Effect of Group Setting on Gross Motor Performance in Children 3-5 Years Old with Motor Delays.
Fay, Deanne; Wilkinson, Tawna; Wagoner, Michelle; Brooks, Danna; Quinn, Lauren; Turnell, Andrea
2017-02-01
The purpose of this study was to evaluate differences in gross motor performance of children 3-5 years of age with motor delays when assessed individually compared to assessment in a group setting among peers with typical development (TD). Twenty children with motor delays and 42 children with TD were recruited from a preschool program. A within-subject repeated measures design was used; each child with delay was tested both in an individual setting and in a group setting with two to four peers with TD. Testing sessions were completed 4-8 days apart. Ten different motor skills from the Peabody Developmental Motor Scales-2 were administered. Performance of each item was videotaped and scored by a blinded researcher. Overall gross motor performance was significantly different (p < .05) between the two settings, with 14 of 20 children demonstrating better performance in the group setting. In particular, children performed better on locomotion items (p < .05). The higher scores for locomotion in the group setting may be due to the influence of competition, motivation, or modeling. Assessing a child in a group setting is recommended as part of the evaluation process.
Relation between early motor delay and later communication delay in infants at risk for autism.
Bhat, A N; Galloway, J C; Landa, R J
2012-12-01
Motor delays have been reported in retrospective studies of young infants who later develop Autism Spectrum Disorders (ASDs). In this study, we prospectively compared the gross motor development of a cohort at risk for ASDs; infant siblings of children with ASDs (AU sibs) to low risk typically developing (LR) infants. 24 AU sibs and 24 LR infants were observed at 3 and 6 months using a standardized motor measure, the Alberta Infant Motor Scale (AIMS). In addition, as part of a larger study, the AU sibs also received a follow-up assessment to determine motor and communication performance at 18 months using the Mullen Scales of Early Learning. Significantly more AU sibs showed motor delays at 3 and 6 months than LR infants. The majority of the AU sibs showed both early motor delays and later communication delays. Small sample size and limited follow-up. Early motor delays are more common in AU sibs than LR infants. Communication delays later emerged in 67-73% of the AU sibs who had presented with early motor delays. Overall, early motor delays may be predictive of future communication delays in children at risk for autism. Copyright © 2012 Elsevier Inc. All rights reserved.
Relationship between early motor delay and later communication delay in infants at risk for autism
Bhat, A. N.; Galloway, J. C.; Landa, R. J.
2012-01-01
Background Motor delays have been reported in retrospective studies of young infants who later develop Autism Spectrum Disorders (ASDs). Objective In this study, we prospectively compared the gross motor development of a cohort at risk for ASDs; infant siblings of children with ASDs (AU sibs) to low risk typically developing (LR) infants. Methods 24 AU sibs and 24 LR infants were observed at 3 and 6 months using a standardized motor measure, the Alberta Infant Motor Scale (AIMS). In addition, as part of a larger study, the AU sibs also received a follow-up assessment to determine motor and communication performance at 18 months using the Mullen Scales of Early Learning. Results Significantly more AU sibs showed motor delays at 3 and 6 months than LR infants. The majority of the AU sibs showed both early motor delays and later communication delays. Limitations Small sample size and limited follow-up. Conclusions Early motor delays are more common in infant AU sibs than LR infants. Communication delays later emerged in 67–73% of the AU sibs who had presented with early motor delays. Overall, early motor delays may be predictive of future communication delays in children at risk for autism. PMID:22982285
Kantak, Shailesh S; Winstein, Carolee J
2012-03-01
Behavioral research in cognitive psychology provides evidence for an important distinction between immediate performance that accompanies practice and long-term performance that reflects the relative permanence in the capability for the practiced skill (i.e. learning). This learning-performance distinction is strikingly evident when challenging practice conditions may impair practice performance, but enhance long-term retention of motor skills. A review of motor learning studies with a specific focus on comparing differences in performance between that at the end of practice and at delayed retention suggests that the delayed retention or transfer performance is a better indicator of motor learning than the performance at (or end of) practice. This provides objective evidence for the learning-performance distinction. This behavioral evidence coupled with an understanding of the motor memory processes of encoding, consolidation and retrieval may provide insight into the putative mechanism that implements the learning-performance distinction. Here, we propose a simplistic empirically-based framework--motor behavior-memory framework--that integrates the temporal evolution of motor memory processes with the time course of practice and delayed retention frequently used in behavioral motor learning paradigms. In the context of the proposed framework, recent research has used noninvasive brain stimulation to decipher the role of each motor memory process, and specific cortical brain regions engaged in motor performance and learning. Such findings provide beginning insights into the relationship between the time course of practice-induced performance changes and motor memory processes. This in turn has promising implications for future research and practical applications. Copyright © 2011 Elsevier B.V. All rights reserved.
Batra, Vijay; Batra, Meenakshi; Pandey, Ravindra Mohan; Sharma, Vijai Prakash; Agarwal, Girdhar Gopal
2015-01-01
Objective To compare the efficacy of a Neurofacilitation of Developmental Reaction (NFDR) approach with that of a Conventional approach in the modulation of tone in children with neurodevelopmental delay. Methods Experimental control design. A total of 30 spastic children ranging in age from 4 to 7 years with neurodevelopmental delay were included. Baseline evaluations of muscle tone and gross motor functional performance abilities were performed. The children were allocated into two intervention groups of 15 subjects each. In groups A and B, the NFDR and conventional approaches were applied, respectively, for 3 months and were followed by subsequent re-evaluations. Results Between group analyses were performed using independent t test for tone and primitive reflex intensity and a Mann-Whitney U test for gross motor functional ability. For the within-group analyses, paired t tests were used for tone and primitive reflex intensity, and a Wilcoxon signed-rank test was used for gross motor functional ability. Conclusion The NFDR approach/technique prepares the muscle to undergo tonal modulation and thereby enhances motor development and improves the motor functional performance abilities of the children with neurodevelopmental delay. PMID:28239268
Souza, Carolina T; Santos, Denise C C; Tolocka, Rute E; Baltieri, Letícia; Gibim, Nathália C; Habechian, Fernanda A P
2010-01-01
To analyze the global motor performance and the gross and fine motor skills of infants attending two public child care centers full-time. This was a longitudinal study that included 30 infants assessed at 12 and 17 months of age with the Motor Scale of the Bayley Scales of Infant and Toddler Development, Third Edition (Bayley-III). This scale allows the analysis of global motor performance, fine and gross motor performance, and the discrepancy between them. The Wilcoxon test and Spearman's correlation coefficient were used. Most of the participants showed global motor performance within the normal range, but below the reference mean at 12 and 17 months, with 30% classified as having "suspected delays" in at least one of the assessments. Gross motor development was poorer than fine motor development at 12 and at 17 months of age, with great discrepancy between these two subtests in the second assessment. A clear individual variability was observed in fine motor skills, with weak linear correlation between the first and the second assessment of this subtest. A lower individual variability was found in the gross motor skills and global motor performance with positive moderate correlation between assessments. Considering both performance measurements obtained at 12 and 17 months of age, four infants were identified as having a "possible delay in motor development". The study showed the need for closer attention to the motor development of children who attend day care centers during the first 17 months of life, with special attention to gross motor skills (which are considered an integral part of the child's overall development) and to children with suspected delays in two consecutive assessments.
The effect of modifying response and performance feedback parameters on the CNV in humans
NASA Technical Reports Server (NTRS)
Otto, D. A.; Leifer, L. J.
1972-01-01
The effect on the CNV of sustained and delayed motor response with the dominant and nondominant hand in the presence and absence of visual performance feedback, was studied in 15 male adults. Monopolar scalp recordings were obtained at Fz, Cz, Pz, and bilaterally over the motor hand area. Results indicated that the magnitude of the CNV was greater in the delayed than sustained response task, greater in the presence than absence of feedback, and greater over the motor hand area contralateral to movement. Frontal CNV habituated in the sustained, but not the delayed response task, suggested that frontal negative variations in the former case signify an orienting response to novelty or uncertainty. The absence of habituation in the delay condition was interpreted in terms of the motor inhibitory function of frontal association cortex. Performance feedback appeared to enhance CNV indirectly by increasing the motivation of subjects. A multiprocess conception of CNV was proposed in which vortex-negative slow potentials reflect a multiplicity of psychophysiological processes occurring at a variety of cortical and subcortical locations in the brain preparatory to a motor or mental action.
Retention of primitive reflexes and delayed motor development in very low birth weight infants.
Marquis, P J; Ruiz, N A; Lundy, M S; Dillard, R G
1984-06-01
Primitive reflexes and motor development were evaluated in 127 very low birth weight (VLBW) infants (birth weight less than 1501 grams) at four months corrected age. The asymmetrical tonic neck reflex, tonic labyrinth reflex, and Moro reflex were assessed for each child. The ability of each child to reach (obtain a red ring) and roll were observed. The child's performance on the gross motor scale of the Denver Development Screening Test was recorded. Thirty-seven term infants were administered identical evaluations at four months of age. The VLBW infants retained stronger primitive reflexes and exhibited a significantly higher incidence of motor delays than term infants. Significant correlations existed between the strength of the primitive reflexes and early motor development for VLBW infants. This study confirms a high incidence of motor delays among VLBW infants and demonstrates a clear association between retained primitive reflexes and delayed motor development in VLBW infants.
ERIC Educational Resources Information Center
Foster, Erin R.; Black, Kevin J.; Antenor-Dorsey, Jo Ann V.; Perlmutter, Joel S.; Hershey, Tamara
2008-01-01
Studies suggest motor deficit asymmetry may help predict the pattern of cognitive impairment in individuals with Parkinson disease (PD). We tested this hypothesis using a highly validated and sensitive spatial memory task, spatial delayed response (SDR), and clinical and neuroimaging measures of PD asymmetry. We predicted SDR performance would be…
Kantak, Shailesh S; Sullivan, Katherine J; Fisher, Beth E; Knowlton, Barbara J; Winstein, Carolee J
2011-01-01
The authors investigated how brain activity during motor-memory consolidation contributes to transfer of learning to novel versions of a motor skill following distinct practice structures. They used 1 Hz repetitive Transcranial Magnetic Stimulation (rTMS) immediately after constant or variable practice of an arm movement skill to interfere with primary motor cortex (M1) or dorsolateral prefrontal cortex (DLPFC). The effect of interference was assessed through skill performance on two transfer targets: one within and one outside the range of practiced movement parameters for the variable practice group. For the control (no rTMS) group, variable practice benefited delayed transfer performance more than constant practice. The rTMS effect on delayed transfer performance differed for the two transfer targets. For the within-range target, rTMS interference had no significant affect on the delayed transfer after either practice structure. However, for the outside-range target, rTMS interference to DLPFC but not M1 attenuated delayed transfer benefit following variable practice. Additionally, for the outside-range target, rTMS interference to M1 but not DLPFC attenuated delayed transfer following constant practice. This suggests that variable practice may promote reliance on DLPFC for memory consolidation associated with outside-range transfer of learning, whereas constant practice may promote reliance on M1 for consolidation and long-term transfer.
Comparing Motor Skills in Autism Spectrum Individuals With and Without Speech Delay
Barbeau, Elise B.; Meilleur, Andrée‐Anne S.; Zeffiro, Thomas A.
2015-01-01
Movement atypicalities in speed, coordination, posture, and gait have been observed across the autism spectrum (AS) and atypicalities in coordination are more commonly observed in AS individuals without delayed speech (DSM‐IV Asperger) than in those with atypical or delayed speech onset. However, few studies have provided quantitative data to support these mostly clinical observations. Here, we compared perceptual and motor performance between 30 typically developing and AS individuals (21 with speech delay and 18 without speech delay) to examine the associations between limb movement control and atypical speech development. Groups were matched for age, intelligence, and sex. The experimental design included: an inspection time task, which measures visual processing speed; the Purdue Pegboard, which measures finger dexterity, bimanual performance, and hand‐eye coordination; the Annett Peg Moving Task, which measures unimanual goal‐directed arm movement; and a simple reaction time task. We used analysis of covariance to investigate group differences in task performance and linear regression models to explore potential associations between intelligence, language skills, simple reaction time, and visually guided movement performance. AS participants without speech delay performed slower than typical participants in the Purdue Pegboard subtests. AS participants without speech delay showed poorer bimanual coordination than those with speech delay. Visual processing speed was slightly faster in both AS groups than in the typical group. Altogether, these results suggest that AS individuals with and without speech delay differ in visually guided and visually triggered behavior and show that early language skills are associated with slower movement in simple and complex motor tasks. Autism Res 2015, 8: 682–693. © 2015 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research PMID:25820662
Horvath, Gabor; Reglodi, Dora; Vadasz, Gyongyver; Farkas, Jozsef; Kiss, Peter
2013-01-01
Environmental enrichment is a popular strategy to enhance motor and cognitive performance and to counteract the effects of various harmful stimuli. The protective effects of enriched environment have been shown in traumatic, ischemic and toxic nervous system lesions. Monosodium glutamate (MSG) is a commonly used taste enhancer causing excitotoxic effects when given in newborn animals. We have previously demonstrated that MSG leads to a delay in neurobehavioral development, as shown by the delayed appearance of neurological reflexes and maturation of motor coordination. In the present study we aimed at investigating whether environmental enrichment is able to decrease the neurobehavioral delay caused by neonatal MSG treatment. Newborn pups were treated with MSG subcutaneously on postnatal days 1, 5 and 9. For environmental enrichment, we placed rats in larger cages, supplemented with different toys that were altered daily. Normal control and enriched control rats received saline treatment only. Physical parameters such as weight, day of eye opening, incisor eruption and ear unfolding were recorded. Animals were observed for appearance of reflexes such as negative geotaxis, righting reflexes, fore- and hindlimb grasp, fore- and hindlimb placing, sensory reflexes and gait. In cases of negative geotaxis, surface righting and gait, the time to perform the reflex was also recorded daily. For examining motor coordination, we performed grid walking, footfault, rope suspension, rota-rod, inclined board and walk initiation tests. We found that enriched environment alone did not lead to marked alterations in the course of development. On the other hand, MSG treatment caused a slight delay in reflex development and a pronounced delay in weight gain and motor coordination maturation. This delay in most signs and tests could be reversed by enriched environment: MSG-treated pups kept under enriched conditions showed no weight retardation, no reflex delay in some signs and performed better in most coordination tests. These results show that environmental enrichment is able to decrease the neurobehavioral delay caused by neonatal excitotoxicity. PMID:24065102
The Prevalence of Motor Delay among HIV Infected Children Living in Cape Town, South Africa
ERIC Educational Resources Information Center
Ferguson, Gillian; Jelsma, Jennifer
2009-01-01
Children living with HIV often display delayed motor performance owing to HIV infection of the central nervous system, the effects of opportunistic infections and, indirectly, owing to their social environments. Although these problems have been well documented, the impact of the virus on the development of South African children is less well…
NASA Astrophysics Data System (ADS)
Zhu, Xiaoyuan; Zhang, Hui; Yang, Bo; Zhang, Guichen
2018-01-01
In order to improve oscillation damping control performance as well as gear shift quality of electric vehicle equipped with integrated motor-transmission system, a cloud-based shaft torque estimation scheme is proposed in this paper by using measurable motor and wheel speed signals transmitted by wireless network. It can help reduce computational burden of onboard controllers and also relief network bandwidth requirement of individual vehicle. Considering possible delays during signal wireless transmission, delay-dependent full-order observer design is proposed to estimate the shaft torque in cloud server. With these random delays modeled by using homogenous Markov chain, robust H∞ performance is adopted to minimize the effect of wireless network-induced delays, signal measurement noise as well as system modeling uncertainties on shaft torque estimation error. Observer parameters are derived by solving linear matrix inequalities, and simulation results using acceleration test and tip-in, tip-out test demonstrate the effectiveness of proposed shaft torque observer design.
Seijffers, Rhona; Zhang, Jiangwen; Matthews, Jonathan C; Chen, Adam; Tamrazian, Eric; Babaniyi, Olusegun; Selig, Martin; Hynynen, Meri; Woolf, Clifford J; Brown, Robert H
2014-01-28
ALS is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons and atrophy of distal axon terminals in muscle, resulting in loss of motor function. Motor end plates denervated by axonal retraction of dying motor neurons are partially reinnervated by remaining viable motor neurons; however, this axonal sprouting is insufficient to compensate for motor neuron loss. Activating transcription factor 3 (ATF3) promotes neuronal survival and axonal growth. Here, we reveal that forced expression of ATF3 in motor neurons of transgenic SOD1(G93A) ALS mice delays neuromuscular junction denervation by inducing axonal sprouting and enhancing motor neuron viability. Maintenance of neuromuscular junction innervation during the course of the disease in ATF3/SOD1(G93A) mice is associated with a substantial delay in muscle atrophy and improved motor performance. Although disease onset and mortality are delayed, disease duration is not affected. This study shows that adaptive axonal growth-promoting mechanisms can substantially improve motor function in ALS and importantly, that augmenting viability of the motor neuron soma and maintaining functional neuromuscular junction connections are both essential elements in therapy for motor neuron disease in the SOD1(G93A) mice. Accordingly, effective protection of optimal motor neuron function requires restitution of multiple dysregulated cellular pathways.
A Map of Anticipatory Activity in Mouse Motor Cortex.
Chen, Tsai-Wen; Li, Nuo; Daie, Kayvon; Svoboda, Karel
2017-05-17
Activity in the mouse anterior lateral motor cortex (ALM) instructs directional movements, often seconds before movement initiation. It is unknown whether this preparatory activity is localized to ALM or widely distributed within motor cortex. Here we imaged activity across motor cortex while mice performed a whisker-based object localization task with a delayed, directional licking response. During tactile sensation and the delay epoch, object location was represented in motor cortex areas that are medial and posterior relative to ALM, including vibrissal motor cortex. Preparatory activity appeared first in deep layers of ALM, seconds before the behavioral response, and remained localized to ALM until the behavioral response. Later, widely distributed neurons represented the outcome of the trial. Cortical area was more predictive of neuronal selectivity than laminar location or axonal projection target. Motor cortex therefore represents sensory, motor, and outcome information in a spatially organized manner. Copyright © 2017 Elsevier Inc. All rights reserved.
Holloway, Jamie M; Long, Toby; Biasini, Fred
2018-04-02
This study provides information on how two standardized measures based on different theoretical frameworks can be used in collecting information on motor development and performance in 4- and 5-year-olds with autism spectrum disorder (ASD). The purpose of the study was to determine the concurrent validity of the Miller Function and Participation Scales (M-FUN) with the Peabody Developmental Motor Scales, Second Edition (PDMS-2) in young children with ASD. The gross motor sections of the PDMS-2 and the M-FUN were administered to 22 children with ASD between the ages of 48 and 71 months. Concurrent validity between overall motor scores and agreement in identification of motor delay were assessed. A very strong correlation (Pearson's r =.851) was found between the M-FUN scale scores and the PDMS-2 gross motor quotients (GMQs). Strong agreement in identification of children with average motor skills and delayed motor skills at 1.5 standard deviations below the mean was also found. This study supports the concurrent validity of the M-FUN with the PDMS-2 for young children with ASD. While both tests provide information regarding motor delay, the M-FUN may provide additional information regarding the neurological profile of the child.
Barbosa, Vanessa M; Campbell, Suzann K; Sheftel, David; Singh, Jaidep; Beligere, Nagamani
2003-01-01
Understanding the natural history of development in children with cerebral palsy (CP) is important for studying the consequences of early intervention. The purpose of this paper is to present results on the Test of Infant Motor Performance (TIMP) from 0-4 months of age and on the Alberta Infant Motor Scale (AIMS) from 3 to 12 months of age in a group of infants later diagnosed as having CP. Ages at which infants with CP were first recognized as having delayed motor performance on each instrument and the stability of performance over time are presented. Clinical implications for using both instruments are discussed.
Mental simulation of drawing actions enhances delayed recall of a complex figure.
De Lucia, Natascia; Trojano, Luigi; Senese, Vincenzo Paolo; Conson, Massimiliano
2016-10-01
Motor simulation implies that the same motor representations involved in action execution are re-enacted during observation or imagery of actions. Neurofunctional data suggested that observation of letters or abstract paintings can elicit simulation of writing or drawing gestures. We performed four behavioural experiments on right-handed healthy participants to test whether observation of a static and complex geometrical figure implies re-enactment of drawing actions. In Experiment 1, participants had to observe the stimulus without explicit instruction (observation-only condition), while performing irrelevant finger tapping (motor dual task), or while articulating irrelevant verbal material (verbal dual task). Delayed drawing of the stimulus was less accurate in the motor dual-task (interfering with simulation of hand actions) than in verbal dual-task and observation-only conditions. In Experiment 2, delayed drawing in the observation only was as accurate as when participants encoded the stimulus by copying it; in both conditions, accuracy was higher than when participants were instructed to observe the stimulus to recall it later verbally (observe to recall), thus being discouraged from engaging motor simulation. In Experiment 3, delayed drawing was as accurate in the observation-only condition as when participants imagined copying the stimulus; accuracy in both conditions was higher than in the observe-to-recall condition. In Experiment 4, in the observe-only condition participants who observed the stimulus with their right arm hidden behind their back were significantly less accurate than participants who had their left arm hidden. These findings converge in suggesting that mere observation of a geometrical stimulus can activate motor simulation and re-enactment of drawing actions.
Sleep Does Not Enhance Motor Sequence Learning
ERIC Educational Resources Information Center
Rickard, Timothy C.; Cai, Denise J.; Rieth, Cory A.; Jones, Jason; Ard, M. Colin
2008-01-01
Improvements in motor sequence performance have been observed after a delay involving sleep. This finding has been taken as evidence for an active sleep consolidation process that enhances subsequent performance. In a review of this literature, however, the authors observed 4 aspects of data analyses and experimental design that could lead to…
Albuquerque, Plínio Luna de; Guerra, Miriam Queiroz de Farias; Lima, Marília de Carvalho; Eickmann, Sophie Helena
2017-05-24
To investigate the concurrent validity of AIMS in relation to the gross motor subtest of the Bayley Scale III/GM in preterm infants. A total of 159 gross motor development assessments were performed with the AIMS and Bayley-III/GM. Linear regression was used to assess the correlation between AIMS and Bayley-III/GM scores. The intra-class correlation coefficient (ICC) and the Bland-Altman plot were used to analyze intra- and inter-rater reliability. There was a prevalence of delayed gross motor development of 20.8% according to the Bayley-III/GM, and 11.9% for the 5th percentile and 21.4% for the 10th percentile of AIMS. A good correlation of AIMS with Bayley-III/GM scores and intra- and inter-rater reliability was encountered in this study. AIMS proved very capable of detecting delayed gross motor development in preterm infants when compared with the Bayley-III/GM. The 10th percentile of AIMS provided the best combination of indicators, with greater specificity.
Hedgecock, James B; Dannemiller, Lisa A; Shui, Amy M; Rapport, Mary Jane; Katz, Terry
2018-04-01
Young children with autism spectrum disorder (ASD) often have gross motor delays that may accentuate problem daytime behavior and health-related quality of life (QoL). The objective of this study was to describe the degree of gross motor delays in young children with ASD and associations of gross motor delays with problem daytime behavior and QoL. The primary hypothesis was that Gross motor delays significantly modifies the associations between internalizing or externalizing problem daytime behavior and QoL. This study used a cross-sectional, retrospective analysis. Data from 3253 children who were 2 to 6 years old and who had ASD were obtained from the Autism Speaks Autism Treatment Network and analyzed using unadjusted and adjusted linear regression. Measures included the Vineland Adaptive Behavior Scales, 2nd edition, gross motor v-scale score (VABS-GM) (for Gross motor delays), the Child Behavior Checklist (CBCL) (for Problem daytime behavior), and the Pediatric Quality of Life Inventory (PedsQL) (for QoL). The mean VABS-GM was 12.12 (SD = 2.2), representing performance at or below the 16th percentile. After adjustment for covariates, the internalizing CBCL t score decreased with increasing VABS-GM (β = - 0.64 SE = 0.12). Total and subscale PedsQL scores increased with increasing VABS-GM (for total score: β = 1.79 SE = 0.17; for subscale score: β = 0.9-2.66 SE = 0.17-0.25). CBCL internalizing and externalizing t scores decreased with increasing PedsQL total score (β = - 0.39 SE = 0.01; β = - 0.36 SE = 0.01). The associations between CBCL internalizing or externalizing t scores and PedsQL were significantly modified by VABSGM (β = - 0.026 SE = 0.005]; β = - 0.019 SE = 0.007). The study lacked ethnic and socioeconomic diversity. Measures were collected via parent report without accompanying clinical assessment. Cross motor delay was independently associated with Problem daytime behavior and QoL in children with ASD. Gross motor delay modified the association between Problem daytime behavior and QoL. Children with ASD and co-occurring internalizing Problem daytime behavior had greater Gross motor delays than children without internalizing Problem daytime behavior; therefore, these children may be most appropriate for early physical therapist evaluation.
Early Boost and Slow Consolidation in Motor Skill Learning
ERIC Educational Resources Information Center
Hotermans, Christophe; Peigneux, Philippe; de Noordhout, Alain Maertens; Moonen, Gustave; Maquet, Pierre
2006-01-01
Motor skill learning is a dynamic process that continues covertly after training has ended and eventually leads to delayed increments in performance. Current theories suggest that this off-line improvement takes time and appears only after several hours. Here we show an early transient and short-lived boost in performance, emerging as early as…
Yu, Tzu-Ying; Chen, Kuan-Lin; Chou, Willy; Yang, Shu-Han; Kung, Sheng-Chun; Lee, Ya-Chen; Tung, Li-Chen
2016-01-01
This study aimed to establish 1) whether a group difference exists in the motor competence of preschool children at risk for developmental delays with intelligence quotient discrepancy (IQD; refers to difference between verbal intelligence quotient [VIQ] and performance intelligence quotient [PIQ]) and 2) whether an association exists between IQD and motor competence. Children's motor competence and IQD were determined with the motor subtests of the Comprehensive Developmental Inventory for Infants and Toddlers and Wechsler Preschool and Primary Scale of Intelligence™ - Fourth Edition. A total of 291 children were included in three groups: NON-IQD (n=213; IQD within 1 standard deviation [SD]), VIQ>PIQ (n=39; VIQ>PIQ greater than 1 SD), and PIQ>VIQ (n=39; PIQ>VIQ greater than 1 SD). The results of one-way analysis of variance indicated significant differences among the subgroups for the "Gross and fine motor" subdomains of the Comprehensive Developmental Inventory for Infants and Toddlers, especially on the subtests of "body-movement coordination" (F=3.87, P<0.05) and "visual-motor coordination" (F=6.90, P<0.05). Motor competence was significantly worse in the VIQ>PIQ group than in the NON and PIQ>VIQ groups. Significant negative correlations between IQD and most of the motor subtests (r=0.31-0.46, P<0.01) were found only in the VIQ>PIQ group. This study demonstrates that 1) IQD indicates the level of motor competence in preschoolers at risk for developmental delays and 2) IQD is negatively associated with motor competence in preschoolers with significant VIQ>PIQ discrepancy. The first finding was that preschoolers with VIQ>PIQ discrepancy greater than 1 SD performed significantly worse on motor competence than did preschoolers without significant IQD and preschoolers with PIQ>VIQ discrepancy greater than 1 SD. However, preschoolers with significant PIQ>VIQ discrepancy performed better on motor competence than did preschoolers without significant IQD, though the difference was not statistically significant. The second finding was that preschoolers with larger VIQ>PIQ discrepancy had worse motor competence in visual-motor integration and body-movement coordination. Professionals should pay attention to the motor development of children with VIQ>PIQ discrepancy and evaluate children's IQD along with their motor competence.
ERIC Educational Resources Information Center
Smith, Erin; McLaughlin, T. F.; Neyman, Jennifer; Rinaldi, Lisa
2013-01-01
This study was designed to examine the effects of tracing and fading prompts to improve the handwriting of two preschoolers both diagnosed as Developmentally Delayed (DD) and one of whom had fine motor goals. The study took place in a self-contained special education public preschool classroom located in the Pacific Northwest. The results showed…
Yu, Tzu-Ying; Chen, Kuan-Lin; Chou, Willy; Yang, Shu-Han; Kung, Sheng-Chun; Lee, Ya-Chen; Tung, Li-Chen
2016-01-01
Purpose This study aimed to establish 1) whether a group difference exists in the motor competence of preschool children at risk for developmental delays with intelligence quotient discrepancy (IQD; refers to difference between verbal intelligence quotient [VIQ] and performance intelligence quotient [PIQ]) and 2) whether an association exists between IQD and motor competence. Methods Children’s motor competence and IQD were determined with the motor subtests of the Comprehensive Developmental Inventory for Infants and Toddlers and Wechsler Preschool and Primary Scale of Intelligence™ – Fourth Edition. A total of 291 children were included in three groups: NON-IQD (n=213; IQD within 1 standard deviation [SD]), VIQ>PIQ (n=39; VIQ>PIQ greater than 1 SD), and PIQ>VIQ (n=39; PIQ>VIQ greater than 1 SD). Results The results of one-way analysis of variance indicated significant differences among the subgroups for the “Gross and fine motor” subdomains of the Comprehensive Developmental Inventory for Infants and Toddlers, especially on the subtests of “body-movement coordination” (F=3.87, P<0.05) and “visual-motor coordination” (F=6.90, P<0.05). Motor competence was significantly worse in the VIQ>PIQ group than in the NON and PIQ>VIQ groups. Significant negative correlations between IQD and most of the motor subtests (r=0.31–0.46, P<0.01) were found only in the VIQ>PIQ group. Conclusion This study demonstrates that 1) IQD indicates the level of motor competence in preschoolers at risk for developmental delays and 2) IQD is negatively associated with motor competence in preschoolers with significant VIQ>PIQ discrepancy. The first finding was that preschoolers with VIQ>PIQ discrepancy greater than 1 SD performed significantly worse on motor competence than did preschoolers without significant IQD and preschoolers with PIQ>VIQ discrepancy greater than 1 SD. However, preschoolers with significant PIQ>VIQ discrepancy performed better on motor competence than did preschoolers without significant IQD, though the difference was not statistically significant. The second finding was that preschoolers with larger VIQ>PIQ discrepancy had worse motor competence in visual-motor integration and body-movement coordination. Professionals should pay attention to the motor development of children with VIQ>PIQ discrepancy and evaluate children’s IQD along with their motor competence. PMID:27013876
Wang, Pei-Jung; Morgan, George A; Hwang, Ai-Wen; Liao, Hua-Fang
2013-01-01
Mastery motivation is a precursor of future developmental outcomes. Evidence about whether toddlers with motor delay have lower mastery motivation is inconclusive. The purpose of this study was to examine differences between mental age-matched toddlers with and without motor delay on various mastery motivation indicators. A mental age- and sex-matched case-control study was performed. Twenty-two children with motor delay, aged 23 to 47 months, and 22 children who were developing typically, aged 15 to 29 months, were recruited. Persistence and mastery pleasure were measured with behavioral tasks that were moderately challenging for each child and with maternal ratings using the Dimensions of Mastery Questionnaire (DMQ). The DMQ was rated by each child's mother based on her perception of her child's motivation. Two types of structured tasks (a puzzle and a cause-effect toy selected to be moderately challenging for each child) were administered in a laboratory setting and recorded on videos. Paired t tests or Wilcoxon signed rank tests were used to examine group differences in persistence and mastery pleasure (α=.007, 2-tailed). Children with motor delay were rated lower on DMQ persistence than the typically developing group, but they did not show significantly lower persistence on the structured tasks. There were no significant differences in mastery pleasure between the 2 groups on either measure. Large within-sample variability on the tasks and small sample size makes subgroup analysis (eg, different severities) difficult. Toddlers with motor delay did not show lower persistence and pleasure when given tasks that were moderately challenging; however, their mothers tended to view them as having lower motivation. Clinicians and parents should provide appropriately challenging tasks to increase children's success and motivation.
Arnedillo-Sánchez, Inmaculada; Boyle, Bryan; Bossavit, Benoît
2017-01-01
MotorSense is a motion detection and tracking technology that can be implemented across a range of environments to assist in detecting delays in gross-motor skills development. The system utilises the motion tracking functionality of Microsoft's Kinect™. It features games that require children to perform graded gross-motor tasks matched with their chronological and developmental ages. This paper describes the rationale for MotorSense, provides an overview of the functionality of the system and illustrates sample activities.
Zysset, Annina E; Kakebeeke, Tanja H; Messerli-Bürgy, Nadine; Meyer, Andrea H; Stülb, Kerstin; Leeger-Aschmann, Claudia S; Schmutz, Einat A; Arhab, Amar; Ferrazzini, Valentina; Kriemler, Susi; Munsch, Simone; Puder, Jardena J; Jenni, Oskar G
2018-05-01
Motor skills are interrelated with essential domains of childhood such as cognitive and social development. Thus, the evaluation of motor skills and the identification of atypical or delayed motor development is crucial in pediatric practice (e.g., during well-child visits). Parental reports on motor skills may serve as possible indicators to decide whether further assessment of a child is necessary or not. We compared parental reports on fundamental motor skills performance level (e.g., hopping, throwing), based on questions frequently asked in pediatric practice, with a standardized motor test in 389 children (46.5% girls/53.5% boys, M age = 3.8 years, SD = 0.5, range 3.0-5.0 years) from the Swiss Preschoolers' Health Study (SPLASHY). Motor skills were examined using the Zurich Neuromotor Assessment 3-5 (ZNA3-5), and parents filled in an online questionnaire on fundamental motor skills performance level. The results showed that the answers from the parental report correlated only weakly with the objectively assessed motor skills (r = .225, p < .001). Although a parental screening instrument for motor skills would be desirable, the parent's report used in this study was not a valid indicator for children's fundamental motor skills. Thus, we may recommend to objectively examine motor skills in clinical practice and not to exclusively rely on parental report. What is Known: • Early assessment of motor skills in preschool children is important because motor skills are essential for the engagement in social activities and the development of cognitive abilities. Atypical or delayed motor development can be an indicator for different developmental needs or disorders. • Pediatricians frequently ask parents about the motor competences of their child during well-child visits. What is New: • The parental report on fundamental motor skills performance level used in this study was not a reliable indicator for describing motor development in the preschool age. • Standardized examinations of motor skills are required to validly assess motor development in preschoolers.
Persson, Kristina; Sonnander, Karin; Magnusson, Margaretha; Sarkadi, Anna; Lucas, Steven
2017-01-01
Aim This study aimed to evaluate the clinical utility of the Structured Observation of Motor Performance in Infants (SOMP-I) when used by nurses in routine child healthcare by analyzing the nurses’ SOMP-I assessments and the actions taken when motor problems were suspected. Method Infants from three child health centers in Uppsala County, Sweden, were consecutively enrolled in a longitudinal study. The 242 infants were assessed using SOMP-I by the nurse responsible for the infant as part of the regular well-child visits at as close to 2, 4, 6 and 10 months of age as possible. The nurses noted actions taken such as giving advice, scheduling an extra follow-up or referring the infant to specialized care. The infants’ motor development was reassessed at 18 months of age through review of medical records or parental report. Results The assessments of level of motor development at 2 and 10 months showed a distribution corresponding to the percentile distribution of the SOMP-I method. Fewer infants than expected were assessed as delayed at 4 and 6 months or deficient in quality at all assessment ages. When an infant was assessed as delayed in level or deficient in quality, the likelihood of the nurse taking actions increased. This increased further if both delay and quality deficit were found at the same assessment or if one or both were found at repeated assessments. The reassessment of the motor development at 18 months did not reveal any missed infants with major motor impairments. Interpretation The use of SOMP-I appears to demonstrate favorable clinical utility in routine child healthcare as tested here. Child health nurses can assess early motor performance using this standardized assessment method, and using the method appears to support them the clinical decision-making. PMID:28723929
Improving brain-machine interface performance by decoding intended future movements
NASA Astrophysics Data System (ADS)
Willett, Francis R.; Suminski, Aaron J.; Fagg, Andrew H.; Hatsopoulos, Nicholas G.
2013-04-01
Objective. A brain-machine interface (BMI) records neural signals in real time from a subject's brain, interprets them as motor commands, and reroutes them to a device such as a robotic arm, so as to restore lost motor function. Our objective here is to improve BMI performance by minimizing the deleterious effects of delay in the BMI control loop. We mitigate the effects of delay by decoding the subject's intended movements a short time lead in the future. Approach. We use the decoded, intended future movements of the subject as the control signal that drives the movement of our BMI. This should allow the user's intended trajectory to be implemented more quickly by the BMI, reducing the amount of delay in the system. In our experiment, a monkey (Macaca mulatta) uses a future prediction BMI to control a simulated arm to hit targets on a screen. Main Results. Results from experiments with BMIs possessing different system delays (100, 200 and 300 ms) show that the monkey can make significantly straighter, faster and smoother movements when the decoder predicts the user's future intent. We also characterize how BMI performance changes as a function of delay, and explore offline how the accuracy of future prediction decoders varies at different time leads. Significance. This study is the first to characterize the effects of control delays in a BMI and to show that decoding the user's future intent can compensate for the negative effect of control delay on BMI performance.
ERIC Educational Resources Information Center
Bhat, Anjana N.; Srinivasan, Sudha M.; Woxholdt, Colleen; Shield, Aaron
2018-01-01
Children with autism spectrum disorder present with a variety of social communication deficits such as atypicalities in social gaze and verbal and non-verbal communication delays as well as perceptuo-motor deficits like motor incoordination and dyspraxia. In this study, we had the unique opportunity to study praxis performance in deaf children…
Sleep-Dependent Learning and Motor-Skill Complexity
ERIC Educational Resources Information Center
Kuriyama, Kenichi; Stickgold, Robert; Walker, Matthew P.
2004-01-01
Learning of a procedural motor-skill task is known to progress through a series of unique memory stages. Performance initially improves during training, and continues to improve, without further rehearsal, across subsequent periods of sleep. Here, we investigate how this delayed sleep-dependent learning is affected when the task characteristics…
Kiss, Peter; Vadasz, Gyongyver; Kiss-Illes, Blanka; Horvath, Gabor; Tamas, Andrea; Reglodi, Dora; Koppan, Miklos
2013-01-01
Perinatal asphyxia during delivery produces long-term disability and represents a major problem in neonatal and pediatric care. Numerous neuroprotective approaches have been described to decrease the effects of perinatal asphyxia. Enriched environment is a popular strategy to counteract nervous system injuries. The aim of the present study was to investigate whether enriched environment is able to decrease the asphyxia-induced neurobehavioral developmental delay in neonatal rats. Asphyxia was induced in ready-to-deliver mothers by removing the pups by caesarian section after 15 min of asphyxia. Somatic and neurobehavioral development was tested daily and motor coordination weekly. Our results show that rats undergoing perinatal asphyxia had a marked developmental delay and worse performance in motor coordination tests. However, pups kept in enriched environment showed a decrease in the developmental delay observed in control asphyctic pups. Rats growing up in enriched environment did not show decrease in weight gain after the first week and the delay in reflex appearance was not as marked as in control rats. In addition, the development of motor coordination was not as strikingly delayed as in the control group. Short-term neurofunctional outcome are known to correlate with long-term deficits. Our results thus show that enriched environment could be a powerful strategy to decrease the deleterious developmental effects of perinatal asphyxia. PMID:24232451
Kiss, Peter; Vadasz, Gyongyver; Kiss-Illes, Blanka; Horvath, Gabor; Tamas, Andrea; Reglodi, Dora; Koppan, Miklos
2013-11-13
Perinatal asphyxia during delivery produces long-term disability and represents a major problem in neonatal and pediatric care. Numerous neuroprotective approaches have been described to decrease the effects of perinatal asphyxia. Enriched environment is a popular strategy to counteract nervous system injuries. The aim of the present study was to investigate whether enriched environment is able to decrease the asphyxia-induced neurobehavioral developmental delay in neonatal rats. Asphyxia was induced in ready-to-deliver mothers by removing the pups by caesarian section after 15 min of asphyxia. Somatic and neurobehavioral development was tested daily and motor coordination weekly. Our results show that rats undergoing perinatal asphyxia had a marked developmental delay and worse performance in motor coordination tests. However, pups kept in enriched environment showed a decrease in the developmental delay observed in control asphyctic pups. Rats growing up in enriched environment did not show decrease in weight gain after the first week and the delay in reflex appearance was not as marked as in control rats. In addition, the development of motor coordination was not as strikingly delayed as in the control group. Short-term neurofunctional outcome are known to correlate with long-term deficits. Our results thus show that enriched environment could be a powerful strategy to decrease the deleterious developmental effects of perinatal asphyxia.
Case-Smith, J
2000-01-01
This study examined how performance components and variables in intervention influenced fine motor and functional outcomes in preschool children. In a sample of 44 preschool-aged children with fine motor delays who received occupational therapy services, eight fine motor and functional performance assessments were administered at the beginning and end of the academic year. Data on the format and intervention activities of each occupational therapy session were recorded for 8 months. The children received a mean of 23 sessions, in both individual and group format. Most of the sessions (81%) used fine motor activities; 29% addressed peer interaction, and 16% addressed play skills. Visual motor outcomes were influenced by the number of intervention sessions and percent of sessions with play goals. Fine motor outcomes were most influenced by the therapists' emphasis on play and peer interaction goals; functional outcomes were influenced by number of sessions and percent of sessions that specifically addressed self-care goals. The influence of play on therapy outcomes suggests that a focus on play in intervention activities can enhance fine motor and visual motor performance.
Physical Education and Children with CHARGE Syndrome: Research to Practice
ERIC Educational Resources Information Center
Lieberman, Lauren J.; Haibach, Pamela; Schedlin, Haley
2012-01-01
Introduction: Children with CHARGE syndrome often experience significantly delayed motor development, which affects their performance in many motor skills and physical activities. The purpose of this study was to determine the status of physical education provided to children with CHARGE syndrome. There were five main areas of focus: (1) physical…
NASA Astrophysics Data System (ADS)
Zhu, Xiaoyuan; Zhang, Hui; Cao, Dongpu; Fang, Zongde
2015-06-01
Integrated motor-transmission (IMT) powertrain system with directly coupled motor and gearbox is a good choice for electric commercial vehicles (e.g., pure electric buses) due to its potential in motor size reduction and energy efficiency improvement. However, the controller design for powertrain oscillation damping becomes challenging due to the elimination of damping components. On the other hand, as controller area network (CAN) is commonly adopted in modern vehicle system, the network-induced time-varying delays that caused by bandwidth limitation will further lead to powertrain vibration or even destabilize the powertrain control system. Therefore, in this paper, a robust energy-to-peak controller is proposed for the IMT powertrain system to address the oscillation damping problem and also attenuate the external disturbance. The control law adopted here is based on a multivariable PI control, which ensures the applicability and performance of the proposed controller in engineering practice. With the linearized delay uncertainties characterized by polytopic inclusions, a delay-free closed-loop augmented system is established for the IMT powertrain system under discrete-time framework. The proposed controller design problem is then converted to a static output feedback (SOF) controller design problem where the feedback control gains are obtained by solving a set of linear matrix inequalities (LMIs). The effectiveness as well as robustness of the proposed controller is demonstrated by comparing its performance against that of a conventional PI controller.
ERIC Educational Resources Information Center
Provost, Beth; Lopez, Brian R.; Heimerl, Sandra
2007-01-01
This study assessed motor delay in young children 21-41 months of age with autism spectrum disorder (ASD), and compared motor scores in children with ASD to those of children without ASD. Fifty-six children (42 boys, 14 girls) were in three groups: children with ASD, children with developmental delay (DD), and children with developmental concerns…
Motor development of infants with positional plagiocephaly.
Kennedy, Eileen; Majnemer, Annette; Farmer, Jean-Pierre; Barr, Ronald G; Platt, Robert W
2009-01-01
Concurrent with recommendations to place infants to sleep in supine, there has been a dramatic increase in the number of infants with positional plagiocephaly (PP). Recent evidence suggests that infants who have decreased exposure to prone position may have a higher incidence of PP and may be at risk for a delay in the acquisition of certain motor skills. The purpose of this study was to compare motor development between infants with PP and matched peers without PP. We also examined differences in infant positioning practices when asleep and awake between the two groups. Twenty-seven infants with PP, 3 to 8 months of age, were matched by age, gender, and race to infants without PP. Motor performance was evaluated using the Alberta Infant Motor Scale (AIMS) and the Peabody Developmental Motor Scales (PDMS). Parents completed a diary that recorded infant positioning over a 3-day period. Mean AIMS percentile score for infants with PP was 31.1 +/- 21.6 as compared with 42.7 +/- 20.2 in infants without PP (p = .06). Better performance on the AIMS was positively correlated with the amount of time in prone position when awake, for both groups of children (PP r = .52, no PP r = .44, p < .05). Therapists should be aware of a risk of a motor delay when evaluating infants with PP. It is also important for parents to be informed about the importance of supervised prone playtime to enhance the development of early motor skills.
Effects of overweight and obesity on motor and mental development in infants and toddlers.
Cataldo, R; Huang, J; Calixte, R; Wong, A T; Bianchi-Hayes, J; Pati, S
2016-10-01
A consequence of childhood obesity may be poor developmental outcomes. This study aimed to examine the relationship between weight and developmental delays in young children. We conducted a secondary analysis of the Early Childhood Longitudinal Study Birth Cohort data. Logistic regression models quantified the association between different weight statuses (normal weight <85th, overweight ≥90th, obese ≥95th percentile for weight) and delays in motor and mental development. Children classified as overweight in both waves had higher percentages of delays in wave 2 (motor [7.5 vs. 6.2-6.4%], mental [8.6 vs. 5.9-6.7%]), as well as wave 1 and/or wave 2 (motor [14.8 vs. 10.9-13.0%], mental [11.9 vs. 9.0-10.1%]), compared with other children. This association was also found in children who were obese at both time points in wave 2 (motor delay [8.9 vs. 4.9-7.3%], mental delay [10.3 vs. 6.0-7.2%]), as well as wave 1 and/or wave 2 (motor delay [14.5 vs. 10.9-12.9%], mental delay [14.1 vs. 9.4-10.1%]). In the adjusted models, children classified as always obese were more likely to have a mental delay in wave 2 (adjusted odds ratio [aOR] 1.89, 95% confidence interval [CI]: 1.21-2.95) as well as wave 1 and/or wave 2 (aOR 1.56, 95% CI: 1.08-2.26). These children were also more likely to have motor delay (aOR 1.47, 95% CI: 1.02-2.13) in wave 1 and/or wave 2. Overweight children are more likely than their normal-weight peers to have motor and mental developmental delays. Preventing obesity during infancy may facilitate reducing developmental delays in young children. © 2015 World Obesity.
Snyder, Patricia; Eason, Jane M; Philibert, Darbi; Ridgway, Andrea; McCaughey, Tiffany
2008-01-01
Concurrent validity of scores for the Alberta Infant Motor Scale (AIMS) and the Peabody Developmental Gross Motor Scale-2 (PDGMS-2) was examined with a sample of 35 infants at dual risk for motor delays or disabilities. Dual risk was defined as low birthweight (
Effect of Touch Screen Tablet Use on Fine Motor Development of Young Children.
Lin, Ling-Yi; Cherng, Rong-Ju; Chen, Yung-Jung
2017-10-20
To investigate the effects of touch-screen tablet use on the fine motor development of preschool children without developmental delay. 40 children who used a touch-screen tablet more 60 minutes per week for at least 1 month received a 24-week home fine motor activity program using a touch-screen-tablet. 40 children matched for age (mean = 61.0 months) and sex who did not meet the criteria for previous tablet use received a 24-week program consisting of manual play activities. Motor performance was measured using the Bruininks-Oseretsky Test of Motor Proficiency. The two-factor mixed design ANOVA was used to compare performance of the touch-screen tablet and non-touch-screen tablet groups. Pretest analysis showed no group differences in motor performance and pinch strength. At posttest, children in the nontouch-screen-tablet group made significantly greater changes in fine motor precision (p < 0.001), fine motor integration (p = 0.008), and manual dexterity (p = 0.003). Using a touch screen tablet extensively might be disadvantageous for the fine motor development of preschool children.
ERIC Educational Resources Information Center
Fisher, Janet M.
Selected electromyographic parameters underlying static postural control in 4, 6, and 8 year old normally and slowly developing children during performance of selected arm movements were studied. Developmental delays in balance control were assessed by the Cashin Test of Motor Development (1974) and/or the Williams Gross Motor Coordination Test…
Long, Suzanne H; Galea, Mary P; Eldridge, Beverley J; Harris, Susan R
2012-08-01
Previous research on developmental outcomes of infants with congenital heart disease (CHD) has shown delays in both cognitive and motor skills. To describe outcomes on the Bayley Scales of Infant and Toddler Development, 3rd edition (Bayley-III) for infants with CHD and to compare those findings to published results for similar samples of infants assessed on the 2nd edition of the Bayley Scales (BSID-II). Prospective cohort. Of 50 infants with CHD who participated in this longitudinal study (2006-2008) at the Royal Children's Hospital in Melbourne, Australia, 47 were assessed on the Bayley-III (median age=24.5 months), administered by a psychologist or neonatologist. Although neither assessor was blind to the CHD diagnosis, they were unaware of results of previous developmental assessments conducted in this longitudinal study. For the Bayley-III cognitive composite score, 17.0% of infants showed mild delays (1-2 SD below the mean), 2.1% had moderate delays (2-3 SD below the mean), and none had severe delays (greater than 3 SD below the mean). Motor composite scores showed mild delays in 10.9% of infants and moderate delays in 2.2%; none had severe motor delays. These findings differ from study results using the BSID-II in similar infants. The Bayley-III may underestimate developmental delay in 2-year-old children with CHD when compared to results of similar children tested at 12-36 months of age on the BSID-II. Copyright © 2012 Elsevier Ltd. All rights reserved.
Schmidt, H; Kern, W; Giese, R; Hallschmid, M; Enders, A
2009-04-01
The 22q13 deletion syndrome (Phelan-McDermid syndrome) is characterised by a global developmental delay, absent or delayed speech, generalised hypotonia, autistic behaviour and characteristic phenotypic features. Intranasal insulin has been shown to improve declarative memory in healthy adult subjects and in patients with Alzheimer disease. To assess if intranasal insulin is also able to improve the developmental delay in children with 22q13 deletion syndrome. We performed exploratory clinical trials in six children with 22q13 deletion syndrome who received intranasal insulin over a period of 1 year. Short-term (during the first 6 weeks) and long-term effects (after 12 months of treatment) on motor skills, cognitive functions, or autonomous functions, speech and communication, emotional state, social behaviour, behavioural disorders, independence in daily living and education were assessed. The children showed marked short-term improvements in gross and fine motor activities, cognitive functions and educational level. Positive long-term effects were found for fine and gross motor activities, nonverbal communication, cognitive functions and autonomy. Possible side effects were found in one patient who displayed changes in balance, extreme sensitivity to touch and general loss of interest. One patient complained of intermittent nose bleeding. We conclude that long-term administration of intranasal insulin may benefit motor development, cognitive functions and spontaneous activity in children with 22q13 deletion syndrome.
Janssen, Anjo J W M; Oostendorp, Rob A B; Akkermans, Reinier P; Steiner, Katerina; Kollée, Louis A A; Nijhuis-van der Sanden, Maria W G
2016-12-01
To determine longitudinal motor performance in very preterm (VPT) infants from 6 months to 5 years of age for the entire cohort of infants, according to gender and gestational age and at the individual level. Single-center, prospective longitudinal study of 201 VPT infants (106 boys) without severe impairments. Motor performance was assessed with the Bayley Scales of Infant Development (BSID-II-MS: 6, 12, 24 months) and the Movement Assessment Battery for Children (MABC-2-NL: 5 years). At 6, 12, and 24 months and then at 5 years, 77%, 80%, 48%, and 22% of the infants, respectively, showed delayed motor performance (<-1SD). At 5 years, girls performed significantly better than boys in manual dexterity and balance. MIXED MODEL ANALYSES: that examined interactions between time and gender and time and gestational age, revealed no significant interactions. The variance at child level was 29%. Linear mixed model analysis revealed that mean z-scores of -1.46 at 6 months of age declined significantly to -0.52 at 5 years. Individual longitudinal motor performance showed high variability. Longitudinal motor performance improved almost 1 SD over five years. However, the variability of individual longitudinal motor performance hampers evaluation in clinical care and research. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sánchez, Guillermo F López; Williams, Genevieve; Aggio, Daniel; Vicinanza, Domenico; Stubbs, Brendon; Kerr, Catherine; Johnstone, James; Roberts, Justine; Smith, Lee
2017-01-01
Abstract One important determinant of childhood physical activity and sedentary behavior may be that of motor development in infancy. The present analyses aimed to investigate whether gross and fine motor delays in infants were associated with objective and self-reported activity in childhood. Data were from the UK Millennium Cohort Study, a prospective cohort study, involving UK children born on or around the millennium (September 2000 and January 2002). When children were 9 months old, parents reported children's fine and gross motor-coordination, and at 7 years, sports club attendance and daily TV viewing time. Children's physical activity was measured using accelerometers at 7 years. Adjusted regression models were used to examine associations between delayed motor development and accelerometry measured moderate-to-vigorous physical activity and sedentary behavior, and parent-reported sport club attendance and TV viewing time. In this sample (n = 13,021), gross motor delay in infancy was associated with less time in moderate-to-vigorous physical activity (B −5.0 95% confidence interval [CI] −6.8, −3.2) and more time sedentary (B 13.5 95% CI 9.3, 17.8) in childhood. Gross and fine motor delays during infancy were associated with a reduced risk of having high attendance at sports clubs in childhood (both relative risk [RR] 0.7, 95% CI 0.6, 0.9). Fine motor delays, but not gross delays, were also associated with an increased risk of having high TV viewing time (RR 1.3 95% CI 1.0, 1.6). Findings from the present study suggest that delays in motor development in infancy are associated with physical activity and sedentary time in childhood. PMID:29145249
Sánchez, Guillermo F López; Williams, Genevieve; Aggio, Daniel; Vicinanza, Domenico; Stubbs, Brendon; Kerr, Catherine; Johnstone, James; Roberts, Justin; Smith, Lee
2017-11-01
One important determinant of childhood physical activity and sedentary behavior may be that of motor development in infancy. The present analyses aimed to investigate whether gross and fine motor delays in infants were associated with objective and self-reported activity in childhood. Data were from the UK Millennium Cohort Study, a prospective cohort study, involving UK children born on or around the millennium (September 2000 and January 2002). When children were 9 months old, parents reported children's fine and gross motor-coordination, and at 7 years, sports club attendance and daily TV viewing time. Children's physical activity was measured using accelerometers at 7 years. Adjusted regression models were used to examine associations between delayed motor development and accelerometry measured moderate-to-vigorous physical activity and sedentary behavior, and parent-reported sport club attendance and TV viewing time. In this sample (n = 13,021), gross motor delay in infancy was associated with less time in moderate-to-vigorous physical activity (B -5.0 95% confidence interval [CI] -6.8, -3.2) and more time sedentary (B 13.5 95% CI 9.3, 17.8) in childhood. Gross and fine motor delays during infancy were associated with a reduced risk of having high attendance at sports clubs in childhood (both relative risk [RR] 0.7, 95% CI 0.6, 0.9). Fine motor delays, but not gross delays, were also associated with an increased risk of having high TV viewing time (RR 1.3 95% CI 1.0, 1.6). Findings from the present study suggest that delays in motor development in infancy are associated with physical activity and sedentary time in childhood.
Delayed benefit of naps on motor learning in preschool children.
Desrochers, Phillip C; Kurdziel, Laura B F; Spencer, Rebecca M C
2016-03-01
Sleep benefits memory consolidation across a variety of domains in young adults. However, while declarative memories benefit from sleep in young children, such improvements are not consistently seen for procedural skill learning. Here we examined whether performance improvements on a procedural task, although not immediately observed, are evident after a longer delay when augmented by overnight sleep (24 h after learning). We trained 47 children, aged 33-71 months, on a serial reaction time task and, using a within-subject design, evaluated performance at three time points: immediately after learning, after a daytime nap (nap condition) or equivalent wake opportunity (wake condition), and 24 h after learning. Consistent with previous studies, performance improvements following the nap did not differ from performance improvements following an equivalent interval spent awake. However, significant benefits of the nap were found when performance was assessed 24 h after learning. This research demonstrates that motor skill learning is benefited by sleep, but that this benefit is only evident after an extended period of time.
The influence of focused-attention meditation states on the cognitive control of sequence learning.
Chan, Russell W; Immink, Maarten A; Lushington, Kurt
2017-10-01
Cognitive control processes influence how motor sequence information is utilised and represented. Since cognitive control processes are shared amongst goal-oriented tasks, motor sequence learning and performance might be influenced by preceding cognitive tasks such as focused-attention meditation (FAM). Prior to a serial reaction time task (SRTT), participants completed either a single-session of FAM, a single-session of FAM followed by delay (FAM+) or no meditation (CONTROL). Relative to CONTROL, FAM benefitted performance in early, random-ordered blocks. However, across subsequent sequence learning blocks, FAM+ supported the highest levels of performance improvement resulting in superior performance at the end of the SRTT. Performance following FAM+ demonstrated greater reliance on embedded sequence structures than FAM. These findings illustrate that increased top-down control immediately after FAM biases the implementation of stimulus-based planning. Introduction of a delay following FAM relaxes top-down control allowing for implementation of response-based planning resulting in sequence learning benefits. Copyright © 2017 Elsevier Inc. All rights reserved.
McKenna, Erin; Bray, Laurence C Jayet; Zhou, Weiwei; Joiner, Wilsaan M
2017-10-01
Delays in transmitting and processing sensory information require correctly associating delayed feedback to issued motor commands for accurate error compensation. The flexibility of this alignment between motor signals and feedback has been demonstrated for movement recalibration to visual manipulations, but the alignment dependence for adapting movement dynamics is largely unknown. Here we examined the effect of visual feedback manipulations on force-field adaptation. Three subject groups used a manipulandum while experiencing a lag in the corresponding cursor motion (0, 75, or 150 ms). When the offset was applied at the start of the session (continuous condition), adaptation was not significantly different between groups. However, these similarities may be due to acclimation to the offset before motor adaptation. We tested additional subjects who experienced the same delays concurrent with the introduction of the perturbation (abrupt condition). In this case adaptation was statistically indistinguishable from the continuous condition, indicating that acclimation to feedback delay was not a factor. In addition, end-point errors were not significantly different across the delay or onset conditions, but end-point correction (e.g., deceleration duration) was influenced by the temporal offset. As an additional control, we tested a group of subjects who performed without visual feedback and found comparable movement adaptation results. These results suggest that visual feedback manipulation (absence or temporal misalignment) does not affect adaptation to novel dynamics, independent of both acclimation and perceptual awareness. These findings could have implications for modeling how the motor system adjusts to errors despite concurrent delays in sensory feedback information. NEW & NOTEWORTHY A temporal offset between movement and distorted visual feedback (e.g., visuomotor rotation) influences the subsequent motor recalibration, but the effects of this offset for altered movement dynamics are largely unknown. Here we examined the influence of 1 ) delayed and 2 ) removed visual feedback on the adaptation to novel movement dynamics. These results contribute to understanding of the control strategies that compensate for movement errors when there is a temporal separation between motion state and sensory information. Copyright © 2017 the American Physiological Society.
NASA Astrophysics Data System (ADS)
Zhu, Xiaoyuan; Zhang, Hui; Fang, Zongde
2015-12-01
This paper presents a robust speed synchronization controller design for an integrated motor-transmission powertrain system in which the driving motor and multi-gearbox are directly coupled. As the controller area network (CAN) is commonly used in the vehicle powertrain system, the possible network-induced random delays in both feedback and forward channel are considered and modeled by using two Markov chains in the controller design process. For the application perspective, the control law adopted here is a generalized proportional-integral (PI) control. By employing the system-augmentation technique, a delay-free stochastic closed-loop system is obtained and the generalized PI controller design problem is converted to a static output feedback (SOF) controller design problem. Since there are external disturbances involved in the closed-loop system, the energy-to-peak performance is considered to guarantee the robustness of the controller. And the controlled output is chosen as the speed synchronization error. To further improve the transient response of the closed-loop system, the pole placement is also employed in the energy-to-peak performance based speed synchronization control. The mode-dependent control gains are obtained by using an iterative linear matrix inequality (LMI) algorithm. Simulation results show the effectiveness of the proposed control approach.
Comparison of motor competence levels on two assessments across childhood.
Ré, Alessandro H N; Logan, Samuel W; Cattuzzo, Maria T; Henrique, Rafael S; Tudela, Mariana C; Stodden, David F
2018-01-01
This study compared performances and motor delay classifications for the Test of Gross Motor Development-2nd edition (TGMD-2) and the Körperkoordinationstest Für Kinder (KTK) in a sample of 424 healthy children (47% girls) between 5 and 10 years of age. Low-to-moderate correlations (r range = 0.34-0.52) were found between assessments across age. In general, both boys and girls demonstrated higher raw scores across age groups. However, percentile scores indicated younger children outperformed older children, denoting a normative percentile-based decrease in motor competence (MC) in the older age groups. In total, the TGMD-2 and KTK classified 39.4% and 18.4% children, respectively, as demonstrating very low MC (percentile ≤5). In conclusion, the TGMD-2 classified significantly more children with motor delays than the KTK and the differences between children's motor skill classification levels by these assessments became greater as the age groups increased. Therefore, the TGMD-2 may demonstrate more susceptibility to sociocultural influences and be more influenced by cumulative motor experiences throughout childhood. Low-to-moderate correlations between assessments also suggest the TGMD-2 and KTK may measure different aspects of MC. As such, it may be important to use multiple assessments to comprehensively assess motor competence.
Assessing Motor Skills in Multiply Handicapped Children.
ERIC Educational Resources Information Center
DuBose, Rebecca F.
Examined are the effects of motor skill development and impairment on the infant's and young child's overall functioning, and suggested are guidelines for assessing motor skills in multiply handicapped children. It is explained that motor delays and deficits limit a child's learning during critical developmental periods. Examples of delayed motor…
ERIC Educational Resources Information Center
Zhang, Jiabei; And Others
1995-01-01
A constant time delay (CTD) procedure was used to teach four adolescents with severe/profound intellectual disabilities to perform bowling, throwing, and putting. Results indicated that the adolescents could be effectively taught gross motor lifetime sport skills with the CTD procedure and that verbal description plus physical assistance could be…
Shuggi, Isabelle M; Oh, Hyuk; Shewokis, Patricia A; Gentili, Rodolphe J
2017-09-30
The assessment of mental workload can inform attentional resource allocation during task performance that is essential for understanding the underlying principles of human cognitive-motor behavior. While many studies have focused on mental workload in relation to human performance, a modest body of work has examined it in a motor practice/learning context without considering individual variability. Thus, this work aimed to examine mental workload by employing the NASA TLX as well as the changes in motor performance resulting from the practice of a novel reaching task. Two groups of participants practiced a reaching task at a high and low nominal difficulty during which a group-level analysis assessed the mental workload, motor performance and motor improvement dynamics. A secondary cluster analysis was also conducted to identify specific individual patterns of cognitive-motor responses. Overall, both group- and cluster-level analyses revealed that: (i) all participants improved their performance throughout motor practice, and (ii) an increase in mental workload was associated with a reduction of the quality of motor performance along with a slower rate of motor improvement. The results are discussed in the context of the optimal challenge point framework and in particular it is proposed that under the experimental conditions employed here, functional task difficulty: (i) would possibly depend on an individuals' information processing capabilities, and (ii) could be indexed by the level of mental workload which, when excessively heightened can decrease the quality of performance and more generally result in delayed motor improvements. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
El Ters, Nathalie M; Vesoulis, Zachary A; Liao, Steve M; Smyser, Christopher D; Mathur, Amit M
2018-04-01
Term equivalent age (TEA) brain MRI identifies preterm infants at risk for adverse neurodevelopmental outcomes. But some infants may experience neurodevelopmental impairments even in the absence of neuroimaging abnormalities. Evaluate the association of TEA amplitude-integrated EEG (aEEG) measures with neurodevelopmental outcomes at 24-36 months corrected age. We performed aEEG recordings and brain MRI at TEA (mean post-menstrual age of 39 (±2) weeks in a cohort of 60 preterm infants born at a mean gestational age of 26 (±2) weeks. Forty-four infants underwent Bayley Scales of Infant Development, 3rd Edition (BSID-III) testing at 24-36 months corrected age. Developmental delay was defined by a score greater than one standard deviation below the mean (<85) in any domain. An ROC curve was constructed and a value of SEF 90 < 9.2, yielded the highest sensitivity and specificity for moderate/severe brain injury on MRI. The association between aEEG measures and neurodevelopmental outcomes was assessed using odds ratio, then adjusted for confounding variables using logistic regression. Infants with developmental delay in any domain had significantly lower values of SEF 90 . Absent cyclicity was more prevalent in infants with cognitive and motor delay. Both left and right SEF 90 < 9.2 were associated with motor delay (OR left: 4.7(1.2-18.3), p = 0.02, OR right: 7.9 (1.8-34.5), p < 0.01). Left SEF 90 and right SEF 90 were associated with cognitive delay and language delay respectively. Absent cyclicity was associated with motor and cognitive delay (OR for motor delay: 5.8 (1.3-25.1), p = 0.01; OR for cognitive delay: 16.8 (3.1-91.8), p < 0.01). These associations remained significant after correcting for social risk index score and confounding variables. aEEG may be used at TEA as a new tool for risk stratification of infants at higher risk of poor neurodevelopmental outcomes. Therefore, a larger study is needed to validate these results in premature infants at low and high risk of brain injury. Copyright © 2018. Published by Elsevier B.V.
Breastfeeding and developmental delay: findings from the millennium cohort study.
Sacker, Amanda; Quigley, Maria A; Kelly, Yvonne J
2006-09-01
We investigated whether the duration and exclusivity of breastfeeding affects the likelihood of gross and fine motor delay in infants and examined the effect of factors that might explain any observed differences. The study sample included all term singleton infants who weighed > 2500 g at birth and were not placed in a special care infant unit and whose mothers participated in the first survey of the Millennium Cohort Study. Missing data reduced the sample to 14660 (94%) with complete data. Almost half (47%) of the infants initially were exclusively breastfed, but only 3.5% of these infants were still being fed exclusively on breast milk after 4 months of age, and 34% of infants were not breastfed at all; 9% of the infants were identified with delays in gross motor coordination and 6% with fine motor coordination delays at age 9 months. The proportion of infants who mastered the developmental milestones increased with duration and exclusivity of breastfeeding. Infants who had never been breastfed were 50% more likely to have gross motor coordination delays than infants who had been breastfed exclusively for at least 4 months (10.7% vs 7.3%). Any breast milk also was positively related to development: infants who had never been breastfed were 30% more likely to have gross motor delays than infants who were given some breast milk for up to 2 months (10.7% vs 8.4%). The odds ratios for gross motor delay were not attenuated after adjustment for biological, socioeconomic, or psychosocial factors. Infants who were never breastfed had at least a 40% greater likelihood of fine motor delay than infants who were given breast milk for a prolonged period. Our results suggest that the protective effect of breastfeeding on the attainment of gross motor milestones is attributable to some component(s) of breast milk or feature of breastfeeding and is not simply a product of advantaged social position, education, or parenting style, because control for these factors did not explain any of the observed association. In contrast, the association between breastfeeding and fine motor delay was explained by biological, socioeconomic, and psychosocial factors.
Kalberg, Wendy O; Provost, Beth; Tollison, Sean J; Tabachnick, Barbara G; Robinson, Luther K; Eugene Hoyme, H; Trujillo, Phyllis M; Buckley, David; Aragon, Alfredo S; May, Philip A
2006-12-01
Researchers are increasingly considering the importance of motor functioning of children with fetal alcohol spectrum disorder (FASD). The purpose of this study was to assess the motor development of young children with fetal alcohol syndrome (FAS) to determine the presence and degree of delay in their motor skills and to compare their motor development with that of matched children without FAS. The motor development of 14 children ages 20 to 68 months identified with FAS was assessed using the Vineland Adaptive Behavior Scales (VABS). In addition, 2 comparison groups were utilized. Eleven of the children with FAS were matched for chronological age, gender, ethnicity, and communication age to: (1) 11 children with prenatal alcohol exposure who did not have FAS and (2) 11 matched children without any reported prenatal alcohol exposure. The motor scores on the VABS were compared among the 3 groups. Most of the young children with FAS in this study showed clinically important delays in their motor development as measured on the VABS Motor Domain, and their fine motor skills were significantly more delayed than their gross motor skills. In the group comparisons, the young children with FAS had significantly lower Motor Domain standard (MotorSS) scores than the children not exposed to alcohol prenatally. They also had significantly lower Fine Motor Developmental Quotients than the children in both the other groups. No significant group differences were found in gross motor scores. For MotorSS scores and Fine Motor Developmental Quotients, the means and standard errors indicated a continuum in the scores from FAS to prenatal alcohol exposure to nonexposure. These findings strongly suggest that all young children with FAS should receive complete developmental evaluations that include assessment of their motor functioning, to identify problem areas and provide access to developmental intervention programs that target deficit areas such as fine motor skills. Fine motor delays in children with FAS may be related to specific neurobehavioral deficits that affect fine motor skills. The findings support the concept of an FASD continuum in some areas of motor development.
Chen, Chien-Min; Chen, Chia-Ling; Hou, Jia-Woei; Hsu, Hung-Chih; Chung, Chia-Ying; Chou, Shih-Wei; Lin, Chu-Hsu; Chen, Kai-Hua
2010-01-01
A majority of the children with Prader-Willi syndrome (PWS) have global developmental delay and mental delay. The aim of this study was to investigate the developmental profiles and mental assessments among preschool children with PWS. Ten children with PWS between the ages of 15 months to 6 years, and 11 children with typical development were enrolled. Developmental profiles in terms of their developmental quotient (DQ) for the eight domains of the Chinese Children Developmental Inventory (CCDI) and mental assessments in terms of intelligence quotient (IQ) and developmental index (DI) were carried out for all children. The DQs of all eight domains, including gross motor, fine motor, expressive language, concept comprehension, situation comprehension, self help, personal- social and general development, in the PWS group were lower than the DQs of the children from the typical development group (p < 0.01). Children with PWS had better DQs in the fine motor domain than in the gross motor domain and in the receptive language domain than in the expressive language domain. Furthermore, their verbal IQ were better than their performance IQ and their mental DI was better than their psychomotor DI. These findings suggest that the children with PWS show an uneven global developmental delay together with an uneven mental delay. The results of this study should allow clinicians to better understand the developmental functioning of children with PWS and this will help with the planning of treatment strategies.
Williams, Camille K.; Tremblay, Luc; Carnahan, Heather
2016-01-01
Researchers in the domain of haptic training are now entering the long-standing debate regarding whether or not it is best to learn a skill by experiencing errors. Haptic training paradigms provide fertile ground for exploring how various theories about feedback, errors and physical guidance intersect during motor learning. Our objective was to determine how error minimizing, error augmenting and no haptic feedback while learning a self-paced curve-tracing task impact performance on delayed (1 day) retention and transfer tests, which indicate learning. We assessed performance using movement time and tracing error to calculate a measure of overall performance – the speed accuracy cost function. Our results showed that despite exhibiting the worst performance during skill acquisition, the error augmentation group had significantly better accuracy (but not overall performance) than the error minimization group on delayed retention and transfer tests. The control group’s performance fell between that of the two experimental groups but was not significantly different from either on the delayed retention test. We propose that the nature of the task (requiring online feedback to guide performance) coupled with the error augmentation group’s frequent off-target experience and rich experience of error-correction promoted information processing related to error-detection and error-correction that are essential for motor learning. PMID:28082937
Association between sleep position and early motor development.
Majnemer, Annette; Barr, Ronald G
2006-11-01
To compare motor performance in infants sleeping in prone versus supine positions. Healthy 4-month-olds (supine: n = 71, prone: n = 12) and 6-month olds (supine: n = 50, prone: n = 22) were evaluated with the Alberta Infant Motor Scale (AIMS) and Peabody Developmental Motor Scale (PDMS), and parents completed a positioning diary. Infants were reassessed at 15 months. At 4 months, motor scores were lower in the supine group and were less likely to achieve prone extension (P < .05). At 6 months, there were wide discrepancies on the AIMS (supine: 44.5 +/- 21.6, prone: 60.0 +/- 18.8, P = .005) and the gross motor PDMS (supine: 85.7 +/- 7.6, prone: 90.2 +/- 9.5, P = .03). Motor delays were documented in 22% of babies sleeping supine. Prone sleep-positioned infants were more likely to sit and roll. Daily exposure to awake prone positioning was predictive of motor performance in infants sleeping supine. At 15 months, sleep position continued to predict motor performance. Infants sleeping supine may exhibit early motor lags, associated with less time in prone while awake. This has implications for accurate interpretation of assessment of infants at risk and prevention of inappropriate referrals. Rate of infant motor development appears influenced by extrinsic factors such as positioning practices.
An atypical case of SCN9A mutation presenting with global motor delay and a severe pain disorder.
Meijer, Inge Anita; Vanasse, Michel; Nizard, Sonia; Robitaille, Yves; Rossignol, Elsa
2014-01-01
Erythromelalgia due to heterozygous gain-of-function SCN9A mutations usually presents as a pure sensory-autonomic disorder characterized by recurrent episodes of burning pain and redness of the extremities. We describe a patient with an unusual phenotypic presentation of gross motor delay, childhood-onset erythromelalgia, extreme visceral pain episodes, hypesthesia, and self-mutilation. The investigation of the patient's motor delay included various biochemical analyses, a comparative genomic hybridization array (CGH), electromyogram (EMG), and muscle biopsy. Once erythromelalgia was suspected clinically, the SCN9A gene was sequenced. The EMG, CGH, and biochemical tests were negative. The biopsy showed an axonal neuropathy and neurogenic atrophy. Sequencing of SCN9A revealed a heterozygous missense mutation in exon 7; p.I234T. This is a case of global motor delay and erythromelalgia associated with SCN9A. The motor delay may be attributed to the extreme pain episodes or to a developmental perturbation of proprioceptive inputs. Copyright © 2013 Wiley Periodicals, Inc.
Kanazawa, H; Kawai, M; Niwa, F; Hasegawa, T; Iwanaga, K; Ohata, K; Tamaki, A; Heike, T
2014-06-01
Physical growth in neurologically healthy preterm infants affects motor development. This study investigated the separate relationships between muscle and fat in infancy and later motor development and physical growth. Muscle thickness and subcutaneous fat thickness of the anterior thigh were measured using ultrasound images obtained from neurologically healthy preterm infants at birth, 3, 6, 12 and 18 months' corrected age. We also obtained the Pediatric Evaluation of Disability Inventory and Alberta Infant Motor Scale scores at 18 months' corrected age to assess motor ability and motor delay. Thirty preterm infants completed the study protocol. There was a significant positive correlation between motor ability and increments in subcutaneous fat thickness during the first 3 and 6 months' corrected age (r = 0.48 and 0.40, p < 0.05, respectively), but not between motor ability and muscle thickness growth in any of the periods. A secondary, logistic regression analysis showed that increments in subcutaneous fat thickness during the first 3 months were a protective factor for motor delay. Subcutaneous fat accumulation in early infancy is more strongly associated with motor development and delay than muscle growth. ©2014 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
Gupta, Arti; Kalaivani, Mani; Gupta, Sanjeev Kumar; Rai, Sanjay K.; Nongkynrih, Baridalyne
2016-01-01
Background: Nearly 14% of children worldwide do not reach their developmental potential in early childhood. The early identification of delays in achieving milestones is critical. The World Health Organization (WHO) has developed normal age ranges for the achievement of motor milestones by healthy children. This study aimed to assess the gross motor developmental achievements and associated factors among children in rural India. Materials and Methods: A cross-sectional study was conducted with rural children in North India. A pretested questionnaire was used to collect the data. The median age at the time of the highest observed milestone was calculated and compared with the WHO windows of achievement. Results: Overall, 221 children aged 4–18 months were included in the study. The median age of motor development exhibited a 0.1–2.1-month delay compared to the WHO median age of motor milestone achievement. The prevalence of the gross motor milestone achievements for each of the six milestones ranged from 91.6% to 98.4%. Developmental delay was observed in 6.3% of the children. After adjusting for different variables, children with birth order of second or more were found to be significantly associated with the timely achievement of gross motor milestones. Conclusion: The apparently healthy children of the rural area of Haryana achieved gross motor milestones with some delay with respect to the WHO windows of achievement. Although the median value of this delay was low, awareness campaigns should be implemented to promote timely identification of children with development delays. PMID:27843845
Gross motor development is delayed following early cardiac surgery.
Long, Suzanne H; Harris, Susan R; Eldridge, Beverley J; Galea, Mary P
2012-10-01
To describe the gross motor development of infants who had undergone cardiac surgery in the neonatal or early infant period. Gross motor performance was assessed when infants were 4, 8, 12, and 16 months of age with the Alberta Infant Motor Scale. This scale is a discriminative gross motor outcome measure that may be used to assess infants from birth to independent walking. Infants were videotaped during the assessment and were later evaluated by a senior paediatric physiotherapist who was blinded to each infant's medical history, including previous clinical assessments. Demographic, diagnostic, surgical, critical care, and medical variables were considered with respect to gross motor outcomes. A total of 50 infants who underwent elective or emergency cardiac surgery at less than or up to 8 weeks of age, between July 2006 and January 2008, were recruited to this study and were assessed at 4 months of age. Approximately, 92%, 84%, and 94% of study participants returned for assessment at 8, 12, and 16 months of age, respectively. Study participants had delayed gross motor development across all study time points; 62% of study participants did not have typical gross motor development during the first year of life. Hospital length of stay was associated with gross motor outcome across infancy. Active gross motor surveillance of all infants undergoing early cardiac surgery is recommended. Further studies of larger congenital heart disease samples are required, as are longitudinal studies that determine the significance of these findings at school age and beyond.
Fine motor skill predicts expressive language in infant siblings of children with autism.
LeBarton, Eve Sauer; Iverson, Jana M
2013-11-01
We investigated whether fine motor and expressive language skills are related in the later-born siblings of children with autism (heightened-risk, HR infants) who are at increased risk for language delays. We observed 34 HR infants longitudinally from 12 to 36 months. We used parent report and standardized observation measures to assess fine motor skill from 12 to 24 months in HR infants (Study 1) and its relation to later expressive vocabulary at 36 months in HR infants (Study 2). In Study 1, we also included 25 infants without a family history of autism to serve as a normative comparison group for a parent-report fine motor measure. We found that HR infants exhibited fine motor delays between 12 and 24 months and expressive vocabulary delays at 36 months. Further, fine motor skill significantly predicted expressive language at 36 months. Fine motor and expressive language skills are related early in development in HR infants, who, as a group, exhibit risk for delays in both. Our findings highlight the importance of considering fine motor skill in children at risk for language impairments and may have implications for early identification of expressive language difficulties. © 2013 John Wiley & Sons Ltd.
Gabbard, Carl; Lee, Jihye; Caçola, Priscila
2013-01-01
This study examined the role of visual working memory when transforming visual representations to motor representations in the context of motor imagery. Participants viewed randomized number sequences of three, four, and five digits, and then reproduced the sequence by finger tapping using motor imagery or actually executing the movements; movement duration was recorded. One group viewed the stimulus for three seconds and responded immediately, while the second group had a three-second view followed by a three-second blank screen delay before responding. As expected, delay group times were longer with each condition and digit load. Whereas correlations between imagined and executed actions (temporal congruency) were significant in a positive direction for both groups, interestingly, the delay group's values were significantly stronger. That outcome prompts speculation that delay influenced the congruency between motor representation and actual execution.
Two memories for geographical slant: separation and interdependence of action and awareness
NASA Technical Reports Server (NTRS)
Creem, S. H.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)
1998-01-01
The present study extended previous findings of geographical slant perception, in which verbal judgments of the incline of hills were greatly overestimated but motoric (haptic) adjustments were much more accurate. In judging slant from memory following a brief or extended time delay, subjects' verbal judgments were greater than those given when viewing hills. Motoric estimates differed depending on the length of the delay and place of response. With a short delay, motoric adjustments made in the proximity of the hill did not differ from those evoked during perception. When given a longer delay or when taken away from the hill, subjects' motoric responses increased along with the increase in verbal reports. These results suggest two different memorial influences on action. With a short delay at the hill, memory for visual guidance is separate from the explicit memory informing the conscious response. With short or long delays away from the hill, short-term visual guidance memory no longer persists, and both motor and verbal responses are driven by an explicit representation. These results support recent research involving visual guidance from memory, where actions become influenced by conscious awareness, and provide evidence for communication between the "what" and "how" visual processing systems.
Comparison of Motor Inhibition in Variants of the Instructed-Delay Choice Reaction Time Task
Quoilin, Caroline; Lambert, Julien; Jacob, Benvenuto; Klein, Pierre-Alexandre; Duque, Julie
2016-01-01
Using instructed-delay choice reaction time (RT) paradigms, many previous studies have shown that the motor system is transiently inhibited during response preparation: motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) over the primary motor cortex are typically suppressed during the delay period. This effect has been observed in both selected and non-selected effectors, although MEP changes in selected effectors have been more inconsistent across task versions. Here, we compared changes in MEP amplitudes in three different variants of an instructed-delay choice RT task. All variants required participants to choose between left and right index finger movements but the responses were either provided “in the air” (Variant 1), on a regular keyboard (Variant 2), or on a response device designed to control from premature responses (Variant 3). The task variants also differed according to the visual layout (more concrete in Variant 3) and depending on whether participants received a feedback of their performance (absent in Variant 1). Behavior was globally comparable between the three variants of the task although the propensity to respond prematurely was highest in Variant 2 and lowest in Variant 3. MEPs elicited in a non-selected hand were similarly suppressed in the three variants of the task. However, significant differences emerged when considering MEPs elicited in the selected hand: these MEPs were suppressed in Variants 1 and 3 whereas they were often facilitated in Variant 2, especially in the right dominant hand. In conclusion, MEPs elicited in selected muscles seem to be more sensitive to small variations to the task design than those recorded in non-selected effectors, probably because they reflect a complex combination of inhibitory and facilitatory influences on the motor output system. Finally, the use of a standard keyboard seems to be particularly inappropriate because it encourages participants to respond promptly with no means to control for premature responses, probably increasing the relative amount of facilitatory influences at the time motor inhibition is probed. PMID:27579905
Comparison of Motor Inhibition in Variants of the Instructed-Delay Choice Reaction Time Task.
Quoilin, Caroline; Lambert, Julien; Jacob, Benvenuto; Klein, Pierre-Alexandre; Duque, Julie
2016-01-01
Using instructed-delay choice reaction time (RT) paradigms, many previous studies have shown that the motor system is transiently inhibited during response preparation: motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) over the primary motor cortex are typically suppressed during the delay period. This effect has been observed in both selected and non-selected effectors, although MEP changes in selected effectors have been more inconsistent across task versions. Here, we compared changes in MEP amplitudes in three different variants of an instructed-delay choice RT task. All variants required participants to choose between left and right index finger movements but the responses were either provided "in the air" (Variant 1), on a regular keyboard (Variant 2), or on a response device designed to control from premature responses (Variant 3). The task variants also differed according to the visual layout (more concrete in Variant 3) and depending on whether participants received a feedback of their performance (absent in Variant 1). Behavior was globally comparable between the three variants of the task although the propensity to respond prematurely was highest in Variant 2 and lowest in Variant 3. MEPs elicited in a non-selected hand were similarly suppressed in the three variants of the task. However, significant differences emerged when considering MEPs elicited in the selected hand: these MEPs were suppressed in Variants 1 and 3 whereas they were often facilitated in Variant 2, especially in the right dominant hand. In conclusion, MEPs elicited in selected muscles seem to be more sensitive to small variations to the task design than those recorded in non-selected effectors, probably because they reflect a complex combination of inhibitory and facilitatory influences on the motor output system. Finally, the use of a standard keyboard seems to be particularly inappropriate because it encourages participants to respond promptly with no means to control for premature responses, probably increasing the relative amount of facilitatory influences at the time motor inhibition is probed.
Effectiveness of Motor Skill Intervention Varies Based on Implementation Strategy
ERIC Educational Resources Information Center
Brian, Ali; Taunton, Sally
2018-01-01
Background: Young children from disadvantaged settings often present delays in fundamental motor skills (FMS). Young children can improve their FMS delays through developmentally appropriate motor skill intervention programming. However, it is unclear which pedagogical strategy is most effective for novice and expert instructors. Purpose: The…
Child obesity and motor development delays
USDA-ARS?s Scientific Manuscript database
Childhood obesity has been associated with delays in motor development using weight-for-length z-scores and subcutaneous fat. To study this further, percent body fat and motor development were assessed in children ages 3 to 24 months. Included were 455 children with a total of 1882 longitudinal obse...
Cochlear implant outcomes in children with motor developmental delay.
Amirsalari, Susan; Yousefi, Jaleh; Radfar, Shokofeh; Saburi, Amin; Tavallaie, Seyed Abbas; Hosseini, Mohammad Javad; Noohi, Sima; Hassan Alifard, Mahdieh; Ajallouyean, Mohammad
2012-01-01
Multiple handicapped children and children with syndromes and conditions resulting additional disabilities such as cerebral palsy, global developmental delay and autistic spectrum disorder, are now not routinely precluded from receiving a cochlear implant. The primary focus of this study was to determine the effect of cochlear implants on the speech perception and intelligibility of deaf children with and without motor development delay. In a cohort study, we compared cochlear implant outcomes in two groups of deaf children with or without motor developmental delay (MDD). Among 262 children with pre-lingual profound hearing loss, 28 (10%) had a motor delay based on Gross Motor Function Classification (GMFC). Children with severe motor delays (classification scale levels 4 and 5) and cognitive delays were excluded. All children completed the Categories of Auditory Perception Scales (CAP) and Speech Intelligibility Rating (SIR) prior to surgery and 24 months after the device was activated. The mean age for the study population was 4.09 ± 1.86 years. In all 262 patients the mean CAP score after surgery (5.38 ± 0.043) had a marked difference in comparison with the mean score before surgery (0.482 ± 0.018) (P=0.001). The mean CAP score after surgery for MDD children was 5.03, and was 5.77 for normal motor development children (NMD). The mean SIR score after surgery for MDD children was 2.53, and was 2.66 for NMD children. The final results of CAP and SIR did not have significant difference between NMD children versus MDD children (P>0.05). Regarding to the result, we concluded that children with hearing loss and concomitant MDD as an additional disabilities can benefit from cochlear implantation similar to those of NMD. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Factors affecting outcome of triceps motor branch transfer for isolated axillary nerve injury.
Lee, Joo-Yup; Kircher, Michelle F; Spinner, Robert J; Bishop, Allen T; Shin, Alexander Y
2012-11-01
Triceps motor branch transfer has been used in upper brachial plexus injury and is potentially effective for isolated axillary nerve injury in lieu of sural nerve grafting. We evaluated the functional outcome of this procedure and determined factors that influenced the outcome. A retrospective chart review was performed of 21 patients (mean age, 38 y; range, 16-79 y) who underwent triceps motor branch transfer for the treatment of isolated axillary nerve injury. Deltoid muscle strength was evaluated using the modified British Medical Research Council grading at the last follow-up (mean, 21 mo; range, 12-41 mo). The following variables were analyzed to determine whether they affected the outcome of the nerve transfer: the age and sex of the patient, delay from injury to surgery, body mass index (BMI), severity of trauma, and presence of rotator cuff lesions. The Spearman correlation coefficient and multiple linear regression were performed for statistical analysis. The average Medical Research Council grade of deltoid muscle strength was 3.5 ± 1.1. Deltoid muscle strength correlated with the age of the patient, delay from injury to surgery, and BMI of the patient. Five patients failed to achieve more than M3 grade. Among them, 4 patients were older than 50 years and 1 was treated 14 months after injury. In the multiple linear regression model, the delay from injury to surgery, age of the patient, and BMI of the patient were the important factors, in that order, that affected the outcome of this procedure. Isolated axillary nerve injury can be treated successfully with triceps motor branch transfer. However, outstanding outcomes are not universal, with one fourth failing to achieve M3 strength. The outcome of this procedure is affected by the delay from injury to surgery and the age and BMI of the patient. Copyright © 2012 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Combrisson, Etienne; Perrone-Bertolotti, Marcela; Soto, Juan Lp; Alamian, Golnoush; Kahane, Philippe; Lachaux, Jean-Philippe; Guillot, Aymeric; Jerbi, Karim
2017-02-15
Goal-directed motor behavior is associated with changes in patterns of rhythmic neuronal activity across widely distributed brain areas. In particular, movement initiation and execution are mediated by patterns of synchronization and desynchronization that occur concurrently across distinct frequency bands and across multiple motor cortical areas. To date, motor-related local oscillatory modulations have been predominantly examined by quantifying increases or suppressions in spectral power. However, beyond signal power, spectral properties such as phase and phase-amplitude coupling (PAC) have also been shown to carry information with regards to the oscillatory dynamics underlying motor processes. Yet, the distinct functional roles of phase, amplitude and PAC across the planning and execution of goal-directed motor behavior remain largely elusive. Here, we address this question with unprecedented resolution thanks to multi-site intracerebral EEG recordings in human subjects while they performed a delayed motor task. To compare the roles of phase, amplitude and PAC, we monitored intracranial brain signals from 748 sites across six medically intractable epilepsy patients at movement execution, and during the delay period where motor intention is present but execution is withheld. In particular, we used a machine-learning framework to identify the key contributions of various neuronal responses. We found a high degree of overlap between brain network patterns observed during planning and those present during execution. Prominent amplitude increases in the delta (2-4Hz) and high gamma (60-200Hz) bands were observed during both planning and execution. In contrast, motor alpha (8-13Hz) and beta (13-30Hz) power were suppressed during execution, but enhanced during the delay period. Interestingly, single-trial classification revealed that low-frequency phase information, rather than spectral power change, was the most discriminant feature in dissociating action from intention. Additionally, despite providing weaker decoding, PAC features led to statistically significant classification of motor states, particularly in anterior cingulate cortex and premotor brain areas. These results advance our understanding of the distinct and partly overlapping involvement of phase, amplitude and the coupling between them, in the neuronal mechanisms underlying motor intentions and executions. Copyright © 2016 Elsevier Inc. All rights reserved.
Demonstration of the B4C/NaIO4/PTFE Delay in the U.S. Army Hand-Held Signal
2015-05-20
Figure 1. Partial cross section diagram of a hand-held signal showing the rocket motor , delay element, expelling charge, and pyrotechnic payload as...The black powder-based rocket motor , consisting of propellant pellets (G) encased in a cardboard tube, contains an axial core hole to accommodate the...that ignites the rocket motor . Simultaneously, the delay element is ignited and burns for an interval (preferably 5−6 s) before it ignites the black
Delayed response and biosonar perception explain movement coordination in trawling bats.
Giuggioli, Luca; McKetterick, Thomas J; Holderied, Marc
2015-03-01
Animal coordinated movement interactions are commonly explained by assuming unspecified social forces of attraction, repulsion and alignment with parameters drawn from observed movement data. Here we propose and test a biologically realistic and quantifiable biosonar movement interaction mechanism for echolocating bats based on spatial perceptual bias, i.e. actual sound field, a reaction delay, and observed motor constraints in speed and acceleration. We found that foraging pairs of bats flying over a water surface swapped leader-follower roles and performed chases or coordinated manoeuvres by copying the heading a nearby individual has had up to 500 ms earlier. Our proposed mechanism based on the interplay between sensory-motor constraints and delayed alignment was able to recreate the observed spatial actor-reactor patterns. Remarkably, when we varied model parameters (response delay, hearing threshold and echolocation directionality) beyond those observed in nature, the spatio-temporal interaction patterns created by the model only recreated the observed interactions, i.e. chases, and best matched the observed spatial patterns for just those response delays, hearing thresholds and echolocation directionalities found to be used by bats. This supports the validity of our sensory ecology approach of movement coordination, where interacting bats localise each other by active echolocation rather than eavesdropping.
Tamoxifen and vitamin E treatments delay symptoms in the mouse model of Niemann-Pick C.
Bascuñan-Castillo, Eric C; Erickson, Robert P; Howison, Christy M; Hunter, Robert J; Heidenreich, Randall H; Hicks, Chad; Trouard, Theodore P; Gillies, Robert J
2004-01-01
Niemann-Pick C disease (NPC) is an irreversible neurodegenerative disorder without current treatment. It is the result of deficient intracellular cholesterol movement. We investigated the effects of tamoxifen and vitamin E (D-alpha tocopherol) treatment on patterns of weight loss and motor function in the mouse model of Niemann-Pick C disease (Npc1-/- mice). Tamoxifen has multiple metabolic effects, including reducing oxidative damage, while vitamin E primarily has this property. Npc1-/- mice were identified and treatment was initiated at an approximate age of 21 days. Tamoxifen suspended in peanut oil was administered via intraperitoneal injection (weekly, at a dose calculated to deliver 0.023 microg/g/day). Vitamin E (25 IU) was administered orally via gavage once a week. Weight loss and Rota-Rod performance were analyzed by using Kaplan-Meyer survival curves. Tamoxifen treatment by itself significantly delayed weight loss (an endpoint of neurodegeneration) in male and female mice compared to untreated controls. Motor function was evaluated by performance on a Rota-Rod. Tamoxifen maintained Rota-Rod performance for about an extra week. Vitamin E treatment significantly delayed weight loss in females only. Rota-Rod performance was maintained slightly longer in mice treated with vitamin E. Simultaneous use of both treatments did not delay weight loss longer than tamoxifen-only treatment but had a greater effect than either treatment alone on Rota-Rod performance and demonstrated a significant positive effect on the early "learning curve" portion of the Rota-Rod evaluations. We found significant but relatively small improvements in rate of disease progression by treating Npc1-/- mice with tamoxifen and/or vitamin E. Some sex differences in response and an early improvement in Rota-Rod performance suggest areas for further study.
ERIC Educational Resources Information Center
Hoffman, Lorri J.
This practicum report describes the design and implementation of an oral motor program to increase the verbal communication skills of seven pre-kindergarten children with developmental delays, including hypotonia in oral motor development with moderate to severe articulation difficulties. Collaborative planning by the pre-kindergarten special…
Bourret, S.C.; Swansen, J.E.
1982-07-02
A stepping motor is microprocessor controlled by digital circuitry which monitors the output of a shaft encoder adjustably secured to the stepping motor and generates a subsequent stepping pulse only after the preceding step has occurred and a fixed delay has expired. The fixed delay is variable on a real-time basis to provide for smooth and controlled deceleration.
Impaired Decisional Impulsivity in Pathological Videogamers
Irvine, Michael A.; Worbe, Yulia; Bolton, Sorcha; Harrison, Neil A.; Bullmore, Edward T.; Voon, Valerie
2013-01-01
Background Pathological gaming is an emerging and poorly understood problem. Impulsivity is commonly impaired in disorders of behavioural and substance addiction, hence we sought to systematically investigate the different subtypes of decisional and motor impulsivity in a well-defined pathological gaming cohort. Methods Fifty-two pathological gaming subjects and age-, gender- and IQ-matched healthy volunteers were tested on decisional impulsivity (Information Sampling Task testing reflection impulsivity and delay discounting questionnaire testing impulsive choice), and motor impulsivity (Stop Signal Task testing motor response inhibition, and the premature responding task). We used stringent diagnostic criteria highlighting functional impairment. Results In the Information Sampling Task, pathological gaming participants sampled less evidence prior to making a decision and scored fewer points compared with healthy volunteers. Gaming severity was also negatively correlated with evidence gathered and positively correlated with sampling error and points acquired. In the delay discounting task, pathological gamers made more impulsive choices, preferring smaller immediate over larger delayed rewards. Pathological gamers made more premature responses related to comorbid nicotine use. Greater number of hours played also correlated with a Motivational Index. Greater frequency of role playing games was associated with impaired motor response inhibition and strategy games with faster Go reaction time. Conclusions We show that pathological gaming is associated with impaired decisional impulsivity with negative consequences in task performance. Decisional impulsivity may be a potential target in therapeutic management. PMID:24146789
The Decay of Motor Memories Is Independent of Context Change Detection
Brennan, Andrew E.; Smith, Maurice A.
2015-01-01
When the error signals that guide human motor learning are withheld following training, recently-learned motor memories systematically regress toward untrained performance. It has previously been hypothesized that this regression results from an intrinsic volatility in these memories, resulting in an inevitable decay in the absence of ongoing error signals. However, a recently-proposed alternative posits that even recently-acquired motor memories are intrinsically stable, decaying only if a change in context is detected. This new theory, the context-dependent decay hypothesis, makes two key predictions: (1) after error signals are withheld, decay onset should be systematically delayed until the context change is detected; and (2) manipulations that impair detection by masking context changes should result in prolonged delays in decay onset and reduced decay amplitude at any given time. Here we examine the decay of motor adaptation following the learning of novel environmental dynamics in order to carefully evaluate this hypothesis. To account for potential issues in previous work that supported the context-dependent decay hypothesis, we measured decay using a balanced and baseline-referenced experimental design that allowed for direct comparisons between analogous masked and unmasked context changes. Using both an unbiased variant of the previous decay onset analysis and a novel highly-powered group-level version of this analysis, we found no evidence for systematically delayed decay onset nor for the masked context change affecting decay amplitude or its onset time. We further show how previous estimates of decay onset latency can be substantially biased in the presence of noise, and even more so with correlated noise, explaining the discrepancy between the previous results and our findings. Our results suggest that the decay of motor memories is an intrinsic feature of error-based learning that does not depend on context change detection. PMID:26111244
Friel, KM; Chakrabarty, S; H-C, Kuo; Martin, JH
2012-01-01
This study investigated requirements for restoring motor function after corticospinal (CS) system damage during early postnatal development. Activity-dependent competition between the CS tracts (CST) of the two hemispheres is imperative for normal development. Blocking primary motor cortex (M1) activity unilaterally during a critical period (postnatal weeks-PW-5–7) produces permanent contralateral motor skill impairments, loss of M1 motor map, aberrant CS terminations, and decreases in CST presynaptic sites and spinal cholinergic interneuron numbers. To repair these motor systems impairments and restore function, we manipulated motor experience in three groups of cats after this CST injury produced by inactivation. One group wore a jacket restraining the limb ipsilateral to inactivation, forcing use of the contralateral, impaired, limb, for the month following M1 inactivation (PW8–13; “Restraint Alone”). A second group wore the restraint during PW8–13, and was also trained for 1 h/day in a reaching task with the contralateral forelimb (“Early Training”). To test the efficacy of intervention during adolescence, a third group wore the restraint and received reach training during PW20–24 (“Delayed Training”). Early training restored CST connections and the M1 motor map; increased cholinergic spinal interneurons numbers on the contralateral, relative to ipsilateral, side; and abrogated limb control impairments. Delayed training restored CST connectivity and the M1 motor map, but not contralateral spinal cholinergic cell counts or motor performance. Restraint alone only restored CST connectivity. Our findings stress the need to reestablish the integrated functions of the CS system at multiple hierarchical levels in restoring skilled motor function after developmental injury. PMID:22764234
Motor outcome at the age of one after perinatal hypoxic-ischemic encephalopathy.
van Schie, P E M; Becher, J G; Dallmeijer, A J; Barkhof, F; Weissenbruch, M M; Vermeulen, R J
2007-04-01
The aim of this report is to describe the motor outcome in one year-old children who were born at full-term with perinatal hypoxic-ischemic encephalopathy (HIE). Relationships between motor ability tests and neurological examination at one year, and between these tests and neonatal brain magnetic resonance imaging (MRI) were investigated. 32 surviving children, born full-term with perinatal HIE, are included in this report. All children had a neonatal MRI. At one year, motor ability was assessed with the Alberta Infant Motor Scale and the Bayley Scales of Infant Development (2nd version). Neurological examinations included the neurological optimality score (NOS). At one year, 14 children (44%) had normal motor ability, nine (28%) had mildly delayed, and nine had significantly delayed motor ability. The NOS ranged from 14.6-27 points. All children with normal motor ability had (near) optimal NOS, however, not all children with high NOS had normal motor ability. Eleven children (34%) had normal neonatal MRI; at one year, six of them had normal, and five had mildly delayed motor ability. Eight children with normal motor ability showed abnormalities on neonatal MRI. Neonatal brain MRI does not predict motor outcome at one year. Motor ability tests and neurological examinations should be used in a complementary manner to describe outcome after HIE.
Furlan, Julio C; Craven, B Catharine; Massicotte, Eric M; Fehlings, Michael G
2016-04-01
This cost-utility analysis was undertaken to compare early (≤24 hours since trauma) versus delayed surgical decompression of spinal cord to determine which approach is more cost effective in the management of patients with acute traumatic cervical spinal cord injury (SCI). This study includes the patients enrolled into the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS) and admitted at Toronto Western Hospital. Cases were grouped into patients with motor complete SCI and individuals with motor incomplete SCI. A cost-utility analysis was performed for each group of patients by the use of data for the first 6 months after SCI. The perspective of a public health care insurer was adopted. Costs were estimated in 2014 U.S. dollars. Utilities were estimated from the STASCIS. The baseline analysis indicates early spinal decompression is more cost-effective approach compared with the delayed spinal decompression. When we considered the delayed spinal decompression as the baseline strategy, the incremental cost-effectiveness ratio analysis revealed a saving of US$ 58,368,024.12 per quality-adjusted life years gained for patients with complete SCI and a saving of US$ 536,217.33 per quality-adjusted life years gained in patients with incomplete SCI for the early spinal decompression. The probabilistic analysis confirmed the early-decompression strategy as more cost effective than the delayed-decompression approach, even though there is no clearly dominant strategy. The results of this economic analysis suggests that early decompression of spinal cord was more cost effective than delayed surgical decompression in the management of patients with motor complete and incomplete SCI, even though no strategy was clearly dominant. Copyright © 2016 Elsevier Inc. All rights reserved.
Impact of Compensatory Intervention in 6- to 18-Month-Old Babies at Risk of Motor Development Delays
ERIC Educational Resources Information Center
Müller, Alessandra Bombarda; Saccani, Raquel; Valentini, Nadia Cristina
2017-01-01
Purpose: Research indicates that delayed motor development observed in the first years of life can be prevented through compensatory intervention programmes that provide proper care during this critical period of child development. Method: This study analysed the impact of a 12-week compensatory motor intervention programme on 32 babies with…
Divergent Development of Gross Motor Skills in Children Who Are Blind or Sighted
ERIC Educational Resources Information Center
Brambring, Michael
2006-01-01
This empirical study compared the average ages at which four congenitally blind children acquired 29 gross motor skills with age norms for sighted children. The results indicated distinct developmental delays in the acquisition of motor skills and a high degree of variability in developmental delays within and across the six subdomains that were…
Functional performance of school children diagnosed with developmental delay up to two years of age
Dornelas, Lílian de Fátima; Magalhães, Lívia de Castro
2016-01-01
Abstract Objective: To compare the functional performance of students diagnosed with developmental delay (DD) up to two years of age with peers exhibiting typical development. Methods: Cross-sectional study with functional performance assessment of children diagnosed with DD up to two years of age compared to those with typical development at seven to eight years of age. Each group consisted of 45 children, selected by non-random sampling, evaluated for motor skills, quality of home environment, school participation and performance. ANOVA and the Binomial test for two proportions were used to assess differences between groups. Results: The group with DD had lower motor skills when compared to the typical group. While 66.7% of children in the typical group showed adequate school participation, receiving aid in cognitive and behavioral tasks similar to that offered to other children at the same level, only 22.2% of children with DD showed the same performance. Although 53.3% of the children with DD achieved an academic performance expected for the school level, there were limitations in some activities. Only two indicators of family environment, diversity and activities with parents at home, showed statistically significant difference between the groups, with advantage being shown for the typical group. Conclusions: Children with DD have persistent difficulties at school age, with motor deficit, restrictions in school activity performance and low participation in the school context, as well as significantly lower functional performance when compared to children without DD. A systematic monitoring of this population is recommended to identify needs and minimize future problems. PMID:26553573
Gajewska, Ewa; Sobieska, Magdalena
2015-05-01
The proposed assessment sheet aims to show in detail, which qualitative elements of motor performance are performed correctly in the 2nd month of life by children who in the 9th month reached the erect posture. Similar analysis was performed for the qualitative assessment in the 6th month. The prospective investigation of motor development involved a group of 109 children (40 girls and 69 boys). The study was based on the previously described quantity and quality assessment sheet of motor performance, validated for the 2nd and 6th month. Final investigation took place in the 9th month of life and was based on a neurological assessment. It could be shown that a completely correct assessment at the age of 2 months precludes future severe motor development disorders, especially cerebral palsy, although it does not rule out a slight delay. Prematurity and the analyzed risk factors, particularly IVH, impair the motor performance. The absence of axial symmetry, the shoulders protraction and improper position of the pelvis are the most important alarming features at the 2nd month. Distal elements observed in the prone position at the 6th month show a good prognosis for the motor performance in the 9th month. Any abnormalities, mainly related to the body axis and symmetry observed at 2 months of age should encourage one to put a child under observation. Copyright © 2015 Elsevier Inc. All rights reserved.
Development in children with achondroplasia: a prospective clinical cohort study.
Ireland, Penelope J; Donaghey, Samantha; McGill, James; Zankl, Andreas; Ware, Robert S; Pacey, Verity; Ault, Jenny; Savarirayan, Ravi; Sillence, David; Thompson, Elizabeth; Townshend, Sharron; Johnston, Leanne M
2012-06-01
Achondroplasia is characterized by delays in the development of communication and motor skills. While previously reported developmental profiles exist across gross motor, fine motor, feeding, and communication skills, there has been no prospective study of development across multiple areas simultaneously. This Australasian population-based study utilized a prospective questionnaire to quantify developmental data for skills in children born from 2000 to 2009. Forty-eight families from Australia and New Zealand were asked to report every 3 months on their child's attainment of 41 milestones. Results include reference to previously available prospective information. Information from questionnaires was used to develop an achondroplasia-specific developmental recording form. The 25th, 50th, 75th, and 90th centiles were plotted to offer clear guidelines for development across gross motor, fine motor, feeding, and communication skills in children with achondroplasia. Consistent with results from previous research, children with achondroplasia are delayed in development of gross motor and ambulatory skills. Young children with achondroplasia demonstrate a number of unique movement strategies that appear compensatory for the biomechanical changes. While delays were seen in development of later communication items, there were fewer delays seen across development of early communication, fine motor, and feeding skills. © The Authors. Developmental Medicine & Child Neurology © 2012 Mac Keith Press.
de Albuquerque, Plínio Luna; Lemos, Andrea; Guerra, Miriam Queiroz de Farias; Eickmann, Sophie Helena
2015-02-01
To assess, through a systematic review, the ability of Alberta Infant Motor Scale (AIMS) to diagnose delayed motor development in preterm infants. Systematic searches identified five studies meeting inclusion criteria. These studies were evaluated in terms of: participants' characteristics, main results and risk of bias. The risk of bias was assessed with the Quality Assessment of Diagnostic Accuracy Studies--second edition (QUADAS-2). All five studies included a high risk of bias in at least one of the assessed fields. The most frequent biases included were presented in patient selection and lost follow up. All studies used the Pearson correlation coefficient to assess the diagnostic capability of the Alberta Infant Motor Scale. None of the assessed studies used psychometric measures to analyze the data. Given the evidence, the research supporting the ability of Alberta Infant Motor Scale to diagnose delayed motor development in preterm infants presents limitations. Further studies are suggested in order to avoid the above-mentioned biases to assess the Alberta Infant Motor Scale accuracy in preterm babies.
Goard, Michael J; Pho, Gerald N; Woodson, Jonathan; Sur, Mriganka
2016-08-04
Mapping specific sensory features to future motor actions is a crucial capability of mammalian nervous systems. We investigated the role of visual (V1), posterior parietal (PPC), and frontal motor (fMC) cortices for sensorimotor mapping in mice during performance of a memory-guided visual discrimination task. Large-scale calcium imaging revealed that V1, PPC, and fMC neurons exhibited heterogeneous responses spanning all task epochs (stimulus, delay, response). Population analyses demonstrated unique encoding of stimulus identity and behavioral choice information across regions, with V1 encoding stimulus, fMC encoding choice even early in the trial, and PPC multiplexing the two variables. Optogenetic inhibition during behavior revealed that all regions were necessary during the stimulus epoch, but only fMC was required during the delay and response epochs. Stimulus identity can thus be rapidly transformed into behavioral choice, requiring V1, PPC, and fMC during the transformation period, but only fMC for maintaining the choice in memory prior to execution.
Gabbard, Carl; Bobbio, Tatiana
2011-03-01
Several research studies indicate that children with developmental coordination disorder (DCD) show delays with an array of perceptual-motor skills. One of the explanations, based on limited research, is that these children have problems generating and/or monitoring a mental (action) representation of intended actions, termed the "internal modeling deficit" (IMD) hypothesis. According to the hypothesis, children with DCD have significant limitations in their ability to accurately generate and utilize internal models of motor planning and control. The focus of this review is on one of the methods used to examine action representation-motor imagery, which theorists argue provides a window into the process of action representation (e.g., Jeannerod, 2001 . Neural simulation of action: A unifying mechanism for motor cognition. Neuroimage, 14, 103-109.). Included in the review are performance studies of typically developing and DCD children, and possible brain structures involved.
Dealing with delays does not transfer across sensorimotor tasks.
de la Malla, Cristina; López-Moliner, Joan; Brenner, Eli
2014-10-09
It is known that people can learn to deal with delays between their actions and the consequences of such actions. We wondered whether they do so by adjusting their anticipations about the sensory consequences of their actions or whether they simply learn to move in certain ways when performing specific tasks. To find out, we examined details of how people learn to intercept a moving target with a cursor that follows the hand with a delay and examined the transfer of learning between this task and various other tasks that require temporal precision. Subjects readily learned to intercept the moving target with the delayed cursor. The compensation for the delay generalized across modifications of the task, so subjects did not simply learn to move in a certain way in specific circumstances. The compensation did not generalize to completely different timing tasks, so subjects did not generally expect the consequences of their motor commands to be delayed. We conclude that people specifically learn to control the delayed visual consequences of their actions to perform certain tasks. © 2014 ARVO.
ERIC Educational Resources Information Center
Ross, Gail; Demaria, Rebecca; Yap, Vivien
2018-01-01
Purpose: The aim of this study is to determine if there is a specific association between motor delays and receptive and expressive language function, respectively, in prematurely born children. Method: Retrospective data review: 126 premature children = 1,250-g birthweight from English-speaking families were evaluated on motor development…
Thompson, Joseph J; McColeman, C M; Stepanova, Ekaterina R; Blair, Mark R
2017-04-01
Many theories of complex cognitive-motor skill learning are built on the notion that basic cognitive processes group actions into easy-to-perform sequences. The present work examines predictions derived from laboratory-based studies of motor chunking and motor preparation using data collected from the real-time strategy video game StarCraft 2. We examined 996,163 action sequences in the telemetry data of 3,317 players across seven levels of skill. As predicted, the latency to the first action (thought to be the beginning of a chunked sequence) is delayed relative to the other actions in the group. Other predictions, inspired by the memory drum theory of Henry and Rogers, received only weak support. Copyright © 2017 Cognitive Science Society, Inc.
Social Threat and Motor Resonance: When a Menacing Outgroup Delays Motor Response
Capellini, Roberta; Sacchi, Simona; Ricciardelli, Paola; Actis-Grosso, Rossana
2016-01-01
Motor resonance (MR) involves the activation of matching motor representations while observing others’ actions. Recent research has shown that such a phenomenon is likely to be influenced by higher order variables such as social factors (e.g., ethnic group membership). The present study investigates whether and how the perception of a social threat elicited by an outgroup member and by contextual cues can modulate motor responses while an individual observes others’ movements. In an experimental study based on an action observation paradigm, we asked participants to provide answers through computer mouse movements (MouseTracker). We manipulated the agents’ group membership (ingroup vs. outgroup) and the social valence of the objects present in a context (neutral vs. threatening) to elicit social menace through contextual cues. Response times and computer mouse trajectories were recorded. The results show a higher level of MR (i.e., participants started to respond earlier and were faster at responding) when observing an action performed by the ingroup members rather than by the outgroup members only when threatening objects are present in a given context. Participants seem to resonate better with their ingroup; conversely, the outgroup member movements tend to delay motor responses. Therefore, we extend prior research going beyond the general ingroup bias effect on MR and showing that the interaction between membership and contextual cues is likely to elicit threat-related stereotypes. Practical implications of these findings are discussed. PMID:27847491
BPM Motors in Residential Gas Furnaces: What are theSavings?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lutz, James; Franco, Victor; Lekov, Alex
2006-05-12
Residential gas furnaces contain blowers to distribute warm air. Currently, furnace blowers use either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity consumption is important for understanding electricity consumption of furnaces. The electricity consumption of blower motors depends on the static pressure across the blower. This paper examines both types of blower motors in non-condensing non-weatherized gas furnaces at a range of static pressures. Fan performance data is based on manufacturer product literature and laboratory tests. We use field-measured staticmore » pressure in ducts to get typical system curves to calculate how furnaces would operate in the field. We contrast this with the electricity consumption of a furnace blower operating under the DOE test procedure and manufacturer rated conditions. Furnace electricity use is also affected by operating modes that happen at the beginning and end of each furnace firing cycle. These operating modes are the pre-purge and post-purge by the draft inducer, the on-delay and off-delay of the blower, and the hot surface ignitor operation. To accurately calculate this effect, we use the number of firing cycles in a typical California house in the Central Valley of California. Cooling hours are not considered in the DOE test procedure. We also account for furnace blower use by the air conditioner and stand-by power. Overall BPM motors outperform PSC motors, but the total electricity savings are significantly less than projected using the DOE test procedure conditions. The performance gains depend on the static pressure of the household ducts, which are typically much higher than in the test procedures.« less
Nobusako, Satoshi; Sakai, Ayami; Tsujimoto, Taeko; Shuto, Takashi; Nishi, Yuki; Asano, Daiki; Furukawa, Emi; Zama, Takuro; Osumi, Michihiro; Shimada, Sotaro; Morioka, Shu; Nakai, Akio
2018-01-01
The neurological basis of developmental coordination disorder (DCD) is thought to be deficits in the internal model and mirror-neuron system (MNS) in the parietal lobe and cerebellum. However, it is not clear if the visuo-motor temporal integration in the internal model and automatic-imitation function in the MNS differs between children with DCD and those with typical development (TD). The current study aimed to investigate these differences. Using the manual dexterity test of the Movement Assessment Battery for Children (second edition), the participants were either assigned to the probable DCD (pDCD) group or TD group. The former was comprised of 29 children with clumsy manual dexterity, while the latter consisted of 42 children with normal manual dexterity. Visuo-motor temporal integration ability and automatic-imitation function were measured using the delayed visual feedback detection task and motor interference task, respectively. Further, the current study investigated whether autism-spectrum disorder (ASD) traits, attention-deficit hyperactivity disorder (ADHD) traits, and depressive symptoms differed among the two groups, since these symptoms are frequent comorbidities of DCD. In addition, correlation and multiple regression analyses were performed to extract factors affecting clumsy manual dexterity. In the results, the delay-detection threshold (DDT) and steepness of the delay-detection probability curve, which indicated visuo-motor temporal integration ability, were significantly prolonged and decreased, respectively, in children with pDCD. The interference effect, which indicated automatic-imitation function, was also significantly reduced in this group. These results highlighted that children with clumsy manual dexterity have deficits in visuo-motor temporal integration and automatic-imitation function. There was a significant correlation between manual dexterity, and measures of visuo-motor temporal integration, and ASD traits and ADHD traits and ASD. Multiple regression analysis revealed that the DDT, which indicated visuo-motor temporal integration, was the greatest predictor of poor manual dexterity. The current results supported and provided further evidence for the internal model deficit hypothesis. Further, they suggested a neurorehabilitation technique that improved visuo-motor temporal integration could be therapeutically effective for children with DCD.
Nobusako, Satoshi; Sakai, Ayami; Tsujimoto, Taeko; Shuto, Takashi; Nishi, Yuki; Asano, Daiki; Furukawa, Emi; Zama, Takuro; Osumi, Michihiro; Shimada, Sotaro; Morioka, Shu; Nakai, Akio
2018-01-01
The neurological basis of developmental coordination disorder (DCD) is thought to be deficits in the internal model and mirror-neuron system (MNS) in the parietal lobe and cerebellum. However, it is not clear if the visuo-motor temporal integration in the internal model and automatic-imitation function in the MNS differs between children with DCD and those with typical development (TD). The current study aimed to investigate these differences. Using the manual dexterity test of the Movement Assessment Battery for Children (second edition), the participants were either assigned to the probable DCD (pDCD) group or TD group. The former was comprised of 29 children with clumsy manual dexterity, while the latter consisted of 42 children with normal manual dexterity. Visuo-motor temporal integration ability and automatic-imitation function were measured using the delayed visual feedback detection task and motor interference task, respectively. Further, the current study investigated whether autism-spectrum disorder (ASD) traits, attention-deficit hyperactivity disorder (ADHD) traits, and depressive symptoms differed among the two groups, since these symptoms are frequent comorbidities of DCD. In addition, correlation and multiple regression analyses were performed to extract factors affecting clumsy manual dexterity. In the results, the delay-detection threshold (DDT) and steepness of the delay-detection probability curve, which indicated visuo-motor temporal integration ability, were significantly prolonged and decreased, respectively, in children with pDCD. The interference effect, which indicated automatic-imitation function, was also significantly reduced in this group. These results highlighted that children with clumsy manual dexterity have deficits in visuo-motor temporal integration and automatic-imitation function. There was a significant correlation between manual dexterity, and measures of visuo-motor temporal integration, and ASD traits and ADHD traits and ASD. Multiple regression analysis revealed that the DDT, which indicated visuo-motor temporal integration, was the greatest predictor of poor manual dexterity. The current results supported and provided further evidence for the internal model deficit hypothesis. Further, they suggested a neurorehabilitation technique that improved visuo-motor temporal integration could be therapeutically effective for children with DCD. PMID:29556211
Influence of supine sleep positioning on early motor milestone acquisition.
Majnemer, Annette; Barr, Ronald G
2005-06-01
This study aimed to determine whether supine sleep-positioned infants have delayed motor skills at age 4 and 6 months, and if delays are associated with decreased exposure to prone position. One 4 and one 6-month-old sample of healthy infants born at term were recruited. Motor assessments included the Peabody Developmental Motor Scale (PDMS) and Alberta Infant Motor Scale (AIMS). Parents completed an infant behavior diary for 3 consecutive days. Seventy-one 4-month-old infants were assessed (38 males; mean age 4.4 mo, standard deviation [SD] 0.2). Mean motor scores were close to normative standards (AIMS 47.7, SD 19.6; PDMS gross motor quotient [GMQ] 96.3, SD 6.5; PDMS fine motor quotient [FMQ] 99.2, SD 4.8). No infant scored below cut-off values used to identify motor delay. Milestones less likely to be achieved included extended arm support in prone, hands to feet in supine, and sitting with arm support. Exposure to 'tummy time' while awake was correlated with AIMS scores (r = 0.38, p < 0.01). F i fty 6-month-old infants were assessed (21 males; mean age 6.4 mo, SD 0.4). Mean scores were shifted down for all scales, and as much as 1 SD for PDMS (AIMS 44.5, SD 21.6; PDMS GMQ 85.7, SD 7.6; PDMS FMQ 88.9, SD 9.0). Only 22% of 6-month-olds could sit without arm support versus 50% expected in a normative sample. Remarkably, 22% of our sample exhibited gross motor delays (quotient <78). Tummy time (awake) was significantly associated with the AIMS (r = 0.64) and PDMS GMQ (r = 0.55) and FMQ (r = 0.33) quotients, even after adjusting for confounders. Typically developing infants who were sleep-positioned in supine had delayed motor development by age 6 months, and this was significantly associated with limited exposure to awake prone positioning. This has important implications for interpreting motor assessments of infants at risk and for preventing inappropriate referrals.
Taverna, Livia; Tremolada, Marta; Bonichini, Sabrina; Tosetto, Barbara; Basso, Giuseppe; Messina, Chiara; Pillon, Marta
2017-01-01
CNS-directed therapies for the treatment of leukemia can adversely affect the acquisition of new skills, such as reading/writing and math. Two years after the end of treatments, children show gross and fine motor skill delays that may persist even when patients are considered healed. The goal of the present study was to assess motor skills difficulties in pre-school children with leukemia one year after treatment. Particular attention has been paid to those patients who had undergone Hematopoietic Stem Cell Transplantation (HSCT) and to the relationship between motor delays and age bands. Participants were 60 children (median age of 5; inter quartile range: 3.07-5.76), including 31 females and 29 males, 91.7% of them were affected by acute lymphoblastic leukemia (ALL), and 8.3% by acute myeloid leukemia (AML). Five children had undergone HCST. Parents were interviewed by Vineland Adaptive Behavior Scales (VABS) on children's motor skills and filled in the Italian Temperament Questionnaire (QUIT). VABS's total scores were converted into equivalent mental age scores (EMA). A score difference of at least three months between current age and equivalent mental age was considered a developmental delay. Non-parametric analyses were run to understand if HSCT treatment and a specific age band influence children's motor skills. Significant delays were found in global motor skills (56.7%) as well as in fine and gross motor domains. Mann Whitney U tests showed that children with HSCT were reported to have lower gross motor mean ranks (U = 62; p = 0.004; Mean rank = 15.40) than peers without HSCT (Mean rank = 31.87) and lower mean rank values on motor temperament scale (U = 9; p = 0.003; HSCT Mean rank = 4.75 versus no HSCT Mean rank = 27.81). Kruskal Wallis' tests identified the high risk treatment showing that HSCT experience negatively impacted the motor skills and temperamental motor activity of pre-school children one year after the diagnosis of leukemia.
Bonichini, Sabrina; Tosetto, Barbara; Basso, Giuseppe; Messina, Chiara; Pillon, Marta
2017-01-01
CNS-directed therapies for the treatment of leukemia can adversely affect the acquisition of new skills, such as reading/writing and math. Two years after the end of treatments, children show gross and fine motor skill delays that may persist even when patients are considered healed. The goal of the present study was to assess motor skills difficulties in pre-school children with leukemia one year after treatment. Particular attention has been paid to those patients who had undergone Hematopoietic Stem Cell Transplantation (HSCT) and to the relationship between motor delays and age bands. Participants were 60 children (median age of 5; inter quartile range: 3.07–5.76), including 31 females and 29 males, 91.7% of them were affected by acute lymphoblastic leukemia (ALL), and 8.3% by acute myeloid leukemia (AML). Five children had undergone HCST. Parents were interviewed by Vineland Adaptive Behavior Scales (VABS) on children’s motor skills and filled in the Italian Temperament Questionnaire (QUIT). VABS’s total scores were converted into equivalent mental age scores (EMA). A score difference of at least three months between current age and equivalent mental age was considered a developmental delay. Non-parametric analyses were run to understand if HSCT treatment and a specific age band influence children’s motor skills. Significant delays were found in global motor skills (56.7%) as well as in fine and gross motor domains. Mann Whitney U tests showed that children with HSCT were reported to have lower gross motor mean ranks (U = 62; p = 0.004; Mean rank = 15.40) than peers without HSCT (Mean rank = 31.87) and lower mean rank values on motor temperament scale (U = 9; p = 0.003; HSCT Mean rank = 4.75 versus no HSCT Mean rank = 27.81). Kruskal Wallis’ tests identified the high risk treatment showing that HSCT experience negatively impacted the motor skills and temperamental motor activity of pre-school children one year after the diagnosis of leukemia. PMID:29065156
Delayed Response and Biosonar Perception Explain Movement Coordination in Trawling Bats
Giuggioli, Luca; McKetterick, Thomas J.; Holderied, Marc
2015-01-01
Animal coordinated movement interactions are commonly explained by assuming unspecified social forces of attraction, repulsion and alignment with parameters drawn from observed movement data. Here we propose and test a biologically realistic and quantifiable biosonar movement interaction mechanism for echolocating bats based on spatial perceptual bias, i.e. actual sound field, a reaction delay, and observed motor constraints in speed and acceleration. We found that foraging pairs of bats flying over a water surface swapped leader-follower roles and performed chases or coordinated manoeuvres by copying the heading a nearby individual has had up to 500 ms earlier. Our proposed mechanism based on the interplay between sensory-motor constraints and delayed alignment was able to recreate the observed spatial actor-reactor patterns. Remarkably, when we varied model parameters (response delay, hearing threshold and echolocation directionality) beyond those observed in nature, the spatio-temporal interaction patterns created by the model only recreated the observed interactions, i.e. chases, and best matched the observed spatial patterns for just those response delays, hearing thresholds and echolocation directionalities found to be used by bats. This supports the validity of our sensory ecology approach of movement coordination, where interacting bats localise each other by active echolocation rather than eavesdropping. PMID:25811627
Urban sprawl and delayed ambulance arrival in the U.S.
Trowbridge, Matthew J; Gurka, Matthew J; O'Connor, Robert E
2009-11-01
Minimizing emergency medical service (EMS) response time is a central objective of prehospital care, yet the potential influence of built environment features such as urban sprawl on EMS system performance is often not considered. This study measures the association between urban sprawl and EMS response time to test the hypothesis that features of sprawling development increase the probability of delayed ambulance arrival. In 2008, EMS response times for 43,424 motor-vehicle crashes were obtained from the Fatal Analysis Reporting System, a national census of crashes involving > or =1 fatality. Sprawl at each crash location was measured using a continuous county-level index previously developed by Ewing et al. The association between sprawl and the probability of a delayed ambulance arrival (> or =8 minutes) was then measured using generalized linear mixed modeling to account for correlation among crashes from the same county. Urban sprawl is significantly associated with increased EMS response time and a higher probability of delayed ambulance arrival (p=0.03). This probability increases quadratically as the severity of sprawl increases while controlling for nighttime crash occurrence, road conditions, and presence of construction. For example, in sprawling counties (e.g., Fayette County GA), the probability of a delayed ambulance arrival for daytime crashes in dry conditions without construction was 69% (95% CI=66%, 72%) compared with 31% (95% CI=28%, 35%) in counties with prominent smart-growth characteristics (e.g., Delaware County PA). Urban sprawl is significantly associated with increased EMS response time and a higher probability of delayed ambulance arrival following motor-vehicle crashes in the U.S. The results of this study suggest that promotion of community design and development that follows smart-growth principles and regulates urban sprawl may improve EMS performance and reliability.
Effectiveness of equine therapy in children with psychomotor impairment.
Del Rosario-Montejo, O; Molina-Rueda, F; Muñoz-Lasa, S; Alguacil-Diego, I M
2015-09-01
Equine therapy, an intervention method that has been practiced for decades around the world, is used to treat patients susceptible to psychomotor delays. We examine development of gross motor function compared to other psychomotor skills in patients undergoing this therapy, and analyse how this improvement affects general health status and quality of life. The study includes 11 children with delayed psychomotor development (aged 8.82 ± 3.89; 6 boys, 5 girls). The main study variables were gross motor function (GMFM-88) and perceived quality of life (Pediatric Quality of Life Inventory, PedsQL). Three measurements were performed: before and after a period of inactivity, and once again 2 months after the second measurement, following completion of a sustained period of therapy. We observed significant differences in overall results on the GMFM-88 between the initial and final tests and between the intermediate and final tests. Regarding the PedsQL quality of life scale, no statistically significant results were recorded. Noticeable changes in motor control were recorded throughout the course of the intervention, which suggests that equine therapy may be appropriate treatment in cases of delayed psychomotor development. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.
Temporal recalibration of motor and visual potentials in lag adaptation in voluntary movement.
Cai, Chang; Ogawa, Kenji; Kochiyama, Takanori; Tanaka, Hirokazu; Imamizu, Hiroshi
2018-05-15
Adaptively recalibrating motor-sensory asynchrony is critical for animals to perceive self-produced action consequences. It is controversial whether motor- or sensory-related neural circuits recalibrate this asynchrony. By combining magnetoencephalography (MEG) and functional MRI (fMRI), we investigate the temporal changes in brain activities caused by repeated exposure to a 150-ms delay inserted between a button-press action and a subsequent flash. We found that readiness potentials significantly shift later in the motor system, especially in parietal regions (average: 219.9 ms), while visually evoked potentials significantly shift earlier in occipital regions (average: 49.7 ms) in the delay condition compared to the no-delay condition. Moreover, the shift in readiness potentials, but not in visually evoked potentials, was significantly correlated with the psychophysical measure of motor-sensory adaptation. These results suggest that although both motor and sensory processes contribute to the recalibration, the motor process plays the major role, given the magnitudes of shift and the correlation with the psychophysical measure. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Associations Between Gross Motor and Communicative Development in At-Risk Infants
LeBarton, Eve Sauer; Iverson, Jana M.
2016-01-01
Infants' advances in locomotion relate to advances in communicative development. However, little is known about these relations in infants at risk for delays in these domains and whether they may extend to earlier achievements in gross motor development in infancy. We examined whether advances in sitting and prone locomotion are related to communicative development in infants who have an older sibling with autism spectrum disorder (ASD) and are at risk for motor and communication delays (heightened-risk; HR). We conducted a longitudinal study with 37 HR infants who did not receive an ASD diagnosis at 36 months. Infants were observed monthly between the ages of 5 and 14 months. We assessed gross motor development using the Alberta Infant Motor Scales (AIMS) and recorded ages of onset of verbal and nonverbal communicative behaviors. Results indicated increased presence of early gross motor delay from 5 to 10 months. In addition, there were positive relations between sitting and gesture and babble onset and between prone development and gesture onset. Thus, links between gross motor development and communication extend to at-risk development and provide a starting point for future research on potential cascading consequences of motor advances on communication development. PMID:27314943
Dornelas, Lílian de Fátima; Magalhães, Lívia de Castro
2016-01-01
To compare the functional performance of students diagnosed with developmental delay (DD) up to two years of age with peers exhibiting typical development. Cross-sectional study with functional performance assessment of children diagnosed with DD up to two years of age compared to those with typical development at seven to eight years of age. Each group consisted of 45 children, selected by non-random sampling, evaluated for motor skills, quality of home environment, school participation and performance. ANOVA and the Binomial test for two proportions were used to assess differences between groups. The group with DD had lower motor skills when compared to the typical group. While 66.7% of children in the typical group showed adequate school participation, receiving aid in cognitive and behavioral tasks similar to that offered to other children at the same level, only 22.2% of children with DD showed the same performance. Although 53.3% of the children with DD achieved an academic performance expected for the school level, there were limitations in some activities. Only two indicators of family environment, diversity and activities with parents at home, showed statistically significant difference between the groups, with advantage being shown for the typical group. Children with DD have persistent difficulties at school age, with motor deficit, restrictions in school activity performance and low participation in the school context, as well as significantly lower functional performance when compared to children without DD. A systematic monitoring of this population is recommended to identify needs and minimize future problems. Copyright © 2015 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.
Dusing, Stacey C; Izzo, Theresa; Thacker, Leroy R; Galloway, James Cole
2014-10-01
Perception-action theory suggests a cyclical relationship between movement and perceptual information. In this case series, changes in postural complexity were used to quantify an infant's action and perception during the development of early motor behaviors. Three infants born preterm with periventricular white matter injury were included. Longitudinal changes in postural complexity (approximate entropy of the center of pressure), head control, reaching, and global development, measured with the Test of Infant Motor Performance and the Bayley Scales of Infant and Toddler Development, were assessed every 0.5 to 3 months during the first year of life. All 3 infants demonstrated altered postural complexity and developmental delays. However, the timing of the altered postural complexity and the type of delays varied among the infants. For infant 1, reduced postural complexity or limited action while learning to control her head in the midline position may have contributed to her motor delay. However, her ability to adapt her postural complexity eventually may have supported her ability to learn from her environment, as reflected in her relative cognitive strength. For infant 2, limited early postural complexity may have negatively affected his learning through action, resulting in cognitive delay. For infant 3, an increase in postural complexity above typical levels was associated with declining neurological status. Postural complexity is proposed as a measure of perception and action in the postural control system during the development of early behaviors. An optimal, intermediate level of postural complexity supports the use of a variety of postural control strategies and enhances the perception-action cycle. Either excessive or reduced postural complexity may contribute to developmental delays in infants born preterm with white matter injury. © 2014 American Physical Therapy Association.
Latent Class Analysis of Early Developmental Trajectory in Baby Siblings of Children with Autism
Landa, Rebecca J.; Gross, Alden L.; Stuart, Elizabeth A.; Bauman, Margaret
2012-01-01
Background Siblings of children with autism (sibs-A) are at increased genetic risk for autism spectrum disorders (ASD) and milder impairments. To elucidate diversity and contour of early developmental trajectories exhibited by sibs-A, regardless of diagnostic classification, latent class modeling was used. Methods Sibs-A (n=204) were assessed with the Mullen Scales of Early Learning from age 6–36 months. Mullen T scores served as dependent variables. Outcome classifications at age 36 months included: ASD (n=52); non-ASD social/communication delay (broader autism phenotype; BAP) (n=31); and unaffected (n=121). Child-specific patterns of performance were studied using latent class growth analysis. Latent class membership was then related to diagnostic outcome through estimation of within-class proportions of children assigned to each diagnostic classification. Results A 4-class model was favored. Class 1 represented accelerated development and consisted of 25.7% of the sample, primarily unaffected children. Class 2 (40.0% of the sample), was characterized by normative development with above-average nonverbal cognitive outcome. Class 3 (22.3% of the sample) was characterized by receptive language, and gross and fine motor delay. Class 4 (12.0% of the sample), was characterized by widespread delayed skill acquisition, reflected by declining trajectories. Children with an outcome diagnosis of ASD were spread across Classes 2, 3, and 4. Conclusions Results support a category of ASD that involves slowing in early non-social development. Receptive language and motor development is vulnerable to early delay in sibs-A with and without ASD outcomes. Non-ASD sibs-A are largely distributed across classes depicting average or accelerated development. Developmental trajectories of motor, language, and cognition appear independent of communication and social delays in non-ASD sibs-A. PMID:22574686
Efficacy of the Multidisciplinary Evaluation for Preschoolers with Suspected Developmental Delays.
ERIC Educational Resources Information Center
Klein, Evelyn R.; Stull, Judith
At the Temple University Center for Research in Human Development and Education, Pennsylvania's largest independent multidisciplinary evaluation program, approximately 300 preschool aged children are evaluated annually to determine developmental performance in the areas of cognition, speech-language, gross and fine motor skills, social-emotional…
Ng, Kwan; Gibson, Ellen M.; Hubbard, Robert; Yang, Juemin; Caffo, Brian; O’Brien, Richard; Krakauer, John W.; Zeiler, Steven R.
2016-01-01
Background and purpose Data from both humans and animal models suggest that most recovery from motor impairment occurs in a sensitive period that lasts only weeks after stroke and is mediated in part by an increased responsiveness to training. Here we used a mouse model of focal cortical stroke to test two hypotheses. First we investigated if responsiveness to training decreases over time after stroke. Second, we tested whether fluoxetine, which can influence synaptic plasticity and stroke recovery, can prolong the period over which large training-related gains can be elicited after stroke. Methods Mice were trained to perform a skilled prehension task to an asymptotic level of performance after which they underwent stroke induction in the caudal forelimb area (CFA). The mice were then retrained after a 1-day or 7-day delay with and without fluoxetine. Results Recovery of prehension after a CFA stroke was complete if training was initiated one day after stroke but incomplete if it was delayed by 7 days. In contrast, if fluoxetine was administered at 24 hours after stroke, then complete recovery of prehension was observed even with the 7-day training delay. Fluoxetine appeared to mediate its beneficial effect by reducing inhibitory interneuron expression in intact premotor cortex rather than through effects on infarct volume or cell death. Conclusions There is a gradient of diminishing responsiveness to motor training over the first week after stroke. Fluoxetine can overcome this gradient and maintain maximal levels of responsiveness to training even 7 days after stroke. PMID:26294676
Ng, Kwan L; Gibson, Ellen M; Hubbard, Robert; Yang, Juemin; Caffo, Brian; O'Brien, Richard J; Krakauer, John W; Zeiler, Steven R
2015-10-01
Data from both humans and animal models suggest that most recovery from motor impairment after stroke occurs in a sensitive period that lasts only weeks and is mediated, in part, by an increased responsiveness to training. Here, we used a mouse model of focal cortical stroke to test 2 hypotheses. First, we investigated whether responsiveness to training decreases over time after stroke. Second, we tested whether fluoxetine, which can influence synaptic plasticity and stroke recovery, can prolong the period over which large training-related gains can be elicited after stroke. Mice were trained to perform a skilled prehension task to an asymptotic level of performance after which they underwent stroke induction in the caudal forelimb area. The mice were then retrained after a 1- or 7-day delay with and without fluoxetine. Recovery of prehension after a caudal forelimb area stroke was complete if training was initiated 1 day after stroke but incomplete if it was delayed by 7 days. In contrast, if fluoxetine was administered at 24 hours after stroke, then complete recovery of prehension was observed even with the 7-day training delay. Fluoxetine seemed to mediate its beneficial effect by reducing inhibitory interneuron expression in intact premotor cortex rather than through effects on infarct volume or cell death. There is a gradient of diminishing responsiveness to motor training over the first week after stroke. Fluoxetine can overcome this gradient and maintain maximal levels of responsiveness to training even 7 days after stroke. © 2015 American Heart Association, Inc.
Acute Exercise Improves Motor Memory Consolidation in Preadolescent Children
Lundbye-Jensen, Jesper; Skriver, Kasper; Nielsen, Jens B.; Roig, Marc
2017-01-01
Objective: The ability to acquire new motor skills is essential both during childhood and later in life. Recent studies have demonstrated that an acute bout of exercise can improve motor memory consolidation in adults. The objective of the present study was to investigate whether acute exercise protocols following motor skill practice in a school setting can also improve long-term retention of motor memory in preadolescent children. Methods: Seventy-seven pre-adolescent children (age 10.5 ± 0.75 (SD)) participated in the study. Prior to the main experiment age, BMI, fitness status and general physical activity level was assessed in all children and they were then randomly allocated to three groups. All children practiced a visuomotor tracking task followed by 20 min of rest (CON), high intensity intermittent floorball (FLB) or running (RUN) with comparable exercise intensity and duration for exercise groups. Delayed retention of motor memory was assessed 1 h, 24 h and 7 days after motor skill acquisition. Results: During skill acquisition, motor performance improved significantly to the immediate retention test with no differences between groups. One hour following skill acquisition, motor performance decreased significantly for RUN. Twenty-four hours following skill acquisition there was a tendency towards improved performance for FLB but no significant effects. Seven days after motor practice however, both FLB and RUN performed better when compared to their immediate retention test indicating significant offline gains. This effect was not observed for CON. In contrast, 7 days after motor practice, retention of motor memory was significantly better for FLB and RUN compared to CON. No differences were observed when comparing FLB and RUN. Conclusions: Acute intense intermittent exercise performed immediately after motor skill acquisition facilitates long-term motor memory in pre-adolescent children, presumably by promoting memory consolidation. The results also demonstrate that the effects can be accomplished in a school setting. The positive effect of both a team game (i.e., FLB) and running indicates that the observed memory improvements are determined to a larger extent by physiological factors rather than the types of movements performed during the exercise protocol. PMID:28473761
Yentur Doni, Nebiye; Yildiz Zeyrek, Fadile; Simsek, Zeynep; Gurses, Gulcan; Sahin, İbrahim
2015-12-01
The objective of this study was to determine the risk factors for and relationship among parasitic infections, growth retardation, and psychomotor developmental delays in children aged 6 years and below. This case-control study was performed in Şanlıurfa in southeastern Turkey between October and December 2007. Data were collected using a structured questionnaire, anthropometry, Ankara Development Screening Inventory, and laboratory analysis of stool specimens. The most common parasite was Giardia intestinalis (42.53%) followed by Enterobius vermicularis (27.58%), Ascaris lumbricoides (18.39%), Hymenolepis nana (5.75%), Trichuris trichiura (3.45%), Escherichia coli (1.15%), and Blastocystis spp. (1.15%). Fifty-eight percent of all children were infected with intestinal parasites; 55.2% had only one parasite, whereas 44.8% had multiple parasites. The children infected with G. intestinalis and other intestinal parasites had significantly higher levels of growth retardation and psychomotor development delay than non-infected children. Children with parasitic infections had growth delay up to 2.9 times, general development delay up to 1.9 times, language-cognitive development delay up to 2.2 times, and fine motor development delay up to 2.9 times higher than children without any parasitic infections. However, no significant relationship among intestinal parasites, gross motor development, social-self skills, and development delay was identified. The education level of parents, poor economic situation, number of households, not washing hands, playing with soil, family history of parasitic infection were the significant risk factors for intestinal parasites. Our study indicates that the presence of either malnutrition or intestinal parasites may put a child in a high-risk group for developmental delays and growth retardation. Therefore, public health interventions can embrace nationwide deworming in children.
Characteristics of dysphagia in children with cerebral palsy, related to gross motor function.
Kim, Joon-Sung; Han, Zee-A; Song, Dae Heon; Oh, Hyun-Mi; Chung, Myung Eun
2013-10-01
The aim of this study was to report the characteristics of dysphagia in children with cerebral palsy (CP), related to gross motor function. Videofluoroscopic swallow study was performed in 29 children with CP, according to the manual of Logemann. Five questions about oromotor dysfunction were answered. Gross motor function level was classified by the Gross Motor Function Classification System Expanded and Revised. The results of the videofluoroscopic swallowing studies showed that reduced lip closure, inadequate bolus formation, residue in the oral cavity, delayed triggering of pharyngeal swallow, reduced larynx elevation, coating on the pharyngeal wall, delayed pharyngeal transit time, multiple swallow, and aspiration were significantly more common in the severe group (Gross Motor Function Classification System Expanded and Revised IV or V). As for aspiration, 50% of the children with severe CP had problems, but only 14.3% of them with moderate (Gross Motor Function Classification System Expanded and Revised III) CP and none of them with mild CP had abnormalities. In addition, five of the seven aspiration cases occurred silently. This study shows that dysphagia is closely related to gross motor function in children with CP. Silent aspiration was observed in the moderate to severe CP groups. Aspiration is an important cause of medical problems such as acute and chronic lung disease, and associated respiratory complications contribute significantly in increasing morbidity and mortality in these patient groups. Therefore, the authors suggest that early dysphagia evaluation including videofluoroscopic swallow study is necessary in managing feeding problems and may prevent chronic aspiration, malnutrition, and infections.
Advanced optical delay line demonstrator
NASA Astrophysics Data System (ADS)
van den Dool, Teun; Kamphues, Fred; Fouss, B.; Henrioulle, K.; Hogenhuis, Harm
2004-09-01
TNO TPD, in cooperation with Micromega-Dynamics and Dutch Space, has designed an advanced Optical Delay Line (ODL) for use in future ground based and space interferometry missions. The work is performed under NIVR contract in preparation for GENIE and DARWIN. Using the ESO PRIMA DDL requirements as a baseline, the delay line can be used for PRIMA and GENIE without any modifications. The delay line design is modular and flexible, which makes scaling for other applications a relatively easy task. The ODL has a single linear motor actuator for Optical Path Difference (OPD) control, driving a two-mirror cat"s eye with SiC mirrors and CFRP structure. Magnetic bearings provide frictionless and wear free operation with zerohysteresis. The delay line is currently being assembled and will be subjected to a comprehensive test program in the second half of 2004.
Hosaka, Ryosuke; Nakajima, Toshi; Aihara, Kazuyuki; Yamaguchi, Yoko; Mushiake, Hajime
2016-08-01
The medial motor areas play crucial but flexible roles in the temporal organizations of multiple movements. The beta oscillation of local field potentials is the predominant oscillatory activity in the motor areas, but the manner in which increases and decreases in beta power contribute to updating of multiple action plans is not yet fully understood. In the present study, beta and high-gamma activities in the supplementary motor area (SMA) and pre-SMA of monkeys were analyzed during performance of a bimanual motor sequence task that required updating and maintenance of the memory of action sequences. Beta power was attenuated during early delay periods of updating trials but was increased during maintenance trials, while there was a reciprocal increase in high-gamma power during updating trials. Moreover, transient attenuation of beta power during maintenance trials resulted in the erroneous selection of an action sequence. Therefore, it was concluded that the suppression of beta power during the early delay period reflects volatility of neural representation of the action sequence. This neural representation would be properly updated to the appropriate instructed action sequence via increases in high-gamma power in updating trials whereas it would be erroneously updated without the appropriate updating signal in maintenance trials. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Xu, Ren; Jiang, Ning; Mrachacz-Kersting, Natalie; Dremstrup, Kim; Farina, Dario
2016-01-01
Brain-computer interfacing (BCI) has recently been applied as a rehabilitation approach for patients with motor disorders, such as stroke. In these closed-loop applications, a brain switch detects the motor intention from brain signals, e.g., scalp EEG, and triggers a neuroprosthetic device, either to deliver sensory feedback or to mimic real movements, thus re-establishing the compromised sensory-motor control loop and promoting neural plasticity. In this context, single trial detection of motor intention with short latency is a prerequisite. The performance of the event detection from EEG recordings is mainly determined by three factors: the type of motor imagery (e.g., repetitive, ballistic), the frequency band (or signal modality) used for discrimination (e.g., alpha, beta, gamma, and MRCP, i.e., movement-related cortical potential), and the processing technique (e.g., time-series analysis, sub-band power estimation). In this study, we investigated single trial EEG traces during movement imagination on healthy individuals, and provided a comprehensive analysis of the performance of a short-latency brain switch when varying these three factors. The morphological investigation showed a cross-subject consistency of a prolonged negative phase in MRCP, and a delayed beta rebound in sensory-motor rhythms during repetitive tasks. The detection performance had the greatest accuracy when using ballistic MRCP with time-series analysis. In this case, the true positive rate (TPR) was ~70% for a detection latency of ~200 ms. The results presented here are of practical relevance for designing BCI systems for motor function rehabilitation. PMID:26834551
Matsumoto, Satoshi; Matsumoto, Mishiya; Yamashita, Atsuo; Ohtake, Kazunobu; Ishida, Kazuyoshi; Morimoto, Yasuhiro; Sakabe, Takefumi
2003-06-01
In the present study, we sought to elucidate the temporal profile of the reaction of microglia, astrocytes, and macrophages in the progression of delayed onset motor dysfunction after spinal cord ischemia (15 min) in rabbits. At 2, 4, 8, 12, 24, and 48 h after reperfusion (9 animals in each), hind limb motor function was assessed, and the lumbar spinal cord was histologically examined. Delayed motor dysfunction was observed in most animals at 48 h after ischemia, which could be predicted by a poor recovery of segmental spinal cord evoked potentials at 15 min of reperfusion. In the gray matter of the lumbar spinal cord, both microglia and astrocytes were activated early (2 h) after reperfusion. Microglia were diffusely activated and engulfed motor neurons irrespective of the recovery of segmental spinal cord evoked potentials. In contrast, early astrocytic activation was confined to the area where neurons started to show degeneration. Macrophages were first detected at 8 h after reperfusion and mainly surrounded the infarction area later. Although the precise roles of the activation of microglia, astrocytes, and macrophages are to be further determined, the results indicate that understanding functional changes of astrocytes may be important in the mechanism of delayed onset motor dysfunction including paraplegia. Microglia and macrophages play a role in removing tissue debris after transient spinal cord ischemia. Disturbance of astrocytic defense mechanism, breakdown of the blood-spinal cord barrier, or both seemed to be involved in the development of delayed motor dysfunction.
Goard, Michael J; Pho, Gerald N; Woodson, Jonathan; Sur, Mriganka
2016-01-01
Mapping specific sensory features to future motor actions is a crucial capability of mammalian nervous systems. We investigated the role of visual (V1), posterior parietal (PPC), and frontal motor (fMC) cortices for sensorimotor mapping in mice during performance of a memory-guided visual discrimination task. Large-scale calcium imaging revealed that V1, PPC, and fMC neurons exhibited heterogeneous responses spanning all task epochs (stimulus, delay, response). Population analyses demonstrated unique encoding of stimulus identity and behavioral choice information across regions, with V1 encoding stimulus, fMC encoding choice even early in the trial, and PPC multiplexing the two variables. Optogenetic inhibition during behavior revealed that all regions were necessary during the stimulus epoch, but only fMC was required during the delay and response epochs. Stimulus identity can thus be rapidly transformed into behavioral choice, requiring V1, PPC, and fMC during the transformation period, but only fMC for maintaining the choice in memory prior to execution. DOI: http://dx.doi.org/10.7554/eLife.13764.001 PMID:27490481
Physical Therapy for a Child With Infantile Idiopathic Scoliosis and Motor Delay.
Hall, Rhea K; Rapport, Mary Jane
2017-07-01
The purpose of this case report is to describe physical therapy (PT) for a child with infantile idiopathic scoliosis and motor delay. A 10-month-old boy with a 28° left thoracolumbar scoliosis was referred for PT and was seen weekly in his home over a 6-month period following a diagnosis of scoliosis and delayed gross motor milestones. Before the initiation of PT, the child was scheduled to undergo serial casting for correction of the spinal curve and was not yet rolling or transitioning in or out of sitting. By the end of the 6-month intervention period, the spinal curve had resolved to 12° without the need for serial casting and the child was walking independently. PT appeared to have a positive effect on reduction of the spinal curve and achievement of gross motor milestones.
Aliakbaryhosseinabadi, Susan; Kamavuako, Ernest Nlandu; Jiang, Ning; Farina, Dario; Mrachacz-Kersting, Natalie
2017-11-01
Dual tasking is defined as performing two tasks concurrently and has been shown to have a significant effect on attention directed to the performance of the main task. In this study, an attention diversion task with two different levels was administered while participants had to complete a cue-based motor task consisting of foot dorsiflexion. An auditory oddball task with two levels of complexity was implemented to divert the user's attention. Electroencephalographic (EEG) recordings were made from nine single channels. Event-related potentials (ERPs) confirmed that the oddball task of counting a sequence of two tones decreased the auditory P300 amplitude more than the oddball task of counting one target tone among three different tones. Pre-movement features quantified from the movement-related cortical potential (MRCP) were changed significantly between single and dual-task conditions in motor and fronto-central channels. There was a significant delay in movement detection for the case of single tone counting in two motor channels only (237.1-247.4ms). For the task of sequence counting, motor cortex and frontal channels showed a significant delay in MRCP detection (232.1-250.5ms). This study investigated the effect of attention diversion in dual-task conditions by analysing both ERPs and MRCPs in single channels. The higher attention diversion lead to a significant reduction in specific MRCP features of the motor task. These results suggest that attention division in dual-tasking situations plays an important role in movement execution and detection. This has important implications in designing real-time brain-computer interface systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Motor development and sensory processing: A comparative study between preterm and term infants.
Cabral, Thais Invenção; Pereira da Silva, Louise Gracelli; Tudella, Eloisa; Simões Martinez, Cláudia Maria
2014-10-16
Infants born preterm and/or with low birth weight may present a clinical condition of organic instability and usually face a long period of hospitalization in the Neonatal Intensive Care Units, being exposed to biopsychosocial risk factors to their development due to decreased spontaneous movement and excessive sensory stimuli. This study assumes that there are relationships between the integration of sensory information of preterm infants, motor development and their subsequent effects. To evaluate the sensory processing and motor development in preterm infants aged 4-6 months and compare performance data with their peers born at term. This was a cross-sectional and comparative study consisting of a group of preterm infants (n=15) and a group of term infants (n=15), assessed using the Test of Sensory Functions in Infants (TSFI) and the Alberta Infant Motor Scale (AIMS). The results showed no significant association between motor performance on the AIMS scale (total score) and sensory processing in the TSFI (total score). However, all infants who scored abnormal in the total TSFI score, subdomain 1, and subdomain 5 presented motor performance at or below the 5th percentile on the AIMS scale. Since all infants who presented definite alteration in tolerating tactile deep pressure and poor postural control are at risk of delayed gross motor development, there may be peculiarities not detected by the tests used that seem to establish some relationship between sensory processing and motor development. Copyright © 2014 Elsevier Ltd. All rights reserved.
Associations between gross motor and communicative development in at-risk infants.
LeBarton, Eve Sauer; Iverson, Jana M
2016-08-01
Infants' advances in locomotion relate to advances in communicative development. However, little is known about these relations in infants at risk for delays in these domains and whether they may extend to earlier achievements in gross motor development in infancy. We examined whether advances in sitting and prone locomotion are related to communicative development in infants who have an older sibling with autism spectrum disorder (ASD) and are at risk for motor and communication delays (heightened-risk; HR). We conducted a longitudinal study with 37 HR infants who did not receive an ASD diagnosis at 36 months. Infants were observed monthly between the ages of 5 and 14 months. We assessed gross motor development using the Alberta Infant Motor Scales (AIMS) and recorded ages of onset of verbal and nonverbal communicative behaviors. Results indicated increased presence of early gross motor delay from 5 to 10 months. In addition, there were positive relations between sitting and gesture and babble onset and between prone development and gesture onset. Thus, links between gross motor development and communication extend to at-risk development and provide a starting point for future research on potential cascading consequences of motor advances on communication development. Copyright © 2016 Elsevier Inc. All rights reserved.
Deffeyes, Joan E; Harbourne, Regina T; DeJong, Stacey L; Kyvelidou, Anastasia; Stuberg, Wayne A; Stergiou, Nicholas
2009-01-01
Background By quantifying the information entropy of postural sway data, the complexity of the postural movement of different populations can be assessed, giving insight into pathologic motor control functioning. Methods In this study, developmental delay of motor control function in infants was assessed by analysis of sitting postural sway data acquired from force plate center of pressure measurements. Two types of entropy measures were used: symbolic entropy, including a new asymmetric symbolic entropy measure, and approximate entropy, a more widely used entropy measure. For each method of analysis, parameters were adjusted to optimize the separation of the results from the infants with delayed development from infants with typical development. Results The method that gave the widest separation between the populations was the asymmetric symbolic entropy method, which we developed by modification of the symbolic entropy algorithm. The approximate entropy algorithm also performed well, using parameters optimized for the infant sitting data. The infants with delayed development were found to have less complex patterns of postural sway in the medial-lateral direction, and were found to have different left-right symmetry in their postural sway, as compared to typically developing infants. Conclusion The results of this study indicate that optimization of the entropy algorithm for infant sitting postural sway data can greatly improve the ability to separate the infants with developmental delay from typically developing infants. PMID:19671183
Visuomotor sensitivity to visual information about surface orientation.
Knill, David C; Kersten, Daniel
2004-03-01
We measured human visuomotor sensitivity to visual information about three-dimensional surface orientation by analyzing movements made to place an object on a slanted surface. We applied linear discriminant analysis to the kinematics of subjects' movements to surfaces with differing slants (angle away form the fronto-parallel) to derive visuomotor d's for discriminating surfaces differing in slant by 5 degrees. Subjects' visuomotor sensitivity to information about surface orientation was very high, with discrimination "thresholds" ranging from 2 to 3 degrees. In a first experiment, we found that subjects performed only slightly better using binocular cues alone than monocular texture cues and that they showed only weak evidence for combining the cues when both were available, suggesting that monocular cues can be just as effective in guiding motor behavior in depth as binocular cues. In a second experiment, we measured subjects' perceptual discrimination and visuomotor thresholds in equivalent stimulus conditions to decompose visuomotor sensitivity into perceptual and motor components. Subjects' visuomotor thresholds were found to be slightly greater than their perceptual thresholds for a range of memory delays, from 1 to 3 s. The data were consistent with a model in which perceptual noise increases with increasing delay between stimulus presentation and movement initiation, but motor noise remains constant. This result suggests that visuomotor and perceptual systems rely on the same visual estimates of surface slant for memory delays ranging from 1 to 3 s.
Causal Influence of Articulatory Motor Cortex on Comprehending Single Spoken Words: TMS Evidence.
Schomers, Malte R; Kirilina, Evgeniya; Weigand, Anne; Bajbouj, Malek; Pulvermüller, Friedemann
2015-10-01
Classic wisdom had been that motor and premotor cortex contribute to motor execution but not to higher cognition and language comprehension. In contrast, mounting evidence from neuroimaging, patient research, and transcranial magnetic stimulation (TMS) suggest sensorimotor interaction and, specifically, that the articulatory motor cortex is important for classifying meaningless speech sounds into phonemic categories. However, whether these findings speak to the comprehension issue is unclear, because language comprehension does not require explicit phonemic classification and previous results may therefore relate to factors alien to semantic understanding. We here used the standard psycholinguistic test of spoken word comprehension, the word-to-picture-matching task, and concordant TMS to articulatory motor cortex. TMS pulses were applied to primary motor cortex controlling either the lips or the tongue as subjects heard critical word stimuli starting with bilabial lip-related or alveolar tongue-related stop consonants (e.g., "pool" or "tool"). A significant cross-over interaction showed that articulatory motor cortex stimulation delayed comprehension responses for phonologically incongruent words relative to congruous ones (i.e., lip area TMS delayed "tool" relative to "pool" responses). As local TMS to articulatory motor areas differentially delays the comprehension of phonologically incongruous spoken words, we conclude that motor systems can take a causal role in semantic comprehension and, hence, higher cognition. © The Author 2014. Published by Oxford University Press.
Causal Influence of Articulatory Motor Cortex on Comprehending Single Spoken Words: TMS Evidence
Schomers, Malte R.; Kirilina, Evgeniya; Weigand, Anne; Bajbouj, Malek; Pulvermüller, Friedemann
2015-01-01
Classic wisdom had been that motor and premotor cortex contribute to motor execution but not to higher cognition and language comprehension. In contrast, mounting evidence from neuroimaging, patient research, and transcranial magnetic stimulation (TMS) suggest sensorimotor interaction and, specifically, that the articulatory motor cortex is important for classifying meaningless speech sounds into phonemic categories. However, whether these findings speak to the comprehension issue is unclear, because language comprehension does not require explicit phonemic classification and previous results may therefore relate to factors alien to semantic understanding. We here used the standard psycholinguistic test of spoken word comprehension, the word-to-picture-matching task, and concordant TMS to articulatory motor cortex. TMS pulses were applied to primary motor cortex controlling either the lips or the tongue as subjects heard critical word stimuli starting with bilabial lip-related or alveolar tongue-related stop consonants (e.g., “pool” or “tool”). A significant cross-over interaction showed that articulatory motor cortex stimulation delayed comprehension responses for phonologically incongruent words relative to congruous ones (i.e., lip area TMS delayed “tool” relative to “pool” responses). As local TMS to articulatory motor areas differentially delays the comprehension of phonologically incongruous spoken words, we conclude that motor systems can take a causal role in semantic comprehension and, hence, higher cognition. PMID:25452575
The role of early fine and gross motor development on later motor and cognitive ability.
Piek, Jan P; Dawson, Lisa; Smith, Leigh M; Gasson, Natalie
2008-10-01
The aim of this study was to determine whether information obtained from measures of motor performance taken from birth to 4 years of age predicted motor and cognitive performance of children once they reached school age. Participants included 33 children aged from 6 years to 11 years and 6 months who had been assessed at ages 4 months to 4 years using the ages and stages questionnaires (ASQ: [Squires, J. K., Potter, L., & Bricker, D. (1995). The ages and stages questionnaire users guide. Baltimore: Brookes]). These scores were used to obtain trajectory information consisting of the age of asymptote, maximum or minimum score, and the variance of ASQ scores. At school age, both motor and cognitive ability were assessed using the McCarron Assessment of Neuromuscular Development (MAND: [McCarron, L. (1997). McCarron assessment of neuromuscular development: Fine and gross motor abilities (revised ed.). Dallas, TX: Common Market Press.]), and the Wechsler Intelligence Scale for Children-Version IV (WISC-IV: [Wechsler, D. (2004). WISC-IV integrated technical and interpretive manual. San Antonio, Texas: Harcourt Assessment]). In contrast to previous research, results demonstrated that, although socio-economic status (SES) predicted fine motor performance and three of four cognitive domains at school age, gestational age was not a significant predictor of later development. This may have been due to the low-risk nature of the sample. After controlling for SES, fine motor trajectory information did not account for a significant proportion of the variance in school aged fine motor performance or cognitive performance. The ASQ gross motor trajectory set of predictors accounted for a significant proportion of the variance for cognitive performance once SES was controlled for. Further analysis showed a significant predictive relationship for gross motor trajectory information and the subtests of working memory and processing speed. These results provide evidence for detecting children at risk of developmental delays or disorders with a parent report questionnaire prior to school age. The findings also add to recent investigations into the relationship between early motor development and later cognitive function, and support the need for ongoing research into a potential etiological relationship.
Motor skills development in children with inattentive versus combined subtypes of ADHD.
Vasserman, Marsha; Bender, H Allison; Macallister, William S
2014-01-01
The relations between attention-deficit hyperactivity disorder (ADHD) and motor skills are well documented, with research indicating both early and lifelong motor deficits in children with this disorder. Despite neuroanatomical and neurodevelopmental differences, which may predict differential rates of motor impairment between ADHD subtypes, evaluation of motor skill deficits in children with different presentations are limited in scope and equivocal in findings. The present investigation evaluated early motor development history and objectively measured motor skills in children with ADHD-Inattentive subtype (ADHD-I) and ADHD-Combined subtype (ADHD-C). One hundred and one children with ADHD-I (n = 53) and ADHD-C (n = 48) were included. Variables included Full-Scale IQ (FSIQ), history of motor delays, and utilization of early intervention services, as well as objectively measured motor impairment as assessed via tasks of fine-motor coordination. No between-group differences were found for FSIQ, but differences in age emerged, with the ADHD-I group being older. No differences in early motor delays were observed, though a considerably higher percentage of children with ADHD-C demonstrated early difficulties. Surprisingly, although children and adolescents with ADHD-C reported more frequent utilization of early intervention services, those with ADHD-I exhibited greater levels of current motor impairment on objective tasks. Given the over-representation of older children in the ADHD-I group, data were reanalyzed after excluding participants older than 10 years of age. Although the between-group differences were no longer significant, more than twice the number of parents of children with ADHD-C reported early motor delays, as compared with the ADHD-I group. Overall, children with ADHD-I were more likely to exhibit current objectively measured motor impairment, possibly due to later identification, less intervention, and/or different neurodevelopmental substrates underlying this disorder subtype.
Valla, Lisbeth; Wentzel-Larsen, Tore; Hofoss, Dag; Slinning, Kari
2015-12-17
Prevalence estimates on suspected developmental delays (SDD) in young infants are scarce and a necessary first step for planning an early intervention. We investigated the prevalence of SDD at 4, 6 and 12 months, in addition to associations of SDD with gender, prematurity and maternal education. This study is based on a Norwegian longitudinal sample of 1555 infants and their parents attending well-baby clinics for regular health check-ups. Moreover, parents completed the Norwegian translation of the Ages and Stages Questionnaires (ASQ) prior to the check-up, with a corrected gestational age being used to determine the time of administration for preterm infants. Scores ≤ the established cut-offs in one or more of the five development areas: communication, gross motor, fine motor, problem solving and personal-social, which defined SDD for an infant were reported. Chi-square tests were performed for associations between the selected factors and SDD. According to established Norwegian cut-off points, the overall prevalence of SDD in one or more areas was 7.0 % (10.3 % US cut-off) at 4 months, 5.7 % (12.3 % US cut-off) at 6 months and 6.1 % (10.3 % US cut-off) at 12 months. The highest prevalence of SDD was in the gross motor area at all three time points. A gestational age of < 37 weeks revealed a significant association with the communication SDD at 4 months, and with the fine motor and personal social SDD at 6 months. Gender was significantly associated with the fine motor and problem solving SDD at 4 months and personal- social SDD at 6 months: as more boys than girls were delayed. No significant associations were found between maternal education and the five developmental areas of the ASQ. Our findings indicate prevalence rates of SDD between 5.7 and 7.0 % in Norwegian infants between 4 and 12 months of age based on the Norwegian ASQ cut-off points (10.3-12.3 %, US cut-off points). During the first year of life, delay is most frequent within the gross motor area. Special attention should be paid to infants born prematurely, as well as to boys. Separate norms for boys and girls should be considered for the ASQ.
Effects of perinatal asphyxia on the neurobehavioral and retinal development of newborn rats.
Kiss, Peter; Szogyi, Donat; Reglodi, Dora; Horvath, Gabor; Farkas, Jozsef; Lubics, Andrea; Tamas, Andrea; Atlasz, Tamas; Szabadfi, Krisztina; Babai, Norbert; Gabriel, Robert; Koppan, Miklos
2009-02-19
Perinatal asphyxia during delivery produces long-term deficits and represents a major problem in both neonatal and pediatric care. Several morphological, biochemical and behavioral changes have been described in rats exposed to perinatal asphyxia. The aim of the present study was to evaluate how perinatal asphyxia affects the complex early neurobehavioral development and retinal structure of newborn rats. Asphyxia was induced in ready-to-deliver mothers by removing the pups by cesarian section after 15 min of asphyxia. Somatic and neurobehavioral development was tested daily during the first 3 weeks, and motor coordination tests were performed on postnatal weeks 3-5. After completion of the testing procedure, retinas were removed for histological analysis. We found that in spite of the fast catch-up-growth of asphyctic pups, nearly all examined reflexes were delayed by 1-4 days: negative geotaxis, sensory reflexes, righting reflexes, development of fore- and hindlimb grasp and placing, gait and auditory startle reflexes. Time to perform negative geotaxis, surface righting and gait reflexes was significantly longer during the first few weeks in asphyctic pups. Among the motor coordination tests, a markedly weaker performance was observed in the grid walking and footfault test and in the walk initiation test. Retinal structure showed severe degeneration in the layer of the photoreceptor and bipolar cell bodies. In summary, our present study provided a detailed description of reflex and motor development following perinatal asphyxia, showing that asphyxia led to a marked delay in neurobehavioral development and a severe retinal degeneration.
Robinson, Leah E; Palmer, Kara K; Bub, Kristen L
2016-01-01
Self-regulatory skills are broadly defined as the ability to manage emotions, focus attention, and inhibit some behaviors while activating others in accordance with social expectations and are an established indicator of academic success. Growing evidence links motor skills and physical activity to self-regulation. This study examined the efficacy of a motor skills intervention (i.e., the Children's Health Activity Motor Program, CHAMP) that is theoretically grounded in Achievement Goal Theory on motor skill performance and self-regulation in Head Start preschoolers. A sample of 113 Head Start preschoolers (Mage = 51.91 ± 6.5 months; 49.5% males) were randomly assigned to a treatment (n = 68) or control (n = 45) program. CHAMP participants engaged in 15, 40-min sessions of a mastery climate intervention that focused on the development of motor skills over 5 weeks while control participants engaged in their normal outdoor recess period. The Delay of Gratification Snack Task was used to measure self-regulation and the Test of Gross Motor Development-2nd Edition was used to assess motor skills. All measures were assessed prior to and following the intervention. Linear mixed models were fit for both self-regulation and motor skills. Results revealed a significant time × treatment interaction (p < 0.001). In regard to motor skills, post hoc comparisons found that all children improved their motor skills (p < 0.05), but the CHAMP group improved significantly more than the control group (p < 0.001). Children in CHAMP maintained their self-regulation scores across time, while children in the control group scored significantly lower than the CHAMP group at the posttest (p < 0.05). CHAMP is a mastery climate movement program that enhance skills associated with healthy development in children (i.e., motor skills and self-regulation). This efficacy trial provided evidence that CHAMP helped maintain delay of gratification in preschool age children and significantly improved motor skills while participating in outdoor recess was not effective. CHAMP could help contribute to children's learning-related skills and physical development and subsequently to their academic success.
Neurodevelopmental delay associated with nonconvulsive status epilepticus in a toddler.
Shinawi, M; Shahar, E
2001-03-01
Nonconvulsive status epilepticus is a prolonged and continuous state of increased unawareness without overt motor seizures linked with repetitive generalized epileptic discharges. In children, it may occur de novo but more commonly may complicate a preexisting epileptic disorder. We report on a 2-year-old female who presented with global developmental delay as the main manifestation of nonconvulsive status epilepticus. Following valproic acid treatment, her motor, cognitive, and speech delays had gradually subsided and nearly completely resolved, in concert with normalization of electroencephalography (EEG). Hence, given a possible, albeit rare, presentation of nonconvulsive status epilepticus with global developmental delay, we suggest that EEG should be recommended in any infant who manifests neurodevelopmental delay.
NASA Technical Reports Server (NTRS)
Allen, R. W.; Jex, H. R.
1972-01-01
In order to test various components of a regenerative life support system and to obtain data on the physiological and psychological effects of long-duration exposure to confinement in a space station atmosphere, four carefully screened young men were sealed in space station simulator for 90 days. A tracking test battery was administered during the above experiment. The battery included a clinical test (critical instability task) related to the subject's dynamic time delay, and a conventional steady tracking task, during which dynamic response (describing functions) and performance measures were obtained. Good correlation was noted between the clinical critical instability scores and more detailed tracking parameters such as dynamic time delay and gain-crossover frequency. The comprehensive data base on human operator tracking behavior obtained in this study demonstrate that sophisticated visual-motor response properties can be efficiently and reliably measured over extended periods of time.
Developmental and Behavioral Performance of Internationally Adopted Preschoolers: A Pilot Study
ERIC Educational Resources Information Center
Jacobs, Emma; Miller, Laurie C.; Tirella, Linda G.
2010-01-01
Most international adoptees (IA) have rapid catch-up of the delays common at arrival. However, it is not known whether development at arrival predicts later abilities or school readiness. Therefore, we comprehensively evaluated language, fine motor, visual reception (VR), executive function (EF), attention (ATT), and sensory skills (SS) in IA…
Miller, Laura; Ziviani, Jenny; Boyd, Roslyn Nancy
2014-02-01
The purpose of this systematical review was to appraise the clinimetric properties of measures of motivation in children aged 5-16 years with a physical disability or motor delay. Six electronic databases were searched. Studies were included if they reported measuring motivation in school-aged children across occupational performance areas. Two reviewers independently identified measures from included articles. Evaluation of measures was completed using the COSMIN (consensus-based standards for the selection of health measurement instruments) checklist. A total of 13,529 papers were retrieved, 15 reporting measurement of motivation in this population. Two measures met criteria: Dimensions of Mastery Questionnaire (DMQ) and Pediatric Volitional Questionnaire (PVQ). There was evidence of adequate validity for DMQ, and preliminary evidence of test-retest reliability. Psychometric evidence for PVQ was poor. Both measures demonstrated good clinical utility. The large number of retrieved papers highlights the importance being attributed to motivation in clinical studies, although measurement is seldom performed. Both identified measures show promise but further psychometric research is required.
Neurodevelopment of children under 3 years of age with Smith-Magenis syndrome.
Wolters, Pamela L; Gropman, Andrea L; Martin, Staci C; Smith, Michaele R; Hildenbrand, Hanna L; Brewer, Carmen C; Smith, Ann C M
2009-10-01
Systematic data regarding early neurodevelopmental functioning in Smith-Magenis syndrome are limited. Eleven children with Smith-Magenis syndrome less than 3 years of age (mean, 19 months; range, 5-34 months) received prospective multidisciplinary assessments using standardized measures. The total sample scored in the moderately to severely delayed range in cognitive functioning, expressive language, and motor skills and exhibited generalized hypotonia, oral-motor abnormalities, and middle ear dysfunction. Socialization skills were average, and significantly higher than daily living, communication, and motor abilities, which were below average. Mean behavior ratings were in the nonautistic range. According to exploratory analyses, the toddler subgroup scored significantly lower than the infant subgroup in cognition, expressive language, and adaptive behavior, suggesting that the toddlers were more delayed than the infants relative to their respective peers. Infants aged approximately 1 year or younger exhibited cognitive, language, and motor skills that ranged from average to delayed, but with age-appropriate social skills and minimal maladaptive behaviors. At ages 2 to 3 years, the toddlers consistently exhibited cognitive, expressive language, adaptive behavior, and motor delays and mildly to moderately autistic behaviors. Combining age groups in studies may mask developmental and behavioral differences. Increased knowledge of these early neurodevelopmental characteristics should facilitate diagnosis and appropriate intervention.
Strength training for a child with suspected developmental coordination disorder.
Menz, Stacy M; Hatten, Kristin; Grant-Beuttler, Marybeth
2013-01-01
Children with developmental coordination disorder (DCD) demonstrate difficulty with feedforward motor control and use varied compensatory strategies. To examine gross motor function changes following strength training in a child with motor control difficulties. A girl aged 6 years 11 months, with apraxia and hypotonia, and demonstrating motor delays consistent with DCD. Twenty-four strength training sessions were completed using a universal exercise unit. Postintervention scores significantly improved on the Bruininks-Oseretsky test of motor proficiency, second edition, and the Canadian occupational performance measure scores and raised the developmental coordination disorder questionnaire, revised 2007, scores above the range where DCD is suspected. Nonsignificant changes in strength were observed. Improved function and significant gains in manual coordination were observed following blocked practice of isolated, simple joint movements during strength training. Improved motor skills may be because of effective use of feedforward control and improved stabilization. Strength training does not rehearse skills using momentum, explaining nonsignificant changes in locomotor or locomotion areas.
McCleery, Joseph P.; Elliott, Natasha A.; Sampanis, Dimitrios S.; Stefanidou, Chrysi A.
2013-01-01
Research suggests that a sub-set of children with autism experience notable difficulties and delays in motor skills development, and that a large percentage of children with autism experience deficits in motor resonance. These motor-related deficiencies, which evidence suggests are present from a very early age, are likely to negatively affect social-communicative and language development in this population. Here, we review evidence for delayed, impaired, and atypical motor development in infants and children with autism. We then carefully review and examine the current language and communication-based intervention research that is relevant to motor and motor resonance (i.e., neural “mirroring” mechanisms activated when we observe the actions of others) deficits in children with autism. Finally, we describe research needs and future directions and developments for early interventions aimed at addressing the speech/language and social-communication development difficulties in autism from a motor-related perspective. PMID:23630476
Akizuki, Kazunori; Ohashi, Yukari
2015-10-01
The relationship between task difficulty and learning benefit was examined, as was the measurability of task difficulty. Participants were required to learn a postural control task on an unstable surface at one of four different task difficulty levels. Results from the retention test showed an inverted-U relationship between task difficulty during acquisition and motor learning. The second-highest level of task difficulty was the most effective for motor learning, while learning was delayed at the most and least difficult levels. Additionally, the results indicate that salivary α-amylase and the performance dimension of the National Aeronautics and Space Administration-Task Load Index (NASA-TLX) are useful indices of task difficulty. Our findings suggested that instructors may be able to adjust task difficulty based on salivary α-amylase and the performance dimension of the NASA-TLX to enhance learning. Copyright © 2015 Elsevier B.V. All rights reserved.
Subjective perception of sleep benefit in Parkinson's disease: Valid or irrelevant?
Lee, Will; Evans, Andrew; Williams, David R
2017-09-01
The phenomenon of sleep benefit (SB) in Parkinson's disease (PD), whereby waking motor function is improved despite no dopaminergic treatment overnight, is controversial. Previous studies suggested a significant discrepancy between subjective functional and objective motor improvement. The aim of this study was to determine how well subjective reporting of SB correlates with objective measures and if true motor improvement can be predicted by a standardized questionnaire. Ninety-two patients with PD participated. A structured questionnaire was developed to assess subjective SB. Quantitative motor assessment was performed using a validated smartphone application. Objective motor SB was considered to be present when the waking motor function was similar or superior to the daytime on-state. Twenty (22%) patients showed objective motor improvement on waking compared to end-of-dose. Most patients (77%) reported subjective SB without corresponding objective motor benefit. Our structured questionnaire could not predict Motor SB. The ability to delay morning medications and a perception of indifference or paradoxical worsening following the morning levodopa dose may suggest Motor SB. Most patients experience subjective SB with no measureable motor improvement. This perceived benefit could be related to non-motor improvement that is distinctly different to objective motor benefit. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sajad, Amirsaman; Sadeh, Morteza; Yan, Xiaogang; Wang, Hongying; Crawford, John Douglas
2016-01-01
The frontal eye fields (FEFs) participate in both working memory and sensorimotor transformations for saccades, but their role in integrating these functions through time remains unclear. Here, we tracked FEF spatial codes through time using a novel analytic method applied to the classic memory-delay saccade task. Three-dimensional recordings of head-unrestrained gaze shifts were made in two monkeys trained to make gaze shifts toward briefly flashed targets after a variable delay (450-1500 ms). A preliminary analysis of visual and motor response fields in 74 FEF neurons eliminated most potential models for spatial coding at the neuron population level, as in our previous study (Sajad et al., 2015). We then focused on the spatiotemporal transition from an eye-centered target code (T; preferred in the visual response) to an eye-centered intended gaze position code (G; preferred in the movement response) during the memory delay interval. We treated neural population codes as a continuous spatiotemporal variable by dividing the space spanning T and G into intermediate T-G models and dividing the task into discrete steps through time. We found that FEF delay activity, especially in visuomovement cells, progressively transitions from T through intermediate T-G codes that approach, but do not reach, G. This was followed by a final discrete transition from these intermediate T-G delay codes to a "pure" G code in movement cells without delay activity. These results demonstrate that FEF activity undergoes a series of sensory-memory-motor transformations, including a dynamically evolving spatial memory signal and an imperfect memory-to-motor transformation.
Commercial Building Motor Protection Response Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, Daniel P.; Kueck, John
2015-06-17
When voltages recover, motors may immediately reenergize and reaccelerate, or delay for a few minutes, or stay stalled. The estimated motor response is given for both the voltage sag magnitude and voltage sag duration. These response estimates are based on experience and available test data. Good data is available for voltage sag response for many components such as relays and contactors, but little data is available for both voltage sag and recovery response. The tables in Appendix A include data from recent voltage sag and recovery tests performed by SCE and BPA on air conditioners and energy management systems. Themore » response of the motor can vary greatly depending on the type of protection and control. The time duration for the voltage sag consists of those times that are of interest for bulk power system modelers.« less
Increase of Reproductive Life Span Delays Age of Onset of Parkinson’s Disease
Frentzel, Dominik; Judanin, Grigorij; Borozdina, Olga; Klucken, Jochen; Winkler, Jürgen; Schlachetzki, Johannes C. M.
2017-01-01
One striking observation in Parkinson’s disease (PD) is the remarkable gender difference in incidence and prevalence of the disease. Data on gender differences with regard to disease onset, motor and non-motor symptoms, and dopaminergic medication are limited. Furthermore, whether estrogen status affects disease onset and progression of PD is controversially discussed. In this retrospective single center study, we extracted clinical data of 226 ambulatory PD patients and compared age of disease onset, disease stage, motor impairment, non-motor symptoms, and dopaminergic medication between genders. We applied a matched-pairs design to adjust for age and disease duration. To determine the effect of estrogen-related reproductive factors including number of children, age at menarche, and menopause on the age of onset, we applied a standardized questionnaire and performed a regression analysis. The male to female ratio in the present PD cohort was 1.9:1 (147 men vs. 79 women). Male patients showed increased motor impairment than female patients. The levodopa equivalent daily dose was increased by 18.9% in male patients compared to female patients. Matched-pairs analysis confirmed the increased dose of dopaminergic medication in male patients. No differences were observed in age of onset, type of medication, and non-motor symptoms between both groups. Female reproductive factors including number of children, age at menarche, and age at menopause were positively associated with a delay of disease onset up to 30 months. The disease-modifying role of estrogen-related outcome measures warrants further clinical and experimental studies targeting gender differences, specifically hormone-dependent pathways in PD. PMID:28871235
Watch Me Move: A Program For Parents of Young Children With Gross-Motor Delays.
Natrasony, Candice; Teitelbaum, Debra
2016-11-01
Watch Me Move (WMM) is a 6-week parent education program for caregivers of children with gross-motor delays. The aims are to improve parent-child interaction in a gross-motor context, increase parents' knowledge of behavioral cues and gross-motor development, and decrease perceived parental stress. Forty mothers of children, 6 months to 3 years of age, with a gross-motor delay participated in a randomized control trial comparing parents who received the WMM program plus standard of care physiotherapy (n = 24) with parents whose children received standard of care physiotherapy (n = 16). Mothers who received the WMM program had significantly higher change scores on two subscales of the Nursing Child Assessment Teaching Scale (NCATS; i.e., cognitive growth fostering, and responsiveness to caregiver) and on the Parent Knowledge Questionnaire assessing knowledge of behavioral cues and gross-motor development. There were no significant group differences on the other four NCATS subscales (i.e., sensitivity to cues, response to child's distress, social emotional growth fostering, and clarity of cues) or the Parenting Stress Index. The addition of WMM to traditional physiotherapy improved aspects of mothers' ability to interact with their children and their knowledge of behavioral cues and gross-motor development.
[Sensory oral motor and global motor development of preterm infants].
de Castro, Adriana Guerra; Lima, Marilia de Carvalho; de Aquino, Rebeca Raposo; Eickmann, Sophie Helena
2007-01-01
development assessment of preterm infants. to evaluate the association between the gestational ages (GA) of premature infants with the global motor development as well as with early signs of sensory oral motor development delay, and to verify a possible association between them. an exploratory study that assessed the development of 55 infants with corrected chronological ages between four to five months, born preterm at the Instituto Materno Infantil Professor Fernando Figueira (IMIP) and who were followed at the Kangaroo Mother Program Clinic between March and August of 2004. The assessment of the sensory oral motor development was performed through pre-selected indicators and of the global motor development through the Alberta Infant Motor Scale (AIMS). infants with lower GA (29 to 34 weeks) presented a higher median of risk signs in the sensory oral motor development assessment when compared to those with higher GA (35 to 36 weeks). Regarding the global motor development, infants born with lower GA presented a higher number of scores in the AIMS below percentile 10 (26%) when compared to those with a higher GA (4%) (p=0.009). The median index of the risk signs for the sensory oral motor development were significantly higher among infants with total AIMS scores below percentile 25 when compared to those with scores equal to or above percentile 25. the gestational age of infants at birth influenced the sensory oral motor and global motor development - infants with lower gestational ages presented worse performances. These findings suggest a possible association between both aspects of infant development.
Infant and child motor development.
Edwards, Sara L; Sarwark, John F
2005-05-01
Identifying infant and child developmental delay is a skill important for orthopaedic surgeons to master because they often are asked to distinguish between normal and abnormal movement. An emphasis has been placed on early detection and referral for intervention, which has been shown to enhance the lives of the infant or child and his or her family. Appropriate recognition of delay is necessary for referral to early intervention services, which serve to help these children overcome or improve motor dysfunction and to help families grow more confident in caring for children with special needs. We define early intervention, discuss normal and abnormal motor development, and provide useful examination tools to assess motor development.
ERIC Educational Resources Information Center
Valentini, Nadia; Rudisill, Mary E.
2004-01-01
Two studies were conducted to examine the effects of motivational climate on motor-skill development and perceived physical competence in kindergarten children with developmental delays. In Experiment 1, two intervention groups were exposed to environments with either high (mastery climate) or low autonomy for 12 weeks. Results showed that the…
Association of Chronic Subjective Tinnitus with Neuro- Cognitive Performance.
Gudwani, Sunita; Munjal, Sanjay K; Panda, Naresh K; Kohli, Adarsh
2017-12-01
Chronic subjective tinnitus is associated with cognitive disruptions affecting perception, thinking, language, reasoning, problem solving, memory, visual tasks (reading) and attention. To evaluate existence of any association between tinnitus parameters and neuropsychological performance to explain cognitive processing. Study design was prospective, consisting 25 patients with idiopathic chronic subjective tinnitus and gave informed consent before planning their treatment. Neuropsychological profile included (i) performance on verbal information, comprehension, arithmetic and digit span; (ii) non-verbal performance for visual pattern completion analogies; (iii) memory performance for long-term, recent, delayed-recall, immediate-recall, verbal-retention, visualretention, visual recognition; (iv) reception, interpretation and execution for visual motor gestalt. Correlation between tinnitus onset duration/ loudness perception with neuropsychological profile was assessed by calculating Spearman's coefficient. Findings suggest that tinnitus may interfere with cognitive processing especially performance on digit span, verbal comprehension, mental balance, attention & concentration, immediate recall, visual recognition and visual-motor gestalt subtests. Negative correlation between neurocognitive tasks with tinnitus loudness and onset duration indicated their association. Positive correlation between tinnitus and visual-motor gestalt performance indicated the brain dysfunction. Tinnitus association with non-auditory processing of verbal, visual and visuo-spatial information suggested neuroplastic changes that need to be targeted in cognitive rehabilitation.
Krok, Anne C.; Xu, Jian; Contractor, Anis; McGehee, Daniel S.; Zhuang, Xiaoxi
2016-01-01
Although dopamine receptor antagonism has long been associated with impairments in motor performance, more recent studies have shown that dopamine D2 receptor (D2R) antagonism, paired with a motor task, not only impairs motor performance concomitant with the pharmacodynamics of the drug, but also impairs future motor performance once antagonism has been relieved. We have termed this phenomenon “aberrant motor learning” and have suggested that it may contribute to motor symptoms in movement disorders such as Parkinson's disease (PD). Here, we show that chronic nicotine (cNIC), but not acute nicotine, treatment mitigates the acquisition of D2R-antagonist-induced aberrant motor learning in mice. Although cNIC mitigates D2R-mediated aberrant motor learning, cNIC has no effect on D1R-mediated motor learning. β2-containing nicotinic receptors in dopamine neurons likely mediate the protective effect of cNIC against aberrant motor learning, because selective deletion of β2 nicotinic subunits in dopamine neurons reduced D2R-mediated aberrant motor learning. Finally, both cNIC treatment and β2 subunit deletion blunted postsynaptic responses to D2R antagonism. These results suggest that a chronic decrease in function or a downregulation of β2-containing nicotinic receptors protects the striatal network against aberrant plasticity and aberrant motor learning induced by motor experience under dopamine deficiency. SIGNIFICANCE STATEMENT Increasingly, aberrant plasticity and aberrant learning are recognized as contributing to the development and progression of movement disorders. Here, we show that chronic nicotine (cNIC) treatment or specific deletion of β2 nicotinic receptor subunits in dopamine neurons mitigates aberrant motor learning induced by dopamine D2 receptor (D2R) blockade in mice. Moreover, both manipulations also reduced striatal dopamine release and blunt postsynaptic responses to D2R antagonists. These results suggest that chronic downregulation of function and/or receptor expression of β2-containing nicotinic receptors alters presynaptic and postsynaptic striatal signaling to protect against aberrant motor learning. Moreover, these results suggest that cNIC treatment may alleviate motor symptoms and/or delay the deterioration of motor function in movement disorders by blocking aberrant motor learning. PMID:27170121
Surveillance and Delay Advisory System
DOT National Transportation Integrated Search
1999-08-01
The Federal Highway Administration's Office of Motor Carrier and Highway Safety began a 4-year research project in September 1997 to evaluate the role of motor carrier scheduling practices in interstate commercial motor vehicle (CMV) driver fatigue. ...
Sleep-dependent learning and motor-skill complexity
Kuriyama, Kenichi; Stickgold, Robert; Walker, Matthew P.
2004-01-01
Learning of a procedural motor-skill task is known to progress through a series of unique memory stages. Performance initially improves during training, and continues to improve, without further rehearsal, across subsequent periods of sleep. Here, we investigate how this delayed sleep-dependent learning is affected when the task characteristics are varied across several degrees of difficulty, and whether this improvement differentially enhances individual transitions of the motor-sequence pattern being learned. We report that subjects show similar overnight improvements in speed whether learning a five-element unimanual sequence (17.7% improvement), a nine-element unimanual sequence (20.2%), or a five-element bimanual sequence (17.5%), but show markedly increased overnight improvement (28.9%) with a nine-element bimanual sequence. In addition, individual transitions within the motor-sequence pattern that appeared most difficult at the end of training showed a significant 17.8% increase in speed overnight, whereas those transitions that were performed most rapidly at the end of training showed only a non-significant 1.4% improvement. Together, these findings suggest that the sleep-dependent learning process selectively provides maximum benefit to motor-skill procedures that proved to be most difficult prior to sleep. PMID:15576888
Latent class analysis of early developmental trajectory in baby siblings of children with autism.
Landa, Rebecca J; Gross, Alden L; Stuart, Elizabeth A; Bauman, Margaret
2012-09-01
Siblings of children with autism (sibs-A) are at increased genetic risk for autism spectrum disorders (ASD) and milder impairments. To elucidate diversity and contour of early developmental trajectories exhibited by sibs-A, regardless of diagnostic classification, latent class modeling was used. Sibs-A (N = 204) were assessed with the Mullen Scales of Early Learning from age 6 to 36 months. Mullen T scores served as dependent variables. Outcome classifications at age 36 months included: ASD (N = 52); non-ASD social/communication delay (broader autism phenotype; BAP; N = 31); and unaffected (N = 121). Child-specific patterns of performance were studied using latent class growth analysis. Latent class membership was then related to diagnostic outcome through estimation of within-class proportions of children assigned to each diagnostic classification. A 4-class model was favored. Class 1 represented accelerated development and consisted of 25.7% of the sample, primarily unaffected children. Class 2 (40.0% of the sample), was characterized by normative development with above-average nonverbal cognitive outcome. Class 3 (22.3% of the sample) was characterized by receptive language, and gross and fine motor delay. Class 4 (12.0% of the sample), was characterized by widespread delayed skill acquisition, reflected by declining trajectories. Children with an outcome diagnosis of ASD were spread across Classes 2, 3, and 4. Results support a category of ASD that involves slowing in early non-social development. Receptive language and motor development is vulnerable to early delay in sibs-A with and without ASD outcomes. Non-ASD sibs-A are largely distributed across classes depicting average or accelerated development. Developmental trajectories of motor, language, and cognition appear independent of communication and social delays in non-ASD sibs-A. © 2012 The Authors. Journal of Child Psychology and Psychiatry © 2012 Association for Child and Adolescent Mental Health.
Hershey, Tamara; Lillie, Rema; Sadler, Michelle; White, Neil H
2004-06-01
In a previous retrospective study, severe hypoglycemia (SH) was associated with decreased long-term spatial memory in children with type 1 diabetes mellitus (T1DM). In this study, we tested the hypothesis that prospectively ascertained SH would also be associated with decreased spatial long-term memory over time. Children with T1DM (n = 42) and sibling controls (n = 25) performed a spatial delayed response (SDR) task with short and long delays and other neuropsychological tests at baseline and after 15 months of monitoring. Extreme glycemic events and other medical complications were recorded prospectively during follow-up. Fourteen T1DM children experienced at least one episode of SH during the follow-up period (range = 1-5). After controlling for long-delay SDR performance at baseline, age, gender, and age of onset, the presence of SH during the prospective period was statistically associated with decreased long-delay SDR performance at follow-up (semipartial r = -0.38, p = 0.017). This relationship was not seen with short-delay SDR or with verbal or object memory, attention, or motor speed. These results, together with previously reported data, support the hypothesis that SH has specific, negative effects on spatial memory skills in T1DM children.
Early boost and slow consolidation in motor skill learning.
Hotermans, Christophe; Peigneux, Philippe; Maertens de Noordhout, Alain; Moonen, Gustave; Maquet, Pierre
2006-01-01
Motorskill learning is a dynamic process that continues covertly after training has ended and eventually leads to delayed increments in performance. Current theories suggest that this off-line improvement takes time and appears only after several hours. Here we show an early transient and short-lived boost in performance, emerging as early as 5-30 min after training but no longer observed 4 h later. This early boost is predictive of the performance achieved 48 h later, suggesting its functional relevance for memory processes.
Sajad, Amirsaman; Sadeh, Morteza; Yan, Xiaogang; Wang, Hongying
2016-01-01
Abstract The frontal eye fields (FEFs) participate in both working memory and sensorimotor transformations for saccades, but their role in integrating these functions through time remains unclear. Here, we tracked FEF spatial codes through time using a novel analytic method applied to the classic memory-delay saccade task. Three-dimensional recordings of head-unrestrained gaze shifts were made in two monkeys trained to make gaze shifts toward briefly flashed targets after a variable delay (450-1500 ms). A preliminary analysis of visual and motor response fields in 74 FEF neurons eliminated most potential models for spatial coding at the neuron population level, as in our previous study (Sajad et al., 2015). We then focused on the spatiotemporal transition from an eye-centered target code (T; preferred in the visual response) to an eye-centered intended gaze position code (G; preferred in the movement response) during the memory delay interval. We treated neural population codes as a continuous spatiotemporal variable by dividing the space spanning T and G into intermediate T–G models and dividing the task into discrete steps through time. We found that FEF delay activity, especially in visuomovement cells, progressively transitions from T through intermediate T–G codes that approach, but do not reach, G. This was followed by a final discrete transition from these intermediate T–G delay codes to a “pure” G code in movement cells without delay activity. These results demonstrate that FEF activity undergoes a series of sensory–memory–motor transformations, including a dynamically evolving spatial memory signal and an imperfect memory-to-motor transformation. PMID:27092335
Compact and low-cost THz QTDS system.
Probst, Thorsten; Rehn, Arno; Koch, Martin
2015-08-24
We present a terahertz quasi time domain spectroscopy (QTDS) system setup which is improved regarding cost and compactness. The diode laser is mounted directly onto the optical delay line, making the optical setup more compact. The system is operated using a Raspberry Pi and an additional sound card. This combination replaces the desktop/laptop computer, the lock-in-amplifier, the stage controller and the signal generator. We examined not only a commercially available stepper motor driven delay line, but also the repurposed internal mechanics from a DVD drive. We characterize the performance of the new system concept.
ERIC Educational Resources Information Center
Altunsöz, Irmak Hürmeriç; Goodway, Jacqueline D.
2016-01-01
Background: Preschool children who are at risk have been shown to demonstrate developmental delays in their fundamental motor skills. The body of research on motor skill development of children indicates that these children, when provided with motor skill instruction, significantly improved their locomotor and object control (OC) skill…
Spatio-Temporal Information Analysis of Event-Related BOLD Responses
Alpert, Galit Fuhrmann; Handwerker, Dan; Sun, Felice T.; D’Esposito, Mark; Knight, Robert T.
2009-01-01
A new approach for analysis of event related fMRI (BOLD) signals is proposed. The technique is based on measures from information theory and is used both for spatial localization of task related activity, as well as for extracting temporal information regarding the task dependent propagation of activation across different brain regions. This approach enables whole brain visualization of voxels (areas) most involved in coding of a specific task condition, the time at which they are most informative about the condition, as well as their average amplitude at that preferred time. The approach does not require prior assumptions about the shape of the hemodynamic response function (HRF), nor about linear relations between BOLD response and presented stimuli (or task conditions). We show that relative delays between different brain regions can also be computed without prior knowledge of the experimental design, suggesting a general method that could be applied for analysis of differential time delays that occur during natural, uncontrolled conditions. Here we analyze BOLD signals recorded during performance of a motor learning task. We show that during motor learning, the BOLD response of unimodal motor cortical areas precedes the response in higher-order multimodal association areas, including posterior parietal cortex. Brain areas found to be associated with reduced activity during motor learning, predominantly in prefrontal brain regions, are informative about the task typically at significantly later times. PMID:17188515
Child Behaviors of Young Children With Autism Spectrum Disorder Across Play Settings.
MacDonald, Megan; Hatfield, Bridget; Twardzik, Erica
2017-01-01
The hallmark characteristics of a diagnosis of autism spectrum disorder (ASD) are deficits in social communicative skills and the use of repetitive and/or stereotyped behaviors. In addition, children with ASD experience known motor-skill delays. The purpose of this study was to examine salient child behaviors of young children with and without ASD in 2 distinctly different play settings: a traditional social-play-based setting and a motor-behavior-based play setting. Child behavior (engagement toward parent, negativity, and attention) and dyad characteristics (connectedness) were examined in 2 distinctly different play settings. Results indicated that children with ASD performed more like their peers without ASD in a social-play-based setting and less like their peers in a motor-behavior-based play setting. Aspects of our results shed light on the critical need to develop creative methods of early intervention that combine efforts in all aspects of child development, including motor-skill development.
Uwemedimo, Omolara Thomas; Howlader, Afrin; Pierret, Giselina
According to the World Health Organization, >200 million children in low- and middle-income countries experience developmental delays. However, household structure and parenting practices have been minimally explored as potential correlates of developmental delay in low- and middle-income countries, despite potential as areas for intervention. The objective of the study was to examine associations of developmental delays with use of World Health Organization-recommended parenting practices among a clinic-based cohort of children aged 6-60 months attending in La Romana, Dominican Republic. This study was conducted among 74 caregiver-child pairs attending the growth-monitoring clinic at Hospital Francisco Gonzalvo in June 2015. The Malawi Developmental Assessment Tool was adapted and performed on each child to assess socioadaptive, fine motor, gross motor, and language development. The IMCI Household Level Survey Questionnaire was used to assess parenting practices. Fisher's exact test was used to determine associations significant at P < .05. Significant variables were then entered into a multivariable logistic regression. Almost two-thirds of children had a delay in at least 1 developmental domain. Most caregivers used scolding (43.2%) or spanking (44%) for child discipline. Children who were disciplined by spanking and scolding were more likely to have language delay (P = .007) and socioadaptive delay (P = .077), respectively. On regression analysis, children with younger primary caregivers had 7 times higher odds of language delay (adjusted odds ratio [AOR]: 7.35, 95% confidence interval [CI]: 1.52-35.61) and 4 times greater odds of any delay (AOR: 4.72, 95% CI: 1.01-22.22). In addition, children punished by spanking had 5 times higher odds of having language delay (AOR: 5.04, 95% CI: 1.13-22.39). Parenting practices such as harsh punishment and lack of positive parental reinforcement were found to have strong associations with language and socioadaptive delays. Likewise, delays were also more common among children with younger caregivers. Copyright © 2017 Icahn School of Medicine at Mount Sinai. Published by Elsevier Inc. All rights reserved.
Fundamental movement skills and autism spectrum disorders.
Staples, Kerri L; Reid, Greg
2010-02-01
Delays and deficits may both contribute to atypical development of movement skills by children with ASD. Fundamental movement skills of 25 children with autism spectrum disorders (ASD) (ages 9-12 years) were compared to three typically developing groups using the Test of Gross Motor Development (TGMD-2). The group matched on chronological age performed significantly better on the TGMD-2. Another comparison group matched on movement skill demonstrated children with ASD perform similarly to children approximately half their age. Comparisons to a third group matched on mental age equivalence revealed the movement skills of children with ASD are more impaired than would be expected given their cognitive level. Collectively, these results suggest the movement skills of children with ASD reflect deficits in addition to delays.
NASA Astrophysics Data System (ADS)
Zhang, Junzhi; Li, Yutong; Lv, Chen; Gou, Jinfang; Yuan, Ye
2017-03-01
The flexibility of the electrified powertrain system elicits a negative effect upon the cooperative control performance between regenerative and hydraulic braking and the active damping control performance. Meanwhile, the connections among sensors, controllers, and actuators are realized via network communication, i.e., controller area network (CAN), that introduces time-varying delays and deteriorates the control performances of the closed-loop control systems. As such, the goal of this paper is to develop a control algorithm to cope with all these challenges. To this end, the models of the stochastic network induced time-varying delays, based on a real in-vehicle network topology and on a flexible electrified powertrain, were firstly built. In order to further enhance the control performances of active damping and cooperative control of regenerative and hydraulic braking, the time-varying delays compensation algorithm for the electrified powertrain active damping during regenerative braking was developed based on a predictive scheme. The augmented system is constructed and the H∞ performance is analyzed. Based on this analysis, the control gains are derived by solving a nonlinear minimization problem. The simulations and hardware-in-loop (HIL) tests were carried out to validate the effectiveness of the developed algorithm. The test results show that the active damping and cooperative control performances are enhanced significantly.
Kirkland, Megan C; Chen, Alice; Downer, Matthew B; Holloway, Brett J; Wallack, Elizabeth M; Lockyer, Evan J; Buckle, Natasha C M; Abbott, Courtney L; Ploughman, Michelle
2018-06-01
People with mild multiple sclerosis (MS) often report subtle deficits in balance and cognition but display no measurable impairment on clinical assessments. We examined whether hopping to a metronome beat had the potential to detect anticipatory motor control deficits among people with mild MS (Expanded Disability Status Scale ≤ 3.5). Participants with MS (n = 13), matched controls (n = 9), and elderly subjects (n = 13) completed tests of cognition (Montreal Cognitive Assessment (MoCA)) and motor performance (Timed 25 Foot Walk Test (T25FWT)). Participants performed two bipedal hopping tasks: at 40 beats/min (bpm) and 60-bpm in random order. Hop characteristics (length, symmetry, variability) and delay from the metronome beat were extracted from an instrumented walkway and compared between groups. The MS group became more delayed from the metronome beat over time whereas elderly subjects tended to hop closer to the beat (F = 4.52, p = 0.02). Delay of the first hop during 60-bpm predicted cognition in people with MS (R = 0.55, β = 4.64 (SD 4.63), F = 4.85, p = 0.05) but not among control (R = 0.07, p = 0.86) or elderly subjects (R = 0.17, p = 0.57). In terms of hopping characteristics, at 60-bpm, people with MS and matched controls were significantly different from the elderly group. However, at 40-bpm, the MS group was no longer significantly different from the elderly group, even though matched controls and elderly still differed significantly. This new timed hopping test may be able to detect both physical ability, and feed-forward anticipatory control impairments in people with mild MS. Hopping at a frequency of 40-bpm seemed more challenging. Several aspects of anticipatory motor control can be measured: including reaction time to the first metronome cue and the ability to adapt and anticipate the beat over time. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
Robinson, Leah E.; Palmer, Kara K.; Bub, Kristen L.
2016-01-01
Self-regulatory skills are broadly defined as the ability to manage emotions, focus attention, and inhibit some behaviors while activating others in accordance with social expectations and are an established indicator of academic success. Growing evidence links motor skills and physical activity to self-regulation. This study examined the efficacy of a motor skills intervention (i.e., the Children’s Health Activity Motor Program, CHAMP) that is theoretically grounded in Achievement Goal Theory on motor skill performance and self-regulation in Head Start preschoolers. A sample of 113 Head Start preschoolers (Mage = 51.91 ± 6.5 months; 49.5% males) were randomly assigned to a treatment (n = 68) or control (n = 45) program. CHAMP participants engaged in 15, 40-min sessions of a mastery climate intervention that focused on the development of motor skills over 5 weeks while control participants engaged in their normal outdoor recess period. The Delay of Gratification Snack Task was used to measure self-regulation and the Test of Gross Motor Development-2nd Edition was used to assess motor skills. All measures were assessed prior to and following the intervention. Linear mixed models were fit for both self-regulation and motor skills. Results revealed a significant time × treatment interaction (p < 0.001). In regard to motor skills, post hoc comparisons found that all children improved their motor skills (p < 0.05), but the CHAMP group improved significantly more than the control group (p < 0.001). Children in CHAMP maintained their self-regulation scores across time, while children in the control group scored significantly lower than the CHAMP group at the posttest (p < 0.05). CHAMP is a mastery climate movement program that enhance skills associated with healthy development in children (i.e., motor skills and self-regulation). This efficacy trial provided evidence that CHAMP helped maintain delay of gratification in preschool age children and significantly improved motor skills while participating in outdoor recess was not effective. CHAMP could help contribute to children’s learning-related skills and physical development and subsequently to their academic success. PMID:27660751
Cappagli, Giulia; Finocchietti, Sara; Baud-Bovy, Gabriel; Cocchi, Elena; Gori, Monica
2017-01-01
Since it has been shown that spatial development can be delayed in blind children, focused sensorimotor trainings that associate auditory and motor information might be used to prevent the risk of spatial-related developmental delays or impairments from an early age. With this aim, we proposed a new technological device based on the implicit link between action and perception: ABBI (Audio Bracelet for Blind Interaction) is an audio bracelet that produces a sound when a movement occurs by allowing the substitution of the visuo-motor association with a new audio-motor association. In this study, we assessed the effects of an extensive but entertaining sensorimotor training with ABBI on the development of spatial hearing in a group of seven 3–5 years old children with congenital blindness (n = 2; light perception or no perception of light) or low vision (n = 5; visual acuity range 1.1–1.7 LogMAR). The training required the participants to play several spatial games individually and/or together with the psychomotor therapist 1 h per week for 3 months: the spatial games consisted of exercises meant to train their ability to associate visual and motor-related signals from their body, in order to foster the development of multisensory processes. We measured spatial performance by asking participants to indicate the position of one single fixed (static condition) or moving (dynamic condition) sound source on a vertical sensorized surface. We found that spatial performance of congenitally blind but not low vision children is improved after the training, indicating that early interventions with the use of science-driven devices based on multisensory capabilities can provide consistent advancements in therapeutic interventions, improving the quality of life of children with visual disability. PMID:29097987
Meijerink, Aukje M; Ramos, Liliana; Janssen, Anjo J W M; Maas-van Schaaijk, Nienke M; Meissner, Andreas; Repping, Sjoerd; Mochtar, Monique H; Braat, Didi D M; Fleischer, Kathrin
2016-12-01
To evaluate at the age of 5 years the behavioral, cognitive, and motor performance and physical development of children born after testicular sperm extraction (TESE) and intracytoplasmic sperm injection (ICSI). A prospective longitudinal cohort study. Two university medical centers. A total of 103 5-year-olds who were born after TESE-ICSI. The follow-up of the children was performed by questionnaires at birth and again at 1 year and at 4 years of age. Five-year-old children were invited for individual assessment. Behavioral performance was assessed with the use of the Child Behavior Checklist for parents and teachers. Cognitive performance was assessed with the use of the Dutch Wechsler Preschool and Primary Scale of Intelligence test, 3rd version. Motor performance was assessed with the use of the Dutch Movement Assessment Battery for Children, 2nd version. Physical development was assessed by means of physical examination and medical history. Behavioral, cognitive, and motor performance and physical development. Eighty-nine children were completely assessed, and 14 were partially assessed at the age of 5 years. The 5-year-old cohort assessed significantly better on behavioral and cognitive performance and significantly worse on motor performance-but still in the normal range-compared with the theoretic distribution in the general population. Four children (3.8%) of the 5-year-old cohort had developmental problems/delays. Two of them were previously diagnosed with a form of autism (pervasive developmental disorder-not otherwise specified). Two children had developmental problems based on our behavioral, cognitive, and/or motor assessments. The long-term effects on development and health in children born after TESE-ICSI procedures seem to be reassuring. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Cognitive and motor abilities of young children and risk of injuries in the home.
Ehrhardt, Jennifer; Xu, Yingying; Khoury, Jane; Yolton, Kimberly; Lanphear, Bruce; Phelan, Kieran
2017-02-01
Residential injury is a leading cause of morbidity and mortality in US children. Rates and types of injury vary by child age but little is known about injury risk based on child cognitive and motor abilities. The objective of this study was to determine whether cognitive or motor development in young children is associated with residential injury. We employed data from Health Outcomes and Measures of the Environment (HOME) Study. Parent report of medically attended injury was obtained at regular intervals from 0 to 42 months. Child development was assessed at 12, 24 and 36 months using Bayley Scales of Infant and Toddler Development, 2nd edition, which generates both mental developmental index (MDI) and a psychomotor developmental index (PDI). Injury risk was modelled using multivariable logistic regression as function of child's MDI or PDI. Effects of MDI and PDI on injury risk were examined separately and jointly, adjusting for important covariates. Children with cognitive delay (MDI <77) were at significantly higher risk of injury than children without cognitive delay (OR=3.7, 95% CI 1.4 to 10.5, p=0.012). There was no significant association of PDI with injury. There was, however, significant interaction of MDI and PDI (p=0.02); children with cognitive delay but normal motor development were at significantly higher risk of injury than children with normal cognitive and motor development (OR=9.6, 95% CI 2.6 to 35.8, p=0.001). Children with cognitive delays, especially those with normal motor development, are at elevated risk for residential injuries. Injury prevention efforts should target children with developmental delays. NCT00129324; post-results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Acquisition of Internal Models of Motor Tasks in Children with Autism
ERIC Educational Resources Information Center
Gidley Larson, Jennifer C.; Bastian, Amy J.; Donchin, Opher; Shadmehr, Reza; Mostofsky, Stewart H.
2008-01-01
Children with autism exhibit a host of motor disorders including poor coordination, poor tool use and delayed learning of complex motor skills like riding a tricycle. Theory suggests that one of the crucial steps in motor learning is the ability to form internal models: to predict the sensory consequences of motor commands and learn from errors to…
ERIC Educational Resources Information Center
Bauer, Sara M.; Jones, Emily A.
2014-01-01
Impairment in exploratory motor (EM) behavior is part of the Down syndrome behavioral phenotype. Exploratory motor behavior may be a pivotal skill for early intervention with infants with Down syndrome. Exploratory motor impairments are often attributed to general delays in motor development in infants with Down syndrome. A behavior analytic…
Prenatal methamphetamine exposure and neurodevelopmental outcomes in children from 1 to 3 years
Wouldes, Trecia A.; LaGasse, Linda L.; Huestis, Marilyn A.; DellaGrotta, Sheri; Dansereau, Lynne M.; Lester, Barry M.
2014-01-01
Background: Despite the evidence that women world-wide are using methamphetamine (MA) during pregnancy little is known about the neurodevelopment of their children. Design: The controlled, prospective longitudinal New Zealand (NZ) Infant Development, Environment and Lifestyle (IDEAL) study was carried out in Auckland, NZ. Participants were 103 children exposed to MA prenatally and 107 not exposed. The Mental Developmental Index (MDI) and the Psychomotor Developmental Index (PDI) of the Bayley Scales of Infant Development, Second Edition (BSID-II) measured cognitive and motor performance at ages 1, 2 and 3, and the Peabody Developmental Motor Scale, Second Edition (PDMS-II) measured gross and fine motor performance at 1 and 3. Measures of the child’s environment included the Home Observation of Measurement of the Environment and the Maternal Lifestyle Interview. The Substance Use Inventory measured maternal drug use. Results: After controlling for other drug use and contextual factors, prenatal MA exposure was associated with poorer motor performance at 1 and 2 years on the BSID-II. No differences were observed for cognitive development (MDI). Relative to non-MA exposed children, longitudinal scores on the PDI and the gross motor scale of the PDMS-2 were 4.3 and 3.2 points lower, respectively. Being male and of Maori descent predicted lower cognitive scores (MDI) and being male predicted lower fine motor scores (PDMS-2) Conclusions: Prenatal exposure to MA was associated with delayed gross motor development over the first 3 years, but not cognitive development. However, being male and of Maori descent were both associated with poorer cognitive outcomes. Males in general did more poorly on tasks related to fine motor development. PMID:24566524
Prenatal methamphetamine exposure and neurodevelopmental outcomes in children from 1 to 3 years.
Wouldes, Trecia A; Lagasse, Linda L; Huestis, Marilyn A; Dellagrotta, Sheri; Dansereau, Lynne M; Lester, Barry M
2014-01-01
Despite the evidence that women world-wide are using methamphetamine (MA) during pregnancy little is known about the neurodevelopment of their children. The controlled, prospective longitudinal New Zealand (NZ) Infant Development, Environment and Lifestyle (IDEAL) study was carried out in Auckland, NZ. Participants were 103 children exposed to MA prenatally and 107 who were not exposed. The Mental Developmental Index (MDI) and the Psychomotor Developmental Index (PDI) of the Bayley Scales of Infant Development, Second Edition (BSID-II) measured cognitive and motor performances at ages 1, 2 and 3, and the Peabody Developmental Motor Scale, Second Edition (PDMS-II) measured gross and fine motor performances at 1 and 3. Measures of the child's environment included the Home Observation of Measurement of the Environment and the Maternal Lifestyle Interview. The Substance Use Inventory measured maternal drug use. After controlling for other drug use and contextual factors, prenatal MA exposure was associated with poorer motor performance at 1 and 2 years on the BSID-II. No differences were observed for cognitive development (MDI). Relative to non-MA exposed children, longitudinal scores on the PDI and the gross motor scale of the PDMS-2 were 4.3 and 3.2 points lower, respectively. Being male and of Maori descent predicted lower cognitive scores (MDI) and being male predicted lower fine motor scores (PDMS-2). Prenatal exposure to MA was associated with delayed gross motor development over the first 3 years, but not with cognitive development. However, being male and of Maori descent were both associated with poorer cognitive outcomes. Males in general did more poorly on tasks related to fine motor development. Copyright © 2014 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Van Stan, Jarrad H.; Mehta, Daryush D.; Sternad, Dagmar; Petit, Robert; Hillman, Robert E.
2017-01-01
Purpose: Ambulatory voice biofeedback has the potential to significantly improve voice therapy effectiveness by targeting carryover of desired behaviors outside the therapy session (i.e., retention). This study applies motor learning concepts (reduced frequency and delayed, summary feedback) that demonstrate increased retention to ambulatory voice…
ERIC Educational Resources Information Center
Hula, Shannon N. Austermann; Robin, Donald A.; Maas, Edwin; Ballard, Kirrie J.; Schmidt, Richard A.
2008-01-01
Purpose: Two studies examined speech skill learning in persons with apraxia of speech (AOS). Motor-learning research shows that delaying or reducing the frequency of feedback promotes retention and transfer of skills. By contrast, immediate or frequent feedback promotes temporary performance enhancement but interferes with retention and transfer.…
ERIC Educational Resources Information Center
Cheng, Hsiang-Chun; Chen, Jenn-Yeu; Tsai, Chia-Liang; Shen, Miau-Lin; Cherng, Rong-Ju
2011-01-01
Developmental coordination disorder (DCD) refers to a delay in motor development that does not have any known medical cause. Studies conducted in English speaking societies have found that children with DCD display a higher co-occurrence rate of learning difficulties (e.g., problems in reading and writing) than typically developing (TD) children.…
Dissociation of verbal working memory system components using a delayed serial recall task.
Chein, J M; Fiez, J A
2001-11-01
Functional magnetic resonance imaging (fMRI) was used to investigate the neural substrates of component processes in verbal working memory. Based on behavioral research using manipulations of verbal stimulus type to dissociate storage, rehearsal, and executive components of verbal working memory, we designed a delayed serial recall task requiring subjects to encode, maintain, and overtly recall sets of verbal items for which phonological similarity, articulatory length, and lexical status were manipulated. By using a task with temporally extended trials, we were able to exploit the temporal resolution afforded by fMRI to partially isolate neural contributions to encoding, maintenance, and retrieval stages of task performance. Several regions commonly associated with maintenance, including supplementary motor, premotor, and inferior frontal areas, were found to be active across all three trial stages. Additionally, we found that left inferior frontal and supplementary motor regions showed patterns of stimulus and temporal sensitivity implicating them in distinct aspects of articulatory rehearsal, while no regions showed a pattern of sensitivity consistent with a role in phonological storage. Regional modulation by task difficulty was further investigated as a measure of executive processing. We interpret our findings as they relate to notions about the cognitive architecture underlying verbal working memory performance.
Carter, Michael J; Ste-Marie, Diane M
2017-03-01
The learning advantages of self-controlled knowledge-of-results (KR) schedules compared to yoked schedules have been linked to the optimization of the informational value of the KR received for the enhancement of one's error-detection capabilities. This suggests that information-processing activities that occur after motor execution, but prior to receiving KR (i.e., the KR-delay interval) may underlie self-controlled KR learning advantages. The present experiment investigated whether self-controlled KR learning benefits would be eliminated if an interpolated activity was performed during the KR-delay interval. Participants practiced a waveform matching task that required two rapid elbow extension-flexion reversals in one of four groups using a factorial combination of choice (self-controlled, yoked) and KR-delay interval (empty, interpolated). The waveform had specific spatial and temporal constraints, and an overall movement time goal. The results indicated that the self-controlled + empty group had superior retention and transfer scores compared to all other groups. Moreover, the self-controlled + interpolated and yoked + interpolated groups did not differ significantly in retention and transfer; thus, the interpolated activity eliminated the typically found learning benefits of self-controlled KR. No significant differences were found between the two yoked groups. We suggest the interpolated activity interfered with information-processing activities specific to self-controlled KR conditions that occur during the KR-delay interval and that these activities are vital for reaping the associated learning benefits. These findings add to the growing evidence that challenge the motivational account of self-controlled KR learning advantages and instead highlights informational factors associated with the KR-delay interval as an important variable for motor learning under self-controlled KR schedules.
The effect of response-delay on estimating reachability.
Gabbard, Carl; Ammar, Diala
2008-11-01
The experiment was conducted to compare visual imagery (VI) and motor imagery (MI) reaching tasks in a response-delay paradigm designed to explore the hypothesized dissociation between vision for perception and vision for action. Although the visual systems work cooperatively in motor control, theory suggests that they operate under different temporal constraints. From this perspective, we expected that delay would affect MI but not VI because MI operates in real time and VI is postulated to be memory-driven. Following measurement of actual reach, right-handers were presented seven (imagery) targets at midline in eight conditions: MI and VI with 0-, 1-, 2-, and 4-s delays. Results indicted that delay affected the ability to estimate reachability with MI but not with VI. These results are supportive of a general distinction between vision for perception and vision for action.
Horn, David L; Pisoni, David B; Miyamoto, Richard T
2006-08-01
The objective of this study was to assess relations between fine and gross motor development and spoken language processing skills in pediatric cochlear implant users. The authors conducted a retrospective analysis of longitudinal data. Prelingually deaf children who received a cochlear implant before age 5 and had no known developmental delay or cognitive impairment were included in the study. Fine and gross motor development were assessed before implantation using the Vineland Adaptive Behavioral Scales, a standardized parental report of adaptive behavior. Fine and gross motor scores reflected a given child's motor functioning with respect to a normative sample of typically developing, normal-hearing children. Relations between these preimplant scores and postimplant spoken language outcomes were assessed. In general, gross motor scores were found to be positively related to chronologic age, whereas the opposite trend was observed for fine motor scores. Fine motor scores were more strongly correlated with postimplant expressive and receptive language scores than gross motor scores. Our findings suggest a disassociation between fine and gross motor development in prelingually deaf children: fine motor skills, in contrast to gross motor skills, tend to be delayed as the prelingually deaf children get older. These findings provide new knowledge about the links between motor and spoken language development and suggest that auditory deprivation may lead to atypical development of certain motor and language skills that share common cortical processing resources.
Langner, Robert; Sternkopf, Melanie A; Kellermann, Tanja S; Grefkes, Christian; Kurth, Florian; Schneider, Frank; Zilles, Karl; Eickhoff, Simon B
2014-07-01
The neurobiological organization of action-oriented working memory is not well understood. To elucidate the neural correlates of translating visuo-spatial stimulus sequences into delayed (memory-guided) sequential actions, we measured brain activity using functional magnetic resonance imaging while participants encoded sequences of four to seven dots appearing on fingers of a left or right schematic hand. After variable delays, sequences were to be reproduced with the corresponding fingers. Recall became less accurate with longer sequences and was initiated faster after long delays. Across both hands, encoding and recall activated bilateral prefrontal, premotor, superior and inferior parietal regions as well as the basal ganglia, whereas hand-specific activity was found (albeit to a lesser degree during encoding) in contralateral premotor, sensorimotor, and superior parietal cortex. Activation differences after long versus short delays were restricted to motor-related regions, indicating that rehearsal during long delays might have facilitated the conversion of the memorandum into concrete motor programs at recall. Furthermore, basal ganglia activity during encoding selectively predicted correct recall. Taken together, the results suggest that to-be-reproduced visuo-spatial sequences are encoded as prospective action representations (motor intentions), possibly in addition to retrospective sensory codes. Overall, our study supports and extends multi-component models of working memory, highlighting the notion that sensory input can be coded in multiple ways depending on what the memorandum is to be used for. Copyright © 2013 Wiley Periodicals, Inc.
O'Leary, John G; Hatsopoulos, Nicholas G
2006-09-01
Local field potentials (LFPs) recorded from primary motor cortex (MI) have been shown to be tuned to the direction of visually guided reaching movements, but MI LFPs have not been shown to be tuned to the direction of an upcoming movement during the delay period that precedes movement in an instructed-delay reaching task. Also, LFPs in dorsal premotor cortex (PMd) have not been investigated in this context. We therefore recorded LFPs from MI and PMd of monkeys (Macaca mulatta) and investigated whether these LFPs were tuned to the direction of the upcoming movement during the delay period. In three frequency bands we identified LFP activity that was phase-locked to the onset of the instruction stimulus that specified the direction of the upcoming reach. The amplitude of this activity was often tuned to target direction with tuning widths that varied across different electrodes and frequency bands. Single-trial decoding of LFPs demonstrated that prediction of target direction from this activity was possible well before the actual movement is initiated. Decoding performance was significantly better in the slowest-frequency band compared with that in the other two higher-frequency bands. Although these results demonstrate that task-related information is available in the local field potentials, correlations among these signals recorded from a densely packed array of electrodes suggests that adequate decoding performance for neural prosthesis applications may be limited as the number of simultaneous electrode recordings is increased.
Reinforcement of wheel running in BALB/c mice: role of motor activity and endogenous opioids.
Vargas-Pérez, Héctor; Sellings, Laurie H L; Paredes, Raúl G; Prado-Alcalá, Roberto A; Díaz, José-Luis
2008-11-01
The authors investigated the effect of the opioid antagonist naloxone on wheel-running behavior in Balb/c mice. Naloxone delayed the acquisition of wheel-running behavior, but did not reduce the expression of this behavior once acquired. Delayed acquisition was not likely a result of reduced locomotor activity, as naloxone-treated mice did not exhibit reduced wheel running after the behavior was acquired, and they performed normally on the rotarod test. However, naloxone-blocked conditioned place preference for a novel compartment paired previously with wheel running, suggesting that naloxone may delay wheel-running acquisition by blocking the rewarding or reinforcing effects of the behavior. These results suggest that the endogenous opioid system mediates the initial reinforcing effects of wheel running that are important in acquisition of the behavior.
Wang, Linyu; Chao, Yangyun; Zhao, Xingquan; Liu, Liping; Wang, Chunxue; Wang, David Z; Meng, Xia; Wang, Anxin; Wang, Yongjun; Xu, Yuming
2013-06-01
We aimed to evaluate the management of patients with transient ischemic attack (TIA) and minor stroke in China. Data from the China National Stroke Registry (CNSR) were used to identify patients who were admitted to 132 urban hospitals across China with TIA or minor stroke. Factors associated with delayed presentation to hospital were evaluated. Univariate and multivariate analyses were performed to analyze relationships between patient characteristics and time of presentation. Of the 7467 patients entered into the CNSR (1204 with TIA, 6263 with minor stroke), 780 patients (64·78%) with TIA and 3467 patients (55·36%) with minor stroke had delayed presentation to hospital (>24 hours). In both groups, factors associated with early presentation (≤24 hours) included transportation by ambulance and direct presentation to the emergency room. In patients with minor stroke, early presentation was associated with older age (65-80 years), motor and sensory symptoms, speech impairment, atrial fibrillation, previous TIA, and living in central or eastern China; and delayed presentation was associated with female sex, cognitive dysfunction, and diabetes. In patients with TIA, early presentation was associated with motor symptoms, and delayed presentation was associated with headache or vertigo. In China, many patients with TIA and minor stroke do not seek medical treatment immediately. Further education is needed to teach members of the public about the warning signs and symptoms of TIA and minor stroke, and encourage the use of ambulance transportation after TIA or stroke.
Wriessnegger, Selina C; Kirchmeyr, Daniela; Bauernfeind, Günther; Müller-Putz, Gernot R
2017-10-01
We examined force related hemodynamic changes during the performance of a motor execution (ME) and motor imagery (MI) task by means of multichannel functional near infrared spectroscopy (fNIRS). The hemodynamic responses of fourteen healthy participants were measured while they performed a hand grip execution or imagery task with low and high grip forces. We found an overall higher increase of [oxy-Hb] concentration changes during ME for both grip forces but with a delayed peak maximum for the lower grip force. During the MI task with lower grip force, the [oxy-Hb] level increases are stronger compared to the MI with higher grip force. The facilitation in performing MI with higher grip strength might thus indicate less inhibition of the actual motor act which could also explain the later increase onset of [oxy-Hb] in the ME task with the lower grip force. Our results suggest that execution and imagery of a hand grip task with high and low grip forces, leads to different cortical activation patterns. Since impaired control of grip forces during object manipulation in particular is one aspect of fine motor control deficits after stroke, our study will contribute to future rehabilitation programs enhancing patient's grip force control. Copyright © 2017 Elsevier Inc. All rights reserved.
Comparison study on disturbance estimation techniques in precise slow motion control
NASA Astrophysics Data System (ADS)
Fan, S.; Nagamune, R.; Altintas, Y.; Fan, D.; Zhang, Z.
2010-08-01
Precise low speed motion control is important for the industrial applications of both micro-milling machine tool feed drives and electro-optical tracking servo systems. It calls for precise position and instantaneous velocity measurement and disturbance, which involves direct drive motor force ripple, guide way friction and cutting force etc., estimation. This paper presents a comparison study on dynamic response and noise rejection performance of three existing disturbance estimation techniques, including the time-delayed estimators, the state augmented Kalman Filters and the conventional disturbance observers. The design technique essentials of these three disturbance estimators are introduced. For designing time-delayed estimators, it is proposed to substitute Kalman Filter for Luenberger state observer to improve noise suppression performance. The results show that the noise rejection performances of the state augmented Kalman Filters and the time-delayed estimators are much better than the conventional disturbance observers. These two estimators can give not only the estimation of the disturbance but also the low noise level estimations of position and instantaneous velocity. The bandwidth of the state augmented Kalman Filters is wider than the time-delayed estimators. In addition, the state augmented Kalman Filters can give unbiased estimations of the slow varying disturbance and the instantaneous velocity, while the time-delayed estimators can not. The simulation and experiment conducted on X axis of a 2.5-axis prototype micro milling machine are provided.
Whitmore, Ani S; Romski, Mary Ann; Sevcik, Rose A
2014-09-01
This exploratory study examined the potential secondary outcome of an early augmented language intervention that incorporates speech-generating devices (SGD) on motor skill use for children with developmental delays. The data presented are from a longitudinal study by Romski and colleagues. Toddlers in the augmented language interventions were either required (Augmented Communication-Output; AC-O) or not required (Augmented Communication-Input; AC-I) to use the SGD to produce an augmented word. Three standardized assessments and five event-based coding schemes measured the participants' language abilities and motor skills. Toddlers in the AC-O intervention used more developmentally appropriate motor movements and became more accurate when using the SGD to communicate than toddlers in the AC-I intervention. AAC strategies, interventionist/parent support, motor learning opportunities, and physical feedback may all contribute to this secondary benefit of AAC interventions that use devices.
A plea for developmental motor screening in Canadian infants.
Harris, Susan R
2016-04-01
Motor delays during infancy may be the first observable sign of a specific neurodevelopmental disability or of more global developmental delays. The earlier such disorders are identified, the sooner these infants can be referred for early intervention services. Although developmental motor screening is strongly recommended in other Western countries, Canada has yet to provide a developmental surveillance and screening program. Ideally, screening for motor disabilities should occur as part of the 12-month well-baby visit. In advance of that visit, parents can be provided with a parent-screening questionnaire that they can complete and bring with them to their 12-month office visit. Interpretation of the parent-completed questionnaire takes only 2 min to 3 min of the health care professional's time and, based on the results, can either reassure parents that their infant is developing typically, or lead to a referral for standardized motor screening or assessment by a paediatric physical or occupational therapist.
Ohman, Anna; Nilsson, Staffan; Lagerkvist, Anna-Lena; Beckung, Eva
2009-07-01
Recently it has been claimed that infants with congenital muscular torticollis (CMT) are at risk of a delay in early motor milestones. The aim of the present study was to investigate whether infants with CMT are indeed at risk in comparison with a control group of healthy infants. A second aim was to investigate whether the time spent in a prone position and plagiocephaly had any influence on motor development. Eighty-two infants with CMT (35 females and 47 males) were compared with 40 healthy infants (18 females and 22 males). Motor development was assessed with the Alberta Infant Motor scale (AIMS). Multiple regression showed that infants in the CMT group had a significantly lower AIMS score than the control group at 2 months (p=0.03) and 6 months of age (p=0.05). Infants who spent at least three occasions daily in a prone position when awake had significantly higher AIMS scores than infants who spent less time prone at 2 months (p=0.001), 6 months (p<0.001), and 10 months of age (p<0.001). The CMT group achieved early motor milestones significantly later than the control group until the age of 10 months, but the risk of delay seems to be more strongly associated with little or no time prone when awake than with CMT.
Hsue, Bih-Jen; Wang, Yun-Er; Chen, Yung-Jung
2014-09-01
The purposes of this study were to determine (1) movement patterns and strategies of children with mild to moderate developmental delay (DD) used to rise up and how they differ from those used by age-matched children with typical development (TD), (2) whether the movement patterns differ with age in children with DD, and (3) to determine the developmental sequences for the UE, AX and LE in children with DD and whether they are different from those used by children with TD. Sixty six children with TD and 31 children with DD aged two to six years were recruited. Peabody Developmental Motor Scale II (PDMS-2) was used to determine the motor performance level. The participants were recorded during rising for at least five repetitions. Two trained pediatric physical therapists viewed each video recording and classified the movement patterns of the upper extremities (UE), trunk/axial (AX) and lower extremities (LE) regions using descriptive categories developed by previous researchers. The DD and TD groups were further divided into four subgroups each using a one-year interval. The percentage of occurrence of the each UE, AX and LE movement was determined and compared across subgroups, and between each age-matched pair of TD and DD groups. The results demonstrated that the participants in the TD group clearly followed the proposed developmental sequence and the children with DD followed the developmental sequences but with different maturation speeds and greater variability, especially at the age of three to five years. The most common movement patterns used by the children in each of the DD subgroups were at least one developmental categorical pattern behind those used by the age-matched children with TD before five years old, except for the LE region. In the DD group, the movement patterns had moderate to high correlation with the child's motor performance level, indicating that the children with better motor performances used more developmentally advanced patterns in comparison with those with lower scores. However, besides motor maturity, numerous other intrinsic/extrinsic factors may affect the child's performance of this task. The information obtained in this study would assist therapists when working with the children with DD, so that they can provide individualized treatment rather than guiding all such children toward a single, mature pattern. Copyright © 2014 Elsevier Ltd. All rights reserved.
Guedeney, Antoine; Forhan, Anne; Larroque, Beatrice; de Agostini, Maria; Pingault, Jean-Baptiste; Heude, Barbara
2016-01-01
The aim of the study was to examine the relationship between social withdrawal behaviour at one year and motor and language milestones. One-year old children from the EDEN French population-based birth cohort study (Study on the pre- and postnatal determinants of the child's development and prospective health Birth Cohort Study) were included. Social withdrawal at one year was assessed by trained midwives using the Alarm Distress BaBy (ADBB) scale. Midwives concurrently examined infants' motor and language milestones. Parents reported on child's psychomotor and language milestones, during the interview with the midwife. After adjusting for potential confounding factors, social withdrawal behaviour was significantly associated with concurrent delays in motor and language milestones assessed by the midwife or the parents. Higher scores on social withdrawal behaviour as assessed with the ADBB were associated with delays in reaching language milestones, and to a lesser extent with lower motor ability scores. Taking the contribution of social withdrawal behaviour into account may help understand the unfolding of developmental difficulties in children.
Vision Problems and Reduced Reading Outcomes in Queensland Schoolchildren.
Hopkins, Shelley; Sampson, Geoff P; Hendicott, Peter L; Wood, Joanne M
2017-03-01
To assess the relationship between vision and reading outcomes in Indigenous and non-Indigenous schoolchildren to determine whether vision problems are associated with lower reading outcomes in these populations. Vision testing and reading assessments were performed on 508 Indigenous and non-Indigenous schoolchildren in Queensland, Australia divided into two age groups: Grades 1 and 2 (6-7 years of age) and Grades 6 and 7 (12-13 years of age). Vision parameters measured included cycloplegic refraction, near point of convergence, heterophoria, fusional vergence range, rapid automatized naming, and visual motor integration. The following vision conditions were then classified based on the vision findings: uncorrected hyperopia, convergence insufficiency, reduced rapid automatized naming, and delayed visual motor integration. Reading accuracy and reading comprehension were measured with the Neale reading test. The effect of uncorrected hyperopia, convergence insufficiency, reduced rapid automatized naming, and delayed visual motor integration on reading accuracy and reading comprehension were investigated with ANCOVAs. The ANCOVAs explained a significant proportion of variance in both reading accuracy and reading comprehension scores in both age groups, with 40% of the variation in reading accuracy and 33% of the variation in reading comprehension explained in the younger age group, and 27% and 10% of the variation in reading accuracy and reading comprehension, respectively, in the older age group. The vision parameters of visual motor integration and rapid automatized naming were significant predictors in all ANCOVAs (P < .01). The direction of the relationship was such that reduced reading results were explained by reduced visual motor integration and rapid automatized naming results. Both reduced rapid automatized naming and visual motor integration were associated with poorer reading outcomes in Indigenous and non-Indigenous children. This is an important finding given the recent emphasis placed on Indigenous children's reading skills and the fact that reduced rapid automatized naming and visual motor integration skills are more common in this group.
ERIC Educational Resources Information Center
Brashear, Allison; Mink, Jonathan W.; Hill, Deborah F.; Boggs, Niki; McCall, W. Vaughn; Stacy, Mark A.; Snively, Beverly; Light, Laney S.; Sweadner, Kathleen J.; Ozelius, Laurie J.; Morrison, Leslie
2012-01-01
We report new clinical features of delayed motor development, hypotonia, and ataxia in two young children with mutations (R756H and D923N) in the "ATP1A3" gene. In adults, mutations in "ATP1A3" cause rapid-onset dystonia-Parkinsonism (RDP, DYT12) with abrupt onset of fixed dystonia. The parents and children were examined and videotaped, and…
Follow-up study of children with cerebral coordination disturbance (CCD, Vojta).
Imamura, S; Sakuma, K; Takahashi, T
1983-01-01
713 children (from newborn to 12-month-old) with delayed motor development were carefully examined and classified into normal, very light cerebral coordination disturbance (CCD, Vojta), light CCD, moderate CCD, severe CCD, suspected cerebral palsy (CP) and other diseases at their first visit, and were followed up carefully. Finally, 89.0% of very light CCD, 71.4% of light CCD, 56.0% of moderate CCD and 30.0% of severe CCD developed into normal. 59.5% of moderate CCD and 45.5% of severe CCD among children who were given Vojta's physiotherapy developed into normal. The classification of cases with delayed motor development into very light, light, moderate and severe CCD based on the extent of abnormality in their postural reflexes is useful and well correlated with their prognosis. Treatment by Vojta's method seems to be efficient and helpful for young children with delayed motor development.
Vocal effort modulates the motor planning of short speech structures
NASA Astrophysics Data System (ADS)
Taitz, Alan; Shalom, Diego E.; Trevisan, Marcos A.
2018-05-01
Speech requires programming the sequence of vocal gestures that produce the sounds of words. Here we explored the timing of this program by asking our participants to pronounce, as quickly as possible, a sequence of consonant-consonant-vowel (CCV) structures appearing on screen. We measured the delay between visual presentation and voice onset. In the case of plosive consonants, produced by sharp and well defined movements of the vocal tract, we found that delays are positively correlated with the duration of the transition between consonants. We then used a battery of statistical tests and mathematical vocal models to show that delays reflect the motor planning of CCVs and transitions are proxy indicators of the vocal effort needed to produce them. These results support that the effort required to produce the sequence of movements of a vocal gesture modulates the onset of the motor plan.
NASA Technical Reports Server (NTRS)
1992-01-01
Even though the executive branch has proposed terminating the Advanced Solid Rocket Motor (ASRM) program, NASA is proceeding with all construction activity planned for FY 1992 to avoid schedule slippage if the program is reinstated by Congress. However, NASA could delay some construction activities for at least a few months without affecting the current launch data schedule. For example, NASA could delay Yellow Creek's motor storage and dock projects, Stennis' dock project, and Kennedy's rotation processing and surge facility and dock projects. Starting all construction activities as originally planned could result in unnecessarily incurring additional costs and termination liability if the funding for FY 1993 is not provided. If Congress decides to continue the program, construction could still be completed in time to avoid schedule slippage.
Spittle, Alicia J; Lee, Katherine J; Spencer-Smith, Megan; Lorefice, Lucy E; Anderson, Peter J; Doyle, Lex W
2015-01-01
The primary aim of this study was to investigate the accuracy of the Alberta Infant Motor Scale (AIMS) and Neuro-Sensory Motor Developmental Assessment (NSMDA) over the first year of life for predicting motor impairment at 4 years in preterm children. The secondary aims were to assess the predictive value of serial assessments over the first year and when using a combination of these two assessment tools in follow-up. Children born <30 weeks' gestation were prospectively recruited and assessed at 4, 8 and 12 months' corrected age using the AIMS and NSMDA. At 4 years' corrected age children were assessed for cerebral palsy (CP) and motor impairment using the Movement Assessment Battery for Children 2nd-edition (MABC-2). We calculated accuracy of the AIMS and NSMDA for predicting CP and MABC-2 scores ≤15th (at-risk of motor difficulty) and ≤5th centile (significant motor difficulty) for each test (AIMS and NSMDA) at 4, 8 and 12 months, for delay on one, two or all three of the time points over the first year, and finally for delay on both tests at each time point. Accuracy for predicting motor impairment was good for each test at each age, although false positives were common. Motor impairment on the MABC-2 (scores ≤5th and ≤15th) was most accurately predicted by the AIMS at 4 months, whereas CP was most accurately predicted by the NSMDA at 12 months. In regards to serial assessments, the likelihood ratio for motor impairment increased with the number of delayed assessments. When combining both the NSMDA and AIMS the best accuracy was achieved at 4 months, although results were similar at 8 and 12 months. Motor development during the first year of life in preterm infants assessed with the AIMS and NSMDA is predictive of later motor impairment at preschool age. However, false positives are common and therefore it is beneficial to follow-up children at high risk of motor impairment at more than one time point, or to use a combination of assessment tools. ACTR.org.au ACTRN12606000252516.
Dumas, Helene M; Fragala-Pinkham, Maria A; Rosen, Elaine L; Lombard, Kelly A; Farrell, Colleen
2015-11-01
Although preliminary studies have established a good psychometric foundation for the Pediatric Evaluation of Disability Inventory Computer Adaptive Test (PEDI-CAT) for a broad population of youth with disabilities, additional validation is warranted for young children. The study objective was to (1) examine concurrent validity, (2) evaluate the ability to identify motor delay, and (3) assess responsiveness of the PEDI-CAT Mobility domain and the Alberta Infant Motor Scale (AIMS). Fifty-three infants and young children (<18 months of age) admitted to a pediatric postacute care hospital and referred for a physical therapist examination were included. The PEDI-CAT Mobility domain and the AIMS were completed during the initial physical therapist examination, at 3-month intervals, and at discharge. A Spearman rank correlation coefficient was used to examine concurrent validity. A chi-square analysis of age percentile scores was used to examine the identification of motor delay. Mean score differences from initial assessment to final assessment were analyzed to evaluate responsiveness. A statistically significant, fair association (rs=.313) was found for the 2 assessments. There was no significant difference in motor delay identification between tests; however, the AIMS had a higher percentage of infants with scores at or below the fifth percentile. Participants showed significant changes from initial testing to final testing on the PEDI-CAT Mobility domain and the AIMS. This study included only young patients (<18 months of age) in a pediatric postacute hospital; therefore, the generalizability is limited to this population. The PEDI-CAT Mobility domain is a valid measure for young children admitted to postacute care and is responsive to changes in motor skills. However, further item and standardization development is needed before the PEDI-CAT is used confidently to identify motor delay in children <18 months of age. © 2015 American Physical Therapy Association.
Jodra, Adrián; Soto, Fernando; Lopez-Ramirez, Miguel Angel; Escarpa, Alberto; Wang, Joseph
2016-09-27
The delayed ignition and propulsion of catalytic tubular microrockets based on fuel-induced chemical dealloying of an inner alloy layer is demonstrated. Such timed delay motor activation process relies on the preferential gradual corrosion of Cu from the inner Pt-Cu alloy layer by the peroxide fuel. The dealloying process exposes the catalytically active Pt surface to the chemical fuel, thus igniting the microrockets propulsion autonomously without external stimuli. The delayed motor activation relies solely on the intrinsic material properties of the micromotor and the surrounding solution. The motor activation time can thus be tailored by controlling the composition of the Cu-Pt alloy layer and the surrounding media, including the fuel and NaCl concentrations and local pH. Speed acceleration in a given fuel solution is also demonstrated and reflects the continuous exposure of the Pt surface. The versatile "blastoff" control of these chemical microrockets holds considerable promise for designing self-regulated chemically-powered nanomachines with a "built-in" activation mechanism for diverse tasks.
Correlation Between Mothers' Depression and Developmental Delay in Infants Aged 6-18 Months.
Vameghi, Roshanak; Amir Ali Akbari, Sedigheh; Sajjadi, Homeira; Sajedi, Firoozeh; Alavimajd, Hamid
2015-08-23
Regarding the importance of children's developmental status and various factors that delay their development, this study was conducted to examine the correlation between mothers' depression levels and the developmental delay in infants. This descriptive study was performed on 1053 mothers and their infants' age 6 to18 month-old in medical centers affiliated with Shahid Beheshti University of Medical Sciences, Iran, in 2014-2015. The participants were selected through multi-stage random sampling. The following instruments were used in this study: A demographic and obstetric specification questionnaire, infant specification questionnaire, the Beck Depression Inventory, and the Ages and Stages Questionnaire to determine the status of the children's development. The data were analyzed using SPSS19 software, Mann-Whitney; independent T-test and logistic-Regression tests were used. The results showed that 491 mothers (46.7%) suffered mild to extremely severe depression. The delay in infant development was 11.8%. The Mann-Whitney test showed a correlation between mothers' depression levels and developmental delay in infants (P=0.001). Moreover, there was a significant correlation between mothers' depression and developmental delays in gross-motor and problem-solving skills (P<0/05). In logistic model age of infants showed significant correlation with developmental delay (P=0.004 OR=1.07), but unwanted pregnancy, gender of infants, type of delivery and socioeconomic status had no correlation with developmental delay. Given the correlation between mothers' depression and infant development, it is recommended to screen mothers for depression in order to perform early interventions in developmental delay.
Development in Children with Achondroplasia: A Prospective Clinical Cohort Study
ERIC Educational Resources Information Center
Ireland, Penelope J.; Donaghey, Samantha; McGill, James; Zankl, Andreas; Ware, Robert S.; Pacey, Verity; Ault, Jenny; Savarirayan, Ravi; Sillence, David; Thompson, Elizabeth; Townshend, Sharron; Johnston, Leanne M.
2012-01-01
Aim: Achondroplasia is characterized by delays in the development of communication and motor skills. While previously reported developmental profiles exist across gross motor, fine motor, feeding, and communication skills, there has been no prospective study of development across multiple areas simultaneously. Method: This Australasian…
ERIC Educational Resources Information Center
Valentini, Nadia Cristina; Pierosan, Licia; Rudisill, Mary E.; Hastie, Peter A.
2017-01-01
Background: Fundamental motor skill proficiency is essential for engagement in sports and physical play and in the development of a healthy lifestyle. Children with motor delays (with and without disabilities) lack the motor skills necessary to participate in games and physical activity, and tend to spend more time as onlookers than do their…
Oscillatory EEG signatures of postponed somatosensory decisions.
Ludwig, Simon; Herding, Jan; Blankenburg, Felix
2018-05-02
In recent electroencephalography (EEG) studies, the vibrotactile frequency comparison task has been used to study oscillatory signatures of perceptual decision making in humans, revealing a choice-selective modulation of premotor upper beta band power shortly before decisions were reported. Importantly, these studies focused on decisions that were (1) indicated immediately after stimulus presentation, and (2) for which a direct motor mapping was provided. Here, we investigated whether the putative beta band choice signal also extends to postponed decisions, and how such a decision signal might be influenced by a response mapping that is dissociated from a specific motor command. We recorded EEG data in two separate experiments, both employing the vibrotactile frequency comparison task with delayed decision reports. In the first experiment, delayed choices were associated with a fixed motor mapping, whereas in the second experiment, choices were mapped onto a color code concealing a specific motor response until the end of the delay phase. In between stimulus presentations, as well as after the second stimulus, prefrontal beta band power indexed stimulus information held in working memory. Beta band power also encoded choices during the response delay, notably, in different cortical areas depending on the provided response mapping. In particular, when decisions were associated with a specific motor mapping, choices were represented in premotor cortices, whereas the color mapping resulted in a choice-selective modulation of beta band power in parietal cortices. Together, our findings imply that how a choice is expressed (i.e., the decision consequence) determines where in the cortical sensorimotor hierarchy an according decision signal is processed. © 2018 Wiley Periodicals, Inc.
Wojtecki, Lars; Storzer, Lena; Schnitzler, Alfons
2016-01-01
Abstract Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a widely used treatment for the motor symptoms of Parkinson’s disease (PD). DBS or pharmacological treatment is believed to modulate the tendency to, or reverse, impulse control disorders. Several brain areas involved in impulsivity and reward valuation, such as the prefrontal cortex and striatum, are linked to the STN, and activity in these areas might be affected by STN-DBS. To investigate the effect of STN-DBS on one type of impulsive decision-making—delay discounting (i.e., the devaluation of reward with increasing delay until its receipt)—we tested 40 human PD patients receiving STN-DBS treatment and medication for at least 3 months. Patients were pseudo-randomly assigned to one of four groups to test the effects of DBS on/off states as well as medication on/off states on delay discounting. The delay-discounting task consisted of a series of choices among a smaller. sooner or a larger, later monetary reward. Despite considerable effects of DBS on motor performance, patients receiving STN-DBS did not choose more or less impulsively compared with those in the off-DBS group, as well as when controlling for risk attitude. Although null results have to be interpreted with caution, our findings are of significance to other researchers studying the effects of PD treatment on impulsive decision-making, and they are of clinical relevance for determining the therapeutic benefits of using STN-DBS. PMID:27257622
Yamamoto, Kosuke; Kawabata, Hideaki
2014-12-01
We ordinarily speak fluently, even though our perceptions of our own voices are disrupted by various environmental acoustic properties. The underlying mechanism of speech is supposed to monitor the temporal relationship between speech production and the perception of auditory feedback, as suggested by a reduction in speech fluency when the speaker is exposed to delayed auditory feedback (DAF). While many studies have reported that DAF influences speech motor processing, its relationship to the temporal tuning effect on multimodal integration, or temporal recalibration, remains unclear. We investigated whether the temporal aspects of both speech perception and production change due to adaptation to the delay between the motor sensation and the auditory feedback. This is a well-used method of inducing temporal recalibration. Participants continually read texts with specific DAF times in order to adapt to the delay. Then, they judged the simultaneity between the motor sensation and the vocal feedback. We measured the rates of speech with which participants read the texts in both the exposure and re-exposure phases. We found that exposure to DAF changed both the rate of speech and the simultaneity judgment, that is, participants' speech gained fluency. Although we also found that a delay of 200 ms appeared to be most effective in decreasing the rates of speech and shifting the distribution on the simultaneity judgment, there was no correlation between these measurements. These findings suggest that both speech motor production and multimodal perception are adaptive to temporal lag but are processed in distinct ways.
Oehler, J M; Thompson, R J; Goldstein, R F; Gustafson, K E; Brazy, J E
1996-01-01
To explore the relationship between developmental outcome and behavior of very-low-birth-weight (VLBW) infants (< or = 1500 g) at high and low biologic risk. Descriptive, ex post facto. Clinic for follow-up of infants at high risk. A convenience sample of 102 VLBW infants, free of major congenital anomalies, who completed 6-, 15-, and 24-month developmental testing and who were part of a larger study of 274 VLBW infants. Bayley Scales of Infant Development. Infants at high biologic risk, versus infants at low biologic risk, were less attentive and active through age 15 months and were less adept in gross and fine motor skills through age 24 months (p < or = 0.05-0.001). Infants with continuous delay were less attentive than infants with no delay or late delay through age 24 months, less active through age 15 months (p < or = 0.001-0.001), and less skilled in motor behaviors through age 24 months (p < or = 0.05-0.001). Infants at high biologic risk and infants with developmental delays are less attentive, less active, and less skilled in motor tasks during the first 15-24 months of life, suggesting an association between biologic risk and behavior and developmental delay and behavior.
Visual-Motor Integration in Children with Prader-Willi Syndrome
ERIC Educational Resources Information Center
Lo, S. T.; Collin, P. J. L.; Hokken-Koelega, A. C. S.
2015-01-01
Background: Prader-Willi syndrome (PWS) is characterised by hypotonia, hypogonadism, short stature, obesity, behavioural problems, intellectual disability, and delay in language, social and motor development. There is very limited knowledge about visual-motor integration in children with PWS. Method: Seventy-three children with PWS aged 7-17 years…
Fox, Susan H; Katzenschlager, Regina; Lim, Shen-Yang; Ravina, Bernard; Seppi, Klaus; Coelho, Miguel; Poewe, Werner; Rascol, Olivier; Goetz, Christopher G; Sampaio, Cristina
2011-10-01
The objective was to update previous evidence-based medicine reviews of treatments for motor symptoms of Parkinson's disease published between 2002 and 2005. Level I (randomized, controlled trial) reports of pharmacological, surgical, and nonpharmacological interventions for the motor symptoms of Parkinson's disease between January 2004 (2001 for nonpharmacological) and December 2010 were reviewed. Criteria for inclusion, clinical indications, ranking, efficacy conclusions, safety, and implications for clinical practice followed the original program outline and adhered to evidence-based medicine methodology. Sixty-eight new studies qualified for review. Piribedil, pramipexole, pramipexole extended release, ropinirole, rotigotine, cabergoline, and pergolide were all efficacious as symptomatic monotherapy; ropinirole prolonged release was likely efficacious. All were efficacious as a symptomatic adjunct except pramipexole extended release, for which there is insufficient evidence. For prevention/delay of motor fluctuations, pramipexole and cabergoline were efficacious, and for prevention/delay of dyskinesia, pramipexole, ropinirole, ropinirole prolonged release, and cabergoline were all efficacious, whereas pergolide was likely efficacious. Duodenal infusion of levodopa was likely efficacious in the treatment of motor complications, but the practice implication is investigational. Entacapone was nonefficacious as a symptomatic adjunct to levodopa in nonfluctuating patients and nonefficacious in the prevention/delay of motor complications. Rasagiline conclusions were revised to efficacious as a symptomatic adjunct, and as treatment for motor fluctuations. Clozapine was efficacious in dyskinesia, but because of safety issues, the practice implication is possibly useful. Bilateral subthalamic nucleus deep brain stimulation, bilateral globus pallidus stimulation, and unilateral pallidotomy were updated to efficacious for motor complications. Physical therapy was revised to likely efficacious as symptomatic adjunct therapy. This evidence-based medicine review updates the field and highlights gaps for research. Copyright © 2011 Movement Disorder Society.
Borich, Michael R; Brown, Katlyn E; Boyd, Lara A
2014-07-01
Imaging advances allow investigation of white matter after stroke; a growing body of literature has shown links between diffusion-based measures of white matter microstructure and motor function. However, the relationship between these measures and motor skill learning has not been considered in individuals with stroke. The aim of this study was to investigate the relationships between posttraining white matter microstructural status, as indexed by diffusion tensor imaging within the ipsilesional posterior limb of the internal capsule (PLIC), and learning of a novel motor task in individuals with chronic stroke. A total of 13 participants with chronic stroke and 9 healthy controls practiced a visuomotor pursuit task across 5 sessions. Change in motor behavior associated with learning was indexed by comparing baseline performance with a delayed retention test. Fractional anisotropy (FA) indexed at the retention test was the primary diffusion tensor imaging-derived outcome measure. In individuals with chronic stroke, we discovered an association between posttraining ipsilesional PLIC FA and the magnitude of change associated with motor learning; hierarchical multiple linear regression analyses revealed that the combination of age, time poststroke, and ipsilesional PLIC FA posttraining was associated with motor learning-related change (R = 0.649; P = 0.02). Baseline motor performance was not related to posttraining ipsilesional PLIC FA. Diffusion characteristics of posttraining ipsilesional PLIC were linked to the magnitude of change in skilled motor behavior. These results imply that the microstructural properties of regional white matter indexed by diffusion behavior may be an important factor to consider when determining potential response to rehabilitation in persons with stroke. (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A59) for more insights from the authors.
Dejean, Cyril; Nadjar, Agnes; Le Moine, Catherine; Bioulac, Bernard; Gross, Christian E; Boraud, Thomas
2012-05-01
It is well established that parkinsonian syndrome is associated with alterations of neuronal activity temporal pattern basal ganglia (BG). An increase in synchronized oscillations has been observed in different BG nuclei in Parkinson's disease patients as well as animal models such as 6-hydroxydopamine treated rats. We recently demonstrated that this increase in oscillatory synchronization is present during high-voltage spindles (HVS) probably underpinned by the disorganization of cortex-BG interactions. Here we investigated the time course of both oscillatory and motor alterations. For that purpose we performed daily simultaneous recordings of neuronal activity in motor cortex, striatum and substantia nigra pars reticulata (SNr), before and after 6-hydroxydopamine lesion in awake rats. After a brief non-dopamine-specific desynchronization, oscillatory activity first increased during HVS followed by progressive motor impairment and the shortening of SNr activation delay. While the oscillatory firing increase reflects dopaminergic depletion, response alteration in SNr neurons is closely related to motor symptom. Copyright © 2012 Elsevier Inc. All rights reserved.
De Kegel, A; Peersman, W; Onderbeke, K; Baetens, T; Dhooge, I; Van Waelvelde, H
2013-03-01
The Alberta Infant Motor Scales (AIMS) is a reliable and valid assessment tool to evaluate the motor performance from birth to independent walking. This study aimed to determine whether the Canadian reference values on the AIMS from 1990-1992 are still useful tor Flemish infants, assessed in 2007-2010. Additionally, the association between motor performance and sleep and play positioning will be determined. A total of 270 Flemish infants between 0 and 18 months, recruited by formal day care services, were assessed with the AIMS by four trained physiotherapists. Information about sleep and play positioning was collected by mean of a questionnaire. Flemish infants perform significantly lower on the AIMS compared with the reference values (P < 0.001). Especially, infants from the age groups of 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 and of 15 months showed significantly lower scores. From the information collected by parental questionnaires, the lower motor scores seem to be related to the sleep position, the amount of play time in prone, in supine and in a sitting device. Infants who are exposed often to frequently to prone while awake showed a significant higher motor performance than infants who are exposed less to prone (<6 m: P = 0.002; >6 m: P = 0.013). Infants who are placed often to frequently in a sitting device in the first 6 months of life (P = 0.010) and in supine after 6 months (P = 0.001) performed significantly lower than those who are placed less in it. Flemish infants recruited by formal day care services, show significantly lower motor scores than the Canadian norm population. New reference values should be established for the AIMS for accurate identification of infants at risk. Prevention of sudden infant death syndrome by promoting supine sleep position should go together with promotion of tummy time when awake and avoiding to spent too much time in sitting devices when awake. © 2012 Blackwell Publishing Ltd.
Haseba, Sumihito; Sakakima, Harutoshi; Nakao, Syuhei; Ohira, Misaki; Yanagi, Shigefumi; Imoto, Yutaka; Yoshida, Akira; Shimodozono, Megumi
2018-07-01
We analysed the gross motor recovery of infants and toddlers with cyanotic and acyanotic congenital heart disease (CHD) who received early postoperative physical therapy to see whether there was any difference in the duration to recovery. This study retrospectively evaluated the influence of early physical therapy on postoperative gross motor outcomes of patients with CHD. The gross motor ability of patients with cyanotic (n = 25, average age: 376.4 days) and acyanotic (n = 26, average age: 164.5 days) CHD was evaluated using our newly developed nine-grade mobility assessment scale. Physical therapy was started at an average of five days after surgery, during which each patient's gross motor ability was significantly decreased compared with the preoperative level. Patients (who received early postoperative physical therapy) with cyanotic (88.0%) and acyanotic CHD (96.2%) showed improved preoperative mobility grades by the time of hospital discharge. However, patients with cyanotic CHD had a significantly prolonged recovery period compared to those with acyanotic CHD (p < .01). The postoperative recovery period to preoperative mobility grade was significantly correlated with pre-, intra-, and postoperative factors. Our findings suggested that infants with cyanotic CHD are likely at a greater risk of gross motor delays, the recovery of which might differ between infants with cyanotic and acyanotic CHD after cardiac surgery. Early postoperative physical therapy promotes gross motor recovery. Implications of Rehabilitation Infants and toddlers with cyanotic congenital heart disease are likely at greater risk of gross motor delays and have a prolonged recovery period of gross motor ability compared to those with acyanotic congenital heart disease. Early postoperative physical therapy for patients with congenital heart disease after cardiac surgery promoted gross motor recovery. The postoperative recovery period to preoperative mobility grade was affected by pre-, intra-, and postoperative factors. Rehabilitation experts should consider the risk of gross motor delays of patients with congenital heart disease after cardiac surgery and the early postoperative physical therapy to promote their gross motor recovery.
2012-10-01
bone loss. At present, there is no practical treatment to delay or prevent bone loss in individuals with motor-complete SCI. Hypogonadism is common...TERMS- Spinal cord injuries, Nandrolone, Androgens, Hypogonadism , Bone loss, Wnt signaling 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...At present, there is no practical treatment to delay or prevent bone loss in individuals with motor-complete SCI. Hypogonadism is common in men
Early Oral-Motor Interventions for Pediatric Feeding Problems: What, When and How
ERIC Educational Resources Information Center
Manno, Cecilia J.; Fox, Catherine; Eicher, Peggy S.; Kerwin, MaryLouise E.
2005-01-01
Children with developmental delays often have feeding difficulties resulting from oral-motor problems. Based on both clinical experience and a review of published studies, oral-motor interventions have been shown to be effective in improving the oral function of preterm infants and children with neuromotor disorders, such as cerebral palsy.…
[Fine motor and self-development assessment of preschool children with epilepsy].
Lendraĭtene, E B; Petrushiavichene, D P; Andronavichiute, Iu P; Vapzhaĭtite, L A; Krishchiunas, A I
Objective. To assess fine motor and self-care skills in preschool children with epilepsy. Material and methods. The study included 22 children, 12 girls (54.5%) and 10 boys (45.5%), mean age 41.5±19.9 months. Children were tested with DISC and Munchen tests. Results and conclusion. Among preschool children with epilepsy, 50% have impaired and 22.7% - delayed development of fine motor skills. The mean coefficient of fine motor skills was 59.0±28.1. Among preschool children with epilepsy, 36.4% have impaired and 45.5% - delayed development of self-development skills. The coefficient of self-care skills was 57.8±26.1. DISC and Munchen tests for evaluation of small motor and self-care skills are equivalent for assessment in children with epilepsy (p<0.001). Self-care skills were more often disturbed (p<0.05) among children older than 3 years and among boys. Children with psychiatric and movement disorders (72.7%) more frequently have both impaired self-care and fine motor skills (p<0.05).
MacDonald, Megan; Lord, Catherine; Ulrich, Dale
2013-11-01
To determine the relationship of motor skills and the core behaviors of young children with autism, social affective skills and repetitive behaviors, as indicated through the calibrated autism severity scores. The univariate GLM tested the relationship of gross and fine motor skills measured by the gross motor scale and the fine motor scale of the MSEL with autism symptomology as measured by calibrated autism severity scores. Majority of the data collected took place in an autism clinic. A cohort of 159 young children with ASD (n=110), PDD-NOS (n=26) and non-ASD (developmental delay, n=23) between the ages of 12-33 months were recruited from early intervention studies and clinical referrals. Children with non-ASD (developmental delay) were included in this study to provide a range of scores indicted through calibrated autism severity. Not applicable. The primary outcome measures in this study were calibrated autism severity scores. Fine motor skills and gross motor skills significantly predicted calibrated autism severity (p < 0.01). Children with weaker motor skills displayed higher levels of calibrated autism severity. The fine and gross motor skills are significantly related to autism symptomology. There is more to focus on and new avenues to explore in the realm of discovering how to implement early intervention and rehabilitation for young children with autism and motor skills need to be a part of the discussion.
Guedeney, Antoine; Forhan, Anne; de Agostini, Maria; Pingault, Jean-Baptiste; Heude, Barbara
2016-01-01
Objective The aim of the study was to examine the relationship between social withdrawal behaviour at one year and motor and language milestones. Materials and Methods One-year old children from the EDEN French population-based birth cohort study (Study on the pre- and postnatal determinants of the child’s development and prospective health Birth Cohort Study) were included. Social withdrawal at one year was assessed by trained midwives using the Alarm Distress BaBy (ADBB) scale. Midwives concurrently examined infants’ motor and language milestones. Parents reported on child’s psychomotor and language milestones, during the interview with the midwife. Results After adjusting for potential confounding factors, social withdrawal behaviour was significantly associated with concurrent delays in motor and language milestones assessed by the midwife or the parents. Discussion Higher scores on social withdrawal behaviour as assessed with the ADBB were associated with delays in reaching language milestones, and to a lesser extent with lower motor ability scores. Taking the contribution of social withdrawal behaviour into account may help understand the unfolding of developmental difficulties in children. PMID:27391482
Isaacs, K.M.; Augusta, M.; MacNeil, L.K.; Mostofsky, S.H.
2011-01-01
Objective: Attention-deficit/hyperactivity disorder (ADHD) is a childhood-onset behavioral diagnosis in which children often fail to meet age norms in development of motor control, particularly timed repetitive and sequential movements, motor overflow, and balance. The neural substrate of this motor delay may include mechanisms of synaptic inhibition in or adjacent to the motor cortex. The primary objective of this study was to determine whether transcranial magnetic stimulation (TMS)–evoked measures, particularly short interval cortical inhibition (SICI), in motor cortex correlate with the presence and severity of ADHD in childhood as well as with commonly observed delays in motor control. Methods: In this case-control study, behavioral ratings, motor skills, and motor cortex physiology were evaluated in 49 children with ADHD (mean age 10.6 years, 30 boys) and 49 typically developing children (mean age 10.5 years, 30 boys), all right-handed, aged 8–12 years. Motor skills were evaluated with the Physical and Neurological Examination for Subtle Signs (PANESS) and the Motor Assessment Battery for Children version 2. SICI and other physiologic measures were obtained using TMS in the left motor cortex. Results: In children with ADHD, mean SICI was reduced by 40% (p < 0.0001) and less SICI correlated with higher ADHD severity (r = −0.52; p = 0.002). Mean PANESS motor development scores were 59% worse in children with ADHD (p < 0.0001). Worse PANESS scores correlated modestly with less SICI (r = −.30; p = 0.01). Conclusion: Reduced TMS-evoked SICI correlates with ADHD diagnosis and symptom severity and also reflects motor skill development in children. PMID:21321335
Effects of maternal separation on the neurobehavioral development of newborn Wistar rats.
Farkas, Jozsef; Reglodi, Dora; Gaszner, Balazs; Szogyi, Donat; Horvath, Gabor; Lubics, Andrea; Tamas, Andrea; Frank, Falko; Besirevic, Dario; Kiss, Peter
2009-05-29
Animal models of neonatal stress, like maternal separation, may provide important correlation with human stress-related disorders. Early maternal deprivation has been shown to cause several short- and long-term neurochemical and behavioral deficits. Little is known about the early neurobehavioral development after postnatal stress. The aim of the present study was to investigate the development of reflexes and motor coordination in male and female pups subjected to maternal deprivation. Pups were removed from their mothers from postnatal day 1-14, for 3h daily. Somatic development (weight gain, eye opening, ear unfolding, incisor eruption) and reflex development was tested during the first 3 weeks. The appearance of the following reflexes was investigated: crossed extensor, grasping, placing, gait, righting and sensory reflexes, and negative geotaxis. Timely performance of negative geotaxis, righting and gait were also tested daily during the first 3 weeks. Motor coordination and open-field tests were performed on postnatal weeks 3-5 (rotarod, elevated grid-walk, footfault, rope suspension, inclined board and walk initiation tests). The results revealed that a 3-h-long daily maternal separation did not lead to a marked delay or enhancement in reflex development and motor coordination. A subtle enhancement was observed in the appearance of hindlimb grasp and gait reflexes, and a better performance in footfault test in male rats suffering from maternal deprivation. In contrast, female maternally deprived (MD) rats displayed a slight delay in forelimb grasp and air righting reflex appearance, and surface righting performance. Open-field activity was not changed in maternally deprived rats. In summary, our present observations indicate that maternal deprivation does not induce drastic changes in early neurodevelopment, therefore, further research is needed to determine the onset of behavioral alterations in subject with maternal deprivation history. Gender differences described in this study could help to understand how gender-specific differences in early life experience-induced stress-related disorders appear in adult life.
Transfer of learned perception of sensorimotor simultaneity.
Pesavento, Michael J; Schlag, John
2006-10-01
Synchronizing a motor response to a predictable sensory stimulus, like a periodic flash or click, relies on feedback (somesthetic, auditory, visual, or other) from the motor response. Practically, this results in a small (<50 ms) asynchrony in which the motor response leads the sensory event. Here we show that the perceived simultaneity in a coincidence-anticipation task (line crossing) is affected by changing the perceived simultaneity in a different task (pacing). In the pace task, human subjects were instructed to press a key in perfect synchrony with a red square flashed every second. In training sessions, feedback was provided by flashing a blue square with each key press, below the red square. There were two types of training pace sessions: one in which the feedback was provided with no delay, the other (adapting), in which the feedback was progressively delayed (up to 100 ms). Subjects' asynchrony was unchanged in the first case, but it was significantly increased in the pace task with delay. In the coincidence-anticipation task, a horizontally moving vertical bar crossed a vertical line in the middle of a screen. Subjects were instructed to press a key exactly when the bar crossed the line. They were given no feedback on their performance. Asynchrony on the line-crossing task was tested after the training pace task with feedback. We found that this asynchrony to be significantly increased even though there never was any feedback on the coincidence-anticipation task itself. Subjects were not aware that their sensorimotor asynchrony had been lengthened (sometimes doubled). We conclude that perception of simultaneity in a sensorimotor task is learned. If this perception is caused by coincidence of signals in the brain, the timing of these signals depends on something-acquired by experience-more adaptable than physiological latencies.
Lajoie, Guillaume; Krouchev, Nedialko I; Kalaska, John F; Fairhall, Adrienne L; Fetz, Eberhard E
2017-02-01
Experiments show that spike-triggered stimulation performed with Bidirectional Brain-Computer-Interfaces (BBCI) can artificially strengthen connections between separate neural sites in motor cortex (MC). When spikes from a neuron recorded at one MC site trigger stimuli at a second target site after a fixed delay, the connections between sites eventually strengthen. It was also found that effective spike-stimulus delays are consistent with experimentally derived spike-timing-dependent plasticity (STDP) rules, suggesting that STDP is key to drive these changes. However, the impact of STDP at the level of circuits, and the mechanisms governing its modification with neural implants remain poorly understood. The present work describes a recurrent neural network model with probabilistic spiking mechanisms and plastic synapses capable of capturing both neural and synaptic activity statistics relevant to BBCI conditioning protocols. Our model successfully reproduces key experimental results, both established and new, and offers mechanistic insights into spike-triggered conditioning. Using analytical calculations and numerical simulations, we derive optimal operational regimes for BBCIs, and formulate predictions concerning the efficacy of spike-triggered conditioning in different regimes of cortical activity.
Lajoie, Guillaume; Kalaska, John F.; Fairhall, Adrienne L.; Fetz, Eberhard E.
2017-01-01
Experiments show that spike-triggered stimulation performed with Bidirectional Brain-Computer-Interfaces (BBCI) can artificially strengthen connections between separate neural sites in motor cortex (MC). When spikes from a neuron recorded at one MC site trigger stimuli at a second target site after a fixed delay, the connections between sites eventually strengthen. It was also found that effective spike-stimulus delays are consistent with experimentally derived spike-timing-dependent plasticity (STDP) rules, suggesting that STDP is key to drive these changes. However, the impact of STDP at the level of circuits, and the mechanisms governing its modification with neural implants remain poorly understood. The present work describes a recurrent neural network model with probabilistic spiking mechanisms and plastic synapses capable of capturing both neural and synaptic activity statistics relevant to BBCI conditioning protocols. Our model successfully reproduces key experimental results, both established and new, and offers mechanistic insights into spike-triggered conditioning. Using analytical calculations and numerical simulations, we derive optimal operational regimes for BBCIs, and formulate predictions concerning the efficacy of spike-triggered conditioning in different regimes of cortical activity. PMID:28151957
Neuromotor outcomes at school age after extremely low birth weight: early detection of subtle signs.
Gidley Larson, Jennifer C; Baron, Ida Sue; Erickson, Kristine; Ahronovich, Margot D; Baker, Robin; Litman, Fern R
2011-01-01
Motor impairments are prevalent in children born at extremely low birth weight (ELBW; <1,000 g). Rarely studied are subtle motor deficits that indicate dysfunction or delay in neural systems critical for optimal cognitive, academic, and behavioral function. We aimed to examine quantifiable signs of subtle neuromotor dysfunction in an early school-aged ELBW cohort that coincidentally had age-appropriate cognition and design copying. We studied 97 participants born between 1998 and 2001; 74 ELBW (6.7 years ± 0.75) compared with 23 term-born (6.6 years ± 0.29). Neuromotor outcomes were assessed using the Physical and Neurological Examination of Subtle Signs-Revised, and measures of dexterity/coordination and visual-motor integration. ELBW participants performed worse than term-born on design-copying and dexterity, were age-appropriate compared to normative data, and had slower timed movements and more subtle overflow movements. Those ELBW born <26 weeks performed most poorly compared with those born 26-34 weeks and term-born. Subtle motor dysfunctions are detectable and quantifiable in ELBW children by school age, even in the presence of average cognition. Early age assessment of incoordination, motor speed, and overflow movements should aid initiation of timely therapies to prepare at-risk ELBW children for subsequent school entry and facilitate design of optimal early treatment strategies. (c) 2010 APA, all rights reserved.
Propagation Modeling and Analysis of Molecular Motors in Molecular Communication.
Chahibi, Youssef; Akyildiz, Ian F; Balasingham, Ilangko
2016-12-01
Molecular motor networks (MMNs) are networks constructed from molecular motors to enable nanomachines to perform coordinated tasks of sensing, computing, and actuation at the nano- and micro- scales. Living cells are naturally enabled with this same mechanism to establish point-to-point communication between different locations inside the cell. Similar to a railway system, the cytoplasm contains an intricate infrastructure of tracks, named microtubules, interconnecting different internal components of the cell. Motor proteins, such as kinesin and dynein, are able to travel along these tracks directionally, carrying with them large molecules that would otherwise be unreliably transported across the cytoplasm using free diffusion. Molecular communication has been previously proposed for the design and study of MMNs. However, the topological aspects of MMNs, including the effects of branches, have been ignored in the existing studies. In this paper, a physical end-to-end model for MMNs is developed, considering the location of the transmitter node, the network topology, and the receiver nodes. The end-to-end gain and group delay are considered as the performance measures, and analytical expressions for them are derived. The analytical model is validated by Monte-Carlo simulations and the performance of MMNs is analyzed numerically. It is shown that, depending on their nature and position, MMN nodes create impedance effects that are critical for the overall performance. This model could be applied to assist the design of artificial MMNs and to study cargo transport in neurofilaments to elucidate brain diseases related to microtubule jamming.
Spittle, Alicia J.; Lee, Katherine J.; Spencer-Smith, Megan; Lorefice, Lucy E.; Anderson, Peter J.; Doyle, Lex W.
2015-01-01
Aim The primary aim of this study was to investigate the accuracy of the Alberta Infant Motor Scale (AIMS) and Neuro-Sensory Motor Developmental Assessment (NSMDA) over the first year of life for predicting motor impairment at 4 years in preterm children. The secondary aims were to assess the predictive value of serial assessments over the first year and when using a combination of these two assessment tools in follow-up. Method Children born <30 weeks’ gestation were prospectively recruited and assessed at 4, 8 and 12 months’ corrected age using the AIMS and NSMDA. At 4 years’ corrected age children were assessed for cerebral palsy (CP) and motor impairment using the Movement Assessment Battery for Children 2nd-edition (MABC-2). We calculated accuracy of the AIMS and NSMDA for predicting CP and MABC-2 scores ≤15th (at-risk of motor difficulty) and ≤5th centile (significant motor difficulty) for each test (AIMS and NSMDA) at 4, 8 and 12 months, for delay on one, two or all three of the time points over the first year, and finally for delay on both tests at each time point. Results Accuracy for predicting motor impairment was good for each test at each age, although false positives were common. Motor impairment on the MABC-2 (scores ≤5th and ≤15th) was most accurately predicted by the AIMS at 4 months, whereas CP was most accurately predicted by the NSMDA at 12 months. In regards to serial assessments, the likelihood ratio for motor impairment increased with the number of delayed assessments. When combining both the NSMDA and AIMS the best accuracy was achieved at 4 months, although results were similar at 8 and 12 months. Interpretation Motor development during the first year of life in preterm infants assessed with the AIMS and NSMDA is predictive of later motor impairment at preschool age. However, false positives are common and therefore it is beneficial to follow-up children at high risk of motor impairment at more than one time point, or to use a combination of assessment tools. Trial Registration ACTR.org.au ACTRN12606000252516 PMID:25970619
Van Cutsem, Michaël; Duchateau, Jacques
2005-01-01
To investigate the effect of initial conditions on the modulation of motor unit discharge during fast voluntary contractions, we compared ballistic isometric contractions of the ankle dorsiflexor muscles that were produced from either a resting state or superimposed on a sustained contraction. The torque of the dorsiflexors and the surface and intramuscular EMGs from the tibialis anterior were recorded. The results showed that the performance of a ballistic contraction from a sustained contraction (∼25% maximal voluntary contraction (MVC)) had a negative effect on the maximal rate of torque development. Although the electromechanical delay was shortened, the EMG activity during the ballistic contraction was less synchronized. These observations were associated with a significant decline in the average discharge rate of single motor units (89.8 ± 3.8 versus 115 ± 5.8 Hz) and in the percentage of units (6.2 versus 15.5% of the whole sample) that exhibited double discharges at brief intervals (= 5 ms). High-threshold units that were not recruited during the sustained contraction displayed the same activation pattern, which indicates that the mechanisms responsible for the decline in discharge rate were not restricted to previously activated units, but appear to influence the entire motor unit pool. When a premotor silent period (SP) was observed at the transition from the sustained muscular activity to the ballistic contraction (19% of the trials), these adjustments in motor unit activity were not present, and the ballistic contractions were similar to those performed from a resting state. Together, these results indicate that initial conditions can influence the capacity for motor unit discharge rate and hence the performance of a fast voluntary contraction. PMID:15539402
Global Developmental Delay and Its Relationship to Cognitive Skills
ERIC Educational Resources Information Center
Riou, Emilie M.; Ghosh, Shuvo; Francoeur, Emmett; Shevell, Michael I.
2009-01-01
Global developmental delay (GDD) is defined as evidence of significant delays in two or more developmental domains. Our study determined the cognitive skills of a cohort of young children with GDD. A retrospective chart review of all children diagnosed with GDD within a single developmental clinic was carried out. Scores on fine motor (Peabody…
Spofford, Lisa; Dimian, Adele; Tervo, Raymond; MacLean, William E.; Symons, Frank J.
2016-01-01
Objective To compare the prevalence of self-injurious behavior (SIB) and stereotyped motor behavior (STY) of preschool-aged children with developmental delays (DD group) and their peers without developmental delays (TD group) using a standardized caregiver report scale. Methods The Repetitive Behavior Scale-Revised was completed by caregivers of children with developmental delays and their peers without developmental delays. Frequency of occurrence and severity ratings for SIB and STY were compared between groups. Results SIB and STY were reported more often and at a greater level of severity in the DD group. Older chronological age was associated with more severe STY in the DD group but not the TD group. Gender was not related to STY or SIB for either group. Conclusions Differences in STY and SIB were evident between preschoolers with and without DD. Findings are discussed from developmental and behavioral psychology perspectives regarding the expression of repetitive behavior in developmentally at-risk pediatric populations. PMID:26514642
Samango-Sprouse, Carole; Lawson, Patrick; Sprouse, Courtney; Stapleton, Emily; Sadeghin, Teresa; Gropman, Andrea
2016-05-01
Kleefstra syndrome (KS) is a rare neurogenetic disorder most commonly caused by deletion in the 9q34.3 chromosomal region and is associated with intellectual disabilities, severe speech delay, and motor planning deficits. To our knowledge, this is the first patient (PQ, a 6-year-old female) with a 9q34.3 deletion who has near normal intelligence, and developmental dyspraxia with childhood apraxia of speech (CAS). At 6, the Wechsler Preschool and Primary Intelligence testing (WPPSI-III) revealed a Verbal IQ of 81 and Performance IQ of 79. The Beery Buktenica Test of Visual Motor Integration, 5th Edition (VMI) indicated severe visual motor deficits: VMI = 51; Visual Perception = 48; Motor Coordination < 45. On the Receptive One Word Picture Vocabulary Test-R (ROWPVT-R), she had standard scores of 96 and 99 in contrast to an Expressive One Word Picture Vocabulary-R (EOWPVT-R) standard scores of 73 and 82, revealing a discrepancy in vocabulary domains on both evaluations. Preschool Language Scale-4 (PLS-4) on PQ's first evaluation reveals a significant difference between auditory comprehension and expressive communication with standard scores of 78 and 57, respectively, further supporting the presence of CAS. This patient's near normal intelligence expands the phenotypic profile as well as the prognosis associated with KS. The identification of CAS in this patient provides a novel explanation for the previously reported speech delay and expressive language disorder. Further research is warranted on the impact of CAS on intelligence and behavioral outcome in KS. Therapeutic and prognostic implications are discussed. © 2016 Wiley Periodicals, Inc.
Trajectories and predictors of developmental skills in healthy twins up to 24 months of age.
Nan, Cassandra; Piek, Jan; Warner, Claire; Mellers, Diane; Krone, Ruth Elisabeth; Barrett, Timothy; Zeegers, Maurice P
2013-12-01
Low birth weight and low 5-min Apgar scores have been associated with developmental delay, while older maternal age is a protective factor. Little is known about trajectories and predictors of developmental skills in infant twins, who are generally born with lower birth weights, lower Apgar scores and to older mothers. Developmental skills were assessed at 3, 6, 9, 12, 18 and 24 months using the Ages and Stages Questionnaires in 152 twins from the Birmingham Registry for Twin and Heritability Studies. Multilevel spline and linear regression models (adjusted for gestational age, gender, maternal age) were used to estimate developmental trajectories and the associations between birth weight, maternal age and Apgar scores on developmental skills. Twins performed worse than singletons on communication, gross motor, fine motor, problem solving and personal-social skills (p < 0.001). Twins caught up around 6 months (score within -1 standard deviation of norm), except on gross motor skills, which did not catch up until after the age of 12 months. A one-year increase in maternal age was significantly associated with decreases in gross motor and personal-social z-scores of up to -0.09, whereas one unit increases in Apgar score increased z-scores up to 0.90 (p < 0.01). Healthy twins should be considered at a higher risk for developmental delay. Whether these results are comparable to preterm singletons, or whether there are twin-specific issues involved, should be further investigated in a study that uses a matched singleton control group. Copyright © 2013 Elsevier Inc. All rights reserved.
Late effects of early growth hormone treatment in Down syndrome.
Myrelid, Å; Bergman, S; Elfvik Strömberg, M; Jonsson, B; Nyberg, F; Gustafsson, J; Annerén, G
2010-05-01
Down syndrome (DS) is associated with short stature and psychomotor delay. We have previously shown that growth hormone (GH) treatment during infancy and childhood normalizes growth velocity and improves fine motor skill performance in DS. The aim of this study was to investigate late effects of early GH treatment on growth and psychomotor development in the DS subjects from the previous trial. Twelve of 15 adolescents with DS (3 F) from the GH group and 10 of 15 controls (5 F) participated in this follow-up study. Fifteen other subjects with DS (6 F) were included as controls in anthropometric analyses. Cognitive function was assessed with the Leiter International Performance Scale-Revised (Leiter-R) and selected subtests of the Wechsler Intelligence Scale for Children, Third edition (WISC-III). The Bruininks-Oseretsky Test of Motor Proficiency, Second edition (BOT-2), was used to assess general motor ability. Although early GH treatment had no effect on final height, the treated subjects had a greater head circumference standard deviation score (SDS) than the controls (-1.6 SDS vs. -2.2 SDS). The adolescents previously treated with GH had scores above those of the controls in all subtests of Leiter-R and WISC-III, but no difference in Brief IQ-score was seen between the groups. The age-adjusted motor performance of all subjects was below -2 SD, but the GH-treated subjects performed better than the controls in all but one subtest. The combined finding of a greater head circumference SDS and better psychomotor performance indicates that DS subjects may benefit from early GH treatment.
Mathematical problems in children with developmental coordination disorder.
Pieters, Stefanie; Desoete, Annemie; Van Waelvelde, Hilde; Vanderswalmen, Ruth; Roeyers, Herbert
2012-01-01
Developmental coordination disorder (DCD) is a heterogeneous disorder, which is often co-morbid with learning disabilities. However, mathematical problems have rarely been studied in DCD. The aim of this study was to investigate the mathematical problems in children with various degrees of motor problems. Specifically, this study explored if the development of mathematical skills in children with DCD is delayed or deficient. Children with DCD performed significantly worse for number fact retrieval and procedural calculation in comparison with age-matched control children. Moreover, children with mild DCD differed significantly from children with severe DCD on both number fact retrieval and procedural calculation. In addition, we found a developmental delay of 1 year for number fact retrieval in children with mild DCD and a developmental delay of 2 years in children with severe DCD. No evidence for a mathematical deficit was found. Diagnostic implications are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Fujii, Shinya; Lulic, Tea; Chen, Joyce L.
2016-01-01
Motor learning is a process whereby the acquisition of new skills occurs with practice, and can be influenced by the provision of feedback. An important question is what frequency of feedback facilitates motor learning. The guidance hypothesis assumes that the provision of less augmented feedback is better than more because a learner can use his/her own inherent feedback. However, it is unclear whether this hypothesis holds true for all types of augmented feedback, including for example sonified information about performance. Thus, we aimed to test what frequency of augmented sonified feedback facilitates the motor learning of a novel joint coordination pattern. Twenty healthy volunteers first reached to a target with their arm (baseline phase). We manipulated this baseline kinematic data for each individual to create a novel target joint coordination pattern. Participants then practiced to learn the novel target joint coordination pattern, receiving either feedback on every trial i.e., 100% feedback (n = 10), or every other trial, i.e., 50% feedback (n = 10; acquisition phase). We created a sonification system to provide the feedback. This feedback was a pure tone that varied in intensity in proportion to the error of the performed joint coordination relative to the target pattern. Thus, the auditory feedback contained information about performance in real-time (i.e., “concurrent, knowledge of performance feedback”). Participants performed the novel joint coordination pattern with no-feedback immediately after the acquisition phase (immediate retention phase), and on the next day (delayed retention phase). The root-mean squared error (RMSE) and variable error (VE) of joint coordination were significantly reduced during the acquisition phase in both 100 and 50% feedback groups. There was no significant difference in VE between the groups at immediate and delayed retention phases. However, at both these retention phases, the 100% feedback group showed significantly smaller RMSE than the 50% group. Thus, contrary to the guidance hypothesis, our findings suggest that the provision of more, concurrent knowledge of performance auditory feedback during the acquisition of a novel joint coordination pattern, may result in better skill retention. PMID:27375414
Natural history of Sanfilippo syndrome type A.
Buhrman, Dakota; Thakkar, Kavita; Poe, Michele; Escolar, Maria L
2014-05-01
To describe the natural history of Sanfilippo syndrome type A. We performed a retrospective review of 46 children (21 boys, 25 girls) with Sanfilippo syndrome type A evaluated between January 2000 and April 2013. Assessments included neurodevelopmental evaluations, audiologic testing, and assessment of growth, adaptive behavior, cognitive behavior, motor function, and speech/language skills. Only the baseline evaluation was included for patients who received hematopoietic stem cell transplantation. Median age at diagnosis was 35 months, with a median delay between initial symptoms to diagnosis of 24 months. The most common initial symptoms were speech/language delay (48%), dysmorphology (22%), and hearing loss (20%). Early behavioral problems included perseverative chewing and difficulty with toilet training. All children developed sleep difficulties and behavioral changes (e.g., hyperactivity, aggression). More than 93% of the children experienced somatic symptoms such as hepatomegaly (67%), abnormal dentition (39%), enlarged tongue (37%), coarse facial features (76%), and protuberant abdomen (43%). Kaplan-Meier analysis showed a 60% probability of surviving past 17 years of age. Sanfilippo type A is characterized by severe hearing loss and speech delay, followed by a rapid decline in cognitive skills by 3 years of age. Significant somatic disease occurs in more than half of patients. Behavioral difficulties presented between 2 and 4 years of age during a rapid period of cognitive decline. Gross motor abilities are maintained during this period, which results in an active child with impaired cognition. Sleep difficulties are concurrent with the period of cognitive degeneration. There is currently an unacceptable delay in diagnosis, highlighting the need to increase awareness of this disease among clinicians.
Uwineza, Annette; Hitayezu, Janvier; Jamar, Mauricette; Caberg, Jean-Hubert; Murorunkwere, Seraphine; Janvier, Ndinkabandi; Bours, Vincent
2016-01-01
Global developmental delay (GDD) is defined as a significant delay in two or more developmental domains: gross or fine motor, speech/language, cognitive, social/personal and activities of daily living. Many of these children will go on to be diagnosed with intellectual disability (ID), which is most commonly defined as having an IQ <75 in addition to impairment in adaptive functioning. Cytogenetic studies have been performed in 664 Rwandan pediatric patients presenting GDD/ID and/or multiple congenital abnormalities (MCA). Karyotype analysis was performed in all patients and revealed 260 chromosomal abnormalities. The most frequent chromosomal abnormality was Down syndrome and then Edward syndrome and Patau syndrome. Other identified chromosomal abnormalities included 47,XX,+del(9)(q11), 46,XY,del(13)(q34) and 46,XX,der(22)t(10;22)(p10;p10)mat. In conclusion, our results highlight the high frequency of cytogenetically detectable abnormalities in this series, with implications for the burden on the healthcare. This study demonstrates the importance of cytogenetic analysis in patients with GDD/ID and MCA. PMID:26507407
Sotos Syndrome. Clinical Exchange.
ERIC Educational Resources Information Center
Shuey, Elaine M.; Jamison, Kristen
1996-01-01
Sotos syndrome is characterized by high birth length, rapid bone growth, distinctive facial features, and possible verbal and motor delays. It is more common in males than females. Developmental deficits, specific learning problems, and speech/language delays may also occur. (DB)
Chaotic operation and chaos control of travelling wave ultrasonic motor.
Shi, Jingzhuo; Zhao, Fujie; Shen, Xiaoxi; Wang, Xiaojie
2013-08-01
The travelling wave ultrasonic motor, which is a nonlinear dynamic system, has complex chaotic phenomenon with some certain choices of system parameters and external inputs, and its chaotic characteristics have not been studied until now. In this paper, the preliminary study of the chaos phenomenon in ultrasonic motor driving system has been done. The experiment of speed closed-loop control is designed to obtain several groups of time sampling data sequence of the amplitude of driving voltage, and phase-space reconstruction is used to analyze the chaos characteristics of these time sequences. The largest Lyapunov index is calculated and the result is positive, which shows that the travelling wave ultrasonic motor has chaotic characteristics in a certain working condition Then, the nonlinear characteristics of travelling wave ultrasonic motor are analyzed which includes Lyapunov exponent map, the bifurcation diagram and the locus of voltage relative to speed based on the nonlinear chaos model of a travelling wave ultrasonic motor. After that, two kinds of adaptive delay feedback controllers are designed in this paper to control and suppress chaos in USM speed control system. Simulation results show that the method can control unstable periodic orbits, suppress chaos in USM control system. Proportion-delayed feedback controller was designed following and arithmetic of fuzzy logic was used to adaptively adjust the delay time online. Simulation results show that this method could fast and effectively change the chaos movement into periodic or fixed-point movement and make the system enter into stable state from chaos state. Finally the chaos behavior was controlled. Copyright © 2013 Elsevier B.V. All rights reserved.
Better Working Memory and Motor Inhibition in Children Who Delayed Gratification
Yu, Junhong; Kam, Chi-Ming; Lee, Tatia M. C.
2016-01-01
Background: Despite the extensive research on delayed gratification over the past few decades, the neurocognitive processes that subserve delayed gratification remains unclear. As an exploratory step in studying these processes, the present study aims to describe the executive function profiles of children who were successful at delaying gratification and those who were not. Methods: A total of 138 kindergarten students (65 males, 73 females; Mage = 44 months, SD = 3.5; age range = 37–53 months) were administered a delayed gratification task, a 1-back test, a Day/night Stroop test and a Go/no-go test. The outcome measures of these tests were then analyzed between groups using a Multivariate Analysis of Variance, and subsequently a Multivariate Analysis of Covariance incorporating age as a covariate. Results: Children who were successful in delaying gratification were significantly older and had significantly better outcomes in the 1-back test and go/no-go test. With the exception of the number of hits in the go/no-go test, all other group differences remained significant after controlling for age. Conclusion: Children who were successful in delaying gratification showed better working memory and motor inhibition relative to those who failed the delayed gratification task. The implications of these findings are discussed. PMID:27493638
Connected commercial vehicles-integrated truck project : vehicle build test report.
DOT National Transportation Integrated Search
2000-12-01
This paper examines the ways ITS is changing the way federal and state motor carrier agencies conduct business with the motor carrier industry. New technologies are streamlining credentialing operations, reducing delays for safe carriers, and improvi...
ERIC Educational Resources Information Center
Ketcheson, Leah; Hauck, Janet; Ulrich, Dale
2017-01-01
Despite evidence suggesting one of the earliest indicators of an eventual autism spectrum disorder diagnoses is an early motor delay, there remain very few interventions targeting motor behavior as the primary outcome for young children with autism spectrum disorder. The aim of this pilot study was to measure the efficacy of an intensive motor…
Bender, Stephan; Resch, Franz; Klein, Christoph; Renner, Tobias; Fallgatter, Andreas J; Weisbrod, Matthias; Romanos, Marcel
2012-01-01
Hyperactivity is one of the core symptoms in attention deficit hyperactivity disorder (ADHD). However, it remains unclear in which way the motor system itself and its development are affected by the disorder. Movement-related potentials (MRP) can separate different stages of movement execution, from the programming of a movement to motor post-processing and memory traces. Pre-movement MRP are absent or positive during early childhood and display a developmental increase of negativity. We examined the influences of response-speed, an indicator of the level of attention, and stimulant medication on lateralized MRP in 16 children with combined type ADHD compared to 20 matched healthy controls. We detected a significantly diminished lateralisation of MRP over the pre-motor and primary motor cortex during movement execution (initial motor potential peak, iMP) in patients with ADHD. Fast reactions (indicating increased visuo-motor attention) led to increased lateralized negativity during movement execution only in healthy controls, while in children with ADHD faster reaction times were associated with more positive amplitudes. Even though stimulant medication had some effect on attenuating group differences in lateralized MRP, this effect was insufficient to normalize lateralized iMP amplitudes. A reduced focal (lateralized) motor cortex activation during the command to muscle contraction points towards an immature motor system and a maturation delay of the (pre-) motor cortex in children with ADHD. A delayed maturation of the neuronal circuitry, which involves primary motor cortex, may contribute to ADHD pathophysiology.
MacDonald, Megan; Lord, Catherine; Ulrich, Dale
2015-01-01
Objective To determine the relationship of motor skills and the core behaviors of young children with autism, social affective skills and repetitive behaviors, as indicated through the calibrated autism severity scores. Design The univariate GLM tested the relationship of gross and fine motor skills measured by the gross motor scale and the fine motor scale of the MSEL with autism symptomology as measured by calibrated autism severity scores. Setting Majority of the data collected took place in an autism clinic. Participants A cohort of 159 young children with ASD (n=110), PDD-NOS (n=26) and non-ASD (developmental delay, n=23) between the ages of 12–33 months were recruited from early intervention studies and clinical referrals. Children with non-ASD (developmental delay) were included in this study to provide a range of scores indicted through calibrated autism severity. Interventions Not applicable. Main Outcome Measures The primary outcome measures in this study were calibrated autism severity scores. Results Fine motor skills and gross motor skills significantly predicted calibrated autism severity (p < 0.01). Children with weaker motor skills displayed higher levels of calibrated autism severity. Conclusions The fine and gross motor skills are significantly related to autism symptomology. There is more to focus on and new avenues to explore in the realm of discovering how to implement early intervention and rehabilitation for young children with autism and motor skills need to be a part of the discussion. PMID:25774214
A centre for accommodative vergence motor control
NASA Technical Reports Server (NTRS)
Wilson, D.
1973-01-01
Latencies in accommodation, accommodative-vergence, and pupil-diameter responses to changing accommodation stimuli, as well as latencies in pupil response to light-intensity changes were measured. From the information obtained, a block diagram has been derived that uses the least number of blocks for representing the accommodation, accommodative-vergence, and pupil systems. The signal transmission delays over the various circuits of the model have been determined and compared to known experimental physiological-delay data. The results suggest the existence of a motor center that controls the accommodative vergence and is completely independent of the accommodation system.
Tomie, A; Aguado, A S; Pohorecky, L A; Benjamin, D
1998-10-01
Autoshaping conditioned responses (CRs) are reflexive and targeted motor responses expressed as a result of experience with reward. To evaluate the hypothesis that autoshaping may be a form of impulsive responding, within-subjects correlations between performance on autoshaping and impulsivity tasks were assessed in 15 Long-Evans hooded rats. Autoshaping procedures [insertion of retractable lever conditioned stimulus (CS) followed by the response-independent delivery of food (US)] were followed by testing for impulsive-like responding in a two-choice lever-press operant delay-of-reward procedure (immediate small food reward versus delayed large food reward). Delay-of-reward functions revealed two distinct subject populations. Subjects in the Sensitive group (n=7) were more impulsive-like, increasing immediate reward choices at longer delays for large reward, while those in the Insensitive group (n=8) responded predominantly on only one lever. During the prior autoshaping phase, the Sensitive group had performed more autoshaping CRs, and correlations revealed that impulsive subjects acquired the autoshaping CR in fewer trials. In the Sensitive group, acute injections of ethanol (0, 0.25, 0.50, 1.00, 1.50 g/kg) given immediately before delay-of-reward sessions yielded an inverted U-shaped dose-response curve with increased impulsivity induced by the 0.25, 0.50, and 1.00 g/kg doses of ethanol, while choice strategy of the Insensitive group was not influenced by ethanol dose. Ethanol induced impulsive-like responding only in rats that were flexible in their response strategy (Sensitive group), and this group also performed more autoshaping CRs. Data support the hypothesis that autoshaping and impulsivity are linked.
Oliván, Sara; Martínez-Beamonte, Roberto; Calvo, Ana C; Surra, Joaquín C; Manzano, Raquel; Arnal, Carmen; Osta, Rosario; Osada, Jesús
2014-08-01
Amyotrophic lateral sclerosis is a neurodegenerative disease associated with mutations in antioxidant enzyme Cu/Zn-superoxide dismutase 1. Albeit there is no treatment for this disease, new insights related to an exacerbated lipid metabolism have been reported. In connection with the hypermetabolic lipid status, the hypothesis whether nature of dietary fat might delay the progression of the disease was tested by using a transgenic mouse that overexpresses the human SOD1G93A variant. For this purpose, SOD1G93A mice were assigned randomly to one of the following three experimental groups: (1) a standard chow diet (control, n=21), (2) a chow diet enriched with 20% (w/w) extra virgin olive oil (EVOO, n=22) and (3) a chow diet containing 20% palm oil (palm, n=20). They received the diets for 8 weeks and the progression of the disease was assessed. On the standard chow diet, average plasma cholesterol levels were lower than those mice receiving the high-fat diets. Mice fed an EVOO diet showed a significant higher survival and better motor performance than control mice. EVOO group mice survived longer and showed better motor performance and larger muscle fiber area than animals receiving palm. Moreover, the EVOO-enriched diet improved the muscle status as shown by expression of myogenic factors (Myod1 and Myog) and autophagy markers (LC3 and Beclin1), as well as diminished endoplasmic reticulum (ER) stress through decreasing Atf6 and Grp78. Our results demonstrate that EVOO may be effective in increasing survival rate, improving motor coordination together with a potential amelioration of ER stress, autophagy and muscle damage. Copyright © 2014 Elsevier Inc. All rights reserved.
Kim, Yong-Sik; Harry, G Jean; Kang, Hong Soon; Goulding, David; Wine, Rob N; Kissling, Grace E; Liao, Grace; Jetten, Anton M
2010-09-01
Previously, deficiency in the expression of the nuclear orphan receptor TAK1 was found to be associated with delayed cerebellar granule cell migration and Purkinje cell maturation with a permanent deficit in foliation of lobules VI–VII, suggesting a role for TAK1 in cerebellum development. In this study, we confirm that TAK1-deficient (TAK1(−/−)) mice have a smaller cerebellum and exhibit a disruption of lobules VI–VII. We extended these studies and show that at postnatal day 7, TAK1(−/−) mice exhibit a delay in monolayer maturation of dysmorphic calbindin 28K-positive Purkinje cells. The astrocyte-specific glutamate transporter (GLAST) was expressed within Bergmann fibers and internal granule cell layer at significantly lower levels in the cerebellum of TAK1(−/−) mice. At PND21, Golgi-positive Purkinje cells in TAK1(−/−) mice displayed a smaller soma (18%) and shorter distance to first branch point (35%). Neuronal death was not observed in TAK1(−/−) mice at PND21; however, activated microglia were present in the cerebellum, suggestive of earlier cell death. These structural deficits in the cerebellum were not sufficient to alter motor strength, coordination, or activity levels; however, deficits in acoustic startle response, prepulse startle inhibition, and social interactions were observed. Reactions to a novel environment were inhibited in a light/dark chamber, open-field, and home-cage running wheel. TAK1(−/−) mice displayed a plateau in performance on the running wheel, suggesting a deficit in learning to coordinate performance on a motor task. These data indicate that TAK1 is an important transcriptional modulator of cerebellar development and neurodevelopmentally regulated behavior.
Wicklow, Brandy; Gallo, Sina; Majnemer, Annette; Vanstone, Catherine; Comeau, Kathryn; Jones, Glenville; L'Abbe, Mary; Khamessan, Ali; Sharma, Atul; Weiler, Hope; Rodd, Celia
2016-08-01
In addition to benefits for bone health, vitamin D is implicated in muscle function in children and adults. To determine if vitamin D dosage positively correlated with gross motor development at 3 and 6 months of age. We hypothesized that higher doses would be associated with higher scores for gross motor skills. A consecutive sample of 55 healthy, term, and breastfed infants from Montreal, Canada were recruited from a randomized trial of vitamin D supplementation between 2009 and 2012. Infants were randomized to 400 International Units (IU) (n = 19), 800 IU (n = 18) or 1,200 IU (n = 18) vitamin D3/day. Motor performance at 3 and 6 months was quantified by the Alberta Infant Motor Scale (AIMS). Plasma vitamin D3 metabolites were measured by tandem mass spectrometry. AIMS scores did not differ at 3 months. However, total AIMS scores and sitting subscores were significantly higher at 6 months in infants receiving 400 IU/day compared to 800 IU/day and 1,200 IU/day groups (p < .05). There were weak negative correlations with length and C-3 epimer of 25(OH)D. In contrast to our hypothesis, gross motor achievements were significantly higher in infants receiving 400 IU/day vitamin D. Our findings also support longer infants being slightly delayed.
Delayed Motor Skill Acquisition in Kindergarten Children with Language Impairment
ERIC Educational Resources Information Center
Adi-Japha, Esther; Strulovich-Schwartz, Orli; Julius, Mona
2011-01-01
The acquisition and consolidation of a new grapho-motor symbol into long-term memory was studied in 5-year-old children with language impairment (LI) and peers matched for age and visual-motor integration skills. The children practiced the production of a new symbol and were tested 24 h and two weeks post-practice day. Differences in performance…
Delays, Scaling and the Acquisition of Motor Skill
NASA Astrophysics Data System (ADS)
Cabrera, Juan Luis; Milton, John
2003-05-01
Motion analysis in three dimensions reveals a number of surprising features of the neural control of stick balancing at the fingertip, namely, 1) on-off intermittency in the controlled variable, and 2) controlling motor forces that exhibit self-similarity. The growing evidence in support of scaling and critical behaviors in neural motor control necessitates a re-thinking of how the nervous systems works.
The effect of height, weight and head circumference on gross motor development in achondroplasia.
Ireland, Penelope Jane; Ware, Robert S; Donaghey, Samantha; McGill, James; Zankl, Andreas; Pacey, Verity; Ault, Jenny; Savarirayan, Ravi; Sillence, David; Thompson, Elizabeth; Townshend, Sharron; Johnston, Leanne M
2013-02-01
This study aimed to investigate whether height, weight, head circumference and/or relationships between these factors are associated with gross motor milestone acquisition in children with achondroplasia. Population-based data regarding timing of major gross motor milestones up to 5 years were correlated with height, weight and head circumference at birth and 12 months in 48 children with achondroplasia born in Australia and New Zealand between 2000 and 2009. Although as a group children with achondroplasia showed delayed gross motor skill acquisition, within group differences in height, weight or head circumference did not appear to influence timing of gross motor skills before 5 years. The exception was lie to sit transitioning, which appears likely to occur earlier if the child is taller and heavier at 12 months, and later if the child has significant head-to-body disproportion. This is the first study to investigate the relationship between common musculoskeletal impairments associated with achondroplasia and timing of gross motor achievement. Identification of the musculoskeletal factors that exacerbate delays in transitioning from lying to sitting will assist clinicians to provide more proactive assessment, advice and intervention regarding motor skill acquisition for this population. © 2013 The Authors. Journal of Paediatrics and Child Health © 2013 Paediatrics and Child Health Division (Royal Australasian College of Physicians).
Cantagallo, Anna; Di Russo, Francesco; Favilla, Marco; Zoccolotti, Pierluigi
2015-04-15
The capability of quickly (as soon as possible) producing fast uncorrected and accurate isometric force impulses was examined to assess the motor efficiency of patients with moderate to severe traumatic brain injury (TBI) and good motor recovery at a clinical evaluation. Twenty male right-handed patients with moderate to severe TBI and 24 age-matched healthy male right-handed controls participated in the study. The experimental task required subjects to aim brief and uncorrected isometric force impulses to targets visually presented along with subjects' force displays. Both TBI patients and controls were able to produce force impulses whose mean peak amplitudes varied proportionally to the target load with no detectable group difference. Patients with TBI, however, were slower than controls in initiating their responses (reaction times [RTs] were longer by 125 msec) and were also slower during the execution of their motor responses, reaching the peak forces requested 23 msec later than controls (time to peak force: 35% delay). Further, their mean dF/dt (35 kg/sec) was slower than that of controls (53 kg/sec), again indicating a 34% impairment with respect to controls. Overall, patients with TBI showed accurate but delayed and slower isometric force impulses. Thus, an evaluation taking into account also response time features is more effective in picking up motor impairments than the standard clinical scales focusing on accuracy of movement only.
Brazilian infant motor and cognitive development: Longitudinal influence of risk factors.
Pereira, Keila Rg; Valentini, Nadia C; Saccani, Raquel
2016-12-01
Infant developmental delays have been associated with several risk factors, such as familial environmental, individual and demographic characteristics. The goal of this study was to longitudinally investigate the effects of maternal knowledge and practices, home environment and biological factors on infant motor and cognitive outcomes. This was a prospective cohort study with a sample of 49 infants from Southern Brazil. The infants were assessed three times over 4 months using the Alberta Infant Motor Scale and the Bayley Scale of Infant Development (Mental Development Scale). Parents completed the Daily Activities Scale of Infants, the Affordances in The Home Environment for Motor Development - Infant Scale, the Knowledge of Infant Development Inventory and a demographic questionnaire. Generalized estimating equation with Bonferroni method as the follow-up test and Spearman correlation and multivariate linear backward regression were used. Cognitive and motor scores were strongly associated longitudinally and increased over time. Associations between the home affordances, parental practices and knowledge, and motor and cognitive development over time were observed. This relationship explained more variability in motor and cognitive scores compared with biological factors. Variability in motor and cognitive development is better explained by environment and parental knowledge and practice. The investigation of factors associated with infant development allows the identification of infants at risk and the implementation of educational programs and parental training to minimize the effects of developmental delay. © 2016 Japan Pediatric Society.
Clarkson, Andrew N; Overman, Justine J; Zhong, Sheng; Mueller, Rudolf; Lynch, Gary; Carmichael, S Thomas
2011-03-09
Stroke is the leading cause of adult disability. Recovery after stroke shares similar molecular and cellular properties with learning and memory. A main component of learning-induced plasticity involves signaling through AMPA receptors (AMPARs). We systematically tested the role of AMPAR function in motor recovery in a mouse model of focal stroke. AMPAR function controls functional recovery beginning 5 d after the stroke. Positive allosteric modulators of AMPARs enhance recovery of limb control when administered after a delay from the stroke. Conversely, AMPAR antagonists impair motor recovery. The contributions of AMPARs to recovery are mediated by release of brain-derived neurotrophic factor (BDNF) in periinfarct cortex, as blocking local BDNF function in periinfarct cortex blocks AMPAR-mediated recovery and prevents the normal pattern of motor recovery. In contrast to a delayed AMPAR role in motor recovery, early administration of AMPAR agonists after stroke increases stroke damage. These findings indicate that the role of glutamate signaling through the AMPAR changes over time in stroke: early potentiation of AMPAR signaling worsens stroke damage, whereas later potentiation of the same signaling system improves functional recovery.
SKIPing With Head Start Teachers: Influence of T-SKIP on Object-Control Skills.
Brian, Ali; Goodway, Jacqueline D; Logan, Jessica A; Sutherland, Sue
2017-12-01
Children from disadvantaged settings are at risk for delays in their object-control (OC) skills. Fundamental motor skill interventions, such as the Successful Kinesthetic Instruction for Preschoolers (SKIP) Program, are highly successful when led by motor development experts. However, few preschools employ such experts. This study examined the extent to which Head Start teachers delivering an 8-week teacher-led SKIP (T-SKIP) intervention elicited learning of OC skills for Head Start children. Head Start teachers (n = 5) delivered T-SKIP for 8 weeks (450 min). Control teachers (n = 5) implemented the typical standard of practice, or well-equipped free play. All children (N = 122) were pretested and posttested on the OC Skill subscale of the Test of Gross Motor Development-2. Descriptive analyses at pretest identified 81% of the children were developmentally delayed in OC skills (below the 30th percentile). A 2-level hierarchical linear model demonstrated the effectiveness of T-SKIP with significant differences (β = 4.70), t(8) = 7.02, p < .001, η2 = .56, between T-SKIP children (n = 63) and control children (n = 59) at posttest. Head Start teachers who delivered T-SKIP could bring about positive changes in children's OC skills, thereby remediating the initial developmental delays presented. Control children remained delayed in their OC skills in spite of daily well-equipped free play, giving rise to concerns about their future motor competence and physical activity levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Shaohua, E-mail: hua66com@163.com; School of Automation, Chongqing University, Chongqing 400044; Hou, Zhiwei
2015-12-15
In this paper, chaos control is proposed for the output- constrained system with uncertain control gain and time delay and is applied to the brushless DC motor. Using the dynamic surface technology, the controller overcomes the repetitive differentiation of backstepping and boundedness hypothesis of pre-determined control gain by incorporating radial basis function neural network and adaptive technology. The tangent barrier Lyapunov function is employed for time-delay chaotic system to prevent constraint violation. It is proved that the proposed control approach can guarantee asymptotically stable in the sense of uniformly ultimate boundedness without constraint violation. Finally, the effectiveness of the proposedmore » approach is demonstrated on the brushless DC motor example.« less
The influence of performance on action-effect integration in sense of agency.
Wen, Wen; Yamashita, Atsushi; Asama, Hajime
2017-08-01
Sense of agency refers to the subjective feeling of being able to control an outcome through one's own actions or will. Prior studies have shown that both sensory processing (e.g., comparisons between sensory feedbacks and predictions basing on one's motor intentions) and high-level cognitive/constructive processes (e.g., inferences based on one's performance or the consequences of one's actions) contribute to judgments of sense of agency. However, it remains unclear how these two types of processes interact, which is important for clarifying the mechanisms underlying sense of agency. Thus, we examined whether performance-based inferences influence action-effect integration in sense of agency using a delay detection paradigm in two experiments. In both experiments, participants pressed left and right arrow keys to control the direction in which a moving dot was travelling. The dot's response delay was manipulated randomly on 7 levels (0-480ms) between the trials; for each trial, participants were asked to judge whether the dot response was delayed and to rate their level of agency over the dot. In Experiment 1, participants tried to direct the dot to reach a destination on the screen as quickly as possible. Furthermore, the computer assisted participants by ignoring erroneous commands for half of the trials (assisted condition), while in the other half, all of the participants' commands were executed (self-control condition). In Experiment 2, participants directed the dot as they pleased (without a specific goal), but, in half of the trials, the computer randomly ignored 32% of their commands (disturbed condition) rather than assisted them. The results from the two experiments showed that performance enhanced action-effect integration. Specifically, when task performance was improved through the computer's assistance in Experiment 1, delay detection was reduced in the 480-ms delay condition, despite the fact that 32% of participants' commands were ignored. Conversely, when no feedback on task performance was given (as in Experiment 2), the participants reported greater delay when some of their commands were randomly ignored. Furthermore, the results of a logistic regression analysis showed that the threshold of delay detection was greater in the assisted condition than in the self-control condition in Experiment 1, which suggests a wider time window for action-effect integration. A multivariate analysis also revealed that assistance was related to reduced delay detection via task performance, while reduced delay detection was directly correlated with a better sense of agency. These results indicate an association between the implicit and explicit aspects of sense of agency. Copyright © 2017 Elsevier Inc. All rights reserved.
Bülbül, Mehmet; Sinen, Osman; Gemici, Burcu; İzgüt-Uysal, V Nimet
2017-01-01
Hypothalamic oxytocin (OXT) and arginine vasopressin (AVP) are known to act oppositely on hypothalamic-pituitary-adrenal (HPA) axis, stress response and gastrointestinal (GI) motility. In rodents, exposure to restraint stress (RS) delays gastric emptying (GE), however, repeated exposure to the same stressor (chronic homotypic stress (CHS)), the delayed GE is restored to basal level, while hypothalamic OXT is upregulated. In contrast, when rats are exposed to chronic heterotypic stress (CHeS), these adaptive changes are not observed. Although the involvement of central OXT in gastric motor adaptation is partly investigated, the role of hypothalamic AVP in CHeS-induced maladaptive paradigm is poorly understood. Using in-vivo brain microdialysis in rats, the changes OXT and AVP release from hypothalamus were monitored under basal non-stressed (NS) conditions and in rats exposed to acute stress (AS), CHS and CHeS. To investigate the involvement of central endogenous OXT or AVP in CHS-induced habituation and CHeS-induced maladaptation, chronic central administration of selective OXT receptor antagonist L-371257 and selective AVP V 1b receptor antagonist SSR-149415 was performed daily. OXT was measured higher in AS and CHS group, but not in CHeS-loaded rats, whereas AVP significantly increased in rats exposed to AS and CHeS. Additionally, the response of the hypothalamic OXT- and AVP-producing cells was amplified following CHS and CHeS, respectively. In rats exposed to AS for 90min solid GE significantly delayed. The delayed-GE was completely restored to the basal level following CHS, however, it remained delayed in CHeS-loaded rats. The CHS-induced restoration was prevented by L-371257, whereas SSR-149415 abolished the CHeS-induced impaired GE. A significant correlation was observed between GE and (i) OXT in CHS-loaded rats (rho=0.61, p<0.05, positively), (ii) AVP in CHeS-loaded rats (rho=0.69, p<0.05, negatively). Under long term stressed conditions, the release of AVP and OXT from hypothalamus may vary depending on the content of the stressors. Central AVP appears to act oppositely to OXT by mediating CHeS-induced gastric motor maladaptation. Long term central AVP antagonism might be a pharmacological approach for the treatment of stress-related gastric motility disorders. Copyright © 2016 Elsevier Inc. All rights reserved.
What Infant Memory Tells Us about Infantile Amnesia: Long-Term Recall and Deferred Imitation
Meltzoff, Andrew N.
2013-01-01
Long-term recall memory was assessed using a nonverbal method requiring subjects to reenact a past event from memory (deferred imitation). A large sample of infants (N = 192), evenly divided between 14- and 16-months old, was tested across two experiments. A delay of 2 months was used in Experiment 1 and a delay of 4 months in Experiment 2. In both experiments two treatment groups were used, In one treatment group, motor practice (immediate imitation) was allowed before the delay was imposed; in the other group, subjects were prevented from motor practice before the delay. Age-matched control groups were used lo assess the spontaneous production of the target acts in the absence of exposure to the model in both experiments. The results demonstrated significant deferred imitation for both treatment groups at both delay intervals, and moreover showed that infants retained and imitated multiple acts. These findings suggest that infants have a nonverbal declarative memory system that supports the recall of past events across long-term delays. The implications of these findings for the multiple memory system debate in cognitive science and neuroscience and for theories of infantile amnesia are considered. PMID:7622990
Raaphorst, Joost; de Visser, Marianne; van Tol, Marie-José; Linssen, Wim H J P; van der Kooi, Anneke J; de Haan, Rob J; van den Berg, Leonard H; Schmand, Ben
2011-02-01
In contrast with findings in amyotrophic lateral sclerosis (ALS), cognitive impairments have as yet not been shown in the lower motor neuron variant of motor neuron disease, progressive spinal muscular atrophy (PMA). The objective of this study was to investigate cognitive function in PMA and to compare the cognitive profile with that of ALS. In addition, visuospatial functions were assessed comprehensively; these tests are underrepresented in earlier neuropsychological investigations in ALS. 23 PMA and 30 ALS patients (vital capacity >70% of predicted value) underwent a neuropsychological assessment adapted to motor impairments: global cognitive and executive functioning, psychomotor speed, memory, language, attention and visuospatial skills. The results were compared with age, education and sex matched controls and with normative data. Compared with controls, PMA patients performed worse on attention/working memory (digit span backward), category fluency and the Mini-Mental State Examination. Compared with normative data, PMA patients most frequently showed impairment on three measures: letter-number sequencing, and immediate and delayed story recall. 17% of PMA patients showed cognitive impairment, defined as performance below 2 SDs from the mean of normative data on at least three neuropsychological tests. In ALS, similar but more extensive cognitive deficits were found. Visuospatial dysfunction was not found in PMA and ALS. 17% of PMA patients have executive and memory impairments. PMA with cognitive impairment adds a formerly unknown phenotype to the existing classification of motor neuron diseases.
Caregiver-Provided Physical Therapy Home Programs for Children with Motor Delay: A Scoping Review.
Gorgon, Edward James R
2018-06-01
Caregiver-provided physical therapy home programs (PTHP) play an important role in enhancing motor outcomes in pediatric patient populations. This scoping review systematically mapped clinical trials of caregiver-provided PTHP that were aimed at enhancing motor outcomes in children who have or who are at risk for motor delay, with the purpose of (1) describing trial characteristics; (2) assessing methodologic quality; and (3) examining the reporting of caregiver-related components. Physiotherapy Evidence Database (PEDro), Cochrane CENTRAL, PubMed, Scopus, ScienceDirect, ProQuest Central, CINAHL, LILACS, and OTseeker were searched up to July 31, 2017. Two reviewers independently assessed study eligibility. Randomized or quasi-randomized controlled trials on PTHP administered by parents, other family members, friends, or informal caregivers to children who had or who were at risk for motor delay were included. Two reviewers independently appraised trial quality on the PEDro scale and extracted data. Twenty-four articles representing 17 individual trials were identified. Populations and interventions investigated were heterogeneous. Most of the trials had important research design limitations and methodological issues that could limit usefulness in ascertaining the effectiveness of caregiver-provided PTHP. Few (4 of 17) trials indicated involvement of caregivers in the PTHP planning, assessed how the caregivers learned from the training or instructions provided, or carried out both. Included studies were heterogeneous, and unpublished data were excluded. Although caregiver-provided PTHP are important in addressing motor outcomes in this population, there is a lack of evidence at the level of clinical trials to guide practice. More research is urgently needed to determine the effectiveness of care-giver-provided PTHP. Future studies should address the many important issues identified in this scoping review to improve the usefulness of the trial results.
Implications of white matter damage in amyotrophic lateral sclerosis
Zhou, Ting; Ahmad, Tina Khorshid; Gozda, Kiana; Truong, Jessica; Kong, Jiming; Namaka, Michael
2017-01-01
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, which involves the progressive degeneration of motor neurons. ALS has long been considered a disease of the grey matter; however, pathological alterations of the white matter (WM), including axonal loss, axonal demyelination and oligodendrocyte death, have been reported in patients with ALS. The present review examined motor neuron death as the primary cause of ALS and evaluated the associated WM damage that is guided by neuronal-glial interactions. Previous studies have suggested that WM damage may occur prior to the death of motor neurons, and thus may be considered an early indicator for the diagnosis and prognosis of ALS. However, the exact molecular mechanisms underlying early-onset WM damage in ALS have yet to be elucidated. The present review explored the detailed anatomy of WM and identified several pathological mechanisms that may be implicated in WM damage in ALS. In addition, it associated the pathophysiological alterations of WM, which may contribute to motor neuron death in ALS, with similar mechanisms of WM damage that are involved in multiple sclerosis (MS). Furthermore, the early detection of WM damage in ALS, using neuroimaging techniques, may lead to earlier therapeutic intervention, using immunomodulatory treatment strategies similar to those used in relapsing-remitting MS, aimed at delaying WM damage in ALS. Early therapeutic approaches may have the potential to delay motor neuron damage and thus prolong the survival of patients with ALS. The therapeutic interventions that are currently available for ALS are only marginally effective. However, early intervention with immunomodulatory drugs may slow the progression of WM damage in the early stages of ALS, thus delaying motor neuron death and increasing the life expectancy of patients with ALS. PMID:28791401
Alibeji, Naji A; Molazadeh, Vahidreza; Dicianno, Brad E; Sharma, Nitin
2018-01-01
A hybrid walking neuroprosthesis that combines functional electrical stimulation (FES) with a powered lower limb exoskeleton can be used to restore walking in persons with paraplegia. It provides therapeutic benefits of FES and torque reliability of the powered exoskeleton. Moreover, by harnessing metabolic power of muscles via FES, the hybrid combination has a potential to lower power consumption and reduce actuator size in the powered exoskeleton. Its control design, however, must overcome the challenges of actuator redundancy due to the combined use of FES and electric motor. Further, dynamic disturbances such as electromechanical delay (EMD) and muscle fatigue must be considered during the control design process. This ensures stability and control performance despite disparate dynamics of FES and electric motor. In this paper, a general framework to coordinate FES of multiple gait-governing muscles with electric motors is presented. A muscle synergy-inspired control framework is used to derive the controller and is motivated mainly to address the actuator redundancy issue. Dynamic postural synergies between FES of the muscles and the electric motors were artificially generated through optimizations and result in key dynamic postures when activated. These synergies were used in the feedforward path of the control system. A dynamic surface control technique, modified with a delay compensation term, is used as the feedback controller to address model uncertainty, the cascaded muscle activation dynamics, and EMD. To address muscle fatigue, the stimulation levels in the feedforward path were gradually increased based on a model-based fatigue estimate. A Lyapunov-based stability approach was used to derive the controller and guarantee its stability. The synergy-based controller was demonstrated experimentally on an able-bodied subject and person with an incomplete spinal cord injury.
Wang, Huei-Bin; Loh, Dawn H; Whittaker, Daniel S; Cutler, Tamara; Howland, David; Colwell, Christopher S
2018-01-01
Huntington's disease (HD) patients suffer from a progressive neurodegeneration that results in cognitive, psychiatric, cardiovascular, and motor dysfunction. Disturbances in sleep/wake cycles are common among HD patients with reports of delayed sleep onset, frequent bedtime awakenings, and fatigue during the day. The heterozygous Q175 mouse model of HD has been shown to phenocopy many HD core symptoms including circadian dysfunctions. Because circadian dysfunction manifests early in the disease in both patients and mouse models, we sought to determine if early intervention that improve circadian rhythmicity can benefit HD and delay disease progression. We determined the effects of time-restricted feeding (TRF) on the Q175 mouse model. At six months of age, the animals were divided into two groups: ad libitum (ad lib) and TRF. The TRF-treated Q175 mice were exposed to a 6-h feeding/18-h fasting regimen that was designed to be aligned with the middle of the time when mice are normally active. After three months of treatment (when mice reached the early disease stage), the TRF-treated Q175 mice showed improvements in their locomotor activity rhythm and sleep awakening time. Furthermore, we found improved heart rate variability (HRV), suggesting that their autonomic nervous system dysfunction was improved. Importantly, treated Q175 mice exhibited improved motor performance compared to untreated Q175 controls, and the motor improvements were correlated with improved circadian output. Finally, we found that the expression of several HD-relevant markers was restored to WT levels in the striatum of the treated mice using NanoString gene expression assays.
Bellgowan, P. S. F.; Saad, Z. S.; Bandettini, P. A.
2003-01-01
Estimates of hemodynamic amplitude, delay, and width were combined to investigate system dynamics involved in lexical decision making. Subjects performed a lexical decision task using word and nonword stimuli rotated 0°, 60°, or 120°. Averaged hemodynamic responses to repeated stimulation were fit to a Gamma-variate function convolved with a heavyside function of varying onset and duration to estimate each voxel's activation delay and width. Consistent with prolonged reaction times for the rotated stimuli and nonwords, the motor cortex showed delayed hemodynamic onset for both conditions. Language areas such as the lingual gyrus, middle temporal gyrus, fusiform gyrus, and precuneus all showed delayed hemodynamic onsets to rotated stimuli but not to nonword stimuli. The inferior frontal gyrus showed both increased onset latency for rotated stimuli and a wider hemodynamic response to nonwords, consistent with prolonged processing in this area during the lexical decision task. Phonological processing areas such as superior temporal and angular gyrus showed no delay or width difference for rotated stimuli. These results suggest that phonological routes but not semantic routes to the lexicon can proceed regardless of stimulus orientation. This study demonstrates the utility of estimating hemodynamic delay and width in addition to amplitude allowing for more quantitative measures of brain function such as mental chronometry. PMID:12552093
77 FR 52246 - Clothianidin; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-29
... concern. Clinical signs of neurotoxicity were exhibited in both rats (decreased arousal, motor activity..., delayed sexual maturation and an increase in stillbirths) was observed in the absence of maternal effects... weight gains and FQPA SF = 1X........ day. delayed sexual maturation, decreased absolute thymus weights...
Functional Outcome of School Children With History of Global Developmental Delay.
Dornelas, Lílian F; Duarte, Neuza M C; Morales, Nívea M O; Pinto, Rogério M C; Araújo, Renata R H; Pereira, Sílvia A; Magalhães, Lívia C
2016-07-01
This study aimed to investigate the functional and developmental outcomes in school age children diagnosed with global developmental delay before 2 years old and to verify the association between their final diagnosis and environmental and biological factors. Forty-five Brazilian children (26 boys), mean age 95.84 (7.72) months, who attended regular school and were diagnosed with global developmental delay before they were 2 years old had their functions evaluated. Children with global developmental delay were diagnosed with several conditions at school age. Students with greater chances of receiving a diagnosis were those whose mothers were younger at the time their children were born (OR = 1.47, CI = 1.04-2.09, P = .03), who had impaired motor performance, specially balance (OR = 1.33, CI = 1.01-1.75, P = .04), and who needed help during cognitive and behavioral tasks at school (OR = 1.08, CI = 1.00-1.17, P = .048). Interdisciplinary evaluation contributed to defining the specific diagnosis and to identifying the necessity of specialized support. © The Author(s) 2016.
Fujita, Satoshi; Sakurai, Masahiro; Baba, Hironori; Abe, Koji; Tominaga, Ryuji
2015-11-01
The development of spinal cord injury is believed to be related to the vulnerability of spinal motor neurons to ischemia. However, the mechanisms underlying this vulnerability have not been fully investigated. Previously, we reported that spinal motor neurons are lost likely due to autophagy and that local hypothermia prevents such spinal motor neuron death. Therefore, we investigated the role of autophagy in normothermic and hypothermic spinal cord ischemia using an immunohistochemical analysis of Beclin 1 (BCLN1; B-cell leukemia 2 protein [Bcl-2] interacting protein), Bcl-2, and γ-aminobutyric acid type-A receptor-associated protein (GABARAP), which are considered autophagy-related proteins. We used rabbit normothermic and hypothermic transient spinal cord ischemia models using a balloon catheter. Neurologic function was assessed according to the Johnson score, and the spinal cord was removed at 8 hours and 1, 2, and 7 days after reperfusion, and morphologic changes were examined using hematoxylin and eosin staining. A Western blot analysis and histochemical study of BCLN1, Bcl-2, and GABARAP, and double-labeled fluorescent immunocytochemical studies were performed. There were significant differences in the physiologic function between the normothermic model and hypothermic model after the procedure (P < .05). In the normothermic model, most of the motor neurons were selectively lost at 7 days of reperfusion (P < .001 compared with the sham group), and they were preserved in the hypothermic model (P = .574 compared with the sham group). The Western blot analysis revealed that the sustained expression of the autophagy markers, BCLN1 and GABARAP, was observed (P < .001 compared with the sham group) and was associated with neuronal cell death in normothermic ischemic conditions. In hypothermic ischemic conditions, the autophagy inhibitory protein Bcl-2 was powerfully induced (P < .001 compared with the sham group) and was associated with blunted expression of BCLN1 and GABARAP and neuronal cell survival. The double-label fluorescent immunocytochemical study revealed that immunoreactivitiy for BCLN1, Bcl-2, and GABARAP was induced in the same motor neurons. These data suggest that the prolonged induction of autophagy might be a potential factor responsible for delayed motor neuron death, and the induction of the autophagy inhibitory protein Bcl-2 using hypothermia might limit autophagy and protect against delayed motor neuron death. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Fong, Shirley S M; Ng, Shamay S M; Guo, X; Wang, Yuling; Chung, Raymond C K; Stat, Grad; Ki, W Y; Macfarlane, Duncan J
2015-10-01
This cross-sectional, exploratory study aimed to compare neuromuscular performance, balance and motor skills proficiencies of typically developing children and those with developmental coordination disorder (DCD) and to determine associations of these neuromuscular factors with balance and motor skills performances in children with DCD.One hundred thirty children with DCD and 117 typically developing children participated in the study. Medial hamstring and gastrocnemius muscle activation onset latencies in response to an unexpected posterior-to-anterior trunk perturbation were assessed by electromyography and accelerometer. Hamstring and gastrocnemius muscle peak force and time to peak force were quantified by dynamometer, and balance and motor skills performances were evaluated with the Movement Assessment Battery for Children (MABC).Independent t tests revealed that children with DCD had longer hamstring and gastrocnemius muscle activation onset latencies (P < 0.001) and lower isometric peak forces (P < 0.001), but not times to peak forces (P > 0.025), than the controls. Multiple regression analysis accounting for basic demographics showed that gastrocnemius peak force was independently associated with the MABC balance subscore and ball skills subscore, accounting for 5.7% (P = 0.003) and 8.5% (P = 0.001) of the variance, respectively. Gastrocnemius muscle activation onset latency also explained 11.4% (P < 0.001) of the variance in the MABC ball skills subscore.Children with DCD had delayed leg muscle activation onset times and lower isometric peak forces. Gastrocnemius peak force was associated with balance and ball skills performances, whereas timing of gastrocnemius muscle activation was a determinant of ball skill performance in the DCD population.
Rogers, Sally J.; Young, Gregory S.; Cook, Ian; Giolzetti, Angelo; Ozonoff, Sally
2010-01-01
This study was designed to examine the nature of object imitation performance in early autism. We hypothesized that imitation would be relatively preserved when behaviors on objects resulted in salient instrumental effects. We designed tasks in which, in one condition, the motor action resulted in a salient, meaningful effect on an object, whereas in the other condition, the same action resulted in a less salient effect because of differing object characteristics. The motor aspects of the tasks did not vary across conditions. Four participant groups of 2- to 5-year-olds were examined: 17 children with early-onset autism, 24 children with regressive onset autism, 22 children with developmental delays, and 22 children with typical development. Groups were matched on nonverbal skills, and differences in verbal development were examined as a moderator of imitative ability. Results revealed an interaction of group by condition, with the combined autism group failing more tasks than the combined comparison groups, and failing more tasks in the less salient condition than in the more salient condition, as hypothesized. Analyses of autism subgroups revealed these effects were primarily because of the regression onset group. Accuracy of motor performance was examined by analyzing errors. Among children passing imitative acts, there were no group differences and no condition effects in the number, type, or pattern of performance errors. Among children passing the tasks, the group with autism did not demonstrate more emulation errors (imitating the goal but not the means) than other groups. There was no evidence that either motor or attentional aspects of the tasks contributed to the poorer imitative performance of the children with autism. PMID:20102648
Kelly, Brian; Maguire-Herring, Vanessa; Rose, Christian M; Gore, Heather E; Ferrigno, Stephen; Novak, Melinda A; Lacreuse, Agnès
2014-11-01
Human aging is characterized by declines in cognition and fine motor function as well as improved emotional regulation. In men, declining levels of testosterone (T) with age have been implicated in the development of these age-related changes. However, studies examining the effects of T replacement on cognition, emotion and fine motor function in older men have not provided consistent results. Rhesus monkeys (Macaca mulatta) are excellent models for human cognitive aging and may provide novel insights on this issue. We tested 10 aged intact male rhesus monkeys (mean age=19, range 15-25) on a battery of cognitive, motor and emotional tasks at baseline and under low or high T experimental conditions. Their performance was compared to that of 6 young males previously tested in the same paradigm (Lacreuse et al., 2009; Lacreuse et al., 2010). Following a 4-week baseline testing period, monkeys were treated with a gonadotropin releasing hormone agonist (Depot Lupron, 200 μg/kg) to suppress endogenous T and were tested on the task battery under a 4-week high T condition (injection of Lupron+T enanthate, 20 mg/kg, n=8) or 4-week low T condition (injection of Lupron+oil vehicle, n=8) before crossing over to the opposite treatment. The cognitive tasks consisted of the Delayed Non-Matching-to-Sample (DNMS), the Delayed Response (DR), and the Delayed Recognition Span Test (spatial-DRST). The emotional tasks included an object Approach-Avoidance task and a task in which monkeys were played videos of unfamiliar conspecifics in different emotional context (Social Playbacks). The fine motor task was the Lifesaver task that required monkeys to remove a Lifesaver candy from rods of different complexity. T manipulations did not significantly affect visual recognition memory, working memory, reference memory or fine motor function at any age. In the Approach-Avoidance task, older monkeys, but not younger monkeys, spent more time in proximity of novel objects in the high T condition relative to the low T condition. In both age groups, high T increased watching time of threatening social stimuli in the Social Playbacks. These results suggest that T affects some aspects of emotional processing but has no effect on fine motor function or cognition in young or older male macaques. It is possible that the duration of T treatment was not long enough to affect cognition or fine motor function or that T levels were too high to improve these outcomes. An alternative explanation for the discrepancies of our findings with some of the cognitive and emotional effects of T reported in rodents and humans may be the use of a chemical castration, which reduced circulating gonadotropins in addition to T. Further studies will investigate whether the luteinizing hormone LH mediates the effects of T on brain function in male primates. Copyright © 2014 Elsevier Inc. All rights reserved.
Auditory reafferences: the influence of real-time feedback on movement control.
Kennel, Christian; Streese, Lukas; Pizzera, Alexandra; Justen, Christoph; Hohmann, Tanja; Raab, Markus
2015-01-01
Auditory reafferences are real-time auditory products created by a person's own movements. Whereas the interdependency of action and perception is generally well studied, the auditory feedback channel and the influence of perceptual processes during movement execution remain largely unconsidered. We argue that movements have a rhythmic character that is closely connected to sound, making it possible to manipulate auditory reafferences online to understand their role in motor control. We examined if step sounds, occurring as a by-product of running, have an influence on the performance of a complex movement task. Twenty participants completed a hurdling task in three auditory feedback conditions: a control condition with normal auditory feedback, a white noise condition in which sound was masked, and a delayed auditory feedback condition. Overall time and kinematic data were collected. Results show that delayed auditory feedback led to a significantly slower overall time and changed kinematic parameters. Our findings complement previous investigations in a natural movement situation with non-artificial auditory cues. Our results support the existing theoretical understanding of action-perception coupling and hold potential for applied work, where naturally occurring movement sounds can be implemented in the motor learning processes.
Liu, Xun; Dingley, John; Scull-Brown, Emma; Thoresen, Marianne
2015-06-01
We previously reported that combining immediate hypothermia with immediate or 2 h delayed inhalation of an inert gas, xenon, gave additive neuroprotection in rats after a hypoxic-ischemic insult, compared to hypothermia alone. Defining the therapeutic time window for this new combined intervention is crucial in clinical practice when immediate treatment is not always feasible. The aim of this study is to investigate whether combined hypothermia and xenon still provide neuroprotection in rats after a 5 h delay for both hypothermia and xenon. Seven-day-old Wistar rat pups underwent a unilateral hypoxic-ischemic insult. Pups received 5 h of treatment starting 5 h after the insult randomized between normothermia, hypothermia, or hypothermia with 50% xenon. Surviving pups were tested for fine motor function through weeks 8-10 before being euthanized at week 11. Their hemispheric and hippocampal areas were assessed. Both delayed hypothermia-xenon and hypothermia-only treated groups had significantly less brain tissue loss than those which underwent normothermia. The functional performance after 1 wk and adulthood was significantly better after hypothermia-xenon treatment as compared to the hypothermia-only or normothermia groups. Adding 50% xenon to 5 h delayed hypothermia significantly improved functional outcome as compared to delayed hypothermia alone despite similar reductions in brain area.
Vacillation, indecision and hesitation in moment-by-moment decoding of monkey motor cortex
Kaufman, Matthew T; Churchland, Mark M; Ryu, Stephen I; Shenoy, Krishna V
2015-01-01
When choosing actions, we can act decisively, vacillate, or suffer momentary indecision. Studying how individual decisions unfold requires moment-by-moment readouts of brain state. Here we provide such a view from dorsal premotor and primary motor cortex. Two monkeys performed a novel decision task while we recorded from many neurons simultaneously. We found that a decoder trained using ‘forced choices’ (one target viable) was highly reliable when applied to ‘free choices’. However, during free choices internal events formed three categories. Typically, neural activity was consistent with rapid, unwavering choices. Sometimes, though, we observed presumed ‘changes of mind’: the neural state initially reflected one choice before changing to reflect the final choice. Finally, we observed momentary ‘indecision’: delay forming any clear motor plan. Further, moments of neural indecision accompanied moments of behavioral indecision. Together, these results reveal the rich and diverse set of internal events long suspected to occur during free choice. DOI: http://dx.doi.org/10.7554/eLife.04677.001 PMID:25942352
Beta band oscillations in motor cortex reflect neural population signals that delay movement onset
Khanna, Preeya; Carmena, Jose M
2017-01-01
Motor cortical beta oscillations have been reported for decades, yet their behavioral correlates remain unresolved. Some studies link beta oscillations to changes in underlying neural activity, but the specific behavioral manifestations of these reported changes remain elusive. To investigate how changes in population neural activity, beta oscillations, and behavior are linked, we recorded multi-scale neural activity from motor cortex while three macaques performed a novel neurofeedback task. Subjects volitionally brought their beta oscillatory power to an instructed state and subsequently executed an arm reach. Reaches preceded by a reduction in beta power exhibited significantly faster movement onset times than reaches preceded by an increase in beta power. Further, population neural activity was found to shift farther from a movement onset state during beta oscillations that were neurofeedback-induced or naturally occurring during reaching tasks. This finding establishes a population neural basis for slowed movement onset following periods of beta oscillatory activity. DOI: http://dx.doi.org/10.7554/eLife.24573.001 PMID:28467303
EFFECTS OF 2,4-DITHIOBIURET ON SENSORY AND MOTOR FUNCTION
2,4-Dithiobiuret exposure causes a delayed onset muscle weakness in rats that has been attributed to depressed neuromuscular transmission. he present study compares the effects of DTB on sensory and motor function in rats. dult male Long-Evans hooded rats were exposed to saline, ...
Lucas, Barbara R; Elliott, Elizabeth J; Coggan, Sarah; Pinto, Rafael Z; Jirikowic, Tracy; McCoy, Sarah Westcott; Latimer, Jane
2016-11-29
Gross motor skills are fundamental to childhood development. The effectiveness of current physical therapy options for children with mild to moderate gross motor disorders is unknown. The aim of this study was to systematically review the literature to investigate the effectiveness of conservative interventions to improve gross motor performance in children with a range of neurodevelopmental disorders. A systematic review with meta-analysis was conducted. MEDLINE, EMBASE, AMED, CINAHL, PsycINFO, PEDro, Cochrane Collaboration, Google Scholar databases and clinical trial registries were searched. Published randomised controlled trials including children 3 to ≤18 years with (i) Developmental Coordination Disorder (DCD) or Cerebral Palsy (CP) (Gross Motor Function Classification System Level 1) or Developmental Delay or Minimal Acquired Brain Injury or Prematurity (<30 weeks gestational age) or Fetal Alcohol Spectrum Disorders; and (ii) receiving non-pharmacological or non-surgical interventions from a health professional and (iii) gross motor outcomes obtained using a standardised assessment tool. Meta-analysis was performed to determine the pooled effect of intervention on gross motor function. Methodological quality and strength of meta-analysis recommendations were evaluated using PEDro and the GRADE approach respectively. Of 2513 papers, 9 met inclusion criteria including children with CP (n = 2) or DCD (n = 7) receiving 11 different interventions. Only two of 9 trials showed an effect for treatment. Using the least conservative trial outcomes a large beneficial effect of intervention was shown (SMD:-0.8; 95% CI:-1.1 to -0.5) with "very low quality" GRADE ratings. Using the most conservative trial outcomes there is no treatment effect (SMD:-0.1; 95% CI:-0.3 to 0.2) with "low quality" GRADE ratings. Study limitations included the small number and poor quality of the available trials. Although we found that some interventions with a task-orientated framework can improve gross motor outcomes in children with DCD or CP, these findings are limited by the very low quality of the available evidence. High quality intervention trials are urgently needed.
Schurman, Lesley D.; Smith, Terry L.; Morales, Anthony J.; Lee, Nancy N.; Reeves, Thomas M.; Phillips, Linda L.; Lichtman, Aron H.
2017-01-01
Although rodent models of traumatic brain injury (TBI) reliably produce cognitive and motor disturbances, behavioral characterization resulting from left and right hemisphere injuries remains unexplored. Here we examined the functional consequences of targeting the left versus right parietal cortex in lateral fluid percussion injury, on Morris water maze (MWM) spatial memory tasks (fixed platform and reversal) and neurological motor deficits (neurological severity score and rotarod). In the MWM fixed platform task, right lateral injury produced a small delay in acquisition rate compared to left. However, injury to either hemisphere resulted in probe trial deficits. In the MWM reversal task, left-right performance deficits were not evident, though left lateral injury produced mild acquisition and probe trial deficits compared to sham controls. Additionally, left and right injury produced similar neurological motor task deficits, impaired righting times, and lesion volumes. Injury to either hemisphere also produced robust ipsilateral, and modest contralateral, morphological changes in reactive microglia and astrocytes. In conclusion, left and right lateral TBI impaired MWM performance, with mild fixed platform acquisition rate differences, despite similar motor deficits, histological damage, and glial cell reactivity. Thus, while both left and right lateral TBI produce cognitive deficits, laterality in mouse MWM learning and memory merits consideration in the investigation of TBI-induced cognitive consequences. PMID:28527714
Schurman, Lesley D; Smith, Terry L; Morales, Anthony J; Lee, Nancy N; Reeves, Thomas M; Phillips, Linda L; Lichtman, Aron H
2017-07-13
Although rodent models of traumatic brain injury (TBI) reliably produce cognitive and motor disturbances, behavioral characterization resulting from left and right hemisphere injuries remains unexplored. Here we examined the functional consequences of targeting the left versus right parietal cortex in lateral fluid percussion injury, on Morris water maze (MWM) spatial memory tasks (fixed platform and reversal) and neurological motor deficits (neurological severity score and rotarod). In the MWM fixed platform task, right lateral injury produced a small delay in acquisition rate compared to left. However, injury to either hemisphere resulted in probe trial deficits. In the MWM reversal task, left-right performance deficits were not evident, though left lateral injury produced mild acquisition and probe trial deficits compared to sham controls. Additionally, left and right injury produced similar neurological motor task deficits, impaired righting times, and lesion volumes. Injury to either hemisphere also produced robust ipsilateral, and modest contralateral, morphological changes in reactive microglia and astrocytes. In conclusion, left and right lateral TBI impaired MWM performance, with mild fixed platform acquisition rate differences, despite similar motor deficits, histological damage, and glial cell reactivity. Thus, while both left and right lateral TBI produce cognitive deficits, laterality in mouse MWM learning and memory merits consideration in the investigation of TBI-induced cognitive consequences. Copyright © 2017. Published by Elsevier B.V.
Wu, Allan D.; Samra, Jasmine K.
2017-01-01
The cerebellum has been shown to be important for skill learning, including the learning of motor sequences. We investigated whether cerebellar transcranial direct current stimulation (tDCS) would enhance learning of fine motor sequences. Because the ability to generalize or transfer to novel task variations or circumstances is a crucial goal of real world training, we also examined the effect of tDCS on performance of novel sequences after training. In Study 1, participants received either anodal, cathodal or sham stimulation while simultaneously practising three eight-element key press sequences in a non-repeating, interleaved order. Immediately after sequence practice with concurrent tDCS, a transfer session was given in which participants practised three interleaved novel sequences. No stimulation was given during transfer. An inhibitory effect of cathodal tDCS was found during practice, such that the rate of learning was slowed in comparison to the anodal and sham groups. In Study 2, participants received anodal or sham stimulation and a 24 h delay was added between the practice and transfer sessions to reduce mental fatigue. Although this consolidation period benefitted subsequent transfer for both tDCS groups, anodal tDCS enhanced transfer performance. Together, these studies demonstrate polarity-specific effects on fine motor sequence learning and generalization. This article is part of the themed issue ‘New frontiers for statistical learning in the cognitive sciences’. PMID:27872369
Shimizu, Renee E; Wu, Allan D; Samra, Jasmine K; Knowlton, Barbara J
2017-01-05
The cerebellum has been shown to be important for skill learning, including the learning of motor sequences. We investigated whether cerebellar transcranial direct current stimulation (tDCS) would enhance learning of fine motor sequences. Because the ability to generalize or transfer to novel task variations or circumstances is a crucial goal of real world training, we also examined the effect of tDCS on performance of novel sequences after training. In Study 1, participants received either anodal, cathodal or sham stimulation while simultaneously practising three eight-element key press sequences in a non-repeating, interleaved order. Immediately after sequence practice with concurrent tDCS, a transfer session was given in which participants practised three interleaved novel sequences. No stimulation was given during transfer. An inhibitory effect of cathodal tDCS was found during practice, such that the rate of learning was slowed in comparison to the anodal and sham groups. In Study 2, participants received anodal or sham stimulation and a 24 h delay was added between the practice and transfer sessions to reduce mental fatigue. Although this consolidation period benefitted subsequent transfer for both tDCS groups, anodal tDCS enhanced transfer performance. Together, these studies demonstrate polarity-specific effects on fine motor sequence learning and generalization.This article is part of the themed issue 'New frontiers for statistical learning in the cognitive sciences'. © 2016 The Author(s).
Santo, Caroline C; Gonçalves, Marcela T; Piccolo, Mariana M; Lima, Simone; Rosa, George J da; Paulin, Elaine; Schivinski, Camila S
2011-01-01
to verify the physiotherapy performance in the respiratory and motor affections during postoperative period in pediatric patients undergoing abdominal surgery. was a literature review of articles published in the databases Lilacs, Medline and SciELO in the period 1983 to 2010 as well as books, papers presented at scientific meetings and journals of the area, who approached the post-therapy of abdominal surgery in children. The keywords used were: abdominal surgery, children and physiotherapy. 28 articles, one book chapter and one dissertation had been selected that examined the question and proposed that contained all, or at least two of the descriptors listed. Most of the material included covers the incidence of respiratory complications after surgery for pediatric abdominal surgery due to immaturity of the respiratory system of this population, abdominal manipulation of surgical period, the prolonged time in bed, pain at the incision site and waste anesthetic. Some authors also discuss the musculoskeletal and connective tissue arising from the inaction and delay of psychomotor development consequent to periods of hospitalization in early childhood, taking on the role of physiotherapy to prevent motor and respiratory involvement. there are few publications addressing this topic, but the positive aspects of physiotherapy have been described, especially in relation to the prevention of respiratory complications and motor, recognized the constraints and consequences of hospitalizations and surgeries cause in children.
Öhman, Anna; Beckung, Eva
2013-10-01
To investigate whether congenital muscular torticollis (CMT) or the time in a prone position as an infant had any influence on motor development at preschool age. A case-control study. Eighty-one children who had participated in a previous study that investigated motor development in infants with CMT and a control group of infants without CMT. A follow-up at the age of 3.5-5 years; the Movement Assessment Battery for Children was used with the earlier CMT group and the control group to assess their motor development. An independent physiotherapist, who was blinded of the children's previous group belonging, assessed the children. Percentile scores of motor development. Multiple regression showed no impact on earlier group belonging or the amount of time spent in a prone position as an infant. The left-handed children had a significantly (P < .01) lower percentile in the Movement Assessment Battery for Children. Neither CMT nor spending limited periods of time as an infant in the prone position when awake have any significant long-term effects on motor development. Children who had CMT as infants were not at higher risk for a delay in motor development at preschool age. Copyright © 2013 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Gerfo, Emanuele Lo; Oliveri, Massimiliano; Torriero, Sara; Salerno, Silvia; Koch, Giacomo; Caltagirone, Carlo
2008-01-31
We investigated the differential role of two frontal regions in the processing of grammatical and semantic knowledge. Given the documented specificity of the prefrontal cortex for the grammatical class of verbs, and of the primary motor cortex for the semantic class of action words, we sought to investigate whether the prefrontal cortex is also sensitive to semantic effects, and whether the motor cortex is also sensitive to grammatical class effects. We used repetitive transcranial magnetic stimulation (rTMS) to suppress the excitability of a portion of left prefontal cortex (first experiment) and of the motor area (second experiment). In the first experiment we found that rTMS applied to the left prefrontal cortex delays the processing of action verbs' retrieval, but is not critical for retrieval of state verbs and state nouns. In the second experiment we found that rTMS applied to the left motor cortex delays the processing of action words, both name and verbs, while it is not critical for the processing of state words. These results support the notion that left prefrontal and motor cortex are involved in the process of action word retrieval. Left prefrontal cortex subserves processing of both grammatical and semantic information, whereas motor cortex contributes to the processing of semantic representation of action words without any involvement in the representation of grammatical categories.
Bayesian analysis of the kinetics of quantal transmitter secretion at the neuromuscular junction.
Saveliev, Anatoly; Khuzakhmetova, Venera; Samigullin, Dmitry; Skorinkin, Andrey; Kovyazina, Irina; Nikolsky, Eugeny; Bukharaeva, Ellya
2015-10-01
The timing of transmitter release from nerve endings is considered nowadays as one of the factors determining the plasticity and efficacy of synaptic transmission. In the neuromuscular junction, the moments of release of individual acetylcholine quanta are related to the synaptic delays of uniquantal endplate currents recorded under conditions of lowered extracellular calcium. Using Bayesian modelling, we performed a statistical analysis of synaptic delays in mouse neuromuscular junction with different patterns of rhythmic nerve stimulation and when the entry of calcium ions into the nerve terminal was modified. We have obtained a statistical model of the release timing which is represented as the summation of two independent statistical distributions. The first of these is the exponentially modified Gaussian distribution. The mixture of normal and exponential components in this distribution can be interpreted as a two-stage mechanism of early and late periods of phasic synchronous secretion. The parameters of this distribution depend on both the stimulation frequency of the motor nerve and the calcium ions' entry conditions. The second distribution was modelled as quasi-uniform, with parameters independent of nerve stimulation frequency and calcium entry. Two different probability density functions for the distribution of synaptic delays suggest at least two independent processes controlling the time course of secretion, one of them potentially involving two stages. The relative contribution of these processes to the total number of mediator quanta released depends differently on the motor nerve stimulation pattern and on calcium ion entry into nerve endings.
Kleen, Jonathan K; Sitomer, Matthew T; Killeen, Peter R; Conrad, Cheryl D
2006-08-01
This study uses an operant, behavioral model to assess the daily changes in the decay rate of short-term memory, motivation, and motor ability in rats exposed to chronic restraint. Restraint decreased reward-related motivation by 50% without altering memory decay rate or motor ability. Moreover, chronic restraint impaired hippocampal-dependent spatial memory on the Y maze (4-hr delay) and produced CA3 dendritic retraction without altering hippocampal-independent maze navigation (1-min delay) or locomotion. Thus, mechanisms underlying motivation for food reward differ from those underlying Y maze exploration, and neurobiological substrates of spatial memory, such as the hippocampus, differ from those that underlie short-term memory. Chronic restraint produces functional, neuromorphological, and physiological alterations that parallel symptoms of depression in humans. Copyright 2006 APA, all rights reserved.
Astronaut activity in weightlessness and unsupported space
NASA Technical Reports Server (NTRS)
Ivanov, Y. A.; Popov, V. A.; Kachaturyants, L. S.
1975-01-01
For the purpose of study of the performance ability of a human operator in prolonged weightless conditions was studied by the following methods: (1) psychophysiological analysis of certain operations; (2) the dynamic characteristics of a man, included in a model control system, with direct and delayed feedback; (3) evaluation of the singularities of analysis and quality of the working memory, in working with outlines of patterned and random lines; and (4) biomechanical analysis of spatial orientation and motor activity in unsupported space.
Beqaj, Samire; Jusaj, Njomza; Živković, Vujica
2017-08-01
Aim To investigate the age (in months) at which motor skills are developed in children with Down syndrome (DS), and compare it to the age of the development of the same skills in both, children with typical development (TD), and children with DS reported by four other studies. Methods Sixteen children (7 girls and 9 boys) were monthly assessed for the development of nineteen motor skills between 2008 and 2011. The mean ages when the skills were accomplished were presented using descriptive statistics. Independent T-samples test (significance < 0.05) was used to compare the mean developmental ages from our study with those seen in children with TD (Comparison 1) and also in children with DS reported by four other authors (Comparison 2a-2d). Results Children with DS developed at a significantly slower pace compared to children with TD (p=0.005). Generally, delay and variance of developmental age in children with DS increased chronologically with the complexity of the skills. No significant difference was found between developmental age in children from the present study and children with DS from other studies. Conclusion The rate of attainment of motor skills is delayed in children with DS in comparison to children with TD, however, the developmental sequence is the same. The delayed development is more prominent in more complex skills. Copyright© by the Medical Assotiation of Zenica-Doboj Canton.
van Vugt, F T; Kafczyk, T; Kuhn, W; Rollnik, J D; Tillmann, B; Altenmüller, E
2016-01-01
Learning to play musical instruments such as piano was previously shown to benefit post-stroke motor rehabilitation. Previous work hypothesised that the mechanism of this rehabilitation is that patients use auditory feedback to correct their movements and therefore show motor learning. We tested this hypothesis by manipulating the auditory feedback timing in a way that should disrupt such error-based learning. We contrasted a patient group undergoing music-supported therapy on a piano that emits sounds immediately (as in previous studies) with a group whose sounds are presented after a jittered delay. The delay was not noticeable to patients. Thirty-four patients in early stroke rehabilitation with moderate motor impairment and no previous musical background learned to play the piano using simple finger exercises and familiar children's songs. Rehabilitation outcome was not impaired in the jitter group relative to the normal group. Conversely, some clinical tests suggests the jitter group outperformed the normal group. Auditory feedback-based motor learning is not the beneficial mechanism of music-supported therapy. Immediate auditory feedback therapy may be suboptimal. Jittered delay may increase efficacy of the proposed therapy and allow patients to fully benefit from motivational factors of music training. Our study shows a novel way to test hypotheses concerning music training in a single-blinded way, which is an important improvement over existing unblinded tests of music interventions.
Uwineza, Annette; Hitayezu, Janvier; Jamar, Mauricette; Caberg, Jean-Hubert; Murorunkwere, Seraphine; Janvier, Ndinkabandi; Bours, Vincent; Mutesa, Leon
2016-02-01
Global developmental delay (GDD) is defined as a significant delay in two or more developmental domains: gross or fine motor, speech/language, cognitive, social/personal and activities of daily living. Many of these children will go on to be diagnosed with intellectual disability (ID), which is most commonly defined as having an IQ <75 in addition to impairment in adaptive functioning. Cytogenetic studies have been performed in 664 Rwandan pediatric patients presenting GDD/ID and/or multiple congenital abnormalities (MCA). Karyotype analysis was performed in all patients and revealed 260 chromosomal abnormalities. The most frequent chromosomal abnormality was Down syndrome and then Edward syndrome and Patau syndrome. Other identified chromosomal abnormalities included 47,XX,+del(9)(q11), 46,XY,del(13)(q34) and 46,XX,der(22)t(10;22)(p10;p10)mat. In conclusion, our results highlight the high frequency of cytogenetically detectable abnormalities in this series, with implications for the burden on the healthcare. This study demonstrates the importance of cytogenetic analysis in patients with GDD/ID and MCA. © The Author [2015]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Peter, Beate; Lancaster, Hope; Vose, Caitlin; Fares, Amna; Schrauwen, Isabelle; Huentelman, Matthew
2017-10-01
Interstitial and terminal 6q25 deletions are associated with developmental delays, hypotonia, eye pathologies, craniofacial dysmorphologies, and structural brain anomalies. In most cases, speech and language deficits are not described in detail. We report on a case (Patient 1, age 7 years) with a de novo 6q25.3-qter deletion, 11.1 Mb long and encompassing 108 genes, and a case (Patient 2, age 5 years) with an inherited interstitial 6q25.3 deletion, located within Patient 1's deletion region and 403 kb long, the smallest 6q25 deletion reported to date. Both children have hypotonia, motor speech disorders, and expressive language delays. Patient 1's speech was characterized by childhood apraxia of speech (CAS) and dysarthria. Other findings include developmental delay, ataxic cerebral palsy, optic nerve dysplagia, and atypical brain morphologies regarding the corpus callosum and gyration patterns, a clinical profile that closely matches a previously reported case with a nearly identical deletion. Patient 2 had speech characterized by CAS and typical nonverbal processing abilities. His father, a carrier, had typical speech and language but showed difficulties with complex motor speech and hand motor tasks, similar to other adults with residual signs of CAS. The small deletion in this family contains the IGF2R-AIRN-SLC22A2-SLC22A3 gene cluster, which is associated with imprinting and maternal-specific expression of Igf2R, Slc22a2, and Slc22a3 in mice, whereas imprinting in humans is a polymorphic trait. The shared phenotypes in the two patients might be associated with the deletion of the gene cluster. © 2017 Wiley Periodicals, Inc.
Cai, Mingbo; Stetson, Chess; Eagleman, David M.
2012-01-01
When observers experience a constant delay between their motor actions and sensory feedback, their perception of the temporal order between actions and sensations adapt (Stetson et al., 2006). We present here a novel neural model that can explain temporal order judgments (TOJs) and their recalibration. Our model employs three ubiquitous features of neural systems: (1) information pooling, (2) opponent processing, and (3) synaptic scaling. Specifically, the model proposes that different populations of neurons encode different delays between motor-sensory events, the outputs of these populations feed into rivaling neural populations (encoding “before” and “after”), and the activity difference between these populations determines the perceptual judgment. As a consequence of synaptic scaling of input weights, motor acts which are consistently followed by delayed sensory feedback will cause the network to recalibrate its point of subjective simultaneity. The structure of our model raises the possibility that recalibration of TOJs is a temporal analog to the motion aftereffect (MAE). In other words, identical neural mechanisms may be used to make perceptual determinations about both space and time. Our model captures behavioral recalibration results for different numbers of adapting trials and different adapting delays. In line with predictions of the model, we additionally demonstrate that temporal recalibration can last through time, in analogy to storage of the MAE. PMID:23130010
76 FR 25240 - Clothianidin; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-04
... neurotoxicity were exhibited in both rats (decreased arousal, motor activity and locomotor activity) and mice... (decreased body weight gains and absolute thymus weights in pups, delayed sexual maturation and an increase.../day FQPA SF = 1x day.. based on decreased body weight gains and delayed sexual maturation, decreased...
Boumil, Edward F; Vohnoutka, Rishel Brenna; Liu, Yuguan; Lee, Sangmook; Shea, Thomas B
2017-01-01
Amyotrophic lateral sclerosis (ALS) is a progressive disease of motor neurons that has no cure or effective treatment. Any approach that could sustain minor motor function during terminal stages would improve quality of life. We examined the impact of omega-3 (Ω-3) and Ω-6, on motor neuron function in mice expressing mutant human superoxide dismutase-1 (SOD-1), which dominantly confers familial ALS and induces a similar sequence of motor neuron decline and eventual death when expressed in mice. Mice received standard diets supplemented with equivalent amounts of Ω-3 and Ω-6 or a 10x increase in Ω-6 with no change in Ω-3 commencing at 4 weeks of age. Motor function and biochemical/histological parameters were assayed by standard methodologies. Supplementation with equivalent Ω-3 and Ω-6 hastened motor neuron pathology and death, while 10x Ω-6 with no change in Ω-3 significantly delayed motor neuron pathology, including preservation of minor motor neuron function during the terminal stage. In the absence of a cure or treatment, affected individuals may resort to popular nutritional supplements such as Ω-3 as a form of "self-medication". However, our findings and those of other laboratories indicate that such an approach could be harmful. Our findings suggest that a critical balance of Ω-6 and Ω-3 may temporarily preserve motor neuron function during the terminal stages of ALS, which could provide a substantial improvement in quality of life for affected individuals and their caregivers.
Zanghi, Brian M; Araujo, Joseph; Milgram, Norton W
2015-05-01
Cognition in dogs, like in humans, is not a unitary process. Some functions, such as simple discrimination learning, are relatively insensitive to age; others, such as visuospatial learning can provide behavioral biomarkers of age. The present experiment sought to further establish the relationship between various cognitive domains, namely visuospatial memory, object discrimination learning (ODL), and selective attention (SA). In addition, we also set up a task to assess motor learning (ML). Thirty-six beagles (9-16 years) performed a variable delay non-matching to position (vDNMP) task using two objects with 20- and 90-s delay and were divided into three groups based on a combined score (HMP = 88-93 % accuracy [N = 12]; MMP = 79-86 % accuracy [N = 12]; LMP = 61-78 % accuracy [N = 12]). Variable object oddity task was used to measure ODL (correct or incorrect object) and SA (0-3 incorrect distractor objects with same [SA-same] or different [SA-diff] correct object as ODL). ML involved reaching various distances (0-15 cm). Age did not differ between memory groups (mean 11.6 years). ODL (ANOVA P = 0.43), or SA-same and SA-different (ANOVA P = 0.96), performance did not differ between the three vDNMP groups, although mean errors during ODL was numerically higher for LMP dogs. Errors increased (P < 0.001) for all dogs with increasing number of distractor objects during both SA tasks. vDNMP groups remained different (ANOVA P < 0.001) when re-tested with vDNMP task 42 days later. Maximum ML distance did not differ between vDNMP groups (ANOVA P = 0.96). Impaired short-term memory performance in aged dogs does not appear to predict performance of cognitive domains associated with object learning, SA, or maximum ML distance.
Enhancing performance expectancies through visual illusions facilitates motor learning in children.
Bahmani, Moslem; Wulf, Gabriele; Ghadiri, Farhad; Karimi, Saeed; Lewthwaite, Rebecca
2017-10-01
In a recent study by Chauvel, Wulf, and Maquestiaux (2015), golf putting performance was found to be affected by the Ebbinghaus illusion. Specifically, adult participants demonstrated more effective learning when they practiced with a hole that was surrounded by small circles, making it look larger, than when the hole was surrounded by large circles, making it look smaller. The present study examined whether this learning advantage would generalize to children who are assumed to be less sensitive to the visual illusion. Two groups of 10-year olds practiced putting golf balls from a distance of 2m, with perceived larger or smaller holes resulting from the visual illusion. Self-efficacy was increased in the group with the perceived larger hole. The latter group also demonstrated more accurate putting performance during practice. Importantly, learning (i.e., delayed retention performance without the illusion) was enhanced in the group that practiced with the perceived larger hole. The findings replicate previous results with adult learners and are in line with the notion that enhanced performance expectancies are key to optimal motor learning (Wulf & Lewthwaite, 2016). Copyright © 2017 Elsevier B.V. All rights reserved.
SRT2104 extends survival of male mice on a standard diet and preserves bone and muscle mass
Mercken, Evi M; Mitchell, Sarah J; Martin-Montalvo, Alejandro; Minor, Robin K; Almeida, Maria; Gomes, Ana P; Scheibye-Knudsen, Morten; Palacios, Hector H; Licata, Jordan J; Zhang, Yongqing; Becker, Kevin G; Khraiwesh, Husam; González-Reyes, José A; Villalba, José M; Baur, Joseph A; Elliott, Peter; Westphal, Christoph; Vlasuk, George P; Ellis, James L; Sinclair, David A; Bernier, Michel; de Cabo, Rafael
2014-01-01
Increased expression of SIRT1 extends the lifespan of lower organisms and delays the onset of age-related diseases in mammals. Here, we show that SRT2104, a synthetic small molecule activator of SIRT1, extends both mean and maximal lifespan of mice fed a standard diet. This is accompanied by improvements in health, including enhanced motor coordination, performance, bone mineral density, and insulin sensitivity associated with higher mitochondrial content and decreased inflammation. Short-term SRT2104 treatment preserves bone and muscle mass in an experimental model of atrophy. These results demonstrate it is possible to design a small molecule that can slow aging and delay multiple age-related diseases in mammals, supporting the therapeutic potential of SIRT1 activators in humans. PMID:24931715
USDA-ARS?s Scientific Manuscript database
Nutritionally at-risk children suffer delays in physical growth and motor and language development. Infectious diseases such as malaria pose an additional risk. We examined the cross-sectional relationships among malaria infection, hemoglobin (Hb) concentration, length-for-age Z-scores (LAZ), motor ...
Extensions to the Speech Disorders Classification System (SDCS)
ERIC Educational Resources Information Center
Shriberg, Lawrence D.; Fourakis, Marios; Hall, Sheryl D.; Karlsson, Heather B.; Lohmeier, Heather L.; McSweeny, Jane L.; Potter, Nancy L.; Scheer-Cohen, Alison R.; Strand, Edythe A.; Tilkens, Christie M.; Wilson, David L.
2010-01-01
This report describes three extensions to a classification system for paediatric speech sound disorders termed the Speech Disorders Classification System (SDCS). Part I describes a classification extension to the SDCS to differentiate motor speech disorders from speech delay and to differentiate among three sub-types of motor speech disorders.…
Improving Lives through Evidence-Based Practice
ERIC Educational Resources Information Center
Young Exceptional Children, 2008
2008-01-01
Tess is a joyful eight-year old girl with epilepsy, frontal lobe dysfunction, and dyspraxia, as well as delays in language, fine motor, and gross motor skills. However, despite her disabilities, Tess happily embraces life. With assistance from a few support professionals, Tess currently functions successfully in a regular education second grade…
Contemporary Theories of Perceptual-Motor Development.
ERIC Educational Resources Information Center
Nelson, Monte; Pyfer, Jean L.
Contemporary theories of perceptual-motor development and dysfunction are analyzed in detail in this review of the literature. Studies focused on observation of delays, deviations, cause, theories of development, and programs of remediation. It is suggested that it may be presumptuous for theorists to delineate three, four, or ten characteristics…
SKIPing with Teachers: An Early Years Motor Skill Intervention
ERIC Educational Resources Information Center
Brian, Ali; Goodway, Jacqueline D.; Logan, Jessica A.; Sutherland, Sue
2017-01-01
Background: Fundamental motor skill (FMS) interventions when delivered by an expert can significantly improve the FMS of young children with and without developmental delays. However, there is a gap in the literature as few early childhood centers employ experts with the professional background to deliver FMS intervention. Purpose: The primary…
Motor coordination defects in mice deficient for the Sam68 RNA-binding protein.
Lukong, Kiven E; Richard, Stéphane
2008-06-03
The role of RNA-binding proteins in the central nervous system and more specifically their role in motor coordination and learning are poorly understood. We previously reported that ablation of RNA-binding protein Sam68 in mice results in male sterility and delayed mammary gland development and protection against osteoporosis in females. Sam68 however is highly expressed in most regions of the brain especially the cerebellum and thus we investigated the cerebellar-related manifestations in Sam68-null mice. We analyzed the mice for motor function, sensory function, and learning and memory abilities. Herein, we report that Sam68-null mice have motor coordination defects as assessed by beam walking and rotorod performance. Forty-week-old Sam68-null mice (n=12) were compared to their wild-type littermates (n=12). The Sam68-null mice exhibited more hindpaw faults in beam walking tests and fell from the rotating drum at lower speeds and prematurely compared to the wild-type controls. The Sam68-null mice were, however, normal for forelimb strength, tail-hang reflex, balance test, grid walking, the Morris water task, recognition memory, visual discrimination, auditory stimulation and conditional taste aversion. Our findings support a role for Sam68 in the central nervous system in the regulation of motor coordination.
Suzuki, Masatoshi; McHugh, Jacalyn; Tork, Craig; Shelley, Brandon; Hayes, Antonio; Bellantuono, Ilaria; Aebischer, Patrick; Svendsen, Clive N.
2008-01-01
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease in which there is a progressive loss of motor neurons and their connections to muscle leading to paralysis. To maintain muscle connections in a rat model of familial ALS, we performed intramuscular transplantation with human mesenchymal stem cells (hMSC) as “Trojan horses” to deliver growth factors to the terminals of motor neurons as well as the skeletal muscles. hMSC engineered to secrete glial cell line derived neurotrophic factor (hMSC-GDNF) were transplanted bilaterally into three muscle groups. The cells survived within the muscle, released GDNF, and significantly increased the number of neuromuscular connections and motor neuron cell bodies in the spinal cord at mid stages of the disease. Furthermore, intramuscular transplantation with hMSC-GDNF could ameliorate motor neuron loss within the spinal cord which connected to the limb muscles with transplants. While disease onset was similar in all animals, hMSC-GDNF significantly delayed disease progression, increasing overall lifespan by up to 28 days, which is one of the longest effects on survival noted for this rat model of familial ALS. This pre-clinical data provides a novel and practical approach towards ex vivo gene therapy for ALS. PMID:18797452
Suzuki, Masatoshi; McHugh, Jacalyn; Tork, Craig; Shelley, Brandon; Hayes, Antonio; Bellantuono, Ilaria; Aebischer, Patrick; Svendsen, Clive N
2008-12-01
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease in which there is a progressive loss of motor neurons and their connections to muscle, leading to paralysis. In order to maintain muscle connections in a rat model of familial ALS (FALS), we performed intramuscular transplantation with human mesenchymal stem cells (hMSCs) used as "Trojan horses" to deliver growth factors to the terminals of motor neurons and to the skeletal muscles. hMSCs engineered to secrete glial cell line-derived neurotrophic factor (hMSC-GDNF) were transplanted bilaterally into three muscle groups. The cells survived within the muscle, released GDNF, and significantly increased the number of neuromuscular connections and motor neuron cell bodies in the spinal cord at mid-stages of the disease. Further, intramuscular transplantation with hMSC-GDNF was found to ameliorate motor neuron loss within the spinal cord where it connects with the limb muscles receiving transplants. While disease onset was similar in all the animals, hMSC-GDNF significantly delayed disease progression, increasing overall lifespan by up to 28 days, which is one of the largest effects on survival noted for this rat model of FALS. This preclinical data provides a novel and practical approach toward ex vivo gene therapy for ALS.
Cignetti, Fabien; Vaugoyeau, Marianne; Fontan, Aurelie; Jover, Marianne; Livet, Marie-Odile; Hugonenq, Catherine; Audic, Frédérique; Chabrol, Brigitte; Assaiante, Christine
2018-05-01
Feedforward and online controls are two facets of predictive motor control from internal models, which is suspected to be impaired in learning disorders. We examined whether the feedforward component is affected in children (8-12 years) with developmental dyslexia (DD) and/or with developmental coordination disorder (DCD) compared to typically developing (TD) children. Children underwent a bimanual unloading paradigm during which a load supported to one arm, the postural arm, was either unexpectedly unloaded by a computer or voluntary unloaded by the subject with the other arm. All children showed a better stabilization (lower flexion) of the postural arm and an earlier inhibition of the arm flexors during voluntary unloading, indicating anticipation of unloading. Between-group comparisons of kinematics and electromyographic activity of the postural arm revealed that the difference during voluntary unloading was between DD-DCD children and the other groups, with the former showing a delayed inhibition of the flexor muscles. Deficit of the feedforward component of motor control may particularly apply to comorbid subtypes, here the DD-DCD subtype. The development of a comprehensive framework for motor performance deficits in children with learning disorders will be achieved only by dissociating key components of motor prediction and focusing on subtypes and comorbidities. Copyright © 2018 Elsevier Ltd. All rights reserved.
Within-session and one-week practice effects on a motor task in amnestic mild cognitive impairment.
Schaefer, Sydney Y; Duff, Kevin
2017-06-01
Practice effects on neuropsychological tests, which are improvements in test scores due to repeated exposure to testing materials, are robust in healthy elders, but muted in older adults with cognitive disorders. Conversely, few studies have investigated practice effects on motor tasks involving procedural memory, particularly across test-retest periods exceeding 24 hours. The current study examined one-week practice effects on a novel upper extremity motor task in 54 older adults with amnestic mild cognitive impairment. Results indicate that these individuals with primary memory deficits did improve on this motor task within a brief training session as well as across one week. These practice effects were unrelated to demographic characteristics or global cognition. One-week practice effects were, however, negatively related to delayed memory function, with larger practice effects being associated with poorer delayed memory and potentially better visuospatial ability. The presence of longer term practice effects on a procedural motor task not only has implications for how longitudinal assessments with similar measures involving implicit memory might be interpreted, but may also inform future rehabilitative strategies for patients with more severe declarative memory deficits.
My action lasts longer: Potential link between subjective time and agency during voluntary action.
Imaizumi, Shu; Asai, Tomohisa
2017-05-01
Time perception distorts across different phases of bodily movement. During motor execution, sensory feedback matching an internal sensorimotor prediction is perceived to last longer. The sensorimotor prediction also underlies sense of agency. We investigated association between subjective time and agency during voluntary action. Participants performed hand action while watching a video feedback of their hand with various delays to manipulate agency. The perceived duration and agency over the video feedback were judged. Minimal delay of the video feedback resulted in longer perceived duration than the actual duration and stronger agency, while substantial feedback delay resulted in shorter perceived duration and weaker agency. These fluctuations of perceived duration and agency were nullified by the feedback of other's hand instead of their own, but not by inverted feedback from a third-person perspective. Subjective time during action might be associated with agency stemming from sensorimotor prediction, and self-other distinction based on bodily appearance. Copyright © 2017 Elsevier Inc. All rights reserved.
Association of physical fitness and fatness with cognitive function in women with fibromyalgia.
Soriano-Maldonado, Alberto; Artero, Enrique G; Segura-Jiménez, Víctor; Aparicio, Virgina A; Estévez-López, Fernando; Álvarez-Gallardo, Inmaculada C; Munguía-Izquierdo, Diego; Casimiro-Andújar, Antonio J; Delgado-Fernández, Manuel; Ortega, Francisco B
2016-09-01
This study assessed the association of fitness and fatness with cognitive function in women with fibromyalgia, and the independent influence of their single components on cognitive tasks. A total of 468 women with fibromyalgia were included. Speed of information processing and working memory (Paced Auditory Serial Addition Task), as well as immediate and delayed recall, verbal learning and delayed recognition (Rey Auditory Verbal Learning Test) were assessed. Aerobic fitness, muscle strength, flexibility and motor agility were assessed with the Senior Fitness Test battery. Body mass index, percent body fat, fat-mass index and waist circumference were measured. Aerobic fitness was associated with attention and working memory (all, p < 0.05). All fitness components were generally associated with delayed recall, verbal learning and delayed recognition (all, p < 0.05). Aerobic fitness showed the most powerful association with attention, working memory, delayed recall and verbal learning, while motor agility was the most powerful indicator of delayed recognition. None of the fatness parameters were associated with any of the outcomes (all, p > 0.05). Our results suggest that fitness, but not fatness, is associated with cognitive function in women with fibromyalgia. Aerobic fitness appears to be the most powerful fitness component regarding the cognitive tasks evaluated.
Thomsen, Gretchen M.; Gowing, Genevieve; Latter, Jessica; Chen, Maximus; Vit, Jean-Philippe; Staggenborg, Kevin; Avalos, Pablo; Alkaslasi, Mor; Ferraiuolo, Laura; Likhite, Shibi; Kaspar, Brian K.
2014-01-01
Sporadic amyotrophic lateral sclerosis (ALS) is a fatal disease with unknown etiology, characterized by a progressive loss of motor neurons leading to paralysis and death typically within 3–5 years of onset. Recently, there has been remarkable progress in understanding inherited forms of ALS in which well defined mutations are known to cause the disease. Rodent models in which the superoxide dismutase-1 (SOD1) mutation is overexpressed recapitulate hallmark signs of ALS in patients. Early anatomical changes in mouse models of fALS are seen in the neuromuscular junctions (NMJs) and lower motor neurons, and selective reduction of toxic mutant SOD1 in the spinal cord and muscle of these models has beneficial effects. Therefore, much of ALS research has focused on spinal motor neuron and NMJ aspects of the disease. Here we show that, in the SOD1G93A rat model of ALS, spinal motor neuron loss occurs presymptomatically and before degeneration of ventral root axons and denervation of NMJs. Although overt cell death of corticospinal motor neurons does not occur until disease endpoint, we wanted to establish whether the upper motor neuron might still play a critical role in disease progression. Surprisingly, the knockdown of mutant SOD1 in only the motor cortex of presymptomatic SOD1G93A rats through targeted delivery of AAV9–SOD1–shRNA resulted in a significant delay of disease onset, expansion of lifespan, enhanced survival of spinal motor neurons, and maintenance of NMJs. This datum suggests an early dysfunction and thus an important role of the upper motor neuron in this animal model of ALS and perhaps patients with the disease. PMID:25411487
The Visually Impaired Preschooler with an Emphasis on Medical Intervention.
ERIC Educational Resources Information Center
Harrell, Lois
The paper details the impact of blindness and visual impairments on young children's development. Specific developmental risks are examined for the following areas (sample difficulties in parentheses): body awareness (delayed concept of object permanence), motor development (lack of incentive to explore and resultant delay in purposeful movement),…
George, Joanne M; Boyd, Roslyn N; Colditz, Paul B; Rose, Stephen E; Pannek, Kerstin; Fripp, Jurgen; Lingwood, Barbara E; Lai, Melissa M; Kong, Annice H T; Ware, Robert S; Coulthard, Alan; Finn, Christine M; Bandaranayake, Sasaka E
2015-09-16
More than 50 percent of all infants born very preterm will experience significant motor and cognitive impairment. Provision of early intervention is dependent upon accurate, early identification of infants at risk of adverse outcomes. Magnetic resonance imaging at term equivalent age combined with General Movements assessment at 12 weeks corrected age is currently the most accurate method for early prediction of cerebral palsy at 12 months corrected age. To date no studies have compared the use of earlier magnetic resonance imaging combined with neuromotor and neurobehavioural assessments (at 30 weeks postmenstrual age) to predict later motor and neurodevelopmental outcomes including cerebral palsy (at 12-24 months corrected age). This study aims to investigate i) the relationship between earlier brain imaging and neuromotor/neurobehavioural assessments at 30 and 40 weeks postmenstrual age, and ii) their ability to predict motor and neurodevelopmental outcomes at 3 and 12 months corrected age. This prospective cohort study will recruit 80 preterm infants born ≤ 30 week's gestation and a reference group of 20 healthy term born infants from the Royal Brisbane & Women's Hospital in Brisbane, Australia. Infants will undergo brain magnetic resonance imaging at approximately 30 and 40 weeks postmenstrual age to develop our understanding of very early brain structure at 30 weeks and maturation that occurs between 30 and 40 weeks postmenstrual age. A combination of neurological (Hammersmith Neonatal Neurologic Examination), neuromotor (General Movements, Test of Infant Motor Performance), neurobehavioural (NICU Network Neurobehavioural Scale, Premie-Neuro) and visual assessments will be performed at 30 and 40 weeks postmenstrual age to improve our understanding of the relationship between brain structure and function. These data will be compared to motor assessments at 12 weeks corrected age and motor and neurodevelopmental outcomes at 12 months corrected age (neurological assessment by paediatrician, Bayley scales of Infant and Toddler Development, Alberta Infant Motor Scale, Neurosensory Motor Developmental Assessment) to differentiate atypical development (including cerebral palsy and/or motor delay). Earlier identification of those very preterm infants at risk of adverse neurodevelopmental and motor outcomes provides an additional period for intervention to optimise outcomes. Australian New Zealand Clinical Trials Registry ACTRN12613000280707. Registered 8 March 2013.
Sullivan, Edith V.; Brumback, Ty; Tapert, Susan F.; Fama, Rosemary; Prouty, Devin; Brown, Sandra A.; Cummins, Kevin; Thompson, Wesley K.; Colrain, Ian M.; Baker, Fiona C.; De Bellis, Michael D.; Hooper, Stephen R.; Clark, Duncan B.; Chung, Tammy; Nagel, Bonnie J.; Nichols, B. Nolan; Rohlfing, Torsten; Chu, Weiwei; Pohl, Kilian M.; Pfefferbaum, Adolf
2015-01-01
Objective To investigate development of cognitive and motor functions in healthy adolescents and to explore whether hazardous drinking affects the normal developmental course of those functions. Method Participants were 831 adolescents recruited across five United States sites of the National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA): 692 met criteria for no/low alcohol exposure, and 139 exceeded drinking thresholds. Cross-sectional, baseline data were collected with computerized and traditional neuropsychological tests assessing eight functional domains expressed as composite scores. General additive modeling evaluated factors potentially modulating performance (age, sex, ethnicity, socioeconomic status, and pubertal developmental stage). Results Older no/low-drinking participants achieved better scores than younger ones on five Accuracy composites (General Ability, Abstraction, Attention, Emotion, and Balance). Speeded responses for Attention, Motor Speed, and General Ability were sensitive to age and pubertal development. The exceeds-threshold group (accounting for age, sex, and other demographic factors) performed significantly below the no/low-drinking group on Balance accuracy and on General Ability, Attention, Episodic Memory, Emotion, and Motor speed scores and showed evidence for faster speed at the expense of accuracy. Delay Discounting performance was consistent with poor impulse control in the younger no/low drinkers and in exceeds-threshold drinkers regardless of age. Conclusions Higher achievement with older age and pubertal stage in General Ability, Abstraction, Attention, Emotion, and Balance suggests continued functional development through adolescence, possibly supported by concurrently maturing frontal, limbic, and cerebellar brain systems. Whether low scores by the exceeds-threshold group resulted from drinking or from other pre-existing factors requires longitudinal study. PMID:26752122
Sullivan, Edith V; Brumback, Ty; Tapert, Susan F; Fama, Rosemary; Prouty, Devin; Brown, Sandra A; Cummins, Kevin; Thompson, Wesley K; Colrain, Ian M; Baker, Fiona C; De Bellis, Michael D; Hooper, Stephen R; Clark, Duncan B; Chung, Tammy; Nagel, Bonnie J; Nichols, B Nolan; Rohlfing, Torsten; Chu, Weiwei; Pohl, Kilian M; Pfefferbaum, Adolf
2016-05-01
To investigate development of cognitive and motor functions in healthy adolescents and to explore whether hazardous drinking affects the normal developmental course of those functions. Participants were 831 adolescents recruited across 5 United States sites of the National Consortium on Alcohol and NeuroDevelopment in Adolescence 692 met criteria for no/low alcohol exposure, and 139 exceeded drinking thresholds. Cross-sectional, baseline data were collected with computerized and traditional neuropsychological tests assessing 8 functional domains expressed as composite scores. General additive modeling evaluated factors potentially modulating performance (age, sex, ethnicity, socioeconomic status, and pubertal developmental stage). Older no/low-drinking participants achieved better scores than younger ones on 5 accuracy composites (general ability, abstraction, attention, emotion, and balance). Speeded responses for attention, motor speed, and general ability were sensitive to age and pubertal development. The exceeds-threshold group (accounting for age, sex, and other demographic factors) performed significantly below the no/low-drinking group on balance accuracy and on general ability, attention, episodic memory, emotion, and motor speed scores and showed evidence for faster speed at the expense of accuracy. Delay Discounting performance was consistent with poor impulse control in the younger no/low drinkers and in exceeds-threshold drinkers regardless of age. Higher achievement with older age and pubertal stage in general ability, abstraction, attention, emotion, and balance suggests continued functional development through adolescence, possibly supported by concurrently maturing frontal, limbic, and cerebellar brain systems. Determination of whether low scores by the exceeds-threshold group resulted from drinking or from other preexisting factors requires longitudinal study. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
A comparison of optimal MIMO linear and nonlinear models for brain machine interfaces
NASA Astrophysics Data System (ADS)
Kim, S.-P.; Sanchez, J. C.; Rao, Y. N.; Erdogmus, D.; Carmena, J. M.; Lebedev, M. A.; Nicolelis, M. A. L.; Principe, J. C.
2006-06-01
The field of brain-machine interfaces requires the estimation of a mapping from spike trains collected in motor cortex areas to the hand kinematics of the behaving animal. This paper presents a systematic investigation of several linear (Wiener filter, LMS adaptive filters, gamma filter, subspace Wiener filters) and nonlinear models (time-delay neural network and local linear switching models) applied to datasets from two experiments in monkeys performing motor tasks (reaching for food and target hitting). Ensembles of 100-200 cortical neurons were simultaneously recorded in these experiments, and even larger neuronal samples are anticipated in the future. Due to the large size of the models (thousands of parameters), the major issue studied was the generalization performance. Every parameter of the models (not only the weights) was selected optimally using signal processing and machine learning techniques. The models were also compared statistically with respect to the Wiener filter as the baseline. Each of the optimization procedures produced improvements over that baseline for either one of the two datasets or both.
A comparison of optimal MIMO linear and nonlinear models for brain-machine interfaces.
Kim, S-P; Sanchez, J C; Rao, Y N; Erdogmus, D; Carmena, J M; Lebedev, M A; Nicolelis, M A L; Principe, J C
2006-06-01
The field of brain-machine interfaces requires the estimation of a mapping from spike trains collected in motor cortex areas to the hand kinematics of the behaving animal. This paper presents a systematic investigation of several linear (Wiener filter, LMS adaptive filters, gamma filter, subspace Wiener filters) and nonlinear models (time-delay neural network and local linear switching models) applied to datasets from two experiments in monkeys performing motor tasks (reaching for food and target hitting). Ensembles of 100-200 cortical neurons were simultaneously recorded in these experiments, and even larger neuronal samples are anticipated in the future. Due to the large size of the models (thousands of parameters), the major issue studied was the generalization performance. Every parameter of the models (not only the weights) was selected optimally using signal processing and machine learning techniques. The models were also compared statistically with respect to the Wiener filter as the baseline. Each of the optimization procedures produced improvements over that baseline for either one of the two datasets or both.
Cao, Binbin; Yan, Huifang; Guo, Mangmang; Xie, Han; Wu, Ye; Gu, Qiang; Xiao, Jiangxi; Shang, Jing; Yang, Yanling; Xiong, Hui; Niu, Zhengping; Wu, Xiru; Jiang, Yuwu; Wang, Jingmin
2016-01-01
Objective Megalencephalic leukoencephalopathy with subcortical cysts (MLC, OMIM 604004) is a rare neurological deterioration disease. We aimed to clarify clinical and genetic features of Chinese MLC patients. Methods Clinical information and peripheral venous blood of 20 patients and their families were collected, Sanger-sequencing and Multiple Ligation-dependent Probe Amplification were performed to make genetic analysis. Splicing-site mutation was confirmed with RT-PCR. UPD was detected by haplotype analysis. Follow-up study was performed through telephone for 27 patients. Results Out of 20 patients, macrocephaly, classic MRI features, motor development delay and cognitive impairment were detected in 20(100%), 20(100%), 17(85%) and 4(20%) patients, respectively. 20(100%) were clinically diagnosed with MLC. 19(95%) were genetically diagnosed with 10 novel mutations in MLC1, MLC1 and GlialCAM mutations were identified in 15 and 4 patients, respectively. Deletion mutation from exon4 to exon9 and a homozygous point mutation due to maternal UPD of chromosome22 in MLC1 were found firstly. c.598-2A>C in MLC1 leads to the skip of exon8. c.772-1G>C in MLC1 accounting for 15.5%(9/58) alleles in Chinese patients might be a founder or a hot-spot mutation. Out of 27 patients in the follow-up study, head circumference was ranged from 56cm to 61cm in patients older than 5yeas old, with a median of 57cm. Motor development delay and cognitive impairment were detected in 22(81.5%) and 5(18.5%) patients, respectively. Motor and cognitive deterioration was found in 5 (18.5%) and 2 patients (7.4%), respectively. Improvements and MRI recovery were first found in Chinese patients. Rate of seizures (45.5%), transient motor retrogress (45.5%) and unconsciousness (13.6%) after head trauma was much higher than that after fever (18.2%, 9.1%, 0%, respectively). Significance It’s a clinical and genetic analysis and a follow-up study for largest sample of Chinese MLC patients, identifying 10 novel mutations, expanding mutation spectrums and discovering clinical features of Chinese MLC patients. PMID:27322623
Hoch, John; Spofford, Lisa; Dimian, Adele; Tervo, Raymond; MacLean, William E; Symons, Frank J
2016-06-01
To compare the prevalence of self-injurious behavior (SIB) and stereotyped motor behavior (STY) of preschool-aged children with developmental delays (DD group) and their peers without developmental delays (TD group) using a standardized caregiver report scale. The Repetitive Behavior Scale-Revised was completed by caregivers of children with developmental delays and their peers without developmental delays. Frequency of occurrence and severity ratings for SIB and STY were compared between groups. SIB and STY were reported more often and at a greater level of severity in the DD group. Older chronological age was associated with more severe STY in the DD group but not the TD group. Gender was not related to STY or SIB for either group. Differences in STY and SIB were evident between preschoolers with and without DD. Findings are discussed from developmental and behavioral psychology perspectives regarding the expression of repetitive behavior in developmentally at-risk pediatric populations. © The Author 2015. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Covert representation of second-next movement in the pre-supplementary motor area of monkeys.
Nakajima, Toshi; Hosaka, Ryosuke; Mushiake, Hajime; Tanji, Jun
2009-04-01
We attempted to analyze the nature of premovement activity of neurons in medial motor areas [supplementary motor area (SMA) and pre-SMA] from a perspective of coding multiple movements. Monkeys were trained to perform a series of two movements with an intervening delay: supination or pronation with either forearm. Movements were initially instructed with visual signals but had to be remembered thereafter. Although a well-known type of premovement activity representing the forthcoming movements was found in the two areas, we found an unexpected type of activity that represented a second-next movement before initiating the first of the two movements. Typically in the pre-SMA, such activity selective for the second-next movement peaked before the initiation of the first movement, decayed thereafter, and remained low in magnitude while initiating the second movement. This type of activity may tentatively hold information for the second movement while initiating the first. That information may be fed into another group of neurons that themselves build a preparatory activity required to plan the second movements. Alternatively, the activity could serve as a signal to inhibit a premature exertion of the motor command for the second movement.
An electrophysiological follow up of patients with n-hexane polyneuropathy.
Chang, Y C
1991-01-01
Electroneurographic (ENeG) and evoked potential (EP) studies were regularly performed on 11 printing workers with n-hexane polyneuropathy after cessation of exposure. At the initial examination, the ENeG studies simulated a demyelinative process. Further slowing of nerve conduction velocity, or further decreasing of action potential amplitude, or both in the follow up ENeG study were found in about half the patients. The motor distal latency did not worsen. Nerve conduction returned to normal earlier in the sensory than in the motor nerves. After the patients had regained full motor capability, conduction velocities in motor nerves were still significantly slowed. These ENeG characteristics correlate with the pathological and pathophysiological changes in experimental hexa-carbon neuropathies. The initial findings from the EP studies indicated a conduction abnormality in the central nervous system (CNS). Delayed worsening occurred in the amplitude of visual EPs in three patients. On serial follow up, the interpeak latency and interpeak amplitude of visual EPs improved little. Residual abnormalities were also found in the interpeak latency of auditory EPs in the brainstem and in the absolute latency of scalp somatosensory EPs from the peroneal nerve. Astroglial proliferation in the CNS probably impedes recovery of the abnormalities in EP. PMID:1993154
Agarwal, Pratibha Keshav; Shi, Luming; Rajadurai, Victor Samuel; Zheng, Qishi; Yang, Phey Hong; Khoo, Poh Choo; Quek, Bin Huey; Daniel, Lourdes Mary
2018-06-01
To evaluate the neurodevelopmental outcomes of preterm very-low birth weight (PT/VLBW) infants at 2 years and identify risk factors associated with significant developmental delay or neurodevelopmental impairment (NDI). We evaluated 165 PT/VLBW infants born between January 2010 and December 2011, using the Bayley Scales of Infant and Toddler Development 3rd Edition (Bayley-III). NDI was defined as the presence of neurosensory impairment or significant delay with Bayley-III score < 70 in any domain and risk factors for delay/NDI were assessed using logistic regressions. Median Bayley-III composite scores in the cognitive, language and motor domains were 95, 89 and 94, respectively. NDI was present in 20% of the children, with 5-18% having significant delay in either cognitive, language or motor domain, seven (4%) children had cerebral palsy, three (2%) were deaf and none were blind. Regression models identified significant positive associations of delayed cognitive skills with male gender (Odds ratio (OR) 22.4, 95% confidence interval (CI) 1.5-341.1; P = 0.025), lack of anntenatal steroids (ANS) (OR 41.5, 95% CI 3.5-485.7; P = 0.003), and hypotension needing inotropes (OR 36.0, 95% CI 2.6-506.0; P = 0.008); delayed language skills with lower maternal education (OR 3.8, 95% CI 1.4-10.3; P = 0.10), lack of ANS (OR 2.8, 95% CI 1.1-7.4; P = 0.04), and 5 minute Apgar Score ≤ 5 (OR 7.4, 95% CI 1.4-38.4; P = 0.017) and delayed motor skills with chronic lung disease at 36 weeks (OR 38.3, 95% CI 2.4-603.4; P = 0.010). NDI was associated with lack of ANS (OR 2.91, 95% CI 1.21-7.00; P = 0.02) and use of postnatal steroids (OR 3.36, 95% CI 1.07-10.54; P = 0.0374). Risk factors for both NDI and individual domain delay were identified and will be helpful in planning of specific and targeted early intervention services.
Mennenga, Sarah E; Gerson, Julia E; Dunckley, Travis; Bimonte-Nelson, Heather A
2015-01-01
Harmine is a naturally occurring monoamine oxidase inhibitor that has recently been shown to selectively inhibit the dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A (DYRK1A). We investigated the cognitive effects of 1mg (low) Harmine and 5mg (high) Harmine using the delayed-match-to-sample (DMS) asymmetrical 3-choice water maze task to evaluate spatial working and recent memory, and the Morris water maze task (MM) to test spatial reference memory. Animals were also tested on the visible platform task, a water-escape task with the same motor, motivational, and reinforcement components as the other tasks used to evaluate cognition, but differing in its greater simplicity and that the platform was visible above the surface of the water. A subset of the Harmine-high treated animals showed clear motor impairments on all behavioral tasks, and the visible platform task confirmed a lack of competence to perform the procedural components of water maze testing. After excluding animals from the high dose group that could not perform the procedural components of a swim task, it was revealed that both high- and low-dose treatment with Harmine enhanced performance on the latter portion of DMS testing, but had no effect on MM performance. Thus, this study demonstrates the importance of confirming motor and visual competence when studying animal cognition, and verifies the one-day visible platform task as a reliable measure of ability to perform the procedural components necessary for completion of a swim task. Copyright © 2014. Published by Elsevier Inc.
Development of an Age Band on the ManuVis for 3-Year-Old Children with Visual Impairments.
Reimer, A M; Barsingerhorn, A D; Overvelde, A; Nijhuis-Van der Sanden, M W G; Boonstra, F N; Cox, R F A
2017-08-01
To compare fine motor performance of 3-year-old children with visual impairment with peers having normal vision, to provide reference scores for 3-year-old children with visual impairment on the ManuVis, and to assess inter-rater reliability. 26 children with visual impairment (mean age: 3 years 7 months (SD 3 months); 17 boys) and 28 children with normal vision (mean age: 3 years 7 months (SD 4 months); 14 boys) participated in the study. The ManuVis age band for 3-year-old children comprised two one-handed tasks, two two-handed tasks, and a pre-writing task. Children with visual impairment needed more time on all tasks (p < .01) and performed the pre-writing task less accurately than children with normal vision (p < .001). Children aged 42-47 months performed significantly faster on two tasks and had better total scores than children aged 36-41 months (p < .05). Inter-rater reliability was excellent (Intra-class Correlation Coefficient = 0.96-0.99). The ManuVis age band for 3-year-old children is appropriate to assess fine motor skills, and is sensitive to differences between children with visual impairment and normal vision and between half-year age groups. Reference scores are provided for 3-year-old children with visual impairment to identify delayed fine motor development.
Smits-Engelsman, Bouwien C M; Niemeijer, Anuschka S; van Waelvelde, Hilde
2011-01-01
Formal testing of 3 year old children is a new feature in the revised version of the Movement Assessment Battery for Children (Movement ABC-2). Our study evaluated the reliability and explored the clinical applicability of the Movement ABC-2 Test in this young age group. A total of 50 typically children were given two trials of the test within a one to two week interval by two physical therapists: same assessor (n=28 children) and different assessors (n=22 children). Psychometric properties were evaluated by calculating internal consistency (Cronbach α), intra-class correlation (ICC), the standard error of measurement (SEM), the smallest detectable difference (SDD) and Kappa values for classification agreement. The results are promising for future implementation of the Movement ABC-2 in clinical practice. The children's performance was highly reproducible when tested by the same assessor (ICC .94) The SEM was 1.7 or 2.1 standard scores for 90% or 95% confidence intervals respectively, making the test sensitive enough to detect individual changes. If two different assessors tested the children the ICC was .76. In conclusion, the revised test can be applied to assess motor performance in typically developing 3-year old children. Future studies are needed to confirm if the same can be said for children with motor delays. Copyright © 2011 Elsevier Ltd. All rights reserved.
Rastle, Kathleen; Croot, Karen P; Harrington, Jonathan M; Coltheart, Max
2005-10-01
The research described in this article had 2 aims: to permit greater precision in the conduct of naming experiments and to contribute to a characterization of the motor execution stage of speech production. The authors report an exhaustive inventory of consonantal and postconsonantal influences on delayed naming latency and onset acoustic duration, derived from a hand-labeled corpus of single-syllable consonant-vowel utterances. Five talkers produced 6 repetitions each of a set of 168 prepared monosyllables, a set that comprised each of the consonantal onsets of English in 3 vowel contexts. Strong and significant effects associated with phonetic characteristics of initial and noninitial phonemes were observed on both delayed naming latency and onset acoustic duration. Results are discussed in terms of the biomechanical properties of the articulatory system that may give rise to these effects and in terms of their methodological implications for naming experiments.
Milne, Susan; McDonald, Jenny; Comino, Elizabeth J
2012-02-01
In response to concerns that the Bayley Scales of Infant and Toddler Development III (BSIDIII) underestimate delay in clinical populations, this study explores developmental quotient scores as an alternative to composite scores for these children. One hundred and twenty-two children aged ≤42 months, referred for diagnosis of developmental disability from January 2007 to May 2010, were assessed, and their composite and developmental quotient scores on each scale were compared. Composite scores identified only 22% (cognitive), 27% (motor), and 47.5% (language) of children as having a developmental disability. Developmental quotient scores were significantly lower than composite scores, giving rates of developmental disability of 56.6% (cognitive), 48.4% (motor), and 74.6% (language) and more closely matching both clinical impressions of delay and the proportions of those children who were also delayed on standardized tests of adaptive function.
Human Behaviour and Development under High-Altitude Conditions
ERIC Educational Resources Information Center
Virues-Ortega, Javier; Garrido, Eduardo; Javierre, Casimiro; Kloezeman, Karen C.
2006-01-01
Although we are far from a universally accepted pattern of impaired function at altitude, there is evidence indicating motor, perceptual, memory and behavioural deficits in adults. Even relatively low altitudes (2500 m) may delay reaction time, and impair motor function. Extreme altitude exposure (greater than 5000 m) may result in more pronounced…
SKIPing with Head Start Teachers: Influence of T-SKIP on Object-Control Skills
ERIC Educational Resources Information Center
Brian, Ali; Goodway, Jacqueline D.; Logan, Jessica A.; Sutherland, Sue
2017-01-01
Purpose: Children from disadvantaged settings are at risk for delays in their object-control (OC) skills. Fundamental motor skill interventions, such as the Successful Kinesthetic Instruction for Preschoolers (SKIP) Program, are highly successful when led by motor development experts. However, few preschools employ such experts. This study…
ERIC Educational Resources Information Center
Dikowski, Timothy J.
This practicum was designed to remediate handwriting skills in school-aged children who displayed visual-motor deficiencies that affect mechanical skills. Practicum goals were to: (1) identify and diagnose children with handwriting delays; (2) involve school and parent interaction by involving them with pre- and post-program assessment; (3)…
Motor delays in MDMA (ecstasy) exposed infants persist to 2 years.
Singer, Lynn T; Moore, Derek G; Min, Meeyoung O; Goodwin, Julia; Turner, John J D; Fulton, Sarah; Parrott, Andrew C
2016-01-01
Recreational use of 3,4 methylenedioxymethamphetamine (ecstasy, MDMA) is increasing worldwide. Its use by pregnant women causes concern due to potentially harmful effects on the developing fetus. MDMA, an indirect monoaminergic agonist and reuptake inhibitor, affects the serotonin and dopamine systems. Preclinical studies of fetal exposure demonstrate effects on learning, motor behavior, and memory. In the first human studies, we found prenatal MDMA exposure related to poorer motor development in the first year of life. In the present study we assessed the effects of prenatal exposure to MDMA on the trajectory of child development through 2 years of age. We hypothesized that exposure would be associated with poorer mental and motor outcomes. The DAISY (Drugs and Infancy Study, 2003-2008) employed a prospective longitudinal cohort design to assess recreational drug use during pregnancy and child outcomes in the United Kingdom. Examiners masked to drug exposures followed infants from birth to 4, 12, 18, and 24 months of age. MDMA, cocaine, alcohol, tobacco, cannabis, and other drugs were quantified through a standardized clinical interview. The Bayley Scales (III) of Mental (MDI) and Motor (PDI) Development and the Behavior Rating Scales (BRS) were primary outcome measures. Statistical analyses included a repeated measures mixed model approach controlling for multiple confounders. Participants were pregnant women volunteers, primarily white, of middle class socioeconomic status, average IQ, with some college education, in stable partner relationships. Of 96 women enrolled, children of 93 had at least one follow-up assessment and 81 (87%) had ≥ two assessments. Heavier MDMA exposure (M=1.3±1.4 tablets per week) predicted lower PDI (p<.002), and poorer BRS motor quality from 4 to 24 months of age, but did not affect MDI, orientation, or emotional regulation. Children with heavier exposure were twice as likely to demonstrate poorer motor quality as lighter and non-exposed children (O.R.=2.2, 95%, CI=1.02-4.70, p<.05). Infants whose mothers reported heavier MDMA use during pregnancy had motor delays from 4 months to two years of age that were not attributable to other drug or lifestyle factors. Women of child bearing age should be cautioned about the use of MDMA and MDMA-exposed infants should be screened for motor delays and possible intervention. Copyright © 2016 Elsevier Inc. All rights reserved.
Motor Delays in MDMA (Ecstasy) Exposed Infants Persist to 2 Years
Singer, Lynn T.; Moore, Derek G.; Min, Meeyoung O.; Goodwin, Julia; Turner, John J.D.; Fulton, Sarah; Parrott, Andrew C.
2016-01-01
Background Recreational use of 3,4 methylenedioxymethamphetamine (Ecstasy, MDMA) is increasing worldwide. Its use by pregnant women causes concern due to potentially harmful effects on the developing fetus. MDMA, an indirect monoaminergic agonist and reuptake inhibitor, affects the serotonin and dopamine systems. Preclinical studies of fetal exposure demonstrate effects on learning, motor behavior, and memory. In the first human studies, we found prenatal MDMA exposure related to poorer motor development in the first year of life. In the present study we assessed the effects of prenatal exposure to MDMA on the trajectory of child development through 2 years of age. We hypothesized that exposure would be associated with poorer mental and motor outcomes. Materials and Methods The DAISY (Drugs and Infancy Study, 2003–2008) employed a prospective longitudinal cohort design to assess recreational drug use during pregnancy and child outcomes in the United Kingdom. Examiners masked to drug exposures followed infants from birth to 4, 12, 18, and 24 months of age. MDMA, cocaine, alcohol, tobacco, cannabis, and other drugs were quantified through a standardized clinical interview. The Bayley Scales (III) of Mental (MDI) and Motor (PDI) Development and the Behavior Rating Scales (BRS) were primary outcome measures. Statistical analyses included a repeated measures mixed model approach controlling for multiple confounders. Results Participants were pregnant women volunteers, primarily white, of middle class socioeconomic status, average IQ, with some college education, in stable partner relationships. Of 96 women enrolled, children of 93 had at least one follow-up assessment and 81 (87%) had two assessments. Heavier MDMA exposure, (M = 1.3 ± 1.4 tablets per week) predicted lower PDI (p < .002), and poorer BRS motor quality from 4 to 24 months of age, but did not affect MDI, orientation, or emotional regulation. Children with heavier exposure were twice as likely to demonstrate poorer motor quality as lighter and non-exposed children (O.R. = 2.2, 95%, CI = 1.02–4.70, p < .05). Discussion Infants whose mothers reported heavier MDMA use during pregnancy had motor delays from 4 months to two years of age that were not attributable to other drug or lifestyle factors. Women of child bearing age should be cautioned about the use of MDMA and MDMA-exposed infants should be screened for motor delays and possible intervention. PMID:26806601
Anzalone, Anthony J; Blueitt, Damond; Case, Tami; McGuffin, Tiffany; Pollard, Kalyssa; Garrison, J Craig; Jones, Margaret T; Pavur, Robert; Turner, Stephanie; Oliver, Jonathan M
2017-02-01
Vestibular and ocular motor impairments are routinely reported in patients with sports-related concussion (SRC) and may result in delayed return to play (RTP). The Vestibular/Ocular Motor Screening (VOMS) assessment has been shown to be consistent and sensitive in identifying concussion when used as part of a comprehensive examination. To what extent these impairments or symptoms are associated with length of recovery is unknown. To examine whether symptom provocation or clinical abnormality in specific domains of the VOMS results in protracted recovery (time from SRC to commencement of RTP protocol). Cohort study (prognosis); Level of evidence, 2. A retrospective chart review was conducted of 167 patients (69 girls, 98 boys; mean ± SD age, 15 ± 2 years [range, 11-19 years]) presenting with SRC in 2014. During the initial visit, VOMS was performed in which symptom provocation or clinical abnormality (eg, unsmooth eye movements) was documented by use of a dichotomous scale (0 = not present, 1 = present). The VOMS used in this clinic consisted of smooth pursuits (SMO_PUR), horizontal and vertical saccades (HOR_SAC and VER_SAC), horizontal and vertical vestibular ocular reflex (HOR_VOR and VER_VOR), near point of convergence (NPC), and accommodation (ACCOM). Domains were also categorized into ocular motor (SMO_PUR, HOR_SAC, VER_SAC, NPC, ACCOM) and vestibular (HOR_VOR, VER_VOR). Cox proportional hazard models were used to explore the relationship between the domains and recovery. Alpha was set at P ≤ .05. Symptom provocation and/or clinical abnormality in all domains except NPC ( P = .107) and ACCOM ( P = .234) delayed recovery (domain, hazard ratio [95% CI]: SMO_PUR, 0.65 [0.47-0.90], P = .009; HOR_SAC, 0.68 [0.50-0.94], P = .018; VER_SAC, 0.55 [0.40-0.75], P < .001; HOR_VOR, 0.68 [0.49-0.94], P = .018; VER_VOR, 0.60 [0.44-0.83], P = .002). The lowest crude hazard ratio was for ocular motor category (0.45 [0.32-0.63], P < .001). These data suggest that symptom provocation/clinical abnormality associated with all domains except NPC and ACCOM can delay recovery after SRC in youth and adolescents. Thus, the VOMS not only may augment current diagnostic tools but also may serve as a predictor of recovery time in patients with SRC. The findings of this study may lead to more effective prognosis of concussion in youth and adolescents.
Coleman, Andrea; Weir, Kelly A; Ware, Robert S; Boyd, Roslyn N
2013-11-01
To explore the communication skills of children with cerebral palsy (CP) at 24 months' corrected age with reference to typically developing children, and to determine the relationship between communication ability, gross motor function, and other comorbidities associated with CP. Prospective, cross-sectional, population-based cohort study. General community. Children with CP (N=124; mean age, 24mo; functional severity on Gross Motor Function Classification System [GMFCS]: I=47, II=14, III=22, IV=19, V=22). Not applicable. Parents reported communication skills on the Communication and Symbolic Behavior Scales Developmental Profile (CSBS-DP) Infant-Toddler Checklist. Two independent physiotherapists classified motor type, distribution, and GMFCS. Data on comorbidities were obtained from parent interviews and medical records. Children with mild CP (GMFCS I/II) had mean CSBS-DP scores that were 0.5 to 0.6 SD below the mean for typically developing peers, while those with moderate-severe impairment (GMFCS III-V) were 1.4 to 2.6 SD below the mean. GMFCS was significantly associated with performance on the CSBS-DP (F=18.55, P<.001), with gross motor ability accounting for 38% of the variation in communication. Poorer communication was strongly associated with gross motor function and full-term birth. Preschool-aged children with CP, with more severe gross motor impairment, showed delayed communication, while children with mild motor impairment were less vulnerable. Term-born children had significantly poorer communication than those born prematurely. Because a portion of each gross motor functional severity level is at risk, this study reinforces the need for early monitoring of communication development for all children with CP. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
A Critical Period for Postnatal Adaptive Plasticity in a Model of Motor Axon Miswiring
Castiblanco-Urbina, Maria A.; Winzeck, Stefan; Sundermeier, Julia; Theis, Fabian J.; Fouad, Karim; Huber, Andrea B.
2015-01-01
The correct wiring of neuronal circuits is of crucial importance for precise neuromuscular functionality. Therefore, guidance cues provide tight spatiotemporal control of axon growth and guidance. Mice lacking the guidance cue Semaphorin 3F (Sema3F) display very specific axon wiring deficits of motor neurons in the medial aspect of the lateral motor column (LMCm). While these deficits have been investigated extensively during embryonic development, it remained unclear how Sema3F mutant mice cope with these errors postnatally. We therefore investigated whether these animals provide a suitable model for the exploration of adaptive plasticity in a system of miswired neuronal circuitry. We show that the embryonically developed wiring deficits in Sema3F mutants persist until adulthood. As a consequence, these mutants display impairments in motor coordination that improve during normal postnatal development, but never reach wildtype levels. These improvements in motor coordination were boosted to wildtype levels by housing the animals in an enriched environment starting at birth. In contrast, a delayed start of enriched environment housing, at 4 weeks after birth, did not similarly affect motor performance of Sema3F mutants. These results, which are corroborated by neuroanatomical analyses, suggest a critical period for adaptive plasticity in neuromuscular circuitry. Interestingly, the formation of perineuronal nets, which are known to close the critical period for plastic changes in other systems, was not altered between the different housing groups. However, we found significant changes in the number of excitatory synapses on limb innervating motor neurons. Thus, we propose that during the early postnatal phase, when perineuronal nets have not yet been formed around spinal motor neurons, housing in enriched environment conditions induces adaptive plasticity in the motor system by the formation of additional synaptic contacts, in order to compensate for coordination deficits. PMID:25874621
Cabib, Christopher; Llufriu, Sara; Casanova-Molla, Jordi; Saiz, Albert; Valls-Solé, Josep
2015-03-01
Slowness of voluntary movements in patients with multiple sclerosis (MS) may be due to various factors, including attentional and cognitive deficits, delays in motor conduction time, and impairment of specific central nervous system circuits. In 13 healthy volunteers and 20 mildly disabled, relapsing-remitting MS patients, we examined simple reaction time (SRT) tasks requiring sensorimotor integration in circuits involving the corpus callosum and the brain stem. A somatosensory stimulus was used as the imperative signal (IS), and subjects were requested to react with either the ipsilateral or the contralateral hand (uncrossed vs. crossed SRT). In 33% of trials, a startling auditory stimulus was presented together with the IS, and the percentage reaction time change with respect to baseline SRT trials was measured (StartReact effect). The difference between crossed and uncrossed SRT, which requires interhemispheric conduction, was significantly larger in patients than in healthy subjects (P = 0.021). The StartReact effect, which involves activation of brain stem motor pathways, was reduced significantly in patients with respect to healthy subjects (uncrossed trials: P = 0.015; crossed trials: P = 0.005). In patients, a barely significant correlation was found between SRT delay and conduction abnormalities in motor and sensory pathways (P = 0.02 and P = 0.04, respectively). The abnormalities found specifically in trials reflecting interhemispheric transfer of information, as well as the evidence for reduced subcortical motor preparation, indicate that a delay in reaction time execution in MS patients cannot be explained solely by conduction slowing in motor and sensory pathways but suggest, instead, defective sensorimotor integration mechanisms in at least the two circuits examined. Copyright © 2015 The American Physiological Society.
Mailend, Marja-Liisa; Maas, Edwin
2013-05-01
Apraxia of speech (AOS) is considered a speech motor programming impairment, but the specific nature of the impairment remains a matter of debate. This study investigated 2 hypotheses about the underlying impairment in AOS framed within the Directions Into Velocities of Articulators (DIVA; Guenther, Ghosh, & Tourville, 2006) model: The retrieval hypothesis states that access to the motor programs is impaired, and the damaged programs hypothesis states that the motor programs themselves are damaged. The experiment used a delayed picture-word interference paradigm in which participants prepare their response and auditory distracters are presented with the go signal. The overlap between target and distracter words was manipulated (i.e., shared sounds or no shared sounds), and participants' reaction times (RTs) were measured. Participants included 5 speakers with AOS (4 with concomitant aphasia), 2 speakers with aphasia without AOS, and 9 age-matched control speakers. The control speakers showed no effects of distracter type or presence. The speakers with AOS had longer RTs in the distracter condition compared to the no-distracter condition. The speakers with aphasia without AOS were comparable to the control group in their overall RTs and RT pattern. Results provide preliminary support for the retrieval hypothesis, suggesting that access to motor programs may be impaired in speakers with AOS. However, the possibility that the motor programs may also be damaged cannot be ruled out.
Sironi, Francesca; Vallarola, Antonio; Violatto, Martina Bruna; Talamini, Laura; Freschi, Mattia; De Gioia, Roberta; Capelli, Chiara; Agostini, Azzurra; Moscatelli, Davide; Tortarolo, Massimo; Bigini, Paolo; Introna, Martino; Bendotti, Caterina
2017-12-01
Stem cell therapy is considered a promising approach in the treatment of amyotrophic lateral sclerosis (ALS) and mesenchymal stem cells (MSCs) seem to be the most effective in ALS animal models. The umbilical cord (UC) is a source of highly proliferating fetal MSCs, more easily collectable than other MSCs. Recently we demonstrated that human (h) UC-MSCs, double labeled with fluorescent nanoparticles and Hoechst-33258 and transplanted intracerebroventricularly (ICV) into SOD1G93A transgenic mice, partially migrated into the spinal cord after a single injection. This prompted us to assess the effect of repeated ICV injections of hUC-MSCs on disease progression in SOD1G93A mice. Although no transplanted cells migrated to the spinal cord, a partial but significant protection of motor neurons (MNs) was found in the lumbar spinal cord of hUC-MSCs-treated SOD1G93A mice, accompanied by a shift from a pro-inflammatory (IL-6, IL-1β) to anti-inflammatory (IL-4, IL-10) and neuroprotective (IGF-1) environment in the lumbar spinal cord, probably linked to the activation of p-Akt survival pathway in both motor neurons and reactive astrocytes. However, this treatment neither prevented the muscle denervation nor delayed the disease progression of mice, emphasizing the growing evidence that protecting the motor neuron perikarya is not sufficient to delay the ALS progression. Copyright © 2017. Published by Elsevier B.V.
The impact of obstetric mode of delivery on childhood behavior.
Al Khalaf, Sukainah Y; O'Neill, Sinéad M; O'Keeffe, Linda M; Henriksen, Tine B; Kenny, Louise C; Cryan, John F; Khashan, Ali S
2015-10-01
We investigated the hypothesis that mode of delivery affects childhood behavior and motor development and examined whether there are sex-specific associations, i.e., whether males and females have different risk estimates. Families with infants born between December 2007 and May 2008 (N = 11,134) were randomly selected and recruited to the Growing Up in Ireland study. Mode of delivery was classified into spontaneous vaginal delivery; instrumental vaginal delivery; emergency Cesarean section (CS); and elective CS. The 'Ages and Stages Questionnaire' was completed at age 9-months and the 'Strengths and Difficulties Questionnaire' at 3 years. Data were weighted to represent the national sample (N = 73,662) and multivariate logistic regression was used for the statistical analyses. At age 9 months, elective CS was associated with a delay in personal social skills [adjusted odds ratio, aOR 1.24; (95% confidence interval, CI 1.04, 1.48)] and gross motor function [aOR 1.62, (95% CI 1.34, 1.96)], whereas emergency CS was associated with delayed gross motor function [aOR 1.30, (95% CI 1.06, 1.59)]. At age 3 years there was no significantly increased risk of an abnormal total SDQ score across all modes of delivery. Children born by elective CS may face a delay in cognitive and motor development at age 9 months. No increase in total SDQ score was found across all modes of delivery. Further investigation is needed to replicate these findings in other populations and explore the potential biological mechanisms.
Suelves, Nuria; Miguez, Andrés; López-Benito, Saray; Barriga, Gerardo García-Díaz; Giralt, Albert; Alvarez-Periel, Elena; Arévalo, Juan Carlos; Alberch, Jordi; Ginés, Silvia; Brito, Verónica
2018-05-27
Deficits in striatal brain-derived neurotrophic factor (BDNF) delivery and/or BDNF/tropomyosin receptor kinase B (TrkB) signaling may contribute to neurotrophic support reduction and selective early degeneration of striatal medium spiny neurons in Huntington's disease (HD). Furthermore, we and others have demonstrated that TrkB/p75 NTR imbalance in vitro increases the vulnerability of striatal neurons to excitotoxic insults and induces corticostriatal synaptic alterations. We have now expanded these studies by analyzing the consequences of BDNF/TrkB/p75 NTR imbalance in the onset of motor behavior and striatal neuropathology in HD mice. Our findings demonstrate for the first time that the onset of motor coordination abnormalities, in a full-length knock-in HD mouse model (KI), correlates with the reduction of BDNF and TrkB levels, along with an increase in p75 NTR expression. Genetic normalization of p75 NTR expression in KI mutant mice delayed the onset of motor deficits and striatal neuropathology, as shown by restored levels of striatal-enriched proteins and dendritic spine density and reduced huntingtin aggregation. We found that the BDNF/TrkB/p75 NTR imbalance led to abnormal BDNF signaling, manifested as a diminished activation of TrkB-phospholipase C-gamma pathway but upregulation of c-Jun kinase pathway. Moreover, we confirmed the contribution of the proper balance of BDNF/TrkB/p75 NTR on HD pathology by a pharmacological approach using fingolimod. We observed that chronic infusion of fingolimod normalizes p75 NTR levels, which is likely to improve motor coordination and striatal neuropathology in HD transgenic mice. We conclude that downregulation of p75 NTR expression can delay disease progression suggesting that therapeutic approaches aimed to restore the balance between BDNF, TrkB, and p75 NTR could be promising to prevent motor deficits in HD.
Daliri, Ayoub; Max, Ludo
2018-02-01
Auditory modulation during speech movement planning is limited in adults who stutter (AWS), but the functional relevance of the phenomenon itself remains unknown. We investigated for AWS and adults who do not stutter (AWNS) (a) a potential relationship between pre-speech auditory modulation and auditory feedback contributions to speech motor learning and (b) the effect on pre-speech auditory modulation of real-time versus delayed auditory feedback. Experiment I used a sensorimotor adaptation paradigm to estimate auditory-motor speech learning. Using acoustic speech recordings, we quantified subjects' formant frequency adjustments across trials when continually exposed to formant-shifted auditory feedback. In Experiment II, we used electroencephalography to determine the same subjects' extent of pre-speech auditory modulation (reductions in auditory evoked potential N1 amplitude) when probe tones were delivered prior to speaking versus not speaking. To manipulate subjects' ability to monitor real-time feedback, we included speaking conditions with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF). Experiment I showed that auditory-motor learning was limited for AWS versus AWNS, and the extent of learning was negatively correlated with stuttering frequency. Experiment II yielded several key findings: (a) our prior finding of limited pre-speech auditory modulation in AWS was replicated; (b) DAF caused a decrease in auditory modulation for most AWNS but an increase for most AWS; and (c) for AWS, the amount of auditory modulation when speaking with DAF was positively correlated with stuttering frequency. Lastly, AWNS showed no correlation between pre-speech auditory modulation (Experiment II) and extent of auditory-motor learning (Experiment I) whereas AWS showed a negative correlation between these measures. Thus, findings suggest that AWS show deficits in both pre-speech auditory modulation and auditory-motor learning; however, limited pre-speech modulation is not directly related to limited auditory-motor adaptation; and in AWS, DAF paradoxically tends to normalize their otherwise limited pre-speech auditory modulation. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Buis, Joyce M.; Schane, Catherine S.
1980-01-01
Background, rationale, and techniques for using movement exploration to teach preswimming skills to developmentally delayed persons are given. Objectives (beyond the primary one of safety) of such a program include body awareness, spatial awareness, movement, and perceptual motor functions. Guidelins for activity selection and adaptation are…
Decreased head circumference velocity as related to developmental deficit in infancy.
Tal, Galit; Cohen, Ayala; Habib, Sonia; Tirosh, Emanuel
2012-11-01
We evaluated the significance of head circumference growth velocity as related to developmental deficits during infancy. Head circumferences, lengths, and developmental diagnoses were retrieved in a standard manner at ≥ 2 time points from 437 infants with developmental deficits, and 3909 normally developing infants. Infants' ages ranged from 1-24 months, with final diagnoses ascertained at age 24 months. Increased velocity during the first 2 months in typical infants was evident in the study group during the period 2-4 months. A differential head circumference growth velocity was observed, and infants diagnosed with motor delay presented decreased velocity between ages 2-4 months, compared with infants receiving other nonmotor developmental diagnoses. These differences remained after controlling for birth weight and length. No significant sex effect was evident. Infants with developmental deficits demonstrate delayed acceleration of head circumference velocity, compared with typical infants in the first 2 months. Infants with motor delay manifest decreased velocity, compared with infants presenting other developmental deficits. These differences may be related to delayed white matter maturation. Copyright © 2012 Elsevier Inc. All rights reserved.
School Start Times, Sleep, Behavioral, Health, and Academic Outcomes: a Review of the Literature
Chapman, Daniel P.; Croft, Janet B.
2015-01-01
BACKGROUND Insufficient sleep in adolescents has been shown to be associated with a wide variety of adverse outcomes, from poor mental and physical health to behavioral problems and lower academic grades. However, most high school students do not get sufficient sleep. Delaying school start times for adolescents has been proposed as a policy change to address insufficient sleep in this population and potentially to improve students’ academic performance, reduce engagement in risk behaviors, and improve health. METHODS This paper reviews 38 reports examining the association between school start times, sleep, and other outcomes among adolescent students. RESULTS Most studies reviewed provide evidence that delaying school start time increases weeknight sleep duration among adolescents, primarily by delaying rise times. Most of the studies saw a significant increase in sleep duration even with relatively small delays in start times of half an hour or so. Later start times also generally correspond to improved attendance, less tardiness, less falling asleep in class, better grades, and fewer motor vehicle crashes. CONCLUSIONS Although additional research is necessary, research results that are already available should be disseminated to stakeholders to enable the development of evidence-based school policies. PMID:27040474
Learning and transfer in motor-respiratory coordination.
Hessler, Eric E; Amazeen, Polemnia G
2014-02-01
Motor-respiratory coordination occurs naturally during exercise, but the number of coordination patterns performed between movement and breathing is limited. We investigated whether participants could acquire novel ratios (either 5:2 or 5:3). To examine complex temporal relationships between movement and breathing, we used lagged return plots that were produced by graphing relative phase against relative phase after a time delay. By the end of practice, participants performed 5:2 consistently and performed 5:3 using more stable ratios (3:2 and 2:1). Lagged return plots revealed that 5:3 learners harnessed the stable inphase and antiphase patterns to stabilize the required ratio. That strategy resulted in the performance of smaller-integer ratios in the production of 5:3 but not 5:2. Despite those differences, there was positive transfer to unpracticed ratios that was similar in both learning conditions. The time series analysis of lagged return plots revealed differences in ratio performance at transfer. Ratios whose component frequencies were farther apart, like 7:2, were performed consistently, while ratios whose component frequencies were more similar, like 5:4, elicited attraction to inphase and antiphase. The implication is that participants can combine more stable chunks of rhythmic behavior to produce more complex ratios. Copyright © 2013 Elsevier B.V. All rights reserved.
Eechaute, Christophe; Vaes, Peter; Duquet, William; Van Gheluwe, Bart
2009-07-01
Studies investigating peroneal muscle reaction times in chronically unstable ankle joints present conflicting results. The degree of reliability and accuracy of these measurements is unknown in patients with chronic ankle instability (CAI). 40 patients with CAI and 30 healthy subjects were tested using a sudden ankle inversion of 50 degrees while standing on a trapdoor device. Sudden ankle inversion measurements were registered using electromyography, accelerometry and electrogoniometry. For reliability testing, intra-class coefficients (ICCs; model 3,1) and standard errors of measurements of the latency time, motor response time and electromechanical delay of the peroneus longus muscle, the time and angular position of onset of decelerations, the mean and maximum inversion speed and the total inversion time were calculated in 15 patients with CAI. To assess between-group differences, t-tests for independent samples (p<.05) were used. ICCs ranged from .20 (angular position of onset of the second deceleration) to .98 (electromechanical delay of the peroneus longus muscle). Significant between-group differences were observed in only 2 of the 12 variables (for the electromechanical delay of the peroneus longus muscle, p=.001; time of onset of the second deceleration, p=.040). The latency time and motor response time of the peroneus longus muscle, the total inversion time and the mean inversion speed demonstrate acceptable reliability in healthy subjects and patients. The latency time and motor response time of the peroneus longus muscle are not delayed in patients with CAI. Ankle inversion measurements are not discriminative for CAI.
Yamanaka, Koji; Boillee, Severine; Roberts, Elizabeth A.; Garcia, Michael L.; McAlonis-Downes, Melissa; Mikse, Oliver R.; Cleveland, Don W.; Goldstein, Lawrence S. B.
2008-01-01
Dominant mutations in ubiquitously expressed superoxide dismutase (SOD1) cause familial ALS by provoking premature death of adult motor neurons. To test whether mutant damage to cell types beyond motor neurons is required for the onset of motor neuron disease, we generated chimeric mice in which all motor neurons and oligodendrocytes expressed mutant SOD1 at a level sufficient to cause fatal, early-onset motor neuron disease when expressed ubiquitously, but did so in a cellular environment containing variable numbers of non-mutant, non-motor neurons. Despite high-level mutant expression within 100% of motor neurons and oligodendrocytes, in most of these chimeras, the presence of WT non-motor neurons substantially delayed onset of motor neuron degeneration, increasing disease-free life by 50%. Disease onset is therefore non-cell autonomous, and mutant SOD1 damage within cell types other than motor neurons and oligodendrocytes is a central contributor to initiation of motor neuron degeneration. PMID:18492803
Coppens, Milou J M; Roelofs, Jolanda M B; Donkers, Nicole A J; Nonnekes, Jorik; Geurts, Alexander C H; Weerdesteyn, Vivian
2018-05-14
A startling acoustic stimulus (SAS) involuntary releases prepared movements at accelerated latencies, known as the StartReact effect. Previous work has demonstrated intact StartReact in paretic upper extremity movements in people after stroke, suggesting preserved motor preparation. The question remains whether motor preparation of lower extremity movements is also unaffected after stroke. Here, we investigated StartReact effects on ballistic lower extremity movements and on automatic postural responses (APRs) following perturbations to standing balance. These APRs are particularly interesting as they are critical to prevent a fall following balance perturbations, but show substantial delays and poor muscle coordination after stroke. Twelve chronic stroke patients and 12 healthy controls performed voluntary ankle dorsiflexion movements in response to a visual stimulus, and responded to backward balance perturbations evoking APRs. Twenty-five percent of all trials contained a SAS (120 dB) simultaneously with the visual stimulus or balance perturbation. As expected, in the absence of a SAS muscle and movement onset latencies at the paretic side were delayed compared to the non-paretic leg and to controls. The SAS accelerated ankle dorsiflexion onsets in both the legs of the stroke subjects and in controls. Following perturbations, the SAS accelerated bilateral APR onsets not only in controls, but for the first time, we also demonstrated this effect in people after stroke. Moreover, APR inter- and intra-limb muscle coordination was rather weak in our stroke subjects, but substantially improved when the SAS was applied. These findings show preserved movement preparation, suggesting that there is residual (subcortical) capacity for motor recovery.
Myelinated sensory and alpha motor axon regeneration in peripheral nerve neuromas
NASA Technical Reports Server (NTRS)
Macias, M. Y.; Lehman, C. T.; Sanger, J. R.; Riley, D. A.
1998-01-01
Histochemical staining for carbonic anhydrase and cholinesterase (CE) activities was used to analyze sensory and motor axon regeneration, respectively, during neuroma formation in transected and tube-encapsulated peripheral nerves. Median-ulnar and sciatic nerves in the rodent model permitted testing whether a 4 cm greater distance of the motor neuron soma from axotomy site or intrinsic differences between motor and sensory neurons influenced regeneration and neuroma formation 10, 30, and 90 days later. Ventral root radiculotomy confirmed that CE-stained axons were 97% alpha motor axons. Distance significantly delayed axon regeneration. When distance was negligible, sensory axons grew out sooner than motor axons, but motor axons regenerated to a greater quantity. These results indicate regeneration differences between axon subtypes and suggest more extensive branching of motor axons within the neuroma. Thus, both distance from injury site to soma and inherent motor and sensory differences should be considered in peripheral nerve repair strategies.
Soucek, Alexander; Ostkamp, Lutz; Paternesi, Roberta
2015-04-01
Space suit simulators are used for extravehicular activities (EVAs) during Mars analog missions. Flight planning and EVA productivity require accurate time estimates of activities to be performed with such simulators, such as experiment execution or traverse walking. We present a benchmarking methodology for the Aouda.X space suit simulator of the Austrian Space Forum. By measuring and comparing the times needed to perform a set of 10 test activities with and without Aouda.X, an average time delay was derived in the form of a multiplicative factor. This statistical value (a second-over-second time ratio) is 1.30 and shows that operations in Aouda.X take on average a third longer than the same operations without the suit. We also show that activities predominantly requiring fine motor skills are associated with larger time delays (between 1.17 and 1.59) than those requiring short-distance locomotion or short-term muscle strain (between 1.10 and 1.16). The results of the DELTA experiment performed during the MARS2013 field mission increase analog mission planning reliability and thus EVA efficiency and productivity when using Aouda.X.
Delayed hydronephrosis due to retroperitoneal hematoma after a seatbelt injury: A case report.
Yumoto, Tetsuya; Kondo, Yoshitaka; Kumon, Kento; Masaoka, Yoshihisa; Hiraki, Takao; Yamada, Taihei; Naito, Hiromichi; Nakao, Atsunori
2018-06-01
Hydronephrosis caused by retroperitoneal hematoma after a seatbelt injury is a unique clinical entity. A 21-year-old man, who had been wearing a seatbelt, was brought to our hospital after a motor vehicle collision, complaining of abdominal pain. Computed tomography (CT) revealed retroperitoneal hematoma in the upper pelvic region. Since he was hemodynamically stable throughout admission, he was managed conservatively. Seventeen days after initial discharge, the patient revisited our emergency department due to right back pain. CT scans indicated retroperitoneal hematoma growth resulting in hydronephrosis of the right kidney. Laparoscopic drainage of the retroperitoneal hematoma was successfully performed. His symptoms resolved after the surgery. Follow-up CT scans three months later demonstrated complete resolution of the hydronephrosis and retroperitoneal hematoma. Our case highlights a patient with delayed hydronephrosis because of retroperitoneal hematoma expansion after a seatbelt injury.
Devine, Matthew S; Ballard, Emma; O'Rourke, Peter; Kiernan, Matthew C; Mccombe, Pamela A; Henderson, Robert D
2016-01-01
Estimating survival in amyotrophic lateral sclerosis (ALS) is challenging due to heterogeneity in clinical features of disease and a lack of suitable markers that predict survival. Our aim was to determine whether scoring of upper or lower motor neuron weakness is associated with survival. With this objective, 161 ALS subjects were recruited from two tertiary referral centres. Scoring of upper (UMN) and lower motor neuron (LMN) signs was performed, in addition to a brief questionnaire. Subjects were then followed until the censorship date. Univariate analysis was performed to identify variables associated with survival to either non-invasive ventilation (NIV) or death, which were then further characterized using Cox regression. Results showed that factors associated with reduced survival included older age, bulbar and respiratory involvement and shorter diagnostic delay (all p < 0.05). Whole body LMN score was strongly associated with time to NIV or death (p ≤0.001) whereas UMN scores were poorly associated with survival. In conclusion, our results suggest that, early in disease assessment and in the context of other factors (age, bulbar, respiratory status), the burden of LMN weakness provides an accurate estimate of outcome. Such a scoring system could predict prognosis, and thereby aid in selection of patients for clinical trials.
Han, Ji Yeon; Choi, Jung Won; Wang, Kyu Chang; Phi, Ji Hoon; Lee, Ji Yeoun; Chae, Jong Hee; Park, Sung Hye; Cheon, Jung Eun; Kim, Seung Ki
2017-11-01
Radiotherapy is one of the standard treatments for medulloblastoma. However, therapeutic central nervous system irradiation in children may carry delayed side effects, such as radiation-induced tumor and vasculopathy. Here, we report the first case of coexisting meningioma and moyamoya syndrome, presenting 10 years after radiotherapy for medulloblastoma. A 13-year-old boy presented with an enhancing mass at the cerebral falx on magnetic resonance imaging (MRI) after surgery, radiotherapy (30.6 Gy craniospinal axis, 19.8 Gy posterior fossa) and chemotherapy against medulloblastoma 10 years ago, previously. The second tumor was meningioma. On postoperative day 5, he complained of right-sided motor weakness, motor dysphasia, dysarthria, and dysphagia. MRI revealed acute cerebral infarction in the left frontal lobe and both basal ganglia. MR and cerebral angiography confirmed underlying moyamoya syndrome. Four months after the meningioma surgery, the patient presented with headaches, dysarthria, and dizziness. Indirect bypass surgery was performed. He has been free from headaches since one month after the surgery. For patients who received radiotherapy for medulloblastoma at a young age, clinicians should consider the possibility of the coexistence of several complications. Careful follow up for development of secondary tumor and delayed vasculopathy is required. © 2017 The Korean Academy of Medical Sciences.
A magnetic-resonance-imaging-compatible remote catheter navigation system.
Tavallaei, Mohammad Ali; Thakur, Yogesh; Haider, Syed; Drangova, Maria
2013-04-01
A remote catheter navigation system compatible with magnetic resonance imaging (MRI) has been developed to facilitate MRI-guided catheterization procedures. The interventionalist's conventional motions (axial motion and rotation) on an input catheter - acting as the master - are measured by a pair of optical encoders, and a custom embedded system relays the motions to a pair of ultrasonic motors. The ultrasonic motors drive the patient catheter (slave) within the MRI scanner, replicating the motion of the input catheter. The performance of the remote catheter navigation system was evaluated in terms of accuracy and delay of motion replication outside and within the bore of the magnet. While inside the scanner bore, motion accuracy was characterized during the acquisition of frequently used imaging sequences, including real-time gradient echo. The effect of the catheter navigation system on image signal-to-noise ratio (SNR) was also evaluated. The results show that the master-slave system has a maximum time delay of 41 ± 21 ms in replicating motion; an absolute value error of 2 ± 2° was measured for radial catheter motion replication over 360° and 1.0 ± 0.8 mm in axial catheter motion replication over 100 mm of travel. The worst-case SNR drop was observed to be 2.5%.
Keskinen, E; Marttila, A; Marttila, R; Jones, P B; Murray, G K; Moilanen, K; Koivumaa-Honkanen, H; Mäki, P; Isohanni, M; Jääskeläinen, E; Miettunen, J
2015-09-01
Delayed motor development in infancy and family history of psychosis are both associated with increased risk of schizophrenia, but their interaction is largely unstudied. To investigate the association of the age of achieving motor milestones and parental psychosis and their interaction in respect to risk of schizophrenia. We used data from the general population-based prospective Northern Finland Birth Cohort 1966 (n=10,283). Developmental information of the cohort members was gathered during regular visits to Finnish child welfare clinics. Several registers were used to determine the diagnosis of schizophrenia among the cohort members and psychosis among the parents. Altogether 152 (1.5%) individuals had schizophrenia by the age of 46 years, with 23 (15.1%) of them having a parent with psychosis. Cox regression analysis was used in analyses. Parental psychosis was associated (P<0.05) with later achievement of holding the head up, grabbing an object, and walking without support. In the parental psychosis group, the risk for schizophrenia was increased if holding the head up (hazard ratio [HR]: 2.46; degrees of freedom [df]=1; 95% confidence interval [95% CI]: 1.07-5.66) and touching the thumb with the index finger (HR: 1.84; df=1; 95% CI: 1.11-3.06) was later. In the group without parental psychosis, a delay in the following milestones increased the risk of schizophrenia: standing without support and walking without support. Parental psychosis had an interaction with delayed touching thumb with index finger (HR: 1.87; df=1; 95% CI: 1.08-3.25) when risk of schizophrenia was investigated. Parental psychosis was associated with achieving motor milestones later in infancy, particularly the milestones that appear early in a child's life. Parental psychosis and touching the thumb with the index finger had a significant interaction on risk of schizophrenia. Genetic risk for psychosis may interact with delayed development to raise future risk of schizophrenia, or delayed development may be a marker of other risk processes that interact with genetic liability to cause later schizophrenia. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Sajad, Amirsaman; Sadeh, Morteza; Keith, Gerald P.; Yan, Xiaogang; Wang, Hongying; Crawford, John Douglas
2015-01-01
A fundamental question in sensorimotor control concerns the transformation of spatial signals from the retina into eye and head motor commands required for accurate gaze shifts. Here, we investigated these transformations by identifying the spatial codes embedded in visually evoked and movement-related responses in the frontal eye fields (FEFs) during head-unrestrained gaze shifts. Monkeys made delayed gaze shifts to the remembered location of briefly presented visual stimuli, with delay serving to dissociate visual and movement responses. A statistical analysis of nonparametric model fits to response field data from 57 neurons (38 with visual and 49 with movement activities) eliminated most effector-specific, head-fixed, and space-fixed models, but confirmed the dominance of eye-centered codes observed in head-restrained studies. More importantly, the visual response encoded target location, whereas the movement response mainly encoded the final position of the imminent gaze shift (including gaze errors). This spatiotemporal distinction between target and gaze coding was present not only at the population level, but even at the single-cell level. We propose that an imperfect visual–motor transformation occurs during the brief memory interval between perception and action, and further transformations from the FEF's eye-centered gaze motor code to effector-specific codes in motor frames occur downstream in the subcortical areas. PMID:25491118
Barkl-Luke, Mallory E.; Ngo, Shyuan T.; Thomas, Nicola K.; McDonald, Tanya S.; Borges, Karin
2016-01-01
There is increasing evidence that energy metabolism is disturbed in Amyotrophic Lateral Sclerosis (ALS) patients and animal models. Treatment with triheptanoin, the triglyceride of heptanoate, is a promising approach to provide alternative fuel to improve oxidative phosphorylation and aid ATP generation. Heptanoate can be metabolized to propionyl-CoA, which after carboxylation can produce succinyl-CoA and thereby re-fill the tricarboxylic acid (TCA) cycle (anaplerosis). Here we tested the hypothesis that treatment with triheptanoin prevents motor neuron loss and delays the onset of disease symptoms in female mice overexpressing the mutant human SOD1G93A (hSOD1G93A) gene. When oral triheptanoin (35% of caloric content) was initiated at P35, motor neuron loss at 70 days of age was attenuated by 33%. In untreated hSOD1G93A mice, the loss of hind limb grip strength began at 16.7 weeks. Triheptanoin maintained hind limb grip strength for 2.8 weeks longer (p<0.01). Loss of balance on the rotarod and reduction of body weight were delayed by 13 and 11 days respectively (both p<0.01). Improved motor function occurred in parallel with alterations in the expression of genes associated with muscle metabolism. In gastrocnemius muscles, the mRNA levels of pyruvate, 2-oxoglutarate and succinate dehydrogenases and methyl-malonyl mutase were reduced by 24–33% in 10 week old hSOD1G93A mice when compared to wild-type mice, suggesting that TCA cycling in skeletal muscle may be slowed in this ALS mouse model at a stage when muscle strength is still normal. At 25 weeks of age, mRNA levels of succinate dehydrogenases, glutamic pyruvic transaminase 2 and the propionyl carboxylase β subunit were reduced by 69–84% in control, but not in triheptanoin treated hSOD1G93A animals. Taken together, our results suggest that triheptanoin slows motor neuron loss and the onset of motor symptoms in ALS mice by improving TCA cycling. PMID:27564703
ERIC Educational Resources Information Center
DeGangi, Georgia; Larsen, Lawrence A.
A measurement device, Assessment of Sensorimotor Integration in Preschool Children, was developed to assess postural control, reflex integration and bilateral motor integration in developmentally delayed children (3 to 5 years old). The test was administered to 113 normal children and results were compared with data collected on 23 developmentally…
ERIC Educational Resources Information Center
Mailend, Marja-Liisa; Maas, Edwin
2013-01-01
Purpose: Apraxia of speech (AOS) is considered a speech motor programming impairment, but the specific nature of the impairment remains a matter of debate. This study investigated 2 hypotheses about the underlying impairment in AOS framed within the Directions Into Velocities of Articulators (DIVA; Guenther, Ghosh, & Tourville, 2006) model: The…
Zielinski, Ingar M; Steenbergen, Bert; Baas, C Marjolein; Aarts, Pauline Bm; Jongsma, Marijtje L A
2014-11-30
Children with unilateral Cerebral Palsy (CP) often show diminished awareness of the remaining capacity of their affected upper limb. This phenomenon is known as Developmental Disregard (DD). DD has been explained by operant conditioning. Alternatively, DD can be described as a developmental delay resulting from a lack of use of the affected hand during crucial developmental periods. We hypothesize that this delay is associated with a general delay in executive functions (EF) related to motor behavior, also known as motor EFs. Twenty-four children with unilateral CP participated in this cross-sectional study, twelve of them diagnosed with DD. To test motor EFs, a modified go/nogo task was presented in which cues followed by go- or nogo-stimuli appeared at either the left or right side of a screen. Children had to press a button with the hand corresponding to the side of stimulus presentation. Apart from response accuracy, Event-Related Potentials (ERPs) extracted from the ongoing EEG were used to register covert cognitive processes. ERP N1, P2, N2, and P3 components elicited by cue-, go-, and nogo-stimuli were further analyzed to differentiate between different covert cognitive processes. Children with DD made more errors. With respect to the ERPs, the P3 component to go-stimuli was enhanced in children with DD. This enhancement was related to age, such that younger children with DD showed stronger enhancements. In addition, in DD the N1 component to cue- and go-stimuli was decreased. The behavioral results show that children with DD experience difficulties when performing the task. The finding of an enhanced P3 component to go-stimuli suggests that these difficulties are due to increased mental effort preceding movement. As age in DD mediated this enhancement, it seems that this increased mental effort is related to a developmental delay. The additional finding of a decreased N1 component in DD furthermore suggests a general diminished visuo-spatial attention. This effect reveals that DD might be a neuropsychological phenomenon similar to post-stroke neglect syndrome that does not resolve during development. These findings suggest that therapies aimed at reducing neglect could be a promising addition to existing therapies for DD.
Virtual reality in stroke rehabilitation: a meta-analysis and implications for clinicians.
Saposnik, Gustavo; Levin, Mindy
2011-05-01
Approximately two thirds of stroke survivors continue to experience motor deficits of the arm resulting in diminished quality of life. Conventional rehabilitation provides modest and sometimes delayed effects. Virtual reality (VR) technology is a novel adjunctive therapy that could be applied in neurorehabilitation. We performed a meta-analysis to determine the added benefit of VR technology on arm motor recovery after stroke. We searched Medline, EMBASE, and Cochrane literature from 1966 to July 2010 with the terms "stroke," "virtual reality," and "upper arm/extremity." We evaluated the effect of VR on motor function improvement after stroke. From the 35 studies identified, 12 met the inclusion/exclusion criteria totaling 195 participants. Among them, there were 5 randomized clinical trials and 7 observational studies with a pre-/postintervention design. Interventions were delivered within 4 to 6 weeks in 9 of the studies and within 2 to 3 weeks in the remaining 3. Eleven of 12 studies showed a significant benefit toward VR for the selected outcomes. In the pooled analysis of all 5 randomized controlled trials, the effect of VR on motor impairment (Fugl-Meyer) was OR=4.89 (95% CI, 1.31 to 18.3). No significant difference was observed for Box and Block Test or motor function. Among observational studies, there was a 14.7% (95% CI, 8.7%-23.6%) improvement in motor impairment and a 20.1% (95% CI, 11.0%-33.8%) improvement in motor function after VR. VR and video game applications are novel and potentially useful technologies that can be combined with conventional rehabilitation for upper arm improvement after stroke.
Muto, Akira; Ohkura, Masamichi; Kotani, Tomoya; Higashijima, Shin-ichi; Nakai, Junichi; Kawakami, Koichi
2011-01-01
Animal behaviors are generated by well-coordinated activation of neural circuits. In zebrafish, embryos start to show spontaneous muscle contractions at 17 to 19 h postfertilization. To visualize how motor circuits in the spinal cord are activated during this behavior, we developed GCaMP-HS (GCaMP-hyper sensitive), an improved version of the genetically encoded calcium indicator GCaMP, and created transgenic zebrafish carrying the GCaMP-HS gene downstream of the Gal4-recognition sequence, UAS (upstream activation sequence). Then we performed a gene-trap screen and identified the SAIGFF213A transgenic fish that expressed Gal4FF, a modified version of Gal4, in a subset of spinal neurons including the caudal primary (CaP) motor neurons. We conducted calcium imaging using the SAIGFF213A; UAS:GCaMP-HS double transgenic embryos during the spontaneous contractions. We demonstrated periodic and synchronized activation of a set of ipsilateral motor neurons located on the right and left trunk in accordance with actual muscle movements. The synchronized activation of contralateral motor neurons occurred alternately with a regular interval. Furthermore, a detailed analysis revealed rostral-to-caudal propagation of activation of the ipsilateral motor neuron, which is similar to but much slower than the rostrocaudal delay observed during swimming in later stages. Our study thus demonstrated coordinated activities of the motor neurons during the first behavior in a vertebrate. We propose the GCaMP technology combined with the Gal4FF-UAS system is a powerful tool to study functional neural circuits in zebrafish. PMID:21383146
Factors affecting the diagnostic delay in amyotrophic lateral sclerosis.
Cellura, Eleonora; Spataro, Rossella; Taiello, Alfonsa Claudia; La Bella, Vincenzo
2012-07-01
Although amyotrophic lateral sclerosis (ALS) is a relentlessly progressive disorder, early diagnosis allows a prompt start with the specific drug riluzole and an accurate palliative care planning. ALS at onset may however mimic several disorders, some of them treatable (e.g., multifocal motor neuropathy) or epidemiologically more frequent (e.g., cervical myelopathy). To study the delay from onset to diagnosis in a cohort of ALS patients and to the variables that may affect it. We performed a retrospective analysis of the diagnostic delays in a cohort of 260 patients affected by ALS (M/F = 1.32) followed at our tertiary referral ALS Center between 2000 and 2007. The median time from onset to diagnosis was 11 months (range: 6-21) for the whole ALS cohort, 10 months (range: 6-15) in bulbar-onset (n = 65) and 12 months (range: 7-23) in spinal-onset (n = 195) patients (p = 0.3). 31.1% of patients received other diagnoses before ALS and this led to a significant delay of the correct diagnosis in this group (other diagnoses before ALS, n = 81: median delay, 15 months [9.75-24.25] vs ALS, n = 179, median delay, 9 months [6-15.25], p < 0.001). The diagnostic delay in ALS is about one year, besides the growing number of tertiary centres and the spread of information about the disease through media and internet. Cognitive errors based on an incorrect use of heuristics might represent an important contributing factor. Furthermore, the length of the differential diagnosis from other disorders and delays in referral to the neurologist seems to be positively associated with the delay in diagnosis. Copyright © 2011 Elsevier B.V. All rights reserved.
Treatment of GABA from Fermented Rice Germ Ameliorates Caffeine-Induced Sleep Disturbance in Mice
Mabunga, Darine Froy N.; Gonzales, Edson Luck T.; Kim, Hee Jin; Choung, Se Young
2015-01-01
γ-Aminobutyric acid (GABA), a major inhibitory neurotransmitter in the mammalian central nervous system, is involved in sleep physiology. Caffeine is widely used psychoactive substance known to induce wakefulness and insomnia to its consumers. This study was performed to examine whether GABA extracts from fermented rice germ ameliorates caffeine-induced sleep disturbance in mice, without affecting spontaneous locomotor activity and motor coordination. Indeed, caffeine (10 mg/kg, i.p.) delayed sleep onset and reduced sleep duration of mice. Conversely, rice germ ferment extracts-GABA treatment (10, 30, or 100 mg/kg, p.o.), especially at 100 mg/kg, normalized the sleep disturbance induced by caffeine. In locomotor tests, rice germ ferment extracts-GABA slightly but not significantly reduced the caffeine-induced increase in locomotor activity without affecting motor coordination. Additionally, rice germ ferment extracts-GABA per se did not affect the spontaneous locomotor activity and motor coordination of mice. In conclusion, rice germ ferment extracts-GABA supplementation can counter the sleep disturbance induced by caffeine, without affecting the general locomotor activities of mice. PMID:25995826
Sadeh, Morteza; Sajad, Amirsaman; Wang, Hongying; Yan, Xiaogang; Crawford, John Douglas
2015-12-01
We previously reported that visuomotor activity in the superior colliculus (SC)--a key midbrain structure for the generation of rapid eye movements--preferentially encodes target position relative to the eye (Te) during low-latency head-unrestrained gaze shifts (DeSouza et al., 2011). Here, we trained two monkeys to perform head-unrestrained gaze shifts after a variable post-stimulus delay (400-700 ms), to test whether temporally separated SC visual and motor responses show different spatial codes. Target positions, final gaze positions and various frames of reference (eye, head, and space) were dissociated through natural (untrained) trial-to-trial variations in behaviour. 3D eye and head orientations were recorded, and 2D response field data were fitted against multiple models by use of a statistical method reported previously (Keith et al., 2009). Of 60 neurons, 17 showed a visual response, 12 showed a motor response, and 31 showed both visual and motor responses. The combined visual response field population (n = 48) showed a significant preference for Te, which was also preferred in each visual subpopulation. In contrast, the motor response field population (n = 43) showed a preference for final (relative to initial) gaze position models, and the Te model was statistically eliminated in the motor-only population. There was also a significant shift of coding from the visual to motor response within visuomotor neurons. These data confirm that SC response fields are gaze-centred, and show a target-to-gaze transformation between visual and motor responses. Thus, visuomotor transformations can occur between, and even within, neurons within a single frame of reference and brain structure. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Eisner-Janowicz, Ines; Barbay, Scott; Hoover, Erica; Stowe, Ann M; Frost, Shawn B; Plautz, Erik J; Nudo, Randolph J
2008-09-01
Neuroimaging studies in stroke survivors have suggested that adaptive plasticity occurs following stroke. However, the complex temporal dynamics of neural reorganization after injury make the interpretation of functional imaging studies equivocal. In the present study in adult squirrel monkeys, intracortical microstimulation (ICMS) techniques were used to monitor changes in representational maps of the distal forelimb in the supplementary motor area (SMA) after a unilateral ischemic infarct of primary motor (M1) and premotor distal forelimb representations (DFLs). In each animal, ICMS maps were derived at early (3 wk) and late (13 wk) postinfarct stages. Lesions resulted in severe deficits in motor abilities on a reach and retrieval task. Limited behavioral recovery occurred and plateaued at 3 wk postinfarct. At both early and late postinfarct stages, distal forelimb movements could still be evoked by ICMS in SMA at low current levels. However, the size of the SMA DFL changed after the infarct. In particular, wrist-forearm representations enlarged significantly between early and late stages, attaining a size substantially larger than the preinfarct area. At the late postinfarct stage, the expansion in the SMA DFL area was directly proportional to the absolute size of the lesion. The motor performance scores were positively correlated to the absolute size of the SMA DFL at the late postinfarct stage. Together, these data suggest that, at least in squirrel monkeys, descending output from M1 and dorsal and ventral premotor cortices is not necessary for SMA representations to be maintained and that SMA motor output maps undergo delayed increases in representational area after damage to other motor areas. Finally, the role of SMA in recovery of function after such lesions remains unclear because behavioral recovery appears to precede neurophysiological map changes.
Malhotra, R; Johnstone, C; Halpern, S; Hunter, J; Banerjee, A
2016-08-01
Bupivacaine is a commonly used local anaesthetic for spinal anaesthesia for caesarean section, but may produce prolonged motor block, delaying discharge from the post-anaesthesia care unit. Ropivacaine may have a shorter time to recovery of motor function compared with bupivacaine. We performed a meta-analysis to assess the time difference in duration of motor block with intrathecal ropivacaine compared with bupivacaine for caesarean section. We searched MEDLINE, EMBASE and Cochrane Central Register of Controlled Trials databases for randomised controlled trials comparing ropivacaine with bupivacaine in parturients undergoing elective caesarean section under spinal anaesthesia. The primary outcome was the duration of motor block. Secondary outcomes included the time to onset of sensory block, need for conversion to general anaesthesia and the incidence of hypotension. Thirteen trials comprising 743 spinal anaesthetics were included. Intrathecal ropivacaine resulted in a reduced duration of motor block, regressing 35.7min earlier compared with intrathecal bupivacaine (P<0.00001). There was no difference in the time to onset of sensory block (P=0.25) or the incidence of hypotension (P=0.10). Limited data suggested no difference in the rate of conversion to general anaesthesia, but an earlier request for postoperative analgesia with ropivacaine. Compared with bupivacaine, intrathecal ropivacaine is associated with more rapid recovery of motor block despite similar sensory properties and no increased rate of conversion to general anaesthesia. This may be useful in centres in which recovery of motor block is a criterion for discharge from the post-anaesthesia care unit. However, small numbers of trials and significant heterogeneity limit the interpretation of our results. Copyright © 2016 Elsevier Ltd. All rights reserved.
Contextual Specificity of Extinction of Delay but Not Trace Eyeblink Conditioning in Humans
ERIC Educational Resources Information Center
Grillon, Christian; Alvarez, Ruben P.; Johnson, Linda; Chavis, Chanen
2008-01-01
Renewal of an extinguished conditioned response has been demonstrated in humans and in animals using various types of procedures, except renewal of motor learning such as eyeblink conditioning. We tested renewal of delay and trace eyeblink conditioning in a virtual environment in an ABA design. Following acquisition in one context (A, e.g., an…
ERIC Educational Resources Information Center
Barney, Chantel C.; Tervo, Raymond; Wilcox, George L.; Symons, Frank J.
2017-01-01
Assessing tactile function among children with intellectual, motor, and communication impairments remains a clinical challenge. A case control design was used to test whether children with global developmental delays (GDD; n = 20) would be more/less reactive to a modified quantitative sensory test (mQST) compared to controls (n = 20). Reactivity…
ERIC Educational Resources Information Center
Kirk, Megan A.; Rhodes, Ryan E.
2011-01-01
Preschoolers with developmental delay (DD) are at risk for poor fundamental movement skills (FMS), but a paucity of early FMS interventions exist. The purpose of this review was to critically appraise the existing interventions to establish direction for future trials targeting preschoolers with DD. A total of 11 studies met the inclusion…
Divergent Development of Manual Skills in Children Who Are Blind or Sighted
ERIC Educational Resources Information Center
Brambring, Michael
2007-01-01
This empirical study compared the average ages at which four children with congenital blindness acquired 32 fine motor skills with age norms for sighted children. The results indicated that the children experienced extreme developmental delays in the acquisition of manual skills and a high degree of variability in developmental delays within and…
Weed, Michael R; Gold, Lisa H; Polis, Ilham; Koob, George F; Fox, Howard S; Taffe, Michael A
2004-01-01
Infection with simian immunodeficiency virus (SIV) in macaques provides an excellent model of AIDS including HIV-induced central nervous system (CNS) pathology and cognitive/behavioral impairment. Recently a behavioral test battery has been developed for macaques based on the CANTAB human neuropsychological testing battery. As with human neuropsychological batteries, different tasks are thought to involve different neural substrates, and therefore performance profiles may assess function in particular brain regions. Ten rhesus monkeys were infected with SIV after being trained on two or more of the battery tasks addressing memory (delayed nonmatching to sample, DNMS), spatial working memory (using a self-ordered spatial search task, SOSS), motivation (progressive-ratio, PR), reaction time (RT), and/or fine motor skills (bimanual motor skill, BMS). Performance was compared to that of 9 uninfected monkeys. Overall, some aspect of performance was impaired in all 10 monkeys following infection. Consistent with results in human AIDS patients, individual performance was impaired most often on battery tasks thought to be sensitive to frontostriatal dopaminergic functioning such as SOSS, RT, and BMS. These results further demonstrate the similarity of behavioral impairment produced by SIV and HIV on homologous behavioral tests, and establish the utility of the testing battery for further investigations into the CNS mechanisms of the reported behavioral changes.
Au, Ngan Pan Bennett; Kumar, Gajendra; Asthana, Pallavi; Tin, Chung; Mak, Yim Ling; Chan, Leo Lai; Lam, Paul Kwan Sing; Ma, Chi Him Eddie
2016-05-27
Ciguatera fish poisoning (CFP) results from consumption of tropical reef fish containing ciguatoxins (CTXs). Pacific (P)-CTX-1 is among the most potent known CTXs and the predominant source of CFP in the endemic region responsible for the majority of neurological symptoms in patients. Chronic and persistent neurological symptoms occur in some CFP patients, which often result in incomplete functional recovery for years. However, the direct effects of exposure to CTXs remain largely unknown. In present study, we exposed mice to CTX purified from ciguatera fish sourced from the Pacific region. P-CTX-1 was detected in peripheral nerves within hours and persisted for two months after exposure. P-CTX-1 inhibited axonal regrowth from axotomized peripheral neurons in culture. P-CTX-1 exposure reduced motor function in mice within the first two weeks of exposure before returning to baseline levels. These pre-exposed animals exhibited delayed sensory and motor functional recovery, and irreversible motor deficits after peripheral nerve injury in which formation of functional synapses was impaired. These findings are consistent with reduced muscle function, as assessed by electromyography recordings. Our study provides strong evidence that the persistence of P-CTX-1 in peripheral nerves reduces the intrinsic growth capacity of peripheral neurons, resulting in delayed functional recovery after injury.
Controlling an avatar by thought using real-time fMRI
NASA Astrophysics Data System (ADS)
Cohen, Ori; Koppel, Moshe; Malach, Rafael; Friedman, Doron
2014-06-01
Objective. We have developed a brain-computer interface (BCI) system based on real-time functional magnetic resonance imaging (fMRI) with virtual reality feedback. The advantage of fMRI is the relatively high spatial resolution and the coverage of the whole brain; thus we expect that it may be used to explore novel BCI strategies, based on new types of mental activities. However, fMRI suffers from a low temporal resolution and an inherent delay, since it is based on a hemodynamic response rather than electrical signals. Thus, our objective in this paper was to explore whether subjects could perform a BCI task in a virtual environment using our system, and how their performance was affected by the delay. Approach. The subjects controlled an avatar by left-hand, right-hand and leg motion or imagery. The BCI classification is based on locating the regions of interest (ROIs) related with each of the motor classes, and selecting the ROI with maximum average values online. The subjects performed a cue-based task and a free-choice task, and the analysis includes evaluation of the performance as well as subjective reports. Main results. Six subjects performed the task with high accuracy when allowed to move their fingers and toes, and three subjects achieved high accuracy using imagery alone. In the cue-based task the accuracy was highest 8-12 s after the trigger, whereas in the free-choice task the subjects performed best when the feedback was provided 6 s after the trigger. Significance. We show that subjects are able to perform a navigation task in a virtual environment using an fMRI-based BCI, despite the hemodynamic delay. The same approach can be extended to other mental tasks and other brain areas.
Reversal Learning and Associative Memory Impairments in a BACHD Rat Model for Huntington Disease
Abada, Yah-se K.; Nguyen, Huu Phuc; Ellenbroek, Bart; Schreiber, Rudy
2013-01-01
Chorea and psychiatric symptoms are hallmarks of Huntington disease (HD), a neurodegenerative disorder, genetically characterized by the presence of expanded CAG repeats (>35) in the HUNTINGTIN (HTT) gene. HD patients present psychiatric symptoms prior to the onset of motor symptoms and we recently found a similar emergence of non motor and motor deficits in BACHD rats carrying the human full length mutated HTT (97 CAG-CAA repeats). We evaluated cognitive performance in reversal learning and associative memory tests in different age cohorts of BACHD rats. Male wild type (WT) and transgenic (TG) rats between 2 and 12 months of age were tested. Learning and strategy shifting were assessed in a cross-maze test. Associative memory was evaluated in different fear conditioning paradigms (context, delay and trace). The possible confound of a fear conditioning phenotype by altered sensitivity to a ‘painful’ stimulus was assessed in a flinch-jump test. In the cross maze, 6 months old TG rats showed a mild impairment in reversal learning. In the fear conditioning tasks, 4, 6 and 12 months old TG rats showed a marked reduction in contextual fear conditioning. In addition, TG rats showed impaired delay conditioning (9 months) and trace fear conditioning (3 months). This phenotype was unlikely to be affected by a change in ‘pain’ sensitivity as WT and TG rats showed no difference in their threshold response in the flinch-jump test. Our results suggest that BACHD rats have a profound associative memory deficit and, possibly, a deficit in reversal learning as assessed in a cross maze task. The time course for the emergence of these symptoms (i.e., before the occurrence of motor symptoms) in this rat model for HD appears similar to the time course in patients. These data suggest that BACHD rats may be a useful model for preclinical drug discovery. PMID:24223692
Thomsen, Gretchen M; Gowing, Genevieve; Latter, Jessica; Chen, Maximus; Vit, Jean-Philippe; Staggenborg, Kevin; Avalos, Pablo; Alkaslasi, Mor; Ferraiuolo, Laura; Likhite, Shibi; Kaspar, Brian K; Svendsen, Clive N
2014-11-19
Sporadic amyotrophic lateral sclerosis (ALS) is a fatal disease with unknown etiology, characterized by a progressive loss of motor neurons leading to paralysis and death typically within 3-5 years of onset. Recently, there has been remarkable progress in understanding inherited forms of ALS in which well defined mutations are known to cause the disease. Rodent models in which the superoxide dismutase-1 (SOD1) mutation is overexpressed recapitulate hallmark signs of ALS in patients. Early anatomical changes in mouse models of fALS are seen in the neuromuscular junctions (NMJs) and lower motor neurons, and selective reduction of toxic mutant SOD1 in the spinal cord and muscle of these models has beneficial effects. Therefore, much of ALS research has focused on spinal motor neuron and NMJ aspects of the disease. Here we show that, in the SOD1(G93A) rat model of ALS, spinal motor neuron loss occurs presymptomatically and before degeneration of ventral root axons and denervation of NMJs. Although overt cell death of corticospinal motor neurons does not occur until disease endpoint, we wanted to establish whether the upper motor neuron might still play a critical role in disease progression. Surprisingly, the knockdown of mutant SOD1 in only the motor cortex of presymptomatic SOD1(G93A) rats through targeted delivery of AAV9-SOD1-shRNA resulted in a significant delay of disease onset, expansion of lifespan, enhanced survival of spinal motor neurons, and maintenance of NMJs. This datum suggests an early dysfunction and thus an important role of the upper motor neuron in this animal model of ALS and perhaps patients with the disease. Copyright © 2014 the authors 0270-6474/14/3415587-14$15.00/0.
Risk Factors for Gross Motor Dysfunction in Infants with Congenital Heart Disease
ERIC Educational Resources Information Center
Long, Suzanne H.; Eldridge, Bev J.; Galea, Mary P.; Harris, Susan R.
2011-01-01
Infants with congenital heart disease (CHD) that is severe enough to require early surgery are at risk for cognitive and motor delays, as well as musculoskeletal impairments, and are best managed by an interdisciplinary team during their hospital stay and after discharge. The purpose of this article is to review some of the risk factors associated…
A Study of Early Fine Motor Intervention in Down's Syndrome Children
ERIC Educational Resources Information Center
Aparicio, Teresa Sanz; Balana, Javier Menendez
2009-01-01
The marked delay in acquisition of fine motor skills in trisomic-21/Down's syndrome children is undeniable. In this study, we began with an affirmation that the cause of this deficit could be found in a different environment for which early intervention is essential. A sample of 30 Down's syndrome children was used to study at different ages: six…
Fine Motor Skill Predicts Expressive Language in Infant Siblings of Children with Autism
ERIC Educational Resources Information Center
LeBarton, Eve Sauer; Iverson, Jana M.
2013-01-01
We investigated whether fine motor and expressive language skills are related in the later-born siblings of children with autism (heightened-risk, HR infants) who are at increased risk for language delays. We observed 34 HR infants longitudinally from 12 to 36 months. We used parent report and standardized observation measures to assess fine motor…
Telepresence, time delay, and adaptation
NASA Technical Reports Server (NTRS)
Held, Richard; Durlach, Nathaniel
1989-01-01
Displays are now being used extensively throughout the society. More and more time is spent watching television, movies, computer screens, etc. Furthermore, in an increasing number of cases, the observer interacts with the display and plays the role of operator as well as observer. To a large extent, the normal behavior in the normal environment can also be thought of in these same terms. Taking liberties with Shakespeare, it might be said, all the world's a display and all the individuals in it are operators in and on the display. Within this general context of interactive display systems, a discussion is began with a conceptual overview of a particular class of such systems, namely, teleoperator systems. The notion is considered of telepresence and the factors that limit telepresence, including decorrelation between the: (1) motor output of the teleoperator as sensed directly via the kinesthetic/tactual system, and (2) the motor output of the teleoperator as sensed indirectly via feedback from the slave robot, i.e., via a visual display of the motor actions of the slave robot. Finally, the deleterious effect of time delay (a particular decorrelation) on sensory-motor adaptation (an important phenomenon related to telepresence) is examined.
Parkinson's disease patients showed delayed awareness of motor intention.
Tabu, Hayato; Aso, Toshihiko; Matsuhashi, Masao; Ueki, Yoshino; Takahashi, Ryosuke; Fukuyama, Hidenao; Shibasaki, Hiroshi; Mima, Tatsuya
2015-06-01
Although dopamine plays an important role for motor control and modulates the frontal function via basal ganglia-thalamo-cortical loop, it is not known whether dopamine can affect the awareness of motor intention or not. To test this hypothesis, we applied Libet's clock paradigm to Parkinson's disease (PD) patients. Thirteen PD patients and 13 age-matched, healthy controls took part in the experiment which consisted of three judgment paradigms: W, M and S judgment. In W and M judgments, subjects were asked to press the key at self-willed timing. In W judgment, subjects reported the location of the clock's hand when they became aware of the intention (W-time). In M judgment, subjects reported the time when they became aware of the actual movement (M-time). In S judgment, subjects reported the time of the electrical stimulation given to their hand (S-time). W-time was significantly shorter in PD patients than in healthy control subjects while M-time and S-time were not different between the two groups. Delayed awareness of motor intention but not of action in PD patients might be related to dopamine depletion in those patients. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Parental monitoring may protect impulsive children from overeating.
Bennett, C; Blissett, J
2017-10-01
Research has highlighted links between impulsivity and weight in children and adults. Nevertheless, little is known about the nature of this link in very young children or about the underlying mechanism by which impulsivity leads to greater adiposity. The present study aimed to explore relationships between impulsivity, weight and eating behaviour in a sample of 95 2 to 4-year-olds. Parent-child dyads visited the laboratory and consumed a meal after which parents completed measures of child impulsivity, eating behaviour and parental feeding, whilst children completed impulsivity tasks measuring the impulsivity facet delay of gratification (Snack Delay task), motor impulsivity (Line Walking task) and inhibitory control (Tower task). Pearson's correlations showed that girls with greater motor impulsivity were heavier. Additionally, monitoring moderated the relationship between impulsivity and food approach behaviour, indicating that monitoring may protect more impulsive children from displaying problematic eating behaviours. The motor impulsivity facet appears particularly relevant to child weight; parents can modulate the impact of impulsivity on child eating behaviour through their feeding style. © 2016 World Obesity Federation.
Song, Lin; Zhang, Xiaojie; Li, Jia; Le, Weidong
2014-01-01
Resveratrol has recently been used as a supplemental treatment for several neurological and nonneurological diseases. It is not known whether resveratrol has neuroprotective effect on amyotrophic lateral sclerosis (ALS). To assess the effect of resveratrol on the disease, we tested this agent on an ALS model of SOD1G93A transgenic mouse. Rotarod measurement was performed to measure the motor function of the ALS mice. Nissl staining and SMI-32 immunofluorescent staining were used to determine motor neurons survival in the spinal cord of the ALS mice. Hematoxylin-eosin (H&E), succinic dehydrogenase (SDH), and cytochrome oxidase (COX) staining were applied to pathologically analyze the skeletal muscles of the ALS mice. We found that resveratrol treatment significantly delayed the disease onset and prolonged the lifespan of the ALS mice. Furthermore, resveratrol treatment attenuated motor neuron loss, relieved muscle atrophy, and improved mitochondrial function of muscle fibers in the ALS mice. In addition, we demonstrated that resveratrol exerted these neuroprotective effects mainly through increasing the expression of Sirt1, consequently suppressing oxidative stress and downregulating p53 and its related apoptotic pathway. Collectively, our findings suggest that resveratrol might provide a promising therapeutic intervention for ALS. PMID:25057490
Peabody, Nathan C.; Pohl, Jascha B.; Diao, Fengqiu; Vreede, Andrew P.; Sandstrom, David J.; Wang, Howard; Zelensky, Paul K.; White, Benjamin H.
2009-01-01
After emergence, adult flies and other insects select a suitable perch and expand their wings. Wing expansion is governed by the hormone bursicon and can be delayed under adverse environmental conditions. How environmental factors delay bursicon release and alter perch selection and expansion behaviors has not been investigated in detail. Here we provide evidence that in Drosophila the motor programs underlying perch selection and wing expansion have different environmental dependencies. Using physical manipulations, we demonstrate that the decision to perch is based primarily on environmental valuations and is incrementally delayed under conditions of increasing perturbation and confinement. In contrast, the all-or-none motor patterns underlying wing expansion are relatively invariant in length regardless of environmental conditions. Using a novel technique for targeted activation of neurons, we show that the highly stereotyped wing expansion motor patterns can be initiated by stimulation of NCCAP, a small network of central neurons that regulates the release of bursicon. Activation of this network using the cold-sensitive rat TRPM8 channel is sufficient to trigger all essential behavioral and somatic processes required for wing expansion. The delay of wing expansion under adverse circumstances thus couples an environmentally-sensitive decision network to a command-like network that initiates a fixed action pattern. Because NCCAP mediates environmentally-insensitive ecdysis-related behaviors in Drosophila development prior to adult emergence, the study of wing expansion promises insights not only into how networks mediate behavioral choices, but also into how decision networks develop. PMID:19295141
Magnifying visual target information and the role of eye movements in motor sequence learning.
Massing, Matthias; Blandin, Yannick; Panzer, Stefan
2016-01-01
An experiment investigated the influence of eye movements on learning a simple motor sequence task when the visual display was magnified. The task was to reproduce a 1300 ms spatial-temporal pattern of elbow flexions and extensions. The spatial-temporal pattern was displayed in front of the participants. Participants were randomly assigned to four groups differing on eye movements (free to use their eyes/instructed to fixate) and the visual display (small/magnified). All participants had to perform a pre-test, an acquisition phase, a delayed retention test, and a transfer test. The results indicated that participants in each practice condition increased their performance during acquisition. The participants who were permitted to use their eyes in the magnified visual display outperformed those who were instructed to fixate on the magnified visual display. When a small visual display was used, the instruction to fixate induced no performance decrements compared to participants who were permitted to use their eyes during acquisition. The findings demonstrated that a spatial-temporal pattern can be learned without eye movements, but being permitting to use eye movements facilitates the response production when the visual angle is increased. Copyright © 2015 Elsevier B.V. All rights reserved.
Concurrent validity of the Harris Infant Neuromotor Test and the Alberta Infant Motor Scale.
Tse, Lillian; Mayson, Tanja A; Leo, Sara; Lee, Leanna L S; Harris, Susan R; Hayes, Virginia E; Backman, Catherine L; Cameron, Dianne; Tardif, Megan
2008-02-01
We examined concurrent validity of scores for two infant motor screening tools, the Harris Infant Neuromotor Test (HINT) and the Alberta Infant Motor Scale, in 121 Canadian infants. Relationships between the two tests for the overall sample were as follows: r = -.83 at 4 to 6.5 months (n = 121; p < .01) and r = -.85 at 10 to 12.5 months (n = 109; p < .01), suggesting that the HINT, the newer of the two measures, is valid in determining motor delays. Each test has advantages and disadvantages, and practitioners should determine which one best meets their infant assessment needs.
Delay activity of saccade-related neurons in the caudal dentate nucleus of the macaque cerebellum
Sommer, Marc A.
2013-01-01
The caudal dentate nucleus (DN) in lateral cerebellum is connected with two visual/oculomotor areas of the cerebrum: the frontal eye field and lateral intraparietal cortex. Many neurons in frontal eye field and lateral intraparietal cortex produce “delay activity” between stimulus and response that correlates with processes such as motor planning. Our hypothesis was that caudal DN neurons would have prominent delay activity as well. From lesion studies, we predicted that this activity would be related to self-timing, i.e., the triggering of saccades based on the internal monitoring of time. We recorded from neurons in the caudal DN of monkeys (Macaca mulatta) that made delayed saccades with or without a self-timing requirement. Most (84%) of the caudal DN neurons had delay activity. These neurons conveyed at least three types of information. First, their activity was often correlated, trial by trial, with saccade initiation. Correlations were found more frequently in a task that required self-timing of saccades (53% of neurons) than in a task that did not (27% of neurons). Second, the delay activity was often tuned for saccade direction (in 65% of neurons). This tuning emerged continuously during a trial. Third, the time course of delay activity associated with self-timed saccades differed significantly from that associated with visually guided saccades (in 71% of neurons). A minority of neurons had sensory-related activity. None had presaccadic bursts, in contrast to DN neurons recorded more rostrally. We conclude that caudal DN neurons convey saccade-related delay activity that may contribute to the motor preparation of when and where to move. PMID:23365182
Van Ooteghem, Karen; Frank, James S.; Allard, Fran; Horak, Fay B
2011-01-01
Postural motor learning for dynamic balance tasks has been demonstrated in healthy older adults (Van Ooteghem et al. 2009). The purpose of this study was to investigate the type of knowledge (general or specific) obtained with balance training in this age group and to examine whether embedding perturbation regularities within a balance task masks specific learning. Two groups of older adults maintained balance on a constant frequency-variable amplitude oscillating platform. One group was trained using an embedded sequence (ES) protocol which contained the same 15-s sequence of variable amplitude oscillations in the middle of each trial. A second group was trained using a looped sequence (LS) protocol which contained a 15-s sequence repeated three times to form each trial. All trials were 45-s. Participants were not informed of any repetition. To examine learning, participants performed a retention test following a 24-h delay. LS participants also completed a transfer task. Specificity of learning was examined by comparing performance for repeated versus random sequences (ES) and training versus transfer sequences (LS). Performance was measured by deriving spatial and temporal measures of whole body centre of mass (COM), and trunk orientation. Both groups improved performance with practice as characterized by reduced COM displacement, improved COM-platform phase relationships, and decreased angular trunk motion. Improvements were also characterized by general rather than specific postural motor learning. These findings are similar to young adults (Van Ooteghem et al. 2008) and indicate that age does not influence the type of learning which occurs for balance control. PMID:20544184
Variation in vocal-motor development in infant siblings of children with autism.
Iverson, Jana M; Wozniak, Robert H
2007-01-01
In this study we examined early motor, vocal, and communicative development in a group of younger siblings of children diagnosed with autism (Infant Siblings). Infant Siblings and no-risk comparison later-born infants were videotaped at home with a primary caregiver each month from 5 to 14 months, with follow-up at 18 months. As a group, Infant Siblings were delayed in the onset of early developmental milestones and spent significantly less time in a greater number of postures, suggestive of relative postural instability. In addition, they demonstrated attenuated patterns of change in rhythmic arm activity around the time of reduplicated babble onset; and they were highly likely to exhibit delayed language development at 18 months.
SRT2104 extends survival of male mice on a standard diet and preserves bone and muscle mass.
Mercken, Evi M; Mitchell, Sarah J; Martin-Montalvo, Alejandro; Minor, Robin K; Almeida, Maria; Gomes, Ana P; Scheibye-Knudsen, Morten; Palacios, Hector H; Licata, Jordan J; Zhang, Yongqing; Becker, Kevin G; Khraiwesh, Husam; González-Reyes, José A; Villalba, José M; Baur, Joseph A; Elliott, Peter; Westphal, Christoph; Vlasuk, George P; Ellis, James L; Sinclair, David A; Bernier, Michel; de Cabo, Rafael
2014-10-01
Increased expression of SIRT1 extends the lifespan of lower organisms and delays the onset of age-related diseases in mammals. Here, we show that SRT2104, a synthetic small molecule activator of SIRT1, extends both mean and maximal lifespan of mice fed a standard diet. This is accompanied by improvements in health, including enhanced motor coordination, performance, bone mineral density, and insulin sensitivity associated with higher mitochondrial content and decreased inflammation. Short-term SRT2104 treatment preserves bone and muscle mass in an experimental model of atrophy. These results demonstrate it is possible to design a small molecule that can slow aging and delay multiple age-related diseases in mammals, supporting the therapeutic potential of SIRT1 activators in humans. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Kaneko, Miki; Yamashita, Yushiro; Iramina, Keiji
2016-01-18
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by symptoms of inattention, hyperactivity, and impulsivity. Soft neurological signs (SNS) are minor neurological abnormalities in motor performance, and are used as one evaluation method for neurodevelopmental delays in children with ADHD. Our aim is to establish a quantitative evaluation system for children with ADHD. We focused on the arm movement called pronation and supination, which is one such soft neurological sign. Thirty three children with ADHD aged 7-11 years (27 males, six females) and twenty five adults participants aged 21-29 years old (19 males, six females) participated in our experiments. Our results suggested that the pronation and supination function in children with ADHD has a tendency to lag behind that of typically developing children by several years. From these results, our system has a possibility to objectively evaluate the neurodevelopmental delay of children with ADHD.
Delayed hydronephrosis due to retroperitoneal hematoma after a seatbelt injury
Yumoto, Tetsuya; Kondo, Yoshitaka; Kumon, Kento; Masaoka, Yoshihisa; Hiraki, Takao; Yamada, Taihei; Naito, Hiromichi; Nakao, Atsunori
2018-01-01
Abstract Rationale: Hydronephrosis caused by retroperitoneal hematoma after a seatbelt injury is a unique clinical entity. Patient concerns: A 21-year-old man, who had been wearing a seatbelt, was brought to our hospital after a motor vehicle collision, complaining of abdominal pain. Computed tomography (CT) revealed retroperitoneal hematoma in the upper pelvic region. Since he was hemodynamically stable throughout admission, he was managed conservatively. Seventeen days after initial discharge, the patient revisited our emergency department due to right back pain. Diagnoses: CT scans indicated retroperitoneal hematoma growth resulting in hydronephrosis of the right kidney. Interventions: Laparoscopic drainage of the retroperitoneal hematoma was successfully performed. Outcomes: His symptoms resolved after the surgery. Follow-up CT scans three months later demonstrated complete resolution of the hydronephrosis and retroperitoneal hematoma. Lessons: Our case highlights a patient with delayed hydronephrosis because of retroperitoneal hematoma expansion after a seatbelt injury. PMID:29879068
Contextual Interference in Complex Bimanual Skill Learning Leads to Better Skill Persistence
Pauwels, Lisa; Swinnen, Stephan P.; Beets, Iseult A. M.
2014-01-01
The contextual interference (CI) effect is a robust phenomenon in the (motor) skill learning literature. However, CI has yielded mixed results in complex task learning. The current study addressed whether the CI effect is generalizable to bimanual skill learning, with a focus on the temporal evolution of memory processes. In contrast to previous studies, an extensive training schedule, distributed across multiple days of practice, was provided. Participants practiced three frequency ratios across three practice days following either a blocked or random practice schedule. During the acquisition phase, better overall performance for the blocked practice group was observed, but this difference diminished as practice progressed. At immediate and delayed retention, the random practice group outperformed the blocked practice group, except for the most difficult frequency ratio. Our main finding is that the random practice group showed superior performance persistence over a one week time interval in all three frequency ratios compared to the blocked practice group. This study contributes to our understanding of learning, consolidation and memory of complex motor skills, which helps optimizing training protocols in future studies and rehabilitation settings. PMID:24960171
Pfordresher, Peter Q; Mantell, James T
2012-01-01
We report an experiment that tested whether effects of altered auditory feedback (AAF) during piano performance differ from its effects during singing. These effector systems differ with respect to the mapping between motor gestures and pitch content of auditory feedback. Whereas this action-effect mapping is highly reliable during phonation in any vocal motor task (singing or speaking), mapping between finger movements and pitch occurs only in limited situations, such as piano playing. Effects of AAF in both tasks replicated results previously found for keyboard performance (Pfordresher, 2003), in that asynchronous (delayed) feedback slowed timing whereas alterations to feedback pitch increased error rates, and the effect of asynchronous feedback was similar in magnitude across tasks. However, manipulations of feedback pitch had larger effects on singing than on keyboard production, suggesting effector-specific differences in sensitivity to action-effect mapping with respect to feedback content. These results support the view that disruption from AAF is based on abstract, effector independent, response-effect associations but that the strength of associations differs across effector systems. Copyright © 2011. Published by Elsevier B.V.
Steering disturbance rejection using a physics-based neuromusculoskeletal driver model
NASA Astrophysics Data System (ADS)
Mehrabi, Naser; Sharif Razavian, Reza; McPhee, John
2015-10-01
The aim of this work is to develop a comprehensive yet practical driver model to be used in studying driver-vehicle interactions. Drivers interact with their vehicle and the road through the steering wheel. This interaction forms a closed-loop coupled human-machine system, which influences the driver's steering feel and control performance. A hierarchical approach is proposed here to capture the complexity of the driver's neuromuscular dynamics and the central nervous system in the coordination of the driver's upper extremity activities, especially in the presence of external disturbance. The proposed motor control framework has three layers: the first (or the path planning) plans a desired vehicle trajectory and the required steering angles to perform the desired trajectory; the second (or the musculoskeletal controller) actuates the musculoskeletal arm to rotate the steering wheel accordingly; and the final layer ensures the precision control and disturbance rejection of the motor control units. The physics-based driver model presented here can also provide insights into vehicle control in relaxed and tensed driving conditions, which are simulated by adjusting the driver model parameters such as cognition delay and muscle co-contraction dynamics.
Dynamics of neurons controlling movements of a locust hind leg. III. Extensor tibiae motor neurons.
Newland, P L; Kondoh, Y
1997-06-01
Imposed movements of the apodeme of the femoral chordotonal organ (FeCO) of the locust hind leg elicit resistance reflexes in extensor and flexor tibiae motor neurons. The synaptic responses of the fast and slow extensor tibiae motor neurons (FETi and SETi, respectively) and the spike responses of SETi were analyzed with the use of the Wiener kernel white noise method to determine their response properties. The first-order Wiener kernels computed from soma recordings were essentially monophasic, or low passed, indicating that the motor neurons were primarily sensitive to the position of the tibia about the femorotibial joint. The responses of both extensor motor neurons had large nonlinear components. The second-order kernels of the synaptic responses of FETi and SETi had large on-diagonal peaks with two small off-diagonal valleys. That of SETi had an additional elongated valley on the diagonal, which was accompanied by two off-diagonal depolarizing peaks at a cutoff frequency of 58 Hz. These second-order components represent a half-wave rectification of the position-sensitive depolarizing response in FETi and SETi, and a delayed inhibitory input to SETi, indicating that both motor neurons were directionally sensitive. Model predictions of the responses of the motor neurons showed that the first-order (linear) characterization poorly predicted the actual responses of FETi and SETi to FeCO stimulation, whereas the addition of the second-order (nonlinear) term markedly improved the performance of the model. Simultaneous recordings from the soma and a neuropilar process of FETi showed that its synaptic responses to FeCO stimulation were phase delayed by about -30 degrees at 20 Hz, and reduced in amplitude by 30-40% when recorded in the soma. Similar configurations of the first and second-order kernels indicated that the primary process of FETi acted as a low-pass filter. Cross-correlation between a white noise stimulus and a unitized spike discharge of SETi again produced well-defined first- and second-order kernels that showed that the SETi spike response was also dependent on positional inputs. An elongated negative valley on the diagonal, characteristic of the second-order kernel of the synaptic response in SETi, was absent in the kernel from the spike component, suggesting that information is lost in the spike production process. The functional significance of these results is discussed in relation to the behavior of the locust.
Sajad, Amirsaman; Sadeh, Morteza; Keith, Gerald P; Yan, Xiaogang; Wang, Hongying; Crawford, John Douglas
2015-10-01
A fundamental question in sensorimotor control concerns the transformation of spatial signals from the retina into eye and head motor commands required for accurate gaze shifts. Here, we investigated these transformations by identifying the spatial codes embedded in visually evoked and movement-related responses in the frontal eye fields (FEFs) during head-unrestrained gaze shifts. Monkeys made delayed gaze shifts to the remembered location of briefly presented visual stimuli, with delay serving to dissociate visual and movement responses. A statistical analysis of nonparametric model fits to response field data from 57 neurons (38 with visual and 49 with movement activities) eliminated most effector-specific, head-fixed, and space-fixed models, but confirmed the dominance of eye-centered codes observed in head-restrained studies. More importantly, the visual response encoded target location, whereas the movement response mainly encoded the final position of the imminent gaze shift (including gaze errors). This spatiotemporal distinction between target and gaze coding was present not only at the population level, but even at the single-cell level. We propose that an imperfect visual-motor transformation occurs during the brief memory interval between perception and action, and further transformations from the FEF's eye-centered gaze motor code to effector-specific codes in motor frames occur downstream in the subcortical areas. © The Author 2014. Published by Oxford University Press.
Isherwood, Sarah N; Robbins, Trevor W; Nicholson, Janet R; Dalley, Jeffrey W; Pekcec, Anton
2017-09-01
Metabotropic glutamate receptor 4 (mGluR4) and dopamine D 2 receptors are specifically expressed within the indirect pathway neurons of the striato-pallidal-subthalamic pathway. This unique expression profile suggests that mGluR4 and D 2 receptors may play a cooperative role in the regulation and inhibitory control of behaviour. We investigated this possibility by testing the effects of a functionally-characterised positive allosteric mGluR4 modulator, 4-((E)-styryl)-pyrimidin-2-ylamine (Cpd11), both alone and in combination with the D 2 receptor antagonist eticlopride, on two distinct forms of impulsivity. Rats were trained on the five-choice serial reaction time task (5-CSRTT) of sustained visual attention and segregated according to low, mid, and high levels of motor impulsivity (LI, MI and HI, respectively), with unscreened rats used as an additional control group. A separate group of rats was trained on a delay discounting task (DDT) to assess choice impulsivity. Systemic administration of Cpd11 dose-dependently increased motor impulsivity and impaired attentional accuracy on the 5-CSRTT in all groups tested. Eticlopride selectively attenuated the increase in impulsivity induced by Cpd11, but not the accompanying attentional impairment, at doses that had no significant effect on behavioural performance when administered alone. Cpd11 also decreased choice impulsivity on the DDT (i.e. increased preference for the large, delayed reward) and decreased locomotor activity. These findings demonstrate that mGluR4s, in conjunction with D 2 receptors, affect motor- and choice-based measures of impulsivity, and therefore may be novel targets to modulate impulsive behaviour associated with a number of neuropsychiatric syndromes. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Liu, Yuzhou; Lao, Jie; Gao, Kaiming; Gu, Yudong; Zhao, Xin
2014-01-01
Nerve transfer is a valuable surgical technique in peripheral nerve reconstruction, especially in brachial plexus injuries. Phrenic nerve transfer for elbow flexion was proved to be one of the optimal procedures in the treatment of brachial plexus injuries in the study of Gu et al. The aim of this study was to compare phrenic nerve transfers with and without nerve graft for elbow flexion after brachial plexus injury. A retrospective review of 33 patients treated with phrenic nerve transfer for elbow flexion in posttraumatic global root avulsion brachial plexus injury was carried out. All the 33 patients were confirmed to have global root avulsion brachial plexus injury by preoperative and intraoperative electromyography (EMG), physical examination and especially by intraoperative exploration. There were two types of phrenic nerve transfers: type1 - the phrenic nerve to anterolateral bundle of anterior division of upper trunk (14 patients); type 2 - the phrenic nerve via nerve graft to anterolateral bundle of musculocutaneous nerve (19 patients). Motor function and EMG evaluation were performed at least 3 years after surgery. The efficiency of motor function in type 1 was 86%, while it was 84% in type 2. The two groups were not statistically different in terms of Medical Research Council (MRC) grade (p=1.000) and EMG results (p=1.000). There were seven patients with more than 4 month's delay of surgery, among whom only three patients regained biceps power to M3 strength or above (43%). A total of 26 patients had reconstruction done within 4 months, among whom 25 patients recovered to M3 strength or above (96%). There was a statistically significant difference of motor function between the delay of surgery within 4 months and more than 4 months (p=0.008). Phrenic nerve transfers with and without nerve graft for elbow flexion after brachial plexus injury had no significant difference for biceps reinnervation according to MRC grading and EMG. A delay of the surgery after the 4 months might imply a bad prognosis for the recovery of the function. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ikeda, Ken; Iwasaki, Yasuo
2015-01-01
Edaravone, a free radical scavenger is used widely in Japanese patients with acute cerebral infarction. This antioxidant could have therapeutic potentials for other neurological diseases. Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects the upper and the lower motor neuron, leading to death within 3-5 years after onset. A phase III clinical trial of edaravone suggested no significant effects in ALS patients. However, recent 2nd double-blind trial has demonstrated therapeutic benefits of edaravone in definite patients diagnosed by revised El Escorial diagnostic criteria of ALS. Two previous studies showed that edaravone attenuated motor symptoms or motor neuron degeneration in mutant superoxide dismutase 1-transgenic mice or rats, animal models of familial ALS. Herein we examined whether this radical scavenger can retard progression of motor dysfunction and neuropathological changes in wobbler mice, sporadic ALS-like model. After diagnosis of the disease onset at the postnatal age of 3-4 weeks, wobbler mice received edaravone (1 or 10 mg/kg, n = 10/group) or vehicle (n = 10), daily for 4 weeks by intraperitoneal administration. Motor symptoms and neuropathological changes were compared among three groups. Higher dose (10 mg/kg) of edaravone treatment significantly attenuated muscle weakness and contracture in the forelimbs, and suppressed denervation atrophy in the biceps muscle and degeneration in the cervical motor neurons compared to vehicle. Previous and the present studies indicated neuroprotective effects of edaravone in three rodent ALS-like models. This drug seems to be worth performing the clinical trial in ALS patients in the United States of American and Europe, in addition to Japan.
2015-01-01
Edaravone, a free radical scavenger is used widely in Japanese patients with acute cerebral infarction. This antioxidant could have therapeutic potentials for other neurological diseases. Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects the upper and the lower motor neuron, leading to death within 3–5 years after onset. A phase III clinical trial of edaravone suggested no significant effects in ALS patients. However, recent 2nd double-blind trial has demonstrated therapeutic benefits of edaravone in definite patients diagnosed by revised El Escorial diagnostic criteria of ALS. Two previous studies showed that edaravone attenuated motor symptoms or motor neuron degeneration in mutant superoxide dismutase 1-transgenic mice or rats, animal models of familial ALS. Herein we examined whether this radical scavenger can retard progression of motor dysfunction and neuropathological changes in wobbler mice, sporadic ALS-like model. After diagnosis of the disease onset at the postnatal age of 3–4 weeks, wobbler mice received edaravone (1 or 10 mg/kg, n = 10/group) or vehicle (n = 10), daily for 4 weeks by intraperitoneal administration. Motor symptoms and neuropathological changes were compared among three groups. Higher dose (10 mg/kg) of edaravone treatment significantly attenuated muscle weakness and contracture in the forelimbs, and suppressed denervation atrophy in the biceps muscle and degeneration in the cervical motor neurons compared to vehicle. Previous and the present studies indicated neuroprotective effects of edaravone in three rodent ALS-like models. This drug seems to be worth performing the clinical trial in ALS patients in the United States of American and Europe, in addition to Japan. PMID:26469273
Benson, Curtis; Paylor, John W; Tenorio, Gustavo; Winship, Ian; Baker, Glen; Kerr, Bradley J
2015-09-01
Multiple sclerosis (MS) is classically defined by motor deficits, but it is also associated with the secondary symptoms of pain, depression, and anxiety. Up to this point modifying these secondary symptoms has been difficult. There is evidence that both MS and the animal model experimental autoimmune encephalomyelitis (EAE), commonly used to study the pathophysiology of the disease, can be modulated by exercise. To examine whether limited voluntary wheel running could modulate EAE disease progression and the co-morbid symptoms of pain, mice with EAE were allowed access to running wheels for 1h every day. Allowing only 1h every day of voluntary running led to a significant delay in the onset of clinical signs of the disease. The development of mechanical allodynia was assessed using Von Frey hairs and indicated that wheel running had a modest positive effect on the pain hypersensitivity associated with EAE. These behavioral changes were associated with reduced numbers of cFOS and phosphorylated NR1 positive cells in the dorsal horn of the spinal cord compared to no-run EAE controls. In addition, within the dorsal horn, voluntary wheel running reduced the number of infiltrating CD3(+) T-cells and reduced the overall levels of Iba1 immunoreactivity. Using high performance liquid chromatography (HPLC), we observed that wheel-running lead to significant changes in the spinal cord levels of the antioxidant glutathione. Oxidative stress has separately been shown to contribute to EAE disease progression and neuropathic pain. Together these results indicate that in mice with EAE, voluntary motor activity can delay the onset of clinical signs and reduce pain symptoms associated with the disease. Copyright © 2015 Elsevier Inc. All rights reserved.
Winstanley, Catharine A; Baunez, Christelle; Theobald, David E H; Robbins, Trevor W
2005-06-01
Although the subthalamic nucleus (STN) is involved in regulating motor function, and inactivation of this structure relieves the motor symptoms in Parkinsonian patients, recent data indicate that corticosubthalamic connections are involved in both the regulation of attention and the ability to withhold from responding. Considerable evidence suggests that the neural circuitry underlying such behavioural disinhibition or impulsive action can be at least partially dissociated from that implicated in impulsive decision-making and it has been suggested that the tendency to choose impulsively is related to the ability to form and use Pavlovian associations. To explore these hypotheses further, STN-lesioned rats were tested on the delay-discounting model of impulsive choice, where impulsivity is defined as the selection of a small immediate over a larger delayed reward, as well as in a rodent autoshaping paradigm. In contrast to previous reports of increased impulsive action, STN lesions decreased impulsive choice but dramatically impaired the acquisition of the autoshaping response. When the STN was lesioned after the establishment of autoshaping behaviour, lesioned subjects were more sensitive to the omission of reward, indicative of a reduction in the use of Pavlovian associations to control autoshaping performance. These results emphasize the importance of the STN in permitting conditioned stimulus-unconditioned stimulus associations to regulate goal-seeking, a function which may relate to the alterations in impulsive choice observed in the delay-discounting task. These data bear a striking similarity to those observed after lesions of the orbitofrontal cortex and are suggestive of an important role for corticosubthalamic connections in complex cognitive behaviour.
Wang, Tien-Ni; Howe, Tsu-Hsin; Hinojosa, Jim; Weinberg, Sharon L
2011-01-01
We examined the relationship between postural control and fine motor skills of preterm infants at 6 and 12 mo adjusted age. The Alberta Infant Motor Scale was used to measure postural control, and the Peabody Developmental Motor Scales II was used to measure fine motor skills. The data analyzed were taken from 105 medical records from a preterm infant follow-up clinic at an urban academic medical center in south Taiwan. Using multiple regression analyses, we found that the development of postural control is related to the development of fine motor skills, especially in the group of preterm infants with delayed postural control. This finding supports the theoretical assumption of proximal-distal development used by many occupational therapists to guide intervention. Further research is suggested to corroborate findings.
Takamuku, Shinya; Gomi, Hiroaki
2015-01-01
How our central nervous system (CNS) learns and exploits relationships between force and motion is a fundamental issue in computational neuroscience. While several lines of evidence have suggested that the CNS predicts motion states and signals from motor commands for control and perception (forward dynamics), it remains controversial whether it also performs the ‘inverse’ computation, i.e. the estimation of force from motion (inverse dynamics). Here, we show that the resistive sensation we experience while moving a delayed cursor, perceived purely from the change in visual motion, provides evidence of the inverse computation. To clearly specify the computational process underlying the sensation, we systematically varied the visual feedback and examined its effect on the strength of the sensation. In contrast to the prevailing theory that sensory prediction errors modulate our perception, the sensation did not correlate with errors in cursor motion due to the delay. Instead, it correlated with the amount of exposure to the forward acceleration of the cursor. This indicates that the delayed cursor is interpreted as a mechanical load, and the sensation represents its visually implied reaction force. Namely, the CNS automatically computes inverse dynamics, using visually detected motions, to monitor the dynamic forces involved in our actions. PMID:26156766
School Start Times, Sleep, Behavioral, Health, and Academic Outcomes: A Review of the Literature.
Wheaton, Anne G; Chapman, Daniel P; Croft, Janet B
2016-05-01
Insufficient sleep in adolescents has been shown to be associated with a wide variety of adverse outcomes, from poor mental and physical health to behavioral problems and lower academic grades. However, most high school students do not get sufficient sleep. Delaying school start times for adolescents has been proposed as a policy change to address insufficient sleep in this population and potentially to improve students' academic performance, reduce engagement in risk behaviors, and improve health. This article reviews 38 reports examining the association between school start times, sleep, and other outcomes among adolescent students. Most studies reviewed provide evidence that delaying school start time increases weeknight sleep duration among adolescents, primarily by delaying rise times. Most of the studies saw a significant increase in sleep duration even with relatively small delays in start times of half an hour or so. Later start times also generally correspond to improved attendance, less tardiness, less falling asleep in class, better grades, and fewer motor vehicle crashes. Although additional research is necessary, research results that are already available should be disseminated to stakeholders to enable the development of evidence-based school policies. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
ERIC Educational Resources Information Center
Soto, Gloria; Clarke, Michael T.
2017-01-01
Purpose: This study was conducted to evaluate the effects of a conversation-based intervention on the expressive vocabulary and grammatical skills of children with severe motor speech disorders and expressive language delay who use augmentative and alternative communication. Method: Eight children aged from 8 to 13 years participated in the study.…
A Preliminary Analysis of Correlated Evolution in Mammalian Chewing Motor Patterns
Williams, Susan H.; Vinyard, Christopher J.; Wall, Christine E.; Doherty, Alison H.; Crompton, Alfred W.; Hylander, William L.
2011-01-01
Descriptive and quantitative analyses of electromyograms (EMG) from the jaw adductors during feeding in mammals have demonstrated both similarities and differences among species in chewing motor patterns. These observations have led to a number of hypotheses of the evolution of motor patterns, the most comprehensive of which was proposed by Weijs in 1994. Since then, new data have been collected and additional hypotheses for the evolution of motor patterns have been proposed. Here, we take advantage of these new data and a well-resolved species-level phylogeny for mammals to test for the correlated evolution of specific components of mammalian chewing motor patterns. We focus on the evolution of the coordination of working-side (WS) and balancing-side (BS) jaw adductors (i.e., Weijs’ Triplets I and II), the evolution of WS and BS muscle recruitment levels, and the evolution of asynchrony between pairs of muscles. We converted existing chewing EMG data into binary traits to incorporate as much data as possible and facilitate robust phylogenetic analyses. We then tested hypotheses of correlated evolution of these traits across our phylogeny using a maximum likelihood method and the Bayesian Markov Chain Monte Carlo method. Both sets of analyses yielded similar results highlighting the evolutionary changes that have occurred across mammals in chewing motor patterns. We find support for the correlated evolution of (1) Triplets I and II, (2) BS deep masseter asynchrony and Triplets I and II, (3) a relative delay in the activity of the BS deep masseter and a decrease in the ratio of WS to BS muscle recruitment levels, and (4) a relative delay in the activity of the BS deep masseter and a delay in the activity of the BS posterior temporalis. In contrast, changes in relative WS and BS activity levels across mammals are not correlated with Triplets I and II. Results from this work can be integrated with dietary and morphological data to better understand how feeding and the masticatory apparatus have evolved across mammals in the context of new masticatory demands. PMID:21719433
A preliminary analysis of correlated evolution in Mammalian chewing motor patterns.
Williams, Susan H; Vinyard, Christopher J; Wall, Christine E; Doherty, Alison H; Crompton, Alfred W; Hylander, William L
2011-08-01
Descriptive and quantitative analyses of electromyograms (EMG) from the jaw adductors during feeding in mammals have demonstrated both similarities and differences among species in chewing motor patterns. These observations have led to a number of hypotheses of the evolution of motor patterns, the most comprehensive of which was proposed by Weijs in 1994. Since then, new data have been collected and additional hypotheses for the evolution of motor patterns have been proposed. Here, we take advantage of these new data and a well-resolved species-level phylogeny for mammals to test for the correlated evolution of specific components of mammalian chewing motor patterns. We focus on the evolution of the coordination of working-side (WS) and balancing-side (BS) jaw adductors (i.e., Weijs' Triplets I and II), the evolution of WS and BS muscle recruitment levels, and the evolution of asynchrony between pairs of muscles. We converted existing chewing EMG data into binary traits to incorporate as much data as possible and facilitate robust phylogenetic analyses. We then tested hypotheses of correlated evolution of these traits across our phylogeny using a maximum likelihood method and the Bayesian Markov Chain Monte Carlo method. Both sets of analyses yielded similar results highlighting the evolutionary changes that have occurred across mammals in chewing motor patterns. We find support for the correlated evolution of (1) Triplets I and II, (2) BS deep masseter asynchrony and Triplets I and II, (3) a relative delay in the activity of the BS deep masseter and a decrease in the ratio of WS to BS muscle recruitment levels, and (4) a relative delay in the activity of the BS deep masseter and a delay in the activity of the BS posterior temporalis. In contrast, changes in relative WS and BS activity levels across mammals are not correlated with Triplets I and II. Results from this work can be integrated with dietary and morphological data to better understand how feeding and the masticatory apparatus have evolved across mammals in the context of new masticatory demands.
Van Houtte, Evelyne; Casselman, Jan; Janssens, Sandra; De Kegel, Alexandra; Maes, Leen; Dhooge, Ingeborg
2014-11-01
Valproic acid (VPA) is a known teratogenic drug. Exposure to VPA during the pregnancy can lead to a distinct facial appearance, a cluster of major and minor anomalies and developmental delay. In this case report, two siblings with fetal valproate syndrome and a mild conductive hearing loss were investigated. Radiologic evaluation showed middle and inner ear malformations in both children. Audiologic, vestibular and motor examination was performed. This is the first case report to describe middle and inner ear malformations in children exposed to VPA. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Global developmental delay with sodium valproate-induced gingival hyperplasia.
Patil, Ravi B; Urs, Pallavi; Kiran, Shital; Bargale, Seema Dinesh
2014-01-22
Global developmental delay (GDD) refers to a disturbance in an individual child across one or more developmental domains, which include motor, cognition, daily activities, speech and language. The present case discusses a 5-year-old child with GDD associated with infantile spasms treated with sodium valproate. Delay in the widespread acquisition of skills, epilepsy and poor oral hygiene with gingival enlargement was the main concern to seek medical aid. This case is special as the child was suffering from GDD associated with sodium valproate-induced gingival enlargement.
Early neurodevelopmental outcomes of infants with intestinal failure.
So, Stephanie; Patterson, Catherine; Gold, Anna; Rogers, Alaine; Kosar, Christina; de Silva, Nicole; Burghardt, Karolina Maria; Avitzur, Yaron; Wales, Paul W
2016-10-01
The survival rate of infants and children with intestinal failure is increasing, necessitating a greater focus on their developmental trajectory. To evaluate neurodevelopmental outcomes in children with intestinal failure at 0-15months corrected age. Analysis of clinical, demographic and developmental assessment results of 33 children followed in an intestinal rehabilitation program between 2011 and 2014. Outcome measures included: Prechtl's Assessment of General Movements, Movement Assessment of Infants, Alberta Infant Motor Scale and Mullen Scales of Early Learning. Clinical factors were correlated with poorer developmental outcomes at 12-15months corrected age. Thirty-three infants (17 males), median gestational age 34weeks (interquartile range 29.5-36.0) with birth weight 1.98kg (interquartile range 1.17-2.50). Twenty-nine (88%) infants had abnormal General Movements. More than half had suspect or abnormal scores on the Alberta Infant Motor Scale and medium to high-risk scores for future neuromotor delay on the Movement Assessment of Infants. Delays were seen across all Mullen subscales, most notably in gross motor skills. Factors significantly associated with poorer outcomes at 12-15months included: prematurity, low birth weight, central nervous system co-morbidity, longer neonatal intensive care admission, necrotizing enterocolitis diagnosis, number of operations and conjugated hyperbilirubinemia. Multiple risk factors contribute to early developmental delay in children with intestinal failure, highlighting the importance of close developmental follow-up. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
van Vugt, Floris T.; Tillmann, Barbara
2014-01-01
The human brain is able to predict the sensory effects of its actions. But how precise are these predictions? The present research proposes a tool to measure thresholds between a simple action (keystroke) and a resulting sound. On each trial, participants were required to press a key. Upon each keystroke, a woodblock sound was presented. In some trials, the sound came immediately with the downward keystroke; at other times, it was delayed by a varying amount of time. Participants were asked to verbally report whether the sound came immediately or was delayed. Participants' delay detection thresholds (in msec) were measured with a staircase-like procedure. We hypothesised that musicians would have a lower threshold than non-musicians. Comparing pianists and brass players, we furthermore hypothesised that, as a result of a sharper attack of the timbre of their instrument, pianists might have lower thresholds than brass players. Our results show that non-musicians exhibited higher thresholds for delay detection (180±104 ms) than the two groups of musicians (102±65 ms), but there were no differences between pianists and brass players. The variance in delay detection thresholds could be explained by variance in sensorimotor synchronisation capacities as well as variance in a purely auditory temporal irregularity detection measure. This suggests that the brain's capacity to generate temporal predictions of sensory consequences can be decomposed into general temporal prediction capacities together with auditory-motor coupling. These findings indicate that the brain has a relatively large window of integration within which an action and its resulting effect are judged as simultaneous. Furthermore, musical expertise may narrow this window down, potentially due to a more refined temporal prediction. This novel paradigm provides a simple test to estimate the temporal precision of auditory-motor action-effect coupling, and the paradigm can readily be incorporated in studies investigating both healthy and patient populations. PMID:24498299
Berg, Anne T.; Loddenkemper, Tobias; Baca, Christine B.
2014-01-01
Purpose Delayed diagnosis of early-onset epilepsy is a potentially important and avoidable complication in epilepsy care. We examined the frequency of diagnostic delays in young children with newly presenting epilepsy, their developmental impact, and reasons for delays. Methods Children who developed epilepsy before their third birthday were identified in a prospective community-based cohort. An interval ≥1 month from second seizure to diagnosis was considered a delay. Testing of development at baseline and for up to three years after and of IQ 8–9 years later was performed. Detailed parental baseline interview accounts and medical records were reviewed to identify potential reasons for delays. Factors associated with delays included the parent, child, pediatrician, neurologist, and scheduling. Results Diagnostic delays occurred in 70/172 (41%) children. Delays occurred less often if children had received medical attention for the first seizure (p<0.0001), previously had neonatal or febrile seizures (p=0.02), had only convulsions before diagnosis (p=0.005) or had a college-educated parent (p=0.01). A ≥1 month diagnostic delay was associated with an average 7.4 point drop (p=0.02) in the Vineland Scales of Adaptive Behavior motor score. The effect was present at diagnosis, persisted for at least three years, and was also apparent in IQ scores 8–9 years later which were lower in association with a diagnostic delay by 8.4 points (p=0.06) for processing speed up to 14.5 points (p=0.004) for full scale IQ, after adjustment for parental education and other epilepsy-related clinical factors. Factors associated with delayed diagnosis included parents not recognizing events as seizures (N=47), pediatricians missing or deferring diagnosis (N=15), neurologists deferring diagnosis (N=7), and scheduling problems (N=11). Significance Diagnostic delays occur in many young children with epilepsy. They are associated with substantial decrements in development and IQ later in childhood. Several factors influence diagnostic delays and may represent opportunities for intervention and improved care. PMID:24313635
EMG changes in thigh and calf muscles in fin swimming exercise.
Jammes, Y; Delliaux, S; Coulange, M; Jammes, C; Kipson, N; Brerro-Saby, C; Bregeon, F
2010-08-01
Because previous researchers have reported a reduced lactic acid production that accompanies a delayed or an absent ventilatory threshold (VTh) in water-based exercise, we hypothesized that the metaboreflex, activated by muscle acidosis, might be absent in fin swimming. This motor response, delaying the occurrence of fatigue, is characterized by a decreased median frequency (MF) of electromyographic (EMG) power spectrum. Seven healthy subjects performed a maximal fin swimming exercise protocol with simultaneous recordings of surface EMGs in VASTUS MEDIALIS (VM), TIBIALIS ANTERIOR (TA) and GASTROCNEMIUS MEDIALIS (GM). We computed the root mean square (RMS) and MF and recorded the compound evoked muscle potential (M-wave) in VM. We also measured the propulsive force and oxygen uptake (VO (2)), and determined VTh. VTh was absent in 4/7 subjects and measured at 70-90% of VO (2max) in the other three. In the three studied muscles, the global EMG activity (RMS) increased while the MF decreased in proportion of VO (2), the MF changes being significantly higher in VM (-29%) and GM (-39%) than in TA (-19%). Because no M-wave changes were noted, the MF decline was attributed to the recruitment of low-frequency, fatigue-resistant motor units. Our most important finding is the persistence of the metaboreflex even in a situation of reduced muscle acidosis. (c) Georg Thieme Verlag KG Stuttgart . New York.
Brandão, Luiz Eduardo Mateus; Nôga, Diana Aline Morais Ferreira; Dierschnabel, Aline Lima; Meurer, Ywlliane da Silva Rodrigues; Lima, Ramón Hypolito; Cavalcante, Jeferson Souza; Lima, Clésio Andrade; Marchioro, Murilo; Estevam, Charles dos Santos; Santos, José Ronaldo
2017-01-01
Passiflora cincinnata Masters is a Brazilian native species of passionflower. This genus is known in the American continent folk medicine for its diuretic and analgesic properties. Nevertheless, few studies investigated possible biological effects of P. cincinnata extracts. Further, evidence of antioxidant actions encourages the investigation of possible neuroprotective effects in animal models of neurodegenerative diseases. This study investigates the effect of the P. cincinnata ethanolic extract (PAS) on mice submitted to a progressive model of Parkinson's disease (PD) induced by reserpine. Male (6-month-old) mice received reserpine (0.1 mg/kg, s.c.), every other day, for 40 days, with or without a concomitant treatment with daily injections of PAS (25 mg/kg, i.p.). Catalepsy, open field, oral movements, and plus-maze discriminative avoidance evaluations were performed across treatment, and immunohistochemistry for tyrosine hydroxylase was conducted at the end. The results showed that PAS treatment delayed the onset of motor impairments and prevented the occurrence of increased catalepsy behavior in the premotor phase. However, PAS administration did not modify reserpine-induced cognitive impairments. Moreover, PAS prevented the decrease in tyrosine hydroxylase immunostaining in the substantia nigra pars compacta (SNpc) induced by reserpine. Taken together, our results suggested that PAS exerted a neuroprotective effect in a progressive model of PD. PMID:28835767
Lai, Meng‐Chuan; Auer, Tibor; Lombardo, Michael V.; Ecker, Christine; Chakrabarti, Bhismadev; Wheelwright, Sally J.; Bullmore, Edward T.; Murphy, Declan G.M.; Baron‐Cohen, Simon; Suckling, John
2015-01-01
Abstract In humans, both language and fine motor skills are associated with left‐hemisphere specialization, whereas visuospatial skills are associated with right‐hemisphere specialization. Individuals with autism spectrum conditions (ASC) show a profile of deficits and strengths that involves these lateralized cognitive functions. Here we test the hypothesis that regions implicated in these functions are atypically rightward lateralized in individuals with ASC and, that such atypicality is associated with functional performance. Participants included 67 male, right‐handed adults with ASC and 69 age‐ and IQ‐matched neurotypical males. We assessed group differences in structural asymmetries in cortical regions of interest with voxel‐based analysis of grey matter volumes, followed by correlational analyses with measures of language, motor and visuospatial skills. We found stronger rightward lateralization within the inferior parietal lobule and reduced leftward lateralization extending along the auditory cortex comprising the planum temporale, Heschl's gyrus, posterior supramarginal gyrus, and parietal operculum, which was more pronounced in ASC individuals with delayed language onset compared to those without. Planned correlational analyses showed that for individuals with ASC, reduced leftward asymmetry in the auditory region was associated with more childhood social reciprocity difficulties. We conclude that atypical cerebral structural asymmetry is a potential candidate neurophenotype of ASC. Hum Brain Mapp 37:230–253, 2016. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:26493275
Keskinen, E.; Marttila, A.; Marttila, R.; Jones, P.B.; Murray, G.K.; Moilanen, K.; Koivumaa-Honkanen, H.; Mäki, P.; Isohanni, M.; Jääskeläinen, E.; Miettunen, J.
2015-01-01
Background Delayed motor development in infancy and family history of psychosis are both associated with increased risk of schizophrenia, but their interaction is largely unstudied. Aim To investigate the association of the age of achieving motor milestones and parental psychosis and their interaction in respect to risk of schizophrenia. Methods We used data from the general population-based prospective Northern Finland Birth Cohort 1966 (n = 10,283). Developmental information of the cohort members was gathered during regular visits to Finnish child welfare clinics. Several registers were used to determine the diagnosis of schizophrenia among the cohort members and psychosis among the parents. Altogether 152 (1.5%) individuals had schizophrenia by the age of 46 years, with 23 (15.1%) of them having a parent with psychosis. Cox regression analysis was used in analyses. Results Parental psychosis was associated (P < 0.05) with later achievement of holding the head up, grabbing an object, and walking without support. In the parental psychosis group, the risk for schizophrenia was increased if holding the head up (hazard ratio [HR]: 2.46; degrees of freedom [df] = 1; 95% confidence interval [95% CI]: 1.07–5.66) and touching the thumb with the index finger (HR: 1.84; df = 1; 95% CI: 1.11–3.06) was later. In the group without parental psychosis, a delay in the following milestones increased the risk of schizophrenia: standing without support and walking without support. Parental psychosis had an interaction with delayed touching thumb with index finger (HR: 1.87; df = 1; 95% CI: 1.08–3.25) when risk of schizophrenia was investigated. Conclusions Parental psychosis was associated with achieving motor milestones later in infancy, particularly the milestones that appear early in a child's life. Parental psychosis and touching the thumb with the index finger had a significant interaction on risk of schizophrenia. Genetic risk for psychosis may interact with delayed development to raise future risk of schizophrenia, or delayed development may be a marker of other risk processes that interact with genetic liability to cause later schizophrenia. PMID:26070841
Stich, Heribert L; Baune, Bernhard Th; Caniato, Riccardo N; Mikolajczyk, Rafael T; Krämer, Alexander
2012-12-05
Even minor abnormalities of early child development may have dramatic long term consequences. Accurate prevalence rates for a range of developmental impairments have been difficult to establish. Since related studies have used different methodological approaches, direct comparisons of the prevalence of developmental delays are difficult. The understanding of the key factors affecting child development, especially in preschool aged children remains limited. We used data from school entry examinations in Bavaria to measure the prevalence of developmental impairments in pre-school children beginning primary school in 1997-2009. The developmental impairments of all school beginners in the district of Dingolfing-Landau, Bavaria were assessed using modified "Bavarian School Entry Model" examination from 1997 to 2009 (N=13,182). The children were assessed for motor, cognitive, language and psychosocial impairments using a standardised medical protocol. Prevalence rates of impairments in twelve domains of development were estimated. Using uni- and multivariable logistic regression models, association between selected factors and development delays were assessed. The highest prevalence existed for impairments of pronunciation (13.8%) followed by fine motor impairments (12.2%), and impairments of memory and concentration (11.3%) and the lowest for impairments of rhythm of speech (3.1%). Younger children displayed more developmental delays. Male gender was strongly associated with all developmental impairments (highest risk for fine motor impairments = OR 3.22, 95% confidence interval 2.86-3.63). Preschool children with siblings (vs. children without any siblings) were at higher risk of having impairments in pronunciation (OR 1.31, 1.14-1.50). The influence of the non-German nationality was strong, with a maximum risk increase for the subareas of grammar and psychosocial development. Although children with non-German nationality had a reduced risk of disorders for the rhythm of speech and pronunciation, in all other 10 subareas their risk was increased. In preschool children, most common were delays of pronunciation, memory and concentration. Age effects suggest that delays can spontaneously resolve, but providing support at school entry might be helpful. Boys and migrant children appear at high risk of developmental problems, which may warrant tailored intervention strategies.
Redundant information encoding in primary motor cortex during natural and prosthetic motor control.
So, Kelvin; Ganguly, Karunesh; Jimenez, Jessica; Gastpar, Michael C; Carmena, Jose M
2012-06-01
Redundant encoding of information facilitates reliable distributed information processing. To explore this hypothesis in the motor system, we applied concepts from information theory to quantify the redundancy of movement-related information encoded in the macaque primary motor cortex (M1) during natural and neuroprosthetic control. Two macaque monkeys were trained to perform a delay center-out reaching task controlling a computer cursor under natural arm movement (manual control, 'MC'), and using a brain-machine interface (BMI) via volitional control of neural ensemble activity (brain control, 'BC'). During MC, we found neurons in contralateral M1 to contain higher and more redundant information about target direction than ipsilateral M1 neurons, consistent with the laterality of movement control. During BC, we found that the M1 neurons directly incorporated into the BMI ('direct' neurons) contained the highest and most redundant target information compared to neurons that were not incorporated into the BMI ('indirect' neurons). This effect was even more significant when comparing to M1 neurons of the opposite hemisphere. Interestingly, when we retrained the BMI to use ipsilateral M1 activity, we found that these neurons were more redundant and contained higher information than contralateral M1 neurons, even though ensembles from this hemisphere were previously less redundant during natural arm movement. These results indicate that ensembles most associated to movement contain highest redundancy and information encoding, which suggests a role for redundancy in proficient natural and prosthetic motor control.
Ditsworth, Dara; Maldonado, Marcus; McAlonis-Downes, Melissa; Sun, Shuying; Seelman, Amanda; Drenner, Kevin; Arnold, Eveline; Ling, Shuo-Chien; Pizzo, Donald; Ravits, John; Cleveland, Don W; Da Cruz, Sandrine
2017-06-01
Mutations in TDP-43 cause amyotrophic lateral sclerosis (ALS), a fatal paralytic disease characterized by degeneration and premature death of motor neurons. The contribution of mutant TDP-43-mediated damage within motor neurons was evaluated using mice expressing a conditional allele of an ALS-causing TDP-43 mutant (Q331K) whose broad expression throughout the central nervous system mimics endogenous TDP-43. TDP-43 Q331K mice develop age- and mutant-dependent motor deficits from degeneration and death of motor neurons. Cre-recombinase-mediated excision of the TDP-43 Q331K gene from motor neurons is shown to delay onset of motor symptoms and appearance of TDP-43-mediated aberrant nuclear morphology, and abrogate subsequent death of motor neurons. However, reduction of mutant TDP-43 selectively in motor neurons did not prevent age-dependent degeneration of axons and neuromuscular junction loss, nor did it attenuate astrogliosis or microgliosis. Thus, disease mechanism is non-cell autonomous with mutant TDP-43 expressed in motor neurons determining disease onset but progression defined by mutant acting within other cell types.
Rizzoli-Córdoba, Antonio; Campos-Maldonado, Martha Carmen; Vélez-Andrade, Víctor Hugo; Delgado-Ginebra, Ismael; Baqueiro-Hernández, César Iván; Villasís-Keever, Miguel Ángel; Reyes-Morales, Hortensia; Ojeda-Lara, Lucía; Davis-Martínez, Erika Berenice; O'Shea-Cuevas, Gabriel; Aceves-Villagrán, Daniel; Carrasco-Mendoza, Joaquín; Villagrán-Muñoz, Víctor Manuel; Halley-Castillo, Elizabeth; Sidonio-Aguayo, Beatriz; Palma-Tavera, Josuha Alexander; Muñoz-Hernández, Onofre
The Child Development Evaluation (or CDE Test) was developed in Mexico as a screening tool for child developmental problems. It yields three possible results: normal, slow development or risk of delay. The modified version was elaborated using the information obtained during the validation study but its properties according to the base population are not known. The objective of this work was to establish diagnostic confirmation of developmental delay in children 16- to 59-months of age previously identified as having risk of delay through the CDE Test in primary care facilities. A population-based cross-sectional study was conducted in one Mexican state. CDE test was administered to 11,455 children 16- to 59-months of age from December/2013 to March/2014. The eligible population represented the 6.2% of the children (n=714) who were identified at risk of delay through the CDE Test. For inclusion in the study, a block randomization stratified by sex and age group was performed. Each participant included in the study had a diagnostic evaluation using the Battelle Development Inventory, 2 nd edition. From the 355 participants included with risk of delay, 65.9% were male and 80.2% were from rural areas; 6.5% were false positives (Total Development Quotient ˃90) and 6.8% did not have any domain with delay (Domain Developmental Quotient <80). The proportion of delay for each domain was as follows: communication 82.5%; cognitive 80.8%; social-personal 33.8%; motor 55.5%; and adaptive 41.7%. There were significant differences in the percentages of delay both by age and by domain/subdomain evaluated. In 93.2% of the participants, developmental delay was corroborated in at least one domain evaluated. Copyright © 2015 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.
Two models for identification and predicting behaviour of an induction motor system
NASA Astrophysics Data System (ADS)
Kuo, Chien-Hsun
2018-01-01
System identification or modelling is the process of building mathematical models of dynamical systems based on the available input and output data from the systems. This paper introduces system identification by using ARX (Auto Regressive with eXogeneous input) and ARMAX (Auto Regressive Moving Average with eXogeneous input) models. Through the identified system model, the predicted output could be compared with the measured one to help prevent the motor faults from developing into a catastrophic machine failure and avoid unnecessary costs and delays caused by the need to carry out unscheduled repairs. The induction motor system is illustrated as an example. Numerical and experimental results are shown for the identified induction motor system.
Motor development of infants with univentricular heart at the ages of 16 and 52 weeks.
Rajantie, Irmeli; Laurila, Maarit; Pollari, Kirsi; Lönnqvist, Tuula; Sarajuuri, Anne; Jokinen, Eero; Mälkiä, Esko
2013-01-01
To compare the motor development of patients with hypoplastic left heart syndrome (HLHS) and other types of univentricular heart (UVH) with peers who are healthy at the ages of 16 and 52 weeks. Motor development was assessed with the Alberta Infant Motor Scale (AIMS). Both the 23 patients with HLHS and the 13 patients with UVH had lower total AIMS scores in both observations than the controls. At the age of 52 weeks, patients with HLHS had significantly lower scores in all 4 AIMS subscales, whereas patients with UVH had lower scores only in the prone and standing subscales. Motor development of patients with HLHS or UVH is delayed during the first year of life, especially in the prone and standing subscales.
Kim, Seong Woo; Jeon, Ha Ra; Park, Eun Ji; Chung, Hee Jung; Song, Jung Eun
2014-12-01
To compare and analyze the clinical characteristics of children with delayed language acquisition due to two different diagnoses, which were specific language impairment (SLI, a primarily delayed language development) and global developmental delay (GDD, a language delay related to cognitive impairment). Among 1,598 children who had visited the developmental delay clinic from March 2005 to February 2011, 467 children who were diagnosed with GDD and 183 children who were diagnosed with SLI were included in this study. All children were questioned about past, family, and developmental history, and their language competences and cognitive function were assessed. Some children got electroencephalography (EEG), in case of need. The presence of the perinatal risk factors showed no difference in two groups. In the children with GDD, they had more delayed acquisition of independent walking and more frequent EEG abnormalities compared with the children with SLI (p<0.01). The positive family history of delayed language development was more prevalent in children with SLI (p<0.01). In areas of language ability, the quotient of receptive language and expressive language did not show any meaningful statistical differences between the two groups. Analyzing in each group, the receptive language quotient was higher than expressive language quotient in both group (p<0.01). In the GDD group, the Bayley Scales of Infant Development II (BSID-II) showed a marked low mental and motor quotient while the Wechsler Intelligence Scale showed low verbal and nonverbal IQ. In the SLI group, the BSID-II and Wechsler Intelligence Scale showed low scores in mental area and verbal IQ but sparing motor area and nonverbal IQ. The linguistic profiles of children with language delay could not differentiate between SLI and GDD. The clinicians needed to be aware of these developmental issues, and history taking and clinical evaluation, including cognitive assessment, could be helpful to diagnose adequately and set the treatment plan for each child.
Pope, Derek A; Boomhower, Steven R; Hutsell, Blake A; Teixeira, Kathryn M; Newland, M Christopher
2016-04-01
Adolescence is marked by the continued development of the neural pathways that support choice and decision-making, particularly those involving dopamine signaling. Cocaine exposure during adolescence may interfere with this development and manifest as increased perseveration and delay discounting in adulthood, behavioral processes that are related to drug addiction. Adolescent mice were exposed to 30mg/kg/day of cocaine (n=11) or saline vehicle (n=10) for 14days and behavior was assessed in adulthood. In Experiment 1, performance on a spatial-discrimination-reversal procedure was evaluated. In the first two sessions following the first reversal, cocaine-exposed mice produced more preservative errors relative to controls. In Experiment 2, cocaine-exposed mice displayed steeper delay discounting than saline-exposed mice, effects that were reversed by acute cocaine administration. Experiment 3 examined responding maintained by a range of fixed-ratio schedules of reinforcement. An analysis based on a theoretical framework called Mathematical Principles of Reinforcement (MPR) was applied to response-rate functions of individual mice. According to MPR, differences in response-rate functions in adulthood were due to a steepening of the delay-of-reinforcement gradient, disrupted motoric capacity (lower maximum response rates), and enhanced reinforcer efficacy for the adolescent cocaine- compared with saline-exposed mice. Overall, these experiments suggest that chronic exposure to cocaine during adolescence may impair different features of 'executive functions' in adulthood, and these may be related to distortions in the impact of reinforcing events. Copyright © 2016 Elsevier Inc. All rights reserved.
Wei, Q W; Zhang, J X; Scherpbier, R W; Zhao, C X; Luo, S S; Wang, X L; Guo, S F
2015-12-01
Poverty and its associated factors put children at risk for developmental delay. The aim of this study was to describe the neurodevelopment of children under three years of age in poverty-stricken areas of China and explore possible associated factors. A cross-sectional survey was conducted among 2837 children aged 1-35 months in poverty-stricken areas of China. Characteristics of the child, caregiver, and family were collected through face-to-face caregiver interviews. Developmental delay was explored with the five-domain, structured, parent-completed Ages and Stages Questionnaire. The Zung Self-rating Depression Scale was used to assess depressive symptoms of the caregivers. The Chi-squared test and multivariate logistic regression analyses were used to explore associated factors. Of the children, 39.7% (95% confidence interval, 37.9-41.5) had developmental delay in at least one of the five domains. For the domains of communication, gross motor, fine motor, problem solving, and personal-social skills, the prevalence was 11.5%, 18.5%, 21.4%, 18.4%, and 17.9%, respectively. Significant predictors of increased odds of developmental delay included the child having no toys (odds ratio [OR] = 2.31), the caregiver having depression (OR = 2.24), insufficient learning activities (OR = 1.65), and more children in the family (OR = 1.16). The high prevalence of developmental delay in children younger than three years in poverty-stricken areas of China and the presence of risk factors for developmental delay such as inadequate learning resources and activities in the home, caregiver depression, and low family income highlight the need for early identification and interventions. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Higgins, Guy A; Silenieks, Leo B; MacMillan, Cam; Zeeb, Fiona D; Thevarkunnel, Sandy
2018-04-22
Previous studies demonstrated that NMDA receptor antagonists such as dizocilpine (MK801) and the GluN2B NMDA antagonist Ro 63-1908 promote impulsive action (motor impulsivity). The effects of these treatments on impulsive choice and decision-making is less well characterized. Two experiments were undertaken. In the first experiment, given evidence for delay order as a factor in choice selection, the effect of dizocilpine was examined in a delay discounting task with separate groups of male Long-Evans rats trained to a schedule of either ascending (i.e. 0-40 s), or descending delays (i.e. 40-0 s). Under the ascending-delay schedule, dizocilpine (0.03-0.06 mg/kg SC) reduced discounting, yet on the descending-delay schedule discounting was increased. Subgrouping rats according to discounting rate under vehicle pretreatment were consistent with a treatment-induced choice perseveration. In a second experiment, male Long-Evans rats were trained to a gambling task (rGT). Neither dizocilpine (0.01-0.06 mg/kg SC) nor Ro 63-1908 (0.1-1 mg/kg SC) shifted choice from the advantageous to the disadvantageous options. However dizocilpine, and marginally Ro 63-1908, increased choice of the least risky, but suboptimal option. This effect was most evident in rats that initially preferred the disadvantageous options. Consistent with previous studies, both treatments increased measures of motor impulsivity. These results demonstrate that dizocilpine has effects on discounting dependent on delay order and likely reflective of perseveration. On the rGT task, neither dizocilpine nor Ro 63-1908 promoted risky choice, yet both NMDA receptor antagonists increased impulsive action. Copyright © 2018 Elsevier B.V. All rights reserved.
Selvam, Sumithra; Thomas, Tinku; Shetty, Priya; Zhu, Jianjun; Raman, Vijaya; Khanna, Deepti; Mehra, Ruchika; Kurpad, Anura V; Srinivasan, Krishnamachari
2016-12-01
Assessment of developmental milestones based on locally developed norms is critical for accurate estimate of overall development of a child's cognitive, behavioral, social, and emotional development. A cross-sectional study was done to develop age specific norms for developmental milestones using Vineland Adaptive Behavior Scales (VABS-II) (Sparrow, Cicchetti, & Balla, 2005) for apparently healthy children from 2 to 5 years from urban Bangalore, India, and to examine its association with anthropometric measures. Mothers (or caregivers) of 412 children participated in the study. Age-specific norms using inferential norming method and adaptive levels for all domains and subdomains were derived. Low adaptive level, also called delayed developmental milestone, was observed in 2.3% of the children, specifically 2.7% in motor and daily living skills and 2.4% in communication skills. When these children were assessed on the existing U.S. norms, there was a significant overestimation of delayed development in socialization and motor skills, whereas delay in communication and daily living skills were underestimated (all p < .01). Multiple linear regression revealed that stunted and underweight children had significantly lower developmental scores for communication and motor skills compared with normal children (β coefficient ranges from 2.6-5.3; all p < .01). In the absence of Indian normative data for VABS-II in preschool children, the prevalence of developmental delay could either be under- or overestimated using Western norms. Thus, locally referenced norms are critical for reliable assessments of development in children. Stunted and underweight children are more likely to have poorer developmental scores compared with healthy children. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Illusory Reversal of Causality between Touch and Vision has No Effect on Prism Adaptation Rate.
Tanaka, Hirokazu; Homma, Kazuhiro; Imamizu, Hiroshi
2012-01-01
Learning, according to Oxford Dictionary, is "to gain knowledge or skill by studying, from experience, from being taught, etc." In order to learn from experience, the central nervous system has to decide what action leads to what consequence, and temporal perception plays a critical role in determining the causality between actions and consequences. In motor adaptation, causality between action and consequence is implicitly assumed so that a subject adapts to a new environment based on the consequence caused by her action. Adaptation to visual displacement induced by prisms is a prime example; the visual error signal associated with the motor output contributes to the recovery of accurate reaching, and a delayed feedback of visual error can decrease the adaptation rate. Subjective feeling of temporal order of action and consequence, however, can be modified or even reversed when her sense of simultaneity is manipulated with an artificially delayed feedback. Our previous study (Tanaka et al., 2011; Exp. Brain Res.) demonstrated that the rate of prism adaptation was unaffected when the subjective delay of visual feedback was shortened. This study asked whether subjects could adapt to prism adaptation and whether the rate of prism adaptation was affected when the subjective temporal order was illusory reversed. Adapting to additional 100 ms delay and its sudden removal caused a positive shift of point of simultaneity in a temporal order judgment experiment, indicating an illusory reversal of action and consequence. We found that, even in this case, the subjects were able to adapt to prism displacement with the learning rate that was statistically indistinguishable to that without temporal adaptation. This result provides further evidence to the dissociation between conscious temporal perception and motor adaptation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Homce, G.T.; Thalimer, J.R.
1996-05-01
Most electric motor predictive maintenance methods have drawbacks that limit their effectiveness in the mining environment. The US Bureau of Miens (USBM) is developing an alternative approach to detect winding insulation breakdown in advance of complete motor failure. In order to evaluate the analysis algorithms necessary for this approach, the USBM has designed and installed a system to monitor 120 electric motors in a coal preparation plant. The computer-based experimental system continuously gathers, stores, and analyzes electrical parameters for each motor. The results are then correlated to data from conventional motor-maintenance methods and in-service failures to determine if the analysismore » algorithms can detect signs of insulation deterioration and impending failure. This paper explains the on-line testing approach used in this research, and describes monitoring system design and implementation. At this writing data analysis is underway, but conclusive results are not yet available.« less
Inhibition during response preparation is sensitive to response complexity
Saks, Dylan; Hoang, Timothy; Ivry, Richard B.
2015-01-01
Motor system excitability is transiently suppressed during the preparation of movement. This preparatory inhibition is hypothesized to facilitate response selection and initiation. Given that demands on selection and initiation processes increase with movement complexity, we hypothesized that complexity would influence preparatory inhibition. To test this hypothesis, we probed corticospinal excitability during a delayed-response task in which participants were cued to prepare right- or left-hand movements of varying complexity. Single-pulse transcranial magnetic stimulation was applied over right primary motor cortex to elicit motor evoked potentials (MEPs) from the first dorsal interosseous (FDI) of the left hand. MEP suppression was greater during the preparation of responses involving coordination of the FDI and adductor digiti minimi relative to easier responses involving only the FDI, independent of which hand was cued to respond. In contrast, this increased inhibition was absent when the complex responses required sequential movements of the two muscles. Moreover, complexity did not influence the level of inhibition when the response hand was fixed for the trial block, regardless of whether the complex responses were performed simultaneously or sequentially. These results suggest that preparatory inhibition contributes to response selection, possibly by suppressing extraneous movements when responses involve the simultaneous coordination of multiple effectors. PMID:25717168
Wang, Cheng; Chen, Shijiu; Wang, Zengtao
2014-09-01
The aim of this study is to characterize and dynamically monitor the progress of peripheral neuropathy induced by n-hexane by electromyography and nerve conduction velocity (NCV-EMG). Twenty-five patients with n-hexane poisoning from an electronic company were investigated in the year 2009. The occupational history of these workers was collected, and toxic substance exposure was identified. Neurologic inspection and regular NCV-EMG inspection were performed for all patients upon hospital admission and after 3, 6, and 12 months of treatment. NCV-EMG results shown that patients with n-hexane poisoning have simultaneous damage on motor and sensory nerves, of which sensory nerve damage was more severe. Motor nerves of the lower limbs were severe damaged than those of the upper limbs; whereas injury of sensory nerve in the upper limbs was more severe than that of the lower limbs. After treatment, clinical signs and symptoms of the patients were significantly improved. NCV-EMG result showed a delayed worsening at 3 months then gradually recovered after 12 months. Recovery of the motor nerve was better compared with sensory nerve, with upper limbs faster than that of the lower limbs.
Etiologic yield of subspecialists' evaluation of young children with global developmental delay.
Shevell, M I; Majnemer, A; Rosenbaum, P; Abrahamowicz, M
2000-05-01
To determine the etiologic yield of subspecialists' evaluation of young children with global developmental delay. In addition, variables that may predict finding an underlying etiology were also identified. All children <5 years of age, referred over an 18-month period to subspecialty services for initial evaluation of a suspected developmental delay, were prospectively enrolled. Diagnostic yield was ascertained after the completion of clinical assessments and laboratory investigations requested by the evaluating physician. Ninety-nine children (71 boys) were found to have global developmental delay; 96% had a mild or moderate delay documented. An etiologic diagnosis was determined in 44. Four diagnoses (cerebral dysgenesis, hypoxic-ischemic encephalopathy, toxin exposure, chromosomal abnormalities) accounted for 34 of 44 (77%) of the diagnoses made. The presence of co-existing autistic traits was associated with significantly decreased diagnostic yield (0/19 vs 44/80, P <.0001), whereas specific historical features (eg, family history, toxin exposure, and perinatal difficulty; 23/32 vs 21/67, P =.0002) and findings on physical examination (eg, dysmorphology, microcephaly, and focal motor findings; 35/48 vs 9/51, P <.0001) were significantly associated with identifying a diagnosis. Multiple logistic regression analysis identified antenatal toxin exposure, microcephaly, focal motor findings, and the absence of autistic traits as significant predictor variables for the identification of an etiology. An etiologic diagnosis is often possible in the young child with global developmental delay, particularly in the absence of autistic features. Etiologic yield is augmented by presence of specific findings on history or physical examination on initial assessment.
Potijk, Marieke R; Kerstjens, Jorien M; Bos, Arend F; Reijneveld, Sijmen A; de Winter, Andrea F
2013-11-01
To assess separate and joint effects of low socioeconomic status (SES) and moderate prematurity on preschool developmental delay. Prospective cohort study with a community-based sample of preterm- and term-born children (Longitudinal Preterm Outcome Project). We assessed SES on the basis of education, occupation, and family income. The Ages and Stages Questionnaire was used to assess developmental delay at age 4 years. We determined scores for overall development, and domains fine motor, gross motor, communication, problem-solving, and personal-social of 926 moderately preterm-born (MP) (32-36 weeks gestation) and 544 term-born children. In multivariable logistic regression analyses, we used standardized values for SES and gestational age (GA). Prevalence rates for overall developmental delay were 12.5%, 7.8%, and 5.6% in MP children with low, intermediate, and high SES, respectively, and 7.2%, 4.0%, and 2.8% in term-born children, respectively. The risk for overall developmental delay increased more with decreasing SES than with decreasing GA, but the difference was not statistically significant: OR (95% CI) for a 1 standard deviation decrease were: 1.62 (1.30-2.03) and 1.34 (1.05-1.69), respectively, after adjustment for sex, number of siblings, and maternal age. No interaction was found except for communication, showing that effects of SES and GA are mostly multiplicative. Low SES and moderate prematurity are separate risk factors with multiplicative effects on developmental delay. The double jeopardy of MP children with low SES needs special attention in pediatric care. Copyright © 2013 Mosby, Inc. All rights reserved.
Van Ooteghem, Karen; Frank, James S; Allard, Fran; Horak, Fay B
2010-08-01
Postural motor learning for dynamic balance tasks has been demonstrated in healthy older adults (Van Ooteghem et al. in Exp Brain Res 199(2):185-193, 2009). The purpose of this study was to investigate the type of knowledge (general or specific) obtained with balance training in this age group and to examine whether embedding perturbation regularities within a balance task masks specific learning. Two groups of older adults maintained balance on a translating platform that oscillated with variable amplitude and constant frequency. One group was trained using an embedded-sequence (ES) protocol which contained the same 15-s sequence of variable amplitude oscillations in the middle of each trial. A second group was trained using a looped-sequence (LS) protocol which contained a 15-s sequence repeated three times to form each trial. All trials were 45 s. Participants were not informed of any repetition. To examine learning, participants performed a retention test following a 24-h delay. LS participants also completed a transfer task. Specificity of learning was examined by comparing performance for repeated versus random sequences (ES) and training versus transfer sequences (LS). Performance was measured by deriving spatial and temporal measures of whole body center of mass (COM) and trunk orientation. Both groups improved performance with practice as characterized by reduced COM displacement, improved COM-platform phase relationships, and decreased angular trunk motion. Furthermore, improvements reflected general rather than specific postural motor learning regardless of training protocol (ES or LS). This finding is similar to young adults (Van Ooteghem et al. in Exp Brain Res 187(4):603-611, 2008) and indicates that age does not influence the type of learning which occurs for balance control.
Dual autonomic inhibitory action of central Apelin on gastric motor functions in rats.
Bülbül, Mehmet; Sinen, Osman
2018-07-01
Centrally administered apelin has been shown to inhibit gastric emptying (GE) in rodents, however, the relevant mechanism has been investigated incompletely. Using male Wistar rats, we investigated the efferent pathways involved in gastroinhibitory action of central apelin. Stereotaxic intracerebroventricular (icv) cannulation, subdiaphragmatic vagotomy (VGX) and/or celiac ganglionectomy (CGX) were performed 7 days prior to the experiments. Apelin-13 was administered (30 nmol, icv) 90 min prior to GE measurement. Nitric oxide synthase inhibitor L-NAME (100 mg/kg), sympatholytic agent guanethidine (5 mg/kg) and/or muscarinic receptor agonist bethanechol (1 mg/kg) were administered intraperitoneally 30 min prior to the central apelin-13 injection. Two strain gages were implanted serosally onto antrum and pylorus to monitor gastric postprandial motility. Heart rate variability (HRV) analysis was performed before and after central vehicle or apelin-13 administration. Apelin-13 delayed solid GE significantly by disturbing coordinated antral and pyloric postprandial contractions. The apelin-induced delayed GE was attenuated partially by CGX or VGX, whereas it was restored completely in rats underwent both CGX and VGX. L-NAME did not change the apelin-induced alterations. Guanethidine or bethanechol restored the apelin-induced gastroinhibition partially, while it was abolished completely in rats received both agents. Apelin-13 decreased the HRV spectral activity in high-frequency range by increasing low-frequency component and the ratio of LF:HF. The present data suggest that (1) both vagal parasympathetic and sympathetic pathways play a role in apelin-induced gastroinhibition, (2) central apelin attenuates vagal cholinergic pathway rather than activating nonadrenergic-noncholinergic pathway. Apelin/APJ receptor system might be candidate for the treatment of autonomic dysfunction and gastrointestinal motor disorders. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franzese, Oscar; Lascurain, Mary Beth; Capps, Gary J
The Federal Motor Carrier Safety Administration (FMCSA) Wireless Roadside Inspection (WRI) Program is researching the feasibility and value of electronically assessing truck and bus driver and vehicle safety at least 25 times more often than is possible using only roadside physical inspections. The WRI program is evaluating the potential benefits to both the motor carrier industry and to government. These potential benefits include reduction in accidents, fatalities and injuries on our highways and keeping safe and legal drivers and vehicles moving on the highways. WRI Pilot tests were conducted to prototype, test and demonstrate the feasibility and benefits of electronicallymore » collecting safety data message sets from in-service commercial vehicles and performing wireless roadside inspections using three different communication methods. This report summarizes the design, conduct and results of the Tennessee CMRS WRI Pilot Test. The purpose of this Pilot test was to demonstrate the implementation of commercial mobile radio services to electronically request and collect safety data message sets from a limited number of commercial vehicles operating in Tennessee. The results of this test have been used in conjunction with the results of the complimentary pilot tests to support an overall assessment of the feasibility and benefits of WRI in enhancing motor carrier safety (reduction in accidents) due to increased compliance (change in motor carrier and driver behavior) caused by conducting frequent safety inspections electronically, at highway speeds, without delay or need to divert into a weigh station« less
Casellato, Claudia; Gandolla, Marta; Crippa, Alessandro; Pedrocchi, Alessandra
2017-07-01
Autism spectrum disorder (ASD) is a multifaceted neurodevelopmental disorder characterized by a persistence of social and communication impairment, and restricted and repetitive behaviors. However, motor disorders have also been described, but not objectively assessed. Most studies showed inefficient eye-hand coordination and motor learning in children with ASD; in other experiments, mechanisms of acquisition of internal models in self-generated movements appeared to be normal in autism. In this framework, we have developed a robotic protocol, recording gaze and hand data during upper limb tasks, in which a haptic pen-like handle is moved along specific trajectories displayed on the screen. The protocol includes trials of reaching under a perturbing force field and catching moving targets, with or without visual availability of the whole path. We acquired 16 typically-developing scholar-age children and one child with ASD as a case study. Speed-accuracy tradeoff, motor performance, and gaze-hand spatial coordination have been evaluated. Compared to typically developing peers, in the force field sequence, the child with ASD showed an intact but delayed learning, and more variable gazehand patterns. In the catching trials, he showed less efficient movements, but an intact capability of exploiting the available a-priori plan. The proposed protocol represents a powerful tool, easily tunable, for quantitative (longitudinal) assessment, and for subject-tailored training in ASD.
NASA Astrophysics Data System (ADS)
Liu, Yang; Song, Fazhi; Yang, Xiaofeng; Dong, Yue; Tan, Jiubin
2018-06-01
Due to their structural simplicity, linear motors are increasingly receiving attention for use in high velocity and high precision applications. The force ripple, as a space-periodic disturbance, however, would deteriorate the achievable dynamic performance. Conventional force ripple measurement approaches are time-consuming and have high requirements on the experimental conditions. In this paper, a novel learning identification algorithm is proposed for force ripple intelligent measurement and compensation. Existing identification schemes always use all the error signals to update the parameters in the force ripple. However, the error induced by noise is non-effective for force ripple identification, and even deteriorates the identification process. In this paper only the most pertinent information in the error signal is utilized for force ripple identification. Firstly, the effective error signals caused by the reference trajectory and the force ripple are extracted by projecting the overall error signals onto a subspace spanned by the physical model of the linear motor as well as the sinusoidal model of the force ripple. The time delay in the linear motor is compensated in the basis functions. Then, a data-driven approach is proposed to design the learning gain. It balances the trade-off between convergence speed and robustness against noise. Simulation and experimental results validate the proposed method and confirm its effectiveness and superiority.
Data-Driven Subclassification of Speech Sound Disorders in Preschool Children
Vick, Jennell C.; Campbell, Thomas F.; Shriberg, Lawrence D.; Green, Jordan R.; Truemper, Klaus; Rusiewicz, Heather Leavy; Moore, Christopher A.
2015-01-01
Purpose The purpose of the study was to determine whether distinct subgroups of preschool children with speech sound disorders (SSD) could be identified using a subgroup discovery algorithm (SUBgroup discovery via Alternate Random Processes, or SUBARP). Of specific interest was finding evidence of a subgroup of SSD exhibiting performance consistent with atypical speech motor control. Method Ninety-seven preschool children with SSD completed speech and nonspeech tasks. Fifty-three kinematic, acoustic, and behavioral measures from these tasks were input to SUBARP. Results Two distinct subgroups were identified from the larger sample. The 1st subgroup (76%; population prevalence estimate = 67.8%–84.8%) did not have characteristics that would suggest atypical speech motor control. The 2nd subgroup (10.3%; population prevalence estimate = 4.3%– 16.5%) exhibited significantly higher variability in measures of articulatory kinematics and poor ability to imitate iambic lexical stress, suggesting atypical speech motor control. Both subgroups were consistent with classes of SSD in the Speech Disorders Classification System (SDCS; Shriberg et al., 2010a). Conclusion Characteristics of children in the larger subgroup were consistent with the proportionally large SDCS class termed speech delay; characteristics of children in the smaller subgroup were consistent with the SDCS subtype termed motor speech disorder—not otherwise specified. The authors identified candidate measures to identify children in each of these groups. PMID:25076005
Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons.
Wainger, Brian J; Kiskinis, Evangelos; Mellin, Cassidy; Wiskow, Ole; Han, Steve S W; Sandoe, Jackson; Perez, Numa P; Williams, Luis A; Lee, Seungkyu; Boulting, Gabriella; Berry, James D; Brown, Robert H; Cudkowicz, Merit E; Bean, Bruce P; Eggan, Kevin; Woolf, Clifford J
2014-04-10
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of the motor nervous system. We show using multielectrode array and patch-clamp recordings that hyperexcitability detected by clinical neurophysiological studies of ALS patients is recapitulated in induced pluripotent stem cell-derived motor neurons from ALS patients harboring superoxide dismutase 1 (SOD1), C9orf72, and fused-in-sarcoma mutations. Motor neurons produced from a genetically corrected but otherwise isogenic SOD1(+/+) stem cell line do not display the hyperexcitability phenotype. SOD1(A4V/+) ALS patient-derived motor neurons have reduced delayed-rectifier potassium current amplitudes relative to control-derived motor neurons, a deficit that may underlie their hyperexcitability. The Kv7 channel activator retigabine both blocks the hyperexcitability and improves motor neuron survival in vitro when tested in SOD1 mutant ALS cases. Therefore, electrophysiological characterization of human stem cell-derived neurons can reveal disease-related mechanisms and identify therapeutic candidates. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Synchronous Spike Patterns in Macaque Motor Cortex during an Instructed-Delay Reach-to-Grasp Task
Torre, Emiliano; Quaglio, Pietro; Denker, Michael; Brochier, Thomas; Riehle, Alexa
2016-01-01
The computational role of spike time synchronization at millisecond precision among neurons in the cerebral cortex is hotly debated. Studies performed on data of limited size provided experimental evidence that low-order correlations occur in relation to behavior. Advances in electrophysiological technology to record from hundreds of neurons simultaneously provide the opportunity to observe coordinated spiking activity of larger populations of cells. We recently published a method that combines data mining and statistical evaluation to search for significant patterns of synchronous spikes in massively parallel spike trains (Torre et al., 2013). The method solves the computational and multiple testing problems raised by the high dimensionality of the data. In the current study, we used our method on simultaneous recordings from two macaque monkeys engaged in an instructed-delay reach-to-grasp task to determine the emergence of spike synchronization in relation to behavior. We found a multitude of synchronous spike patterns aligned in both monkeys along a preferential mediolateral orientation in brain space. The occurrence of the patterns is highly specific to behavior, indicating that different behaviors are associated with the synchronization of different groups of neurons (“cell assemblies”). However, pooled patterns that overlap in neuronal composition exhibit no specificity, suggesting that exclusive cell assemblies become active during different behaviors, but can recruit partly identical neurons. These findings are consistent across multiple recording sessions analyzed across the two monkeys. SIGNIFICANCE STATEMENT Neurons in the brain communicate via electrical impulses called spikes. How spikes are coordinated to process information is still largely unknown. Synchronous spikes are effective in triggering a spike emission in receiving neurons and have been shown to occur in relation to behavior in a number of studies on simultaneous recordings of few neurons. We recently published a method to extend this type of investigation to larger data. Here, we apply it to simultaneous recordings of hundreds of neurons from the motor cortex of macaque monkeys performing a motor task. Our analysis reveals groups of neurons selectively synchronizing their activity in relation to behavior, which sheds new light on the role of synchrony in information processing in the cerebral cortex. PMID:27511007
Synchronous Spike Patterns in Macaque Motor Cortex during an Instructed-Delay Reach-to-Grasp Task.
Torre, Emiliano; Quaglio, Pietro; Denker, Michael; Brochier, Thomas; Riehle, Alexa; Grün, Sonja
2016-08-10
The computational role of spike time synchronization at millisecond precision among neurons in the cerebral cortex is hotly debated. Studies performed on data of limited size provided experimental evidence that low-order correlations occur in relation to behavior. Advances in electrophysiological technology to record from hundreds of neurons simultaneously provide the opportunity to observe coordinated spiking activity of larger populations of cells. We recently published a method that combines data mining and statistical evaluation to search for significant patterns of synchronous spikes in massively parallel spike trains (Torre et al., 2013). The method solves the computational and multiple testing problems raised by the high dimensionality of the data. In the current study, we used our method on simultaneous recordings from two macaque monkeys engaged in an instructed-delay reach-to-grasp task to determine the emergence of spike synchronization in relation to behavior. We found a multitude of synchronous spike patterns aligned in both monkeys along a preferential mediolateral orientation in brain space. The occurrence of the patterns is highly specific to behavior, indicating that different behaviors are associated with the synchronization of different groups of neurons ("cell assemblies"). However, pooled patterns that overlap in neuronal composition exhibit no specificity, suggesting that exclusive cell assemblies become active during different behaviors, but can recruit partly identical neurons. These findings are consistent across multiple recording sessions analyzed across the two monkeys. Neurons in the brain communicate via electrical impulses called spikes. How spikes are coordinated to process information is still largely unknown. Synchronous spikes are effective in triggering a spike emission in receiving neurons and have been shown to occur in relation to behavior in a number of studies on simultaneous recordings of few neurons. We recently published a method to extend this type of investigation to larger data. Here, we apply it to simultaneous recordings of hundreds of neurons from the motor cortex of macaque monkeys performing a motor task. Our analysis reveals groups of neurons selectively synchronizing their activity in relation to behavior, which sheds new light on the role of synchrony in information processing in the cerebral cortex. Copyright © 2016 Torre, et al.
Canine gastric emptying of fiber meals: influence of meal viscosity and antroduodenal motility.
Russell, J; Bass, P
1985-12-01
Dietary fibers such as psyllium and guar gum have been shown to delay the gastric emptying of liquids and solids, presumably due to an increase in meal viscosity. For liquid test meals containing fats, delayed gastric emptying is associated with a reversal of the usual antral-to-duodenal contractile gradient. The present studies were performed to determine whether the gastric emptying of increasingly viscous psyllium and guar gum meals was associated with antroduodenal motility changes. Dogs were surgically fitted with mid-duodenal cannulas for the measurement of gastric emptying. Strain-gauge force transducers were used to monitor antral and duodenal contractile responses to the test meals. Low-viscosity fiber meals emptied from the stomach rapidly (E 1/2 approximately 10 min) compared with the high-viscosity meals (E 1/2 approximately 40 min). None of the test meals stimulated antral or duodenal motility despite differences in gastric emptying time. Other motor parameters such as the time of reappearance and the duration of the burst interval were also unchanged. We conclude a) as test meals' fiber content and viscosity increase, gastric emptying is slowed; and b) viscosity-related delays in gastric emptying are not due to an effect on postprandial antroduodenal motility.
Delayed presentation of blunt duodenal injuries in children. Case report and review of literature
TORBA, M.; GJATA, A.; BUCI, S.; TROCI, A.; SUBASHI, K.
2013-01-01
Summary: Background Duodenal injuries are rare in children and classically present following a fall over the handle bar. Retroperitoneal location of the duodenum may lead to delay in diagnosis, and missed injuries are associated with increased morbidity and mortality. Case report. A 5-year-old child was admitted to the National Trauma Center, in Tirana (Albania), 28 hours after a Motor Vehicle Crash (MVC), complaining of mild abdominal pain. He was febrile (39°C) and had a white blood cells count of 18,000 mm3. On physical exam he had mild tenderness. Plain abdominal X-rays and Focused Abdominal Sonography for Trauma (FAST) were negative for free air or free fluid. The CT scan of the abdomen demonstrated free air and fluid in the retroperitoneal space. At laparatomy, a perforation of the second portion of the duodenum was found. A single layer suture repair of the duodenum with wide drainage was performed. The patient was discharged from the hospital tolerating oral feeding 8 days later. Conclusion Duodenal injuries in children are rare. Most duodenal hematomas are managed non-operatively. This is a case of MCV with delayed presentation that was treated surgically for perforation successfully. PMID:23660164
The future of rapid bridge deck replacement.
DOT National Transportation Integrated Search
2015-06-01
Replacing aging, deteriorated infrastructure often requires road closures and traffic detours which impose : inconvenience and delay on commerce and members of the motoring public. Accelerated bridge construction : techniques often use precast member...
Performance capabilities of a JPL dual-arm advanced teleoperation system
NASA Technical Reports Server (NTRS)
Szakaly, Z. F.; Bejczy, A. K.
1991-01-01
The system comprises: (1) two PUMA 560 robot arms, each equipped with the latest JPL developed smart hands which contain 3-D force/moment and grasp force sensors; (2) two general purpose force reflecting hand controllers; (3) a NS32016 microprocessors based distributed computing system together with JPL developed universal motor controllers; (4) graphics display of sensor data; (5) capabilities for time delay experiments; and (6) automatic data recording capabilities. Several different types of control modes are implemented on this system using different feedback control techniques. Some of the control modes and the related feedback control techniques are described, and the achievable control performance for tracking position and force trajectories are reported. The interaction between position and force trajectory tracking is illustrated. The best performance is obtained by using a novel, task space error feedback technique.
Krishnan, Vibhu; Rajasekaran, Shanmuganathan; Aiyer, Siddharth N; Kanna, Rishi; Shetty, Ajoy Prasad
2017-10-01
To analyse the clinic-radiological factors associated with neurological deficit following lumbar disc herniation. A prospective, cross-sectional study was performed in 140 cases of micro-discectomy following lumbar disc herniation. Group 1 included 70 consecutive patients with motor deficit and group 2 (controls) included 70 patients with intact neurology. Motor deficit was defined as the occurrence of motor power ≤3/5 in L2-S1 myotomes. Multiple clinical and radiological parameters were studied between the two groups. Patients with diabetes (p 0.004), acute onset of symptoms (p 0.036), L3-4 discs (p 0.001), sequestrated discs (p 0.004), superiorly migrated discs (p 0.012) and central discs (p 0.004), greater antero-posterior disc dimension (p 0.023), primary canal stenosis (p 0.0001); and greater canal compromise (p 0.002) had a significant correlation with the development of neurological deficit. The presence of four or more of these risk factors showed a higher chance of the presence of motor deficit (sensitivity of 74%, specificity of 77%). Age, sex, previous precipitating events, severity of pain, smoking, and number of herniations levels did not affect the occurrence of deficit (p > 0.05 for all). Patients with or without bladder symptoms were similar with respect to all clinico-radiological parameters. However, the time delay since the occurrence of deficit was significantly shorter in patients with bladder involvement (p 0.001). Patients with diabetes, acute presentation, central, sequestrated and superiorly migrated discs, high lumbar disc prolapse, and greater spinal canal compromise are predisposed to the presence of motor deficit.
Trivedi, Chintan A; Bollmann, Johann H
2013-01-01
Prey capture behavior critically depends on rapid processing of sensory input in order to track, approach, and catch the target. When using vision, the nervous system faces the problem of extracting relevant information from a continuous stream of input in order to detect and categorize visible objects as potential prey and to select appropriate motor patterns for approach. For prey capture, many vertebrates exhibit intermittent locomotion, in which discrete motor patterns are chained into a sequence, interrupted by short periods of rest. Here, using high-speed recordings of full-length prey capture sequences performed by freely swimming zebrafish larvae in the presence of a single paramecium, we provide a detailed kinematic analysis of first and subsequent swim bouts during prey capture. Using Fourier analysis, we show that individual swim bouts represent an elementary motor pattern. Changes in orientation are directed toward the target on a graded scale and are implemented by an asymmetric tail bend component superimposed on this basic motor pattern. To further investigate the role of visual feedback on the efficiency and speed of this complex behavior, we developed a closed-loop virtual reality setup in which minimally restrained larvae recapitulated interconnected swim patterns closely resembling those observed during prey capture in freely moving fish. Systematic variation of stimulus properties showed that prey capture is initiated within a narrow range of stimulus size and velocity. Furthermore, variations in the delay and location of swim triggered visual feedback showed that the reaction time of secondary and later swims is shorter for stimuli that appear within a narrow spatio-temporal window following a swim. This suggests that the larva may generate an expectation of stimulus position, which enables accelerated motor sequencing if the expectation is met by appropriate visual feedback.
Lemoine, Adrien; Mazoit, Jean X; Bonnet, Francis
2016-11-01
Spinal bupivacaine is used for day-case surgery but the appropriate dose that guarantees hospital discharge is unknown. We sought to determine the spinal bupivacaine dose that prevents delayed hospital discharge in ambulatory surgery. Systematic review of clinical trials. Comprehensive search in electronic databases of studies published between 1996 and 2014 reporting the use of spinal bupivacaine in ambulatory patients. Additional articles were retrieved through hyperlinks and by manually searching reference lists in original articles, review articles and correspondence published in English and French. Data were used to calculate, motor block duration and discharge time, an estimated maximal effect (Emax: maximum theoretical time of motor block) and the effective dose to obtain half of Emax (D50) with 95% confidence intervals (CIs). A simulation was performed to determine the dose corresponding to a time to recovery of 300 min for motor function, and 360 min for discharge, in 95% of the patients. In total, 23 studies (1062 patients) were included for analysis of the time to recovery of motor function, and 12 studies (618 patients) for the time to hospital discharge. The Emax for recovery of motor function was 268 min [95% CI (189 to 433 min)] and the D50 was 3.9 mg [95% CI (2.3 to 6.2 mg)]. A 7.5-mg dose of bupivacaine enables resolution of motor block and ambulation within 300 min in 95% of the patients. A 5-mg dose or less was associated with an unacceptable failure rate. Ambulatory surgery is possible under spinal anaesthesia with bupivacaine although the dose range that ensures reliable anaesthesia with duration short enough to guarantee ambulatory management is narrow.
Decoding a wide range of hand configurations from macaque motor, premotor, and parietal cortices.
Schaffelhofer, Stefan; Agudelo-Toro, Andres; Scherberger, Hansjörg
2015-01-21
Despite recent advances in decoding cortical activity for motor control, the development of hand prosthetics remains a major challenge. To reduce the complexity of such applications, higher cortical areas that also represent motor plans rather than just the individual movements might be advantageous. We investigated the decoding of many grip types using spiking activity from the anterior intraparietal (AIP), ventral premotor (F5), and primary motor (M1) cortices. Two rhesus monkeys were trained to grasp 50 objects in a delayed task while hand kinematics and spiking activity from six implanted electrode arrays (total of 192 electrodes) were recorded. Offline, we determined 20 grip types from the kinematic data and decoded these hand configurations and the grasped objects with a simple Bayesian classifier. When decoding from AIP, F5, and M1 combined, the mean accuracy was 50% (using planning activity) and 62% (during motor execution) for predicting the 50 objects (chance level, 2%) and substantially larger when predicting the 20 grip types (planning, 74%; execution, 86%; chance level, 5%). When decoding from individual arrays, objects and grip types could be predicted well during movement planning from AIP (medial array) and F5 (lateral array), whereas M1 predictions were poor. In contrast, predictions during movement execution were best from M1, whereas F5 performed only slightly worse. These results demonstrate for the first time that a large number of grip types can be decoded from higher cortical areas during movement preparation and execution, which could be relevant for future neuroprosthetic devices that decode motor plans. Copyright © 2015 the authors 0270-6474/15/351068-14$15.00/0.
Gross Motor Development, Movement Abnormalities, and Early Identification of Autism
Young, Gregory S.; Goldring, Stacy; Greiss-Hess, Laura; Herrera, Adriana M.; Steele, Joel; Macari, Suzanne; Hepburn, Susan; Rogers, Sally J.
2015-01-01
Gross motor development (supine, prone, rolling, sitting, crawling, walking) and movement abnormalities were examined in the home videos of infants later diagnosed with autism (regression and no regression subgroups), developmental delays (DD), or typical development. Group differences in maturity were found for walking, prone, and supine, with the DD and Autism-No Regression groups both showing later developing motor maturity than typical children. The only statistically significant differences in movement abnormalities were in the DD group; the two autism groups did not differ from the typical group in rates of movement abnormalities or lack of protective responses. These findings do not replicate previous investigations suggesting that early motor abnormalities seen on home video can assist in early identification of autism. PMID:17805956
Cross-Villasana, Fernando; Finke, Kathrin; Hennig-Fast, Kristina; Kilian, Beate; Wiegand, Iris; Müller, Hermann Joseph; Möller, Hans-Jürgen; Töllner, Thomas
2015-07-15
Adults with attention-deficit/hyperactivity disorder (ADHD) exhibit slowed reaction times (RTs) in various attention tasks. The exact origins of this slowing, however, have not been established. Potential candidates are early sensory processes mediating the deployment of focal attention, stimulus response translation processes deciding upon the appropriate motor response, and motor processes generating the response. We combined mental chronometry (RT) measures of adult ADHD (n = 15) and healthy control (n = 15) participants with their lateralized event-related potentials during the performance of a visual search task to differentiate potential sources of slowing at separable levels of processing: the posterior contralateral negativity (PCN) was used to index focal-attentional selection times, while the lateralized readiness potentials synchronized to stimulus and response events were used to index the times taken for response selection and production, respectively. To assess the clinical relevance of event-related potentials, a correlation analysis between neural measures and subjective current and retrospective ADHD symptom ratings was performed. ADHD patients exhibited slower RTs than control participants, which were accompanied by prolonged PCN and lateralized readiness potentials synchronized to stimulus, but not lateralized readiness potentials synchronized to response events, latencies. Moreover, the PCN timing was positively correlated with ADHD symptom ratings. The behavioral RT slowing of adult ADHD patients was based on a summation of internal processing delays arising at perceptual and response selection stages; motor response production, by contrast, was not impaired. The correlation between PCN times and ADHD symptom ratings suggests that this brain signal may serve as a potential candidate for a neurocognitive endophenotype of ADHD. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Toddler Developmental Delays After Extensive Hospitalization: Primary Care Practitioner Guidelines.
Lehner, Dana C; Sadler, Lois S
2015-01-01
This review investigated developmental delays toddlers may encounter after a lengthy pediatric hospitalization (30 days or greater). Physical, motor, cognitive, and psychosocial development of children aged 1 to 3 years was reviewed to raise awareness of factors associated with developmental delay after extensive hospitalization. Findings from the literature suggest that neonatal and pediatric intensive care unit (NICU/PICU) graduates are most at risk for developmental delays, but even non-critical hospital stays interrupt development to some extent. Primary care practitioners (PCPs) may be able to minimize risk for delays through the use of formal developmental screening tests and parent report surveys. References and resources are described for developmental assessment to help clinicians recognize delays and to educate families about optimal toddler development interventions. Pediatric PCPs play a leading role in coordinating health and developmental services for the young child following an extensive hospital stay.
Ando, Muneharu; Tamaki, Tetsuya; Matsumoto, Takuji; Maio, Kazuhiro; Teraguchi, Masatoshi; Takiguchi, Noboru; Iwahashi, Hiroki; Onishi, Makiko; Nakagawa, Yukihiro; Iwasaki, Hiroshi; Tsutsui, Shunji; Takami, Masanari; Yamada, Hiroshi
2018-04-17
Laminoplasty, frequently performed in patients with cervical myelopathy, is safe and provides relatively good results. However, motor palsy of the upper extremities, which occurs after decompression surgery for cervical myelopathy, often reduces muscle strength of the deltoid muscle, mainly in the C5 myotome. The aim of this study was to investigate prospectively whether postoperative deltoid weakness (DW) can be predicted by performing intraoperative neurophysiological monitoring (IONM) during cervical laminoplasty and to clarify whether it is possible to prevent palsy using IONM. We evaluated the 278 consecutive patients (175 males and 103 females) who underwent French-door cervical laminoplasty for cervical myelopathy under IONM between November 2008 and December 2016 at our hospital. IONM was performed using muscle evoked potential after electrical stimulation to the brain [Br(E)-MsEP] from the deltoid muscle. Seven patients (2.5%) developed DW after surgery (2 with acute and 5 with delayed onset). In all patients, deltoid muscle strength recovered to ≥ 4 on manual muscle testing 3-6 months after surgery. Persistent IONM alerts occurred in 2 patients with acute-onset DW. To predict the acute onset of DW, Br(E)-MsEP alerts in the deltoid muscle had both a sensitivity and specificity of 100%. The PPV of persistent Br(E)-MsEP alerts had both a sensitivity and specificity of 100% for acute-onset DW. There was no change in Br(E)-MsEP in patients with delayed-onset palsy. The incidence of deltoid palsy was relatively low. Persistent Br(E)-MsEP alerts of the deltoid muscle had a 100% sensitivity and specificity for predicting a postoperative acute deficit. IONM was unable to predict delayed-onset DW. In only 1 patient were we able to prevent postoperative DW by performing a foraminotomy.
Fox, Susan H; Katzenschlager, Regina; Lim, Shen-Yang; Barton, Brandon; de Bie, Rob M A; Seppi, Klaus; Coelho, Miguel; Sampaio, Cristina
2018-03-23
The objective of this review was to update evidence-based medicine recommendations for treating motor symptoms of Parkinson's disease (PD). The Movement Disorder Society Evidence-Based Medicine Committee recommendations for treatments of PD were first published in 2002 and updated in 2011, and we continued the review to December 31, 2016. Level I studies of interventions for motor symptoms were reviewed. Criteria for inclusion and quality scoring were as previously reported. Five clinical indications were considered, and conclusions regarding the implications for clinical practice are reported. A total of 143 new studies qualified. There are no clinically useful interventions to prevent/delay disease progression. For monotherapy of early PD, nonergot dopamine agonists, oral levodopa preparations, selegiline, and rasagiline are clinically useful. For adjunct therapy in early/stable PD, nonergot dopamine agonists, rasagiline, and zonisamide are clinically useful. For adjunct therapy in optimized PD for general or specific motor symptoms including gait, rivastigmine is possibly useful and physiotherapy is clinically useful; exercise-based movement strategy training and formalized patterned exercises are possibly useful. There are no new studies and no changes in the conclusions for the prevention/delay of motor complications. For treating motor fluctuations, most nonergot dopamine agonists, pergolide, levodopa ER, levodopa intestinal infusion, entacapone, opicapone, rasagiline, zonisamide, safinamide, and bilateral STN and GPi DBS are clinically useful. For dyskinesia, amantadine, clozapine, and bilateral STN DBS and GPi DBS are clinically useful. The options for treating PD symptoms continues to expand. These recommendations allow the treating physician to determine which intervention to recommend to an individual patient. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.
Harbourne, Regina T; Dusing, Stacey C; Lobo, Michele A; Westcott-McCoy, Sarah; Bovaird, James; Sheridan, Susan; Galloway, James C; Chang, Hui-Ju; Hsu, Lin-Ya; Koziol, Natalie; Marcinowski, Emily C; Babik, Iryna
2018-06-01
There is limited research examining the efficacy of early physical therapy on infants with neuromotor dysfunction. In addition, most early motor interventions have not been directly linked to learning, despite the clear association between motor activity and cognition during infancy. The aim of this project is to evaluate the efficacy of Sitting Together And Reaching To Play (START-Play), an intervention designed to target sitting, reaching, and motor-based problem solving to advance global development in infants with motor delays or neuromotor dysfunction. This study is a longitudinal multisite randomized controlled trial. Infants in the START-Play group are compared to infants receiving usual care in early intervention (EI). The research takes place in homes in Pennsylvania, Delaware, Washington, and Virginia. There will be 140 infants with neuromotor dysfunction participating, beginning between 7 to 16 months of age. Infants will have motor delays and emerging sitting skill. START-Play provides individualized twice-weekly home intervention for 12 weeks with families to enhance cognition through sitting, reaching, and problem-solving activities for infants. Ten interventionists provide the intervention, with each child assigned 1 therapist. The primary outcome measure is the Bayley III Scales of Infant Development. Secondary measures include change in the Early Problem Solving Indicator, change in the Gross Motor Function Measure, and change in the type and duration of toy contacts during reaching. Additional measures include sitting posture control and parent-child interaction. Limitations include variability in usual EI care and the lack of blinding for interventionists and families. This study describes usual care in EI across 4 US regions and compares outcomes of the START-Play intervention to usual care.
Zeiler, Steven R; Hubbard, Robert; Gibson, Ellen M; Zheng, Tony; Ng, Kwan; O'Brien, Richard; Krakauer, John W
2016-09-01
Prior studies have suggested that after stroke there is a time-limited period of increased responsiveness to training as a result of heightened plasticity-a sensitive period thought to be induced by ischemia itself. Using a mouse model, we have previously shown that most training-associated recovery after a caudal forelimb area (CFA) stroke occurs in the first week and is attributable to reorganization in a medial premotor area (AGm). The existence of a stroke-induced sensitive period leads to the counterintuitive prediction that a second stroke should reopen this window and promote full recovery from the first stroke. To test this prediction, we induced a second stroke in the AGm of mice with incomplete recovery after a first stroke in CFA. Mice were trained to perform a skilled prehension (reach-to-grasp) task to an asymptotic level of performance, after which they underwent photocoagulation-induced stroke in CFA. After a 7-day poststroke delay, the mice were then retrained to asymptote. We then induced a second stroke in the AGm, and after only a 1-day delay, retrained the mice. Recovery of prehension was incomplete when training was started after a 7-day poststroke delay and continued for 19 days. However, a second focal stroke in the AGm led to a dramatic response to 9 days of training, with full recovery to normal levels of performance. New ischemia can reopen a sensitive period of heightened responsiveness to training and mediate full recovery from a previous stroke. © The Author(s) 2015.
Rossiter, Sarah; Thompson, Julian; Hester, Robert
2012-09-01
Cognitive control dysfunction has been identified in dependent alcohol users and implicated in the transition from abuse to dependence, although evidence of dyscontrol in chronic but non-dependent 'harmful' alcohol abusers is mixed. The current study examined harmful alcohol users response inhibition over rewarding stimuli in the presence of monetary reward and punishment, to determine whether changes in sensitivity to these factors, noted in imaging studies of dependent users, influences impulse control. Harmful (n=30) and non-hazardous (n=55) alcohol users were administered a Monetary Incentive Go/No-go task that required participants to inhibit a prepotent motor response associated with reward. Harmful alcohol users showed a significantly poorer ability to withhold their impulse for a rewarding stimulus in the presence of immediate monetary punishment for failure, while retaining equivalent response inhibition performance under neutral conditions (associated with neither monetary loss or gain), and significantly better performance under delayed reward conditions. The results of the present study suggest that non-dependent alcohol abusers have altered sensitivity to reward and punishment that influences their impulse control for reward, in the absence of gross dyscontrol that is consistent with past findings in which such performance contingencies were not used. The ability of delayed monetary reward, but not punishment, to increase sustained impulse control in this sample has implications for the mechanism that might underlie the transition from alcohol abuse to dependence, as well as intervention strategies aimed at preventing this transition. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
The Hypothesis of Apraxia of Speech in Children with Autism Spectrum Disorder
Shriberg, Lawrence D.; Paul, Rhea; Black, Lois M.; van Santen, Jan P.
2010-01-01
In a sample of 46 children aged 4 to 7 years with Autism Spectrum Disorder (ASD) and intelligible speech, there was no statistical support for the hypothesis of concomitant Childhood Apraxia of Speech (CAS). Perceptual and acoustic measures of participants’ speech, prosody, and voice were compared with data from 40 typically-developing children, 13 preschool children with Speech Delay, and 15 participants aged 5 to 49 years with CAS in neurogenetic disorders. Speech Delay and Speech Errors, respectively, were modestly and substantially more prevalent in participants with ASD than reported population estimates. Double dissociations in speech, prosody, and voice impairments in ASD were interpreted as consistent with a speech attunement framework, rather than with the motor speech impairments that define CAS. Key Words: apraxia, dyspraxia, motor speech disorder, speech sound disorder PMID:20972615
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pellegrino, J.E.; Spinner, N.B.; Zackai, E.H.
1996-02-02
We report on a patient with dup(17p) and monosomy (10q) resulting from a familial translocation. Manifestations typical of both syndromes were present. The overall development of this patient was better by comparison with similar reported cases of either anomaly. Our evaluation detected severe gross motor delay and signs of a demyelinating peripheral neuropathy. This patient is trisomic for the region of 17p which includes the peripheral myelin protein-22 (PMP-22) gene, known to be duplicated in Charcot-Marie-Tooth neuropathy type 1A (CMT1A). Our analysis in this patient suggests that trisomy for the PMP-22 gene led to the demyelinating neuropathy and contributed tomore » his severe motor development delay. 33 refs., 3 figs., 1 tab.« less
Influence of chronic back pain on kinematic reactions to unpredictable arm pulls.
Götze, Martin; Ernst, Michael; Koch, Markus; Blickhan, Reinhard
2015-03-01
There is evidence that muscle reflexes are delayed in patients with chronic low back pain in response to perturbations. It is still unrevealed whether these delays accompanied by an altered kinematic or compensated by adaption of other muscle parameters. The aim of this study was to investigate whether chronic low back pain patients show an altered kinematic reaction and if such data are reliable for the classification of chronic low back pain. In an experiment involving 30 females, sudden lateral perturbations were applied to the arm of a subject in an upright, standing position. Kinematics was used to distinguish between chronic low back pain patients and healthy controls. A calculated model of a stepwise discriminant function analysis correctly predicted 100% of patients and 80% of healthy controls. The estimation of the classification error revealed a constant rate for the classification of the healthy controls and a slightly decreased rate for the patients. Observed reflex delays and identified kinematic differences inside and outside the region of pain during impaired movement indicated that chronic low back pain patients have an altered motor control that is not restricted to the lumbo-pelvic region. This applied paradigm of external perturbations can be used to detect chronic low back pain patients and also persons without chronic low back pain but with an altered motor control. Further investigations are essential to reveal whether healthy persons with changes in motor function have an increased potential to develop chronic back pain. Copyright © 2015 Elsevier Ltd. All rights reserved.
Christensen, Line Høgenhof; Høyer, Birgit Bjerre; Pedersen, Henning Sloth; Zinchuk, Andrii; Jönsson, Bo A G; Lindh, Christian; Dürr, Dorte Wive; Bonde, Jens Peter; Toft, Gunnar
2016-03-01
Cohort studies have indicated an association between prenatal smoking exposure and children's motor difficulties. However, results are inconsistent and exposure is most often self-reported. Studies indicate that measurement of serum cotinine can result in a more accurate status of smoking exposure in comparison with self-report. To investigate whether prenatal smoking exposure, measured as maternal serum cotinine, is associated with maternal interview based assessment of motor development in infancy (age at crawling, standing-up and walking) and motor skills at young school age (assessed by the Developmental Coordination Disorder Questionnaire 2007 (DCDQ'07)). In 2002-2004, 1,253 pregnant women from Greenland and Ukraine were included in the INUENDO birth cohort. The participating women filled in questionnaires and 1,177 provided blood samples, which were analyzed for serum cotinine. Smokers were defined as women with a serum cotinine concentration >10ng/ml. At follow-up when the offspring were 6-9 years of age 1,026 of the parents from the cohort participated. They completed an interview-based questionnaire including questions about age at motor milestones of their children. In addition, child motor development was assessed using the questionnaire "DCDQ'07". Linear regression analyzes were performed and adjusted for covariates; age of the mother and child, parity, sex, maternal educational level, maternal pre-pregnancy alcohol consumption and duration of breastfeeding. Data were stratified by country. No statistically significant difference in age at motor milestones was found comparing children of smokers with children of non-smokers. Also, there was no statistically significant difference in motor score (Developmental Coordination Disorder Questionnaire Score, DCDQ-score) among five to seven-year-old children. However, in Greenland children of smokers had a lower DCDQ-score than children of non-smokers at eight to nine years (-2.2 DCDQ points, 95% CI: -4.3;-0.1). Supplementary results for the same age group in Greenland showed that children of smokers had higher odds of being classified with motor difficulties in comparison with children of non-smokers (OR=1.9, 95% CI: 1.1;3.3). Maternal serum cotinine was not related to delayed motor development milestones or reduced motor function abilities in children up to 7 years of age. Reduced motor skills observed in 8-9 years old exposed children warrant further study. Copyright © 2016 Elsevier Inc. All rights reserved.
Fast and slow transitions in frontal ensemble activity during flexible sensorimotor behavior.
Siniscalchi, Michael J; Phoumthipphavong, Victoria; Ali, Farhan; Lozano, Marc; Kwan, Alex C
2016-09-01
The ability to shift between repetitive and goal-directed actions is a hallmark of cognitive control. Previous studies have reported that adaptive shifts in behavior are accompanied by changes of neural activity in frontal cortex. However, neural and behavioral adaptations can occur at multiple time scales, and their relationship remains poorly defined. Here we developed an adaptive sensorimotor decision-making task for head-fixed mice, requiring them to shift flexibly between multiple auditory-motor mappings. Two-photon calcium imaging of secondary motor cortex (M2) revealed different ensemble activity states for each mapping. When adapting to a conditional mapping, transitions in ensemble activity were abrupt and occurred before the recovery of behavioral performance. By contrast, gradual and delayed transitions accompanied shifts toward repetitive responding. These results demonstrate distinct ensemble signatures associated with the start versus end of sensory-guided behavior and suggest that M2 leads in engaging goal-directed response strategies that require sensorimotor associations.
Powell, Joanne L; Pringle, Lydia; Greig, Matt
2017-02-01
Motor stereotypy behaviors are patterned, coordinated, repetitive behaviors that are particularly evident in those with an autistic spectrum disorder and intellectual disabilities. The extent to which motor stereotypy behavior severity is associated with motor skills and maladaptive behavior, measures of adaptive functioning, along with fundamental movement skills and degree of autistic spectrum disorder symptomology is assessed in this preliminary report. Twelve participants, aged 7 to 16 years, with a reported motor stereotypy behavior and either mild or severe intellectual disability comprising developmental or global delay took part in the study. Spearman rho correlational analysis showed that severity of motor stereotypy behavior was significantly positively correlated with autistic spectrum disorder symptomology ( P = .008) and maladaptive behavior ( P = .008) but not fundamental movement skills ( P > .05). An increase in fundamental movement skills score was associated with a decrease in autistic spectrum disorder symptomology ( P = .01) and an increase in motor skills ( P = .002). This study provides evidence showing a significant relationship between motor stereotypy behavior severity with degree of autistic spectrum disorder symptomology and maladaptive behavior.
Takamuku, Shinya; Gomi, Hiroaki
2015-07-22
How our central nervous system (CNS) learns and exploits relationships between force and motion is a fundamental issue in computational neuroscience. While several lines of evidence have suggested that the CNS predicts motion states and signals from motor commands for control and perception (forward dynamics), it remains controversial whether it also performs the 'inverse' computation, i.e. the estimation of force from motion (inverse dynamics). Here, we show that the resistive sensation we experience while moving a delayed cursor, perceived purely from the change in visual motion, provides evidence of the inverse computation. To clearly specify the computational process underlying the sensation, we systematically varied the visual feedback and examined its effect on the strength of the sensation. In contrast to the prevailing theory that sensory prediction errors modulate our perception, the sensation did not correlate with errors in cursor motion due to the delay. Instead, it correlated with the amount of exposure to the forward acceleration of the cursor. This indicates that the delayed cursor is interpreted as a mechanical load, and the sensation represents its visually implied reaction force. Namely, the CNS automatically computes inverse dynamics, using visually detected motions, to monitor the dynamic forces involved in our actions. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Oristaglio, Jeff; West, Susan Hyman; Ghaffari, Manely; Lech, Melissa S.; Verma, Beeta R.; Harvey, John A.; Welsh, John P.; Malone, Richard P.
2013-01-01
Children with autism spectrum disorder (ASD) and age-matched typically-developing (TD) peers were tested on two forms of eyeblink conditioning (EBC), a Pavlovian associative learning paradigm where subjects learn to execute an appropriately-timed eyeblink in response to a previously neutral conditioning stimulus (CS). One version of the task, trace EBC, interposes a stimulus-free interval between the presentation of the CS and the unconditioned stimulus (US), a puff of air to the eye which causes subjects to blink. In delay EBC, the CS overlaps in time with the delivery of the US, usually with both stimuli terminating simultaneously. ASD children performed normally during trace EBC, exhibiting no differences from typically-developing (TD) subjects with regard to learning rate or the timing of the CR. However, when subsequently tested on delay EBC, subjects with ASD displayed abnormally-timed conditioned eye blinks that began earlier and peaked sooner than those of TD subjects, consistent with previous findings. The results suggest an impaired ability of children with ASD to properly time conditioned eye blinks which appears to be specific to delay EBC. We suggest that this deficit may reflect a dysfunction of cerebellar cortex in which increases in the intensity or duration of sensory input can temporarily disrupt the accuracy of motor timing over short temporal intervals. PMID:23769889
Kesner, Raymond P; Gilbert, Paul E
2006-04-01
A delayed-match-to-sample task was used to assess memory for motor responses in rats with control, hippocampus, or medial caudate nucleus (MCN) lesions. All testing was conducted on a cheeseboard maze in complete darkness using an infrared camera. A start box was positioned in the centre of the maze facing a randomly determined direction on each trial. On the sample phase, a phosphorescent object was randomly positioned to cover a baited food well in one of five equally spaced positions around the circumference of the maze forming a 180-degree arc 60 cm from the box. The rat had to displace the object to receive food and return to the start box. The box was then rotated to face a different direction. An identical baited phosphorescent object was placed in the same position relative to the start box. A second identical object was positioned to cover a different unbaited well. On the choice phase, the rat must remember the motor response made on the sample phase and make the same motor response on the choice phase to receive a reward. Hippocampus lesioned and control rats improved as a function of increased angle separation used to separate the correct object from the foil (45, 90, 135, and 180 degrees) and matched the performance of controls. However, rats with MCN lesions were impaired across all separations. Results suggest that the MCN, but not the hippocampus, supports working memory and/or a process aimed at reducing interference for motor response selection based on vector angle information.
Know thy sound: perceiving self and others in musical contexts.
Sevdalis, Vassilis; Keller, Peter E
2014-10-01
This review article provides a summary of the findings from empirical studies that investigated recognition of an action's agent by using music and/or other auditory information. Embodied cognition accounts ground higher cognitive functions in lower level sensorimotor functioning. Action simulation, the recruitment of an observer's motor system and its neural substrates when observing actions, has been proposed to be particularly potent for actions that are self-produced. This review examines evidence for such claims from the music domain. It covers studies in which trained or untrained individuals generated and/or perceived (musical) sounds, and were subsequently asked to identify who was the author of the sounds (e.g., the self or another individual) in immediate (online) or delayed (offline) research designs. The review is structured according to the complexity of auditory-motor information available and includes sections on: 1) simple auditory information (e.g., clapping, piano, drum sounds), 2) complex instrumental sound sequences (e.g., piano/organ performances), and 3) musical information embedded within audiovisual performance contexts, when action sequences are both viewed as movements and/or listened to in synchrony with sounds (e.g., conductors' gestures, dance). This work has proven to be informative in unraveling the links between perceptual-motor processes, supporting embodied accounts of human cognition that address action observation. The reported findings are examined in relation to cues that contribute to agency judgments, and their implications for research concerning action understanding and applied musical practice. Copyright © 2014 Elsevier B.V. All rights reserved.
GRACE, JANET; AMICK, MELISSA M.; D’ABREU, ANELYSSA; FESTA, ELENA K.; HEINDEL, WILLIAM C.; OTT, BRIAN R.
2012-01-01
Neuropsychological and motor deficits in Parkinson’s disease that may contribute to driving impairment were examined in a cohort study comparing patients with Parkinson’s disease (PD) to patients with Alzheimer’s disease (AD) and to healthy elderly controls. Nondemented individuals with Parkinson’s disease [Hoehn & Yahr (H&Y) stage I–III], patients with Alzheimer’s disease [Clinical Demetia Rating scale (CDR) range 0–1], and elderly controls, who were actively driving, completed a neuropsychological battery and a standardized road test administered by a professional driving instructor. On-road driving ability was rated on number of driving errors and a global rating of safe, marginal, or unsafe. Overall, Alzheimer’s patients were more impaired drivers than Parkinson’s patients. Parkinson’s patients distinguished themselves from other drivers by a head-turning deficiency. Drivers with neuropsychological impairment were more likely to be unsafe drivers in both disease groups compared to controls. Compared to controls, unsafe drivers with Alzheimer’s disease were impaired across all neuropsychological measures except finger tapping. Driving performance in Parkinson’s patients was related to disease severity (H&Y), neuropsychological measures [Rey Osterreith Complex Figure (ROCF), Trails B, Hopkins Verbal List Learning Test (HVLT)-delay], and specific motor symptoms (axial rigidity, postural instability), but not to the Unified Parkinson Disease Rating Scale (UPDRS) motor score. Multifactorial measures (ROCF, Trails B) were useful in distinguishing safe from unsafe drivers in both patient groups. PMID:16248912
Nonconvulsive status epilepticus and neurodevelopmental delay.
Dirik, Eray; Yiş, Uluç; Hüdaoglu, Orkide; Kurul, Semra
2006-09-01
Nonconvulsive status epilepticus is characterized by continuous or near continuous epileptiform discharges on electroencephalography without overt motor or sensory phenomena. It is a symptomatic condition related to a disease such as epileptic encephalopathy or a metabolic disorder. Children with isolated nonconvulsive status epilepticus rarely present with global neurodevelopmental delay. This report describes an 18-month-old male who presented with global neurodevelopmental delay and decreased alertness in whom electrical status epilepticus during sleep, which is a form of nonconvulsive status epilepticus, was determined. Metabolic investigations and cranial magnetic resonance imaging were normal. He began to achieve developmental milestones after treatment with valproic acid. Although rare, pediatric neurologists and pediatricians must be aware of this condition in making the differential diagnosis of global neurodevelopmental delay and decreased alertness.
NASA Technical Reports Server (NTRS)
Allen, R. W.; Jex, H. R.
1973-01-01
In order to test various components of a regenerative life support system and to obtain data on the physiological and psychological effects of long duration exposure to confinement in a space station atmosphere, four carefully screened young men were sealed in a space station simulator for 90 days and administered a tracking test battery. The battery included a clinical test (Critical Instability Task) designed to measure a subject's dynamic time delay, and a more conventional steady tracking task, during which dynamic response (describing functions) and performance measures were obtained. Good correlation was noted between the clinical critical instability scores and more detailed tracking parameters such as dynamic time delay and gain-crossover frequency. The levels of each parameter span the range observed with professional pilots and astronaut candidates tested previously. The chamber environment caused no significant decrement on the average crewman's dynamic response behavior, and the subjects continued to improve slightly in their tracking skills during the 90-day confinement period.
Video-assisted minithoracotomy for blunt diaphragmatic rupture presenting as a delayed hemothorax.
Ota, Hideki; Kawai, Hideki; Matsuo, Tsubasa
2014-01-01
Diaphragmatic ruptures after blunt trauma are rare life-threatening conditions. Most of them occur on the left-sided hemidiaphragm with herniation or associated organ injuries after a motor vehicle accident. We present an unusual case of blunt diaphragmatic rupture resulting in a delayed hemothorax. A 62-year-old man presented with acute dyspnea that initiated while straining to pass stool. He had a bruise on the lower back region of his right thorax after a slip-and-fall accident 7 days previously. Chest computed tomographic scans revealed a right-sided hemothorax without any evidence of herniation or associated organ injuries. Emergency surgery was performed through a video-assisted minithoracotomy. During surgery, we identified a diaphragmatic laceration with a severed blood vessel originating from the right superior phrenic artery. The lesion was repaired with interrupted horizontal mattress sutures. The total amount of bleeding was approximately 2000 mL. The patient had an uneventful recovery with no further bleeding episodes.
Saccani, Raquel; Valentini, Nadia Cristina
2013-01-01
OBJECTIVE: To compare the motor development of infants from three population samples (Brazil, Canada and Greece), to investigate differences in the percentile curves of motor development in these samples, and to investigate the prevalence of motor delays in Brazilian children. METHODS: Observational, descriptive and cross-sectional study with 795 Brazilian infants from zero to 18 months of age, assessed by the Alberta Infant Motor Scale (AIMS) at day care centers, nurseries, basic health units and at home. The Brazilian infants' motor scores were compared to the results of two population samples from Greece (424 infants) and Canada (2,400 infants). Descriptive statistics was used, with one-sample t-test and binomial tests, being significant p≤0.05. RESULTS: 65.4% of Brazilian children showed typical motor development, although with lower mean scores. In the beginning of the second year of life, the differences in the motor development among Brazilian, Canadian and Greek infants were milder; at 15 months of age, the motor development became similar in the three groups. A non-linear motor development trend was observed. CONCLUSIONS: The lowest motor percentiles of the Brazilian sample emphasized the need for national norms in order to correctly categorize the infant motor development. The different ways of motor development may be a consequence of cultural differences in infant care. PMID:24142318
Saccani, Raquel; Valentini, Nadia Cristina
2013-09-01
To compare the motor development of infants from three population samples (Brazil, Canada and Greece), to investigate differences in the percentile curves of motor development in these samples, and to investigate the prevalence of motor delays in Brazilian children. Observational, descriptive and cross-sectional study with 795 Brazilian infants from zero to 18 months of age, assessed by the Alberta Infant Motor Scale (AIMS) at day care centers, nurseries, basic health units and at home. The Brazilian infants' motor scores were compared to the results of two population samples from Greece (424 infants) and Canada (2,400 infants). Descriptive statistics was used, with one-sample t-test and binomial tests, being significant p ≤ 0.05. 65.4% of Brazilian children showed typical motor development, although with lower mean scores. In the beginning of the second year of life, the differences in the motor development among Brazilian, Canadian and Greek infants were milder; at 15 months of age, the motor development became similar in the three groups. A non-linear motor development trend was observed. The lowest motor percentiles of the Brazilian sample emphasized the need for national norms in order to correctly categorize the infant motor development. The different ways of motor development may be a consequence of cultural differences in infant care.
Memory load as a cognitive antidote to performance decrements in data entry.
Chapman, Mary J; Healy, Alice F; Kole, James A
2016-10-01
In two experiments, subjects trained in data entry, typing one 4-digit number at a time. At training, subjects either typed the numbers immediately after they appeared (immediate) or typed the previous number from memory while viewing the next number (delayed). In Experiment 2 stimulus presentation time was limited and either nothing or a space (gap) was inserted between the second and third digits. In both experiments after training, all subjects completed a test with no gap and typed numbers immediately. Training with a memory load improved speed across training blocks (Experiment 1) and eliminated the decline in accuracy across training blocks (Experiment 2), thus serving as a cognitive antidote to performance decrements. An analysis of each keystroke revealed different underlying processes and strategies for the two training conditions, including when encoding took place. Chunking (in which the first and last two digits are treated separately) was more evident in the immediate than in the delayed condition and was exaggerated with a gap, even at test when there was no gap. These results suggest that such two-digit chunking is due to stimulus encoding and motor planning processes as well as memory, and those processes transferred from training to testing.
Triple X Syndrome: Symptoms and Causes
... be more pronounced — possibly including developmental delays and learning disabilities. Treatment for triple X syndrome depends on which ... motor skills, such as sitting up and walking Learning disabilities, such as difficulty with reading (dyslexia), understanding or ...
Preferred sleep position and gross motor achievement in early infancy.
Carmeli, Eli; Marmur, Rachel; Cohen, Ayala; Tirosh, Emanuel
2009-06-01
The aim of this study was to assess the effect of an infant's favoured position on their motor development at the age of six months. Seventy-five full-term infants were prospectively observed at home for their preferred sleep, awake, play and uninterrupted positions. A parental log was completed daily and then weekly up to the age of six months, when the Alberta Infant Motor Scale (AIMS) was administered. No significant relationship between the preferred or sleep positions as well as the awake and mutual play positions and gross motor developmental attainment at six months of age was noted. A significant change in the preferred recumbent posture with increased prone positioning both during sleep and awake time over the first six months was noted. A balanced positioning policy while awake, regardless of the infant's preference while recumbent, is not associated with gross motor delay.
Mercuri, Eugenio; Barnett, Anna L.
2003-01-01
The aim of this paper is to review (i) the spectrum of neuromotor function at school age in children who had been born full-term and presented with neonatal encephalopathy (NE) and low Apgar scores and (ii) the relation between the presence/absence of such difficulties and neonatal brain MRI. Motor outcome appears to be mainly related to the severity of basal ganglia and internal capsule involvement. Severe basal ganglia lesions were always associated with the most severe outcome, microcephaly, tetraplegia, and severe global delay, whereas more discrete basal ganglia lesions were associated with athetoid cerebral palsy, with normal cognitive development or minor neuro-motor abnormalities. White matter lesions were associated with abnormal motor outcome only if the internal capsule was involved. Children with moderate white matter changes but normal internal capsule, had normal motor outcome at school age. PMID:14640307
Terband, H.; Maassen, B.; Guenther, F.H.; Brumberg, J.
2014-01-01
Background/Purpose Differentiating the symptom complex due to phonological-level disorders, speech delay and pediatric motor speech disorders is a controversial issue in the field of pediatric speech and language pathology. The present study investigated the developmental interaction between neurological deficits in auditory and motor processes using computational modeling with the DIVA model. Method In a series of computer simulations, we investigated the effect of a motor processing deficit alone (MPD), and the effect of a motor processing deficit in combination with an auditory processing deficit (MPD+APD) on the trajectory and endpoint of speech motor development in the DIVA model. Results Simulation results showed that a motor programming deficit predominantly leads to deterioration on the phonological level (phonemic mappings) when auditory self-monitoring is intact, and on the systemic level (systemic mapping) if auditory self-monitoring is impaired. Conclusions These findings suggest a close relation between quality of auditory self-monitoring and the involvement of phonological vs. motor processes in children with pediatric motor speech disorders. It is suggested that MPD+APD might be involved in typically apraxic speech output disorders and MPD in pediatric motor speech disorders that also have a phonological component. Possibilities to verify these hypotheses using empirical data collected from human subjects are discussed. PMID:24491630
Proudfoot, Malcolm; Rohenkohl, Gustavo; Quinn, Andrew; Colclough, Giles L.; Wuu, Joanne; Talbot, Kevin; Woolrich, Mark W.; Benatar, Michael
2016-01-01
Abstract Continuous rhythmic neuronal oscillations underpin local and regional cortical communication. The impact of the motor system neurodegenerative syndrome amyotrophic lateral sclerosis (ALS) on the neuronal oscillations subserving movement might therefore serve as a sensitive marker of disease activity. Movement preparation and execution are consistently associated with modulations to neuronal oscillation beta (15–30 Hz) power. Cortical beta‐band oscillations were measured using magnetoencephalography (MEG) during preparation for, execution, and completion of a visually cued, lateralized motor task that included movement inhibition trials. Eleven “classical” ALS patients, 9 with the primary lateral sclerosis (PLS) phenotype, and 12 asymptomatic carriers of ALS‐associated gene mutations were compared with age‐similar healthy control groups. Augmented beta desynchronization was observed in both contra‐ and ipsilateral motor cortices of ALS patients during motor preparation. Movement execution coincided with excess beta desynchronization in asymptomatic mutation carriers. Movement completion was followed by a slowed rebound of beta power in all symptomatic patients, further reflected in delayed hemispheric lateralization for beta rebound in the PLS group. This may correspond to the particular involvement of interhemispheric fibers of the corpus callosum previously demonstrated in diffusion tensor imaging studies. We conclude that the ALS spectrum is characterized by intensified cortical beta desynchronization followed by delayed rebound, concordant with a broader concept of cortical hyperexcitability, possibly through loss of inhibitory interneuronal influences. MEG may potentially detect cortical dysfunction prior to the development of overt symptoms, and thus be able to contribute to the assessment of future neuroprotective strategies. Hum Brain Mapp 38:237–254, 2017. © 2016 Wiley Periodicals, Inc. PMID:27623516
Effects of hindlimb unloading on neuromuscular development of neonatal rats
NASA Technical Reports Server (NTRS)
Huckstorf, B. L.; Slocum, G. R.; Bain, J. L.; Reiser, P. M.; Sedlak, F. R.; Wong-Riley, M. T.; Riley, D. A.
2000-01-01
We hypothesized that hindlimb suspension unloading of 8-day-old neonatal rats would disrupt the normal development of muscle fiber types and the motor innervation of the antigravity (weightbearing) soleus muscles but not extensor digitorum longus (EDL) muscles. Five rats were suspended 4.5 h and returned 1.5 h to the dam for nursing on a 24 h cycle for 9 days. To control for isolation from the dam, the remaining five littermates were removed on the same schedule but not suspended. Another litter of 10 rats housed in the same room provided a vivarium control. Fibers were typed by myofibrillar ATPase histochemistry and immunostaining for embryonic, slow, fast IIA and fast IIB isomyosins. The percentage of multiple innervation and the complexity of singly-innervated motor terminal endings were assessed in silver/cholinesterase stained sections. Unique to the soleus, unloading accelerated production of fast IIA myosin, delayed expression of slow myosin and retarded increases in standardized muscle weight and fiber size. Loss of multiple innervation was not delayed. However, fewer than normal motor nerve endings achieved complexity. Suspended rats continued unloaded hindlimb movements. These findings suggest that motor neurons resolve multiple innervation through nerve impulse activity, whereas the postsynaptic element (muscle fiber) controls endplate size, which regulates motor terminal arborization. Unexpectedly, in the EDL of unloaded rats, transition from embryonic to fast myosin expression was retarded. Suspension-related foot drop, which stretches and chronically loads EDL, may have prevented fast fiber differentiation. These results demonstrate that neuromuscular development of both weightbearing and non-weightbearing muscles in rats is dependent upon and modulated by hindlimb loading.
Cerebellar Plasticity and Motor Learning Deficits in a Copy Number Variation Mouse Model of Autism
Piochon, Claire; Kloth, Alexander D; Grasselli, Giorgio; Titley, Heather K; Nakayama, Hisako; Hashimoto, Kouichi; Wan, Vivian; Simmons, Dana H; Eissa, Tahra; Nakatani, Jin; Cherskov, Adriana; Miyazaki, Taisuke; Watanabe, Masahiko; Takumi, Toru; Kano, Masanobu; Wang, Samuel S-H; Hansel, Christian
2014-01-01
A common feature of autism spectrum disorder (ASD) is the impairment of motor control and learning, occurring in a majority of children with autism, consistent with perturbation in cerebellar function. Here we report alterations in motor behavior and cerebellar synaptic plasticity in a mouse model (patDp/+) for the human 15q11-13 duplication, one of the most frequently observed genetic aberrations in autism. These mice show ASD-resembling social behavior deficits. We find that in patDp/+ mice delay eyeblink conditioning—a form of cerebellum-dependent motor learning—is impaired, and observe deregulation of a putative cellular mechanism for motor learning, long-term depression (LTD) at parallel fiber-Purkinje cell synapses. Moreover, developmental elimination of surplus climbing fibers—a model for activity-dependent synaptic pruning—is impaired. These findings point to deficits in synaptic plasticity and pruning as potential causes for motor problems and abnormal circuit development in autism. PMID:25418414
Schepers, Sasja; Deković, Maja; Feltzer, Max; de Kleine, Martin; van Baar, Anneloes
2012-01-01
The aim of this study was to examine differences in drawing skills between very preterm and term children, and to determine whether very preterm children's cognitive and motor development is reflected in the draw-a-person test (DAP) at age 5. Seventy-two very preterm children (birth weight <1,500 g and/or gestational age <32 weeks) and 60 term children at 5 years of age were compared on the DAP. Cognitive and motor skills of the very preterm children had been assessed four times, at 1/2, 1, 2, and 5 years of age. Very preterm children showed a developmental delay in drawing ability. Structural equation modeling revealed a positive relation between both cognitive as well as motor development and the DAP. The DAP could be a crude parameter for evaluating cognitive and motor deficits of very preterm children. A worrisome result should be followed by more standardized tests measuring cognitive and motor skills.
Adaptive control system for line-commutated inverters
NASA Technical Reports Server (NTRS)
Dolland, C. R.; Bailey, D. A. (Inventor)
1983-01-01
A control system for a permanent magnet motor driven by a multiphase line commutated inverter is provided with integration for integrating the back EMF of each phase of the motor. This is used in generating system control signals for an inverter gate logic using a sync and firing angle (alpha) control generator connected to the outputs of the integrators. A precision full wave rectifier provides a speed control feedback signal to a phase delay rectifier via a gain and loop compensation circuit and to the integrators for adaptive control of the attenuation of low frequencies by the integrators as a function of motor speed. As the motor speed increases, the attenuation of low frequency components by the integrators is increased to offset the gain of the integrators to spurious low frequencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fradkin, D.B.; Hull, L.M.; Laabs, G.W.
The results of dynamic sled track performance testing of advanced tandem configuration shaped-charge warheads against multiple-reactive-element tank armors are presented. Tandem configurations utilizing both currently fielded and experimental shaped-charge warheads were tested. Sled velocities used were between 400 and 1100 ft/s (Mach number 0.35 to 0.95), typical of the terminal approach velocity of TOW-type antitank missiles. High-speed motion pictures (5000 frames/s) of the sled in operation and a typical mock missile'' warhead package approaching the target are shown. Details of the sled design and fabrication and of the warhead package design and fabrication are presented. Sled track instrumentation is discussed.more » This instrumentation includes foil make/break switches and associated time interval meters (TIM) and digital delay units (DDU), magnetic Hall-effect transistors for measuring sled trajectory, and flash x-rays (FXR). Methods for timing the x-rays are presented. Schematic functional diagrams of the experimental setups are also given. Evidence of the ability to accurately time the delay between precursor and main warheads for even very long time delays are presented. FXR pictures illustrate the dynamics of the interaction of the jets with various target elements. The interaction dynamics of the jets is discussed in relation to the overall penetration performance of the tandem warhead. The use of x-ray fluorescence spectroscopy to help diagnose interaction dynamics is illustrated. The results of a test utilizing the missile propulsion rocket motor as a blast shield is presented in this paper. 2 refs., 22 figs.« less
EEG signatures of arm isometric exertions in preparation, planning and execution.
Nasseroleslami, Bahman; Lakany, Heba; Conway, Bernard A
2014-04-15
The electroencephalographic (EEG) activity patterns in humans during motor behaviour provide insight into normal motor control processes and for diagnostic and rehabilitation applications. While the patterns preceding brisk voluntary movements, and especially movement execution, are well described, there are few EEG studies that address the cortical activation patterns seen in isometric exertions and their planning. In this paper, we report on time and time-frequency EEG signatures in experiments in normal subjects (n=8), using multichannel EEG during motor preparation, planning and execution of directional centre-out arm isometric exertions performed at the wrist in the horizontal plane, in response to instruction-delay visual cues. Our observations suggest that isometric force exertions are accompanied by transient and sustained event-related potentials (ERP) and event-related (de-)synchronisations (ERD/ERS), comparable to those of a movement task. Furthermore, the ERPs and ERD/ERS are also observed during preparation and planning of the isometric task. Comparison of ear-lobe-referenced and surface Laplacian ERPs indicates the contribution of superficial sources in supplementary and pre-motor (FC(z)), parietal (CP(z)) and primary motor cortical areas (C₁ and FC₁) to ERPs (primarily negative peaks in frontal and positive peaks in parietal areas), but contribution of deep sources to sustained time-domain potentials (negativity in planning and positivity in execution). Transient and sustained ERD patterns in μ and β frequency bands of ear-lobe-referenced and surface Laplacian EEG indicate the contribution of both superficial and deep sources to ERD/ERS. As no physical displacement happens during the task, we can infer that the underlying mechanisms of motor-related ERPs and ERD/ERS patterns do not only depend on change in limb coordinate or muscle-length-dependent ascending sensory information and are primary generated by motor preparation, direction-dependent planning and execution of isometric motor tasks. The results contribute to our understanding of the functions of different brain regions during voluntary motor tasks and their activity signatures in EEG can shed light on the relationships between large-scale recordings such as EEG and other recordings such as single unit activity and fMRI in this context. Copyright © 2013 Elsevier Inc. All rights reserved.
Early development in males with Fragile X syndrome: a review of the literature.
Kau, Alice S M; Meyer, Walter A; Kaufmann, Walter E
2002-05-01
This article reviews the current bibliographic knowledge on early neurobehavioral development and milestones in Fragile X syndrome (FraX), with emphasis on males affected by the condition. Three broad areas of early development were examined: (1) gross and fine motor, (2) speech and language, and (3) social. The result of the current review indicates very limited information on the developmental milestones in all three areas. The scarce literature on motor development shows that in FraX there is an early developmental delay. Research on speech and language demonstrates pervasive deficits in conversational skills and severe developmental delay, with increasing discrepancy between language level and chronological age in young males with FraX. Finally, deficits in social development in FraX include abnormal gaze, approach and avoidance conflict, and high incidence of autistic spectrum disorders. Copyright 2002 Wiley-Liss, Inc.
Berger, Sarah E; Harbourne, Regina T; Guallpa Lliguichuzhca, Carmen L
2018-02-21
(1) examine infant movement during an early posture (sitting) utilizing a novel video assessment technique; and (2) document the differences between infants with typical development (TD), premature infants with motor delay, and infants with cerebral palsy (CP) during focused and nonfocused attention (NFA). Infants were tested when they began to sit independently. We utilized Eulerian Video Magnification (EVM) to accentuate small trunk and pelvic movements for visual coding from video taken during a natural play task with and without focused attention (FA). Trunk/pelvic movement varied as a function of both motor skill and attention. Infants with TD and CP made fewer trunk movements during periods of FA than NFA. Preterm infants exhibited more trunk/pelvic movement than the other groups and their movement did not differ based on attention type. The EVM technique allowed for replicable coding of real-time "hidden" motor adjustments from video. The capacity to minimize extraneous movements in infants, or "sitting still" may allow greater attention to the task at hand, similar to older children and adults. Premature infants' excessive trunk/pelvic movement that did not adapt to task requirements could, in the long term, impact tasks requiring attentional resources.
Effects of preparation time and trial type probability on performance of anti- and pro-saccades.
Pierce, Jordan E; McDowell, Jennifer E
2016-02-01
Cognitive control optimizes responses to relevant task conditions by balancing bottom-up stimulus processing with top-down goal pursuit. It can be investigated using the ocular motor system by contrasting basic prosaccades (look toward a stimulus) with complex antisaccades (look away from a stimulus). Furthermore, the amount of time allotted between trials, the need to switch task sets, and the time allowed to prepare for an upcoming saccade all impact performance. In this study the relative probabilities of anti- and pro-saccades were manipulated across five blocks of interleaved trials, while the inter-trial interval and trial type cue duration were varied across subjects. Results indicated that inter-trial interval had no significant effect on error rates or reaction times (RTs), while a shorter trial type cue led to more antisaccade errors and faster overall RTs. Responses following a shorter cue duration also showed a stronger effect of trial type probability, with more antisaccade errors in blocks with a low antisaccade probability and slower RTs for each saccade task when its trial type was unlikely. A longer cue duration yielded fewer errors and slower RTs, with a larger switch cost for errors compared to a short cue duration. Findings demonstrated that when the trial type cue duration was shorter, visual motor responsiveness was faster and subjects relied upon the implicit trial probability context to improve performance. When the cue duration was longer, increased fixation-related activity may have delayed saccade motor preparation and slowed responses, guiding subjects to respond in a controlled manner regardless of trial type probability. Copyright © 2016 Elsevier B.V. All rights reserved.
Speed Pressure in Conflict Situations Impedes Inhibitory Action Control in Parkinson’s Disease
Van Wouwe, N.C.; van den Wildenberg, W.P.M.; Claassen, D.O.; Kanoff, K.; Bashore, T.R.; Wylie, S.A.
2014-01-01
Parkinson’s disease (PD) is a neurodegenerative basal ganglia disease that disrupts cognitive control processes involved in response selection. The current study investigated the effects of PD on the ability to resolve conflicts during response selection when performance emphasized response speed versus response accuracy. Twenty-one (21) PD patients and 21 healthy controls (HC) completed a Simon conflict task, and a subset of 10 participants from each group provided simultaneous movement-related potential (MRP) data to track patterns of motor cortex activation and inhibition associated with the successful resolution of conflicting response tendencies. Both groups adjusted performance strategically to emphasize response speed or accuracy (i.e., speed-accuracy effect). For HC, interference from a conflicting response was reduced when response accuracy rather than speed was prioritized. For PD patients, however, there was a reduction in interference, but it was not statistically significant. The conceptual framework of the Dual-Process Activation-Suppression (DPAS) model revealed that the groups experienced similar susceptibility to making fast impulsive errors in conflict trials irrespective of speed-accuracy instructions, but PD patients were less proficient and delayed compared to HC at suppressing the interference from these incorrect response tendencies, especially under speed pressure. Analysis of MRPs on response conflict trials showed attenuated inhibition of the motor cortex controlling the conflicting impulsive response tendency in PD patients compared to HC. These results further confirm the detrimental effects of PD inhibitory control mechanisms and their exacerbation when patients perform under speed pressure. The results also suggest that a downstream effect of inhibitory dysfunction in PD is diminished inhibition of motor cortex controlling conflicting response tendencies. PMID:25017503
2012-01-01
Abstract Background Knowledge about early physiotherapy to preterm infants is sparse, given the risk of delayed motor development and cerebral palsy. Methods/Design A pragmatic randomized controlled study has been designed to assess the effect of a preventative physiotherapy program carried out in the neonatal intensive care unit. Moreover, a qualitative study is carried out to assess the physiotherapy performance and parents' experiences with the intervention. The aim of the physiotherapy program is to improve motor development i.e. postural control and selective movements in these infants. 150 infants will be included and randomized to either intervention or standard follow-up. The infants in the intervention group will be given specific stimulation to facilitate movements based on the individual infant's development, behavior and needs. The physiotherapist teaches the parents how to do the intervention and the parents receive a booklet with photos and descriptions of the intervention. Intervention is carried out twice a day for three weeks (week 34, 35, 36 postmenstrual age). Standardized tests are carried out at baseline, term age and at three, six, 12 and 24 months corrected age. In addition eight triads (infant, parent and physiotherapist) are observed and videotaped in four clinical encounters each to assess the process of physiotherapy performance. The parents are also interviewed on their experiences with the intervention and how it influences on the parent-child relationship. Eight parents from the follow up group are interviewed about their experience. The interviews are performed according to the same schedule as the standardized measurements. Primary outcome is at two years corrected age. Discussion The paper presents the protocol for a randomized controlled trial designed to study the effect of physiotherapy to preterm infants at neonatal intensive care units. It also studies physiotherapy performance and the parent's experiences with the intervention. Trial registration ClinicalTrials.gov NCT01089296 PMID:22336194
Carvalho, Chrissie Ferreira de; Oulhote, Youssef; Martorelli, Marina; Carvalho, Carla Oliveira de; Menezes-Filho, José Antônio; Argollo, Nayara; Abreu, Neander
2018-02-09
Manganese (Mn) is an essential element, however high levels of Mn have been associated with lower neuropsychological performance and behavioral problems in children. We investigated the associations between hair Mn concentrations and neuropsychological and behavioral performances among children with long-term exposure to airborne Mn aged between 7 and 12 years. Neuropsychological performance included tests of: verbal memory, inhibitory control, cognitive flexibility, verbal fluency, and motor function. We used the Conners Abbreviated Rating Scale for teachers to assess students' behaviors of hyperactivity. Hair manganese (MnH) concentrations in children and exposure to airborne manganese from a ferro-manganese alloy plant were analyzed and correlated with tests scores. Multivariable linear models adjusting for potential confounders showed that elevated levels of MnH were associated with lower performance in verbal memory, as measured by the free recall after interference (β = - 1.8; 95% CI: - 3.4, - 0.2), which indicates susceptibility to interference, and Delayed Effect (β = -2.0; 95% CI: -3.7, - 0.2), representing a loss of information over time. Additionally, we found patterns of effect modification by sex in three subtests measuring verbal memory: the free recall after interference score, Interference Effect, and Delayed Effect (all at p < 0.10). Overall, the results suggest that long-term airborne Mn exposure may be associated with lower performance in verbal memory, and hyperactivity behaviors. Copyright © 2018 Elsevier B.V. All rights reserved.
Higgins, Guy A; Silenieks, Leo B; MacMillan, Cam; Sevo, Julia; Zeeb, Fiona D; Thevarkunnel, Sandy
2016-09-15
NMDA GluN2B (NR2B) subtype selective antagonists are currently in clinical development for a variety of indications, including major depression. We previously reported the selective NMDA GluN2B antagonists Ro 63-1908 and traxoprodil, increase premature responding in a 5-choice serial reaction time task (5-CSRTT) suggesting an effect on impulsive action. The present studies extend these investigations to a Go-NoGo and delay discounting task, and the 5-CSRTT under test conditions of both regular (5s) and short (2-5s) multiple ITI (Intertrial interval). Dizocilpine was included for comparison. Both Ro 63-1908 (0.1-1mg/kg SC) and traxoprodil (0.3-3mg/kg SC) increased premature and perseverative responses in both 5-CSRT tasks and improved attention when tested under a short ITI test condition. Ro 63-1908 but not traxoprodil increased motor impulsivity (false alarms) in a Go-NoGo task. Dizocilpine (0.01-0.06mg/kg SC) affected both measures of motor impulsivity and marginally improved attention. In a delay discounting test of impulsive choice, both dizocilpine and Ro 63-1908 decreased impulsive choice (increased choice for the larger, delayed reward), while traxoprodil showed a similar trend. Motor stimulant effects were evident following Ro 63-1908, but not traxoprodil treatment - although no signs of motor stereotypy characteristic of dizocilpine (>0.1mg/kg) were noted. The findings of both NMDA GluN2B antagonists affecting measures of impulsive action and compulsive behavior may underpin emerging evidence to suggest glutamate signaling through the NMDA GluN2B receptor plays an important role in behavioural flexibility. The profiles between Ro 63-1908 and traxoprodil were not identical, perhaps suggesting differences between members of this drug class. Copyright © 2016 Elsevier B.V. All rights reserved.
Torsvik, Ingrid; Ueland, Per Magne; Markestad, Trond; Bjørke-Monsen, Anne-Lise
2013-11-01
During infancy, minor developmental delays and gastrointestinal complaints are common, as is a biochemical profile indicative of impaired cobalamin status. We investigated whether cobalamin supplementation can improve development or symptoms in infants with biochemical signs of impaired cobalamin function and developmental delay or feeding difficulties. Infants <8 mo of age (n = 105) who were referred for feeding difficulties, subtle neurologic symptoms, or delayed psychomotor development were assessed for cobalamin status [by the measurement of serum cobalamin, plasma total homocysteine (tHcy), and plasma methylmalonic acid (MMA)]. Infants with biochemical signs of impaired cobalamin function, defined as a plasma tHcy concentration ≥6.5 μmol/L (n = 79), were enrolled in a double-blind, randomized controlled trial to receive 400 μg hydroxycobalamin intramuscularly (n = 42) or a sham injection (n = 37). Motor function [Alberta Infants Motor Scale (AIMS)] and clinical symptoms (parental questionnaire) were recorded at entry and after 1 mo. During follow-up, cobalamin supplementation changed all markers of impaired cobalamin status (ie, plasma tHcy decreased by 54%, and MMA decreased by 84%), whereas no significant changes were seen in the placebo group (P < 0.001). The median (IQR) increase in the AIMS score was higher in the cobalamin group than in the placebo group [7.0 (5.0, 9.0) compared with 4.5 (3.3, 6.0); P = 0.003], and a higher proportion showed improvements in regurgitations (69% compared with 29%, respectively; P = 0.003). In infants with biochemical signs of impaired cobalamin function, 1 intramuscular injection of cobalamin resulted in biochemical evidence of cobalamin repletion and improvement in motor function and regurgitations, which suggest that an adequate cobalamin status is important for a rapidly developing nervous system. This trial was registered at clinicaltrials.gov as NCT00710359 and NCT00710138.
Scintigraphic Evaluation of Mild to Moderate Dysphagia in Motor Neuron Disease.
Szacka, Katarzyna; Potulska-Chromik, Anna; Fronczewska-Wieniawska, Katarzyna; Spychała, Andrzej; Kròlicki, Leszek; Kuźma-Kozakiewicz, Magdalena
2016-04-01
Approximately 30% of patients with motor neuron disease (MND) present swallowing difficulties even in early disease stages. The aim of this study was to examine the usefulness of esophageal scintigraphy in detecting early stage of dysphagia in MND. Esophageal scintigraphy (ES) including mean transit time (MTT) estimation was performed in 121 MND patients presenting various levels of upper (UMN) and lower motor neuron (LMN) degeneration. ES detected dysphagia in more than 80% of MND patients who had referenced swallowing difficulties. In MND patients with ES-confirmed dysphagia, the MTT was increased approximately 2-fold without significant differences between the clinical phenotypes. The MTT was significantly longer in patients with bulbar-pseudobulbar syndrome in comparison to patients with isolated pseudobulbar syndrome, which indicates a higher involvement of the LMN deficiency in developing dysphagia in MND. The esophageal passage in MND was not dependent on age, sex, disease duration, or diagnosis delay. Interestingly, ES was also able to detect dysphagia in almost 70% of MND individuals who had no swallowing complaints (subclinical dysphagia). A more benign disease course and a higher percentage of male patients characterized this group. Esophageal scintigraphy is a helpful screening tool in determining early swallowing impairment in a high percent of patients with MND of various clinical phenotypes.
Regional microstructural organization of the cerebral cortex is affected by preterm birth.
Bouyssi-Kobar, Marine; Brossard-Racine, Marie; Jacobs, Marni; Murnick, Jonathan; Chang, Taeun; Limperopoulos, Catherine
2018-01-01
To compare regional cerebral cortical microstructural organization between preterm infants at term-equivalent age (TEA) and healthy full-term newborns, and to examine the impact of clinical risk factors on cerebral cortical micro-organization in the preterm cohort. We prospectively enrolled very preterm infants (gestational age (GA) at birth<32 weeks; birthweight<1500 g) and healthy full-term controls. Using non-invasive 3T diffusion tensor imaging (DTI) metrics, we quantified regional micro-organization in ten cerebral cortical areas: medial/dorsolateral prefrontal cortex, anterior/posterior cingulate cortex, insula, posterior parietal cortex, motor/somatosensory/auditory/visual cortex. ANCOVA analyses were performed controlling for sex and postmenstrual age at MRI. We studied 91 preterm infants at TEA and 69 full-term controls. Preterm infants demonstrated significantly higher diffusivity in the prefrontal, parietal, motor, somatosensory, and visual cortices suggesting delayed maturation of these cortical areas. Additionally, postnatal hydrocortisone treatment was related to accelerated microstructural organization in the prefrontal and somatosensory cortices. Preterm birth alters regional microstructural organization of the cerebral cortex in both neurocognitive brain regions and areas with primary sensory/motor functions. We also report for the first time a potential protective effect of postnatal hydrocortisone administration on cerebral cortical development in preterm infants.