modeling show that a 155-Mb/s metropolitan area network (MAN) with WEN operates virtually equal to a normal 622-Mb/s MAN without WEN, with potential cost savings for leased line services measured in the millions of dollars per year.
Liang, Zhuoyuan; Ren, Lijie; Wang, Ting; Hu, Huoyou; Li, Weiping; Wang, Yaping; Liu, Dehong; Lie, Yi
2016-12-01
The efficacy of thrombolytic therapy for acute ischemic stroke (AIS) decreases when the administration of tissue plasminogen activator (tPA) is delayed. Derived from Toyota Production System, lean production aims to create top-quality products with high-efficiency procedures, a concept that easily applies to emergency medicine. In this study, we aimed to determine whether applying lean principles to flow optimization could hasten the initiation of thrombolysis. A multidisciplinary team (Stroke Team) was organized to implement an ongoing, continuous loop of lean production that contained the following steps: decomposition, recognition, intervention, reengineering and assessment. The door-to-needle time (DNT) and the percentage of patients with DNT ≤ 60 min before and after the adoption of lean principles were used to evaluate the efficiency of our flow optimization. Thirteen patients with AIS in the pre-lean period and 43 patients with AIS in the lean period (23 in lean period I and 20 patients in lean period II) were consecutively enrolled in our study. After flow optimization, we reduced DNT from 90 to 47 min (p < 0.001 ¤ ). In addition, the percentage of patients treated ≤60 min after hospital arrival increased from 38.46 to 75.0 % (p = 0.015 ¤ ). Adjusted analysis of covariance confirmed a significant influence of optimization on delay of tPA administration (p < 0.001). The patients were more likely to have a good prognosis (mRS ≤ 2 at 90 days) after the flow optimization (30.77-75.00 %, p = 0.012 ¤ ). Our study may offer an effective approach for optimizing the thrombolytic flow in the management of AIS.
Rolandi, M Cristina; Wiegerinck, Esther M A; Casadonte, Lorena; Yong, Ze-Yie; Koch, Karel T; Vis, Marije; Piek, Jan J; Baan, Jan; Spaan, Jos A E; Siebes, Maria
2016-04-01
Aortic valve stenosis (AS) can cause angina despite unobstructed coronary arteries, which may be related to increased compression of the intramural microcirculation, especially at the subendocardium. We assessed coronary wave intensity and phasic flow velocity patterns to unravel changes in cardiac-coronary interaction because of transcatheter aortic valve implantation (TAVI). Intracoronary pressure and flow velocity were measured at rest and maximal hyperemia in undiseased vessels in 15 patients with AS before and after TAVI and in 12 control patients. Coronary flow reserve, systolic and diastolic velocity time integrals, and the energies of forward (aorta-originating) and backward (microcirculatory-originating) coronary waves were determined. Coronary flow reserve was 2.8±0.2 (mean±SEM) in control and 1.8±0.1 in AS (P<0.005) and was not restored by TAVI. Compared with control, the resting backward expansion wave was 45% higher in AS. The peak of the systolic forward compression wave was delayed in AS, consistent with a delayed peak aortic pressure, which was partially restored after TAVI. The energy of forward waves doubled after TAVI, whereas the backward expansion wave increased by >30%. The increase in forward compression wave with TAVI was related to an increase in systolic velocity time integral. AS or TAVI did not alter diastolic velocity time integral. Reduced coronary forward wave energy and systolic velocity time integral imply a compromised systolic flow velocity with AS that is restored after TAVI, suggesting an acute relief of excess compression in systole that likely benefits subendocardial perfusion. Vasodilation is observed to be a major determinant of backward waves. © 2016 American Heart Association, Inc.
Hosseini, Seyyed Yousef; Safarinejad, Mohammad Reza
2005-01-01
Our aim was to evaluate the results of early versus delayed internal urethrotomy for management of recurrent urethral strictures after posterior urethroplasty in children. Twenty boys with proven posterior urethral strictures were treated by perineal posterior urethroplasty. Of these, 12 required internal urethrotomy. Each radiograph demonstrated a patent but irregular urethra with a decrease in diameter at the point of repair (fair results). Patients were then divided into 2 groups: 6 underwent early (within 6 weeks from urethroplasty), and 6 underwent delayed (after 12 weeks from urethroplasty), internal urethrotomy with the cold knife as a complementary treatment. The groups were comparable in terms of patient age, etiology of the primary urethral stricture, number of recurrences, length and site of the actual stricture, and preoperative maximum flow rate. Mean follow-up was 5 years. Kaplan-Meier analyses showed that the stricture-free rate was 66.6% after early, and 33.3% after delayed, internal urethrotomy (P = .03). Early internal urethrotomy should be considered in boys with recurrent urethral stricture after urethroplasty.
Auroral Substorms during Prolonged Northward IMF
NASA Astrophysics Data System (ADS)
Du, Aimin
Multiple observations by satellites and ground-based magnetometers identify the occurrence of substorm events during prolonged northward interplanetary magnetic field (IMF). The func-tion, as an expression of the solar wind energy flow, and the energy dissipation in the ionosphere (UI) are calculated during substorm periods. The delay time of the UI to the function and UI for seven substorm events with AL values of -231 -1500 nT under northward IMF condition are 45 95 min with a mean value of 70.86 min. For comparison, 23 substorm events with the AL index of -316 -1685 nT under southward IMF condition are detected to have the delay time of 21 66 min with a mean value of 42.04 min. The longer delay time for substorms during northward IMF can be presumably attributed to the contribution of IMF By component to merging between IMF and the Earth's magnetic field. A tendency of the decrease of the delay time with increasing absolute values of IMF By is noted. Acknowledgement: This work is supported by NSFC(40774086).
Delayed elasticity in Zerodur® at room temperature
NASA Astrophysics Data System (ADS)
Pepi, John W.; Golini, Donald
1991-12-01
Much has been written about structural relaxation, viscous flow, delayed elasticity, hysteresis, and other dimensional stability phenomena of glass and ceramics at elevated temperatures. Less has been documented about similar effects at room temperature. The time dependent phenomenon of delayed elasticity exhibited by Zerodur has been studied at room temperature and is presented here. Using a high-performance mechanical profilometer, a delayed strain on the order of 1 percent is realized over a period of a few weeks, under low stress levels. An independent test using optical interferometry validates the results. A comparison of Corning ULE silica glass is also made. The effect is believed to be related to the alkali oxide content of the glass ceramic and rearrangement of the ion groups within the structure during stress. The effect, apparent under externally applied load, is elastic and repeatable, that is, no hysteresis of permanent set, as measured at elevated temperature, is evidenced within measurement capabilities. Nonetheless, it must be accounted for in determining the magnitude of distortion under load (delayed elastic creep) and upon load removal (delayed elastic recovery). This is particularly important for large lightweight optics which might undergo large strain during fabrication and environmental loading, such as experienced in gravity release or in dynamic control of active optics.
Root, James C; Andreotti, Charissa; Tsu, Loretta; Ellmore, Timothy M; Ahles, Tim A
2016-06-01
Our previous retrospective analysis of clinically referred breast cancer survivors' performance on learning and memory measures found a primary weakness in initial encoding of information into working memory with intact retention and recall of this same information at a delay. This suggests that survivors may misinterpret cognitive lapses as being due to forgetting when, in actuality, they were not able to properly encode this information at the time of initial exposure. Our objective in this study was to replicate and extend this pattern of performance to a research sample to increase the generalizability of this finding in a sample in which subjects were not clinically referred for cognitive issues. We contrasted learning and memory performance between breast cancer survivors on endocrine therapy 2 to 6 years post-treatment with age- and education-matched healthy controls. We then stratified lower- and higher-performing breast cancer survivors to examine specific patterns of learning and memory performance. Contrasts were generated for four aggregate visual and verbal memory variables from the California Verbal Learning Test-2 (CVLT-2) and the Brown Location Test (BLT): Single-trial Learning: Trial 1 performance, Multiple-trial Learning: Trial 5 performance, Delayed Recall: Long-delay Recall performance, and Memory Errors: False-positive errors. As predicted, breast cancer survivors' performance as a whole was significantly lower on Single-trial Learning than the healthy control group but exhibited no significant difference in Delayed Recall. In the secondary analysis contrasting lower- and higher-performing survivors on cognitive measures, the same pattern of lower Single-trial Learning performance was exhibited in both groups, with the additional finding of significantly weaker Multiple-trial Learning performance in the lower-performing breast cancer group and intact Delayed Recall performance in both groups. As with our earlier finding of weaker initial encoding with intact recall in a cohort of clinically referred breast cancer survivors, our results indicate this same profile in a research sample of breast cancer survivors. Further, when the breast cancer group was stratified by lower and higher performance, both groups exhibited significantly lower performance on initial encoding, with more pronounced encoding weakness in the lower-performing group. As in our previous research, survivors did not lose successfully encoded information over longer delays, either in the lower- or higher-performing group, again arguing against memory decay in survivors. The finding of weaker initial encoding of information together with intact delayed recall in survivors points to specific treatment interventions in rehabilitation of cognitive dysfunction. The finding of weaker initial encoding of information together with intact delayed recall in survivors points to specific treatment interventions in rehabilitation of cognitive dysfunction and is discussed.
Dynamic Routing for Delay-Tolerant Networking in Space Flight Operations
NASA Technical Reports Server (NTRS)
Burleigh, Scott
2008-01-01
Computational self-sufficiency - the making of communication decisions on the basis of locally available information that is already in place, rather than on the basis of information residing at other entities - is a fundamental principle of Delay-Tolerant Networking. Contact Graph Routing is an attempt to apply this principle to the problem of dynamic routing in an interplanetary DTN. Testing continues, but preliminary results are promising.
ERIC Educational Resources Information Center
Akmanoglu, Nurgul; Kurt, Onur; Kapan, Alper
2015-01-01
The aim of the current study was to compare simultaneous prompting (SP) and constant time delay (CTD) in terms of their effectiveness and efficiency in teaching children with autism how to respond to questions about personal information. The adapted alternating treatments model was used in the study. Three male students with autism aged 4, 6, and…
Establishing a process for conducting cross-jurisdictional record linkage in Australia.
Moore, Hannah C; Guiver, Tenniel; Woollacott, Anthony; de Klerk, Nicholas; Gidding, Heather F
2016-04-01
To describe the realities of conducting a cross-jurisdictional data linkage project involving state and Australian Government-based data collections to inform future national data linkage programs of work. We outline the processes involved in conducting a Proof of Concept data linkage project including the implementation of national data integration principles, data custodian and ethical approval requirements, and establishment of data flows. The approval process involved nine approval and regulatory bodies and took more than two years. Data will be linked across 12 datasets involving three data linkage centres. A framework was established to allow data to flow between these centres while maintaining the separation principle that serves to protect the privacy of the individual. This will be the first project to link child immunisation records from an Australian Government dataset to other administrative health datasets for a population cohort covering 2 million births in two Australian states. Although the project experienced some delays, positive outcomes were realised, primarily the development of strong collaborations across key stakeholder groups including community engagement. We have identified several recommendations and enhancements to this now established framework to further streamline the process for data linkage studies involving Australian Government data. © 2015 Public Health Association of Australia.
... NICHD Research Information Find a Study More Information Cerebral Palsy Condition Information NICHD Research Information Find a Study ... as developmental delays, vision and hearing problems, and cerebral palsy. 4 Infants born between 34 and 36 weeks ...
78 FR 18419 - Office of Hazardous Materials Safety; Delayed Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-26
... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration Office of Hazardous Materials Safety; Delayed Applications AGENCY: Pipeline and Hazardous Materials Safety.... FOR FURTHER INFORMATION CONTACT: Ryan Paquet, Director, Office of Hazardous Materials Special Permits...
Time delays in flight simulator visual displays
NASA Technical Reports Server (NTRS)
Crane, D. F.
1980-01-01
It is pointed out that the effects of delays of less than 100 msec in visual displays on pilot dynamic response and system performance are of particular interest at this time because improvements in the latest computer-generated imagery (CGI) systems are expected to reduce CGI displays delays to this range. Attention is given to data which quantify the effects of display delays in the range of 0-100 msec on system stability and performance, and pilot dynamic response for a particular choice of aircraft dynamics, display, controller, and task. The conventional control system design methods are reviewed, the pilot response data presented, and data for long delays, all suggest lead filter compensation of display delay. Pilot-aircraft system crossover frequency information guides compensation filter specification.
Aerodynamic Inner Workings of Circumferential Grooves in a Transonic Axial Compressor
NASA Technical Reports Server (NTRS)
Hah, Chunill; Mueller, Martin; Schiffer, Heinz-Peter
2007-01-01
The current paper reports on investigations of the fundamental flow mechanisms of circumferential grooves applied to a transonic axial compressor. Experimental results show that the compressor stall margin is significantly improved with the current set of circumferential grooves. The primary focus of the current investigation is to advance understanding of basic flow mechanics behind the observed improvement of stall margin. Experimental data and numerical simulations of a circumferential groove were analyzed in detail to unlock the inner workings of the circumferential grooves in the current transonic compressor rotor. A short length scale stall inception occurs when a large flow blockage is built on the pressure side of the blade near the leading edge and incoming flow spills over to the adjacent blade passage due to this blockage. The current study reveals that a large portion of this blockage is created by the tip clearance flow originating from 20% to 50% chord of the blade from the leading edge. Tip clearance flows originating from the leading edge up to 20% chord form a tip clearance core vortex and this tip clearance core vortex travels radially inward. The tip clearance flows originating from 20% to 50% chord travels over this tip clearance core vortex and reaches to the pressure side. This part of tip clearance flow is of low momentum as it is coming from the casing boundary layer and the blade suction surface boundary layer. The circumferential grooves disturb this part of the tip clearance flow close to the casing. Consequently the buildup of the induced vortex and the blockage near the pressure side of the passage is reduced. This is the main mechanism of the circumferential grooves that delays the formation of blockage near the pressure side of the passage and delays the onset of short length scale stall inception. The primary effect of the circumferential grooves is preventing local blockage near the pressure side of the blade leading edge that directly determines flow spillage around the leading edge. The circumferential grooves do not necessarily reduce the over all blockage built up at the rotor tip section.
A modelling tool for capacity planning in acute and community stroke services.
Monks, Thomas; Worthington, David; Allen, Michael; Pitt, Martin; Stein, Ken; James, Martin A
2016-09-29
Mathematical capacity planning methods that can take account of variations in patient complexity, admission rates and delayed discharges have long been available, but their implementation in complex pathways such as stroke care remains limited. Instead simple average based estimates are commonplace. These methods often substantially underestimate capacity requirements. We analyse the capacity requirements for acute and community stroke services in a pathway with over 630 admissions per year. We sought to identify current capacity bottlenecks affecting patient flow, future capacity requirements in the presence of increased admissions, the impact of co-location and pooling of the acute and rehabilitation units and the impact of patient subgroups on capacity requirements. We contrast these results to the often used method of planning by average occupancy, often with arbitrary uplifts to cater for variability. We developed a discrete-event simulation model using aggregate parameter values derived from routine administrative data on over 2000 anonymised admission and discharge timestamps. The model mimicked the flow of stroke, high risk TIA and complex neurological patients from admission to an acute ward through to community rehab and early supported discharge, and predicted the probability of admission delays. An increase from 10 to 14 acute beds reduces the number of patients experiencing a delay to the acute stroke unit from 1 in every 7 to 1 in 50. Co-location of the acute and rehabilitation units and pooling eight beds out of a total bed stock of 26 reduce the number of delayed acute admissions to 1 in every 29 and the number of delayed rehabilitation admissions to 1 in every 20. Planning by average occupancy would resulted in delays for one in every five patients in the acute stroke unit. Planning by average occupancy fails to provide appropriate reserve capacity to manage the variations seen in stroke pathways to desired service levels. An appropriate uplift from the average cannot be based simply on occupancy figures. Our method draws on long available, intuitive, but underused mathematical techniques for capacity planning. Implementation via simulation at our study hospital provided valuable decision support for planners to assess future bed numbers and organisation of the acute and rehabilitation services.
Russian Hydrogen-Checking Instrument on Curiosity Fires 2 Millionth Pulse
2014-01-29
Dynamic Albedo of Neutrons DAN, measures the flow of neutrons with different energy levels returning from the ground, and their delay times, as an indication of the amount and depth of hydrogen in the ground beneath the NASA rover, Curiosity.
ERIC Educational Resources Information Center
Daugherty, Stefanie; Grisham-Brown, Jennifer; Hemmeter, Mary Louise
2001-01-01
In the current study, a constant time delay (CTD) procedure was embedded in classroom activities and routines to teach counting to three preschool children with speech and language delays. CTD was effective in teaching numbers to all three children. One child out of two also was able to acquire non-target information. (Contains references.) (CR)
NASA Astrophysics Data System (ADS)
Patrick, William P.; Bryant, Rebecca S.; Greenwald, Larry E.
2002-05-01
A unique low-pressure-drop muffler is described which has been designed to attenuate low frequency tonal noise in ducts. Flow through the muffler is divided into two noncommunicating paths in the cylindrical configuration which was designed, built, and tested. Half of the flow is ducted through a straight central annulus and the other half is ducted through a partitioned outer annulus which directs the flow in a spiral flow pattern around the inner annulus. Thus the outer flow has a longer path length and the sound within the outer annulus is phase-delayed relative to the inner flow causing destructive interference between the inner and outer waves with resulting strong attenuation at the tuned frequencies. A procedure will be described for designing a muffler (with flow) to produce high attenuation at the fundamental noise tone and all harmonics (up to the first cross mode). Results will be presented which show that the muffler achieved over 20 dB attenuation for the first five harmonics of the incident noise in a flowing duct.
Dielectric properties of lava flows west of Ascraeus Mons, Mars
Carter, L.M.; Campbell, B.A.; Holt, J.W.; Phillips, R.J.; Putzig, N.E.; Mattei, S.; Seu, R.; Okubo, C.H.; Egan, A.F.
2009-01-01
The SHARAD instrument on the Mars Reconnaissance Orbiter detects subsurface interfaces beneath lava flow fields northwest of Ascraeus Mons. The interfaces occur in two locations; a northern flow that originates south of Alba Patera, and a southern flow that originates at the rift zone between Ascraeus and Pavonis Montes. The northern flow has permittivity values, estimated from the time delay of echoes from the basal interface, between 6.2 and 17.3, with an average of 12.2. The southern flow has permittivity values of 7.0 to 14.0, with an average of 9.8. The average permittivity values for the northern and southern flows imply densities of 3.7 and 3.4 g cm-3, respectively. Loss tangent values for both flows range from 0.01 to 0.03. The measured bulk permittivity and loss tangent values are consistent with those of terrestrial and lunar basalts, and represent the first measurement of these properties for dense rock on Mars. Copyright 2009 by the American Geophysical Union.
Autoignition of hydrogen in shear flows
NASA Astrophysics Data System (ADS)
Kalbhor, Abhijit; Chaudhuri, Swetaprovo; Chitilappilly, Lazar
2018-05-01
In this paper, we compare the autoignition characteristics of laminar, nitrogen-diluted hydrogen jets in two different oxidizer flow configurations: (a) co-flowing heated air and (b) wake of heated air, using two-dimensional numerical simulations coupled with detailed chemical kinetics. In both cases, autoignition is observed to initiate at locations with low scalar dissipation rates and high HO2 depletion rates. It is found that the induction stage prior to autoignition is primarily dominated by chemical kinetics and diffusion while the improved scalar mixing imparted by the large-scale flow structures controls the ignition progress in later stages. We further investigate the ignition transience and its connection with mixing by varying the initial wake conditions and fuel jet to oxidizer velocity ratios. These studies reveal that the autoignition delay times are independent of initial wake flow conditions. However, with increased jet velocity ratios, the later stages of ignition are accelerated, mainly due to enhanced mixing facilitated by the higher scalar dissipation rates. Furthermore, the sensitivity studies for the jet in wake configuration show a significant reduction in ignition delay even for about 0.14% (by volume) hydrogen dilution in the oxidizer. In addition, the detailed autoignition chemistry and the relative roles of certain radical species in the initiation of the autoignition process in these non-premixed jets are investigated by tracking the evolution of important chain reactions using a Lagrangian particle tracking approach. The reaction H2 + O2 ↔ HO2 + H is recognized to be the dominant chain initiation reaction that provides H radicals essential for the progress of subsequent elementary reactions during the pre-ignition stage.
Two-phase flow in the cooling circuit of a cryogenic rocket engine
NASA Astrophysics Data System (ADS)
Preclik, D.
1992-07-01
Transient two-phase flow was investigated for the hydrogen cooling circuit of the HM7 rocket engine. The nuclear reactor code ATHLET/THESEUS was adapted to cryogenics and applied to both principal and prototype experiments for validation and simulation purposes. The cooling circuit two-phase flow simulation focused on the hydrogen prechilling and pump transient phase prior to ignition. Both a single- and a multichannel model were designed and employed for a valve leakage flow, a nominal prechilling flow, and a prechilling with a subsequent pump-transient flow. The latter case was performed in order to evaluate the difference between a nominal and a delayed turbo-pump start-up. It was found that an extension of the nominal prechilling sequence in the order of 1 second is sufficient to finally provide for liquid injection conditions of hydrogen which, as commonly known, is undesirable for smooth ignition and engine starting transients.
Good, Kevin; Winkel, David; VonNiederhausern, Michael; Hawkins, Brian; Cox, Jessica; Gooding, Rachel; Whitmire, Mark
2013-06-01
The Chemical Terrorism Risk Assessment (CTRA) and Chemical Infrastructure Risk Assessment (CIRA) are programs that estimate the risk of chemical terrorism attacks to help inform and improve the US defense posture against such events. One aspect of these programs is the development and advancement of a Medical Mitigation Model-a mathematical model that simulates the medical response to a chemical terrorism attack and estimates the resulting number of saved or benefited victims. At the foundation of the CTRA/CIRA Medical Mitigation Model is the concept of stock-and-flow modeling; "stocks" are states that individuals progress through during the event, while "flows" permit and govern movement from one stock to another. Using this approach, the model is able to simulate and track individual victims as they progress from exposure to an end state. Some of the considerations in the model include chemical used, type of attack, route and severity of exposure, response-related delays, detailed treatment regimens with efficacy defined as a function of time, medical system capacity, the influx of worried well individuals, and medical countermeasure availability. As will be demonstrated, the output of the CTRA/CIRA Medical Mitigation Model makes it possible to assess the effectiveness of the existing public health response system and develop and examine potential improvement strategies. Such a modeling and analysis capability can be used to inform first-responder actions/training, guide policy decisions, justify resource allocation, and direct knowledge-gap studies.
Low Reynolds number numerical solutions of chaotic flow
NASA Technical Reports Server (NTRS)
Pulliam, Thomas H.
1989-01-01
Numerical computations of two-dimensional flow past an airfoil at low Mach number, large angle of attack, and low Reynolds number are reported which show a sequence of flow states leading from single-period vortex shedding to chaos via the period-doubling mechanism. Analysis of the flow in terms of phase diagrams, Poincare sections, and flowfield variables are used to substantiate these results. The critical Reynolds number for the period-doubling bifurcations is shown to be sensitive to mesh refinement and the influence of large amounts of numerical dissipation. In extreme cases, large amounts of added dissipation can delay or completely eliminate the chaotic response. The effect of artificial dissipation at these low Reynolds numbers is to produce a new effective Reynolds number for the computations.
Photonic single nonlinear-delay dynamical node for information processing
NASA Astrophysics Data System (ADS)
Ortín, Silvia; San-Martín, Daniel; Pesquera, Luis; Gutiérrez, José Manuel
2012-06-01
An electro-optical system with a delay loop based on semiconductor lasers is investigated for information processing by performing numerical simulations. This system can replace a complex network of many nonlinear elements for the implementation of Reservoir Computing. We show that a single nonlinear-delay dynamical system has the basic properties to perform as reservoir: short-term memory and separation property. The computing performance of this system is evaluated for two prediction tasks: Lorenz chaotic time series and nonlinear auto-regressive moving average (NARMA) model. We sweep the parameters of the system to find the best performance. The results achieved for the Lorenz and the NARMA-10 tasks are comparable to those obtained by other machine learning methods.
NASA Astrophysics Data System (ADS)
Xu, Da; Liu, Yijie
2018-02-01
Taking the wetland park of Yuan Village in Qishan County of Shaanxi Province as the research object, this paper makes a reasonable generalization of the study area, and establishes two models of low impact development (LID) and traditional development in the park. Meantime, rainwater in the surrounding built up area is introduced to into the park for digestion. SWMM model is used to simulate the variation of the total runoff, peak flow and peak time of two development models in Wetland Park under one-hour rainfall at different recurrence periods.The runoff control effect in each single LID facility in the one-hour rainfall once during five years in the built-up area is simulated. The simulation results show that the SWMM model can not only quantify the runoff reduction effect of different LID facilities, but also provide theoretical basis and data support for the urban rainfall flood problem. LID facilities have effects on runoff reduction and peak delay. However, the combined LID facility has obvious advantages for the peak time delay and peak flow control. A single LID facility is more efficient in a single runoff volume control. The order of runoff reduction by various LID facilities is as follows: Rain garden>combined LID facility> vegetative swale> bio-retention cell > permeable pavement. The order of peak time delay effect by the LID facilities is as follows: combined LID facility> Rain garden> vegetative swale> bio-retention cell > permeable pavement. The order of peak flow reduction efficiency by various LID facilities is: combined LID facility> Rain garden> bio-retention cell > vegetative swale> permeable pavement.
Gartner, J.W.; Ganju, N.K.; ,
2002-01-01
Many streams and rivers for which the US Geological Survey must provide discharge measurements are too shallow to apply existing acoustic Doppler current profiler techniques for flow measurements of satisfactory quality. Because the same transducer is used for both transmitting and receiving acoustic signals in most Doppler current profilers, some small time delay is required for acoustic "ringing" to be damped out of transducers before meaningful measurements can be made. The result of that time delay is that velocity measurements cannot be made close to the transducer thus limiting the usefulness of these instruments in shallow regions. Manufacturers and users are constantly striving for improvements to acoustic instruments which would permit useful discharge measurements in shallow rivers and streams that are still often measured with techniques and instruments more than a century old. One promising area of advance appeared to be reduction of time delay (blank) required between transmitting and receiving signals during acoustic velocity measurements. Development of a low- or zero-blank transducer by RD Instruments3 held promise that velocity measurements could be made much closer to the transducer and thus in much shallower water. Initial experience indicates that this is not the case; limitation of measurement quality appears to be related to the physical presence of the transducer itself within the flow field. The limitation may be the result of changes to water flow pattern close to the transducer rather than transducer ringing characteristics as a function of blanking distance. Results of field experiments are discussed that support this conclusion and some minimum measurement distances from transducer are suggested based on water current speed and ADCP sample modes.
Rondina, Matthew T; Grissom, Colin K; Men, Shaohua; Harris, Estelle S; Schwertz, Hansjorg; Zimmerman, Guy A; Weyrich, Andrew S
2012-06-01
Flow cytometry is often used to measure in vivo platelet activation in critically-ill patients. Variability in blood sampling techniques, which may confound these measurements, remains poorly characterized. Platelet activation was measured by flow cytometry performed on arterial and venous blood from 116 critically-ill patients. We determined how variability in vascular sampling site, processing times, and platelet counts influenced levels of platelet-monocyte aggregates (PMA), PAC-1 binding (for glycoprotein (GP) IIbIIIa), and P-selectin (P-SEL) expression. Levels of PMA, but not PAC-1 binding or P-SEL expression, were significantly affected by variability in vascular sampling site. Average PMA levels were approximately 60% higher in whole blood drawn from an arterial vessel compared to venous blood (16.2±1.8% vs. 10.7±1.2%, p<0.05). Levels of PMA in both arterial and venous blood increased significantly during ex vivo processing delays (1.7% increase for every 10 minute delay, p<0.05). In contrast, PAC-1 binding and P-SEL expression were unaffected by processing delays. Levels of PMA, but not PAC-1 binding or P-SEL expression, were correlated with platelet count quartiles (9.4±1.6% for the lowest quartile versus 15.4±1.6% for the highest quartile, p<0.05). In critically-ill patients, variability in vascular sampling site, processing times, and platelet counts influence levels of PMA, but not PAC-1 binding or P-SEL expression. These data demonstrate the need for rigorous adherence to blood sampling protocols, particularly when levels of PMA, which are most sensitive to variations in blood collection, are measured for detection of in vivo platelet activation. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Brooks, David E.; Gassman, Holly; Beering, Dave R.; Welch, Arun; Hoder, Douglas J.; Ivancic, William D.
1999-01-01
Transmission Control Protocol (TCP) is the underlying protocol used within the Internet for reliable information transfer. As such, there is great interest to have all implementations of TCP efficiently interoperate. This is particularly important for links exhibiting long bandwidth-delay products. The tools exist to perform TCP analysis at low rates and low delays. However, for extremely high-rate and lone-delay links such as 622 Mbps over geosynchronous satellites, new tools and testing techniques are required. This paper describes the tools and techniques used to analyze and debug various TCP implementations over high-speed, long-delay links.
Delay-slope-dependent stability results of recurrent neural networks.
Li, Tao; Zheng, Wei Xing; Lin, Chong
2011-12-01
By using the fact that the neuron activation functions are sector bounded and nondecreasing, this brief presents a new method, named the delay-slope-dependent method, for stability analysis of a class of recurrent neural networks with time-varying delays. This method includes more information on the slope of neuron activation functions and fewer matrix variables in the constructed Lyapunov-Krasovskii functional. Then some improved delay-dependent stability criteria with less computational burden and conservatism are obtained. Numerical examples are given to illustrate the effectiveness and the benefits of the proposed method.
Towards feasible and effective predictive wavefront control for adaptive optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poyneer, L A; Veran, J
We have recently proposed Predictive Fourier Control, a computationally efficient and adaptive algorithm for predictive wavefront control that assumes frozen flow turbulence. We summarize refinements to the state-space model that allow operation with arbitrary computational delays and reduce the computational cost of solving for new control. We present initial atmospheric characterization using observations with Gemini North's Altair AO system. These observations, taken over 1 year, indicate that frozen flow is exists, contains substantial power, and is strongly detected 94% of the time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Bingyu; Zheng, Liancun, E-mail: liancunzheng@ustb.edu.cn; Chen, Shengting
This paper presents an investigation for magnetohydrodynamic (MHD) viscoelastic fluid boundary layer flow and radiation heat transfer over an unsteady stretching sheet in presence of heat source. Time dependent fractional derivative is first introduced in formulating the boundary layer equations. Numerical solutions are obtained by using the finite difference scheme and L1-algorithm approximation. Results indicate that the proposed model describes a basic delaying times framework for viscoelastic flow and radiation heat transfer. The effects of involved parameters on velocity and temperature fields are shown graphically and analyzed in detail.
Electrospray of 1-Butyl-3-Methylimidazolium Dicyanamide Under Variable Flow Rate Operations
2014-06-27
cm length. The capillary needle is stainless steel with a tapered tip of 50 μm inner diameter and 3.5 cm length. Both capillaries are commercially...connected. Figure 8 shows the emission current results of a 50 μm stainless - steel tip over the same IL flow rate range as Fig. 5. The emitter... fuming nitric acid, resulting in an ignition delay time of 47 ms, longer than the desired maximumof 5ms.Numerical predictions byBerg andRovey [18,19
Optimal route discovery for soft QOS provisioning in mobile ad hoc multimedia networks
NASA Astrophysics Data System (ADS)
Huang, Lei; Pan, Feng
2007-09-01
In this paper, we propose an optimal routing discovery algorithm for ad hoc multimedia networks whose resource keeps changing, First, we use stochastic models to measure the network resource availability, based on the information about the location and moving pattern of the nodes, as well as the link conditions between neighboring nodes. Then, for a certain multimedia packet flow to be transmitted from a source to a destination, we formulate the optimal soft-QoS provisioning problem as to find the best route that maximize the probability of satisfying its desired QoS requirements in terms of the maximum delay constraints. Based on the stochastic network resource model, we developed three approaches to solve the formulated problem: A centralized approach serving as the theoretical reference, a distributed approach that is more suitable to practical real-time deployment, and a distributed dynamic approach that utilizes the updated time information to optimize the routing for each individual packet. Examples of numerical results demonstrated that using the route discovered by our distributed algorithm in a changing network environment, multimedia applications could achieve better QoS statistically.
Viscous drag reduction in boundary layers
NASA Technical Reports Server (NTRS)
Bushnell, Dennis M. (Editor); Hefner, Jerry N. (Editor)
1990-01-01
The present volume discusses the development status of stability theory for laminar flow control design, applied aspects of laminar-flow technology, transition delays using compliant walls, the application of CFD to skin friction drag-reduction, active-wave control of boundary-layer transitions, and such passive turbulent-drag reduction methods as outer-layer manipulators and complex-curvature concepts. Also treated are such active turbulent drag-reduction technique applications as those pertinent to MHD flow drag reduction, as well as drag reduction in liquid boundary layers by gas injection, drag reduction by means of polymers and surfactants, drag reduction by particle addition, viscous drag reduction via surface mass injection, and interactive wall-turbulence control.
NASA Astrophysics Data System (ADS)
Park, E.; Jeong, J.
2017-12-01
A precise estimation of groundwater fluctuation is studied by considering delayed recharge flux (DRF) and unsaturated zone drainage (UZD). Both DRF and UZD are due to gravitational flow impeded in the unsaturated zone, which may nonnegligibly affect groundwater level changes. In the validation, a previous model without the consideration of unsaturated flow is benchmarked where the actual groundwater level and precipitation data are divided into three periods based on the climatic condition. The estimation capability of the new model is superior to the benchmarked model as indicated by the significantly improved representation of groundwater level with physically interpretable model parameters.
NASA Technical Reports Server (NTRS)
Tseng, K.; Morino, L.
1975-01-01
A general theory for study, oscillatory or fully unsteady potential compressible aerodynamics around complex configurations is presented. Using the finite-element method to discretize the space problem, one obtains a set of differential-delay equations in time relating the potential to its normal derivative which is expressed in terms of the generalized coordinates of the structure. For oscillatory flow, the motion consists of sinusoidal oscillations around a steady, subsonic or supersonic flow. For fully unsteady flow, the motion is assumed to consist of constant subsonic or supersonic speed for time t or = 0 and of small perturbations around the steady state for time t 0.
Simulation of Flow Control Using Deformable Surfaces
NASA Technical Reports Server (NTRS)
Truman, C. Randall
2001-01-01
The goal of this investigation is to numerically simulate the effects of oscillatory actuators placed on the leading edge of an airfoil, and to quantify the effects of oscillatory blowing on an airfoil stall behavior. It has been demonstrated experimentally that periodic blowing can delay flow separation at high angle of attack. The computations are to be performed for a TAU 0015 airfoil at a high Reynolds number of approx. 1 x 10(exp 6) with turbulent flow conditions. The two-equation Wilcox k - w turbulence model has been shown to provide reliable descriptions of transition and turbulence at high Reynolds numbers. The results are to be compared to Seifert's experimental data.
Malinova, Vesna; Dolatowski, Karoline; Schramm, Peter; Moerer, Onnen; Rohde, Veit; Mielke, Dorothee
2016-07-01
OBJECT This prospective study investigated the role of whole-brain CT perfusion (CTP) studies in the identification of patients at risk for delayed ischemic neurological deficits (DIND) and of tissue at risk for delayed cerebral infarction (DCI). METHODS Forty-three patients with aneurysmal subarachnoid hemorrhage (aSAH) were included in this study. A CTP study was routinely performed in the early phase (Day 3). The CTP study was repeated in cases of transcranial Doppler sonography (TCD)-measured blood flow velocity (BFV) increase of > 50 cm/sec within 24 hours and/or on Day 7 in patients who were intubated/sedated. RESULTS Early CTP studies revealed perfusion deficits in 14 patients, of whom 10 patients (72%) developed DIND, and 6 of these 10 patients (60%) had DCI. Three of the 14 patients (21%) with early perfusion deficits developed DCI without having had DIND, and the remaining patient (7%) had neither DIND nor DCI. There was a statistically significant correlation between early perfusion deficits and occurrence of DIND and DCI (p < 0.0001). A repeated CTP was performed in 8 patients with a TCD-measured BFV increase > 50 cm/sec within 24 hours, revealing a perfusion deficit in 3 of them (38%). Two of the 3 patients (67%) developed DCI without preceding DIND and 1 patient (33%) had DIND without DCI. In 4 of the 7 patients (57%) who were sedated and/or comatose, additional CTP studies on Day 7 showed perfusion deficits. All 4 patients developed DCI. CONCLUSIONS Whole-brain CTP on Day 3 after aSAH allows early and reliable identification of patients at risk for DIND and tissue at risk for DCI. Additional CTP investigations, guided by TCD-measured BFV increase or persisting coma, do not contribute to information gain.
Effect of Pressure on Piloted Ignition Delay of PMMA
NASA Technical Reports Server (NTRS)
McAllister, Sara; Lai, Janice; Scott, Sarah; Ramirez-Correa, Amelia; Fernandez-Pello, Carlos; Urban, David; Ruff, Gary
2008-01-01
In order to reduce the risk of decompression sickness associated with spacewalks, NASA is considering designing the next generation of exploration vehicles and habitats with a different cabin environment than used previously. The proposed environment uses a total cabin pressure of 52.7 to 58.6 kPa with an oxygen concentration of 30 to 34% by volume and was chosen with material flammability in mind. Because materials may burn differently under these conditions and there is little information on how this new environment affects the flammability of the materials onboard, it is important to conduct material flammability experiments at the intended exploration atmosphere. One method to evaluate material flammability is by its ease of ignition. To this end, piloted ignition delay tests were conducted in the Forced Ignition and Spread Test (FIST) apparatus subject to this new environment. In these tests, polymethylmethacylate (PMMA) was exposed to a range of oxidizer flow velocities and externally applied heat fluxes. The ultimate goal is to determine the individual effect of pressure and the combined effect of pressure and oxygen concentration on the ignition delay. Tests were conducted for a baseline case of normal pressure and oxygen concentration, low pressure (58.6 kPa) with normal oxygen (21%). Future work will focus on low pressure with 32% oxygen concentration (space exploration atmosphere - SEA) conditions. It was found that reducing the pressure while keeping the oxygen concentration at 21% reduced the ignition time by 17% on average. It was also noted that the critical heat flux for ignition decreases in low-pressure conditions. Because tests conducted in standard atmospheric conditions will underpredict the flammability of materials intended for use on spacecraft, fire safety onboard at exploration atmospheres may be compromised.
Piloted Ignition Delay of PMMA in Space Exploration Atmospheres
NASA Technical Reports Server (NTRS)
McAllister, Sara; Fernandez-Pello, Carlos; Urban, David; Ruff, Gary
2007-01-01
In order to reduce the risk of decompression sickness associated with extravehicular activity (EVA), NASA is designing the next generation of exploration vehicles and habitats with a different cabin environment than used previously. The proposed environment uses a total cabin pressure of 52.7 to 58.6 kPa with an oxygen concentration of 30 to 34% by volume and was chosen with material flammability in mind. Because materials may burn differently under these conditions and there is little information on how this new environment affects the flammability of the materials onboard, it is important to conduct material flammability experiments at the intended exploration atmosphere. One method to evaluate material flammability is by its ease of ignition. To this end, piloted ignition delay tests were conducted in the Forced Ignition and Spread Test (FIST) apparatus subject to this new environment. In these tests, polymethylmethacylate (PMMA) was exposed to a range of oxidizer flow velocities and externally applied heat fluxes. Tests were conducted for a baseline case of normal pressure and oxygen concentration, low pressure (58.6 kPa) with normal oxygen (21%), and low pressure with 32% oxygen concentration conditions to determine the individual effect of pressure and the combined effect of pressure and oxygen concentration on the ignition delay. It was found that reducing the pressure while keeping the oxygen concentration at 21% reduced the ignition time by 17% on average. Increasing the oxygen concentration at low pressures reduced the ignition time by an additional 10%. It was also noted that the critical heat flux for ignition decreases at exploration atmospheres. These results show that tests conducted in standard atmospheric conditions will underpredict the ignition of materials intended for use on spacecraft and that, at these conditions, materials are more susceptible to ignition than at current spacecraft atmospheres.
Cross Flow Parameter Calculation for Aerodynamic Analysis
NASA Technical Reports Server (NTRS)
Norman, David, Jr. (Inventor)
2014-01-01
A system and method for determining a cross flow angle for a feature on a structure. A processor unit receives location information identifying a location of the feature on the structure, determines an angle of the feature, identifies flow information for the location, determines a flow angle using the flow information, and determines the cross flow angle for the feature using the flow angle and the angle of the feature. The flow information describes a flow of fluid across the structure. The flow angle comprises an angle of the flow of fluid across the structure for the location of the feature.
Factors influencing delay in the diagnosis of colorectal cancer: a study protocol
Esteva, Magdalena; Ramos, Maria; Cabeza, Elena; Llobera, Joan; Ruiz, Amador; Pita, Salvador; Segura, Josep M; Cortés, Jose M; González-Lujan, Luis
2007-01-01
Background Colorectal cancer (CRC) is the second most frequent tumor in developed countries. Since survival from CRC depends mostly on disease stage at the time of diagnosis, individuals with symptoms or signs suspicious of CRC should be examined without delay. Many factors, however, intervene between symptom onset and diagnosis. This study was designed to: 1) Describe the diagnostic process of CRC from the onset of first symptoms to diagnosis and treatment. 2) Establish the time interval from initial symptoms to diagnosis and treatment, globally and considering patient's and doctors' delay, with the latter due to family physician and/or hospital services. 3) Identify the factors related to defined types of delay. 4) Assess the concordance between information included in primary health care and hospital clinical records regarding onset of first symptoms. Methods/Design Descriptive study, coordinated, with 5 participant groups of 5 different Spanish regions (Balearic Islands, Galicia, Catalunya, Aragón and Valencia Health Districts), with a total of 8 acute public hospitals and 140 primary care centers. Incident cases of CRC during the study period, as identified from pathology services at the involved hospitals. A sample size of 896 subjects has been estimated, 150 subjects for each participant group. Information will be collected through patient interviews and primary health care and hospital clinical records. Patient variables will include sociodemographic variables, family history of cancer, symptom perception, and confidence in the family physician; tumor variables will include tumor site, histological type, grade and stage; symptom variables will include date of onset, type and number of symptoms; health system variables will include number of patient contacts with family physician, type and content of the referral, hospital services attending the patient, diagnostic modalities and results; and delay intervals, including global delays and delays attributed to the patient, family physician and hospital. Discussion To obtain a nonrestricted sample of patients with CRC we have minimized selection risk by identifying the patients from pathology services. A greater constraint may be associated with information sources based on clinical records. Due to inherent features of coordinated studies, it is important to standardize the collection of information. PMID:17697332
Little Goose Dam Full Flow PIT-Tag Detection System Project Summary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warf, Don; Livingston, Scott
2009-04-16
In 2006, the design phase of this project was kicked off and was for the most part modeled after the Full Flow PIT installation installed at Lower Monumental Dam during winter and spring of 2006 and 2007. As the Goose Full Flow design progressed and the project started to move towards construction, issues within contracting occurred and the project was put on delay for 1 year. Starting in mid December of 2008, Harcon Inc. was awarded the contract and construction of the new Goose Full Flow PIT-tag detection system began. The purpose of this document is to summarize the installationmore » of the Little Goose Full Flow project from start to finish and to highlight the notable successes and challenges that the installation presented along with the final results and current status.« less
Spontaneous ignition delay characteristics of hydrocarbon fuel-air mixtures
NASA Technical Reports Server (NTRS)
Lefebvre, A. H.; Freeman, W. G.; Cowell, L. H.
1986-01-01
The influence of pressure on the autoignition characteristics of homogeneous mixtures of hydrocarbon fuels in air is examined. Autoignition delay times are measured for propane, ethylene, methane, and acetylene in a continuous flow apparatus featuring a multi-point fuel injector. Results are presented for mixture temperatures from 670K to 1020K, pressures from 1 to 10 atmospheres, equivalence ratios from 0.2 to 0.7, and velocities from 5 to 30 m/s. Delay time is related to pressure, temperature, and fuel concentration by global reaction theory. The results show variations in global activation energy from 25 to 38 kcal/kg-mol, pressure exponents from 0.66 to 1.21, and fuel concentration exponents from 0.19 to 0.75 for the fuels studied. These results are generally in good agreement with previous studies carried out under similar conditions.
Some Considerations on the Problem of Non-Steady State Traffic Flow Optimization
DOT National Transportation Integrated Search
2007-01-01
Poor traffic signal timing accounts for an estimated 10 percent of all traffic delay about 300 million vehicle-hours on major roadways alone. Americans agree that this is a problem: one U.S. Department of Transportation (DOT) survey found tha...
Efficient Trajectory Options Allocation for the Collaborative Trajectory Options Program
NASA Technical Reports Server (NTRS)
Rodionova, Olga; Arneson, Heather; Sridhar, Banavar; Evans, Antony
2017-01-01
The Collaborative Trajectory Options Program (CTOP) is a Traffic Management Initiative (TMI) intended to control the air traffic flow rates at multiple specified Flow Constrained Areas (FCAs), where demand exceeds capacity. CTOP allows flight operators to submit the desired Trajectory Options Set (TOS) for each affected flight with associated Relative Trajectory Cost (RTC) for each option. CTOP then creates a feasible schedule that complies with capacity constraints by assigning affected flights with routes and departure delays in such a way as to minimize the total cost while maintaining equity across flight operators. The current version of CTOP implements a Ration-by-Schedule (RBS) scheme, which assigns the best available options to flights based on a First-Scheduled-First-Served heuristic. In the present study, an alternative flight scheduling approach is developed based on linear optimization. Results suggest that such an approach can significantly reduce flight delays, in the deterministic case, while maintaining equity as defined using a Max-Min fairness scheme.
Patel, Saharsh; Fargen, Kyle M; Peters, Keith; Krall, Peter; Samy, Hazem; Hoh, Brian L
2014-01-10
Large and giant paraclinoid aneurysms are challenging to treat by either surgical or endovascular means. Visual dysfunction secondary to optic nerve compression and its relationship with aneurysm size, pulsation and thrombosis is poorly understood. We present a patient with a giant paraclinoid aneurysm resulting in bilateral visual loss that worsened following placement of a Pipeline Embolization Device and adjunctive coiling. Visual worsening occurred in conjunction with aneurysm thrombosis, increase in maximal aneurysm diameter and new adjacent edema. Her visual function spontaneously improved in a delayed fashion to better than pre-procedure, in conjunction with reduced aneurysmal mass effect, size and pulsation artifact on MRI. This report documents detailed ophthalmologic and MRI evidence for the role of thrombosis, aneurysm mass effect and aneurysm pulsation as causative etiologies for both cranial nerve dysfunction and delayed resolution following flow diversion treatment of large cerebral aneurysms.
WTAQ - A computer program for aquifer-test analysis of confined and unconfined aquifers
Barlow, P.M.; Moench, A.F.
2004-01-01
Computer program WTAQ was developed to implement a Laplace-transform analytical solution for axial-symmetric flow to a partially penetrating, finite-diameter well in a homogeneous and anisotropic unconfined (water-table) aquifer. The solution accounts for wellbore storage and skin effects at the pumped well, delayed response at an observation well, and delayed or instantaneous drainage from the unsaturated zone. For the particular case of zero drainage from the unsaturated zone, the solution simplifies to that of axial-symmetric flow in a confined aquifer. WTAQ calculates theoretical time-drawdown curves for the pumped well and observation wells and piezometers. The theoretical curves are used with measured time-drawdown data to estimate hydraulic parameters of confined or unconfined aquifers by graphical type-curve methods or by automatic parameter-estimation methods. Parameters that can be estimated are horizontal and vertical hydraulic conductivity, specific storage, and specific yield. A sample application illustrates use of WTAQ for estimating hydraulic parameters of a hypothetical, unconfined aquifer by type-curve methods. Copyright ASCE 2004.
Data Mining for Understanding and Improving Decision-making Affecting Ground Delay Programs
NASA Technical Reports Server (NTRS)
Kulkarni, Deepak; Wang, Yao; Sridhar, Banavar
2013-01-01
The continuous growth in the demand for air transportation results in an imbalance between airspace capacity and traffic demand. The airspace capacity of a region depends on the ability of the system to maintain safe separation between aircraft in the region. In addition to growing demand, the airspace capacity is severely limited by convective weather. During such conditions, traffic managers at the FAA's Air Traffic Control System Command Center (ATCSCC) and dispatchers at various Airlines' Operations Center (AOC) collaborate to mitigate the demand-capacity imbalance caused by weather. The end result is the implementation of a set of Traffic Flow Management (TFM) initiatives such as ground delay programs, reroute advisories, flow metering, and ground stops. Data Mining is the automated process of analyzing large sets of data and then extracting patterns in the data. Data mining tools are capable of predicting behaviors and future trends, allowing an organization to benefit from past experience in making knowledge-driven decisions.
Feedback control of flow vorticity at low Reynolds numbers.
Zeitz, Maria; Gurevich, Pavel; Stark, Holger
2015-03-01
Our aim is to explore strategies of feedback control to design and stabilize novel dynamic flow patterns in model systems of complex fluids. To introduce the control strategies, we investigate the simple Newtonian fluid at low Reynolds number in a circular geometry. Then, the fluid vorticity satisfies a diffusion equation. We determine the mean vorticity in the sensing area and use two control strategies to feed it back into the system by controlling the angular velocity of the circular boundary. Hysteretic feedback control generates self-regulated stable oscillations in time, the frequency of which can be adjusted over several orders of magnitude by tuning the relevant feedback parameters. Time-delayed feedback control initiates unstable vorticity modes for sufficiently large feedback strength. For increasing delay time, we first observe oscillations with beats and then regular trains of narrow pulses. Close to the transition line between the resting fluid and the unstable modes, these patterns are relatively stable over long times.
Transition Delay in Hypersonic Boundary Layers via Optimal Perturbations
NASA Technical Reports Server (NTRS)
Paredes, Pedro; Choudhari, Meelan M.; Li, Fei
2016-01-01
The effect of nonlinear optimal streaks on disturbance growth in a Mach 6 axisymmetric flow over a 7deg half-angle cone is investigated in an e ort to expand the range of available techniques for transition control. Plane-marching parabolized stability equations are used to characterize the boundary layer instability in the presence of azimuthally periodic streaks. The streaks are observed to stabilize nominally planar Mack mode instabilities, although oblique Mack mode disturbances are destabilized. Experimentally measured transition onset in the absence of any streaks correlates with an amplification factor of N = 6 for the planar Mack modes. For high enough streak amplitudes, the transition threshold of N = 6 is not reached by the Mack mode instabilities within the length of the cone, but subharmonic first mode instabilities, which are destabilized by the presence of the streaks, reach N = 6 near the end of the cone. These results suggest a passive flow control strategy of using micro vortex generators to induce streaks that would delay transition in hypersonic boundary layers.
The Effect of Fin Pitch on Fluid Elastic Instability of Tube Arrays Subjected to Cross Flow of Water
NASA Astrophysics Data System (ADS)
Desai, Sandeep Rangrao; Pavitran, Sampat
2018-02-01
Failure of tubes in shell and tube exchangers is attributed to flow induced vibrations of such tubes. There are different excitations mechanisms due to which flow induced vibration occurs and among such mechanisms, fluid elastic instability is the most prominent one as it causes the most violent vibrations and may lead to rapid tube failures within short time. Fluid elastic instability is the fluid-structure interaction phenomenon which occurs when energy input by the fluid force exceeds energy expended in damping. This point is referred as instability threshold and corresponding velocity is referred as critical velocity. Once flow velocity exceeds critical flow velocity, the vibration amplitude increases very rapidly with flow velocity. An experimental program is carried out to determine the critical velocity at instability for plain and finned tube arrays subjected to cross flow of water. The tube array geometry is parallel triangular with cantilever end condition and pitch ratios considered are 2.6 and 2.1. The objective of research is to determine the effect of increase in pitch ratio on instability threshold for plain tube arrays and to assess the effect of addition of fins as well as increase in fin density on instability threshold for finned tube arrays. Plain tube array with two different pitch ratios; 2.1 and 2.6 and finned tube arrays with same pitch ratio; 2.6 but with two different fin pitches; such as fine (10 fpi) and coarse (4 fpi) are considered for the experimentation. Connors' equation that relates critical velocity at instability to different parameters, on which instability depends, has been used as the basis for analysis and the concept of effective diameter is used for the present investigation. The modal parameters are first suitably modified using natural frequency reduction setup that is already designed and developed to reduce natural frequency and hence to achieve experimental simulation of fluid elastic instability within the limited flow capacity of the pump. The tests are carried out first on plain tube arrays to establish the same as the datum case and results are compared to known results of plain tube arrays and hence the quality of the test rig is also assessed. The fluid elastic vibration tests are then carried out on finned tube arrays with coarse and fine fin pitches and effects of fins and fin pitch on instability threshold are shown. The vibration response of the tube is recorded for each gradually increasing flow rates of water till instability point is reached. The parameters at the instability are then presented in terms of dimensionless parameters to compare them with published results. It is concluded that, arrays with higher pitch ratios are unstable at comparatively higher flow velocities and instability threshold for finned tube arrays is delayed due to addition of the fins. Further, it is concluded that, instability threshold for finned tube arrays with fine fin pitch is delayed compared to coarse fin pitch and hence for increased fin density, instability threshold is delayed. The experimental results in terms of critical velocities obtained for different tube arrays subjected to water cross flow will serve as the base flow rates for air-water cross flow experiments to be conducted in the next phase.
A whale better adjusts the biosonar to ordered rather than to random changes in the echo parameters.
Supin, Alexander Ya; Nachtigall, Paul E; Breese, Marlee
2012-09-01
A false killer whale's (Pseudorca crassidens) sonar clicks and auditory evoked potentials (AEPs) were recorded during echolocation with simulated echoes in two series of experiments. In the first, both the echo delay and transfer factor (which is the dB-ratio of the echo sound-pressure level to emitted pulse source level) were varied randomly from trial to trial until enough data were collected (random presentation). In the second, a combination of the echo delay and transfer factor was kept constant until enough data were collected (ordered presentation). The mean click level decreased with shortening the delay and increasing the transfer factor, more at the ordered presentation rather than at the random presentation. AEPs to the self-heard emitted clicks decreased with shortening the delay and increasing the echo level equally in both series. AEPs to echoes increased with increasing the echo level, little dependent on the echo delay at random presentations but much more dependent on delay with ordered presentations. So some adjustment of the whale's biosonar was possible without prior information about the echo parameters; however, the availability of prior information about echoes provided additional whale capabilities to adjust both the transmitting and receiving parts of the biosonar.
Evaluation of stream flow effects on smolt survival in the Yakima River Basin, Washington, 2012-2014
Courter, Ian; Garrison, Tommy; Kock, Tobias J.; Perry, Russell W.
2015-01-01
The influence of stream flow on survival of emigrating juvenile (smolts) Pacific salmon Oncorhynchus spp. and steelhead trout O. mykiss is of key management interest. However, few studies have quantified flow effects on smolt migration survival, and available information does not indicate a consistent flow-survival relationship within the typical range of flows under management control. It is hypothesized that smolt migration and dam passage survival are positively correlated with stream flow because higher flows increase migration rates, potentially reducing exposure to predation, and reduce delays in reservoirs. However, available empirical data are somewhat equivocal concerning the influence of flow on smolt survival and the underlying mechanisms driving this relationship. Stream flow effects on survival of emigrating anadromous salmonids in the Yakima Basin have concerned water users and fisheries managers for over 20 years, and previous studies do not provide sufficient information at the resolution necessary to inform water operations, which typically occur on a small spatiotemporal scale. Using a series of controlled flow releases from 2012-2014, combined with radio telemetry, we quantified the relationship between flow and smolt survival from Roza Dam 208 km downstream to the Yakima River mouth, as well as for specific routes of passage at Roza Dam. A novel multistate mark-recapture model accounted for weekly variation in flow conditions experienced by radio-tagged fish. Groups of fish were captured and radio-tagged at Roza Dam and released at two locations, upstream at the Big Pines Campground (river kilometer [rkm] 211) and downstream in the Roza Dam tailrace (rkm 208). A total of 904 hatchery-origin yearling Chinook salmon O. tshawytscha were captured in the Roza Dam fish bypass, radio-tagged and released upstream of Roza Dam. Two hundred thirty seven fish were released in the tailrace of Roza Dam. Fish released in the tailrace of Roza Dam were tagged concurrently with fish released upstream of the dam using identical tagging methods. Tagging and release events were conducted to target a range of flow conditions indicative of flows observed during the typical migration period (March-May) for juvenile spring Chinook salmon in the Yakima River. Three, five and four separate upstream releases were conducted in 2012, 2013, and 2014 respectively, and at least 43 fish were released alive on each occasion. The release sample sizes in 2014 were much larger (~130) compared to previous years for the purpose of increasing precision of survival estimates across the range of flows tested. Migration movements of radio-tagged spring Chinook salmon smolts were monitored with an array of telemetry receiver stations (fixed sites) that extended 208 rkm downstream from the forebay of Roza Dam to the mouth of the Yakima River. Fixed monitoring sites included the forebay of Roza Dam (rkm 208), the tailrace of Roza Dam (rkm 207.9), the mouth of Wenas Creek (rkm 199.2), the mouth of the Naches River (two sites, rkm 189.4), Sunnyside Dam (two sites, rkm 169.1), Prosser Dam (rkm 77.2), and the mouth of the Yakima River (two sites, rkm2 3). This array segregated the study area into four discrete reaches in which survival of tagged fish was estimated. Aerial and underwater antennas were also used to monitor tagged fish at Roza Dam. Aerial antennas were located in the forebay, on the East gate, on the West gate, and in the tailrace of Roza Dam. Underwater antennas were located in the fish bypass, upstream of the East gate, and upstream of the West gate to collect route-specific passage data for tagged fish. Additional years of data collection and analysis could alter or improve our understanding of the influence of flow and other environmental factors on smolt survival in the Yakima River. Nevertheless, during 2012-2014, yearling hatchery Chinook salmon smolt emigration survival was significantly associated with stream flow in the
Stability switches, Hopf bifurcation and chaos of a neuron model with delay-dependent parameters
NASA Astrophysics Data System (ADS)
Xu, X.; Hu, H. Y.; Wang, H. L.
2006-05-01
It is very common that neural network systems usually involve time delays since the transmission of information between neurons is not instantaneous. Because memory intensity of the biological neuron usually depends on time history, some of the parameters may be delay dependent. Yet, little attention has been paid to the dynamics of such systems. In this Letter, a detailed analysis on the stability switches, Hopf bifurcation and chaos of a neuron model with delay-dependent parameters is given. Moreover, the direction and the stability of the bifurcating periodic solutions are obtained by the normal form theory and the center manifold theorem. It shows that the dynamics of the neuron model with delay-dependent parameters is quite different from that of systems with delay-independent parameters only.
77 FR 58217 - Notice of Delays in Processing of Special Permits Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-19
... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration Notice of Delays in Processing of Special Permits Applications AGENCY: Pipeline and Hazardous Materials Safety.... FOR FURTHER INFORMATION CONTACT: Ryan Paquet, Director, Office of Hazardous Materials Special Permits...
77 FR 64846 - Notice of Delays in Processing of Special Permits Applications
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-23
... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration Notice of Delays in Processing of Special Permits Applications AGENCY: Pipeline and Hazardous Materials Safety.... FOR FURTHER INFORMATION CONTACT: Ryan Paquet, Director, Office of Hazardous Materials Special Permits...
The mutual causality analysis between the stock and futures markets
NASA Astrophysics Data System (ADS)
Yao, Can-Zhong; Lin, Qing-Wen
2017-07-01
In this paper we employ the conditional Granger causality model to estimate the information flow, and find that the improved model outperforms the Granger causality model in revealing the asymmetric correlation between stocks and futures in the Chinese market. First, we find that information flows estimated by Granger causality tests from futures to stocks are greater than those from stocks to futures. Additionally, average correlation coefficients capture some important characteristics between stock prices and information flows over time. Further, we find that direct information flows estimated by conditional Granger causality tests from stocks to futures are greater than those from futures to stocks. Besides, the substantial increases of information flows and direct information flows exhibit a certain degree of synchronism with the occurrences of important events. Finally, the comparative analysis with the asymmetric ratio and the bootstrap technique demonstrates the slight asymmetry of information flows and the significant asymmetry of direct information flows. It reveals that the information flows from futures to stocks are slightly greater than those in the reverse direction, while the direct information flows from stocks to futures are significantly greater than those in the reverse direction.
Lipitz-Snyderman, Allison; Kale, Minal; Robbins, Laura; Pfister, David; Fortier, Elizabeth; Pocus, Valerie; Chimonas, Susan; Weingart, Saul N
2018-01-01
Objective Relatively little attention has been devoted to the role of communication between physicians as a mechanism for individual and organisational learning about diagnostic delays. This study’s objective was to elicit physicians’ perceptions about and experiences with communication among physicians regarding diagnostic delays in cancer. Design, setting, participants Qualitative analysis based on seven focus groups. Fifty-one physicians affiliated with three New York-based academic medical centres participated, with six to nine subjects per group. We used content analysis to identify commonalities among primary care physicians and specialists (ie, medical and surgical oncologists). Primary outcome measure Perceptions and experiences with physician-to-physician communication about delays in cancer diagnosis. Results Our analysis identified five major themes: openness to communication, benefits of communication, fears about giving and receiving feedback, infrastructure barriers to communication and overcoming barriers to communication. Subjects valued communication about cancer diagnostic delays, but they had many concerns and fears about providing and receiving feedback in practice. Subjects expressed reluctance to communicate if there was insufficient information to attribute responsibility, if it would have no direct benefit or if it would jeopardise their existing relationships. They supported sensitive approaches to conveying information, as they feared eliciting or being subject to feelings of incompetence or shame. Subjects also cited organisational barriers. They offered suggestions that might facilitate communication about delays. Conclusions Addressing the barriers to communication among physicians about diagnostic delays is needed to promote a culture of learning across specialties and institutions. Supporting open and honest discussions about diagnostic delays may help build safer health systems. PMID:28655713
NASA Astrophysics Data System (ADS)
Moore, A. W.; Bock, Y.; Geng, J.; Gutman, S. I.; Laber, J. L.; Morris, T.; Offield, D. G.; Small, I.; Squibb, M. B.
2012-12-01
We describe a system under development for generating ultra-low latency tropospheric delay and precipitable water vapor (PWV) estimates in situ at a prototype network of geodetic GPS sites in southern California, and demonstrating their utility in forecasting severe storms commonly associated with flooding and debris flow events along the west coast of North America through infusion of this meteorological data at NOAA National Weather Service (NWS) Forecast Offices and the NOAA Earth System Research Laboratory (ESRL). The first continuous geodetic GPS network was established in southern California in the early 1990s and much of it was converted to real-time (latency <1s) high-rate (1Hz) mode over the following decades. GPS stations are multi-purpose and can also provide estimates of tropospheric zenith delays, which can be converted into mm-accuracy PWV using collocated pressure and temperature measurements, the basis for GPS meteorology (Bevis et al. 1992, 1994; Duan et al. 1996) as implemented by NOAA with a nationwide distribution of about 300 GPS-Met stations providing PW estimates at subhourly resolution currently used in operational weather forecasting in the U.S. We improve upon the current paradigm of transmitting large quantities of raw data back to a central facility for processing into higher-order products. By operating semi-autonomously, each station will provide low-latency, high-fidelity and compact data products within the constraints of the narrow communications bandwidth that often occurs in the aftermath of natural disasters. The onsite ambiguity-resolved precise point positioning solutions are enabled by a power-efficient, low-cost, plug-in Geodetic Module for fusion of data from in situ sensors including GPS and a low-cost MEMS meteorological sensor package. The decreased latency (~5 minutes) PW estimates will provide the detailed knowledge of the distribution and magnitude of PW that NWS forecasters require to monitor and predict severe winter storms, landfalling atmospheric rivers, and summer thunderstorms associated with the North American monsoon. On the national level, the ESRL will evaluate the utility of ultra-low resolution GNSS observations to improve NOAA's warning and forecast capabilities. The overall objective is to better forecast, assess, and mitigate natural hazards through the flow of information from multiple geodetic stations to scientists, mission planners, decision makers, and first responders.
Time delay induced different synchronization patterns in repulsively coupled chaotic oscillators
NASA Astrophysics Data System (ADS)
Yao, Chenggui; Yi, Ming; Shuai, Jianwei
2013-09-01
Time delayed coupling plays a crucial role in determining the system's dynamics. We here report that the time delay induces transition from the asynchronous state to the complete synchronization (CS) state in the repulsively coupled chaotic oscillators. In particular, by changing the coupling strength or time delay, various types of synchronous patterns, including CS, antiphase CS, antiphase synchronization (ANS), and phase synchronization, can be generated. In the transition regions between different synchronous patterns, bistable synchronous oscillators can be observed. Furthermore, we show that the time-delay-induced phase flip bifurcation is of key importance for the emergence of CS. All these findings may light on our understanding of neuronal synchronization and information processing in the brain.
Audiovisual Delay as a Novel Cue to Visual Distance.
Jaekl, Philip; Seidlitz, Jakob; Harris, Laurence R; Tadin, Duje
2015-01-01
For audiovisual sensory events, sound arrives with a delay relative to light that increases with event distance. It is unknown, however, whether humans can use these ubiquitous sound delays as an information source for distance computation. Here, we tested the hypothesis that audiovisual delays can both bias and improve human perceptual distance discrimination, such that visual stimuli paired with auditory delays are perceived as more distant and are thereby an ordinal distance cue. In two experiments, participants judged the relative distance of two repetitively displayed three-dimensional dot clusters, both presented with sounds of varying delays. In the first experiment, dot clusters presented with a sound delay were judged to be more distant than dot clusters paired with equivalent sound leads. In the second experiment, we confirmed that the presence of a sound delay was sufficient to cause stimuli to appear as more distant. Additionally, we found that ecologically congruent pairing of more distant events with a sound delay resulted in an increase in the precision of distance judgments. A control experiment determined that the sound delay duration influencing these distance judgments was not detectable, thereby eliminating decision-level influence. In sum, we present evidence that audiovisual delays can be an ordinal cue to visual distance.
Getting by on credit: how district health managers in Ghana cope with the untimely release of funds
Asante, Augustine D; Zwi, Anthony B; Ho, Maria T
2006-01-01
Background District health systems in Africa depend largely on public funding. In many countries, not only are these funds insufficient, but they are also released in an untimely fashion, thereby creating serious cash flow problems for district health managers. This paper examines how the untimely release of public sector health funds in Ghana affects district health activities and the way district managers cope with the situation. Methods A qualitative approach using semi-structured interviews was adopted. Two regions (Northern and Ashanti) covering the northern and southern sectors of Ghana were strategically selected. Sixteen managers (eight directors of health services and eight district health accountants) were interviewed between 2003/2004. Data generated were analysed for themes and patterns. Results The results showed that untimely release of funds disrupts the implementation of health activities and demoralises district health staff. However, based on their prior knowledge of when funds are likely to be released, district health managers adopt a range of informal mechanisms to cope with the situation. These include obtaining supplies on credit, borrowing cash internally, pre-purchasing materials, and conserving part of the fourth quarter donor-pooled funds for the first quarter of the next year. While these informal mechanisms have kept the district health system in Ghana running in the face of persistent delays in funding, some of them are open to abuse and could be a potential source of corruption in the health system. Conclusion Official recognition of some of these informal managerial strategies will contribute to eliminating potential risks of corruption in the Ghanaian health system and also serve as an acknowledgement of the efforts being made by local managers to keep the district health system functioning in the face of budgetary constraints and funding delays. It may boost the confidence of the managers and even enhance service delivery. PMID:16916445
Getting by on credit: how district health managers in Ghana cope with the untimely release of funds.
Asante, Augustine D; Zwi, Anthony B; Ho, Maria T
2006-08-17
District health systems in Africa depend largely on public funding. In many countries, not only are these funds insufficient, but they are also released in an untimely fashion, thereby creating serious cash flow problems for district health managers. This paper examines how the untimely release of public sector health funds in Ghana affects district health activities and the way district managers cope with the situation. A qualitative approach using semi-structured interviews was adopted. Two regions (Northern and Ashanti) covering the northern and southern sectors of Ghana were strategically selected. Sixteen managers (eight directors of health services and eight district health accountants) were interviewed between 2003/2004. Data generated were analysed for themes and patterns. The results showed that untimely release of funds disrupts the implementation of health activities and demoralises district health staff. However, based on their prior knowledge of when funds are likely to be released, district health managers adopt a range of informal mechanisms to cope with the situation. These include obtaining supplies on credit, borrowing cash internally, pre-purchasing materials, and conserving part of the fourth quarter donor-pooled funds for the first quarter of the next year. While these informal mechanisms have kept the district health system in Ghana running in the face of persistent delays in funding, some of them are open to abuse and could be a potential source of corruption in the health system. Official recognition of some of these informal managerial strategies will contribute to eliminating potential risks of corruption in the Ghanaian health system and also serve as an acknowledgement of the efforts being made by local managers to keep the district health system functioning in the face of budgetary constraints and funding delays. It may boost the confidence of the managers and even enhance service delivery.
NASA Technical Reports Server (NTRS)
Kadlec, R.
1979-01-01
The use of self synchronizing stroboscopic Schlieren and laser interferometer systems to obtain quantitative space time measurements of distinguished flow surfaces, steakline patterns, and the density field of two dimensional flows that exhibit a periodic content was investigated. A large field single path stroboscopic Schlieren system was designed, constructed and successfully applied to visualize four periodic flows: near wake behind an oscillating airfoil; edge tone sound generation; 2-D planar wall jet; and axisymmetric pulsed sonic jet. This visualization technique provides an effective means of studying quasi-periodic flows in real time. The image on the viewing screen is a spatial signal average of the coherent periodic motion rather than a single realization, the high speed motion of a quasi-periodic flow can be reconstructed by recording photographs of the flow at different fixed time delays in one cycle. The preliminary design and construction of a self synchronizing stroboscopic laser interferometer with a modified Mach-Zehnder optical system is also reported.
Flow Diverters for Intracranial Aneurysms
Alderazi, Yazan J.; Kass-Hout, Tareq; Prestigiacomo, Charles J.; Gandhi, Chirag D.
2014-01-01
Flow diverters (pipeline embolization device, Silk flow diverter, and Surpass flow diverter) have been developed to treat intracranial aneurysms. These endovascular devices are placed within the parent artery rather than the aneurysm sac. They take advantage of altering hemodynamics at the aneurysm/parent vessel interface, resulting in gradual thrombosis of the aneurysm occurring over time. Subsequent inflammatory response, healing, and endothelial growth shrink the aneurysm and reconstruct the parent artery lumen while preserving perforators and side branches in most cases. Flow diverters have already allowed treatment of previously untreatable wide neck and giant aneurysms. There are risks with flow diverters including in-stent thrombosis, perianeurysmal edema, distant and delayed hemorrhages, and perforator occlusions. Comparative efficacy and safety against other therapies are being studied in ongoing trials. Antiplatelet therapy is mandatory with flow diverters, which has highlighted the need for better evidence for monitoring and tailoring antiplatelet therapy. In this paper we review the devices, their uses, associated complications, evidence base, and ongoing studies. PMID:24967131
Information processing using a single dynamical node as complex system
Appeltant, L.; Soriano, M.C.; Van der Sande, G.; Danckaert, J.; Massar, S.; Dambre, J.; Schrauwen, B.; Mirasso, C.R.; Fischer, I.
2011-01-01
Novel methods for information processing are highly desired in our information-driven society. Inspired by the brain's ability to process information, the recently introduced paradigm known as 'reservoir computing' shows that complex networks can efficiently perform computation. Here we introduce a novel architecture that reduces the usually required large number of elements to a single nonlinear node with delayed feedback. Through an electronic implementation, we experimentally and numerically demonstrate excellent performance in a speech recognition benchmark. Complementary numerical studies also show excellent performance for a time series prediction benchmark. These results prove that delay-dynamical systems, even in their simplest manifestation, can perform efficient information processing. This finding paves the way to feasible and resource-efficient technological implementations of reservoir computing. PMID:21915110
Caldwell, B S
2000-09-01
AO-lU. Expedition-class missions are distinct from historical human presence in space in ways that significantly affect information flow and information technology designs for such missions. The centrality of Mission Control in these missions is challenged by the distances, associated communication delays, and durations of expeditions, all of which require crews to have more local resources available to manage on-board situations. The author's current research investigates how ground controllers effectively allocate communications bandwidth, cognitive resources, and knowledge sharing skills during time critical routine and non-routine situations. The research focus is on team-based information and communication technology (ICT) use to provide recommendations for improvements to support adaptive bandwidth allocations and improved sharing of data and knowledge in Mission Control contexts. In order to further improve communication and coordination between controllers and crew, additional ICT support resources will be needed to provide shared context knowledge and dynamic assessment of costs and benefits for accessing local information vs. remote expertise. Crew members will have critical needs to understand the goals, intentions, and situational constraints associated with mission information resources in order to use them most effectively in conditions where ground-based expertise is insufficient or requires more time to access and coordinate than local task demands permit. Results of this research will serve to improve the design and implementation of ICT systems to improve human performance capabilities and system operating tolerances for exploration missions. (Specific research data were not available at the time of publication.)
A multi-agent system for coordinating international shipping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldsmith, S.Y.; Phillips, L.R.; Spires, S.V.
1998-05-01
Moving commercial cargo across the US-Mexico border is currently a complex, paper-based, error-prone process that incurs expensive inspections and delays at several ports of entry in the Southwestern US. Improved information handling will dramatically reduce border dwell time, variation in delivery time, and inventories, and will give better control of the shipment process. The Border Trade Facilitation System (BTFS) is an agent-based collaborative work environment that assists geographically distributed commercial and government users with transshipment of goods across the US-Mexico border. Software agents mediate the creation, validation and secure sharing of shipment information and regulatory documentation over the Internet, usingmore » the World Wide Web to interface with human actors. Agents are organized into Agencies. Each agency represents a commercial or government agency. Agents perform four specific functions on behalf of their user organizations: (1) agents with domain knowledge elicit commercial and regulatory information from human specialists through forms presented via web browsers; (2) agents mediate information from forms with diverse otologies, copying invariant data from one form to another thereby eliminating the need for duplicate data entry; (3) cohorts of distributed agents coordinate the work flow among the various information providers and they monitor overall progress of the documentation and the location of the shipment to ensure that all regulatory requirements are met prior to arrival at the border; (4) agents provide status information to human actors and attempt to influence them when problems are predicted.« less
Distributed Load Shedding over Directed Communication Networks with Time Delays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Tao; Wu, Di
When generation is insufficient to support all loads under emergencies, effective and efficient load shedding needs to be deployed in order to maintain the supply-demand balance. This paper presents a distributed load shedding algorithm, which makes efficient decision based on the discovered global information. In the global information discovery process, each load only communicates with its neighboring load via directed communication links possibly with arbitrarily large but bounded time varying communication delays. We propose a novel distributed information discovery algorithm based on ratio consensus. Simulation results are used to validate the proposed method.
Cavity Solitons in Vertical Cavity Surface Emitting Lasers and their Applications
NASA Astrophysics Data System (ADS)
Giudici, Massimo; Pedaci, Francesco; Caboche, Emilie; Genevet, Patrice; Barland, Stephane; Tredicce, Jorge; Tissoni, Giovanna; Lugiato, Luigi
Cavity solitons (CS) are single peak localized structures which form over a homogeneous background in the section of broad-area non linear resonator driven by a coherent holding beam. They can be switched on and off by shining a writing/ erasing local laser pulse into the optical cavity. Moreover, when a phase or amplitude gradient is introduced in the holding beam, CS are set in motion along the gradient with a speed that depends on gradient strength. The ability to address CS and to control their location as well as their motion makes them interesting for alloptical processing units. In this chapter we report on several functionalities of CS that have been experimentally implemented in a Vertical Cavity Surface Emitting Laser (VCSEL) biased below threshold. We show that CS positions in the transverse section of the resonator can be reconfigured according to a phase landscape introduced in the holding beam. CS drifting propelled by a phase gradient in the holding beam can be used for realizing an all-optical delay line. Information bits are written in form of CS at a point of the device and a time delayed version of the written information can be read elsewhere along the gradient direction. CS existence and functionalities are deeply affected by presence of device defects generated during the fabrication process and randomly distributed through the device section. The sensitivity of CS to parameters gradients can be used to probe these defects, otherwise not detectable, and mapping their positions. Finally, a periodic flow of moving CS can be obtained by the interplay between a device defect and an external parameter gradient. This suggests the possibility of engineering a CS source directly onto the device.
Communication and wiring in the cortical connectome
Budd, Julian M. L.; Kisvárday, Zoltán F.
2012-01-01
In cerebral cortex, the huge mass of axonal wiring that carries information between near and distant neurons is thought to provide the neural substrate for cognitive and perceptual function. The goal of mapping the connectivity of cortical axons at different spatial scales, the cortical connectome, is to trace the paths of information flow in cerebral cortex. To appreciate the relationship between the connectome and cortical function, we need to discover the nature and purpose of the wiring principles underlying cortical connectivity. A popular explanation has been that axonal length is strictly minimized both within and between cortical regions. In contrast, we have hypothesized the existence of a multi-scale principle of cortical wiring where to optimize communication there is a trade-off between spatial (construction) and temporal (routing) costs. Here, using recent evidence concerning cortical spatial networks we critically evaluate this hypothesis at neuron, local circuit, and pathway scales. We report three main conclusions. First, the axonal and dendritic arbor morphology of single neocortical neurons may be governed by a similar wiring principle, one that balances the conservation of cellular material and conduction delay. Second, the same principle may be observed for fiber tracts connecting cortical regions. Third, the absence of sufficient local circuit data currently prohibits any meaningful assessment of the hypothesis at this scale of cortical organization. To avoid neglecting neuron and microcircuit levels of cortical organization, the connectome framework should incorporate more morphological description. In addition, structural analyses of temporal cost for cortical circuits should take account of both axonal conduction and neuronal integration delays, which appear mostly of the same order of magnitude. We conclude the hypothesized trade-off between spatial and temporal costs may potentially offer a powerful explanation for cortical wiring patterns. PMID:23087619
Modelling information flow along the human connectome using maximum flow.
Lyoo, Youngwook; Kim, Jieun E; Yoon, Sujung
2018-01-01
The human connectome is a complex network that transmits information between interlinked brain regions. Using graph theory, previously well-known network measures of integration between brain regions have been constructed under the key assumption that information flows strictly along the shortest paths possible between two nodes. However, it is now apparent that information does flow through non-shortest paths in many real-world networks such as cellular networks, social networks, and the internet. In the current hypothesis, we present a novel framework using the maximum flow to quantify information flow along all possible paths within the brain, so as to implement an analogy to network traffic. We hypothesize that the connection strengths of brain networks represent a limit on the amount of information that can flow through the connections per unit of time. This allows us to compute the maximum amount of information flow between two brain regions along all possible paths. Using this novel framework of maximum flow, previous network topological measures are expanded to account for information flow through non-shortest paths. The most important advantage of the current approach using maximum flow is that it can integrate the weighted connectivity data in a way that better reflects the real information flow of the brain network. The current framework and its concept regarding maximum flow provides insight on how network structure shapes information flow in contrast to graph theory, and suggests future applications such as investigating structural and functional connectomes at a neuronal level. Copyright © 2017 Elsevier Ltd. All rights reserved.
Synthesis of regional crust and upper-mantle structure from seismic and gravity data
NASA Technical Reports Server (NTRS)
Alexander, S. S.; Lavin, P. M.
1979-01-01
Available seismic and ground based gravity data are combined to infer the three dimensional crust and upper mantle structure in selected regions. This synthesis and interpretation proceeds from large-scale average models suitable for early comparison with high-altitude satellite potential field data to more detailed delineation of structural boundaries and other variations that may be significant in natural resource assessment. Seismic and ground based gravity data are the primary focal point, but other relevant information (e.g. magnetic field, heat flow, Landsat imagery, geodetic leveling, and natural resources maps) is used to constrain the structure inferred and to assist in defining structural domains and boundaries. The seismic data consists of regional refraction lines, limited reflection coverage, surface wave dispersion, teleseismic P and S wave delay times, anelastic absorption, and regional seismicity patterns. The gravity data base consists of available point gravity determinations for the areas considered.
Sankaranarayanan, Rengaswamy; Nene, Bhagwan M; Shastri, Surendra; Esmy, Pullikotil Ekkuru; Rajkumar, Rajamanickam; Muwonge, Richard; Swaminathan, Rajaraman; Malvi, Sylla G; Kane, Shubada; Desai, Sangeeta; Kelkar, Rohini; Hingmire, Sanjay; Jayant, Kasturi
2014-01-01
Dr Eric Suba has been distorting facts and persistently disseminating biased and misleading views and statements regarding our studies over the past several years. His article in the Indian Journal of Medical Ethics fails to mention the facts that seem unfavourable to his arguments, and the ethical concerns are unsubstantiated by the evidence. In this context, we present the following clarifications for the attention of your readers, notably with regard to: (i) the study design and inclusion of a control group; (ii) the informed consent of the women participating in the study; (iii) the conformity with international ethical standards and guidelines, and (iv) the provision of screening to women in the control arm of the studies. We also highlight the benefits that are flowing from this research and the risk that misinformation may further delay access for women to life-saving cervical cancer screening.
Cooperation, logistics critical to well control operation in Irian Jaya jungle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gebhardt, F.; Leturno, R.
1996-04-15
Solving a well control problem in remote Irian Jaya, Indonesia, required fast regional and international transportation of both people and equipment. Initial information indicated that the well was experiencing an underground flow with a constant surface pressure because of a shallow hole in the 9 5/8-in. casing. The surface pressure made pipe movement inadvisable until proper pressure control equipment was in place. Several factors contributed to the overall success of this well control project. Atlantic Richfield Indonesia Inc.`s commitment to blowout contingency planning and well control team made it possible to institute a predetermined organizational structure. This organization structure providedmore » a means to gather and evaluate data quickly. Thus, crucial decisions could be made without delay, and proper personnel and equipment were mobilized. This paper reviews the step-by-step process used in this effort.« less
Delay time correction of the gas analyzer in the calculation of anatomical dead space of the lung.
Okubo, T; Shibata, H; Takishima, T
1983-07-01
By means of a mathematical model, we have studied a way to correct the delay time of the gas analyzer in order to calculate the anatomical dead space using Fowler's graphical method. The mathematical model was constructed of ten tubes of equal diameter but unequal length, so that the amount of dead space varied from tube to tube; the tubes were emptied sequentially. The gas analyzer responds with a time lag from the input of the gas signal to the beginning of the response, followed by an exponential response output. The single breath expired volume-concentration relationship was examined with three types of expired flow patterns of which were constant, exponential and sinusoidal. The results indicate that the time correction by the lag time plus time constant of the exponential response of the gas analyzer gives an accurate estimation of anatomical dead space. Time correction less inclusive than this, e.g. lag time only or lag time plus 50% response time, gives an overestimation, and a correction larger than this results in underestimation. The magnitude of error is dependent on the flow pattern and flow rate. The time correction in this study is only for the calculation of dead space, as the corrected volume-concentration curves does not coincide with the true curve. Such correction of the output of the gas analyzer is extremely important when one needs to compare the dead spaces of different gas species at a rather faster flow rate.
Direct Numerical Simulation of Flow Over Passive Geometric Disturbances
NASA Astrophysics Data System (ADS)
Vizard, Alexander
It is well understood that delaying flow separation on a bluff body allows significant drag reduction, which is attractive in many applications. With this in mind, many separation control mechanisms, both active and passive, have been developed and tested to optimize the effects of this phenomenon. Although this idea is generally accepted, the physical occurrences in the near-wall region during transition that lead to separation delay are not well understood. The current study evaluates the impact of both spherical dimples, and sandgrain style roughness on downstream flow by performing direct numerical simulations over such geometries on a zero pressure gradient flat plate. It is shown that although dimples and random roughness of similar characteristic length scales exhibit similar boundary layer characteristics, dimples are more successful in developing high momentum in the vicinity of the wall. Additionally it is shown that increasing the relative size of the rough elements does not increase the near-wall momentum, and is undesirable in controlling separation. Finally, it is shown that the impact of roughness elements on the flow is more immediate, and that, for the case of one row of dimples and an equivalent area of roughness, the roughness patch is more successful in transitioning the near-wall region to a non-laminar state. It can be concluded from variation in the span of the flowfield for a single row of dimples that the size and orientation of the disturbance region is significant to the results.
Lin, Wen-Yen; Chou, Wen-Cheng; Chang, Po-Cheng; Chou, Chung-Chuan; Wen, Ming-Shien; Ho, Ming-Yun; Lee, Wen-Chen; Hsieh, Ming-Jer; Lin, Chung-Chih; Tsai, Tsai-Hsuan; Lee, Ming-Yih
2018-03-01
Seismocardiogram (SCG) or mechanocardiography is a noninvasive cardiac diagnostic method; however, previous studies used only a single sensor to detect cardiac mechanical activities that will not be able to identify location-specific feature points in a cardiac cycle corresponding to the four valvular auscultation locations. In this study, a multichannel SCG spectrum measurement system was proposed and examined for cardiac activity monitoring to overcome problems like, position dependency, time delay, and signal attenuation, occurring in traditional single-channel SCG systems. ECG and multichannel SCG signals were simultaneously recorded in 25 healthy subjects. Cardiac echocardiography was conducted at the same time. SCG traces were analyzed and compared with echocardiographic images for feature point identification. Fifteen feature points were identified in the corresponding SCG traces. Among them, six feature points, including left ventricular lateral wall contraction peak velocity, septal wall contraction peak velocity, transaortic peak flow, transpulmonary peak flow, transmitral ventricular relaxation flow, and transmitral atrial contraction flow were identified. These new feature points were not observed in previous studies because the single-channel SCG could not detect the location-specific signals from other locations due to time delay and signal attenuation. As the results, the multichannel SCG spectrum measurement system can record the corresponding cardiac mechanical activities with location-specific SCG signals and six new feature points were identified with the system. This new modality may help clinical diagnoses of valvular heart diseases and heart failure in the future.
Sustainable ecosystem management relies on a diverse and multi-faceted knowledge system in which techniques are continuously updated to reflect current understanding and needs. The challenge is to minimize delay as ideas flow from intent through scientific capability, and finally...
Source Localization Using Wireless Sensor Networks
2006-06-01
performance of the hybrid SI/ML estimation method. A wireless sensor network is simulated in NS-2 to study the network throughput, delay and jitter...indicate that the wireless sensor network has low delay and can support fast information exchange needed in counter-sniper applications.
Magma flow between summit and Pu`u `Ō`ō at K¯lauea Volcano, Hawai`i
NASA Astrophysics Data System (ADS)
Montagna, C. P.; Gonnermann, H. M.
2013-07-01
Volcanic eruptions are often accompanied by spatiotemporal migration of ground deformation, a consequence of pressure changes within magma reservoirs and pathways. We modeled the propagation of pressure variations through the east rift zone (ERZ) of K¯lauea Volcano, Hawai`i, caused by magma withdrawal during the early eruptive episodes (1983-1985) of the ongoing Pu`u `Ō`ō-Kupaianaha eruption. Eruptive activity at the Pu`u `Ō`ō vent was typically accompanied by abrupt deflation that lasted for several hours and was followed by a sudden onset of gradual inflation once the eruptive episode had ended. Similar patterns of deflation and inflation were recorded at K¯lauea's summit, approximately 15 km to the northwest, albeit with time delays of hours. These delay times can be reproduced by modeling the spatiotemporal changes in magma pressure and flow rate within an elastic-walled dike that traverses K¯lauea's ERZ. Key parameters that affect the behavior of the magma-dike system are the dike dimensions, the elasticity of the wall rock, the magma viscosity, and to a lesser degree the magnitude and duration of the pressure variations themselves. Combinations of these parameters define a transport efficiency and a pressure diffusivity, which vary somewhat from episode to episode, resulting in variations in delay times. The observed variations in transport efficiency are most easily explained by small, localized changes to the geometry of the magma pathway.
Consensus for multi-agent systems with time-varying input delays
NASA Astrophysics Data System (ADS)
Yuan, Chengzhi; Wu, Fen
2017-10-01
This paper addresses the consensus control problem for linear multi-agent systems subject to uniform time-varying input delays and external disturbance. A novel state-feedback consensus protocol is proposed under the integral quadratic constraint (IQC) framework, which utilises not only the relative state information from neighbouring agents but also the real-time information of delays by means of the dynamic IQC system states for feedback control. Based on this new consensus protocol, the associated IQC-based control synthesis conditions are established and fully characterised as linear matrix inequalities (LMIs), such that the consensus control solution with optimal ? disturbance attenuation performance can be synthesised efficiently via convex optimisation. A numerical example is used to demonstrate the proposed approach.
Factors influencing diagnosis delay of advanced breast cancer in Moroccan women.
Maghous, A; Rais, F; Ahid, S; Benhmidou, N; Bellahamou, K; Loughlimi, H; Marnouche, E; Elmajjaoui, S; Elkacemi, H; Kebdani, T; Benjaafar, N
2016-06-07
Delay in the diagnosis of breast cancer in symptomatic women of 3 months or more is associated with advanced stage and low survival. We conducted this study to learn more about the extent and reasons behind diagnosis delay of advanced breast cancer in Moroccan women. A group of patients with advanced breast cancer were interviewed at the National Institute of Oncology in Rabat during the period from February to December 2014. Diagnosis delay was devised into patient delay and system delay. Patient delay was defined as time from first symptoms until first medical consultation. System delay was defined as time from first presentation to a health care provider until definite diagnosis or treatment. Prospective information and clinical data were collected on a form during an interview with each patient and from medical records. In all, 137 patients were interviewed. The mean age of women was 48.3 ± 10.4 years. The median of consultation time was 6[4,12] months and the median of diagnosis time was 1[1,3] months. Diagnosis delay was associated to a personal reason in 96 (70.1 %) patients and to a medical reason in 19 (13.9 %) patients. A number of factors predicted diagnosis delay: symptoms were not considered serious in 66 (55.9 %) patients; traditional therapy was applied in 15 (12.7 %) patients and fear of cancer diagnosis and/or treatment in 14 (11.9 %) patients. A use of traditional methods was significantly associated with rural residence and far away from basic health center (p = 0.000). Paradoxically, a family history of breast cancer was significantly higher in who report a fear of cancer diagnosis and/or treatment to diagnosis delay (p < 0.001). Also, a significantly higher risk of more than 6 months delay was found among rural women (P = 0.035) and women who live far away from specialized care center (P = 0.001). Diagnosis delay is very serious problem in Morocco. Diagnosis delay was associated with complex interactions between several factors and with advanced stages. There is a need for improving breast cancer information in our populations and training of general practitioners to reduce advanced breast cancer by promoting early detection.
NASA Astrophysics Data System (ADS)
Lee, E. S.; Hastings, J.; Kim, Y.
2015-12-01
Dense nonaqueous phase liquids (DNAPLs) like trichloroethylene (TCE) serve as the most common form of groundwater pollution in the world. Pore-plugging by the solid oxidation product MnO2 and limited lateral dispersion of the oxidant are two common problems with existing in-situ chemical oxidation (ISCO) schemes that could be alleviated through the development of a delayed gelation method for oxidant delivery. The objective of the current study was to further develop and optimize slow-release permanganate gel (SRP-G), a solution comprising colloidal silica and KMnO4, as a novel low-cost treatment option for large and dilute TCE plumes in groundwater. Batch tests showed that gelation could be delayed through manipulation of KMnO4 concentration, pH, and silica particle size of the SRP-G solution. In flow-through columns and flow-tanks filled with saturated sands, silica concentration had little effect on the gelation lag stage and release rate, but increasing silica concentration was associated with increasing release duration. When compared to a pure KMnO4 solution, visual observations and [MnO4-] measurements from flow tank tests demonstrated that the SRP-G prolonged the release duration and enhanced lateral spreading of the oxidant.
NASA Astrophysics Data System (ADS)
Corrales, Lia; Mon, Brayden; Haggard, Daryl; Baganoff, Frederick K.; Garmire, Gordon; Degenaar, Nathalie; Reynolds, Mark
2017-08-01
The supermassive black hole at the center of our galaxy, Sgr A*, is surprisingly under-luminous. This problem has motivated a host of theoretical models to explain low-level radiatively inefficient accretion flows onto compact objects. We discuss how the Galactic Center sight line, which is optically thick to the scattering of soft X-rays (tau ~ 5), affects high resolution studies of the accretion flow around Sgr A*. X-ray light from compact objects in the dense GC environment is scattered by foreground dust, producing scattering echoes that are time delayed relative to the X-ray source's light curve. We discuss the scattering halo of SWIFT J174540.7-290015, which underwent the brightest X-ray outburst within 30’' of Sgr A*. Preliminary fits to the scattering halo suggest that a small amount of foreground dust, within 250 pc of the GC, affects the X-ray surface brightness profile within 10’' of any GC point source. The associated time delay is on the order of several hours, which is important for understanding the quiescent accretion flow of Sgr A*. We take advantage of the Chandra Galactic Center XVP dataset to explore the effect of the interstellar medium on the inferred characteristics of Sgr A*.
Distributed learning and multi-objectivity in traffic light control
NASA Astrophysics Data System (ADS)
Brys, Tim; Pham, Tong T.; Taylor, Matthew E.
2014-01-01
Traffic jams and suboptimal traffic flows are ubiquitous in modern societies, and they create enormous economic losses each year. Delays at traffic lights alone account for roughly 10% of all delays in US traffic. As most traffic light scheduling systems currently in use are static, set up by human experts rather than being adaptive, the interest in machine learning approaches to this problem has increased in recent years. Reinforcement learning (RL) approaches are often used in these studies, as they require little pre-existing knowledge about traffic flows. Distributed constraint optimisation approaches (DCOP) have also been shown to be successful, but are limited to cases where the traffic flows are known. The distributed coordination of exploration and exploitation (DCEE) framework was recently proposed to introduce learning in the DCOP framework. In this paper, we present a study of DCEE and RL techniques in a complex simulator, illustrating the particular advantages of each, comparing them against standard isolated traffic actuated signals. We analyse how learning and coordination behave under different traffic conditions, and discuss the multi-objective nature of the problem. Finally we evaluate several alternative reward signals in the best performing approach, some of these taking advantage of the correlation between the problem-inherent objectives to improve performance.
Blaya, Joaquín A.; Shin, Sonya S.; Yagui, Martin; Contreras, Carmen; Cegielski, Peter; Yale, Gloria; Suarez, Carmen; Asencios, Luis; Bayona, Jaime; Kim, Jihoon; Fraser, Hamish S. F.
2014-01-01
Background Lost, delayed or incorrect laboratory results are associated with delays in initiating treatment. Delays in treatment for Multi-Drug Resistant Tuberculosis (MDR-TB) can worsen patient outcomes and increase transmission. The objective of this study was to evaluate the impact of a laboratory information system in reducing delays and the time for MDR-TB patients to culture convert (stop transmitting). Methods Setting: 78 primary Health Centers (HCs) in Lima, Peru. Participants lived within the catchment area of participating HCs and had at least one MDR-TB risk factor. The study design was a cluster randomized controlled trial with baseline data. The intervention was the e-Chasqui web-based laboratory information system. Main outcome measures were: times to communicate a result; to start or change a patient's treatment; and for that patient to culture convert. Results 1671 patients were enrolled. Intervention HCs took significantly less time to receive drug susceptibility test (DST) (median 11 vs. 17 days, Hazard Ratio 0.67 [0.62–0.72]) and culture (5 vs. 8 days, 0.68 [0.65–0.72]) results. The time to treatment was not significantly different, but patients in intervention HCs took 16 days (20%) less time to culture convert (p = 0.047). Conclusions The eChasqui system reduced the time to communicate results between laboratories and HCs and time to culture conversion. It is now used in over 259 HCs covering 4.1 million people. This is the first randomized controlled trial of a laboratory information system in a developing country for any disease and the only study worldwide to show clinical impact of such a system. Trial Registration ClinicalTrials.gov NCT01201941 PMID:24721980
Blaya, Joaquín A; Shin, Sonya S; Yagui, Martin; Contreras, Carmen; Cegielski, Peter; Yale, Gloria; Suarez, Carmen; Asencios, Luis; Bayona, Jaime; Kim, Jihoon; Fraser, Hamish S F
2014-01-01
Lost, delayed or incorrect laboratory results are associated with delays in initiating treatment. Delays in treatment for Multi-Drug Resistant Tuberculosis (MDR-TB) can worsen patient outcomes and increase transmission. The objective of this study was to evaluate the impact of a laboratory information system in reducing delays and the time for MDR-TB patients to culture convert (stop transmitting). 78 primary Health Centers (HCs) in Lima, Peru. Participants lived within the catchment area of participating HCs and had at least one MDR-TB risk factor. The study design was a cluster randomized controlled trial with baseline data. The intervention was the e-Chasqui web-based laboratory information system. Main outcome measures were: times to communicate a result; to start or change a patient's treatment; and for that patient to culture convert. 1671 patients were enrolled. Intervention HCs took significantly less time to receive drug susceptibility test (DST) (median 11 vs. 17 days, Hazard Ratio 0.67 [0.62-0.72]) and culture (5 vs. 8 days, 0.68 [0.65-0.72]) results. The time to treatment was not significantly different, but patients in intervention HCs took 16 days (20%) less time to culture convert (p = 0.047). The eChasqui system reduced the time to communicate results between laboratories and HCs and time to culture conversion. It is now used in over 259 HCs covering 4.1 million people. This is the first randomized controlled trial of a laboratory information system in a developing country for any disease and the only study worldwide to show clinical impact of such a system. ClinicalTrials.gov NCT01201941.
Space-Based Information Infrastructure Architecture for Broadband Services
NASA Technical Reports Server (NTRS)
Price, Kent M.; Inukai, Tom; Razdan, Rajendev; Lazeav, Yvonne M.
1996-01-01
This study addressed four tasks: (1) identify satellite-addressable information infrastructure markets; (2) perform network analysis for space-based information infrastructure; (3) develop conceptual architectures; and (4) economic assessment of architectures. The report concludes that satellites will have a major role in the national and global information infrastructure, requiring seamless integration between terrestrial and satellite networks. The proposed LEO, MEO, and GEO satellite systems have satellite characteristics that vary widely. They include delay, delay variations, poorer link quality and beam/satellite handover. The barriers against seamless interoperability between satellite and terrestrial networks are discussed. These barriers are the lack of compatible parameters, standards and protocols, which are presently being evaluated and reduced.
2010-01-01
Background Delayed maternal reporting of decreased fetal movement (DFM) is associated with adverse pregnancy outcomes. Inconsistent information on fetal activity to women during the antenatal period may result in delayed reporting of DFM. We aimed to evaluate an intervention of implementation of uniform information on fetal activity to women during the antenatal period. Methods In a prospective before-and-after study, singleton women presenting DFM in the third trimester across 14 hospitals in Norway were registered. Outcome measures were maternal behavior regarding reporting of DFM, concerns and stillbirth. In addition, cross-sectional studies of all women giving birth were undertaken to assess maternal concerns about fetal activity, and population-based data were obtained from the Medical Birth Registry Norway. Results Pre- and post-intervention cohorts included 19 407 and 46 143 births with 1 215 and 3 038 women with DFM respectively. Among primiparous women with DFM, a reduction in delayed reporting of DFM (≥48 hrs) OR 0.61 (95% CI 0.47-0.81) and stillbirths OR 0.36 (95% CI 0.19-0.69) was shown in the post-intervention period. No difference was shown in rates of consultations for DFM or maternal concerns. Stillbirth rates and maternal behavior among women who were of non-Western origin, smokers, overweight or >34 years old were unchanged. Conclusions Uniform information on fetal activity provided to pregnant women was associated with a reduction in the number of primiparous women who delayed reporting of DFM and a reduction of the stillbirth rates for primiparous women reporting DFM. The information did not appear to increase maternal concerns or rate of consultation. Due to different imperfections in different clinical settings, further studies in other populations replicating these findings are required. PMID:20044943
Satellite Delivery of Aviation Weather Data
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Haendel, Richard
2001-01-01
With aviation traffic continuing to increase worldwide, reducing the aviation accident rate and aviation schedule delays is of critical importance. In the United States, the National Aeronautics and Space Administration (NASA) has established the Aviation Safety Program and the Aviation System Capacity Program to develop and test new technologies to increase aviation safety and system capacity. Weather is a significant contributor to aviation accidents and schedule delays. The timely dissemination of weather information to decision makers in the aviation system, particularly to pilots, is essential in reducing system delays and weather related aviation accidents. The NASA Glenn Research Center is investigating improved methods of weather information dissemination through satellite broadcasting directly to aircraft. This paper describes an on-going cooperative research program with NASA, Rockwell Collins, WorldSpace, Jeppesen and American Airlines to evaluate the use of satellite digital audio radio service (SDARS) for low cost broadcast of aviation weather information, called Satellite Weather Information Service (SWIS). The description and results of the completed SWIS Phase 1 are presented, and the description of the on-going SWIS Phase 2 is given.
Günther, M; Bock, M; Schad, L R
2001-11-01
Arterial spin labeling (ASL) permits quantification of tissue perfusion without the use of MR contrast agents. With standard ASL techniques such as flow-sensitive alternating inversion recovery (FAIR) the signal from arterial blood is measured at a fixed inversion delay after magnetic labeling. As no image information is sampled during this delay, FAIR measurements are inefficient and time-consuming. In this work the FAIR preparation was combined with a Look-Locker acquisition to sample not one but a series of images after each labeling pulse. This new method allows monitoring of the temporal dynamics of blood inflow. To quantify perfusion, a theoretical model for the signal dynamics during the Look-Locker readout was developed and applied. Also, the imaging parameters of the new ITS-FAIR technique were optimized using an expression for the variance of the calculated perfusion. For the given scanner hardware the parameters were: temporal resolution 100 ms, 23 images, flip-angle 25.4 degrees. In a normal volunteer experiment with these parameters an average perfusion value of 48.2 +/- 12.1 ml/100 g/min was measured in the brain. With the ability to obtain ITS-FAIR time series with high temporal resolution arterial transit times in the range of -138 - 1054 ms were measured, where nonphysical negative values were found in voxels containing large vessels. Copyright 2001 Wiley-Liss, Inc.
Functional versus effector-specific organization of the human posterior parietal cortex: revisited
Leone, Frank T. M.; Medendorp, W. Pieter
2016-01-01
It has been proposed that the posterior parietal cortex (PPC) is characterized by an effector-specific organization. However, strikingly similar functional MRI (fMRI) activation patterns have been found in the PPC for hand and foot movements. Because the fMRI signal is related to average neuronal activity, similar activation levels may result either from effector-unspecific neurons or from intermingled subsets of effector-specific neurons within a voxel. We distinguished between these possibilities using fMRI repetition suppression (RS). Participants made delayed, goal-directed eye, hand, and foot movements to visual targets. In each trial, the instructed effector was identical or different to that of the previous trial. RS effects indicated an attenuation of the fMRI signal in repeat trials. The caudal PPC was active during the delay but did not show RS, suggesting that its planning activity was effector independent. Hand and foot-specific RS effects were evident in the anterior superior parietal lobule (SPL), extending to the premotor cortex, with limb overlap in the anterior SPL. Connectivity analysis suggested information flow between the caudal PPC to limb-specific anterior SPL regions and between the limb-unspecific anterior SPL toward limb-specific motor regions. These results underline that both function and effector specificity should be integrated into a concept of PPC action representation not only on a regional but also on a fine-grained, subvoxel level. PMID:27466132
Improving Emergency Department flow through optimized bed utilization
Chartier, Lucas Brien; Simoes, Licinia; Kuipers, Meredith; McGovern, Barb
2016-01-01
Over the last decade, patient volumes in the emergency department (ED) have grown disproportionately compared to the increase in staffing and resources at the Toronto Western Hospital, an academic tertiary care centre in Toronto, Canada. The resultant congestion has spilled over to the ED waiting room, where medically undifferentiated and potentially unstable patients must wait until a bed becomes available. The aim of this quality improvement project was to decrease the 90th percentile of wait time between triage and bed assignment (time-to-bed) by half, from 120 to 60 minutes, for our highest acuity patients. We engaged key stakeholders to identify barriers and potential strategies to achieve optimal flow of patients into the ED. We first identified multiple flow-interrupting challenges, including operational bottlenecks and cultural issues. We then generated change ideas to address two main underlying causes of ED congestion: unnecessary patient utilization of ED beds and communication breakdown causing bed turnaround delays. We subsequently performed seven tests of change through sequential plan-do-study-act (PDSA) cycles. The most significant gains were made by improving communication strategies: small gains were achieved through the optimization of in-house digital information management systems, while significant improvements were achieved through the implementation of a low-tech direct contact mechanism (a two-way radio or walkie-talkie). In the post-intervention phase, time-to-bed for the 90th percentile of high-acuity patients decreased from 120 minutes to 66 minutes, with special cause variation showing a significant shift in the weekly measurements. PMID:27752312
Improving Emergency Department flow through optimized bed utilization.
Chartier, Lucas Brien; Simoes, Licinia; Kuipers, Meredith; McGovern, Barb
2016-01-01
Over the last decade, patient volumes in the emergency department (ED) have grown disproportionately compared to the increase in staffing and resources at the Toronto Western Hospital, an academic tertiary care centre in Toronto, Canada. The resultant congestion has spilled over to the ED waiting room, where medically undifferentiated and potentially unstable patients must wait until a bed becomes available. The aim of this quality improvement project was to decrease the 90th percentile of wait time between triage and bed assignment (time-to-bed) by half, from 120 to 60 minutes, for our highest acuity patients. We engaged key stakeholders to identify barriers and potential strategies to achieve optimal flow of patients into the ED. We first identified multiple flow-interrupting challenges, including operational bottlenecks and cultural issues. We then generated change ideas to address two main underlying causes of ED congestion: unnecessary patient utilization of ED beds and communication breakdown causing bed turnaround delays. We subsequently performed seven tests of change through sequential plan-do-study-act (PDSA) cycles. The most significant gains were made by improving communication strategies: small gains were achieved through the optimization of in-house digital information management systems, while significant improvements were achieved through the implementation of a low-tech direct contact mechanism (a two-way radio or walkie-talkie). In the post-intervention phase, time-to-bed for the 90th percentile of high-acuity patients decreased from 120 minutes to 66 minutes, with special cause variation showing a significant shift in the weekly measurements.
Control of flow separation in a turbulent boundary layer
NASA Astrophysics Data System (ADS)
Cho, Minjeong; Choi, Sangho; Choi, Haecheon
2015-11-01
Towards the development of successful control methods for separation delay in a turbulent boundary layer, we adopt a model flow field, in which a turbulent separation occurs above a flat plate (Na and Moin 1998 JFM), and apply controls to this flow for reducing the size of the separation bubble and investigating the interaction between the forcing and flow near the separation bubble. We provide a single-frequency forcing with zero net mass flow rate at the upstream of the separation bubble. At low forcing frequencies, spanwise vortices are generated and travel downstream, bringing high momentum toward the wall and reducing the size of the separation bubble. Also, these vortices cause the separation and reattachment points to travel downstream. On the other hand, at high forcing frequencies, the size of the separation bubble becomes smaller and larger in time, respectively, due to the pressure gradient alternating favorably and adversely in time. Supported by NRF-2011-0028032 and 2014048162.
NASA Astrophysics Data System (ADS)
Minakov, A.; Sentyabov, A.; Platonov, D.
2017-01-01
We performed numerical simulation of flow in a laboratory model of a Francis hydroturbine at startup regimes. Numerical technique for calculating of low frequency pressure pulsations in a water turbine is based on the use of DES (k-ω Shear Stress Transport) turbulence model and the approach of “frozen rotor”. The structure of the flow behind the runner of turbine was analysed. Shows the effect of flow structure on the frequency and intensity of non-stationary processes in the flow path. Two version of the inlet boundary conditions were considered. The first one corresponded measured time dependence of the discharge. Comparison of the calculation results with the experimental data shows the considerable delay of the discharge in this calculation. Second version corresponded linear approximation of time dependence of the discharge. This calculation shows good agreement with experimental results.
The queueing perspective of asynchronous network coding in two-way relay network
NASA Astrophysics Data System (ADS)
Liang, Yaping; Chang, Qing; Li, Xianxu
2018-04-01
Asynchronous network coding (NC) has potential to improve the wireless network performance compared with a routing or the synchronous network coding. Recent researches concentrate on the optimization between throughput/energy consuming and delay with a couple of independent input flow. However, the implementation of NC requires a thorough investigation of its impact on relevant queueing systems where few work focuses on. Moreover, few works study the probability density function (pdf) in network coding scenario. In this paper, the scenario with two independent Poisson input flows and one output flow is considered. The asynchronous NC-based strategy is that a new arrival evicts a head packet holding in its queue when waiting for another packet from the other flow to encode. The pdf for the output flow which contains both coded and uncoded packets is derived. Besides, the statistic characteristics of this strategy are analyzed. These results are verified by numerical simulations.
NASA Astrophysics Data System (ADS)
Siscoe, G. L.
2012-12-01
What is a system? A group of elements interacting with each other so as to create feedback loops. A system gets complex as the number of feedback loops increases and as the feedback loops exhibit time delays. Positive and negative feedback loops with time delays can give a system intrinsic time dependence and emergent properties. A system generally has input and output flows of something (matter, energy, money), which, if time variable, add an extrinsic component to its behavior. The magnetosphere is a group of elements interacting through feedback loops, some with time delays, driven by energy and mass inflow from a variable solar wind and outflow into the atmosphere and solar wind. The magnetosphere is a complex system. With no solar wind, there is no behavior. With solar wind, there is behavior from intrinsic and extrinsic causes. As a contribution to taking a macroscopic view of magnetospheric dynamics, to treating the magnetosphere as a globally integrated, complex entity, I will discus the magnetosphere as a system, its feedback loops, time delays, emergent behavior, and intrinsic and extrinsic behavior modes.
The neural response in short-term visual recognition memory for perceptual conjunctions.
Elliott, R; Dolan, R J
1998-01-01
Short-term visual memory has been widely studied in humans and animals using delayed matching paradigms. The present study used positron emission tomography (PET) to determine the neural substrates of delayed matching to sample for complex abstract patterns over a 5-s delay. More specifically, the study assessed any differential neural response associated with remembering individual perceptual properties (color only and shape only) compared to conjunction between these properties. Significant activations associated with short-term visual memory (all memory conditions compared to perceptuomotor control) were observed in extrastriate cortex, medial and lateral parietal cortex, anterior cingulate, inferior frontal gyrus, and the thalamus. Significant deactivations were observed throughout the temporal cortex. Although the requirement to remember color compared to shape was associated with subtly different patterns of blood flow, the requirement to remember perceptual conjunctions between these features was not associated with additional specific activations. These data suggest that visual memory over a delay of the order of 5 s is mainly dependent on posterior perceptual regions of the cortex, with the exact regions depending on the perceptual aspect of the stimuli to be remembered.
[Intermodal timing cues for audio-visual speech recognition].
Hashimoto, Masahiro; Kumashiro, Masaharu
2004-06-01
The purpose of this study was to investigate the limitations of lip-reading advantages for Japanese young adults by desynchronizing visual and auditory information in speech. In the experiment, audio-visual speech stimuli were presented under the six test conditions: audio-alone, and audio-visually with either 0, 60, 120, 240 or 480 ms of audio delay. The stimuli were the video recordings of a face of a female Japanese speaking long and short Japanese sentences. The intelligibility of the audio-visual stimuli was measured as a function of audio delays in sixteen untrained young subjects. Speech intelligibility under the audio-delay condition of less than 120 ms was significantly better than that under the audio-alone condition. On the other hand, the delay of 120 ms corresponded to the mean mora duration measured for the audio stimuli. The results implied that audio delays of up to 120 ms would not disrupt lip-reading advantage, because visual and auditory information in speech seemed to be integrated on a syllabic time scale. Potential applications of this research include noisy workplace in which a worker must extract relevant speech from all the other competing noises.
Lloyd, Robert A; Fletcher, David F; Clarke, Elizabeth C; Bilston, Lynne E
2017-12-08
Syringomyelia is associated with Chiari I malformation, although the mechanistic link is unclear. Studies have suggested that cerebrospinal fluid enters the spinal cord via the perivascular spaces, and that changes in the timing of the subarachnoid pressures may increase flow into the spinal cord. This study aims to determine how Chiari malformation and syringomyelia alter the subarachnoid space pressures and hence perivascular flow. Subject-specific models of healthy controls (N = 9), Chiari patients with (N = 7) and without (N = 8) syringomyelia, were developed from magnetic resonance imaging (MRI), to simulate the subarachnoid pressures. These pressures were input to an idealised model of the perivascular space to evaluate potential differences in perivascular flow. Peak pressures in Chiari patients without a syrinx were higher than in controls (46% increase; p = .029) and arrived earlier in the cardiac cycle than both controls (2.58% earlier; p = .045) and syrinx patients (2.85% earlier; p = .045). The perivascular model predicted Chiari patients without a syrinx would have the greatest flow into the cord (p < .05) if the arterial pulse delay was between 4 and 10% of the cardiac cycle. Using phase-contrast MRI the mean arterial delay for all subjects was similar, and was estimated as 4.7 ± 0.2%. The perivascular pumping rate showed a strong positive correlation (R Adj 2 =0.85; p < .0001) with extended periods of high pressure that arrived earlier in the cardiac cycle, suggesting these pressure characteristics may play a role in syrinx development. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shi, Cindy Q; Young, Lawrence H; Daher, Edouard; DiBella, Edward V R; Liu, Yi-Hwa; Heller, Eliot N; Zoghbi, Sami; Wackers, Frans J Th; Soufer, Robert; Sinusas, Albert J
2002-03-01
Myocardial ischemia is associated with reduced free fatty acid (FFA) beta-oxidation and increased glucose utilization. This study evaluated the potential of dynamic SPECT imaging of a FFA analog, p-(123)I-iodophenylpentadecanoic acid (IPPA), for detection of ischemia and compares retention of IPPA with (18)F-FDG accumulation. In a canine model of regional low-flow ischemia (n = 9), serial IPPA SPECT images (2 min per image) were acquired over 52--90 min. In a subset of dogs (n = 6), (18)F-FDG was injected after completing SPECT imaging and allowed to accumulate for 40 min before killing the animals. Flow was assessed with radiolabeled microspheres. Myocardial metabolism was evaluated independently by selective coronary arterial and venous sampling. Serial IPPA SPECT images showed an initial defect in the ischemic region (0.70% plus minus 0.03% ischemic-to-nonischemic ratio), which normalized within 48 min because of the slower IPPA clearance from the ischemic region (t(1/2) = 54.2 plus minus 3.3 min) relative to the nonischemic region (t(1/2) = 36.7 plus minus 5.6 min) (P < 0.05). Delayed myocardial IPPA and (18)F-FDG activities were correlated (r = 0.70; n = 576 segments), and both were maximally increased in segments with a moderate flow reduction (IPPA, 151% of nonischemic; (18)F-FDG, 450% of nonischemic; P < 0.05). Serial SPECT imaging showed delayed myocardial clearance of IPPA in ischemic regions with moderate flow reduction, which lead to increased late myocardial retention of IPPA. Retention of IPPA correlated with (18)F-FDG accumulation, supporting the potential of IPPA as a noninvasive marker of ischemic myocardium.
Salam, M A; Noguchi, T; Koike, M
2005-01-01
Wide acceptance of sustainable development as a concept and as the goal of forest management has shifted forest management policies from a traditional to a people-oriented approach. Consequently, with its multiple new objectives, forest management has become more complex and an information gap exits between what is known and what is utilized, which hinders the sustained participation of farmers. This gap arose mainly due to an interrupted flow of information. With participatory forestry, the information flow requires a broad approach that goes beyond the forest ecosystem and includes the different stakeholders. Thus in participatory forest management strategies, policymakers, planners and project designers need to incorporate all relevant information within the context of the dynamic interaction between stakeholders and the forest environment. They should understand the impact of factors such as management policies, economics and conflicts on the sustained participation of farmers. This study aimed to use primary cross-sectional data to identify the factors that might influence the sustained participation of farmers in participatory forestry. Using stratified random sampling, 581 participants were selected to take part in this study, and data were collected through a structured questionnaire by interviewing the selected participants. To identify the dominant factors necessary for the sustained participation of farmers, logistic regression analyses were performed. The following results were observed: (a) sustained participation is positively and significantly correlated with (i) satisfaction of the participants with the tree species planted on their plots; (ii) confidence of the participants that their aspired benefits will be received; (iii) provision of training on different aspects of participatory forestry; (iv) contribution of participants' money to Tree Farming Funds. (b) The sustained participation of farmers is negatively and significantly correlated with the disruption of local peoples' interests through implementation of participatory forestry programs, and long delays in the harvesting of trees after completion of the contractual agreement period.
NASA Astrophysics Data System (ADS)
Tartakovsky, Guzel D.; Neuman, Shlomo P.
2007-01-01
A new analytical solution is presented for the delayed response process characterizing flow to a partially penetrating well in an unconfined aquifer. The new solution generalizes that of Neuman (1972, 1974) by accounting for unsaturated flow above the water table. Three-dimensional, axially symmetric flow in the unsaturated zone is described by a linearized version of Richards' equation in which hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value (defining the interface between the saturated and unsaturated zones). Unsaturated soil properties are characterized by an exponent κ having the dimension of inverse length or, equivalently, a dimensionless exponent κD = κb, where b is initial saturated thickness. Our treatment of the unsaturated zone is similar to that of Kroszynski and Dagan (1975), who, however, have ignored internal (artesian) aquifer storage. According to Kroszynski and Dagan, aquifers that are not excessively shallow have values of κD (their parameter a) much greater than 10. We find that in such typical cases, unsaturated flow has little impact on early and late dimensionless time drawdown a short distance below the water table. Unsaturated flow causes drawdown to increase slightly at intermediate dimensionless time values that represent transition from an early artesian-dominated to a late water-table-dominated flow regime. Delayed drainage from the unsaturated zone becomes less and less important as κD increases; as κD → ∞, this effect dies out, and drawdown is controlled entirely by delayed decline in the water table as in the model of Neuman. The unsaturated zone has a major impact on drawdown at intermediate time and a significant impact at early and late times, in the atypical case of κD ≤ 1, becoming the dominant factor as κD approaches zero (the soil water retention capacity becomes very large and/or saturated thickness becomes insignificant). Our new solution was used to analyze field data from a pumping test conducted by Moench et al. (2001) in a glacial outwash deposit at Cape Cod, Massachusetts. The solution was fitted individually and simultaneously to time-drawdown data from 20 piezometers and observation wells and simultaneously to data from three piezometers in each of two clusters at various depths and distances from the pumping well, with very good results. Our parameter estimates of hydraulic conductivities from the simultaneous fit are similar to those obtained previously by Moench (2004), but our estimates of specific yield and storage are smaller and larger, respectively, while our estimate of κ is not comparable with his estimates of three empirical parameters.
Traffic Flow Management: Data Mining Update
NASA Technical Reports Server (NTRS)
Grabbe, Shon R.
2012-01-01
This presentation provides an update on recent data mining efforts that have been designed to (1) identify like/similar days in the national airspace system, (2) cluster/aggregate national-level rerouting data and (3) apply machine learning techniques to predict when Ground Delay Programs are required at a weather-impacted airport
DOT National Transportation Integrated Search
2016-06-01
The purpose of this project is to study the optimal scheduling of work zones so that they have minimum negative impact (e.g., travel delay, gas consumption, accidents, etc.) on transport service vehicle flows. In this project, a mixed integer linear ...
A novel modeling approach to the mixing process in twin-screw extruders
NASA Astrophysics Data System (ADS)
Kennedy, Amedu Osaighe; Penlington, Roger; Busawon, Krishna; Morgan, Andy
2014-05-01
In this paper, a theoretical model for the mixing process in a self-wiping co-rotating twin screw extruder by combination of statistical techniques and mechanistic modelling has been proposed. The approach was to examine the mixing process in the local zones via residence time distribution and the flow dynamics, from which predictive models of the mean residence time and mean time delay were determined. Increase in feed rate at constant screw speed was found to narrow the shape of the residence time distribution curve, reduction in the mean residence time and time delay and increase in the degree of fill. Increase in screw speed at constant feed rate was found to narrow the shape of the residence time distribution curve, decrease in the degree of fill in the extruder and thus an increase in the time delay. Experimental investigation was also done to validate the modeling approach.
Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.
Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush
2016-08-01
This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming.
NASA Astrophysics Data System (ADS)
Beyer, W. K. G.
The estimation accuracy of the group delay measured in a single video frequency band was analyzed as a function of the system bandwidth and the signal to noise ratio. Very long base interferometry (VLBI) measurements from geodetic experiments were used to check the geodetic applicability of the Mark 2 evaluation system. The geodetic observation quantities and the correlation geometry are introduced. The data flow in the VLBI experiment, the correlation analysis, the analyses and evaluation in the MK2 system, and the delay estimation procedure following the least squares method are presented. It is shown that the MK2 system is no longer up to date for geodetic applications. The superiority of the developed estimation method with respect to the interpolation algorithm is demonstrated. The numerical investigations show the deleterious influence of the distorting bit shift effects.
Short-term and long-term memory in early temporal lobe dysfunction.
Hershey, T; Craft, S; Glauser, T A; Hale, S
1998-01-01
Following medial temporal damage, mature humans are impaired in retaining new information over long delays but not short delays. The question of whether a similar dissociation occurs in children was addressed by testing children (ages 7-16) with unilateral temporal lobe epilepsy (TLE) and controls on short- and long-term memory tasks, including a spatial delayed response task (SDR). Early-onset TLE did not affect performance on short delays on SDR, but it did impair performance at the longest delay (60 s), similar to adults with unilateral medial temporal damage. In addition, early-onset TLE affected performance on pattern recall, spatial span, and verbal span with rehearsal interference. No differences were found on story recall or on a response inhibition task.
van Karnebeek, Clara D M; Houben, Roderick F A; Lafek, Mirafe; Giannasi, Wynona; Stockler, Sylvia
2012-07-23
Intellectual disability (ID) is a devastating and frequent condition, affecting 2-3% of the population worldwide. Early recognition of treatable underlying conditions drastically improves health outcomes and decreases burdens to patients, families and society. Our systematic literature review identified 81 such inborn errors of metabolism, which present with ID as a prominent feature and are amenable to causal therapy. The WebAPP translates this knowledge of rare diseases into a diagnostic tool and information portal. Freely available as a WebAPP via http://www.treatable-id.org and end 2012 via the APP store, this diagnostic tool is designed for all specialists evaluating children with global delay / ID and laboratory scientists. Information on the 81 diseases is presented in different ways with search functions: 15 biochemical categories, neurologic and non-neurologic signs & symptoms, diagnostic investigations (metabolic screening tests in blood and urine identify 65% of all IEM), therapies & effects on primary (IQ/developmental quotient) and secondary outcomes, and available evidence For each rare condition a 'disease page' serves as an information portal with online access to specific genetics, biochemistry, phenotype, diagnostic tests and therapeutic options. As new knowledge and evidence is gained from expert input and PubMed searches this tool will be continually updated. The WebAPP is an integral part of a protocol prioritizing treatability in the work-up of every child with global delay / ID. A 3-year funded study will enable an evaluation of its effectiveness. For rare diseases, a field for which financial and scientific resources are particularly scarce, knowledge translation challenges are abundant. With this WebAPP technology is capitalized to raise awareness for rare treatable diseases and their common presenting clinical feature of ID, with the potential to improve health outcomes. This innovative digital tool is designed to motivate health care providers to search actively for treatable causes of ID, and support an evidence-based approach to rare metabolic diseases. In our current -omics world with continuous information flow, the effective synthesis of data into accessible, clinical knowledge has become ever more essential to bridge the gap between research and care.
2012-01-01
Background Intellectual disability (ID) is a devastating and frequent condition, affecting 2-3% of the population worldwide. Early recognition of treatable underlying conditions drastically improves health outcomes and decreases burdens to patients, families and society. Our systematic literature review identified 81 such inborn errors of metabolism, which present with ID as a prominent feature and are amenable to causal therapy. The WebAPP translates this knowledge of rare diseases into a diagnostic tool and information portal. Methods & results Freely available as a WebAPP via http://www.treatable-id.org and end 2012 via the APP store, this diagnostic tool is designed for all specialists evaluating children with global delay / ID and laboratory scientists. Information on the 81 diseases is presented in different ways with search functions: 15 biochemical categories, neurologic and non-neurologic signs & symptoms, diagnostic investigations (metabolic screening tests in blood and urine identify 65% of all IEM), therapies & effects on primary (IQ/developmental quotient) and secondary outcomes, and available evidence For each rare condition a ‘disease page’ serves as an information portal with online access to specific genetics, biochemistry, phenotype, diagnostic tests and therapeutic options. As new knowledge and evidence is gained from expert input and PubMed searches this tool will be continually updated. The WebAPP is an integral part of a protocol prioritizing treatability in the work-up of every child with global delay / ID. A 3-year funded study will enable an evaluation of its effectiveness. Conclusions For rare diseases, a field for which financial and scientific resources are particularly scarce, knowledge translation challenges are abundant. With this WebAPP technology is capitalized to raise awareness for rare treatable diseases and their common presenting clinical feature of ID, with the potential to improve health outcomes. This innovative digital tool is designed to motivate health care providers to search actively for treatable causes of ID, and support an evidence-based approach to rare metabolic diseases. In our current –omics world with continuous information flow, the effective synthesis of data into accessible, clinical knowledge has become ever more essential to bridge the gap between research and care. PMID:22824307
Data forwarding mechanism for supporting real-time services during relocations in UMTS systems
NASA Astrophysics Data System (ADS)
Cai, Wei; Liao, Xianglong; Zheng, Liang; Liu, Zehong
2004-04-01
To minimize the interruption during the handovers or relocations invoked by subscribers moving is a very critical factor to enhance the performance of the UMTS systems. We know that the 2G systems have been optimized to minimize the interruption of speech during handovers by two main technologies: one is the bi-casting for the DL traffic and the other is the fast radio resynchronization by the UE for the UL traffic. In the UMTS systems, we have also implemented lossless relocations for non real-time services with high reliability by data buffering in the source RNC and target RNC for the UE. However, the UMTS systems support four QoS classes traffic flow: conversational class, streaming class, interactive class and background class. The main distinguishing factor between these QoS classes is how delay sensitive the traffic is: Conversational and Streaming classes are mainly used to carry real-time traffic flows, like video telephony, interactive and background classes are mainly used by traditional Internet applications like WWW, E-mail and FTP. It"s essential to provide the solutions for supporting real-time services to meet the requirement for QoS in UMTS systems. Apparently, the Data buffering mechanism is not adapted to real-time services because of it"s delay may exceed the basic requirement for real-time services. Under this background, the paper discussed two data forwarding solutions for real-time services from the PS domain in the UMTS systems: packet duplication and Core Network bi-casting. The former mechanism does not require any new procedures, messages nor information elements. The later mechanism requires that the GGSN or SGSN is able to bi-cast the DL traffic to the target RNC according to the relocations involving two SGSNs or just involving one SGSN. It also implicitly shows that we need change procedures at the nodes SGSN, GGSN and RNC which are involved in the relocation procedure based on existing procedures that we have already designed if adopt the later solution. In a detail way, the paper analyzed the characteristic for these two solutions respectively, concentrated on the packet flows and the message flows in those nodes involved in relocations. Additionally, also gave out the impact on present transport technologies in the wireless communication systems. However we shall minimize the impact of evolution of transport mechanism and utilize the resource efficiently according to the general requirements for QoS in UMTS systems.
Rescue Therapy for Refractory Vasospasm after Subarachnoid Hemorrhage
Durrant, Julia C.; Hinson, Holly E.
2014-01-01
Vasospasm and delayed cerebral ischemia remain to be the common causes of increased morbidity and mortality after aneurysmal subarachnoid hemorrhage. The majority of clinical vasospasm responds to hemodynamic augmentation and direct vascular intervention; however, a percentage of patients continue to have symptoms and neurological decline. Despite suboptimal evidence, clinicians have several options in treating refractory vasospasm in aneurysmal subarachnoid hemorrhage (aSAH), including cerebral blood flow enhancement, intra-arterial manipulations, and intra-arterial and intrathecal infusions. This review addresses standard treatments as well as emerging novel therapies aimed at improving cerebral perfusion and ameliorating the neurologic deterioration associated with vasospasm and delayed cerebral ischemia. PMID:25501582
Enhancing BEM simulations of a stalled wind turbine using a 3D correction model
NASA Astrophysics Data System (ADS)
Bangga, Galih; Hutomo, Go; Syawitri, Taurista; Kusumadewi, Tri; Oktavia, Winda; Sabila, Ahmad; Setiadi, Herlambang; Faisal, Muhamad; Hendranata, Yongki; Lastomo, Dwi; Putra, Louis; Kristiadi, Stefanus; Bumi, Ilmi
2018-03-01
Nowadays wind turbine rotors are usually employed with pitch control mechanisms to avoid deep stall conditions. Despite that, wind turbines often operate under pitch fault situation causing massive flow separation to occur. Pure Blade Element Momentum (BEM) approaches are not designed for this situation and inaccurate load predictions are already expected. In the present studies, BEM predictions are improved through the inclusion of a stall delay model for a wind turbine rotor operating under pitch fault situation of -2.3° towards stall. The accuracy of the stall delay model is assessed by comparing the results with available Computational Fluid Dynamics (CFD) simulations data.
NASA Astrophysics Data System (ADS)
Cariveau, Mickael J.
2005-07-01
Molecular responses to radiation-induced DNA double strand breaks (DSB) are mediated by the phosphorylation of the histone variant H2AX which forms identifiable gamma-H2AX foci at the site of the DSB. This event is thought to be linked with the down-regulation of signaling proteins contributing to the checkpoints regulating cell cycle progression and, vis-a-vis , the induction of cell division delay. However, it is unclear whether this division delay is directly related to the number of DSB (gamma-H2AX foci) sustained by an irradiated cell and, if so, whether this number drives cells into cell cycle delay or apoptosis. For this reason, studies were conducted in the immortalized NIH/3T3 fibroblast cell in order to establish correlations between the temporal appearance of the gamma-H2AX foci (a DSB) and the expression of the cell cycle regulatory proteins, cyclin E, A, B1, and their cyclin kinase inhibitor, p21. Cell cycle kinetics and flow cytometry were used to establish radiation-induced division delay over a dose range of 1--6 Gy where a mitotic delay of 2.65 min/cGy was established. Correlations between the expression of cyclin E, A, B1, p21, and the generation of DSB were established in NIH/3T3 cells exposed to 2 or 4 Gy x-irradiation. The data suggest that the G1/S and S phase delay (cyclin E and cyclin A protein levels) are dependent on the dose of radiation while the G2/M (cyclin B1 protein levels) delay is dependent on the quantity of DSB sustained by the irradiated cell.
Geochemistry of the Madison and Minnelusa aquifers in the Black Hills area, South Dakota
Naus, Cheryl A.; Driscoll, Daniel G.; Carter, Janet M.
2001-01-01
The Madison and Minnelusa aquifers are two of the most important aquifers in the Black Hills area because of utilization for water supplies and important influences on surface-water resources resulting from large springs and streamflow- loss zones. Examination of geochemical information provides a better understanding of the complex flow systems within these aquifers and interactions between the aquifers. Major-ion chemistry in both aquifers is dominated by calcium and bicarbonate near outcrop areas, with basinward evolution towards various other water types. The most notable differences in major-ion chemistry between the Madison and Minnelusa aquifers are in concentrations of sulfate within the Minnelusa aquifer. Sulfate concentrations increase dramatically near a transition zone where dissolution of anhydrite is actively occurring. Water chemistry for the Madison and Minnelusa aquifers is controlled by reactions among calcite, dolomite, and anhydrite. Saturation indices for gypsum, calcite, and dolomite for most samples in both the Madison and Minnelusa aquifers are indicative of the occurrence of dedolomitization. Because water in the Madison aquifer remains undersaturated with respect to gypsum, even at the highest sulfate concentrations, upward leakage into the overlying Minnelusa aquifer has potential to drive increased dissolution of anhydrite in the Minnelusa Formation. Isotopic information is used to evaluate ground-water flowpaths, ages, and mixing conditions for the Madison and Minnelusa aquifers. Distinctive patterns exist in the distribution of stable isotopes of oxygen and hydrogen in precipitation for the Black Hills area, with isotopically lighter precipitation generally occurring at higher elevations and latitudes. Distributions of 18O in ground water are consistent with spatial patterns in recharge areas, with isotopically lighter 18O values in the Madison aquifer resulting from generally higher elevation recharge sources, relative to the Minnelusa aquifer. Three conceptual models, which are simplifications of lumped-parameter models, are considered for evaluation of mixing conditions and general ground-water ages. For a simple slug-flow model, which assumes no mixing, measured tritium concentrations in ground water can be related through a first-order decay equation to estimated concentrations at the time of recharge. Two simplified mixing models that assume equal proportions of annual recharge over a range of years also are considered. An ?immediate-arrival? model is used to conceptually represent conditions in outcrop areas and a ?time-delay? model is used for locations removed from outcrops, where delay times for earliest arrival of ground water generally would be expected. Because of limitations associated with estimating tritium input and gross simplifying assumptions of equal annual recharge and thorough mixing conditions, the conceptual models are used only for general evaluation of mixing conditions and approximation of age ranges. Headwater springs, which are located in or near outcrop areas, have the highest tritium concentrations, which is consistent with the immediate-arrival mixing model. Tritium concentrations for many wells are very low, or nondetectable, indicating general applicability of the timedelay conceptual model for locations beyond outcrop areas, where artesian conditions generally occur. Concentrations for artesian springs generally are higher than for wells, which indicates generally shorter delay times resulting from preferential flowpaths that typically are associated with artesian springs. In the Rapid City area, a distinct division of isotopic values for the Madison aquifer corresponds with distinguishing 18O signatures for nearby streams, where large streamflow recharge occurs. Previous dye testing in this area documented rapid ground-water flow (timeframe of weeks) from a streamflow loss zone to sites located several miles away. These results are used to ill
Gilkey, Melissa B.; Calo, William A.; Marciniak, Macary W.
2017-01-01
ABSTRACT Background: We sought to estimate the national prevalence of HPV vaccine refusal and delay in a nationally-representative sample of parents of adolescents. We also compared parents who refused versus delayed HPV vaccine in terms of their vaccination beliefs and clinical communication preferences. Methods: In 2014 to 2015, we conducted an online survey of 1,484 US parents who reported on an 11- to 17-year-old child in their household. We used weighted multinomial logistic regression to assess correlates of HPV vaccine refusal and delay. Results: Overall, 28% of parents reported that they had ever “refused or decided not to get” HPV vaccine for their child, and an additional 8% of parents reported that they had “delayed or put off getting” HPV vaccine. Compared to no refusal/delay, refusal was associated with lower confidence in adolescent vaccination (relative risk ratio [RRR] = 0.66, 95% confidence interval [CI], 0.48–0.91), lower perceived HPV vaccine effectiveness (RRR = 0.68, 95% CI, 0.50–0.91), and higher perceived harms (RRR = 3.49, 95% CI, 2.65–4.60). In contrast, delay was associated with needing more information (RRR = 1.76, 95% CI, 1.08–2.85). Most parents rated physicians and information sheets as helpful for making decisions about HPV vaccination, although parents who reported refusal endorsed these resources less often. Conclusions: Our findings suggest that HPV vaccine refusal is common among parents of adolescents and may have increased relative to previous estimates. Because the vaccination beliefs and communication preferences of parents who refuse appear to differ from those who delay, targeted communication strategies may be needed to effectively address HPV vaccine hesitancy. PMID:27763818
Delay differential analysis of time series.
Lainscsek, Claudia; Sejnowski, Terrence J
2015-03-01
Nonlinear dynamical system analysis based on embedding theory has been used for modeling and prediction, but it also has applications to signal detection and classification of time series. An embedding creates a multidimensional geometrical object from a single time series. Traditionally either delay or derivative embeddings have been used. The delay embedding is composed of delayed versions of the signal, and the derivative embedding is composed of successive derivatives of the signal. The delay embedding has been extended to nonuniform embeddings to take multiple timescales into account. Both embeddings provide information on the underlying dynamical system without having direct access to all the system variables. Delay differential analysis is based on functional embeddings, a combination of the derivative embedding with nonuniform delay embeddings. Small delay differential equation (DDE) models that best represent relevant dynamic features of time series data are selected from a pool of candidate models for detection or classification. We show that the properties of DDEs support spectral analysis in the time domain where nonlinear correlation functions are used to detect frequencies, frequency and phase couplings, and bispectra. These can be efficiently computed with short time windows and are robust to noise. For frequency analysis, this framework is a multivariate extension of discrete Fourier transform (DFT), and for higher-order spectra, it is a linear and multivariate alternative to multidimensional fast Fourier transform of multidimensional correlations. This method can be applied to short or sparse time series and can be extended to cross-trial and cross-channel spectra if multiple short data segments of the same experiment are available. Together, this time-domain toolbox provides higher temporal resolution, increased frequency and phase coupling information, and it allows an easy and straightforward implementation of higher-order spectra across time compared with frequency-based methods such as the DFT and cross-spectral analysis.