Wellman, Tyler J.; Winkler, Tilo; Vidal Melo, Marcos F.
2015-01-01
18F-FDG-PET is increasingly used to assess pulmonary inflammatory cell activity. However, current models of pulmonary 18F-FDG kinetics do not account for delays in 18F-FDG transport between the plasma sampling site and the lungs. We developed a three-compartment model of 18F-FDG kinetics that includes a delay between the right heart and the local capillary blood pool, and used this model to estimate regional pulmonary perfusion. We acquired dynamic 18F-FDG scans in 12 mechanically ventilated sheep divided into control and lung injury groups (n=6 each). The model was fit to tracer kinetics in three isogravitational regions-of-interest to estimate regional lung transport delays and regional perfusion. 13NN bolus infusion scans were acquired during a period of apnea to measure regional perfusion using an established reference method. The delayed input function model improved description of 18F-FDG kinetics (lower Akaike Information Criterion) in 98% of studied regions. Local transport delays ranged from 2.0–13.6s, averaging 6.4±2.9s, and were highest in non-dependent regions. Estimates of regional perfusion derived from model parameters were highly correlated with perfusion measurements based on 13NN-PET (R2=0.92, p<0.001). By incorporating local vascular transports delays, this model of pulmonary 18F-FDG kinetics allows for simultaneous assessment of regional lung perfusion, transit times, and inflammation. PMID:25940652
Jafari, Ramin; Chhabra, Shalini; Prince, Martin R; Wang, Yi; Spincemaille, Pascal
2018-04-01
To propose an efficient algorithm to perform dual input compartment modeling for generating perfusion maps in the liver. We implemented whole field-of-view linear least squares (LLS) to fit a delay-compensated dual-input single-compartment model to very high temporal resolution (four frames per second) contrast-enhanced 3D liver data, to calculate kinetic parameter maps. Using simulated data and experimental data in healthy subjects and patients, whole-field LLS was compared with the conventional voxel-wise nonlinear least-squares (NLLS) approach in terms of accuracy, performance, and computation time. Simulations showed good agreement between LLS and NLLS for a range of kinetic parameters. The whole-field LLS method allowed generating liver perfusion maps approximately 160-fold faster than voxel-wise NLLS, while obtaining similar perfusion parameters. Delay-compensated dual-input liver perfusion analysis using whole-field LLS allows generating perfusion maps with a considerable speedup compared with conventional voxel-wise NLLS fitting. Magn Reson Med 79:2415-2421, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Wellman, Tyler J; Winkler, Tilo; Vidal Melo, Marcos F
2015-11-01
¹⁸F-FDG-PET is increasingly used to assess pulmonary inflammatory cell activity. However, current models of pulmonary ¹⁸F-FDG kinetics do not account for delays in ¹⁸F-FDG transport between the plasma sampling site and the lungs. We developed a three-compartment model of ¹⁸F-FDG kinetics that includes a delay between the right heart and the local capillary blood pool, and used this model to estimate regional pulmonary perfusion. We acquired dynamic ¹⁸F-FDG scans in 12 mechanically ventilated sheep divided into control and lung injury groups (n = 6 each). The model was fit to tracer kinetics in three isogravitational regions-of-interest to estimate regional lung transport delays and regional perfusion. ¹³NN bolus infusion scans were acquired during a period of apnea to measure regional perfusion using an established reference method. The delayed input function model improved description of ¹⁸F-FDG kinetics (lower Akaike Information Criterion) in 98% of studied regions. Local transport delays ranged from 2.0 to 13.6 s, averaging 6.4 ± 2.9 s, and were highest in non-dependent regions. Estimates of regional perfusion derived from model parameters were highly correlated with perfusion measurements based on ¹³NN-PET (R² = 0.92, p < 0.001). By incorporating local vascular transports delays, this model of pulmonary ¹⁸F-FDG kinetics allows for simultaneous assessment of regional lung perfusion, transit times, and inflammation.
Morales-Ramírez, Pedro; Vallarino-Kelly, Teresita; Cruz-Vallejo, Virginia
2014-01-30
This mini-review aims to compare the differences in the kinetics of the induction of micronucleated polychromatic erythrocytes (MN-PCE) and cytotoxicity by distinct antineoplastic and genotoxic agents in murine peripheral blood in vivo and to correlate these kinetics with the underlying processes. Comparisons were carried out using our previously obtained data with nominal doses causing similar levels of cytotoxicity, as measured in terms reduction of PCE. The aneuploidogens caused the most rapid induction of MN-PCEs and had the highest rates of cytotoxicity and genotoxicity. The promutagens cyclophosphamide and dimethylnitrosamine showed the most delayed responses and had the lowest genotoxic and cytotoxic efficiencies. DNA crosslinking agents had a similar delay of 4-5 h, greater than those of aneuploidogens, but differed in their cytotoxic and genotoxic efficiencies. Methylnitrosourea and 5-aza-cytidine caused greater delays than crosslinking agents. These delays can be due to the methylnitrosourea-mediated induction of formation of mono alkyl adducts which are interpreted as mismatches during DNA duplication, whereas 5-aza-cytidine requires incorporation into the DNA to induce breakage. This review allows us to conclude that the requirement for metabolic activation and the mechanisms of DNA breakage and of micronucleus induction are the main factors that affect the time of maximal MN-PCE induction. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Cowart, Jim S.; Fischer, Warren P.; Hamilton, Leonard J.; ...
2013-02-01
In an effort aimed at predicting the combustion behavior of a new fuel in a conventional diesel engine, cetane (n-hexadecane) fuel was used in a military engine across the entire speed–load operating range. The ignition delay was characterized for this fuel at each operating condition. A chemical ignition delay was also predicted across the speed–load range using a detailed chemical kinetic mechanism with a constant pressure reactor model. At each operating condition, the measured in-cylinder pressure and predicted temperature at the start of injection were applied to the detailed n-hexadecane kinetic mechanism, and the chemical ignition delay was predicted withoutmore » any kinetic mechanism calibration. The modeling results show that fuel–air parcels developed from the diesel spray with an equivalence ratio of 4 are the first to ignite. The chemical ignition delay results also showed decreasing igntion delays with increasing engine load and speed, just as the experimental data revealed. At lower engine speeds and loads, the kinetic modeling results show the characteristic two-stage negative temperature coefficient behavior of hydrocarbon fuels. However, at high engine speeds and loads, the reactions do not display negative temperature coefficient behavior, as the reactions proceed directly into high-temperature pathways due to higher temperatures and pressure at injection. A moderate difference between the total and chemical ignition delays was then characterized as a phyical delay period that scales inversely with engine speed. This physical delay time is representative of the diesel spray development time and is seen to become a minority fraction of the total igntion delay at higher engine speeds. In addition, the approach used in this study suggests that the ignition delay and thus start of combustion may be predicted with reasonable accuracy using kinetic modeling to determine the chemical igntion delay. Then, in conjunction with the physical delay time (experimental or modeling based), a new fuel’s acceptability in a conventional engine could be assessed by determining that the total ignition delay is not too short or too long.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Som, S; Longman, D. E.; Luo, Z
2012-01-01
Combustion in direct-injection diesel engines occurs in a lifted, turbulent diffusion flame mode. Numerous studies indicate that the combustion and emissions in such engines are strongly influenced by the lifted flame characteristics, which are in turn determined by fuel and air mixing in the upstream region of the lifted flame, and consequently by the liquid breakup and spray development processes. From a numerical standpoint, these spray combustion processes depend heavily on the choice of underlying spray, combustion, and turbulence models. The present numerical study investigates the influence of different chemical kinetic mechanisms for diesel and biodiesel fuels, as well asmore » Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) turbulence models on predicting flame lift-off lengths (LOLs) and ignition delays. Specifically, two chemical kinetic mechanisms for n-heptane (NHPT) and three for biodiesel surrogates are investigated. In addition, the RNG k-{epsilon} (RANS) model is compared to the Smagorinsky based LES turbulence model. Using adaptive grid resolution, minimum grid sizes of 250 {micro}m and 125 {micro}m were obtained for the RANS and LES cases respectively. Validations of these models were performed against experimental data from Sandia National Laboratories in a constant volume combustion chamber. Ignition delay and flame lift-off validations were performed at different ambient temperature conditions. The LES model predicts lower ignition delays and qualitatively better flame structures compared to the RNG k-{epsilon} model. The use of realistic chemistry and a ternary surrogate mixture, which consists of methyl decanoate, methyl 9-decenoate, and NHPT, results in better predicted LOLs and ignition delays. For diesel fuel though, only marginal improvements are observed by using larger size mechanisms. However, these improved predictions come at a significant increase in computational cost.« less
Electron acceleration and kinetic energy tailoring via ultrafast terahertz fields.
Greig, S R; Elezzabi, A Y
2014-11-17
We propose a mechanism for tuning the kinetic energy of surface plasmon generated electron pulses through control of the time delay between a pair of externally applied terahertz pulses. Varying the time delay results in translation, compression, and broadening of the kinetic energy spectrum of the generated electron pulse. We also observe that the electrons' kinetic energy dependence on the carrier envelope phase of the surface plasmon is preserved under the influence of a terahertz electric field.
A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atef, Nour; Kukkadapu, Goutham; Mohamed, Samah Y.
Iso-Octane (2,2,4-trimethylpentane) is a primary reference fuel and an important component of gasoline fuels. Furthermore, it is a key component used in surrogates to study the ignition and burning characteristics of gasoline fuels. This paper presents an updated chemical kinetic model for iso-octane combustion. Specifically, the thermodynamic data and reaction kinetics of iso-octane have been re-assessed based on new thermodynamic group values and recently evaluated rate coefficients from the literature. The adopted rate coefficients were either experimentally measured or determined by analogy to theoretically calculated values. New alternative isomerization pathways for peroxy-alkyl hydroperoxide (more » $$\\dot{O}$$OQOOH) radicals were added to the reaction mechanism. The updated kinetic model was compared against new ignition delay data measured in rapid compression machines (RCM) and a high-pressure shock tube. Our experiments were conducted at pressures of 20 and 40 atm, at equivalence ratios of 0.4 and 1.0, and at temperatures in the range of 632–1060 K. The updated model was further compared against shock tube ignition delay times, jet-stirred reactor oxidation speciation data, premixed laminar flame speeds, counterflow diffusion flame ignition, and shock tube pyrolysis speciation data available in the literature. Finally, the updated model was used to investigate the importance of alternative isomerization pathways in the low temperature oxidation of highly branched alkanes. When compared to available models in the literature, the present model represents the current state-of-the-art in fundamental thermochemistry and reaction kinetics of iso-octane; and thus provides the best prediction of wide ranging experimental data and fundamental insights into iso-octane combustion chemistry.« less
A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics
Atef, Nour; Kukkadapu, Goutham; Mohamed, Samah Y.; ...
2017-02-05
Iso-Octane (2,2,4-trimethylpentane) is a primary reference fuel and an important component of gasoline fuels. Furthermore, it is a key component used in surrogates to study the ignition and burning characteristics of gasoline fuels. This paper presents an updated chemical kinetic model for iso-octane combustion. Specifically, the thermodynamic data and reaction kinetics of iso-octane have been re-assessed based on new thermodynamic group values and recently evaluated rate coefficients from the literature. The adopted rate coefficients were either experimentally measured or determined by analogy to theoretically calculated values. New alternative isomerization pathways for peroxy-alkyl hydroperoxide (more » $$\\dot{O}$$OQOOH) radicals were added to the reaction mechanism. The updated kinetic model was compared against new ignition delay data measured in rapid compression machines (RCM) and a high-pressure shock tube. Our experiments were conducted at pressures of 20 and 40 atm, at equivalence ratios of 0.4 and 1.0, and at temperatures in the range of 632–1060 K. The updated model was further compared against shock tube ignition delay times, jet-stirred reactor oxidation speciation data, premixed laminar flame speeds, counterflow diffusion flame ignition, and shock tube pyrolysis speciation data available in the literature. Finally, the updated model was used to investigate the importance of alternative isomerization pathways in the low temperature oxidation of highly branched alkanes. When compared to available models in the literature, the present model represents the current state-of-the-art in fundamental thermochemistry and reaction kinetics of iso-octane; and thus provides the best prediction of wide ranging experimental data and fundamental insights into iso-octane combustion chemistry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feltus, M.A.; Knerr, R.; Shoop, U.
1993-01-01
RETRAN-03 studies were performed for the boiling water reactor (BWR) turbine trip without bypass (TTWOB) event to investigate how the non-neutron-absorbing material on control rod tips affect scram delay timing and reactivity feedback. Scram delay, Doppler temperature, and moderator void (density) feedback were varied to assess their relative impact on kinetics behavior. Although a generic point-kinetics RETRAN-03 TTWOB model 2 was employed, actual plant information was used to develop the basic and parametric cases.
Numerical modelling in biosciences using delay differential equations
NASA Astrophysics Data System (ADS)
Bocharov, Gennadii A.; Rihan, Fathalla A.
2000-12-01
Our principal purposes here are (i) to consider, from the perspective of applied mathematics, models of phenomena in the biosciences that are based on delay differential equations and for which numerical approaches are a major tool in understanding their dynamics, (ii) to review the application of numerical techniques to investigate these models. We show that there are prima facie reasons for using such models: (i) they have a richer mathematical framework (compared with ordinary differential equations) for the analysis of biosystem dynamics, (ii) they display better consistency with the nature of certain biological processes and predictive results. We analyze both the qualitative and quantitative role that delays play in basic time-lag models proposed in population dynamics, epidemiology, physiology, immunology, neural networks and cell kinetics. We then indicate suitable computational techniques for the numerical treatment of mathematical problems emerging in the biosciences, comparing them with those implemented by the bio-modellers.
Modeling the Kinetics of Root Gravireaction
NASA Astrophysics Data System (ADS)
Kondrachuk, Alexander V.; Starkov, Vyacheslav N.
2011-02-01
The known "sun-flower equation" (SFE), which was originally proposed to model root circumnutating, was used to describe the simplest tip root graviresponse. Two forms of the SFE (integro-differential and differential-delayed) were solved, analyzed and compared with each other. The numerical solutions of these equations were found to be matching with arbitrary accuracy. The analysis of the solutions focused on time-lag effects on the kinetics of tip root bending. The results of the modeling are in good correlation with an experiment at the initial stages of root tips graviresponse. Further development of the model calls for its systematic comparison with some specially designed experiments, which would include measuring the kinetics of root tip bending before gravistimulation over the period of time longer than the time lag.
Eglin, R P; Gugerli, P; Wildy, P
1980-07-01
The delay in the replication of herpes simplex virus surviving u.v. irradiation occurs after the uncoating of virus, as judged by sensitivity to DNase. It occurs before translation, judged by the kinetics of appearance of various virus-specific proteins, and before transcription, judged by the detection of virus-specific RNA by in situ hybridization. Since the delays in both transcription and translation are reversed by photoreactivation, the simplest hypothesis is that pyrimidine dimers directly obstruct transcription;unless these are broken by photoreactivating enzymes, there will be transcriptional delay until reactivating processes have repaired the lesion. The u.v. sensitivities of the abilities to induce various enzymes (thymidine kinase, DNase and DNA polymerase) were only about four times less than that of infectivity. The The ability to induce the three enzymes was three times less sensitive than that of the structural antigen (Band II).
Bernard, Olivier; Alata, Olivier; Francaux, Marc
2006-03-01
Modeling in the time domain, the non-steady-state O2 uptake on-kinetics of high-intensity exercises with empirical models is commonly performed with gradient-descent-based methods. However, these procedures may impair the confidence of the parameter estimation when the modeling functions are not continuously differentiable and when the estimation corresponds to an ill-posed problem. To cope with these problems, an implementation of simulated annealing (SA) methods was compared with the GRG2 algorithm (a gradient-descent method known for its robustness). Forty simulated Vo2 on-responses were generated to mimic the real time course for transitions from light- to high-intensity exercises, with a signal-to-noise ratio equal to 20 dB. They were modeled twice with a discontinuous double-exponential function using both estimation methods. GRG2 significantly biased two estimated kinetic parameters of the first exponential (the time delay td1 and the time constant tau1) and impaired the precision (i.e., standard deviation) of the baseline A0, td1, and tau1 compared with SA. SA significantly improved the precision of the three parameters of the second exponential (the asymptotic increment A2, the time delay td2, and the time constant tau2). Nevertheless, td2 was significantly biased by both procedures, and the large confidence intervals of the whole second component parameters limit their interpretation. To compare both algorithms on experimental data, 26 subjects each performed two transitions from 80 W to 80% maximal O2 uptake on a cycle ergometer and O2 uptake was measured breath by breath. More than 88% of the kinetic parameter estimations done with the SA algorithm produced the lowest residual sum of squares between the experimental data points and the model. Repeatability coefficients were better with GRG2 for A1 although better with SA for A2 and tau2. Our results demonstrate that the implementation of SA improves significantly the estimation of most of these kinetic parameters, but a large inaccuracy remains in estimating the parameter values of the second exponential.
MRS evidence of adequate O2 supply in human skeletal muscle at the onset of exercise
Richardson, Russell S.; Wary, Claire; Wray, D. Walter; Hoff, Jan; Rossiter, Harry; Layec, Gwenael; Carlier, Pierre G.
2015-01-01
Purpose At exercise onset, intramuscular oxidative energy production responds relatively slowly in comparison to the change in ATP demand. To determine if the slow kinetics of oxidative ATP production is due to inadequate O2 supply or metabolic inertia we studied the kinetics of intramyocellular deoxygenation (deoxy-myoglobin, Mb) and metabolism (phosphocreatine, PCr), using proton (1H) and phosphorus (31P) magnetic resonance spectroscopy (MRS) in 6 healthy subjects (33 ± 5 yrs). Methods Specifically, utilizing dynamic plantar flexion exercise, rest to exercise and recovery was assessed at both 60% of maximum work rate (WRmax) (moderate intensity) and 80% of WRmax (heavy intensity). Results At exercise onset [PCr] fell without delay and with a similar time constant (τ) at both exercise intensities (~33 s). In contrast, the increase in deoxy-Mb was delayed at exercise onset by 5–7 s, after which it increased with kinetics (moderate τ = 37 ± 9 s, and heavy τ = 29 ± 6 s) that were not different from τPCr (p > 0.05). At cessation, deoxy-Mb recovered without a time delay and more rapidly (τ ~20 s) than PCr (τ ~33 s) (p < 0.05). Conclusion using a unique combination of in vivo MRS techniques with high time-resolution, this study revealed a delay in intramuscular de-oxygenation at the onset of exercise, and rapid re-oxygenation kinetics upon cessation. Together these data imply that intramuscular substrate-enzyme interactions, and not O2 availability, determine the exercise onset kinetics of oxidative metabolism in healthy human skeletal muscle. PMID:25830362
Comparing plant and fungal gravitropism using imitational models based on reiterative computation
NASA Astrophysics Data System (ADS)
Moore, David; Stočkus, Alvidas
Mathematical models which imitate plant gravitropic responses were used to compare plant and fungal gravitropism with kinetic data from the agarics Coprinus cinereus and Flammulina velutipes. Similarities were: bending depends on differential growth; growth of the organ is most intensive just behind the apex; gravitropisms exhibit a substantial time delay. Differences were: the agaric stem apex always returns to the vertical (some plant organs show stable plagiogravitropic growth); curvature compensation occurred in C. cinereus; C. cinereus stems rarely overshot or oscillated around the vertical although data for F. velutipes showed a single overshoot and oscillation. The work focused attention on the need for data on detection-level thresholds, angle-response and acceleration-response relationships in fungi, and the need for detailed observations of gravitropism kinetics in a larger number and wider range of fungi.
Microstructure development in Kolmogorov, Johnson-Mehl, and Avrami nucleation and growth kinetics
NASA Astrophysics Data System (ADS)
Pineda, Eloi; Crespo, Daniel
1999-08-01
A statistical model with the ability to evaluate the microstructure developed in nucleation and growth kinetics is built in the framework of the Kolmogorov, Johnson-Mehl, and Avrami theory. A populational approach is used to compute the observed grain-size distribution. The impingement process which delays grain growth is analyzed, and the effective growth rate of each population is estimated considering the previous grain history. The proposed model is integrated for a wide range of nucleation and growth protocols, including constant nucleation, pre-existing nuclei, and intermittent nucleation with interface or diffusion-controlled grain growth. The results are compared with Monte Carlo simulations, giving quantitative agreement even in cases where previous models fail.
Comparative study on cytogenetic damage induced by homo-aza-steroidal esters in human lymphocytes.
Mourelatos, D; Papageorgiou, A; Boutis, L; Catsoulacos, P
1995-02-01
The effect of P[N,N-bis(2-chloroethyl)amino]phenylacetate esters of 3 beta-hydroxy-N-methyl-17 alpha-aza-D-homo-5 alpha-androstan-17-one (compound 3) and 3 beta-hydroxy-17 alpha-aza-D-homo-5 alpha-androstane (compound 2) on sister-chromatid exchange (SCE) frequencies and on human lymphocytes proliferation kinetics was studied. The results are compared with those of the P[N,N-bis(2-chloroethyl)amino]phenylacetate esters of 3 beta-hydroxy-17 alpha-aza-D-homo-5 alpha-androstan-17-one (compound 1). All compounds were found to be active in inducing markedly increased SCE rates and cell division delays. A correlation between potency for SCE induction, effectiveness in cell division delay and previously established antitumour activity of these compounds was observed.
NASA Technical Reports Server (NTRS)
Brabbs, Theodore A.; Robertson, Thomas F.
1987-01-01
Ignition delay times for stoichiometric hydrogen-oxygen in argon with and without carbon dioxide were measured behind reflected shock waves. A 20-reaction kinetic mechanism models the measured hydrogen-oxygen delay times over the temperature range 950 to 1300 K. The chaperon efficiency for carbon dioxide determined for the hydrogen-oxygen carbon dioxide mixture was 7.0. This value is in agreement with literature values but much less than a recent value obtained from flow tube experiments. Delay times measured behind a reflected shock wave were about 20% longer than those measured behind incident shock waves. The kinetic mechanism successfully modeled the high-pressure data of Skinner and the hydrogen-air data of Stack. It is suggested that the lowest temperature points for the hydrogen-air data of Slack are unreliable and that the 0.27-atm data may illustrate a case where vibrational relaxation of nitrogen is important. The reaction pathway HO2 yields H2O2 yields OH yields H was required to model the high-pressure data of Skinner. The successful modeling of the stoichiometric hydrogen-air data demonstrates the appropriateness of deriving kinetic models from data for gas mixtures highly diluted with argon. The technique of reducing a detailed kinetic mechanism to only the important reactions for a limited range of experimental data may render the mechanism useless for other test conditions.
Real-time inverse kinematics and inverse dynamics for lower limb applications using OpenSim
Modenese, L.; Lloyd, D.G.
2017-01-01
Real-time estimation of joint angles and moments can be used for rapid evaluation in clinical, sport, and rehabilitation contexts. However, real-time calculation of kinematics and kinetics is currently based on approximate solutions or generic anatomical models. We present a real-time system based on OpenSim solving inverse kinematics and dynamics without simplifications at 2000 frame per seconds with less than 31.5ms of delay. We describe the software architecture, sensitivity analyses to minimise delays and errors, and compare offline and real-time results. This system has the potential to strongly impact current rehabilitation practices enabling the use of personalised musculoskeletal models in real-time. PMID:27723992
Real-time inverse kinematics and inverse dynamics for lower limb applications using OpenSim.
Pizzolato, C; Reggiani, M; Modenese, L; Lloyd, D G
2017-03-01
Real-time estimation of joint angles and moments can be used for rapid evaluation in clinical, sport, and rehabilitation contexts. However, real-time calculation of kinematics and kinetics is currently based on approximate solutions or generic anatomical models. We present a real-time system based on OpenSim solving inverse kinematics and dynamics without simplifications at 2000 frame per seconds with less than 31.5 ms of delay. We describe the software architecture, sensitivity analyses to minimise delays and errors, and compare offline and real-time results. This system has the potential to strongly impact current rehabilitation practices enabling the use of personalised musculoskeletal models in real-time.
Functional significance of periostin in excisional skin repair: is the devil in the detail?
Elliott, Christopher G; Kim, Shawna S; Hamilton, Douglas W
2012-01-01
In the past year, three papers have been published exploring the role of the matricellular protein periostin in excisional skin repair. These papers all show a delay in wound closure and the kinetics of this delay are strikingly similar across the three reports. The similarities between these papers end, however, when each investigates the mechanism through which periostin influences skin repair. Three proposed mechanisms have been identified: (1) myofibroblast differentiation, (2) keratinocyte proliferation and (3) fibroblast proliferation and migration. The aim of this commentary is to compare and contrast the three studies performed to date in an attempt to decipher the role of periostin in the repair of full-thickness skin wounds.
Lashkari, A; Khalafi, H; Kazeminejad, H
2013-05-01
In this work, kinetic parameters of Tehran research reactor (TRR) mixed cores have been calculated. The mixed core configurations are made by replacement of the low enriched uranium control fuel elements with highly enriched uranium control fuel elements in the reference core. The MTR_PC package, a nuclear reactor analysis tool, is used to perform the analysis. Simulations were carried out to compute effective delayed neutron fraction and prompt neutron lifetime. Calculation of kinetic parameters is necessary for reactivity and power excursion transient analysis. The results of this research show that effective delayed neutron fraction decreases and prompt neutron lifetime increases with the fuels burn-up. Also, by increasing the number of highly enriched uranium control fuel elements in the reference core, the prompt neutron lifetime increases, but effective delayed neutron fraction does not show any considerable change.
Effective delayed neutron fraction and prompt neutron lifetime of Tehran research reactor mixed-core
Lashkari, A.; Khalafi, H.; Kazeminejad, H.
2013-01-01
In this work, kinetic parameters of Tehran research reactor (TRR) mixed cores have been calculated. The mixed core configurations are made by replacement of the low enriched uranium control fuel elements with highly enriched uranium control fuel elements in the reference core. The MTR_PC package, a nuclear reactor analysis tool, is used to perform the analysis. Simulations were carried out to compute effective delayed neutron fraction and prompt neutron lifetime. Calculation of kinetic parameters is necessary for reactivity and power excursion transient analysis. The results of this research show that effective delayed neutron fraction decreases and prompt neutron lifetime increases with the fuels burn-up. Also, by increasing the number of highly enriched uranium control fuel elements in the reference core, the prompt neutron lifetime increases, but effective delayed neutron fraction does not show any considerable change. PMID:24976672
The main objective of this paper is to use Bayesian methods to estimate the kinetic parameters for the inactivation kinetics of Cryptosporidium parvum oocysts with chlorine dioxide or ozone which are characterized by the delayed Chick-Watson model, i.e., a lag phase or shoulder f...
Nuclear Engineering Computer Modules: Reactor Dynamics, RD-1 and RD-2.
ERIC Educational Resources Information Center
Onega, Ronald J.
The objective of the Reactor Dynamics Module, RD-1, is to obtain the kinetics equation without feedback and solve the kinetics equations numerically for one to six delayed neutron groups for time varying reactivity insertions. The computer code FUMOKI (Fundamental Mode Kinetics) will calculate the power as a function of time for either uranium or…
Bryant, Peter E; Mozdarani, Hossein
2007-09-01
To study the possible influence of cell-cycle delay on cells reaching mitosis during conventional radiation-induced chromatid break experiments using colcemid as a blocking agent, we have compared the chromatid break kinetics following a single dose of gamma rays (0.75 Gy) in metaphase CHO cells using calyculin-induced premature chromosome condensation (PCC), with those using colcemid block. Calyculin-induced PCC causes very rapid condensation of G2 cell chromosomes without the need for a cell to progress to mitosis, hence eliminating any effect of cell-cycle checkpoint on chromatid break frequency. We found that the kinetics of the exponential first-order decrease in chromatid breaks with time after irradiation was similar (not significantly different) between the two methods of chromosome condensation. However, use of the calyculin-PCC technique resulted in a slightly increased rate of disappearance of chromatid breaks and thus higher frequencies of breaks at 1.5 and 2.5 h following irradiation. We also report on the effect of the nucleoside analogue ara A on chromatid break kinetics using the two chromosome condensation techniques. Ara A treatment of cells abrogated the decrease in chromatid breaks with time, both using the calyculin-PCC and colcemid methods. We conclude that cell-cycle delay may be a factor determining the absolute frequency of chromatid breaks at various times following irradiation of cells in G2 phase but that the first-order disappearance of chromatid breaks with time and its abrogation by ara A are not significantly influenced by the G2 checkpoint.
Multiple lesion track structure model
NASA Technical Reports Server (NTRS)
Wilson, John W.; Cucinotta, Francis A.; Shinn, Judy L.
1992-01-01
A multilesion cell kinetic model is derived, and radiation kinetic coefficients are related to the Katz track structure model. The repair-related coefficients are determined from the delayed plating experiments of Yang et al. for the C3H10T1/2 cell system. The model agrees well with the x ray and heavy ion experiments of Yang et al. for the immediate plating, delaying plating, and fractionated exposure protocols employed by Yang. A study is made of the effects of target fragments in energetic proton exposures and of the repair-deficient target-fragment-induced lesions.
Kinetics of salivary pH after acidic beverage intake by patients undergoing orthodontic treatment.
Turssi, Cecilia P; Silva, Carolina S; Bridi, Enrico C; Amaral, Flavia Lb; Franca, Fabiana Mg; Basting, Roberta T
2015-01-01
The saliva of patients undergoing orthodontic treatment with fixed appliances can potentially present a delay in the diluting, clearing, and buffering of dietary acids due to an increased number of retention areas. The aim of this clinical trial was to compare salivary pH kinetics of patients with and without orthodontic treatment, following the intake of an acidic beverage. Twenty participants undergoing orthodontic treatment and 20 control counterparts had their saliva assessed for flow rate, pH, and buffering capacity. There was no significant difference between salivary parameters in participants with or without an orthodontic appliance. Salivary pH recovery following acidic beverage intake was slower in the orthodontic subjects compared to controls. Patients with fixed orthodontic appliances, therefore, seem to be at higher risk of dental erosion, suggesting that dietary advice and preventive care need to be implemented during orthodontic treatment.
Effect of ketamine, pentobarbital, and morphine on Tc-99m-DISIDA hepatobiliary kinetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durakovic, A.; Dubois, A.
1985-05-01
The purpose of this study was to evaluate hapatobiliary kinetics of Tc-99m-DISIDA in dogs after administration of anesthetic sedative or narcotic agents. Four groups of six male Beagle dogs were studied as a non-treated control group and after parenteral administration of ketamine (30 mg/kg IM), pentobarbital (25 mg/kg IV) or morphine (1 mg/kg IV). Each animal was injected with 4 mCi Tc-99m-DISIDA and hepatobiliary scintigraphic studies were obtained using a gamma camera with parallel hole multipurpose collimator and an A/sup 3/ MDS computer. The authors determined; peak activity of Tc-99m-DISIDA in the liver, visualization and peak activity of gallbladder, andmore » intestinal visualization of Tc-99m-DISIDA. Total bilirubin, LDH, SGOT and SGPT were not modified significantly after any drug compared to control. The results showed that two commonly used anesthetics and sedatives (ketamine and pentobarbital) have dramatic and opposite effects on extrahepatic biliary kinetics. Furthermore, ketamine, but not pentobarbital, significantly accelerates intrahepatic biliary kinetics. Finally, as expected, morphine delayed extrahepatic biliary kinetics. Thus, studies of biliary kinetics should be interpreted with caution when measurements are made after administration of anesthetic, sedative or narcotic agents.« less
The effects of intensity on V̇O2 kinetics during incremental free swimming.
de Jesus, Kelly; Sousa, Ana; de Jesus, Karla; Ribeiro, João; Machado, Leandro; Rodríguez, Ferran; Keskinen, Kari; Vilas-Boas, João Paulo; Fernandes, Ricardo J
2015-09-01
Swimming and training are carried out with wide variability in distances and intensities. However, oxygen uptake kinetics for the intensities seen in swimming has not been reported. The purpose of this study was to assess and compare the oxygen uptake kinetics throughout low-moderate to severe intensities during incremental swimming exercise. We hypothesized that the oxygen uptake kinetic parameters would be affected by swimming intensity. Twenty male trained swimmers completed an incremental protocol of seven 200-m crawl swims to exhaustion (0.05 m·s(-1) increments and 30-s intervals). Oxygen uptake was continuously measured by a portable gas analyzer connected to a respiratory snorkel and valve system. Oxygen uptake kinetics was assessed using a double exponential regression model that yielded both fast and slow components of the response of oxygen uptake to exercise. From low-moderate to severe swimming intensities changes occurred for the first and second oxygen uptake amplitudes (P ≤ 0.04), time constants (P = 0.01), and time delays (P ≤ 0.02). At the heavy and severe intensities, a notable oxygen uptake slow component (>255 mL·min(-1)) occurred in all swimmers. Oxygen uptake kinetics whilst swimming at different intensities offers relevant information regarding cardiorespiratory and metabolic stress that might be useful for appropriate performance diagnosis and training prescription.
Warren, Ted J.; Van Hook, Matthew J.; Tranchina, Daniel
2016-01-01
Inhibitory feedback from horizontal cells (HCs) to cones generates center-surround receptive fields and color opponency in the retina. Mechanisms of HC feedback remain unsettled, but one hypothesis proposes that an ephaptic mechanism may alter the extracellular electrical field surrounding photoreceptor synaptic terminals, thereby altering Ca2+ channel activity and photoreceptor output. An ephaptic voltage change produced by current flowing through open channels in the HC membrane should occur with no delay. To test for this mechanism, we measured kinetics of inhibitory feedback currents in Ambystoma tigrinum cones and rods evoked by hyperpolarizing steps applied to synaptically coupled HCs. Hyperpolarizing HCs stimulated inward feedback currents in cones that averaged 8–9 pA and exhibited a biexponential time course with time constants averaging 14–17 ms and 120–220 ms. Measurement of feedback-current kinetics was limited by three factors: (1) HC voltage-clamp speed, (2) cone voltage-clamp speed, and (3) kinetics of Ca2+ channel activation or deactivation in the photoreceptor terminal. These factors totaled ∼4–5 ms in cones meaning that the true fast time constants for HC-to-cone feedback currents were 9–13 ms, slower than expected for ephaptic voltage changes. We also compared speed of feedback to feedforward glutamate release measured at the same cone/HC synapses and found a latency for feedback of 11–14 ms. Inhibitory feedback from HCs to rods was also significantly slower than either measurement kinetics or feedforward release. The finding that inhibitory feedback from HCs to photoreceptors involves a significant delay indicates that it is not due to previously proposed ephaptic mechanisms. SIGNIFICANCE STATEMENT Lateral inhibitory feedback from horizontal cells (HCs) to photoreceptors creates center-surround receptive fields and color-opponent interactions. Although underlying mechanisms remain unsettled, a longstanding hypothesis proposes that feedback is due to ephaptic voltage changes that regulate photoreceptor synaptic output by altering Ca2+ channel activity. Ephaptic processes should occur with no delay. We measured kinetics of inhibitory feedback currents evoked in photoreceptors with voltage steps applied to synaptically coupled HCs and found that feedback is too slow to be explained by ephaptic voltage changes generated by current flowing through continuously open channels in HC membranes. By eliminating the proposed ephaptic mechanism for HC feedback regulation of photoreceptor Ca2+ channels, our data support earlier proposals that synaptic cleft pH changes are more likely responsible. PMID:27683904
Lialiaris, T; Mourelatos, D; Boutis, L; Papageorgiou, A; Christianopoulou, M; Papageorgiou, V; Dozi-Vassiliades, J
1989-10-01
The effect of diplatinum complexes of the binucleating ligands of naphthazarine and squaric acid on Sister Chromatid Exchange (SCE) rates and human lymphocyte proliferation kinetics was studied. Squarodicisplatinum complex I, naphthazarindicisplatinum and squarodicisplatinum complex II induce cytotoxic effects as can be deduced from the resulted induction of SCEs and the produced cell division delays. Squarodicisplatinum complex I was found to be on a molar basis the most effective in causing markedly increased SCE rates and cell division delays. Cis-diaminodichloride platinum was found to be next in order of effectiveness with naphthazarindicisplatinum and squarodicisplatinum complex II following. Naphthazarine and SQA were found to be ineffective on induction of SCEs.
The Effect of Spatial Heterogeneities on Nucleation Kinetics in Amorphous Aluminum Alloys
NASA Astrophysics Data System (ADS)
Shen, Ye
The mechanical property of the Al based metallic glass could be enhanced significantly by introducing the high number density of Al-fcc nanocrystals (1021 ˜1023 m-3) to the amorphous matrix through annealing treatments, which motivates the study of the nucleation kinetics for the microstructure control. With the presence of a high number density (1025 m-3) of aluminum-like medium range order (MRO), the Al-Y-Fe metallic glass is considered to be spatially heterogeneous. Combining the classical nucleation theory with the structural configuration, a MRO seeded nucleation model has been proposed and yields theoretical steady state nucleation rates consistent with the experimental results. In addition, this model satisfies all the thermodynamic and kinetic constraints to be reasonable. Compared with the Al-Y-Fe system, the primary crystallization onset temperature decreases significantly and the transient delay time (tau) is shorter in the Al-Y-Fe-Pb(In) systems because the insoluble Pb and In nanoparticles in the amorphous matrix served as extrinsic spatial heterogeneity to provide the nucleation sites for Al-fcc precipitation and the high-resolution transmission electron microscopy (HRTEM) images of the Pb-Al interface revealed a good wetting behavior between the Al and Pb nanoparticles. The study of the transient delay time (tau) could provide insight on the transport behavior during the nucleation and a more convenient approach to evaluate the delay time has been developed by measuring the Al-Y-Fe amorphous alloy glass transition temperature (Tg) shift with the increasing annealing time (tannealing) in FlashDSC. The break point in the Tg vs. log(tannealing) plot has been identified to correspond to the delay time by the TEM characterization. FlashDSC tests with different heating rates and different compositions (Al-Y-Fe-Pb and Zn-Mg-Ca-Yb amorphous alloys) further confirmed the break point and delay time relationship. The amorphous matrix composition and the enthalpy analysis indicates that there are different mechanisms leading to the Tg shift before and after the break point. Before the break point, Tg shifts solely due to the increased glass stability through a relaxation process. However, after the break point, Tg shifts to higher temperatures because of both the relaxation and the composition change effects.
Greinert, R; Detzler, E; Volkmer, B; Harder, D
1995-11-01
Human lymphocytes irradiated with graded doses of up to 5 Gy of 150 kV X rays were fused with mitotic CHO cells after delay times ranging from 0 to 14 h after irradiation. The yields of dicentrics seen under PCC conditions, using C-banding for centromere detection, and of excess acentric fragments observed in the PCC experiment were determined by image analysis. At 4 Gy the time course of the yield of dicentrics shows an early plateau for delay times up to 2 h, then an S-shaped rise and a final plateau which is reached after a delay time of about 8 to 10 h. Whereas the dose-yield curve measured at zero delay time is strictly linear, the shape of the curve obtained for 8 h delay time is linear-quadratic. The linear yield component, alpha D, is formed entirely in the fast process manifested in the early plateau, while component beta D2 is developed slowly in the subsequent hours. Analysis of the kinetics of the rise of the S-shaped curve for yield as a function of time leads to the postulate of an "intermediate product" of pairwise DNA lesion interaction, still fragile when subjected to the stress of PCC, but gradually processed into a stable dicentric chromosome. It is concluded that the observed difference in the kinetics of the alpha and beta components explains a number of earlier results, especially the disappearance of the beta component at high LET, and opens possibilities for chemical and physical modification of the beta component during the extended formation process after irradiation observed here.
Hummel, Scott L; Herald, John; Alpert, Craig; Gretebeck, Kimberlee A; Champoux, Wendy S; Dengel, Donald R; Vaitkevicius, Peter V; Alexander, Neil B
2016-01-01
Background Submaximal oxygen uptake measures are more feasible and may better predict clinical cardiac outcomes than maximal tests in older adults with heart failure (HF). We examined relationships between maximal oxygen uptake, submaximal oxygen kinetics, functional mobility, and physical activity in older adults with HF and reduced ejection fraction. Methods Older adults with HF and reduced ejection fraction (n = 25, age 75 ± 7 years) were compared to 25 healthy age- and gender-matched controls. Assessments included a maximal treadmill test for peak oxygen uptake (VO2peak), oxygen uptake kinetics at onset of and on recovery from a submaximal treadmill test, functional mobility testing [Get Up and Go (GUG), Comfortable Gait Speed (CGS), Unipedal Stance (US)], and self-reported physical activity (PA). Results Compared to controls, HF had worse performance on GUG, CGS, and US, greater delays in submaximal oxygen uptake kinetics, and lower PA. In controls, VO2peak was more strongly associated with functional mobility and PA than submaximal oxygen uptake kinetics. In HF patients, submaximal oxygen uptake kinetics were similarly associated with GUG and CGS as VO2peak, but weakly associated with PA. Conclusions Based on their mobility performance, older HF patients with reduced ejection fraction are at risk for adverse functional outcomes. In this population, submaximal oxygen uptake measures may be equivalent to VO2 peak in predicting functional mobility, and in addition to being more feasible, may provide better insight into how aerobic function relates to mobility in older adults with HF. PMID:27594875
Hummel, Scott L; Herald, John; Alpert, Craig; Gretebeck, Kimberlee A; Champoux, Wendy S; Dengel, Donald R; Vaitkevicius, Peter V; Alexander, Neil B
2016-07-01
Submaximal oxygen uptake measures are more feasible and may better predict clinical cardiac outcomes than maximal tests in older adults with heart failure (HF). We examined relationships between maximal oxygen uptake, submaximal oxygen kinetics, functional mobility, and physical activity in older adults with HF and reduced ejection fraction. Older adults with HF and reduced ejection fraction (n = 25, age 75 ± 7 years) were compared to 25 healthy age- and gender-matched controls. Assessments included a maximal treadmill test for peak oxygen uptake (VO2peak), oxygen uptake kinetics at onset of and on recovery from a submaximal treadmill test, functional mobility testing [Get Up and Go (GUG), Comfortable Gait Speed (CGS), Unipedal Stance (US)], and self-reported physical activity (PA). Compared to controls, HF had worse performance on GUG, CGS, and US, greater delays in submaximal oxygen uptake kinetics, and lower PA. In controls, VO2peak was more strongly associated with functional mobility and PA than submaximal oxygen uptake kinetics. In HF patients, submaximal oxygen uptake kinetics were similarly associated with GUG and CGS as VO2peak, but weakly associated with PA. Based on their mobility performance, older HF patients with reduced ejection fraction are at risk for adverse functional outcomes. In this population, submaximal oxygen uptake measures may be equivalent to VO2 peak in predicting functional mobility, and in addition to being more feasible, may provide better insight into how aerobic function relates to mobility in older adults with HF.
Shcherbinin, Sergey; Schwarz, Adam J; Joshi, Abhinay; Navitsky, Michael; Flitter, Matthew; Shankle, William R; Devous, Michael D; Mintun, Mark A
2016-10-01
We report kinetic modeling results of dynamic acquisition data from 0 to 100 min after injection with the tau PET tracer 18 F-AV-1451 in 19 subjects. Subjects were clinically diagnosed as 4 young cognitively normal, 5 old cognitively normal, 5 mild cognitive impairment, and 5 Alzheimer disease (AD). Kinetic modeling was performed using Logan graphical analysis with the cerebellum crus as a reference region. Voxelwise binding potential ([Formula: see text]) and SUV ratio ([Formula: see text]) images were compared. In AD subjects, slower and spatially nonuniform clearance from cortical regions was observed as compared with the controls, which led to focal uptake and elevated retention in the imaging data from 80 to 100 min after injection. BP from the dynamic data from 0 to 100 min correlated strongly (R 2 > 0.86) with corresponding regional [Formula: see text] values. In the putamen, the observed kinetics (positive [Formula: see text] at the tracer delivery stage and plateauing time-SUVR curves for all diagnostic categories) may suggest either additional off-target binding or a second binding site with different kinetics. The kinetics of the 18 F-AV-1451 tracer in cortical areas, as examined in this small group of subjects, differed by diagnostic stage. A delayed 80- to 100-min scan provided a reasonable substitute for a dynamic 0- to 100-min acquisition for cortical regions although other windows (e.g., 75-105 min) may be useful to evaluate. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Keromnes, Alan; Metcalfe, Wayne K.; Heufer, Karl A.; ...
2013-03-12
The oxidation of syngas mixtures was investigated experimentally and simulated with an updated chemical kinetic model. Ignition delay times for H 2/CO/O 2/N 2/Ar mixtures have been measured using two rapid compression machines and shock tubes at pressures from 1 to 70 bar, over a temperature range of 914–2220 K and at equivalence ratios from 0.1 to 4.0. Results show a strong dependence of ignition times on temperature and pressure at the end of the compression; ignition delays decrease with increasing temperature, pressure, and equivalence ratio. The reactivity of the syngas mixtures was found to be governed by hydrogen chemistrymore » for CO concentrations lower than 50% in the fuel mixture. For higher CO concentrations, an inhibiting effect of CO was observed. Flame speeds were measured in helium for syngas mixtures with a high CO content and at elevated pressures of 5 and 10 atm using the spherically expanding flame method. A detailed chemical kinetic mechanism for hydrogen and H 2/CO (syngas) mixtures has been updated, rate constants have been adjusted to reflect new experimental information obtained at high pressures and new rate constant values recently published in the literature. Experimental results for ignition delay times and flame speeds have been compared with predictions using our newly revised chemical kinetic mechanism, and good agreement was observed. In the mechanism validation, particular emphasis is placed on predicting experimental data at high pressures (up to 70 bar) and intermediate- to high-temperature conditions, particularly important for applications in internal combustion engines and gas turbines. The reaction sequence H 2 + HO˙ 2 ↔ H˙+H 2O 2 followed by H 2O 2(+M) ↔ O˙H+O˙H(+M) was found to play a key role in hydrogen ignition under high-pressure and intermediate-temperature conditions. The rate constant for H 2+HO˙ 2 showed strong sensitivity to high-pressure ignition times and has considerable uncertainty, based on literature values. As a result, a rate constant for this reaction is recommended based on available literature values and on our mechanism validation.« less
Kim, Joonyup; Wilson, Rebecca L; Case, J Brett; Binder, Brad M
2012-11-01
Time-lapse imaging of dark-grown Arabidopsis (Arabidopsis thaliana) hypocotyls has revealed new aspects about ethylene signaling. This study expands upon these results by examining ethylene growth response kinetics of seedlings of several plant species. Although the response kinetics varied between the eudicots studied, all had prolonged growth inhibition for as long as ethylene was present. In contrast, with continued application of ethylene, white millet (Panicum miliaceum) seedlings had a rapid and transient growth inhibition response, rice (Oryza sativa 'Nipponbare') seedlings had a slow onset of growth stimulation, and barley (Hordeum vulgare) had a transient growth inhibition response followed, after a delay, by a prolonged inhibition response. Growth stimulation in rice correlated with a decrease in the levels of rice ETHYLENE INSENSTIVE3-LIKE2 (OsEIL2) and an increase in rice F-BOX DOMAIN AND LRR CONTAINING PROTEIN7 transcripts. The gibberellin (GA) biosynthesis inhibitor paclobutrazol caused millet seedlings to have a prolonged growth inhibition response when ethylene was applied. A transient ethylene growth inhibition response has previously been reported for Arabidopsis ethylene insensitive3-1 (ein3-1) eil1-1 double mutants. Paclobutrazol caused these mutants to have a prolonged response to ethylene, whereas constitutive GA signaling in this background eliminated ethylene responses. Sensitivity to paclobutrazol inversely correlated with the levels of EIN3 in Arabidopsis. Wild-type Arabidopsis seedlings treated with paclobutrazol and mutants deficient in GA levels or signaling had a delayed growth recovery after ethylene removal. It is interesting to note that ethylene caused alterations in gene expression that are predicted to increase GA levels in the ein3-1 eil1-1 seedlings. These results indicate that ethylene affects GA levels leading to modulation of ethylene growth inhibition kinetics.
An experimental and modeling study of the autoignition of 3-methylheptane
Wang, Weijing; Li, Zhenhua; Oehlschlaeger, Matthew A.; ...
2013-01-01
An experimental and kinetic modeling study of the autoignition of 3-methylheptane, a compound representative of the high molecular weight lightly branched alkanes found in large quantities in conventional and synthetic aviation kerosene and diesel fuels, is reported. Shock tube and rapid compression machine ignition delay time measurements are reported over a wide range of conditions of relevance to combustion engine applications: temperatures from 678 to 1356 K; pressures of 6.5, 10, 20, and 50 atm; and equivalence ratios of 0.5, 1.0, and 2.0. The wide range of temperatures examined provides observation of autoignition in three reactivity regimes, including the negativemore » temperature coefficient (NTC) regime characteristic of paraffinic fuels. Comparisons made between the current ignition delay measurements for 3-methylheptane and previous results for n-octane and 2-methylheptane quantifies the influence of a single methyl substitution and its location on the reactivity of alkanes. It is found that the three C8 alkane isomers have indistinguishable high-temperature ignition delay but their ignition delay times deviate in the NTC and low-temperature regimes in correlation with their research octane numbers. The experimental results are compared with the predictions of a proposed kinetic model that includes both high- and low-temperature oxidation chemistry. The model mechanistically explains the differences in reactivity for n-octane, 2-methylheptane, and 3-methylheptane in the NTC through the influence of the methyl substitution on the rates of isomerization reactions in the low-temperature chain branching pathway, that ultimately leads to ketohydroperoxide species, and the competition between low-temperature chain branching and the formation of cyclic ethers, in a chain propagating pathway.« less
Sonvico, Fabio; Conti, Chiara; Colombo, Gaia; Buttini, Francesca; Colombo, Paolo; Bettini, Ruggero; Barchielli, Marco; Leoni, Barbara; Loprete, Luca; Rossi, Alessandra
2017-09-28
In this work, a fixed-dose combination of gabapentin and flurbiprofen formulated as multilayer tablets has been designed, developed and studied in vitro and in vivo. The aim was to construct a single dosage form of the two drugs, able to perform a therapeutic program involving three release kinetics and two delivery sites, i.e., immediate release of gabapentin, intra-gastric prolonged release of gabapentin and intestinal (delayed) release of flurbiprofen. An oblong three-layer tablet was manufactured having as top layer a floating hydrophilic polymeric matrix for gastric release of gabapentin, as middle layer a disintegrating formulation for immediate release of a gabapentin loading dose and as bottom layer, an uncoated hydrophilic polymeric matrix, swellable but insoluble in gastric fluids, for delayed and prolonged release of flurbiprofen in intestinal environment. The formulations were studied in vitro and in vivo in healthy volunteers. The in vitro release rate assessment confirmed the programmed delivery design. A significant higher bioavailability of gabapentin administered 30min after meal, compared to fasting conditions or to dose administration 10min before meal, argued in favor of the gastro-retention of gabapentin prolonged release layer. The two drugs were delivered at different anatomical sites, since the food presence prolonged the gastric absorption of gabapentin from the floating layer and delayed the flurbiprofen absorption. The attainment of a successful delayed release of flurbiprofen was realized by a matrix based on a polymers' combination. The combined use of three hydrophilic polymers with different pH sensitivity provided the dosage form layer containing flurbiprofen with gastro-resistant characteristics without the use of film coating. Copyright © 2017 Elsevier B.V. All rights reserved.
Scholz, Marek; Biehl, Anna-Louisa; Dědic, Roman; Hála, Jan
2015-04-01
The present work provides a proof-of-concept that the singlet oxygen-sensitized delayed fluorescence (SOSDF) can be detected from individual living mammalian cells in a time-resolved microscopy experiment. To this end, 3T3 mouse fibroblasts incubated with 100 μM TPPS4 or TMPyP were used and the microsecond kinetics of the delayed fluorescence (DF) were recorded. The analysis revealed that SOSDF is the major component of the overall DF signal. The microscopy approach enables precise control of experimental conditions - the DF kinetics are clearly influenced by the presence of the (1)O2 quencher (sodium azide), H2O/D2O exchange, and the oxygen concentration. Analysis of SOSDF kinetics, which was reconstructed as a difference DF kinetics between the unquenched and the NaN3-quenched samples, provides a cellular (1)O2 lifetime of τΔ = 1-2 μs and a TPPS4 triplet lifetime of τT = 22 ± 5 μs in agreement with previously published values. The short SOSDF acquisition times, typically in the range of tens of seconds, enable us to study the dynamic cellular processes. It is shown that SOSDF lifetimes increase during PDT-like treatment, which may provide valuable information about changes of the intracellular microenvironment. SOSDF is proposed and evaluated as an alternative tool for (1)O2 detection in biological systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imbert, Bruno; Lafosse, Fabien; Catoire, Laurent
2008-11-15
This article is part of the project to model the kinetics of high-temperature combustions, occurring behind shock waves and in detonation waves. The ''conventional'' semi-empirical correlations of ignition delays have been reformulated, by keeping the Arrhenius equation form. It is shown how a polynomial with 3{sup N} coefficients (where N element of is the number of adjustable kinetic parameters, likely to be simultaneously chosen among the temperature T, the pressure P, the inert fraction X{sub Ar}, and the equivalence ratio {phi}) can reproduce the delays predicted by the Curran et al. [H.J. Curran, P. Gaffuri, W.J. Pitz, C.K. Westbrook, Combust.more » Flame 129 (2002) 253-280] detailed mechanism (565 species and 2538 reactions), over a wide range of conditions (comparable with the validity domain). The deviations between the simulated times and their fits (typically 1%) are definitely lower than the uncertainties related to the mechanism (at least 25%). In addition, using this new formalism to evaluate these durations is about 10{sup 6} times faster than simulating them with SENKIN (CHEMKIN III package) and only 10 times slower than using the classical correlations. The adaptation of the traditional method for predicting delays is interesting for modeling, because those performances are difficult to obtain simultaneously with other reduction methods (either purely mathematical, chemical, or even mixed). After a physical and mathematical justification of the proposed formalism, some of its potentialities for n-heptane combustion are presented. In particular, the trends of simulated delays and activation energies are shown for {sub T} {sub element} {sub of} {sub [1500} {sub K,1900} {sub K},} {sub P} {sub element} {sub of} {sub [10kPa,1MPa]}, X{sub Ar} element of [0,0.7], and {phi} element of {sub [0.25,4.0]}. (author)« less
Multistage adsorption of diffusing macromolecules and viruses
NASA Astrophysics Data System (ADS)
Chou, Tom; D'Orsogna, Maria R.
2007-09-01
We derive the equations that describe adsorption of diffusing particles onto a surface followed by additional surface kinetic steps before being transported across the interface. Multistage surface kinetics occurs during membrane protein insertion, cell signaling, and the infection of cells by virus particles. For example, viral entry into healthy cells is possible only after a series of receptor and coreceptor binding events occurs at the cellular surface. We couple the diffusion of particles in the bulk phase with the multistage surface kinetics and derive an effective, integrodifferential boundary condition that contains a memory kernel embodying the delay induced by the surface reactions. This boundary condition takes the form of a singular perturbation problem in the limit where particle-surface interactions are short ranged. Moreover, depending on the surface kinetics, the delay kernel induces a nonmonotonic, transient replenishment of the bulk particle concentration near the interface. The approach generalizes that of Ward and Tordai [J. Chem. Phys. 14, 453 (1946)] and Diamant and Andelman [Colloids Surf. A 183-185, 259 (2001)] to include surface kinetics, giving rise to qualitatively new behaviors. Our analysis also suggests a simple scheme by which stochastic surface reactions may be coupled to deterministic bulk diffusion.
NASA Astrophysics Data System (ADS)
Zhao, Zhenwei
To help understand the fuel oxidation process in practical combustion environments, laminar flame speeds and high temperature chemical kinetic models were studied for several practical fuels and "surrogate" fuels, such as propane, dimethyl ether (DME), and primary reference fuel (PRF) mixtures, gasoline and n-decane. The PIV system developed for the present work is described. The general principles for PIV measurements are outlined and the specific considerations are also reported. Laminar flame speeds were determined for propane/air over a range of equivalence ratios at initial temperature of 298 K, 500 K and 650 K and atmospheric pressure. Several data sets for propane/air laminar flame speeds with N 2 dilution are also reported. These results are compared to the literature data collected at the same conditions. The propane flame speed is also numerically calculated with a detailed kinetic model and multi component diffusion, including Soret effects. This thesis also presents experimentally determined laminar flame speeds for primary reference fuel (PRF) mixtures of n-heptane/iso-octane and real gasoline fuel at different initial temperature and at atmospheric pressure. Nitrogen dilution effects on the laminar flame speed are also studied for selected equivalence ratios at the same conditions. A minimization of detailed kinetic model for PRF mixtures on laminar flame speed conditions was performed and the measured flame speeds were compared with numerical predictions using this model. The measured laminar flame speeds of n-decane/air mixtures at 500 K and at atmospheric pressure with and without dilution were determined. The measured flame speeds are significantly different that those predicted using existing published kinetic models, including a model validated previously against high temperature data from flow reactor, jet-stirred reactor, shock tube ignition delay, and burner stabilized flame experiments. A significant update of this model is described which continues to predict the earlier validation experiments as well as the newly acquired laminar flame speed data and other recently published shock tube ignition delay measurements. A high temperature decomposition and oxidation model based on a hierarchical nature of reacting systems to reflect the new development in the small molecule and radical kinetics and thermochemistry and to evaluate recent measurements of DME laminar flame speeds is developed. The, thermal decomposition of DME was studied theoretically by using the RRKM/master equation approach and the high temperature model was then compared with the literature experimental data. The new model predicts well high temperature flow reactor data, high temperature shock tube ignition delays, and the species profiles from the burner-stabilized flames. Predictions of laminar flame speed and jet-stirred reactor data also reasonably agree with the available experimental data. The remaining uncertainties that need to be addressed for further model improvement will also be discussed. This thesis also presents a novel temperature-dependent feature sensitivity analysis methodology for combustion modeling. The obtained information is demonstrated to be of critical relevance in optimizing complex reaction schemes against multiple experimental targets. Applications of the presented approach are not limited to sensitivities with respect to reaction rate coefficients; the method can also be used to investigate any temperature-dependent property of interest (such as binary diffusion coefficients). This application is also demonstrated in this thesis.
A New Cell-Free System to Study BRCA1 Function
2015-05-01
analyzed by denaturing polyacrylamide gel electrophoresis. UbVS treatment had no effect on the arrival of leading strands at the ICL (Figure 2G in [3...of leading strands to the -1 position, as well as formation of all downstream nascent strand products (Figure 2G in [3], compare lanes 7-11 with 13...17). Addition of free ubiquitin with UbVS restored Approach, Insertion, and Extension, albeit with delayed kinetics (Figure 2G in [3], lanes 19-23
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Kamal; Zhang, Yu; Sung, Chi -Jen
We study the influence of blending n-butanol on the ignition delay times of n-heptane and iso-octane, the primary reference fuels for gasoline. The ignition delay times are measured using a rapid compression machine, with an emphasis on the low-to-intermediate temperature conditions. The experiments are conducted at equivalence ratios of 0.4 and 1.0, for a compressed pressure of 20 bar, with the temperatures at the end of compression ranging from 613 K to 979 K. The effect of n-butanol addition on the development of the two-stage ignition characteristics for the two primary reference fuels is also examined. The experimental results aremore » compared to predictions obtained using a detailed chemical kinetic mechanism, which has been obtained by a systematic merger of previously reported base models for the combustion of the individual fuel constituents. In conclusion, a sensitivity analysis on the base, and the merged models, is also performed to understand the dependence of autoignition delay times on the model parameters.« less
Model predictions of higher-order normal alkane ignition from dilute shock-tube experiments
NASA Astrophysics Data System (ADS)
Rotavera, B.; Petersen, E. L.
2013-07-01
Shock-induced oxidation of two higher-order linear alkanes was measured using a heated shock tube facility. Experimental overlap in stoichiometric ignition delay times obtained under dilute (99 % Ar) conditions near atmospheric pressure was observed in the temperature-dependent ignition trends of n-nonane ( n-C9H20) and n-undecane ( n-C11H24). Despite the overlap, model predictions of ignition using two different detailed chemical kinetics mechanisms show discrepancies relative to both the measured data as well as to one another. The present study therefore focuses on the differences observed in the modeled, high-temperature ignition delay times of higher-order n-alkanes, which are generally regarded to have identical ignition behavior for carbon numbers above C7. Comparisons are drawn using experimental data from the present study and from recent work by the authors relative to two existing chemical kinetics mechanisms. Time histories from the shock-tube OH* measurements are also compared to the model predictions; a double-peaked structure observed in the data shows that the time response of the detector electronics is crucial for properly capturing the first, incipient peak near time zero. Calculations using the two mechanisms were carried out at the dilution level employed in the shock-tube experiments for lean {({φ} = 0.5)}, stoichiometric, and rich {({φ} = 2.0)} equivalence ratios, 1230-1620 K, and for both 1.5 and 10 atm. In general, the models show differing trends relative to both measured data and to one another, indicating that agreement among chemical kinetics models for higher-order n-alkanes is not consistent. For example, under certain conditions, one mechanism predicts the ignition delay times to be virtually identical between the n-nonane and n-undecane fuels (in fact, also for all alkanes between at least C8 and C12), which is in agreement with the experiment, while the other mechanism predicts the larger fuels to ignite progressively more slowly.
Verification of kinetic schemes of hydrogen ignition and combustion in air
NASA Astrophysics Data System (ADS)
Fedorov, A. V.; Fedorova, N. N.; Vankova, O. S.; Tropin, D. A.
2018-03-01
Three chemical kinetic models for hydrogen combustion in oxygen and three gas-dynamic models for reactive mixture flow behind the initiating SW front were analyzed. The calculated results were compared with experimental data on the dependences of the ignition delay on the temperature and the dilution of the mixture with argon or nitrogen. Based on detailed kinetic mechanisms of nonequilibrium chemical transformations, a mathematical technique for describing the ignition and combustion of hydrogen in air was developed using the ANSYS Fluent code. The problem of ignition of a hydrogen jet fed coaxially into supersonic flow was solved numerically. The calculations were carried out using the Favre-averaged Navier-Stokes equations for a multi-species gas taking into account chemical reactions combined with the k-ω SST turbulence model. The problem was solved in several steps. In the first step, verification of the calculated and experimental data for the three kinetic schemes was performed without considering the conicity of the flow. In the second step, parametric calculations were performed to determine the influence of the conicity of the flow on the mixing and ignition of hydrogen in air using a kinetic scheme consisting of 38 reactions. Three conical supersonic nozzles for a Mach number M = 2 with different expansion angles β = 4°, 4.5°, and 5° were considered.
Concina, Bruno; Baguenard, Bruno; Calvo, Florent; Bordas, Christian
2010-03-14
The delayed electron emission from small mass-selected anionic tungsten clusters W(n)(-) has been studied for sizes in the range 9 < or = n < or = 21. Kinetic energy spectra have been measured for delays of about 100 ns after laser excitation by a velocity-map imaging spectrometer. They are analyzed in the framework of microreversible statistical theories. The low-energy behavior shows some significant deviations with respect to the classical Langevin capture model, which we interpret as possibly due to the influence of quantum dynamical effects such as tunneling through the centrifugal barrier, rather than shape effects. The cluster temperature has been extracted from both the experimental kinetic energy spectrum and the absolute decay rate. Discrepancies between the two approaches suggest that the sticking probability can be as low as a few percent for the smallest clusters.
Predicted exhaust emissions from a methanol and jet fueled gas turbine combustor
NASA Technical Reports Server (NTRS)
Adelman, H. G.; Browning, L. H.; Pefley, R. K.
1975-01-01
A computer model of a gas turbine combustor has been used to predict the kinetic combustion and pollutant formation processes for methanol and simulated jet fuel. Use of the kinetic reaction mechanisms has also allowed a study of ignition delay and flammability limit of these two fuels. The NOX emissions for methanol were predicted to be from 69 to 92% lower than those for jet fuel at the same equivalence ratio which is in agreement with experimentally observed results. The high heat of vaporization of methanol lowers both the combustor inlet mixture temperatures and the final combustion temperatures. The lower combustion temperatures lead to low NOX emissions while the lower inlet mixture temperatures increase methanol's ignition delay. This increase in ignition delay dictates the lean flammability limit of methanol to be 0.8, while jet fuel is shown to combust at 0.4.
Ito, Hiroshi; Ikoma, Yoko; Seki, Chie; Kimura, Yasuyuki; Kawaguchi, Hiroshi; Takuwa, Hiroyuki; Ichise, Masanori; Suhara, Tetsuya; Kanno, Iwao
2017-05-01
Objectives In PET studies for neuroreceptors, tracer kinetics are described by the two-tissue compartment model (2-TCM), and binding parameters, including the total distribution volume (V T ), non-displaceable distribution volume (V ND ), and binding potential (BP ND ), can be determined from model parameters estimated by kinetic analysis. The stability of binding parameter estimates depends on the kinetic characteristics of radioligands. To describe these kinetic characteristics, we previously developed a two-phase graphic plot analysis in which V ND and V T can be estimated from the x-intercept of regression lines for early and delayed phases, respectively. In this study, we applied this graphic plot analysis to visual evaluation of the kinetic characteristics of radioligands for neuroreceptors, and investigated a relationship between the shape of these graphic plots and the stability of binding parameters estimated by the kinetic analysis with 2-TCM in simulated brain tissue time-activity curves (TACs) with various binding parameters. Methods 90-min TACs were generated with the arterial input function and assumed kinetic parameters according to 2-TCM. Graphic plot analysis was applied to these simulated TACs, and the curvature of the plot for each TAC was evaluated visually. TACs with several noise levels were also generated with various kinetic parameters, and the bias and variation of binding parameters estimated by kinetic analysis were calculated in each TAC. These bias and variation were compared with the shape of graphic plots. Results The graphic plots showed larger curvature for TACs with higher specific binding and slower dissociation of specific binding. The quartile deviations of V ND and BP ND determined by kinetic analysis were smaller for radioligands with slow dissociation. Conclusions The larger curvature of graphic plots for radioligands with slow dissociation might indicate a stable determination of V ND and BP ND by kinetic analysis. For investigation of the kinetics of radioligands, such kinetic characteristics should be considered.
Osecky, Eric M.; Bogin, Gregory E.; Villano, Stephanie M.; ...
2016-08-18
An ignition quality tester was used to characterize the autoignition delay times of iso-octane. The experimental data were characterized between temperatures of 653 and 996 K, pressures of 1.0 and 1.5 MPa, and global equivalence ratios of 0.7 and 1.05. A clear negative temperature coefficient behavior was seen at both pressures in the experimental data. These data were used to characterize the effectiveness of three modeling methods: a single-zone homogeneous batch reactor, a multizone engine model, and a three-dimensional computational fluid dynamics (CFD) model. A detailed 874 species iso-octane ignition mechanism (Mehl, M.; Curran, H. J.; Pitz, W. J.; Westbrook,more » C. K.Chemical kinetic modeling of component mixtures relevant to gasoline. Proceedings of the European Combustion Meeting; Vienna, Austria, April 14-17, 2009) was reduced to 89 species for use in these models, and the predictions of the reduced mechanism were consistent with ignition delay times predicted by the detailed chemical mechanism across a broad range of temperatures, pressures, and equivalence ratios. The CFD model was also run without chemistry to characterize the extent of mixing of fuel and air in the chamber. The calculations predicted that the main part of the combustion chamber was fairly well-mixed at longer times (> ~30 ms), suggesting that the simpler models might be applicable in this quasi-homogeneous region. The multizone predictions, where the combustion chamber was divided into 20 zones of temperature and equivalence ratio, were quite close to the coupled CFD-kinetics results, but the calculation time was ~11 times faster than the coupled CFD-kinetics model. Although the coupled CFD-kinetics model captured the observed negative temperature coefficient behavior and pressure dependence, discrepancies remain between the predictions and the observed ignition time delays, suggesting improvements are still needed in the kinetic mechanism and/or the CFD model. This approach suggests a combined modeling approach, wherein the CFD calculations (without chemistry) can be used to examine the sensitivity of various model inputs to in-cylinder temperature and equivalence ratios. In conclusion, these values can be used as inputs to the multizone model to examine the impact on ignition delay. Additionally, the speed of the multizone model also makes it feasible to quickly test more detailed kinetic mechanisms for comparison to experimental data and sensitivity analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osecky, Eric M.; Bogin, Gregory E.; Villano, Stephanie M.
An ignition quality tester was used to characterize the autoignition delay times of iso-octane. The experimental data were characterized between temperatures of 653 and 996 K, pressures of 1.0 and 1.5 MPa, and global equivalence ratios of 0.7 and 1.05. A clear negative temperature coefficient behavior was seen at both pressures in the experimental data. These data were used to characterize the effectiveness of three modeling methods: a single-zone homogeneous batch reactor, a multizone engine model, and a three-dimensional computational fluid dynamics (CFD) model. A detailed 874 species iso-octane ignition mechanism (Mehl, M.; Curran, H. J.; Pitz, W. J.; Westbrook,more » C. K.Chemical kinetic modeling of component mixtures relevant to gasoline. Proceedings of the European Combustion Meeting; Vienna, Austria, April 14-17, 2009) was reduced to 89 species for use in these models, and the predictions of the reduced mechanism were consistent with ignition delay times predicted by the detailed chemical mechanism across a broad range of temperatures, pressures, and equivalence ratios. The CFD model was also run without chemistry to characterize the extent of mixing of fuel and air in the chamber. The calculations predicted that the main part of the combustion chamber was fairly well-mixed at longer times (> ~30 ms), suggesting that the simpler models might be applicable in this quasi-homogeneous region. The multizone predictions, where the combustion chamber was divided into 20 zones of temperature and equivalence ratio, were quite close to the coupled CFD-kinetics results, but the calculation time was ~11 times faster than the coupled CFD-kinetics model. Although the coupled CFD-kinetics model captured the observed negative temperature coefficient behavior and pressure dependence, discrepancies remain between the predictions and the observed ignition time delays, suggesting improvements are still needed in the kinetic mechanism and/or the CFD model. This approach suggests a combined modeling approach, wherein the CFD calculations (without chemistry) can be used to examine the sensitivity of various model inputs to in-cylinder temperature and equivalence ratios. In conclusion, these values can be used as inputs to the multizone model to examine the impact on ignition delay. Additionally, the speed of the multizone model also makes it feasible to quickly test more detailed kinetic mechanisms for comparison to experimental data and sensitivity analysis.« less
Delayed fission of atomic nuclei (To the 50th anniversary of the discovery)
NASA Astrophysics Data System (ADS)
Skobelev, N. K.
2017-09-01
The history of the discovery of delayed nuclear fission is presented, and the retrospective of investigations into this phenomenon that were performed at various research centers worldwide is outlined. The results obtained by measuring basic delayed-fission features, including the fission probability, the total kinetic energy of fission fragments, and their mass distributions, are analyzed. Recommendations concerning further studies in various regions of nuclear map with the aim of searches for and investigation of atomic nuclei undergoing delayed fission are given. Lines of further research into features of delayed fission with the aim of solving current problems of fission physics are discussed.
NASA Astrophysics Data System (ADS)
Grasso, Rosaria; Cammarata, Francesco Paolo; Minafra, Luigi; Marchese, Valentina; Russo, Giorgio; Manti, Lorenzo; Musumeci, Francesco; Scordino, Agata
2017-07-01
In the framework of the research project ETHICS "Pre-clinical experimental and theoretical studies to improve treatment and protection by charged particles" funded by the National Nuclear Physics Institute, Italy, we studied the phenomenon called delayed luminescence emitted by non-tumorigenic breast epithelial MCF10A cell line after proton irradiation at different doses (0.5, 2, 6, 9 Gy). The aim is to found possible correlations between delayed luminescence and in vitro damaging induced by ion irradiation. The first results of this research show that the delayed luminescence kinetics is proton dose dependent. An interesting correlation between delayed luminescence and clonogenic potential was observed.
Borgwardt, Mario; Wilke, Martin; Kampen, Thorsten; Mähl, Sven; Xiao, Manda; Spiccia, Leone; Lange, Kathrin M.; Kiyan, Igor Yu.; Aziz, Emad F.
2016-01-01
Interfacial charge transfer from photoexcited ruthenium-based N3 dye molecules into ZnO thin films received controversial interpretations. To identify the physical origin for the delayed electron transfer in ZnO compared to TiO2, we probe directly the electronic structure at both dye-semiconductor interfaces by applying ultrafast XUV photoemission spectroscopy. In the range of pump-probe time delays between 0.5 to 1.0 ps, the transient signal of the intermediate states was compared, revealing a distinct difference in their electron binding energies of 0.4 eV. This finding strongly indicates the nature of the charge injection at the ZnO interface associated with the formation of an interfacial electron-cation complex. It further highlights that the energetic alignment between the dye donor and semiconductor acceptor states appears to be of minor importance for the injection kinetics and that the injection efficiency is dominated by the electronic coupling. PMID:27073060
Camoutsis, C; Catsoulacos, D; Karayiann, V; Papageorgiou, A; Mourelatos, D; Mioglou, E; Kritsi, Z; Nikolaropoulos, S
2001-01-01
The present work was undertaken in order to test the hypothesis that the Sister Chromatid Exchange (SCE) assay in vitro can be used for the prediction of in vivo tumor response to newly synthesized potential chemotherapeutics. The effect of three homo-aza-steroidal esters containing the -CONH- in the steroidal nucleus, 1, 2, and 3 on SCE rates and on cell kinetics in cultured human lymphocytes was studied. The antitumor activity of these compounds was tested on leukemia P388- and leukemia L1210-bearing mice. The three substances induced statistically significant enhancement of SCEs and of cell division delays. Compounds 1 and 3 were identified, on a molar basis, as more effective inducers of SCEs and of cell division delays compared with compound 2. Compounds 1 and 3 had upon both experimental tumors better therapeutic effects compared with compound 2 at equitoxic doses. Therefore, the order of the antitumor effectiveness of the three compounds coincided with the order of the cytogenetic effects they induced.
Oscillatory regulation of Hes1: Discrete stochastic delay modelling and simulation.
Barrio, Manuel; Burrage, Kevin; Leier, André; Tian, Tianhai
2006-09-08
Discrete stochastic simulations are a powerful tool for understanding the dynamics of chemical kinetics when there are small-to-moderate numbers of certain molecular species. In this paper we introduce delays into the stochastic simulation algorithm, thus mimicking delays associated with transcription and translation. We then show that this process may well explain more faithfully than continuous deterministic models the observed sustained oscillations in expression levels of hes1 mRNA and Hes1 protein.
Zeng, Wen; Ma, Hongan; Liang, Yuntao; Hu, Erjiang
2014-01-01
The ignition delay times of methane/air mixture diluted by N2 and CO2 were experimentally measured in a chemical shock tube. The experiments were performed over the temperature range of 1300–2100 K, pressure range of 0.1–1.0 MPa, equivalence ratio range of 0.5–2.0 and for the dilution coefficients of 0%, 20% and 50%. The results suggest that a linear relationship exists between the reciprocal of temperature and the logarithm of the ignition delay times. Meanwhile, with ignition temperature and pressure increasing, the measured ignition delay times of methane/air mixture are decreasing. Furthermore, an increase in the dilution coefficient of N2 or CO2 results in increasing ignition delays and the inhibition effect of CO2 on methane/air mixture ignition is stronger than that of N2. Simulated ignition delays of methane/air mixture using three kinetic models were compared to the experimental data. Results show that GRI_3.0 mechanism gives the best prediction on ignition delays of methane/air mixture and it was selected to identify the effects of N2 and CO2 on ignition delays and the key elementary reactions in the ignition chemistry of methane/air mixture. Comparisons of the calculated ignition delays with the experimental data of methane/air mixture diluted by N2 and CO2 show excellent agreement, and sensitivity coefficients of chain branching reactions which promote mixture ignition decrease with increasing dilution coefficient of N2 or CO2. PMID:25750753
Towards Dynamic Contrast Specific Ultrasound Tomography
NASA Astrophysics Data System (ADS)
Demi, Libertario; van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo
2016-10-01
We report on the first study demonstrating the ability of a recently-developed, contrast-enhanced, ultrasound imaging method, referred to as cumulative phase delay imaging (CPDI), to image and quantify ultrasound contrast agent (UCA) kinetics. Unlike standard ultrasound tomography, which exploits changes in speed of sound and attenuation, CPDI is based on a marker specific to UCAs, thus enabling dynamic contrast-specific ultrasound tomography (DCS-UST). For breast imaging, DCS-UST will lead to a more practical, faster, and less operator-dependent imaging procedure compared to standard echo-contrast, while preserving accurate imaging of contrast kinetics. Moreover, a linear relation between CPD values and ultrasound second-harmonic intensity was measured (coefficient of determination = 0.87). DCS-UST can find clinical applications as a diagnostic method for breast cancer localization, adding important features to multi-parametric ultrasound tomography of the breast.
Towards Dynamic Contrast Specific Ultrasound Tomography.
Demi, Libertario; Van Sloun, Ruud J G; Wijkstra, Hessel; Mischi, Massimo
2016-10-05
We report on the first study demonstrating the ability of a recently-developed, contrast-enhanced, ultrasound imaging method, referred to as cumulative phase delay imaging (CPDI), to image and quantify ultrasound contrast agent (UCA) kinetics. Unlike standard ultrasound tomography, which exploits changes in speed of sound and attenuation, CPDI is based on a marker specific to UCAs, thus enabling dynamic contrast-specific ultrasound tomography (DCS-UST). For breast imaging, DCS-UST will lead to a more practical, faster, and less operator-dependent imaging procedure compared to standard echo-contrast, while preserving accurate imaging of contrast kinetics. Moreover, a linear relation between CPD values and ultrasound second-harmonic intensity was measured (coefficient of determination = 0.87). DCS-UST can find clinical applications as a diagnostic method for breast cancer localization, adding important features to multi-parametric ultrasound tomography of the breast.
Towards Dynamic Contrast Specific Ultrasound Tomography
Demi, Libertario; Van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo
2016-01-01
We report on the first study demonstrating the ability of a recently-developed, contrast-enhanced, ultrasound imaging method, referred to as cumulative phase delay imaging (CPDI), to image and quantify ultrasound contrast agent (UCA) kinetics. Unlike standard ultrasound tomography, which exploits changes in speed of sound and attenuation, CPDI is based on a marker specific to UCAs, thus enabling dynamic contrast-specific ultrasound tomography (DCS-UST). For breast imaging, DCS-UST will lead to a more practical, faster, and less operator-dependent imaging procedure compared to standard echo-contrast, while preserving accurate imaging of contrast kinetics. Moreover, a linear relation between CPD values and ultrasound second-harmonic intensity was measured (coefficient of determination = 0.87). DCS-UST can find clinical applications as a diagnostic method for breast cancer localization, adding important features to multi-parametric ultrasound tomography of the breast. PMID:27703251
Thompson, Richard B; Pagano, Joseph J; Mathewson, Kory W; Paterson, Ian; Dyck, Jason R; Kitzman, Dalane W; Haykowsky, Mark J
2016-01-01
The goals of the current study were to compare leg blood flow, oxygen extraction and oxygen uptake (VO2) after constant load sub-maximal unilateral knee extension (ULKE) exercise in patients with heart failure with reduced ejection fraction (HFrEF) compared to those with preserved ejection fraction (HFpEF). Previously, it has been shown that prolonged whole body VO2 recovery kinetics are directly related to disease severity and all-cause mortality in HFrEF patients. To date, no study has simultaneously measured muscle-specific blood flow and oxygen extraction post exercise recovery kinetics in HFrEF or HFpEF patients; therefore it is unknown if muscle VO2 recovery kinetics, and more specifically, the recovery kinetics of blood flow and oxygen extraction at the level of the muscle, differ between HF phenotypes. Ten older (68±10yrs) HFrEF (n = 5) and HFpEF (n = 5) patients performed sub-maximal (85% of maximal weight lifted during an incremental test) ULKE exercise for 4 minutes. Femoral venous blood flow and venous O2 saturation were measured continuously from the onset of end-exercise, using a novel MRI method, to determine off-kinetics (mean response times, MRT) for leg VO2 and its determinants. HFpEF and HFrEF patients had similar end-exercise leg blood flow (1.1±0.6 vs. 1.2±0.6 L/min, p>0.05), venous saturation (42±12 vs. 41±11%, p>0.05) and VO2 (0.13±0.08 vs. 0.11±0.05 L/min, p>0.05); however HFrEF had significantly delayed recovery MRT for flow (292±135sec. vs 105±63sec., p = 0.004) and VO2 (95±37sec. vs. 47±15sec., p = 0.005) compared to HFpEF. Impaired muscle VO2 recovery kinetics following ULKE exercise differentiated HFrEF from HFpEF patients and suggests distinct underlying pathology and potential therapeutic approaches in these populations.
4-Hydroxy cinnamic acid as mushroom preservation: Anti-tyrosinase activity kinetics and application.
Hu, Yong-Hua; Chen, Qing-Xi; Cui, Yi; Gao, Huan-Juan; Xu, Lian; Yu, Xin-Yuan; Wang, Ying; Yan, Chong-Ling; Wang, Qin
2016-05-01
Tyrosinase is a key enzyme in post-harvest browning of fruit and vegetable. To control and inhibit its activity is the most effective method for delaying the browning and extend the shelf life. In this paper, the inhibitory kinetics of 4-hydroxy cinnamic acid on mushroom tyrosinase was investigated using the kinetics method of substrate reaction. The results showed that the inhibition of tyrosinase by 4-hydroxy cinnamic acid was a slow, reversible reaction with fractional remaining activity. The microscopic rate constants were determined for the reaction on 4-hydroxy cinnamic acid with tyrosinase. Furthermore, the molecular docking was used to simulate 4-hydroxy cinnamic acid dock with tyrosinase. The results showed that 4-hydroxy cinnamic acid interacted with the enzyme active site mainly through the hydroxy competed with the substrate hydroxy group. The cytotoxicity study of 4-hydroxy cinnamic acid indicated that it had no effects on the proliferation of normal liver cells. Moreover, the results of effects of 4-hydroxy cinnamic acid on the preservation of mushroom showed that it could delay the mushroom browning. These results provide a comprehensive underlying the inhibitory mechanisms of 4-hydroxy cinnamic acid and its delaying post-harvest browning, that is beneficial for the application of this compound. Copyright © 2016 Elsevier B.V. All rights reserved.
Oscillatory Regulation of Hes1: Discrete Stochastic Delay Modelling and Simulation
Barrio, Manuel; Burrage, Kevin; Leier, André; Tian, Tianhai
2006-01-01
Discrete stochastic simulations are a powerful tool for understanding the dynamics of chemical kinetics when there are small-to-moderate numbers of certain molecular species. In this paper we introduce delays into the stochastic simulation algorithm, thus mimicking delays associated with transcription and translation. We then show that this process may well explain more faithfully than continuous deterministic models the observed sustained oscillations in expression levels of hes1 mRNA and Hes1 protein. PMID:16965175
Impact of PCOS on early embryo cleavage kinetics.
Wissing, M L; Bjerge, M R; Olesen, A I G; Hoest, T; Mikkelsen, A L
2014-04-01
This study investigated whether polycystic ovary syndrome (PCOS) affected early embryo development assessed by time-lapse analysis of embryo kinetics from fertilization to the blastocyst stage. This was a prospective cohort study of two pronuclei (2PN) embryos from 25 hyperandrogenic PCOS patients (110 2PN embryos), 26 normoandrogenic PCOS patients (140 2PN embryos) and 20 healthy, regularly cycling women (controls, 97 2PN embryos). Patients underwent the same baseline evaluation and the same ovarian stimulation from April 2010 to February 2013. Oocytes were fertilized by intracytoplasmic sperm injection and incubated in an EmbryoScope with pictures taken every 20 min in seven focal planes. Time to 2PN breakdown, first cleavage and cleavage to 3, 4, 5, 6, 7 and 8 cells, morula and blastocyst (t₂, t₃, t₄, t₅, t₆, t₇, t₈, t(M), t(B)) were annotated. Differences in embryo kinetics between groups were assessed by mixed modelling. Compared with controls, embryos from hyperandrogenic PCOS patients were significantly delayed at 2PN breakdown, t₂, t₃, t₄ and t₇ but not at t₅, t₆, t₈, t(M) or t(B). Embryos from hyperandrogenic PCOS women had developed slower from fertilization to the 8-cell stage compared with embryos from controls. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.
Effects of Different PER Translational Kinetics on the Dynamics of a Core Circadian Clock Model
Nieto, Paula S.; Revelli, Jorge A.; Garbarino-Pico, Eduardo; Condat, Carlos A.; Guido, Mario E.; Tamarit, Francisco A.
2015-01-01
Living beings display self-sustained daily rhythms in multiple biological processes, which persist in the absence of external cues since they are generated by endogenous circadian clocks. The period (per) gene is a central player within the core molecular mechanism for keeping circadian time in most animals. Recently, the modulation PER translation has been reported, both in mammals and flies, suggesting that translational regulation of clock components is important for the proper clock gene expression and molecular clock performance. Because translational regulation ultimately implies changes in the kinetics of translation and, therefore, in the circadian clock dynamics, we sought to study how and to what extent the molecular clock dynamics is affected by the kinetics of PER translation. With this objective, we used a minimal mathematical model of the molecular circadian clock to qualitatively characterize the dynamical changes derived from kinetically different PER translational mechanisms. We found that the emergence of self-sustained oscillations with characteristic period, amplitude, and phase lag (time delays) between per mRNA and protein expression depends on the kinetic parameters related to PER translation. Interestingly, under certain conditions, a PER translation mechanism with saturable kinetics introduces longer time delays than a mechanism ruled by a first-order kinetics. In addition, the kinetic laws of PER translation significantly changed the sensitivity of our model to parameters related to the synthesis and degradation of per mRNA and PER degradation. Lastly, we found a set of parameters, with realistic values, for which our model reproduces some experimental results reported recently for Drosophila melanogaster and we present some predictions derived from our analysis. PMID:25607544
Effects of different per translational kinetics on the dynamics of a core circadian clock model.
Nieto, Paula S; Revelli, Jorge A; Garbarino-Pico, Eduardo; Condat, Carlos A; Guido, Mario E; Tamarit, Francisco A
2015-01-01
Living beings display self-sustained daily rhythms in multiple biological processes, which persist in the absence of external cues since they are generated by endogenous circadian clocks. The period (per) gene is a central player within the core molecular mechanism for keeping circadian time in most animals. Recently, the modulation PER translation has been reported, both in mammals and flies, suggesting that translational regulation of clock components is important for the proper clock gene expression and molecular clock performance. Because translational regulation ultimately implies changes in the kinetics of translation and, therefore, in the circadian clock dynamics, we sought to study how and to what extent the molecular clock dynamics is affected by the kinetics of PER translation. With this objective, we used a minimal mathematical model of the molecular circadian clock to qualitatively characterize the dynamical changes derived from kinetically different PER translational mechanisms. We found that the emergence of self-sustained oscillations with characteristic period, amplitude, and phase lag (time delays) between per mRNA and protein expression depends on the kinetic parameters related to PER translation. Interestingly, under certain conditions, a PER translation mechanism with saturable kinetics introduces longer time delays than a mechanism ruled by a first-order kinetics. In addition, the kinetic laws of PER translation significantly changed the sensitivity of our model to parameters related to the synthesis and degradation of per mRNA and PER degradation. Lastly, we found a set of parameters, with realistic values, for which our model reproduces some experimental results reported recently for Drosophila melanogaster and we present some predictions derived from our analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geslot, Benoit; Gruel, Adrien; Pepino, Alexandra
2015-07-01
MINERVE is a two-zone pool type zero power reactor operated by CEA (Cadarache, France). Kinetic parameters of the core (prompt neutron decay constant, delayed neutron fraction, generation time) have been recently measured using various pile noise experimental techniques, namely Feynman-α, Rossi-α and Cohn-α. Results are discussed and compared to each other's. The measurement campaign has been conducted in the framework of a tri-partite collaboration between CEA, SCK.CEN and PSI. Results presented in this paper were obtained thanks to a time-stamping acquisition system developed by CEA. PSI performed simultaneous measurements which are presented in a companion paper. Signals come from twomore » high efficiency fission chambers located in the graphite reflector next to the core driver zone. Experiments were conducted at critical state with a reactor power of 0.2 W. The core integral fission rate is obtained from a calibrated miniature fission chamber located at the center of the core. Other results obtained in two sub-critical configurations will be presented elsewhere. Best estimate delayed neutron fraction comes from the Cohn-α method: 747 ± 15 pcm (1σ). In this case, the prompt decay constant is 79 ± 0.5 s{sup -1} and the generation time is 94.5 ± 0.7 μs. Other methods give consistent results within the confidence intervals. Experimental results are compared to calculated values obtained from a full 3D core modeling with the CEA-developed Monte Carlo code TRIPOLI4.9 associated with its continuous energy JEFF3.1.1-based library. A very good agreement is observed for the calculated delayed neutron fraction (748.7 ± 0.4 pcm at 1σ), that is a difference of -0.3% with the experiment. On the contrary, a 10% discrepancy is observed for the calculated generation time (104.4 ± 0.1 μs at 1σ). (authors)« less
Contrasting phagosome pH regulation and maturation in human M1 and M2 macrophages
Canton, Johnathan; Khezri, Rojyar; Glogauer, Michael; Grinstein, Sergio
2014-01-01
Macrophages respond to changes in environmental stimuli by assuming distinct functional phenotypes, a phenomenon referred to as macrophage polarization. We generated classically (M1) and alternatively (M2) polarized macrophages—two extremes of the polarization spectrum—to compare the properties of their phagosomes. Specifically, we analyzed the regulation of the luminal pH after particle engulfment. The phagosomes of M1 macrophages had a similar buffering power and proton (equivalent) leakage permeability but significantly reduced proton-pumping activity compared with M2 phagosomes. As a result, only the latter underwent a rapid and profound acidification. By contrast, M1 phagosomes displayed alkaline pH oscillations, which were caused by proton consumption upon dismutation of superoxide, followed by activation of a voltage- and Zn2+-sensitive permeation pathway, likely HV1 channels. The paucity of V-ATPases in M1 phagosomes was associated with, and likely caused by, delayed fusion with late endosomes and lysosomes. The delayed kinetics of maturation was, in turn, promoted by the failure of M1 phagosomes to acidify. Thus, in M1 cells, elimination of pathogens through deployment of the microbicidal NADPH oxidase is given priority at the expense of delayed acidification. By contrast, M2 phagosomes proceed to acidify immediately in order to clear apoptotic bodies rapidly and effectively. PMID:25165138
Kim, Joonyup; Wilson, Rebecca L.; Case, J. Brett; Binder, Brad M.
2012-01-01
Time-lapse imaging of dark-grown Arabidopsis (Arabidopsis thaliana) hypocotyls has revealed new aspects about ethylene signaling. This study expands upon these results by examining ethylene growth response kinetics of seedlings of several plant species. Although the response kinetics varied between the eudicots studied, all had prolonged growth inhibition for as long as ethylene was present. In contrast, with continued application of ethylene, white millet (Panicum miliaceum) seedlings had a rapid and transient growth inhibition response, rice (Oryza sativa ‘Nipponbare’) seedlings had a slow onset of growth stimulation, and barley (Hordeum vulgare) had a transient growth inhibition response followed, after a delay, by a prolonged inhibition response. Growth stimulation in rice correlated with a decrease in the levels of rice ETHYLENE INSENSTIVE3-LIKE2 (OsEIL2) and an increase in rice F-BOX DOMAIN AND LRR CONTAINING PROTEIN7 transcripts. The gibberellin (GA) biosynthesis inhibitor paclobutrazol caused millet seedlings to have a prolonged growth inhibition response when ethylene was applied. A transient ethylene growth inhibition response has previously been reported for Arabidopsis ethylene insensitive3-1 (ein3-1) eil1-1 double mutants. Paclobutrazol caused these mutants to have a prolonged response to ethylene, whereas constitutive GA signaling in this background eliminated ethylene responses. Sensitivity to paclobutrazol inversely correlated with the levels of EIN3 in Arabidopsis. Wild-type Arabidopsis seedlings treated with paclobutrazol and mutants deficient in GA levels or signaling had a delayed growth recovery after ethylene removal. It is interesting to note that ethylene caused alterations in gene expression that are predicted to increase GA levels in the ein3-1 eil1-1 seedlings. These results indicate that ethylene affects GA levels leading to modulation of ethylene growth inhibition kinetics. PMID:22977279
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pryor, Owen; Barak, Samuel; Lopez, Joseph
For this study, ignition delay times and methane species time-histories were measured for methane/O 2 mixtures in a high CO 2 diluted environment using shock tube and laser absorption spectroscopy. The experiments were performed between 1300 K and 2000 K at pressures between 6 and 31 atm. The test mixtures were at an equivalence ratio of 1 with CH 4 mole fractions ranging from 3.5% -5% and up to 85% CO 2 with a bath of argon gas as necessary. The ignition delay times and methane time histories were measured using pressure, emission, and laser diagnostics. Predictive ability of twomore » literature kinetic mechanisms (GRI 3.0 and ARAMCO Mech 1.3) was tested against current data. In general, both mechanisms performed reasonably well against measured ignition delay time data. The methane time-histories showed good agreement with the mechanisms for most of the conditions measured. A correlation for ignition delay time was created taking into the different parameters showing that the ignition activation energy for the fuel to be 49.64 kcal/mol. Through a sensitivity analysis, CO 2 is shown to slow the overall reaction rate and increase the ignition delay time. To the best of our knowledge, we present the first shock tube data during ignition of methane/CO 2/O 2 under these conditions. In conclusion, current data provides crucial validation data needed for development of future kinetic mechanisms.« less
Pryor, Owen; Barak, Samuel; Lopez, Joseph; ...
2017-03-30
For this study, ignition delay times and methane species time-histories were measured for methane/O 2 mixtures in a high CO 2 diluted environment using shock tube and laser absorption spectroscopy. The experiments were performed between 1300 K and 2000 K at pressures between 6 and 31 atm. The test mixtures were at an equivalence ratio of 1 with CH 4 mole fractions ranging from 3.5% -5% and up to 85% CO 2 with a bath of argon gas as necessary. The ignition delay times and methane time histories were measured using pressure, emission, and laser diagnostics. Predictive ability of twomore » literature kinetic mechanisms (GRI 3.0 and ARAMCO Mech 1.3) was tested against current data. In general, both mechanisms performed reasonably well against measured ignition delay time data. The methane time-histories showed good agreement with the mechanisms for most of the conditions measured. A correlation for ignition delay time was created taking into the different parameters showing that the ignition activation energy for the fuel to be 49.64 kcal/mol. Through a sensitivity analysis, CO 2 is shown to slow the overall reaction rate and increase the ignition delay time. To the best of our knowledge, we present the first shock tube data during ignition of methane/CO 2/O 2 under these conditions. In conclusion, current data provides crucial validation data needed for development of future kinetic mechanisms.« less
Cellular effects of mitomycin-C on human corneas after photorefractive keratectomy.
Rajan, Madhavan S; O'Brart, David P S; Patmore, Anne; Marshall, John
2006-10-01
To investigate the effects of mitomycin-C (MMC) on epithelial and keratocyte cell kinetics after photorefractive keratectomy (PRK) using an in vitro human cornea model. Department of Academic Ophthalmology, Rayne Institute, St. Thomas' Hospital, London, United Kingdom. Twenty-four human eye-bank corneas were placed in a specially designed acrylic corneal holder and cultured using the air-interface organ culture technique for up to 4 weeks. The corneas were divided into 3 groups. Group 1 consisted of 8 human corneas that had -9.00 diopter (D) myopic PRK without MMC application. Group 2 consisted of 8 corneas that had -9.00 D PRK with MMC (0.2 microg/mL) application for 1 minute on the stromal surface after ablation. Group 3 consisted of 8 corneas that had -9.00 D PRK with 2-minute exposure to MMC (0.2 microg/mL). Temporal events in epithelial and keratocyte cell kinetics were evaluated using digital imaging, confocal microscopy, and light microscopy. Epithelial latency was significantly delayed with MMC application in Groups 2 and 3 (P<.001). Epithelial migration was delayed in Group 3 (2-minute exposure) compared to migration in Group 2 (P<.04), with a consequent delay in epithelial closure (P<.001). Group 3 corneas had poorly differentiated epithelium that was significantly thinner than in Groups 1 and 2 (P<.0001). A significant delay in keratocyte regeneration occurred after MMC application (P<.0005). At 4 weeks, the anterior stromal cell density was significantly lower in Group 3 than Group 2 (P<.001). There were no significant differences in the mid- and posterior stromal keratocyte density between the groups. Results suggest that epithelial healing after MMC is characterized by prolonged latency and decreased migration rate dependent on exposure time. Mitomycin C application did not result in increased loss of keratocytes, but it significantly delayed keratocyte repopulation in the anterior stroma. The use of MMC 0.2 microg/mL for 1 minute resulted in optimum modulation of healing characterized by reduced keratocyte activation with normal epithelial differentiation.
Kumar, Kamal; Zhang, Yu; Sung, Chi -Jen; ...
2015-04-13
We study the influence of blending n-butanol on the ignition delay times of n-heptane and iso-octane, the primary reference fuels for gasoline. The ignition delay times are measured using a rapid compression machine, with an emphasis on the low-to-intermediate temperature conditions. The experiments are conducted at equivalence ratios of 0.4 and 1.0, for a compressed pressure of 20 bar, with the temperatures at the end of compression ranging from 613 K to 979 K. The effect of n-butanol addition on the development of the two-stage ignition characteristics for the two primary reference fuels is also examined. The experimental results aremore » compared to predictions obtained using a detailed chemical kinetic mechanism, which has been obtained by a systematic merger of previously reported base models for the combustion of the individual fuel constituents. In conclusion, a sensitivity analysis on the base, and the merged models, is also performed to understand the dependence of autoignition delay times on the model parameters.« less
NASA Astrophysics Data System (ADS)
Bellavoine, Marion; Dumont, Myriam; Drillet, Josée; Hébert, Véronique; Maugis, Philippe
2018-05-01
Adjusting ferrite recrystallization kinetics during annealing is a way to control the final microstructure and thus the mechanical properties of advanced cold-rolled high-strength steels. Two strategies are commonly used for this purpose: adjusting heating rates and/or adding microalloying elements. The present work investigates the effect of heating rate and microalloying elements Ti, Nb, and Mo on recrystallization kinetics during annealing in various cold-rolled Dual-Phase steel grades. The use of combined experimental and modeling approaches allows a deeper understanding of the separate influence of heating rate and the addition of microalloying elements. The comparative effect of Ti, Nb, and Mo as solute elements and as precipitates on ferrite recrystallization is also clarified. It is shown that solute drag has the largest delaying effect on recrystallization in the present case and that the order of solute drag effectiveness of microalloying elements is Nb > Mo > Ti.
NASA Astrophysics Data System (ADS)
Bellavoine, Marion; Dumont, Myriam; Drillet, Josée; Hébert, Véronique; Maugis, Philippe
2018-07-01
Adjusting ferrite recrystallization kinetics during annealing is a way to control the final microstructure and thus the mechanical properties of advanced cold-rolled high-strength steels. Two strategies are commonly used for this purpose: adjusting heating rates and/or adding microalloying elements. The present work investigates the effect of heating rate and microalloying elements Ti, Nb, and Mo on recrystallization kinetics during annealing in various cold-rolled Dual-Phase steel grades. The use of combined experimental and modeling approaches allows a deeper understanding of the separate influence of heating rate and the addition of microalloying elements. The comparative effect of Ti, Nb, and Mo as solute elements and as precipitates on ferrite recrystallization is also clarified. It is shown that solute drag has the largest delaying effect on recrystallization in the present case and that the order of solute drag effectiveness of microalloying elements is Nb > Mo > Ti.
A kinetic comparison of back-loading and head-loading in Xhosa women.
Lloyd, R; Parr, B; Davies, S; Cooke, C
2011-04-01
The purpose of this study was to compare the kinetic responses associated with ground reaction force measurements to both head-loading and back-loading in a group of Xhosa women. Altogether, 16 women were divided into two groups based on their experience of head-loading. They walked over a force plate in three conditions: unloaded or carrying 20 kg in either a backpack or on their head. The most striking finding was that there was no difference in kinetic response to head-loading as a consequence of previous experience. Considering the differences between the load carriage methods, most changes were consistent with increasing load. Head-loading was, however, associated with a shorter contact time, smaller thrust maximum and greater vertical force minimum than back-loading. Both loading conditions differed from unloaded walking for a number of temporal variables associated with the ground contact phase, e.g. vertical impact peak was delayed whilst vertical thrust maximum occurred earlier. STATEMENT OF RELEVANCE: Consideration of the kinetics of head and back load carriage in African women is important from a health and safety perspective, providing an understanding of the mechanical adaptations associated with both forms of load carriage for a group of people for whom such load carriage is a daily necessity.
Borisover, Mikhail; Bukhanovsky, Nadezhda; Lado, Marcos
2017-09-19
Typical experimental time frames allowed for equilibrating water-organic vapors with soil sorbents might lead to overlooking slow chemical reactions finally controlling a thermodynamically stable state. In this work, long-term gravimetric examination of kinetics covering about 4000 h was performed for phenol-water vapor interacting with four materials pre-equilibrated at three levels of air relative humidity (RHs 52, 73, and 92%). The four contrasting sorbents included an organic matter (OM)-rich peat soil, an OM-poor clay soil, a hydrophilic Aldrich humic acid salt, and water-insoluble leonardite. Monitoring phenol-water vapor interactions with the prehydrated sorbents, as compared with the sorbent samples in phenol-free atmosphere at the same RH, showed, for the first time, a sigmoid kinetics of phenol-induced mass uptake typical for second-order autocatalytic reactions. The apparent rate constants were similar for all the sorbents, RHs and phenol activities studied. A significant part of sorbed phenol resisted extraction, which was attributed to its abiotic oxidative coupling. Phenol uptake by peat and clay soils was also associated with a significant enhancement of water retention. The delayed development of the sigmoidal kinetics in phenol-water uptake demonstrates that long-run abiotic interactions of water-organic vapor with soil may be overlooked, based on short-term examination.
Growth hormone distribution kinetics are markedly reduced in adults with growth hormone deficiency.
Catalina, Pablo F; Páramo, Concepción; Andrade, Maria Amalia; Mallo, Federico
2007-03-01
Growth hormone (GH) circulating levels are highly dependent not only on GH secretion rate from the pituitary, but also on the hormone distribution in the compartments of the body and elimination phenomena. In adult GH-deficient patients these factors become critical nowadays, especially when recombinant human GH (rhGH) is available for replacement therapy. In the present study, we assess the influence of both distribution and elimination phenomena on GH pharmacokinetics in adult GH-deficient patients. We used a four-step methodology following a compartmental approach after an intravenous bolus of recombinant GH in adult GH-deficient patients. We found that GH kinetics are clearly explained by a bi-exponential, two-compartmental model in GH-deficient patients, similarly than in normal or diabetic subjects, as previously shown. We have also observed a marked delay in the whole GH elimination process in GH-deficient patients compared to normal adult subjects, as revealed by metabolic clearance ratio (MCR), elimination constant from central compartment (k(10)), and mean resident time in the body (MRT). Interestingly, such a delay appear to be caused by deep changes in the distribution phase (Mtt(1)- mean transit time-1; T(1/2alpha)- GH half-life at distribution phase), while the elimination phenomenon remains unaltered. Our results emphasize the relevance of distribution phenomena in GH pharmacokinetics, and indicates that studies avoiding data from the GH distribution phase, such as those carried out in steady-state conditions, or those using noncompartmental models, could easily miss relevant information. Our data should be taken into consideration when establishing the appropriate dosage for GH replacement treatments in GH-deficient patients, and calculations should include GH distribution kinetics.
Cè, Emiliano; Rampichini, Susanna; Monti, Elena; Venturelli, Massimo; Limonta, Eloisa; Esposito, Fabio
2017-01-01
Peripheral fatigue involves electrochemical and mechanical mechanisms. An electromyographic, mechanomyographic and force combined approach may permit a kinetic evaluation of the changes at the synaptic, skeletal muscle fiber, and muscle-tendon unit level during a fatiguing stimulation. Surface electromyogram, mechanomyogram, force and stimulation current were detected from the gastrocnemius medialis muscle in twenty male participants during a fatiguing stimulation (twelve blocks of 35 Hz stimulations, duty cycle 9 s on/1 s off, duration 120 s). The total electromechanical delay and its three components (between stimulation current and electromyogram, synaptic component; between electromyogram and mechanomyogram signal onset, muscle fiber electrochemical component, and between mechanomyogram and force signal onset, mechanical component) were calculated. Interday reliability and sensitivity were determined. After fatigue, peak force decreased by 48% (P < 0.05) and the total electromechanical delay and its synaptic, electrochemical and mechanical components lengthened from 25.8 ± 0.9, 1.47 ± 0.04, 11.2 ± 0.6, and 13.1 ± 1.3 ms to 29.0 ± 1.6, 1.56 ± 0.05, 12.4 ± 0.9, and 17.2 ± 0.6 ms, respectively (P < 0.05). During fatigue, the total electromechanical delay and the mechanical component increased significantly after the 40th second, and then remained stable. The synaptic and electrochemical components lengthened significantly after the 20th and 30th second, respectively. Interday reliability was high to very high, with an adequate level of sensitivity. The kinetic evaluation of the delays during the fatiguing stimulation highlighted different onsets and kinetics, with the events at synaptic level being the first to reveal a significant elongation, followed by those at the intra-fiber level. The mechanical events, which were the most affected by fatigue, were the last to lengthen.
Measurement of collective dynamical mass of Dirac fermions in graphene.
Yoon, Hosang; Forsythe, Carlos; Wang, Lei; Tombros, Nikolaos; Watanabe, Kenji; Taniguchi, Takashi; Hone, James; Kim, Philip; Ham, Donhee
2014-08-01
Individual electrons in graphene behave as massless quasiparticles. Unexpectedly, it is inferred from plasmonic investigations that electrons in graphene must exhibit a non-zero mass when collectively excited. The inertial acceleration of the electron collective mass is essential to explain the behaviour of plasmons in this material, and may be directly measured by accelerating it with a time-varying voltage and quantifying the phase delay of the resulting current. This voltage-current phase relation would manifest as a kinetic inductance, representing the reluctance of the collective mass to accelerate. However, at optical (infrared) frequencies, phase measurements of current are generally difficult, and, at microwave frequencies, the inertial phase delay has been buried under electron scattering. Therefore, to date, the collective mass in graphene has defied unequivocal measurement. Here, we directly and precisely measure the kinetic inductance, and therefore the collective mass, by combining device engineering that reduces electron scattering and sensitive microwave phase measurements. Specifically, the encapsulation of graphene between hexagonal boron nitride layers, one-dimensional edge contacts and a proximate top gate configured as microwave ground together enable the inertial phase delay to be resolved from the electron scattering. Beside its fundamental importance, the kinetic inductance is found to be orders of magnitude larger than the magnetic inductance, which may be utilized to miniaturize radiofrequency integrated circuits. Moreover, its bias dependency heralds a solid-state voltage-controlled inductor to complement the prevalent voltage-controlled capacitor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geslot, Benoit; Pepino, Alexandra; Blaise, Patrick
A pile noise measurement campaign has been conducted by the CEA in the VENUS-F reactor (SCK-CEN, Mol Belgium) in April 2011 in the reference critical configuration of the GUINEVERE experimental program. The experimental setup made it possible to estimate the core kinetic parameters: the prompt neutron decay constant, the delayed neutron fraction and the generation time. A precise assessment of these constants is of prime importance. In particular, the effective delayed neutron fraction is used to normalize and compare calculated reactivities of different subcritical configurations, obtained by modifying either the core layout or the control rods position, with experimental onesmore » deduced from the analysis of measurements. This paper presents results obtained with a CEA-developed time stamping acquisition system. Data were analyzed using Rossi-α and Feynman-α methods. Results were normalized to reactor power using a calibrated fission chamber with a deposit of Np-237. Calculated factors were necessary to the analysis: the Diven factor was computed by the ENEA (Italy) and the power calibration factor by the CNRS/IN2P3/LPC Caen. Results deduced with both methods are consistent with respect to calculated quantities. Recommended values are given by the Rossi-α estimator, that was found to be the most robust. The neutron generation time was found equal to 0.438 ± 0.009 μs and the effective delayed neutron fraction is 765 ± 8 pcm. Discrepancies with the calculated value (722 pcm, calculation from ENEA) are satisfactory: -5.6% for the Rossi-α estimate and -2.7% for the Feynman-α estimate. (authors)« less
DNA Double Strand Break Response and Limited Repair Capacity in Mouse Elongated Spermatids.
Ahmed, Emad A; Scherthan, Harry; de Rooij, Dirk G
2015-12-16
Spermatids are extremely sensitive to genotoxic exposures since during spermiogenesis only error-prone non homologous end joining (NHEJ) repair pathways are available. Hence, genomic damage may accumulate in sperm and be transmitted to the zygote. Indirect, delayed DNA fragmentation and lesions associated with apoptotic-like processes have been observed during spermatid elongation, 27 days after irradiation. The proliferating spermatogonia and early meiotic prophase cells have been suggested to retain a memory of a radiation insult leading later to this delayed fragmentation. Here, we used meiotic spread preparations to localize phosphorylate histone H2 variant (γ-H2AX) foci marking DNA double strand breaks (DSBs) in elongated spermatids. This technique enabled us to determine the background level of DSB foci in elongated spermatids of RAD54/RAD54B double knockout (dko) mice, severe combined immunodeficiency SCID mice, and poly adenosine diphosphate (ADP)-ribose polymerase 1 (PARP1) inhibitor (DPQ)-treated mice to compare them with the appropriate wild type controls. The repair kinetics data and the protein expression patterns observed indicate that the conventional NHEJ repair pathway is not available for elongated spermatids to repair the programmed and the IR-induced DSBs, reflecting the limited repair capacity of these cells. However, although elongated spermatids express the proteins of the alternative NHEJ, PARP1-inhibition had no effect on the repair kinetics after IR, suggesting that DNA damage may be passed onto sperm. Finally, our genetic mutant analysis suggests that an incomplete or defective meiotic recombinational repair of Spo11-induced DSBs may lead to a carry-over of the DSB damage or induce a delayed nuclear fragmentation during the sensitive programmed chromatin remodeling occurring in elongated spermatids.
Chemical kinetic modeling of propane oxidation behind shock waves
NASA Technical Reports Server (NTRS)
Mclain, A. G.; Jachimowski, C. J.
1977-01-01
The stoichiometric combustion of propane behind incident shock waves was studied experimentally and analytically over a temperature range from 1700 K to 2600 K and a pressure range from 1.2 to 1.9 atm. Measurements of the concentrations of carbon monoxide (CO) and carbon dioxide (CO2) and the product of the oxygen atom and carbon dioxide concentrations (O)(CO) were made after passage of the incident shock wave. A kinetic mechanism was developed which, when used in a computer program for a flowing, reacting gas behind an incident shock wave predicted experimentally measured results quite well. Ignition delay times from the literature were also predicted quite well. The kinetic mechanism consisted of 59 individual kinetic steps.
Single-scan dual-tracer FLT+FDG PET tumor characterization.
Kadrmas, Dan J; Rust, Thomas C; Hoffman, John M
2013-02-07
Rapid multi-tracer PET aims to image two or more tracers in a single scan, simultaneously characterizing multiple aspects of physiology and function without the need for repeat imaging visits. Using dynamic imaging with staggered injections, constraints on the kinetic behavior of each tracer are applied to recover individual-tracer measures from the multi-tracer PET signal. The ability to rapidly and reliably image both (18)F-fluorodeoxyglucose (FDG) and (18)F-fluorothymidine (FLT) would provide complementary measures of tumor metabolism and proliferative activity, with important applications in guiding oncologic treatment decisions and assessing response. However, this tracer combination presents one of the most challenging dual-tracer signal-separation problems--both tracers have the same radioactive half-life, and the injection delay is short relative to the half-life and tracer kinetics. This work investigates techniques for single-scan dual-tracer FLT+FDG PET tumor imaging, characterizing the performance of recovering static and dynamic imaging measures for each tracer from dual-tracer datasets. Simulation studies were performed to characterize dual-tracer signal-separation performance for imaging protocols with both injection orders and injection delays of 10-60 min. Better performance was observed when FLT was administered first, and longer delays before administration of FDG provided more robust signal-separation and recovery of the single-tracer imaging measures. An injection delay of 30 min led to good recovery (R > 0.96) of static image values (e.g. SUV), K(net), and K(1) as compared to values from separate, single-tracer time-activity curves. Recovery of higher order rate parameters (k(2), k(3)) was less robust, indicating that information regarding these parameters was harder to recover in the presence of statistical noise and dual-tracer effects. Performance of the dual-tracer FLT(0 min)+FDG(32 min) technique was further evaluated using PET/CT imaging studies in five patients with primary brain tumors where the data from separate scans of each tracer were combined to synthesize dual-tracer scans with known single-tracer components; results demonstrated similar dual-tracer signal recovery performance. We conclude that rapid dual-tracer FLT+FDG tumor imaging is feasible and can provide quantitative tumor imaging measures comparable to those from conventional separate-scan imaging.
Single-scan dual-tracer FLT+FDG PET tumor characterization
NASA Astrophysics Data System (ADS)
Kadrmas, Dan J.; Rust, Thomas C.; Hoffman, John M.
2013-02-01
Rapid multi-tracer PET aims to image two or more tracers in a single scan, simultaneously characterizing multiple aspects of physiology and function without the need for repeat imaging visits. Using dynamic imaging with staggered injections, constraints on the kinetic behavior of each tracer are applied to recover individual-tracer measures from the multi-tracer PET signal. The ability to rapidly and reliably image both 18F-fluorodeoxyglucose (FDG) and 18F-fluorothymidine (FLT) would provide complementary measures of tumor metabolism and proliferative activity, with important applications in guiding oncologic treatment decisions and assessing response. However, this tracer combination presents one of the most challenging dual-tracer signal-separation problems—both tracers have the same radioactive half-life, and the injection delay is short relative to the half-life and tracer kinetics. This work investigates techniques for single-scan dual-tracer FLT+FDG PET tumor imaging, characterizing the performance of recovering static and dynamic imaging measures for each tracer from dual-tracer datasets. Simulation studies were performed to characterize dual-tracer signal-separation performance for imaging protocols with both injection orders and injection delays of 10-60 min. Better performance was observed when FLT was administered first, and longer delays before administration of FDG provided more robust signal-separation and recovery of the single-tracer imaging measures. An injection delay of 30 min led to good recovery (R > 0.96) of static image values (e.g. SUV), Knet, and K1 as compared to values from separate, single-tracer time-activity curves. Recovery of higher order rate parameters (k2, k3) was less robust, indicating that information regarding these parameters was harder to recover in the presence of statistical noise and dual-tracer effects. Performance of the dual-tracer FLT(0 min)+FDG(32 min) technique was further evaluated using PET/CT imaging studies in five patients with primary brain tumors where the data from separate scans of each tracer were combined to synthesize dual-tracer scans with known single-tracer components; results demonstrated similar dual-tracer signal recovery performance. We conclude that rapid dual-tracer FLT+FDG tumor imaging is feasible and can provide quantitative tumor imaging measures comparable to those from conventional separate-scan imaging.
Single-scan dual-tracer FLT+FDG PET tumor characterization
Kadrmas, Dan J; Rust, Thomas C; Hoffman, John M
2013-01-01
Rapid multi-tracer PET aims to image two or more tracers in a single scan, simultaneously characterizing multiple aspects of physiology and function without the need for repeat imaging visits. Using dynamic imaging with staggered injections, constraints on the kinetic behavior of each tracer are applied to recover individual-tracer measures from the multi-tracer PET signal. The ability to rapidly and reliably image both 18F-fluorodeoxyglucose (FDG) and 18F-fluorothymidine (FLT) would provide complementary measures of tumor metabolism and proliferative activity, with important applications in guiding oncologic treatment decisions and assessing response. However, this tracer combination presents one of the most challenging dual-tracer signal-separation problems—both tracers have the same radioactive half-life, and the injection delay is short relative to the half-life and tracer kinetics. This work investigates techniques for single-scan dual-tracer FLT+FDG PET tumor imaging, characterizing the performance of recovering static and dynamic imaging measures for each tracer from dual-tracer datasets. Simulation studies were performed to characterize dual-tracer signal-separation performance for imaging protocols with both injection orders and injection delays of 10–60 min. Better performance was observed when FLT was administered first, and longer delays before administration of FDG provided more robust signal-separation and recovery of the single-tracer imaging measures. An injection delay of 30 min led to good recovery (R > 0.96) of static image values (e.g. SUV), Knet, and K1 as compared to values from separate, single-tracer time-activity curves. Recovery of higher order rate parameters (k2, k3) was less robust, indicating that information regarding these parameters was harder to recover in the presence of statistical noise and dual-tracer effects. Performance of the dual-tracer FLT(0 min)+FDG(32 min) technique was further evaluated using PET/CT imaging studies in five patients with primary brain tumors where the data from separate scans of each tracer were combined to synthesize dual-tracer scans with known single-tracer components; results demonstrated similar dual-tracer signal recovery performance. We conclude that rapid dual-tracer FLT+FDG tumor imaging is feasible and can provide quantitative tumor imaging measures comparable to those from conventional separate-scan imaging. PMID:23296314
Faria-e-Silva, Andre; Boaro, Leticia; Braga, Roberto; Piva, Evandro; Arias, Vanessa; Martins, Luis
2011-01-01
This study evaluated the effect of light activation (absence, immediate, or delayed) on conversion kinetics and polymerization stress of three commercial dual-cured resin cements (Enforce, RelyX ARC, and Panavia F). Degree of conversion (DC) was monitored for 30 minutes using real-time near–Fourier transform infrared spectroscopy. The cement was mixed, placed on the spectrometer sample holder, and light activated either immediately or after five minutes (delayed light activation). When no light activation was performed, the materials were protected from light exposure (control). DC was evaluated at five and 30 minutes postmixture. Maximum rates of polymerization (Rp(max)) were obtained from the first derivative of the DC vs time curve. Polymerization stress was monitored for 30 minutes in 1-mm-thick specimens inserted between two cylinders attached to a universal testing machine. Data were submitted to analysis of variance/Tukey tests (α=0.05). Immediate light activation promoted the highest DC at five minutes. At 30 minutes, only RelyX ARC did not present a significant difference in DC between activation modes. Enforce and Panavia F presented higher Rp(max) for immediate and delayed light-activation, respectively. RelyX ARC showed similar Rp(max) for all activation modes. The absence of light activation resulted in the lowest stress followed by delayed light activation, while immediate light activation led to the highest values. RelyX ARC showed higher stress than Enforce, while the stress of Panavia F was similar to that of the others. Delayed light activation reduced the polymerization stress of the resin cements tested without jeopardizing DC.
Immune memory: the basics and how to trigger an efficient long-term immune memory.
Beverley, P C L
2010-01-01
Immunological memory consists of expanded clones of T and B lymphocytes that show an increased rate of cell division and shortened telomeres compared with naïve cells. However, exhaustion of clones is delayed by kinetic heterogeneity within clones and altered survival and up-regulation of telomerase. Prolonged maintenance of protective B-cell immunity is T-cell dependent and requires a balance between plasma cells and memory B cells. Protective T-cell immunity also requires correct quality of T cells and that they are located appropriately. Copyright 2009 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haschek, W.M.; Boyd, M.R.; Hakkinen, P.J.
1984-01-01
The acute inhalation toxicity of 3-methylfuran (3MF) was investigated in male BALB/c mice by morphologic examination of animals killed at varying timepoints following a 1-hr exposure to an initial chamber concentration of 14 to 37 mumol/liter (343 to 906 ppm). In addition, respiratory rate measurements and cell kinetics were used to assess quantitatively pulmonary damage and repair. Necrosis of nonciliated bronchiolar epithelial (Clara) cells was seen 1 day following exposure and was followed by regeneration, which was virtually complete, within 21 days. Cell kinetic studies showed peak bronchiolar cell proliferation at 3 days with a labeling index (LI) of 5.0%more » compared to 0.4% in controls. An increase in parenchymal cell proliferation was also noted coincident with a mild interstitial pneumonitis. This parenchymal proliferation, peaking at 10 days with an LI of 1.4% compared to 0.2% in controls, consisted primarily of type II epithelial and endothelial cell proliferation indicating possible delayed damage and repair of type I epithelial and endothelial cells. The respiratory rate showed an initial transient increase followed by a more prolonged decrease with eventual return to control levels. 3MF toxicity was also evidenced by a necrotizing suppurative rhinitis, centrilobular hepatic necrosis, lymphocyte necrosis in the thymus and spleen, sialoadenitis, and otitis media.« less
A physiologically based model of chromium kinetics in the rat.
O'Flaherty, E J
1996-05-01
A physiologically based model of chromium kinetics in rats has been developed. The general structure of the model is similar to that of a model of lead kinetics in rats. Like lead chromium exchanges between plasma and the bone surfaces in contact with plasma, and also like lead, although with much lower efficiency, it can become incorporated into actively mineralizing bone. Both processes are included in the model. Parallel absorption and disposition schemes for chromium(VI) and chromium(III) are linked in the model by reduction processes occurring throughout the body, including the lung and gastrointestinal tract. Examination of a number of data sets from studies in which chromium salts were administered to rats intravenously, orally, or by intratracheal instillation established that intravenous administration, on the one hand, and oral or pulmonary administration, on the other hand, result in different disposition patterns. The model was calibrated based on published oral and intratracheal kinetic studies in rats given soluble chromium(III) and chromium(VI) salts. In the most complete of these studies, chromium concentrations were monitored in individual tissues for 42 days following intratracheal administration of a soluble chromium(VI) salt. Inclusion in the model of a urinary excretion delay was necessary in order to fit excretion data from two other intratracheal studies. Model predictions of blood chromium concentrations are compared with the results of a published kinetic study in which rats were administered a soluble chromium(VI) salt by inhalation.
Kukkadapu, Goutham; Sung, Chih-Jen
2017-11-24
An experimental study on autoignition of two binary blends, n-dodecane/1-methylnaphthalene and iso-cetane/1-methylnaphthalene, has been conducted using a rapid compression machine. Specifically, the ignition delays of the stoichiometric blend+air mixtures were measured at elevated pressures of P C = 15 bar and 30 bar, compressed temperatures of T C = 626–944 K, and varying blending ratios of the constituents. For a given set of P C and T C, a nonlinear response of the blend reactivity with respect to the relative amount of the constituents was observed. Since a comprehensive chemical kinetic model for the blends investigated here is under development,more » the current ignition delay datasets serve as the needed targets for model validation. For selected conditions, ignition delay simulations were conducted to highlight and discuss the deficiencies of the literature models and the potential areas for model improvements, especially at low temperatures. In conclusion, further chemical kinetic analyses were conducted to gain understanding of the blending behavior predicted by the available model.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kukkadapu, Goutham; Sung, Chih-Jen
An experimental study on autoignition of two binary blends, n-dodecane/1-methylnaphthalene and iso-cetane/1-methylnaphthalene, has been conducted using a rapid compression machine. Specifically, the ignition delays of the stoichiometric blend+air mixtures were measured at elevated pressures of P C = 15 bar and 30 bar, compressed temperatures of T C = 626–944 K, and varying blending ratios of the constituents. For a given set of P C and T C, a nonlinear response of the blend reactivity with respect to the relative amount of the constituents was observed. Since a comprehensive chemical kinetic model for the blends investigated here is under development,more » the current ignition delay datasets serve as the needed targets for model validation. For selected conditions, ignition delay simulations were conducted to highlight and discuss the deficiencies of the literature models and the potential areas for model improvements, especially at low temperatures. In conclusion, further chemical kinetic analyses were conducted to gain understanding of the blending behavior predicted by the available model.« less
Fujii, Keisuke; Yamashita, Daichi; Kimura, Tetsuya; Isaka, Tadao; Kouzaki, Motoki
2015-01-01
In a competitive sport, the outcome of a game is determined by an athlete's relationship with an unpredictable and uncontrolled opponent. We have previously analyzed the preparatory state of ground reaction forces (GRFs) dividing non-weighted and weighted states (i.e., vertical GRFs below and above 120% of body weight, respectively) in a competitive ballgame task and demonstrated that the non-weighted state prevented delay of the defensive step and promoted successful guarding. However, the associated kinetics of lower extremity joints during a competitive sports task remains unknown. The present study aims to investigate the kinetic characteristics of a real-time competitive sport before movement initiation. As a first kinetic study on a competitive sport, we initially compared the successful defensive kinetics with a relatively stable preparatory state and the choice-reaction sidestep as a control movement. Then, we investigated the kinetic cause of the outcome in a 1-on-1 dribble in terms of the preparatory states according to our previous study. The results demonstrated that in successful defensive motions in the non-weighted state guarding trial, the times required for the generation of hip abduction and three extension torques for the hip, knee, and ankle joints were significantly shortened compared with the choice-reaction sidestep, and hip abduction and hip extension torques were produced almost simultaneously. The sport-specific movement kinetics emerges only in a more-realistic interactive experimental setting. A comparison of the outcomes in the 1-on-1 dribble and preparatory GRF states showed that, in the non-weighted state, the defenders guarded successfully in 68.0% of the trials, and the defender's initiation time was earlier than that in the weighted state (39.1%). In terms of kinetics, the root mean squares of the derivative of hip abduction and three extension torques in the non-weighted state were smaller than those in the weighted state, irrespective of the outcome. These results indicate that the preparatory body state as explained by short-term joint torque fluctuations before the defensive step would help explain the performance in competitive sports, and will give insights into understanding human adaptive behavior in unpredicted and uncontrolled environments.
The model of root graviresponse with retarded arguments
NASA Astrophysics Data System (ADS)
Kondrachuk, Alexander
The graviperception mechanism (GPM) of the roots of higher plants localized in the cap region of a root and supposedly related to statoliths sedimentation produces the signals in response to the change of the root axis orientation relative to the gravity vector G. Meanwhile, the regions (Distal Elongation Zone -DEZ and Central Elongation Zone-CEZ), where the signals initiate the changes of the growth rates of the upper and lower flanks of the root, are located at the significant distances from the cap (thousands microns for some plants). It causes the time delays between the relocation of statoliths in statocytes and the change of the growth rates in elongation zones. It is suggested that the signal targeting the CEZ modulates the initially uniform lateral distribution of some specific substances (S) in the cap region. Then already nonhomogeneous lateral distribution of S is transferred to the CEZ to initiate the change of the growth rates of the opposite flanks. It results in the bending of the root in the line of G and thus in the change of the GPM signal in the cap region. In the present model the kinetics of a root apex bending (angle A) in response to the time (t)-dependent change of the G orientation is described by the integro-differential equation in A(t). The main peculiarity of this model is the presence of retarded (time-delayed) arguments t-TCEZ and t-TDEZ . In this case the solutions of this equation depend on the preceding kinetics of A(t) during the time delays TCEZ and TDEZ . It is suggested that the signals activating the CEZ and DEZ are of different nature. The work is focused on two problems concerning the modeling of the effects of time-delay(s) on the root bending. The first problem supposes the existence of one zone (CEZ) and one time-delay TCEZ . This equation was studied and solved using analytical and numerical methods. We analyzed the model as to whether it can be used to describe the kinetics of root graviresponse in the case of different orientations of the root apex relative to the G vector during the time interval equal to TCEZ (TCEZ > TDEZ ) that precedes the beginning of gravistimultion. Also we explored the conditions of the overshooting (the vertical) and non-overshooting regimes of gravistimulated root bending. Good correlation between the results of the modeling and known experimental data (Barlow et al, 1993, Stochkus, 1994, Mullen, 1998) was found. This allowed us to estimate and analyze the parameters of the model. The second problem supposed the existence of two zones of growth (CEZ and DEZ) and two corresponding time-delays. The effects of the second time-delay connected with the presence of the DEZ on the behavior of the model equation of the root graviresponse kinetics were analyzed and discussed.
Döntgen, Malte; Schmalz, Felix; Kopp, Wassja A; Kröger, Leif C; Leonhard, Kai
2018-06-13
An automated scheme for obtaining chemical kinetic models from scratch using reactive molecular dynamics and quantum chemistry simulations is presented. This methodology combines the phase space sampling of reactive molecular dynamics with the thermochemistry and kinetics prediction capabilities of quantum mechanics. This scheme provides the NASA polynomial and modified Arrhenius equation parameters for all species and reactions that are observed during the simulation and supplies them in the ChemKin format. The ab initio level of theory for predictions is easily exchangeable and the presently used G3MP2 level of theory is found to reliably reproduce hydrogen and methane oxidation thermochemistry and kinetics data. Chemical kinetic models obtained with this approach are ready-to-use for, e.g., ignition delay time simulations, as shown for hydrogen combustion. The presented extension of the ChemTraYzer approach can be used as a basis for methodologically advancing chemical kinetic modeling schemes and as a black-box approach to generate chemical kinetic models.
NASA Astrophysics Data System (ADS)
Hwang, Yong Seok
It has been found during the last decade that a nanoscale melting of metal has very distinctive features compared to its microscale counterpart. It has been observed that a highly non-equilibrium state can result in extreme superheating of a solid state, which cannot be explained well by thermodynamic theories based on equilibrium or nucleation. An endeavor to find the superheating limit and mechanisms of melting and superheating becomes more complicated when various physical phenomena are involved at the similar scales. The main goal of this research is to establish a multiphysics model and to reveal the mechanism of melting and kinetic superheating of a metal nanostructure at high heating rates. The model includes elastodynamics, a fast heating of metal considering a delayed heat transfer between electron gas and lattice phonon and couplings among physical phenomena, and phase transformation incorporated with thermal fluctuation. The model successfully reproduces two independent experiments and several novel nanoscale physical phenomena are discovered. For example, the depression of the melting temperature of Al nanolayer under plane stress condition, the threshold heating rate, 1011 K/s, for kinetic superheating, a large temperature drop in a 5 nm collision region of the two solid-melt interfaces, and a strong effect of geometry on kinetic superheating in Al core-shell nanostructure at high heating rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Eric; Mathieu, Olivier; Morones, Anibal
2014-12-01
This Topical Report documents the first year of the project, from October 1, 2013 through September 30, 2014. Efforts for this project included experiments to characterize the atmospheric-pressure turbulent flame speed vessel over a range of operating conditions (fan speeds and turbulent length scales). To this end, a new LDV system was acquired and set up for the detailed characterization of the turbulence field. Much progress was made in the area of impurity kinetics, which included a numerical study of the effect of impurities such as NO2, NO, H2S, and NH3 on ignition delay times and laminar flame speeds ofmore » syngas blends at engine conditions. Experiments included a series of laminar flame speed measurements for syngas (CO/H2) blends with various levels of CH4 and C2H6 addition, and the results were compared to the chemical kinetics model of NUI Galway. Also, a final NOx kinetics mechanism including ammonia was assembled, and a journal paper was written and is now in press. Overall, three journal papers and six conference papers related to this project were published this year. Finally, much progress was made on the design of the new high-pressure turbulent flame speed facility. An overall design that includes a venting system was decided upon, and the detailed design is in progress.« less
Delayed neutron spectral data for Hansen-Roach energy group structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, J.M.; Spriggs, G.D.
A detailed knowledge of delayed neutron spectra is important in reactor physics. It not only allows for an accurate estimate of the effective delayed neutron fraction {beta}{sub eff} but also is essential to calculating important reactor kinetic parameters, such as effective group abundances and the ratio of {beta}{sub eff} to the prompt neutron generation time. Numerous measurements of delayed neutron spectra for various delayed neutron precursors have been performed and reported in the literature. However, for application in reactor physics calculations, these spectra are usually lumped into one of the traditional six groups of delayed neutrons in accordance to theirmore » half-lives. Subsequently, these six-group spectra are binned into energy intervals corresponding to the energy intervals of a chosen nuclear cross-section set. In this work, the authors present a set of delayed neutron spectra that were formulated specifically to match Keepin`s six-group parameters and the 16-energy-group Hansen-Roach cross sections.« less
Leoni, Giovanni Giuseppe; Palmerini, Maria Grazia; Satta, Valentina; Succu, Sara; Pasciu, Valeria; Zinellu, Angelo; Carru, Ciriaco; Macchiarelli, Guido; Nottola, Stefania Annarita; Naitana, Salvatore; Berlinguer, Fiammetta
2015-01-01
Our aim is to verify if oocyte developmental potential is related to the timing of meiotic progression and to mitochondrial distribution and activity using prepubertal and adult oocytes as models of low and high developmental capacity respectively. Prepubertal and adult oocytes were incorporated in an in vitro maturation system to determine meiotic and developmental competence and to assess at different time points kinetic of meiotic maturation, 2D protein electrophoresis patterns, ATP content and mitochondria distribution. Maturation and fertilization rates did not differ between prepubertal and adult oocytes (95.1% vs 96.7% and 66.73% vs 70.62% respectively for prepubertal and adult oocytes). Compared to adults, prepubertal oocytes showed higher parthenogenesis (17.38% vs 2.08% respectively in prepubertals and adults; P<0.01) and polispermy (14.30% vs 2.21% respectively in prepubertals and adults; P<0.01), lower cleavage rates (60.00% vs 67.08% respectively in prepubertals and adults; P<0.05) and blastocyst output (11.94% vs 34.% respectively in prepubertals and adults; P<0.01). Prepubertal oocytes reached MI stage 1 hr later than adults and this delay grows as the first meiotic division proceeds. Simultaneously, the protein pattern was altered since in prepubertal oocytes it fluctuates, dropping and rising to levels similar to adults only at 24 hrs. In prepubertal oocytes ATP rise is delayed and did not reach levels comparable to adult ones. CLSM observations revealed that at MII, in the majority of prepubertal oocytes, the active mitochondria are homogenously distributed, while in adults they are aggregated in big clusters. Our work demonstrates that mitochondria and their functional aggregation during maturation play an active role to provide energy in terms of ATP. The oocyte ATP content determines the timing of the meiotic cycle and the acquisition of developmental competence. Taken together our data suggest that oocytes with low developmental competence have a slowed down energetic metabolism which delays later development. PMID:25893245
Trehalose delays the reversible but not the irreversible thermal denaturation of cutinase.
Baptista, R P; Cabral, J M; Melo, E P
2000-12-20
The effect of trehalose (0.5 M) on the thermal stability of cutinase in the alkaline pH range was studied. The thermal unfolding induced by increasing temperature was analyzed in the absence and in the presence of trehalose according to a two-state model (which assumes that only the folded and unfolded states of cutinase were present). Trehalose delays the reversible unfolding. The midpoint temperature of the unfolding transition (Tm) increases by 4.0 degrees C and 2. 6 degrees C at pH 9.2 and 10.5, respectively, in the presence of trehalose. At pH 9.2 the thermal unfolding occurs at higher temperatures (Tm is 52.6 degrees C compared to 42.0 degrees C at pH 10.5) and a refolding yield of around 80% was obtained upon cooling. This pH value was chosen to study the irreversible inactivation (long-term stability) of cutinase. Temperatures in the transition range from folded to unfolded state were selected and the rate constants of irreversible inactivation determined. Inactivation followed first-order kinetics and trehalose reduced the observed rate constants of inactivation, pointing to a stabilizing effect on the irreversible inactivation step of thermal denaturation. However, if the contribution of reversible unfolding on the irreversible inactivation of cutinase was taken into account, i.e., considering the fraction of cutinase molecules in the reversible unfolded conformation, the intrinsic rate constants can be calculated. Based on the intrinsic rate constants it was concluded that trehalose does not delay the irreversible inactivation. This conclusion was further supported by comparing the activation energy of the irreversible inactivation in the absence and in the presence of trehalose. The apparent activation energy in the absence and in the presence of trehalose were 67 and 99 Kcal/mol, respectively. The activation energy calculated from intrinsic rate constants was higher in the absence (30 Kcal/mol) than in the presence of trehalose (16 Kcal/mol), showing that kinetics of the irreversible inactivation step increased in the presence of trehalose. In fact, trehalose stabilized only the reversible step of thermal denaturation of cutinase.
Pineda, F D; Medved, M; Fan, X; Ivancevic, M K; Abe, H; Shimauchi, A; Newstead, G M
2015-01-01
Objective: To compare dynamic contrast-enhanced (DCE) MRI parameters from scans of breast lesions at 1.5 and 3.0 T. Methods: 11 patients underwent paired MRI examinations in both Philips 1.5 and 3.0 T systems (Best, Netherlands) using a standard clinical fat-suppressed, T1 weighted DCE-MRI protocol, with 70–76 s temporal resolution. Signal intensity vs time curves were fit with an empirical mathematical model to obtain semi-quantitative measures of uptake and washout rates as well as time-to-peak enhancement (TTP). Maximum percent enhancement and signal enhancement ratio (SER) were also measured for each lesion. Percent differences between parameters measured at the two field strengths were compared. Results: TTP and SER parameters measured at 1.5 and 3.0 T were similar; with mean absolute differences of 19% and 22%, respectively. Maximum percent signal enhancement was significantly higher at 3 T than at 1.5 T (p = 0.006). Qualitative assessment showed that image quality was significantly higher at 3 T (p = 0.005). Conclusion: Our results suggest that TTP and SER are more robust to field strength change than other measured kinetic parameters, and therefore measurements of these parameters can be more easily standardized than measurements of other parameters derived from DCE-MRI. Semi-quantitative measures of overall kinetic curve shape showed higher reproducibility than do discrete classification of kinetic curve early and delayed phases in a majority of the cases studied. Advances in knowledge: Qualitative measures of curve shape are not consistent across field strength even when acquisition parameters are standardized. Quantitative measures of overall kinetic curve shape, by contrast, have higher reproducibility. PMID:25785918
Lifschitz, A; Virkel, G; Pis, A; Imperiale, F; Sanchez, S; Alvarez, L; Kujanek, R; Lanusse, C
1999-10-01
Slight differences in formulation may change the plasma kinetics and ecto-endoparasiticide activity of endectocide compounds. This work reports on the disposition kinetics and plasma availability of ivermectin (IVM) after subcutaneous (SC) and intramuscular (IM) administration as an oil-based formulation to cattle. Parasite-free Aberdeen Angus calves (n = 24; 240-280 kg) were divided into three groups (n = 8) and treated (200 microg/kg) with either an IVM oil-based pharmaceutical preparation (IVM-TEST formulation) (Bayer Argentina S.A.) given by subcutaneous (Group A) and intramuscular (Group B) injections or the IVM-CONTROL (non-aqueous formulation) (Ivomec, MSD Agvet) subcutaneously administered (Group C). Blood samples were taken over 35 days post-treatment and the recovered plasma was extracted and analyzed by HPLC using fluorescence detection. IVM was detected in plasma between 12 h and 35 days post-administration of IVM-TEST (SC and IM injections) and IVM-CONTROL formulations. Prolonged IVM absorption half-life (p < 0.05) and delayed peak plasma concentration (p < 0.001) were obtained following the SC administration of the IVM-TEST compared to the IVM-CONTROL formulation. No differences in total plasma availability were observed among treatments. However, the plasma residence time and elimination half-life of IVM were significantly longer after injection of the IVM-TEST formulation. IVM plasma concentrations were above 0.5 ng/ml for 20.6 (CONTROL) and 27.5 days (IVM-TEST SC), respectively (p < 0.05). The modified kinetic behaviour of IVM obtained after the administration of the novel oil-based formulation examined in this trial, compared to the standard preparation, may positively impact on its strategic use in cattle.
Initiation and Modification of Reaction by Energy Addition: Kinetic and Transport Phenomena
1990-10-01
ignition- delay time ranges from about 2 to 100 ps. The results of a computer- modeling calcu- lation of the chemical kinetics suggest that the...Page PROGRAM INFORMATION iii 1.0 RESEARCH OBJECTIVES 2.0 ANALYSIS 2 3.0 EXPERIMENT 7 REFERENCES 8 APPENDIX I. Evaluating a Simple Model for Laminar...Flame-Propagation I-1 Rates. I. Planar Geometry. APPENDIX II. Evaluating a Simple Model for Laminar-Flame-Propagation II-1 Rates. II. Spherical
Parameter estimation and order selection for an empirical model of VO2 on-kinetics.
Alata, O; Bernard, O
2007-04-27
In humans, VO2 on-kinetics are noisy numerical signals that reflect the pulmonary oxygen exchange kinetics at the onset of exercise. They are empirically modelled as a sum of an offset and delayed exponentials. The number of delayed exponentials; i.e. the order of the model, is commonly supposed to be 1 for low-intensity exercises and 2 for high-intensity exercises. As no ground truth has ever been provided to validate these postulates, physiologists still need statistical methods to verify their hypothesis about the number of exponentials of the VO2 on-kinetics especially in the case of high-intensity exercises. Our objectives are first to develop accurate methods for estimating the parameters of the model at a fixed order, and then, to propose statistical tests for selecting the appropriate order. In this paper, we provide, on simulated Data, performances of Simulated Annealing for estimating model parameters and performances of Information Criteria for selecting the order. These simulated Data are generated with both single-exponential and double-exponential models, and noised by white and Gaussian noise. The performances are given at various Signal to Noise Ratio (SNR). Considering parameter estimation, results show that the confidences of estimated parameters are improved by increasing the SNR of the response to be fitted. Considering model selection, results show that Information Criteria are adapted statistical criteria to select the number of exponentials.
NASA Astrophysics Data System (ADS)
Akdag, Selahattin; Karakus, Murat; Taheri, Abbas; Nguyen, Giang; Manchao, He
2018-06-01
Strain burst is a common problem encountered in brittle rocks in deep, high-stress mining applications. Limited research focuses on the effects of temperature on the strain burst mechanism and the kinetic energies of rocks. This study aims to investigate the effects of thermal damage on the strain burst characteristics of brittle rocks under true-triaxial loading-unloading conditions using the acoustic emission (AE) and kinetic energy analyses. The time-domain and frequency-domain responses related to strain burst were studied, and the damage evolution was quantified by b-values, cumulative AE energy and events rates. The ejection velocities of the rock fragments from the free face of the granite specimens were used to calculate kinetic energies. The experimental results showed that thermal damage resulted in a delay in bursting but increased the bursting rate at 95% of normalised stress level. This is believed to be due to the micro-cracks induced by temperature exposure, and thus the accumulated AE energy (also supported by cumulative AE counts) at the initial loading stage was reduced, causing a delay in bursting. The strain burst stress, initial rock fragment ejection velocity, and kinetic energy decreased from room temperature (25 °C) to 100 °C, whereas they resulted in a gradual rise from 100 to 150 °C demonstrating more intense strain burst behaviour.
Kinetics of transient electroluminescence in organic light emitting diodes
NASA Astrophysics Data System (ADS)
Shukla, Manju; Kumar, Pankaj; Chand, Suresh; Brahme, Nameeta; Kher, R. S.; Khokhar, M. S. K.
2008-08-01
Mathematical simulation on the rise and decay kinetics of transient electroluminescence (EL) in organic light emitting diodes (OLEDs) is presented. The transient EL is studied with respect to a step voltage pulse. While rising, for lower values of time, the EL intensity shows a quadratic dependence on (t - tdel), where tdel is the time delay observed in the onset of EL, and finally attains saturation at a sufficiently large time. When the applied voltage is switched off, the initial EL decay shows an exponential dependence on (t - tdec), where tdec is the time when the voltage is switched off. The simulated results are compared with the transient EL performance of a bilayer OLED based on small molecular bis(2-methyl 8-hydroxyquinoline)(triphenyl siloxy) aluminium (SAlq). Transient EL studies have been carried out at different voltage pulse amplitudes. The simulated results show good agreement with experimental data. Using these simulated results the lifetime of the excitons in SAlq has also been calculated.
Modeling and Classification of Kinetic Patterns of Dynamic Metabolic Biomarkers in Physical Activity
Breit, Marc; Netzer, Michael
2015-01-01
The objectives of this work were the classification of dynamic metabolic biomarker candidates and the modeling and characterization of kinetic regulatory mechanisms in human metabolism with response to external perturbations by physical activity. Longitudinal metabolic concentration data of 47 individuals from 4 different groups were examined, obtained from a cycle ergometry cohort study. In total, 110 metabolites (within the classes of acylcarnitines, amino acids, and sugars) were measured through a targeted metabolomics approach, combining tandem mass spectrometry (MS/MS) with the concept of stable isotope dilution (SID) for metabolite quantitation. Biomarker candidates were selected by combined analysis of maximum fold changes (MFCs) in concentrations and P-values resulting from statistical hypothesis testing. Characteristic kinetic signatures were identified through a mathematical modeling approach utilizing polynomial fitting. Modeled kinetic signatures were analyzed for groups with similar behavior by applying hierarchical cluster analysis. Kinetic shape templates were characterized, defining different forms of basic kinetic response patterns, such as sustained, early, late, and other forms, that can be used for metabolite classification. Acetylcarnitine (C2), showing a late response pattern and having the highest values in MFC and statistical significance, was classified as late marker and ranked as strong predictor (MFC = 1.97, P < 0.001). In the class of amino acids, highest values were shown for alanine (MFC = 1.42, P < 0.001), classified as late marker and strong predictor. Glucose yields a delayed response pattern, similar to a hockey stick function, being classified as delayed marker and ranked as moderate predictor (MFC = 1.32, P < 0.001). These findings coincide with existing knowledge on central metabolic pathways affected in exercise physiology, such as β-oxidation of fatty acids, glycolysis, and glycogenolysis. The presented modeling approach demonstrates high potential for dynamic biomarker identification and the investigation of kinetic mechanisms in disease or pharmacodynamics studies using MS data from longitudinal cohort studies. PMID:26317529
Koga, S; Wüst, R C I; Walsh, B; Kindig, C A; Rossiter, H B; Hogan, M C
2013-01-01
Precise determination of the effect of muscle temperature (T(m)) on mitochondrial oxygen consumption kinetics has proven difficult in humans, in part due to the complexities in controlling for T(m)-related variations in blood flow, fiber recruitment, muscle metabolism, and contractile properties. To address this issue, intracellular Po(2) (P(i)(O(2))) was measured continuously by phosphorescence quenching following the onset of contractions in single Xenopus myofibers (n = 24) while controlling extracellular temperature. Fibers were subjected to two identical contraction bouts, in random order, at 15°C (cold, C) and 20°C (normal, N; n = 12), or at N and 25°C (hot, H; n = 12). Contractile properties were determined for every contraction. The time delay of the P(i)(O(2)) response was significantly greater in C (59 ± 35 s) compared with N (35 ± 26 s, P = 0.01) and H (27 ± 14 s, P = 0.01). The time constant for the decline in P(i)(O(2)) was significantly greater in C (89 ± 34 s) compared with N (52 ± 15 s; P < 0.01) and H (37 ± 10 s; P < 0.01). There was a linear relationship between the rate constant for P(i)(O(2)) kinetics and T(m) (r = 0.322, P = 0.03). Estimated ATP turnover was significantly greater in H than in C (P < 0.01), but this increased energy requirement alone with increased T(m) could not account for the differences observed in P(i)(O(2)) kinetics among conditions. These results demonstrate that P(i)(O(2)) kinetics in single contracting myofibers are dependent on T(m), likely caused by temperature-induced differences in metabolic demand and by temperature-dependent processes underlying mitochondrial activation at the start of muscle contractions.
Kim, Paul Y.; Vu, Trang T.; Leslie, Beverly A.; Stafford, Alan R.; Fredenburgh, James C.; Weitz, Jeffrey I.
2014-01-01
Fibrin (Fn) clots formed from γ′-fibrinogen (γ′-Fg), a variant with an elongated γ-chain, are resistant to lysis when compared with clots formed from the predominant γA-Fg, a finding previously attributed to differences in clot structure due to delayed thrombin-mediated fibrinopeptide (FP) B release or impaired cross-linking by factor XIIIa. We investigated whether slower lysis of γ′-Fn reflects delayed plasminogen (Pg) binding and/or activation by tissue plasminogen activator (tPA), reduced plasmin-mediated proteolysis of γ′-Fn, and/or altered cross-linking. Clots formed from γ′-Fg lysed more slowly than those formed from γA-Fg when lysis was initiated with tPA/Pg when FPA and FPB were both released, but not when lysis was initiated with plasmin, or when only FPA was released. Pg bound to γ′-Fn with an association rate constant 22% lower than that to γA-Fn, and the lag time for initiation of Pg activation by tPA was longer with γ′-Fn than with γA-Fn. Once initiated, however, Pg activation kinetics were similar. Factor XIIIa had similar effects on clots formed from both Fg isoforms. Therefore, slower lysis of γ′-Fn clots reflects delayed FPB release, which results in delayed binding and activation of Pg. When clots were formed from Fg mixtures containing more than 20% γ′-Fg, the upper limit of the normal level, the delay in lysis was magnified. These data suggest that circulating levels of γ′-Fg modulate the susceptibility of clots to lysis by slowing Pg activation by tPA and provide another example of the intimate connections between coagulation and fibrinolysis. PMID:25128532
Bioinspired co-crystals of Imatinib providing enhanced kinetic solubility.
Reggane, Maude; Wiest, Johannes; Saedtler, Marco; Harlacher, Cornelius; Gutmann, Marcus; Zottnick, Sven H; Piechon, Philippe; Dix, Ina; Müller-Buschbaum, Klaus; Holzgrabe, Ulrike; Meinel, Lorenz; Galli, Bruno
2018-05-04
Realizing the full potential of co-crystals enhanced kinetic solubility demands a comprehensive understanding of the mechanisms of dissolution, phase conversion, nucleation and crystal growth, and of the complex interplay between the active pharmaceutical ingredient (API), the coformer and co-existing forms in aqueous media. One blueprint provided by nature to keep poorly water-soluble bases in solution is the complexation with phenolic acids. Consequently, we followed a bioinspired strategy for the engineering of co-crystals of a poorly water-soluble molecule - Imatinib - with a phenolic acid, syringic acid (SYA). The dynamics of dissolution and solution-mediated phase transformations were monitored by Nuclear Magnetic Resonance (NMR) spectroscopy, providing mechanistic insights into the 60 fold-increased long lasting concentrations achieved by the syringate co-crystals as compared to Imatinib base and Imatinib mesylate. This lasting effect was linked to SYA's ability to delay the formation and nucleation of Imatinib hydrate - the thermodynamically stable form in aqueous media - through a metastable association of SYA with Imatinib in solution. Results from permeability studies evidenced that SYA did not impact Imatinib's permeability across membranes while suggesting improved bioavailability through higher kinetic solubility at the biological barriers. These results reflect that some degree of hydrophobicity of the coformer might be key to extend the kinetic solubility of co-crystals with hydrophobic APIs. Understanding how kinetic supersaturation can be shaped by the selection of an interactive coformer may help achieving the needed performance of new forms of poorly water-soluble, slowly dissolving APIs. Copyright © 2018. Published by Elsevier B.V.
Differentiation of Dictyostelium discoideum vegetative cells into spores during earth orbit in space
NASA Astrophysics Data System (ADS)
Takahashi, A.; Ohnishi, K.; Takahashi, S.; Masukawa, M.; Sekikawa, K.; Amano, T.; Nakano, T.; Nagaoka, S.; Ohnishi, T.
2001-01-01
We reported previously that emerged amoebae of Dictyosterium ( D.) discoideum grew, aggregated and differentiated to fruiting bodies with normal morphology in space. Here, we investigated the effects of space radiation and/or microgravity on the number, viability, kinetics of germination, growth rate and mutation frequency of spores formed in space in a radiation-sensitive strain, γs13, and the parental strain, NC4. In γs13, there were hardly spores in the fruiting bodies formed in space. In NC4, we found a decrease in the number of spores, a delay in germination of the spores and delayed start of cell growth of the spores formed in space when compared to the ground control. However, the mutation frequency of the NC4 spores formed in space was similar to that of the ground control. We conclude that the depression of spore formation might be induced by microgravity and/or space radiation through the depression of some stage(s) of DNA repair during cell differentiation in the slime mold.
Bell, C; Paterson, D H; Kowalchuk, J M; Padilla, J; Cunningham, D A
2001-09-01
We compared estimates for the phase 2 time constant (tau) of oxygen uptake (VO2) during moderate- and heavy-intensity exercise, and the slow component of VO2 during heavy-intensity exercise using previously published exponential models. Estimates for tau and the slow component were different (P < 0.05) among models. For moderate-intensity exercise, a two-component exponential model, or a mono-exponential model fitted from 20 s to 3 min were best. For heavy-intensity exercise, a three-component model fitted throughout the entire 6 min bout of exercise, or a two-component model fitted from 20 s were best. When the time delays for the two- and three-component models were equal the best statistical fit was obtained; however, this model produced an inappropriately low DeltaVO2/DeltaWR (WR, work rate) for the projected phase 2 steady state, and the estimate of phase 2 tau was shortened compared with other models. The slow component was quantified as the difference between VO2 at end-exercise (6 min) and at 3 min (DeltaVO2 (6-3 min)); 259 ml x min(-1)), and also using the phase 3 amplitude terms (truncated to end-exercise) from exponential fits (409-833 ml x min(-1)). Onset of the slow component was identified by the phase 3 time delay parameter as being of delayed onset approximately 2 min (vs. arbitrary 3 min). Using this delay DeltaVO2 (6-2 min) was approximately 400 ml x min(-1). Use of valid consistent methods to estimate tau and the slow component in exercise are needed to advance physiological understanding.
NASA Astrophysics Data System (ADS)
Turner, Andrew
2014-05-01
In this study we examine monsoon onset characteristics in 20th century historical and AMIP integrations of the CMIP5 multi-model database. We use a period of 1979-2005, common to both the AMIP and historical integrations. While all available observed boundary conditions, including sea-surface temperature (SST), are prescribed in the AMIP integrations, the historical integrations feature ocean-atmosphere models that generate SSTs via air-sea coupled processes. The onset of Indian monsoon rainfall is shown to be systematically earlier in the AMIP integrations when comparing groups of models that provide both experiments, and in the multi-model ensemble means for each experiment in turn. We also test some common circulation indices of the monsoon onset including the horizontal shear in the lower troposphere and wind kinetic energy. Since AMIP integrations are forced by observed SSTs and CMIP5 models are known to have large cold SST biases in the northern Arabian Sea during winter and spring that limits their monsoon rainfall, we relate the delayed onset in the coupled historical integrations to cold Arabian Sea SST biases. This study provides further motivation for solving cold SST biases in the Arabian Sea in coupled models.
Shock tube and chemical kinetic modeling study of the oxidation of 2,5-dimethylfuran.
Sirjean, Baptiste; Fournet, René; Glaude, Pierre-Alexandre; Battin-Leclerc, Frédérique; Wang, Weijing; Oehlschlaeger, Matthew A
2013-02-21
A detailed kinetic model describing the oxidation of 2,5-dimethylfuran (DMF), a potential second-generation biofuel, is proposed. The kinetic model is based upon quantum chemical calculations for the initial DMF consumption reactions and important reactions of intermediates. The model is validated by comparison to new DMF shock tube ignition delay time measurements (over the temperature range 1300-1831 K and at nominal pressures of 1 and 4 bar) and the DMF pyrolysis speciation measurements of Lifshitz et al. [ J. Phys. Chem. A 1998 , 102 ( 52 ), 10655 - 10670 ]. Globally, modeling predictions are in good agreement with the considered experimental targets. In particular, ignition delay times are predicted well by the new model, with model-experiment deviations of at most a factor of 2, and DMF pyrolysis conversion is predicted well, to within experimental scatter of the Lifshitz et al. data. Additionally, comparisons of measured and model predicted pyrolysis speciation provides validation of theoretically calculated channels for the oxidation of DMF. Sensitivity and reaction flux analyses highlight important reactions as well as the primary reaction pathways responsible for the decomposition of DMF and formation and destruction of key intermediate and product species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laskin, Julia
In this work, resonant ejection coupled with surface-induced dissociation (SID) in a Fourier transform ion cyclotron resonance mass spectrometer is used to examine fragmentation kinetics of two singly protonated hexapeptides, RYGGFL and KYGGFL, containing the basic arginine residue and less basic lysine residue at the N-terminus. The kinetics of individual reaction channels at different collision energies are probed by applying a short ejection pulse (1 ms) in resonance with the cyclotron frequency of a selected fragment ion and varying the delay time between ion-surface collision and resonant ejection while keeping total reaction delay time constant. Rice-Ramsperger-Kassel-Marcus (RRKM) modeling of themore » experimental data provides accurate threshold energies and activation entropies of individual reaction channels. Substitution of arginine with less basic lysine has a pronounced effect on the observed fragmentation kinetics of several pathways, including the b2 ion formation, but has little or no effect on formation of the b5+H2O fragment ion. The combination of resonant ejection SID, time- and collision energy-resolved SID, and RRKM modeling of both types of experimental data provides a detailed mechanistic understanding of the primary dissociation pathways of complex gaseous ions.« less
Initiation characteristics of wedge-induced oblique detonation waves in turbulence flows
NASA Astrophysics Data System (ADS)
Yu, Moyao; Miao, Shikun
2018-06-01
The initiation features of wedge-induced oblique detonation waves (ODWs) in supersonic turbulence flows are studied with numerical simulations based on the SST k-ω model. The results show that the ignition delays are smaller in turbulence flows which results in a decrease in the initiation lengths of ODWs, and the initiation length decreases with the increase of the turbulence intensity. The effects of turbulence on the initiation limits of ODWs are analyzed with the energetic limit and the kinetic limit. It is shown that the initiation limit is not affected by the energetic limit, but affected by the kinetic limit. Because the ignition delay decreases in a turbulence flow, the kinetic limit is more easily to be fulfilled. Therefore, the initiation limit decreases with the increase of the turbulence intensity, that is to say, ODWs in strongly turbulent flows are more easily to be initiated. Besides, the transition structures of ODWs are investigated and the results show that for the same inflow condition, transition structures of ODWs in strongly turbulent flows are smooth while it is abrupt in an inviscid or slightly turbulent flow, and the reasons are discussed.
Hydrogen and Ethene Plasma Assisted Ignition by NS discharge at Elevated Temperatures
NASA Astrophysics Data System (ADS)
Starikovskiy, Andrey
2015-09-01
The kinetics of ignition in lean H2:O2:Ar and C2H4:O2:Ar mixtures has been studied experimentally and numerically after a high-voltage nanosecond discharge. The ignition delay time behind a reflected shock wave was measured with and without the discharge. It was shown that the initiation of the discharge with a specific deposited energy of 10 - 30 mJ/cm3 leads to an order of magnitude decrease in the ignition delay time. Discharge processes and following chain chemical reactions with energy release were simulated. The generation of atoms, radicals and excited and charged particles was numerically simulated using the measured time - resolved discharge current and electric field in the discharge phase. The calculated densities of the active particles were used as input data to simulate plasma-assisted ignition. Good agreement was obtained between the calculated ignition delay times and the experimental data. It follows from the analysis of the calculated results that the main mechanism of the effect of gas discharge on the ignition of hydrocarbons is the electron impact dissociation of O2 molecules in the discharge phase. Detailed kinetic mechanism for plasma assisted ignition of hydrogen and ethene is elaborated and verified.
Hydrogen pickup mechanism of zirconium alloys
NASA Astrophysics Data System (ADS)
Couet, Adrien
Although the optimization of zirconium based alloys has led to significant improvements in hydrogen pickup and corrosion resistance, the mechanisms by which such alloy improvements occur are still not well understood. In an effort to understand such mechanisms, a systematic study of the alloy effect on hydrogen pickup is conducted, using advanced characterization techniques to rationalize precise measurements of hydrogen pickup. The hydrogen pick-up fraction is accurately measured for a specially designed set of commercial and model alloys to investigate the effects of alloying elements, microstructure and corrosion kinetics on hydrogen uptake. Two different techniques to measure hydrogen concentrations were used: a destructive technique, Vacuum Hot Extraction, and a non-destructive one, Cold Neutron Prompt Gamma Activation Analysis. The results indicate that hydrogen pickup varies not only from alloy to alloy but also during the corrosion process for a given alloy. For instance Zircaloy type alloys show high hydrogen pickup fraction and sub-parabolic oxidation kinetics whereas ZrNb alloys show lower hydrogen pickup fraction and close to parabolic oxidation kinetics. Hypothesis is made that hydrogen pickup result from the need to balance charge during the corrosion reaction, such that the pickup of hydrogen is directly related to (and indivisible of) the corrosion mechanism and decreases when the rate of electron transport or oxide electronic conductivity sigmao xe through the protective oxide increases. According to this hypothesis, alloying elements (either in solid solution or in precipitates) embedded in the oxide as well as space charge variations in the oxide would impact the hydrogen pick-up fraction by modifying sigmaox e, which drives oxidation and hydriding kinetics. Dedicated experiments and modelling were performed to assess and validate these hypotheses. In-situ electrochemical impedance spectroscopy (EIS) experiments were performed on Zircaloy-4 tubes to directly measure the evolution of sigma oxe as function of exposure time. The results show that sigmao xe decreases as function of exposure time and that its variations are directly correlated to the instantaneous hydrogen pickup fraction variations. The electron transport through the oxide layer is thus altered as the oxide grows, reasons for which are yet to be exactly determined. Preliminary results also show that sigma oxe of ZrNb alloys would be much higher compared with Zircaloy-4. Thus, it is confirmed that sigmaox e is a key parameter in the hydrogen and oxidation mechanism. Because the mechanism whereby alloying elements are incorporated into the oxide layer is critical to changing sigmao xe, the evolution of the oxidation state of two common alloying elements, Fe and Nb, when incorporated into the growing oxide layers is investigated using X-Ray Absorption Near-Edge Spectroscopy (XANES) using micro-beam synchrotron radiation on cross sectional oxide samples. The results show that the oxidation of both Fe and Nb is delayed in the oxide layer compared to that of Zr, and that this oxidation delay is related to the variations of the instantaneous hydrogen pick-up fraction with exposure time. The evolution of Nb oxidation as function of oxide depth is also compatible with space charge compensation in the oxide and with an increase in sigmaox e of ZrNb alloys compared to Zircaloys. Finally, various successively complex models from the well-known Wagner oxidation theory to the more complex effect of space charge on oxidation kinetics have been developed. The general purpose of the modeling effort is to provide a rationale for the sub-parabolic oxidation kinetics and demonstrate the correlation with hydrogen pickup fraction. It is directly demonstrated that parabolic oxidation kinetics is associated with high sigmao xe and low space charges in the oxide whereas sub-parabolic oxidation kinetics is associated with lower sigmaox e and higher space charge in the oxide. All these observations helped us to propose a general corrosion mechanism of zirconium alloys involving both oxidation and hydrogen pickup mechanism to better understand and predict the effect of alloying additions on the behavior of zirconium alloys.
Berrah, Nora; Fang, Li; Murphy, Brendan F.; ...
2016-05-20
We built a two-mirror based X-ray split and delay (XRSD) device for soft X-rays at the Linac Coherent Light Source free electron laser facility. The instrument is based on an edge-polished mirror design covering an energy range of 250 eV-1800 eV and producing a delay between the two split pulses variable up to 400 femtoseconds with a sub-100 attosecond resolution. We present experimental and simulation results regarding molecular dissociation dynamics in CH3I and CO probed by the XRSD device. In conclusion, we observed ion kinetic energy and branching ratio dependence on the delay times which were reliably produced by themore » XRSD instrument.« less
Faria-E-Silva, André L; Pfeifer, Carmem S
2017-10-01
1) to determine the moment during the redox polymerization reaction of dual cure cements at which to photo-activate the material in order to reduce the polymerization stress, and 2) to evaluate possible synergistic effects between adding chain transfer agents and delayed photo-activation. The two pastes of an experimental dual-cure material were mixed, and the polymerization kinetics of the redox phase was followed. The moment when the material reached its maximum rate of redox polymerization (MRRP) of cement was determined. The degree of conversion (DC) and maximum rates of polymerization (Rp max ) were assessed for materials where: the photoactivation immediately followed material mixing, at MRRP, 1min before and 1min after MRRP. Thio-urethane (TU) additives were synthesized and added to the cement (20% wt), which was then cured under the same conditions. The polymerization kinetics was evaluated for both cements photo-activated immediately or at MRRP, followed by measurements of polymerization stress, flexural strength (FS) and elastic modulus (EM). Knoop hardness was measured before and after ethanol storage. Photo-activating the cement at or after MRRP reduced the Rp max and the polymerization stress. Addition of TU promoted additional and more significant reduction, while not affecting the Rp max . Greater hardness loss was observed for cements with TU, but the final hardness was similar for all experimental conditions. Addition of TU slightly reduced the EM and did not affect the FS. Delayed photo-activation and addition of TU significantly reduce the polymerization stress of dual-cured cements. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hauswirth, O.; Noble, D.; Tsien, R. W.
1972-01-01
1. Experiments on sheep Purkinje fibres were designed to determine whether the current mechanisms responsible for delayed rectification at the pace-maker (negative to -50 mV) and plateau (positive to -50 mV) ranges of potential are kinetically separable and independent. 2. Hyperpolarizations from the plateau range were shown to produce decay of a single component of outward current within the plateau range, but two components were evident when the hyperpolarizations entered the pace-maker range. 3. The time courses of recovery of the two components were too similar at -25 mV to allow temporal resolution at this potential. Clear temporal resolution was, however, possible at potentials between -55 and -95 mV. An indirect method of resolving the two components at -25 mV was used. 4. The kinetic properties of the two components correspond to those previously described for the pace-maker potassium current, iK2, and the outward plateau current, ix1 (Noble & Tsien, 1968, 1969a). 5. The instantaneous (fully activated) current—voltage relation for iK2 was reconstructed from the analysed current records. It was found that this relation shows a negative slope conductance at all potentials positive to -75 mV and that the current tends towards zero at zero membrane potential. 6. The results are compared with those predicted by two reaction models of the iK2 and ix1 mechanisms. It is concluded that iK2 and ix1 are kinetically separable but that it is not possible with present techniques to decide whether they are controlled by the same or completely independent membrane structures. It is also shown that the instantaneous current—voltage relation calculated for iK2 does not depend on whether the controlling mechanisms are assumed to be independent or linked. PMID:4679715
Low-level laser therapy improves the VO2 kinetics in competitive cyclists.
Lanferdini, Fábio J; Krüger, Renata L; Baroni, Bruno M; Lazzari, Caetano; Figueiredo, Pedro; Reischak-Oliveira, Alvaro; Vaz, Marco A
2018-04-01
Some evidence supports that low-level laser therapy (LLLT) reduces neuromuscular fatigue, so incrementing sports performance. A previous randomized controlled trial of our group showed increased exercise tolerance in male competitive cyclists treated with three different LLLT doses (3, 6, and 9 J/diode; or 135, 270, and 405 J/thigh) before time-to-exhaustion cycling tests. Now, the present study was designed to evaluate the effects of these LLLT doses on the VO 2 kinetics of athletes during cycling tests. Twenty male competitive cyclists (29 years) participated in a crossover, randomized, double-blind, and placebo-controlled trial. On the first day, the participants performed an incremental cycling test to exhaustion to determine maximal oxygen uptake (VO 2MAX ) and maximal power output (PO MAX ), as well as a familiarization with the time-to-exhaustion test. In the following days (2 to 5), all participants performed time-to-exhaustion tests at PO MAX . Before the exhaustion test, different doses of LLLT (3, 6, and 9 J/diode; or 135, 270, and 405 J/thigh, respectively) or placebo were applied bilaterally to the quadriceps muscle. All exhaustion tests were monitored online by an open-circuit spirometry system in order to analyze the VO 2 amplitude, VO 2 delay time, time constant (tau), and O 2 deficit. Tau and O 2 deficit were decreased with LLLT applications compared to the placebo condition (p < 0.05). No differences (p > 0.05) were found between the experimental conditions for VO 2 amplitude and VO 2 delay time. In conclusion, LLLT decreases tau and O 2 deficit during time-to-exhaustion tests in competitive cyclists, and these changes in VO 2 kinetics response can be one of the possible mechanisms to explain the ergogenic effect induced by LLLT.
Deng, Fan; Blumhoff, Jörg; Castellano, Felix N
2013-05-30
Noncoherent sensitized green-to-near-visible upconversion has been achieved utilizing palladium(II) octaethylporphyrin (PdOEP) as the triplet sensitizer and anthracene as the energy acceptor/annihilator in vacuum degassed toluene. Selective 547 nm excitation of PdOEP with incident irradiance as low as 600 μW/cm(2) results in the observation of anthryl fluorescence at higher energy. Stern-Volmer analysis of the dynamic phosphorescence quenching of PdOEP by anthracene possesses an extremely large K(SV) of 810,000 M(-1), yielding a triplet-triplet energy transfer quenching constant of 3.3 × 10(9) M(-1) s(-1). Clear evidence for the subsequent triplet-triplet annihilation (TTA) of anthracene was afforded by numerous experiments, one of the most compelling was an excitation scan illustrating that the Q-band absorption features of PdOEP are solely responsible for sensitizing the anti-Stokes fluorescence. The upconverted emission intensity with respect to the excitation power was shown to vary between quadratic and linear using either coherent or noncoherent light sources, illustrating the expected kinetic limits for the light producing photochemistry under continuous wave illumination. Time-resolved experiments directly comparing the total integrated anthracene intensity/time fluorescence data produced through upconversion (λ(ex) = 547 nm, delayed signal) and with direct excitation (λ(ex) = 355 nm, prompt signal) under conditions where the laser pulse is completely absorbed by the sample reveal annihilation efficiencies of approximately 40%. Similarly, the delayed fluorescence kinetic analysis reported by Schmidt and co-workers (J. Phys. Chem. Lett. 2010, 1, 1795-1799) was used to reveal the maximum possible efficiency from a model red-to-yellow upconverting composition and this treatment was applied to the anthryl triplet absorption decay transients of anthracene measured for the PdOEP/anthracene composition at 430 nm. From this analysis approximately 50% of the anthryl triplets that decay by TTA produce singlet fluorescence, consistent with the notion that annihilation spin statistics does not impose efficiency limits on upconversion photochemistry.
Kinetics of oxygen atom formation during the oxidation of methane behind shock waves
NASA Technical Reports Server (NTRS)
Jachimowski, C. J.
1974-01-01
An experimental and analytical study of the formation of oxygen atoms during the oxidation of methane and methane-hydrogen mixtures behind incident shock waves was carried out over the temperature range 1790-2584 K at reaction pressures between 1.2 and 1.7 atm. Oxygen atom levels were determined indirectly by measurement of emission from reaction of O with CO. On the basis of these data and ignition-delay data reported in the literature, a kinetic scheme for methane oxidation was assembled. The proposed kinetic mechanism, in general, predicts higher peak oxygen atom levels than the current oxidation mechanisms proposed by Bowman and Seery and by Skinner and his co-workers.
Analysis of the FeCrAl Accident Tolerant Fuel Concept Benefits during BWR Station Blackout Accidents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robb, Kevin R
2015-01-01
Iron-chromium-aluminum (FeCrAl) alloys are being considered for fuel concepts with enhanced accident tolerance. FeCrAl alloys have very slow oxidation kinetics and good strength at high temperatures. FeCrAl could be used for fuel cladding in light water reactors and/or as channel box material in boiling water reactors (BWRs). To estimate the potential safety gains afforded by the FeCrAl concept, the MELCOR code was used to analyze a range of postulated station blackout severe accident scenarios in a BWR/4 reactor employing FeCrAl. The simulations utilize the most recently known thermophysical properties and oxidation kinetics for FeCrAl. Overall, when compared to the traditionalmore » Zircaloy-based cladding and channel box, the FeCrAl concept provides a few extra hours of time for operators to take mitigating actions and/or for evacuations to take place. A coolable core geometry is retained longer, enhancing the ability to stabilize an accident. Finally, due to the slower oxidation kinetics, substantially less hydrogen is generated, and the generation is delayed in time. This decreases the amount of non-condensable gases in containment and the potential for deflagrations to inhibit the accident response.« less
Rydzy, M; Deslauriers, R; Smith, I C; Saunders, J K
1990-08-01
A systematic study was performed to optimize the accuracy of kinetic parameters derived from magnetization transfer measurements. Three techniques were investigated: time-dependent saturation transfer (TDST), saturation recovery (SRS), and inversion recovery (IRS). In the last two methods, one of the resonances undergoing exchange is saturated throughout the experiment. The three techniques were compared with respect to the accuracy of the kinetic parameters derived from experiments performed in a given, fixed, amount of time. Stochastic simulation of magnetization transfer experiments was performed to optimize experimental design. General formulas for the relative accuracies of the unidirectional rate constant (k) were derived for each of the three experimental methods. It was calculated that for k values between 0.1 and 1.0 s-1, T1 values between 1 and 10 s, and relaxation delays appropriate for the creatine kinase reaction, the SRS method yields more accurate values of k than does the IRS method. The TDST method is more accurate than the SRS method for reactions where T1 is long and k is large, within the range of k and T1 values examined. Experimental verification of the method was carried out on a solution in which the forward (PCr----ATP) rate constant (kf) of the creatine kinase reaction was measured.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ninnemann, Erik; Koroglu, Batikan; Pryor, Owen
In this study, the effects of pre-ignition energy releases on H 2—O 2 mixtures were explored in a shock tube with the aid of high-speed imaging and conventional pressure and emission diagnostics. Ignition delay times and time-resolved camera image sequences were taken behind the reflected shockwaves for two hydrogen mixtures. High concentration experiments spanned temperatures between 858 and 1035 K and pressures between 2.74 and 3.91 atm for a 15% H 2\\18% O 2\\Ar mixture. Low concentration data were also taken at temperatures between 960 and 1131 K and pressures between 3.09 and 5.44 atm for a 4% H 2\\2%more » O 2\\Ar mixture. These two model mixtures were chosen as they were the focus of recent shock tube work conducted in the literature. Experiments were performed in both a clean and dirty shock tube facility; however, no deviations in ignition delay times between the two types of tests were apparent. The high-concentration mixture (15%H 2\\18%O 2\\Ar) experienced energy releases in the form of deflagration flames followed by local detonations at temperatures < 1000 K. Measured ignition delay times were compared to predictions by three chemical kinetic mechanisms: GRI-Mech 3.0, AramcoMech 2.0, and Burke's et al. (2012) mechanisms. It was found that when proper thermodynamic assumptions are used, all mechanisms were able to accurately predict the experiments with superior performance from the well-validated AramcoMech 2.0 and Burke et al. mechanisms. Current work provides better guidance in using available literature hydrogen shock tube measurements, which spanned more than 50 years but were conducted without the aid of high-speed visualization of the ignition process, and their modeling using combustion kinetic mechanisms.« less
Ninnemann, Erik; Koroglu, Batikan; Pryor, Owen; ...
2017-09-21
In this study, the effects of pre-ignition energy releases on H 2—O 2 mixtures were explored in a shock tube with the aid of high-speed imaging and conventional pressure and emission diagnostics. Ignition delay times and time-resolved camera image sequences were taken behind the reflected shockwaves for two hydrogen mixtures. High concentration experiments spanned temperatures between 858 and 1035 K and pressures between 2.74 and 3.91 atm for a 15% H 2\\18% O 2\\Ar mixture. Low concentration data were also taken at temperatures between 960 and 1131 K and pressures between 3.09 and 5.44 atm for a 4% H 2\\2%more » O 2\\Ar mixture. These two model mixtures were chosen as they were the focus of recent shock tube work conducted in the literature. Experiments were performed in both a clean and dirty shock tube facility; however, no deviations in ignition delay times between the two types of tests were apparent. The high-concentration mixture (15%H 2\\18%O 2\\Ar) experienced energy releases in the form of deflagration flames followed by local detonations at temperatures < 1000 K. Measured ignition delay times were compared to predictions by three chemical kinetic mechanisms: GRI-Mech 3.0, AramcoMech 2.0, and Burke's et al. (2012) mechanisms. It was found that when proper thermodynamic assumptions are used, all mechanisms were able to accurately predict the experiments with superior performance from the well-validated AramcoMech 2.0 and Burke et al. mechanisms. Current work provides better guidance in using available literature hydrogen shock tube measurements, which spanned more than 50 years but were conducted without the aid of high-speed visualization of the ignition process, and their modeling using combustion kinetic mechanisms.« less
Kong, F; Singh, R P
2008-06-01
Knowledge of the disintegration kinetics of food particulates in the human stomach is essential for assessing the bioaccessibility of nutrients in solid foods and understanding stomach emptying. The objective of this study was to develop a model stomach system and to investigate the kinetics of food disintegration. Our system consisted mainly of a turntable and a jacketed glass chamber containing simulated gastric juice in which plastic beads were added to simulate food particulates as well as provide a suitable mechanical destructive force on food samples. The mechanical force on the samples was simultaneously measured using the load cell of a TA-XT2 texture analyzer. Cylindrical carrots and ham samples were used as representative foods. The system is capable of simulating the in vivo stomach in terms of providing a wide range of continuous and periodic forces comparable to those measured in vivo. The modified power exponential function of the form y(t)= 1 - (1 -e(-kt))(beta), where y(t) is the mass retention ratio at time t, provided a reasonable description for the disintegration performance of tested foods. The mass retention curve can be either a sigmoidal decay with an initial delay or an exponential decay, which are decided largely by the hardness of the foods during digestion and the extent of physical force acting on the foods. A good match was observed between the kinetics of food disintegration and in vivo stomach emptying.
Belugin, Sergei; Mifflin, Steve
2005-12-01
Whole cell patch-clamp measurements were made in neurons enzymatically dispersed from the nucleus of the solitary tract (NTS) to determine if alterations occur in voltage-dependent potassium channels from rats made hypertensive (HT) by unilateral nephrectomy/renal wrap for 4 wk. Some rats had the fluorescent tracer DiA applied to the aortic nerve before the experiment to identify NTS neurons receiving monosynaptic baroreceptor afferent inputs. Mean arterial pressure (MAP) was greater in 4-wk HT (165 +/- 5 mmHg, n = 26, P < 0.001) rats compared with normotensive (NT) rats (109 +/- 3 mmHg measured in 10 of 69 rats). Transient outward currents (TOCs) were observed in 67-82% of NTS neurons from NT and HT rats. At activation voltages from -10 to +10 mV, TOCs were significantly less in HT neurons compared with those observed in NT neurons (P < 0.001). There were no differences in the voltage-dependent activation kinetics, the voltage dependence of steady-state inactivation, and the rise and decay time constants of the TOCs comparing neurons isolated from NT and HT rats. The 4-aminopyridine-sensitive component of the TOC was significantly less in neurons from HT compared with NT rats (P < 0.001), whereas steady-state outward currents, whether or not sensitive to 4-aminopyridine or tetraethylammonium, were not different. Delayed excitation, studied under current clamp, was observed in 60-80% of NTS neurons from NT and HT rats and was not different comparing neurons from NT and HT rats. However, examination of the subset of NTS neurons exhibiting somatic DiA fluorescence revealed that DiA-labeled neurons from HT rats had a significantly shorter duration delayed excitation (n = 8 cells, P = 0.022) than DiA-labeled neurons from NT rats (n = 7 cells). Neurons with delayed excitation from HT rats had a significantly broader first action potential (AP) and a slower maximal downstroke velocity of repolarization compared with NT neurons with delayed excitation (P = 0.016 and P = 0.014, respectively). The number of APs in the first 200 ms of a sustained depolarization was greater in HT than NT neurons (P = 0.012). These results suggest that HT of 4-wk duration reduces TOCs in NTS neurons, and this contributes to reduced delayed excitation and increased AP responses to depolarizing inputs. Such changes could alter baroreflex function in hypertension.
Fujii, Keisuke; Yamashita, Daichi; Kimura, Tetsuya; Isaka, Tadao; Kouzaki, Motoki
2015-01-01
In a competitive sport, the outcome of a game is determined by an athlete’s relationship with an unpredictable and uncontrolled opponent. We have previously analyzed the preparatory state of ground reaction forces (GRFs) dividing non-weighted and weighted states (i.e., vertical GRFs below and above 120% of body weight, respectively) in a competitive ballgame task and demonstrated that the non-weighted state prevented delay of the defensive step and promoted successful guarding. However, the associated kinetics of lower extremity joints during a competitive sports task remains unknown. The present study aims to investigate the kinetic characteristics of a real-time competitive sport before movement initiation. As a first kinetic study on a competitive sport, we initially compared the successful defensive kinetics with a relatively stable preparatory state and the choice-reaction sidestep as a control movement. Then, we investigated the kinetic cause of the outcome in a 1-on-1 dribble in terms of the preparatory states according to our previous study. The results demonstrated that in successful defensive motions in the non-weighted state guarding trial, the times required for the generation of hip abduction and three extension torques for the hip, knee, and ankle joints were significantly shortened compared with the choice-reaction sidestep, and hip abduction and hip extension torques were produced almost simultaneously. The sport-specific movement kinetics emerges only in a more-realistic interactive experimental setting. A comparison of the outcomes in the 1-on-1 dribble and preparatory GRF states showed that, in the non-weighted state, the defenders guarded successfully in 68.0% of the trials, and the defender’s initiation time was earlier than that in the weighted state (39.1%). In terms of kinetics, the root mean squares of the derivative of hip abduction and three extension torques in the non-weighted state were smaller than those in the weighted state, irrespective of the outcome. These results indicate that the preparatory body state as explained by short-term joint torque fluctuations before the defensive step would help explain the performance in competitive sports, and will give insights into understanding human adaptive behavior in unpredicted and uncontrolled environments. PMID:26024485
The ignition delay times of hydrogen/silan/air mixtures at low temperatures
NASA Astrophysics Data System (ADS)
Tropin, D. A.; Bochenkov, E. S.; Fedorov, A. V.
2018-03-01
In the paper the ignition delay times of hydrogen-silane-air mixtures at low pressures from 0.4 atm to 1 atm and mixture temperatures from 300 K to 900 K using the detailed kinetic mechanisms were calculated. It was shown that dependencies of ignition delay time on temperature are non-monotonic. In these dependences a region of "negative temperature coefficient" is presented. The effect of the mixture pressure and the silane concentration in the mixture on the length of this region was revealed. It was shown that the increasing of the silane concentration in the mixture, as well as the increasing the mixture pressure, leads to increasing of the "negative temperature coefficient" region length.
Intraventricular flow alterations due to dyssynchronous wall motion
NASA Astrophysics Data System (ADS)
Pope, Audrey M.; Lai, Hong Kuan; Samaee, Milad; Santhanakrishnan, Arvind
2015-11-01
Roughly 30% of patients with systolic heart failure suffer from left ventricular dyssynchrony (LVD), in which mechanical discoordination of the ventricle walls leads to poor hemodynamics and suboptimal cardiac function. There is currently no clear mechanistic understanding of how abnormalities in septal-lateral (SL) wall motion affects left ventricle (LV) function, which is needed to improve the treatment of LVD using cardiac resynchronization therapy. We use an experimental flow phantom with an LV physical model to study mechanistic effects of SL wall motion delay on LV function. To simulate mechanical LVD, two rigid shafts were coupled to two segments (apical and mid sections) along the septal wall of the LV model. Flow through the LV model was driven using a piston pump, and stepper motors coupled to the above shafts were used to locally perturb the septal wall segments relative to the pump motion. 2D PIV was used to examine the intraventricular flow through the LV physical model. Alterations to SL delay results in a reduction in the kinetic energy (KE) of the flow field compared to synchronous SL motion. The effect of varying SL motion delay from 0% (synchronous) to 100% (out-of-phase) on KE and viscous dissipation will be presented. This research was supported by the Oklahoma Center for Advancement of Science and Technology (HR14-022).
Decrease in hematopoietic stem cell domains as a delayed effect of x-irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maloney, M.A.; Lamela, R.A.; Patt, H.M.
Although the hematopoietic integrity of locally X-irradiated sites can be restored for a time even after fairly large doses, a secondary aplasia often occurs some months later. To gain further insight into this delayed effect within the framework of the stem cell regulatory domain hypothesis, we characterized the growth kinetics of spleen colony forming units (CFU-S) in WBB6FI-+/+ bone marrow transplanted into WBB6FI-W/WV mice in which one leg had been exposed to 10-30 Gy of X rays 4-5 months previously. Compared to unirradiated contralateral marrow, fewer CFU-S either reached the previously irradiated marrow or were seeded into sites that couldmore » support growth. The initial exponential growth of effectively seeded CFU-S was unchanged, but growth deceleration (inflection point) occurred at a lower level of CFU-S in marrow previously irradiated with 20-30 Gy. This change in the inflection point indicates a radiation dose-dependent decrease consistent with the decrease in bone marrow cellularity. The decrease in effective stem cell domains after 20 Gy was calculated to be about 35%. We interpret these results to reflect the highly localized nature of delayed radiation damage to the marrow microenvironment.« less
Scaling relation for high-temperature biodiesel surrogate ignition delay times
Campbell, Matthew F.; Davidson, David F.; Hanson, Ronald K.
2015-10-11
High-temperature Arrhenius ignition delay time correlations are useful for revealing the underlying parameter dependencies of combustion models, for simplifying and optimizing combustion mechanisms for use in engine simulations, for scaling experimental data to new conditions for comparison purposes, and for guiding in experimental design. Here, we have developed a scaling relationship for Fatty Acid Methyl Ester (FAME) ignition time data taken at high temperatures in 4%O 2/Ar mixtures behind reflected shocks using an aerosol shock tube: τ ign [ms] = 2.24 x 10 -6 [ms] (P [atm]) -.41 (more » $$\\phi$$) 0.30(C n) -.61 x exp $$ \\left(\\frac{37.1 [kcal/mol]}{\\hat{R}_u [kcal / mol K] T [K]}\\right) $$ In addition, we have combined our ignition delay time data for methyl decanoate, methyl palmitate, methyl oleate, and methyl linoleate with other experimental results in the literature in order to derive fuel-specific oxygen-mole-fraction scaling parameters for these surrogates. In conclusion, in this article, we discuss the significance of the parameter values, compare our correlation to others found in the literature for different classes of fuels, and contrast the above expression’s performance with correlations obtained using leading FAME kinetic models in 4%O 2/Ar mixtures.« less
Vasu, Subith S.; Pryor, Owen; Barak, Samuel; ...
2017-03-12
Common definitions for ignition delay time are often hard to determine due to the issue of bifurcation and other non-idealities that result from high levels of CO 2 addition. Using high-speed camera imagery in comparison with more standard methods (e.g., pressure, emission, and laser absorption spectroscopy) to measure the ignition delay time, the effect of bifurcation has been examined in this study. Experiments were performed at pressures between 0.6 and 1.2 atm for temperatures between 1650 and 2040 K. The equivalence ratio for all experiments was kept at a constant value of 1 with methane as the fuel. The COmore » 2 mole fraction was varied between a value of X CO2 = 0.00 to 0.895. The ignition delay time was determined from three different measurements at the sidewall: broadband chemiluminescent emission captured via a photodetector, CH 4 concentrations determined using a distributed feedback interband cascade laser centered at 3403.4 nm, and pressure recorded via a dynamic Kistler type transducer. All methods for the ignition delay time were compared to high-speed camera images taken of the axial cross-section during combustion. Methane time-histories and the methane decay times were also measured using the laser. It was determined that the flame could be correlated to the ignition delay time measured at the side wall but that the flame as captured by the camera was not homogeneous as assumed in typical shock tube experiments. The bifurcation of the shock wave resulted in smaller flames with large boundary layers and that the flame could be as small as 30% of the cross-sectional area of the shock tube at the highest levels of CO 2 dilution. Here, comparisons between the camera images and the different ignition delay time methods show that care must be taken in interpreting traditional ignition delay data for experiments with large bifurcation effects as different methods in measuring the ignition delay time could result in different interpretations of kinetic mechanisms and impede the development of future mechanisms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasu, Subith S.; Pryor, Owen; Barak, Samuel
Common definitions for ignition delay time are often hard to determine due to the issue of bifurcation and other non-idealities that result from high levels of CO 2 addition. Using high-speed camera imagery in comparison with more standard methods (e.g., pressure, emission, and laser absorption spectroscopy) to measure the ignition delay time, the effect of bifurcation has been examined in this study. Experiments were performed at pressures between 0.6 and 1.2 atm for temperatures between 1650 and 2040 K. The equivalence ratio for all experiments was kept at a constant value of 1 with methane as the fuel. The COmore » 2 mole fraction was varied between a value of X CO2 = 0.00 to 0.895. The ignition delay time was determined from three different measurements at the sidewall: broadband chemiluminescent emission captured via a photodetector, CH 4 concentrations determined using a distributed feedback interband cascade laser centered at 3403.4 nm, and pressure recorded via a dynamic Kistler type transducer. All methods for the ignition delay time were compared to high-speed camera images taken of the axial cross-section during combustion. Methane time-histories and the methane decay times were also measured using the laser. It was determined that the flame could be correlated to the ignition delay time measured at the side wall but that the flame as captured by the camera was not homogeneous as assumed in typical shock tube experiments. The bifurcation of the shock wave resulted in smaller flames with large boundary layers and that the flame could be as small as 30% of the cross-sectional area of the shock tube at the highest levels of CO 2 dilution. Here, comparisons between the camera images and the different ignition delay time methods show that care must be taken in interpreting traditional ignition delay data for experiments with large bifurcation effects as different methods in measuring the ignition delay time could result in different interpretations of kinetic mechanisms and impede the development of future mechanisms.« less
Song, Ming-Ke; Liu, Hong; Jiang, Hua-Liang; Yue, Jian-Min; Hu, Guo-Yuan
2006-02-15
14-Benzoyltalatisamine is a potent and selective blocker of the delayed rectifier K+ channel found in a computational virtual screening study. The compound was found to block the K+ channel from the extracellular side. However, it is unclear whether 14-benzoyltalatisamine shares the same block mechanism with tetraethylammonium (TEA). In order to elucidate how the hit compound found by the virtual screening interacts with the outer vestibule of the K+ channel, the effects of 14-benzoyltalatisamine and TEA on the delayed rectifier K+ current of rat dissociated hippocampal neurons were compared using whole-cell voltage-clamp recording. External application of 14-benzoyltalatisamine and TEA reversibly inhibited the current with IC50 values of 10.1+/-2.2 microM and 1.05+/-0.21 mM, respectively. 14-Benzoyltalatisamine exerted voltage-dependent inhibition, markedly accelerated the decay of the current, and caused a significant hyperpolarizing shift of the steady-state activation curve, whereas TEA caused voltage-independent inhibition, without affecting the kinetic parameters of the current. The blockade by 14-benzoyltalatisamine, but not by TEA, was significantly diminished in a high K+ (60 mM) external solution. The potency of 14-benzoyltalatisamine was markedly reduced in the presence of 15 mM TEA. The results suggest that 14-benzoyltalatisamine bind to the external pore entry of the delayed rectifier K+ channel with partial insertion into the selectivity filter, which is in conformity with that predicted by the molecular docking model in the virtual screening.
Rocco, Isadora Salvador; Viceconte, Marcela; Pauletti, Hayanne Osiro; Matos-Garcia, Bruna Caroline; Marcondi, Natasha Oliveira; Bublitz, Caroline; Bolzan, Douglas William; Moreira, Rita Simone Lopes; Reis, Michel Silva; Hossne, Nelson Américo; Gomes, Walter José; Arena, Ross; Guizilini, Solange
2017-12-26
We aimed to investigate the ability of oxygen uptake kinetics to predict short-term outcomes after off-pump coronary artery bypass grafting. Fifty-two patients aged 60.9 ± 7.8 years waiting for off-pump coronary artery bypass surgery were evaluated. The 6-min walk test distance was performed pre-operatively, while simultaneously using a portable cardiopulmonary testing device. The transition of oxygen uptake kinetics from rest to exercise was recorded to calculate oxygen uptake kinetics fitting a monoexponential regression model. Oxygen uptake at steady state, constant time, and mean response time corrected by work rate were analysed. Short-term clinical outcomes were evaluated during the early post-operative of off-pump coronary artery bypass surgery. Multivariate analysis showed body mass index, surgery time, and mean response time corrected by work rate as independent predictors for short-term outcomes. The optimal mean response time corrected by work rate cut-off to estimate short-term clinical outcomes was 1.51 × 10 -3 min 2 /ml. Patients with slower mean response time corrected by work rate demonstrated higher rates of hypertension, diabetes, EuroSCOREII, left ventricular dysfunction, and impaired 6-min walk test parameters. The per cent-predicted distance threshold of 66% in the pre-operative was associated with delayed oxygen uptake kinetics. Pre-operative oxygen uptake kinetics during 6-min walk test predicts short-term clinical outcomes after off-pump coronary artery bypass surgery. From a clinically applicable perspective, a threshold of 66% of pre-operative predicted 6-min walk test distance indicated slower kinetics, which leads to longer intensive care unit and post-surgery hospital length of stay. Implications for rehabilitation Coronary artery bypass grafting is a treatment aimed to improve expectancy of life and prevent disability due to the disease progression; The use of pre-operative submaximal functional capacity test enabled the identification of patients with high risk of complications, where patients with delayed oxygen uptake kinetics exhibited worse short-term outcomes; Our findings suggest the importance of the rehabilitation in the pre-operative in order to "pre-habilitate" the patients to the surgical procedure; Faster oxygen uptake on-kinetics could be achieved by improving the oxidative capacity of muscles and cardiovascular conditioning through rehabilitation, adding better results following cardiac surgery.
Webster, Gordon; Embley, T Martin; Freitag, Thomas E; Smith, Zena; Prosser, James I
2005-05-01
Molecular approaches have revealed considerable diversity and uncultured novelty in natural prokaryotic populations, but not direct links between the new genotypes detected and ecosystem processes. Here we describe the influence of the structure of communities of ammonia-oxidizing bacteria on nitrogen cycling in microcosms containing natural and managed grasslands and amended with artificial sheep urine, a major factor determining local ammonia concentrations in these environments. Nitrification kinetics were assessed by analysis of changes in urea, ammonia, nitrite and nitrate concentrations and ammonia oxidizer communities were characterized by analysis of 16S rRNA genes amplified from extracted DNA using ammonia oxidizer-specific primers. In natural soils, ammonia oxidizer community structure determined the delay preceding nitrification, which depended on the relative abundance of two Nitrosospira clusters, termed 3a and 3b. In batch cultures, pure culture and enrichment culture representatives of Nitrosospira 3a were sensitive to high ammonia concentration, while Nitrosospira cluster 3b representatives and Nitrosomonas europaea were tolerant. Delays in nitrification occurred in natural soils dominated by Nitrosospira cluster 3a and resulted from the time required for growth of low concentrations of Nitrosospira cluster 3b. In microcosms dominated by Nitrosospira cluster 3b and Nitrosomonas, no substantial delays were observed. In managed soils, no delays in nitrification were detected, regardless of initial ammonia oxidizer community structure, most probably resulting from higher ammonia oxidizer cell concentrations. The data therefore demonstrate a direct link between bacterial community structure, physiological diversity and ecosystem function.
NASA Technical Reports Server (NTRS)
Nguyen, H. L.; Ying, S.-J.
1990-01-01
Jet-A spray combustion has been evaluated in gas turbine combustion with the use of propane chemical kinetics as the first approximation for the chemical reactions. Here, the numerical solutions are obtained by using the KIVA-2 computer code. The KIVA-2 code is the most developed of the available multidimensional combustion computer programs for application of the in-cylinder combustion dynamics of internal combustion engines. The released version of KIVA-2 assumes that 12 chemical species are present; the code uses an Arrhenius kinetic-controlled combustion model governed by a four-step global chemical reaction and six equilibrium reactions. Researchers efforts involve the addition of Jet-A thermophysical properties and the implementation of detailed reaction mechanisms for propane oxidation. Three different detailed reaction mechanism models are considered. The first model consists of 131 reactions and 45 species. This is considered as the full mechanism which is developed through the study of chemical kinetics of propane combustion in an enclosed chamber. The full mechanism is evaluated by comparing calculated ignition delay times with available shock tube data. However, these detailed reactions occupy too much computer memory and CPU time for the computation. Therefore, it only serves as a benchmark case by which to evaluate other simplified models. Two possible simplified models were tested in the existing computer code KIVA-2 for the same conditions as used with the full mechanism. One model is obtained through a sensitivity analysis using LSENS, the general kinetics and sensitivity analysis program code of D. A. Bittker and K. Radhakrishnan. This model consists of 45 chemical reactions and 27 species. The other model is based on the work published by C. K. Westbrook and F. L. Dryer.
Light Scattering and Absorption Studies of Sickle Cell Hemoglobin
NASA Astrophysics Data System (ADS)
Kim-Shapiro, Daniel
1997-11-01
The use of physical techniques has been very important in understanding the pathophysiology of sickle cell disease. In particular, light scattering and absorption studies have been used to measure the kinetics of sickle cell hemoglobin polymerization and depolymerization (melting). The theory of sickle cell polymerization that has been derived and tested by these methods has not only led to an increased understanding of the pathophysiology of the disease but has also led to improved treatment strategies. Sickle cell disease effects about 1 out of 600 people of African descent born in the United States. The disease is caused by a mutant form of hemoglobin (the oxygen transporting molecule in the blood), hemoglobin S (HbS), which differs from normal adult hemoglobin by the substitution of a single amino acid for another. The polymerization of HbS, which occurs under conditions of low oxygen pressure, causes distortion and increased rigidity of the sickle red blood cell that leads to blockage of the capillaries and a host of resulting complications. The disease is associated with tissue damage, severe painful crises and a high degree of mortality. Light scattering studies of purified HbS and whole cells (conducted by F.A. Ferrone, J. Hofrichter, W.A. Eaton, and their associates) have been used to determine the mechanism of HbS polymerization. Polymerization will generally not occur when the hemoglobin is in an oxygen-rich environment. The question is, when HbS is rapidly deoxygenated (as it is when going from the lungs to the tissues) what is the kinetics of polymerization? Photolysis methods were used to rapidly deoxygenate HbS and light scattering was used as a function of time to measure the kinetics of polymerization. Polarized light scattering may be a more effective way to measure polymer content than total intensity light scattering. It was found that no polymerization occurs during a period of time called the delay time and subsequent polymerization occurs exponentially. The length of this delay time depends on the concentration of deoxy-HbS. The kinetics of polymerization was described by a novel double nucleation mechanism. These light scattering studies led to the understanding that many cells could travel through oxygen deficient tissue without sickling due to the delay time in polymerization. Some treatment strategies involve prolonging the delay time. Less work has been done in trying to understand polymer melting. Such investigations are important in order to determine whether polymers that reach the lungs melt before they enter the oxygen deficient tissues. I have initially addressed this problem by exploring the kinetics of oxygen binding to the polymers. These studies were conducted using time-resolved linear dichroism following laser photolysis. Preliminary studies in my laboratory indicate that polymer melting is slow enough to be an important consideration in understanding sickle cell disease. One of the most common therapies for sickle cell disease that is currently used involves administering the drug, hydroxyurea. The mechanism by which this drug benefits patients is not fully understood. One of its mechanisms (as determined by light scattering and absorption studies) involves increasing the delay time for polymerization.
Simplified jet fuel reaction mechanism for lean burn combustion application
NASA Technical Reports Server (NTRS)
Lee, Chi-Ming; Kundu, Krishna; Ghorashi, Bahman
1993-01-01
Successful modeling of combustion and emissions in gas turbine engine combustors requires an adequate description of the reaction mechanism. Detailed mechanisms contain a large number of chemical species participating simultaneously in many elementary kinetic steps. Current computational fluid dynamic models must include fuel vaporization, fuel-air mixing, chemical reactions, and complicated boundary geometries. A five-step Jet-A fuel mechanism which involves pyrolysis and subsequent oxidation of paraffin and aromatic compounds is presented. This mechanism is verified by comparing with Jet-A fuel ignition delay time experimental data, and species concentrations obtained from flametube experiments. This five-step mechanism appears to be better than the current one- and two-step mechanisms.
Voltage-dependent ion channels in the mouse RPE: comparison with Norrie disease mice.
Wollmann, Guido; Lenzner, Steffen; Berger, Wolfgang; Rosenthal, Rita; Karl, Mike O; Strauss, Olaf
2006-03-01
We studied electrophysiological properties of cultured retinal pigment epithelial (RPE) cells from mouse and a mouse model for Norrie disease. Wild-type RPE cells revealed the expression of ion channels known from other species: delayed-rectifier K(+) channels composed of Kv1.3 subunits, inward rectifier K(+) channels, Ca(V)1.3 L-type Ca(2+) channels and outwardly rectifying Cl(-) channels. Expression pattern and the ion channel characteristics current density, blocker sensitivity, kinetics and voltage-dependence were compared in cells from wild-type and Norrie mice. Although no significant differences were observed, our study provides a base for future studies on ion channel function and dysfunction in transgenic mouse models.
Fast inactivation of delayed rectifier K conductance in squid giant axon and its cell bodies.
Mathes, C; Rosenthal, J J; Armstrong, G M; Gilly, W F
1997-04-01
Inactivation of delayed rectifier K conductance (gk) was studied in squid giant axons and in the somata of giant fiber lobe (GFL) neurons. Axon measurements were made with an axial wire voltage clamp by pulsing to VK (approximately -10 mV in 50-70 mM external K) for a variable time and then assaying available gK with a strong, brief test pulse. GFL cells were studied with whole-cell patch clamp using the same prepulse procedure as well as with long depolarizations. Under our experimental conditions (12-18 degrees C, 4 mM internal MgATP) a large fraction of gK inactivates within 250 ms at -10 mV in both cell bodies and axons, although inactivation tends to be more complete in cell bodies. Inactivation in both preparations shows two kinetic components. The faster component is more temperature-sensitive and becomes very prominent above 12 degrees C. Contribution of the fast component to inactivation shows a similar voltage dependence to that of gK, suggesting a strong coupling of this inactivation path to the open state. Omission of internal MgATP or application of internal protease reduces the amount of fast inactivation. High external K decreases the amount of rapidly inactivating IK but does not greatly alter inactivation kinetics. Neither external nor internal tetraethylammonium has a marked effect on inactivation kinetics. Squid delayed rectifier K channels in GFL cell bodies and giant axons thus share complex fast inactivation properties that do not closely resemble those associated with either C-type or N-type inactivation of cloned Kvl channels studied in heterologous expression systems.
Putcharoen, Opass; Lee, Sun Hee; Henrich, Timothy J.; Hu, Zixin; Vanichanan, Jakapat; Coakley, Eoin; Greaves, Wayne; Gulick, Roy M.; Kuritzkes, Daniel R.
2012-01-01
HIV CCR5 antagonists select for env gene mutations that enable virus entry via drug-bound coreceptor. To investigate the mechanisms responsible for viral adaptation to drug-bound coreceptor-mediated entry, we studied viral isolates from three participants who developed CCR5 antagonist resistance during treatment with vicriviroc (VCV), an investigational small-molecule CCR5 antagonist. VCV-sensitive and -resistant viruses were isolated from one HIV subtype C- and two subtype B-infected participants; VCV-resistant isolates had mutations in the V3 loop of gp120 and were cross-resistant to TAK-779, an investigational antagonist, and maraviroc (MVC). All three resistant isolates contained a 306P mutation but had variable mutations elsewhere in the V3 stem. We used a virus-cell β-lactamase (BlaM) fusion assay to determine the entry kinetics of recombinant viruses that incorporated full-length VCV-sensitive and -resistant envelopes. VCV-resistant isolates exhibited delayed entry rates in the absence of drug, relative to pretherapy VCV-sensitive isolates. The addition of drug corrected these delays. These findings were generalizable across target cell types with a range of CD4 and CCR5 surface densities and were observed when either population-derived or clonal envelopes were used to construct recombinant viruses. V3 loop mutations alone were sufficient to restore virus entry in the presence of drug, and the accumulation of V3 mutations during VCV therapy led to progressively higher rates of viral entry. We propose that the restoration of pre-CCR5 antagonist therapy HIV entry kinetics drives the selection of V3 loop mutations and may represent a common mechanism that underlies the emergence of CCR5 antagonist resistance. PMID:22090117
Fast Inactivation of Delayed Rectifier K Conductance in Squid Giant Axon and Its Cell Bodies
Mathes, Chris; Rosenthal, Joshua J.C.; Armstrong, Clay M.; Gilly, William F.
1997-01-01
Inactivation of delayed rectifier K conductance (gK) was studied in squid giant axons and in the somata of giant fiber lobe (GFL) neurons. Axon measurements were made with an axial wire voltage clamp by pulsing to VK (∼−10 mV in 50–70 mM external K) for a variable time and then assaying available gK with a strong, brief test pulse. GFL cells were studied with whole-cell patch clamp using the same prepulse procedure as well as with long depolarizations. Under our experimental conditions (12–18°C, 4 mM internal MgATP) a large fraction of gK inactivates within 250 ms at −10 mV in both cell bodies and axons, although inactivation tends to be more complete in cell bodies. Inactivation in both preparations shows two kinetic components. The faster component is more temperature-sensitive and becomes very prominent above 12°C. Contribution of the fast component to inactivation shows a similar voltage dependence to that of gK, suggesting a strong coupling of this inactivation path to the open state. Omission of internal MgATP or application of internal protease reduces the amount of fast inactivation. High external K decreases the amount of rapidly inactivating IK but does not greatly alter inactivation kinetics. Neither external nor internal tetraethylammonium has a marked effect on inactivation kinetics. Squid delayed rectifier K channels in GFL cell bodies and giant axons thus share complex fast inactivation properties that do not closely resemble those associated with either C-type or N-type inactivation of cloned Kv1 channels studied in heterologous expression systems. PMID:9101403
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonnelli, Eduardo; Diniz, Ricardo
2014-11-11
This is a complementary work about the behavior analysis of the neutron lifetimes that was developed in the IPEN/MB-01 nuclear reactor facility. The macroscopic neutron noise technique was experimentally employed using pulse mode detectors for two stages of control rods insertion, where a total of twenty levels of subcriticality have been carried out. It was also considered that the neutron reflector density was treated as an additional group of delayed neutrons, being a sophisticated approach in the two-region kinetic theoretical model.
Osborne, Mark A; Schneider, Donald A
2006-01-01
The purpose of this study was to determine whether muscle glycogen reduction prior to exercise would alter muscle fibre recruitment pattern and change either on-transient O2 uptake (VO2) kinetics or the VO2 slow component. Eight recreational cyclists (VO2peak, 55.6 +/- 1.3 ml kg (-1) min(-1)) were studied during 8 min of heavy constant-load cycling performed under control conditions (CON) and under conditions of reduced type I muscle glycogen content (GR). VO2 was measured breath-by-breath for the determination of VO2 kinetics using a double-exponential model with independent time delays. VO2 was higher in the GR trial compared to the CON trial as a result of augmented phase I and II amplitudes, with no difference between trials in the phase II time constant or the magnitude of the slow component. The mean power frequency (MPF) of electromyography activity for the vastus medialis increased over time during both trials, with a greater rate of increase observed in the GR trial compared to the CON trial. The results suggest that the recruitment of additional type II motor units contributed to the slow component in both trials. An increase in fat metabolism and augmented type II motor unit recruitment contributed to the higher VO2 in the GR trial. However, the greater rate of increase in the recruitment of type II motor units in the GR trial may not have been of sufficient magnitude to further elevate the slow component when VO2 was already high and approaching VO2peak .
Autoignition of hydrogen in shear flows
NASA Astrophysics Data System (ADS)
Kalbhor, Abhijit; Chaudhuri, Swetaprovo; Chitilappilly, Lazar
2018-05-01
In this paper, we compare the autoignition characteristics of laminar, nitrogen-diluted hydrogen jets in two different oxidizer flow configurations: (a) co-flowing heated air and (b) wake of heated air, using two-dimensional numerical simulations coupled with detailed chemical kinetics. In both cases, autoignition is observed to initiate at locations with low scalar dissipation rates and high HO2 depletion rates. It is found that the induction stage prior to autoignition is primarily dominated by chemical kinetics and diffusion while the improved scalar mixing imparted by the large-scale flow structures controls the ignition progress in later stages. We further investigate the ignition transience and its connection with mixing by varying the initial wake conditions and fuel jet to oxidizer velocity ratios. These studies reveal that the autoignition delay times are independent of initial wake flow conditions. However, with increased jet velocity ratios, the later stages of ignition are accelerated, mainly due to enhanced mixing facilitated by the higher scalar dissipation rates. Furthermore, the sensitivity studies for the jet in wake configuration show a significant reduction in ignition delay even for about 0.14% (by volume) hydrogen dilution in the oxidizer. In addition, the detailed autoignition chemistry and the relative roles of certain radical species in the initiation of the autoignition process in these non-premixed jets are investigated by tracking the evolution of important chain reactions using a Lagrangian particle tracking approach. The reaction H2 + O2 ↔ HO2 + H is recognized to be the dominant chain initiation reaction that provides H radicals essential for the progress of subsequent elementary reactions during the pre-ignition stage.
Torque-onset determination: Unintended consequences of the threshold method.
Dotan, Raffy; Jenkins, Glenn; O'Brien, Thomas D; Hansen, Steve; Falk, Bareket
2016-12-01
Compared with visual torque-onset-detection (TOD), threshold-based TOD produces onset bias, which increases with lower torques or rates of torque development (RTD). To compare the effects of differential TOD-bias on common contractile parameters in two torque-disparate groups. Fifteen boys and 12 men performed maximal, explosive, isometric knee-extensions. Torque and EMG were recorded for each contraction. Best contractions were selected by peak torque (MVC) and peak RTD. Visual-TOD-based torque-time traces, electromechanical delays (EMD), and times to peak RTD (tRTD) were compared with corresponding data derived from fixed 4-Nm- and relative 5%MVC-thresholds. The 5%MVC TOD-biases were similar for boys and men, but the corresponding 4-Nm-based biases were markedly different (40.3±14.1 vs. 18.4±7.1ms, respectively; p<0.001). Boys-men EMD differences were most affected, increasing from 5.0ms (visual) to 26.9ms (4Nm; p<0.01). Men's visually-based torque kinetics tended to be faster than the boys' (NS), but the 4-Nm-based kinetics erroneously depicted the boys as being much faster to any given %MVC (p<0.001). When comparing contractile properties of dissimilar groups, e.g., children vs. adults, threshold-based TOD methods can misrepresent reality and lead to erroneous conclusions. Relative-thresholds (e.g., 5% MVC) still introduce error, but group-comparisons are not confounded. Copyright © 2016 Elsevier Ltd. All rights reserved.
The kinetic origin of delayed yielding in metallic glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Y. F.; Liu, X. D.; Wang, S.
2016-06-20
Recent experiments showed that irreversible structural change or plasticity could occur in metallic glasses (MGs) even within the apparent elastic limit after a sufficiently long waiting time. To explain this phenomenon, a stochastic shear transformation model is developed based on a unified rate theory to predict delayed yielding in MGs, which is validated afterwards through extensive atomistic simulations carried out on different MGs. On a fundamental level, an analytic framework is established in this work that links time, stress, and temperature altogether into a general yielding criterion for MGs.
Hanak, Anne-Sophie; Chevillard, Lucie; El Balkhi, Souleiman; Risède, Patricia; Peoc'h, Katell; Mégarbane, Bruno
2015-01-01
Lithium-induced neurotoxicity may be life threatening. Three patterns have been described, including acute, acute-on-chronic, and chronic poisoning, with unexplained discrepancies in the relationship between clinical features and plasma lithium concentrations. Our objective was to investigate differences in plasma, erythrocyte, cerebrospinal fluid, and brain lithium pharmacokinetics using a multicompartmental approach in rat models mimicking the three human intoxication patterns. We developed acute (intraperitoneal administration of 185 mg/kg Li₂CO₃ in naive rats), acute-on-chronic (intraperitoneal administration of 185 mg/kg Li₂CO₃ in rats receiving 800 mg/l Li₂CO₃ in water during 28 days), and chronic poisoning models (intraperitoneal administration of 74 mg/kg Li₂CO₃ during 5 days in rats with 15 mg/kg K₂Cr₂O₇-induced renal failure). Delayed absorption (4.03 vs 0.31 h), increased plasma elimination (0.65 vs 0.37 l/kg/h) and shorter half-life (1.75 vs 2.68 h) were observed in acute-on-chronically compared with acutely poisoned rats. Erythrocyte and cerebrospinal fluid kinetics paralleled plasma kinetics in both models. Brain lithium distribution was rapid (as early as 15 min), inhomogeneous and with delayed elimination (over 78 h). However, brain lithium accumulation was more marked in acute-on-chronically than acutely poisoned rats [area-under-the-curve of brain concentrations (379 ± 41 vs 295 ± 26, P < .05) and brain-to-plasma ratio (45 ± 10 vs 8 ± 2, P < .0001) at 54 h]. Moreover, brain lithium distribution was increased in chronically compared with acute-on-chronically poisoned rats (brain-to-plasma ratio: 9 ± 1 vs 3 ± 0, P < .01). In conclusion, prolonged rat exposure results in brain lithium accumulation, which is more marked in the presence of renal failure. Our data suggest that differences in plasma and brain kinetics may at least partially explain the observed variability between human intoxication patterns. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Neff, H.; Laborde, H. M.; Lima, A. M. N.
2016-11-01
An oscillatory molecular adsorption pattern of the protein neutravidin from aqueous solution onto gold, in presence of a pre-deposited self assembled mono-molecular biotin film, is reported. Real time surface Plasmon resonance sensing was utilized for evaluation of the adsorption kinetics. Two different fractions were identified: in the initial phase, protein molecules attach irreversibly onto the Biotin ligands beneath towards the jamming limit, forming a neutravidin-biotin fraction. Afterwards, the growth rate exhibits distinct, albeit damped adsorption-desorption oscillations over an extended time span, assigned to a quasi reversibly bound fraction. These findings agree with, and firstly confirm a previously published model, proposing macro-molecular adsorption with time delay. The non-linear dynamic model is applicable to and also resembles non-damped oscillatory binding features of the hetero-catalytic oxidation of carbon monoxide molecules on platinum in the gas phase. An associated surface residence time can be linked to the dynamics and time scale required for self-organization.
Daels, Eva; Goderis, Bart; Matton, Valerie; Foubert, Imogen
2018-04-18
In literature there is good agreement on the health-promoting effects of phytosterols. However, addition of phytosterol esters (PEs) to lipid (containing food products) may influence its crystallization behavior. This study investigated the crystallization kinetics of palm oil (PO) after addition of PEs in high concentrations (≥10%). The isothermal crystallization of the PE-PO blends was analyzed at a temperature of 20 °C and at a supercooling of 18.7 °C using differential scanning calorimetry and time-resolved synchrotron X-ray diffraction. At increasing PE concentrations, PO crystallization at an isothermal temperature of 20 °C started later and was slower and a smaller amount of crystals were formed. Furthermore, a delay in polymorphic transition from α to β' was observed. When the blends were isothermally crystallized at a supercooling of 18.7 °C, only two of these effects remained: the delay in polymorphic transition and the decrease in crystalline content.
Chen, Jianbiao; Mu, Lin; Cai, Jingcheng; Yao, Pikai; Song, Xigeng; Yin, Hongchao; Li, Aimin
2015-12-01
The pyrolysis and oxy-fuel combustion characteristics of petrochemical wastewater sludge (PS) were studied in air (O2/N2) and oxy-fuel (O2/CO2) atmospheres using non-isothermal thermogravimetric analysis (TGA). Pyrolysis experiments showed that the weight loss profiles were almost similar up to 1050K in both N2 and CO2 atmospheres, while further weight loss took place in CO2 atmosphere at higher temperatures due to char-CO2 gasification. Compared with 20%O2/80%N2, the drying and devolatilization stage of PS were delayed in 20%O2/80%CO2 due to the differences in properties of the diluting gases. In oxy-fuel combustion experiments, with O2 concentration increasing, characteristic temperatures decreased, while characteristic combustion rates and combustion performance indexes increased. Kinetic analysis of PS decomposition under various atmospheres was performed using Coats-Redfern approach. The results indicated that, with O2 concentration increasing, the activation energies of Step 1 almost kept constant, while the values of subsequent three steps increased. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ma, Junyang; Li, Hui; Lin, Kang; Song, Qiying; Ji, Qinying; Zhang, Wenbin; Li, Hanxiao; Sun, Fenghao; Qiang, Junjie; Lu, Peifen; Gong, Xiaochun; Zeng, Heping; Wu, Jian
2018-06-01
We experimentally investigate the dissociative double ionization of hydrogen chloride (HCl) molecules in intense femtosecond laser pulses. In addition to the prompt dissociation channels which occur on femtosecond timescales, long-lived hydrogen chloride dications which Coulomb-explode in flight towards the detector are clearly identified in the photoion-photoion coincidence spectrum. Different pathways leading to these prompt and delayed dissociation channels involving various bound and repulsive states of the HCl dication are discussed based on the observed kinetic energy release and momentum distributions. Our results indicate that the specific features of the HCl dication potential energy curves are responsible for the generation of the delayed fragmentation channels, which are expected to be general processes for the hydrogen halides.
Sphere-derived tumor cells exhibit impaired metastasis by a host-mediated quiescent phenotype
Bleau, Anne-Marie; Zandueta, Carolina; Redrado, Miriam; Martínez-Canarias, Susana; Larzábal, Leyre; Montuenga, Luis M.
2015-01-01
The spread of lung cancer cells to distant sites represents a common event associated with poor prognosis. A fraction of tumor cells named cancer stem cells (CSCs) have the ability to overcome therapeutic stress and remain quiescent. However, whether these CSCs have also the capacity to initiate and sustain metastasis remains unclear. Here, we used tumor sphere cultures (TSC) isolated from mouse and human lung cancer models to enrich for CSCs, and assessed their metastatic potential as compared to non-CSCs. As expected, TSC overexpressed a variety of stem cell markers and displayed chemoresistance. The CSC phenotype of TSC was confirmed by their higher growth ability in soft agar and tumorigenic potential in vivo, despite their reduced in vitro cell growth kinetics. Surprisingly, the appearance of spontaneous lung metastases was strongly delayed in mice injected with TSC as compared to non-TSC cells. Similarly, this finding was confirmed in several other models of metastasis, an effect associated with a retarded colonization activity. Interestingly, such delay correlated with a quiescent phenotype whose underlined mechanisms included an increase in p27 protein and lower phospho-ERK1/2 levels. Thus, these data suggest that cells enriched for CSC properties display an impaired metastatic activity, a finding with potential clinical implications. PMID:26318423
2017-01-01
A large number of studies support the increasingly relevant prognostic value of the presence and extent of delayed enhancement (DE), a surrogate marker of fibrosis, in diverse etiologies. Gadolinium and iodinated based contrast agents share similar kinetics, thus leading to comparable myocardial characterization with cardiac magnetic resonance (CMR) and cardiac computed tomography (CT) at both first-pass perfusion and DE imaging. We review the available evidence of DE imaging for the assessment of myocardial infarction (MI) using cardiac CT (CTDE), from animal to clinical studies, and from 16-slice CT to dual-energy CT systems (DECT). Although both CMR and gadolinium agents have been originally deemed innocuous, a number of concerns (though inconclusive and very rare) have been recently issued regarding safety issues, including DNA double-strand breaks related to CMR, and gadolinium-associated nephrogenic systemic fibrosis and deposition in the skin and certain brain structures. These concerns have to be considered in the context of non-negligible rates of claustrophobia, increasing rates of patients with implantable cardiac devices, and a number of logistic drawbacks compared with CTDE, such as higher costs, longer scanning times, and difficulties to scan patients with impaired breath-holding capabilities. Overall, these issues might encourage the role of CTDE as an alternative for DE-CMR in selected populations. PMID:28540211
Lazzarotto, Tiziana; Chiereghin, Angela; Piralla, Antonio; Piccirilli, Giulia; Girello, Alessia; Campanini, Giulia; Gabrielli, Liliana; Costa, Cristina; Prete, Arcangelo; Bonifazi, Francesca; Busca, Alessandro; Cairoli, Roberto; Colombo, Anna Amelia; Zecca, Marco; Sidoti, Francesca; Bianco, Gabriele; Paba, Pierpaolo; Perno, Carlo Federico; Cavallo, Rossana; Baldanti, Fausto
2018-03-12
Currently, no consensus has been reached on the optimal blood compartment to be used for surveillance of cytomegalovirus (CMV) and Epstein-Barr virus (EBV) DNAemia. Although several comparative studies have been performed correlating CMV and EBV DNA loads in whole blood (WB) versus plasma, to our knowledge, no studies to date have analyzed the kinetics of both viruses in the 2 blood compartments. In this retrospective noninterventional multicenter cohort study, the kinetics of CMV and EBV DNA in 121 hematopoietic stem cell transplantation (HSCT) recipients were investigated by analyzing in parallel 569 and 351 paired samples from 80 and 58 sequential episodes of CMV and EBV DNAemia, respectively. Unlike previous studies, this study used a single automated molecular method that was CE-marked and Food and Drug Administration-approved for use in quantifying CMV and EBV DNA in both plasma and WB. Furthermore, the complete viral replication kinetics of all episodes (including both the ascending and the descending phases of the active infection) was examined in each patient. The previously observed overall correlation between CMV DNA levels in WB and plasma was confirmed (Spearman's ρ = .85; P < .001). However, although WB and plasma CMV DNAemia reached peak levels simultaneously, in the ascending phase, the median CMV DNA levels in plasma were approximately 1 log10 lower than WB. Furthermore, in patients who received preemptive therapy, CMV DNA showed a delayed decrease in plasma compared with WB. A lower correlation between EBV DNA levels in plasma versus WB was found (Spearman's ρ = .61; P < .001). EBV DNA kinetics was not consistent in the 2 blood compartments, mostly due to the lower positivity in plasma. Indeed, in 19% of episodes, EBV DNA was negative at the time of the EBV DNA peak in WB. Our results suggest a preferential use of WB for surveillance of CMV and EBV infection in HSCT recipients. Copyright © 2018 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Chemical Continuous Time Random Walks
NASA Astrophysics Data System (ADS)
Aquino, T.; Dentz, M.
2017-12-01
Traditional methods for modeling solute transport through heterogeneous media employ Eulerian schemes to solve for solute concentration. More recently, Lagrangian methods have removed the need for spatial discretization through the use of Monte Carlo implementations of Langevin equations for solute particle motions. While there have been recent advances in modeling chemically reactive transport with recourse to Lagrangian methods, these remain less developed than their Eulerian counterparts, and many open problems such as efficient convergence and reconstruction of the concentration field remain. We explore a different avenue and consider the question: In heterogeneous chemically reactive systems, is it possible to describe the evolution of macroscopic reactant concentrations without explicitly resolving the spatial transport? Traditional Kinetic Monte Carlo methods, such as the Gillespie algorithm, model chemical reactions as random walks in particle number space, without the introduction of spatial coordinates. The inter-reaction times are exponentially distributed under the assumption that the system is well mixed. In real systems, transport limitations lead to incomplete mixing and decreased reaction efficiency. We introduce an arbitrary inter-reaction time distribution, which may account for the impact of incomplete mixing. This process defines an inhomogeneous continuous time random walk in particle number space, from which we derive a generalized chemical Master equation and formulate a generalized Gillespie algorithm. We then determine the modified chemical rate laws for different inter-reaction time distributions. We trace Michaelis-Menten-type kinetics back to finite-mean delay times, and predict time-nonlocal macroscopic reaction kinetics as a consequence of broadly distributed delays. Non-Markovian kinetics exhibit weak ergodicity breaking and show key features of reactions under local non-equilibrium.
Managing Fuel Quality in the Department of Defense.
1987-06-01
effects on deposit kinetics. * New techniques utilizing mass spectroscopy and supercritical liquid chromatography are helping to understand the mechanism of...with complexity factors of 3 for each, but also Fluid Coking and Delayed Coking, with factors of 5 apiece. The corresponding category in Table D-l
Singlet oxygen-sensitized delayed fluorescence of common water-soluble photosensitizers.
Scholz, Marek; Dědic, Roman; Breitenbach, Thomas; Hála, Jan
2013-10-01
Six common water-soluble singlet oxygen ((1)O2) photosensitizers - 5,10,15,20-tetrakis(1-methyl-4-pyridinio) porphine (TMPyP), meso-tetrakis(4-sulfonathophenyl)porphine (TPPS4), Al(III) phthalocyanine chloride tetrasulfonic acid (AlPcS4), eosin Y, rose bengal, and methylene blue - were investigated in terms of their ability to produce delayed fluorescence (DF) in solutions at room temperature. All the photosensitizers dissolved in air-saturated phosphate buffered saline (PBS, pH 7.4) exhibit easily detectable DF, which can be nearly completely quenched by 10 mM NaN3, a specific (1)O2 quencher. The DF kinetics has a biexponential rise-decay character in a microsecond time domain. Therefore, we propose that singlet oxygen-sensitized delayed fluorescence (SOSDF), where the triplet state of a photosensitizer reacts with (1)O2 giving rise to an excited singlet state of the photosensitizer, is the prevailing mechanism. It was confirmed by additional evidence, such as a monoexponential decay of triplet-triplet transient absorption kinetics, dependence of SOSDF kinetics on oxygen concentration, absence of SOSDF in a nitrogen-saturated sample, or the effect of isotopic exchange H2O-D2O. Eosin Y and AlPcS4 show the largest SOSDF quantum yield among the selected photosensitizers, whereas rose bengal possesses the highest ratio of SOSDF intensity to prompt fluorescence intensity. The rate constant for the reaction of triplet state with (1)O2 giving rise to the excited singlet state of photosensitizer was estimated to be ~/>1 × 10(9) M(-1) s(-1). SOSDF kinetics contains information about both triplet and (1)O2 lifetimes and concentrations, which makes it a very useful alternative tool for monitoring photosensitizing and (1)O2 quenching processes, allowing its detection in the visible spectral region, utilizing the photosensitizer itself as a (1)O2 probe. Under our experimental conditions, SOSDF was up to three orders of magnitude more intense than the infrared (1)O2 phosphorescence and by far the most important pathway of DF. SOSDF was also detected in a suspension of 3T3 mouse fibroblast cells, which underlines the importance of SOSDF and its relevance for biological systems.
2013-01-01
Introduction Fluid resuscitation in the critically ill often results in a positive fluid balance, potentially diluting the serum creatinine concentration and delaying diagnosis of acute kidney injury (AKI). Methods Dilution during AKI was quantified by combining creatinine and volume kinetics to account for fluid type, and rates of fluid infusion and urine output. The model was refined using simulated patients receiving crystalloids or colloids under four glomerular filtration rate (GFR) change scenarios and then applied to a cohort of critically ill patients following cardiac arrest. Results The creatinine concentration decreased during six hours of fluid infusion at 1 litre-per-hour in simulated patients, irrespective of fluid type or extent of change in GFR (from 0% to 67% reduction). This delayed diagnosis of AKI by 2 to 9 hours. Crystalloids reduced creatinine concentration by 11 to 19% whereas colloids reduced concentration by 36 to 43%. The greatest reduction was at the end of the infusion period. Fluid dilution alone could not explain the rapid reduction of plasma creatinine concentration observed in 39 of 49 patients after cardiac arrest. Additional loss of creatinine production could account for those changes. AKI was suggested in six patients demonstrating little change in creatinine, since a 52 ± 13% reduction in GFR was required after accounting for fluid dilution and reduced creatinine production. Increased injury biomarkers within a few hours of cardiac arrest, including urinary cystatin C and plasma and urinary Neutrophil-Gelatinase-Associated-Lipocalin (biomarker-positive, creatinine-negative patients) also indicated AKI in these patients. Conclusions Creatinine and volume kinetics combined to quantify GFR loss, even in the absence of an increase in creatinine. The model improved disease severity estimation, and demonstrated that diagnostic delays due to dilution are minimally affected by fluid type. Creatinine sampling should be delayed at least one hour following a large fluid bolus to avoid dilution. Unchanged plasma creatinine post cardiac arrest signifies renal injury and loss of function. Trial registration Australian and New Zealand Clinical Trials Registry ACTRN12610001012066. PMID:23327106
Bartos, Daniel C; Morotti, Stefano; Ginsburg, Kenneth S; Grandi, Eleonora; Bers, Donald M
2017-04-01
[Ca 2+ ] i enhanced rabbit ventricular slowly activating delayed rectifier K + current (I Ks ) by negatively shifting the voltage dependence of activation and slowing deactivation, similar to perfusion of isoproterenol. Rabbit ventricular rapidly activating delayed rectifier K + current (I Kr ) amplitude and voltage dependence were unaffected by high [Ca 2+ ] i . When measuring or simulating I Ks during an action potential, I Ks was not different during a physiological Ca 2+ transient or when [Ca 2+ ] i was buffered to 500 nm. The slowly activating delayed rectifier K + current (I Ks ) contributes to repolarization of the cardiac action potential (AP). Intracellular Ca 2+ ([Ca 2+ ] i ) and β-adrenergic receptor (β-AR) stimulation modulate I Ks amplitude and kinetics, but details of these important I Ks regulators and their interaction are limited. We assessed the [Ca 2+ ] i dependence of I Ks in steady-state conditions and with dynamically changing membrane potential and [Ca 2+ ] i during an AP. I Ks was recorded from freshly isolated rabbit ventricular myocytes using whole-cell patch clamp. With intracellular pipette solutions that controlled free [Ca 2+ ] i , we found that raising [Ca 2+ ] i from 100 to 600 nm produced similar increases in I Ks as did β-AR activation, and the effects appeared additive. Both β-AR activation and high [Ca 2+ ] i increased maximally activated tail I Ks , negatively shifted the voltage dependence of activation, and slowed deactivation kinetics. These data informed changes in our well-established mathematical model of the rabbit myocyte. In both AP-clamp experiments and simulations, I Ks recorded during a normal physiological Ca 2+ transient was similar to I Ks measured with [Ca 2+ ] i clamped at 500-600 nm. Thus, our study provides novel quantitative data as to how physiological [Ca 2+ ] i regulates I Ks amplitude and kinetics during the normal rabbit AP. Our results suggest that micromolar [Ca 2+ ] i , in the submembrane or junctional cleft space, is not required to maximize [Ca 2+ ] i -dependent I Ks activation during normal Ca 2+ transients. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Bartos, Daniel C.; Morotti, Stefano; Ginsburg, Kenneth S.; Grandi, Eleonora
2017-01-01
Key points [Ca2+]i enhanced rabbit ventricular slowly activating delayed rectifier K+ current (I Ks) by negatively shifting the voltage dependence of activation and slowing deactivation, similar to perfusion of isoproterenol.Rabbit ventricular rapidly activating delayed rectifier K+ current (I Kr) amplitude and voltage dependence were unaffected by high [Ca2+]i.When measuring or simulating I Ks during an action potential, I Ks was not different during a physiological Ca2+ transient or when [Ca2+]i was buffered to 500 nm. Abstract The slowly activating delayed rectifier K+ current (I Ks) contributes to repolarization of the cardiac action potential (AP). Intracellular Ca2+ ([Ca2+]i) and β‐adrenergic receptor (β‐AR) stimulation modulate I Ks amplitude and kinetics, but details of these important I Ks regulators and their interaction are limited. We assessed the [Ca2+]i dependence of I Ks in steady‐state conditions and with dynamically changing membrane potential and [Ca2+]i during an AP. I Ks was recorded from freshly isolated rabbit ventricular myocytes using whole‐cell patch clamp. With intracellular pipette solutions that controlled free [Ca2+]i, we found that raising [Ca2+]i from 100 to 600 nm produced similar increases in I Ks as did β‐AR activation, and the effects appeared additive. Both β‐AR activation and high [Ca2+]i increased maximally activated tail I Ks, negatively shifted the voltage dependence of activation, and slowed deactivation kinetics. These data informed changes in our well‐established mathematical model of the rabbit myocyte. In both AP‐clamp experiments and simulations, I Ks recorded during a normal physiological Ca2+ transient was similar to I Ks measured with [Ca2+]i clamped at 500–600 nm. Thus, our study provides novel quantitative data as to how physiological [Ca2+]i regulates I Ks amplitude and kinetics during the normal rabbit AP. Our results suggest that micromolar [Ca2+]i, in the submembrane or junctional cleft space, is not required to maximize [Ca2+]i‐dependent I Ks activation during normal Ca2+ transients. PMID:28008618
Optimally Repeatable Kinetic Model Variant for Myocardial Blood Flow Measurements with 82Rb PET.
Ocneanu, Adrian F; deKemp, Robert A; Renaud, Jennifer M; Adler, Andy; Beanlands, Rob S B; Klein, Ran
2017-01-01
Purpose. Myocardial blood flow (MBF) quantification with 82 Rb positron emission tomography (PET) is gaining clinical adoption, but improvements in precision are desired. This study aims to identify analysis variants producing the most repeatable MBF measures. Methods. 12 volunteers underwent same-day test-retest rest and dipyridamole stress imaging with dynamic 82 Rb PET, from which MBF was quantified using 1-tissue-compartment kinetic model variants: (1) blood-pool versus uptake region sampled input function (Blood/Uptake-ROI), (2) dual spillover correction (SOC-On/Off), (3) right blood correction (RBC-On/Off), (4) arterial blood transit delay (Delay-On/Off), and (5) distribution volume (DV) constraint (Global/Regional-DV). Repeatability of MBF, stress/rest myocardial flow reserve (MFR), and stress/rest MBF difference (ΔMBF) was assessed using nonparametric reproducibility coefficients (RPC np = 1.45 × interquartile range). Results. MBF using SOC-On, RVBC-Off, Blood-ROI, Global-DV, and Delay-Off was most repeatable for combined rest and stress: RPC np = 0.21 mL/min/g (15.8%). Corresponding MFR and ΔMBF RPC np were 0.42 (20.2%) and 0.24 mL/min/g (23.5%). MBF repeatability improved with SOC-On at stress ( p < 0.001) and tended to improve with RBC-Off at both rest and stress ( p < 0.08). DV and ROI did not significantly influence repeatability. The Delay-On model was overdetermined and did not reliably converge. Conclusion. MBF and MFR test-retest repeatability were the best with dual spillover correction, left atrium blood input function, and global DV.
Qin, Qin; Huang, Alan J; Hua, Jun; Desmond, John E; Stevens, Robert D; van Zijl, Peter C M
2014-02-01
Measurement of the cerebral blood flow (CBF) with whole-brain coverage is challenging in terms of both acquisition and quantitative analysis. In order to fit arterial spin labeling-based perfusion kinetic curves, an empirical three-parameter model which characterizes the effective impulse response function (IRF) is introduced, which allows the determination of CBF, the arterial transit time (ATT) and T(1,eff). The accuracy and precision of the proposed model were compared with those of more complicated models with four or five parameters through Monte Carlo simulations. Pseudo-continuous arterial spin labeling images were acquired on a clinical 3-T scanner in 10 normal volunteers using a three-dimensional multi-shot gradient and spin echo scheme at multiple post-labeling delays to sample the kinetic curves. Voxel-wise fitting was performed using the three-parameter model and other models that contain two, four or five unknown parameters. For the two-parameter model, T(1,eff) values close to tissue and blood were assumed separately. Standard statistical analysis was conducted to compare these fitting models in various brain regions. The fitted results indicated that: (i) the estimated CBF values using the two-parameter model show appreciable dependence on the assumed T(1,eff) values; (ii) the proposed three-parameter model achieves the optimal balance between the goodness of fit and model complexity when compared among the models with explicit IRF fitting; (iii) both the two-parameter model using fixed blood T1 values for T(1,eff) and the three-parameter model provide reasonable fitting results. Using the proposed three-parameter model, the estimated CBF (46 ± 14 mL/100 g/min) and ATT (1.4 ± 0.3 s) values averaged from different brain regions are close to the literature reports; the estimated T(1,eff) values (1.9 ± 0.4 s) are higher than the tissue T1 values, possibly reflecting a contribution from the microvascular arterial blood compartment. Copyright © 2013 John Wiley & Sons, Ltd.
Effects of intrinsic stochasticity on delayed reaction-diffusion patterning systems.
Woolley, Thomas E; Baker, Ruth E; Gaffney, Eamonn A; Maini, Philip K; Seirin-Lee, Sungrim
2012-05-01
Cellular gene expression is a complex process involving many steps, including the transcription of DNA and translation of mRNA; hence the synthesis of proteins requires a considerable amount of time, from ten minutes to several hours. Since diffusion-driven instability has been observed to be sensitive to perturbations in kinetic delays, the application of Turing patterning mechanisms to the problem of producing spatially heterogeneous differential gene expression has been questioned. In deterministic systems a small delay in the reactions can cause a large increase in the time it takes a system to pattern. Recently, it has been observed that in undelayed systems intrinsic stochasticity can cause pattern initiation to occur earlier than in the analogous deterministic simulations. Here we are interested in adding both stochasticity and delays to Turing systems in order to assess whether stochasticity can reduce the patterning time scale in delayed Turing systems. As analytical insights to this problem are difficult to attain and often limited in their use, we focus on stochastically simulating delayed systems. We consider four different Turing systems and two different forms of delay. Our results are mixed and lead to the conclusion that, although the sensitivity to delays in the Turing mechanism is not completely removed by the addition of intrinsic noise, the effects of the delays are clearly ameliorated in certain specific cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laskin, Julia; Futrell, Jean H.
2015-02-01
We introduce a new approach for studying the kinetics of large ion fragmentation in the gas phase by coupling surface-induced dissociation (SID) in a Fourier transform ion cyclotron resonance mass spectrometer with resonant ejection of selected fragment ions using a relatively short (5 ms) ejection pulse. The approach is demonstrated for singly protonated angiotensin III ions excited by collisions with a self-assembled monolayer of alkylthiol on gold (HSAM). The overall decomposition rate and rate constants of individual reaction channels are controlled by varying the kinetic energy of the precursor ion in a range of 65–95 eV. The kinetics of peptidemore » fragmentation are probed by varying the delay time between resonant ejection and fragment ion detection at a constant total reaction time. RRKM modeling indicates that the shape of the kinetics plots is strongly affected by the shape and position of the energy deposition function (EDF) describing the internal energy distribution of the ion following ion-surface collision. Modeling of the kinetics data provides detailed information on the shape of the EDF and energy and entropy effects of individual reaction channels.« less
Jet-A reaction mechanism study for combustion application
NASA Technical Reports Server (NTRS)
Lee, Chi-Ming; Kundu, Krishna; Acosta, Waldo
1991-01-01
Simplified chemical kinetic reaction mechanisms for the combustion of Jet A fuel was studied. Initially, 40 reacting species and 118 elementary chemical reactions were chosen based on a literature review. Through a sensitivity analysis with the use of LSENS General Kinetics and Sensitivity Analysis Code, 16 species and 21 elementary chemical reactions were determined from this study. This mechanism is first justified by comparison of calculated ignition delay time with the available shock tube data, then it is validated by comparison of calculated emissions from the plug flow reactor code with in-house flame tube data.
The race between infection and immunity - how do pathogens set the pace?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ribiero, Ruy M
2009-01-01
Infection is often referred to as a race between pathogen and immune response. This metaphor suggests that slower growing pathogens should be more easily controlled. However, a growing body ofevidence shows that many chronic infections are caused by failure to control slow growing pathogens. The slow growth of pathogens appears to directly affect the kinetics of the immune response. Compared with the response to fast growing pathogens, the T cell response to slow pathogens is delayed in its initiation, lymphocyte expansion is slow and the response often fails to clear the pathogen, leading to chronic infection. Understanding the 'rules ofthemore » race' for slow growing pathogens has important implications for vaccine design and immune control of many chronic infections.« less
NASA Astrophysics Data System (ADS)
de Oliveira, Mariana Perez; Calderón-Hernández, José Wilmar; Magnabosco, Rodrigo; Hincapie-Ladino, Duberney; Alonso-Falleiros, Neusa
2017-04-01
The influence of niobium addition in a supermartensitic stainless steel with 13Cr-5Ni-2Mo has been studied. The steel with Nb tempered at 600 °C for 2 h showed improved mechanical resistance properties and lower degree of sensitization, without compromising elongation and pitting corrosion resistance, when compared to the reference steel. In order to understand the Nb effect in such steel, mainly regarding phase transformation, different tempering time intervals have been studied. The better performance of the SM2MoNb is attributed to the hindering effect that Nb has in the kinetics of the phase transformations during tempering, delaying the precipitation start and coarsening stages of the present phases.
Nuclear reactor transient analysis via a quasi-static kinetics Monte Carlo method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jo, YuGwon; Cho, Bumhee; Cho, Nam Zin, E-mail: nzcho@kaist.ac.kr
2015-12-31
The predictor-corrector quasi-static (PCQS) method is applied to the Monte Carlo (MC) calculation for reactor transient analysis. To solve the transient fixed-source problem of the PCQS method, fission source iteration is used and a linear approximation of fission source distributions during a macro-time step is introduced to provide delayed neutron source. The conventional particle-tracking procedure is modified to solve the transient fixed-source problem via MC calculation. The PCQS method with MC calculation is compared with the direct time-dependent method of characteristics (MOC) on a TWIGL two-group problem for verification of the computer code. Then, the results on a continuous-energy problemmore » are presented.« less
Improved Delayed-Neutron Spectroscopy Using Trapped Ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norman, Eric B.
The neutrons emitted following the β decay of fission fragments (known as delayed neutrons because they are emitted after fission on a timescale of the β-decay half-lives) play a crucial role in reactor performance and control. Reviews of delayed-neutron properties highlight the need for high-quality data for a wide variety of delayed-neutron emitters to better understand the time dependence and energy spectrum of the neutrons as these properties are essential for a detailed understanding of reactor kinetics needed for reactor safety and to understand the behavior of these reactors under various accident and component-failure scenarios. For fast breeder reactors, criticalitymore » calculations require accurate delayed-neutron energy spectra and approximations that are acceptable for light-water reactors such as assuming the delayed-neutron and fission-neutron energy spectra are identical are not acceptable and improved β-delayed neutron data is needed for safety and accident analyses for these reactors. With improved nuclear data, the delayed neutrons flux and energy spectrum could be calculated from the contributions from individual isotopes and therefore could be accurately modeled for any fuel-cycle concept, actinide mix, or irradiation history. High-quality β-delayed neutron measurements are also critical to constrain modern nuclear-structure calculations and empirical models that predict the decay properties for nuclei for which no data exists and improve the accuracy and flexibility of the existing empirical descriptions of delayed neutrons from fission such as the six-group representation« less
Characteristics of single Ca(2+) channel kinetics in feline hypertrophied ventricular myocytes.
Yang, Xiangjun; Hui, Jie; Jiang, Tingbo; Song, Jianping; Liu, Zhihua; Jiang, Wenping
2002-04-01
To explore the mechanism underlying the prolongation of action potential and delayed inactivation of the L-type Ca(2+) (I(Ca, L)) current in a feline model of left ventricular system hypertension and concomitant hypertrophy. Single Ca(2+) channel properties in myocytes isolated from normal and pressure overloaded cat left ventricles were studied, using patch-clamp techniques. Left ventricular pressure overload was induced by partial ligation of the ascending aorta for 4 - 6 weeks. The amplitude of single Ca(2+) channel current evoked by depolarizing pulses from -40 mV to 0 mV was 1.02 +/- 0.03 pA in normal cells and 1.05 +/- 0.03 pA in hypertrophied cells, and there was no difference in single channel current-voltage relationships between the groups since slope conductance was 26.2 +/- 1.0 pS in normal and hypertrophied cells, respectively. Peak amplitudes of the ensemble-averaged single Ca(2+) channel currents were not different between the two groups of cells. However, the amplitude of this averaged current at the end of the clamp pulse was significantly larger in hypertrophied cells than in normal cells. Open-time histograms revealed that open-time distribution was fitted by a single exponential function in channels of normal cells and by a two exponential function in channels of hypertrophied cells. The number of long-lasting openings was increased in channels of hypertrophied cells, and therefore the calculated mean open time of the channel was significantly longer compared to normal controls. Kinetic changes in the Ca(2+) channel may underlie both hypertrophy-associated delayed inactivation of the Ca(2+) current and, in part, the pressure overload-induced action potential lengthening in this cat model of ventricular left systolic hypertension and hypertrophy.
Machado, Leandro; Fernandes, Ricardo Jorge; Greco, Camila Coelho
2017-01-01
The purpose of this study was to examine the oxygen uptake (V˙O2) kinetics and the energy systems’ contribution at 97.5, 100 and 102.5% of the maximal lactate steady state (MLSS) swimming intensity. Ten elite female swimmers performed three-to-five 30 min submaximal constant swimming bouts at imposed paces for the determination of the swimming velocity (v) at 100%MLSS based on a 7 x 200 m intermittent incremental protocol until voluntary exhaustion to find the v associated at the individual anaerobic threshold. V˙O2 kinetics (cardiodynamic, primary and slow component phases) and the aerobic and anaerobic energy contributions were assessed during the continuous exercises, which the former was studied for the beginning and second phase of exercise. Subjects showed similar time delay (TD) (mean = 11.5–14.3 s) and time constant (τp) (mean = 13.8–16.3 s) as a function of v, but reduced amplitude of the primary component for 97.5% (35.7 ± 7.3 mL.kg.min-1) compared to 100 and 102.5%MLSS (41.0 ± 7.0 and 41.3 ± 5.4 mL.kg.min-1, respectively), and τp decreased (mean = 9.6–10.8 s) during the second phase of exercise. Despite the slow component did not occur for all swimmers at all swim intensities, when observed it tended to increase as a function of v. Moreover, the total energy contribution was almost exclusively aerobic (98–99%) at 97.5, 100 and 102.5%MLSS. We suggest that well-trained endurance swimmers with a fast TD and τp values may be able to adjust faster the physiological requirements to minimize the amplitude of the slow component appearance, parameter associated with the fatigue delay and increase in exhaustion time during performance, however, these fast adjustments were not able to control the progressive fatigue occurred slightly above MLSS, and most of swimmers reached exhaustion before 30min swam. PMID:28245246
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, Eric; Mathieu, Olivier; Morones, Anibal
This Final Report documents the entire four years of the project, from October 1, 2013 through September 30, 2017. This project was concerned with the chemical kinetics of fuel blends with high-hydrogen content in the presence of impurities. Emphasis was also on the design and construction of a new, high-pressure turbulent flame speed facility and the use of ignition delay times and flame speeds to elucidate the diluent and impurity effects on the fuel chemistry at gas turbine engine conditions and to also validate the chemical kinetics models. The project was divided into five primary tasks: 1) Project Management andmore » Program Planning; 2) Turbulent Flame Speed Measurements at Atmospheric Pressure; 3) Experiments and Kinetics of Syngas Blends with Impurities; 4) Design and Construction of a High-Pressure Turbulent Flame Speed Facility; and 5) High-Pressure Turbulent Flame Speed Measurements. Details on the execution and results of each of these tasks are provided in the main report.« less
Konieczna, Patrycja; Schiavi, Elisa; Ziegler, Mario; Groeger, David; Healy, Selena; Grant, Ray; O'Mahony, Liam
2015-01-01
The microbiota is required for optimal host development and ongoing immune homeostasis. Lactobacilli are common inhabitants of the mammalian large intestine and immunoregulatory effects have been described for certain, but not all, strains. The mechanisms underpinning these protective effects are beginning to be elucidated. One such protective organism is Lactobacillus rhamnosus JB-1 (Lb. rhamnosus JB-1). Lb. murinus has no such anti-inflammatory protective effects and was used as a comparator organism. Human monocyte-derived dendritic cells (MDDCs) were co-incubated with bacteria and analysed over time for bacterial adhesion and intracellular processing, costimulatory molecule expression, cytokine secretion and induction of lymphocyte polarization. Neutralising antibodies were utilized to identify the responsible MDDC receptors. Lb. rhamnosus JB-1 adhered to MDDCs, but internalization and intracellular processing was significantly delayed, compared to Lb. murinus which was rapidly internalized and processed. Lb. murinus induced CD80 and CD86 expression, accompanied by high levels of cytokine secretion, while Lb. rhamnosus JB-1 was a poor inducer of costimulatory molecule expression and cytokine secretion. Lb. rhamnosus JB-1 primed MDDCs induced Foxp3 expression in autologous lymphocytes, while Lb. murinus primed MDDCs induced Foxp3, T-bet and Ror-γt expression. DC-SIGN was required for Lb. rhamnosus JB-1 adhesion and influenced IL-12 secretion, while TLR-2 influenced IL-10 and IL-12 secretion. Here we demonstrate that the delayed kinetics of bacterial processing by MDDCs correlates with MDDC activation and stimulation of lymphocytes. Thus, inhibition or delay of intracellular processing may be a novel strategy by which certain commensals may avoid the induction of proinflammatory responses.
Konieczna, Patrycja; Schiavi, Elisa; Ziegler, Mario; Groeger, David; Healy, Selena; Grant, Ray; O’Mahony, Liam
2015-01-01
The microbiota is required for optimal host development and ongoing immune homeostasis. Lactobacilli are common inhabitants of the mammalian large intestine and immunoregulatory effects have been described for certain, but not all, strains. The mechanisms underpinning these protective effects are beginning to be elucidated. One such protective organism is Lactobacillus rhamnosus JB-1 (Lb. rhamnosus JB-1). Lb. murinus has no such anti-inflammatory protective effects and was used as a comparator organism. Human monocyte-derived dendritic cells (MDDCs) were co-incubated with bacteria and analysed over time for bacterial adhesion and intracellular processing, costimulatory molecule expression, cytokine secretion and induction of lymphocyte polarization. Neutralising antibodies were utilized to identify the responsible MDDC receptors. Lb. rhamnosus JB-1 adhered to MDDCs, but internalization and intracellular processing was significantly delayed, compared to Lb. murinus which was rapidly internalized and processed. Lb. murinus induced CD80 and CD86 expression, accompanied by high levels of cytokine secretion, while Lb. rhamnosus JB-1 was a poor inducer of costimulatory molecule expression and cytokine secretion. Lb. rhamnosus JB-1 primed MDDCs induced Foxp3 expression in autologous lymphocytes, while Lb. murinus primed MDDCs induced Foxp3, T-bet and Ror-γt expression. DC-SIGN was required for Lb. rhamnosus JB-1 adhesion and influenced IL-12 secretion, while TLR-2 influenced IL-10 and IL-12 secretion. Here we demonstrate that the delayed kinetics of bacterial processing by MDDCs correlates with MDDC activation and stimulation of lymphocytes. Thus, inhibition or delay of intracellular processing may be a novel strategy by which certain commensals may avoid the induction of proinflammatory responses. PMID:25816321
Turk, Harmony F.; Monk, Jennifer M.; Fan, Yang-Yi; Callaway, Evelyn S.; Weeks, Brad
2013-01-01
Epidermal growth factor receptor (EGFR)-mediated signaling is required for optimal intestinal wound healing. Since n-3 polyunsaturated fatty acids (PUFA), specifically docosahexaenoic acid (DHA), alter EGFR signaling and suppress downstream activation of key signaling pathways, we hypothesized that DHA would be detrimental to the process of intestinal wound healing. Using a mouse immortalized colonocyte model, DHA uniquely reduced EGFR ligand-induced receptor activation, whereas DHA and its metabolic precursor eicosapentaenoic acid (EPA) reduced wound-induced EGFR transactivation compared with control (no fatty acid or linoleic acid). Under wounding conditions, the suppression of EGFR activation was associated with a reduction in downstream activation of cytoskeletal remodeling proteins (PLCγ1, Rac1, and Cdc42). Subsequently, DHA and EPA reduced cell migration in response to wounding. Mice were fed a corn oil-, DHA-, or EPA-enriched diet prior to intestinal wounding (2.5% dextran sodium sulfate for 5 days followed by termination after 0, 3, or 6 days of recovery). Mortality was increased in EPA-fed mice and colonic histological injury scores were increased in EPA- and DHA-fed mice compared with corn oil-fed (control) mice. Although kinetics of colonic EGFR activation and downstream signaling (PLCγ1, Rac1, and Cdc42) were delayed by both n-3 PUFA, colonic repair was increased in EPA- relative to DHA-fed mice. These results indicate that, during the early response to intestinal wounding, DHA and EPA uniquely delay the activation of key wound-healing processes in the colon. This effect is mediated, at least in part, via suppression of EGFR-mediated signaling and downstream cytoskeletal remodeling. PMID:23426968
Fitzpatrick, Ann E; Lincoln, Craig N; van Wilderen, Luuk J G W; van Thor, Jasper J
2012-01-26
The primary photoreactions of the red absorbing ground state (Pr) of the cyanobacterial phytochrome Cph1 from Synechocystis PCC 6803 involve C15═C16 Z-E photoisomerization of its phycocyanobilin chromophore. The first observable product intermediate in pump-probe measurements of the photocycle, "Lumi-R", is formed with picosecond kinetics and involves excited state decay reactions that have 3 and 14 ps time constants. Here, we have studied the photochemical formation of the Lumi-R intermediate using multipulse picosecond visible spectroscopy. Pump-dump-probe (PDP) and pump-repump-probe (PRP) experiments were carried out by employing two femtosecond visible pulses with 1, 14, and 160 ps delays, together with a broadband dispersive visible probe. The time delays between the two excitation pulses have been selected to allow interaction with the dominant (3 and 14 ps) kinetic phases of Lumi-R formation. The frequency dependence of the PDP and PRP amplitudes was investigated at 620, 640, 660, and 680 nm, covering excited state absorption (λ(max) = 620 nm), ground state absorption (λ(max) = 660 nm), and stimulated emission (λ(max) = 680 nm) cross sections. Experimental double difference transient absorbance signals (ΔΔOD), from the PDP and PRP measurements, required corrections to remove contributions from ground state repumping. The sensitivity of the resulting ΔΔOD signals was systematically investigated for possible connectivity schemes and photochemical parameters. When applying a homogeneous (sequentially decaying) connectivity scheme in both the 3 and 14 ps kinetic phases, evidence for repumping of an intermediate that has an electronic ground state configuration (GSI) is taken from the dump-induced S1 formation with 620, 640, and 660 nm wavelengths and 1 and 14 ps repump delays. Evidence for repumping a GSI is also seen, for the same excitation wavelengths, when imposing a target connectivity scheme proposed in the literature for the 1 ps repump delay. In contrast, using a 680 nm dump pulse, ground state formation is observed for all models examined. The ΔΔOD signals were dominated by stimulated emission, at both 1 and 14 ps delays for the longer wavelength excitation. The GSI, which is revealed by the PRP measurements and not resolved from pump-probe measurements, is found to be directly formed from the excited state of Pr, and its formation is considered using heterogeneous, homogeneous, and target models to globally fit the data.
Autoignition Studies of Diesel Alternative Biofuels
NASA Astrophysics Data System (ADS)
Wang, Weijing
The autoignition of biofuel compounds that offer potential as diesel fuel alternatives was studied under high-pressure engine-like conditions using the shock tube technique. Ignition delay times were determined in reflected shock experiments using measured pressure and electronically-excited OH emission. Measurements were made at conditions ranging from 650 to 1350 K, pressures from 6 to 50 atm, and for fuel/air/diluent mixtures at equivalence ratios from 0.5 to 2. The wide range of temperatures examined provides observation of autoignition in three reactivity regimes, including the negative temperature coefficient (NTC) regime which is characteristic of fuels containing alkyl functionalities. Compounds studied include biodiesel-related compounds and real biodiesel fuels, dimethyl ether, and 3-methylheptane which is representative of compounds found in synthetic diesel fuels produced using the Fischer-Tropsch and hydrotreatment processes. Biodiesel compounds studied include biodiesel surrogates, methyl decanoate, methyl-5-decenoate, and methyl-9-decenoate; compounds found in large quantities in biodiesels, methyl palmitate, methyl stearate, methyl oleate, and methyl linoleate; and soy-based and animal fat based methyl ester biodiesels. Comparison of biodiesel compounds illustrates the influence of molecular structure (e.g., chain length, double bonds, and ester functionality) on reactivity. For methyl decanoate, the effect of high pressure exhaust gas recirculation (EGR) conditions relevant to internal combustion engines was also determined. Results showed that the first-order influence of EGR by displacing fuel and O2 to decrease radical branching. Measurements were compared to kinetic modeling results from models available in the literature providing varying degrees of model validation. Reaction flux analyses were also carried out to further examine the kinetic differences in different temperature regimes for fuel compounds. For example, reaction flux analyses illustrates the importance of the long alkyl chain in controlling the overall reactivity of methyl ester biodiesel compounds and the subtle role the ester group has on inhibiting low-temperature reactivity as well as the influence of branching on reactivity for lightly branched alkanes. This thesis work provides a rich database of kinetic information for biofuel-related compounds at conditions relevant to real engine operations, offering quantitative kinetic targets for the development and evaluation of future kinetic models for important alternative fuel compounds. The results quantify the reactivity variability of biodiesel alternatives and illustrate that at temperature greater than 900 to 1000 K fuel structure has little influence on reactivity, as fuel fragmentation results in an intermediate pool that is largely the same for the fuels studied. On the other hand at temperature lower than 900 K, where fuel-specific low-temperature chemistry plays a role, different fuel structures can result in vast differences in reactivity, up to factors of three or more in ignition delay.
Chan, E; Evans, M G
1998-09-18
It has been shown that the application of acetylcholine activates a Ca2+-dependent K+ current in outer hair cells, and the resulting hyperpolarization is thought to be an important part of the inhibition mediated by cholinergic efferent nerve fibres to the cochlea. In order to study the kinetics of the current, flash photolysis has been used to apply a cholinergic agonist, carbachol, rapidly to isolated outer hair cells. A delay in the onset of the outward potassium current following photorelease of carbachol was consistently observed, and the activation phase of the response could be described by a sigmoidal-like function with a mean delay of 59 ms and time constant of 71 ms. The sum of these values lies within the time scale reported for the onset of the inhibition following electrical stimulation of the efferent nerves. Although a distinct current attributable to an acetylcholine receptor was not visible in these experiments, indirect evidence for a carbachol-induced influx of Ca2+ was obtained.
Rodriguez-Molina, Victor M.; Aertsen, Ad; Heck, Detlef H.
2007-01-01
In vivo studies have shown that neurons in the neocortex can generate action potentials at high temporal precision. The mechanisms controlling timing and reliability of action potential generation in neocortical neurons, however, are still poorly understood. Here we investigated the temporal precision and reliability of spike firing in cortical layer V pyramidal cells at near-threshold membrane potentials. Timing and reliability of spike responses were a function of EPSC kinetics, temporal jitter of population excitatory inputs, and of background synaptic noise. We used somatic current injection to mimic population synaptic input events and measured spike probability and spike time precision (STP), the latter defined as the time window (Δt) holding 80% of response spikes. EPSC rise and decay times were varied over the known physiological spectrum. At spike threshold level, EPSC decay time had a stronger influence on STP than rise time. Generally, STP was highest (≤2.45 ms) in response to synchronous compounds of EPSCs with fast rise and decay kinetics. Compounds with slow EPSC kinetics (decay time constants>6 ms) triggered spikes at lower temporal precision (≥6.58 ms). We found an overall linear relationship between STP and spike delay. The difference in STP between fast and slow compound EPSCs could be reduced by incrementing the amplitude of slow compound EPSCs. The introduction of a temporal jitter to compound EPSCs had a comparatively small effect on STP, with a tenfold increase in jitter resulting in only a five fold decrease in STP. In the presence of simulated synaptic background activity, precisely timed spikes could still be induced by fast EPSCs, but not by slow EPSCs. PMID:17389910
Desai, Nina; Goldberg, Jeffrey M; Austin, Cynthia; Falcone, Tommaso
2018-04-01
To determine whether cleavage anomalies, multinucleation, and specific cellular kinetic parameters available from time-lapse imaging are predictive of developmental capacity or blastocyst chromosomal status. Retrospective analysis of prospectively collected data. Single academic center. A total of 1,478 zygotes from patients with blastocysts biopsied for preimplantation genetic screening were cultured in the EmbryoScope. Trophectoderm biopsy. Embryo dysmorphisms, developmental kinetics, and euploidy. Of the 767 biopsied blastocysts, 41.6% (95% confidence interval [CI], 38%-45%) were diagnosed as euploid. Individual dysmorphisms such as multinucleation, reverse cleavage, irregular chaotic division, or direct uneven cleavage were not associated with aneuploidy. Direct uneven cleavage and irregular chaotic division embryos did, however, exhibit lower developmental potential. The presence of two or more dysmorphisms was associated with an overall lower euploidy rate, 27.6% (95% CI 19%-39%). Early embryo kinetics were predictive of blastocyst development but not ploidy status. In contrast, chromosomal status correlated significantly with start time of blastulation (tSB), expansion (tEB), and the tEB-tSB interval. A lower euploidy rate, 36.6% (95% CI 33%-42%) was observed with tSB ≥ 96.2 hours, compared with 48.2% with tSB < 96.2 (95% CI 42%-54%). A drop in euploidy rate to 30% (95% CI 25%-37%) was observed in blastocysts with delayed expansion (tEB > 116). The proportion of euploid blastocysts was increased with tEB-tSB intervals of ≤13 hours. A logistic regression model to enhance the probability of selecting a euploid blastocyst was constructed. Morphokinetics may aid in selection of euploid embryos from a cohort of day 5/6 blastocysts. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Analytical study of robustness of a negative feedback oscillator by multiparameter sensitivity
2014-01-01
Background One of the distinctive features of biological oscillators such as circadian clocks and cell cycles is robustness which is the ability to resume reliable operation in the face of different types of perturbations. In the previous study, we proposed multiparameter sensitivity (MPS) as an intelligible measure for robustness to fluctuations in kinetic parameters. Analytical solutions directly connect the mechanisms and kinetic parameters to dynamic properties such as period, amplitude and their associated MPSs. Although negative feedback loops are known as common structures to biological oscillators, the analytical solutions have not been presented for a general model of negative feedback oscillators. Results We present the analytical expressions for the period, amplitude and their associated MPSs for a general model of negative feedback oscillators. The analytical solutions are validated by comparing them with numerical solutions. The analytical solutions explicitly show how the dynamic properties depend on the kinetic parameters. The ratio of a threshold to the amplitude has a strong impact on the period MPS. As the ratio approaches to one, the MPS increases, indicating that the period becomes more sensitive to changes in kinetic parameters. We present the first mathematical proof that the distributed time-delay mechanism contributes to making the oscillation period robust to parameter fluctuations. The MPS decreases with an increase in the feedback loop length (i.e., the number of molecular species constituting the feedback loop). Conclusions Since a general model of negative feedback oscillators was employed, the results shown in this paper are expected to be true for many of biological oscillators. This study strongly supports that the hypothesis that phosphorylations of clock proteins contribute to the robustness of circadian rhythms. The analytical solutions give synthetic biologists some clues to design gene oscillators with robust and desired period. PMID:25605374
Detailed kinetic modeling study of n-pentanol oxidation
Heufer, K. Alexander; Sarathy, S. Mani; Curran, Henry J.; ...
2012-09-28
To help overcome the world’s dependence upon fossil fuels, suitable biofuels are promising alternatives that can be used in the transportation sector. Recent research on internal combustion engines shows that short alcoholic fuels (e.g., ethanol or n-butanol) have reduced pollutant emissions and increased knock resistance compared to fossil fuels. Although higher molecular weight alcohols (e.g., n-pentanol and n-hexanol) exhibit higher reactivity that lowers their knock resistance, they are suitable for diesel engines or advanced engine concepts, such as homogeneous charge compression ignition (HCCI), where higher reactivity at lower temperatures is necessary for engine operation. The present study presents a detailedmore » kinetic model for n-pentanol based on modeling rules previously presented for n-butanol. This approach was initially validated using quantum chemistry calculations to verify the most stable n-pentanol conformation and to obtain C–H and C–C bond dissociation energies. In addition, the proposed model has been validated against ignition delay time data, speciation data from a jet-stirred reactor, and laminar flame velocity measurements. Overall, the model shows good agreement with the experiments and permits a detailed discussion of the differences between alcohols and alkanes.« less
NASA Technical Reports Server (NTRS)
Magnotti, F.; Diskin, G.; Matulaitis, J.; Chinitz, W.
1984-01-01
The use of silane (SiH4) as an effective ignitor and flame stabilizing pilot fuel is well documented. A reliable chemical kinetic mechanism for prediction of its behavior at the conditions encountered in the combustor of a SCRAMJET engine was calculated. The effects of hydrogen addition on hydrocarbon ignition and flame stabilization as a means for reduction of lengthy ignition delays and reaction times were studied. The ranges of applicability of chemical kinetic models of hydrogen-air combustors were also investigated. The CHARNAL computer code was applied to the turbulent reaction rate modeling.
Surface Area, and Oxidation Effects on Nitridation Kinetics of Silicon Powder Compacts
NASA Technical Reports Server (NTRS)
Bhatt, R. T.; Palczer, A. R.
1998-01-01
Commercially available silicon powders were wet-attrition-milled from 2 to 48 hr to achieve surface areas (SA's) ranging from 1.3 to 70 sq m/g. The surface area effects on the nitridation kinetics of silicon powder compacts were determined at 1250 or 1350 C for 4 hr. In addition, the influence of nitridation environment, and preoxidation on nitridation kinetics of a silicon powder of high surface area (approximately equals 63 sq m/g) was investigated. As the surface area increased, so did the percentage nitridation after 4 hr in N2 at 1250 or 1350 C. Silicon powders of high surface area (greater than 40 sq m/g) can be nitrided to greater than 70% at 1250 C in 4 hr. The nitridation kinetics of the high-surface-area powder compacts were significantly delayed by preoxidation treatment. Conversely, the nitridation environment had no significant influence on the nitridation kinetics of the same powder. Impurities present in the starting powder, and those accumulated during attrition milling, appeared to react with the silica layer on the surface of silicon particles to form a molten silicate layer, which provided a path for rapid diffusion of nitrogen and enhanced the nitridation kinetics of high surface area silicon powder.
Talla, Sai Krishna; Panigrahy, Madhusmita; Kappara, Saivishnupriya; Nirosha, P; Neelamraju, Sarla; Ramanan, Rajeshwari
2016-03-01
The phytohormone cytokinin (CK) is known to delay senescence in plants. We studied the effect of a CK analog, 6-benzyl adenine (BA), on rice leaves to understand the possible mechanism by which CK delays senescence in a drought- and heat-tolerant rice cultivar Nagina22 (N22) using dark-induced senescence (DIS) as a surrogate for natural senescence of leaves. Leaves of N22-H-dgl162, a stay-green mutant of N22, and BA-treated N22 showed retention of chlorophyll (Chl) pigments, maintenance of the Chl a/b ratio, and delay in reduction of both photochemical efficiency and rate of oxygen evolution during DIS. HPLC analysis showed accumulation of 7-hydroxymethyl chlorophyll (HmChl) during DIS, and the kinetics of its accumulation correlated with progression of senescence. Transcriptome analysis revealed that several plastid-localized genes, specifically those associated with photosystem II (PSII), showed higher transcript levels in BA-treated N22 and the stay-green mutant leaves compared with naturally senescing N22 leaves. Real-time PCR analyses showed that genes coding for enzymes associated with Chl a/b interconversion and proteins associated with light-harvesting complexes maintained higher transcript levels up to 72h of DIS following BA treatment. The pigment-protein complexes analyzed by green gel remained intact in both N22-H-dgl162 and BA-treated N22 leaves even after 96h of DIS. Thus, CK delays senescence by accumulation of HmChl and up-regulating genes in the Chl cycle, thereby maintaining the Chl a/b ratio. Also, CK treatment retains higher transcript levels of PSII-related genes, resulting in the stability of photosynthetic pigment complexes and functional stay-greenness in rice. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
KINETICS OF LOW SOURCE REACTOR STARTUPS. PART II
DOE Office of Scientific and Technical Information (OSTI.GOV)
hurwitz, H. Jr.; MacMillan, D.B.; Smith, J.H.
1962-06-01
A computational technique is described for computation of the probability distribution of power level for a low source reactor startup. The technique uses a mathematical model, for the time-dependent probability distribution of neutron and precursor concentration, having finite neutron lifetime, one group of delayed neutron precursors, and no spatial dependence. Results obtained by the technique are given. (auth)
A kinematic analysis of the rapid step test in balance-impaired and unimpaired older women.
Schulz, Brian W; Ashton-Miller, James A; Alexander, Neil B
2007-04-01
Little is known about the kinematic and kinetic determinants that might explain age and balance-impairment alterations in the results of volitional stepping performance tests. Maximal unipedal stance time (UST) was used to distinguish "balance-impaired" old (BI, UST<10s, N=15, mean age=76 years) from unimpaired old (O, UST>30s, N=12, mean age=71 years) before they and healthy young females (Y, UST>30s, N=13, mean age=23 years) performed the rapid step test (RST). The RST evaluates the time required to take volitional front, side, and back steps of at least 80% maximum step length in response to verbal commands. Kinematic and kinetic data were recorded during the RST. The results indicate that the initiation phase of the step was the major source of age- and balance impairment-related delays. The delays in BI were primarily caused by increased postural adjustments prior to step initiation, as measured by center-of-pressure (COP) path length (p<0.003). The Step landing phase showed similar, but non-significant, temporal trends. Step length and peak center-of-mass (COM) deceleration during the Step-Out landing decreased in O by 18% (p=0.0002) and 24% (p=0.001), respectively, and a further 12% (p=0.04) and 18% (p=0.08) in BI. We conclude that the delay in BI step initiation was due to the increase in their postural adjustments prior to step initiation.
Barbosa, Luis F; Denadai, Benedito S; Greco, Camila C
2016-01-01
Slow component of oxygen uptake (VO 2 SC) kinetics and maximal oxygen uptake (VO 2 max) attainment seem to influence endurance performance during constant-work rate exercise (CWR) performed within the severe intensity domain. In this study, it was hypothesized that delaying the attainment of VO 2 max by reducing the rates at which VO 2 increases with time (VO 2 SC kinetics) would improve the endurance performance during severe-intensity intermittent exercise performed with different work:recovery duration and recovery type in active individuals. After the estimation of the parameters of the VO 2 SC kinetics during CWR exercise, 18 males were divided into two groups (Passive and Active recovery) and performed at different days, two intermittent exercises to exhaustion (at 95% IVO 2 max, with work: recovery ratio of 2:1) with the duration of the repetitions calculated from the onset of the exercise to the beginning of the VO 2 SC (Short) or to the half duration of the VO 2 SC (Long). The active recovery was performed at 50% IVO 2 max. The endurance performance during intermittent exercises for the Passive (Short = 1523 ± 411; Long = 984 ± 260 s) and Active (Short = 902 ± 239; Long = 886 ± 254 s) groups was improved compared with CWR condition (Passive = 540 ± 116; Active = 489 ± 84 s). For Passive group, the endurance performance was significantly higher for Short than Long condition. However, no significant difference between Short and Long conditions was found for Active group. Additionally, the endurance performance during Short condition was higher for Passive than Active group. The VO 2 SC kinetics was significantly increased for CWR (Passive = 0.16 ± 0.04; Active = 0.16 ± 0.04 L.min -2 ) compared with Short (Passive = 0.01 ± 0.01; Active = 0.03 ± 0.04 L.min -2 ) and Long (Passive = 0.02 ± 0.01; Active = 0.01 ± 0.01 L.min -2 ) intermittent exercise conditions. No significant difference was found among the intermittent exercises. It can be concluded that the endurance performance is negatively influenced by active recovery only during shorter high-intensity intermittent exercise. Moreover, the improvement in endurance performance seems not be explained by differences in the VO 2 SC kinetics, since its values were similar among all intermittent exercise conditions.
Li, Yang; Klippenstein, Stephen J; Zhou, Chong-Wen; Curran, Henry J
2017-10-12
The oxidation chemistry of the simplest conjugated hydrocarbon, 1,3-butadiene, can provide a first step in understanding the role of polyunsaturated hydrocarbons in combustion and, in particular, an understanding of their contribution toward soot formation. On the basis of our previous work on propene and the butene isomers (1-, 2-, and isobutene), it was found that the reaction kinetics of Ḣ-atom addition to the C═C double bond plays a significant role in fuel consumption kinetics and influences the predictions of high-temperature ignition delay times, product species concentrations, and flame speed measurements. In this study, the rate constants and thermodynamic properties for Ḣ-atom addition to 1,3-butadiene and related reactions on the Ċ 4 H 7 potential energy surface have been calculated using two different series of quantum chemical methods and two different kinetic codes. Excellent agreement is obtained between the two different kinetics codes. The calculated results including zero-point energies, single-point energies, rate constants, barrier heights, and thermochemistry are systematically compared among the two quantum chemical methods. 1-Methylallyl (Ċ 4 H 7 1-3) and 3-buten-1-yl (Ċ 4 H 7 1-4) radicals and C 2 H 4 + Ċ 2 H 3 are found to be the most important channels and reactivity-promoting products, respectively. We calculated that terminal addition is dominant (>80%) compared to internal Ḣ-atom addition at all temperatures in the range 298-2000 K. However, this dominance decreases with increasing temperature. The calculated rate constants for the bimolecular reaction C 4 H 6 + Ḣ → products and C 2 H 4 + Ċ 2 H 3 → products are in excellent agreement with both experimental and theoretical results from the literature. For selected C 4 species, the calculated thermochemical values are also in good agreement with literature data. In addition, the rate constants for H atom abstraction by Ḣ atoms have also been calculated, and it is found that abstraction from the central carbon atoms is the dominant channel (>70%) at temperatures in the range of 298-2000 K. Finally, by incorporating our calculated rate constants for both Ḣ atom addition and abstraction into our recently developed 1,3-butadiene model, we show that laminar flame speed predictions are significantly improved, emphasizing the value of this study.
Coutinho, Nayara D; Silva, Valter H C; de Oliveira, Heibbe C B; Camargo, Ademir J; Mundim, Kleber C; Aquilanti, Vincenzo
2015-05-07
The OH + HBr → H2O + Br reaction, prototypical of halogen-atom liberating processes relevant to mechanisms for atmospheric ozone destruction, attracted frequent attention of experimental chemical kinetics: the nature of the unusual reactivity drop from low to high temperatures eluded a variety of theoretical efforts, ranking this one among the most studied four-atom reactions. Here, inspired by oriented molecular-beams experiments, we develop a first-principles stereodynamical approach. Thermalized sets of trajectories, evolving on a multidimensional potential energy surface quantum mechanically generated on-the-fly, provide a map of most visited regions at each temperature. Visualizations of rearrangements of bonds along trajectories and of the role of specific angles of reactants' mutual approach elucidate the mechanistic change from the low kinetic energy regime (where incident reactants reorient to find the propitious alignment leading to reaction) to high temperature (where speed hinders adjustment of directionality and roaming delays reactivity).
Bonnet, Marie; Cansell, Maud; Placin, Frédéric; David-Briand, Elisabeth; Anton, Marc; Leal-Calderon, Fernando
2010-07-14
Water-in-oil-in-water (W/O/W) double emulsions were prepared, and the kinetics of release of magnesium ions from the internal to the external water phase was followed. Different chelating agents (phosvitin and gluconate) were used to bind magnesium within the prospect of improving the ion retention in the internal aqueous droplets. Magnesium release was monitored for 1 month of storage, for each formulation, with and without chelation, at two storage temperatures (4 and 25 degrees C). Leakage occurred without film rupturing (coalescence) and was mainly due to entropically driven diffusion/permeation phenomena. The experimental results revealed a clear correlation between the effectiveness of chelating agents to delay the delivery and their binding capacity characterized by the equilibrium affinity constant. The kinetic data (percent released versus time curves) were interpreted within the framework of a kinetic model based on diffusion and taking into account magnesium chelation.
Chemical kinetic reaction mechanism for the combustion of propane
NASA Technical Reports Server (NTRS)
Jachimowski, C. J.
1984-01-01
A detailed chemical kinetic reaction mechanism for the combustion of propane is presented and discussed. The mechanism consists of 27 chemical species and 83 elementary chemical reactions. Ignition and combustion data as determined in shock tube studies were used to evaluate the mechanism. Numerical simulation of the shock tube experiments showed that the kinetic behavior predicted by the mechanism for stoichiometric mixtures is in good agrement with the experimental results over the entire temperature range examined (1150-2600K). Sensitivity and theoretical studies carried out using the mechanism revealed that hydrocarbon reactions which are involved in the formation of the HO2 radical and the H2O2 molecule are very important in the mechanism and that the observed nonlinear behavior of ignition delay time with decreasing temperature can be interpreted in terms of the increased importance of the HO2 and H2O2 reactions at the lower temperatures.
Light-induced biophotonic emission from plant tissues.
Bajpai, R P; Bajpai, P K
1992-07-01
The emission of biophotons in the visible range, following a delay time of 2-200 seconds after exposure to light, has been measured in germinating seeds, roots, flowers, leaves, and cells. It was found that the biophotonic signals are reproducible and light-induced. The observed signals from germinating seeds of Phaseolus aures and decaying leaves of Eucalyptus are presented to show that the signals have characteristic kinetics and intensity. The kinetics of the signal was found to be independent of the stage of growth or decay, though its intensity varied with biological factors. The kinetics in the first minute is characterized by a single exponential decay term while that in the region t less than or equal to 200 s is characterized by two exponentials. The variation in the intensity of the signal with mass, state of hydration, and growth, and the effect of inhibitors in various systems (e.g. leaves, lichen, Chlorella) are reported.
Helbert, Anne-Laure; Moya, Alice; Jil, Tomas; Andrieux, Michel; Ignat, Michel; Brisset, François; Baudin, Thierry
2015-10-01
In this paper, the traceability of copper from the anode to the cathode and then the wire rod has been studied in terms of impurity content, microstructure, texture, recrystallization kinetics, and ductility. These characterizations were obtained based on secondary ion mass spectrometry, differential scanning calorimetry (DSC), X-ray diffraction, HV hardness, and electron backscattered diffraction. It is shown that the recrystallization was delayed by the total amount of impurities. From tensile tests performed on cold drawn and subsequently annealed wires for a given time, a simplified model has been developed to link tensile elongation to the chemical composition. This model allowed quantification of the contribution of some additional elements, present in small quantity, on the recrystallization kinetics. The proposed model adjusted for the cold-drawn wires was also validated on both the cathode and wire rod used for the study of traceability.
NASA Astrophysics Data System (ADS)
Yu, Anchi; Ye, Xiong; Ionascu, Dan; Cao, Wenxiang; Champion, Paul M.
2005-11-01
An electronically delayed two-color pump-probe instrument was developed using two synchronized laser systems. The instrument has picosecond time resolution and can perform scans over hundreds of nanoseconds without the beam divergence and walk-off effects that occur using standard spatial delay systems. A unique picosecond Ti :sapphire regenerative amplifier was also constructed without the need for pulse stretching and compressing optics. The picosecond regenerative amplifier has a broad wavelength tuning range, which suggests that it will make a significant contribution to two-color pump-probe experiments. To test this instrument we studied the rotational correlation relaxation of myoglobin (τr=8.2±0.5ns) in water as well as the geminate rebinding kinetics of oxygen to myoglobin (kg1=1.7×1011s-1, kg2=3.4×107s-1). The results are consistent with, and improve upon, previous studies.
An experimental and kinetic modeling study on dimethyl carbonate (DMC) pyrolysis and combustion
Sun, Wenyu; Yang, Bin; Hansen, Nils; ...
2015-12-08
Because of the absence of C–C bonds and the large oxygen content in its molecular structure, dimethyl carbonate (DMC) is a promising oxygenated additive or substitute for hydrocarbon fuels. In order to understand its chemical oxidation and combustion kinetics, flow reactor pyrolysis at different pressures (40, 200 and 1040 mbar) and low-pressure laminar premixed flames with different equivalence ratios (1.0 and 1.5) were investigated. Mole fraction profiles of many reaction intermediates and products were obtained within estimated experimental uncertainties. From theoretical calculations and estimations, a detailed kinetic model for DMC pyrolysis and high-temperature combustion consisting of 257 species and 1563more » reactions was developed. The performance of the kinetic model was then analyzed using detailed chemical composition information, primarily from the present measurements. In addition, it was examined against the chemical structure of an opposed-flow diffusion flame, relying on global combustion properties such as the ignition delay times and laminar burning velocities. Furthermore, these extended comparisons yielded overall satisfactory agreement, demonstrating the applicability of the present model over a wide range of high-temperature conditions.« less
NASA Technical Reports Server (NTRS)
Bulzan, Dan
2007-01-01
An overview of the emissions related research being conducted as part of the Fundamental Aeronautics Subsonics Fixed Wing Project is presented. The overview includes project metrics, milestones, and descriptions of major research areas. The overview also includes information on some of the emissions research being conducted under NASA Research Announcements. Objective: Development of comprehensive detailed and reduced kinetic mechanisms of jet fuels for chemically-reacting flow modeling. Scientific Challenges: 1) Developing experimental facilities capable of handling higher hydrocarbons and providing benchmark combustion data. 2) Determining and understanding ignition and combustion characteristics, such as laminar flame speeds, extinction stretch rates, and autoignition delays, of jet fuels and hydrocarbons relevant to jet surrogates. 3) Developing comprehensive kinetic models for jet fuels.
Dynamics of vibrational relaxation in the S 1 state of carotenoids having 11 conjugated CC bonds
NASA Astrophysics Data System (ADS)
Hörvin Billsten, Helena; Zigmantas, Donatas; Sundström, Villy; Polívka, Tomáš
2002-04-01
Transient absorption spectra and kinetics in the 470-650 nm region were recorded for lycopene, β-carotene and zeaxanthin, all carotenoids with 11 conjugated double bonds, in two solvents with different polarity. Analysis of the red wing of the carotenoid S 1-S n transition revealed presence of a pronounced shoulder at early delay times. The kinetics recorded at this low-energy shoulder of the S 1-S n transition yields an additional decay component of 500-800 fs in addition to the main S 1 decay. This dynamics is ascribed to a vibrational relaxation in the S 1 state of the carotenoids.
Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Eric; Krejci, Michael; Mathieu, Olivier
2014-01-24
This final report documents the technical results of the 3-year project entitled, “Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels,” funded under the NETL of DOE. The research was conducted under six main tasks: 1) program management and planning; 2) turbulent flame speed measurements of syngas mixtures; 3) laminar flame speed measurements with diluents; 4) NOx mechanism validation experiments; 5) fundamental NOx kinetics; and 6) the effect of impurities on NOx kinetics. Experiments were performed using primary constant-volume vessels for laminar and turbulent flame speeds and shock tubes for ignition delay times andmore » species concentrations. In addition to the existing shock- tube and flame speed facilities, a new capability in measuring turbulent flame speeds was developed under this grant. Other highlights include an improved NOx kinetics mechanism; a database on syngas blends for real fuel mixtures with and without impurities; an improved hydrogen sulfide mechanism; an improved ammonia kintics mechanism; laminar flame speed data at high pressures with water addition; and the development of an inexpensive absorption spectroscopy diagnostic for shock-tube measurements of OH time histories. The Project Results for this work can be divided into 13 major sections, which form the basis of this report. These 13 topics are divided into the five areas: 1) laminar flame speeds; 2) Nitrogen Oxide and Ammonia chemical kinetics; 3) syngas impurities chemical kinetics; 4) turbulent flame speeds; and 5) OH absorption measurements for chemical kinetics.« less
de Witte, Wilhelmus E A; Rottschäfer, Vivi; Danhof, Meindert; van der Graaf, Piet H; Peletier, Lambertus A; de Lange, Elizabeth C M
2018-05-18
Drug-target binding kinetics (as determined by association and dissociation rate constants, k on and k off ) can be an important determinant of the kinetics of drug action. However, the effect compartment model is used most frequently instead of a target binding model to describe hysteresis. Here we investigate when the drug-target binding model should be used in lieu of the effect compartment model. The utility of the effect compartment (EC), the target binding kinetics (TB) and the combined effect compartment-target binding kinetics (EC-TB) model were tested on either plasma (EC PL , TB PL and EC-TB PL ) or brain extracellular fluid (ECF) (EC ECF , TB ECF and EC-TB ECF ) morphine concentrations and EEG amplitude in rats. It was also analyzed when a significant shift in the time to maximal target occupancy (Tmax TO ) with increasing dose, the discriminating feature between the TB and EC model, occurs in the TB model. All TB models assumed a linear relationship between target occupancy and drug effect on the EEG amplitude. All three model types performed similarly in describing the morphine pharmacodynamics data, although the EC model provided the best statistical result. The analysis of the shift in Tmax TO (∆Tmax TO ) as a result of increasing dose revealed that ∆Tmax TO is decreasing towards zero if the k off is much smaller than the elimination rate constant or if the target concentration is larger than the initial morphine concentration. The results for the morphine PKPD modelling and the analysis of ∆Tmax TO indicate that the EC and TB models do not necessarily lead to different drug effect versus time curves for different doses if a delay between drug concentrations and drug effect (hysteresis) is described. Drawing mechanistic conclusions from successfully fitting one of these two models should therefore be avoided. Since the TB model can be informed by in vitro measurements of k on and k off , a target binding model should be considered more often for mechanistic modelling purposes.
Evaluation of transition-sensitive eddy-viscosity turbulence models for separated flow in OpenFOAM
NASA Astrophysics Data System (ADS)
Fadhila, H.; Medina, H.; Beechook, A.; Aleksandrova, S.; Benjamin, S.
2017-07-01
A recently published transition-sensitive turbulence model, k-kL-ω-υ2 [1], is implemented in the open-source CFD package OpenFOAM, and its performance is evaluated in comparison with k-kL-ω [2] and υ2- f [3] models. On T3A and T3B flat plate cases, the k-kL-ω-υ2 model gives accurate transitional predictions. On a flapped NACA 23012 aerofoil, it is found to give only a small improvement over the k-kL-ω model (under 5% reduction in error for lift coefficient) compared with experimental results obtained at the Coventry University wind tunnel, showing limited effects of the extra transport equation which was added to sensitise the model to rotation and curvature effects. Assessment of fluctuating kinetic energy and the new wall-normal turbulent velocity scale shows overprediction near the wall compared to the υ2- f model which indicates a delayed prediction of separation.
Nestle, Nikolaus
2004-01-01
NMR relaxometry has been applied to study hydrating cements for about 25 years now. The most important advantage over other experimental approaches is the possibility to conduct non-destructive measurements with a time resolution of minutes. NMR relaxometry data thus can help to identify details in the time course of cement hydration that possibly would be overlooked in other experiments with lower temporal resolution. Time-resolved information on cement hydration kinetics can provide interesting insights into the impact of oxidic additive materials on cement hydration. For PbO, a very strong delay was observed which then was systematically studied. An explanation for this delay is suggested.
Nuclear Reprogramming: Kinetics of Cell Cycle and Metabolic Progression as Determinants of Success
Balbach, Sebastian Thomas; Esteves, Telma Cristina; Houghton, Franchesca Dawn; Siatkowski, Marcin; Pfeiffer, Martin Johannes; Tsurumi, Chizuko; Kanzler, Benoit; Fuellen, Georg; Boiani, Michele
2012-01-01
Establishment of totipotency after somatic cell nuclear transfer (NT) requires not only reprogramming of gene expression, but also conversion of the cell cycle from quiescence to the precisely timed sequence of embryonic cleavage. Inadequate adaptation of the somatic nucleus to the embryonic cell cycle regime may lay the foundation for NT embryo failure and their reported lower cell counts. We combined bright field and fluorescence imaging of histone H2b-GFP expressing mouse embryos, to record cell divisions up to the blastocyst stage. This allowed us to quantitatively analyze cleavage kinetics of cloned embryos and revealed an extended and inconstant duration of the second and third cell cycles compared to fertilized controls generated by intracytoplasmic sperm injection (ICSI). Compared to fertilized embryos, slow and fast cleaving NT embryos presented similar rates of errors in M phase, but were considerably less tolerant to mitotic errors and underwent cleavage arrest. Although NT embryos vary substantially in their speed of cell cycle progression, transcriptome analysis did not detect systematic differences between fast and slow NT embryos. Profiling of amino acid turnover during pre-implantation development revealed that NT embryos consume lower amounts of amino acids, in particular arginine, than fertilized embryos until morula stage. An increased arginine supplementation enhanced development to blastocyst and increased embryo cell numbers. We conclude that a cell cycle delay, which is independent of pluripotency marker reactivation, and metabolic restraints reduce cell counts of NT embryos and impede their development. PMID:22530006
Pharmacokinetic and pharmacodynamic interactions between zolpidem and caffeine.
Cysneiros, R M; Farkas, D; Harmatz, J S; von Moltke, L L; Greenblatt, D J
2007-07-01
The kinetic and dynamic interaction of caffeine and zolpidem was evaluated in a double-blind, single-dose, six-way crossover study of 7.5 mg zolpidem (Z) or placebo (P) combined with low-dose caffeine (250 mg), high-dose caffeine (500 mg), or placebo. Caffeine coadministration modestly increased maximum plasma concentration (C(max)) and area under the plasma concentration-time curve of zolpidem by 30-40%, whereas zolpidem did not significantly affect the pharmacokinetics of caffeine or its metabolites. Compared to P+P, Z+P significantly increased sedation, impaired digit-symbol substitution test performance, slowed tapping speed and reaction time, increased EEG relative beta amplitude, and impaired delayed recall. Caffeine partially, but not completely, reversed most pharmacodynamic effects of zolpidem. Thus, caffeine only incompletely reverses zolpidem's sedative and performance-impairing effects, and cannot be considered as an antidote to benzodiazepine agonists.
NASA Technical Reports Server (NTRS)
Brabbs, T. A.; Robertson, T. F.
1986-01-01
Ignition delay data were recorded for three methane-oxygen-argon mixtures (phi = 0.5, 1.0, 2.0) for the temperature range 1500 to 1920 K. Quiet pressure trances enabled us to obtain delay times for the start of the experimental pressure rise. These times were in good agreement with those obtained from the flame band emission at 3700 A. The data correlated well with the oxygen and methane dependence of Lifshitz, but showed a much stronger temperature dependence (phi = 0.5 delta E = 51.9, phi = 1.0 delta = 58.8, phi = 2.0 delta E = 58.7 Kcal). The effect of probe location on the delay time measurement was studied. It appears that the probe located 83 mm from the reflecting surface measured delay times which may not be related to the initial temperature and pressure. It was estimated that for a probe located 7 mm from the reflecting surface, the measured delay time would be about 10 microseconds too short, and it was suggested that delay times less than 100 microsecond should not be used. The ignition period was defined as the time interval between start of the experimental pressure rise and 50 percent of the ignition pressure. This time interval was measured for three gas mixtures and found to be similar (40 to 60 micro sec) for phi = 1.0 and 0.5 but much longer (100 to 120) microsecond for phi = 2.0. It was suggested that the ignition period would be very useful to the kinetic modeler in judging the agreement between experimental and calculated delay times.
Development of the Casparian strip is delayed by blue light in pea stems.
Karahara, Ichirou; Takaya, Eliko; Fujibayashi, Shigetaka; Inoue, Hiroshi; Weller, James L; Reid, James B; Sugai, Michizo
2011-11-01
To understand the regulatory mechanisms involved in tissue development by light, the kinetics of regulation of Casparian strip (CS) development in garden pea stems was studied. We found that short-term irradiation with white light delayed the development of the CS and used this delay to assess the quantitative effect of light on CS development. We examined the effect of the duration and fluence rates of white light treatment on CS development and observed a significant relationship between fluence and the delay in CS development indicating that the Bunsen-Roscoe law of reciprocity holds for this response. The effect of white light irradiation was not inhibited in the presence of a photosynthetic inhibitor, DCMU, or a carotenoid biosynthesis inhibitor, Norflurazon, indicating that the delay in CS development by light is a photomorphogenetic response rather than a subsidiary effect mediated by photosynthetic activity. An action spectrum for the response displayed a major peak in the blue-light region, suggesting a dominant role for blue-light receptors. A minor peak in the red-light region also suggested the possible involvement of phytochromes. Although phytochromes are known to contribute to blue-light responses, phytochrome-deficient mutants showed a normal delay of CS development in response to blue light, indicating that the response is not mediated by phytochrome and suggesting a role for one or more specific blue-light receptors.
Improving Accuracy in Arrhenius Models of Cell Death: Adding a Temperature-Dependent Time Delay.
Pearce, John A
2015-12-01
The Arrhenius formulation for single-step irreversible unimolecular reactions has been used for many decades to describe the thermal damage and cell death processes. Arrhenius predictions are acceptably accurate for structural proteins, for some cell death assays, and for cell death at higher temperatures in most cell lines, above about 55 °C. However, in many cases--and particularly at hyperthermic temperatures, between about 43 and 55 °C--the particular intrinsic cell death or damage process under study exhibits a significant "shoulder" region that constant-rate Arrhenius models are unable to represent with acceptable accuracy. The primary limitation is that Arrhenius calculations always overestimate the cell death fraction, which leads to severely overoptimistic predictions of heating effectiveness in tumor treatment. Several more sophisticated mathematical model approaches have been suggested and show much-improved performance. But simpler models that have adequate accuracy would provide useful and practical alternatives to intricate biochemical analyses. Typical transient intrinsic cell death processes at hyperthermic temperatures consist of a slowly developing shoulder region followed by an essentially constant-rate region. The shoulder regions have been demonstrated to arise chiefly from complex functional protein signaling cascades that generate delays in the onset of the constant-rate region, but may involve heat shock protein activity as well. This paper shows that acceptably accurate and much-improved predictions in the simpler Arrhenius models can be obtained by adding a temperature-dependent time delay. Kinetic coefficients and the appropriate time delay are obtained from the constant-rate regions of the measured survival curves. The resulting predictions are seen to provide acceptably accurate results while not overestimating cell death. The method can be relatively easily incorporated into numerical models. Additionally, evidence is presented to support the application of compensation law behavior to the cell death processes--that is, the strong correlation between the kinetic coefficients, ln{A} and E(a), is confirmed.
The effects of the framing of time on delay discounting.
DeHart, William Brady; Odum, Amy L
2015-01-01
We examined the effects of the framing of time on delay discounting. Delay discounting is the process by which delayed outcomes are devalued as a function of time. Time in a titrating delay discounting task is often framed in calendar units (e.g., as 1 week, 1 month, etc.). When time is framed as a specific date, delayed outcomes are discounted less compared to the calendar format. Other forms of framing time; however, have not been explored. All participants completed a titrating calendar unit delay-discounting task for money. Participants were also assigned to one of two delay discounting tasks: time as dates (e.g., June 1st, 2015) or time in units of days (e.g., 5000 days), using the same delay distribution as the calendar delay-discounting task. Time framed as dates resulted in less discounting compared to the calendar method, whereas time framed as days resulted in greater discounting compared to the calendar method. The hyperboloid model fit best compared to the hyperbola and exponential models. How time is framed may alter how participants attend to the delays as well as how the delayed outcome is valued. Altering how time is framed may serve to improve adherence to goals with delayed outcomes. © Society for the Experimental Analysis of Behavior.
Kinetics of transmembrane transport of small molecules into electropermeabilized cells.
Pucihar, Gorazd; Kotnik, Tadej; Miklavcic, Damijan; Teissié, Justin
2008-09-15
The transport of propidium iodide into electropermeabilized Chinese hamster ovary cells was monitored with a photomultiplier tube during and after the electric pulse. The influence of pulse amplitude and duration on the transport kinetics was investigated with time resolutions from 200 ns to 4 ms in intervals from 400 micros to 8 s. The transport became detectable as early as 60 micros after the start of the pulse, continued for tens of seconds after the pulse, and was faster and larger for higher pulse amplitudes and/or longer pulse durations. With fixed pulse parameters, transport into confluent monolayers of cells was slower than transport into suspended cells. Different time courses of fluorescence increase were observed during and at various times after the pulse, reflecting different transport mechanisms and ongoing membrane resealing. The data were compared to theoretical predictions of the Nernst-Planck equation. After a delay of 60 micros, the time course of fluorescence during the pulse was approximately linear, supporting a mainly electrophoretic solution of the Nernst-Planck equation. The time course after the pulse agreed with diffusional solution of the Nernst-Planck equation if the membrane resealing was assumed to consist of three distinct components, with time constants in the range of tens of microseconds, hundreds of microseconds, and tens of seconds, respectively.
He, Xiaoning; Liu, Yang; Yuan, Xue; Lu, Li
2014-01-01
In this study, we designed a chitosan/alginate/hydroxyapatite scaffold as a carrier for recombinant BMP-2 (CAH/B2), and evaluated the release kinetics of BMP-2. We evaluated the effect of the CAH/B2 scaffold on the viability and differentiation of bone marrow mesenchymal stem cells (MSCs) by scanning electron microscopy, MTS, ALP assay, alizarin-red staining and qRT-PCR. Moreover, MSCs were seeded on scaffolds and used in a 8 mm rat calvarial defect model. New bone formation was assessed by radiology, hematoxylin and eosin staining 12 weeks postoperatively. We found the release kinetics of BMP-2 from the CAH/B2 scaffold were delayed compared with those from collagen gel, which is widely used for BMP-2 delivery. The BMP-2 released from the scaffold increased MSC differentiation and did not show any cytotoxicity. MSCs exhibited greater ALP activity as well as stronger calcium mineral deposition, and the bone-related markers Col1α, osteopontin, and osteocalcin were upregulated. Analysis of in vivo bone formation showed that the CAH/B2 scaffold induced more bone formation than other groups. This study demonstrates that CAH/B2 scaffolds might be useful for delivering osteogenic BMP-2 protein and present a promising bone regeneration strategy. PMID:25084008
NASA Astrophysics Data System (ADS)
Steinkellner, Oliver; Gruber, Clemens; Wabnitz, Heidrun; Jelzow, Alexander; Steinbrink, Jens; Fiebach, Jochen B.; MacDonald, Rainer; Obrig, Hellmuth
2010-11-01
We present results of a clinical study on bedside perfusion monitoring of the human brain by optical bolus tracking. We measure the kinetics of the contrast agent indocyanine green using time-domain near-IR spectroscopy (tdNIRS) in 10 patients suffering from acute unilateral ischemic stroke. In all patients, a delay of the bolus over the affected when compared to the unaffected hemisphere is found (mean: 1.5 s, range: 0.2 s to 5.2 s). A portable time-domain near-IR reflectometer is optimized and approved for clinical studies. Data analysis based on statistical moments of time-of-flight distributions of diffusely reflected photons enables high sensitivity to intracerebral changes in bolus kinetics. Since the second centralized moment, variance, is preferentially sensitive to deep absorption changes, it provides a suitable representation of the cerebral signals relevant for perfusion monitoring in stroke. We show that variance-based bolus tracking is also less susceptible to motion artifacts, which often occur in severely affected patients. We present data that clearly manifest the applicability of the tdNIRS approach to assess cerebral perfusion in acute stroke patients at the bedside. This may be of high relevance to its introduction as a monitoring tool on stroke units.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonnelli, Eduardo; Diniz, Ricardo
2013-05-06
The neutron lifetimes of the core, reflector, and global were experimentally obtained through macroscopic neutron noise in the IPEN/MB-01 reactor for five levels of subcriticality. The theoretical Auto Power Spectral Densities were derived by point kinetic equations taking the reflector effect into account, and one of the approaches consider an additional group of delayed neutrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ott, Larry J.; Howell, Michael; Robb, Kevin R.
Iron-chromium-aluminum (FeCrAl) alloys are being considered as advanced fuel cladding concepts with enhanced accident tolerance. At high temperatures, FeCrAl alloys have slower oxidation kinetics and higher strength compared with zirconium-based alloys. FeCrAl could be used for fuel cladding and spacer or mixing vane grids in light water reactors and/or as channel box material in boiling water reactors (BWRs). There is a need to assess the potential gains afforded by the FeCrAl accident-tolerant-fuel (ATF) concept over the existing zirconium-based materials employed today. To accurately assess the response of FeCrAl alloys under severe accident conditions, a number of FeCrAl properties and characteristicsmore » are required. These include thermophysical properties as well as burst characteristics, oxidation kinetics, possible eutectic interactions, and failure temperatures. These properties can vary among different FeCrAl alloys. Oak Ridge National Laboratory has pursued refined values for the oxidation kinetics of the B136Y FeCrAl alloy (Fe-13Cr-6Al wt %). This investigation included oxidation tests with varying heating rates and end-point temperatures in a steam environment. The rate constant for the low-temperature oxidation kinetics was found to be higher than that for the commercial APMT FeCrAl alloy (Fe-21Cr-5Al-3Mo wt %). Compared with APMT, a 5 times higher rate constant best predicted the entire dataset (root mean square deviation). Based on tests following heating rates comparable with those the cladding would experience during a station blackout, the transition to higher oxidation kinetics occurs at approximately 1,500°C. A parametric study varying the low-temperature FeCrAl oxidation kinetics was conducted for a BWR plant using FeCrAl fuel cladding and channel boxes using the MELCOR code. A range of station blackout severe accident scenarios were simulated for a BWR/4 reactor with Mark I containment. Increasing the FeCrAl low-temperature oxidation rate constant (3 times and 10 times that of the rate constant for APMT) had a negligible impact on the early stages of the accident and minor impacts on the accident progression after the first relocation of the fuel. At temperatures below 1,500°C, increasing the rate constant for APMT by a factor of 10 still resulted in only minor FeCrAl oxidation. In general, the gains afforded by the FeCrAl enhanced ATF concept with respect to accident sequence timing and combustible gas generation are consistent with previous efforts. Compared with the traditional Zircaloy-based cladding and channel box system, the FeCrAl concept could provide a few extra hours of time for operators to take mitigating actions and/or for evacuations to take place. A coolable core geometry is retained longer, enhancing the ability to stabilize an accident. For example, a station blackout was simulated in which cooling water injection was lost 36 hours after shutdown. The timing to first fuel relocation was delayed by approximately 5 h for the FeCrAl ATF concept compared with that of the traditional Zircaloy-based cladding and channel box system.« less
The Reduced Effectiveness of EGR to Mitigate Knock at High Loads in Boosted SI Engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szybist, James P.; Wagnon, Scott W.; Splitter, Derek A.
Numerous studies have demonstrated that exhaust gas recirculation (EGR) can attenuate knock propensity in spark ignition (SI) engines at naturally aspirated or lightly boosted conditions. In this paper, we investigate the role of cooled EGR under higher load conditions with multiple fuel compositions, where highly retarded combustion phasing typical of modern SI engines was used. It was found that under these conditions, EGR attenuation of knock is greatly reduced, where EGR doesn’t allow significant combustion phasing advance as it does under lighter load conditions. Detailed combustion analysis shows that when EGR is added, the polytropic coefficient increases causing the compressivemore » pressure and temperature to increase. At sufficiently highly boosted conditions, the increase in polytropic coefficient and additional trapped mass from EGR can sufficiently reduce fuel ignition delay to overcome knock attenuation effects. Kinetic modeling demonstrates that the effectiveness of EGR to mitigate knock is highly dependent on the pressure-temperature condition. Experiments at 2000 rpm have confirmed reduced fuel ignition delay under highly boosted conditions relevant to modern downsized boosted SI engines, where in-cylinder pressure is higher and the temperature is cooler. Finally, at these conditions, charge reactivity increases compared to naturally aspirated conditions, and attenuation of knock by EGR is reduced.« less
The Reduced Effectiveness of EGR to Mitigate Knock at High Loads in Boosted SI Engines
Szybist, James P.; Wagnon, Scott W.; Splitter, Derek A.; ...
2017-09-04
Numerous studies have demonstrated that exhaust gas recirculation (EGR) can attenuate knock propensity in spark ignition (SI) engines at naturally aspirated or lightly boosted conditions. In this paper, we investigate the role of cooled EGR under higher load conditions with multiple fuel compositions, where highly retarded combustion phasing typical of modern SI engines was used. It was found that under these conditions, EGR attenuation of knock is greatly reduced, where EGR doesn’t allow significant combustion phasing advance as it does under lighter load conditions. Detailed combustion analysis shows that when EGR is added, the polytropic coefficient increases causing the compressivemore » pressure and temperature to increase. At sufficiently highly boosted conditions, the increase in polytropic coefficient and additional trapped mass from EGR can sufficiently reduce fuel ignition delay to overcome knock attenuation effects. Kinetic modeling demonstrates that the effectiveness of EGR to mitigate knock is highly dependent on the pressure-temperature condition. Experiments at 2000 rpm have confirmed reduced fuel ignition delay under highly boosted conditions relevant to modern downsized boosted SI engines, where in-cylinder pressure is higher and the temperature is cooler. Finally, at these conditions, charge reactivity increases compared to naturally aspirated conditions, and attenuation of knock by EGR is reduced.« less
Influence of gas temperature on ignition, burning and extinction of carbon particles-gas suspension
NASA Astrophysics Data System (ADS)
Orlovskaya, S. G.; Zuy, O. N.; Liseanskaia, M. V.
2017-11-01
The ignition and burning of monodisperse and two-fraction suspensions of carbon particles at gas temperature in the range 1100 ÷ 1500 K are modeled. The critical gas temperature of the suspension ignition, the particles ignition delay and burning time, the burning temperature, and the extinction parameters are determined. The data obtained are compared with burning characteristics of single particle of equal size. The ignition temperatures of the fine fraction (the particle diameter 60 μm) and the coarse one (120 μm) are practically the same. The ignition temperatures of the equivalent single particles are much higher and they differ by 100 K and more. The gas temperature is found below which the ignition delay of the fine fraction exceeds the one of the coarse fraction. It is found that, at critical ignition temperatures the burning temperature of the fine fraction is lower than that of the coarse fraction. At gas temperatures above 1250 K, the burning temperature of the fine fraction is higher. It is established that, in contrast to single particles, the temperature difference between the particles and the gas is small during gas-suspension extinction. Further oxidation of the particles occurs in the kinetic regime, so it is possible to estimate the time of their complete conversion.
Fox, Norma E; Lim, Jihyang; Chen, Rose; Geddis, Amy E
2010-05-01
To determine whether specific c-Mpl mutations might respond to thrombopoietin receptor agonists. We created cell line models of type II c-Mpl mutations identified in congenital amegakaryocytic thrombocytopenia. We selected F104S c-Mpl for further study because it exhibited surface expression of the receptor. We measured proliferation of cell lines expressing wild-type or F104S c-Mpl in response to thrombopoietin receptor agonists targeting the extracellular (m-AMP4) or transmembrane (LGD-4665) domains of the receptor by 1-methyltetrazole-5-thiol assay. We measured thrombopoietin binding to the mutant receptor using an in vitro thrombopoietin uptake assay and identified F104 as a potentially critical residue for the interaction between the receptor and its ligand by aligning thrombopoietin and erythropoietin receptors from multiple species. Cells expressing F104S c-Mpl proliferated in response to LGD-4665, but not thrombopoietin or m-AMP4. Compared to thrombopoietin, LGD-4665 stimulates signaling with delayed kinetics in both wild-type and F104S c-Mpl-expressing cells. Although F104S c-Mpl is expressed on the cell surface in our BaF3 cell line model, the mutant receptor does not bind thrombopoietin. Comparison to the erythropoietin receptor suggests that F104 engages in hydrogen-bonding interactions that are critical for binding to thrombopoietin. These findings suggest that a small subset of patients with congenital amegakaryocytic thrombocytopenia might respond to treatment with thrombopoietin receptor agonists, but that responsiveness will depend on the type of mutation and agonist used. We postulate that F104 is critical for thrombopoietin binding. The kinetics of signaling in response to a transmembrane domain-binding agonist are delayed in comparison to thrombopoietin. 2010 ISEH Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.
Franchi, Francesco; Rollini, Fabiana; Cho, Jung Rae; King, Rhodri; Phoenix, Fladia; Bhatti, Mona; DeGroat, Christopher; Tello-Montoliu, Antonio; Zenni, Martin M; Guzman, Luis A; Bass, Theodore A; Ajjan, Ramzi A; Angiolillo, Dominick J
2016-03-01
There is growing interest in understanding the effects of adding an oral anticoagulant in patients on dual antiplatelet therapy (DAPT). Vitamin K antagonists (VKAs) and clopidogrel represent the most broadly utilised oral anticoagulant and P2Y12 receptor inhibitor, respectively. However, VKAs can interfere with clopidogrel metabolism via the cytochrome P450 (CYP) system which in turn may result in an increase in platelet reactivity. Dabigatran is a direct acting (anti-II) oral anticoagulant which does not interfere with CYP and has favourable safety and efficacy profiles compared with VKAs. The pharmacodynamic (PD) effects on platelet reactivity and clot kinetic of adjunctive dabigatran therapy in patients on DAPT are poorly explored. In this prospective, randomised, double-blind, placebo-controlled PD study, patients (n=30) on maintenance DAPT with aspirin and clopidogrel were randomised to either dabigatran 150 mg bid or placebo for seven days. PD testing was performed before and after treatment using four different assays exploring multiple pathways of platelet aggregation and fibrin clot kinetics: light transmittance aggregometry (LTA), multiple electrode aggregometry (MEA), kaolin-activated thromboelastography (TEG) and turbidimetric assays. There were no differences in multiple measures of platelet reactivity investigating purinergic and non-purinergic signaling pathways assessed by LTA, MEA and TEG platelet mapping. Dabigatran significantly increased parameters related to thrombin activity and thrombus generation, and delayed fibrin clot formation, without affecting clot structure or fibrinolysis. In conclusion, in patients on DAPT with aspirin and clopidogrel, adjunctive dabigatran therapy is not associated with modulation of profiles of platelet reactivity as determined by several assays assessing multiple platelet signalling pathways. However, dabigatran significantly interferes with parameters related to thrombin activity and delays fibrin clot formation.
Cabrales, Luis E Bergues; Nava, Juan J Godina; Aguilera, Andrés Ramírez; Joa, Javier A González; Ciria, Héctor M Camué; González, Maraelys Morales; Salas, Miriam Fariñas; Jarque, Manuel Verdecia; González, Tamara Rubio; Mateus, Miguel A O'Farril; Brooks, Soraida C Acosta; Palencia, Fabiola Suárez; Zamora, Lisset Ortiz; Quevedo, María C Céspedes; Seringe, Sarah Edward; Cuitié, Vladimir Crombet; Cabrales, Idelisa Bergues; González, Gustavo Sierra
2010-10-28
Electrotherapy effectiveness at different doses has been demonstrated in preclinical and clinical studies; however, several aspects that occur in the tumor growth kinetics before and after treatment have not yet been revealed. Mathematical modeling is a useful instrument that can reveal some of these aspects. The aim of this paper is to describe the complete growth kinetics of unperturbed and perturbed tumors through use of the modified Gompertz equation in order to generate useful insight into the mechanisms that underpin this devastating disease. The complete tumor growth kinetics for control and treated groups are obtained by interpolation and extrapolation methods with different time steps, using experimental data of fibrosarcoma Sa-37. In the modified Gompertz equation, a delay time is introduced to describe the tumor's natural history before treatment. Different graphical strategies are used in order to reveal new information in the complete kinetics of this tumor type. The first stage of complete tumor growth kinetics is highly non linear. The model, at this stage, shows different aspects that agree with those reported theoretically and experimentally. Tumor reversibility and the proportionality between regions before and after electrotherapy are demonstrated. In tumors that reach partial remission, two antagonistic post-treatment processes are induced, whereas in complete remission, two unknown antitumor mechanisms are induced. The modified Gompertz equation is likely to lead to insights within cancer research. Such insights hold promise for increasing our understanding of tumors as self-organizing systems and, the possible existence of phase transitions in tumor growth kinetics, which, in turn, may have significant impacts both on cancer research and on clinical practice.
Muftuoglu, Yagmur; Sohl, Christal D; Mislak, Andrea C; Mitsuya, Hiroaki; Sarafianos, Stefan G; Anderson, Karen S
2014-06-01
The novel antiretroviral 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) is a potent nucleoside HIV-1 reverse transcriptase (RT) inhibitor (NRTI). Unlike other FDA-approved NRTIs, EFdA contains a 3'-hydroxyl. Pre-steady-state kinetics showed RT preferred incorporating EFdA-TP over native dATP. Moreover, RT slowly inserted nucleotides past an EFdA-terminated primer, resulting in delayed chain termination with unaffected fidelity. This is distinct from KP1212, another 3'-hydroxyl-containing RT inhibitor considered to promote viral lethal mutagenesis. New mechanistic features of RT inhibition by EFdA are revealed. Copyright © 2014 Elsevier B.V. All rights reserved.
Muftuoglu, Yagmur; Sohl, Christal D.; Mislak, Andrea C.; Mitsuya, Hiroaki; Sarafianos, Stefan G.; Anderson, Karen S.
2014-01-01
The novel antiretroviral 4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) is a potent nucleoside HIV-1 reverse transcriptase (RT) inhibitor (NRTI). Unlike other FDA-approved NRTIs, EFdA contains a 3′-hydroxyl. Pre-steady-state kinetics showed RT preferred incorporating EFdA-TP over native dATP. Moreover, RT slowly inserted nucleotides past an EFdA-terminated primer, resulting in delayed chain termination with unaffected fidelity. This is distinct from KP1212, another 3′-hydroxyl-containing RT inhibitor considered to promote viral lethal mutagenesis. New mechanistic features of RT inhibition by EFdA are revealed. PMID:24632447
Consistent Chemical Mechanism from Collaborative Data Processing
Slavinskaya, Nadezda; Starcke, Jan-Hendrik; Abbasi, Mehdi; ...
2016-04-01
Numerical tool of Process Informatics Model (PrIMe) is mathematically rigorous and numerically efficient approach for analysis and optimization of chemical systems. It handles heterogeneous data and is scalable to a large number of parameters. The Boundto-Bound Data Collaboration module of the automated data-centric infrastructure of PrIMe was used for the systematic uncertainty and data consistency analyses of the H 2/CO reaction model (73/17) and 94 experimental targets (ignition delay times). The empirical rule for evaluation of the shock tube experimental data is proposed. The initial results demonstrate clear benefits of the PrIMe methods for an evaluation of the kinetic datamore » quality and data consistency and for developing predictive kinetic models.« less
Chaotic behavior of light-assisted physical aging in arsenoselenide glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shpotyuk, O., E-mail: shpotyuk@novas.lviv.ua; Institute of Physics of Jan Dlugosz University, 13/15, al. Armii Krajowej, Czestochowa 42201; Balitska, V.
2014-12-15
The theory of strange attractors is shown to be adequately applicable for analyzing the kinetics of light-assisted physical aging revealed in structural relaxation of Se-rich As-Se glasses below glass transition. Kinetics of enthalpy losses is used to determine the phase space reconstruction parameters. Observed chaotic behaviour (involving chaos and fractal consideration such as detrended fluctuation analysis, attractor identification using phase space representation, delay coordinates, mutual information, false nearest neighbours, etc.) reconstructed via the TISEAN program package is treated within a microstructure model describing multistage aging behaviour in arsenoselenide glasses. This simulation testifies that photoexposure acts as an initiating factor onlymore » at the beginning stage of physical aging, thus facilitating further atomic shrinkage of a glassy backbone.« less
Magnetic nanoparticle hyperthermia as an adjuvant cancer therapy with chemotherapy
NASA Astrophysics Data System (ADS)
Petryk, Alicia Ailie
Magnetic nanoparticle hyperthermia (mNPH) is an emerging cancer therapy which has shown to be most effective when applied in the adjuvant setting with chemotherapy, radiation or surgery. Although mNPH employs heat as a primary therapeutic modality, conventional heat may not be the only cytotoxic effect. As such, my studies have focused on the mechanism and use of mNPH alone and in conjunction with cisplatinum chemotherapy in murine breast cancer cells and a related in vivo model. MNPH was compared to conventional microwave tumor heating, with results suggesting that mNPH (mNP directly injected into the tumor and immediately activated) and 915 MHz microwave hyperthermia, at the same thermal dose, result in similar tumor regrowth delay kinetics. However, mNPH shows significantly less peri-tumor normal tissue damage. MNPH combined with cisplatinum also demonstrated significant improvements in regrowth delay over either modality applied as a monotherapy. Additional studies demonstrated that a relatively short tumor incubation time prior to AMF exposure (less than 10 minutes) as compared to a 4-hour incubation time, resulted in faster heating rates, but similar regrowth delays when treated to the same thermal dose. The reduction of heating rate correlated well with the observed reduction in mNP concentration in the tumor observed with 4 hour incubation. The ability to effectively deliver cytotoxic mNPs to metastatic tumors is the hope and goal of systemic mNP therapy. However, delivering relevant levels of mNP is proving to be a formidable challenge. To address this issue, I assessed the ability of cisplatinum to simultaneously treat a tumor and improve the uptake of systemically delivered mNPs. Following a cisplatinum pretreatment, systemic mNPs uptake was increased by 3.1 X, in implanted murine breast tumors. Additional in vitro studies showed the necessity of a specific mNP/ Fe architecture and spatial relation for heat-based cytotoxicity in cultured cells.
Impact of mixing state and hygroscopicity on CCN activity of biomass burning aerosol in Amazonia
NASA Astrophysics Data System (ADS)
Sánchez Gácita, Madeleine; Longo, Karla M.; Freire, Julliana L. M.; Freitas, Saulo R.; Martin, Scot T.
2017-02-01
Smoke aerosols prevail throughout Amazonia because of widespread biomass burning during the dry season, and external mixing, low variability in the particle size distribution and low particle hygroscopicity are typical. There can be profound effects on cloud properties. This study uses an adiabatic cloud model to simulate the activation of smoke particles as cloud condensation nuclei (CCN) for three hypothetical case studies, chosen as to resemble biomass burning aerosol observations in Amazonia. The relative importance of variability in hygroscopicity, mixing state, and activation kinetics for the activated fraction and maximum supersaturation is assessed. For a population with κp = 0.04, an overestimation of the cloud droplet number concentration Nd for the three selected case studies between 22.4 ± 1.4 and 54.3 ± 3.7 % was obtained when assuming a hygroscopicity parameter κp = 0.20. Assuming internal mixing of the aerosol population led to overestimations of up to 20 % of Nd when a group of particles with medium hygroscopicity was present in the externally mixed population cases. However, the overestimations were below 10 % for external mixtures between very low and low-hygroscopicity particles, as seems to be the case for Amazon smoke particles. Kinetic limitations were significant for medium- and high-hygroscopicity particles, and much lower for very low and low-hygroscopicity particles. When particles were assumed to be at equilibrium and to respond instantly to changes in the air parcel supersaturation, the overestimation of the droplet concentration was up to ˜ 100 % in internally mixed populations, and up to ˜ 250 % in externally mixed ones, being larger for the higher values of hygroscopicity. In addition, a perceptible delay between the times when maximum supersaturation and maximum aerosol activated fraction are reached was noticed and, for aerosol populations with effective hygroscopicity κpeff higher than a certain threshold value, the delay in particle activation was such that no particles were activated at the time of maximum supersaturation. Considering internally mixed populations, for an updraft velocity W = 0.5 m s-1 this threshold of no activation varied between κpeff = 0.35 and κpeff = 0.5 for the different case studies. However, for low hygroscopicity, kinetic limitations played a weaker role for CCN activation of particles, even when taking into account the large aerosol mass and number concentrations. For the very low range of hygroscopicities, the overestimation of the droplet concentration due to the equilibrium assumption was lowest and the delay between the times when maximum supersaturation and maximum activated fraction were reached was greatly reduced or no longer observed (depending on the case study). These findings on uncertainties and sensitivities provide guidance on appropriate simplifications that can be used for modeling of smoke aerosols within general circulation models. The use of medium values of hygroscopicity representative of smoke aerosols for other biomass burning regions on Earth can lead to significant errors compared to the use of low hygroscopicity for Amazonia (between 0.05 and 0.13, according to available observations). Also in this region, consideration of the biomass burning population as internally mixed will lead to small errors in the droplet concentration, while significantly increasing the computational burden. Regardless of the large smoke aerosol loads in the region during the dry season, kinetic limitations are expected to be low.
Vortex-scalar element calculations of a diffusion flame stabilized on a plane mixing layer
NASA Technical Reports Server (NTRS)
Ghoniem, Ahmed F.; Givi, Peyman
1987-01-01
The vortex-scalar element method, a scheme which utilizes vortex elements to discretize the region of high vorticity and scalar elements to represent species or temperature fields, is utilized in the numerical simulations of a two-dimensional reacting mixing layer. Computations are performed for a diffusion flame at high Reynolds and Peclet numbers without resorting to turbulence models. In the nonreacting flow, the mean and fluctuation profiles of a conserved scalar show good agreement with experimental measurements. Results for the reacting flow indicate that for temperature independent kinetics, the chemical reaction begins immediately downstream of the splitter plate where mixing starts. Results for the reacting flow with Arrhenius kinetics show an ignition delay, which depends on reactant temperature, before significant chemical reaction occurs. Harmonic forcing changes the structure of the layer, and concomitantly the rates of mixing and reaction, in accordance with experimental results. Strong stretch within the braids in the nonequilibrium kinetics case causes local flame quenching due to the temperature drop associated with the large convective fluxes.
Kinetic approach to the study of froth flotation applied to a lepidolite ore
NASA Astrophysics Data System (ADS)
Vieceli, Nathália; Durão, Fernando O.; Guimarães, Carlos; Nogueira, Carlos A.; Pereira, Manuel F. C.; Margarido, Fernanda
2016-07-01
The number of published studies related to the optimization of lithium extraction from low-grade ores has increased as the demand for lithium has grown. However, no study related to the kinetics of the concentration stage of lithium-containing minerals by froth flotation has yet been reported. To establish a factorial design of batch flotation experiments, we conducted a set of kinetic tests to determine the most selective alternative collector, define a range of pulp pH values, and estimate a near-optimum flotation time. Both collectors (Aeromine 3000C and Armeen 12D) provided the required flotation selectivity, although this selectivity was lost in the case of pulp pH values outside the range between 2 and 4. Cumulative mineral recovery curves were used to adjust a classical kinetic model that was modified with a non-negative parameter representing a delay time. The computation of the near-optimum flotation time as the maximizer of a separation efficiency (SE) function must be performed with caution. We instead propose to define the near-optimum flotation time as the time interval required to achieve 95%-99% of the maximum value of the SE function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yang; Klippenstein, Stephen J.; Zhou, Chong-Wen
The oxidation chemistry of the simplest conjugated hydrocarbon, 1,3-butadiene, can provide a first step in understanding the role of poly-unsaturated hydrocarbons in combustion and, in particular, an understanding of their contribution towards soot formation. Based on our previous work on propene and the butene isomers (1-, 2- and isobutene), it was found that the reaction kinetics of H-atom addition to the C=C double bond plays a significant role in fuel consumption kinetics and influences the predictions of high-temperature ignition delay times, product species concentrations and flame speed measurements. In this study, the rate constants and thermodynamic properties formore » $$\\dot{H}$$-atom addition to 1,3-butadiene and related reactions on the $$\\dot{C}$$ 4H 7 potential energy surface have been calculated using two different series of quantum chemical methods and two different kinetic codes. Excellent agreement is obtained between the two different kinetics codes. The calculated results including zero point energies, single point energies, rate constants, barrier heights and thermochemistry are systematically compared among the two quantum chemical methods. 1-methylallyl ($$\\dot{C}$$ 4H 71-3) and 3-buten-1- yl ($$\\dot{C}$$ 4H 71-4) radicals and C 2H 4 + $$\\dot{C}$$2H3 are found to be the most important channels and reactivity promoting products, respectively. We calculated that terminal addition is dominant (> 80%) compared to internal $$\\dot{H}$$-atom addition at all temperatures in the range 298 – 2000 K. However, this dominance decreases with increasing temperature. The calculated rate constants for the bimolecular reaction C 4H 6 + $$\\dot{H}$$ → products and C 2H 4 + $$\\dot{C}$$ 2H 3 → products are in excellent agreement with both experimental and theoretical results from the literature. For selected C 4 species the calculated thermochemical values are also in good agreement with literature data. In addition, the rate constants for H-atom abstraction by $$\\dot{H}$$ atoms have also been calculated, and it is found that abstraction from the central carbon atoms is the dominant channel (> 70%) at temperatures in the range 298 – 2000 K. Lastly, by incorporating our calculated rate constants for both H-atom addition and abstraction into our recently developed 1,3-butadiene model, we show that laminar flame speed predictions are significantly improved, emphasizing the value of this study.« less
NASA Astrophysics Data System (ADS)
Cariveau, Mickael J.
2005-07-01
Molecular responses to radiation-induced DNA double strand breaks (DSB) are mediated by the phosphorylation of the histone variant H2AX which forms identifiable gamma-H2AX foci at the site of the DSB. This event is thought to be linked with the down-regulation of signaling proteins contributing to the checkpoints regulating cell cycle progression and, vis-a-vis , the induction of cell division delay. However, it is unclear whether this division delay is directly related to the number of DSB (gamma-H2AX foci) sustained by an irradiated cell and, if so, whether this number drives cells into cell cycle delay or apoptosis. For this reason, studies were conducted in the immortalized NIH/3T3 fibroblast cell in order to establish correlations between the temporal appearance of the gamma-H2AX foci (a DSB) and the expression of the cell cycle regulatory proteins, cyclin E, A, B1, and their cyclin kinase inhibitor, p21. Cell cycle kinetics and flow cytometry were used to establish radiation-induced division delay over a dose range of 1--6 Gy where a mitotic delay of 2.65 min/cGy was established. Correlations between the expression of cyclin E, A, B1, p21, and the generation of DSB were established in NIH/3T3 cells exposed to 2 or 4 Gy x-irradiation. The data suggest that the G1/S and S phase delay (cyclin E and cyclin A protein levels) are dependent on the dose of radiation while the G2/M (cyclin B1 protein levels) delay is dependent on the quantity of DSB sustained by the irradiated cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shishkov, L. K., E-mail: slk@vver.kiae.ru; Zizin, M. N., E-mail: zizin_m@mail.ru
The process of formation of an asymptotic distribution of the neutron flux density in the reactor systems after introducing different negative reactivities is considered. The impact of two factors after the reactivity introduction is evaluated: (1) nonuniformity of perturbation of core properties, on one hand, and (2) a sharp reduction in the density of prompt neutrons, which prevents the appearance of new delayed neutron emitters distributed in accordance with the “new” prompt neutron distribution, on the other hand. The results of calculations show that the errors of measuring the scram system effectiveness using the method of inverse solution of themore » kinetics equation are caused by the fact that, after the negative reactivity insertion, the sources of prompt and delayed neutrons have different spatial distributions. In the case of high negative reactivities, this difference remains while the system still has neutrons, which can be measured.« less
The kinetics and acoustics of fingering and note transitions on the flute.
Almeida, André; Chow, Renee; Smith, John; Wolfe, Joe
2009-09-01
Motion of the keys was measured in a transverse flute while beginner, amateur, and professional flutists played a range of exercises. The time taken for a key to open or close was typically 10 ms when pushed by a finger or 16 ms when moved by a spring. Because the opening and closing of keys will never be exactly simultaneous, transitions between notes that involve the movement of multiple fingers can occur via several possible pathways with different intermediate fingerings. A transition is classified as "safe" if it is possible to be slurred from the initial to final note with little perceptible change in pitch or volume. Some transitions are "unsafe" and possibly involve a transient change in pitch or a decrease in volume. Players, on average, used safe transitions more frequently than unsafe transitions. Delays between the motion of the fingers were typically tens of milliseconds, with longer delays as more fingers become involved. Professionals exhibited smaller average delays between the motion of their fingers than did amateurs.
Relaxation-Induced Memory Effect of LiFePO4 Electrodes in Li-Ion Batteries.
Jia, Jianfeng; Tan, Chuhao; Liu, Mengchuang; Li, De; Chen, Yong
2017-07-26
In Li-ion batteries, memory effect has been found in several commercial two-phase materials as a voltage bump and a step in the (dis)charging plateau, which delays the two-phase transition and influences the estimation of the state of charge. Although memory effect has been first discovered in olivine LiFePO 4 , the origination and dependence are still not clear and are critical for regulating the memory effect of LiFePO 4 . Herein, LiFePO 4 has been synthesized by a home-built spray drying instrument, of which the memory effect has been investigated in Li-ion batteries. For as-synthesized LiFePO 4 , the memory effect is significantly dependent on the relaxation time after phase transition. Besides, the voltage bump of memory effect is actually a delayed voltage overshooting that is overlaid at the edge of stepped (dis)charging plateau. Furthermore, we studied the kinetics of LiFePO 4 electrode with electrochemical impedance spectroscopy (EIS), which shows that the memory effect is related to the electrochemical kinetics. Thereby, the underlying mechanism has been revealed in memory effect, which would guide us to optimize two-phase electrode materials and improve Li-ion battery management systems.
McCune, Heather J; Danielson, Laura S; Alvino, Gina M; Collingwood, David; Delrow, Jeffrey J; Fangman, Walton L; Brewer, Bonita J; Raghuraman, M K
2008-12-01
Temporal regulation of origin activation is widely thought to explain the pattern of early- and late-replicating domains in the Saccharomyces cerevisiae genome. Recently, single-molecule analysis of replication suggested that stochastic processes acting on origins with different probabilities of activation could generate the observed kinetics of replication without requiring an underlying temporal order. To distinguish between these possibilities, we examined a clb5Delta strain, where origin firing is largely limited to the first half of S phase, to ask whether all origins nonspecifically show decreased firing (as expected for disordered firing) or if only some origins ("late" origins) are affected. Approximately half the origins in the mutant genome show delayed replication while the remainder replicate largely on time. The delayed regions can encompass hundreds of kilobases and generally correspond to regions that replicate late in wild-type cells. Kinetic analysis of replication in wild-type cells reveals broad windows of origin firing for both early and late origins. Our results are consistent with a temporal model in which origins can show some heterogeneity in both time and probability of origin firing, but clustering of temporally like origins nevertheless yields a genome that is organized into blocks showing different replication times.
Urbain, J L; Penninckx, F; Siegel, J A; Vandenborre, P; Van Cutsem, E; Vandenmaegdenbergh, V; De Roo, M
1990-10-01
The role of the distal stomach in gastric emptying was studied. Ten patients with proximal gastric vagotomy (PV) and 10 age-matched patients with Roux-en-Y gastro-jejunostomy (R-Y) were compared with 10 healthy controls. Gastric emptying of solids and liquids was determined by the use of Tc-99m SC scrambled eggs and In-111 DTPA. In PV, gastric emptying of both solids and liquids was delayed; the prolongation with solids was mainly accounted for by an abnormal lag phase. In R-Y patients, no lag phase was observed, and the solid emptying curve pattern was characterized by early rapid emptying followed by very slow emptying. Both the solid and liquid phases were prolonged. The lag phase is affected by proximal vagotomy and is mainly determined by the distal stomach, which appears to be essential for normal emptying.
Chattoraj, Sayantan; Bhugra, Chandan; Li, Zheng Jane; Sun, Changquan Calvin
2014-12-01
The nonisothermal crystallization kinetics of amorphous materials is routinely analyzed by statistically fitting the crystallization data to kinetic models. In this work, we systematically evaluate how the model-dependent crystallization kinetics is impacted by variations in the heating rate and the selection of the kinetic model, two key factors that can lead to significant differences in the crystallization activation energy (Ea ) of an amorphous material. Using amorphous felodipine, we show that the Ea decreases with increase in the heating rate, irrespective of the kinetic model evaluated in this work. The model that best describes the crystallization phenomenon cannot be identified readily through the statistical fitting approach because several kinetic models yield comparable R(2) . Here, we propose an alternate paired model-fitting model-free (PMFMF) approach for identifying the most suitable kinetic model, where Ea obtained from model-dependent kinetics is compared with those obtained from model-free kinetics. The most suitable kinetic model is identified as the one that yields Ea values comparable with the model-free kinetics. Through this PMFMF approach, nucleation and growth is identified as the main mechanism that controls the crystallization kinetics of felodipine. Using this PMFMF approach, we further demonstrate that crystallization mechanism from amorphous phase varies with heating rate. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
NASA Astrophysics Data System (ADS)
Elbeih, Ahmed; Abd-Elghany, Mohamed; Elshenawy, Tamer
2017-03-01
Vacuum stability test (VST) is mainly used to study compatibility and stability of energetic materials. In this work, VST has been investigated to study thermal decomposition kinetics of four cyclic nitramines, 1,3,5-trinitro-1,3,5-triazinane (RDX) and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX), cis-1,3,4,6-tetranitrooctahydroimidazo-[4,5-d]imidazole (BCHMX), 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (ε-HNIW, CL-20), bonded by polyurethane matrix based on hydroxyl terminated polybutadiene (HTPB). Model fitting and model free (isoconversional) methods have been applied to determine the decomposition kinetics from VST results. For comparison, the decomposition kinetics were determined isothermally by ignition delay technique and non-isothermally by Advanced Kinetics and Technology Solution (AKTS) software. The activation energies for thermolysis obtained by isoconversional method based on VST technique of RDX/HTPB, HMX/HTPB, BCHMX/HTPB and CL20/HTPB were 157.1, 203.1, 190.0 and 176.8 kJ mol-1 respectively. Model fitting method proved that the mechanism of thermal decomposition of BCHMX/HTPB is controlled by the nucleation model while all the other studied PBXs are controlled by the diffusion models. A linear relationship between the ignition temperatures and the activation energies was observed. BCHMX/HTPB is interesting new PBX in the research stage.
Effect of solid-meal caloric content on gastric emptying kinetics of solids and liquids.
Urbain, J L; Siegel, J A; Mortelmans, L; van Cutsem, E; van den Maegdenbergh, V; de Roo, M
1989-08-01
In this study, we have evaluated the effect of the caloric content of a physiological test meal on the gastric emptying kinetics of solids and liquids. 22 healthy male volunteers were studied in two groups matched for age. After an overnight fast, each volunteer underwent the same test procedure; in the first group (G I), 10 volunteers received a meal consisting of bread, 111In-DTPA water and 1 scrambled egg labeled with 99mTc-labelled sulphur colloid; in the second group (G II) 12 volunteers were given the same meal but with 2 labeled eggs in order to increase the caloric content of the solid phase meal. Simultaneous anterior and posterior images were recorded using a dual-headed gamma camera. Solid and liquid geometric mean data were analyzed to determine the lag phase, the emptying rate and the half-emptying time for both solids and liquids. Solid and liquid gastric half-emptying times were significantly prolonged in G II compared to G I volunteers. For the solid phased, the delay was accounted for by a longer lag phase and a decrease in the equilibrium emptying rate. The emptying rate of the liquid phase was significantly decreased in G II compared to G I. Within each group, no statistically significant difference was observed between solid and liquid emptying rates. We conclude that the caloric content of the solid portion of a meal not only alters the emptying of the solid phase but also affects the emptying of the liquid component of the meal.
Cárdenas, Ana María; Fernández-Olivares, Paola; Díaz-Franulic, Ignacio; González-Jamett, Arlek M; Shimahara, Takeshi; Segura-Aguilar, Juan; Caviedes, Raúl; Caviedes, Pablo
2017-11-01
The Na + /myo-inositol cotransporter (SMIT1) is overexpressed in human Down syndrome (DS) and in trisomy 16 fetal mice (Ts16), an animal model of the human condition. SMIT1 overexpression determines increased levels of intracellular myo-inositol, a precursor of phophoinositide synthesis. SMIT1 is overexpressed in CTb cells, an immortalized cell line established from the cerebral cortex of a Ts16 mouse fetus. CTb cells exhibit impaired cytosolic Ca 2+ signals in response to glutamatergic and cholinergic stimuli (increased amplitude and delayed time-dependent kinetics in the decay post-stimulation), compared to our CNh cell line, derived from the cerebral cortex of a euploid animal. Considering the role of myo-inositol in intracellular signaling, we normalized SMIT1 expression in CTb cells using specific mRNA antisenses. Forty-eight hours post-transfection, SMIT1 levels in CTb cells reached values comparable to those of CNh cells. At this time, decay kinetics of Ca 2+ signals induced by either glutamate, nicotine, or muscarine were accelerated in transfected CTb cells, to values similar to those of CNh cells. The amplitude of glutamate-induced cytosolic Ca 2+ signals in CTb cells was also normalized. The results suggest that SMIT1 overexpression contributes to abnormal cholinergic and glutamatergic Ca 2+ signals in the trisomic condition, and knockdown of DS-related genes in our Ts16-derived cell line could constitute a relevant tool to study DS-related neuronal dysfunction.
1994-01-01
Elevation of cAMP can cause gene-specific inhibition of interleukin 2 (IL-2) expression. To investigate the mechanism of this effect, we have combined electrophoretic mobility shift assays and in vivo genomic footprinting to assess both the availability of putative IL-2 transcription factors in forskolin-treated cells and the functional capacity of these factors to engage their sites in vivo. All observed effects of forskolin depended upon protein kinase A, for they were blocked by introduction of a dominant negative mutant subunit of protein kinase A. In the EL4.E1 cell line, we report specific inhibitory effects of cAMP elevation both on NF-kappa B/Rel family factors binding at -200 bp, and on a novel, biochemically distinct "TGGGC" factor binding at -225 bp with respect to the IL-2 transcriptional start site. Neither NF-AT nor AP-1 binding activities are detectably inhibited in gel mobility shift assays. Elevation of cAMP inhibits NF-kappa B activity with delayed kinetics in association with a delayed inhibition of IL-2 RNA accumulation. Activation of cells in the presence of forskolin prevents the maintenance of stable protein- DNA interactions in vivo, not only at the NF-kappa B and TGGGC sites of the IL-2 enhancer, but also at the NF-AT, AP-1, and other sites. This result, and similar results in cyclosporin A-treated cells, imply that individual IL-2 transcription factors cannot stably bind their target sequences in vivo without coengagement of all other distinct factors at neighboring sites. It is proposed that nonhierarchical, cooperative enhancement of binding is a structural basis of combinatorial transcription factor action at the IL-2 locus. PMID:8113685
Rapid wall relaxation in elongating tissues.
Matyssek, R; Maruyama, S; Boyer, J S
1988-04-01
Reported differences in the relaxation of cell walls in enlarging stem tissues of soybean (Glycine max [L.] Merr.) and pea (Pisum sativum L.) cause measurements of the yield threshold turgor, an important growth parameter, to be in doubt. Using the pressure probe and guillotine psychrometer, we investigated wall relaxation in these species by excising the elongating tissue in air to remove the water supply. We found that the rapid kinetics usually exhibited by soybean could be delayed and made similar to the slow kinetics previously reported for pea if slowly growing or mature tissue was left attached to the rapidly growing tissue when relaxation was initiated. The greater the amount of attached tissue, the slower the relaxation, suggesting that slowly growing tissue acted as a water source. Consistent with this concept was a lower water potential in the rapidly elongating tissue than in the slowly growing tissue. Previous reports of wall relaxation in pea included slowly growing tissue. If this tissue was removed from pea, relaxation became as rapid as usually exhibited by soybean. It is concluded that the true relaxation of cell walls to the yield threshold requires only a few minutes and that the yield threshold should be constant during so short a time, thus reflecting the yield threshold in the intact plant before excision. Under these conditions, the yield threshold was close to the turgor in the intact plant regardless of the species. The presence of slowly growing or mature tissue delays wall relaxation and should be avoided during such measurements. However, this delay can be used to advantage when turgor of intact growing tissues is being measured using excised tissues because turgor does not change for a considerable time after excision.
Rapid Wall Relaxation in Elongating Tissues 1
Matyssek, Rainer; Maruyama, Sachio; Boyer, John S.
1988-01-01
Reported differences in the relaxation of cell walls in enlarging stem tissues of soybean (Glycine max [L.] Merr.) and pea (Pisum sativum L.) cause measurements of the yield threshold turgor, an important growth parameter, to be in doubt. Using the pressure probe and guillotine psychrometer, we investigated wall relaxation in these species by excising the elongating tissue in air to remove the water supply. We found that the rapid kinetics usually exhibited by soybean could be delayed and made similar to the slow kinetics previously reported for pea if slowly growing or mature tissue was left attached to the rapidly growing tissue when relaxation was initiated. The greater the amount of attached tissue, the slower the relaxation, suggesting that slowly growing tissue acted as a water source. Consistent with this concept was a lower water potential in the rapidly elongating tissue than in the slowly growing tissue. Previous reports of wall relaxation in pea included slowly growing tissue. If this tissue was removed from pea, relaxation became as rapid as usually exhibited by soybean. It is concluded that the true relaxation of cell walls to the yield threshold requires only a few minutes and that the yield threshold should be constant during so short a time, thus reflecting the yield threshold in the intact plant before excision. Under these conditions, the yield threshold was close to the turgor in the intact plant regardless of the species. The presence of slowly growing or mature tissue delays wall relaxation and should be avoided during such measurements. However, this delay can be used to advantage when turgor of intact growing tissues is being measured using excised tissues because turgor does not change for a considerable time after excision. PMID:16666048
2010-01-01
Background Electrotherapy effectiveness at different doses has been demonstrated in preclinical and clinical studies; however, several aspects that occur in the tumor growth kinetics before and after treatment have not yet been revealed. Mathematical modeling is a useful instrument that can reveal some of these aspects. The aim of this paper is to describe the complete growth kinetics of unperturbed and perturbed tumors through use of the modified Gompertz equation in order to generate useful insight into the mechanisms that underpin this devastating disease. Methods The complete tumor growth kinetics for control and treated groups are obtained by interpolation and extrapolation methods with different time steps, using experimental data of fibrosarcoma Sa-37. In the modified Gompertz equation, a delay time is introduced to describe the tumor's natural history before treatment. Different graphical strategies are used in order to reveal new information in the complete kinetics of this tumor type. Results The first stage of complete tumor growth kinetics is highly non linear. The model, at this stage, shows different aspects that agree with those reported theoretically and experimentally. Tumor reversibility and the proportionality between regions before and after electrotherapy are demonstrated. In tumors that reach partial remission, two antagonistic post-treatment processes are induced, whereas in complete remission, two unknown antitumor mechanisms are induced. Conclusion The modified Gompertz equation is likely to lead to insights within cancer research. Such insights hold promise for increasing our understanding of tumors as self-organizing systems and, the possible existence of phase transitions in tumor growth kinetics, which, in turn, may have significant impacts both on cancer research and on clinical practice. PMID:21029411
Ferreira, L F; Padilla, D J; Williams, J; Hageman, K S; Musch, T I; Poole, D C
2006-03-01
To explore the role of nitric oxide (NO) in controlling microvascular O2 pressure (P(O2)mv) at rest and during contractions (1 Hz). We hypothesized that at the onset of contractions sodium nitroprusside (SNP) would raise P(O2)mv and slow the kinetics of P(O2)mv change whereas l-nitro arginine methyl ester (L-NAME) would decrease P(O2)mv and speed its kinetics. We superfused the spinotrapezius muscle of female Sprague-Dawley rats (n = 7, body mass = 298 +/- 10 g) with SNP (300 microM) and L-NAME (1.5 mm) and measured P(O2)mv (phosphorescence quenching) during contractions. SNP decreased mean arterial pressure (92 +/- 5 mmHg) below that of control (CON, 124 +/- 4 mmHg) and L-NAME (120 +/- 4 mmHg) conditions. SNP did not raise P(O2)mv at rest but it did elevate the P(O2)mv-to-MAP ratio (50% increase, P < 0.05) and slow the kinetics by lengthening the time-delay (TD, 14.0 +/- 5.0 s) and time constant (tau, 24.0 +/- 10.0 s) of the response compared with CON (TD, 8.4 +/- 3.3 s; tau, 16.0 +/- 4.5 s, P < 0.05 vs. SNP). L-NAME decreased P(O2)mv at rest and tended to speed tau (10.1 +/- 3.8 s, P = 0.1), while TD (8.1 +/- 1.0 s) was not significantly different. L-NAME also caused P(O2)mv to fall transiently below steady-state contracting values. These results indicate that NO availability can significantly affect P(O2)mv at rest and during contractions and suggests that P(O2)mv derangements in ageing and chronic disease conditions may potentially result from impairments in NO availability.
Measurement of the potential drop across the earth's collisionless bow shock
NASA Technical Reports Server (NTRS)
Formisano, V.
1982-01-01
The normal component of the dc electric field measured on ISEE-1 ordinarily exhibits an enhancement of a few mV/m over both upstream and downstream values at the earth's bow shock. Using the measured relative velocity between the shock and the spacecraft (from the ISEE-1/2 time delay in the magnetometer data), it is possible to transform the observed E enhancement to a potential drop (delta phi). For a subcritical shock the potential drop is found to be very close to the measured change of particle kinetic energy (delta phi, approximately 280 V on day 330, 1977), whereas for a supercritical shock the potential drop is only a fraction of the measured change of kinetic energy (delta phi, approximately 140 V on day 324, 1977).
Li, Shan-Shan; Guan, Qi-Yuan; Meng, Gang; Chang, Xiao-Feng; Wei, Ji-Wu; Wang, Peng; Kang, Bin; Xu, Jing-Juan; Chen, Hong-Yuan
2017-05-23
Better understanding the drug action within cells may extend our knowledge on drug action mechanisms and promote new drugs discovery. Herein, we studied the processes of drug induced chemical changes on proteins and nucleic acids in human breast adenocarcinoma (MCF-7) cells via time-resolved plasmonic-enhanced Raman spectroscopy (PERS) in combination with principal component analysis (PCA). Using three popular chemotherapy drugs (fluorouracil, cisplatin and camptothecin) as models, chemical changes during drug action process were clearly discriminated. Reaction kinetics related to protein denaturation, conformational modification, DNA damage and their associated biomolecular events were calculated. Through rate constants and reaction delay times, the different action modes of these drugs could be distinguished. These results may provide vital insights into understanding the chemical reactions associated with drug-cell interactions.
Goel, Nidhi; Singh, Udai P
2013-10-10
Four new acid-base complexes using picric acid [(OH)(NO2)3C6H2] (PA) and N-heterocyclic bases (1,10-phenanthroline (phen)/2,2';6',2"-terpyridine (terpy)/hexamethylenetetramine (hmta)/2,4,6-tri(2-pyridyl)-1,3,5-triazine (tptz)) were prepared and characterized by elemental analysis, IR, NMR and X-ray crystallography. Crystal structures provide detailed information of the noncovalent interactions present in different complexes. The optimized structures of the complexes were calculated in terms of the density functional theory. The thermolysis of these complexes was investigated by TG-DSC and ignition delay measurements. The model-free isoconversional and model-fitting kinetic approaches have been applied to isothermal TG data for kinetics investigation of thermal decomposition of these complexes.
Raithore, Smita; Dea, Sharon; McCollum, Greg; Manthey, John A; Bai, Jinhe; Leclair, Clotilde; Hijaz, Faraj; Narciso, Jan A; Baldwin, Elizabeth A; Plotto, Anne
2016-01-30
Mandarins and mandarin hybrids have excellent flavor and color attributes, making them good candidates for consumption as fresh fruit. When processed into juice, however, they are less palatable, as they develop delayed bitterness when stored for a period of time. In this study the kinetics of delayed bitterness in two citrus mandarin hybrid siblings, 'Ambersweet' and USDA 1-105-106, was explored by sensory and instrumental analyses. In addition to the bitter limonoids, other quality factors (i.e. sugars, acids, pH, soluble solids content (SSC), titratable acidity (TA) and the ratio SSC/TA) were also measured. The two citrus hybrid siblings had different chemical profiles, which were perceived by taste panels. USDA 1-105-106 developed delayed bitterness when the juice was stored for more than 4 h, similar to juice from 'Navel' oranges, but 'Ambersweet' did not. Bitterness in 'Ambersweet' was more affected by harvest maturity, as juice from earlier harvest had lower SSC but higher TA and bitter limonoids. Since juice of USDA 1-105-106 shows delayed bitterness when stored for more than 4 h, this cultivar is not suitable for juice processing. Our finding that siblings can differ in chemical and sensory properties emphasize the importance of post-processing storage studies before releasing cultivars for juice. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
NASA Technical Reports Server (NTRS)
Nguyen, H. L.; Ying, S.-J.
1990-01-01
Numerical solutions of the Jet-A spray combustion were obtained by means of the KIVA-II computer code after Jet-A properties were added to the 12 chemical species the program had initially contained. Three different reaction mechanism models are considered. The first model consists of 131 reactions and 45 species; it is evaluated by comparing calculated ignition delay times with available shock tube data, and it is used in the evaluation of the other two simplified models. The simplified mechanisms consider 45 reactions and 27 species and 5 reactions and 12 species, respectively. In the prediction of pollutants NOx and CO, the full mechanism of 131 reactions is considered to be more reliable. The numerical results indicate that the variation of the maximum flame temperature is within 20 percent as compared with that of the full mechanism of 131 reactions. The chemical compositions of major components such as C3H8, H2O, O2, CO2, and N2 are of the same order of magnitude. However, the concentrations of pollutants are quite different.
von Rosen, T; Lohse, L; Nielsen, J; Uttenthal, Å
2013-12-01
Several studies have highlighted the important role of cytokines in disease development of classical swine fever virus (CSFV) infection. In the present study, we examined the kinetics of 7 porcine cytokines in serum from pigs infected with 3 different CSFV strains. Based on the clinical picture in 6-month-old Danish pigs, the strains used for inoculation were classified as being of low (Bergen), low to moderate (Eystrup) and moderate to high (Lithuania) virulence. The cytokines interferon-alpha (INF-α), interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-α) showed increased levels after CSFV infection with more or less comparable course in the 3 groups. However, the cytokine level peaked with a 2-3 days delay in pigs infected with the low virulent strain compared to those infected with a moderately or highly virulent strain. These findings may indicate that INF-α, IL-8 and TNF-α are involved in the immune response during CSFV infection with strains of different virulence. Copyright © 2013 Elsevier Ltd. All rights reserved.
Study on coal char ignition by radiant heat flux.
NASA Astrophysics Data System (ADS)
Korotkikh, A. G.; Slyusarskiy, K. V.
2017-11-01
The study on coal char ignition by CO2-continuous laser was carried out. The coal char samples of T-grade bituminous coal and 2B-grade lignite were studied via CO2-laser ignition setup. Ignition delay times were determined at ambient condition in heat flux density range 90-200 W/cm2. The average ignition delay time value for lignite samples were 2 times lower while this difference is larger in high heat flux region and lower in low heat flux region. The kinetic constants for overall oxidation reaction were determined using analytic solution of simplified one-dimensional heat transfer equation with radiant heat transfer boundary condition. The activation energy for lignite char was found to be less than it is for bituminous coal char by approximately 20 %.
Rithidech, Kanokporn Noy; Honikel, Louise M; Reungpatthanaphong, Paiboon; Tungjai, Montree; Golightly, Marc; Whorton, Elbert B
2013-08-30
Little is known about in vivo cytogenetic effects of protons delivered at the dose and dose rates encountered in space. We determined the effects of 100MeV protons, one of the most abundant type of protons produced during solar particle events (SPE), on the induction of chromosome aberrations (CAs) in bone marrow (BM) cells collected at early (3 and 24h) and late (6 months) time-points from groups of BALB/cJ mice (a known radiosensitive strain) exposed whole-body to 0 (sham-controls), 0.5, or 1.0Gy of 100MeV protons, delivered at 0.5 or 1.0cGy/min. These doses and dose-rates are comparable to those produced during SPE events. Additionally, groups of mice were exposed to 0 or 1Gy of (137)Cs γ rays (delivered at 1cGy/min) as a reference radiation. The kinetics of formation/reduction of gamma-histone 2-AX (γH2AX) were determined in BM cells collected at 1.5, 3, and 24h post-irradiation to assess the early-response. There were five mice per treatment-group per harvest-time. Our data indicated that the kinetics of γH2AX formation/reduction differed, depending on the dose and dose rate of protons. Highly significant numbers of abnormal cells and chromatid breaks (p<0.01), related to those in sham-control groups, were detected in BM cells collected at each time-point, regardless of dose or dose-rate. The finding of significant increases in the frequencies of delayed non-clonal and clonal CAs in BM cells collected at a late time-point from exposed mice suggested that 0.5 or 1Gy of 100MeV protons is capable of inducing genomic instability in BM cells. However, the extent of effects induced by these two low dose rates was comparable. Further, the results showed that the in vivo cytogenetic effects induced by 1Gy of 100MeV protons or (137)Cs γ rays (delivered at 1cGy/min) were similar. Copyright © 2013 Elsevier B.V. All rights reserved.
Preservation of cardiac function by prolonged action potentials in mice deficient of KChIP2.
Grubb, Søren; Aistrup, Gary L; Koivumäki, Jussi T; Speerschneider, Tobias; Gottlieb, Lisa A; Mutsaers, Nancy A M; Olesen, Søren-Peter; Calloe, Kirstine; Thomsen, Morten B
2015-08-01
Inherited ion channelopathies and electrical remodeling in heart disease alter the cardiac action potential with important consequences for excitation-contraction coupling. Potassium channel-interacting protein 2 (KChIP2) is reduced in heart failure and interacts under physiological conditions with both Kv4 to conduct the fast-recovering transient outward K(+) current (Ito,f) and with CaV1.2 to mediate the inward L-type Ca(2+) current (ICa,L). Anesthetized KChIP2(-/-) mice have normal cardiac contraction despite the lower ICa,L, and we hypothesized that the delayed repolarization could contribute to the preservation of contractile function. Detailed analysis of current kinetics shows that only ICa,L density is reduced, and immunoblots demonstrate unaltered CaV1.2 and CaVβ₂ protein levels. Computer modeling suggests that delayed repolarization would prolong the period of Ca(2+) entry into the cell, thereby augmenting Ca(2+)-induced Ca(2+) release. Ca(2+) transients in disaggregated KChIP2(-/-) cardiomyocytes are indeed comparable to wild-type transients, corroborating the preserved contractile function and suggesting that the compensatory mechanism lies in the Ca(2+)-induced Ca(2+) release event. We next functionally probed dyad structure, ryanodine receptor Ca(2+) sensitivity, and sarcoplasmic reticulum Ca(2+) load and found that increased temporal synchronicity of the Ca(2+) release in KChIP2(-/-) cardiomyocytes may reflect improved dyad structure aiding the compensatory mechanisms in preserving cardiac contractile force. Thus the bimodal effect of KChIP2 on Ito,f and ICa,L constitutes an important regulatory effect of KChIP2 on cardiac contractility, and we conclude that delayed repolarization and improved dyad structure function together to preserve cardiac contraction in KChIP2(-/-) mice. Copyright © 2015 the American Physiological Society.
Lange, Sandra; Steder, Anne; Killian, Doreen; Knuebel, Gudrun; Sekora, Anett; Vogel, Heike; Lindner, Iris; Dunkelmann, Simone; Prall, Friedrich; Murua Escobar, Hugo; Freund, Mathias; Junghanss, Christian
2017-02-01
An intra-bone marrow (IBM) hematopoietic stem cell transplantation (HSCT) is assumed to optimize the homing process and therefore to improve engraftment as well as hematopoietic recovery compared with conventional i.v. HSCT. This study investigated the feasibility and efficacy of IBM HSCT after nonmyeloablative conditioning in an allogeneic canine HSCT model. Two study cohorts received IBM HSCT of either density gradient (IBM-I, n = 7) or buffy coat (IBM-II, n = 6) enriched bone marrow cells. An historical i.v. HSCT cohort served as control. Before allogeneic HSCT experiments were performed, we investigated the feasibility of IBM HSCT by using technetium-99m marked autologous grafts. Scintigraphic analyses confirmed that most IBM-injected autologous cells remained at the injection sites, independent of the applied volume. In addition, cell migration to other bones occurred. The enrichment process led to different allogeneic graft volumes (IBM-I, 2 × 5 mL; IBM-II, 2 × 25 mL) and significantly lower counts of total nucleated cells in IBM-I grafts compared with IBM-II grafts (1.6 × 10 8 /kg versus 3.8 × 10 8 /kg). After allogeneic HSCT, dogs of the IBM-I group showed a delayed engraftment with lower levels of donor chimerism when compared with IBM-II or to i.v. HSCT. Dogs of the IBM-II group tended to reveal slightly faster early leukocyte engraftment kinetics than intravenously transplanted animals. However, thrombocytopenia was significantly prolonged in both IBM groups when compared with i.v. HSCT. In conclusion, IBM HSCT is feasible in a nonmyeloablative HSCT setting but failed to significantly improve engraftment kinetics and hematopoietic recovery in comparison with conventional i.v. HSCT. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Nath, Bipul; Nath, Lila Kanta
2013-01-01
The purpose of this study is to explore the possible applicability of Sterculia urens gum as a novel carrier for colonic delivery system of a sparingly soluble drug, azathioprine. The study involves designing a microflora triggered colon-targeted drug delivery system (MCDDS) which consists of a central polysaccharide core and is coated to different film thicknesses with blends of chitosan/Eudragit RLPO, and is overcoated with Eudragit L00 to provide acid and intestinal resistance. The microflora degradation property of gum was investigated in rat caecal medium. Drug release study in simulated colonic fluid revealed that swelling force of the gum could concurrently drive the drug out of the polysaccharide core due to the rupture of the chitosan/Eudargit coating in microflora-activated environment. Chitosan in the mixed film coat was found to be degraded by enzymatic action of the microflora in the colon. Release kinetic data revealed that the optimized MCDDS was fitted well into first-order model, and apparent lag time was found to be 6 hours, followed by Higuchi release kinetics. In vivo study in rabbits shows delayed T max, prolonged absorption time, decreased C max, and absorption rate constant (Ka), indicating a reduced systemic toxicity of the drug as compared to other dosage forms. PMID:26555985
Simplified jet-A kinetic mechanism for combustor application
NASA Technical Reports Server (NTRS)
Lee, Chi-Ming; Kundu, Krishna; Ghorashi, Bahman
1993-01-01
Successful modeling of combustion and emissions in gas turbine engine combustors requires an adequate description of the reaction mechanism. For hydrocarbon oxidation, detailed mechanisms are only available for the simplest types of hydrocarbons such as methane, ethane, acetylene, and propane. These detailed mechanisms contain a large number of chemical species participating simultaneously in many elementary kinetic steps. Current computational fluid dynamic (CFD) models must include fuel vaporization, fuel-air mixing, chemical reactions, and complicated boundary geometries. To simulate these conditions a very sophisticated computer model is required, which requires large computer memory capacity and long run times. Therefore, gas turbine combustion modeling has frequently been simplified by using global reaction mechanisms, which can predict only the quantities of interest: heat release rates, flame temperature, and emissions. Jet fuels are wide-boiling-range hydrocarbons with ranges extending through those of gasoline and kerosene. These fuels are chemically complex, often containing more than 300 components. Jet fuel typically can be characterized as containing 70 vol pct paraffin compounds and 25 vol pct aromatic compounds. A five-step Jet-A fuel mechanism which involves pyrolysis and subsequent oxidation of paraffin and aromatic compounds is presented here. This mechanism is verified by comparing with Jet-A fuel ignition delay time experimental data, and species concentrations obtained from flametube experiments. This five-step mechanism appears to be better than the current one- and two-step mechanisms.
Kinetics of the Reactions between the Criegee Intermediate CH2OO and Alcohols.
Tadayon, Sara V; Foreman, Elizabeth S; Murray, Craig
2018-01-11
Reactions of the simplest Criegee intermediate (CH 2 OO) with a series of alcohols have been studied in a flash photolysis flow reactor. Laser photolysis of diiodomethane at 355 nm in the presence of molecular oxygen was used to produce CH 2 OO, and the absolute number densities were determined as a function of delay time from analysis of broadband transient absorption spectra obtained using a pulsed LED. The kinetics for the reactions of CH 2 OO with methanol, ethanol, and 2-propanol were measured under pseudo-first-order conditions at 295 K, yielding rate constants of (1.4 ± 0.4) × 10 -13 cm 3 s -1 , (2.3 ± 0.6) × 10 -13 cm 3 s -1 , and (1.9 ± 0.5) × 10 -13 cm 3 s -1 , respectively. Complementary ab initio calculations were performed at the CCSD(T)/aug-cc-pVTZ//CCSD/cc-pVDZ level of theory to characterize stationary points on the reaction enthalpy and free energy surfaces and to elucidate the thermochemistry and mechanisms. The reactions proceed over free energy barriers of ∼8 kcal mol -1 to form geminal alkoxymethyl hydroperoxides: methoxymethyl hydroperoxide (MMHP), ethoxymethyl hydroperoxide (EMHP), and isopropoxymethyl hydroperoxide (PMHP). The experimental and theoretical results are compared to reactions of CH 2 OO with other hydroxylic compounds, such as water and carboxylic acids, and trends in reactivity are discussed.
Kinetics of M1 muscarinic receptor and G protein signaling to phospholipase C in living cells
Falkenburger, Björn H.; Jensen, Jill B.
2010-01-01
G protein–coupled receptors (GPCRs) mediate responses to external stimuli in various cell types. Early events, such as the binding of ligand and G proteins to the receptor, nucleotide exchange (NX), and GTPase activity at the Gα subunit, are common for many different GPCRs. For Gq-coupled M1 muscarinic (acetylcholine) receptors (M1Rs), we recently measured time courses of intermediate steps in the signaling cascade using Förster resonance energy transfer (FRET). The expression of FRET probes changes the density of signaling molecules. To provide a full quantitative description of M1R signaling that includes a simulation of kinetics in native (tsA201) cells, we now determine the density of FRET probes and construct a kinetic model of M1R signaling through Gq to activation of phospholipase C (PLC). Downstream effects on the trace membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2) and PIP2-dependent KCNQ2/3 current are considered in our companion paper in this issue (Falkenburger et al. 2010. J. Gen. Physiol. doi:10.1085/jgp.200910345). By calibrating their fluorescence intensity, we found that we selected transfected cells for our experiments with ∼3,000 fluorescently labeled receptors, G proteins, or PLC molecules per µm2 of plasma membrane. Endogenous levels are much lower, 1–40 per µm2. Our kinetic model reproduces the time courses and concentration–response relationships measured by FRET and explains observed delays. It predicts affinities and rate constants that align well with literature values. In native tsA201 cells, much of the delay between ligand binding and PLC activation reflects slow binding of G proteins to receptors. With M1R and Gβ FRET probes overexpressed, 10% of receptors have G proteins bound at rest, rising to 73% in the presence of agonist. In agreement with previous work, the model suggests that binding of PLC to Gαq greatly speeds up NX and GTPase activity, and that PLC is maintained in the active state by cycles of rapid GTP hydrolysis and NX on Gαq subunits bound to PLC. PMID:20100890
Roberts, Robyn P; Blackwell, Sean C; Brown, Kelly M; Pedroza, Claudia; Sibai, Baha M; Tyson, Jon E
2016-08-01
To investigate whether delayed timing of physician rounds improves patient satisfaction for postpartum women. Women were randomized to early (5-7 AM) or delayed (8-10 AM) physician rounding. Women with stillbirth, high-risk pregnancy, or complications precluding delayed rounding were excluded. At discharge, women completed a modified Hospital Consumer Assessment of Healthcare Providers and Systems survey. The primary outcome was rating of the hospital. Secondary outcomes included patient assessment of patient-physician communication, various hospital experiences, and timing of maternal and neonatal discharge. We estimated that 74 women were needed to detect a 20% difference in rating of the hospital (0-10 score) between groups (assumption P=.05, power 90%). Given limited information on primary outcome, an a priori plan was in place to conduct the study for 2 months. One hundred fifty-two women were randomized (n=76 early rounding; n=76 delayed rounding). More women had a cesarean delivery in the early compared with the delayed rounding group (47.4% compared with 22.4%). Median rating of the hospital was higher in the delayed as compared with the early rounding group (9.0 [7.0-9.0] compared with 7.0 [6.0-8.0]; P<.01). Median scores regarding physician communication and perception of hospital experiences were higher in the delayed compared with the early group (8.0 [7.0-9.0] compared with 6.0 [5.0-7.0]; P<.001). Adjustment for delivery mode did not alter results (P<.01). No differences in timing of maternal (P=.47) or neonatal hospital discharge (P=.35) were observed. Postpartum women receiving delayed physician rounding were more satisfied with their hospital experience and patient-physician communication without prolonging maternal or neonatal discharge. ClinicalTrials.gov, https://clinicaltrials.gov, NCT02432573.
Scholz, Eberhard P; Carrillo-Bustamante, Paola; Fischer, Fathima; Wilhelms, Mathias; Zitron, Edgar; Dössel, Olaf; Katus, Hugo A; Seemann, Gunnar
2013-01-01
Inhibition of the atrial ultra-rapid delayed rectifier potassium current (I Kur) represents a promising therapeutic strategy in the therapy of atrial fibrillation. However, experimental and clinical data on the antiarrhythmic efficacy remain controversial. We tested the hypothesis that antiarrhythmic effects of I Kur inhibitors are dependent on kinetic properties of channel blockade. A mathematical description of I Kur blockade was introduced into Courtemanche-Ramirez-Nattel models of normal and remodeled atrial electrophysiology. Effects of five model compounds with different kinetic properties were analyzed. Although a reduction of dominant frequencies could be observed in two dimensional tissue simulations for all compounds, a reduction of spiral wave activity could be only be detected in two cases. We found that an increase of the percent area of refractory tissue due to a prolongation of the wavelength seems to be particularly important. By automatic tracking of spiral tip movement we find that increased refractoriness resulted in rotor extinction caused by an increased spiral-tip meandering. We show that antiarrhythmic effects of I Kur inhibitors are dependent on kinetic properties of blockade. We find that an increase of the percent area of refractory tissue is the underlying mechanism for an increased spiral-tip meandering, resulting in the extinction of re-entrant circuits.
Scholz, Eberhard P.; Carrillo-Bustamante, Paola; Fischer, Fathima; Wilhelms, Mathias; Zitron, Edgar; Dössel, Olaf; Katus, Hugo A.; Seemann, Gunnar
2013-01-01
Inhibition of the atrial ultra-rapid delayed rectifier potassium current (I Kur) represents a promising therapeutic strategy in the therapy of atrial fibrillation. However, experimental and clinical data on the antiarrhythmic efficacy remain controversial. We tested the hypothesis that antiarrhythmic effects of I Kur inhibitors are dependent on kinetic properties of channel blockade. A mathematical description of I Kur blockade was introduced into Courtemanche-Ramirez-Nattel models of normal and remodeled atrial electrophysiology. Effects of five model compounds with different kinetic properties were analyzed. Although a reduction of dominant frequencies could be observed in two dimensional tissue simulations for all compounds, a reduction of spiral wave activity could be only be detected in two cases. We found that an increase of the percent area of refractory tissue due to a prolongation of the wavelength seems to be particularly important. By automatic tracking of spiral tip movement we find that increased refractoriness resulted in rotor extinction caused by an increased spiral-tip meandering. We show that antiarrhythmic effects of I Kur inhibitors are dependent on kinetic properties of blockade. We find that an increase of the percent area of refractory tissue is the underlying mechanism for an increased spiral-tip meandering, resulting in the extinction of re-entrant circuits. PMID:24376659
Frost, Lydia R; Brown, Stephen H M
2016-02-01
Patients with chronic low back pain and associated radiculopathy present with neuromuscular symptoms both in their lower back and down their leg; however, investigations of muscle activation have so far been isolated to the lower back. During balance perturbations, it is necessary that lower limb muscles activate with proper timing and sequencing along with the lower back musculature to efficiently regain balance control. Patients with chronic low back pain and radiculopathy and matched controls completed a series of balance perturbations (rapid bilateral arm raise, unanticipated and anticipated sudden loading, and rapid rise to toe). Muscle activation timing and sequencing as well as kinetic response to the perturbations were analyzed. Patients had significantly delayed lower limb muscle activation in rapid arm raise trials as compared to controls. In sudden loading trials, muscle activation timing was not delayed in patients; however, some differences in posterior chain muscle activation sequencing were present. Patients demonstrated less anterior-posterior movement in unanticipated sudden loading trials, and greater medial-lateral movement in rise to toe trials. Patients with low back pain and radiculopathy demonstrated some significant differences from control participants in terms of muscle activation timing, sequencing, and overall balance control. The presence of differences between patients and controls, specifically in the lower limb, indicates that radiculopathy may play a role in altering balance control in these patients. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Leier, André; Marquez-Lago, Tatiana T.; Burrage, Kevin
2008-05-01
The delay stochastic simulation algorithm (DSSA) by Barrio et al. [Plos Comput. Biol. 2, 117(E) (2006)] was developed to simulate delayed processes in cell biology in the presence of intrinsic noise, that is, when there are small-to-moderate numbers of certain key molecules present in a chemical reaction system. These delayed processes can faithfully represent complex interactions and mechanisms that imply a number of spatiotemporal processes often not explicitly modeled such as transcription and translation, basic in the modeling of cell signaling pathways. However, for systems with widely varying reaction rate constants or large numbers of molecules, the simulation time steps of both the stochastic simulation algorithm (SSA) and the DSSA can become very small causing considerable computational overheads. In order to overcome the limit of small step sizes, various τ-leap strategies have been suggested for improving computational performance of the SSA. In this paper, we present a binomial τ-DSSA method that extends the τ-leap idea to the delay setting and avoids drawing insufficient numbers of reactions, a common shortcoming of existing binomial τ-leap methods that becomes evident when dealing with complex chemical interactions. The resulting inaccuracies are most evident in the delayed case, even when considering reaction products as potential reactants within the same time step in which they are produced. Moreover, we extend the framework to account for multicellular systems with different degrees of intercellular communication. We apply these ideas to two important genetic regulatory models, namely, the hes1 gene, implicated as a molecular clock, and a Her1/Her 7 model for coupled oscillating cells.
Azizi, Kolsoom; Keshavarz Moraveji, Mostafa; Abedini Najafabadi, Hamed
2017-11-01
Thermal decomposition behavior and kinetics of microalgae Chlorella vulgaris, wood and polypropylene were investigated using thermogravimetric analysis (TGA). Experiments were carried out at heating rates of 10, 20 and 40°C/min from ambient temperature to 600°C. The results show that pyrolysis process of C. vulgaris and wood can be divided into three stages while pyrolysis of polypropylene occurs almost totally in one step. It is shown that wood can delay the pyrolysis of microalgae while microalgae can accelerate the pyrolysis of wood. The existence of polymer during the pyrolysis of microalgae or wood will lead to two divided groups of peaks in DTG curve of mixtures. The results showed that interaction is inhibitive rather than synergistic during the decomposition process of materials. Kinetics of process is studied by the Kissinger-Akahira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO). The average E values obtained from FWO and KAS methods were 131.228 and 142.678kJ/mol, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
Singlet oxygen feedback delayed fluorescence of protoporphyrin IX in organic solutions.
Vinklárek, Ivo S; Scholz, Marek; Dědic, Roman; Hála, Jan
2017-04-12
Delayed fluorescence (DF) of protoporphyrin IX (PpIX) has been recently proposed as a tool for monitoring of mitochondrial oxygen tension in vivo as well as for observation of the effectiveness of photodynamic therapy (PDT) [E. G. Mik, Anesth. Analg., 2013, 117, 834-346; F. Piffaretti et al., J. Biomed. Opt., 2012, 17, 115007]. However, the efficiency of the mechanism of thermal activation (E-type DF), which was considered in the papers, is limited due to a large energy gap between the first excited singlet and the first triplet state of PpIX at room or body temperatures. Moreover, the energy gap is roughly equal to other porphyrinoid photosensitizers that generate DF mostly through the Singlet Oxygen Feedback-Induced mechanism (SOFDF) under certain conditions [M. Scholz and R. Dědic, Singlet Oxygen: Applications in Biosciences and Nanosciences, 2016, vol. 2, pp. 63-81]. The mechanisms of delayed fluorescence of PpIX dissolved either in dimethylformamide (DMF) or in the mixture of DMF with ethylene glycol (EG) were investigated at atmospheric partial pressure of oxygen by means of a simultaneous time-resolved detection of 1 O 2 phosphorescence and PpIX DF which makes a direct comparison of the kinetics and lifetimes of both the luminescence channels possible. Samples of PpIX (100 μM) exhibit concave DF kinetics, which is a typical footprint of the SOFDF mechanism. The dramatic decrease in the DF intensity after adding a selective 1 O 2 quencher sodium azide (NaN 3 , 10 mM) proves that >90% of DF is indeed generated through SOFDF. Moreover, the analysis of the DF kinetics in the presence of NaN 3 implies that the second significant mechanism of DF generation is the triplet-triplet annihilation (P-type DF). The bimolecular mechanism of DF was further confirmed by the decrease of the DF intensity in the more viscous mixture DMF/EG and by the increase of the ratio of DF to the prompt fluorescence (PF) intensity with the increasing excitation intensity. These results show the significant role of the SOFDF mechanism in the DF of PpIX at high concentrations and at atmospheric partial pressure of oxygen and should be considered when developing diagnostic tools for clinical applications.
Beels, Laurence; Werbrouck, Joke; Thierens, Hubert
2010-09-01
Dose response and repair kinetics of phosphorylated histone H2A isoform X (gamma-H2AX) foci in T-lymphocytes were investigated in the low-dose range after in vitro irradiation of whole blood and T-lymphocytes with 100 kVp X-rays and (60)Co gamma-rays. Whole blood or isolated T-lymphocytes were irradiated in vitro and gamma-H2AX foci were scored. Dose response was determined in the 0-500 mGy dose range. Foci kinetics were studied at doses of 5 and 200 mGy up to 24 h post-irradiation. After X-irradiation, the dose response for whole blood shows a biphasic behaviour with a low-dose hypersensitivity, which is less pronounced for isolated T-lymphocytes. In contrast, gamma-radiation shows a linear dose response for both irradiation conditions. Concerning repair kinetics, delayed repair was found after X-ray whole blood irradiation (5 and 200 mGy) with 40% of the foci persisting 24 h post-irradiation. This number of foci is reduced to 10% after irradiation of isolated T-lymphocytes with 200 mGy X-rays. On the contrary, gamma-H2AX foci are reduced to background levels 24 h post-irradiation with 200 mGy (60)Co gamma-rays. gamma-H2AX foci response and repair kinetics depend on irradiation conditions and radiation quality, possibly linked to Bystander response.
Two R7 RGS proteins shape retinal bipolar cell signaling
Mojumder, Deb Kumar; Qian, Yan; Wensel, Theodore G.
2009-01-01
RGS7, RGS11, and their binding partner Gβ5 are localized to the dendritic tips of retinal ON bipolar cells (ON-BPC), where mGluR6 responds to glutamate released from photoreceptor terminals by activation of the RGS7/RGS11 substrate, Gαo. To determine their functions in retinal signaling, we investigated cell-specific expression patterns of RGS7 and RGS11 by immunostaining, and measured light responses by electroretinography (ERG) in mice with targeted disruptions of the genes encoding them. RGS7 staining is present in dendritic tips of all rod ON-BPC, but missing in those for subsets of cone ON-BPC, whereas the converse was true for RGS11 staining. Genetic disruption of either RGS7 or RGS11 produced delays in the ON-BPC-derived electroretinogram b-wave, but no changes in the photoreceptor-derived a-wave. Homozygous RGS7 mutant mice had delays in rod-driven b-waves, whereas, RGS11 mutant mice had delays in rod-driven, and especially in cone-driven b-waves. The b-wave delays were further enhanced in mice homozygous for both RGS7 and RGS11 gene disruptions. Thus, RGS7 and RGS11 act in parallel to regulate the kinetics of ON bipolar cell responses, with differential impacts on the rod and cone pathways. PMID:19535587
Is early cord clamping, delayed cord clamping or cord milking best?
Vatansever, Binay; Demirel, Gamze; Ciler Eren, Elif; Erel, Ozcan; Neselioglu, Salim; Karavar, Hande Nur; Gundogdu, Semra; Ulfer, Gozde; Bahadir, Selcen; Tastekin, Ayhan
2018-04-01
To compare the antioxidant status of three cord clamping procedures (early clamping, delayed clamping and milking) by analyzing the thiol-disulfide balance. This randomized controlled study enrolled 189 term infants who were divided into three groups according to the cord clamping procedure: early clamping, delayed clamping and milking. Blood samples were collected from the umbilical arteries immediately after clamping, and the thiol/disulfide homeostasis was analyzed. The native and total thiol levels were significantly (p < .05) lower in the early cord clamping group compared with the other two groups. The disulfide/total thiol ratio was significantly (p = .026) lower in the delayed cord clamping and milking groups compared with the early clamping groups. Early cord clamping causes the production of more disulfide bonds and lower thiol levels, indicating that oxidation reactions are increased in the early cord clamping procedure compared with the delayed cord clamping and milking procedures. The oxidant capacity is greater with early cord clamping than with delayed clamping or cord milking. Delayed cord clamping or milking are beneficial in neonatal care, and we suggest that they be performed routinely in all deliveries.
Somers, Kieran P.; Simmie, John M.; Gillespie, Fiona; Conroy, Christine; Black, Gráinne; Metcalfe, Wayne K.; Battin-Leclerc, Frédérique; Dirrenberger, Patricia; Herbinet, Olivier; Glaude, Pierre-Alexandre; Dagaut, Philippe; Togbé, Casimir; Yasunaga, Kenji; Fernandes, Ravi X.; Lee, Changyoul; Tripathi, Rupali; Curran, Henry J.
2013-01-01
The pyrolytic and oxidative behaviour of the biofuel 2,5-dimethylfuran (25DMF) has been studied in a range of experimental facilities in order to investigate the relatively unexplored combustion chemistry of the title species and to provide combustor relevant experimental data. The pyrolysis of 25DMF has been re-investigated in a shock tube using the single-pulse method for mixtures of 3% 25DMF in argon, at temperatures from 1200–1350 K, pressures from 2–2.5 atm and residence times of approximately 2 ms. Ignition delay times for mixtures of 0.75% 25DMF in argon have been measured at atmospheric pressure, temperatures of 1350–1800 K at equivalence ratios (ϕ) of 0.5, 1.0 and 2.0 along with auto-ignition measurements for stoichiometric fuel in air mixtures of 25DMF at 20 and 80 bar, from 820–1210 K. This is supplemented with an oxidative speciation study of 25DMF in a jet-stirred reactor (JSR) from 770–1220 K, at 10.0 atm, residence times of 0.7 s and at ϕ = 0.5, 1.0 and 2.0. Laminar burning velocities for 25DMF-air mixtures have been measured using the heat-flux method at unburnt gas temperatures of 298 and 358 K, at atmospheric pressure from ϕ = 0.6–1.6. These laminar burning velocity measurements highlight inconsistencies in the current literature data and provide a validation target for kinetic mechanisms. A detailed chemical kinetic mechanism containing 2768 reactions and 545 species has been simultaneously developed to describe the combustion of 25DMF under the experimental conditions described above. Numerical modelling results based on the mechanism can accurately reproduce the majority of experimental data. At high temperatures, a hydrogen atom transfer reaction is found to be the dominant unimolecular decomposition pathway of 25DMF. The reactions of hydrogen atom with the fuel are also found to be important in predicting pyrolysis and ignition delay time experiments. Numerous proposals are made on the mechanism and kinetics of the previously unexplored intermediate temperature combustion pathways of 25DMF. Hydroxyl radical addition to the furan ring is highlighted as an important fuel consuming reaction, leading to the formation of methyl vinyl ketone and acetyl radical. The chemically activated recombination of HȮ2 or CH3Ȯ2 with the 5-methyl-2-furanylmethyl radical, forming a 5-methyl-2-furylmethanoxy radical and ȮH or CH3Ȯ radical is also found to exhibit significant control over ignition delay times, as well as being important reactions in the prediction of species profiles in a JSR. Kinetics for the abstraction of a hydrogen atom from the alkyl side-chain of the fuel by molecular oxygen and HȮ2 radical are found to be sensitive in the estimation of ignition delay times for fuel-air mixtures from temperatures of 820–1200 K. At intermediate temperatures, the resonantly stabilised 5-methyl-2-furanylmethyl radical is found to predominantly undergo bimolecular reactions, and as a result sub-mechanisms for 5-methyl-2-formylfuran and 5-methyl-2-ethylfuran, and their derivatives, have also been developed with consumption pathways proposed. This study is the first to attempt to simulate the combustion of these species in any detail, although future refinements are likely necessary. The current study illustrates both quantitatively and qualitatively the complex chemical behavior of what is a high potential biofuel. Whilst the current work is the most comprehensive study on the oxidation of 25DMF in the literature to date, the mechanism cannot accurately reproduce laminar burning velocity measurements over a suitable range of unburnt gas temperatures, pressures and equivalence ratios, although discrepancies in the experimental literature data are highlighted. Resolving this issue should remain a focus of future work. PMID:24273333
Larsen, Nadja; Werner, Birgit Brøsted; Vogensen, Finn Kvist; Jespersen, Lene
2015-03-01
Milk acidification by DL-starter cultures [cultures containing Lactococcus lactis diacetylactis (D) and Leuconostoc (L) species] depends on the oxidation-reduction (redox) potential in milk; however, the mechanisms behind this effect are not completely clear. The objective of this study was to investigate the effect of dissolved oxygen on acidification kinetics and redox potential during milk fermentation by lactic acid bacteria (LAB). Fermentations were conducted by single strains isolated from mixed DL-starter culture, including Lactococcus lactis ssp. lactis, Lactococcus lactis ssp. cremoris, and Leuconostoc mesenteroides ssp. cremoris, by the DL-starter culture, and by the type strains. High and low levels of oxygen were produced by flushing milk with oxygen or nitrogen, respectively. The kinetics of milk acidification was characterized by the maximum rate and time of acidification (Vamax and Tamax), the maximum rate and time of reduction (Vrmax and Trmax), the minimum redox potential (Eh7 final), and time of reaching Eh7 final (Trfinal). Variations in kinetic parameters were observed at both the species and strain levels. Two of the Lc. lactis ssp. lactis strains were not able to lower redox potential to negative values. Kinetic parameters of the DL-starter culture were comparable with the best acidifying and reducing strains, indicating their additive effects. Acidification curves were mostly diauxic at all oxygen levels, displaying 2 maxima of acidification rate: before (aerobic maximum) and after (anaerobic maximum) oxygen depletion. The redox potential decreased concurrently with oxygen consumption and continued to decrease at slower rate until reaching the final values, indicating involvement of both oxygen and microbiological activity in the redox state of milk. Oxygen flushing had a negative effect on reduction and acidification capacity of tested LAB. Reduction was significantly delayed at high initial oxygen, exhibiting longer Trmax, Trfinal, or both. Concurrently, anaerobic acidification rate maximum Vamax was decreased and Tamax was extended. Fermentation kinetics in nitrogen-flushed milk was not statistically different from that in untreated milk except for Lc. lactis ssp. lactis CHCC D2, which showed faster reduction time after nitrogen flushing. This study clarifies the relationship between the redox state in milk and acidification kinetics of the predominant subspecies in DL-starter cultures. This knowledge is important for dairies to ensure optimized, fast, and controlled milk fermentations, leading to greater standardization of dairy products. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Alomar, M; Tasiaux, H; Remacle, S; George, F; Paul, D; Donnay, I
2008-08-01
The between bulls variation in in vitro fertility and the shift of sex ratio towards male embryos are two problems affecting the in vitro production (IVP) of bovine embryos. Our objective was to evaluate the kinetics of fertilization, embryo development and the sex ratio of the resulting embryos using the frozen/thawed semen of four different bulls. In a first experiment, the kinetics of pronucleus (PN) formation was evaluated at 8, 12 and 18 h post-insemination (hpi). Based upon the pronuclei sizes and the distance between the two pronuclei, inseminated oocytes were classified in three PN stages. Differences between bulls were observed at each time point, but were more important at 12 hpi. At 8 and 12 hpi bull III showed a significantly faster PN evolution by comparison with the three other bulls (P<0.05), while at 18 hpi, the proportion of the three PN stages was similar to those of bulls I and IV, bull II being delayed. In a second experiment, the kinetics of in vitro embryo development was compared using time-lapse cinematography. The analysis of embryos reaching the blastocyst stage revealed significant differences in the mean time of first cleavage (range of 22.7-25.6h, P<0.05), while the lengths of the subsequent three cell cycles did not differ between bulls. The early mean time of first cleavage with bull III was associated with an early blastulation and a high blastocyst rate at Day 7, in opposition to what was observed with bull II showing a later timing of first cleavage (first cleavage 22.1 hpi versus 25.5 hpi; blastulation 140.4 hpi versus 152.5 hpi; D7 blastocyst rates: 31.3% versus 21.9%; P<0.05). In a third experiment, 65-76 Day 8 blastocysts per bull were sexed by PCR. Only blastocysts obtained with bull III showed a shift in sex ratio towards male embryos (76% male embryos; P<0.05). Such shift was already observed at the 2-cell and morula stages. In conclusion, the bull influences the kinetics of PN formation, of embryo development and the sex ratio of the embryos. Moreover, those parameters might be related.
D'Arrigo, Stefano; Gavazzi, Francesco; Alfei, Enrico; Zuffardi, Orsetta; Montomoli, Cristina; Corso, Barbara; Buzzi, Erika; Sciacca, Francesca L; Bulgheroni, Sara; Riva, Daria; Pantaleoni, Chiara
2016-05-01
Microarray-based comparative genomic hybridization is a method of molecular analysis that identifies chromosomal anomalies (or copy number variants) that correlate with clinical phenotypes. The aim of the present study was to apply a clinical score previously designated by de Vries to 329 patients with intellectual disability/developmental disorder (intellectual disability/developmental delay) referred to our tertiary center and to see whether the clinical factors are associated with a positive outcome of aCGH analyses. Another goal was to test the association between a positive microarray-based comparative genomic hybridization result and the severity of intellectual disability/developmental delay. Microarray-based comparative genomic hybridization identified structural chromosomal alterations responsible for the intellectual disability/developmental delay phenotype in 16% of our sample. Our study showed that causative copy number variants are frequently found even in cases of mild intellectual disability (30.77%). We want to emphasize the need to conduct microarray-based comparative genomic hybridization on all individuals with intellectual disability/developmental delay, regardless of the severity, because the degree of intellectual disability/developmental delay does not predict the diagnostic yield of microarray-based comparative genomic hybridization. © The Author(s) 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barraza-Botet, Cesar L.; Wagnon, Scott W.; Wooldridge, Margaret S.
Here, ethanol remains the most important alternative fuel for the transportation sector. This work presents new experimental data on ethanol ignition, including stable species measurements, obtained with the University of Michigan rapid compression facility. Ignition delay times were determined from pressure histories of ignition experiments with stoichiometric ethanol–air mixtures at pressures of ~3–10 atm. Temperatures (880–1150 K) were controlled by varying buffer gas composition (Ar, N 2, CO 2). High-speed imaging was used to record chemiluminescence during the experiments, which showed homogeneous ignition events. The results for ignition delay time agreed well with trends on the basis of previous experimentalmore » measurements. Speciation experiments were performed using fast gas sampling and gas chromatography to identify and quantify ethanol and 11 stable intermediate species formed during the ignition delay period. Simulations were carried out using a chemical kinetic mechanism available in the literature, and the agreement with the experimental results for ignition delay time and the intermediate species measured was excellent for the majority of the conditions studied. From the simulation results, ethanol + HO 2 was identified as an important reaction at the experimental conditions for both the ignition delay time and intermediate species measurements. Further studies to improve the accuracy of the rate coefficient for ethanol + HO 2 would improve the predictive understanding of intermediate and low-temperature ethanol combustion.« less
Barraza-Botet, Cesar L.; Wagnon, Scott W.; Wooldridge, Margaret S.
2016-08-31
Here, ethanol remains the most important alternative fuel for the transportation sector. This work presents new experimental data on ethanol ignition, including stable species measurements, obtained with the University of Michigan rapid compression facility. Ignition delay times were determined from pressure histories of ignition experiments with stoichiometric ethanol–air mixtures at pressures of ~3–10 atm. Temperatures (880–1150 K) were controlled by varying buffer gas composition (Ar, N 2, CO 2). High-speed imaging was used to record chemiluminescence during the experiments, which showed homogeneous ignition events. The results for ignition delay time agreed well with trends on the basis of previous experimentalmore » measurements. Speciation experiments were performed using fast gas sampling and gas chromatography to identify and quantify ethanol and 11 stable intermediate species formed during the ignition delay period. Simulations were carried out using a chemical kinetic mechanism available in the literature, and the agreement with the experimental results for ignition delay time and the intermediate species measured was excellent for the majority of the conditions studied. From the simulation results, ethanol + HO 2 was identified as an important reaction at the experimental conditions for both the ignition delay time and intermediate species measurements. Further studies to improve the accuracy of the rate coefficient for ethanol + HO 2 would improve the predictive understanding of intermediate and low-temperature ethanol combustion.« less
Wigner time delay in photodetachment of Tm-and in photoionization of Yb: A comparative study
NASA Astrophysics Data System (ADS)
Saha, Soumyajit; Jose, Jobin; Deshmukh, Pranawa; Dolmatov, Valeriy; Kheifets, Anatoli; Manson, Steven
2017-04-01
Preliminary studies of Wigner time delay in photodetachment spectra of negative ions have been reported. Photodetachment time delay for some dipole channels of Tm- and of Cl- were calculated using relativistic random phase approximation (RRPA). Comparisons between photodetachment time delay of Cl- and photoionization time delay of Ar were made. We investigate the photodetachment time delay for all three relativistically split nd -> ɛ f channels of Tm- and for nd -> ɛ f channels of Yb (isoelectronic to Tm-) using RRPA. We study the effect of the shape resonance, brought about by the centrifugal barrier potential, on photodetachment time delay. A negative ion is a good laboratory for studying the effects of shape resonances on time delay since the phase is unaffected by the Coulomb component. Wigner time delay in photodetachment of Tm- and in photoionization of Yb: A comparative study.
He, Chunsheng; Cai, Ping; Li, Jason; Zhang, Tian; Lin, Lucy; Abbasi, Azhar Z; Henderson, Jeffrey T; Rauth, Andrew Michael; Wu, Xiao Yu
2017-01-28
Brain metastasis is a fatal disease with limited treatment options and very short survival. Although systemic chemotherapy has some effect on peripheral metastases of breast cancer, it is ineffective in treating brain metastasis due largely to the blood-brain barrier (BBB). Here we developed a BBB-penetrating amphiphilic polymer-lipid nanoparticle (NP) system that efficiently delivered anti-mitotic drug docetaxel (DTX) for the treatment of brain metastasis of triple negative breast cancer (TNBC). We evaluated the biodistribution, brain accumulation, pharmacokinetics and efficacy of DTX-NP in a mouse model of brain metastasis of TNBC. Confocal fluorescence microscopy revealed extravasation of dye-loaded NPs from intact brain microvessels in healthy mice. DTX-NP also extravasated from brain microvessels and accumulated in micrometastasis lesions in the brain. Intravenously injected DTX-NPs increased the blood circulation time of DTX by 5.5-fold and the AUC 0-24h in tumor-bearing brain by 5-fold compared to the clinically used DTX formulation Taxotere® . The kinetics of NPs in the brain, determined by ex vivo fluorescence imaging, showed synchronization with DTX kinetics in the brain measured by LC-MS/MS. This result confirmed successful delivery of DTX by the NPs into the brain and suggested that ex vivo fluorescence imaging of NP could be an effective and quick means for probing drug disposition in the brain. Treatment with the DTX-NP formulation delayed tumor growth by 11-fold and prolonged median survival of tumor-bearing mice by 94% compared to an equivalent dose of Taxotere®, without inducing histological changes in the major organs. Copyright © 2016 Elsevier B.V. All rights reserved.
Distortion management in slow-light pulse delay.
Stenner, Michael D; Neifeld, Mark A; Zhu, Zhaoming; Dawes, Andrew M C; Gauthier, Daniel J
2005-12-12
We describe a methodology to maximize slow-light pulse delay subject to a constraint on the allowable pulse distortion. We show that optimizing over a larger number of physical variables can increase the distortion-constrained delay. We demonstrate these concepts by comparing the optimum slow-light pulse delay achievable using a single Lorentzian gain line with that achievable using a pair of closely-spaced gain lines. We predict that distortion management using a gain doublet can provide approximately a factor of 2 increase in slow-light pulse delay as compared with the optimum single-line delay. Experimental results employing Brillouin gain in optical fiber confirm our theoretical predictions.
Maternal and Neonatal Outcomes With Early Compared With Delayed Pushing Among Nulliparous Women.
Yee, Lynn M; Sandoval, Grecio; Bailit, Jennifer; Reddy, Uma M; Wapner, Ronald J; Varner, Michael W; Caritis, Steve N; Prasad, Mona; Tita, Alan T N; Saade, George; Sorokin, Yoram; Rouse, Dwight J; Blackwell, Sean C; Tolosa, Jorge E
2016-11-01
To describe factors associated with delayed pushing and evaluate the relationship between delayed pushing and perinatal outcomes in nulliparous women with singleton term gestations. This was a secondary analysis of the Eunice Kennedy Shriver National Institute of Child Health and Human Development Assessment of Perinatal Excellence cohort of 115,502 women and their neonates born in 25 U.S. hospitals from 2008 to 2011. Nulliparous women with singleton, cephalic, nonanomalous term births who achieved 10-cm cervical dilation were included. Women in whom pushing was delayed by 60 minutes or greater (delayed group) were compared with those who initiated pushing within 30 minutes (early group). Multivariable regression analyses were used to assess the independent association of delayed pushing with mode of delivery, length of the second stage, and other maternal and perinatal outcomes (significance defined as P<.05). Of 21,034 women in the primary analysis sample, pushing was delayed in 18.4% (n=3,870). Women who were older, privately insured, or non-Hispanic white as well as those who had induction or augmentation of labor, diabetes, or epidural analgesia were more likely to have delayed pushing. Delayed pushing was more common when the second stage began during daytime hours or in hospitals with dedicated 24-hour obstetric anesthesia, although differences were small. After adjusting for differences in baseline and labor characteristics including center, women in the delayed group had longer mean durations of the second stage (191 compared with 84 minutes, P<.001) and of active pushing (86 compared with 76 minutes, P<.001). Delayed pushing was associated with greater rates of cesarean delivery (11.2% compared with 5.1%; adjusted odds ratio [OR] 1.86, 95% confidence interval [CI] 1.63-2.12), operative vaginal delivery (adjusted OR 1.26, 95% CI 1.14-1.40), postpartum hemorrhage (adjusted OR 1.43, 95% CI 1.05-1.95), and blood transfusion (adjusted OR 1.51, 95% CI 1.04-2.17). Delayed pushing was not associated with increased odds of adverse neonatal outcomes compared with early pushing. In this large birth cohort, delayed pushing was associated with longer second stage duration, increased odds of cesarean delivery, and increased odds of postpartum hemorrhage, but was not associated with neonatal morbidity.
Role of Double-Strand Break End-Tethering during Gene Conversion in Saccharomyces cerevisiae
Haber, James E.
2016-01-01
Correct repair of DNA double-strand breaks (DSBs) is critical for maintaining genome stability. Whereas gene conversion (GC)-mediated repair is mostly error-free, repair by break-induced replication (BIR) is associated with non-reciprocal translocations and loss of heterozygosity. We have previously shown that a Recombination Execution Checkpoint (REC) mediates this competition by preventing the BIR pathway from acting on DSBs that can be repaired by GC. Here, we asked if the REC can also determine whether the ends that are engaged in a GC-compatible configuration belong to the same break, since repair involving ends from different breaks will produce potentially deleterious translocations. We report that the kinetics of repair are markedly delayed when the two DSB ends that participate in GC belong to different DSBs (termed Trans) compared to the case when both DSB ends come from the same break (Cis). However, repair in Trans still occurs by GC rather than BIR, and the overall efficiency of repair is comparable. Hence, the REC is not sensitive to the “origin” of the DSB ends. When the homologous ends for GC are in Trans, the delay in repair appears to reflect their tethering to sequences on the other side of the DSB that themselves recombine with other genomic locations with which they share sequence homology. These data support previous observations that the two ends of a DSB are usually tethered to each other and that this tethering facilitates both ends encountering the same donor sequence. We also found that the presence of homeologous/repetitive sequences in the vicinity of a DSB can distract the DSB end from finding its bona fide homologous donor, and that inhibition of GC by such homeologous sequences is markedly increased upon deleting Sgs1 but not Msh6. PMID:27074148
Tam, Nicholas; Prins, Danielle; Divekar, Nikhil V; Lamberts, Robert P
2017-10-01
The aim of this study was to utilise one-dimensional statistical parametric mapping to compare differences between biomechanical and electromyographical waveforms in runners when running in barefoot or shod conditions. Fifty habitually shod runners were assessed during overground running at their current 10-km race running speed. Electromyography, kinematics and ground reaction forces were collected during these running trials. Joint kinetics were calculated using inverse dynamics. One-dimensional statistical parametric mapping one sample t-test was conducted to assess differences over an entire gait cycle on the variables of interest when barefoot or shod (p<0.05). Only sagittal plane differences were found between barefoot and shod conditions at the knee during late stance (18-23% of the gait cycle) and swing phase (74-90%); at the ankle early stance (0-6%), mid-stance (28-38%) and swing phase (81-100%). Differences in sagittal plane moments were also found at the ankle during early stance (2, 4-5%) and knee during early stance (5-11%). Condition differences were also found in vertical ground reaction force during early stance between (3-10%). An acute bout of barefoot running in habitual shod runners invokes temporal differences throughout the gait cycle. Specifically, a co-ordinative responses between the knee and ankle joint in the sagittal plane with a delay in the impact transient peak; onset of the knee extension and ankle plantarflexion moment in the shod compared to barefoot condition was found. This appears to affect the delay in knee extension and ankle plantarflexion during late stance. This study provides a glimpse into the co-ordination of the lower limb when running in differing footwear. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Brown, M. E.; Phillpotts, C. A. R.
1978-01-01
Discusses the principle of nonisothermal kinetics and some of the factors involved in such reactions, especially when considering the reliability of the kinetic parameters, compared to those of isothermal conditions. (GA)
Delayed Anaerobic Threshold in Heart Failure Patients With Atrial Fibrillation.
Palermo, Pietro; Magrì, Damiano; Sciomer, Susanna; Stefanini, Elisa; Agalbato, Cecilia; Compagnino, Elisa; Chircu, Cristina M; Maffessanti, Francesco; Teodoru, Minodora; Agostoni, Piergiuseppe
2016-01-01
To assess whether atrial fibrillation (AF) in heart failure (HF) affects oxygen uptake at anaerobic threshold ((Equation is included in full-text article.)O2 AT) and heart rate (HR) kinetics. A total of 15 patients with HF and AF and 18 with HF and sinus rhythm (SR) performed a maximal incremental and 2 constant workload cycle ergometer cardiopulmonary exercise tests (below and above AT, at 25% and 75% of maximal workload, respectively). At constant workload tests, kinetics of (Equation is included in full-text article.)O2 and HR were assessed by calculating time constant (τ). HF patients with AF showed a similar peak (Equation is included in full-text article.)O2 to those with SR (16.7 ± 4.5 mL/kg/min vs 16.6 ± 3.9 mL/kg/min). However, (Equation is included in full-text article.)O2 AT (11.3 ± 2.9 mL/kg/min vs 9.3 ± 2.8 mL/kg/min; P < .05), peak HR (149 ± 18.8 bpm vs 116.4 ± 20.4 bpm; P < .001), HR AT (125.3 ± 19.1 bpm vs 90.3 ± 15.5 bpm; P < .001), and HR increase during exercise were greater in HF patients with AF. Finally, τHR and τ(Equation is included in full-text article.)O2 below and above AT were not significantly different. In HF patients with AF, despite a similar peak (Equation is included in full-text article.)O2 compared with patients with HF and SR, (Equation is included in full-text article.)O2 AT is higher because of a higher HR and a greater HR increase during exercise. One postulated mechanism would be a greater cardiac output increase at the beginning of exercise in HF patients with AF. The delayed AT generates uncertainty about the meaning of a (Equation is included in full-text article.)O2 value at AT in HF patients with AF, because a higher AT is usually associated with better performance and a better prognosis.
Lewan, M.D.; Ruble, T.E.
2002-01-01
This study compares kinetic parameters determined by open-system pyrolysis and hydrous pyrolysis using aliquots of source rocks containing different kerogen types. Kinetic parameters derived from these two pyrolysis methods not only differ in the conditions employed and products generated, but also in the derivation of the kinetic parameters (i.e., isothermal linear regression and non-isothermal nonlinear regression). Results of this comparative study show that there is no correlation between kinetic parameters derived from hydrous pyrolysis and open-system pyrolysis. Hydrous-pyrolysis kinetic parameters determine narrow oil windows that occur over a wide range of temperatures and depths depending in part on the organic-sulfur content of the original kerogen. Conversely, open-system kinetic parameters determine broad oil windows that show no significant differences with kerogen types or their organic-sulfur contents. Comparisons of the kinetic parameters in a hypothetical thermal-burial history (2.5 ??C/my) show open-system kinetic parameters significantly underestimate the extent and timing of oil generation for Type-US kerogen and significantly overestimate the extent and timing of petroleum formation for Type-I kerogen compared to hydrous pyrolysis kinetic parameters. These hypothetical differences determined by the kinetic parameters are supported by natural thermal-burial histories for the Naokelekan source rock (Type-IIS kerogen) in the Zagros basin of Iraq and for the Green River Formation (Type-I kerogen) in the Uinta basin of Utah. Differences in extent and timing of oil generation determined by open-system pyrolysis and hydrous pyrolysis can be attributed to the former not adequately simulating natural oil generation conditions, products, and mechanisms.
Photoluminescence properties of non-stoichiometric strontium zirconate powder phosphor
NASA Astrophysics Data System (ADS)
Jarý, V.; Boháček, P.; Mihóková, E.; Havlák, L.; Trunda, B.; Nikl, M.
2013-03-01
Excitation and emission spectra and decay kinetics of non-stoichiometric strontium zirconate powder phosphor were measured in the 8-500 K temperature interval. Phenomenological model was applied to extract quantitative parameters of the excited state levels and nonradiative quenching pathways related to the luminescence centre. Delayed recombination integrals measurement was employed to investigate the occurrence of thermally induced ionization of the excited state of the emission centre. The nature of the emission centre itself is suggested. Suitability for phosphor and scintillation application is discussed.
Benki-Nugent, Sarah; Wamalwa, Dalton; Langat, Agnes; Tapia, Kenneth; Adhiambo, Judith; Chebet, Daisy; Okinyi, Helen Moraa; John-Stewart, Grace
2017-01-17
Infant HIV infection is associated with delayed milestone attainment. The extent to which effective antiretroviral therapy (ART) prevents these delays is not well defined. Ages at attainment of milestones were compared between HIV-infected (initiated ART by age <5 months), and HIV-unexposed uninfected (HUU) infants. Kaplan Meier analyses were used to estimate and compare (log-rank tests) ages at milestones between groups. Adjusted analyses were performed using Cox proportional hazards models. Seventy-three HIV-infected on ART (median enrollment age 3.7 months) and 92 HUU infants (median enrollment age 1.6 months) were followed prospectively. HIV-infected infants on ART had delays in developmental milestone attainment compared to HUU: median age at attainment of sitting with support, sitting unsupported, walking with support, walking unsupported, monosyllabic speech and throwing toys were each delayed (all p-values <0.0005). Compared with HUU, the subset of HIV-infected infants with both virologic suppression and immune recovery at 6 months had delays for speech (delay: 2.0 months; P = 0.0002) and trend to later walking unsupported. Among HIV-infected infants with poor 6-month post-ART responses (lacking viral suppression and immune recovery) there were greater delays versus HUU for: walking unsupported (delay: 4.0 months; P = 0.0001) and speech (delay: 5.0 months; P < 0.0001). HIV infected infants with viral suppression on ART had better recovery of developmental milestones than those without suppression, however, deficits persisted compared to uninfected infants. Earlier ART may be required for optimized cognitive outcomes in perinatally HIV-infected infants. NCT00428116 ; January 22, 2007.
Sy, Jolene R.; Vollmer, Timothy R.
2012-01-01
We evaluated the discrimination acquisition of individuals with developmental disabilities under immediate and delayed reinforcement. In Experiment 1, discrimination between two alternatives was examined when reinforcement was immediate or delayed by 20 s, 30 s, or 40 s. In Experiment 2, discrimination between 2 alternatives was compared across an immediate reinforcement condition and a delayed reinforcement condition in which subjects could respond during the delay. In Experiment 3, discrimination among 4 alternatives was compared across immediate and delayed reinforcement. In Experiment 4, discrimination between 2 alternatives was examined when reinforcement was immediate and 0-s or 30-s intertrial intervals (ITI) were programmed. For most subjects, discrimination acquisition occurred under immediate reinforcement. However, for some subjects, introducing delays slowed or prevented discrimination acquisition under some conditions. Results from Experiment 4 suggest that longer ITIs cannot account for the lack of discrimination under delayed reinforcement. PMID:23322925
Huanbutta, Kampanart; Sriamornsak, Pornsak; Limmatvapirat, Sontaya; Luangtana-anan, Manee; Yoshihashi, Yasuo; Yonemochi, Etsuo; Terada, Katsuhide; Nunthanid, Jurairat
2011-02-01
Magnetic resonance imaging (MRI) was used to assess in situ swelling behaviors of spray-dried chitosan acetate (CSA) in 0.1N HCl, pH 6.8 and pH 5.0 Tris-HCl buffers. The in vitro drug releases from CSA matrix tablets containing the model drugs, diclofenac sodium and theophylline were investigated in all media using USP-4 apparatus. The effect of chitosan molecular weight, especially in pH 6.8 Tris-HCl, was also studied. In 0.1N HCl, the drug release from the matrix tablets was the lowest in relation to the highest swelling of CSA. The swelling kinetics in Tris-HCl buffers are Fickian diffusion according to their best fit to Higuchi's model as well as the drug release kinetics in all the media. The high swelling rate (k(s)(')) was found to delay the drug release rate (k'). The linear relationship between the swelling and fractions of drug release in Tris-HCl buffers was observed, indicating an important role of the swelling on controlling the drug release mechanism. Additionally, CSA of 200 and 800 kDa chitosan did not swell in pH 6.8 Tris-HCl but disintegrated into fractions, and the drug release from the matrix tablets was the highest. Copyright © 2010 Elsevier B.V. All rights reserved.
Koury, Emily; Harrell, Kailey; Smolikove, Sarit
2018-01-25
Studies of the repair pathways associated with DNA double strand breaks (DSBs) are numerous, and provide evidence for cell-cycle specific regulation of homologous recombination (HR) by the regulation of its associated proteins. Laser microirradiation is a well-established method to examine in vitro kinetics of repair and allows for live-imaging of DSB repair from the moment of induction. Here we apply this method to whole, live organisms, introducing an effective system to analyze exogenous, microirradiation-induced breaks in the Caenorhabditis elegans germline. Through this method we observed the sequential kinetics of the recruitment of ssDNA binding proteins RPA-1 and RAD-51 in vivo. We analyze these kinetics throughout different regions of the germline, and thus throughout a range of developmental stages of mitotic and meiotic nuclei. Our analysis demonstrates a largely conserved timing of recruitment of ssDNA binding proteins to DSBs throughout the germline, with a delay of RAD-51 recruitment at mid-pachytene nuclei. Microirradiated nuclei are viable and undergo a slow kinetics of resolution. We observe RPA-1 and RAD-51 colocalization for hours post-microirradiation throughout the germline, suggesting that there are mixed RPA-1/RAD-51 filaments. Finally, through live imaging analysis we observed RAD-51 foci movement with low frequency of coalescence. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Koury, Emily; Harrell, Kailey
2018-01-01
Abstract Studies of the repair pathways associated with DNA double strand breaks (DSBs) are numerous, and provide evidence for cell-cycle specific regulation of homologous recombination (HR) by the regulation of its associated proteins. Laser microirradiation is a well-established method to examine in vitro kinetics of repair and allows for live-imaging of DSB repair from the moment of induction. Here we apply this method to whole, live organisms, introducing an effective system to analyze exogenous, microirradiation-induced breaks in the Caenorhabditis elegans germline. Through this method we observed the sequential kinetics of the recruitment of ssDNA binding proteins RPA-1 and RAD-51 in vivo. We analyze these kinetics throughout different regions of the germline, and thus throughout a range of developmental stages of mitotic and meiotic nuclei. Our analysis demonstrates a largely conserved timing of recruitment of ssDNA binding proteins to DSBs throughout the germline, with a delay of RAD-51 recruitment at mid-pachytene nuclei. Microirradiated nuclei are viable and undergo a slow kinetics of resolution. We observe RPA-1 and RAD-51 colocalization for hours post-microirradiation throughout the germline, suggesting that there are mixed RPA-1/RAD-51 filaments. Finally, through live imaging analysis we observed RAD-51 foci movement with low frequency of coalescence. PMID:29244155
Harun, R; Hare, K M; Brough, M E; Munoz, M J; Grassi, C M; Torres, G E; Grace, A A; Wagner, A K
2015-11-27
Parkinson's disease (PD) is a debilitating condition that is caused by a relatively specific degeneration of dopaminergic (DAergic) neurons of the substantia nigra pars compacta. Levodopa (L-DOPA) was introduced as a viable treatment option for PD over 40 years ago and still remains the most common and effective therapy for PD. Though the effects of L-DOPA to augment striatal DA production are well known, little is actually known about how L-DOPA alters the kinetics of DA neurotransmission that contribute to its beneficial and adverse effects. In this study, we examined the effects of L-DOPA administration (50mg/kg carbidopa + 0, 100, and 250mg/kg L-DOPA) on regional electrically stimulated DA response kinetics using fast-scan cyclic voltammetry (FSCV) in anesthetized rats. We demonstrate that L-DOPA enhances DA release in both the dorsal striatum (D-STR) and nucleus accumbens (NAc), but surprisingly causes a delayed inhibition of release in the D-STR. In both regions, L-DOPA progressively attenuated reuptake kinetics, predominantly through a decrease in Vmax. These findings have important implications on understanding the pharmacodynamics of L-DOPA, which can be informative for understand its therapeutic effects and also common side effects like L-DOPA induced dyskinesias (LID). This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Harun, R; Munoz, M; Grassi, C; Hare, K; Brough, E; Torres, GE; Grace, AA; Wagner, AK
2016-01-01
Parkinson’s disease (PD) is a debilitating condition that is caused by a relatively specific degeneration of dopaminergic (DAergic) neurons of the substantia nigra pars compacta. Levodopa (L-Dopa) was introduced as a viable treatment option for PD over 40 years ago and still remains the most common and effective therapy for PD. Though the effects of L-Dopa to augment striatal DA production are well known, little is actually known about how L-Dopa alters the kinetics of DA neurotransmission that contribute to its beneficial and adverse effects. In this study, we examined the effects of L-Dopa administration (100mg/kg carbidopa/250mg/kg L-Dopa) on regional electrically stimulated DA response kinetics using fast-scan cyclic voltammetry (FSCV) in anesthetized rats. We demonstrate that L-Dopa enhances DA release in both the dorsal striatum (D-STR) and nucleus accumbens (NAc), but surprisingly causes a delayed inhibition of release in the D-STR, a finding that may be related to high-dose L-Dopa effects. In both regions, L-Dopa progressively attenuated reuptake kinetics through a decrease in Vmax and an increase in Km. This finding is consistent with recent clinical studies suggesting that L-Dopa chronically down-regulates the DA transporter (DAT), which may relate to the common development of L-Dopa induced dyskinesias (LID) in PD subjects. PMID:26611352
NASA Technical Reports Server (NTRS)
Frenklach, Michael; Wang, Hai; Rabinowitz, Martin J.
1992-01-01
A method of systematic optimization, solution mapping, as applied to a large-scale dynamic model is presented. The basis of the technique is parameterization of model responses in terms of model parameters by simple algebraic expressions. These expressions are obtained by computer experiments arranged in a factorial design. The developed parameterized responses are then used in a joint multiparameter multidata-set optimization. A brief review of the mathematical background of the technique is given. The concept of active parameters is discussed. The technique is applied to determine an optimum set of parameters for a methane combustion mechanism. Five independent responses - comprising ignition delay times, pre-ignition methyl radical concentration profiles, and laminar premixed flame velocities - were optimized with respect to thirteen reaction rate parameters. The numerical predictions of the optimized model are compared to those computed with several recent literature mechanisms. The utility of the solution mapping technique in situations where the optimum is not unique is also demonstrated.
Baltzer, Pascal Andreas Thomas; Freiberg, Christian; Beger, Sebastian; Vag, Tibor; Dietzel, Matthias; Herzog, Aimee B; Gajda, Mieczyslaw; Camara, Oumar; Kaiser, Werner A
2009-09-01
Enhancement characteristics after administration of a contrast agent are regarded as a major criterion for differential diagnosis in magnetic resonance mammography (MRM). However, no consensus exists about the best measurement method to assess contrast enhancement kinetics. This systematic investigation was performed to compare visual estimation with manual region of interest (ROI) and computer-aided diagnosis (CAD) analysis for time curve measurements in MRM. A total of 329 patients undergoing surgery after MRM (1.5 T) were analyzed prospectively. Dynamic data were measured using visual estimation, including ROI as well as CAD methods, and classified depending on initial signal increase and delayed enhancement. Pathology revealed 469 lesions (279 malignant, 190 benign). Kappa agreement between the methods ranged from 0.78 to 0.81. Diagnostic accuracies of 74.4% (visual), 75.7% (ROI), and 76.6% (CAD) were found without statistical significant differences. According to our results, curve type measurements are useful as a diagnostic criterion in breast lesions irrespective of the method used.
Walking delays anticipatory postural adjustments but not reaction times in a choice reaction task.
Haridas, C; Gordon, I T; Misiaszek, J E
2005-06-01
During standing, anticipatory postural adjustments (APAs) and focal movements are delayed while performing a choice reaction task, compared with a simple reaction task. We hypothesized that APAs and focal movements of a choice reaction task would be similarly delayed during walking. Furthermore, reaction times are delayed during walking compared with standing. We further hypothesized that APAs and focal movements would be delayed during walking, compared with standing, for both simple and choice reaction tasks. Subjects either walked or stood on a treadmill while holding on to stable handles. They were asked to push or pull on the handles in response to a visual cue. Muscle activity was recorded from muscles of the leg (APA) and arm (RT). Our results were in agreement with previous work showing APA onset was delayed in the choice reaction task compared with the simple reaction task. In addition, the interval between the onset of APA and focal movement activity increased with choice reaction tasks. The task of walking did not delay the onset of focal movement for either the simple or choice reaction tasks. Walking did delay the onset of the APA, but only during choice reaction tasks. The results suggest the added demand of walking does not significantly modify the control of focal arm movements. However, additional attentional demands while walking may compromise anticipatory postural control.
Differential Kinetics of Aspergillus nidulans and Aspergillus fumigatus Phagocytosis.
Gresnigt, Mark S; Becker, Katharina L; Leenders, Floris; Alonso, M Fernanda; Wang, Xiaowen; Meis, Jacques F; Bain, Judith M; Erwig, Lars P; van de Veerdonk, Frank L
2018-01-01
Invasive aspergillosis mainly occurs in immunocompromised patients and is commonly caused by Aspergillus fumigatus, while A.nidulans is rarely the causative agent. However, in chronic granulomatous disease (CGD) patients, A. nidulans is a frequent cause of invasive aspergillosis and is associated with higher mortality. Immune recognition of A. nidulans was compared to A. fumigatus to offer an insight into why A. nidulans infections are prevalent in CGD. Live cell imaging with J774A.1 macrophage-like cells and LC3-GFP-mCherry bone marrow-derived macrophages (BMDMs) revealed that phagocytosis of A. nidulans was slower compared to A. fumigatus. This difference could be attributed to slower migration of J774A.1 cells and a lower percentage of migrating BMDMs. In addition, delayed phagosome acidification and LC3-associated phagocytosis was observed with A. nidulans. Cytokine and oxidative burst measurements in human peripheral blood mononuclear cells revealed a lower oxidative burst upon challenge with A. nidulans. In contrast, A. nidulans induced significantly higher concentrations of cytokines. Collectively, our data demonstrate that A. nidulans is phagocytosed and processed at a slower rate compared to A. fumigatus, resulting in reduced fungal killing and increased germination of conidia. This slower rate of A. nidulans clearance may be permissive for overgrowth within certain immune settings. The Author(s). Published by S. Karger AG, Basel.
Neutronic safety parameters and transient analyses for Poland's MARIA research reactor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bretscher, M. M.; Hanan, N. A.; Matos, J. E.
1999-09-27
Reactor kinetic parameters, reactivity feedback coefficients, and control rod reactivity worths have been calculated for the MARIA Research Reactor (Swierk, Poland) for M6-type fuel assemblies with {sup 235}U enrichments of 80% and 19.7%. Kinetic parameters were evaluated for family-dependent effective delayed neutron fractions, decay constants, and prompt neutron lifetimes and neutron generation times. Reactivity feedback coefficients were determined for fuel Doppler coefficients, coolant (H{sub 2}O) void and temperature coefficients, and for in-core and ex-core beryllium temperature coefficients. Total and differential control rod worths and safety rod worths were calculated for each fuel type. These parameters were used to calculate genericmore » transients for fast and slow reactivity insertions with both HEU and LEU fuels. The analyses show that the HEU and LEU cores have very similar responses to these transients.« less
Kynetic resazurin assay (KRA) for bacterial quantification of foodborne pathogens
NASA Astrophysics Data System (ADS)
Arenas, Yaxal; Mandel, Arkady; Lilge, Lothar
2012-03-01
Fast detection of bacterial concentrations is important for the food industry and for healthcare. Early detection of infections and appropriate treatment is essential since, the delay of treatments for bacterial infections tends to be associated with higher mortality rates. In the food industry and in healthcare, standard procedures require the count of colony-forming units in order to quantify bacterial concentrations, however, this method is time consuming and reports require three days to be completed. An alternative is metabolic-colorimetric assays which provide time efficient in vitro bacterial concentrations. A colorimetric assay based on Resazurin was developed as a time kinetic assay (KRA) suitable for bacterial concentration measurements. An optimization was performed by finding excitation and emission wavelengths for fluorescent acquisition. A comparison of two non-related bacteria, foodborne pathogens Escherichia coli and Listeria monocytogenes, was performed in 96 well plates. A metabolic and clonogenic dependence was established for fluorescent kinetic signals.
Molecular approaches to third generation photovoltaics: photochemical up-conversion
NASA Astrophysics Data System (ADS)
Cheng, Yuen Yap; Fückel, Burkhard; Roberts, Derrick A.; Khoury, Tony; Clady, Rapha"l. G. C. R.; Tayebjee, Murad J. Y.; Piper, Roland; Ekins-Daukes, N. J.; Crossley, Maxwell J.; Schmidt, Timothy W.
2010-08-01
We have investigated a photochemical up-conversion system comprising a molecular mixture of a palladium porphyrin to harvest light, and a polycyclic aromatic hydrocarbon to emit light. The energy of harvested photons is stored as molecular triplet states which then annihilate to bring about up-converted fluorescence. The limiting efficiency of such triplet-triplet annihilation up-conversion has been believed to be 11% for some time. However, by rigorously investigating the kinetics of delayed fluorescence following pulsed excitation, we demonstrate instantaneous annihilation efficiencies exceeding 40%, and limiting efficiencies for the current system of ~60%. We attribute the high efficiencies obtained to the electronic structure of the emitting molecule, which exhibits an exceptionally high T2 molecular state. We utilize the kinetic data obtained to model an up-converting layer irradiated with broadband sunlight, finding that ~3% efficiencies can be obtained with the current system, with this improving dramatically upon optimization of various parameters.
Hydrophobic amino acids as a new class of kinetic inhibitors for gas hydrate formation
Sa, Jeong-Hoon; Kwak, Gye-Hoon; Lee, Bo Ram; Park, Da-Hye; Han, Kunwoo; Lee, Kun-Hong
2013-01-01
As the foundation of energy industry moves towards gas, flow assurance technology preventing pipelines from hydrate blockages becomes increasingly significant. However, the principle of hydrate inhibition is still poorly understood. Here, we examined natural hydrophobic amino acids as novel kinetic hydrate inhibitors (KHIs), and investigated hydrate inhibition phenomena by using them as a model system. Amino acids with lower hydrophobicity were found to be better KHIs to delay nucleation and retard growth, working by disrupting the water hydrogen bond network, while those with higher hydrophobicity strengthened the local water structure. It was found that perturbation of the water structure around KHIs plays a critical role in hydrate inhibition. This suggestion of a new class of KHIs will aid development of KHIs with enhanced biodegradability, and the present findings will accelerate the improved control of hydrate formation for natural gas exploitation and the utilization of hydrates as next-generation gas capture media. PMID:23938301
NASA Astrophysics Data System (ADS)
Nibha; Baranwal, B. P.; Singh, Gurdip; Singh, C. P.; Daniliuc, Constantin G.; Soni, P. K.; Nath, Yogeshwar
2014-11-01
The development of high energetic materials includes process ability and the ability to attain insensitive munitions (IM). This paper investigates the preparation of lanthanum metal nitrate complex of hexamethylenetetramine in water at room temperature. This complex of molecular formulae [La (NO3)2(H2O)6] (2HMTA) (NO3-) (H2O) was characterized by X-ray crystallography. Thermal decomposition was investigated using TG, TG-DSC and ignition delay measurements. Kinetic analysis of isothermal TG data has been investigated using model fitting methods as well as model free isoconversional methods. The sensitivity measurements towards mechanical destructive stimuli such as impact and friction were carried out and the complex was found to be insensitive. In order to identify the end product of thermolysis, X-ray diffraction patterns of end product was carried out which proves the formation of La2O3.
The effects of age and step length on joint kinematics and kinetics of large out-and-back steps.
Schulz, Brian W; Ashton-Miller, James A; Alexander, Neil B
2008-06-01
Maximum step length (MSL) is a clinical test that has been shown to correlate with age, various measures of fall risk, and knee and hip joint extension speed, strength, and power capacities, but little is known about the kinematics and kinetics of the large out-and-back step utilized. Body motions and ground reaction forces were recorded for 11 unimpaired younger and 10 older women while attaining maximum step length. Joint kinematics and kinetics were calculated using inverse dynamics. The effects of age group and step length on the biomechanics of these large out-and-back steps were determined. Maximum step length was 40% greater in the younger than in the older women (P<0.0001). Peak knee and hip, but not ankle, angle, velocity, moment, and power were generally greater for younger women and longer steps. After controlling for age group, step length generally explained significant additional variance in hip and torso kinematics and kinetics (incremental R2=0.09-0.37). The young reached their peak knee extension moment immediately after landing of the step out, while the old reached their peak knee extension moment just before the return step liftoff (P=0.03). Maximum step length is strongly associated with hip kinematics and kinetics. Delays in peak knee extension moment that appear to be unrelated to step length, may indicate a reduced ability of older women to rapidly apply force to the ground with the stepping leg and thus arrest the momentum of a fall.
The effects of age and step length on joint kinematics and kinetics of large out-and-back steps
Schulz, Brian W.; Ashton-Miller, James A.; Alexander, Neil B.
2008-01-01
Background Maximum Step Length is a clinical test that has been shown to correlate with age, various measures of fall risk, and knee and hip joint extension speed, strength, and power capacities, but little is known about the kinematics and kinetics of the large out-and-back step utilized. Methods Body motions and ground reaction forces were recorded for 11 unimpaired younger and 10 older women while attaining Maximum Step Length. Joint kinematics and kinetics were calculated using inverse dynamics. The effects of age group and step length on the biomechanics of these large out-and-back steps were determined. Findings Maximum Step Length was 40% greater in the younger than in the older women (p<0.0001). Peak knee and hip, but not ankle, angle, velocity, moment, and power were generally greater for younger women and longer steps. After controlling for age group, step length generally explained significant additional variance in hip and torso kinematics and kinetics (incremental R2=0.09–0.37). The young reached their peak knee extension moment immediately after landing of the step out, while the old reached their peak knee extension moment just before the return step lift off (p=0.03). Interpretation Maximum Step Length is strongly associated with hip kinematics and kinetics. Delays in peak knee extension moment that appear to be unrelated to step length, may indicate a reduced ability of older women to rapidly apply force to the ground with the stepping leg and thus arrest the momentum of a fall. PMID:18308435
Delay of gratification by orangutans (Pongo pygmaeus) in the accumulation task.
Parrish, Audrey E; Perdue, Bonnie M; Stromberg, Erin E; Bania, Amanda E; Evans, Theodore A; Beran, Michael J
2014-05-01
There is considerable evidence indicating that chimpanzees can delay gratification for extended time intervals, particularly in the accumulation task in which food items accumulate within a participant's reach until the participant begins to consume them. However, there is limited evidence that other ape species might also exhibit this capacity, despite there being a number of similar studies indicating that nonape species (e.g., monkeys and birds) can delay gratification, but not for nearly as long as chimpanzees. To help define the taxonomic distribution of delay of gratification behavior in the order Primates, we tested 6 orangutans in the current experiments and compared their performance with comparable data from a previous study with capuchin monkeys. We varied delay length and visibility of the items that were still available for accumulation to determine the impact of these factors on performance. Species differences on the accumulation task emerged when comparing the current data to data from a previous study. Orangutans outperformed capuchin monkeys, suggesting that ape species may generally show better delay of gratification and delay maintenance abilities than monkeys. However, more studies are necessary to rule out alternative hypotheses on the distribution of delay maintenance abilities across primate species. ©2014 APA, all rights reserved.
Churchward-Venne, Tyler A; Snijders, Tim; Linkens, Armand M A; Hamer, Henrike M; van Kranenburg, Janneau; van Loon, Luc J C
2015-07-01
The slow digestion and amino acid absorption kinetics of isolated micellar casein have been held responsible for its relatively lower postprandial muscle protein synthetic response compared with rapidly digested proteins such as isolated whey. However, casein is normally consumed within a milk matrix. We hypothesized that protein digestion and absorption kinetics and the subsequent muscle protein synthetic response after micellar casein ingestion are modulated by the milk matrix. The aim of this study was to determine the impact of a milk matrix on casein protein digestion and absorption kinetics and postprandial muscle protein synthesis in older men. In a parallel-group design, 32 healthy older men (aged 71 ± 1 y) received a primed continuous infusion of L-[ring-(2)H5]-phenylalanine, L-[ring-3,5-(2)H2]-tyrosine, and L-[1-(13)C]-leucine, and ingested 25 g intrinsically L-[1-(13)C]-phenylalanine and L-[1-(13)C]-leucine labeled casein dissolved in bovine milk serum (Cas+Serum) or water (Cas). Plasma samples and muscle biopsies were collected in the postabsorptive state and for 300 min in the postprandial period to examine whole-body and skeletal muscle protein metabolism. Casein ingestion increased plasma leucine and phenylalanine concentrations and L-[1-(13)C]-phenylalanine enrichments, with a more rapid rise after Cas vs. Cas+Serum. Nonetheless, dietary protein-derived phenylalanine availability did not differ between Cas+Serum (47 ± 2%, mean ± SEM) and Cas (46 ± 3%) when assessed over the 300-min postprandial period (P = 0.80). The milk matrix did not modulate postprandial myofibrillar protein synthesis rates from 0 to 120 min (0.038 ± 0.005 vs. 0.031 ± 0.007%/h) or from 120 to 300 min (0.052 ± 0.004 vs. 0.067 ± 0.005%/h) after Cas+Serum vs. Cas. Similarly, no treatment differences in muscle protein-bound L-[1-(13)C]-phenylalanine enrichments were observed at 120 min (0.003 ± 0.001 vs. 0.002 ± 0.001) or 300 min (0.015 ± 0.002 vs. 0.016 ± 0.002 mole percent excess) after Cas+Serum vs. Cas. Casein ingestion in a milk matrix delays protein digestion and absorption but does not modulate postprandial muscle protein synthesis when compared to the ingestion of micellar casein only in healthy older men. This trial was registered at Nederlands Trial Register as NTR4429. © 2015 American Society for Nutrition.
Hassinen, Minna; Laulaja, Salla; Paajanen, Vesa; Haverinen, Jaakko; Vornanen, Matti
2011-07-01
Ectothermic vertebrates experience acute and chronic temperature changes which affect cardiac excitability and may threaten electrical stability of the heart. Nevertheless, ectothermic hearts function over wide range of temperatures without cardiac arrhythmias, probably due to special molecular adaptations. We examine function and molecular basis of the slow delayed rectifier K(+) current (I(Ks)) in cardiac myocytes of a eurythermic fish (Carassius carassius L.). I(Ks) is an important repolarizing current that prevents excessive prolongation of cardiac action potential, but it is extremely slowly activating when expressed in typical molecular composition of the endothermic animals. Comparison of the I(Ks) of the crucian carp atrial myocytes with the currents produced by homomeric K(v)7.1 and heteromeric K(v)7.1/MinK channels in Chinese hamster ovary cells indicates that activation kinetics and pharmacological properties of the I(Ks) are similar to those of the homomeric K(v)7.1 channels. Consistently with electrophysiological properties and homomeric K(v)7.1 channel composition, atrial transcript expression of the MinK subunit is only 1.6-1.9% of the expression level of the K(v)7.1 subunit. Since activation kinetics of the homomeric K(v)7.1 channels is much faster than activation of the heteromeric K(v)7.1/MinK channels, the homomeric K(v)7.1 composition of the crucian carp cardiac I(Ks) is thermally adaptive: the slow delayed rectifier channels can open despite low body temperatures and curtail the duration of cardiac action potential in ectothermic crucian carp. We suggest that the homomeric K(v)7.1 channel assembly is an evolutionary thermal adaptation of ectothermic hearts and the heteromeric K(v)7.1/MinK channels evolved later to adapt I(Ks) to high body temperature of endotherms.
Modeling nuclear processes by Simulink
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rashid, Nahrul Khair Alang Md, E-mail: nahrul@iium.edu.my
2015-04-29
Modelling and simulation are essential parts in the study of dynamic systems behaviours. In nuclear engineering, modelling and simulation are important to assess the expected results of an experiment before the actual experiment is conducted or in the design of nuclear facilities. In education, modelling can give insight into the dynamic of systems and processes. Most nuclear processes can be described by ordinary or partial differential equations. Efforts expended to solve the equations using analytical or numerical solutions consume time and distract attention from the objectives of modelling itself. This paper presents the use of Simulink, a MATLAB toolbox softwaremore » that is widely used in control engineering, as a modelling platform for the study of nuclear processes including nuclear reactor behaviours. Starting from the describing equations, Simulink models for heat transfer, radionuclide decay process, delayed neutrons effect, reactor point kinetic equations with delayed neutron groups, and the effect of temperature feedback are used as examples.« less
Passive films on magnesium anodes in primary batteries
NASA Technical Reports Server (NTRS)
Ratnakumar, B. V.
1988-01-01
The characteristics of the passive films over Mg anodes, which essentially govern the voltage delay of the latter, have been determined nondestructively from an analysis of the transient and steady-state response of the electrode potential to low amplitude galvanostatic polarization under various experimental conditions viz., with different corrosion inhibitor coatings on Mg, after various periods of ageing of anode in solutions containing corrosion inhibitors, at various low temperatures etc. Using these parameters, the kinetics of film build-up or dissolution under these conditions have been monitored. The morphology of the anode film has been verified with scanning electron microscopy. Similar transients at low temperatures point out a steep rise in the film resistivity which is essentially responsible for the severe voltage delay. Finally, possible application of this technique in secondary Li batteries to improve cycling characteristics of the Li anode has been pointed out.
Delayed Activation Kinetics of Th2- and Th17 Cells Compared to Th1 Cells.
Duechting, Andrea; Przybyla, Anna; Kuerten, Stefanie; Lehmann, Paul V
2017-09-12
During immune responses, different classes of T cells arise: Th1, Th2, and Th17. Mobilizing the right class plays a critical role in successful host defense and therefore defining the ratios of Th1/Th2/Th17 cells within the antigen-specific T cell repertoire is critical for immune monitoring purposes. Antigen-specific Th1, Th2, and Th17 cells can be detected by challenging peripheral blood mononuclear cells (PBMC) with antigen, and establishing the numbers of T cells producing the respective lead cytokine, IFN-γ and IL-2 for Th1 cells, IL-4 and IL-5 for Th2, and IL-17 for Th-17 cells, respectively. Traditionally, these cytokines are measured within 6 h in flow cytometry. We show here that 6 h of stimulation is sufficient to detect peptide-induced production of IFN-γ, but 24 h are required to reveal the full frequency of protein antigen-specific Th1 cells. Also the detection of IL-2 producing Th1 cells requires 24 h stimulation cultures. Measurements of IL-4 producing Th2 cells requires 48-h cultures and 96 h are required for frequency measurements of IL-5 and IL-17 secreting T cells. Therefore, accounting for the differential secretion kinetics of these cytokines is critical for the accurate determination of the frequencies and ratios of antigen-specific Th1, Th2, and Th17 cells.
Distributed delays in a hybrid model of tumor-immune system interplay.
Caravagna, Giulio; Graudenzi, Alex; d'Onofrio, Alberto
2013-02-01
A tumor is kinetically characterized by the presence of multiple spatio-temporal scales in which its cells interplay with, for instance, endothelial cells or Immune system effectors, exchanging various chemical signals. By its nature, tumor growth is an ideal object of hybrid modeling where discrete stochastic processes model low-numbers entities, and mean-field equations model abundant chemical signals. Thus, we follow this approach to model tumor cells, effector cells and Interleukin-2, in order to capture the Immune surveillance effect. We here present a hybrid model with a generic delay kernel accounting that, due to many complex phenomena such as chemical transportation and cellular differentiation, the tumor-induced recruitment of effectors exhibits a lag period. This model is a Stochastic Hybrid Automata and its semantics is a Piecewise Deterministic Markov process where a two-dimensional stochastic process is interlinked to a multi-dimensional mean-field system. We instantiate the model with two well-known weak and strong delay kernels and perform simulations by using an algorithm to generate trajectories of this process. Via simulations and parametric sensitivity analysis techniques we (i) relate tumor mass growth with the two kernels, we (ii) measure the strength of the Immune surveillance in terms of probability distribution of the eradication times, and (iii) we prove, in the oscillatory regime, the existence of a stochastic bifurcation resulting in delay-induced tumor eradication.
NASA Astrophysics Data System (ADS)
Hakim, Layal; Lacaze, Guilhem; Khalil, Mohammad; Sargsyan, Khachik; Najm, Habib; Oefelein, Joseph
2018-05-01
This paper demonstrates the development of a simple chemical kinetics model designed for autoignition of n-dodecane in air using Bayesian inference with a model-error representation. The model error, i.e. intrinsic discrepancy from a high-fidelity benchmark model, is represented by allowing additional variability in selected parameters. Subsequently, we quantify predictive uncertainties in the results of autoignition simulations of homogeneous reactors at realistic diesel engine conditions. We demonstrate that these predictive error bars capture model error as well. The uncertainty propagation is performed using non-intrusive spectral projection that can also be used in principle with larger scale computations, such as large eddy simulation. While the present calibration is performed to match a skeletal mechanism, it can be done with equal success using experimental data only (e.g. shock-tube measurements). Since our method captures the error associated with structural model simplifications, we believe that the optimised model could then lead to better qualified predictions of autoignition delay time in high-fidelity large eddy simulations than the existing detailed mechanisms. This methodology provides a way to reduce the cost of reaction kinetics in simulations systematically, while quantifying the accuracy of predictions of important target quantities.
NASA Astrophysics Data System (ADS)
Popov, Nikolay
2016-09-01
A review of experimental and theoretical investigations of the effect of electronically excited atoms and molecules on the induction delay time and on the shift of the ignition temperature threshold of combustible mixtures is presented. At relatively low initial gas temperature, the effect of excited O(1D) atoms on the oxidation and reforming of combustible mixtures is quite significant due to the high rates of reactions of O(1D) atoms with hydrogen and hydrocarbon molecules. The singlet oxygen molecules, O2(a1Δg) , participate both in chain initiation and chain branching reactions, but the effect of O2(a1Δg) in the ignition processes is generally less important compared to the oxygen atoms. To reduce the ignition delay time and decrease the temperature threshold of fuel-air mixtures, the use of gas discharges with relatively high E/N values is recommended. In this case the reactions of electronically excited N2(A3Σu+ , B3πg , C3πu , a'1Σu-) molecules, and atomic particles in ground and electronically excited states are extremely important. The energy stored in electronic excitation of atoms and molecules is spent on the additional dissociation of oxygen and fuel molecules, on the fast gas heating, and finally to the triggering of chain branching reactions. This work was partially supported by AOARD AFOSR, FA2386-13-1-4064 grant and Linked International Laboratory LIA KaPPA (France-Russia).
Critical time delay of the pineal melatonin rhythm in humans due to weak electromagnetic exposure.
Halgamuge, Malka N
2013-08-01
Electromagnetic fields (EMFs) can increase free radicals, activate the stress response and alter enzyme reactions. Intracellular signalling is mediated by free radicals and enzyme kinetics is affected by radical pair recombination rates. The magnetic field component of an external EMF can delay the "recombination rate" of free radical pairs. Magnetic fields thus increase radical life-times in biological systems. Although measured in nanoseconds, this extra time increases the potential to do more damage. Melatonin regulates the body's sleep-wake cycle or circadian rhythm. The World Health Organization (WHO) has confirmed that prolonged alterations in sleep patterns suppress the body's ability to make melatonin. Considerable cancer rates have been attributed to the reduction of melatonin production as a result of jet lag and night shift work. In this study, changes in circadian rhythm and melatonin concentration are observed due to the external perturbation of chemical reaction rates. We further analyze the pineal melatonin rhythm and investigate the critical time delay or maturation time of radical pair recombination rates, exploring the impact of the mRNA degradation rate on the critical time delay. The results show that significant melatonin interruption and changes to the circadian rhythm occur due to the perturbation of chemical reaction rates, as also reported in previous studies. The results also show the influence of the mRNA degradation rate on the circadian rhythm's critical time delay or maturation time. The results support the hypothesis that exposure to weak EMFs via melatonin disruption can adversely affect human health.
Engelmann, Robby; Sellmann, Tina; Köhling, Rüdiger; Müller-Hilke, Brigitte
2017-01-01
Growing clinical and laboratory evidence corroborates a role for the immune system in the pathophysiology of epilepsy. In order to delineate the immune response following pilocarpine-induced status epilepticus (SE) in the mouse, we monitored the kinetics of leukocyte presence in the hippocampus over the period of four weeks. SE was induced following a ramping protocol of pilocarpine injection into 4–5 weeks old C57BL/6 mice. Brains were removed at days 1–4, 14 or 28 after SE, and the hippocampi were analyzed via flow cytometry, via quantitative reverse transcriptase PCR (qRT-PCR) and via immunohistochemistry. Epileptogenesis was confirmed by Timm staining of mossy fiber sprouting in the inner molecular layer of the dentate gyrus. The flow cytometry data revealed a biphasic immune response following pilocarpine-induced SE with a transient increase in activated CD11b+ and F4/80+ macrophages within the first four days replaced by an increase in CD3+ T-lymphocytes around day 28. This delayed T cell response was confirmed via qRT-PCR and via immunohistochemistry. In addition, qRT-PCR data could show that the delayed T cell response was associated with an increased CD8/CD4 ratio indicating a cytotoxic T cell response after SE. Intriguingly, early intervention with mycophenolate mofetil administration on days 0–3 after SE prevented this delayed T cell response. These results show an orchestrated immunological sequela and provide evidence that the delayed T cell response is sensitive to early immunomodulatory intervention. PMID:29182639
Mund, Andreas; Schubert, Tobias; Staege, Hannah; Kinkley, Sarah; Reumann, Kerstin; Kriegs, Malte; Fritsch, Lauriane; Battisti, Valentine; Ait-Si-Ali, Slimane; Hoffbeck, Anne-Sophie; Soutoglou, Evi; Will, Hans
2012-01-01
Survival time-associated plant homeodomain (PHD) finger protein in Ovarian Cancer 1 (SPOC1, also known as PHF13) is known to modulate chromatin structure and is essential for testicular stem-cell differentiation. Here we show that SPOC1 is recruited to DNA double-strand breaks (DSBs) in an ATM-dependent manner. Moreover, SPOC1 localizes at endogenous repair foci, including OPT domains and accumulates at large DSB repair foci characteristic for delayed repair at heterochromatic sites. SPOC1 depletion enhances the kinetics of ionizing radiation-induced foci (IRIF) formation after γ-irradiation (γ-IR), non-homologous end-joining (NHEJ) repair activity, and cellular radioresistance, but impairs homologous recombination (HR) repair. Conversely, SPOC1 overexpression delays IRIF formation and γH2AX expansion, reduces NHEJ repair activity and enhances cellular radiosensitivity. SPOC1 mediates dose-dependent changes in chromatin association of DNA compaction factors KAP-1, HP1-α and H3K9 methyltransferases (KMT) GLP, G9A and SETDB1. In addition, SPOC1 interacts with KAP-1 and H3K9 KMTs, inhibits KAP-1 phosphorylation and enhances H3K9 trimethylation. These findings provide the first evidence for a function of SPOC1 in DNA damage response (DDR) and repair. SPOC1 acts as a modulator of repair kinetics and choice of pathways. This involves its dose-dependent effects on DNA damage sensors, repair mediators and key regulators of chromatin structure. PMID:23034801
Cytosolic chaperones mediate quality control of higher-order septin assembly in budding yeast.
Johnson, Courtney R; Weems, Andrew D; Brewer, Jennifer M; Thorner, Jeremy; McMurray, Michael A
2015-04-01
Septin hetero-oligomers polymerize into cytoskeletal filaments with essential functions in many eukaryotic cell types. Mutations within the oligomerization interface that encompasses the GTP-binding pocket of a septin (its "G interface") cause thermoinstability of yeast septin hetero-oligomer assembly, and human disease. When coexpressed with its wild-type counterpart, a G interface mutant is excluded from septin filaments, even at moderate temperatures. We show that this quality control mechanism is specific to G interface mutants, operates during de novo septin hetero-oligomer assembly, and requires specific cytosolic chaperones. Chaperone overexpression lowers the temperature permissive for proliferation of cells expressing a G interface mutant as the sole source of a given septin. Mutations that perturb the septin G interface retard release from these chaperones, imposing a kinetic delay on the availability of nascent septin molecules for higher-order assembly. Un-expectedly, the disaggregase Hsp104 contributes to this delay in a manner that does not require its "unfoldase" activity, indicating a latent "holdase" activity toward mutant septins. These findings provide new roles for chaperone-mediated kinetic partitioning of non-native proteins and may help explain the etiology of septin-linked human diseases. © 2015 Johnson et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
The influence of delaying judgments of learning on metacognitive accuracy: a meta-analytic review.
Rhodes, Matthew G; Tauber, Sarah K
2011-01-01
Many studies have examined the accuracy of predictions of future memory performance solicited through judgments of learning (JOLs). Among the most robust findings in this literature is that delaying predictions serves to substantially increase the relative accuracy of JOLs compared with soliciting JOLs immediately after study, a finding termed the delayed JOL effect. The meta-analyses reported in the current study examined the predominant theoretical accounts as well as potential moderators of the delayed JOL effect. The first meta-analysis examined the relative accuracy of delayed compared with immediate JOLs across 4,554 participants (112 effect sizes) through gamma correlations between JOLs and memory accuracy. Those data showed that delaying JOLs leads to robust benefits to relative accuracy (g = 0.93). The second meta-analysis examined memory performance for delayed compared with immediate JOLs across 3,807 participants (98 effect sizes). Those data showed that delayed JOLs result in a modest but reliable benefit for memory performance relative to immediate JOLs (g = 0.08). Findings from these meta-analyses are well accommodated by theories suggesting that delayed JOL accuracy reflects access to more diagnostic information from long-term memory rather than being a by-product of a retrieval opportunity. However, these data also suggest that theories proposing that the delayed JOL effect results from a memorial benefit or the match between the cues available for JOLs and those available at test may also provide viable explanatory mechanisms necessary for a comprehensive account.
Factors affecting professional delay in diagnosis and treatment of oral cancer in Iran.
Esmaelbeigi, Farhad; Hadji, Maryam; Harirchi, Iraj; Omranipour, Ramesh; vand Rajabpour, Mojtaba; Zendehdel, Kazem
2014-04-01
Oral cancer is the most common malignant tumor among head and neck cancers. Delay in diagnosis affects the treatment and prognosis of oral cancer. We measured the professional delay in the diagnosis and its attributes in the Cancer Institute of Iran, the largest referral center for oral cancer patients in the country. We interviewed oral cancer patients to measure the delay and used case-control approach to study association of various prognostic factors with professional delay and tumor stage. Out of 206 patients, 71.4% were diagnosed at the advanced stage. The median of the patient, professional and total delays were 45, 86 and 140 day, receptively. In the univariate model, prescription of medicines like analgesics (OR = 5.3, 95% CI 2.2-12.9) and history of dental procedure (OR=6.8, 95% CI 1.7-26.9) were associated with higher risk of delay compared to patient who were biopsied from the beginning. History of loose teeth increased risk of delay 4 times (OR = 4.0, 95% CI 1.6-9.8). Patients with primary education had 70% lower risk of delay compared to the illiterate patients (OR = 0.3, 95% CI 0.1-0.7) and the risk was lower among patients who had diploma (OR = 0.04, 95% CI 0-0.7) and college education (OR = 0.1, 95% CI 0-0.4). The delayed patients were diagnosed in more advanced stage compared to the patients without delay (OR = 2.1, 95% CI 1.0-4.4). Development of a national guideline for follow-up of oral lesions, training and awareness of health care professionals about oral cancer diagnosis may decrease the delay and improve the oral cancer outcome in Iran.
Three dimensional core-collapse supernova simulated using a 15 M ⊙ progenitor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lentz, Eric J.; Bruenn, Stephen W.; Hix, W. Raphael
We have performed ab initio neutrino radiation hydrodynamics simulations in three and two spatial dimensions (3D and 2D) of core-collapse supernovae from the same 15 M⊙ progenitor through 440 ms after core bounce. Both 3D and 2D models achieve explosions; however, the onset of explosion (shock revival) is delayed by ~100 ms in 3D relative to the 2D counterpart and the growth of the diagnostic explosion energy is slower. This is consistent with previously reported 3D simulations utilizing iron-core progenitors with dense mantles. In the ~100 ms before the onset of explosion, diagnostics of neutrino heating and turbulent kinetic energymore » favor earlier explosion in 2D. During the delay, the angular scale of convective plumes reaching the shock surface grows and explosion in 3D is ultimately lead by a single, large-angle plume, giving the expanding shock a directional orientation not dissimilar from those imposed by axial symmetry in 2D simulations. Finally, we posit that shock revival and explosion in the 3D simulation may be delayed until sufficiently large plumes form, whereas such plumes form more rapidly in 2D, permitting earlier explosions.« less
Three dimensional core-collapse supernova simulated using a 15 M ⊙ progenitor
Lentz, Eric J.; Bruenn, Stephen W.; Hix, W. Raphael; ...
2015-07-10
We have performed ab initio neutrino radiation hydrodynamics simulations in three and two spatial dimensions (3D and 2D) of core-collapse supernovae from the same 15 M⊙ progenitor through 440 ms after core bounce. Both 3D and 2D models achieve explosions; however, the onset of explosion (shock revival) is delayed by ~100 ms in 3D relative to the 2D counterpart and the growth of the diagnostic explosion energy is slower. This is consistent with previously reported 3D simulations utilizing iron-core progenitors with dense mantles. In the ~100 ms before the onset of explosion, diagnostics of neutrino heating and turbulent kinetic energymore » favor earlier explosion in 2D. During the delay, the angular scale of convective plumes reaching the shock surface grows and explosion in 3D is ultimately lead by a single, large-angle plume, giving the expanding shock a directional orientation not dissimilar from those imposed by axial symmetry in 2D simulations. Finally, we posit that shock revival and explosion in the 3D simulation may be delayed until sufficiently large plumes form, whereas such plumes form more rapidly in 2D, permitting earlier explosions.« less
Spectroscopy of the UO+2 cation and the delayed ionization of UO2.
Merritt, Jeremy M; Han, Jiande; Heaven, Michael C
2008-02-28
Vibronically resolved spectra for the UO+2 cation have been recorded using the pulsed field ionization zero electron kinetic energy (PFI-ZEKE) technique. For the ground state, long progressions in both the bending and symmetric stretch vibrations were observed. Bend and stretch progressions of the first electronically excited state were also observed, and the origin was found at an energy of 2678 cm(-1) above the ground state zero-point level. This observation is consistent with a recent theoretical prediction [Infante et al., J. Chem. Phys. 127, 124308 (2007)]. The ionization energy for UO2, derived from the PFI-ZEKE spectrum, namely, 6.127(1) eV, is in excellent agreement with the value obtained from an earlier photoionization efficiency measurement. Delayed ionization of UO2 in the gas phase has been reported previously [Han et al., J. Chem. Phys. 120, 5155 (2004)]. Here, we extend the characterization of the delayed ionization process by performing a quantitative study of the ionization rate as a function of the energy above the ionization threshold. The ionization rate was found to be 5 x 10(6) s(-1) at threshold, and increased linearly with increasing energy in the range investigated (0-1200 cm(-1)).
Pierre, F; Baruthio, F; Diebold, F; Biette, P
1995-01-01
OBJECTIVE--To conduct a field study to obtain information on the urinary concentrations of aluminium (Al) and fluoride (F-) depending on the different compounds exposed to in the aluminum industry. METHODS--16 workers from one plant that produced aluminium fluoride (AlF3), and from two plants that produced aluminium electrolytically by two different processes participated in the study for one working week. Pollutants were monitored by eight hour personal sampling every day, and urine samples were collected during the week. Al and F- were analysed in both atmospheric and urine samples by atomic absorption spectrometry and an ion selective electrode. RESULTS--The principal results show different characteristics of kinetic curves of Al and F- excretion in workers with different exposures. Some characteristics of excretory peaks were linked to specific exposures--for instance, after exposure to AlF3 there was one delayed Al peak associated with one delayed F- peak about eight hours after the end of the daily shift, and after mixed exposure to HF and AlF3, two F- peaks were noted, one fast peak at the end of the shift and another delayed peak at 10 hours synchronised with an Al peak. In one of the electrolysis plants, the exposure to Al and F- compounds led to the simultaneous excretion of Al and F- peaks, either as a single peak or two individual ones depending on the type of technology used on site (open or enclosed potlines). The average estimated half life of Al was 7.5 hours, and of F- about nine hours. Quantitative relations between excretion and exposure showed an association between the F- atmospheric limit value of 2.5 mg/m3 with a urinary F- concentration of 6.4 mg/g creatinine at the end of the shift, a peak of 7.4 mg/g creatinine, and 7.4 mg excreted a day. For Al, the exposure to 1.36 mg/m3 during the shift corresponded to a urinary concentration at the end of the shift of 200 microgram/g creatinine. Daily excretion of 200 micrograms corresponded to an exposure to 0.28 mg/m3. CONCLUSION--Particular differences in the behaviour of Al and F- in urine depended upon the original molecular form in the pollutant. These results reinforce the principle that, in biological monitoring, the sampling strategy and the choice of limit value should be dependent on kinetic data that take the exposure compound of the element in question into account. PMID:7627317
Kinetic modeling of methyl butanoate in shock tube.
Huynh, Lam K; Lin, Kuang C; Violi, Angela
2008-12-25
An increased necessity for energy independence and heightened concern about the effects of rising carbon dioxide levels have intensified the search for renewable fuels that could reduce our current consumption of petrol and diesel. One such fuel is biodiesel, which consists of the methyl esters of fatty acids. Methyl butanoate (MB) contains the essential chemical structure of the long-chain fatty acids and a shorter, but similar, alkyl chain. This paper reports on a detailed kinetic mechanism for MB that is assembled using theoretical approaches. Thirteen pathways that include fuel decomposition, isomerization, and propagation steps were computed using ab initio calculations [J. Org. Chem. 2008, 73, 94]. Rate constants from first principles for important reactions in CO(2) formation, namely CH(3)OCO=CH(3) + CO(2) (R1) and CH(3)OCO=CH(3)O + CO (R2) reactions, are computed at high levels of theory and implemented in the mechanism. Using the G3B3 potential energy surface together with the B3LYP/6-31G(d) gradient, Hessian and geometries, the rate constants for reactions R1 and R2 are calculated using the Rice-Ramsperger-Kassel-Marcus theory with corrections from treatments for tunneling, hindered rotation, and variational effects. The calculated rate constants of reaction R1 differ from the data present in the literature by at most 20%, while those of reaction R2 are about a factor of 4 lower than the available values. The new kinetic model derived from ab initio simulations is combined with the kinetic mechanism presented by Fisher et al. [Proc. Combust. Inst. 2000, 28, 1579] together with the addition of the newly found six-centered unimolecular elimination reaction that yields ethylene and methyl acetate, MB = C(2)H(4) + CH(3)COOCH(3). This latter pathway requires the inclusion of the CH(3)COOCH(3) decomposition model suggested by Westbrook et al. [Proc. Combust. Inst. 2008, accepted]. The newly composed kinetic mechanism for MB is used to study the CO(2) formation during the pyrolysis of MB as well as to investigate the autoignition of MB in a shock tube reactor at different temperatures and pressures. The computed results agree very well with experimental data present in the literature. Sensitivity and flux (rate-of-production) analyses are carried out for the CO(2) formation with the new MB mechanism, together with available reaction mechanisms, to assess the importance of various kinetic pathways for each regime. With the new mechanism, the flux analyses for the formation of C(2)H species, one of the most important species for ignition delay time, are also presented at different conditions. In addition to giving a better chemical insight of the pyrolysis/oxidation of MB, the results suggest ways to improve the mechanism's capability to predict CO(2) formation and ignition delay times in pyrolysis and oxidation conditions.
Maathuis, Annet; Havenaar, Robert; He, Tao; Bellmann, Susann
2017-01-01
ABSTRACT Objective: The aim of this study was to determine the kinetics of true ileal protein digestion and digestible indispensable amino acid score (DIAAS) of a goat milk-based infant formula (GIF), a cow milk-based infant formula (CIF), and human milk (HM). Methods: The GIF, CIF, and HM were investigated in an in vitro gastrointestinal model simulating infant conditions. Digested compounds were dialyzed from the intestinal compartment as bioaccessible fraction. Dialysate was collected in 15 to 60-minute periods for 4 hours. True ileal protein digestibility and DIAAS were determined as bioaccessible nitrogen (N) and amino acids. Results: N bioaccessibility from the GIF showed similar kinetics to that of HM. The CIF showed a delay in N bioaccessibility versus the GIF and HM. In the 1st hour of digestion, N bioaccessibility was 19.9% ± 3.5% and 23.3% ± 1.3% for the GIF and HM, respectively, and 11.2% ± 0.6% for CIF (P < 0.05 vs HM). In the 3rd hour of digestion, the N bioaccessibility was higher (P < 0.05) for the CIF (28.9% ± 1.2%) than for the GIF (22.5% ± 1.6%) and HM (20.6% ± 1.0%). After 4 hours, the true ileal protein digestibility of the GIF, CIF, and HM was 78.3% ± 3.7%, 73.4% ± 2.7%, and 77.9% ± 4.1%, respectively. The DIAAS for the GIF, CIF, and HM for 0- to 6-month-old infants was 83%, 75%, and 77% for aromatic AA. Conclusion: The protein quality is not different between the GIF, CIF, and HM, but the kinetics of protein digestion of the GIF is more comparable to that of HM than that of the CIF. PMID:28968291
Maathuis, Annet; Havenaar, Robert; He, Tao; Bellmann, Susann
2017-12-01
The aim of this study was to determine the kinetics of true ileal protein digestion and digestible indispensable amino acid score (DIAAS) of a goat milk-based infant formula (GIF), a cow milk-based infant formula (CIF), and human milk (HM). The GIF, CIF, and HM were investigated in an in vitro gastrointestinal model simulating infant conditions. Digested compounds were dialyzed from the intestinal compartment as bioaccessible fraction. Dialysate was collected in 15 to 60-minute periods for 4 hours. True ileal protein digestibility and DIAAS were determined as bioaccessible nitrogen (N) and amino acids. N bioaccessibility from the GIF showed similar kinetics to that of HM. The CIF showed a delay in N bioaccessibility versus the GIF and HM. In the 1st hour of digestion, N bioaccessibility was 19.9% ± 3.5% and 23.3% ± 1.3% for the GIF and HM, respectively, and 11.2% ± 0.6% for CIF (P < 0.05 vs HM). In the 3rd hour of digestion, the N bioaccessibility was higher (P < 0.05) for the CIF (28.9% ± 1.2%) than for the GIF (22.5% ± 1.6%) and HM (20.6% ± 1.0%). After 4 hours, the true ileal protein digestibility of the GIF, CIF, and HM was 78.3% ± 3.7%, 73.4% ± 2.7%, and 77.9% ± 4.1%, respectively. The DIAAS for the GIF, CIF, and HM for 0- to 6-month-old infants was 83%, 75%, and 77% for aromatic AA. The protein quality is not different between the GIF, CIF, and HM, but the kinetics of protein digestion of the GIF is more comparable to that of HM than that of the CIF.
Describing-function analysis of a ripple regulator with slew-rate limits and time delays
NASA Technical Reports Server (NTRS)
Wester, Gene W.
1990-01-01
The effects of time delays and slew-rate limits on the steady-state operating points and performance of a free-running ripple regulator are evaluated using describing-function analysis. The describing function of an ideal comparator (no time delays or slew rate limits) has no phase shift and is independent of frequency. It is found that turn-on delay and turn-off delay have different effects on gain and phase and cannot be combined. Comparator hysteresis affects both gain and phase; likewise, time delays generally affect both gain and phase. It is found that the effective time delay around the feedback loop is one half the sum of turn-on and turn-off delays, regardless of whether the delays are caused by storage time or slew rate limits. Expressions are formulated for the switching frequency, switch duty ratio, dc output, and output ripple. For the case of no hysteresis, a simple, graphical solution for the switching frequency is possible, and the resulting switching frequency is independent of first-order variations of input or load.
Linear-phase delay filters for ultra-low-power signal processing in neural recording implants.
Gosselin, Benoit; Sawan, Mohamad; Kerherve, Eric
2010-06-01
We present the design and implementation of linear-phase delay filters for ultra-low-power signal processing in neural recording implants. We use these filters as low-distortion delay elements along with an automatic biopotential detector to perform integral waveform extraction and efficient power management. The presented delay elements are realized employing continuous-time OTA-C filters featuring 9th-order equiripple transfer functions with constant group delay. Such analog delay enables processing neural waveforms with reduced overhead compared to a digital delay since it does not requires sampling and digitization. It uses an allpass transfer function for achieving wider constant-delay bandwidth than all-pole does. Two filters realizations are compared for implementing the delay element: the Cascaded structure and the Inverse follow-the-leader feedback filter. Their respective strengths and drawbacks are assessed by modeling parasitics and non-idealities of OTAs, and by transistor-level simulations. A budget of 200 nA is used in both filters. Experimental measurements with the chosen filter topology are presented and discussed.
Basic factors controlling pest in high temperature systems
NASA Technical Reports Server (NTRS)
Berkowitz-Mattuck, J.; Rossetti, M.
1971-01-01
The catastrophic disintegration in air at intermediate temperatures of refractory materials which are very resistant to oxidation at high temperatures is known as pest. A study was undertaken to determine whether the mechanism proposed for pest failure in silicides might also be responsible for pest failure in NbAl3. The aim was to correlate oxidation kinetics in the range where disintegration of NbAl3 is observed with delayed failure data obtained under similar conditions. Studies were also undertaken to develop some understanding of deformation mechanisms in both silicides and aluminides.
BRIEF COMMUNICATIONS: Dynamics of lasing of two TEA CO2 lasers coupled by a nonlinear SF6 cell
NASA Astrophysics Data System (ADS)
Baranov, V. Yu; Dyad'kin, A. P.; Shpilyun, O. V.
1991-10-01
A study was made of the kinetics of stimulated emission from two TEA CO2 lasers in a system with frequency locking by phase conjugation as a result of a four-wave interaction of light [V. Yu. Baranov, A. P. Dyad'kin, V. V. Likhanskiĭ et al., Sov. J. Quantum Electron. 18, 1462 (1988)]. A simple method for ensuring two-pulse lasing with a variable time delay between the pulses in one gas-discharge chamber was proposed.
1992-03-01
bodies such as tor- or by using these in combination with other control pedoes , are ideal targets for applying transition delay methods will also be...sponsored Tani and his colleagues to Nikuradse’s experimental project in Cambridge University, high speed video data for sand grain rough pipes, (see [125...lent kinetic energy balance in a LEBU modified don (1990) - also video presented at EDRM4 Lau- turbulent boundary layer. Proc. 11th Turbulence sanne
Methane and hydrogen ignition with ethanol and butanol admixtures
NASA Astrophysics Data System (ADS)
Eremin, A. V.; Matveeva, N. A.; Mikheyeva, E. Yu
2018-01-01
This work is devoted to the investigation of combustion of simple and complex gaseous fuels: methane and hydrogen with admixtures of the most promising alcohols: ethanol and butanol. The process of ignition of investigated blends behind reflected shock waves in the temperature range of 1000-1600 K and pressure range of 4.5-6 bar was studied. The temperature dependences of ignition delay times for stoichiometric methane-oxygen-ethanol (or butanol) and hydrogen-oxygen-ethanol (or butanol) mixtures diluted in argon were obtained. The possible kinetic description is discussed.
ERIC Educational Resources Information Center
Coleman, Mari Beth; Hurley, Kevin J.; Cihak, David F.
2012-01-01
The purpose of this study was to compare the effectiveness and efficiency of teacher-directed and computer-assisted constant time delay strategies for teaching three students with moderate intellectual disability to read functional sight words. Target words were those found in recipes and were taught via teacher-delivered constant time delay or…
Kafirin adsorption on ion-exchange resins: isotherm and kinetic studies.
Kumar, Prashant; Lau, Pei Wen; Kale, Sandeep; Johnson, Stuart; Pareek, Vishnu; Utikar, Ranjeet; Lali, Arvind
2014-08-22
Kafirin is a natural, hydrophobic and celiac safe prolamin protein obtained from sorghum seeds. Today kafirin is found to be useful in designing delayed delivery systems and coatings of pharmaceuticals and nutraceuticals where its purity is important and this can be obtained by adsorptive chromatography. This study is the first scientific insight into the isotherm and kinetic studies of kafirin adsorption on anion- and cation-exchange resins for practical applications in preparative scale chromatography. Adsorption isotherms of kafirin were determined for five anion- and two cation-exchange resins in batch systems. Isotherm parameters such as maximum binding capacity and dissociation constant were determined from Langmuir isotherm, and adsorptive capacity and affinity constant from Freundlich isotherm. Langmuir isotherm was found to fit the adsorption equilibrium data well. Batch uptake kinetics for kafirin adsorption on these resins was also carried out and critical parameters including the diffusion coefficient, film mass transfer coefficient, and Biot number for film-pore diffusion model were calculated. Both the isotherm and the kinetic parameters were considered for selection of appropriate resin for kafirin purification. UNOsphere Q (78.26 mg/ml) and Toyopearl SP-650M (57.4 mg/ml) were found to offer better kafirin binding capacities and interaction strength with excellent uptake kinetics under moderate operating conditions. With these adsorbents, film diffusion resistance was found to be major governing factor for adsorption (Bi<10 and δ<1). Based on designer objective function, UNOsphere Q was found be best adsorbent for binding of kafirin. The data presented is valuable for designing large scale preparative adsorptive chromatographic kafirin purification systems. Copyright © 2014 Elsevier B.V. All rights reserved.
Wahman, David G.; Wulfeck-Kleier, Karen A.; Pressman, Jonathan G.
2009-01-01
Monochloramine disinfection kinetics were determined for the pure-culture ammonia-oxidizing bacterium Nitrosomonas europaea (ATCC 19718) by two culture-independent methods, namely, Live/Dead BacLight (LD) and propidium monoazide quantitative PCR (PMA-qPCR). Both methods were first verified with mixtures of heat-killed (nonviable) and non-heat-killed (viable) cells before a series of batch disinfection experiments with stationary-phase cultures (batch grown for 7 days) at pH 8.0, 25°C, and 5, 10, and 20 mg Cl2/liter monochloramine. Two data sets were generated based on the viability method used, either (i) LD or (ii) PMA-qPCR. These two data sets were used to estimate kinetic parameters for the delayed Chick-Watson disinfection model through a Bayesian analysis implemented in WinBUGS. This analysis provided parameter estimates of 490 mg Cl2-min/liter for the lag coefficient (b) and 1.6 × 10−3 to 4.0 × 10−3 liter/mg Cl2-min for the Chick-Watson disinfection rate constant (k). While estimates of b were similar for both data sets, the LD data set resulted in a greater k estimate than that obtained with the PMA-qPCR data set, implying that the PMA-qPCR viability measure was more conservative than LD. For N. europaea, the lag phase was not previously reported for culture-independent methods and may have implications for nitrification in drinking water distribution systems. This is the first published application of a PMA-qPCR method for disinfection kinetic model parameter estimation as well as its application to N. europaea or monochloramine. Ultimately, this PMA-qPCR method will allow evaluation of monochloramine disinfection kinetics for mixed-culture bacteria in drinking water distribution systems. PMID:19561179
Kinetics of DSB rejoining and formation of simple chromosome exchange aberrations
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Nikjoo, H.; O'Neill, P.; Goodhead, D. T.
2000-01-01
PURPOSE: To investigate the role of kinetics in the processing of DNA double strand breaks (DSB), and the formation of simple chromosome exchange aberrations following X-ray exposures to mammalian cells based on an enzymatic approach. METHODS: Using computer simulations based on a biochemical approach, rate-equations that describe the processing of DSB through the formation of a DNA-enzyme complex were formulated. A second model that allows for competition between two processing pathways was also formulated. The formation of simple exchange aberrations was modelled as misrepair during the recombination of single DSB with undamaged DNA. Non-linear coupled differential equations corresponding to biochemical pathways were solved numerically by fitting to experimental data. RESULTS: When mediated by a DSB repair enzyme complex, the processing of single DSB showed a complex behaviour that gives the appearance of fast and slow components of rejoining. This is due to the time-delay caused by the action time of enzymes in biomolecular reactions. It is shown that the kinetic- and dose-responses of simple chromosome exchange aberrations are well described by a recombination model of DSB interacting with undamaged DNA when aberration formation increases with linear dose-dependence. Competition between two or more recombination processes is shown to lead to the formation of simple exchange aberrations with a dose-dependence similar to that of a linear quadratic model. CONCLUSIONS: Using a minimal number of assumptions, the kinetics and dose response observed experimentally for DSB rejoining and the formation of simple chromosome exchange aberrations are shown to be consistent with kinetic models based on enzymatic reaction approaches. A non-linear dose response for simple exchange aberrations is possible in a model of recombination of DNA containing a DSB with undamaged DNA when two or more pathways compete for DSB repair.
Xenon elimination kinetics following brief exposure.
Schaefer, Maximilian S; Piper, Thomas; Geyer, Hans; Schneemann, Julia; Neukirchen, Martin; Thevis, Mario; Kienbaum, Peter
2017-05-01
Xenon is a modern inhalative anaesthetic with a very low solubility in tissues providing rapid elimination and weaning from anaesthesia. Besides its anaesthetic properties, Xenon promotes the endogenous erythropoietin biosynthesis and thus has been enlisted as prohibited substance by the World Anti-Doping Agency (WADA). For effective doping controls, knowledge about the elimination kinetics of Xenon and the duration of traceability are of particular importance. Seventy-seven full blood samples were obtained from 7 normal weight patients undergoing routine Xenon-based general anaesthesia with a targeted inspiratory concentration of 60% Xenon in oxygen. Samples were taken before and during Xenon inhalation as well as one, two, 4, 8, 16, 24, 32, 40, and 48 h after exposure. Xenon concentrations were assessed in full blood by gas chromatography and triple quadrupole tandem mass spectrometry with a detection limit of 0.25 µmol/L. The elimination of Xenon was characterized by linear regression of log-transformed Xenon blood concentrations, as well as non-linear regression. Xenon exposure yielded maximum concentrations in arterial blood of 1.3 [1.1; 1.6] mmol/L. Xenon was traceable for 24 to 48 h. The elimination profile was characterized by a biphasic pattern with a rapid alpha phase, followed by a slower beta phase showing a first order kinetics (c[Xe] = 69.1e -0.26x , R 2 = 0.83, t 1/2 = 2.7 h). Time in hours after exposure could be estimated by 50*ln(1.39/c[Xe] 0.077 ). Xenon's elimination kinetics is biphasic with a delayed beta phase following a first order kinetics. Xenon can reliably be detected for at least 24 h after brief exposure. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Renee Renda, C; Rung, Jillian M; Hinnenkamp, Jay E; Lenzini, Stephanie N; Madden, Gregory J
2018-04-23
Impulsive choice describes preference for smaller, sooner rewards over larger, later rewards. Excessive delay discounting (i.e., rapid devaluation of delayed rewards) underlies some impulsive choices, and is observed in many maladaptive behaviors (e.g., substance abuse, gambling). Interventions designed to reduce delay discounting may provide therapeutic gains. One such intervention provides rats with extended training with delayed reinforcers. When compared to a group given extended training with immediate reinforcers, delay-exposed rats make significantly fewer impulsive choices. To what extent is this difference due to delay-exposure training shifting preference toward self-control or immediacy-exposure training (the putative control group) shifting preference toward impulsivity? The current study compared the effects of delay- and immediacy-exposure training to a no-training control group and evaluated within-subject changes in impulsive choice across 51 male Wistar rats. Delay-exposed rats made significantly fewer impulsive choices than immediacy-exposed and control rats. Between-group differences in impulsive choice were not observed in the latter two groups. While delay-exposed rats showed large, significant pre- to posttraining reductions in impulsive choice, immediacy-exposed and control rats showed small reductions in impulsive choice. These results suggest that extended training with delayed reinforcers reduces impulsive choice, and that extended training with immediate reinforcers does not increase impulsive choice. © 2018 Society for the Experimental Analysis of Behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galland, P.; Lipson, E.D.
1987-01-01
Phototropism in the fungus Phycomyces is mediated by two photosystems that are optimized for the low-intensity region (below 10(-6) W X m-2) and the high-intensity region (above 10(-6) W X m-2). These photosystems can be distinguished under special experimental conditions, in which sporangiophores grown in the dark are suddenly exposed to continuous unilateral light. With this treatment, the bending occurs in two steps. Below 10(-6) W X m-2, an early-response component (15-min latency) and a late-response component (50- to 70-min latency) are observed that are mediated by photosystem I. Above 10(-6) W X m-2, the early component is augmented bymore » an intermediate component with a 40-min delay that is mediated by photosystem II. The two photosystems are distinguished further by their wavelength sensitivities and adaptation kinetics. Photosystem I is more effective at 334, 347, and 550 nm than photosystem II, but it is less effective at 383 nm. At wavelength 450 nm, the dark-adaptation kinetics associated with photosystem I are approximately half as fast as those associated with photosystem II. However, the light-adaptation kinetics of photosystem I are approximately equal to 3 times faster than the kinetics associated with photosystem II. The existence of two photosystems clarifies several behavioral features of Phycomyces and helps explain how the sporangiophore can manage the full range of 10 decades.« less
ERIC Educational Resources Information Center
Povinelli, Daniel J.; And Others
1996-01-01
Investigated the ability of young children to recognize themselves in delayed videotapes and recent photographs. Results suggested a significant developmental delay in young children's success on mark tests of self-recognition using delayed feedback as compared to live feedback, which may have important implications for characterizing the…
Dimensionality of brain networks linked to life-long individual differences in self-control.
Berman, Marc G; Yourganov, Grigori; Askren, Mary K; Ayduk, Ozlem; Casey, B J; Gotlib, Ian H; Kross, Ethan; McIntosh, Anthony R; Strother, Stephen; Wilson, Nicole L; Zayas, Vivian; Mischel, Walter; Shoda, Yuichi; Jonides, John
2013-01-01
The ability to delay gratification in childhood has been linked to positive outcomes in adolescence and adulthood. Here we examine a subsample of participants from a seminal longitudinal study of self-control throughout a subject's life span. Self-control, first studied in children at age 4 years, is now re-examined 40 years later, on a task that required control over the contents of working memory. We examine whether patterns of brain activation on this task can reliably distinguish participants with consistently low and high self-control abilities (low versus high delayers). We find that low delayers recruit significantly higher-dimensional neural networks when performing the task compared with high delayers. High delayers are also more homogeneous as a group in their neural patterns compared with low delayers. From these brain patterns, we can predict with 71% accuracy, whether a participant is a high or low delayer. The present results suggest that dimensionality of neural networks is a biological predictor of self-control abilities.
Vlad, Marcel Ovidiu; Ross, John
2002-12-01
We introduce a general method for the systematic derivation of nonlinear reaction-diffusion equations with distributed delays. We study the interactions among different types of moving individuals (atoms, molecules, quasiparticles, biological organisms, etc). The motion of each species is described by the continuous time random walk theory, analyzed in the literature for transport problems, whereas the interactions among the species are described by a set of transformation rates, which are nonlinear functions of the local concentrations of the different types of individuals. We use the time interval between two jumps (the transition time) as an additional state variable and obtain a set of evolution equations, which are local in time. In order to make a connection with the transport models used in the literature, we make transformations which eliminate the transition time and derive a set of nonlocal equations which are nonlinear generalizations of the so-called generalized master equations. The method leads under different specified conditions to various types of nonlocal transport equations including a nonlinear generalization of fractional diffusion equations, hyperbolic reaction-diffusion equations, and delay-differential reaction-diffusion equations. Thus in the analysis of a given problem we can fit to the data the type of reaction-diffusion equation and the corresponding physical and kinetic parameters. The method is illustrated, as a test case, by the study of the neolithic transition. We introduce a set of assumptions which makes it possible to describe the transition from hunting and gathering to agriculture economics by a differential delay reaction-diffusion equation for the population density. We derive a delay evolution equation for the rate of advance of agriculture, which illustrates an application of our analysis.
Tomka, Tomas; Iber, Dagmar; Boareto, Marcelo
2018-04-24
The sculpturing of the vertebrate body plan into segments begins with the sequential formation of somites in the presomitic mesoderm (PSM). The rhythmicity of this process is controlled by travelling waves of gene expression. These kinetic waves emerge from coupled cellular oscillators and sweep across the PSM. In zebrafish, the oscillations are driven by autorepression of her genes and are synchronized via Notch signalling. Mathematical modelling has played an important role in explaining how collective properties emerge from the molecular interactions. Increasingly more quantitative experimental data permits the validation of those mathematical models, yet leads to increasingly more complex model formulations that hamper an intuitive understanding of the underlying mechanisms. Here, we review previous efforts, and design a mechanistic model of the her1 oscillator, which represents the experimentally viable her7;hes6 double mutant. This genetically simplified system is ideally suited to conceptually recapitulate oscillatory entrainment and travelling wave formation, and to highlight open questions. It shows that three key parameters, the autorepression delay, the juxtacrine coupling delay, and the coupling strength, are sufficient to understand the emergence of the collective period, the collective amplitude, and the synchronization of neighbouring Her1 oscillators. Moreover, two spatiotemporal time delay gradients, in the autorepression and in the juxtacrine signalling, are required to explain the collective oscillatory dynamics and synchrony of PSM cells. The highlighted developmental principles likely apply more generally to other developmental processes, including neurogenesis and angiogenesis. Copyright © 2018. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Pellett, Gerald L.; Vaden, Sarah N.; Wilson, Lloyd G.
2008-01-01
This paper describes, first, the top-down methodology used to define simple gaseous surrogate hydrocarbon (HC) fuel mixtures for a hypersonic scramjet combustion subtask of the HiFIRE program. It then presents new and updated Opposed Jet Burner (OJB) extinction-limit Flame Strength (FS) data obtained from laminar non-premixed HC vs. air counterflow diffusion flames at 1-atm, which follow from earlier investigations. FS represents a strain-induced extinction limit based on cross-section-average air jet velocity, U(sub air), that sustains combustion of a counter jet of gaseous fuel just before extinction. FS uniquely characterizes a kinetically limited fuel combustion rate. More generally, Applied Stress Rates (ASRs) at extinction (U(sub air) normalized by nozzle or tube diameter, D(sub n or t) can directly be compared with extinction limits determined numerically using either a 1-D or (preferably) a 2-D Navier Stokes simulation with detailed transport and finite rate chemistry. The FS results help to characterize and define three candidate surrogate HC fuel mixtures that exhibit a common FS 70% greater than for vaporized JP-7 fuel. These include a binary fuel mixture of 64% ethylene + 36% methane, which is our primary recommendation. It is intended to mimic the critical flameholding limit of a thermally- or catalytically-cracked JP-7 like fuel in HiFIRE scramjet combustion tests. Our supporting experimental results include: (1) An idealized kinetically-limited ASR reactivity scale, which represents maximum strength non-premixed flames for several gaseous and vaporized liquid HCs; (2) FS characterizations of Colket and Spadaccini s suggested ternary surrogate, of 60% ethylene + 30% methane + 10% n-heptane, which matches the ignition delay of a typical cracked JP fuel; (3) Data showing how our recommended binary surrogate, of 64% ethylene + 36% methane, has an identical FS; (4) Data that characterize an alternate surrogate of 44% ethylene + 56% ethane with identical FS and nearly equal molecular weights; this could be useful when systematically varying the fuel composition. However, the mixture liquefies at much lower pressure, which limits on-board storage of gaseous fuel; (5) Dynamic Flame Weakening results that show how oscillations in OJB input flow (and composition) can weaken (extinguish) surrogate flames up to 200 Hz, but the weakening is 2.5x smaller compared to pure methane; and finally, (6) FS limits at 1-atm that compare with three published 1-D numerical OJB extinction results using four chemical kinetic models. The methane kinetics generally agree closely at 1-atm, whereas, the various ethylene models predict extinction limits that average 45% high, which represents a significant problem for numerical simulation of surrogate-based flameholding in a scramjet cavity. Finally, we continue advocating the FS approach as more direct and fundamental for assessing idealized scramjet flameholding potentials than measurements of "unstrained" premixed laminar burning velocity or blowout in a Perfectly Stirred Reactor.
Addessi, Elsa; Paglieri, Fabio; Beran, Michael J.; Evans, Theodore A.; Macchitella, Luigi; De Petrillo, Francesca; Focaroli, Valentina
2013-01-01
Delaying gratification involves two components: (i) delay choice (selecting a delayed reward over an immediate one), and (ii) delay maintenance (sustaining the decision to delay gratification even if the immediate reward is available during the delay). In primates, two tasks most commonly have explored these components, the Intertemporal choice task and the Accumulation task. It is unclear whether these tasks provide equivalent measures of delay of gratification. Here, we compared the performance of the same capuchin monkeys, belonging to two study populations, between these tasks. We found only limited evidence of a significant correlation in performance. Consequently, in contrast to what is often assumed, our data provide only partial support to the hypothesis that these tasks provide equivalent measures of delay of gratification. PMID:23544770
Integrated and spectral energetics of the GLAS general circulation model
NASA Technical Reports Server (NTRS)
Tenenbaum, J.
1981-01-01
Integrated and spectral error energetics of the Goddard Laboratory for Atmospheric Sciences (GLAS) general circulation model are compared with observations for periods in January 1975, 1976, and 1977. For two cases the model shows significant skill in predicting integrated energetics quantities out to two weeks, and for all three cases, the integrated monthly mean energetics show qualitative improvements over previous versions of the model in eddy kinetic energy and barotropic conversions. Fundamental difficulties remain with leakage of energy to the stratospheric level. General circulation model spectral energetics predictions are compared with the corresponding observational spectra on a day by day basis. Eddy kinetic energy can be correct while significant errors occur in the kinetic energy of wavenumber three. Single wavenumber dominance in eddy kinetic energy and the correlation of spectral kinetic and potential energy are demonstrated.
Comparative evaluation of adsorption kinetics of diclofenac and isoproturon by activated carbon.
Torrellas, Silvia A; Rodriguez, Araceli R; Escudero, Gabriel O; Martín, José María G; Rodriguez, Juan G
2015-01-01
Adsorption mechanism of diclofenac and isoproturon onto activated carbon has been proposed using Langmuir and Freundlich isotherms. Adsorption capacity and optimum adsorption isotherms were predicted by nonlinear regression method. Different kinetic equations, pseudo-first-order, pseudo-second-order, intraparticle diffusion model and Bangham kinetic model, were applied to study the adsorption kinetics of emerging contaminants on activated carbon in two aqueous matrices.
Huskinson, Sally L; Myerson, Joel; Green, Leonard; Rowlett, James K; Woolverton, William L; Freeman, Kevin B
2016-12-01
Huskinson et al. (2015) recently examined delay discounting in monkeys choosing between an immediate drug (cocaine) reinforcer and a delayed nondrug (food) reinforcer. The present experiment examined the reverse situation: choice between immediate nondrug (food) and delayed drug (cocaine) reinforcers. Whereas the former choice situation exemplifies drug abuse from a delay-discounting perspective, our interest in the latter choice situation is derived from the observation that drug abusers, who characteristically are associated with impulsive choice, typically must devote considerable time to procuring drugs, often at the expense of immediate nondrug alternatives. Accordingly, we analyzed 3 male rhesus monkeys' choices between immediate food and delayed cocaine (0.1 and 0.2 mg/kg/injection) using a hyperbolic model that allowed us to compare discounting rates between qualitatively different reinforcers. Choice of immediate food increased with food amount, and choice functions generally shifted leftward as delay to cocaine increased, indicating a decrease in the subjective value of cocaine. Compared with our previous delay-discounting experiment with immediate cocaine versus delayed food, both doses of delayed cocaine were discounted at a shallow rate. The present results demonstrate that rhesus monkeys will tolerate relatively long delays in an immediate-food versus delayed-drug situation, suggesting that in intertemporal choices between cocaine and food, the subjective value of cocaine is less affected by the delay until reinforcement than is the subjective value of delayed food. More generally, the present findings suggest that although drug abusers may choose impulsively when immediate drug reinforcement is available, they exercise self-control in the acquisition of a highly preferred, delayed drug reinforcer. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Steady state plasma [3H]-noradrenaline kinetics in quadriplegic chronic spinal cord injury patients.
Krum, H; Brown, D J; Rowe, P R; Louis, W J; Howes, L G
1990-08-01
1. Steady state plasma noradrenaline kinetics were measured in eight male quadriplegic patients and in eight age and sex matched controls. 2. Plasma noradrenaline levels were significantly lower in quadriplegic patients compared to controls. Noradrenaline spillover rate was markedly reduced in quadriplegics compared to controls while noradrenaline clearance was similar in both groups. 3. Noradrenaline kinetics in quadriplegic patients differ from peripheral autonomic neuropathy patients where reductions in both the spillover and clearance of noradrenaline are present.
Hooper, Stuart B; Crossley, Kelly J; Zahra, Valerie A; van Vonderen, Jeroen; Moxham, Alison; Gill, Andrew W; Kluckow, Martin; Te Pas, Arjan B; Wallace, Euan M; Polglase, Graeme R
2017-07-01
While delayed umbilical cord clamping (UCC) is thought to facilitate placental to infant blood transfusion, the physiological factors regulating flow in the umbilical arteries and veins during delayed UCC is unknown. We investigated the effects of gravity, by changing fetal height relative to the placenta, and ventilation on umbilical blood flows and the cardiovascular transition during delayed UCC at birth. Catheters and flow probes were implanted into preterm lambs (128 days) prior to delivery to measure pulmonary, carotid, umbilical artery (UaBF) and umbilical venous (UvBF) blood flows. Lambs were placed either 10 cm below or 10 cm above the ewe. Ventilation commenced 2-3 min before UCC and continued for 30 min after UCC. Gravity reduced umbilical and cerebral flows when lambs were placed below the midline, but the reduction in UaBF and UvBF was similar. Ventilation during delayed UCC reduced UvBF and UaBF by similar amounts, irrespective of the lamb's position, such that flows into and out of the placenta remained balanced. The effects of ventilation on umbilical flows were much greater than the effects of gravity, but no net placental to lamb blood transfusion could be detected under any condition. Cardiovascular parameters, cerebral oxygen kinetics and final blood volumes were similar in both groups 5 min after UCC. Gravity caused small transient effects on umbilical and cerebral flow, but given changes were similar in umbilical arteries and veins, no net placental transfusion was detected. Ventilation during delayed UCC has a markedly greater influence on cardiovascular function in the newborn. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Punt, Ilona M; Ziltener, Jean-Luc; Laidet, Magali; Armand, Stéphane; Allet, Lara
2015-01-01
To assess ankle function 4 weeks after conservative management and to examine the correlation of function with gait. A prospective comparison study. Thirty patients with grade I or II acute ankle sprains were followed up after 4 weeks of conservative management not involving physical therapy. Participants underwent a clinical assessment and had to walk at a normal self-selected walking speed. Their results were compared with the data of 15 healthy subjects. Participants' joint swelling, muscle strength, passive mobility, and pain were assessed. In addition, patients' temporal-spatial, kinematic, and kinetic gait data were measured while walking. Muscle strength and passive mobility were significantly reduced on the injured side compared with the noninjured side (P < .001). During gait analysis, patients with ankle sprains showed slower walking speed, shorter step length, shorter single support time, reduced and delayed maximum plantar flexion, decreased maximum power, and decreased maximum moment (P < .050) compared with healthy persons. Decreased walking speed was mainly correlated with pain (R = -0.566, P = .001) and deficits in muscle strength of dorsiflexors (R = 0.506, P = .004). Four weeks after an ankle sprain, patients who did not receive physical therapy showed physical impairments of the ankle that were correlated with gait parameters. These findings might help fine-tune rehabilitation protocols. Copyright © 2015 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Plante, Benoît; Benzaazoua, Mostafa; Bussière, Bruno; Kandji, El-Hadji-Babacar; Chopard, Aurélie; Bouzahzah, Hassan
2015-05-01
The tools developed for acid mine drainage (AMD) prediction were proven unsuccessful to predict the geochemical behavior of mine waste rocks having a significant chemical sorption capacity, which delays the onset of contaminated neutral drainage (CND). The present work was performed in order to test a new approach of water quality prediction, by using a chelating agent solution (0.03 M EDTA, or ethylenediaminetetraacetic acid) in kinetic testing used for the prediction of the geochemical behavior of geologic material. The hypothesis underlying the proposed approach is that the EDTA solution should chelate the metals as soon as they are released by sulfide oxidation, inhibiting their sorption or secondary precipitation, and therefore reproduce a worst-case scenario where very low metal attenuation mechanisms are present in the drainage waters. Fresh and weathered waste rocks from the Lac Tio mine (Rio tinto, Iron and Titanium), which are known to generate Ni-CND at the field scale, were submitted to small-scale humidity cells in control tests (using deionized water) and using an EDTA solution. Results show that EDTA effectively prevents the metals to be sorbed or to precipitate as secondary minerals, therefore enabling to bypass the delay associated with metal sorption in the prediction of water quality from these materials. This work shows that the use of a chelating agent solution is a promising novel approach of water quality prediction and provides general guidelines to be used in further studies, which will help both practitioners and regulators to plan more efficient management and disposal strategies of mine wastes.
Postoperative enhancement on breast MRI: Time course and pattern of changes.
Mahoney, Mary C; Sharda, Radhika G
2018-04-23
Expected postoperative enhancement on breast MRI can appear similar to enhancement seen in recurrent or residual malignancy. Our aim was to assess the time course and patterns of enhancement at the surgical site, thereby helping to distinguish between benign and malignant postoperative enhancement. In 200 MRI scans performed in 153 patients after breast conservation treatment, 43 after surgical excision of atypia, and 4 patients after benign excisional biopsy were categorized by postoperative time interval. We defined 4 patterns of morphologic enhancement on MRI: cavity wall/seroma (Pattern I); thin linear (Pattern II); mass (Pattern III); and fat necrosis (Pattern IV). Of 200 MRI scans, 66 (33%) demonstrated enhancement at the surgical site. Enhancement typically decreased through the postoperative follow-up period. Enhancement was observed in 41% (28/68) of cases beyond the 18-month interval but was uncommon after 5 years. Pattern III enhancement was the morphologic pattern seen most commonly with malignancy (5/19 cases, 26%). When associated with delayed washout kinetics, it was even more strongly predictive of malignancy (4/5 cases, 80%). In patients with a history of excisional biopsy and no prior radiation treatment, the percentage of MRI scans showing enhancement was significantly lower than (21% vs 49% with P-value .0027) in patients who had undergone radiation. Enhancement at the surgical site occurred in one-third of cases up to 5 years after surgery, particularly in patients who underwent both radiation and surgery. Mass enhancement, particularly in conjunction with delayed washout kinetics, is most predictive of malignancy and should prompt biopsy or re-excision. © 2018 Wiley Periodicals, Inc.
Chemical kinetic simulation of kerosene combustion in an individual flame tube.
Zeng, Wen; Liang, Shuang; Li, Hai-Xia; Ma, Hong-An
2014-05-01
The use of detailed chemical reaction mechanisms of kerosene is still very limited in analyzing the combustion process in the combustion chamber of the aircraft engine. In this work, a new reduced chemical kinetic mechanism for fuel n-decane, which selected as a surrogate fuel for kerosene, containing 210 elemental reactions (including 92 reversible reactions and 26 irreversible reactions) and 50 species was developed, and the ignition and combustion characteristics of this fuel in both shock tube and flat-flame burner were kinetic simulated using this reduced reaction mechanism. Moreover, the computed results were validated by experimental data. The calculated values of ignition delay times at pressures of 12, 50 bar and equivalence ratio is 1.0, 2.0, respectively, and the main reactants and main products mole fractions using this reduced reaction mechanism agree well with experimental data. The combustion processes in the individual flame tube of a heavy duty gas turbine combustor were simulated by coupling this reduced reaction mechanism of surrogate fuel n-decane and one step reaction mechanism of surrogate fuel C12H23 into the computational fluid dynamics software. It was found that this reduced reaction mechanism is shown clear advantages in simulating the ignition and combustion processes in the individual flame tube over the one step reaction mechanism.
Chemical kinetic simulation of kerosene combustion in an individual flame tube
Zeng, Wen; Liang, Shuang; Li, Hai-xia; Ma, Hong-an
2013-01-01
The use of detailed chemical reaction mechanisms of kerosene is still very limited in analyzing the combustion process in the combustion chamber of the aircraft engine. In this work, a new reduced chemical kinetic mechanism for fuel n-decane, which selected as a surrogate fuel for kerosene, containing 210 elemental reactions (including 92 reversible reactions and 26 irreversible reactions) and 50 species was developed, and the ignition and combustion characteristics of this fuel in both shock tube and flat-flame burner were kinetic simulated using this reduced reaction mechanism. Moreover, the computed results were validated by experimental data. The calculated values of ignition delay times at pressures of 12, 50 bar and equivalence ratio is 1.0, 2.0, respectively, and the main reactants and main products mole fractions using this reduced reaction mechanism agree well with experimental data. The combustion processes in the individual flame tube of a heavy duty gas turbine combustor were simulated by coupling this reduced reaction mechanism of surrogate fuel n-decane and one step reaction mechanism of surrogate fuel C12H23 into the computational fluid dynamics software. It was found that this reduced reaction mechanism is shown clear advantages in simulating the ignition and combustion processes in the individual flame tube over the one step reaction mechanism. PMID:25685503
Ma, Xiao; Bibby, Kyle
2017-09-01
Fungi are near-ubiquitous in potable water distribution systems, but the disinfection kinetics of commonly identified fungi are poorly studied. In the present study, laboratory scale experiments were conducted to evaluate the inactivation kinetics of Aspergillus fumigatus, Aspergillus versicolor, and Penicillium purpurogenum by free chlorine and monochloramine. The observed inactivation data were then fit to a delayed Chick-Watson model. Based on the model parameter estimation, the Ct values (integrated product of disinfectant concentration C and contact time t over defined time intervals) for 99.9% inactivation of the tested fungal strains ranged from 48.99 mg min/L to 194.7 mg min/L for free chlorine and from 90.33 mg min/L to 531.3 mg min/L for monochloramine. Fungal isolates from a drinking water system (Aspergillus versicolor and Penicillium purpurogenum) were more disinfection resistant than Aspergillus fumigatus type and clinical isolates. The required 99.9% inactivation Ct values for the tested fungal strains are higher than E. coli, a commonly monitored indicator bacteria, and within a similar range for bacteria commonly identified within water distribution systems, such as Mycobacterium spp. and Legionella spp. Copyright © 2017 Elsevier Ltd. All rights reserved.
The new double energy-velocity spectrometer VERDI
NASA Astrophysics Data System (ADS)
Jansson, Kaj; Frégeau, Marc Olivier; Al-Adili, Ali; Göök, Alf; Gustavsson, Cecilia; Hambsch, Franz-Josef; Oberstedt, Stephan; Pomp, Stephan
2017-09-01
VERDI (VElocity foR Direct particle Identification) is a fission-fragment spectrometer recently put into operation at JRC-Geel. It allows measuring the kinetic energy and velocity of both fission fragments simultaneously. The velocity provides information about the pre-neutron mass of each fission fragment when isotropic prompt-neutron emission from the fragments is assumed. The kinetic energy, in combination with the velocity, provides the post-neutron mass. From the difference between pre- and post-neutron masses, the number of neutrons emitted by each fragment can be determined. Multiplicity as a function of fragment mass and total kinetic energy is one important ingredient, essential for understanding the sharing of excitation energy between fission fragments at scission, and may be used to benchmark nuclear de-excitation models. The VERDI spectrometer design is a compromise between geometrical efficiency and mass resolution. The spectrometer consists of an electron detector located close to the target and two arrays of silicon detectors, each located 50 cm away from the target. In the present configuration pre-neutron and post-neutron mass distributions are in good agreement with reference data were obtained. Our latest measurements performed with spontaneously fissioning 252Cf is presented along with the developed calibration procedure to obtain pulse height defect and plasma delay time corrections.
ERIC Educational Resources Information Center
Shin, Jin Y.; Nhan, Nguyen Viet
2009-01-01
Background: The study examined whether Vietnamese mothers of children with cognitive delay experienced more parenting stress compared to mothers of children without delay, and the factors that contribute to the parenting stress. Method: The study sample included 225 mothers of children with and without cognitive delays from Hue City in Vietnam.…
Slavinskaya, N. A.; Abbasi, M.; Starcke, J. H.; ...
2017-01-24
An automated data-centric infrastructure, Process Informatics Model (PrIMe), was applied to validation and optimization of a syngas combustion model. The Bound-to-Bound Data Collaboration (B2BDC) module of PrIMe was employed to discover the limits of parameter modifications based on uncertainty quantification (UQ) and consistency analysis of the model–data system and experimental data, including shock-tube ignition delay times and laminar flame speeds. Existing syngas reaction models are reviewed, and the selected kinetic data are described in detail. Empirical rules were developed and applied to evaluate the uncertainty bounds of the literature experimental data. Here, the initial H 2/CO reaction model, assembled frommore » 73 reactions and 17 species, was subjected to a B2BDC analysis. For this purpose, a dataset was constructed that included a total of 167 experimental targets and 55 active model parameters. Consistency analysis of the composed dataset revealed disagreement between models and data. Further analysis suggested that removing 45 experimental targets, 8 of which were self-inconsistent, would lead to a consistent dataset. This dataset was subjected to a correlation analysis, which highlights possible directions for parameter modification and model improvement. Additionally, several methods of parameter optimization were applied, some of them unique to the B2BDC framework. The optimized models demonstrated improved agreement with experiments compared to the initially assembled model, and their predictions for experiments not included in the initial dataset (i.e., a blind prediction) were investigated. The results demonstrate benefits of applying the B2BDC methodology for developing predictive kinetic models.« less
Delval, A; Krystkowiak, P; Blatt, J-L; Labyt, E; Destée, A; Derambure, P; Defebvre, L
2005-01-01
Preparation of upper-limb movements differs between self-paced and triggered conditions. This study analyzed the anticipatory postural adjustments (APAs) of gait initiation in normal subjects in 2 conditions: self-generated and triggered by a "beep" sound. We recorded kinematic, spatiotemporal parameters of the first two steps by means of video motion analysis (6 infrared cameras), and kinetic parameters (using a force platform and the optoelectronic system) in 20 normal subjects. Two conditions: 1) self-generated initiation; and 2) initiation triggered by a "beep" sound were studied to evaluate the APA phase, by recording kinetic data (duration of the APAs, trajectory of the center of pressure, speed and trajectory of the center of mass). Kinematic data (first and second step speed, length and duration) were also recorded. First step speed and length were increased in self-paced gait initiation compared to triggered gait initiation in controls. We found no difference between the 2 conditions in terms of second step kinematic data. It was caused by a significant difference between the 2 conditions for the temporal characteristics of anticipatory postural adjustments (APAs) in the initiation of the first step, which was longer when normal subjects performed self-generated gait initiation. The trajectory of center of pressure and center of mass remained the same in the 2 conditions. APAs of gait initiation process are delayed under self-paced condition, although they do not differ qualitatively between reaction time and self-paced condition. Neuphysiological support of self-generated movement could explain these differences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slavinskaya, N. A.; Abbasi, M.; Starcke, J. H.
An automated data-centric infrastructure, Process Informatics Model (PrIMe), was applied to validation and optimization of a syngas combustion model. The Bound-to-Bound Data Collaboration (B2BDC) module of PrIMe was employed to discover the limits of parameter modifications based on uncertainty quantification (UQ) and consistency analysis of the model–data system and experimental data, including shock-tube ignition delay times and laminar flame speeds. Existing syngas reaction models are reviewed, and the selected kinetic data are described in detail. Empirical rules were developed and applied to evaluate the uncertainty bounds of the literature experimental data. Here, the initial H 2/CO reaction model, assembled frommore » 73 reactions and 17 species, was subjected to a B2BDC analysis. For this purpose, a dataset was constructed that included a total of 167 experimental targets and 55 active model parameters. Consistency analysis of the composed dataset revealed disagreement between models and data. Further analysis suggested that removing 45 experimental targets, 8 of which were self-inconsistent, would lead to a consistent dataset. This dataset was subjected to a correlation analysis, which highlights possible directions for parameter modification and model improvement. Additionally, several methods of parameter optimization were applied, some of them unique to the B2BDC framework. The optimized models demonstrated improved agreement with experiments compared to the initially assembled model, and their predictions for experiments not included in the initial dataset (i.e., a blind prediction) were investigated. The results demonstrate benefits of applying the B2BDC methodology for developing predictive kinetic models.« less
Rall, Melanie; Kraft, Daniela; Volcic, Meta; Cucu, Aljona; Nasonova, Elena; Taucher-Scholz, Gisela; Bönig, Halvard; Wiesmüller, Lisa; Fournier, Claudia
2015-01-01
Ionizing radiation generates DNA double-strand breaks (DSB) which, unless faithfully repaired, can generate chromosomal rearrangements in hematopoietic stem and/or progenitor cells (HSPC), potentially priming the cells towards a leukemic phenotype. Using an enhanced green fluorescent protein (EGFP)-based reporter system, we recently identified differences in the removal of enzyme-mediated DSB in human HSPC versus mature peripheral blood lymphocytes (PBL), particularly regarding homologous DSB repair (HR). Assessment of chromosomal breaks via premature chromosome condensation or γH2AX foci indicated similar efficiency and kinetics of radiation-induced DSB formation and rejoining in PBL and HSPC. Prolonged persistence of chromosomal breaks was observed for higher LET charged particles which are known to induce more complex DNA damage compared to X-rays. Consistent with HR deficiency in HSPC observed in our previous study, we noticed here pronounced focal accumulation of 53BP1 after X-ray and carbon ion exposure (intermediate LET) in HSPC versus PBL. For higher LET, 53BP1 foci kinetics was similarly delayed in PBL and HSPC suggesting similar failure to repair complex DNA damage. Data obtained with plasmid reporter systems revealed a dose- and LET-dependent HR increase after X-ray, carbon ion and higher LET exposure, particularly in HR-proficient immortalized and primary lymphocytes, confirming preferential use of conservative HR in PBL for intermediate LET damage repair. HR measured adjacent to the leukemia-associated MLL breakpoint cluster sequence in reporter lines revealed dose dependency of potentially leukemogenic rearrangements underscoring the risk of leukemia-induction by radiation treatment. PMID:26618143
Jost, Ricarda; Pharmawati, Made; Lapis-Gaza, Hazel R.; Rossig, Claudia; Berkowitz, Oliver; Lambers, Hans; Finnegan, Patrick M.
2015-01-01
Phosphite is a less oxidized form of phosphorus than phosphate. Phosphite is considered to be taken up by the plant through phosphate transporters. It can mimic phosphate to some extent, but it is not metabolized into organophosphates. Phosphite could therefore interfere with phosphorus signalling networks. Typical physiological and transcriptional responses to low phosphate availability were investigated and the short-term kinetics of their reversion by phosphite, compared with phosphate, were determined in both roots and shoots of Arabidopsis thaliana. Phosphite treatment resulted in a strong growth arrest. It mimicked phosphate in causing a reduction in leaf anthocyanins and in the expression of a subset of the phosphate-starvation-responsive genes. However, the kinetics of the response were slower than for phosphate, which may be due to discrimination against phosphite by phosphate transporters PHT1;8 and PHT1;9 causing delayed shoot accumulation of phosphite. Transcripts encoding PHT1;7, lipid-remodelling enzymes such as SQD2, and phosphocholine-producing NMT3 were highly responsive to phosphite, suggesting their regulation by a direct phosphate-sensing network. Genes encoding components associated with the ‘PHO regulon’ in plants, such as At4, IPS1, and PHO1;H1, generally responded more slowly to phosphite than to phosphate, except for SPX1 in roots and MIR399d in shoots. Two uncharacterized phosphate-responsive E3 ligase genes, PUB35 and C3HC4, were also highly phosphite responsive. These results show that phosphite is a valuable tool to identify network components directly responsive to phosphate. PMID:25697796
Zins, Stephen R; Amare, Mihret F; Tadaki, Douglas K; Elster, Eric A; Davis, Thomas A
2010-12-01
Impaired wound healing is a persistent clinical problem which has been treated with mixed results. Studies aimed at elucidating the mechanism of impaired wound healing have focused on small cohorts of genes which leave an incomplete picture of the wound healing process. We aimed to investigate impaired wound healing via a comprehensive panel of angiogenic/inflammation-related genes and wound closure kinetics with and without the application of extracorporeal shock wave therapy (ESWT), which has been demonstrated to improve wound healing. Full-thickness skin from the dorsal surface of "normal" (BALB/c) and "impaired" (db (+)/db (+)) mice was excised, and wound margin tissue was harvested 2, 7, and 10 days post injury. A separate, but identical wound model was established over 40 days in order to measure wound closure kinetics. Over time, the normal non-ESWT treated wounds exhibited varying patterns of elevated expression of 25-30 genes, whereas wounds with impaired healing displayed prolonged elevated expression of only a few genes (CXCL2, CXCL5, CSF3, MMP9, TGF-α). In response to ESWT, gene expression was augmented in both types of wounds, especially in the expression of PECAM-1; however, ESWT had no effect on wound closure in either model. In addition, multiple doses of ESWT exacerbated the delayed wound healing, and actually caused the wounds to initially increase in size. These data provide a more complete picture of impaired wound healing, and a way to evaluate various promising treatments.
Thermal analysis and kinetics of coal during oxy-fuel combustion
NASA Astrophysics Data System (ADS)
Kosowska-Golachowska, Monika
2017-08-01
The pyrolysis and oxy-fuel combustion characteristics of Polish bituminous coal were studied using non-isothermal thermogravimetric analysis. Pyrolysis tests showed that the mass loss profiles were almost similar up to 870°C in both N2 and CO2 atmospheres, while further mass loss occurred in CO2 atmosphere at higher temperatures due to char-CO2 gasification. Replacement of N2 in the combustion environment by CO2 delayed the combustion of bituminous coal. At elevated oxygen levels, TG/DTG profiles shifted through lower temperature zone, ignition and burnout temperatures decreased and mass loss rate significantly increased and complete combustion was achieved at lower temperatures and shorter times. Kinetic analysis for the tested coal was performed using Kissinger-Akahira-Sunose (KAS) method. The activation energies of bituminous coal combustion at the similar oxygen content in oxy-fuel with that of air were higher than that in air atmosphere. The results indicated that, with O2 concentration increasing, the activation energies decreased.
NASA Astrophysics Data System (ADS)
Thionnet, A.; Chou, H. Y.; Bunsell, A.
2015-04-01
The purpose of these three papers is not to just revisit the modelling of unidirectional composites. It is to provide a robust framework based on physical processes that can be used to optimise the design and long term reliability of internally pressurised filament wound structures. The model presented in Part 1 for the case of monotonically loaded unidirectional composites is further developed to consider the effects of the viscoelastic nature of the matrix in determining the kinetics of fibre breaks under slow or sustained loading. It is shown that the relaxation of the matrix around fibre breaks leads to locally increasing loads on neighbouring fibres and in some cases their delayed failure. Although ultimate failure is similar to the elastic case in that clusters of fibre breaks ultimately control composite failure the kinetics of their development varies significantly from the elastic case. Failure loads have been shown to reduce when loading rates are lowered.
Ultrafast X-ray Auger probing of photoexcited molecular dynamics
McFarland, B. K.; Farrell, J. P.; Miyabe, S.; ...
2014-06-23
Here, molecules can efficiently and selectively convert light energy into other degrees of freedom. Disentangling the underlying ultrafast motion of electrons and nuclei of the photoexcited molecule presents a challenge to current spectroscopic approaches. Here we explore the photoexcited dynamics of molecules by an interaction with an ultrafast X-ray pulse creating a highly localized core hole that decays via Auger emission. We discover that the Auger spectrum as a function of photoexcitation—X-ray-probe delay contains valuable information about the nuclear and electronic degrees of freedom from an element-specific point of view. For the nucleobase thymine, the oxygen Auger spectrum shifts towardsmore » high kinetic energies, resulting from a particular C–O bond stretch in the ππ* photoexcited state. A subsequent shift of the Auger spectrum towards lower kinetic energies displays the electronic relaxation of the initial photoexcited state within 200 fs. Ab-initio simulations reinforce our interpretation and indicate an electronic decay to the nπ* state.« less
Homogeneous crystal nucleation in Ni droplets
NASA Astrophysics Data System (ADS)
Kožíšek, Zdeněk; Demo, Pavel
2017-10-01
Crystal nucleation kinetics is often represented by induction times or metastable zone widths (Kulkarni et al., 2013; Bokeloh et al., 2011). Repeating measurements of supercooling or time delay, at which phase transition is detected, are statistically processed to determine the so-called survivorship function, from which nucleation rate is computed. The size distribution of nuclei is difficult to measure near the critical size directly, and it is not clear which amount of nuclei is formed at the moment when the phase transition is detected. In the present paper, kinetic nucleation equations are solved for the crystal nucleation in Ni liquid droplet to determine the number of nuclei formed within a considered system. Analysis of supercooling experimental data, based on the classical nucleation theory CNT), computes appropriate values of the nucleation rate. However, CNT underestimates the number of nuclei F (F ≪ 1 for supercritical sizes). Taking into account the dependence of the surface energy on nucleus size to data analysis overcomes this discrepancy and leads to reasonable values of the size distribution of nuclei.
Elbourkadi, Najoua; Austad, Steven N; Miller, Richard A
2014-04-01
Fibroblasts from long-lived mutant mice show diminished phosphorylation of the stress-activated protein kinases ERK1/2 after exposure to peroxide, cadmium, or paraquat. We have now evaluated the kinetics of ERK phosphorylation in fibroblasts from long-lived and short-lived species of mammals and birds in response to stress by cadmium or hydrogen peroxide. Fibroblasts from the shorter-lived species of rodents and birds showed rapid induction of ERK phosphorylation, with a decline to basal level within 60 min. In contrast, cells from longer-lived species showed slower and more prolonged activation of ERK phosphorylation. These results suggest that fibroblasts from long-lived species may be less susceptible to the early phases of damage from cadmium or peroxide and suggest that altered kinetics of ERK activity may contribute to their stress resistance properties. © 2013 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Koschate, J; Drescher, U; Thieschäfer, L; Heine, O; Baum, K; Hoffmann, U
2016-12-01
This study aims to compare cardiorespiratory kinetics as a response to a standardised work rate protocol with pseudo-random binary sequences between cycling and walking in young healthy subjects. Muscular and pulmonary oxygen uptake (V̇O 2 ) kinetics as well as heart rate kinetics were expected to be similar for walking and cycling. Cardiac data and V̇O 2 of 23 healthy young subjects were measured in response to pseudo-random binary sequences. Kinetics were assessed applying time series analysis. Higher maxima of cross-correlation functions between work rate and the respective parameter indicate faster kinetics responses. Muscular V̇O 2 kinetics were estimated from heart rate and pulmonary V̇O 2 using a circulatory model. Muscular (walking vs. cycling [mean±SD in arbitrary units]: 0.40±0.08 vs. 0.41±0.08) and pulmonary V̇O 2 kinetics (0.35±0.06 vs. 0.35±0.06) were not different, although the time courses of the cross-correlation functions of pulmonary V̇O 2 showed unexpected biphasic responses. Heart rate kinetics (0.50±0.14 vs. 0.40±0.14; P=0.017) was faster for walking. Regarding the biphasic cross-correlation functions of pulmonary V̇O 2 during walking, the assessment of muscular V̇O 2 kinetics via pseudo-random binary sequences requires a circulatory model to account for cardio-dynamic distortions. Faster heart rate kinetics for walking should be considered by comparing results from cycle and treadmill ergometry. © Georg Thieme Verlag KG Stuttgart · New York.
A COMPARISON OF THE EFFECTS OF BRIEF RULES, A TIMER, AND PREFERRED TOYS ON SELF-CONTROL
Newquist, Matthew H; Dozier, Claudia L; Neidert, Pamela L
2012-01-01
Some children make impulsive choices (i.e., choose a small but immediate reinforcer over a large but delayed reinforcer). Previous research has shown that delay fading, providing an alternative activity during the delay, teaching participants to repeat a rule during the delay, combining delay fading with an alternative activity, and combining delay fading with a countdown timer are effective for increasing self-control (i.e., choosing the large but delayed reinforcer over the small but immediate reinforcer). The purpose of the current study was to compare the effects of various interventions in the absence of delay fading (i.e., providing brief rules, providing a countdown timer during the delay, or providing preferred toys during the delay) on self-control. Results suggested that providing brief rules or a countdown timer during the delay was ineffective for enhancing self-control. However, providing preferred toys during the delay effectively enhanced self-control. PMID:23060664
A comparison of the effects of brief rules, a timer, and preferred toys on self-control.
Newquist, Matthew H; Dozier, Claudia L; Neidert, Pamela L
2012-01-01
Some children make impulsive choices (i.e., choose a small but immediate reinforcer over a large but delayed reinforcer). Previous research has shown that delay fading, providing an alternative activity during the delay, teaching participants to repeat a rule during the delay, combining delay fading with an alternative activity, and combining delay fading with a countdown timer are effective for increasing self-control (i.e., choosing the large but delayed reinforcer over the small but immediate reinforcer). The purpose of the current study was to compare the effects of various interventions in the absence of delay fading (i.e., providing brief rules, providing a countdown timer during the delay, or providing preferred toys during the delay) on self-control. Results suggested that providing brief rules or a countdown timer during the delay was ineffective for enhancing self-control. However, providing preferred toys during the delay effectively enhanced self-control.
Effects of stochastic time-delayed feedback on a dynamical system modeling a chemical oscillator.
González Ochoa, Héctor O; Perales, Gualberto Solís; Epstein, Irving R; Femat, Ricardo
2018-05-01
We examine how stochastic time-delayed negative feedback affects the dynamical behavior of a model oscillatory reaction. We apply constant and stochastic time-delayed negative feedbacks to a point Field-Körös-Noyes photosensitive oscillator and compare their effects. Negative feedback is applied in the form of simulated inhibitory electromagnetic radiation with an intensity proportional to the concentration of oxidized light-sensitive catalyst in the oscillator. We first characterize the system under nondelayed inhibitory feedback; then we explore and compare the effects of constant (deterministic) versus stochastic time-delayed feedback. We find that the oscillatory amplitude, frequency, and waveform are essentially preserved when low-dispersion stochastic delayed feedback is used, whereas small but measurable changes appear when a large dispersion is applied.
Effects of stochastic time-delayed feedback on a dynamical system modeling a chemical oscillator
NASA Astrophysics Data System (ADS)
González Ochoa, Héctor O.; Perales, Gualberto Solís; Epstein, Irving R.; Femat, Ricardo
2018-05-01
We examine how stochastic time-delayed negative feedback affects the dynamical behavior of a model oscillatory reaction. We apply constant and stochastic time-delayed negative feedbacks to a point Field-Körös-Noyes photosensitive oscillator and compare their effects. Negative feedback is applied in the form of simulated inhibitory electromagnetic radiation with an intensity proportional to the concentration of oxidized light-sensitive catalyst in the oscillator. We first characterize the system under nondelayed inhibitory feedback; then we explore and compare the effects of constant (deterministic) versus stochastic time-delayed feedback. We find that the oscillatory amplitude, frequency, and waveform are essentially preserved when low-dispersion stochastic delayed feedback is used, whereas small but measurable changes appear when a large dispersion is applied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Tiebang, E-mail: tiebangzhang@nwpu.edu.cn; Zhang, Yunlong; Li, Jinshan
2016-01-15
Alloy with composition of Zr{sub 0.9}Ti{sub 0.1}V{sub 1.7} off normal stoichiometric proportion is selected to investigate the effect of defects introduced by non-stoichiometry on hydrogenation kinetics of Zr–Ti–V Laves phase alloys. Microstructure and phase constituent of melt-spun ribbons have been investigated in this work. The activation process, hydrogenation kinetics, thermodynamics characteristics and hydride phase constituent of as-cast alloy and melt-spun ribbons are also compared. Comparing with the as-cast alloy, the dominant Laves phase ZrV{sub 2} is preserved, V-BCC phase is reduced and α-Zr phase is replaced by a small amount of Zr{sub 3}V{sub 3}O phase in melt-spun ribbons. Melt-spun ribbonsmore » exhibit easy activation and fast initial hydrogen absorption on account of the increased specific surface area. However, the decrease in unit cell volume of the dominant phase leads to the decrease in hydrogen absorption capacity. Melt-spinning technique raises the equilibrium pressure and decreases the stability of hydride due to the decrease of unit cell volume and the elimination of α-Zr phase, respectively. Melt-spun ribbons with fine grains show improved hydrogen absorption kinetics comparing with that of the as-cast alloy. Meanwhile, the prevalent micro twins observed within melt-spun ribbons are believed to account for the improved hydrogen absorption kinetics. - Highlights: • Role of defects on hydrogenation kinetics of Zr-based alloys is proposed. • Microstructure and hydrogenation properties of as-cast/melt-spun alloy are compared. • Melt-spinning technique improves the hydrogenation kinetics of Zr{sub 0.9}Ti{sub 0.1}V{sub 1.7} alloy. • Refined grains and twin defects account for improved hydrogen absorption kinetics.« less
Barwise, Amelia; Thongprayoon, Charat; Gajic, Ognjen; Jensen, Jeffrey; Herasevich, Vitaly; Pickering, Brian W
2016-01-01
To identify whether delays in rapid response team activation contributed to worse patient outcomes (mortality and morbidity). Retrospective observational cohort study including all rapid response team activations in 2012. Tertiary academic medical center. All those 18 years old or older who had a rapid response team call activated. Vital sign data were abstracted from individual patient electronic medical records for the 24 hours before the rapid response team activation took place. Patients were considered to have a delayed rapid response team activation if more than 1 hour passed between the first appearance in the record of an abnormal vital sign meeting rapid response team criteria and the activation of an rapid response team. None. A total of 1,725 patients were included in the analysis. Data were compared between those who had a delayed rapid response team activation and those who did not. Fifty seven percent patients met the definition of delayed rapid response team activation. Patients in high-frequency physiologic monitored environments were more likely to experience delay than their floor counterparts. In the no-delay group, the most common reasons for rapid response team activation were tachycardia/bradycardia at 29% (217/748), respiratory distress/low SpO2 at 28% (213/748), and altered level of consciousness at 23% (170/748) compared with respiratory distress/low SpO2 at 43% (423/977), tachycardia/bradycardia at 33% (327/977), and hypotension at 27% (261/977) in the delayed group. The group with no delay had a higher proportion of rapid response team calls between 8:00 and 16:00, whereas those with delay had a higher proportion of calls between midnight and 08:00. The delayed group had higher hospital mortality (15% vs 8%; adjusted odds ratio, 1.6; p = 0.005); 30-day mortality (20% vs 13%; adjusted odds ratio, 1.4; p = 0.02); and hospital length of stay (7 vs 6 d; relative prolongation, 1.10; p = 0.02) compared with the no-delay group. Delays in rapid response team activation occur frequently and are independently associated with worse patient mortality and morbidity outcomes.
Ekwochi, Uchenna; Ndu, Ikenna K; Osuorah, Chidiebere D I; Onah, Kenechi S; Obuoha, Ejike; Odetunde, Odutola I; Nwokoye, Ikenna; Obumneme-Anyim, Nnenne I; Okeke, Ifeyinwa B; Amadi, Ogechukwu F
2016-06-01
In most parts of the world, neonatal mortality rates have shown a slower decline when compared with under-5 mortality decline. A sick newborn can die within minutes if there is a delay in presentation, thus early diagnosis and treatment are essential for the survival of a critically ill newborn. This study investigated factors responsible for delays in healthcare services for the sick newborn and maternal socio-demographic variables that influence these delays in Enugu, South-East Nigeria. This was a community-based descriptive study. A total of 376 respondents were randomly selected from 4 of the 17 local government areas of Enugu State. Mothers and/or caregivers that were nursing or had nursed a child in the previous 2 years were enrolled. Self-reported data on delays encountered during healthcare for sick newborn were collected using pretested structured questionnaire. Chi-square and multivariate logistic regression were used to determine the association between causes of delays in newborn healthcare services, maternal socio-demographics and relationships with newborn mortality. Delays in reaching healthcare facilities accounted for the most common delays encountered by respondents, 78.0%, in this study, followed by delays at household level, 24.2% and delays at health facility level 16.0% (P = 0.000). Mothers with knowledge of ≥3 WHO recognized danger signs compared with those with ≤2 were significantly less likely to delay at household (level 1: 40.7 versus 59.3%) (P = 0.017) and reaching healthcare service (level 2: 19.9 versus 80.1%) (P = 0.028). Delays at health facility level (level 3) occurred more at tertiary health facilities (59.0%), secondary health facilities (39.1%) and primary healthcare facilities (19.7%) compared with private health facilities (13.5%) (P = 0.000). Delays in seeking healthcare at all levels especially those related to transporting the sick newborn to the hospital are a contributor to newborn mortality in Nigeria. Improving access to healthcare could potentially reduce mortality in the sick newborn. © The Author 2015. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Schulze-Luehrmann, Jan; Eckart, Rita A; Ölke, Martha; Saftig, Paul; Liebler-Tenorio, Elisabeth; Lührmann, Anja
2016-02-01
The obligate intracellular pathogen Coxiella burnetii replicates in a large phagolysosomal-like vacuole. Currently, both host and bacterial factors required for creating this replicative parasitophorous C. burnetii-containing vacuole (PV) are poorly defined. Here, we assessed the contributions of the most abundant proteins of the lysosomal membrane, LAMP-1 and LAMP-2, to the establishment and maintenance of the PV. Whereas these proteins were not critical for uptake of C. burnetii, they influenced the intracellular replication of C. burnetii. In LAMP-1/2 double-deficient fibroblasts as well as in LAMP-1/2 knock-down cells, C. burnetii establishes a significantly smaller, yet faster maturing vacuole, which harboured more bacteria. The accelerated maturation of PVs in LAMP double-deficient fibroblasts, which was partially or fully reversed by ectopic expression of LAMP-1 or LAMP-2, respectively, was characterized by an increased fusion rate with endosomes, lysosomes and bead-containing phagosomes, but not by different fusion kinetics with autophagy vesicles. These findings establish that LAMP proteins are critical for the maturation delay of PVs. Unexpectedly, neither the creation of the spacious vacuole nor the delay in maturation was found to be prerequisites for the intracellular replication of C. burnetii. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Shantz, N. C.; Pierce, J. R.; Chang, R. Y.-W.; Vlasenko, A.; Riipinen, I.; Sjostedt, S.; Slowik, J. G.; Wiebe, A.; Liggio, J.; Abbatt, J. P. D.; Leaitch, W. R.
2012-02-01
Evolution of the cloud condensation nucleus (CCN) activity of 36 ± 4 nm diameter anthropogenic aerosol particles at a water supersaturation of 1.0 ± 0.1% is examined for particle nucleation and growth. During the early stages of one event, relatively few of the anthropogenic particles at 36 nm were CCN active and their growth rates by water condensation were delayed relative to ammonium sulphate particles. As the event progressed, the particle size distribution evolved to larger sizes and the relative numbers of particles at 36 nm that were CCN active increased until all the 36 nm particles were activating at the end of the event. Based on the chemistry of larger particles and the results from an aerosol chemical microphysics box model, the increase in CCN activity of the particles was most likely the result of the condensation of sulphate in this case. Despite the increased CCN activity, a delay was observed in the initial growth of these particles into cloud droplets, which persisted even when the aerosol was most CCN active later in the afternoon. Simulations show that the delay in water uptake is explained by a reduction of the mass accommodation coefficient assuming that the composition of the 36 nm particles is the same as the measured composition of the 60-100 nm particles.
Memory consolidation in aging and MCI after 1 week
Walsh, Christine M; Wilkins, Sarah; Bettcher, Brianne Magouirk; Butler, Christopher R; Miller, Bruce L; Kramer, Joel H
2014-01-01
Objective To assess consolidation in amnestic mild cognitive (aMCI) impairment, controlling for differences in initial learning and using a protracted delay period for recall. Methods Fifteen individuals with MCI were compared to fifteen healthy older adult controls on a story learning task. Subjects were trained to criteria to equalize initial learning across subjects. Recall was tested at both the 30-minute typically used delay and a 1-week delay used to target consolidation. Results Using repeated measures ANOVAs adjusted for age, we found group × time point interactions across the entire task between the final trial and 30-minute delay, and again between the 30-minute and 1-week delay periods, with MCI having greater declines in recall as compared to controls. Significant group main effects were also found, with MCI recalling less than controls. Conclusion Consolidation was impaired in aMCI as compared to controls. Our findings indicate that MCI-related performance typically measured at 30 minutes underestimates MCI-associated memory deficits. This is the first study to isolate consolidation by controlling for initial learning differences and using a protracted delay period to target consolidation in an MCI sample. PMID:24219610
Petrou, C; Mourelatos, D; Dozi-Vassiliades, J; Catsoulacos, P
1990-02-01
We studied the effects of caffeine alone or in combination with homo-aza-steroidal ester of p-bis(2-chloroethyl)aminophenylacetic acid (ASE, NSC 290205) on the frequency of SCEs and lymphocyte proliferation kinetics. Caffeine was found to act synergistically with ASE on the induction of SCEs when the two components were administered in combination. Caffeine was also found to act synergistically with ASE in inducing cell-division delays. Enhanced cytogenetic damage by ASE was observed when Ehrlich ascites tumour cells (EAT cells) were exposed in vivo to caffeine. ASE alone or in combination with caffeine caused a dose-dependent increase in SCE rates and cell-division delays. SCEs were demonstrated in EAT-bearing mice, by the i.p. injection of BrdUrd adsorbed onto activated charcoal, 1 h after the i.p. injection of ASE and/or caffeine.
Microinjection of recombinant O-GlcNAc transferase potentiates Xenopus oocytes M-phase entry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehennaut, Vanessa; EA 4020, Laboratoire de Regulation des Signaux de Division, USTL, IFR147, Villeneuve d'Ascq; Hanoulle, Xavier
2008-05-02
In order to understand the importance of the cytosolic and nuclear-specific O-linked N-acetylglucosaminylation (O-GlcNAc) on cell cycle regulation, we recently reported that inhibition of O-GlcNAc transferase (OGT) delayed or blocked Xenopus laevis oocyte germinal vesicle breakdown (GVBD). Here, we show that increased levels of the long OGT isoform (ncOGT) accelerate X. laevis oocyte GVBD. A N-terminally truncated isoform (sOGT) with a similar in vitro catalytic activity towards a synthetic CKII-derived peptide had no effect, illustrating the important role played by the N-terminal tetratrico-peptide repeats. ncOGT microinjection in the oocytes increases both the speed and extent of O-GlcNAc addition, leads tomore » a quicker activation of the MPF and MAPK pathways and finally results in a faster GVBD. Microinjection of anti-OGT antibodies leads to a delay of the GVBD kinetics. Our results hence demonstrate that OGT is a key molecule for the timely progression of the cell cycle.« less
Modeling the pharmacokinetics of extended release pharmaceutical systems
NASA Astrophysics Data System (ADS)
di Muria, Michela; Lamberti, Gaetano; Titomanlio, Giuseppe
2009-03-01
The pharmacokinetic (PK) models predict the hematic concentration of drugs after the administration. In compartment modeling, the body is described by a set of interconnected “vessels” or “compartments”; the modeling consisting of transient mass balances. Usually the orally administered drugs were considered as immediately available: this cannot describe the administration of extended-release systems. In this work we added to the traditional compartment models the ability to account for a delay in administration, relating this delay to in vitro data. Firstly, the method was validated, applying the model to the dosage of nicotine by chewing-gum; the model was tuned by in vitro/in vivo data of drugs (divalproex-sodium and diltiazem) with medium-rate release kinetics, then it was applied in describing in vivo evolutions due to the assumption of fast- and slow-release systems. The model reveals itself predictive, the same of a Level A in vitro/in vivo correlation, but being physically based, it is preferable to a purely statistical method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang Liang; Hunter, Eric, E-mail: eric.hunter2@emory.ed
2010-09-01
The membrane-spanning domain (MSD) of human immunodeficiency virus type I (HIV-1) envelope glycoprotein (Env) is critical for its biological activity. Initial studies have defined an almost invariant 'core' structure in the MSD and demonstrated that it is crucial for anchoring Env in the membrane and virus entry. We show here that amino acid substitutions in the MSD 'core' do not influence specific virus-cell attachment, nor CD4 receptor and CXCR4 coreceptor recognition by Env. However, substitutions within the MSD 'core' delayed the kinetics and reduced the efficiency of cell-cell fusion mediated by Env. Although we observed no evidence that membrane fusionmore » mediated by the MSD core mutants was arrested at a hemifusion stage, impaired Env fusogenicity was correlated with minor conformational changes in the V2, C1, and C5 regions in gp120 and the immunodominant loop in gp41. These changes could delay initiation of the conformational changes required in the fusion process.« less
Kinetics on cocondensation of phenol and urea
Bunichiro Tomita; Yasunori Yoshida; Chung-Yun. Hse
1993-01-01
The chemical kinetics on cocondensation between methylolphenols and urea under acidic condition were investigated using 2- and 4-hydroxybenzyl alcohols as well as 2,4,6-trimethylolphenol as model compounds. The reactivity of the cocondensation were compared between o- and p-methylol groups. Moreover, the kinetics on self-condensations of monomethylolphenols and...
Kinetics of Acid Reactions: Making Sense of Associated Concepts
ERIC Educational Resources Information Center
Tan, Kim Chwee Daniel; Treagust, David F.; Chandrasegaran, A. L.; Mocerino, Mauro
2010-01-01
In chemical kinetics, in addition to the concepts related to kinetics, stoichiometry, chemical equilibrium and the characteristics of the reactants are often involved when comparing the rates of different reactions, making such comparisons very challenging for students at all levels, as well as for pre-service science teachers. Consequently, four…
Tuuli, Methodius G; Frey, Heather A; Odibo, Anthony O; Macones, George A; Cahill, Alison G
2012-09-01
To estimate whether immediate or delayed pushing in the second stage of labor optimizes spontaneous vaginal delivery and other perinatal outcomes. We searched electronic databases MEDLINE and CINHAL through August 2011 without restrictions. The search terms used were MeSH headings, text words, and word variations of the words or phrases labor, laboring down, passive descent, passive second stage, physiologic second stage, spontaneous pushing, pushing, or bearing down. We searched for randomized controlled trials comparing immediate with delayed pushing in the second stage of labor. The primary outcome was spontaneous vaginal delivery. Secondary outcomes were instrumental delivery, cesarean delivery, duration of the second stage, duration of active pushing, and other maternal and neonatal outcomes. Heterogeneity was assessed using the Q test and I2. Pooled relative risks (RRs) and weighted mean differences were calculated using random-effects models. Twelve randomized controlled trials (1,584 immediate and 1,531 delayed pushing) met inclusion criteria. Overall, delayed pushing was associated with an increased rate of spontaneous vaginal delivery compared with immediate pushing (61.5% compared with 56.9%, pooled RR 1.09, 95% confidence interval [CI] 1.03-1.15). This increase was smaller and not statistically significant among high-quality studies (59.0% compared with 54.9%, pooled RR 1.07, 95% CI 0.98-1.26) but larger and statistically significant in lower-quality studies (81.0% compared with 71.0%%, pooled RR 1.13, 95% CI 1.02-1.24). Operative vaginal delivery rates were high in most studies and not significantly different between the two groups (33.7% compared with 37.4%, pooled RR 0.89, 95% CI 0.76-1.06). Delayed pushing was associated with prolongation of the second stage (weighted mean difference 56.92 minutes, 95% CI 42.19-71.64) and shortened duration of active pushing (weighted mean difference -21.98 minutes, 95% CI -31.29 to -12.68). Studies to date suggest there are few clinical differences in outcomes with immediate compared with delayed pushing in the second stage of labor, especially when high-quality studies are pooled. Effects on maternal and neonatal outcomes remain uncertain.
Angiographic delay: a viable alternative to surgical delay.
Aboutanos, Sharline Z; Spinos, Efstathios; Blanchet, Nadia P
2012-06-01
Selective embolization of the inferior epigastric arteries can serve as a method for transverse rectus abdominis musculocutaneous (TRAM) flap delay. The purpose of this study was to determine whether delay by selective arterial embolization is comparable to traditionally surgically delayed TRAM flaps as reported in the literature, in terms of skin and fat necrosis, and to examine whether certain risk factors play a role in TRAM flap fat necrosis despite angiographic delay. Retrospective chart review was performed for 88 consecutive patients who underwent unilateral TRAM flap breast reconstruction after selective embolization of bilateral inferior epigastric arteries. Between 1997 and 2009, 88 pedicled TRAM flaps were performed for breast reconstruction in women with a mean age of 49.7 years. No patients had flap skin necrosis or total flap loss. In all, 13.6% patients had TRAM flap fat necrosis. Two patients in the TRAM fat necrosis group (16.7%) had a positive history of smoking, which was a statistically significant risk factor for necrosis (P = 0.048). Outcomes of pedicled TRAM flaps delayed by selective arterial embolization are comparable to historical controls of those delayed by traditional surgical means (ligation of artery and vein) and better than nondelayed flaps. Smoking remains a significant risk factor for TRAM flap fat necrosis despite the benefit of delay.
Turki, Mouna; Hammouda, Omar; Chtourou, Hamdi; Trabelsi, Khaled; Bouaziz, Mohamed; Abdelkarim, Osama; Hoekelmann, Anita; Ayadi, Fatma; Souissi, Nizar; Bailey, Stephen J.; Driss, Tarak; Yaich, Sourour
2017-01-01
The aim of this study was to test the hypothesis that pomegranate juice supplementation would blunt acute and delayed oxidative stress responses after a weightlifting training session. Nine elite weightlifters (21.0 ± 1 years) performed two Olympic-Weightlifting sessions after ingesting either the placebo or pomegranate juice supplements. Venous blood samples were collected at rest and 3 min and 48 h after each session. Compared to the placebo condition, pomegranate juice supplementation attenuated the increase in malondialdehyde (−12.5%; p < 0.01) and enhanced the enzymatic (+8.6% for catalase and +6.8% for glutathione peroxidase; p < 0.05) and non-enzymatic (+12.6% for uric acid and +5.7% for total bilirubin; p < 0.01) antioxidant responses shortly (3 min) after completion of the training session. Additionally, during the 48 h recovery period, pomegranate juice supplementation accelerated (p < 0.05) the recovery kinetics of the malondialdehyde (5.6%) and the enzymatic antioxidant defenses compared to the placebo condition (9 to 10%). In conclusion, supplementation with pomegranate juice has the potential to attenuate oxidative stress by enhancing antioxidant responses assessed acutely and up to 48 h following an intensive weightlifting training session. Therefore, elite weightlifters might benefit from blunted oxidative stress responses following intensive weightlifting sessions, which could have implications for recovery between training sessions. PMID:28758938
Ammar, Achraf; Turki, Mouna; Hammouda, Omar; Chtourou, Hamdi; Trabelsi, Khaled; Bouaziz, Mohamed; Abdelkarim, Osama; Hoekelmann, Anita; Ayadi, Fatma; Souissi, Nizar; Bailey, Stephen J; Driss, Tarak; Yaich, Sourour
2017-07-29
The aim of this study was to test the hypothesis that pomegranate juice supplementation would blunt acute and delayed oxidative stress responses after a weightlifting training session. Nine elite weightlifters (21.0 ± 1 years) performed two Olympic-Weightlifting sessions after ingesting either the placebo or pomegranate juice supplements. Venous blood samples were collected at rest and 3 min and 48 h after each session. Compared to the placebo condition, pomegranate juice supplementation attenuated the increase in malondialdehyde (-12.5%; p < 0.01) and enhanced the enzymatic (+8.6% for catalase and +6.8% for glutathione peroxidase; p < 0.05) and non-enzymatic (+12.6% for uric acid and +5.7% for total bilirubin; p < 0.01) antioxidant responses shortly (3 min) after completion of the training session. Additionally, during the 48 h recovery period, pomegranate juice supplementation accelerated ( p < 0.05) the recovery kinetics of the malondialdehyde (5.6%) and the enzymatic antioxidant defenses compared to the placebo condition (9 to 10%). In conclusion, supplementation with pomegranate juice has the potential to attenuate oxidative stress by enhancing antioxidant responses assessed acutely and up to 48 h following an intensive weightlifting training session. Therefore, elite weightlifters might benefit from blunted oxidative stress responses following intensive weightlifting sessions, which could have implications for recovery between training sessions.
ERIC Educational Resources Information Center
Holtz, Casey A.; Carrasco, Jennifer M.; Mattek, Ryan J.; Fox, Robert A.
2009-01-01
The purpose of this study is to examine the effectiveness of an in-home parent management program for toddlers with behavior problems and developmental delays by comparing outcomes for a group of toddlers with developmental delays (n = 27) and a group of toddlers without developmental delays (n = 27). The majority of children lived in single…
Meenakumari, Karukayil J; Banerjee, Arnab; Krishna, Amitabh
2009-01-01
The primary aim of this study was to determine the possible cause of slow or delayed embryonic development in Cynopterus sphinx by investigating morphological and steroidogenic changes in the corpus luteum (CL) and circulating hormone concentrations during two pregnancies of a year. This species showed delayed post-implantational embryonic development during gastrulation of the first pregnancy. Morphological features of the CL showed normal luteinization during both pregnancies. The CL did not change significantly in luteal cell size during the delay period of the first pregnancy as compared with the second pregnancy. The circulating progesterone and 17beta-estradiol concentrations were significantly lower during the period of delayed embryonic development as compared with the same stage of embryonic development during the second pregnancy. We also showed a marked decline in the activity of 3beta-hydroxysteroid dehydrogenase, P450 side chain cleavage enzyme, and steroidogenic acute regulatory peptide in the CL during the delay period. This may cause low circulating progesterone and estradiol synthesis and consequently delay embryonic development. What causes the decrease in steroidogenic factors in the CL during the period of delayed development in C. sphinx is under investigation.
Press-coated tablets for time-programmed release of drugs.
Conte, U; Maggi, L; Torre, M L; Giunchedi, P; La Manna, A
1993-10-01
A new dry-coated device for the release of drug after a programmable period of time is proposed. It is intended to be used mainly in the therapy of those diseases which depend on circadian rhythms. Some core formulations, characterized by different release rates and mechanisms (containing diltiazem hydrochloride or sodium diclofenac as model drugs), were coated by compression with different polymeric barrier layers (press-coated systems). The shell formulations tested contained either gellable or erodible polymers. The dissolution profiles of uncoated cores and press-coated devices were compared. The gellable and/or erodible characteristics (properties) of the barrier formulations were also examined by means of a penetrometer. The coatings prevent drug release from the core until the polymeric shell is completely eroded or swollen. This delay in release start is not influenced by the core composition and depends only on the shell formulation. Except for the time-lag, the release kinetics of the drug contained in the core are not significantly influenced by the presence of the erodible barrier, but can be widely modulated using a swellable polymeric shell.
STUDENT AWARD FINALIST: Oxygen Pathways in Streamer Discharge for Transient Plasma Ignition
NASA Astrophysics Data System (ADS)
Pendleton, S. J.; Bowman, S.; Singleton, D.; Watrous, J.; Carter, C.; Lempert, W.; Gundersen, M. A.
2011-10-01
The use of streamers for the ignition of fuels, also known as transient plasma ignition (TPI), has been shown in a variety of engines to improve combustion through decreased ignition delay, increased lean burn capability and increased energy release relative to conventional spark ignition. The mechanisms behind these improvements, however, remain poorly understood. Temperature measurements by optical emission spectroscopy demonstrate that ignition by TPI is a nonthermal process, and thus is almost entirely dependent on the production and presence of electron impact-created active species in the discharge afterglow. Of particular interest are active oxygen species due to their relatively long lifetimes at high pressures and the pivotal role they play in combustion reactions. In order to elucidate the oxygen pathways, here we report the investigation of the temporal evolution of the populations of atomic oxygen and ozone by use of two-photon absorption laser induced fluorescence (TALIF) and UV absorption, respectively. Experimental results are presented and compared to kinetic modeling of the streamers. Future experiments are proposed to better understand the physics behind TPI. Supported by NSF, AFOSR, NumerEx-ONR, AFRL-WPAFB.
Ahn, ByungChul; Zhang, Yunfei; Osterrieder, Nikolaus; O'Callaghan, Dennis J.
2010-01-01
The 150 kbp genome of equine herpesvirus -1 (EHV-1) is composed of a unique long (UL) region and a unique short (Us) segment, which is flanked by identical internal and terminal repeat (IR and TR) sequences of 12.7kbp. We constructed an EHV-1 lacking the entire IR (vL11ΔIR) and showed that the IR is dispensable for EHV-1 replication but that the vL11ΔIR exhibits a smaller plaque size and delayed growth kinetics. Western blot analyses of cells infected with vL11ΔIR showed that the synthesis of viral proteins encoded by the immediate-early, early, and late genes was reduced at immediate-early and early times, but by late stages of replication reached wild type levels. Intranasal infection of CBA mice revealed that the vL11ΔIR was significantly attenuated as mice infected with the vL11ΔIR showed a reduced lung viral titer and greater ability to survive infection compared to mice infected with parental or revertant virus. PMID:21176938
Turbulence as a contributor to intermediate energy storage during solar flares
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bornmann, P.L.
Turbulence is considered as a method for converting the energy observed as mass motions during the impulsive phase into thermal energy observed during the gradual phase of solar flares. The kinetic energy of the large-scale eddies driven by the upflowing material continuously cascades to smaller scale eddies until viscosity is able to convert it into thermal energy. The general properties of steady state, homogeneous, fluid turbulence is a nonmagnetic plasma and the properties of turbulent decay are reviewed. The time-dependent behavior of the velocities and energies observed by the X-Ray Polychromator (XRP) instrument on the SMM during the November 5,more » 1980 flare are compared with the properties of turbulence. This study indicates that turbulence may play a role in flare energies and may account for a fraction of the total amount of thermal energy observed during the gradual phase. The rate at which the observed flare velocities decrease is consistent with the decay of turbulent energy but may be too rapid to account for the entire time delay between the impulsive and gradual phases. 19 references.« less
Turbulence as a contributor to intermediate energy storage during solar flares
NASA Technical Reports Server (NTRS)
Bornmann, P. L.
1987-01-01
Turbulence is considered as a method for converting the energy observed as mass motions during the impulsive phase into thermal energy observed during the gradual phase of solar flares. The kinetic energy of the large-scale eddies driven by the upflowing material continuously cascades to smaller scale eddies until viscosity is able to convert it into thermal energy. The general properties of steady state, homogeneous, fluid turbulence is a nonmagnetic plasma and the properties of turbulent decay are reviewed. The time-dependent behavior of the velocities and energies observed by the X-Ray Polychromator (XRP) instrument on the SMM during the November 5, 1980 flare are compared with the properties of turbulence. This study indicates that turbulence may play a role in flare energies and may account for a fraction of the total amount of thermal energy observed during the gradual phase. The rate at which the observed flare velocities decrease is consistent with the decay of turbulent energy but may be too rapid to account for the entire time delay between the impulsive and gradual phases.
Turbulence as a contributor to intermediate energy storage during solar flares
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bornmann, P.L.
Turbulence is considered as a method for converting the energy observed as mass motions during the impulsive phase into thermal energy observed during the gradual phase of solar flares. The kinetic energy of the large-scale eddies driven by the upflowing material continuously cascades to smaller-scale eddies until viscosity is able to convert it into thermal energy. The general properties of steady-state, homogeneous, fluid turbulence in a nonmagnetic plasma and the properties of turbulent decay are reviewed. The time-dependent behavior of the velocities and energies observed by the X-ray Polychromator (XRP) instrument on Solar Maximum Mission (SMM) during the 1980 Novembermore » 5 flare are compared with the properties of turbulence. This study indicates that turbulence may play a role in flare energetics and may account for a fraction of the total amount of thermal energy observed during the gradual phase. The rate at which the observed flare velocities decrease is consistent with the decay of turbulent energy but may too rapid to account for the entire time delay between the impulsive and gradual phases.« less
Turbulence as a contributor to intermediate energy storage during solar flares
NASA Astrophysics Data System (ADS)
Bornmann, P. L.
1987-02-01
Turbulence is considered as a method for converting the energy observed as mass motions during the impulsive phase into thermal energy observed during the gradual phase of solar flares. The kinetic energy of the large-scale eddies driven by the upflowing material continuously cascades to smaller scale eddies until viscosity is able to convert it into thermal energy. The general properties of steady state, homogeneous, fluid turbulence is a nonmagnetic plasma and the properties of turbulent decay are reviewed. The time-dependent behavior of the velocities and energies observed by the X-Ray Polychromator (XRP) instrument on the SMM during the November 5, 1980 flare are compared with the properties of turbulence. This study indicates that turbulence may play a role in flare energies and may account for a fraction of the total amount of thermal energy observed during the gradual phase. The rate at which the observed flare velocities decrease is consistent with the decay of turbulent energy but may be too rapid to account for the entire time delay between the impulsive and gradual phases.
Fuchs, Valma; Kurppa, Kalle; Huhtala, Heini; Mäki, Markku; Kekkonen, Leila; Kaukinen, Katri
2018-01-01
Background Celiac disease is challenging to recognize, predisposing to long diagnostic delay. Currently, associated factors and significance of the delay remain obscure. Objective The objective of this article is to investigate associated sociodemographic risk factors and health consequences of diagnostic delay in celiac disease. Methods Altogether 611 patients were surveyed at diagnosis and after one year on a gluten-free diet regarding sociodemographic variables, well-being and use of medicines and health care services. Quality of life was measured by a validated Psychological General Well-Being (PGWB) questionnaire. The results were compared between patients with and without delayed (≥3 years) diagnosis. Results A total of 332 (54%) individuals reported a delay of ≥3 years. Associated with the delay were being a student or homemaker, but not gender, marital or occupational status, site of diagnosis or place of residence. Patients with the delay also had decreased self-perceived health and poorer PGWB scores compared to those without delay; in anxiety and general health this was seen even on a gluten-free diet. Days of sickness and doctor visits as well as use of drugs for dyspepsia and antidepressants were increased in the delay group both before and after diagnosis. Conclusion A delay in celiac disease diagnosis predisposes to reduced well-being and incremental use of medicines and health care services, both before diagnosis and one year after diagnosis. PMID:29881612
NASA Astrophysics Data System (ADS)
Nanba, Masaru; Nomura, Kazuki; Nasuhara, Yusuke; Hayashi, Manabu; Kido, Miyuki; Hayashi, Mayumi; Iguchi, Akinori; Shigematsu, Toru; Hirayama, Masao; Ueno, Shigeaki; Fujii, Tomoyuki
2013-06-01
A high pressure (HP) tolerant (barotolerant) mutant a2568D8 and a variably barotolerant mutant a1210H12 were generated from Saccharomyces cerevisiae using ultra-violet mutagenesis. The two mutants, a barosensitive mutant a924E1 and the wild-type strain, were pressurized (225 MPa), and pressure inactivation behavior was analyzed. In the wild-type strain, a proportion of the growth-delayed cells were detected after exposure to HP. In a924E1, the proportion of growth-delayed cells significantly decreased compared with the wild-type. In a2568D8, the proportion of growth-delayed cells increased and the proportion of inactivated cells decreased compared with the wild-type. In a1210H12, the growth-delayed cells could not be detected within 120 s of exposure to HP. The proportion of growth-delayed cells, which incurred the damage, would affect the survival ratio by HP. These results suggested that cellular changes in barotolerance caused by mutations are remarkably affected by the ability to recover from cellular damage, which results in a growth delay.
Oja, Vello; Eichelmann, Hillar; Laisk, Agu
2011-12-01
Oxygen evolution per single-turnover flash (STF) or multiple-turnover pulse (MTP) was measured with a zirconium O(2) analyzer from sunflower leaves at 22 °C. STF were generated by Xe arc lamp, MTP by red LED light of up to 18000 μmol quanta m(-2) s(-1). Ambient O(2) concentration was 10-30 ppm, STF and MTP were superimposed on far-red background light in order to oxidize plastoquinone (PQ) and randomize S-states. Electron (e(-)) flow was calculated as 4 times O(2) evolution. Q (A) → Q (B) electron transport was investigated firing double STF with a delay of 0 to 2 ms between the two. Total O(2) evolution per two flashes equaled to that from a single flash when the delay was zero and doubled when the delay exceeded 2 ms. This trend was fitted with two exponentials with time constants of 0.25 and 0.95 ms, equal amplitudes. Illumination with MTP of increasing length resulted in increasing O(2) evolution per pulse, which was differentiated with an aim to find the time course of O(2) evolution with sub-millisecond resolution. At the highest pulse intensity of 2.9 photons ms(-1) per PSII, 3 e(-) initially accumulated inside PSII and the catalytic rate of PQ reduction was determined from the throughput rate of the fourth and fifth e(-). A light response curve for the reduction of completely oxidized PQ was a rectangular hyperbola with the initial slope of 1.2 PSII quanta per e(-) and V (m) of 0.6 e(-) ms(-1) per PSII. When PQ was gradually reduced during longer MTP, V (m) decreased proportionally with the fraction of oxidized PQ. It is suggested that the linear kinetics with respect to PQ are apparent, caused by strong product inhibition due to about equal binding constants of PQ and PQH(2) to the Q (B) site. The strong product inhibition is an appropriate mechanism for down-regulation of PSII electron transport in accordance with rate of PQH(2) oxidation by cytochrome b(6)f. © Springer Science+Business Media B.V. 2011
Liu, Xun; Dingley, John; Scull-Brown, Emma; Thoresen, Marianne
2015-06-01
We previously reported that combining immediate hypothermia with immediate or 2 h delayed inhalation of an inert gas, xenon, gave additive neuroprotection in rats after a hypoxic-ischemic insult, compared to hypothermia alone. Defining the therapeutic time window for this new combined intervention is crucial in clinical practice when immediate treatment is not always feasible. The aim of this study is to investigate whether combined hypothermia and xenon still provide neuroprotection in rats after a 5 h delay for both hypothermia and xenon. Seven-day-old Wistar rat pups underwent a unilateral hypoxic-ischemic insult. Pups received 5 h of treatment starting 5 h after the insult randomized between normothermia, hypothermia, or hypothermia with 50% xenon. Surviving pups were tested for fine motor function through weeks 8-10 before being euthanized at week 11. Their hemispheric and hippocampal areas were assessed. Both delayed hypothermia-xenon and hypothermia-only treated groups had significantly less brain tissue loss than those which underwent normothermia. The functional performance after 1 wk and adulthood was significantly better after hypothermia-xenon treatment as compared to the hypothermia-only or normothermia groups. Adding 50% xenon to 5 h delayed hypothermia significantly improved functional outcome as compared to delayed hypothermia alone despite similar reductions in brain area.
Monetary delay discounting in gambling and cocaine dependence with personality comorbidities.
Albein-Urios, Natalia; Martinez-González, José M; Lozano, Oscar; Verdejo-Garcia, Antonio
2014-11-01
Cocaine addiction and pathological gambling are commonly associated with steeper (impulsive) discounting of delayed rewards, which promotes ongoing drug and gambling behaviors. However, it is yet unclear whether impulsive delay discounting is a stable trait in cocaine and gambling disorders during abstinence, and whether it is significantly impacted by dysfunctional personality beliefs. The aim of this study was to compare the delay discounting rates of four groups: 47 cocaine users with comorbid personality disorders, 41 cocaine users without psychiatric comorbidities, 28 pathological gamblers without psychiatric comorbidities, and 36 healthy comparison individuals. We also examined the association between dysfunctional personality beliefs and delay discounting rates. Participants completed the Kirby Delay Discounting Questionnaire and the Beck Personality Belief Questionnaire as part of a larger battery. We used non-parametric tests to compare discounting rates between the groups, and bivariate correlation analyses to examine the association between beliefs and discounting rates within each of the groups. We found that discounting rates were significantly higher in individuals with disordered gambling compared to controls. Specifically in cocaine users with Cluster B personality disorders, higher discounting rates were associated with the intensity of "dependent" dysfunctional beliefs (e.g., "I am needy and weak"). Conclusion:We conclude that impulsive delay discounting is increased in gambling relative to controls and linked to personality beliefs in cocaine users with Cluster B personality disorders. Copyright © 2014 Elsevier Ltd. All rights reserved.
Novel Hsp90 inhibitor NVP-AUY922 radiosensitizes prostate cancer cells
Gandhi, Nishant; Wild, Aaron T.; Chettiar, Sivarajan T.; Aziz, Khaled; Kato, Yoshinori; Gajula, Rajendra P.; Williams, Russell D.; Cades, Jessica A.; Annadanam, Anvesh; Song, Danny; Zhang, Yonggang; Hales, Russell K.; Herman, Joseph M.; Armour, Elwood; DeWeese, Theodore L.; Schaeffer, Edward M.; Tran, Phuoc T.
2013-01-01
Outcomes for poor-risk localized prostate cancers treated with radiation are still insufficient. Targeting the “non-oncogene” addiction or stress response machinery is an appealing strategy for cancer therapeutics. Heat-shock-protein-90 (Hsp90), an integral member of this machinery, is a molecular chaperone required for energy-driven stabilization and selective degradation of misfolded “client” proteins, that is commonly overexpressed in tumor cells. Hsp90 client proteins include critical components of pathways implicated in prostate cancer cell survival and radioresistance, such as androgen receptor signaling and the PI3K-Akt-mTOR pathway. We examined the effects of a novel non-geldanamycin Hsp90 inhibitor, AUY922, combined with radiation (RT) on two prostate cancer cell lines, Myc-CaP and PC3, using in vitro assays for clonogenic survival, apoptosis, cell cycle distribution, γ-H2AX foci kinetics and client protein expression in pathways important for prostate cancer survival and radioresistance. We then evaluated tumor growth delay and effects of the combined treatment (RT-AUY922) on the PI3K-Akt-mTOR and AR pathways in a hind-flank tumor graft model. We observed that AUY922 caused supra-additive radiosensitization in both cell lines at low nanomolar doses with enhancement ratios between 1.4–1.7 (p < 0.01). RT-AUY922 increased apoptotic cell death compared with either therapy alone, induced G2-M arrest and produced marked changes in client protein expression. These results were confirmed in vivo, where RT-AUY922 combination therapy produced supra-additive tumor growth delay compared with either therapy by itself in Myc-CaP and PC3 tumor grafts (both p < 0.0001). Our data suggest that combined RT-AUY922 therapy exhibits promising activity against prostate cancer cells, which should be investigated in clinical studies. PMID:23358469
Novel Hsp90 inhibitor NVP-AUY922 radiosensitizes prostate cancer cells.
Gandhi, Nishant; Wild, Aaron T; Chettiar, Sivarajan T; Aziz, Khaled; Kato, Yoshinori; Gajula, Rajendra P; Williams, Russell D; Cades, Jessica A; Annadanam, Anvesh; Song, Danny; Zhang, Yonggang; Hales, Russell K; Herman, Joseph M; Armour, Elwood; DeWeese, Theodore L; Schaeffer, Edward M; Tran, Phuoc T
2013-04-01
Outcomes for poor-risk localized prostate cancers treated with radiation are still insufficient. Targeting the "non-oncogene" addiction or stress response machinery is an appealing strategy for cancer therapeutics. Heat-shock-protein-90 (Hsp90), an integral member of this machinery, is a molecular chaperone required for energy-driven stabilization and selective degradation of misfolded "client" proteins, that is commonly overexpressed in tumor cells. Hsp90 client proteins include critical components of pathways implicated in prostate cancer cell survival and radioresistance, such as androgen receptor signaling and the PI3K-Akt-mTOR pathway. We examined the effects of a novel non-geldanamycin Hsp90 inhibitor, AUY922, combined with radiation (RT) on two prostate cancer cell lines, Myc-CaP and PC3, using in vitro assays for clonogenic survival, apoptosis, cell cycle distribution, γ-H2AX foci kinetics and client protein expression in pathways important for prostate cancer survival and radioresistance. We then evaluated tumor growth delay and effects of the combined treatment (RT-AUY922) on the PI3K-Akt-mTOR and AR pathways in a hind-flank tumor graft model. We observed that AUY922 caused supra-additive radiosensitization in both cell lines at low nanomolar doses with enhancement ratios between 1.4-1.7 (p < 0.01). RT-AUY922 increased apoptotic cell death compared with either therapy alone, induced G 2-M arrest and produced marked changes in client protein expression. These results were confirmed in vivo, where RT-AUY922 combination therapy produced supra-additive tumor growth delay compared with either therapy by itself in Myc-CaP and PC3 tumor grafts (both p < 0.0001). Our data suggest that combined RT-AUY922 therapy exhibits promising activity against prostate cancer cells, which should be investigated in clinical studies.
AdVEGF-All6A+ Preconditioning of Murine Ischemic Skin Flaps Is Comparable to Surgical Delay.
Gersch, Robert P; Fourman, Mitchell S; Phillips, Brett T; Nasser, Ahmed; McClain, Steve A; Khan, Sami U; Dagum, Alexander B; Bui, Duc T
2015-08-01
Surgical flap delay is commonly used in preconditioning reconstructive flaps to prevent necrosis. However, staged procedures are not ideal. Pharmacologic up-regulation of angiogenic and arteriogenic factors before flap elevation poses a nonsurgical approach to improve flap survival. Male Sprague Dawley rats were divided into control (n = 16), surgical delay (Delay), AdNull, AdEgr-1, and AdVEGF (n ≥ 9/group) groups. Delay rats had a 9 cm × 3 cm cranial based pedicle skin flap incised 10 days prior to elevation. Adenoviral groups received 28 intradermal injections (10(9) pu/animal total) throughout the distal two thirds of the flap 1 week prior to elevation. At postoperative day (POD) 0 flaps were elevated and silicone sheeting was placed between flap and wound bed. Perfusion analysis in arbitrary perfusion units of the ischemic middle third of the flap using laser Doppler imaging was conducted preoperatively and on POD 0, 3, and 7. Clinical and histopathologic assessments of the skin flaps were performed on POD 7. AdVEGF (50.8 ± 10.9 APU) and AdEgr-1 (39.3 ± 10.6 APU) perfusion levels were significantly higher than controls (16.5 ± 4.2 APU) on POD 7. Delay models were equivalent to controls (25.9 ± 6.8 APU). AdVEGF and Delay animals showed significantly more viable surface area on POD 7 (14.4 ± 1.3 cm(2), P < 0.01 and 12.4 ± 1.2 cm(2), P < 0.05, respectively) compared with Controls (8.7 ± 0.7 cm(2)). AdVEGF preconditioning resulted in flap survival comparable to surgical delay. Adenoviral preconditioning maintained perfusion levels postoperatively while surgical delay did not.
AdVEGF-All6A+ Preconditioning of Murine Ischemic Skin Flaps Is Comparable to Surgical Delay
Gersch, Robert P.; Fourman, Mitchell S.; Phillips, Brett T.; Nasser, Ahmed; McClain, Steve A.; Khan, Sami U.; Dagum, Alexander B.
2015-01-01
Background: Surgical flap delay is commonly used in preconditioning reconstructive flaps to prevent necrosis. However, staged procedures are not ideal. Pharmacologic up-regulation of angiogenic and arteriogenic factors before flap elevation poses a nonsurgical approach to improve flap survival. Methods: Male Sprague Dawley rats were divided into control (n = 16), surgical delay (Delay), AdNull, AdEgr-1, and AdVEGF (n ≥ 9/group) groups. Delay rats had a 9 cm × 3 cm cranial based pedicle skin flap incised 10 days prior to elevation. Adenoviral groups received 28 intradermal injections (109 pu/animal total) throughout the distal two thirds of the flap 1 week prior to elevation. At postoperative day (POD) 0 flaps were elevated and silicone sheeting was placed between flap and wound bed. Perfusion analysis in arbitrary perfusion units of the ischemic middle third of the flap using laser Doppler imaging was conducted preoperatively and on POD 0, 3, and 7. Clinical and histopathologic assessments of the skin flaps were performed on POD 7. Results: AdVEGF (50.8 ± 10.9 APU) and AdEgr-1 (39.3 ± 10.6 APU) perfusion levels were significantly higher than controls (16.5 ± 4.2 APU) on POD 7. Delay models were equivalent to controls (25.9 ± 6.8 APU). AdVEGF and Delay animals showed significantly more viable surface area on POD 7 (14.4 ± 1.3 cm2, P < 0.01 and 12.4 ± 1.2 cm2, P < 0.05, respectively) compared with Controls (8.7 ± 0.7 cm2). Conclusions: AdVEGF preconditioning resulted in flap survival comparable to surgical delay. Adenoviral preconditioning maintained perfusion levels postoperatively while surgical delay did not. PMID:26495207
Zhou, Peng-Li; Wu, Gang; Han, Xin-Wei; Bi, Yong-Hua; Zhang, Wen-Guang; Wu, Zheng-Yang
2017-06-01
To compare the results of computed tomography venography (CTV) with a fixed and a flexible delayed scan time for Budd-Chiari syndrome (BCS) with inferior vena cava (IVC) obstruction. A total of 209 consecutive BCS patients with IVC obstruction underwent either a CTV with a fixed delayed scan time of 180s (n=87) or a flexible delayed scan time for good image quality according to IVC blood flow in color Doppler ultrasonography (n=122). The IVC blood flow velocity was measured using a color Doppler ultrasound prior to CT scan. Image quality was classified as either good, moderate, or poor. Image quality, surrounding structures and the morphology of the IVC obstruction were compared between the two groups using a χ 2 -test or paired or unpaired t-tests as appropriate. Inter-observer agreement was assessed using Kappa statistics. There was no significant difference in IVC blood flow velocity between the two groups. Overall image quality, surrounding structures and IVC obstruction morphology delineation on the flexible delayed scan time of CTV images were rated better relative to those obtained by fixed delayed scan time of CTV images (p<0.001). Evaluation of CTV data sets was significantly facilitated with flexible delayed scan time of CTV. There were no significant differences in Kappa statistics between Group A and Group B. The flexible delayed scan time of CTV was associated with better detection and more reliable characterization of BCS with IVC obstruction compared to a fixed delayed scan time. Copyright © 2017 Elsevier B.V. All rights reserved.
Rowley, S D; Piantadosi, S; Marcellus, D C; Jones, R J; Davidson, N E; Davis, J M; Kennedy, J; Wiley, J M; Wingard, J R; Yeager, A M
1991-03-01
We previously described the predictive value of graft colony-forming units granulocyte macrophage (CFU-GM) content after 4-hydroperoxycyclophosphamide (4-HC) purging for the duration of aplasia after autologous bone marrow transplantation. Despite the uniform 4-HC concentration, we observed heterogeneity in CFU-GM survival and the kinetics of engraftment. We have now analysed patient and graft characteristics for 154 patients undergoing autologous transplantation with 4-HC purged grafts to further define this heterogeneity. Patients transplanted for the treatment of malignant lymphoma reached a peripheral blood granulocyte count of greater than 0.5 x 10(9)/l (median, 20 versus 40 days; p less than 0.001) and platelet transfusion independence (median, 30 versus 70 days; p less than 0.001) significantly faster than patients transplanted for acute non-lymphoblastic leukemia. Other diagnostic groups were intermediate. These differences were independent of graft CFU-GM content. Multiple other patient and graft factors including patient age, peripheral blood counts on day of harvest, and amounts of other hematopoietic progenitors also predicted the kinetics of engraftment in univariate and multivariate analysis. Cytomegalovirus infection during the aplastic period predicted a delay in granulocyte (p = 0.024) but not platelet recovery (p = 0.174). This analysis demonstrates that multiple patient, graft, and post-transplant factors predict the engraftment capacity of autografts, and the kinetics of engraftment with 4-HC purged grafts. The multiple predictive factors explain a significant portion of the variability in engraftment kinetics observed after transplantation with 4-HC purged autografts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wittig, C.
1987-01-01
We developed a method of sub-Doppler resolution spectroscopy that is useful for determining kinetic energy distributions. With 'conventional' Doppler spectroscopy, it is almost impossible to obtain an accurate distribution from a line profile, even with the highest resolution, except when the distribution is quite simple (e.g., a delta function). This is due to the lineshape deriving from velocity components along the wave-vector of the probe radiation, k/sub probe/. However, by choosing only those species whose velocities are essentially parallel (or antiparallel) to k/sub probe/, this handicap is overcome. Here, one obtains the kinetic energy distribution along k/sub probe/, and themore » resolution is limited only by our ability to reject species with velocity components perpendicular to k/sub probe/. This rejection is done by spatial and temporal discrimination, using counterpropagating, overlapped, pulsed photolysis and probe sources. At long delays, molecules are detected which are aligned with k/sub probe/. We call the method velocity-aligned Doppler spectroscopy (VADS). We have perused several cases involving photodissociation of small molecules, in each case detecting H-atoms using sequential 2-photon ionization via Lyman-..cap alpha... We discern structure in the kinetic energy distribution which is attributed to internal excitation of the 'other' fragment, and resolution is limited by the dye laser bandwidth. In the case of HBr, we resolve the Br spin-orbit states, and with H/sub 2/S, we resolve the SH vibrational levels. 38 refs., 7 figs.« less
Short-Term Heparin Kinetics during Catheter Ablation of Atrial Fibrillation.
Gabus, Vincent; Rollin, Anne; Maury, Philippe; Forclaz, Andrei; Pascale, Patrizio; Dhutia, Harshil; Bisch, Laurence; Pruvot, Etienne
2015-10-01
Percutaneous catheter ablation of atrial fibrillation (CA-AF) is a treatment option for symptomatic drug-refractory atrial fibrillation (AF). CA-AF carries a risk for thromboembolic complications that has been minimized by the use of intraprocedural intravenous unfractionated heparin (UFH). The optimal administration of UFH as well as its kinetics are not well established and need to be precisely determined. A total 102 of consecutive patients suffering from symptomatic drug-refractory AF underwent CA-AF. The mean age was 61 ± 10 years old. After transseptal puncture of the fossa ovalis, weight-adjusted UFH bolus (100 U/kg) was infused. A significant increase in activated clotting time (ACT) was observed from an average value of 100 ± 27 seconds at baseline, to 355 ± 94 seconds at 10 min (T10), to 375 ± 90 seconds at 20 min (T20). Twenty-four patients failed to reach the targeted ACT value of ≥300 seconds at T10 and more than half of these remained with subtherapeutic ACT values at T20. This subset of patients showed similar clinical characteristics and amount of UFH but were more frequently prescribed preprocedural vitamin K1 than the rest of the study population. In a typical intervention setting, UFH displays unexpected slow anticoagulation kinetics in a significant proportion of procedures up to 20 minutes after infusion. These findings support the infusion of UFH before transseptal puncture or any left-sided catheterization with early ACT measurements to identify patients with delayed kinetics. They are in line with recent guidelines to perform CA-AF under therapeutic anticoagulation. © 2015 Wiley Periodicals, Inc.
A review on high-resolution CMOS delay lines: towards sub-picosecond jitter performance.
Abdulrazzaq, Bilal I; Abdul Halin, Izhal; Kawahito, Shoji; Sidek, Roslina M; Shafie, Suhaidi; Yunus, Nurul Amziah Md
2016-01-01
A review on CMOS delay lines with a focus on the most frequently used techniques for high-resolution delay step is presented. The primary types, specifications, delay circuits, and operating principles are presented. The delay circuits reported in this paper are used for delaying digital inputs and clock signals. The most common analog and digitally-controlled delay elements topologies are presented, focusing on the main delay-tuning strategies. IC variables, namely, process, supply voltage, temperature, and noise sources that affect delay resolution through timing jitter are discussed. The design specifications of these delay elements are also discussed and compared for the common delay line circuits. As a result, the main findings of this paper are highlighting and discussing the followings: the most efficient high-resolution delay line techniques, the trade-off challenge found between CMOS delay lines designed using either analog or digitally-controlled delay elements, the trade-off challenge between delay resolution and delay range and the proposed solutions for this challenge, and how CMOS technology scaling can affect the performance of CMOS delay lines. Moreover, the current trends and efforts used in order to generate output delayed signal with low jitter in the sub-picosecond range are presented.
2014-01-01
ABSTRACT UU 18. NUMBER OF PAGES 68 19a. NAME OF RESPONSIBLE PERSON Chiung-Chu Chen a. REPORT Unclassified b. ABSTRACT Unclassified c ...Abstraction Reactions 33 Appendix C . Geometric Representations, Normal Mode Frequencies, and Moments of Inertia for Molecular Structures Involved in...from MMAZ and DMAZ by NO2 are also shown. ....................13 Figure 6. Potential energy diagram for the C •H2NHCH2CH2N3 + NO2 system: G4-based
2017-02-01
to cost increases and schedule delays and (2) what is known about the costs of benefits foregone because of project delays. GAO compared the...Contributors to Cost Increases and Schedule Delays 13 Total Cost of Benefits Foregone from Project Delays at Olmsted Is Uncertain 27 Agency Comments...would take 7 years. The Corps also estimated benefits , such as transportation cost savings, associated with the project. However, once the project was
ERIC Educational Resources Information Center
Provost, Beth; Lopez, Brian R.; Heimerl, Sandra
2007-01-01
This study assessed motor delay in young children 21-41 months of age with autism spectrum disorder (ASD), and compared motor scores in children with ASD to those of children without ASD. Fifty-six children (42 boys, 14 girls) were in three groups: children with ASD, children with developmental delay (DD), and children with developmental concerns…
NASA Astrophysics Data System (ADS)
Tamboli, Prakash Kumar; Duttagupta, Siddhartha P.; Roy, Kallol
2015-08-01
The paper deals with dynamic compensation of delayed Self Powered Flux Detectors (SPFDs) using discrete time H∞ filtering method for improving the response of SPFDs with significant delayed components such as Platinum and Vanadium SPFD. We also present a comparative study between the Linear Matrix Inequality (LMI) based H∞ filtering and Algebraic Riccati Equation (ARE) based Kalman filtering methods with respect to their delay compensation capabilities. Finally an improved recursive H∞ filter based on the adaptive fading memory technique is proposed which provides an improved performance over existing methods. The existing delay compensation algorithms do not account for the rate of change in the signal for determining the filter gain and therefore add significant noise during the delay compensation process. The proposed adaptive fading memory H∞ filter minimizes the overall noise very effectively at the same time keeps the response time at minimum values. The recursive algorithm is easy to implement in real time as compared to the LMI (or ARE) based solutions.
Linear prediction and single-channel recording.
Carter, A A; Oswald, R E
1995-08-01
The measurement of individual single-channel events arising from the gating of ion channels provides a detailed data set from which the kinetic mechanism of a channel can be deduced. In many cases, the pattern of dwells in the open and closed states is very complex, and the kinetic mechanism and parameters are not easily determined. Assuming a Markov model for channel kinetics, the probability density function for open and closed time dwells should consist of a sum of decaying exponentials. One method of approaching the kinetic analysis of such a system is to determine the number of exponentials and the corresponding parameters which comprise the open and closed dwell time distributions. These can then be compared to the relaxations predicted from the kinetic model to determine, where possible, the kinetic constants. We report here the use of a linear technique, linear prediction/singular value decomposition, to determine the number of exponentials and the exponential parameters. Using simulated distributions and comparing with standard maximum-likelihood analysis, the singular value decomposition techniques provide advantages in some situations and are a useful adjunct to other single-channel analysis techniques.
Giese, Daniel; Weiss, Kilian; Baeßler, Bettina; Madershahian, Navid; Choi, Yeong-Hoon; Maintz, David; Bunck, Alexander C
2018-02-01
The objective of the current work was to evaluate flow and turbulent kinetic energy in different transcatheter aortic valve implants using highly undersampled time-resolved multi-point 3-directional phase-contrast measurements (4D Flow MRI) in an in vitro setup. A pulsatile flow setup was used with a compliant tubing mimicking a stiff left ventricular outflow tract and ascending aorta. Five different implants were measured using a highly undersampled multi-point 4D Flow MRI sequence. Velocities and turbulent kinetic energy values were analysed and compared. Strong variations of turbulent kinetic energy distributions between the valves were observed. Maximum turbulent kinetic energy values ranged from 100 to over 500 J/m 3 while through-plane velocities were similar between all valves. Highly accelerated 4D Flow MRI for the measurement of velocities and turbulent kinetic energy values allowed for the assessment of hemodynamic parameters in five different implant models. The presented setup, measurement protocol and analysis methods provides an efficient approach to compare different valve implants and could aid future novel valve designs.
Generation of real-time mode high-resolution water vapor fields from GPS observations
NASA Astrophysics Data System (ADS)
Yu, Chen; Penna, Nigel T.; Li, Zhenhong
2017-02-01
Pointwise GPS measurements of tropospheric zenith total delay can be interpolated to provide high-resolution water vapor maps which may be used for correcting synthetic aperture radar images, for numeral weather prediction, and for correcting Network Real-time Kinematic GPS observations. Several previous studies have addressed the importance of the elevation dependency of water vapor, but it is often a challenge to separate elevation-dependent tropospheric delays from turbulent components. In this paper, we present an iterative tropospheric decomposition interpolation model that decouples the elevation and turbulent tropospheric delay components. For a 150 km × 150 km California study region, we estimate real-time mode zenith total delays at 41 GPS stations over 1 year by using the precise point positioning technique and demonstrate that the decoupled interpolation model generates improved high-resolution tropospheric delay maps compared with previous tropospheric turbulence- and elevation-dependent models. Cross validation of the GPS zenith total delays yields an RMS error of 4.6 mm with the decoupled interpolation model, compared with 8.4 mm with the previous model. On converting the GPS zenith wet delays to precipitable water vapor and interpolating to 1 km grid cells across the region, validations with the Moderate Resolution Imaging Spectroradiometer near-IR water vapor product show 1.7 mm RMS differences by using the decoupled model, compared with 2.0 mm for the previous interpolation model. Such results are obtained without differencing the tropospheric delays or water vapor estimates in time or space, while the errors are similar over flat and mountainous terrains, as well as for both inland and coastal areas.
Could head circumference be used to screen for autism in young males with developmental delay?
Gray, Kylie M; Taffe, John; Sweeney, Deborah J; Forster, Sheridan; Tonge, Bruce J
2012-04-01
Research has suggested an abnormal acceleration in head circumference growth in children with autism within the first 12 months of life. This study aimed to examine head circumference at birth and head circumference growth rates in young children with autism and developmental delay, and young children with developmental delay without autism. This study assessed head circumference at birth and rate of change in head circumference in young children with autism (n=86) and children with developmental delay without autism (n=40). For both groups of children, head circumference at birth and head circumference growth were compared with Centers for Disease Control normative data. No differences were found between the group of children with autism and developmental delay compared with the group with developmental delay only. However, when the sample was compared with a range of selected Centers for Disease Control normative medians, the children with autism were found to have significantly smaller head circumferences at birth and significantly larger head circumference at 18.5 months of age. These results are discussed in relation to the potential of accelerated head circumference growth as an early marker for autism. This study failed to find a difference in the head circumferences of children with autism and developmental delay and children with developmental delay only, thus suggesting that head circumference measurement has limited value as an early marker for autism. © 2011 The Authors. Journal of Paediatrics and Child Health © 2011 Paediatrics and Child Health Division (Royal Australasian College of Physicians).
NASA Astrophysics Data System (ADS)
Tsaplev, Yu. B.
2016-12-01
The kinetics and mechanism of chemiluminescence during the reduction of manganese(IV) ions with lactic acid in an H2SO4-AcOH medium are studied. Kinetic spectrophotometric measurements are used to determine the profiles of change in the concentrations of Mn(IV) and Mn(III) ions during the reaction. The results from kinetic spectrophotometric measurements are compared to the light yield kinetics. The quantum chemiluminescence and chemiexcitation yields reach record values.
Assessment of atrial electromechanical delay in children with acute rheumatic fever.
Ciftel, Murat; Turan, Ozlem; Simşek, Ayşe; Kardelen, Fırat; Akçurin, Gayaz; Ertuğ, Halil
2014-02-01
There may be an increase in the risk of atrial arrhythmia due to left atrial enlargement and the influence on conduction system in acute rheumatic fever. The aim of this study is to investigate atrial electromechanical delay and P-wave dispersion in patients with acute rheumatic fever. A total of 48 patients diagnosed with acute rheumatic fever and 40 volunteers of similar age, sex, and body mass index were included in the study. The study groups were compared for M-mode echocardiographic parameters, interatrial electromechanical delay, intra-atrial electromechanical delay, and P-wave dispersion. Maximum P-wave duration, P-wave dispersion, and interatrial electromechanical delay were significantly higher in patients with acute rheumatic fever compared with the control group (p < 0.001). However, there was no difference in terms of intra-atrial electromechanical delay (p > 0.05). For patients with acute rheumatic fever, a positive correlation was identified between the left atrium diameter and the P-wave dispersion and interatrial electromechanical delay (r = 0.524 and p < 0.001, and r = 0.351 and p = 0.014, respectively). Furthermore, an important correlation was also identified between the P-wave dispersion and the interatrial electromechanical delay (r = 0.494 and p < 0.001). This study shows the prolongation of P-wave dispersion and interatrial electromechanical delay in acute rheumatic fever. Left atrial enlargement can be one of the underlying reasons for the increase in P-wave dispersion and interatrial electromechanical delay.
Spectral method for a kinetic swarming model
Gamba, Irene M.; Haack, Jeffrey R.; Motsch, Sebastien
2015-04-28
Here we present the first numerical method for a kinetic description of the Vicsek swarming model. The kinetic model poses a unique challenge, as there is a distribution dependent collision invariant to satisfy when computing the interaction term. We use a spectral representation linked with a discrete constrained optimization to compute these interactions. To test the numerical scheme we investigate the kinetic model at different scales and compare the solution with the microscopic and macroscopic descriptions of the Vicsek model. Lastly, we observe that the kinetic model captures key features such as vortex formation and traveling waves.
Saxvig, Ingvild W; Wilhelmsen-Langeland, Ane; Pallesen, Ståle; Vedaa, Oystein; Nordhus, Inger H; Sørensen, Eli; Bjorvatn, Bjørn
2013-08-01
Delayed sleep phase disorder is characterized by a delay in the timing of the major sleep period relative to conventional norms. The sleep period itself has traditionally been described as normal. Nevertheless, it is possible that sleep regulatory mechanism disturbances associated with the disorder may affect sleep duration and/or architecture. Polysomnographic data that may shed light on the issue are scarce. Hence, the aim of this study was to examine polysomnographic measures of sleep in adolescents and young adults with delayed sleep phase disorder, and to compare findings to that of healthy controls. A second aim was to estimate dim light melatonin onset as a marker of circadian rhythm and to investigate the phase angle relationship (time interval) between dim light melatonin onset and the sleep period. Data from 54 adolescents and young adults were analysed, 35 diagnosed with delayed sleep phase disorder and 19 healthy controls. Results show delayed timing of sleep in participants with delayed sleep phase disorder, but once sleep was initiated no group differences in sleep parameters were observed. Dim light melatonin onset was delayed in participants with delayed sleep phase disorder, but no difference in phase angle was observed between the groups. In conclusion, both sleep and dim light melatonin onset were delayed in participants with delayed sleep phase disorder. The sleep period appeared to occur at the same circadian phase in both groups, and once sleep was initiated no differences in sleep parameters were observed. © 2013 European Sleep Research Society.
Use of NAP gene to manipulate leaf senescence in plants
Gan, Susheng; Guo, Yongfeng
2013-04-16
The present invention discloses transgenic plants having an altered level of NAP protein compared to that of a non-transgenic plant, where the transgenic plants display an altered leaf senescence phenotype relative to a non-transgenic plant, as well as mutant plants comprising an inactivated NAP gene, where mutant plants display a delayed leaf senescence phenotype compared to that of a non-mutant plant. The present invention also discloses methods for delaying leaf senescence in a plant, as well as methods of making a mutant plant having a decreased level of NAP protein compared to that of a non-mutant plant, where the mutant plant displays a delayed leaf senescence phenotype relative to a non-mutant plant. Methods for causing precocious leaf senescence or promoting leaf senescence in a plant are also disclosed. Also disclosed are methods of identifying a candidate plant suitable for breeding that displays a delayed leaf senescence and/or enhanced yield phenotype.
The ecological rationality of delay tolerance: insights from capuchin monkeys.
Addessi, Elsa; Paglieri, Fabio; Focaroli, Valentina
2011-04-01
Both human and non-human animals often face decisions between options available at different times, and the capacity of delaying gratification has usually been considered one of the features distinguishing humans from other animals. However, this characteristic can widely vary across individuals, species, and types of task and it is still unclear whether it is accounted for by phylogenetic relatedness, feeding ecology, social structure, or metabolic rate. To disentangle these hypotheses, we evaluated temporal preferences in capuchin monkeys, South-American primates that, despite splitting off from human lineage approximately 35 million years ago, show striking behavioural analogies with the great apes. Then, we compared capuchins' performance with that of the other primate species tested so far with the same procedure. Overall, capuchins showed a delay tolerance significantly higher than closely related species, such as marmosets and tamarins, and comparable to that shown by great apes. Capuchins' tool use abilities might explain their comparatively high preference for delayed options in inter-temporal choices. Moreover, as in humans, capuchin females showed a greater delay tolerance than males, possibly because of their less opportunistic foraging style. Thus, our results shed light on the evolutionary origins of self-control supporting explanations of delay tolerance in terms of feeding ecology. Copyright © 2010 Elsevier B.V. All rights reserved.
Ferree, Steven; Hietbrink, Falco; van der Meijden, Olivier A J; Verleisdonk, Egbert Jan M M; Leenen, Luke P H; Houwert, Roderick M
2017-01-01
Although clavicle fractures are a common injury in polytrauma patients, the functional outcome of displaced midshaft clavicle fractures (DMCFs) in this population is unknown. Our hypothesis was that there would be no differences in fracture healing disorders or functional outcome in polytrauma patients with a DMCF compared with patients with an isolated DMCF, regardless of the treatment modality. A retrospective cohort study of patients (treated at our level I trauma center) with a DMCF was performed and a follow-up questionnaire was administered. Polytrauma patients, defined as an Injury Severity Score ≥16, and those with an isolated clavicle fracture were compared. Fracture healing disorders (nonunion and delayed union) and delayed fixation rates were determined. Functional outcome was assessed by the Quick Disability of the Arm, Shoulder, and Hand questionnaire. A total of 152 patients were analyzed, 71 polytrauma patients and 81 patients with an isolated DMCF. Questionnaire response of 121 patients (80%) was available (mean, 53 months; standard deviation, 22 months). No differences were found between polytrauma patients and those with an isolated DMCF with regard to nonunion (7% vs. 5%, respectively), delayed union (4% vs. 4%), and delayed fixation rate (13% vs. 13%). Polytrauma patients had an overall worse functional outcome, regardless of initial nonoperative treatment or delayed operative fixation. Polytrauma patients had a similar nonunion and delayed fixation rate but had an overall worse functional outcome compared with patients with an isolated DMCF. For polytrauma patients, a wait and see approach can be advocated without the risk of decreased upper extremity function after delayed fixation. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Metcalfe, Kelly A; Semple, John; Quan, May-Lynn; Holloway, Claire; Wright, Frances; Narod, Steven; Hofer, Stefan; Bagher, Shaghayegh; Zhong, Toni
2017-02-01
Delayed breast reconstruction is an option for women who have undergone mastectomy; however, uptake is low. The purpose of this study was to identify premastectomy and postmastectomy demographic, clinical, and psychosocial predictors of uptake of delayed breast reconstruction in the long-term survivorship period. This was a prospective longitudinal survey study of mastectomy patients in which a repeated measures design was used to evaluate uptake of delayed breast reconstruction. Demographic, clinical, and psychosocial variables were collected before mastectomy and 1 year after mastectomy. Information regarding uptake of delayed breast reconstruction was collected at approximately 6 years after mastectomy. A predictive model was designed using a multivariate logistic regression model and Akiake information criterion stepwise algorithm. Ninety-six mastectomy patients were followed from before mastectomy to 75.2 months after mastectomy, and 35 women (36.5 percent) underwent delayed breast reconstruction. Women who elected for delayed breast reconstruction experienced worsening of body concerns from before mastectomy to 1 year after mastectomy, compared with women who did not elect to undergo delayed breast reconstruction (p = 0.03). Mean scores for psychological distress were significantly worse both before mastectomy and 1 year after mastectomy in women who went on to undergo delayed breast reconstruction compared with those who did not undergo delayed breast reconstruction (p = 0.034 and p = 0.022, respectively). A predictive model for the uptake of delayed breast reconstruction was developed using demographic, clinical, and psychosocial characteristics. The area under the receiver operating characteristic curve was 85 percent, indicating good precision. Women who are experiencing higher levels of distress, anxiety, and body concerns both before and after mastectomy appear to be significantly likely to select delayed breast reconstruction. This may have implications for postreconstruction satisfaction and psychosocial functioning. Risk, III.
Cost-effectiveness of early compared to late inhaled nitric oxide therapy in near-term infants.
Armstrong, Edward P; Dhanda, Rahul
2010-12-01
The purpose of this study was to determine the cost-effectiveness of early versus late inhaled nitric oxide (INO) therapy in neonates with hypoxic respiratory failure initially managed on conventional mechanical ventilation. A decision analytic model was created to compare the use of early INO compared to delayed INO for neonates receiving mechanical ventilation due to hypoxic respiratory failure. The perspective of the model was that of a hospital. Patients who did not respond to either early or delayed INO were assumed to have been treated with extracorporeal membrane oxygenation (ECMO). The effectiveness measure was defined as a neonate discharged alive without requiring ECMO therapy. A Monte Carlo simulation of 10,000 cases was conducted using first and second order probabilistic analysis. Direct medical costs that differed between early versus delayed INO treatment were estimated until time to hospital discharge. The proportion of successfully treated patients and costs were determined from the probabilistic sensitivity analysis. The mean (± SD) effectiveness rate for early INO was 0.75 (± 0.08) and 0.61 (± 0.09) for delayed INO. The mean hospital cost for early INO was $21,462 (± $2695) and $27,226 (± $3532) for delayed INO. In 87% of scenarios, early INO dominated delayed INO by being both more effective and less costly. The acceptability curve between products demonstrated that early INO had over a 90% probability of being the most cost-effective treatment across a wide range of willingness to pay values. This analysis indicated that early INO therapy was cost-effective in neonates with hypoxic respiratory failure requiring mechanical ventilation compared to delayed INO by reducing the probability of developing severe hypoxic respiratory failure. There was a 90% or higher probability that early INO was more cost-effective than delayed INO across a wide range of willingness to pay values in this analysis.
Maternal and Neonatal Outcomes With Early Compared With Delayed Pushing Among Nulliparous Women
Yee, Lynn M.; Sandoval, Grecio; Bailit, Jennifer; Reddy, Uma M.; Wapner, Ronald J.; Varner, Michael W.; Caritis, Steve N.; Prasad, Mona; Tita, Alan T.N.; Saade, George; Sorokin, Yoram; Rouse, Dwight J.; Blackwell, Sean C.; Tolosa, Jorge E.
2016-01-01
Objective To describe factors associated with delayed pushing and evaluate the relationship between delayed pushing and perinatal outcomes in nulliparous women with singleton term gestations. Methods This was a secondary analysis of NICHD Assessment of Perinatal Excellence (APEX) cohort of 115,502 women and their neonates born in 25 U.S. hospitals from 2008-2011. Nulliparous women with singleton, cephalic, nonanomalous term births who achieved 10 cm cervical dilation were included. Women in whom pushing was delayed by ≥60 minutes (delayed group) were compared with those who initiated pushing within 30 minutes (early group). Multivariable regression analyses were used to assess the independent association of delayed pushing with mode of delivery, length of second stage and other maternal and perinatal outcomes (significance defined as p<0.05). Results Of 21,034 women in the primary analysis sample, pushing was delayed in 18.4% (n=3870). Women who were older, privately insured, or non-Hispanic white, as well as those who had induction or augmentation of labor, diabetes, or epidural analgesia were more likely to have delayed pushing. Delayed pushing was more common when the second stage began during daytime hours or in hospitals with dedicated 24-hour obstetric anesthesia, although differences were small. After adjusting for differences in baseline and labor characteristics including center, women in the delayed group had longer mean durations of the second stage (191 vs. 84 min, p<0.001) and of active pushing (86 vs. 76 min, p<0.001). Delayed pushing was associated with greater rates of cesarean delivery (11.2% vs 5.1%; adjusted odds ratio [aOR] 1.86, 95% confidence interval [CI] 1.63-2.12), operative vaginal delivery (aOR 1.26, 95% CI 1.14-1.40), postpartum hemorrhage (aOR 1.43, 95% CI 1.05-1.95) and blood transfusion (aOR 1.51, 95% CI 1.04-2.17). Delayed pushing was not associated with increased odds of adverse neonatal outcomes compared with early pushing. Conclusion In this large birth cohort, delayed pushing was associated with longer second stage duration, increased odds of cesarean delivery, and increased odds of postpartum hemorrhage, but was not associated with neonatal morbidity. PMID:27741203
Chemical kinetics as a contract sport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolb, C.E.
1990-01-01
Earlier in this century chemical kinetics was a basic physical chemistry research topic widely pursued in leading academic chemistry departments. Chemical kinetics now appears to be a discipline practiced chiefly for its applications to societal problems. The chemical kinetics activities directed by D.M. Golden at SRI International are strikingly successful in generating data for key applied problems while at the same time advancing our understanding of chemical kinetics as a scientific discipline. In this talk, the author will contrast the chemical kinetics activities in two contract R D laboratories, one on the right side of the U.S. (ARI) and themore » other on the left (SRI). Their approach to common applied problems ranging from stratospheric heterogeneous kinetics to plasma etching systems for semiconductor processing will be compared and contrasted. Empirically discovered Golden Rules for the pursuit of quality chemical kinetics research in a contract R D environment will be presented and discussed.« less
Childers, W Lee; Kogler, Géza F
2014-01-01
People with amputation move asymmetrically with regard to kinematics (joint angles) and kinetics (joint forces and moments). Clinicians have traditionally sought to minimize kinematic asymmetries, assuming kinetic asymmetries would also be minimized. A cycling model evaluated locomotor asymmetries. Eight individuals with unilateral transtibial amputation pedaled with 172 mm-length crank arms on both sides (control condition) and with the crank arm length shortened to 162 mm on the amputated side (CRANK condition). Pedaling kinetics and limb kinematics were recorded. Joint kinetics, joint angles (mean and range of motion [ROM]), and pedaling asymmetries were calculated from force pedals and with a motion capture system. A one-way analysis of variance with tukey post hoc compared kinetics and kinematics across limbs. Statistical significance was set to p = 0.05. The CRANK condition reduced hip and knee ROM in the amputated limb compared with the control condition. There were no differences in joint kinematics between the contralateral and amputated limbs during the CRANK condition. Pedaling asymmetries did not differ and were 23.0% +/= 9.8% and 23.2% +/= 12% for the control and CRANK conditions, respectively. Our results suggest that minimizing kinematic asymmetries does not relate to kinetic asymmetries as clinically assumed. We propose that future research should concentrate on defining acceptable asymmetry.
Stability analysis for a delay differential equations model of a hydraulic turbine speed governor
NASA Astrophysics Data System (ADS)
Halanay, Andrei; Safta, Carmen A.; Dragoi, Constantin; Piraianu, Vlad F.
2017-01-01
The paper aims to study the dynamic behavior of a speed governor for a hydraulic turbine using a mathematical model. The nonlinear mathematical model proposed consists in a system of delay differential equations (DDE) to be compared with already established mathematical models of ordinary differential equations (ODE). A new kind of nonlinearity is introduced as a time delay. The delays can characterize different running conditions of the speed governor. For example, it is considered that spool displacement of hydraulic amplifier might be blocked due to oil impurities in the oil supply system and so the hydraulic amplifier has a time delay in comparison to the time control. Numerical simulations are presented in a comparative manner. A stability analysis of the hydraulic control system is performed, too. Conclusions of the dynamic behavior using the DDE model of a hydraulic turbine speed governor are useful in modeling and controlling hydropower plants.
Validity of false belief tasks in blind children.
Brambring, Michael; Asbrock, Doreen
2010-12-01
Previous studies have reported that congenitally blind children without any additional impairment reveal a developmental delay of at least 4 years in perspective taking based on testing first-order false-belief tasks. These authors interpret this delay as a sign of autism-like behavior. However, the delay may be caused by testing blind children with false-belief tasks that require visual experience. Therefore, the present study gave alternative false-belief tasks based on tactile or auditory experience to 45 congenitally blind 4-10-year-olds and 37 sighted 3-6-year-olds. Results showed criterion performance at 80 months (6; 8 years) in blind children compared with 61 months (5; 1 years) in sighted controls. It is concluded that this 19-month (1; 7 year) difference, which is comparable with delays in other developmental areas, is a developmental delay caused by the fact of congenital blindness rather than a sign of a psychopathological disorder of autism-like behavior.
Comparing Pictures and Videos for Teaching Action Labels to Children with Communication Delays
ERIC Educational Resources Information Center
Schebell, Shannon; Shepley, Collin; Mataras, Theologia; Wunderlich, Kara
2018-01-01
Children with communication delays often display difficulties labeling stimuli in their environment, particularly related to actions. Research supports direct instruction with video and picture stimuli for increasing children's action labeling repertoires; however, no studies have compared which type of stimuli results in more efficient,…
Mahy, Caitlin E V; Schnitzspahn, Katharina; Hering, Alexandra; Pagobo, Jacqueline; Kliegel, Matthias
2018-05-01
The current study examined the impact of length and difficulty of the delay task on young adult's event-based prospective memory (PM). Participants engaged in either a short (2.5 min) or a long (15 min) delay that was filled with either a simple item categorization task or a difficult cognitive task. They also completed a questionnaire on whether they thought about the PM intention during the delay period and how often they thought about it. Results revealed that participants' PM was better after a difficult delay task compared to an easy delay task. Participants thought about the PM intention more often during the difficult delay task than during the easy delay task. PM performance was positively related to participants' reports of how many times they thought about their intentions. The important role of delay task difficulty in allowing or preventing individuals from refreshing their future intentions is discussed.
Hayakawa, Tomohiro; Kunihiro, Takeshi; Ando, Tomoko; Kobayashi, Seiji; Matsui, Eriko; Yada, Hiroaki; Kanda, Yasunari; Kurokawa, Junko; Furukawa, Tetsushi
2014-12-01
In this study, we used high-speed video microscopy with motion vector analysis to investigate the contractile characteristics of hiPS-CM monolayer, in addition to further characterizing the motion with extracellular field potential (FP), traction force and the Ca(2+) transient. Results of our traction force microscopy demonstrated that the force development of hiPS-CMs correlated well with the cellular deformation detected by the video microscopy with motion vector analysis. In the presence of verapamil and isoproterenol, contractile motion of hiPS-CMs showed alteration in accordance with the changes in fluorescence peak of the Ca(2+) transient, i.e., upstroke, decay, amplitude and full-width at half-maximum. Simultaneously recorded hiPS-CM motion and FP showed that there was a linear correlation between changes in the motion and field potential duration in response to verapamil (30-150nM), isoproterenol (0.1-10μM) and E-4031 (10-50nM). In addition, tetrodotoxin (3-30μM)-induced delay of sodium current was corresponded with the delay of the contraction onset of hiPS-CMs. These results indicate that the electrophysiological and functional behaviors of hiPS-CMs are quantitatively reflected in the contractile motion detected by this image-based technique. In the presence of 100nM E-4031, the occurrence of early after-depolarization-like negative deflection in FP was also detected in the hiPS-CM motion as a characteristic two-step relaxation pattern. These findings offer insights into the interpretation of the motion kinetics of the hiPS-CMs, and are relevant for understanding electrical and mechanical relationship in hiPS-CMs. Copyright © 2014. Published by Elsevier Ltd.
Impact of ionic current variability on human ventricular cellular electrophysiology.
Romero, Lucía; Pueyo, Esther; Fink, Martin; Rodríguez, Blanca
2009-10-01
Abnormalities in repolarization and its rate dependence are known to be related to increased proarrhythmic risk. A number of repolarization-related electrophysiological properties are commonly used as preclinical biomarkers of arrhythmic risk. However, the variability and complexity of repolarization mechanisms make the use of cellular biomarkers to predict arrhythmic risk preclinically challenging. Our goal is to investigate the role of ionic current properties and their variability in modulating cellular biomarkers of arrhythmic risk to improve risk stratification and identification in humans. A systematic investigation into the sensitivity of the main preclinical biomarkers of arrhythmic risk to changes in ionic current conductances and kinetics was performed using computer simulations. Four stimulation protocols were applied to the ten Tusscher and Panfilov human ventricular model to quantify the impact of +/-15 and +/-30% variations in key model parameters on action potential (AP) properties, Ca(2+) and Na(+) dynamics, and their rate dependence. Simulations show that, in humans, AP duration is moderately sensitive to changes in all repolarization current conductances and in L-type Ca(2+) current (I(CaL)) and slow component of the delayed rectifier current (I(Ks)) inactivation kinetics. AP triangulation, however, is strongly dependent only on inward rectifier K(+) current (I(K1)) and delayed rectifier current (I(Kr)) conductances. Furthermore, AP rate dependence (i.e., AP duration rate adaptation and restitution properties) and intracellular Ca(2+) and Na(+) levels are highly sensitive to both I(CaL) and Na(+)/K(+) pump current (I(NaK)) properties. This study provides quantitative insights into the sensitivity of preclinical biomarkers of arrhythmic risk to variations in ionic current properties in humans. The results show the importance of sensitivity analysis as a powerful method for the in-depth validation of mathematical models in cardiac electrophysiology.
NASA Astrophysics Data System (ADS)
Chaudhury, Baishali; Zhou, Mu; Goldgof, Dmitry B.; Hall, Lawrence O.; Gatenby, Robert A.; Gillies, Robert J.; Drukteinis, Jennifer S.
2015-03-01
The ability to identify aggressive tumors from indolent tumors using quantitative analysis on dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) would dramatically change the breast cancer treatment paradigm. With this prognostic information, patients with aggressive tumors that have the ability to spread to distant sites outside of the breast could be selected for more aggressive treatment and surveillance regimens. Conversely, patients with tumors that do not have the propensity to metastasize could be treated less aggressively, avoiding some of the morbidity associated with surgery, radiation and chemotherapy. We propose a computer aided detection framework to determine which breast cancers will metastasize to the loco-regional lymph nodes as well as which tumors will eventually go on to develop distant metastses using quantitative image analysis and radiomics. We defined a new contrast based tumor habitat and analyzed textural kinetic features from this habitat for classification purposes. The proposed tumor habitat, which we call combined-habitat, is derived from the intersection of two individual tumor sub-regions: one that exhibits rapid initial contrast uptake and the other that exhibits rapid delayed contrast washout. Hence the combined-habitat represents the tumor sub-region within which the pixels undergo both rapid initial uptake and rapid delayed washout. We analyzed a dataset of twenty-seven representative two dimensional (2D) images from volumetric DCE-MRI of breast tumors, for classification of tumors with no lymph nodes from tumors with positive number of axillary lymph nodes. For this classification an accuracy of 88.9% was achieved. Twenty of the twenty-seven patients were analyzed for classification of distant metastatic tumors from indolent cancers (tumors with no lymph nodes), for which the accuracy was 84.3%.
Determining Kinetic Parameters for Isothermal Crystallization of Glasses
NASA Technical Reports Server (NTRS)
Ray, C. S.; Zhang, T.; Reis, S. T.; Brow, R. K.
2006-01-01
Non-isothermal crystallization techniques are frequently used to determine the kinetic parameters for crystallization in glasses. These techniques are experimentally simple and quick compared to the isothermal techniques. However, the analytical models used for non-isothermal data analysis, originally developed for describing isothermal transformation kinetics, are fundamentally flawed. The present paper describes a technique for determining the kinetic parameters for isothermal crystallization in glasses, which eliminates most of the common problems that generally make the studies of isothermal crystallization laborious and time consuming. In this technique, the volume fraction of glass that is crystallized as a function of time during an isothermal hold was determined using differential thermal analysis (DTA). The crystallization parameters for the lithium-disilicate (Li2O.2SiO2) model glass were first determined and compared to the same parameters determined by other techniques to establish the accuracy and usefulness of the present technique. This technique was then used to describe the crystallization kinetics of a complex Ca-Sr-Zn-silicate glass developed for sealing solid oxide fuel cells.
Delay-tunable gap-soliton-based slow-light system
NASA Astrophysics Data System (ADS)
Mok, Joe T.; de Sterke, C. Martijn; Eggleton, Benjamin J.
2006-12-01
We numerically and analytically evaluate the delay of solitons propagating slowly, and without broadening, in an apodized Bragg grating. Simulations indicate that a 100 mm Bragg grating with Δn = 10-3 can delay sub-nanosecond pulses by nearly 20 pulse widths without any change in the output pulse width. Delay tunability is achieved by simultaneously adjusting the launch power and detuning. A simple analytic model is developed to describe the monotonic dependence of delay on Δn and compared with simulations. As the intensity may be greatly enhanced due to a reduced velocity, a procedure for improving the delay while avoiding material damage is outlined.
Lewis, Daniel R.; Olex, Amy L.; Lundy, Stacey R.; Turkett, William H.; Fetrow, Jacquelyn S.; Muday, Gloria K.
2013-01-01
To identify gene products that participate in auxin-dependent lateral root formation, a high temporal resolution, genome-wide transcript abundance analysis was performed with auxin-treated Arabidopsis thaliana roots. Data analysis identified 1246 transcripts that were consistently regulated by indole-3-acetic acid (IAA), partitioning into 60 clusters with distinct response kinetics. We identified rapidly induced clusters containing auxin-response functional annotations and clusters exhibiting delayed induction linked to cell division temporally correlated with lateral root induction. Several clusters were enriched with genes encoding proteins involved in cell wall modification, opening the possibility for understanding mechanistic details of cell structural changes that result in root formation following auxin treatment. Mutants with insertions in 72 genes annotated with a cell wall remodeling function were examined for alterations in IAA-regulated root growth and development. This reverse-genetic screen yielded eight mutants with root phenotypes. Detailed characterization of seedlings with mutations in CELLULASE3/GLYCOSYLHYDROLASE9B3 and LEUCINE RICH EXTENSIN2, genes not normally linked to auxin response, revealed defects in the early and late stages of lateral root development, respectively. The genes identified here using kinetic insight into expression changes lay the foundation for mechanistic understanding of auxin-mediated cell wall remodeling as an essential feature of lateral root development. PMID:24045021
NASA Technical Reports Server (NTRS)
Steinberger, Craig J.
1991-01-01
The effects of compressibility, chemical reaction exothermicity, and non-equilibrium chemical modeling in a reacting plane mixing layer were investigated by means of two dimensional direct numerical simulations. The chemical reaction was irreversible and second order of the type A + B yields Products + Heat. The general governing fluid equations of a compressible reacting flow field were solved by means of high order finite difference methods. Physical effects were then determined by examining the response of the mixing layer to variation of the relevant non-dimensionalized parameters. The simulations show that increased compressibility generally results in a suppressed mixing, and consequently a reduced chemical reaction conversion rate. Reaction heat release was found to enhance mixing at the initial stages of the layer growth, but had a stabilizing effect at later times. The increased stability manifested itself in the suppression or delay of the formation of large coherent structures within the flow. Calculations were performed for a constant rate chemical kinetics model and an Arrhenius type kinetic prototype. The choice of the model was shown to have an effect on the development of the flow. The Arrhenius model caused a greater temperature increase due to reaction than the constant kinetic model. This had the same effect as increasing the exothermicity of the reaction. Localized flame quenching was also observed when the Zeldovich number was relatively large.
Nie, Xiao-Bao; Li, Zhi-Hong; Long, Yuan-Nan; He, Pan-Pan; Xu, Chao
2017-06-01
The inactivation of Tubifex tubifex is important to prevent contamination of drinking water. Chlorine is a widely-used disinfectant and the key factor in the inactivation of T. tubifex. This study investigated the inactivation kinetics of chlorine on T. tubifex and the synergistic effect of the sequential use of chlorine and UV irradiation. The experimental results indicated that the Ct (concentration × time reaction ) concept could be used to evaluate the inactivation kinetics of T. tubifex with chlorine, thus allowing for the use of a simpler Ct approach for the assessment of T. tubifex chlorine inactivation requirements. The inactivation kinetics of T. tubifex by chlorine was found to be well-fitted to a delayed pseudo first-order Chick-Watson expression. Sequential experiments revealed that UV irradiation and chlorine worked synergistically to effectively inactivate T. tubifex as a result of the decreased activation energy, E a , induced by primary UV irradiation. Furthermore, the inactivation effectiveness of T. tubifex by chlorine was found to be affected by several drinking water quality parameters including pH, turbidity, and chemical oxygen demand with potassium permanganate (COD Mn ) concentration. High pH exhibited pronounced inactivation effectiveness and the decrease in turbidity and COD Mn concentrations contributed to the inactivation of T. tubifex. Copyright © 2017 Elsevier Ltd. All rights reserved.
High-speed and low-power repeater for VLSI interconnects
NASA Astrophysics Data System (ADS)
Karthikeyan, A.; Mallick, P. S.
2017-10-01
This paper proposes a repeater for boosting the speed of interconnects with low power dissipation. We have designed and implemented at 45 and 32 nm technology nodes. Delay and power dissipation performances are analyzed for various voltage levels at these technology nodes using Spice simulations. A significant reduction in delay and power dissipation are observed compared to a conventional repeater. The results show that the proposed high-speed low-power repeater has a reduced delay for higher load capacitance. The proposed repeater is also compared with LPTG CMOS repeater, and the results shows that the proposed repeater has reduced delay. The proposed repeater can be suitable for high-speed global interconnects and has the capacity to drive large loads.
NASA Astrophysics Data System (ADS)
Ellinwood, Nicholas; Dobrev, Dobromir; Morotti, Stefano; Grandi, Eleonora
2017-09-01
The KV1.5 potassium channel, which underlies the ultra-rapid delayed-rectifier current (IKur) and is predominantly expressed in atria vs. ventricles, has emerged as a promising target to treat atrial fibrillation (AF). However, while numerous KV1.5-selective compounds have been screened, characterized, and tested in various animal models of AF, evidence of antiarrhythmic efficacy in humans is still lacking. Moreover, current guidelines for pre-clinical assessment of candidate drugs heavily rely on steady-state concentration-response curves or IC50 values, which can overlook adverse cardiotoxic effects. We sought to investigate the effects of kinetics and state-dependent binding of IKur-targeting drugs on atrial electrophysiology in silico and reveal the ideal properties of IKur blockers that maximize anti-AF efficacy and minimize pro-arrhythmic risk. To this aim, we developed a new Markov model of IKur that describes KV1.5 gating based on experimental voltage-clamp data in atrial myocytes from patient right-atrial samples in normal sinus rhythm. We extended the IKur formulation to account for state-specificity and kinetics of KV1.5-drug interactions and incorporated it into our human atrial cell model. We simulated 1- and 3-Hz pacing protocols in drug-free conditions and with a [drug] equal to the IC50 value. The effects of binding and unbinding kinetics were determined by examining permutations of the forward (kon) and reverse (koff) binding rates to the closed, open, and inactivated states of the KV1.5 channel. We identified a subset of ideal drugs exhibiting anti-AF electrophysiological parameter changes at fast pacing rates (effective refractory period prolongation), while having little effect on normal sinus rhythm (limited action potential prolongation). Our results highlight that accurately accounting for channel interactions with drugs, including kinetics and state-dependent binding, is critical for developing safer and more effective pharmacological anti-AF options.
Characterizing Impulsivity in Mania
Strakowski, Stephen M.; Fleck, David E.; DelBello, Melissa P.; Adler, Caleb M.; Shear, Paula K.; McElroy, Susan L.; Keck, Paul E.; Moss, Quinton; Cerullo, Michael A.; Kotwal, Renu; Arndt, Stephan
2008-01-01
Objective To determine whether specific aspects of impulsivity (response disinhibition, inability to delay gratification, inattention) differ between healthy and bipolar manic subjects, and whether these aspects of impulsivity were associated with each other and severity of affective symptoms. Methods Performance of 70 bipolar I manic or mixed patients was compared to that of 34 healthy subjects on three tasks specifically designed to study response inhibition, ability to delay gratification, and attention; namely a stop signal task, a delayed reward task, and a continuous performance task respectively. Correlations among tasks and with symptom ratings were also performed. Results Bipolar subjects demonstrated significant deficits on all three tasks as compared to healthy subjects. Performance on the three tasks was largely independent. Task performance was not significantly associated with the severity of affective symptom ratings. However, measures of response inhibition and attention were sensitive to medication effects. Differences in the delayed reward task were independent of medication effects or symptom ratings. During the delayed reward task, although bipolar patients made their choices more slowly than healthy subjects, they were significantly more likely to choose a smaller, but more quickly obtained reward. Moreover performance on this task was not associated with performance on the other impulsivity measures. Manic patients showed more impulsive responding than mixed patients. Conclusions Bipolar I manic patients demonstrate deficits on tests of various aspects of impulsivity as compared to healthy subjects. Some of these differences between groups may be mediated by medication effects. Findings suggested that inability to delay gratification (i.e., delayed reward task) was not simply a result of the speed of decision making or inattention, but rather that it reflected differences between bipolar and healthy subjects in the valuation of reward relative to delay. PMID:19133965
Hoersch, Daniel; Otto, Harald; Cusanovich, Michael A; Heyn, Maarten P
2009-07-14
The photoreceptor PYP responds to light activation with global conformational changes. These changes are mainly located in the N-terminal cap of the protein, which is approximately 20 A away from the chromophore binding pocket and separated from it by the central beta-sheet. The question of the propagation of the structural change across the central beta-sheet is of general interest for the superfamily of PAS domain proteins, for which PYP is the structural prototype. Here we measured the kinetics of the structural changes in the N-terminal cap by transient absorption spectroscopy on the ns to second timescale. For this purpose the cysteine mutants A5C and N13C were prepared and labeled with thiol reactive 5-iodoacetamidofluorescein (IAF). A5 is located close to the N-terminus, while N13 is part of helix alpha1 near the functionally important salt bridge E12-K110 between the N-terminal cap and the central anti-parallel beta-sheet. The absorption spectrum of the dye is sensitive to its environment, and serves as a sensor for conformational changes near the labeling site. In both labeled mutants light activation results in a transient red-shift of the fluorescein absorption spectrum. To correlate the conformational changes with the photocycle intermediates of the protein, we compared the kinetics of the transient absorption signal of the dye with that of the p-hydroxycinnamoyl chromophore. While the structural change near A5 is synchronized with the rise of the I(2) intermediate, which is formed in approximately 200 mus, the change near N13 is delayed and rises with the next intermediate I(2)', which forms in approximately 2 ms. This indicates that different parts of the N-terminal cap respond to light activation with different kinetics. For the signaling pathway of photoactive yellow protein we propose a model in which the structural signal propagates from the chromophore binding pocket across the central beta-sheet via the N-terminal region to helix alpha1, resulting in a large change in the protein conformation.
Lu, Xiaoli; Yang, Xi; Huang, Xiaoyan; Huang, Chen; Sun, Huan Huan; Jin, Lihua; Xu, Weifeng; Mao, Haiyan; Guo, Junming; Zhou, Jianqing; Lian, Jiangfang
2013-01-01
Long QT syndrome (LQTS) is a monogenic proarrhythmic disorder that predisposes affected individuals to sudden death from tachyarrhythmia. As an inherited disease, LQTS cannot be completely cured by conventional treatment modalities. Individualized gene therapy is a promising therapeutic approach. The purpose of this study was to investigate the role of small interference RNA (siRNA) on expression of E637K-hERG (human ether-a-go-go-related gene) mutant and whether it can be used to rescue the mutant's dominant-negative suppressive effects on hERG protein channel function. Western blot was performed to select the most sensitive siRNAs to target E637K-hERG mutant knockdown. Confocal laser scanning microscope was performed to monitor cellular localization of wild-type (WT)-hERG and E637K-hERG with or without siRNA. Patch-clamp technique was used to assess the effect of siRNA on the electrophysiologic characteristics of the rapidly activating delayed rectifier K(+) current I(Kr) of the hERG protein channel. siRNA led to a significant decrease in the level of E637K-hERG protein but did not affect the level of WT-hERG protein. WT-hERG localization in cells coexpressing E637K-hERG mutant was restored to the membrane by siRNA. The siRNA-mediated inhibition of E637K-hERG mutant restored the maximum current and tail current amplitudes. Furthermore, siRNA treatment rescued the kinetic properties of WT/E637K-hERG protein channel to a level comparable to that of WT-hERG protein channel. Our findings illustrated that siRNA can effectively inhibit E637K-hERG protein expression and rescue the dominant-negative effect of this mutation by restoring the kinetic properties of hERG protein channel. It has potential clinical implications with regard to the possibility of using siRNA in the treatment of LQTS. Copyright © 2013 Heart Rhythm Society. All rights reserved.
Darlix, Amélie; Griguolo, Gaia; Thezenas, Simon; Kantelhardt, Eva; Thomssen, Christoph; Dieci, Maria Vittoria; Miglietta, Federica; Conte, PierFranco; Braccini, Antoine Laurent; Ferrero, Jean Marc; Bailleux, Caroline; Jacot, William; Guarneri, Valentina
2018-06-01
Breast cancer (BC) metastatic behavior varies according to the hormone receptors (HR) and HER2 statuses. Indeed, patients with triple-negative (TN) and HER2+ tumors are at higher risk of brain metastases (BM). The objective of this multinational cohort was to evaluate BM kinetics depending on the BC subtype. We retrospectively analyzed a series of BC patients with BM diagnosed in four European institutions (1996-2016). The delay between BC and BM diagnoses (BM-free survival) according to tumor biology was estimated with the Kaplan-Meier method. A multivariate analysis was performed using the Cox proportional hazards regression model. 649 women were included: 32.0% HER2-/HR+, 24.8% TN, 22.2% HER2+/HR- and 21.0% HER2+/HR+ tumors. Median age at BM diagnosis was 56 (25-85). In univariate analysis, BM-free survival differed depending on tumor biology: HER2-/HR+ 5.3 years (95% CI 4.6-5.9), HER2+/HR+ 4.4 years (95% CI 3.4-5.2), HER2+/HR- 2.6 years (95% CI 2.2-3.1) and TN 2.2 years (95% CI 1.9-2.7) (p < 0.001). It was significantly different between HR+ and HR- tumors (5.0 vs. 2.5 years, p < 0.001), and between HER2+ and HER2- tumors (3.2 vs. 3.8 years, p = 0.039). In multivariate analysis, estrogen-receptors (ER) and progesterone-receptors (PR) negativity, but not HER2 status, were independently associated with BM-free survival (hazard ratio = 1.36 for ER, p = 0.013, 1.31 for PR, p = 0.021, and 1.01 for HER2+ vs. HER2- tumors, p = 0.880). HR- and HER2+ tumors are overrepresented in BC patients with BM, supporting a higher risk of BM in these biological subtypes. HR status, but not HER2 status, impacts the kinetics of BM occurrence.
NASA Astrophysics Data System (ADS)
Raudino, Antonio; Pannuzzo, Martina
2010-01-01
A semiquantitative theory aimed to describe the adhesion kinetics between soft objects, such as living cells or vesicles, has been developed. When rigid bodies are considered, the adhesion kinetics is successfully described by the classical Derjaguin, Landau, Verwey, and Overbeek (DLVO) picture, where the energy profile of two approaching bodies is given by a two asymmetrical potential wells separated by a barrier. The transition probability from the long-distance to the short-distance minimum defines the adhesion rate. Conversely, soft bodies might follow a different pathway to reach the short-distance minimum: thermally excited fluctuations give rise to local protrusions connecting the approaching bodies. These transient adhesion sites are stabilized by short-range adhesion forces (e.g., ligand-receptor interactions between membranes brought at contact distance), while they are destabilized both by repulsive forces and by the elastic deformation energy. Above a critical area of the contact site, the adhesion forces prevail: the contact site grows in size until the complete adhesion of the two bodies inside a short-distance minimum is attained. This nucleation mechanism has been developed in the framework of a nonequilibrium Fokker-Planck picture by considering both the adhesive patch growth and dissolution processes. In addition, we also investigated the effect of the ligand-receptor pairing kinetics at the adhesion site in the time course of the patch expansion. The ratio between the ligand-receptor pairing kinetics and the expansion rate of the adhesion site is of paramount relevance in determining the overall nucleation rate. The theory enables one to self-consistently include both thermodynamics (energy barrier height) and dynamic (viscosity) parameters, giving rise in some limiting cases to simple analytical formulas. The model could be employed to rationalize fusion kinetics between vesicles, provided the short-range adhesion transition is the rate-limiting step to the whole adhesion process. Approximate relationships between the experimental fusion rates reported in the literature and parameters such as membrane elastic bending modulus, repulsion strength, temperature, osmotic forces, ligand-receptor binding energy, solvent and membrane viscosities are satisfactory explained by our model. The present results hint a possible role of the initial long-distance→short-distance transition in determining the whole fusion kinetics.
NASA Astrophysics Data System (ADS)
Che, George
The inductance of a conductor expresses its tendency to oppose a change in current flowing through it. For superconductors, in addition to the familiar magnetic inductance due to energy stored in the magnetic field generated by this current, kinetic inductance due to inertia of charge carriers is a significant and often dominant contribution to total inductance. Devices based on modifying the kinetic inductance of thin film superconductors have widespread application to millimeter-wave astronomy. Lithographically patterning such a film into a high quality factor resonator produces a high sensitivity photodetector known as a kinetic inductance detector (KID), which is sensitive to frequencies above the superconducting energy gap of the chosen material. Inherently multiplexable in the frequency domain and relatively simple to fabricate, KIDs pave the way to the large format focal plane array instruments necessary to conduct the next generation of cosmic microwave background (CMB), star formation, and galaxy evolution studies. In addition, non-linear kinetic inductance can be exploited to develop traveling wave kinetic inductance parametric amplifiers (TKIPs) based on superconducting delay lines to read out these instruments. I present my contributions to both large and small scale collaborative efforts to develop KID arrays, spectrometers integrated with KIDs, and TKIPs. I optimize a dual polarization TiN KID absorber for the next generation Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry, which is designed to investigate the role magnetic fields play in star formation. As part of an effort to demonstrate aluminum KIDs on sky for CMB polarimetry, I fabricate devices for three design variants. SuperSpec and WSpec are respectively the on-chip and waveguide implementations of a filter bank spectrometer concept designed for survey spectroscopy of high redshift galaxies. I provide a robust tool for characterizing the performance of all SuperSpec devices and demonstrate basic functionality of the first WSpec prototype. As part of an effort to develop the first W-Band (75-110 GHz) TKIP, I construct a cryogenic waveguide feedthrough, which enhances the Astronomical Instrumentation Laboratory's capability to test W-Band devices in general. These efforts contribute to the continued maturation of these kinetic inductance technologies, which will usher in a new era of millimeter-wave astronomy.
Raudino, Antonio; Pannuzzo, Martina
2010-01-28
A semiquantitative theory aimed to describe the adhesion kinetics between soft objects, such as living cells or vesicles, has been developed. When rigid bodies are considered, the adhesion kinetics is successfully described by the classical Derjaguin, Landau, Verwey, and Overbeek (DLVO) picture, where the energy profile of two approaching bodies is given by a two asymmetrical potential wells separated by a barrier. The transition probability from the long-distance to the short-distance minimum defines the adhesion rate. Conversely, soft bodies might follow a different pathway to reach the short-distance minimum: thermally excited fluctuations give rise to local protrusions connecting the approaching bodies. These transient adhesion sites are stabilized by short-range adhesion forces (e.g., ligand-receptor interactions between membranes brought at contact distance), while they are destabilized both by repulsive forces and by the elastic deformation energy. Above a critical area of the contact site, the adhesion forces prevail: the contact site grows in size until the complete adhesion of the two bodies inside a short-distance minimum is attained. This nucleation mechanism has been developed in the framework of a nonequilibrium Fokker-Planck picture by considering both the adhesive patch growth and dissolution processes. In addition, we also investigated the effect of the ligand-receptor pairing kinetics at the adhesion site in the time course of the patch expansion. The ratio between the ligand-receptor pairing kinetics and the expansion rate of the adhesion site is of paramount relevance in determining the overall nucleation rate. The theory enables one to self-consistently include both thermodynamics (energy barrier height) and dynamic (viscosity) parameters, giving rise in some limiting cases to simple analytical formulas. The model could be employed to rationalize fusion kinetics between vesicles, provided the short-range adhesion transition is the rate-limiting step to the whole adhesion process. Approximate relationships between the experimental fusion rates reported in the literature and parameters such as membrane elastic bending modulus, repulsion strength, temperature, osmotic forces, ligand-receptor binding energy, solvent and membrane viscosities are satisfactory explained by our model. The present results hint a possible role of the initial long-distance-->short-distance transition in determining the whole fusion kinetics.
ERIC Educational Resources Information Center
Guerra, Nelson Pérez
2017-01-01
A laboratory experiment in which students study the kinetics of the Viscozyme-L-catalyzed hydrolysis of cellulose and starch comparatively was designed for an upper-division biochemistry laboratory. The main objective of this experiment was to provide an opportunity to perform enhanced enzyme kinetics data analysis using appropriate informatics…
Kumpawat, K; Chatterjee, A
2003-07-01
Betel-nut (BN) chewing related oral mucosal lesions are potential hazards to a large population worldwide. Genotoxicity of betel alkaloids, polyphenol and tannin fractions have been reported. It has been shown earlier that BN ingredients altered the level of endogenous glutathione (GSH) which could modulate the host susceptibility to the action of other chemical carcinogens. The north-east Indian variety of BN, locally known as 'kwai', is raw, wet and consumed unprocessed with betel-leaf and slaked lime and contains higher alkaloids, polyphenol and tannins as compared to the dried one. Therefore, the purpose of this study was to investigate the extent of DNA damage, pattern of cell kinetics, the level of p53-protein and endogenous GSH in kwai chewers in the tribal population of Meghalaya state in the northeastern region of India with an aim to see whether these end-points could serve as biomarkers of genetic damage of relevance for genotoxic/carcinogenic process. The present data show higher DNA damage, delay in cell kinetics, p53 expression and lower GSH-level in heavy chewers (HC) than nonchewers (NC). The influence of bleomycin (BLM) on chromatid break induction in G2-phase of peripheral blood lymphocytes in NC and HC has been analysed to determine individual susceptibility to carcinogenic assaults. HC showed higher induction of chromatid breaks than NC. Risk assessment in this study suggests an interaction between carcinogen exposure and mutagen sensitivity measures, risk estimates being higher in those individuals who both consume kwai and express sensitivity to free radical oxygen damage in vitro. From this study it seems that besides cytogenetical parameters, the level of endogenous GSH and the level of p53 protein could act as effective biomarkers for kwai chewers.
The contribution of cationic conductances to the potential of rod photoreceptors.
Moriondo, Andrea; Rispoli, Giorgio
2010-05-01
The contribution of cationic conductances in shaping the rod photovoltage was studied in light adapted cells recorded under whole-cell voltage- or current-clamp conditions. Depolarising current steps (of size comparable to the light-regulated current) produced monotonic responses when the prepulse holding potential (V (h)) was -40 mV (i.e. corresponding to the membrane potential in the dark). At V (h) = -60 mV (simulating the steady-state response to an intense background of light) current injections <35 pA (mimicking a light decrement) produced instead an initial depolarisation that declined to a plateau, and voltage transiently overshot V (h) at the stimulus offset. Current steps >40 pA produced a steady depolarisation to approximately -16 mV at both V (h). The difference between the responses at the two V (h) was primarily generated by the slow delayed-rectifier-like K(+) current (I (Kx)), which therefore strongly affects both the photoresponse rising and falling phase. The steady voltage observed at both V (h) in response to large current injections was instead generated by Ca-activated K(+) channels (I (KCa)), as previously found. Both I (Kx) and I (KCa) oppose the cation influx, occurring at the light stimulus offset through the cGMP-gated channels and the voltage-activated Ca(2+) channels (I (Ca)). This avoids that the cation influx could erratically depolarise the rod past its normal resting value, thus allowing a reliable dim stimuli detection, without slowing down the photovoltage recovery kinetics. The latter kinetics was instead accelerated by the hyperpolarisation-activated, non-selective current (I (h)) and I (Ca). Blockade of all K(+) currents with external TEA unmasked a I (Ca)-dependent regenerative behaviour.
Egan, Talmage D.; Obara, Shinju; Jenkins, Thomas E.; Jaw-Tsai, Sarah S.; Amagasu, Shanti; Cook, Daniel R.; Steffensen, Scott C.; Beattie, David T.
2013-01-01
Background Propofol can be associated with delayed awakening after prolonged infusion. The aim of this study was to characterize the preclinical pharmacology of AZD-3043, a positive allosteric modulator of the γ-aminobutyric acidA (GABAA) receptor containing a metabolically-labile ester moiety. We postulated that its metabolic pathway would result in a short acting clinical profile. Methods The effects of AZD-3043, propofol and propanidid were studied on GABAA receptor-mediated chloride currents in embryonic rat cortical neurons. Radioligand binding studies were also performed. The in vitro stability of AZD-3043 in whole blood and liver microsomes was evaluated. The duration of the loss of righting reflex and effects on the electroencephalograph evoked by bolus or infusion intravenous (IV) administration were assessed in rats. A mixed-effects kinetic-dynamic model using minipigs permitted exploration of the clinical pharmacology of AZD-3043. Results AZD-3043 potentiated GABAA receptor-mediated chloride currents and inhibited [35S]tert-butylbicyclophosphorothionate binding to GABAA receptors. AZD-3043 was rapidly hydrolyzed in liver microsomes from humans and animals. AZD-3043 produced hypnosis and electroencephalograph depression in rats. Compared to propofol, AZD-3043 was shorter acting in rats and pigs. Computer simulation using the porcine kinetic-dynamic model demonstrated that AZD-3043 has very short 50 and 80% decrement times independent of infusion duration. Conclusions AZD-3043 is a positive allosteric modulator of the GABAA receptor in vitro and a sedative/hypnotic agent in vivo. The esterase dependent metabolic pathway results in rapid clearance and short duration of action even for long infusions. AZD-3043 may have clinical potential as a sedative/hypnotic agent with rapid and predictable recovery. PMID:22531340
Mamme, Mesfin Haile; Köhn, Christoph; Deconinck, Johan; Ustarroz, Jon
2018-04-19
Fundamental understanding of the early stages of electrodeposition at the nanoscale is key to address the challenges in a wide range of applications. Despite having been studied for decades, a comprehensive understanding of the whole process is still out of reach. In this work, we introduce a novel modelling approach that couples a finite element method (FEM) with a random walk algorithm, to study the early stages of nanocluster formation, aggregation and growth, during electrochemical deposition. This approach takes into account not only electrochemical kinetics and transport of active species, but also the surface diffusion and aggregation of adatoms and small nanoclusters. The simulation results reveal that the relative surface mobility of the nanoclusters compared to that of the adatoms plays a crucial role in the early growth stages. The number of clusters, their size and their size dispersion are influenced more significantly by nanocluster mobility than by the applied overpotential itself. Increasing the overpotential results in shorter induction times and leads to aggregation prevalence at shorter times. A higher mobility results in longer induction times, a delayed transition from nucleation to aggregation prevalence, and as a consequence, a larger surface coverage of smaller clusters with a smaller size dispersion. As a consequence, it is shown that a classical first-order nucleation kinetics equation cannot describe the evolution of the number of clusters with time, N(t), in potentiostatic electrodeposition. Instead, a more accurate representation of N(t) is provided. We show that an evaluation of N(t), which neglects the effect of nanocluster mobility and aggregation, can induce errors of several orders of magnitude in the determination of nucleation rate constants. These findings are extremely important towards evaluating the elementary electrodeposition processes, considering not only adatoms, but also nanoclusters as building blocks.
Testing Delays Resulting in Increased Identification Accuracy in Line-Ups and Show-Ups.
ERIC Educational Resources Information Center
Dekle, Dawn J.
1997-01-01
Investigated time delays (immediate, two-three days, one week) between viewing a staged theft and attempting an eyewitness identification. Compared lineups to one-person showups in a laboratory analogue involving 412 subjects. Results show that across all time delays, participants maintained a higher identification accuracy with the showup…
ERIC Educational Resources Information Center
Carroll, Regina A.; Kodak, Tiffany; Adolf, Kari J.
2016-01-01
We used an adapted alternating treatments design to compare skill acquisition during discrete-trial instruction using immediate reinforcement, delayed reinforcement with immediate praise, and delayed reinforcement for 2 children with autism spectrum disorder. Participants acquired the skills taught with immediate reinforcement; however, delayed…
Comparing Active Delay and Procrastination from a Self-Regulated Learning Perspective
ERIC Educational Resources Information Center
Corkin, Danya M.; Yu, Shirley L.; Lindt, Suzanne F.
2011-01-01
Researchers have proposed that the act of postponing academic work may be divided into a traditional definition of procrastination, viewed as maladaptive, and adaptive forms of delay. Adaptive forms of delay may be more consistent with certain facets of self-regulated learning. The current study investigated this issue by examining whether the…
ERIC Educational Resources Information Center
Sy, Jolene R.; Vollmer, Timothy R.
2012-01-01
We evaluated the discrimination acquisition of individuals with developmental disabilities under immediate and delayed reinforcement. In Experiment 1, discrimination between two alternatives was examined when reinforcement was immediate or delayed by 20 s, 30 s, or 40 s. In Experiment 2, discrimination between 2 alternatives was compared across an…
Comparison of Progressive Prompt Delay with and without Instructive Feedback
ERIC Educational Resources Information Center
Reichow, Brian; Wolery, Mark
2011-01-01
We examined the effectiveness and efficiency of 2 instructional arrangements using progressive prompt delay (PPD) with 3 young children with autism and 1 child with developmental delays. Specifically, we compared PPD with instructive feedback (IF) to PPD without IF in an adapted alternating treatment design. The results suggested that (a) children…
Complex Word Reading in Dutch Deaf Children and Adults
ERIC Educational Resources Information Center
van Hoogmoed, Anne H.; Knoors, Harry; Schreuder, Robert; Verhoeven, Ludo
2013-01-01
Children who are deaf are often delayed in reading comprehension. This delay could be due to problems in morphological processing during word reading. In this study, we investigated whether 6th grade deaf children and adults are delayed in comparison to their hearing peers in reading complex derivational words and compounds compared to…
The Delphi Process: Some Assumptions and Some Realities.
ERIC Educational Resources Information Center
Waldron, James S.
The effectiveness of the Delphi Technique is evaluated in terms of immediate and delayed controlled information feedback (feedback within 5 seconds as compared with a 24-hour delay); and the relationships that exist among measures of integrative complexity, estimations about the time of occurrence of future events, and time delay between task…
Oxidation Kinetics of Ferritic Alloys in High-Temperature Steam Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Stephen S.; White, Josh; Hosemann, Peter
High-temperature isothermal steam oxidation kinetic parameters of several ferritic alloys were determined by thermogravimetric analysis. We measured the oxidation kinetic constant (k) as a function of temperature from 900°C to 1200°C. The results show a marked increase in oxidation resistance compared to reference Zircaloy-2, with kinetic constants 3–5 orders of magnitude lower across the experimental temperature range. Our results of this investigation supplement previous findings on the properties of ferritic alloys for use as candidate cladding materials and extend kinetic parameter measurements to high-temperature steam environments suitable for assessing accident tolerance for light water reactor applications.
Oxidation Kinetics of Ferritic Alloys in High-Temperature Steam Environments
Parker, Stephen S.; White, Josh; Hosemann, Peter; ...
2017-11-03
High-temperature isothermal steam oxidation kinetic parameters of several ferritic alloys were determined by thermogravimetric analysis. We measured the oxidation kinetic constant (k) as a function of temperature from 900°C to 1200°C. The results show a marked increase in oxidation resistance compared to reference Zircaloy-2, with kinetic constants 3–5 orders of magnitude lower across the experimental temperature range. Our results of this investigation supplement previous findings on the properties of ferritic alloys for use as candidate cladding materials and extend kinetic parameter measurements to high-temperature steam environments suitable for assessing accident tolerance for light water reactor applications.
Oxidation Kinetics of Ferritic Alloys in High-Temperature Steam Environments
NASA Astrophysics Data System (ADS)
Parker, Stephen S.; White, Josh; Hosemann, Peter; Nelson, Andrew
2018-02-01
High-temperature isothermal steam oxidation kinetic parameters of several ferritic alloys were determined by thermogravimetric analysis. The oxidation kinetic constant ( k) was measured as a function of temperature from 900°C to 1200°C. The results show a marked increase in oxidation resistance compared to reference Zircaloy-2, with kinetic constants 3-5 orders of magnitude lower across the experimental temperature range. The results of this investigation supplement previous findings on the properties of ferritic alloys for use as candidate cladding materials and extend kinetic parameter measurements to high-temperature steam environments suitable for assessing accident tolerance for light water reactor applications.
Budgets of divergent and rotational kinetic energy during two periods of intense convection
NASA Technical Reports Server (NTRS)
Buechler, D. E.; Fuelberg, H. E.
1986-01-01
The derivations of the energy budget equations for divergent and rotational components of kinetic energy are provided. The intense convection periods studied are: (1) synoptic scale data of 3 or 6 hour intervals and (2) mesoalphascale data every 3 hours. Composite energies and averaged budgets for the periods are presented; the effects of random data errors on derived energy parameters is investigated. The divergent kinetic energy and rotational kinetic energy budgets are compared; good correlation of the data is observed. The kinetic energies and budget terms increase with convective development; however, the conversion of the divergent and rotational energies are opposite.
Coolbrandt, Annemarie; Van den Heede, Koen; Vanhove, Ellen; De Bom, Ann; Milisen, Koen; Wildiers, Hans
2011-04-01
The aim of this study was to examine how patients recall symptoms at a delayed self-report. Accurate insight into toxicity symptoms during chemotherapy is essential so that nurses and doctors can assess therapeutic tolerance and adjust supportive care accordingly. A non-experimental, longitudinal design was employed. Using the Therapy-Related Symptoms Checklist (TRSC), respondents (n = 142) reported their initial symptoms during the first 7 days of the chemotherapy cycle at two different times: (1) each day of the first seven days after the chemotherapy administration (immediate self-report), and (2) at their next hospital visit for chemotherapy (delayed self-report). We compared the number and severity of symptoms and side effects reported in the immediate and delayed self-reports. Respondents reported significantly fewer symptoms and fewer severe symptoms in the delayed self-report. For 22 out of 25 symptoms the delayed-reported grade was significantly lower than the immediate-reported maximum grade. Compared to the immediate-reported median grade, significant differences occurred in only 10 out of the 25 symptoms. In all cases, except fatigue, the delayed-reported grade was significantly higher than the immediate-reported median grade. This study indicates that delayed self-report of chemotherapy side effects is not an appropriate measure of actual symptoms and side effects experienced by patients. Delayed self-report gives a weaker insight into actual symptom burden. Fatigue is at particular risk to be minimized at the delayed self-report. Therefore it is recommended to assess chemotherapy-related symptoms and side effects by means of immediate self-report. Copyright © 2010 Elsevier Ltd. All rights reserved.
Foraker, Randi E; Rose, Kathryn M; McGinn, Aileen P; Suchindran, Chirayath M; Goff, David C; Whitsel, Eric A; Wood, Joy L; Rosamond, Wayne D
2008-09-22
Outcomes following an acute myocardial infarction (AMI) are generally more favorable if prehospital delay time is minimized. We examined the association of neighborhood household income (nINC) and health insurance status with prehospital delay among a weighted sample of 9700 men and women with a validated, definite, or probable AMI in the Atherosclerosis Risk in Communities (ARIC) community surveillance study (1993-2002). Weighted multinomial regression with generalized estimation equations was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) and to account for the clustering of patients within census tracts. Low nINC was associated with a higher odds of long vs short delay (OR, 1.46; 95% CI, 1.09-1.96) and medium vs short delay (OR, 1.43; 95% CI, 1.12-1.81) compared with high nINC in a model including age, sex, race, diabetes, hypertension, presence of chest pain, arrival at the hospital via emergency medical service, distance from residence to hospital, study community, and year of AMI event. Meanwhile, compared with patients with prepaid insurance or prepaid plus Medicare, patients with Medicaid were more likely to have a long vs short delay (OR, 1.87; 95% CI, 1.10-3.19) and a medium vs short delay (OR, 1.76; 95% CI, 1.13-2.74). Both low nINC and being a Medicaid recipient are associated with longer prehospital delay. Reducing socioeconomic and insurance disparities in prehospital delay is critical because excess delay time may hinder effective care for AMI.
Clément, Julien; Hagemeister, Nicola; Aissaoui, Rachid; de Guise, Jacques A
2014-01-01
Numerous studies have described 3D kinematics, 3D kinetics and electromyography (EMG) of the lower limbs during quasi-static or dynamic squatting activities. One study compared these two squatting conditions but only at low speed on healthy subjects, and provided no information on kinetics and EMG of the lower limbs. The purpose of the present study was to contrast simultaneous recordings of 3D kinematics, 3D kinetics and EMG of the lower limbs during quasi-stat ic and fast-dynamic squats in healthy and pathological subjects. Ten subjects were recruited: five healthy and five osteoarthritis subjects. A motion-capture system, force plate, and surface electrodes respectively recorded 3D kinematics, 3D kinetics and EMG of the lower limbs. Each subject performed a quasi-static squat and several fast-dynamic squats from 0° to 70° of knee flexion. The two squatting conditions were compared for positions where quasi-static and fast-dynamic knee flexion-extension angles were similar. Mean differences between quasi-static and fast-dynamic squats were 1.5° for rotations, 1.9 mm for translations, 2.1% of subjects' body weight for ground reaction forces, 6.6 Nm for torques, 11.2 mm for center of pressure, and 6.3% of maximum fast-dynamic electromyographic activities for EMG. Some significant differences (p<0.05) were found in internal rotation, anterior translation, vertical force and EMG. All differences between quasi-static and fast-dynamic squats were small. 69.5% of compared data were equivalent. In conclusion, this study showed that quasi-static and fast-dynamic squatting activities are comparable in terms of 3D kinematics, 3D kinetics and EMG, although some reservations still remain. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Iwaskiw, A. S.; Ott, K. A.; Armiger, R. S.; Wickwire, A. C.; Alphonse, V. D.; Voo, L. M.; Carneal, C. M.; Merkle, A. C.
2018-01-01
The experimental measurement of biomechanical responses that correlate with blast-induced traumatic brain injury (bTBI) has proven challenging. These data are critical for both the development and validation of computational and physical head models, which are used to quantify the biomechanical response to blast as well as to assess fidelity of injury mitigation strategies, such as personal protective equipment. Therefore, foundational postmortem human surrogate (PMHS) experimental data capturing the biomechanical response are necessary for human model development. Prior studies have measured short-duration pressure transmission to the brain (Kinetic phase), but have failed to reproduce and measure the longer-duration inertial loading that can occur (Kinematic phase). Four fully instrumented PMHS were subjected to short-duration dynamic overpressure in front-facing and rear-facing orientations, where intracranial pressure (ICP), global head kinematics, and brain motion (as measured by high-speed X-ray) with respect to the skull were recorded. Peak ICP results generally increased with increased dose, and a mirrored pressure response was seen when comparing the polarity of frontal bone versus occipital bone ICP sensors. The head kinematics were delayed when compared to the pressure response and showed higher peak angles for front-facing tests as compared to rear-facing. Brain displacements were approximately 2-6 mm, and magnitudes did not change appreciably between front- and rear-facing tests. These data will be used to inform and validate models used to assess bTBI.
Pareja-Santos, Alessandra; Oliveira Souza, Valdênia Maria; Bruni, Fernanda M; Sosa-Rosales, Josefina Ines; Lopes-Ferreira, Mônica; Lima, Carla
2008-07-01
Thalassophryne maculosa fish envenomation is characterized by severe pain, dizziness, fever, edema and necrosis. Here, the dynamic of cellular influx, activation status of phagocytic cells, and inflammatory modulator production in the acute inflammatory response to T. maculosa venom was studied using an experimental model. Leukocyte counting was performed (2 h to 21 days) after venom injection in BALB/c mice footpads. Our results showed an uncommon leukocyte migration kinetic after venom injection, with early mononuclear cell recruitment followed by elevated and delayed neutrophil influx. The pattern of chemokine expression is consistent with the delay in neutrophil recruitment to the footpad: T. maculosa venom stimulated an early production of IL-1beta, IL-6, and MCP-1, but was unable to induce an effective early TNF-alpha and KC release. Complementary to these observations, we detected a marked increase in soluble KC and TNF-alpha in footpad at 7 days post-venom injection when a prominent influx of neutrophils was also detected. In addition, we demonstrated that bone marrow-derived macrophages and dendritic cells were strongly stimulated by the venom, showing up-regulated ability to capture FITC-dextran. Thus, the reduced levels of KC and TNF-alpha in footpad of mice concomitant with a defective accumulation of neutrophils at earlier times provide an important clue to uncovering the mechanism by which T. maculosa venom regulates neutrophil movement.
Singh, Raushan K.; Lall, Naveena; Leedahl, Travis S.; McGillivray, Abigail; Mandal, Tanmay; Haldar, Manas; Mallik, Sanku; Cook, Gregory; Srivastava, D.K.
2013-01-01
Of the different hydroxamate-based histone deacetylase (HDAC) inhibitors, Suberoylanilide hydroxamic acid (SAHA) has been approved by the FDA for treatment of T-cell lymphoma. Interestingly, a structurally similar inhibitor, Trichostatin A (TSA), which has a higher in vitro inhibitory-potency against HDAC8, reportedly shows a poor efficacy in clinical settings. In order to gain the molecular insight into the above discriminatory feature, we performed transient kinetic and isothermal titration calorimetric studies for the interaction of SAHA and TSA to the recombinant form of human HDAC8. The transient kinetic data revealed that the binding of both the inhibitors to the enzyme showed the biphasic profiles, which represented an initial encounter of enzyme with the inhibitor followed by the isomerization of the transient enzyme-inhibitor complexes. The temperature-dependent transient kinetic studies with the above inhibitors revealed that the bimolecular process is primarily dominated by favorable enthalpic changes, as opposed to the isomerization step; which is solely contributed by entropic changes. The standard binding-enthalpy (ΔH0) of SAHA, deduced from the transient kinetic as well as the isothermal titration calorimetric experiments, was 2–3 kcal/mol higher as compared to TSA. The experimental data presented herein suggests that SAHA serves as a preferential (target-specific/selective) HDAC8 inhibitor as compared to TSA. Arguments are presented that the detailed kinetic and thermodynamic studies may guide in the rational design of HDAC inhibitors as therapeutic agents. PMID:24079912
Nuclear-coupled thermal-hydraulic stability analysis of boiling water reactors
NASA Astrophysics Data System (ADS)
Karve, Atul A.
We have studied the nuclear-coupled thermal-hydraulic stability of boiling water reactors (BWRs) using a model we developed from: the space-time modal neutron kinetics equations based on spatial omega-modes, the equations for two-phase flow in parallel boiling channels, the fuel rod heat conduction equations, and a simple model for the recirculation loop. The model is represented as a dynamical system comprised of time-dependent nonlinear ordinary differential equations, and it is studied using stability analysis, modern bifurcation theory, and numerical simulations. We first determine the stability boundary (SB) in the most relevant parameter plane, the inlet-subcooling-number/external-pressure-drop plane, for a fixed control rod induced external reactivity equal to the 100% rod line value and then transform the SB to the practical power-flow map. Using this SB, we show that the normal operating point at 100% power is very stable, stability of points on the 100% rod line decreases as the flow rate is reduced, and that points are least stable in the low-flow/high-power region. We also determine the SB when the modal kinetics is replaced by simple point reactor kinetics and show that the first harmonic mode has no significant effect on the SB. Later we carry out the relevant numerical simulations where we first show that the Hopf bifurcation, that occurs as a parameter is varied across the SB is subcritical, and that, in the important low-flow/high-power region, growing oscillations can result following small finite perturbations of stable steady-states on the 100% rod line. Hence, a point on the 100% rod line in the low-flow/high-power region, although stable, may nevertheless be a point at which a BWR should not be operated. Numerical simulations are then done to calculate the decay ratios (DRs) and frequencies of oscillations for various points on the 100% rod line. It is determined that the NRC requirement of DR < 0.75-0.8 is not rigorously satisfied in the low-flow/high-power region and hence these points should be avoided during normal startup and shutdown operations. The frequency of oscillation is shown to decrease as the flow rate is reduced and the frequency of 0.5Hz observed in the low-flow/high-power region is consistent with those observed during actual instability incidents. Additional numerical simulations show that in the low-flow/high-power region, for the same initial conditions, the use of point kinetics leads to damped oscillations, whereas the model that includes the modal kinetics equations results in growing nonlinear oscillations. Thus, we show that side-by-side out-of-phase growing power oscillations result due to the very important first harmonic mode effect and that the use of point kinetics, which fails to predict these growing oscillations, leads to dramatically nonconservative results. Finally, the effect of a simple recirculation loop model that we develop is studied by carrying out additional stability analyses and additional numerical simulations. It is shown that the loop has a stabilizing effect on certain points on the 100% rod line for time delays equal to integer multiples of the natural period of oscillation, whereas it has a destabilizing effect for half-integer multiples. However, for more practical time delays, it is determined that the overall effect generally is destabilizing.
Bengtson, C Peter; Kaiser, Martin; Obermayer, Joshua; Bading, Hilmar
2013-07-01
Both synaptic N-methyl-d-aspartate (NMDA) receptors and voltage-operated calcium channels (VOCCs) have been shown to be critical for nuclear calcium signals associated with transcriptional responses to bursts of synaptic input. However the direct contribution to nuclear calcium signals from calcium influx through NMDA receptors and VOCCs has been obscured by their concurrent roles in action potential generation and synaptic transmission. Here we compare calcium responses to synaptically induced bursts of action potentials with identical bursts devoid of any synaptic contribution generated using the pre-recorded burst as the voltage clamp command input to replay the burst in the presence of blockers of action potentials or ionotropic glutamate receptors. Synapse independent replays of bursts produced nuclear calcium responses with amplitudes around 70% of their original synaptically generated signals and were abolished by the L-type VOCC blocker, verapamil. These results identify a major direct source of nuclear calcium from local L-type VOCCs whose activation is boosted by NMDA receptor dependent depolarization. The residual component of synaptically induced nuclear calcium signals which was both VOCC independent and NMDA receptor dependent showed delayed kinetics consistent with a more distal source such as synaptic NMDA receptors or internal stores. The dual requirement of NMDA receptors and L-type VOCCs for synaptic activity-induced nuclear calcium dependent transcriptional responses most likely reflects a direct somatic calcium influx from VOCCs whose activation is amplified by synaptic NMDA receptor-mediated depolarization and whose calcium signal is boosted by a delayed input from distal calcium sources mostly likely entry through NMDA receptors and release from internal stores. This article is part of a Special Issue entitled: 12th European Symposium on Calcium. Copyright © 2013 Elsevier B.V. All rights reserved.
An effective method for the preparation of high temperature stable anatase TiO2 photocatalysts
NASA Astrophysics Data System (ADS)
Fagan, Rachel; Synnott, Damian W.; McCormack, Declan E.; Pillai, Suresh C.
2016-05-01
An efficient, rapid and straightforward method for the preparation of nitrogen and fluorine (N, F) codoped high temperature stable anatase using a microwave pre-treatment is reported. Using a single source, ammonium fluoride (NH4F) for both nitrogen and fluorine, effective doping of the precursor titanium isopropoxide (TTIP) was possible. These samples were characterised for their structural and optical properties using X-ray diffraction (XRD), Fourier Transform IR (FTIR), Raman spectroscopy and UV-vis spectroscopy. In terms of the anatase to rutile transition enhancement using a novel microwave assisted technique, the sample prepared in a composition of 1:8 TiO2: NH4F at 1200 °C was seen to be most effective, having stable anatase present at 57.1% compared to undoped TiO2 being 100% rutile from 900 °C. This method involves the production of ammonium oxofluorotitanates (NH4TiOF3) at low temperatures. The inclusion of these intermediates greatly reduces the particle size growth and delays the anatase to rutile transition. The photocatalytic activity of these materials was studied by analysing the degradation of an organic dye, rhodamine 6G as a model system and the rate constant was calculated by pseudo-first-order kinetics. These results showed that the doped sample (0.0225 min-1) was three times more active than the undoped sample (0.0076 min-1) and over seven times faster than the commercial TiO2 photocatalyst standard Degussa P-25 calcined at 1200 °C (0.0030 min-1). The formation of intermediate compounds, oxofluorotitanates, was identified as the major reason for a delay in the anatase to rutile transition.
Differential modulation of late sodium current by protein kinase A in R1623Q mutant of LQT3
Tsurugi, Takuo; Nagatomo, Toshihisa; Abe, Haruhiko; Oginosawa, Yasushi; Takemasa, Hiroko; Kohno, Ritsuko; Makita, Naomasa; Makielski, Jonathan C.; Otsuji, Yutaka
2009-01-01
Aims In the type 3 long QT syndrome (LQT3), shortening of the QT interval by overdrive pacing is used to prevent life-threatening arrhythmias. However, it is unclear whether accelerated heart rate induced by β-adrenergic agents produces similar effects on the late sodium current (INa) to those by overdrive pacing therapy. We analyzed the β-adrenergic-like effects of protein kinase A and fluoride on INa in R1623Q mutant channels. Main methods cDNA encoding either wild-type (WT) or R1623Q mutant of hNav1.5 was stably transfected into HEK293 cells. INa was recorded using a whole-cell patch-clamp technique at 23 °C. Key findings In R1623Q channels, 2 mM pCPT-AMP and 120 mM fluoride significantly delayed macroscopic current decay and increased relative amplitude of the late INa in a time-dependent manner. Modulations of peak INa gating kinetics (activation, inactivation, recovery from inactivation) by fluoride were similar in WT and R1623Q channels. The effects of fluoride were almost completely abolished by concomitant dialysis with a protein kinase inhibitor. We also compared the effect of pacing with that of β-adrenergic stimulation by analyzing the frequency-dependence of the late INa. Fluoride augmented frequency-dependent reduction of the late INa, which was due to preferential delay of recovery of late INa. However, the increase in late INa by fluoride at steady-state was more potent than the frequency-dependent reduction of late INa. Significance Different basic mechanisms participate in the QT interval shortening by pacing and β-adrenergic stimulation in the LQT3. PMID:19167409
Choi, Elliot H; Suh, Susie; Sander, Christopher L; Hernandez, Christian J Ortiz; Bulman, Elizabeth R; Khadka, Nimesh; Dong, Zhiqian; Shi, Wuxian; Palczewski, Krzysztof; Kiser, Philip D
2018-04-12
RPE65 is the essential trans-cis isomerase of the classical retinoid (visual) cycle. Mutations in RPE65 give rise to severe retinal dystrophies, most of which are associated with loss of protein function and recessive inheritance. The only known exception is a c.1430G>A (D477G) mutation that gives rise to dominant retinitis pigmentosa with delayed onset and choroidal and macular involvement. Position 477 is distant from functionally critical regions of RPE65. Hence, the mechanism of D477G pathogenicity remains unclear, although protein misfolding and aggregation mechanisms have been suggested. We characterized a D477G knock-in mouse model which exhibited mild age-dependent changes in retinal structure and function. Immunoblot analysis of protein extracts from the eyes of the knock-in mice demonstrated the presence of ubiquitinated RPE65 and reduced RPE65 expression. We observed an accumulation of retinyl esters in the knock-in mice as well as a delay in rhodopsin regeneration kinetics and diminished electroretinography responses, indicative of RPE65 functional impairment induced by the D477G mutation in vivo. However, a cell line expressing D477G RPE65 revealed protein expression levels, cellular localization, and retinoid isomerase activity comparable to cells expressing wild-type protein. Structural analysis of an RPE65 chimera suggested that the D477G mutation does not perturb protein folding or tertiary structure. Instead, the mutation generates an aggregation-prone surface that could induce cellular toxicity through abnormal complex formation as suggested by crystal packing analysis. These results indicate that a toxic gain-of-function induced by the D477G RPE65 substitution may play a role in the pathogenesis of this form of dominant retinitis pigmentosa.
Sonoporation as a cellular stress: induction of morphological repression and developmental delays.
Chen, Xian; Wan, Jennifer M F; Yu, Alfred C H
2013-06-01
For sonoporation to be established as a drug/gene delivery paradigm, it is essential to account for the biological impact of this membrane permeation strategy on living cells. Here we provide new insight into the cellular impact of sonoporation by demonstrating in vitro that this way of permeating the plasma membrane may inadvertently induce repressive cellular features even while enhancing exogenous molecule uptake. Both suspension-type (HL-60) and monolayer (ZR-75-30) cells were considered in this investigation, and they were routinely exposed to 1-MHz pulsed ultrasound (pulse length, 100 cycles; pulse repetition frequency, 1 kHz; exposure period, 60 s) with calibrated field profile (spatial-averaged peak negative pressure, 0.45 MPa) and in the presence of microbubbles (cell:bubble ratio, 10:1). The post-exposure morphology of sonoporated cells (identified as those with calcein internalization) was examined using confocal microscopy, and their cell cycle progression kinetics were analyzed using flow cytometry. Results show that for both cell types investigated, sonoporated cells exhibited membrane shrinkage and intra-cellular lipid accumulation over a 2-h period. Also, as compared with normal cells, the deoxyribonucleic acid synthesis duration of sonoporated cells was significantly lengthened, indicative of a delay in cell cycle progression. These features are known to be characteristics of a cellular stress response, suggesting that sonoporation indeed constitutes as a stress to living cells. This issue may need to be addressed in optimizing sonoporation for drug/gene delivery purposes. On the other hand, it raises opportunities for developing other therapeutic applications via sonoporation. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Fukuoka, Yoshiyuki; Poole, David C; Barstow, Thomas J; Kondo, Narihiko; Nishiwaki, Masato; Okushima, Dai; Koga, Shunsaku
2015-01-01
Novel time-resolved near-infrared spectroscopy (TR-NIRS), with adipose tissue thickness correction, was used to test the hypotheses that heavy priming exercise reduces the V̇O2 slow component (V̇O2SC) (1) by elevating microvascular [Hb] volume at multiple sites within the quadriceps femoris (2) rather than reducing the heterogeneity of muscle deoxygenation kinetics. Twelve subjects completed two 6-min bouts of heavy work rate exercise, separated by 6 min of unloaded cycling. Priming exercise induced faster overall V̇O2 kinetics consequent to a substantial reduction in the V̇O2SC (0.27 ± 0.12 vs. 0.11 ± 0.09 L·min−1, P < 0.05) with an unchanged primary V̇O2 time constant. An increased baseline for the primed bout [total (Hb + Mb)] (197.5 ± 21.6 vs. 210.7 ± 22.5 μmol L−1, P < 0.01), reflecting increased microvascular [Hb] volume, correlated significantly with the V̇O2SC reduction. At multiple sites within the quadriceps femoris, priming exercise reduced the baseline and slowed the increase in [deoxy (Hb + Mb)]. Changes in the intersite coefficient of variation in the time delay and time constant of [deoxy (Hb + Mb)] during the second bout were not correlated with the V̇O2SC reduction. These results support a mechanistic link between priming exercise-induced increase in muscle [Hb] volume and the reduced V̇O2SC that serves to speed overall V̇O2 kinetics. However, reduction in the heterogeneity of muscle deoxygenation kinetics does not appear to be an obligatory feature of the priming response. PMID:26109190
Geodesy by radio interferometry - Water vapor radiometry for estimation of the wet delay
NASA Technical Reports Server (NTRS)
Elgered, G.; Davis, J. L.; Herring, T. A.; Shapiro, I. I.
1991-01-01
An important source of error in VLBI estimates of baseline length is unmodeled variations of the refractivity of the neutral atmosphere along the propagation path of the radio signals. This paper presents and discusses the method of using data from a water vapor radiomete (WVR) to correct for the propagation delay caused by atmospheric water vapor, the major cause of these variations. Data from different WVRs are compared with estimated propagation delays obtained by Kalman filtering of the VLBI data themselves. The consequences of using either WVR data or Kalman filtering to correct for atmospheric propagation delay at the Onsala VLBI site are investigated by studying the repeatability of estimated baseline lengths from Onsala to several other sites. The repeatability obtained for baseline length estimates shows that the methods of water vapor radiometry and Kalman filtering offer comparable accuracies when applied to VLBI observations obtained in the climate of the Swedish west coast. For the most frequently measured baseline in this study, the use of WVR data yielded a 13 percent smaller weighted-root-mean-square (WRMS) scatter of the baseline length estimates compared to the use of a Kalman filter. It is also clear that the 'best' minimum elevationi angle for VLBI observations depends on the accuracy of the determinations of the total propagation delay to be used, since the error in this delay increases with increasing air mass.
Impact of Harness Attachment Point on Kinetics and Kinematics During Sled Towing.
Bentley, Ian; Atkins, Steve J; Edmundson, Christopher J; Metcalfe, John; Sinclair, Jonathan K
2016-03-01
Resisted sprint training is performed in a horizontal direction and involves similar muscles, velocities, and ranges of motion (ROM) to those of normal sprinting. Generally, sleds are attached to the athletes through a lead (3 m) and harness; the most common attachment points are the shoulder or waist. At present, it is not known how the different harness point's impact on the kinematics and kinetics associated with sled towing (ST). The aim of the current investigation was to examine the kinetics and kinematics of shoulder and waist harness attachment points in relation to the acceleration phase of ST. Fourteen trained men completed normal and ST trials, loaded at 10% reduction of sprint velocity. Sagittal plane kinematics from the trunk, hip, knee, and ankle were measured, together with stance phase kinetics (third footstrike). Kinetic and kinematic parameters were compared between harness attachments using one-way repeated-measures analysis of variance. The results indicated that various kinetic differences were present between the normal and ST conditions. Significantly greater net horizontal mean force, net horizontal impulses, propulsive mean force, and propulsive impulses were measured (p < 0.05). Interestingly, the waist harness also led to greater net horizontal impulse when compared with the shoulder attachment (p < 0.001). In kinematic terms, ST conditions significantly increased peak flexion in hip, knee, and ankle joints compared with the normal trials (p < 0.05). Results highlighted that the shoulder harness had a greater impact on trunk and knee joint kinematics when compared with the waist harness (p < 0.05). In summary, waist harnesses seem to be the most suitable attachment point for the acceleration phase of sprinting. Sled towing with these attachments resulted in fewer kinematic alterations and greater net horizontal impulse when compared with the shoulder harness. Future research is necessary in order to explore the long-term adaptations of these acute changes.
Long-term Controlled Drug Release from bi-component Electrospun Fibers
NASA Astrophysics Data System (ADS)
Xu, Shanshan; Zhang, Zixin; Xia, Qinghua; Han, Charles
Multi-drug delivery systems with timed programmed release are hard to be produced due to the complex drug release kinetics which mainly refers to the diffusion of drug molecules from the fiber and the degradation of the carrier. This study focused on the whole life-time story of the long-term drug releasing fibrous systems. Electrospun membrane utilizing FDA approved polymers and broad-spectrum antibiotics showed specific drug release profiles which could be divided into three stages based on the profile slope. With throughout morphology observation, cumulative release amount and releasing duration, releasing kinetics and critical factors were fully discussed during three stages. Through changing the second component, approximately linear drug release profile and a drug release duration about 13 days was prepared, which is perfect for preventing post-operative infection. The addition of this semi-crystalline polymer in turn influenced the fiber swelling and created drug diffusion channels. In conclusion, through adjusting and optimization of the blending component, initial burst release, delayed release for certain duration, and especially the sustained release profile could all be controlled, as well as specific anti-bacterial behavior could be obtained.
KCNE1 divides the voltage sensor movement in KCNQ1/KCNE1 channels into two steps
NASA Astrophysics Data System (ADS)
Barro-Soria, Rene; Rebolledo, Santiago; Liin, Sara I.; Perez, Marta E.; Sampson, Kevin J.; Kass, Robert S.; Larsson, H. Peter
2014-04-01
The functional properties of KCNQ1 channels are highly dependent on associated KCNE-β subunits. Mutations in KCNQ1 or KCNE subunits can cause congenital channelopathies, such as deafness, cardiac arrhythmias and epilepsy. The mechanism by which KCNE1-β subunits slow the kinetics of KCNQ1 channels is a matter of current controversy. Here we show that KCNQ1/KCNE1 channel activation occurs in two steps: first, mutually independent voltage sensor movements in the four KCNQ1 subunits generate the main gating charge movement and underlie the initial delay in the activation time course of KCNQ1/KCNE1 currents. Second, a slower and concerted conformational change of all four voltage sensors and the gate, which opens the KCNQ1/KCNE1 channel. Our data show that KCNE1 divides the voltage sensor movement into two steps with widely different voltage dependences and kinetics. The two voltage sensor steps in KCNQ1/KCNE1 channels can be pharmacologically isolated and further separated by a disease-causing mutation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldridge, M.C.; Chadwick, S.J.; Cheslyn-Curtis, S.
To study the effect of severe sepsis on the function of the reticuloendothelial system (RES) we have measured the clearance kinetics and organ distribution of both low-dose technetium tin colloid (TTC) and /sup 75/selenomethionine-labelled E. coli in rabbits 24 hours after either sham laparotomy or appendix devascularization. Sepsis resulted in similar delayed blood clearance and reduced liver (Kupffer cell) uptake of both TTC and E. coli. To investigate the ability of polyclonal antibody to E. coli-J-5 (core glycolipid) to improve RES function in the same model of sepsis, further animals were pretreated with either core glycolipid antibody or control serummore » (10 ml IV) 2 hours before induction of sepsis. TTC clearance kinetics were determined 24 hours later. Antibody pretreated animals showed: a reduced incidence of bacteremia; normalization of the rate of blood clearance and liver uptake of TTC; and a 'rebound' increase in splenic uptake of TTC. We conclude that antibody to E. coli-J-5 enhances bacterial clearance by the RES.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, J.; Jiang, C.; Zhang, Y.
This report summarizes the progress on modeling hydrogen diffusivity in Zr-based alloys. The presence of hydrogen (H) can detrimentally affect the mechanical properties of many metals and alloys. To mitigate these detrimental effects requires fundamental understanding of the thermodynamics and kinetics governing H pickup and hydride formation. In this work, we focus on H diffusion in Zr-based alloys by studying the effects of alloying elements and stress, factors that have been shown to strongly affect H pickup and hydride formation in nuclear fuel claddings. A recently developed accelerated kinetic Monte Carlo method is used for the study. It is foundmore » that for the alloys considered here, H diffusivity depends weakly on composition, with negligible effect at high temperatures in the range of 600-1200 K. Therefore, the small variation in compositions of these alloys is likely not a major cause of the very different H pickup rates. In contrast, stress strongly affects H diffusivity. This effect needs to be considered for studying hydride formation and delayed hydride cracking.« less
Dynamic spin injection into a quantum well coupled to a spin-split bound state
NASA Astrophysics Data System (ADS)
Maslova, N. S.; Rozhansky, I. V.; Mantsevich, V. N.; Arseyev, P. I.; Averkiev, N. S.; Lähderanta, E.
2018-05-01
We present a theoretical analysis of dynamic spin injection due to spin-dependent tunneling between a quantum well (QW) and a bound state split in spin projection due to an exchange interaction or external magnetic field. We focus on the impact of Coulomb correlations at the bound state on spin polarization and sheet density kinetics of the charge carriers in the QW. The theoretical approach is based on kinetic equations for the electron occupation numbers taking into account high order correlation functions for the bound state electrons. It is shown that the on-site Coulomb repulsion leads to an enhanced dynamic spin polarization of the electrons in the QW and a delay in the carriers tunneling into the bound state. The interplay of these two effects leads to nontrivial dependence of the spin polarization degree, which can be probed experimentally using time-resolved photoluminescence experiments. It is demonstrated that the influence of the Coulomb interactions can be controlled by adjusting the relaxation rates. These findings open a new way of studying the Hubbard-like electron interactions experimentally.
NASA Astrophysics Data System (ADS)
Somani, Mahesh Chandra; Porter, David A.; Hamada, Atef S.; Karjalainen, L. Pentti
2015-11-01
In this study, the effects of microalloying (Nb,V) and aluminum on the constitutive flow behavior and static recrystallization (SRX) characteristics of microalloyed TWIP steels (Fe-20Mn-0.6C-Al-(Nb,V)) have been investigated under hot deformation conditions. Compression tests in a Gleeble simulator, including the double-hit technique, enabled the acquisition of flow stress and recrystallization data. These were analyzed to determine the powers of strain and strain rate as well as the activation energies of deformation and recrystallization ( Q def and Q rex). Aluminum increased the flow stress and activation energy of deformation and delayed the onset of dynamic recrystallization of microalloyed TWIP steels. While microalloying with V up to 0.3 pct seems to have little or no effect on the SRX kinetics, microalloying with 0.026 pct Nb significantly slowed down the SRX rate, similarly as in the case of low C-Mn steels. Addition of high aluminum (4.9 pct) marginally retarded the SRX kinetics in comparison with the steels with low aluminum (1.5 pct), with or without microalloying with V.
The Recrystallization Behavior of Unalloyed Mg and a Mg-Al Alloy
NASA Astrophysics Data System (ADS)
Murphy, Aeriel D.; Allison, John E.
2018-02-01
The static recrystallization behavior of pure Mg and Mg-4Al was characterized over a range of annealing temperatures. The electron backscatter diffraction grain orientation spread technique was used to quantify the level of recrystallization at various annealing times. Recrystallization kinetics were characterized using the Johnson-Mehl-Avrami-Kolmogorov (JMAK) relationship and it was found that two sequential annealing stages exist. Stage 1 involves heterogeneous nucleation of recrystallization in regions with a high stored energy, including twins and grain boundaries, and can be represented by an Avrami exponent of n 1 ranging from 0.35 to 0.6. During Stage 2, recrystallization occurred predominately in the interior of deformed grains with incomplete recrystallization generally observed even at annealing times in excess of two weeks. The second recrystallization stage exhibited a much lower Avrami exponent, n 2, ranging from 0.02 to 0.2. Increasing the starting grain size in the pure Mg condition led to a significant delay in recrystallization. The addition of Al had a minimal effect on the recrystallization kinetics of Mg.
Recent results of nonlinear estimators applied to hereditary systems.
NASA Technical Reports Server (NTRS)
Schiess, J. R.; Roland, V. R.; Wells, W. R.
1972-01-01
An application of the extended Kalman filter to delayed systems to estimate the state and time delay is presented. Two nonlinear estimators are discussed and the results compared with those of the Kalman filter. For all the filters considered, the hereditary system was treated with the delay in the pure form and by using Pade approximations of the delay. A summary of the convergence properties of the filters studied is given. The results indicate that the linear filter applied to the delayed system performs inadequately while the nonlinear filters provide reasonable estimates of both the state and the parameters.